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UNIVERSAL PORTFOLIOS 

THOMAS M. COVER] 

Departments of Statistics and Electrical Engineering, Stan ford University, 
Stanford, CA 

We exhibit an algorithm for portfolio selection that asymptotically outperforms the best 
stock in the market. Let x, = ( x i l . x , z . .  . . ,x,,,,)' denote the performance of the stock 
market on day i ,  where xjj is the factor by which the j t h  stock increases on day i .  
Let bi = (b,,, bj2, . . . , bjm)', b, 5: 0, Cjbl, = 1 ,  denote the proportion bO of wealth 
invested in the j t h  stock on day i .  Then S ,  = II:=, blx, is the factor by which wealth 
is increased in n trading days. Consider as a goal the wealth S,' = maxb II:= I b'xi that can 
be achieved by the best constant rebalanced portfolio chosen after the stock outcomes are 
revealed. It can be shown that S,' exceeds the best stock, the Dow Jones average, and the 
value line index at time n. In fact, S,' usually exceeds these quantities by an exponential 
factor. Let xlr x2, .  . . , be an arbitrary sequence of market vectors. It will be shown 
that thegonanticipating sequence of portfolios 6, =, j b r I f r I '  b'x, db/ j II fZl '  b'x, d b  yields 
wealth Sn = IIZ=l 6 i x k  such that (I/n)ln(S,'/S,) -, 0, for every bounded sequence 
xlr x2. . . . , and, under mild conditions, achieves 

~ , ' ( r n  - 1 ) ! ( 2 7 r / n ) ( ~ - ' ) ' ~  3" - 
IJn11'2 

where J, is an  ( m  - 1 )  x ( m  - I )  sensitivity matrix. Thus this portfolio strategy has the 
same exponential rate of growth as the apparently unachievable S,'. 

KEYWORDS: portfolio selection, robust trading strategies, performance weighting, 
rebalancing 

1. INTRODUCTION 

We consider a sequential portfolio selection procedure for investing in the stock 
market with the goal of performing as well as if we knew the empirical distribution 
of future market performance. Throughout the paper we are unwilIing to  make 
any statistical assumption about the behavior of the market. In particular, we 
allow for the possibility of market crashes such as those occurring in 1929 and 
1987. We seek a robust procedure with respect to the arbitrary market sequences 
that occur in the real world. 

We first investigate what a natural goal might be for the growth of wealth for 
arbitrary market sequences. For example, a natural goal might be to outperform 
the best buy-and-hold strategy, thus beating an investor who is given a look at a 
newspaper n days in the future. 

We propose a more ambitious goal. To motivate this goal let us consider all 
constant rebalanced portfolio strategies. Let x = ( x , ,  x2, . . . , xm)'  1 0 denote a 
stock market vector for one investment period, where xi is the price relative for 
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the ith stock-i.e., the ratio of closing to  opening price for stock i. A portfolio 
b = (b, ,  bZ,. . , brn)‘, bi 2 0, C bj  = 1, is the proportion of the current wealth 
invested in each of the rn stocks. Thus S = b‘x = C bjxj, where b and x are 
considered to be column vectors, is the factor by which wealth increases in one 
investment period using portfolio b. 

Consider an arbitrary (nonrandom) sequence of stock vectors xI, x2, . . . , x, 
E RY. Here xjj is the price relative of stock j on day i. A constant rebalanced 
portfolio strategy b achieves wealth 

n 

where the initial wealth So(b)  = 1 is normalized to  1 .  Let 

S,* = max S,(b) 
b 

(1.2) 

denote the maximum wealth achievable on the given stock sequence maximized 
over all constant rebalanced portfolios. Our goal is to  achieve S,*. 

We will be able to  show that there is a “universal” portfolio strategy %k, where 
bk is based only on the past xl, x2, . . . , xk- I ,  that will perform asymptotically as 
well as the best constant rebalanced portfolio based on foreknowledge of ‘,he 
sequence of price relatives. At first it may seem surprising that the portfolio bk 
should depend on the past, because the future has no relationship to  the past. 
Indeed the stock sequence is arbitrary, and a malicious nature can structure future 
xk’s to take advantage of past beliefs as expressed in the portfolio%k. Nonetheless 
the resulting wealth can be made to track S,*. 

The proposed universal adaptive portfolio strategy is the performance weighted 
strategy specified by 

(1.3) 

where 

(1.4) sk(b)  

and the integration is over the set of 

(1 - 5 )  

k 
= n b‘x;, 

(rn - 1 )-dimensional portfolios 

i =  1 

The wealth $, resulting from the universal portfolio is given by 

k =  1 

Thus the initial universal portfolio %, is uniform over the stocks, and the port- 
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fo1iolk at time k is the performance weighted average of all portfolios b E B. An 
approximate computation will be given in Section 8, and a generalization of this 
algorithm will be given in Section 9. 

(1.7) ( l /n ) ln  j,, - ( I /n) ln  s,* ---t 0, 

for arbitrary bounded stock sequences x i ,  x2,. . . . Thus j,, and S,* have the same 
exponent to first order. A more refined analysis for two stocks shows 

We will show that 

in a sense that will be made precise. It is difficult to summarize the behavior of 
Sfl relative to S,* because of the arbitrariness of the sequence and the fact that we 
cannot assume a limiting distribution. For example, even the limit of (l/n)lnS,* 
cannot be assumed to exist. 

The goal of uniformly achieving S,*(xl, x2, . . . , xfl), as specified in (1.7), was 
partially achieved by Cover and Gluss (1986) for discrete-valued stock markets 
by using the theory of compound sequential Bayes decision rules developed 
in Robbins (1951), Hannan and Robbins (1955), and the game-theoretic 
approachability-excludability theory of Blackwell (1956a, b). Work on natural 
investment goals can be found in Samuelson (1967) and Arrow (1974). The vast 
theory of undominated portfolios in the mean-variance plane is exemplified in 
Markowitz (1952) and Sharpe (1963), while the theory of rebalanced portfolios for 
known underlying distributions is developed in Kelly (1956), Mossin (1968), Thorp 
(1971), Markowitz (1976), Hakansson (1979), Bell and Cover (1980, 1988), Cover 
and King (1978), Cover (1984), Barron and Cover (1988), and Algoet and Cover 
(1988). A spirited defense of utility theory and the incompatibility of utility theory 
with the asymptotic growth rate approach is made in Samuelson (1967,1969,1979) 
and Merton and Samuelson (1974). 

We see the present work as a departure from the above model-based investment 
theories, whether they be based on utility theory or growth rate optimality. Here 
the goal S,* = maxbII,fl=, b'xi depends solely on the data and does not depend 
upon underlying statistical assumptions. Moreover, TheoremA 5.1, for example, 
provides a finite sample lower bound for the performance S,  of the universal 
portfolio with respect to S,*. Therefore the case for success rests almost entirely 
on the acceptance of S,* as a natural investment goal. 

The performance of the universal portfolio is exhibited in Section 8, where 
numerous examples are given of S,  ( b ) ,  S,*, and j,, for various pairs of stocks. In 
general, volatile uncorrelated stocks lead to great gains of S,* and Sfl over the best 
buy-and-hold strategy. However, ponderous stocks like IBM and Coca-Cola show 
only modest improvements. 
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2. ELEMENTARY PROPERTIES 

We wish to show that the wealth generated by the universal portfolio strategy 
^bk exceeds the value line index and that 3, is invariant under permutations of the 
stock sequence x l ,  x2, . . . , x,. We will use the notation 

(2.1) 

(2.2) 

W(b, F )  = 1 In b'x d F ( x ) ,  

W * ( F )  = max W(b, F ) ,  
b 

and we will denote by F, the empirical distribution associated with x I ,  x2, . . . , 
x,, where F, places mass l /n  at each xi. In particular, we note that 

For purposes of comparison, we pay special attention to buy-and-hold strategies 
b = e. J = (O,O, . . . ,0, l , O ,  . . . ,O), where ej is t he j th  basis vector. Note that 

(2.4) 

is the factor by which thej th  stock increases in n investment periods. Thus S , ( e j )  
is the result of the buy-and-hold strategy associated with the j t h  stock. 

k =  I k = l  

We now note some properties of the target wealth S,*: 

PROPOSITION 2.1 (Target Exceeds Best Stock). 

S,* B max S , ( e j ) .  
j= l ,2 ,  ..., m 

(2.5) 

Proof, S,* is a maximization of S,(b) over the simplex, while the right-hand 
0 side is a maximization over the vertices of the simplex. 

PROPOSITION 2.2 (Target Exceeds Value Line). 
I m  I/m 

Proof. Each S, ( ej ) is 5 S,*. 0 
The next proposition shows that the target exceeds the DJIA. 

PROPOSITION 2.3 (Target Exceeds Arithmetic Mean). If aj L 0, C aj = 1, 
then 

m 

(2.7) 
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Thus S,* exceeds the arithmetic mean, the geometric mean, and  the maximum 
of the component stocks. Finally, it follows by inspection that S,* does not 
depend on  the order in which x I ,  x2, . . . , x ,  occur. 

PROPOSITION 2.4 S,*(xl, x 2 ,  . . . , x , )  is invariant under permutations of the 
sequence xl, x 2 , .  . . , x,. 

Now recall the proposed portfolio algorithm in (1 .3)  with the resulting wealth 

It will be useful t o  recharacterize in in the following way. 

LEMMA 2.5. 

IJ (2.10) i,, = fi %kxk = J S , ( b )  d b  d b  
k =  I 

where 

(2.11) 

Thus the wealth 2, resulting from the universal portfolio is the average of 
S,(b) over the simplex. 

Proof. Note from (1.3) and (1.4) that 

(2.12) 

(2.13) 

Thus the product in (2.9) telescopes into 

IJ " A  

(2.14) 3, = n biXk = j 4 b'x; d b / j  d b  = S, (b )  d b  db .  
k = l  

0 

We observe two properties of the wealth 2, achieved by the universal portfolio. 
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PROPOSITION 2.5 (Universal Portfolio Exceeds Value Line Index). 

(2.15) 

Proof. Let F, be the empirical cumulative distribution function induced by 
x I ,  x2, . . . , x,. By two applications of Jensen's inequality and writing 

(2.16) 

we have 

(2.17) 

1 S, , (b)  d b / /  d b  = Eb&(b) ,  

in = E&, ( b )  = Eb exp { n W (  b ,  F,) ] 

1 2 exp 1 nEb W (  b,  F,) ) = exp 

rn I / m  

= exp[n(; 1 Inejx dF , , (x ) ) ]  = (n S , ( e , ) )  . 
j =  I 

0 

Thus the wealth induced by the proposed portfolio dominates the value line index 
for any stock sequence xl, x2, . . . , xx,  for all n. 

Next, we observe that although bk depznds on the order of the sequence 
xI, x 2 , .  . . , x , ,  the resulting wealth in = ll b:xk does not. 

PROPOSITION 2.6. 3, is invariant under permutations of the sequence 
X I ,  x2,  - . . , x,. 

Proof. Since the integrand in 

h 

(2.18) i,, = fi b:xk = I  S , (b )  d b / J B d b  = I  fi b'xidb 
k =  1 B ' j = l  

is invariant under permutations, so is in. 0 
This observation guarantees that the crash of 1929 will have no worse conse- 

quences for wealth S,  than if the bad days of that time had been sprinkled out 
among the good. 

3. THE REASON THE PORTFOLIO WORKS 

The main idea of the portfolio algorithm is quite simple. The idea is to give an 
amount db / lB  d b  to each portfolio manager indexed by rebalancing strategy b, 
let him or her make S,,( b )  = enW(b* ',) d b  at exponential rate W (  b,  F,, ), and 
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pool the wealth at the en,d. Of course, all dividing and repooling is done "on paper" 
at time k,  resulting in bk. Since the average of exponentials has, under suitable 
smoothness conditions, the same asymptotic exponential growth rate as the 
maximum, one achieves almost as much as the wealth S,* achieved by the best 
constant rebalanced portfolio. The trap to  be avoided is to put a mass distribution 
on the market distributions F ( x ) .  It seems that this cannot be done in a satisfactory 
way. 

4. PRELIMINARIES 

We now introduce definitions and conditions that will allow characterization of 
the behavior of $,/S;. Let F, (x) denote the empirical probability mass function 
putting mass l / n  on each of the points x l r  x2, .  . . , x ,~Rm+.  Let the portfolio 
b* = b*(F,) achieve the maximum of S,(b)  = IIy=,b'xi. Equivalently, since 
S,  (b) = enW(b* Fn), the portfolio b*(F,) achieves the maximum of W (  b, F, ) . 
Thus, 

S; = max S,(b) = enw*(Fn) .  
beB 

(4.1) 

DEFINITION. We shall say all stocks are active (at time n) if (b*(F,))i > 0, 
i > 1 , 2 ,  . . . , m, for some b* achieving W * ( F , ) .  All stocks are strictly active if 
inequality is strict for all i and all b* achieving W * ( F , ) .  

DEFINITION. We shall say xl, x2, . . . , x, E Rm are of full rank if x l r  x2, . . . , x, 
spans R"'. 

The condition of full rank is usually true for observed stock market sequences 
if n is somewhat larger than m, but the condition that all stocks be active often 
fails when certain stocks are dominated. The next definition measures the 
curvature of, S,(b) about its maximum and accounts for the second-order 
behavior of S,  with respect to S,*. 

DEFINITION. The sensitivity matrix function J(b) of a market with respect to 
distribution F(x), x ER;, is the (rn - 1) x (m - 1) matrix defined by 

The sensitivity matrix J*  is J(b*),  where b* = b*(F) maximizes W(b, F ) .  
We note that 

a2W( (by, b:, . . . , b:-l, 1 - Ci",T'bt), F )  J?= - 
IJ ab, abj (4 .3)  

LEMMA 4.1.  
strictly active. 

J*  is nonnegative definite. It  is positive definite i f  all stocks are 
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5. ANALYSIS FOR TWO ASSETS 

We now wish to show that !$,,/S,* - Jm,, where Jn is the curvature or 
volatility index. We show in detail that Jmn is an asymptotic lower bound on 
$,,/S,*, and we develop explicit lower bounds on $,/S,* for all n and any market 
sequence x l ,  . . . , x,. We develop an upper bound by invoking strong conditions 
on the market sequence. Section 6 :utlines the proof for m assets. 

We investigate the behavior of S, for m = 2 stocks. Consider the arbitrary 
stock vector sequence 

(5.1) 

We now proceed to recast this two-variable problem in terms of a single variable. 
Since the portfolio choice requires the specification of one parameter, we write 

2 xi = (xjl ,  xj2) ER+, i = 1 , 2 , .  . . . 

(5.2) b = ( b , l - b ) ,  O S b 5 1 ,  

and rewrite S,(b) as 

(5.3) 

Let 

n 

S,  ( b ) = n ( bxjl + ( 1 - b ) ~ ; 2 ) ,  0 I b 5 1. 
i =  1 

(5.4) S,* = max S,(b),  
Ocbs I 

and let b,* denote the value of b achieving this maximum. Section 8 contains 
examples. 

The universal portfolio 
A A A 

( 5 . 5 )  

is defined by 

bk = (bk ,  1 - bk) 

(5.6) 

and achieves wealth 

(5.7) 
n 

in =J-J (%;Xi] + ( 1  -^b;)xjz). 
i= I 

Let 

( 5 . 8 )  
1 

Wn(b) = - lnS,(b) n 

(5.9) 
1 "  
n ; = I  

= - ln(bxil + (1  - b)xjZ) 

(5.10) = 1 ln(bxl + (1  - b)xz) d F , ( x ) ,  
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where F, (x )  is the empirical cdf of ( x i  
achieved by the universal portfolio hbk is given by 

By Lemma 4.1, the wealth & 

(5.11) 

In order to characterize the behavior of 9, we define the following functions 
of the sequence xl, x2 , .  . . , x,. Define the relative range 7, of the sequence 
x l r  x2, . . . , x, to be 

(5.12) 

where the minimum and maximum are taken over i = 1,2,  . . . , n; j = 1,2.  Let 

(5.13) 

where b,* maximizes W,(b). Let 

W,* = max W,(b) = W,,(b,*). (5.14) 

Thus 7, corresponds to the relative range of the price relatives and J, denotes the 
curvature of In S,, (b) at the maximum. 

Osbcl 

THEOREM 5.1. Let xI, x2, . . . , be an arbitrary sequence of stock vectors in 
R:, and let a,, = min { b,*, 1 - b,*, 3Jn/72 1. Then for any 0 < E < 1, and for  any 
n ,  

REMARKS. This theorem says roughly that g,/S,* 2 JN,. So the 
universal wealth is within a factor of C / h  of the (presumably) exponentially large 
S,*. It will turn out that every additional stock in the universal portfolio costs an 
additional factor of 1/&. But these factors become negligible to first order in 
exponent. It is important to mention that this theorem is a bound for each n. The 
bound holds for any stock sequence with bound a,, and volatility J,. 

Proof. We wish to bound 3, = enWn(b)  d b .  We expand W,(b) about the 
maximizing portfolio b,*, noting that W,(b) has different local properties for each 
n and indeed a different maximizing b,*. We have 

( b  - b;)’ 
2 W:(b,*) (5.16) W,,(b) = W,(b,*) + ( b  - b,*)WL(b,*) + 
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where 6, lies between b and b,*. 
We now examine the terms. 
(i) The first term is 

1 
n 

(5.17) W,(b,*) = W * ( F n )  = -logs,*, 

where S,* is the target wealth at  time n. 
(ii) The second term is 

(5.18) 

= 0, if 0 < b,* < 1 ,  

by the optimality of b,*. 
(iii) The third term is 

(5.19) 

Thus, W;(b,*) 1 0, with strict inequality if 0 < b,* < 1 and xil # xi2 for some 
time i .  This term provides the constant in the second-order behavior of $,. 

(iv) The fourth term is 

(5.20) 

We have the bound 

(5.21) 

(5.22) 

Thus 

n 
6 

(5.23) 

for 0 I b 5 I ,  where 

(5.24) 

We now make the change of variable 

(5.25) u = & ( b  - b,*), 

where the new range of integration is 

(5.26) 
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Then, noting e n K  = S,*, we have 

(5.27) 
1 

$, = 1, S,(b) d b  

(5.28) 

We wish to approximate this by the normal integral. To do  so let 0 < c 5 1 and 
note that 

(5.29) 

for 

(5.30) u 5 3 ~ &  J,/T~. 

Let 'P denote the cdf of the standard normal 

(5.31) =L e - u 2 / 2  d U ,  J2?r --OO 

and let 

(5.32) a, = min(b,*, 1 - b,*, 3J,/7,3). 

Thus u, is a measure of the degree to which S,(b) has a maximum of reasonable 
curvature within the unit interval. Then from (5.28), for any 0 < E I 1, 

,/%in A(1-b;) 1 1 
(5.33) - 2 j -&b: exp( - z u 2 J ,  - - 1 ~ 1 ~ 7 : )  du 

(5.34) 

6& s,* 
h anc 

(5.35) = /ymexp[  - i u 2 J , ( l + c )  1 d u - 2  j ~ ~ a ~ E e x p [ - ~ u 2 J , ( l + E )  

We use the inequality 

1 
< ' P ( - x ) < -  &z 

for x > 0, to  obtain the bound 

1 
J2ac2u:nJ,( 1 + C) 

(5.38) 'P( -&unJnJ,(1+E)) < 

Hence. 
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for any 0 < G I 1, for all n, and all x, ,  x2, . . . , which proves the theorem. 0 
The explicit bounds in Theorem 5 .1  may be useful in practice, but a cleaner 

summary of performance is given in the following weaker theorem. 

THEOREM 5.2. Let xI, x2,. . . be a sequence of stock vectors in R: and 
suppose6 I b,* I 1 - 6, r, I r < 00, and J, 2 J > 0, forasubsequenceof times 
n l ,  n2, . . . . Then 

(5.40) 

along this subsequence. 

Proof. The conditions of the theorem, together with Theorem 5.1 imply 

where r is the bound ratio, and where we are free to  choose 8, E [ 0, 1 ] at each n. 
0 

We have just shown that S,/S,* is as good as Jm,. We now show that it is 
no better. For this we consider a subsequence of times such that W,(b) is 
approximately equal to  some function W(b), and we argue t ia t  upper bounds on 
j: enWtb) d b  suffice to limit the performance of the wealth S,,. Toward that end, 
let us consider functions W such that 

(i) W(b) is strictly concave on [0, 11. 
(ii) W"'(b) is bounded on [0, 11. 

(iii) W(b) achieves its maximum at b* E (0, 1 ).  

We plan to pick out a subsequence of times such that W,,(b) = ( l / n ) *  
Ey=, In b'xi approaches W(b). We can expect such limit points from ArzelB's 
theorem on the compactness of equicontinuous functions on compact sets. 
Let b,* maximize W,(b). Let Ini)  be a subsequence of times such that for 
n = nl ,n2 , .  . . , 

Noting that J, I r 2  c m an$ letting G ,  = n-1'4 proves the theorem. 

(5.42) 

(5.43) 
(i) W,(b) I W(b), 

(ii) W;(b,*) -+ W"(b*). 

0 I b I 1. 

Recall the notation J,, = - W;(b,*). The following theorem establishes the 
tightness of the lower bound in Theorem 5.2. 

THEOREM 5.3.  For any xI, x2,.  . . E R: and for  any subsequence of times 
n,, n2, . . . such that W,(b) satisfies conditions (5.43) for some W(b) satisfying 
(5.42), we have 
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(5.44) 

along the subsequence. 

$Js; - 

Proof. The lower bound follows from Theorem 5.2. From Laplace's method 
of integration we have 

(5.45) 

if g is three times differentiable with bounded third derivative, strictly concave, 
and the u* maximizing g (  . ) is in the open interval (0, 1). Consequently, 

1 
enwn(b) d b  5 enw(b) d b  

s o  

and the theorem is proved. 0 

6. MAlN THEOREM 

Here we prove the result for m assets under the assumption that all stocks are 
active and of full rank and b,*(F,) + b* Eint(B).  We discuss removing the 
conditions in Section 9. For example, lack of full rank reduces the dimension from 
m to m', as does the existence of inactive stocks. Finally, b,*(/\F,) need not have 
a limit, in which case we can describe the behavior of S,  for convergent 
subsequences of b,*(F,), as well as develop explicit bounds for all n. 

From Lemma 2.1, we have 

where 

A summary of the performance of %k is given by the following theorem. 

THEOREM 6.1. Suppose x l ,  x2, . . . E [ a ,  elm, 0 < a 5 c < 00, and at a 
subsequence of times n , ,  n2, .  . . , W,(b) 7 W(b)  for b e B ,  J; + J * ,  b,* -+ b*, 
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where W (  b )  is strictly concave, the third partial derivatives of Ware bounded on 
B, and W ( b )  achieves its maximum at b* in the interior of B. Then 

in the sense that the ratio of the right- and left-hand sides converges to 1 along 
the subsequence. 

Proof. (Outline) We define 

(6.2) C = [ ( c 1 , c 2  ) . . . ,  c m - , ) : c j ~ O , ~ c ; ~ l ]  

and 

(6.3) 

where 

(6.4) 

Note that 

C I , C ~ ,  . . . , ~ ~ - 1 ,  1 - 
i =  I 

1 
Vol(C) = I  dc = ( 

C m - I ) !  ' 

We shall prove only the lower bound associated with (6.1). From Lemma 2.1, the 
universal portfolio algorithm yields 

(6.6) 

where b is uniformly distributed over the simplex B .  Since a uniform distribution 
over B induces a uniform distribution over C,  we have 

3n = 1 S,(b) db  d b  = E & ( b ) ,  IJ 
(6.7) jn = ( m  - I ) !  IcS,,(c) dc. 

We now expand S,, (c)  in a Taylor series about c* = (b:, . . . , b;- where b* 
maximizes W(b,F,,). We drop the dependence of b* on n for notational 
convenience. By assumption, b t  > 0, for all i. We have 

(6.8) s,,(c) = enWn(c), 

where 

J 1 "  

n j = l  

W n ( c )  = - In b'xi = In b'x dFn(x)  

A = EFn 1nb'X 
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and 

b =  c , l - c c ; .  
(6.10) 0 

Expanding W,, (c), we have 

1 
2 

(6.11) W,, (C)  = W n ( c * )  + ( C  - c*)'VW,,(c*) - - ( C  - c*)'J,*(c - c* )  

1 + -  c ( c ; - ~ ~ ) ( c j - ~ c j * ) ( c k - ~ ~ ) ~ F ,  
i , j , k  

. 2(xi - x m )  (x, - xrn) ( x k  - x m )  
s3 ( 6 )  9 

where S = Xc* + ( 1  - X)c, for some 0 I X 5 1 ,  where X may depend on c, and 
m -  1 I m-1 \ 

(6.12) S ( c )  = c cjx; + ( 1  - c c ; p n  
i =  1 I =  1 

Here 

(6.14) 

The condition that all stocks be strictly active implies by Lemma 4.1 that 
IJ: 1 > 0, where 1 . I denotes determinant. We treat the terms one by one. 

(i) By definition of b*, 

(6.15) W ( C * )  = W(b*, F,) = W * ( F n ) .  

(ii) The second term is 0 because b* is in the interior of B,  W,,(b) is differenti- 
able, and b* maximizes W,,. Thus, 



16 THOMAS M. COVER 

(6.16) 

=0, i =  1 , 2  , . . . ,  m -  1. 

(iii) The third term is a positive definite quadratic form, where 

(iv) For the fourth term, 
J,* = J*(b*(F,)). 

(6.17) 

we examine 

(6.18) 

We note 

(6.19) 

since Xi 1 a for all i .  Also since Xi - Xm 5 2c, we have 

We now make the change of variable u = & ( c  - c*) ,  where we note the new 
range of integration u E U = & ( C  - c *). Thus 

n 
2 (6.21) S , ( c )  = exp nW,,(c*) - - ( C  - c*)'J,*(c - c*) + 

I )  ( 2  3 6  

1 
= exp nw,* - - U'CU + - C3 , 

where 

Note that 

(6.23) 

Observing 

(6.24) 
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yields 

(6.25) 

The lower bound on 3, becomes 

(6.26) 3, = (m - l ) !  S,(c) dc 
JC€C 

which can now be bounded using the techniques in the two-stock proof. The upper 
bound follows from Laplace's method of integration, as in Theorem 5.3, from 
which the theorem follows. 0 

7.  STOCHASTIC MARKETS 

Another way to see the naturalness of the goal S,* = e n W ( b * ( F n ) ~ F n )  is to consider 
random investment opportunities. Let X I ,  X2, . . . be independent identically 
distributed (i.i.d.) random vectors drawn according to F ( x ) ,  x €Rm, where F is 
some known distribution function. Let S, ( b )  = I$= I b'Xi denote the wealth at 
time n resulting from an initial wealth So = 1 and a reinvestment of assets 
according to portfolio b at each investment opportunity. Then 

(7.1) S,(b) = n b'Xi = exp 
i =  1 

= exp(n(E1nb'X + o , ( l ) )  I = exp(n(  W(b, F )  + o , ( l ) )  I 

by the strong law of large numbers, where the random variable op( 1 )  -+ 0, a.e. 
We observe from the above that, to first order in the exponent, the growth rate 
of wealth S,(b) is determined by the expected log wealth 

(7.2) 

for portfolio b and stock distribution F(  x). 
It follows for X I ,  X2,. . . , i.i.d. - F that b*(F) achieves an exponential 

growth rate of wealth with exponent W*(F).  Moreover Breiman (1961) establishes 
for i.i.d. stock vectors for any nonanticipating time-varying portfolio strategy 
with associated wealth sequence S, that 

W( b, F )  = 1 In b'x dF( x )  

(7 .3 )  
- 1  
lim - In S, 5 W* 1 F ) ,  a.e. n 

Finally, it follows from Breiman (1961), Finkelstein and Whitley (1981), Barron 
and Cover (1988), and Algoet and Cover (1988), in increasing levels of generality 
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on the stochastic process, that limn+- n - '  In S,/S,* I 0, a.e., for every sequential 
portfolio. Thus b*(F) is asymptotically optimal in this sense, and W * ( F )  is the 
highest possible exponent for the growth rate of wealth. Thus S,* is asympto- 
tically optimal. 

We omit the proof of the following. 

THEOREM 7.1. Let X i  be i.i.d. - F ( x ) .  Let b*( F) be unique and lie in the 
interior of B. Then the universal portfolio hbk yields a wealth sequence 3, 
satisfying 

(7.4) 
1 
- In 3, -, w*(F),  
n 

a.e. 

Thus, in the special case where the stocks are independent and identically 
distributed according to some unknown distribution F,  the universal portfolio 
essentially learns F i n  the sense that the associated growth rate of wealth is equal 
to that achievable when F is known. 

8. EXAMPLES 

We now test the portfolio algorithm on real data. Consider, for example, Iroquois 
Brands Ltd. and Kin Ark Corp., two stocks chosen for their volatility listed on 
the New York Stock Exchange. During the 22-year period ending in 1985, 
Iroquois Brands Ltd. increased in price (adjusted in the usual manner for 
dividends) by a factor of 8.9151, while Kin Ark increased in price by a factor of 
4.1276, as shown in Figure 8.1. 

Prior knowledge (in 1963) of this information would have enabled an investor 
to buy and hold the best stock (Iroquois) and earn a 791% profit. However, a 
closer look at the time series reveals some cause for regret. Table 8.1 lists the 
performance of the constant rebalanced portfolios b = (b, 1 - b). The graph of 
S,(b) is given in Figure 8.2. For example, reinvesting current wealth in the 
proportions b = (0.8,0.2) at the start of each trading day would have resulted in 
an increase by a factor of 37.5. In fact, the best rebalanced portfolio for this 
22-year period is b* = (0.55,0.45), yielding a factor S,* = 73.619. Here S,* is the 
target wealth (with respect to the coarse quantization of B = [0 ,  11 we tave 
chosen). The universal portfoliohbk a:hieves a factor of 3, = 38.6727. While S,  is 
short of the target, as it must be, S ,  dominates the 8.9 and 4.1 factors of the 
constituent stocks. The daily performance of both stocks, the universal portfolio, 
and the target wealth are exhibited in Figure 8.3. The portfolio choicetk as a 
function of time k is given in Figure 8.4. 

To be explicit in the above analysis, we have quantized all integrals, resulting 
in the replacements of 

(8.1) S,* = max S,(b) by S,* = max S,(i/20) 
b r = O ,  I ,  .... 20 

and 
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TABLE 8.1 

Iroquois Brands Ltd versus Kin Ark Corp 

b SJb) 

I .OO 
0.95 
0.90 
0.85 
0.80 
0.75 
0.70 
0.65 
0.60 
0.55 
0.50 
0.45 
0.40 
0.35 
0.30 
0.25 
0.20 
0.15 
0.10 
0.05 
0.00 

8.9151 
13.77 12 
20.2276 
28.2560 
37.5429 
47.4513 
57.0581 
65.2793 
7 1.0652 
73.6 190 
72.5766 
68.09 15 
60.7981 
5 1.6645 
41.7831 
32.1593 
23.5559 
16.4 196 
10.8910 
6.8731 
4.1276 

Target wealth: S: = 73.619 
Best rebalanced portfolio: b: = 0.55 
Best constituent stock: 8.915 
Universal wealth: p,, = 38.6727 

The resulting wealth factor 

is calculated using 

(8.4) 

Telescoping still takes place under this quantization and it can be verified 
that in in (8.3) can be expressed in the equivalent form 

Thus Sn is the arithmetic average of the wealths associated with the constant 
rebalanced portfolios. 
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h 

Finally, note the calculation of the portfolio = (bn+l ,  1 in this 
example. Merely compute the inner product of the b andAS,(b) columns in Table 
8.1 and divide by the sum of the S,(b) column to obtain b,,,. Note in particular 
that tne universal portfolio % n + l  is not equal to the log optimal portfolio 
b*(F,) = (0.55,0.45) with respect to the empirical distribution of the past. 

A similar analysis can be performed on Commercial Metals and Kin Ark over 
the same period. Here Commercial Metals increased by the factor 52.0203 and Kin 
Ark by the factor 4.1276 (Figure 8.5). It seems that an investor would not want 
any part of Kin Ark with an alternative like Commercial Metals available. Not so. 
The optimal constazt rebalanced portfolio is b* = (0.65,0.35), and the universal 
portfolio achieves S,  = 78.4742, outperforming each stock. See Table 8.2. 

Next we put Commercial Metals (52.0203) up against Mei Corp (22.9160). Here 
S,* = 102.95 and 3, = 72.6289, as shown in Figure 8.6 and Table 8.3. However, 
IBM and Coca-Cola show a lockstep performance, and, indeed, 3, barely out- 
performs them, as shown in Figure 8.7. 

A final example crudely models buying on 50% margin. Suppose we have four 
investment choices each day: Commercial Metals, Kin Ark, and these same two 
stocks on 50% margin. Margin loans are settled daily at a 6% annual interest rate. 
The stock vector on the ith day is 

(8 .6)  x; = ( x .  I 9  2. I - 1 - r ,  y;, 2y; - 1 - r ) ,  

TABLE 8.2 
Commercial Metals versus Kin Ark 

1 .OO 
0.95 
0.90 
0.85 
0.80 
0.75 
0.70 
0.65 
0.60 
0.55 
0.50 
0.45 
0.40 
0.35 
0.30 
0.25 
0.20 
0.15 
0.10 
0.05 
0.00 

5 2.0203 
68.2890 
85.9255 

103.64 I5 
119.8472 
132.8752 
141.2588 
144.0035 
140.7803 
13 1.9910 
118.6854 
102.3564 
84.6655 
67.1703 
51.1127 
37.3042 
26.1131 
17.5315 
1 1.2883 
6.9104 
4.1276 

Target wealth: S: = 144.0035 
Best rebalanced portfolio: b; = 0.65 
Best constituent stock: 52.0203 
Universal wealth: gn = 78.4742 
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TABLE 8.3  
Commercial Metals versus Mei Corp 

b 

1 .OO 
0.95 
0.90 
0.85 
0.80 
0.75 
0.70 
0.65 
0.60 
0.55 
0.50 
0.45 
0.40 
0.35 
0.30 
0.25 
0.20 
0.15 
0.10 
0.05 
0.00 

5 2.0203 
61.0165 
70.0625 
78.7602 
86.6815 
93.4026 
98.54 14 

101.7927 
102.9589 
101.9691 
98.8869 
93.9033 
87.3172 
79.5057 
70.8890 
61.8932 
52.9162 
44.3012 
36.3178 
29.1538 
22.9 160 

Target wealth: S; = 102.9589 
Best rebalanced portfolio: b,' = 0.60 
Best constituent stock: 52.0203 
Universal wealth: = 72.6289 

(8.7) r = 0.000233, 

where xi and yi  are the respective price relatives for Commercial Metals and 
Kin Ark on day i. Plunging on margin into Commercial Metals yields a factor 
19.73, plunging into Kin Ark a factor of 0.0 (to four significant digits). Good as 
these stocks are, they cannot survive the down factors induced by the leverage. 
But a random sample of the simplex of portfolios listed in Table 8.4 reveals 
3n = 98.4240, while the optimal rebalanced portfolio b* = (0.2, 0.5, 0.1, 0.2) 
results in a factor $,* = 262.4021. Clearly 98.4 beats the factor of 78 achieved 
when margin is unavailable. Both factors exceed the performance 52.02 of the best 
stock. 

We observe that 9" = 98.4 exceeds the factor in = 78.47 obtained for these 
stocks when margin is unavailable. This is borne out by the fact that b* is positive 
in each component, calling for a small amount of leverage in the a posteriori 
optimal rebalanced portfolio. 

9. THE GENERAL UNIVERSAL PORTFOLIO 

I f  the best rebalanced portfolio b,* lies in the interior of a boundary k-face, then 
only k stocks are active in the best rebalanced portfolio. Thus we expect to obtain 
the previous bounds on 3,/S,* with rn replaced by k .  This is achieved if we start 
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TABLE 8.4 

Two Stocks with Margin 

Commercial metals 

Commercial metals on margin 

Kin Ark 

Kin Ark on margin 

r = 0.000233/day = 6%/year 

S,* = 262.4021 

Best constituent stock 

Wealth achieved by universal portfolio 

b 

(0.8, 0.2, 0.0, 0.0) 
(0.8, 0.1, 0.0, 0.1) 
(0.6, 0.1, 0.1, 0.2) 
(0.6, 0.0, 0.4, 0.0) 
(0.5, 0.0, 0.2, 0.3) 
(0.4, 0.0, 0.4, 0.2) 
(0.3, 0.5, 0.1, 0.1) 
(0.3, 0.4, 0.1, 0.2) 
(0.3, 0.2, 0.2, 0.3) 
(0.3, 0.1, 0.2, 0.4) 
(0.3, 0.0, 0.1, 0.6) 
(0.2, 0.7, 0.0, 0.1) 
(0.2, 0.2, 0.3, 0.3) 
(0.1, 0.8, 0.1, 0.0) 
(0.1. 0.5, 0.2, 0.2) 
(0.1, 0.4, 0.2, 0.3) 
(0.1, 0.3, 0.1, 0.5) 
(0.1, 0.2, 0.4, 0.3) 
(0.1, 0.1, 0.2, 0.6) 
(0.0. 0.5, 0.4, 0.1) 
(0.0, 0.4, 0.2, 0.4) 
(0.2, 0.5, 0.1, 0.2) 

b,' = (0.2, 0.5, 0.1, 0.2) 

52.0203 

9" = 98.4240 

SJb) 

57.0535 
148.9951 
207. I 143 
140.7803 
60.8358 
47.6074 

212.8928 
261.0452 

89.0330 
19.4840 
0.7700 

12 1 .O 142 
45.2562 
67.5882 

233.6328 
112.6695 

12.7702 
19.4840 
0.2354 

225.2524 
3 I .8076 

262.402 1 

with some mass on each face. To accomplish this, we let p, be the measure 
corresponding to  the uniform distribution on B (  S )  = [ b E Rm : C bi = 1, bj  = 0, 
i E S c )  , where S E [ 1,2, . . . , m 1. Thus ps puts unit mass on the IS I-dimensional 
face of the portfolio simplex. 

Let p be the mixture of these measures given by 

(9.1) 

where the sum is over all S # 0, S G [ 1,2,  . . . , m 1. The generalized 
universal portfolio now becomes 
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with 

( 9 . 3 )  

To state the results we define JAk’(Fn) to  be the k x k sensitivity matrix with 
respect to the active stocks S ,  I SI = k,  where S is the smallest set of stocks such 
that all optimal rebalanced portfolios b*(F) are in the interior of B ( S ) .  Then 

(9.4) 

will be the asymptotic behavior of ;,/S,* 

10. CONCLUDING REMARKS 

We now try to be sensible and ask how the universal portfolio works in practice. 
Of course, the examples are encouraging, as the universal portfolio outperforms 
the constituent stocks. However, we have ignored trading costs. In practice we 
would not trade daily, but only when the current empirical holdings were far 
enough from the recommendedtk. (A rule of thumb might be to trade only if the 
increase in W is greater than the logarithm of the normalized transaction costs.) 

We are really interested in whether 3n will “take off,” leaving the stocks behind. 
We first discuss the target wealth S,*. The best rebalanced portfolio b*(Fn) based 
on prior knowledge of the stock sequence xI, x2,  . . . , x, yields wealth S,*= enwi. 
Now S,* grows exponentially fast to infinity under mild conditions. For example, 
if one of the constituent stocks is a risk-free asset with interest rate r > 0, then 
W,* 2 In(1 + r) > 0, for all n, and S,* L (1 + r)n -+ 00. Since the universal port- 
folio yields 

(10.1) 

it follows that Sn will tend to infinity, and sn will have the same exponent as S,*, 
differing only in terms of order (In n ) / n .  

What state of affairs do we expect in the real world? Certainly we expect the 
stock sequence to be of full dimension m for n slightly greater than m. However, 
we do not expect all stocks to  be active. But we do expect that two or more stocks 
will be active. This is important because it guarantees that the target growth rate 
W,* will be strictly greater than the growth rate of the constituent stocks. Conse- 
quently, we believe that the universal portfolio will achieve 

i n / s n ( e , )  + 00, i = 1 , 2 , .  . . ,m, 

exponentially fast, where Sn(ei) is the wealth relative of the ith stock at time n. 
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However, n may need to be quite large before this exponential dominance 
manifests itself. In particular, we need n large enough that the difference in 
exponents between S,* and the stocks overcomes the O((1n n ) / n )  penalties 
incurred by universality. We conclude that 2“ will leave the constituent stocks 
exponentially behind if there are at least two strictly active stocks in the best 
rebalanced portfolio. 
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