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Preface

The theories of John won Neumann and Oskar Morgenstern for
preference comparisons under risk and of Frank P. Ramsey and Leonard J.
Savage for preference comparisons under uncertainty have been widely
adopted as the quintessential paradigms for rational decision making in the
face of uncertainty. Their expected (linear) utility models have profoundly
affected economic analysis, risk assessment, and statistical decision theory
over the past 35 years.

During this period there has been a growing awareness—stimulated in
large part by Maurice Allais’s work in the early 1950s—that people’s
reasoned judgments often violate the basic assumptions of expected utility.
Numerous studies have demonstrated that such violations tend to follow
systematic and predictable patterns. Investigators have therefore proposed
alternative theories of rational preference that accommodate systematic
departures from expected utility while retaining much of its mathematical
elegance and computational convenience. With the notable exception of
Allais’s own theory from the early 1950s, most of the alternatives have
emerged during the past decade.

This book attempts to make sense of recent and not so recent
developments in preference theory for risky and uncertain decisions. It is
arranged in two main parts: Chapters 1 through 6 focus on decision under
risk, Chapters 7 through 9 on decision under uncertainty. Each main part
answers three questions:

1. What is expected utility theory?
2. What is wrong with it from a rational preference perspective?
3. What has been proposed to correct the problems?

Question 1 is dealt with in Chapter 1 for decision under risk (von Neumann
and Morgenstern) and in Chapter 7 for decision under uncertainty (Savage).
Chapter 2 and the first part of Chapter 8 address question 2. Question 3 is



Xil PREFACE

partly answered by surveys of alternative theories of preference in risky
situations (Chapter 3) and in uncertain situations (Chapter 8). These five
chapters (1-3, 7-8) comprise a book within the book whose purpose is to
provide an up-to-date view of expected utility and its alternatives that aims
for organizational clarity and inclusiveness.

The other four chapters expand on question 3 by detailing new theories
that I have had some role in developing. These chapters form a second book
within the book that organizes material previously available only in a
scattered set of journal articles.

The book is intended for graduate students and research workers in
mathematics, economics, statisties, operations research, psychology, and
related fields that are interested in the foundations and potential applications
of decision making under risk and uncertainty.
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NONLINEAR PREFERENCE AND UTILITY THEORY




1 Historical Background: Expected
Utility

Expected utility has served for more than a generation as the preeminent
model of rational preferences in decision making under conditions of risk.
During this time, and especially in the past decade, the assumptions of
expected utility have come under attack as principles that any reasonable
person’s preferences ought to satisfy. New theories have recently been
developed to accommodate some of the more persistent violations of expected
utility without giving up too much of its mathematical elegance. This chapter
reviews the fundamentals of expected utility theory to set the stage for a
critique of its axioms and a discussion of alternative theories in ensuing
chapters.

1.1 DANIEL BERNOULLI AND GABRIEL CRAMER

It was widely held in the early years of the development of probability
theory that risky monetary ventures ought to be evaluated by their expected
returns—the more the better. Thus, suppose p and g are probability
distributions on a set X of monetary gains (x > 0) and losses (x < 0) that
correspond to two risky ventures. Then, with

E(x, p) = Y, xp(x),

x€X

p is more desirable than g precisely when E (x, p) > E(x, q).

The first major challenge to this principle of expected return maximiza-
tion appeared in 1738 at the hand of Daniel Bernoulli, a member of the Swiss
family of distinguished mathematicians. Bernoulli proposed two theses. His
first thesis does not involve risk or probability. It says that a person’s
subjective value v(w) of wealth w does not increase linearly in w but rather
increases at a decreasing rate, a proposition known later in economics as the
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principle of diminishing marginal utility of wealth. Bernoulli argued further
that the rate of increase in v(w) is inversely proportional to w and, hence, that
v is a logarithmic function of wealth.

Bernoulli’s second thesis, set forth in opposition to maximization of
expected return or expected wealth, says that a risky prospect p’ on levels of
wealth ought to be evaluated by its expected subjective value  v(w)p’(w).
Alternatively, if wy is present wealth and p(x) = p’(wy + X), so that p is the
probability distribution induced by p’ on increments to present wealth, then
the expected subjective value of p is

E(v, p) = Y v(wy + x)p(x),

x€EX

with p more desirable than ¢ when E (v, p) > E (v, q).

Bernoulli defended his theses with examples from games of chance and
insurance. Would you engage in a one-time not-to-be-repeated wager that
yields gain $21,000 or loss $20,000 each with probability 5? If you refuse,
you violate the principle of maximum expected return, which is $500 for the
wager (versus $0 otherwise). According to Bernoulli’s principle, your refusal
simply means that [u(wy + 21,000) + v(w, — 20,000)]1/2 < v(w,) and that
you are acting prudently in accord with your subjective values. In another
instance, merchants insure seabound cargoes against loss even though they
know that the insurer expects to gain at their expense from the transaction.
Nevertheless, the merchants are simply acting in their own best interests by
maximizing their expected subjective value.

A prime motivator for Bernoulli’s work on the evaluation of risky
ventures was the famous St. Petersburg game, devised by his cousin Nicholas
Bernoulli in 1713. In current terms, a fair coin is tossed until a head appears.
If the first head occurs at the nth toss, the payoff is 2” dollars. Suppose you
own title to one play of the game; that is, you can engage in it without cost.
What is the least amount you would sell your title for? According to the
Bernoullis, this least amount is your equivalent monetary value of the game.

Nicholas observed that the expected payoff

@2+ @22+ @22+ =141+ 1+

is infinite, but most people would sell title for a relatively small sum, and he
asked for an explanation of such a flagrant violation of maximum expected
return. Daniel showed how his theory resolves the issue by providing a
unique solution s to the equation

Y v(wo + 2M)27" = v(w, + )

n

for any finite wy, where s is the minimum selling price or equivalent
monetary value. Moreover, except for the very rich, a person would gladly
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sell title for about $25 or $30. The effect of w, can be seen indirectly by
estimating your minimum selling price when the payoff at n is 2" cents
instead of 2" dollars and comparing 100 times this estimate to your answer
from the preceding paragraph.

In a postscript to his 1738 paper, Daniel said that Nicholas told him that
another Swiss mathematician, Gabriel Cramer, developed a theory to explain
the St. Petersburg game that is remarkably similar to Daniel’s own theory.
Moreover, Cramer did so in 1728, several years before Daniel wrote his
paper. The postscript quotes extensively from the letter to Nicholas in which
Cramer describes his resolution of the issue, and includes the following
passage:

You asked for an explanation of the discrepancy between the mathematical calculation
and the vulgar evaluation. I believe that it results from the fact that, in their theory,
mathematicians evaluate money in proportion to its quantity while, in practice, people
with common sense evaluate money in proportion to the utility they can obtain from it.
(Translated from the French by L. Sommer in Bernoulli [1954], p. 33.)

Unlike Bernoulli, Cramer pays little attention to initial wealth, and forx > 0
sets v(x) = ~/x. In his terms, the minimum selling price is the value of s that
satisfies

OV2 + @V + VB + - = s,

which is a little under $6.
Later reviews and discussion of the St. Petersburg game are available in
Menger (1967) and Samuelson (1977).

1.2 RISKLESS UTILITY IN ECONOMICS

Bernoulli’s notion of the diminishing marginal utility of wealth became a
centerpiece of the riskless theory of consumer economics during the second
half of the nineteenth century, especially in the works of Gossen (1854),
Jevons (1871), Menger (1871), Walras (1874), and Marshall (1890). See
Stigler (1950) and Kauder (1965) for historical details.

During this period, utility was adopted as the standard term for what
otherwise might be referred to as subjective value, moral worth, or psychic
satisfaction. Utility was predominantly viewed ‘‘as a psychological entity
measurable in its own right”’ (Strotz, 1953, p. 84), and there was active
debate about the extent to which utility was measurable in any precise sense.
However, interest in the measurability issue waned under the ordinalist
revolution of Edgeworth (1881), Fisher (1892), Pareto (1906), and Slutsky
(1915), which insisted that utility represented nothing more than an
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individual’s preference ordering over consumption bundles or alternative
riskless futures. In particular, it makes no sense to measure gradations in
utility apart from a simple ordering, not to mention the impossibility of
interpersonal comparisons of utility.

Despite the popularity of the ordinal position, a modest revival of
interest in the measurability of intensive utility occurred during the 1920s and
1930s, aided in part by the emerging use of axiomatic theory in mathematics.
The proponents of measurability included Frisch (1926), Lange (1934), and
Alt (1936), each of whom axiomatized the notion of comparable preference
differences or intensities of preference in somewhat different ways. Their
basic argument was that we do in fact make intensity or strength-of-
preference comparisons all the time, and that it was possible to be precise
about such comparisons. Consider, for example, monetary gains. Surely you
prefer $100 to $0, so set v($100) = v; and v($0) = vy, subject only to vy >
vo. Now vary x over the interval between $0 and $100 to determine the point
at which the intensity of your preference for $100 over x equals the intensity
of your preference for x over $0. Suppose the answer is X = $40. Then $40
lies midway in preference between $0 and $100, so v($40) = (vo + vy )/2. By
ascertaining additional preference midpoints between $0 and $40, between
$40 and $100, and so forth, you can obtain a good picture of your utility
function on the interval from $0 to $100. Moreover, this function is
““measurable’’ in the sense that it is fully determined once vy and v are
specified. In particular, if v and v” are any two such functions, then they are
related by the equation [v(x) — vol/[vi — vo] = [v' (x) — vgl/Tv; — v,] for
all x; that is,

(1.1) v'(x) = av(x) + b

for all x in [$0, $100], where @ and b are real numbers with a > 0.

This approach to measurable, or ‘‘cardinal’’ (Hicks and Allen, 1934;
Fishburn, 1976a) utility can be made precise by a set of assumptions or
axioms about a binary relation >* on X X X, where X is a set of things to be
evaluated and (x, y) >* (z, w) is interpreted to mean that the individual’s
strength of preference for x over y exceeds his or her strength of preference
for z over w. Equal intensity can then be defined by

(x, ») ~* (z, w) if neither (x, y) >* (z, w) nor (2, w) >* (x, ¥),
and the underlying preference relation > on X can be defined from >* by
x>y if(xp) >, )

Under a sufficiently strong set of axioms, examples of which appear in
Fishburn (1970a, Chapter 6) and Krantz et al. (1971, Chapter 4), we can
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derive the utility representation for comparable differences,
(x, ) >* (2, w) & v(x) — v(¥) > v(z) — v(w),

with v unique up to the type of transformation noted at the end of the
preceding paragraph.

The importance of this for our study of preference between risky
decisions is that it put Bernoulli’s theory of maximum expected utility on a
more rigorous foundation by providing an axiomatic basis for the value
function v used in his expectation operation. Moreover, by rendering v unique
up to positive linear transformations, or positive affine transformations, as
in (1.1), it endows his type of riskless utility function with the properties that
are needed to preserve expected utility order under admissible transforma-
tions of that function.

To be more precise about this, let X be an arbitrary nonempty set, and
let Py denote the set of all simple probability measures on X so that p is in Py
if and only if p(x) > 0 for all x, p(x) > 0 for at most a finite number of x €
X, and Iy p(x) = 1.

TueoreM 1.1. Suppose v and v’ are two real-valued functions on X.
Then, for all p, q € Py,

(1.2) Y v)px) > D v(x)gx) & Y v ()px) > Y v (x)g(x)

if and only if there are real numbers a and b, with a > 0, such that

(1.1 vi(x) = av(x) + b Joralx € X.

Proof. Let vbe given. If v/ = av + b, a > 0, then (1.2) clearly holds.
Conversely, suppose (1.2) holds. If v is constant, so equality holds on both
sides of (1.2) at all p and g, then v’ must also be constant and v’ = v + b for
some real number b. Suppose henceforth that v is not constant. For
definiteness take v(xo) > v(¥). Since v’ must preserve the ordering of v on
X, v/ (xg) > v’(yo). Then, for each z € X, exactly one of the following
obtains:

@ v(z) > vlxg) > v(yo) and there is a unique 0 < N < 1 such that
v(xo) = M(z) + (1 — Nu(y); hence also v’ (xp) = Av'(2) + (1
— Mv’(yo) by (1.2) [take p(xo) = 1, g(z) = N, g(yo) = 1 — AL

(i) v(xo) = v(z) = v(¥y) and there is a unique 0 < A < 1 such that
v(z) = M(x) + (I — Nu(yp); hence also v'(2) = M’ (xo) + (1
— Mv’' () by (1.2).

(iii) v(x) > v(¥o) > v(z) and there is a unique 0 < N < 1 such that
v(¥o) = M) + (1 — Nu(z); hence also v’ (yo) = Av'(Xo) +
(1 = N v’ (z) by (1.2).
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Regardless of which of (i), (ii), or (iii) holds, we have
v'(z) = av(z) + b,
where

a = [v'(x) — v (Pvx) — v(¥)] > 0

and

b = [v(xo)v' (¥o) — v’ (x)v (o)l [v(xe) — vyl B

If the set of probability distributions on which expected utilities are
computed is not as rich as supposed in Theorem 1.1, then it may be possible
to transform v in ways other than (1.1) without violating (1.2). However, we
are assured of consistency in (1.2)-in all circumstances only when the
admissible transformations of the utility function do not go beyond (1.1) with
a > 0. However, it might be noted that when X is finite, there is a problem in
ensuring (1.1) with the comparable preference differences approach unless
utilities are evenly spaced (Davidson and Suppes, 1956) or X is embedded in
a richer structure.

For later reference we say that a theory of choice among risky decisions
is a Bernoullian expected utility theory when it consists of

1. A set X of outcomes and a set P of probability distributions or
measures on X

2. A utility function v on X based on a notion of riskless comparable
preference differences, usually presumed unique up to positive linear
transformations

3. The principle of choice which says that the most desirable distribu-
tions, or their corresponding risky alternatives, are those that
maximize expected utility = v(x)p(x)

The third element is sometimes stated as an injunction: Some distribution
from a feasible set that maximizes T v(x)p(x) over the p in the feasible set
ought to be chosen when such a maximizing distribution exists.

1.3 VON NEUMANN AND MORGENSTERN

In Bernoullian expected utility theory, preference between probability
distributions, if considered at all, is defined by expected utilities, so p is said
to be preferred to g just when 2 v(x)p(x) > % v(x)g(x). The expected utility
theory introduced in 1944 by von Neumann and Morgenstern differs radically
from the Bernoullian theory despite the fact that their mathematical forms of
expected utility are identical. To distinguish notationally between them, we
write £ u(x)p(x) for the von Neumann-Morgenstern context, reserving




HISTORICAL BACKGROUND: EXPECTED UTILITY 7

T v(x)p(x) for the Bernoullian context. The difference between u and v lies in
their interpretations and the ways they are assessed. We note these shortly.

There are also similarities. Both # and v preserve the individual’s
preference order on outcomes in X, so forall x, y € X, u(x) > u(y) ¢ v(x)
> v(y). Moreover u, like v in (1.1), is unique up to positive linear
transformations, so if u is a von Neumann-Morgenstern utility function on
outcomes in a particular situation then sois #’ ifand only if u” = au + b for
numbers ¢ > 0 and b. The similarities end here. In particular, # need not be a
positive linear transformation of v, and, consequently, the orderings of P by
expected utility magnitudes under # and under v can be quite different.

The theory of von Neumann and Morgenstern begins with a binary
relation > on a convex set P. It then makes assumptions about the behavior
of > on P, which are stated formally as axioms. The axioms are then shown
to imply the existence of a real-valued function # on P that preserves the
order of > on P and is linear in the convexity operation. That is, for all p, g
€ Pandall0 < A < 1,

(L.3) p > q e u(p) > ulq),
(1.4) u(Ap + (1 = N)g) = Mu(p) + (1 — Nu(q),

where (1.3) is the order-preserving property and (1.4) is the linearity
property. Henceforth, we refer to a real-valued function on a convex set that
satisfies (1.4) for all 0 < N < 1 and all p and g in the set as a linear
Sunctional. If (1.3) holds, it is an order-preserving linear functional.

Interpretations are in order before we consider the mathematical
structure of the von Neumann-Morgenstern theory in detail. Although > is
an undefined primitive in their system, it is natural to interpret it as a
preference relation and to read p > ¢ as “‘p is preferred to g.”” The set P
need not be a set of probability distributions or measures, but we shall
interpret it in this way. Generalizations that treat P axiomatically as a
““mixture set’’ are discussed by Herstein and Milnor (1953) and Fishburn
(1970a, 1982a). In the probability setting, the convex combination Ap + (1
— N)g is defined pointwise as the usual convex combination of real-valued
functions p and g. Thus, when p and g are simple measures on X, Ap + (1
— N)q assigns probability Ap(x) + (1 — Mg(x) toeachx € X, soAp + (1
— Mg is also a simple measure on X. More generally, if p and g are
probability measures on an algebra @ of events, then (A\p + (1 — Ng)(A4)
= M(A) + (1 — Ng(A) foreach A € @, and \p + (1 — N)gisalsoa
probability measure on Q.

The axioms of the von Neumann-Morgenstern theory apply simply and
solely to > on P. Unlike Bernoullian theory, preference applies immediately
to comparisons of risky alternatives, not just to outcomes. Moreover, their
axioms involve no notion of comparable preference differences or strength of
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preference, since they use only ‘‘ordinal’’ preference comparisons. In a
manner of speaking, the role of strength of preference in Bernoulli’s
approach, which guarantees preservation of the Bernoullian expected utility
order under admissible transformations of v as in Theorem 1.1, is replaced by
the global application of > to P in conjunction with the linearity property
(1.4).

The fact that u is unique up to positive linear transformations when it is
an order-preserving linear functional on P, even though it is based solely on
simple preference comparisons, led Baumol (1958) to describe it as “‘the
cardinal utility which is ordinal.”” There are other examples of this. In the
riskless ‘setting, if > is a preference relation on a commodity space or
multiattribute space X = X; X X, X - - - X X, that is representable
additively as

(X],...,Xn) > (yl,---,)"n)@f(xl,m-,xn)>f(}’19---,J’n)»
(1.5) FOe, Xy oy X)) = [il0) + folx) + 0+ Sfu(Xn)

for all x, y € X, then suitably strong structural assumptions (Debreu, 1960;
Fishburn, 1970a, Chapter 5; Krantz et al., 1971, Chapter 6) imply that f is
unique up to positive linear transformations. Here the additivity property
{1.5) rather than the linearity property (1.4) induces uniqueness.

This section began with remarks about u on X, then switched to u on P
with no mention of X. The reason is that X plays no role in the formal theory
of von Neumann and Morgenstern, but enters, almost as an afterthought,
when P is interpreted as a set of probability distributions on X. This
interpretation customarily assumes that P contains each measure that assigns
probability 1 to some outcome, and it defines u on X from u on P by

(1.6) u(x) = u(p) when p(x) = 1.

The anticipated expected utility form follows from this definition and
linearity.

Turorem 1.2. Suppose u is a linear functional on a convex set P of
probability measures on X that contains every one-point measure, and u
is extended to X by (1.6). Then for every simple measure p in Py,

(1.7) u(p) = S u(x)p().

Proof. Let n be the number of points in X assigned positive probability
by p in Px. Then (1.7) follows from (1.6) for n = 1, from (1.4) forn = 2,
and from (1.4) by a straightforward induction on n when n > 3. |

Theorem 1.2 highlights another distinction between the two approaches
to expected utility. Bernoulli invokes the expectational form at the outset,
whereas von Neumann and Morgenstern deduce it from their axioms.
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The difference between the two approaches can also be seen in their
assessment procedures for v or # on X. Consider again the determination of
an amount x whose utility is midway between the utilities of $0 and $100. In
Bernoulli’s approach, x is the amount at which your strength of preference for
$100 over x equals your strength of preference for x over $0. For von
Neumann and Morgenstern, x is the amount at which you are indifferent
between receiving x as a sure thing and playing out the lottery that pays either
$0 or $100, each with probability % Indifference between x and the lottery

translates to
u(x) = u($100 with probability 5 or $0 with probability )

[1($100) + u($0)]/2.

We conclude this section with a few historical remarks before turning to
the von Neumann-Morgenstern axioms and theorem in the next section.
When it was introduced, their theory was widely misunderstood and it took
about a decade, with considerable help from expositors such as Marschak
(1950), Strotz (1953), Luce and Raiffa (1957), and Baumol (1958), to set
matters straight. One cause for confusion was the long-established use of
utility as a measure of psychic satisfaction with strength-of-preference
connotations whenever it was measurable, that is, unique up to positive linear
transformations. Several writers have wished that von Neumann and
Morgenstern had used a term other than wtility for their value function to
avoid entanglement with prior uses of the term in economics, but the usage
stuck.

Another cause for confusion was the terse and somewhat enigmatic style
used by von Neumann and Morgenstern to express their axioms. One of their
axiomatic curiosities is their treatment of the indifference relation. They
divided out indifference without warning and proceeded to axiomatize strict
preference between indifference classes, but this was not clarified until the
appearance of their second edition (1947), which for the first time presented
their proof of the linear utility representation. The proof itself is rather hard
to follow and was substantially improved by later writers.

The axioms stated in the next section differ slightly from the originals
and are due to Jensen (1967). Other axiom sets that are equivalent to Jensen’s
set will be noted in Section 1.5.

1.4 THE LINEAR UTILITY THEOREM

We assume throughout this section that P is a nonempty set of
probability measures p, g, . . . defined on a Boolean algebra @ of subsets of
X. Thus foreach p € P, p(A) = Oforevery 4 € @, p(A U B) = p(A4) +
p(B) whenever A and B are disjoint events in &@, and p = 1 on the universal
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event X in @. By definition, @ is closed under complementation and finite
unions. We assume also that P is convex; that is, A\p + (1 — Mg is in P
whenever 0 < A € land p, g € P.

Given this structure for P, let > be a binary relation on P, interpreted as
strict preference. The indifference relation ~ on P and the preference-or-
indifference relation > on P are defined from > by

p ~ qifneither p > gmnorq > p,
p 2> qifeitherp > gorp ~ q.

It is natural to assume that > is asymmetric; that is, forall p, ¢ € P,p > g
= not (¢ > p). When > is asymmetric, ~ is both reflexive (p ~ p) and
symmetric(p ~ g = q ~ D).

We say that a binary relation R on Pis transitive if, forall p, g, r € P,

{pRq,qRr}=pRr,
and that it is negatively transitive if, for all p, g, r € P,
{not (p R @), not (g R r)} = not (pRI)

or, equivalently,
pRr= (pRqgorgR).

When R is both asymmetric and negatively transitive, it is a weak order
(asymmetric sense).

We shall assume that > on P is a weak order. This implies that each of
>, ~,and 2 is transitive and that {p ~ @, ¢ > ry=p>rand{p > q.9q
~ r} = p > r. The proofs are easy and are omitted. Under the weak-order
assumption, ~ is an equivalence relation (i.e., reflexive, symmetric, and
transitive) on P, and the indifference classes in the quotient set P/ ~ , each of
which consists of all measures indifferent to one another, are totally ordered
by the natural extension of > from P to P/ ~ . As mentioned in the preceding
section, this is the point at which von Neumann and Morgenstern begin their
axiomatization.

We consider three axioms for > on P. They are to be understood as
applying to all p, ¢, r € Pand all 0 < A< It

Al. Order: > on P is a weak order.

A2. Independence: p > g = A\p + (1 — Nr > A+ (1= Nr.

A3. Continuity: {p > ¢, g > r} = (ap + (1 — a)r >qgandq >
Bp + (1 — PB)r for some a and B in (0, ).

The ordering axiom A1 has been a mainstay of the economic conception
of rationality at least since the time of Bernoulli and Cramer. Violations of
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A1, and especially of its implication that > is transitive, are usually viewed
as aberrations that any reasonable person would gladly “‘correct’ if informed
of his or her “‘error.”” '

Axiom A2 is also known as a linearity assumption and is closely
associated with similar axioms that are referred to as substitution principles,
cancellation conditions, additivity axioms, and sure-thing principles. It
simply says that if p is preferred to g, then a nontrivial convex combination of
p and r is preferred to the similar combination of g and r. It is usually
defended as a criterion of consistent and coherent preferences by imaging A\p
+ (1 — N)r as a two-stage lottery that yields either p with probability A or r
with probability 1 — N in the first stage and then makes the final choice
according to the one of p and r that obtains in the first stage. Under a similar
interpretation for \g + (1 — MN)r, it is argued that since both mixtures lead to
r with identical probabilities 1 — A in the first stage, and since you are
equally well off in these cases, your preference between the mixtures ought to
depend solely on your preference between p and q.

The continuity or Archimedean axiom A3 is designed to prevent one
measure from being infinitely preferred to another and is more a concession
to our system of real numbers than to an intuitive notion of rationality.
Without A3 in the presence of Al and A2, there is no guarantee that the
entities in P can be mapped into real numbers whose order preserves > on P.
Nevertheless, A3 does embody a degree of common sense, since it seems
reasonable that, if p is preferred to g and g is preferred to r, then there ought
to be a probability & < 1 at which ap + (1 — «)r is preferred to g and
another probability 8 > 0 at which g is preferred to 8p + (1 — SB)r.

Criticisms of the axioms are deferred to Chapter 2. For the time being
we shall be content to explore their technical implications.

TueoreMm 1.3. Suppose P is a nonempty convex set of probability
measures defined on a Boolean algebra of subsets of X, and > is a
binary relation on P. Then axioms Al, A2, and A3 hold if and only if
there is a linear functional u on P such that, forallp,q € P,p > q ¢
u(p) > u(q). Moreover, such a u is unique up to positive linear
transformations.

This is the main representation and uniqueness theorem for linear (von
Neumann-Morgenstern) utilities. The simple proof that the linear utility
representation satisfying (1.3) and (1.4) implies Al, A2, and A3 is left to the
reader. We also omit the proof of uniqueness, which, apart from notation, is
essentially the same as the proof of Theorem 1.1.

For convenience, the proof that A1-A3 imply the existence of an order-
preserving linear functional # on P is divided into three parts: part I
establishes preliminary lemmas for >; part II constructs # on a closed
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preference interval; part III extends the results of part IT to all of P. Axioms
A1-A3 are presumed to hold throughout the rest of this section.

Part 1. In this part we prove the following five lemmas, which apply to
all p, g, r,s € Pand all \, p € [0, 1]:

Ll.{p >g A>pt =+ (1A ~=Ng >up + (1 - pg
12.{p>q2rp>rt=qg~Np + (1 — Nrforaunique A.
L. {p>qgr>st=w+0~=Nr>x+(1=Ns

U p~g=p~ww+d-Ng
LS. p~g= p+ (1~ Nr~N + ({1 = Nr.

Lemmas L1 and L3 are monotonicity conditions for >, L4 is an
antimonotonicity condition for the preservation of indifference, L2 is an
intermediate-value property, and L5 is the independence axiom for indiffer-
ence. Their proofs follow.

L1. Assume p » gand X > u. Then p > pp + (1 — p)g—by
assumption if u = 0, by A2 otherwise. If A = 1, this completes the proof of
L1. If A < 1, then A2 gives

A—nu I - A
>\P+(1”)\)q=<1_M>P+<T‘_‘_’;>(Hp+(1“H)CI)
N—ou
> <T—> (wp + (1 — w)q)
- u
1 — A
+ <—————~> (o + (1 — w)q)
I —

= up + (1 — u)q.

L2. Assumep > g >randp > r.Ifp ~ g,theng ~ lp + Or, and q
> up + (1 — wrbyLl forany p < 1, s0 N = 1 is the unique A for the
conclusion of L2. If r ~ g, the unique A is 0. Suppose henceforth that p > ¢
> r. It follows from Al, A3, and L1 that there is a unique A in (0, 1) such
that

1.8) ap+ (A —a)r>qg>pBp+0-PB)r foralla > A\ > 6.

We claim that g ~ Ap + (1 — N)r. To the contrary, if, say, Ap + (1 — Nr
> g, with ¢ > r, then A3 implies that u(\p + (1 — M) + (1 — wr =
O\wp + (1 — N\wr > gforsome 0 < p < 1, which contradicts (1.8), since
N\ > M. A similar contradiction follows from g > Ap + (1 — Nr.

L3.Ifp > g,r > sand 0 < X\ < 1, two applications of A2 give \p +
A =Nr>Ng+ (0 —=Nr>N+ (1~ Ns. Hence \p + (1 - Nr >
Ag + (I — N)s by transitivity.
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L4. Given p ~ q,if p > Ap + (1 — N)g then L3 and Al yield
A+ (1= Ng > Nap + (1 = Mgl
+ (1 =N+ (1= Ngl=r + (- Ng,

which contradicts asymmetry. A similar contradiction obtains if \p + (1 —
Ng > p. Hence p ~ Ap + (1 — MN)g by definition.

L5. Since this is obvious if A € {0, 1}, we assume 0 < A < 1 along
with p ~ q. If r ~ p, the conclusion of L5 follows from L4, so we assume
that p > r. (The proof for r > p is similar.) Suppose A\g + (1 — Nr > A\p
+ (1 = Nr. Then, by L2,

A+ (1= Nr ~alNg + (1 — N)r]
+ (1= a)r = (aNg + (1 = aNr

for a unique 0 < « < 1. Since ¢ > r, A2 implies ¢ > ag + (1 — o)r.
Hence p > ag + (1 — «)r by transitivity. But then A2 implies

A+ (1 = Nr > NMag + (1 — a)r]
+ (1 = Nr=(aN)g + A — aM)r,

which contradicts A\p + (1 — Nr ~ (eN)g + (1 — ar)r. Hence not [Ag +
(1 = Nr > Ap + (1 — Nr], and similarly when p and g are interchanged.
Hence \p + (1 — Nyr ~ A\g + (1 — Nr.

Part 11. Assume p > q for some p, g € P; otherwise any constant
functional on P satisfies (1.3) and (1.4). Fixp > gandlet[pg] = {rip 2 r
> q}, the closed and convex (by A2 and L5) preference interval between p
and g. L2 implies that there is a unique f(r) in [0, 1] for each r in [ pg] such
that

(1.9 r~ f(rp + 1 - f(rlq

with f(p) = 1 and f(q) = 0.

Suppose r, s € [pq] and f(r) > f(s). Then f(r)p + [1 — f(Nlg >
f@&p + [1 — f(s)lg by L1, so (1.9) and transitivity give r > s. If f(r) =
f(s), then

r~f(p + 1 - f(Ng = fs)p+[1 = f(s)lg ~ s,

so r ~ s. Therefore f preserves > on [pg] since r > s & f(r) > f(5).
To verify linearity for fon [pq], take r, s € [pgland 0 < A < 1. By
convexity A\r + (I — MN)sisin [pq], and by (1.9),

AN+ A =Ns~f(Or+ 1 = Ns)p + 1 —fOr + (1 = N)s)lg.
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Moreover, two applications of L5 give
A+ (1= Ns ~ AS(p + (1 = f(r)q]
+ [1 = NIf(s)p + (1 = f(s)g);
that is,
A+ (1= Ns ~ M) + (0= Nf(9)Ip
+ {1 - IM() + 0 = Nf}g.

By transitivity for ~, the right sides of the preceding ~ statements are
indifferent, and it then follows from L1 that fO\r + (1 — Ns) = NM(r) +
a - nfe.

Thus, whenever p > g, there is an order-preserving linear functional on
[rql.

Part 111. To show that one such functional serves for all of P, fixp > g
and let [p;q:] and [p.q;] be any closed preference intervals that include
[pg]. Using the result of part II, let f; be an order-preserving linear functional
on [p;q;], scaled by a positive linear transformation so that f;(p) = fo(p) =

1 and fi(q) = f2(¢) = 0.
We show next that r € [p;q;] N [p2q2] = fi(r) = f2(r). Given rin
the intersection, one of the following obtains:

p>q>r withg ~ ap + (1 — a)rby L2,
0<a<l;

prr>»gq withr ~8p + (1 — B)gbylL2,
0<B<L;

r>p>q withp ~ yr + (1 — y)gby L2,
0<y <1

Under order preservation and linearity for each f, these correspond
respectively to

0=a+ (1 - a)fir),
fi(r) = 8,
L= vfi(r),

and therefore f,(r) = f,(r) in each case. Hence f; = fon [p;q;] N [p2q2].

Finally, let u(r) be the common value of f;(r) thus scaled for every [ p;q;]
that contains p, ¢, and r. Since every pair of measures in P is in at least one
[piq:] that includes [pq], it follows that u is an order-preserving linear
functional on P.
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1.5 ALTERNATIVE AXIOMS FOR LINEAR UTILITY

The following axioms of Herstein and Milnor (1953) provide an
interesting comparison to Jensen’s axioms:

Bl. Order: > on P is a weak order.

B2. Independence: p ~ g = %p + %r ~ %q + %r.

B3. Continuity: {a:0 K a < landap + (1 — o)r 2 g} and {B:0 <
B<landqg 2 Bp + (1 — B)r} are closed subsets of [0, 1].

Although A1 and B1 are identical, neither A2 nor B2 implies the other; it
can be shown (Fishburn, 1982a, p. 16) that B3 implies A3, but not
conversely. The Herstein-Milnor independence axiom B2 is especially
attractive in its simple statement of indifference preservation under 50-50
convex combinations. Their continuity axiom B3 brings the preference-or-
indifference relation into the picture and implies, for example, that if o;p +
(1 — oy)r is as good as g for all i while the o; converge to «, then ap + (1
— o)ris also as good as g. The strengthening of A3 to B3 is compensated for
by the weakening of A2 to B2.

Herstein and Milnor prove that their axioms are necessary and sufficient
for the existence of an order-preserving linear functional # on P. An
alternative proof in Fishburn (1982a) shows that {B1, B2, B3} = {Al, A2,
A3}. Then Theorem 1.3 can be invoked to complete the sufficiency proof for
their axioms.

Our next set of axioms that is equivalent to {A1, A2, A3} has a very
different flavor than those of von Neumann-Morgenstern, Jensen, and
Herstein—Milnor in that it makes no mention of the ordering properties of
asymmetry, negative transitivity, and transitivity. This set uses the Herstein-
Milnor independence axiom B2 along with an ‘‘intermediate-value’’ continu-
ity condition related to L2 in the preceding section and a convexity axiom.
The new axioms, applied to all p, g, r € P and all 0 < A < 1, are the
following:

C1. Continuity: {p > q,q > r} = g ~ ap + (1 — &)rforsome0 <
a < 1.

C2. Convexity: {p > ¢, p 2 r} =p > Ng + (1 — Nr;
{p~ap~rt=p~N+0-Nn
{g>p,rzp}=r+A-Nr>p

We shall have more than a passing interest in C1 and C2, since they are
__cornerstones of the nonlinear utility theories introduced in Chapter 3 and
examined in detail in Chapters 4 through 6.

Axiom C1 is an unremarkable condition that is clearly motivated by A3
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and L2. As noted shortly, it implies that > is asymmetric and, in conjunction
with C2, that o in the statement of C1 is unique.

The convexity axiom C2 implies that, for every p € P, eachset {g:p >
qt, {g:p ~ g}, and {q:q > p} is convex. Hence, in the presence of C1’s
implication of asymmetry, these three sets partition P into convex compo-
nents (the first or last of which might be empty). In addition, each nontrivial
combination of a measure from {g: p > g} and {g:p ~ q} liesin {g: p >
q}, and similarly with > replaced by its dual.

A few basic implications of the new axioms are noted in the following
theorem; others will be derived in Chapters 4 and 5.

TueoreM 1.4. Suppose P is as specified in Theorem 1.3and > isa
binary relation on P. Then

(a) C1 = > is asymmetric.

(b) {C1, C2} = « in the statement of C1 is unique.
(c) {C1,C2, ~ is transitive} = > is transitive.

@ {C1, C2, B2} = {BI, B2, B3}.

Proof. (@) If p > gand ¢ > p, Cl implies ¢ ~ p, contrary to the
definition of ~.

(b) Suppose p > ¢, q > r,and g ~ ap + qd-aord<a<l,as
guaranteed by C1. Then C2 impliesg > Bp + (1 — B)r if < a,and Bp +
A -pBr>qif>a 0 is unique.

(c) Suppose first, contrary to the transitivity of >, that {p > q,q > I,
p~r}.Theng ~ap + (1 — o)r for some a by C1, and ap + (1 — o)r
~ rby C2. Hence ¢ ~ rby the transitivity of ~, in contradiction to g >r.
If{p>q,q>rr> p}, the hypotheses of (c) give {g>rr>ap+(
-, qg~oap+ (1 - o)r} for some o, which is impossible by the result
just proved. Hence {p>qgq>ry=p>r

(d) Assume C1, C2, and B2. Suppose ~ is not transitive, say with {p ~
g.q~7nrp>ry.ByB2r~ —;q + fz-r;byCZ,p > %q + %r; so by C2
again, %p + %r > %q + %r. But this contradicts B2. Therefore ~ is
transitive, and this in combination with (a) and (c) implies that > is a weak
order. Since B3 follows easily from C1 and C2, we conclude that the
Herstein-Milnor axioms are implied by C1, C2, and B2. |

We conclude our discussion of axioms equivalent to those of von
Neumann-Morgenstern or Jensen by considering an approach based on fwo
primitive binary relations on P, denoted by > and =, that provides several
generalizations of the basic linear utility theorem. This approach uses five
axioms:

1. > is asymmetric; = is reflexive and symmetric.
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2.{p>qgr>st=2np+0-=Nr>N+ (1 - Ns.
3. {p=gqg,r=stp=>Ap+ 0 -Nr=AN + (1 - Ngs.
4.{p>qgr=st=A+0~-Nr+X + (1 - Ns.

5{p>qg,r>st=ap+(
for some 0 < o < 1.

a)s > aqg + (1 — r

The second and third axioms are monotonicity—convexity conditions (cf. L3),
the fourth prevents certain mixtures from being identical, and the fifth is
another version of the continuity axiom. We usually think of ~ as some
portion of the indifference relation ~ for >.

Drawing on a result for linearly ordered vector spaces in Hausner and
Wendel (1952), Fishburn (1982b) proved that the preceding five axioms
imply that there is a linear functional # on P such that, for all p, ¢ € P,

p > q = u(p) > ug),
p = q = u(p) = u(q).

The maximal = that can satisfy the axioms is the indifference relation ~
defined from >, and in this case we obtain another equivalent to Jensen’s set
of axioms. The minimal = for the axioms is =, in which case axioms 3 and 4
are redundant and the representation reduces just to the one-way implication
p 7> q = u(p) > u(qg). Other possibilities for = are discussed in Fishburn
(1982b).

1.6 RISK ATTITUDES

This section and the next two comment briefly on special topics in linear
utility theory that we return to later in our discussions of nonlinear utility.
The present section considers risk attitudes and stochastic dominance with
monetary outcomes; the next two consider more general types of outcomes.

The theory of risk attitudes developed by Pratt (1964) and Arrow (1974)
is concerned with curvature properties of # on X as defined by (1.6) when X
is an interval of monetary amounts interpreted either as wealth levels or gains
and losses around a given present wealth. Its purpose is to interpret various
types of economic behavior in risky situations in terms of curvature and
perhaps other properties of ¥ on X within the von Neumann-Morgenstern
framework of maximizing expected utility. A classic example is the effort by
Friedman and Savage (1948) to explain the simultaneous acts of insurance
buying and gambling in actuarially unfair lotteries by a doubly inflected
utility function.

Assume that # on X is twice differentiable and increasing in x, so #®(x)
> 0. Following Pratt and Arrow, we say that u is risk averse in an interval of
Xifu@(x) < 0on that interval; u is risk seeking if u® (x) > 0; and u is risk
neutral if u®(x) = 0. Let p denote a nondegenerate simple measure in P.
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The certainty equivalent of p, denoted by c( p), is the sure amount in X at
which the individual is indifferent between this amount and p. Its existence,
with ¢( p) ~ p and u(c( p)) = T u(x)p(x), is ensured by our assumptions on u
and p. With E(x, p) the actuarial expectation of p, risk aversion, risk
seeking, and risk neutrality imply ¢( p) < E(x, p), c(p) > E(x, p) and c( p)
= E(x, p), respectively. Risk-averse utility functions, which increase in x at
a decreasing rate, are further characterized by their indices of absolute risk
aversion —u@(x)/uV(x) and relative risk aversion —xu®(x)/u®(x).
These indices, which can also be used when u® is not negative, are invariant
to positive linear transformations of u.

The terminology of the preceding paragraph makes no reference to the
riskless utility function v of the Bernoullian approach, since v plays no role in
the theory of von Neumann and Morgenstern. Some writers, including
Bernard (1986), would reserve the term risk neutrality only for the case in
which # = v (up to a linear transformation), regardless of curvature, and use
risk aversion only when u is obtained as an increasing concave function of v.
The papers by Camacho, Krzysztofowicz, and McCord and de Neufville in
Stigum and Wenstep (1983) provide extensive discussion of the u-versus-v
comparison.

The basic Pratt-Arrow theory of risk has been generalized by Ross
(1981) and Machina and Neilson (1987) to address questions of economic
concern and risk attitudes not easily dealt with by the original approach. They
are especially interested in the nonavailability of risk-free alternatives and the
impact of this on comparative economic analysis. See their papers for details.

With respect to the Pratt-Arrow theory applied to changes in present
wealth, it has been observed that some people tend to be risk averse in gains
but risk seeking in losses (Fishburn and Kochenberger, 1979; Kahneman and
Tversky, 1979; Schoemaker, 1980), although the generality of this finding is
open to question (Hershey and Schoemaker, 1980; Cohen et al., 1985). If you
prefer a sure gain of $4,000 to a lottery p with a 70% chance at $6,000
(nothing otherwise), then

c(p) < $4,000 < $4,200 = E(x, p).

If you also prefer a lottery g with a 70% chance of losing $6,000 (no loss
otherwise) to a sure loss of $4,000, then

E(x,q) = —$4,200 < —$4,000 < ¢(q).

Although the ubiquity of attitude reversal between gains and losses is
doubtful, there is little doubt that people’s utility for money depends mainly
on changes from present wealth rather than absolute level, at least locally.
To state an important result of the Pratt-Arrow theory when u is
presumed to be defined on absolute wealth levels, let u[x] = — u®(x)/
u®(x), the absolute risk aversion of u at x. Also let #(u, p) = E(x, p) —



HISTORICAL BACKGROUND: EXPECTED UTILITY 19
c(p) be the risk premium for D, so

u(e(p)) = u(E(x, p) - w(u, p)) = X u(x)p(x).

Then the following are mutually equivalent for any two utility functions & and
u*:

L. u*(x) = f(u(x)) for all x and some increasing concave £,
2. u* [x] > u[x] for all x.
3. m(u*, p) > n(u, p) for all simple p.

- In addition, if both u and u* are concave, and if one’s initial wealth Wy is
divided between a riskless asset and a risky asset whose expected return per
-~ dollar invested exceeds that of the riskless asset, then each of 1,2, and 3 is
~ equivalent to the assertion that for all such Wo and asset returns an expected
 utility maximizer with #* would put at least as much into the riskless asset as
- would an expected utility maximizer with u.
~ Stochastic dominance also involves the shape of u on X. It is concerned
~ with comparative aspects of measures p and g and with classes of utility
functions whose members have the same preference implication between D
_and gq. We consider only the standard forms of first (>,)- and second (>,)-
~degree stochastic dominance. An array of theory and applications of the
subject is available in Whitmore and Findlay (1978), and Bawa (1982) gives
' an extensive bibliography.

, Let p! and p? denote the first two cumulatives of the simple measure p
on X:

p'(x) =3 p(y),

ysx

pAx) = S_mp‘(y) dy.
Then > and >, are defined on Py by

P >1qifp # gand p'(x) < q'(x) for all x,
<

P >2qifp # qand p*(x) g*(x) for all x.

hus p > g if the cumulative distribution of p lies at or below the cumulative
distribution of g,andp # q. Whenp >, 4, p generally has a better chance
for better outcomes than does q. The second-degree relation > 2 has a similar
ect with respect to concave (risk-averse) utility functions, as shown by the
following well-known results.
- Let U, be the class of all strictly increasing u on X, and let U, be the
belass of U; whose members are strictly concave (4@ < 0). Then, with
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u(p) = T u()p), it is not hard to show that
p>1q ¢ ulp)> u(q) forall u € Uy,
p >,q e ulp) > u(q) for all u € U,.

Thus, for >, all risk-averse utility functions correspond to p > ¢ when p
>, g. We shall see in Section 6.8 that very similar results hold for nonlinear
utilities.

1.7 MULTIATTRIBUTE LINEAR UTILITY

We turn now to decisions under risk that involve multiattribute outcomes
of the form x = (X1, X2, - - - , X,) with X = X X X, X+ X X,. Itis
customary in economic theory to interpret x; as a quantity of a good or
commodity indexed by i, but X; could refer to any number of things, such as
levels of a qualitative variable or whatever happens in year i.

Multiattribute linear utility deals with problems of formulating and
assessing von Neumann-Morgenstern utility functions on X. It has focused
on special assumptions that simplify assessment by decomposing u(xy, - - -
X, into algebraic combinations of functions of the individual variables and on
interactive techniques that allow decision makers to maximize expected utility
without having to assess all of u. A broad introduction is given by Keeney and
Raiffa (1976), and useful surveys include Farquhar (1977, 1978) and
Fishburn (1977a, 1978a).

The two simplest decomposed forms for u are the additive form

(1.10) U(Xs, Xas + o s Xn) = W00 + b0 + 0 un(Xn)
and the multiplicative form
(1.11) ku(xy, . .., %) + 1= Tku(x) + 11 -~ [kun(x,) + 1]

where u; is a functional on X; and k is a nonzero constant. We say that the X;
are value independent if, for all p, q € Py,

(1.12) (p;=qfori=1,....,m=p~4q

where p; is the marginal distribution of p on X;. It can then be proved
(Fishburn, 1965; Pollak, 1967) that u can be decomposed additively as in
(1.10) if and only if the X; are value independent.

Multiplicative decompositions of u arise from utility independence
conditions. We say that a nonempty proper subset I (or its corresponding
attributes) of {1, 2, . . ., n} is utility independent of its complement I¢ =
{1,2,...,n}\Iif the preference order over probability distributions on the
product of the X fori€ 1, conditioned on fixed levels of the X forj € I, is

independent of those fixed levels. If all such [ are utility independent of their
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complements and the X; are not value independent, then (Keeney, 1968;
Pollak, 1967) u has a multiplicative decomposition like (1.11) with
restrictions on signs of the terms in brackets over X; on the right side of
(1.11). We also say that I is generalized utility independent of I¢ if any two
conditional orders for the i € I (conditioned on fixed levels of the other
attributes) are identical, duals of one another, or one is empty. Then
(Fishburn and Keeney, 1975) if {1, . . . , n} \ {i} is generalized utility
independent of {i} fori = 1, ..., n, and if the X are not value independent,
u can be decomposed multiplicatively as in (1.11). Since (1.11) is not
generally preserved under positive linear transformations, it is necessary to
scale u in a suitable manner so that (1.11) can be used.

A variety of other decomposed forms for u are discussed in the
preceding references.

1.8 EXTENSIONS FOR PROBABILITY MEASURES

~ Theorem 1.2 shows that the linearity property for « on P and definition
(1.6) imply that u( p) = X u(x)p(x) for every simple probability measure in
P, given convexity and one-point distributions in P. However, the same
hypotheses do not imply the expected utility form

(1.13) u(p) = | u)dp(),

when p is a nonsimple measure on X. For example, if # on X is unbounded
above and p is a discrete measure that assigns probability 2" to an outcome
with utility at least 2" forn = 1, 2, . . ., then | u(x) dp(x) is infinite but u( p)
is finite by Theorem 1.3 under the axioms for linear utility.

A failure of (1.13) for bounded u is obtained by letting @ be the Borel
field of subsets of X = [0, 1], taking P as the set of countably additive
measures on @&, and setting
1

ux) = =1 ifx < 3,
u(x) = 1 ifx > 5,
u(p) =Y, u(x)p(x) forall p € P.

Then u( p) is well defined since p(x) > O for no more than a countable
number of x € [0, 1]. Define > by p > g & u(p) > u(g). It is easily
- checked that u is linear, so it satisfies the representation of Theorem 1.3.
However, with p the uniform measure on [%, 1], u( p) = O since p(x) = 0 for
all x, but | u(x) dp(x) = 1 since u(x) = 1 forall x > 1.

, These examples and others (Fishburn, 1970a, Chapter 10) show that
_ axioms that go beyond A1, A2, and A3 are needed to obtain (1.13) when P
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contains nonsimple measures. An early example is the axiom of Blackwell
and Girshick (1954) that extends A2 to a denumerable form to yield (1.13) for
all discrete measures. Other examples are given in Arrow (1958), Fishburn
(1967, 1970a, 1975a, 1982a), DeGroot (1970), and Ledyard (1971). We
consider two main cases here: one for bounded u, and the other for u not
necessarily bounded. The proofs are given in Fishburn (1982a).

Some preliminary definitions are needed. Recall that @ is a Boolean
algebra of subsets of X if X € @ and @ is closed under complementation and
finite unions. If, in addition, @ is closed under countable unions (A; € Q for
i=1,2,...= U4 € @), thenQisa Borel algebra. A probability
measure p on @ is countably additive if

P (L,-JA’) = 3 p(4)

I

whenever the A; are pairwise disjoint members of @ whose union is in Q.
When p is a probability measure on @ and p(4) > 0 for A € @, the
conditional measure of p given A is the measure p,4 on @ defined by

pa(B) = p(BN A)/p(A) for all B € Q.

Pis said to be closed under conditional measures if py4 € P whenever p €
P, A € @, and p(4) > 0.

A subset 4 of X is a preference interval if z € A wheneverx,y € A, x
> zand z 2> y. Here > on X is defined from one-point measures in the
natural way from > on P. We say that P is closed under conditional
measures on preference intervals if pys € P whenever p € P, Aisa
preference interval in @, and p(A4) > 0.

Let f be an @-measurable functional on X; that is, {xf(x) €I} € QR
for every real interval I. The expected value of f with respect to p € P,
written E (f, p) or | f(x) dp(x), is defined as follows. First, if fis constant on
each set in a finite partition {A;, . . . , A} of X, with f = a; on A4;, then
E(f, p) = Z; a;ip(A)). Second, if fis bounded above and below, then

E(fa p) = SuP{E(fm P) :n =1, 2, 0. }a

where fi, f2, - . . 1s any sequence of simple G-measurable functionals
(constant on each set in a finite partition) that converges uniformly from
below to f; that is, fi(¥) < () < -, f(¥) = sup{fn(x)}, and for every &
> 0 there is an 7 such that, for all x, f(x) < f,(x) + 6. Next, if f is bounded
below,

E(f, p) = sup{E(fi, p) : a real},

where fi5(x) = f(x) if f(x) < @ and fi () = f(@) otherwise. If /' is bounded
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above, E(f, p) = — E(—f, p). Finally, for arbitrary f, define /* and f~ by

. fx) iff(x) =20, o b iff(x) <0,
frlx) = {O otherwise; o) = {O otherwise.

Then E(f, p) = E(f*, p) + E(f~, p) unless E(f*, p) = o and E(f~,
p) = — oo, in which case E(f, p) is undefined.

Our bounded utility extension for #(p) = | u(x) dp(x) = E(u, p) uses
the following appealing dominance principles, applied to all p, ¢ € P, all A
€ @,and ally € X:

A4. Dominance: Suppose p(A) = 1. Then (x > g forallx € A) = p
2 g, and(q > xforallx € A) = q > p.

A4*. Dominance: Suppose p(A) = 1. Then (x > yforallx € A) =
pzy,and(y 2 xforallx € A) =y > p.

The weaker axiom A4* can be used under countable additivity.

THEOREM 1.5. Suppose @ is a Boolean algebra of subsets of X that
contains every singleton subset, P is a set of probability measures on @
_ that contains every one-point measure and is closed under countable
convex combinations and under conditional measures, > is a binary
relation on P that satisfies Al, A2, and A3, and Q® contains every
preference interval. Then there is a bounded order-preserving linear
SJunctional u on P that satisfies (1.13) for all p € P if either A4 holds or
all measures in P are countably additive and A4* holds.

If we drop the assumption that P is closed under countable convex
combinations (p; € P, \; 2 0fori=1,2,...andT N\, = Limply T \;p; €
P), then u can be unbounded. However, to ensure (1.13) in this case, it is
necessary to add another axiom. To specify this axiom, we first define
preference intervals (— o, x) = {y:x > y}, (— o, x] = {y:ix > ¥}, (x,
o) = {y:y > x}, and [x, ®) = {y:y > x}, along with special classes of
measures in P:

P+ = {p € P: p([x, »)) = 1 for some
x, p((x, ®)) > 0 for all x},
P- ={p € P:p({(—o,x]) = 1 for some

X, p((— o, x)) > 0 for all x}.

~ The measures in P* are bounded below with upper preference tails; those in
P are bounded above with lower preference tails. As before, Py is the set of
simple measures. In addition, let x* denote the one-point measure in P that

_assigns probability 1 to x. The following applies to all po, p; € Px and all x

e X:
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A5. Truncation: If p € P*, p ((— o, x]) > 0 and p; > Do, then
there is a y € X such that

p((— o, yDpi + p((y, @Ny* 2 p((— %, yDpo + Py, ®NPy,0

ifp € P, p(x, ®) > 0,and py > Po, then thereisay € X
such that

P(— 0, YDy + PV ®Np1 2 P(=, »y* + p(y, %))po-

This basically says that the tails of measures in P* and P~ do not force
infinite expectations. The notations p(y,«) and P(- = refer to conditionals p4
of p with A = (y, ) and A = (—o0, y), respectively. Axiom A5 can be
simplified significantly under countable additivity to the following, for all p
€ Pandall py € Px:

AS5*. Truncation: p > Po = D(-w,y 2 DofOr somey EX:po > p=
Do 2 Dy, Jor somey € X.

TueoreM 1.6. Suppose the hypotheses of Theorem 1.5 hold with the
following changes: P is only assumed to be closed under finite convex
combinations and under conditional measures on preference intervals.
Then there is an order-preserving linear functional u on P that satisfies
(1.13) for all p € P if either A4 and A5 hold or @ is a Borel algebra, all
measures in P are countably additive, and A4* and A5* hold.

1.9 SUMMARY

The version of expected utility developed by Daniel Bernoulli was based
on a riskless notion of the utility of wealth coupled with maximization of
expected utility as a guiding principle for decision making under risk. More
than 200 years later, von Neumann and Morgenstern axiomatized another
version of expected utility in terms of a preference relation on a mixture set or
on a convex set of probability measures. Their utility measure for outcomes is
inextricably intertwined with probability, and their expected utility represen-
tation is derived from the preference axioms.

The linear utility representation of von Neumann and Morgenstern
follows from axioms for simple preference comparisons that refer to
ordering, independence, and continuity properties. Several equivalent sets of
axioms exist for their representation. Additional axioms are needed to extend
the expected utility form from simple measures to nonsimple measures.

Special topics that have been extensively developed in the linear utility
context of von Neumann and Morgenstern include the theory of risk attitudes,
stochastic dominance, and multiattribute utility theory.




2 Critique of Expected Utility

Violations of the axioms and underlying principles of expected utility
theory have been generated by certain experimental conditions and framing
procedures. It is no longer regarded as an accurate descriptive theory, and
many other models have been proposed to explain or describe risky choice
behavior. An important task for normative theory is to decide which
violations of the von Neumann-Morgenstern axioms are experimental
artifacts and which violations constitute fundamental rejections of the axioms
by intelligent and well-informed people. This chapter reviews the experimen-
tal evidence and philosophical arguments in preparation for the discussion of
normative theories in the next chapter.

2.1 NORMATIVE VERSUS DESCRIPTIVE THEORY

In reviewing evidence against linear utility presented in this chapter and
in interpreting alternative nonlinear theories in ensuing chapters, we shall
differentiate between the normative status and the descriptive status of these
 theories. This is desirable for two reasons. First, most of the empirical
evidence for avowed preferences or actual choices involves the descriptive,
behavioral side of decision theory, and it is not always clear whether it should
, ;ﬂso affect the normative status of a theory. Second, our later chapters are
primarily concerned with the normative side of decision theory. Hence, some
care must be taken in deciding which arguments against linear utility or other
theories also deserve consideration as arguments against their normative
viability. This ultimately rests of course on personal opinion as well as
collective wisdom, and I shall try to be clear about my own position as well
as the positions of others.

_ The terms normative and descriptive are but two of a number of
modifiers that signal particular interpretations and intended uses of decision
theory. Each is a neighbor to other terms that have many of the same
‘anoytations, and I shall use them simply as representatives of their larger
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Neighbors of descriptive include behavioral, psychological, predic-
tive, positive, and explanatory. The descriptive approach seeks to identify
patterns in an individual’s preferences or actual choices and, subsequently, to
develop a model that characterizes these patterns and which can be used to
predict preferences or choices not yet revealed. Models with few parameters
and high explanatory-predictive power are most desirable. A model may
have a processing or algorithmic flavor, such as Tversky’s elimination-by-
aspects model (1972a, b), or be based on a simple parametric equation, such
as some moment models for choices between monetary lotteries (Payne,
1973; Libby and Fishburn, 1977). Descriptive theory is interested in actual
choice behavior rather than in guidelines or criteria for “‘right’’ decisions.

Neighbors of normative include rational, prescriptive, and recom-
mendatory. The normative approach is concerned with criteria of coherence,
consistency, and rationality in preference patterns that, as in linear utility
theory, are often set forth as axioms. It does not necessarily assume that
intended or actual choice behavior adheres to the axioms, but it does presume
that reasonable people who understand the axioms would want their
preferences or implied choices to agree with the axiomatic guidelines.
Applications of normative theory should entail careful reasoning and
evaluations so that its imperative for a ‘‘right’” decision can be carried out
properly. Desirable attributes of a normative model, in addition to its appeal
as a transparently rational model, are clear specifications for the measure-
ment of its components and a simple rule for combining these components for
the evaluation of more complex alternatives. Proponents of expected utility in
cither the Bernoullian version or the von Neumann-Morgenstern version
claim that their model epitomizes these attributes for decisions under risk.

The normative-descriptive distinction has an interesting history bounded
by Bernoulli’s views at one end and the research of Daniel Kahneman and
Amos Tversky at the other end. Bernoulli appears not to distinguish between
the two, saying in one place that his approach for evaluating risky ventures
“‘renders the entire procedure universally acceptable without reservation”’
(1954, p. 24), and in another place that “‘all our propositions harmonize
perfectly with experience’” (p. 31). On the other hand, Tversky and
Kahneman (1986) argue persuasively that ‘‘no theory of choice can be both
normatively adequate and descriptively accurate’’ since some principles
widely viewed as normatively essential are descriptively invalid. We consider
this further in the next section.

2.2 FRAMING EFFECTS

Psychologists and sociologists have long known that the way a question
is asked can affect its answer. This has been dramatically illustrated by
Kahneman and Tversky in experiments on choice behavior conducted over
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many years and summarized, for example, in Kahneman and Tversky (1979,
1984) and Tversky and Kahneman (1981, 1986). They refer to ways in which
questions are posed as frames for decisions, and to responses induced by
different frames as framing effects. Roughly stated, a main conclusion of
their research is that virtually any principal of choice, no matter how
intuitively appealing, can be violated in certain frames.

A case in point is the axiom of asymmetry: if p > g, thennot (¢ > p).
By placing the p/q comparison in different frames, it may be possible to
induce a preference for p over g in one, and a preference for g over p in
another. Well-known examples of this involve comparisons of situations
involving life and death (McNeil et al., 1982; Tversky and Kahneman, 1981),
where preferences can depend on whether the comparison is stated in terms of
lives saved or of lives lost. Tversky and Kahneman (1981, p. 453) consider a
situation paraphrased as follows. Six hundred people have contracted a
potentially fatal disease. Two treatment programs are possible. If program 1
is adopted, 400 people will die and 200 will live. If program 2 is adopted,
either all 600 will die, with probability %, or all will live, with probability %
One group of respondents preferred program 1 over program 2 by a ratio of
2.6to 1 when the two were stated in terms of lives saved: 200 saved versus
600 saved with probability %, and nobody saved with probability % Another
group preferred program 2 over program 1 by a ratio of 3.5 to 1 in the lives-
lost frame: 400 die versus nobody dies with probability —;—, and 600 die with
probability 2.

Tversky and Kahneman (1986) refer to the ability to elicit either p > ¢
orgq » p, depending on frame, as a violation of invariance. We consider this
along with a closely related reduction principle:

Reduction Principle: For comparative purposes of preference and
choice in risky decisions, it suffices to characterize each alternative in
terms of its probability distribution over potential outcomes;

Invariance Principle: ‘‘Different representations of the same choice

. problem should yield the same preference. That is, the preference
between options should be independent of their description’” (Tversky
and Kahneman, 1986).

- The reduction principle is invoked in the basic formulation of preference
 theory for risky alternatives by Bernoulli and by von Neumann and
Morgenstern, and is widely regarded as a key normative principle. It
presumes that the outcome probabilities are given, or known, or easily
_ computable, and although this is seldom true in realistic situations we shall
_defer its consideration until Chapter 7. More to the point of our present
 discussion, the reduction principle asserts that the degrees of causal or
_ stochastic dependence among the events that give rise to the probabilities
_across different alternatives should not affect preferences. In the original
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game-theoretic context of von Neumann and Morgenstern (1944), this was of
little concern since probabilities are used there to form mixed strategies and
we may imagine that each mixed strategy refers to its own random device that
generates its probabilities. In other words, it is appropriate for mixed
strategies in game theory to assume complete stochastic independence among
their corresponding probability distributions. Under stochastic independence,
the reduction principle seems essential for normative decision theory.

I believe that the case for the reduction principle is less compelling when
the probability distributions are interdependent through their underlying
events. For example, consider two different frames that have identical
probability distributions for alternatives @; and aj:

SI: A fair coin is to be flipped. Under 4; you win $1,000 if a head
appears and get $0 if a tail appears; under @, you win $1,200 if a head
appears and lose $80 if a tail appears.

SII: Two fair coins are to be flipped. Under @; you win $1,000 if the first
coin lands heads and get $0 otherwise; under @, you win $1,200 if the
second coin lands tails and lose $80 otherwise.

Under the reduction principle, your choice should be the same in SI and SII.
However, it is not obvious, to this writer at least, that one’s reasoned choice
in the interdependent SI ought to be the same as in the independent SII.

Many readers will recognize the preceding example as a situation that is
better suited for analysis in the states-of-the-world formulation of Savage
(1954) than for the reduced formulation of Chapter 1. Figure 2.1 shows the
usual outcome matrix when the first coin in SII is the coin for SI. There are
three different acts and four states, where H; and T; denote heads and tails,
respectively, for coin i. Although we shall not consider Savage’s formulation
for decisions under uncertainty in any detail until Chapter 7, it is introduced
here because it plays a role in subsequent examples.

Tversky and Kahneman (1986) regard the invariance principle as an
essential condition for normative choice theory and note that it is tacitly
assumed rather than explicitly stated by many writers. It has at least two
variants. In the first, which is illustrated by the lives-saved-versus-lives-lost
example given earlier in this section, only the wording of the frames is
different. There is no difference between the probability distributions in the
two frames or in the way the probabilities arise, insofar as this is specified.
The second variant uses differences between the ways in which the
probabilities arise, or are generated, to induce violations of asymmetry under
the reduction principle that characterizes each alternative only by its
probabilities for the outcomes. Violations of invariance in this case can also
be viewed as violations of reduction.

The difference between the ways the probabilities arise in the two frames
may be implicit or explicit. We illustrate the implicit mode first with a
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FIGURE 2.1 Payoff matrix

Hy Hy Ty T
H2 T2 Hz T2

04(SI ORSI) | 1,000 4,000 ¢} 0]
SL a; 1,200 1,200 -80 -80

ST a, -80 1,200 -80 1,200

violation of first-degree stochastic dominance, and then we consider an
explicit violation of invariance or reduction that illustrates a so-called
isolation or pseudocertainty effect.

Tversky and Kahneman (1981, 1986) report' that 150 subjects were
asked to choose between (A) a sure gain of $240 and (B) a 25% chance to gain
$1,000 but nothing otherwise, and between (C) a sure loss of $750 and (D) a
75% chance to lose $1,000 but nothing otherwise, with the understanding that
the two selected options would be played out independently and simultane-
ously. About 84% chose (A) over (B) and 87% chose (D) over (C), 73%
chose the (AD) combination, and 3% the (BC) combination.

Also consider a choice between (E) a 25% chance to win $240 and a
75% chance to lose $760, and (F) a 25% chance to win $250 and a 75%
chance to lose $750. It is ““natural’’ to think of the outcome of (E) or (F) as
being determined by a “‘coin’’ with probability -}; for heads and % for tails. In
this comparison subjects invariably prefer (F) to (E), which adheres to the

 first-degree stochastic dominance principle. However, the (AD) combination
is identical to (E) in its aggregate outcome probabilities, and (BC) is identical
to (F) in its aggregate outcome probabilities. Thus the prevalent choice of
(AD) in the preceding paragraph violates first-degree stochastic dominance
through the separated-choice framing effect.
, Three further remarks on this example are in order. First, the implicit
difference between the two frames is probably not the main reason for (AD)
~ » (BC) and (F) > (E). It is more likely due to the psychological difference
between attitudes to gains and losses in the first frame, perhaps coupled with
an inability in that frame to mentally or manually aggregate pairs before
making the two choices. Second, the authors note that preferences agree with
_first-degree stochastic dominance when dominance is transparent, as in (E)
 versus (F). Finally, although the probability aggregated comparison between
(AD) and (BC) seems straightforward in the pure outcomes form, the actual
~ comparison between the two in Savage’s states formulation is not so obvious.
See Figure 2.2, where coin 1 refers to (B), coin 2 to (D), and the probabilities
of H; and T; are % and %, respectively. Although (BC) stochastically
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FIGURE 2.2 Another payoff matrix

He Hy  Tq Ty
Hz Tz Hz T
(1/46) (3/16) (3/16) (9/16)

AD | 240 -760 240 -760

BC | 250 250 -750 -750

dominates (AD) in the reduced form, (BC) does not dominate (AD) in state-
by-state comparisons since (AD) is better in the third state.

The final example of this section, based on Tversky and Kahneman
(1981, p. 455), assumes that probabilities are generated by drawing a marble
at random from a bag of 100 marbles, numbered 1 through 100. The first
comparison is between (A) win $30 if number drawn is <25, and nothing
otherwise, and (B) win $45 if number drawn is <20, and nothing otherwise.
This is reframed as a two-stage game for the second comparison. In stage 1
the game ends with no payoff if the number drawn is <75, and goes to stage
2 otherwise. If you get to stage 2, your choice is between (A *) win $30 and
(B*) win $45 if number drawn in a second draw is < 80, and nothing
otherwise. You must choose (A *) or (B*) before the draw in stage 1. Despite
the fact that the overall outcome probabilities for (A) and (A *) are identical,
and similarly for (B) and (B*), most subjects chose (B) in the first case and
(A*) in the second. The reversal in this example is referred to as an isolation
effect in Kahneman and Tversky (1979, p. 271), because subjects tend to pay
attention only to the dissimilar parts in the two-stage frame, and as a
pseudocertainty effect in Tversky and Kahneman (1986), because of its
relationship to the certainty effect of Allais (1953, 1979a, 1979b) that we
shall consider later in our discussion of the independence axiom.

2.3 MONEY

Because monetary outcomes have been so important in expected utility
theories, a few comments on money and wealth are in order before we turn to
other aspects.

As seen in Section 1.1, monetary outcomes were central to Bernoulli’s
expected utility theory. He believed that utility or subjective value should be
defined on wealth without intervention of probability or risk, and he proposed
a logarithmic function v(w) = log w for the psychological value of wealth,
unique up to positive linear transformations. This is pictured in Figure 2.3.

The preeminent proponent in modern times of Bernoulli’s position on
the utility of monetary outcomes is Allais (1979a, b), whose experimental
measurements (1979b) lend support to Bernoulli’s logarithm function. Let wy
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FIGURE 2.3 u(w) = logw

WEALTH

denote an individual’s estimate of the present value of his or her stream of
future income, and let x be a gain or loss presently considered. Then Allais
believes (1979b, pp. 480-81, 614-20, 627-33; footnote 34, p. 639) that his
experimental results justify the proposition that, with very little error, the
psychological value of wy + x for all subjects is given by log(1 + x/wy), or,
more precisely, that v(wy + x) = f(x/w), where f is the same for all
subjects but is not given explicitly (p. 633).

Unlike Bernoulli, Allais does not assume that individuals act to
maximize the expected value of their riskless utility. Moreover, he presume
that -an individual’s preferences on a set P of probability distributions
(granting the reduction principle, which he adopts as a basic axiom) are
- weakly ordered and that they satisfy first-degree stochastic dominance,

referred to as the “‘axiom of absolute preference’” (1979b, p. 457). It follows
(p: 465) that preferences on P depend not only on expected subjective values
2v(wy + x)p(x) but on the distributions of the v values about their expected
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values. His theory, which he interprets normatively but believes to be in good
accord with people’s behavior, will be discussed further in the next chapter.

Allais believes (1979b, pp. 591-93) that von Neumann and Morgen-
stern, whose formulation he refers to as neo-Bernoullian, intended their
cardinal utility function # on monetary outcomes to measure psychological or
subjective value, in the manner of Bernoulli or Allais. Although there are
hints of this in their writing, other commentators, including Strotz (1953),
Luce and Raiffa (1957), and Baumol (1958), make it quite clear that such an
identification is unjustified, and they themselves (1953 edition, pp. 16, 20)
deny it.

One of the great attractions of the von Neumann-Morgenstern theory is
its complete generality on the nature of outcomes. However, monetary
outcomes have played a prominent role in later work based on their theory
(Section 1.6) largely because of its fascination for economists, its conven-
ience in experiments on risky choice, and its use as a measurement surrogate
for other outcomes. These aspects explain the prevalence of the monetary
factor in our critique of linear utility theory.

Numerous studies, beginning with Mosteller and Nogee (1951), report
assessments of people’s von Neumann-Morgenstern utility functions # for
monetary outcomes. Some studies are normatively oriented, and others are
purely descriptive. Most focus on the measurement of utility for modest gains
and losses, but a few, including Grayson (1960), consider large changes.
Regardless of scope, and in sharp contrast to the everywhere concave v
of Bernoulli and Allais, a prevalent, but by no means universal, finding is that
u is concave in gains and convex in losses except for losses in the vicinity of
ruin, where concavity reappears.

The prevalence of risk aversion in gains and risk seeking in losses has
led Kahneman and Tversky to refer to its increasing S-shaped pattern as the
reflection effect. They also observe that their # tends to be steeper for losses
than for gains (see Figure 2.4). I say ‘‘their &’ because their assessment of
value is made according to their descriptive theory of choice between risky
monetary prospects, referred to as ‘‘prospect theory,’” and not according to
the von Neumann-Morgenstern paradigm. However, like von Neumann and
Morgenstern, they assess values by comparisons between simple lotteries,
and the qualitative aspects of the two are similar.

As noted in Section 1.6, several studies take exception to the prevalence
of the reflection effect, and others confirm it. A recent confirmation is given
by Budescu and Weiss (1985). On the other hand, Cohen et al. (1985)
conclude that, while subjects exhibit consistent risk attitudes in gains, and
also in losses, there is no correlation between a subject’s attitudes toward
gains and losses. They also note that probabilities are accounted for rather
precisely in the gains region but not in the loss region, where they are treated
coarsely, if at all. Related work on the relative importance of four risk
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FIGURE 2.4 u convex in losses, concave in gains
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dimensions, namely win probability, loss probability, amount to win, and
amount to lose, was reported by Slovic and Lichtenstein (1968) and Payne
and Braunstein (1971). An overview of this and similar descriptive research
is presented by Schoemaker (1980).

The importance of changes from one’s ‘‘present position’” is highlighted
by the following example from Tversky and Kahneman (1986):

Situation 1. Assume yourself richer by $300 than you are today. You
have to choose between (A) a sure gain of $100 and (B) a 50% chance to
gain $200 but nothing otherwise.

Situation 2. Assume yourself richer by $500 than you are today. You
have to choose between (A ) a sure loss of $100 and (B’) a 50% chance
to lose $200, but nothing otherwise.

Although the final positions of (A) and (A’) are the same, and probabilisti-
cally so for (B) and (B"), 72% of 126 respondents chose (A) in Situation 1,
and 64 % of 128 respondents chose (B’) in Situation 2. The majority choices
thus agree with risk aversion for gains and risk seeking for losses.

On the basis of available evidence, Kahneman and Tversky conclude that
the effective carriers of values in decisions between risky prospects are gains
and losses, or changes in wealth, rather than levels of wealth. I concur.
Moreover, so long as one’s wealth level is not drastically changed, the utility
function on gains and losses will not be significantly sensitive to current
wealth.

Although these conclusions apply first and foremost to descriptive
theory, I believe they have important implications for normative theory. In
particular, in accord with the considered choices of reasonable people,
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normative decision theory for risky decisions with monetary outcomes ought
to be primarily concerned with changes from present positions. For the linear
utility theory of von Neumann and Morgenstern, this suggests that the
outcomes in X should be such changes (i.e., gains and losses). Insofar as
present position is considered explicitly, it could be included in u as a
parameter, giving the bivariate functional u(x, wp). In fact, this is often
assumed implicitly with w, suppressed in writing u(x).

Since it might be imagined that this position is inconsistent with the
reduction principle when applied to a series of potential payoffs over time, we
note that outcomes in the series context are much more involved than the
simple monetary outcomes we have considered. Normative theory does not
seck to collapse such a series into a single number, such as present monetary
value, but regards it for what it is—a vector of payoffs with timing clearly
noted. The probabilities for outcomes in such a case refer to the holistic
payoff vectors.

2.4 PROBABILITY TRANSFORMATIONS, PROBABILITY
PREFERENCES

The experimental work of Preston and Baratta (1948), perhaps the
earliest reported test of the von Neumann-Morgenstern theory, explored
whether subjects accounted for chance events at their true (mathematical)
probabilities or whether they systematically distorted probabilities in their
presumed expectation-maximizing choices. Unlike Mosteller and Nogee
(1951), Preston and Baratta assumed u(x) = ax + b for small changes in
wealth. Since the logarithmic function is approximately linear locally, their
results also pertain to the descriptive accuracy of Bernoulli’s theory.
However, they do not pertain to Allais’s theory because he does not adopt an
expectation maximization principle.

Preston and Baratta found that subjects tend to overvalue small
probabilities and undervalue large ones, with accurate valuation at about 0.2.
Thus, if 7(\) denotes a person’s valuation of probability A, with 7(A\)x the
holistic value for a random prospect with probability X for x and 1 — A for 0,
then 7(\) > A for small \, 7(\) < X for large A, and 7(0.2) = 0.2 (see Figure
2.5). Edwards (1954a, p. 397) cites other studies with similar results, except
perhaps for the points, if any, where 7(\) = A.

In other early work on the psychology of probability, Edwards (1953)
observed that subjects’ bets revealed preferences among probabilities. For
example, for lotteries with equal expected values, subjects consistently liked
bets with win probability % to others with different win probabilities, and
avoided bets with win probability %. Moreover, these probability preferences
were reversed in the loss domain, were insensitive to the amounts of money




CRITIQUE OF EXPECTED UTILITY 335

FIGURE 2.5 Distortion of probabilities
1

()

involved (Edwards, 1954b), and could not be explained by curved utility
functions (Edwards, 1954b, c).

There is now a huge literature on the psychology of probabilistic
information processing and its biases, distortions, and illusions. Interested
readers will find discussions and further references in Edwards (1954a, 1961,
1968), Karmarkar (1978), Schoemaker (1980), Kahneman et al. (1982),
Machina (1983a), Kahneman and Tversky (1972), Tversky and Kahneman
(1973), and papers of Kahneman and Tversky cited earlier.

Various descriptive models that incorporate transformed or subjectively
weighted probabilities 7(A\) have been proposed. Handa (1977) discusses the
natural extension of the Preston-Baratta model with p — Zr(p(x))x,
Karmarkar (1978) proposes p — Zr(p(x)u(x)/Er(p(x)) with 7(\) = N%/
[A* + (1 — N)¢] for a positive parameter «, and Kahneman and Tversky
(1979) use a 7 function in their prospect theory. The properties for 7
suggested by Kahneman and Tversky include 7(0) = 0, 7(1) = 1, 7(uN\) >
ur(N) for small X > 0 and 0 < u < 1, subadditivity for complementary
events (i.e., 7O\) + 7(1 — N) < 1 for 0 < A < 1), and 7(uN)7(np) <
T(w)r(pip) for 0 < p, \, p < 1.
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The large body of evidence already alluded to supports the claim that a
normative theory that does not include a transformation of probabilities
cannot be an accurate descriptive theory. However, even if a normative
theory includes 7 in some form, it would still not be an acceptable descriptive
theory according to Tversky and Kahneman (1986) because of violations of
reduction and invariance that lead to contradictions of the asymmetry of strict
preference and first-degree stochastic dominance.

In fact, most normatively interpreted theories of preference and choice
among risky prospects do not include a probability transformation feature.
They take probabilities as given and, without alteration, combine them in
some way with values or utilities of outcomes under the reduction principle.
Moreover, framing effects that lead to violations of asymmetry are felt to
have no place in normative theory even if they are acknowledged as
psychologically valid. It follows that tests of the axioms of a normative theory
ought to avoid framing effects insofar as possible by, for example, simply
listing the holistic outcomes and their probabilities when comparisons
between prospects are considered. However, since even the way that
outcomes are listed (e.g., worst to best, best to worst, randomly) might
induce framing effects, it seems difficult to avoid such effects altogether.
Despite this difficulty, it is my understanding that most normative theorists
would be disturbed by a purported empirical violation of an axiom or
principle of choice viewed normatively only if they were convinced that the
violation was not induced by framing. At the same time, an axiom proposed
as a normative principle should not be taken too seriously if its general
satisfaction is induced only by special framing. A case in point is considered
in the next section.

2.5 INDEPENDENCE AND THE CERTAINTY EFFECT

Of the three numbered axioms in Section 1.4, the one most often denied,
relaxed or abandoned as both a descriptive and normative principle of choice
is A2, the independence axiom. It is also the most extensively investigated
axiom from an empirical perspective. Several investigators, beginning with
Allais (1953, 1979a) and including Morrison (1967), MacCrimmon (1968),
MacCrimmon and Larsson (1979), Hagen (1979), Kahneman and Tversky
(1979), and Tversky and Kahneman (1981), have shown persistent and
systematic violations of independence. An extensive review is provided by
Machina (1983a, pp. 62-76).

To paraphrase an early example of Allais (1979a, p. 91), consider first
your preference between p and g:

p: $1 million with probability 1,
g: $3 million with probability 0.98, nothing otherwise.
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Consider also your preference between
r: $1 million with probability 0.050, nothing otherwise,
st $3 million with probability 0.049, nothing otherwise.

Many péople have p > g because of p’s certainty of giving $1 million, yet
also have s > r because the difference between their payoff probabilities of 1
chance in 1000 is outweighed by the significantly larger payoff for s. This
pair of preferences violates A2 since

r=(1/20p + (19/20)¢, s = (1/20)q + (19/20),

where #($0) = 1. According to A2, if p > g, thenr > s.
A similar example in Kahneman and Tversky (1979) uses more modest
payoffs:

p: $3,000 with probability 1,

q: $4,000 with probability 0.8, nothing otherwise;
r: $3,000 with probability 0.25, nothing otherwise,
s: $4,000 with probability 0.20, nothing otherwise.

Of 95 respondents, 80% had p > g, 65% had s > r, and more than half had
the independence-violating pair {p > g, s > r}.

In such examples it is instructive to consider the effect of A on
preferences when p > q:

r=Ap + (10— N s=Ag + (1 - Nt

Assuming that ¢’s payoff, if any, is less attractive than those for p and g, as A
decreases from 1 the attraction to certainty in the p/g comparison fades and
the difference between their payoffs assumes more significance in the overall
comparison between r and s. When independence is violated, we expectr > s
for large N and s > r for small \. The change point as A decreases from 1 will
depend of course on the person as well as on the parameters of p, g, and ¢.

Allais refers in various places to the effect, advantage, or security of
certainty as the driving force behind violations of independence of the type
just illustrated. This is commonly known today as the certainty effect,
although it is well to bear in mind that this does not mean that the violation is
due to a framing effect, as discussed earlier, since, in adherence to the
reduction principle, the prospects are presented in a straightforward manner
without special framing devices, such as decompositions or multiple stages.
When certainty as such is not involved, but the ratio of positive-payoff
probabilities is the same in two comparisons (such as 0.9/0.6 and 0.3/0.2),
failures of independence are sometimes described as the common ratio

effect.



38 NONLINEAR PREFERENCE AND UTILITY THEORY

Another descriptor is the common consequence effect, which has been
used in connection with Allais’s most famous example (1979a, p. 89), which
was designed, in part, to challenge Savage’s independence principle. You are
asked to compare

p: $1 million with probability 1,

g: $5 million with probability 0.10, $1 million with
probability 0.89, nothing otherwise;

and to compare
p’: $1 million with probability 0.11, nothing otherwise,
q’: $5 million with probability 0.10, nothing otherwise.

Many people have p > gand ¢’ > p’, and it is clear that certainty plays a
role in this. Now with #($0) = 1 and with s the prospect with probability %‘11
for $5 million and nothing otherwise, we have

p = (0.1)p + (0.89p, g = (0.11)s + (0.89)p,
and
p’ = (0.11)p + (0.89)¢, g’ = (0.11)s + (0.89)¢.

The ‘‘common consequence’”’ in p versus ¢ is $1 million, and in p’ versus g’
it is $0 (i.e., #). According to A2 and its indifference companion L5 in
Section 1.4, the preference between p and g, and between p’ and q’, should
depend on the p-versus-s preference, independent of the common conse-
quence in each case. Thus A2 requiresp > gandp’ > g’ ifp > s,org >
pand g’ > p’ifs > p;also, L5 requires p ~ gand p’ ~ g’ if p ~ s.

The most common defense of independence as a postulate of rationality
involves the two-stage argument of Section 1.4. Consider the first example of
this section, where r = %p + —;%t and § = 2—2)-q + —;%t. The two-stage
argument imagines that either s or # would be played out in two stages. In the
first stage you get ¢ (i.e., $0) with probability % and p (if r) or g (if s) with
probability 710— Your final payoff is then determined in the second stage
according to whatever results from the first stage. Since you shouldn’t care
which of r and s is chosen if # comes up in the first stage, your preference
between r and s ought to depend solely on your preference between p and g.

This argument once persuaded many theorists to accept A2 as a valid
normative principle, and it may still appeal to some. However, as Allais
originally argued and has insistently maintained, it is inadmissible as a guide
to rationality since it destroys the holistic natures of the prospects under
consideration and is based on a specialized framing effect illustrated in the
final example of Section 2.2. When distributions are viewed holistically,
important comparative aspects may be evident that could be disguised by the
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two-stage argument. Moreover, there is a potentially unlimited number of
ways that two distributions could be decomposed for multiple-stage presenta-
tion that, because of psychological suggestions induced by decompositional
framing that should have no part of our conception of rationality, could lead
to opposite preferences between the two. Examples of this have already been
given in Section 2.2.

Since Allais defends first-degree stochastic dominance as a normative
principle but denies independence the same status, it is interesting to compare
his position with that of Tversky and Kahneman (1986). These authors
believe that the two principles are on a similar footing. They say that both
rules are intuitively compelling as abstract principles of choice, and note that
they are consistently obeyed in situations where their structure is transparent
and frequently violated otherwise.

My own view differs slightly from both Allais and Kahneman-Tversky
and requires qualification of the degree of interdependence among events that
generate probabilities for alternative prospects. We hold a common view on
the normative status of first-degree stochastic dominance, and I am convinced
by Tversky and Kahneman that descriptive failures of this principle can arise
when dominance is not transparent or is disguised by framing.

If the reduction principle is accepted as a normative criterion, which I
feel comfortable about, but only when the underlying events for different
prospects are causally independent, then I must agree with Allais on the
normative inadmissibility of the independence axiom. In the independent-
prospects case, the independence axiom seems intuitively compelling only by
way of an illusion created by two-stage interdependent framing. When the
prospects are presented in holistic form, which suggests that their underlying
events are more or less independent, the judgments of reasonable people
speak strongly against the independence axiom as a normative principle.

On the other hand, both the reduction principle and the independence
axiom appear in a different light if the underlying events are interdependent,
as I have suggested in Section 2.2. In particular, if the framing of
independence by the two-stage argument discussed earlier adheres to the
actual process by which final payoffs are determined, then independence is
normatively attractive, and I tend to side with Tversky and Kahneman in this
case.

There is also, I believe, a substantive difference between the dominance
and independence principles. With monetary outcomes, first-degree stochas-
tic dominance is the natural probabilistic extension of the greater-than
relation between sure outcomes. On the other hand, independence is merely
one of a large number of rules of combination for preferences between convex
combinations of distributions. Its simplicity is appealing, and it is enormously
useful mathematically via the linear utility representation, but it does not have
the same intuitive standing as dominance.
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Violations of A2 and related independence conditions can be accommo-
dated by probability-utility models by the use of subjectively weighted
probabilities (see 7 in Section 2.4) or by a conception of how probabilities and
utilities combine to form values or utilities of risky alternatives that differs in
some way from the expected utility form. The descriptive models of Handa
(1977) and Kahneman and Tversky (1979) use both means since their quasi-
expectational forms are not true expectations. However, Karmarkar (1978)
uses only the 7 device, since his weighted probabilities are normalized.
Theories interpreted normatively that do not transform probabilities rely on
the combination aspect to accommodate independence violations. The rules
of combination are not specified explicitly in the theories of Allais (1953,
1979a, b) and Machina (1982a), but are given concrete form in the weighted
expected utility theory of Chew (1982, 1983) and in Fishburn’s (1982c) SSB
utility theory. We consider these further in the next chapter.

We note also that plausible violations of independence can occur outside
the narrow realm of monetary outcomes. Kahneman and Tversky (1979, p.
267) give an example with tours of European countries as outcomes, and Sen
(1985) presents three examples with various kinds of outcomes. Sen’s first
example illustrates the potential of psychological dependence among out-
comes in the common consequence format. In abstract form consider (A) a
10% chance for a, 90% chance for b and (B) a 10% chance for a, 90%
chance for ¢ as one comparison, and (A*) a 10% chance for a*, 90% chance
for b and (B*) a 10% chance for a*, 90% chance for ¢ as a second
comparison. Although independence requires a similar preference between
(A*)and (B*) as between (A) and (B), the individual may view the b versus ¢
comparison differently in the two cases because of different psychological
dispositions caused by association with common consequence a in one case
and with ¢* in the other. Even though the outcomes are mutually exclusive,
psychological associations and interdependence could lead to (A) > (B) and
B* > (A%).

Sen’s paper also contains an interesting analysis of notions of rational
choice that emphasizes the correspondence of actual choice with the use of
reason. He distinguishes irrationality due to hasty or unthinking action
(something else would have been done on careful reflection) from failures of
rational action due to limited reasoning ability. Those of us who are
sometimes perplexed by the notion of rationality may find some solace in
Sen’s claim (1985, p. 113) that it involves inherent ambiguities.

2.6 VAGUENESS AND NONTRANSITIVE INDIFFERENCE

The asymmetry part of the weak ordering axiom Al was considered in
Section 2.2 as part of our discussion of reduction and invariance. We now
consider transitivity implications of Al, beginning with the most innocuous
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failure of transitivity—nontransitive indifference. Failures of the transitivity
of strict preference will be discussed in the next two sections.

We say that the indifference relation ~ is nontransitive, or intransi-
tive,ifa ~ b, b ~ c,and a > cfor some a, b, and c. In the risky-prospects
setting, @, b, and ¢ could be outcomes in X or probability measures in P or a
mixture of the two. When outcomes are involved, we identify x with the one-
point measure that yields x with certainty.

Early discussants of nontransitive indifference in economics include
Georgescu-Roegen (1936, 1958) and Armstrong (1939, 1948, 1950).
Armstrong speaks in one place (1950, p. 122) about nontransitive indiffer-
ence as arising from ‘‘the imperfect powers of discrimination of the human
mind whereby inequalities become recognizable only when of sufficient
magnitude’” and asserts elsewhere (1948, p. 3) ‘‘that indifference is not
transitive is indisputable, and a world in which it were transitive is indeed
unthinkable.”” A more recent examination of nontransitive indifference in
consumer demand theory is provided by Chipman (1971).

Armstrong’s first quote is reminiscent of the notion of a just noticeable
difference in psychophysical measurement as it arose from the work of E. H.
Weber and Gustav Fechner in the mid-1800s. An example suggested by Luce
(1956) makes the point in the preference domain. A person who likes
sugarless coffee will be indifferent between x and x + 1 grains of sugar in his
coffee, between x + 1 and x + 2 grains, . . . , but for each x there will
come a smallest y = f(x) at which x > y (granting imprecision in y’s
determination) so that ~ is not transitive. One might also expect f(x) to
increase as x increases, so the threshold of discriminability shifts upward as
the base stimulus x increases.

When > is assumed to be asymmetric and transitive (but ~ is not
assumed transitive), we refer to > as a partial order instead of a weak order.
The partial order of the preceding paragraph is likely to have the additional
properties

(x >a,y>b)y=(x>bory > a),
x>y,y>2)=(x>corc > 2),

in which case it is called a semiorder (Luce, 1956). If it has only the first of
these properties then it is an interval order (Fishburn, 1970a). These and
related concepts are discussed at length in Fishburn (1985a).

A single-peaked example (Fishburn, 1970b) illustrates a partial order
that is not an interval order. A planning board member feels that $200,000 is
the right sum for a community to budget for a new playground. The
member’s preference decreases in both directions from $200,000, but some
comparisons on opposite sides of the peak are problematic. Although
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$191,000 > $190,000 and $205,000 > $206,000, the member finds that
$191,000 ~ $206,000 and $190,000 ~ $205,000.

The difficulty of specifying certainty equivalents precisely leads to
simple examples of nontransitive indifference with risky prospects. Let p be a
50-50 gamble for $0 or $1000. Then the combination of $367 ~ pand p ~
$366 seems reasonable, but surely $367 > $366.

Failures of transitivity, both for ~ and >, are usually dealt with in
descriptive preference theory either by stochastic or random utility models
(Luce and Suppes, 1965; Manski, 1977) or, in multiattribute cases, by
deterministic models whose algebraic rules of evaluation allow intransitivities
(Tversky, 1969; Luce, 1978; Fishburn, 1980a).

In normative utility theory, Aumann (1962) and Fishburn (1970a,
1982a) axiomatized linear utility models for > on P that reflect > (i.e., p
>q = u(p) > u(q)), but not ~, since they do not assume that indifference
is transitive. The axioms at the end of Section 1.5 are indicative of this
approach. The SSB model discussed in ensuing chapters accommodates
certain forms of nontransitive indifference and preference. However, it is not
designed to deal with the certainty-equivalent vagueness illustrated in the
preceding example.

2.7 PREFERENCE CYCLES AND MONEY PUMPS

A preference cycle, usually writtenas a; > a, > - > a, > a;,isa
set {a; > ¢j.;:i=1,---,nn =3, a,., = a}. There are two types of
nontransitive preference patterns for asymmetric >, those with cycles and
those without cycles (but a > b, b > ¢, a ~ ¢). In the noncyclic case the
transitive closure >’ of >, defined by

a>'b fa=a >a > - >a,=0b
for some n > 2 and some a;,

is a partial order. This case can be grouped with partial orders in the
preceding section, so we focus here on patterns with cycles.

Several writers, including Flood (1951-2), May (1954), and MacCrim-
mon and Larsson (1979), suggest that preference cycles have the best chance to
arise in multiattribute situations. For example, May asked 62 college students
to make binary comparisons between hypothetical marriage partners
X, ¥, and z who were characterized by three attributes:

Intelligence Looks Wealth
x:  Very intelligent Plain Well off
Intelligent Very good looking Poor

z: Fairly intelligent Good looking Rich
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Seventeen of the 62 students had cyclic choices. Since there are two cyclic
patterns (x > y > z > xand x > z > y > x) among the eight possible
patterns (~ was not permitted), about eight cycles of each type would occur
if the students chose randomly on each comparison. However, all 17 of the
transitivity violators had cycle x > y > z > x, and May (1954, p. 7) notes
that *‘the intransitivity pattern is easily explained as the result of choosing the
alternative that is superior in two out of three criteria.”’

Some people, including Davis (1958), have argued that preference
cycles can be explained purely on the basis of random choice and do not
represent systematic patterns, but May’s example shows that this is not
always true.

An example from Tversky (1969) gives another case of systematic
intransitivity. Let [x, A] denote the lottery that pays x with probability \ and
nothing otherwise. Tversky observed that a number of people have the cyclic
pattern

[$5.00, 7/24] > [$4.75, 8/24] > [$4.50, 9/24] > [$4.25, 10/24]
> [54.00, 11/24] > [$5.00, 7/24].

He notes that this and other intransitive patterns can be explained by
Morrison’s (1962) nonlinear additive difference model, which is one of the
deterministic models alluded to in the penultimate paragraph of Section 2.6.

The following example (Fishburn, 1984a) reverses the relative impor-
tance of changes in payoff and probability from Tversky’s example. Let [x,
A] be the lottery that gives you an x % raise in salary with probability A and no
raise with probability 1 — A. Although your preferences might not be cyclic,
the cyclic pattern [6, 0.90] > [7, 0.80] > [8, 0.72] > [9, 0.66] > [10,
0.61] > [6, 0.90] does not seem unreasonable. Here the amount of the raise
is less important than the chance of getting some raise until the difference in
raises (10% versus 6%) becomes large enough to incur the added risk. In
Tversky’s example, payoff probabilities were relatively unimportant until
they showed a sizable difference.

Normative decision theorists are often averse to the notion that cyclic
preferences may be quite reasonable or rational, in part because there is no
basis for choice from a set on which preferences cycle so long as choice is to
be governed by the existence of an alternative that is preferred or indifferent
to all others. To show how foolish or irrational cyclic preferences are, they
have invented the money pump. Suppose you have thecyclep > g > r > p
and presently have title to p. Then, since you prefer r to p, you would surely
be willing to pay something to exchange p for r; then, given r, you will surely
pay something to exchange it for the preferred g; finally, given g, you will
again pay something to exchange it for the preferred p. Thus, you begin and
end at p but are poorer in the process. In short, you are a money pump.
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There are, however, a few things about this invention that can be
criticized. First, it envisions a dynamic situation with aspects of strategy and
deception that transcend the basic choice problem. It is indeed irrational to be
a money pump, but it is also hard to imagine a sensible person engaged in the
money-pump game if he or she understands what is involved, cyclic
preferences notwithstanding.

The money-pump concept also reveals a narrow perspective on how
choice might be based on preferences, and perhaps a lack of imagination in
dealing with cyclic patterns. Although there is no transparent way to make a
sensible choice from {p, g, r} whenp > g > r > p, nothing prevents a
person from considering preferences over the set of convex combinations of
P, q, and r. And if there is a combination in this set that is preferred or
indifferent to everything else in the set, then that person has an ex ante
maximally preferred alternative. As first shown by Kreweras (1961), this can
indeed be the case, and we shall consider it later as a part of the SSB theory.

2.8 THE PREFERENCE REVERSAL PHENOMENON

Section 2.2 illustrated reversals in preferences that violate asymmetry
through framing. We now consider a systematic form of intransitivity known
as the preference reversal phenomenon that does not appear to rely on special
framing and which must therefore be addressed by normative as well as
descriptive theories. This phenomenon is second only to violations of
independence in the extent to which it has been investigated empirically.

Let p and g be risky prospects for monetary outcomes with certainty
equivalents ¢(p) and c(g). Thus c(p) is the (assumed unique) minimum
amount the individual would accept in exchange for title to p, and similarly
for ¢(g). Then the preference reversal phenomenon occurs if p > ¢ and c(p)
< ¢(q), i.e., if the individual prefers p to g but would sell title to p for less
than he or she would sell title to q.

Given that more money is preferred to less, > cannot be a weak order
when p > g and c(p) < c(q), since otherwise

c(p) ~p > qg~cl@ = c(p) > clg) & c(p) > c(q).

Moreover, preference reversals generate cyclic preferences since for small
positive 6 for which c(p) + 26 < c(q),

pr>qgr>clgg—6>c(p)+6>p.
To illustrate, consider
p: $30 with probability 0.9, nothing otherwise,
q: $100 with probability 0.3, nothing otherwise.
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I have used this example informally with several groups and note a majority
response of p > g, c(p) about $25, and c(q) about $27. It reflects a
predominant theme of experiments on preference reversals that use a
““probability lottery’” or *‘p-bet’” with a high chance for modest winnings ( p)
and a ‘“‘money lottery”” or ‘‘$-bet’” with a lower chance for large
winnings (g). Comparatively small losses are often included as parts of p and
q. When reversals occur, they usually follow the pattern given earlier: p > g
and ¢(p) < c(q). When the lotteries are turned around and stated primarily
in terms of losses, the reversal goes the other way, as might be expected from
our previous comments on different attitudes toward gains and losses in
Sections 1.6 and 2.3. Although preference reversals can be seen as violations
of transitivity, an alternative explanation of the phenomenon is suggested by
Karni and Safra (1987); see Section 3.5.

Initial experiments on the preference reversal phenomenon were made
by Lichtenstein and Slovic (1971, 1973) and Lindman (1971). More recent
experiments, motivated in part by skepticism with previous findings, are
discussed by Grether and Plott (1979), Pommerehne et al. (1982), Reilly
(1982), and Goldstein and Einhorn (1985). Slovic and Lichtenstein (1983)
provide extensive commentary on prior research and other matters related to
the phenomenon. They emphasize information processing aspects that are
involved with people’s preference judgments and that could play a significant
role in the elicitation of choices that lead to preference reversals. They note,
as did Grether and Plott (1979), that modifications in extant theories might
yield reasonable models that could accommodate preference reversals. The
recent work by Goldstein and Einhorn (1985), which emphasizes psychologi-
cal dispositions toward judgments, choices, and evaluations of worth,
suggests one such descriptive model that they refer to as ‘‘expression
theory.”

Despite a succession of attempts to tighten experimental controls and
give subjects greater motivation to reflect carefully on their choices, partly in
the hope that these measures might banish preference reversals, the
phenomenon has persisted. In reviewing the recent experiments of Grether
and Plott (1979) and others, Slovic and Lichtenstein (1983, p. 599) say that,
in their opinion, ‘the most striking result of these studies is the persistence of
preference reversals in the face of determined efforts to minimize or eliminate
them.”’

It thus seems reasonable to submit that preference reversals are no mere
artifact of casual experiments, framing effects, or unmotivated subjects. The
task this poses for normative theory is either to provide defensible normative
models that allow preference reversals or to explain convincingly why they
are irrational.

To consider the normative side a bit further at this time, we distinguish
between weak and strong preference reversals. Assume as before for the
probability lottery p and the money lottery g that g has positive probability
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for an outcome that is larger than anything that can be won under p and that
the total probability assigned by g to outcomes that are greater than the largest
amount m that can be won under p is less than p (). Formally,

m = max{x : p(x) > 0},
p(m) > 2 {g(x) : x > m} > 0.

Then, given a preference reversal p > g and ¢(p) < c(q), we refer to it as a
weak reversal if c(g) < m, and as a strong reversal if c(g) > m. Thus a
strong reversal occurs if the certainty equivalent of the money lottery ¢ is as
large as the most that can be won with the probability lottery p.

Although I see nothing unreasonable about weak reversals, strong
reversals are another matter. Assume

qg~c(@ =2m2=c(p) and c(q) > c(p),

so a strong reversal occurs if p > g. Suppose first that c¢(g) > m. Then, by
the definition of ¢(g), the individual would refuse to exchange title to g for
m. Moreover, since m is as large as anything that might result from p, it is
reasonable to suppose that an individual would not exchange g for p either.
Butthen g > p, contrary to strong reversal. Similarly, if c(q) = m and p(m)
< 1,theng > p is the only reasonable conclusion. Finally, if c(q) = m and
p(m) = 1, then p is tantamount to c(g), so ¢ ~ p.

The argument against strong reversals can be stated the other way
around, as follows. Suppose that p(m) < 1, you prefer p to g, and z is any
amount as great as the most you can win under p. It then seems reasonable
that you will prefer z to g. But then, by the definition of certainty
equivalence, z > c(q) for all z > m; hence m > c¢(q). This allows a weak
reversal but not a strong reversal.

The data presented in the experimental studies cited earlier do not reveal
the proportions of reversals in the predominant direction [p > g, c(p) <
c(qg)] that were weak and strong, but it seems likely that at least some were
strong.

2.9 NON-ARCHIMEDEAN PREFERENCES

The Archimedean or continuity axiom A3 says that if you prefer p to ¢
and g to r, then you will prefer some nontrivial convex combination of p and
r to g, and prefer g to some nontrivial combination of p and r. Plausible
examples of its failure are suggested by Georgescu-Roegen (1954), Thrall
(1954), and Chipman (1960) among others, but there is almost no
experimental evidence for such failures. It would be violated when (p, ¢, r)
= (win $2, win $1, be executed), and there is no probability o < 1 at which
ap + (1 — a)r > g. Less dramatically, suppose you are faced with a choice
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between (A) receive $10,000,020 if the first head in a series of flips of a fair
coin comes before the nth toss, receive $0 otherwise; and (B) receive
$10,000,000 with certainty. If you prefer (B) regardless of how big # is, then
you violate A3. The certainty of a large prize could overwhelm a risky
prospect with an even larger prize no matter how absurdly small its
probability of no payoff becomes.

Three aspects of A3 and its comparison to Al and A2 deserve comment.
First, many normative theorists regard it more as a technical convenience
than a rationality postulate, and some have suggested that its standard defense
(Section 1.4) using extremely small probabilities removes it from the class of
easily intuited principles. Second, as emphasized by Narens (1974, 1985), A3
has a different formal standing in logic than the other axioms. In a manner
of speaking, it lies in a more complex class of axioms than do Al and A2.
Third, unlike cyclic preference violations of Al or failures of the indepen-
dence axiom A2, denial of A3 leaves the underlying notion of expected utility
intact.

The third aspect has been discussed by various people, including
Hausner (1954), Chipman (1960), Richter (1971), Narens (1974), Skala
(1975), and Fishburn (1982a), and I shall say more about it in the next
chapter. The basic idea is that if A3 is not assumed to hold, but the other
axioms of von Neumann and Morgenstern are adopted, then there is a
mapping U from P into a linear space ordered by a relation >’ such that U
on P is a linear function and p > g ¢ U(p) >’ U(g).

Apart from the discussion in Section 3.2, we shall generally assume that
utilities are real valued. Thus the failure of A3 and other Archimedean-
continuity axioms will not be at issue in the main part of the book.

2.10 SUMMARY

Virtually any axiom of preference or principle of choice can be violated
by suitable framing in experiments on preference judgments and choice
behavior. Moreover, even when special effects due to framing are mini-
mized, systematic and persistent violations of some traditional axioms are
observed. This has been the case most notably for violations of the
independence axiom and for the preference reversal phenomenon.

, The empirical evidence amassed in support of violations of traditional

axioms poses a twofold challenge for normative decision theory. First, the
experimental and philosophical evidence must be weighed to decide which
principies and axioms remain acceptable as characteristics of reasonable or
‘‘rational”” decision making and which do not. Acceptable relaxations may
emerge in the latter case. Second, it is necessary, or at least desirable, to
specify a mathematical model that incorporates the acceptable principles and
axioms in an efficient representation of underlying preference structures. The
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next chapter discusses several models of this type along with some of their
principles.

Although the evidence weighing process involves personal judgment,
there is some agreement as well as disagreement about normative acceptabil-
ity. At the present time, most theorists regard the reduction principle (perhaps
qualified), asymmetry of strict preference, and first-degree stochastic
dominance as normatively essential, and there is little concern about possible
failures of the Archimedean axiom. Some people stand by the independence
axiom, but many theorists no longer accept its normative inviolability and
have replaced it with weaker conditions. Of the von Neumann-Morgenstern
axioms, this leaves transitivity, the bulwark of economic rationality. My own
view that transitivity can no longer be regarded as a tenet of the normative
creed is presently a minority position.




3 Generalizations of Expected Utility

Many generalizations of the Bernoullian and von Neumann-Morgen-
stern expected utility theories have been proposed to accommodate violations
of those theories. Systematic failures of the independence axiom or
expectation principle have received special attention, but continuity failures
and intransitivities have not been ignored. This chapter reviews a number of
more general theories that appear to be of some normative interest, then
. discusses how they accommodate independence violations and, in one
instance, nontransitive preferences and preference cycles.

3.1 ALTERNATIVES TO EXPECTED UTILITY

The following generalizations of the expected utility theories of
Bernoulli and von Neumann and Morgenstern will be considered in this
_ chapter:

1. Linear, arbitrary outcomes

A. Non-Archimedean weak order (Hausner, 1954; Chipman, 1960)
B. Archimedean partial order (Aumann, 1962)

C. Non-Archimedean partial order (Kannai, 1963)

Nonlinear Archimedean weak order, monetary outcomes

A. Intensity (Allais, 1953, 1979a; Hagen, 1972)

B. Smooth (Machina, 1982a)

~ C. Decumulative (Quiggin, 1982; Yaari, 1987)

Nonlinear Archimedean weak order, arbitrary outcomes

A. Weighted (Chew and MacCrimmon, 1979; Chew, 1982, 1983;

Fishburn, 1981a, 1983a)

B. Transitive convex (Fishburn, 1983a; Dekel, 1986; Chew, 1985)
Nonlinear nontransitive Archimedean, arbitrary outcomes

A. Nontransitive convex (Fishburn, 1982c)

B. SSB (Kreweras, 1961; Fishburn, 1981a, 1982c).
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The generalizations of von Neumann and Morgenstern (1944) in
category I that preserve linearity and at least the transitivity of strict
preference had run their course by about 1970. The reason is that these
generalizations exhaust the obvious linearity-preserving weakenings of the
von Neumann-Morgenstern theory.

During the 1970s, while Hagen (1972) and others promoted and refined
Allais’s approach, there was a small explosion of interest from other quarters
in violations of the independence axiom, due in part to new experiments that
supported Allais’s (1953, 1979b) findings. The first wave of new nonlinear
theories were plainly descriptive (Handa, 1977; Karmarkar, 1978; Kahneman
and Tversky, 1979) and normatively inadequate for reasons noted shortly.
These were soon followed by other theories (Chew and MacCrimmon, 1979;
Machina, 1982a; Quiggin, 1982; Fishburn, 1982c) that were often inter-
preted descriptively but could, I believe, be seen also as normatively
interesting. The third and most recent wave, including Chew (1984, 1985),
Nakamura (1984), Yaari (1987), Dekel (1986), and others mentioned in this
chapter represents refinements and extensions of the second wave.

The preceding list makes no pretense of being exhaustive, and I shall
mention a few omissions as we proceed. One of these, which is axiomatized
by Gilboa (1986), is a tradeoff model between expected utility and the utility
of a worst consequence. It was designed to account for Allais-type violations
of independence in a very simple way.

The only theories in the list that are overtly Bernoullian in their use of a
riskless ‘‘cardinal>’ value function v on outcomes are those in category A
(Allais and Hagen) although it is possible to interpret Kreweras (1961) and
perhaps the theories in IIB and IIC in this way. Other theories that involve
the use of a riskless intensity-measured v on monetary outcomes, including
Bell (1982) and Loomes and Sugden (1982), will be discussed in Chapter 8
since they follow Savage’s (1954) states formulation. The theories in
categories I, III, and IV (and IIB-C if so interpreted) adhere to the von
Neumann-Morgenstern approach in which outcomes’ utilities follow from
simple preference comparisons between risky prospects that do not involve
riskless comparable preference differences.

All theories in categories I through IV have three things in common.
First, they subscribe to the reduction principle of Section 2.2. To the extent
that this creates problems for normative interpretation because of interdepen-
dent events, one might suppose that prospects are stochastically independent
and refer to Chapter 8 for other cases.

Second, the theories assume that > on a set P of probability measures is
asymmetric. Third, each theory in categories I, III, and IV satisfies one or
more monotonicity or dominance principles involving convex combinations
of measures, such as independence or (p > g, T >s)= O+ 1 =Nr>

A+ (1 =Nor(p>gA>p=0p+ 0 =-Ng>pr+( - w9
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or(p >q,p >r)=(p > N + (1 — Nr). Moreover, the monetary
theories in category I assume a version of first-degree stochastic dominance.

The theories in LA and II through IV, like those of Bernoulli and von
Neumann and Morgenstern, assume that preferences are ‘‘precise’’ (if not
always transitive) in the sense of excluding fuzzy indifference zones that are
better handled by partial orders or stochastic utility.

In view of the discussion in Chapter 2 and the foregoing properties, I
feel that each of the theories in the list is normatively interesting. Since some
of them have been proposed only in a descriptive spirit, I apologize to authors
who might feel misrepresented by this judgment.

At the same time, not all theories on the list have equal claims to
normative adequacy. My own position is that the category I theories are not
normatively suitable because of their linearity implications, and that those in
II are normatively questionable to the extent that they are insensitive to
differential local attitudes towards gains and losses. The normative adequacy
of the theories in IIC can be challenged because of effects involved with
transformed probabilities that are mentioned later. Moreover, unless they are
restricted, the theories in II often violate monotonicity conditions such as ( p

>PgA>w=2A+ {1 = Ng > up + (1 — p)g. People who still regard
transitivity as an essential part of rationality and normative theory must find
IVA and IVB normatively inadmissible; others, myself included, who
_believe that a general normative theory must accommodate some intransitivi-
ties, regard the weak order theories in II and IIIA-B as too narrow.

Only subcategory IIC uses direct transformations of probabilities, but
.does so in a different way than the descriptive theories mentioned in Section
2.4. Recall that Handa (1977) uses £ 7( p(x))x and Karmarkar (1978) uses
2 7(p)u(x)/T 7(p(x)) with a power form for 7(\). The presentation of
_prospect theory in Kahneman and Tversky (1979) views outcomes as
crements to present wealth and considers prospects with at most two
onzero outcomes. Let (x, N; y, u) denote a prospect with probability A for x,
foryand 1 — N — p > O for 0. Their form for # on prospects varies in
ifferent regions. If either N + p < l,orx 2 0 > y,orx < 0 < y, then

ulx, \; ¥, w) = 1(Nu(x) + 7(p)u(y),

/here u(0) = 7(0) = 0, 7(1) = 1, and both # and 7 are increasing. On the
ther hand, if A + p = 1 and either x > y > 0 (sure minimum gain of y) or
< y < 0 (sure minimum loss of y) then

u(x, ¥, 1 = N = u(y) + 7(Mlulx) — u()].

hneman and Tversky (1979) axiomatize the first form in their appendix but
not axiomatize the second form.

The problem with theories that transform probabilities unconditionally is
t, under modest structural assumptions for P, they either force 7 to be the
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identity function or violate simple forms of first-degree stochastic dominance.
Fishburn (1978b) shows that Handa’s assumptions lead to 7(\) = A, so his
model reduces to maximization of expected return. Quiggin (1982) shows the
same thing for models like Karmarkar’s, which therefore reduce to the von
Neumann-Morgenstern form. Kahneman and Tversky (1979, pp. 283-84)
note that their representation yields violations of first-degree stochastic
dominance if 7 is not the identity. However, they also assume that dominated
alternatives are eliminated prior to the evaluation of prospects in a
preliminary editing phase. But this can lead to further difficulties as
discussed, for example, by Kahneman and Tversky (1979, p. 284) and
Machina (1983a, pp. 96-98), which detract from its normative interest.
Readers interested in the proponents’ recent thoughts on the descriptive
accuracy of prospect theory should consult Tversky and Kahneman (1986).

The theories in subcategory IIC avoid the preceding problems by
transformations of probabilities that depend on the entire structure of each
risky prospect. They are designed to honor first-degree stochastic dominance,
but in the process introduce second-order problems for normative theory. We
say more about this in Section 3.5.

The theories in our list are described in modest detail in the next eight
sections. Section 3.2 discusses category I. Sections 3.3 through 3.9 consider
IIA through IVB in sequence. Section 3.10 explains how violations of
independence are accommodated by the theories of IT through IV, and 3.11
shows how IVB accommodates some violations of transitivity.

3.2 RELAXATIONS THAT PRESERVE LINEARITY

We assume throughout the rest of this chapter that the reduction
principle of Section 2.2 holds and that > is a binary relation on a convex set
P of probability measures or distributions with ~ and 2> defined from > as
in Section 1.4.

The category I theories are mainly of historical interest from this book’s
perspective since they do not accommodate common violations of indepen-
dence (A2). Since they will not be used later, their descriptions will be brief.

The generalization of the von Neumann-Morgenstern linear utility
theory that may be most faithful to their conception arises when the
Archimedean axiom A3 is dropped, but the others are retained in their
entirety. This was mentioned by von Neumann and Morgenstern (1953
edition, p. 631) and worked out in detail by Hausner (1954) with axioms Al,
A2 and its indifference companion L5 (p ~ g = \p + (1 — Nyr ~ N\g +
(1 — Nr). With A3 absent, the linear utility representation of Theorem 1.3
holds for vector-valued utilities U( p) ordered lexicographically.

Lexicographic orders (>,) are widely discussed and used (Fishburn,
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1974). For points in R”,

(xh'- -3xn) >L(.yl’ ~"9yn)if(xla .- '9xn) #* (}’1:- --,yn)
and x; > y; for min{i : x; # y;}.

More generally, suppose (T, <) is a linearly ordered set (<, is a weak order
with ~ the identity relation) and F is the set of all f: 7 — R that are nonzero
on at most a well-ordered subset of (T, <,), with addition and scalar
multiplication defined pointwise: (\f + pg)(t) = \f(¢) + ug(?). Then with
> defined on F by

S>rgiff # gand f(t) > g(¢) for the first 7 in (T, <,)
at which f(¢) # g(r),

(F, >1) is a linearly ordered vector (linear) space. Hausner proves that Al,
A2, and L5 hold for (P, >) if and only if there is such an (F, >;)and a
linear mapping U: P — F such that for all p, ¢ € P,

p > qe Up) >, U,

with UO\p + (1 — N)g) = NU(p) + (I — NU(q). Additional discussions
of this lexicographic representation appear in Chipman (1960) and Fishburn
(1971a, 1974, 1982a).
The first axiomatization for Archimedean partially ordered or acyclic
~ preferences in IB is due to Aumann (1962) with later versions in Fishburn
(1971b, 1972, 1982a). One set of sufficient conditions for the one-way linear
utility representation p > ¢ = u(p) > u(q) is L3 from Section 1.4 (p”>q
andr > s = Ap 4+ (1 — Nr > Ng + (1 — \)s) and the following
- Archimedean condition mentioned near the end of Section 1.5:(p > q,r >
=AM+ 1 -Ns >N + (1 = Nrforsome0 < A\ < 1. The original
. Archimedean axiom, A3, is not sufficient along with L3 for the one-way
representation (Fishburn, 1982a, p. 58).
' The main axiomatization for non-Archimedean partially ordered prefer-
ence in IC, due to Kannai (1963), was inspired by Aumann’s contribution. As
Kannai shows, this case is rather delicate mathematically. Under suitably
strong conditions he obtains the one-way lexicographic linear utility
representation p > g = U(p) >, U(g).
Fishburn (1971b, 1979) sought to reduce the linearity idea of von
Neumann and Morgenstern to its lowest common denominator by assuming
only asymmetry and L3. He notes that if the set X of outcomes is finite, say
|X| = m > 1, then the one-way linear lexicographic representation holds in
some dimension # < m. Thus, if P contains each one-point distribution and
i(x) is defined as u;( p) when p(x) = 1, then for some n < m there are u: X
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— Rfori =1,..., nsuch that

p>qg= <E u(xX)px), - - -, Y, un(X)p(X)>

>, <E u(x)g(x), . - -, u,.(X)q(x)> :

When Hausner’s axioms hold in this context, this one-way lexicographic
expected utility representation become a two-way () representation.
Uniqueness properties for the u; in the latter case are specified in Fishburn
(1982a, p. 40).

3.3 ALLAIS’S NONLINEAR INTENSITY THEORY

We shall summarize Allais’s nonlinear preference theory for risky
prospects on monetary outcomes before considering the other theories in
category II. As already noted in Section 2.3, the basic carriers of value for
Allais are levels of wealth, suitably interpreted, combined with potential
changes in wealth. When w, denotes present wealth and x is a potential
increment to wealth, the psychological value of the final position w, + x,
conditioned on wy, is a function of x/w;, that is essentially the same for all
people. Moreover, this function, which is assessed in a riskless comparison-
of-preference-differences manner, is approximated very well by log(1 + x/
W()).

Apart from an addition noted shortly, the core of Allais’s position as set
forth in his early writings (1953, 1979a) and refined in (1979b), consists of
the reduction principle, his viewpoint on psychological value, and the
following:

1. Al: > on P is a weak order.

2. Weak first-degree stochastic dominance: if p >, gorp = g, thenp
2 4q.

3. An Archimedean axiom sufficient to ensure the existence of V: P —
R such that, forallp, g € P,p > q ¢ V(p) > V(q).

Axioms 1 and 3 are combined in Allais’s axiom for the ‘‘existence of an
ordered field of choice’’ (1979b, p. 457), and he does not specify a separate
Archimedean axiom. The existence of a countable order dense subset
(Fishburn, 1970a, p. 27; Krantz et al., 1971, p. 40) would suffice for axiom
3. Axiom 2 is regarded as an acceptable weakening of the von Neumann-
Morgenstern independence axiom A2. As already mentioned, Allais strongly
rejects A2, believes that ¥ cannot be decomposed into an expectational form,
and does not promote an alternative algebraic decomposition for V.
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Hagen (1972, 1979) elaborates on Allais’s theme with some additional
axioms and a focus on the first three moments (in terms of psychological
value) of risky prospects as determinants of V. One of his new axioms was
subsequently adopted by Allais (1979b, pp. 481, 549). This axiom says that if
p’ is obtained from p by replacing each x by x’ such that v(x") — v(x) = A
then V(p’) — V(p) = A. In Hagen’s words (1979, p. 272), ‘‘a uniform
addition to all utilities in the probability distribution of a game adds the same
amount to the utility of the game.’” When this restriction is placed on V, it can
be written as

V(p) = 3 v(x)p(x) + f(p¥),

where fis a functional and p* denotes the probability distribution induced by
p on the differences v(x) — 2 v(x)p(x) of psychological values from their
mean (Allais, 1979b, pp. 481-82, 607-9). A further refinement on this form
is‘described in Allais (1986).

3.4 SMOOTH PREFERENCES

Machina (1982a) considers the set of cumulative distribution functions
defined on a bounded interval [0, M] whose elements are interpreted as levels
of wealth. Thus, in his case it is appropriate to view P as the set of countably
additive probability measures on the Borel field of subsets of [0, M]. The
distribution function for p € Pis p!, where p!(x) = [¥ dp(y) = p([0, x]).
 Three of Machina’s assumptions are essentially the same as axioms 1-3
for Allais in the preceding section, with axiom 2 replaced by regular first-
_degree stochastic dominance; that is, (p'(x) < g'(x) for all x € [0, M] and
1 # gy = p > g. Machina does not, however, overtly adopt the Bernoulli-
Allais viewpoint on psychological value, and his formulation is phrased as a
_honlinear alternative to the von Neumann—-Morgenstern theory. Although we
rite Machina’s representation as

p>qe Vip)> V(g

ith V:P — R, his V should not be confused with V of the preceding section.
~ The distinctive feature of Machina’s approach is his assumption that ¥ is
mooth’’ over P. In crude terms, this means that ¥ changes continuously as
changes continuously and that V(p) is nearly a linear functional in a
eighborhood around p. More precisely, it is assumed that V' is Fréchet
ferentiable on P with respect to the norm |[M(p — @)|| = [N[¥ |p'(x) —
x)| dx, which defines p and g as ‘‘close together’” if the integral of the
olute difference of their cumulative distributions is small.

An alternative characterization of Fréchet differentiability is obtained by
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writing
Vo) - V(@) = |, ulx @) (dp(x) - dg() + olp = al),

where u(- ; q) is absolutely continuous on [0, M] for each ¢ € P and o
denotes a function that equals 0 at O and that approaches O at a faster rate than
the decrease in its argument as the argument goes to 0. The function u(- ; q)
is Machina’s local utility function, that is, local with respect to g. He
assumes (1982a, p. 296) that u(x; q) strictly increases in x, from which it
follows that > satisfies first-degree stochastic dominance.

If the higher-order terms summarized by o in the preceding characteriza-
tion are ignored, then it reduces to essentially the von Neumann-Morgenstern
expected utility form. Thus, when p and g are “‘close together,”” > behaves
very much like the von Neumann-Morgenstern > . Machina (1982a, b,
1983b, 1984) uses this to good advantage to show that many economically
interesting results obtained by expected utility analysis also follow from his
‘‘generalized expected utility analysis.”’

In a similar vein, if f(p*) — f(g*) in the preceding section is o(|jp —
ql), then the Allais-Hagen ¥V will emulate Bernoullian expected utility
locally.

Recently, others have commented on Machina’s use of Fréchet
differentiability and have proposed alternative versions of ‘‘smooth’
preferences over P. Allen (1987) adapts Debreu’s (1972) notion of smooth
preferences to the risky prospects setting, and Chew, Karni and Safra (1985)
argue that Gateaux differentiability, which is weaker than Fréchet differentia-
bility, is still strong enough to give Machina’s (1982a) main results.

3.5 DECUMULATIVE REPRESENTATIONS

I refer to the final nonlinear Archimedean weak-order theories for
monetary outcomes in our list (IIC) as ‘‘decumulative’” since their
representations transform decumulative probabilities defined by

Ip(x) = p((x, ®)) = 1 — pl(x).

The representations can also be stated in terms of transformations of
cumulative probabilities, but the decumulative form seems more natural.
First-degree stochastic dominance with decumulative probabilities is charac-
terized by

p > qiflp # 'qgand 'p(x) = 'g(x) for all x.
This is equivalent to the closed-interval characterization

p >1qif'p # 'gand p([x, ) = q([x, o)) for all x,
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so that p >, g if, for any x, p yields at least x with probability greater than or
equal to g yielding at least x, with strict inequality for some Xx.

For convenience we assume that X = [0, M] with P as defined in the
preceding section. As in the two preceding sections, the decumulative
representations for (P, >) postulate or derive a functional ¥ on P such that,
for all p, g € P,

P> q e V(p) > V().

‘What distinguishes decumulative representations is the form of V. When p is
a simple measure with support {x; < x, < * - + < x,} and p; = p(x;), T p;
=1,

V(p) 2 u(x;) [T <E p,) - r( E p,)] + u(x,)7(Pr)
i=]

j=1 i=j+1

I

1l

uCa) + Y, [ulx) — u(x )l <E p,-)

j=2 i=j
~where u, the utility function on the outcomes, is continuous and usually
assumed to be strictly increasing on [0, M], and 7, the probability
_ transformation function, is a continuous nondecreasing function from [0, 1]
“onto [0, 1] with 7(0) = Oand 7(1) = 1. When r(A) = Aforall A, V(p) = =
_u(x)p(x), the von Neumann-Morgenstern form for expected utility. Note
also that V(p) = u(x) when p(x) = 1.
~ Although the form of V(p) for simple measures is written in the
,dééumulative closed-interval form, with iD= p([x;, M]), representations
for arbitrary measures in P are usually written in the open form of !p as

M M
Vip) = SO u(x) dlr ° 'p)(x) = SOT(‘p(x)) du(x),

where the integrals here correspond to the two lines for the simple case in the
eceding paragraph. The properties of v and 7 in the preceding paragraph
apply also to the general case. Given these properties, including strictly
increasing u, we easily see that > satisfies weak first-degree stochastic
ominance as expressed by axiom 2 in Section 3.3. If, in addition, 7 is strictly
creasing, then > satisfies first-degree stochastic dominance: p >, g = p
q. For example, if 'p(x) > 'q(x) for all x, then 7(!p(x)) > 7(*q(x)) for all
and, since du > 0, V(p) — V(g) > 0.

~ Thus, even though transformed probabilities are used directly in
cumulative representations, their structure is designed to satisfy first-
gree stochastic dominance. Hence the decumulative representations share
basic ordering, Archimedean, and stochastic dominance properties with the
presentations of Allais and Machina.
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The first axiomatization for the decumulative model is due to Quiggin
(1982) although problems have been noted with his axioms (Yaari, 1987, p.
113). His representation has the special feature 'r(%) = %, which implies that
preferences adhere to the von Neumann-Morgenstern model for simple 50-50
gambles. This restriction was subsequently removed in the axiomatizations of
Chew (1984) and Segal (1984). In the general case, the axioms include weak-
order, first-degree stochastic dominance, and Archimedean axioms sufficient
to ensure the existence of certainty equivalents in X for each p € P and
extension from simple to nonsimple measures. The key axiom for the specific
form of the decumulative representation can be expressed in several ways.
The following version is similar to Chew’s third axiom.

Suppose # is any positive integer, x; < * * * < X, Y1 < 0 < Yp, X
L yiforalli, x; < y;forsomei,o; > 0fori=1,...,nand 2 oy = 1.
Define simple distributions p and g by p(x;) = q(y) = oyfori=1,...,n
(so ¢ > p, hence ¢ > p). Let x* denote the distribution with probability 1
for x, and let c(r) be the certainty equivalent of measure r so that c(r) ~ r.
Then, forall 0 < A < 1,

Ae(p)* + (1 = Ne(@)* ~ D) aicQhxf + (1 = NyF)*

This is an independence axiom for indifference applied to distributions
defined on monetary equivalents of other distributions rather than on those
distributions themselves. Its necessity for the decumulative representation is
demonstrated as follows. Suppose the representation holds. Then, given the
special structures defined earlier,

V(he(p)* + (1 = Nc(g)?)
u(c(p)) + [ulc(q) — ulc(pNlr(l = N)

V(p) + [V(g) — V(p)lr(l = N)

3 ut) [r (2 oz,) - T< > oz;)] + uCe) (@)

J=1 izj izj+1

+ {HE [u(yy) — u(x)] [T <2 O‘i) - T< > ai>:|
J=1 izj izj+1

+ U - u(x,,)]r(an)} 71 = N)

il

Il
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n—1

S {uy) + 1) — uGIT - N} [ (E a,.>

j=1 izj

- 1< v a,~>] (UG + () — w7 = N}r(a)

izj+1

il

S vowE + (- Ny [T (2 ai> - T< > a,->:|

j=1 i2j izj+1

+ VOF + (1 = Ny¥)r(an)

= V(E O(,C()\x;k + (1 - )\)y,*)*> .

, The utility function ¥ on X in the general decumulative representation is
unique up to positive linear transformations, and 7 is unique when 7(0) = 0
and 7(1) = 1.
Yaari (1987), independently of Quiggin (1982), axiomatized the
decumulative representation for the special case of u{x) = x, so that

M
V(p) = | 7Cp(x) ax.

Part of Yaari’s aim was to show that even if the underlying utility or value
function on money is linear in the amount, one can characterize nonneutral
risk attitudes by special properties of 7 in the decumulative representation.
His theory is technically interesting because it turns the von Neumann-
Morgenstern theory on its side, yielding a representation that is ‘‘linear in
money”’ rather than ‘linear in the probabilities.’” This feature allows him to
use the linear utility theorem to obtain a very short proof of his own theorem.
' An analysis of risk aversion in the general decumulative context is
provided by Chew et al. (1987), and Karni and Safra (1987) use the
decumulative model in an attempt to reconcile transitivity and the preference
reversal phenomenon. Yaari (1986) explores the notion of risk aversion in an
extension of his ‘‘dual theory’’ to the multidimensional context.

As suggested in Section 3.1, decumulative theories may have descriptive
nd normative problems of their own even if they avoid violations of first-
egree stochastic dominance. Yaari (1987) observes that violations of linear
tility that rely on linearity in the probabilities have dual violations in his
eory that rely on linearity in money. One example is suggested by the
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common ratio effect of Section 2.5. Let p@ denote the risky prospect
obtained from p by multiplying each of p’s outcomes by o > 0. Then Yaari’s
theory requires p©® ~ g for all « > 0 (within limits) when p ~ ¢, and this
is unattractive descriptively and normatively.

Apart from intransitivities, reasonable violations of the general decumu-
lative theory are less apparent. One natural thing to examine is the axiom that
delineates the decumulative form. In the foregoing, this is the axiom with
conclusion Ae(p)* + (1 — Ne(@)* ~ T aie(hx? + (1 — Ny¥)*. For the
special case of n = 2, this axiom says that if x; < X, Y1 < Y2, X1 S V1, X2 S
¥y, X; < y; for some i, 0 < a < 1,and 0 < N\ < 1, then

AMe(axk + (1 — a)xP)I* + (1 = Ml + A - )y HI*
~afex* + (1 = NyPHIF + A — gle(dxy + (1 — Ny
Even more specially, and omitting * for convenience, we require
e + 3] + 5leGy + 392)]
~ HeGx + 301 + 3lezx + 7).
There are two problems even with this very simple case. First, it is almost
surely inaccurate descriptively and is likely to be violated in some situations
by careful people. Second, since it posits a second-order indifference effect,
it has little direct appeal to rational intuition. A plausible example of its
failure in the gains and losses setting with (X1, X2, Y1, Y2) = (—$1000, $0,
$2000, $2002) is
c(3(— $1,000) + 3($0)) = —$300 }
¢(3($2,000) + 1($2,002)) = $2,001
& c(3(— $300) + 3($2,001)) = $600,

c(3(— $1,000) + 5($2,000)) = $200}
c(3($0) + 5($2,002)) = $900
& c(3($200) + 5($900)) = $450.

Since [0, M1 is often presumed to represent a rescaling of monetary outcomes
that include gains and losses, the theory accommodates the setting of this
example.

A somewhat different violation of the general decumulative model is
suggested by Chew (1984). As a consequence of his method of assessing 7 he
shows that either 7(\) = \ for all A, in which case the representation reduces
to that of von Neumann and Morgenstern, or there must be an indifference
between probability distributions defined by similar mixtures of certainty
equivalents such that the underlying distribution for one of the mixtures first-
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degree stochastically dominates the underlying distribution for the other
mixture. This does not occur in the preceding example, since the underlying
distributions are identical—that is, probability % for each of —$1,000, $0,
$2,000, and $2,002.

3.6 WEIGHTED UTILITY THEORY

This section and the next three begin our examination of nonlinear
Archimedean theories with arbitrary outcomes. Each theory has been
axiomatized with assumptions for > on P as in the von Neumann-
Morgenstern approach. The axioms will be introduced in this chapter after
the functional representations are specified. Theories that assume weak order
are presented in this section and the next; theories that accommodate
intransitivities are discussed in Sections 3.8 and 3.9. Proofs and further
discussion for the nontransitive theories are in Chapter 4, and those for the
transitive theories are in Chapter 5.

It is worth reemphasizing that the theories in categories III and IV,
unlike those in II, apply to arbitrary outcomes so that they lay claim to a
_degree of generality and applicability not shared by the monetary-oriented
theories. In fact, as was done by von Neumann-Morgenstern and others
(Section 1.3) for linear utility, outcomes need never enter our discussion
when P is assumed to be a ‘‘mixture set.”” However, we forego this modest
technical generalization and maintain the assumption that P is a convex set of
probability measures defined on an algebra of subsets of X.

The following definitions for subsets of P will be used here and in
_ensuing chapters:

Px={q€ P:p > q > rforsomep, r € P},
Pu = {p EP:p2 qforallg € P},
Pu, ={p €EP:q2 pforallg € P}.

* is the preference interior of P, and P, and P, are the preference-
maximal and preference-minimal subsets of P, respectively. We define (P,
>), orjust >, as closed if Py, and Py, are nonempty, open if Py = Prin
= ¥, and half-open otherwise. When > is closed, some authors refer to it as
ounded, especially when »> is assumed to be a weak order. Finally, we say
that > is countably bounded if there is a countable subset Q of P such that,
orallp € P,

p € P = thereare g, q’ € Qsuchthatg > p > ¢q’.

f > is closed, it is clearly countably bounded; otherwise, it need not be.
“ountable boundedness is comparable to and has much the same effect as
nfinal and coinitial sequences in Chew and MacCrimmon (1979).




62 NONLINEAR PREFERENCE AND UTILITY THEORY

The first nonlinear Archimedean weak-order theory for arbitrary
outcomes that we consider is Chew’s weighted utility theory. This was
introduced in Chew and MacCrimmon (1979) and refined by Chew (1982,
1983), Fishburn (1981a, 1983a), and Nakamura (1984, 1985). Its functional
representation can be specified in two basic ways. Exercising author’s
prerogative, I shall begin with my own characterization.

We say that (P, >) has a weighted linear representation if there are
linear functionals # and w on P with w nonnegative, and w strictly positive if
> is closed or open, such that, for all p, g € P,

p > q e u(pyw(q) > u(q)w(p).

If > is half-open, w might be strictly positive, but some half-open situations
force w to vanish on the one of P, and P, that is not empty. In all cases, w
must be positive throughout P*, else with w(g) = Oand p > g > r we get
u(@)w(r) > 0 > u(qg)w(p), hence u(q) > 0 > u(qg).

The w functional is called the weighting function. If it is constant, then
the weighted linear representation reduces to the von Neumann-Morgenstern
form with utility functional u. Otherwise, if w cannot be made constant, the
weighted linear representation is not equivalent to any linear representation
and, by Theorem 1.3, the independence axiom A2 must fail since Al and A3
are easily seen to hold.

Suppose w is positive everywhere. Then, for all p, g € P,

p > q e u(p)/wip) > u(g)/ wq),

so > is represented by a quotient of linear functionals with positive
denominator. This form is attractive because it arranges the same argument
on the same side of the inequality and gives the sense of u( p) being weighted
by 1/w(p). A related representation by quotients of probability measures for
another type of utility theory is axiomatized by Bolker (1966, 1967) and
Jeffrey (1978). Fishburn (1983a, pp. 301-2) provides a summary; see also
Section 5.3.

Continuing with w > 0, define v as u/w. Then the weighted linear
representation can be expressed by

p > g ¢ v(p) > v(g),

_ Mw(pu(p) + (I — Mw(g)v(q)
e O RSN N

without mention of . This is Chew’s form: v is the main utility functional, w
and vw (=u) are linear, and the expression for vO\p + (1 — N)g) is the
weighted linearity property. If w is constant, it cancels and we are left with
von Neumann-Morgenstern linearity. When > is closed or open, Chew’s
form can be used as an alternative definition of the weighted linear
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representation. Chew (1983) also argues that his form can be used in the
general case, but this necessitates the possibility of letting v(p) = + o or
v(p) = —oo and is somewhat awkward. I refer interested readers to his
paper for details.

As the original axiomatization for the weighted linear representation of
Chew and MacCrimmon (1979) was refined by Chew and others, several
equivalent systems of axioms emerged. I note three of these here. For
convenience, we first recall some axioms from Chapter 1 and introduce a few
new ones.

Ordering Axioms
Al. > on P is a weak order.
Al(~). ~onPis transz'tive;
Archimedean Axioms
A {p>qq>r}=ap+ (0 ~-a)r>qandq > fp
+ (1 — B)r for some o and B in (0, 1). 7
Cl{p>gqg>r}=g~ap+ (1 - )r
Jor some 0 < o < 1.
’ Convexity Axioms (0 < A < 1)
C2.{p>agp2r}=p>r+1A-Nr
pP~gp~rf=p~x+1-Nr

{a>p,rzpt=2+U-Nr>p.
C2)ip>gp2zry=p>X+1-Nr

{a>przpl=x+1-Nr>p.
ymmetry Axiom (0 < A < 1)
C3.{p>q,q>r,p> r,q~%p+%r}

=\ + (1 - Nr~1p+ g

e N+ (L= Np~ 55 + 1q].

eak Independence Axioms

D2.p~ g = forevery0 < a < 1 thereis a
0 < B < 1 such that, for every r € P, op + (1 — a)r
~Bg+ 1A - Pr.
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E2.p ~ g = thereis a0 < 8 < 1 such that,
foreveryr € P, %p + %r ~Bg + (1 — B)r.

Axiom Al(~) retains only the transitive indifference part of Al, and
C2( >) retains only the strict preference parts of convexity axiom C2. As
noted in Theorem 1.4, {A1(~), C1, C2} = Al.

The symmetry axiom C3 is a way of extending the notion that g is
midway in preference between p and r to other comparisons of convex
combinations of p, g and r. Call g a >-midpoint betweenp andrifp > r, p
> g > rand g ~ 3p +5r. Note that this is based solely on > and does not
entail any notion of (riskless) intensity comparisons (Section 1.2). The
general principle behind C3 is that if g is a >-midpoint between p and r then
every ~ comparison between two measures in the convex hull of {p, ¢, r}
will remain an ~ comparison when p and r are interchanged throughout.

The form of C3 written above is a simple example of this interchange
principle: If g is a >-midpoint between p and r, then A\p + (1 — Nrisa >-
midpoint between p and q if and only if (interchanging p and r throughout) Ar
+ (1 — Np is a >-midpoint between g and r. This is illustrated in Figure
3.1, where the arrows denote directions of decreasing preferences.

The weak independence axiom D2 was introduced in Chew and
MacCrimmon (1979), and its specialization to o = % is used by Nakamura
(1984, 1985). The intuition behind Nakamura’s E2 is that, given p ~ g, the
asymmetry reflected by the difference between the coefficients % and 3 in the
indifference statement %p + %r ~ Bg + (1 — B)r when r is not indifferent to
p or g will be invariant to changes in r. The Herstein-Milnor independence
axiom B2 of Section 1.5 is precisely E2 when § = % Chew’s D2 has a
similar interpretation to E2 when « values other than 1/2 are used for ap +
1 - ar.

The three systems of axioms alluded to earlier that are necessary and
sufficient for the weighted linear representation and are therefore mutually
equivalent are

Chew: Al, A3, C2(>), D2
Fishburn: Al(~), C1, C2, C3
Nakamura: C1, C2, E2.

Chew’s axioms are most like the von Neumann-Morgenstern axioms since
they use Al and A3, replacing A2 by the jointly weaker C2( >) and D2.
Fishburn uses the symmetry axiom C3 in conjunction with C1 and full
convexity C2, then requires transitive indifference A1(~) since C1, C2, and
C3 jointly do not imply A1(~). Nakamura also uses C1 and C2, but replaces
Al(~) and C3 by E2 to obtain an axiomatization devoid of explicit
transitivity assumptions. This is similar to the set {C1, C2, B2} of Theorem
1.4, which is necessary and sufficient for linear utility. When B2 is weakened
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FIGURE 3.1 [Illustration of C3

q 3q+ip

Sardr Xp+ (1-))r

Ar+(1-\)p

to E2, we see that {C1, C2, E2} is necessary and sufficient for weighted
linear utility. (Proofs are in Chapter 5.)
One can challenge axioms like C3, D2, and E2 in much the same way
that independence was challenged in Section 2.5. Consider the following
three pairs of monetary prospects:

a;. $0 (status quo) with certainty,
b;. 50% chance to win $2,000, 50% chance to lose $1,000;

a3. 50% chance to win $2,000, nothing otherwise,
by. 80% chance to win $2,000, 20% chance to lose $1,000;

a3. 50% chance to lose $1,000, nothing otherwise,
b3. 70% chance to lose $1,000, 30% chance to win $2,000.

_ Suppose a person has a; ~ b; for each i, which does not seem unreasonable.
Then, under usual monotonicity assumptions such as first-degree stochastic
dominance, C3 and E2 are violated. For C3 let p, g, and r have probability 1
for $2,000, $0, and — $1,000, respectively. Then the hypotheses of C3 hold,
but A = 0.8 for \p + a-nNr~ %p + %qand)\ =0.7for\r + (1 -~ N)p
~ 37 + 3q. For E2let p($0) = 1 and g($2,000) = g(—$1,000) = 1. Then
B = 0.4 for the conclusion of E2 when r($2,000) = 1, and 8 = 0.6 when
—$1,000) = 1.

_ Generalizations of weighted linear utility are discussed by Nakamura
984) and Chew (1985). Nakamura axiomatizes weighted linear utility for
the multilinear context (Fishburn, 1982a, Chapter 7) in which > is defined
on the Cartesian product P; X P, X - - - X P, of convex sets of probability
easures and linearity is to apply to each P; when p; = g;forall j + i. This
is~iéspecia11y relevant to the n-person game situation in which P; denotes the
set of mixed strategies for player i. Chew (1985) axiomatizes a semiweighted
form that uses two weighting functions on X, say w~ and w*. In the
semiweighted expression for v(p) with p simple, w~ applies if x is less
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preferred than p, and w* applies otherwise:
Ze<pPIW ()V(X) + iy, p(X)W* (X)(x)
ZepP(XIWT(X) + Ty pp ()W (X)

This reduces to Chew’s original weighted form if w= = w™.

v(p) =

3.7 TRANSITIVE CONVEXITY

This section and the next two consider weakenings of weighted utility
theory. In terms of the set {Al(~), C1, C2, C3} for the weighted linear
representation, the present section drops symmetry (C3), the next section
drops Al(~) as well, then Section 3.9 restores C3 but not A1(~).

We say that (P, >) has a transitive convex representation if there is an
order-preserving functional # on P such that, for all p, ¢ € P,

p > q = u(Ap + (1 — N\)q) is continuous and increasing in A.
This entails
p ~q=u(\p + (1 — N)g) is constant in \,
for if, say, A\p + (1 — Ng > g ~ p, then
N+ (0 =Ng>N2))p+(1A—-N2)g?>p~aq,
but the second > gives
NDp+ (A —=N2)g>Np+(1Q~-Ng >p

for a contradiction of asymmetry.

This is the weakest weak-order representation that we shall consider in
ensuing chapters. It is not, however, weaker than some theories discussed
earlier. In particular, the monetary theories in category II do not generally
assume monotonicity conditions such as L1 and 14 of Section 1.4, and these
conditions are implied by the transitive convex representation.

The following observations are from Fishburn (1983a, b). If > is
closed, or bounded (Ppay # &, Puin # &), then (P, >) has a transitive convex
representation if and only if axioms Al(~), C1, and C2 hold. If > is not
closed, we also require > to be countably bounded (Section 3.6) since this is
necessary for the representation but is not implied by A1(~), C1, and C2.

Chew (1985) and Dekel (1986) obtain the transitive convex representa-
tion from other axioms under the assumption that > is closed. Chew uses Al,
the Herstein-Milnor continuity axiom B3 of Section 1.5 (in its open-set
form), and the following weakening of D2:

D2W. p ~ g = forevery0 < a < landeveryr € Pthereisa0 <
B8 < 1such thatap + (1 — ayr ~ Bg + (1 — B)r.
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Dekel assumes that X is a compact metric space and uses Al, C1, and the
monotonicity axioms L1 and L4. He characterizes transitive convex utilities
u( p) implicitly as the unique solutions of

[ vox u(p)) dp) = u(p),

where y increases in the induced preference order over its first argument and
is continuous in its second argument. In this simplified form, Dekel notes that
Y(Xmin, ) = 0 and Y(Xpax, ) = 1, where Xpax 2 P 2 Xmin for all p. The
expected utility form is the special case of his representation in which ¥(x,
u(p)) = ux).

Dekel first obtains the preceding representation when P is the set of
simple probability measures on X. He then extends it to all countably additive
measures on the Borel field of X by strengthening C1 to B3.

#

3.8 NONTRANSITIVE CONVEXITY

When transitivity is dropped, it is no longer possible to represent
preferences in the familiar p > g ¢ u(p) > u(qg) form. There is, however, a
simple way to represent > numerically in the presence of intransitivities and
preference cycles, namely to adopt a two-argument functional ¢ on P X P
with p > g & &(p, g0 > 0. With no other restrictions on ¢ this
representation is uninteresting since it holds universally with ¢(p, g) = 1
when p > g and ¢(p, q) = 0 otherwise. On the other hand, it can be very
demanding when restrictions are imposed on ¢. For example, if we require ¢
to be decomposable as ¢(p, q) = u(p) — u(g) with u linear, then it
presents von Neumann-Morgenstern preferences.

We consider two nontransitive versions of the ¢ representation. A
nontransitive convex form is outlined here; the SSB form is discussed in the
next section.

We say that (P, >) has a nontransitive convex representation if there
; a functional ¢ on P X P such that, forall p, g,r € Pandall0 < A < 1,

p>qge o(p,g) >0,
o(p,q) >0 ¢(q,p) <0,
d(Ap + (1 — N)g, r) = Np(p, r) + (1 = N)o(q, ).

The second expression is an asymmetry property for ¢. By the definition of
-, D~ q & ¢(p, q) = #(q, p) = 0. The final expression says that ¢ is
ar in its first argument.

This representation can also be thought of as a conditional linear
epresentation. Let v, be defined by

v(p) = o(p, ).
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Then the nontransitive convex representation says that each v, is a linear
functional on P with p > g & ve(p) > 0 @ v,(q) < 0.

When > is open, so that P* = P, (P, >) has a nontransitive convex
representation if and only if C1 and C2 hold. Moreover, each v, or (- , q)is
unique up to similarity transformations; that is, given {v,} that satisfy the
representation, {v,} also satisfy the representation if and only if for each ¢
there is positive a, such that

v;(p) = au.(p) forall p € P.

Similarity transformations are also referred to as multiplicative transforma-
tions or proportionality transformations.

Comments on the nontransitive convex representation for cases in which
P is closed or half-open will be deferred to Section 4.3.

3.9 SSB UTILITY THEORY

The functional ¢ on P X P is skew-symmetric if

¢(q, p) = —¢(p, q)

for all p, ¢ € P. If this property is added to those for the nontransitive
convex representation of the preceding section, then ¢ is linear also in its
second argument:

o(r, \p + (1 = N)g) = N(r, p) + (1 = No(r, 9).

When ¢ is linear separately in each argument, it is said to be bilinear, and it
is called an SSB functional if it is skew-symmetric and bilinear.

We say that (P, >) has an SSB representation if there is an SSB
functional ¢ on P X P such that, for all p, g, €P,

p>qe o(p g >0

Thus, (P, >) has an SSB representation precisely when it has a nontransitive
convex representation in which ¢ is skew-symmetric.

It is known (Fishburn, 1982c) that (P, >) has an SSB representation if
and only if C1, C2, and the symmetry axiom C3 hold. This will be proved in
the next chapter along with the uniqueness property for the SSB utility
function ¢, which says that ¢ is unique up to similarity transformations.

The SSB representation was previously discussed by Kreweras (1961),
who proved two important theorems for SSB utilities concerning the existence
of maximally preferred prospects and the existence of Nash equilibria in
noncooperative n-person games whose players have SSB instead of von
Neumann-Morgenstern utilities. We consider these in Chapter 6.
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Suppose ¢(p, q) = ¢(g, r) > 0. Then by skew-symmetry,
19(p, @) + 39(r, @) = 0,

and by linearity in the first argument,
¢(z0 + 3 q) = 0,

which by the SSB representation says that 3p + 57 ~ g. One might therefore
think of ¢( p, g) and ¢(q, r) as representing equal increments of preference
for p over q and for g over r. However, as in the case of von Neumann-
Morgenstern utilities, this must be qualified by the fact that the equality is
obtained within the probabilistic setting, and it does not mean that the
preference intensity for p over g equals that for g over r in the sense of
Bernoulli or Allais. Moreover, when ¢(p, g) and ¢(g, r) are both positive in
the SSB representation, this does not imply ¢(p, ) > 0 since it is quite
possible to have ¢(r, p) > 0 for the preference cycle p > g > r > p. Thus,
in the language used to describe C3 in Section 3.6, ¢(p, @) = ¢(q, r) > 0
and therefore ¢ ~ %p + %r characterize ¢ as a >-midpoint between p and r
onlyif p > r.

On the other hand, one can use the SSB representation with a riskless
intensity interpretation for ¢(x, y), as done by Bell (1982) and Loomes and
Sugden (1982) in the states setting of Chapter 7. Suppose in the present
context that preference intensities or strength-of-preference differences for
outcome pairs are measured by a functional ¢ on X X X with

(x, ) >* (2, w) & o(x,») > ¢(z, w)

and with ¢ skew-symmetric on X X X, which is perfectly natural in the
intensity mode. Even though >* is a weak order on X X X, there is nothing
inherent in this approach that requires > to be transitive on X, so there can be
_ basic preference cycles (Fishburn, 1986a). Given ¢ on X X X, we extend it
bilinearly to pairs of simple measures in P X P, defining ¢(p, q) by

oD, @) = 3, Y p()q(»)$(x, »).

Then, in the manner of Bernoulli, we can postulate that p is more desirable
than g precisely when ¢(p, g) > 0. In fact, this is precisely the approach
taken by Bernoulli when ¢ happens to have the separable form ¢(x, ¥) = v(x)
v(y), since then ¢(p, q) = = p(x)v(x) — 2 g(x)v(x) by the bilinear
_extension.

The extension process can be reversed when ¢( p, g) is obtained for the
SB representation through axioms C1, C2, and C3. Given the SSB
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functional ¢ on P X P, define ¢ on X X X by

¢(x,») = ¢(p,q)  whenp(x) = q(y) = 1.
Then, by Theorem 1.2 we have

¢ <Z p(xX)x*, q) = Y, p(x)(x*, q)

Y, p(x)é (x*, > q(y)y*>

S p(x) D) a(n)b(x*, y*)

il

(v, q)

Il

1l

3> p(x)a(Nd(x, ¥)

for simple measures p and g¢. In other words, for SSB utilities and simple
measures, ¢( p, q) is the expected value of ¢(x, y) with respect to the product
measure p X ¢. The extension of this expectation to the integral form

&(p, q) = gg o (x, y) dp(x) dg(»)

will be considered at the end of the next chapter.

3.10 ACCOMMODATION OF INDEPENDENCE VIOLATIONS

Figure 3.2 illustrates differences among linear utility and the theories in
categories II through IV with indifference lines through the convex hull

H({p, q,1}) = {Np + Mg+ NriN20, YN = 1}

of measures p, g, and r represented barycentrically. Each point in H
corresponds to a point in an equilateral triangle with vertices p, g, and r.
When the perpendicular distance from each side to its opposite vertex is 1,
NP + Ng + Asr is the point with perpendicular distances Ay, Nz, and A
from sides gr, pr, and pq, respectively. Selected points are described in the
top triangle.

A common orientation for the lower six diagrams is provided by
assuming in each case thatp > q¢,q > r,and g ~ -23-p + %r. All points on a
line within a triangle are mutually indifferent. The arrows show directions of
decreasing preference. The lower right triangle has r > p for the preference
cyclep > g > r > p. The other five have p > r for cases in which > isa
weak order on H.

The key differences between the indifference maps in A for our theories
are as follows. The indifference lines for von Neumann-Morgenstern linear
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FIGURE 3.2 Indifference lines

d q
r p r p
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d q
r P r
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q q
To+la
r —» P r P
DECUMULATIVE NONTRANSITIVE CONVEX
AND SSB

tility ‘are parallel straight lines. Those for weighted linear utility (IIIA,
iiSection 3.6) and, equivalently, SSB when p > r, are also straight lines; when
w is not constant, these lines intersect at a common point outside the triangle.
or the right-hand diagram in the second row of the figure, the common point
es above g and slightly to the left of the vertical through g. Transitive
convex utility (IIIB, Section 3.7) also has straight indifference lines that do
not touch or intersect within the triangle, but since it does not presume the



72 NONLINEAR PREFERENCE AND UTILITY THEORY

symmetry axiom there is no other restriction on the slopes of its indifference
lines.

Theories in category I allow curvilinear indifference lines. The theories
of Allais and Machina (IIA-B, Sections 3.3 and 3.4) are shown with wavy
indifference lines in the middle right diagram. Since decumulative theories
(IIC, Section 3.5) use a separable algebraic form for V(p), there must be
more regularity in their indifference lines as suggested in the lower left
diagram of Figure 3.2.

The cyclic preference case for SSB utilities is shown in the lower right of
tihe ﬁgu}re. Givenp »> q >' r ‘> p withq ~ %p + %r, suppose also that r ~
5D + 3q. Then the third indifference line from a vertex, namely p, to the
opposite side must pass through the intersection point of the other two
indifference lines through vertices. For the particular case of the figure,

g~ ip+ 3re20(p,q) = (g 1),
r~ip+ 1q e ¢(r,p) = ¢(g, ).

Therefore 2¢(p, q) = é(r, p); hence p ~ —i—q + %r. The common
intersection point N¥p + N¥g + A¥r has

Nf = ¢(g, r)/d, N =o(r,p)/d, A\ = &(p,q)/d,

with d = ¢(p, q) + o(g, r) + &(r, p). This point is indifferent to all other
points in H({p, ¢, r}) by the indifference part of C2, so it is both a maximal
preference point and a minimal preference point in A that is contained in
every indifference line through H. When preferences cycle on {p, g, r}, the
nontransitive convex representation of Section 3.8 is equivalent to the SSB
representation on H because C3 is implied by C1 and C2 for this case;
otherwise, when p > r, the transitive and nontransitive representations are
equivalent on H.

All nonlinear theories illustrated in Figure 3.2 accommodate violations
of standard independence axioms such as A2 and B2 (Section 1.5). Since
these theories were partly designed to accommodate Allais-type violations of
independence associated with the certainty, common ratio, and common
consequences effects of Section 2.5, their authors usually mention this, but
only briefly in most cases. The most eloquent spokesman of independence
violations is Machina (1982a, pp. 302-306; 1983a, b, 1985). Machina
observes that the most common independence violations are described by
indifference lines that fan out from a ‘‘central vertex line’’ such as the one
from g to %r + %p on Figure 3.2. When the indifference lines for {p > g >
r,p > r} are straight, we get the picture for weighted linear utility shown in
the figure. The predominance of this form of weighted utility is corroborated
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by experiments reported in Chew and Waller (1986). When the lines are
curved, as allowed by category II theories, a similar picture obtains with
bowed lines that tend to spread out as we come down toward the rp boundary.
Machina (1985, p. 579) also cites experimental evidence that suggests that the
straight-line indifference hypothesis is often violated.

For a simple example, suppose weighted linear utility theory applies
with

x = $5000 px) =1 u(x) =1 w(x) = 4
y = $3000 q(y) =1 u(y) = 3/5 w(y) =3
z =30 riz) =1 u(z) =0 w(iz) =2

Then y ~ Zx* + 1z*, since
u2w(x) + w(z)] = 6

In addition,

Ru(x) + u@Iw(y).

1 1 16 3 16
X+ YT~ Xt + oz, = 0.842. .,
] 1 6 13 6
V¥ 3~ 2, = 0316, .,

so that this case approximates the weighted linear picture in Figure 3.2. If

utilities were linear with y ~ 2x* + 1z*, then the leading coefficients on the

right sides of the preceding indifferences would be % instead 0f 0.842 . . . and
% instead of 0.316 . . . . With the weighted linear model,

b b > 4G+ e + b

FGX* + 32%) + 32% > 1y* + 1z¥

for a violation of B2.

To illustrate independence accommodation in the general SSB context of

the preceding section with nonnegative monetary outcomes, suppose X = [0,
o) and

o0, y) =x-»nfy) forx=2y=0

with f positive, continuous and decreasing. Thus the ‘‘preference differen-
ial” for x over y is a weighted difference of the outcomes, the weight f( y)
depending only on the smaller outcome. Suppose lim f(x) < f(0)/2, and let
¢ the unique outcome with f(y) = f(0)/2. Consider gambles

‘ DP(N) 1 y with probability A, 0 otherwise,

g.(N\) : 2y with probability e\, 0 otherwise,
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with 0 < o« < 1. Under bilinear extension and skew-symmetry,
d(P(N), (V) = aN¢(y, 2y) + M1 — aN)¢(y, 0)
+ (1 = Nare(0,2y) + (1 — NI — aN)9(0, 0)
= (aN — 4a + 2)Ayf(0)/2.

If A = 1, then p(1) > g.(1) for each « < 2/3, so y as a sure thing is
preferred to a gamble with probability « for 2y so long as o < % Moreover,
with « fixed and 5 < a < 3,

p(N) > g (M) forA > 4 — 2/a,
p(N) ~ g (\)  for\ =4 — 2/a,
go(N) > p(N) forN < 4 — 2/a.

This is an example of the common ratio effect since the ratio of the positive
payoff probabilities, N/(aN\) = 1/a, does not change as \ varies over (0, 1].

3.11 INTRANSITIVITY ACCOMMODATION

Since the SSB theory makes no demands on ¢ on X X X other than

skew-symmetry, it accommodates cyclic preferences over outcomes in a
straightforward manner. For example, May’s (1954) preference cyclex > y
> z > x of Section 2.7 is reflected by ¢(x, ) > 0, ¢(y, 2) > 0, and ¢(z, X)
> 0. But, as noted in the preceding section, there will still be a distribution
p* in the convex hull H({x*, y*, z*}) of the one-point measures for x, y, and
z such that p* > p for every p € H.

It is also entirely possible for > to be a weak order on X while > on P
has intransitivities. In other words, with '

o(p, @) = Y, Y, p(x)a(¥)¢(x, ¥)

for simple measures p and g, skew-symmetry for ¢ on X' x X induces skew-
symmetry for ¢ on P X P, but negative transitivity for > on X X X—that
is, o(x, ¥) > 0 = (¢(x, z) > 0 or ¢(z, y) > 0)—does not induce negative
transitivity for > on P x P. Fishburn (1984a) shows how the preference
cycles of Section 2.7 that use monetary outcomes and percentage raises in
salary can be accounted for by the SSB representation even when é(x, »)
depends only on the difference between x and y. Consider, for example, the
short cycle [6, 0.90] > [8, 0.72] > [10, 0.61] > [6, 0.90] for the salary
situation, where [x, A] is the gamble that gives you an x% raise with
probability N, and no raise otherwise. Suppose o(x, ¥) = vlx —y), x 2,
with (v(2), v(4), v(6), v(8), v(10)) = (1.2, 3, 6, 8, 9.8); see Figure 3.3. Then
#([6,0.90], [8, 0.72]) = 0.1584, ¢([8, 0.72], [10, 0.61]) = 0.04552, ¢([10,
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FIGURE 3.3

12 ~

10

0.61], [6, 0.90)] = 0.1388, so ¢ is positive for each successive pair in the
cycle.

Weak order for > on monetary X without entailing transitivity of > on
P also accounts for the preference reversal phenomenon of Section 2.8 as
shown by Bell (1982), Loomes and Sugden (1983), and Fishburn (1984a,
1985b). In the monetary context we assume that x > y = ¢(x, y) > 0, so >
Q'n X is the natural linear order. It is also natural to assume that ¢ is
nondecreasing in its first argument so that

xX>y=0¢(x2) 2¢(,z) foralx,y z € X.

This additional condition allows weak reversals but prohibits strong
reversals. To consider the strong reversal prohibition, recall that the typical
rm of preference reversal is p > g and c(p) < c(g) with p the probability
lottery; g the money lottery, and m = max{x:p(x) > 0}, p(m) > T {g(x):x
m} > 0. The reversal is strong if ¢(g) > m. Given a strong reversal, the
SB representation and the assumption that ¢ is nondecreasing in its first
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argument on X X X imply
0< > > o, »px)g(y) byp >q
x ¥y

<Y Y o(m, y)p(x)g(y) by ¢(m, y) = ¢(x, »)

x oy

= o(m, ¥)q(y)
< Y #(c(g), »)g(y)  byclg) = m

=0 byc(g) ~q.

Hence 0 < 0, which is absurd.
To simplify our examination of weak reversals, suppose p and g are
two-outcome prospects with

p(m) = Q, p(o) =1~ «,
qgM) =8, q0) =1-4,

Suppose p > g and c(p) < c(q). Then, by decreasing M or § or both
continuously, we can reach a point where g thus modified satisfies p > g and
c(p) = c(q). We refer to this as the boundary case for preference reversal
and will proceed with this case because of its analytical tractability. Thus,
suppose p > ¢ and c¢(p) = c(g) = x. Then, by the SSB representation,

¢(p, q) = aBd(m, M) + a(l — B)¢(m, 0)
+ (1 = @)Be(0, M) > 0,

¢(p, x) = ap(m, x) + (1 — a)¢(0, x) = 0,

¢(q, x) = B¢(M, x) + (1 — B)¢(0, x) = 0.

When the inequality for ¢( p, g) is divided by o and substitutions are made
therein from the equations for p ~ x and ¢ ~ x, the inequality ¢(p, g) > 0
can be rewritten as

) oM, x)¢(m, 0) > &(M, 0)d(m, x) + ¢(M, m)¢(x, 0).

When this inequality holds, we can reverse the process to recover p and g by
way of (1 — &)/ = ¢(m, x)/p(x, 0) and (1 — B)/B = ¢(M, x)/$(x, 0). In
other words, each instance of the boundary case p > gand c(p) = c(q) = x
is precisely captured by an inequality like (*). Consequently, weak reversals
will arise for the simple two-outcome prospects p and g if and only if (*)
holds for values of x, m, and M that satisfy 0 < x < m < M.

We illustrate (*) with ¢ functions similar to those discussed in the

O<m< M, a>p8>0.
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preceding section. Suppose first that

¢, b) = [g(@ — gB)f(b) fora>b>0

with g strictly increasing and f positive, continuous, and decreasing. When
this form is used in (*), that inequality reduces to 1 > f(m)/f(x), which is
true since f is assumed to be decreasing. Hence our first form for ¢(a, b)
guarantees weak reversals in abundance.

Suppose next that ¢(a, b) is a simple power function of the difference
between @ and b:

¢@ b)=(@—-b) foraz2bz=0

with v > 0. Then (*) always holds when v > 1, but it cannot hold when y <
1.

Also note that (*) can never hold when > on P is a weak order, which is
as it should be since weak order on P prohibits the preference reversal
phenomenon. As will be shown in Chapter 5, if ¢ is an SSB functional on P
X Pwithp > g © ¢(p, g) > 0, and if > on P is a weak order, then there
are linear functionals ¥ and w > 0 on P such that

¢(p, @) = u(p)w(q) — u(qg)w(p),

thus giving the weighted linear representation of Section 3.6. When ¢(a, b)
= u(@yw(b) — u(b)w(a), substitution in (*) and cancellation leaves 0 > 0.

3.12 SUMMARY

; Generalizations of the expected utility theories of Bernoulli and von
Neumann-Morgenstern are conveniently partitioned into four main catego-
ries:

I. Theories that preserve linearity

II. Nonlinear Archimedean weak-order theories designed for monetary
outcomes

II. Nonlinear Archimedean weak-order theories designed for arbitrary
outcomes

V. Nonlinear nontransitive Archimedean theories

he theories in category I do not accommodate common violations of
ndependence and are included mainly for historical continuity. They are not
iscussed later. The theories in categories II-IV were all designed to account
or independence violations. Those in category I will receive scant attention
ater, due in part to their concentration on particular types of outcomes and in
art to their broad generality and attendant lack of clear axiomatization. This
hould not be interpreted negatively since these theories, especially as set
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forth by Allais and Machina, hold significant promise for the monetary
context. However, the emphases of ensuing chapters lie elsewhere, and 1
encourage readers to consult the primary sources for category II.

All category III and IV theories were developed for arbitrary outcomes
and share the axioms of continuity and convexity, C1 and C2, introduced in
Section 1.5. The four main theories of III and IV are distinguished by
whether they presume Al(~) or C3:

Al(~)? C3? Theory

No No Nontransitive convex
No Yes SSB

Yes No Transitive convex
Yes Yes Weighted linear

The two cases that do not assume Al(~), which are the only theories
described in this chapter that avoid transitivity and hence accommodate
preference reversals, are examined in detail in the next chapter; the other two
are analyzed in Chapter 5.




4 Nontransitive Nonlinear Utility Theory

The preference axioms for the SSB utility representation are easily
stated, but it is no easy matter to show that they imply the representation. The
principal aim of this chapter is to develop a series of lemmas from the SSB

_axioms and to construct the representation on the basis of the lemmas. The
nontransitive convex representation will be considered along the way, and the
final section shows what is needed to extend the SSB expectational form to

- pairs of nonsimple measures.

4.1 THE SSB THEOREM

The main purpose of this chapter is to prove the fundamental SSB
_ representation and uniqueness theorem. For convenience we recall the SSB
_ properties,

skew-symmetry: ¢(q, p) = —o(p, q)
bilinearity: ¢ is linear in each argument

and restate the SSB axioms: for all p, g, r € Pand all 0 < A < 1,
Cl. Continuity: p > g >r=q ~ap + (1 — a)rforsome0 < a <
L3
C2. Convexity: {p > g, p 2 r}=p >N + (1 = Nr,
{p~ap~rt=p~N+(1-Nr
{a>przpt=x+0~-Nr>p;
C3. Symmetry:
{p>q>rp>rqg~z3p+5r}
=+ (0= Nr~3p+3q
&N+ (1 = Np ~ 35+ 3q.

ce Sections 1.5 and 3.6 for discussion of C1-C3.
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stated, but it is no easy matter to show that they imply the representation. The
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axioms and to construct the representation on the basis of the lemmas. The
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final section shows what is needed to extend the SSB expectational form to
pairs of nonsimple measures.

4.1 THE SSB THEOREM

The main purpose of this chapter is to prove the fundamental SSB
representation and uniqueness theorem. For convenience we recall the SSB
properties,

skew-symmetry: ¢(q, p) = —o(p, q)

bilinearity: ¢ is linear in each argument

and restate the SSB axioms: forall p, g, r € Pand all 0 < A\ < 1,

Cl1. Continuity: p > g >r=qg ~ap + (1 — &yrforsome0 < a <
L;

C2. Convexity: {p > g, p 2r}=p > N + (1 ~ Nr,
{p~agp~rt=p~N+(1-Nr
{g>p,r2p}=Nx+0~-Nr>p;

C3. Symmetry:

{p>q>rp>rqg~3p+5r}
=[\p+ 0 -Nr~3p+3q
@ N+ (1 = N)p ~ 37 + 3q].

. See Sections 1.5 and 3.6 for discussion of C1-C3.
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THEOREM 4.1. Suppose P is a nonempty convex set of probability
measures defined on a Boolean algebra of subsets of X, and > is a
binary relation on P. Then axioms C1, C2, and C3 hold if and only if
there is an SSB functional ¢ on P X P such that, forallp,q € P,p > q
& ¢(p, q) > 0. Moreover, such a ¢ is unique up to multiplication by a
positive constant.

The uniqueness conclusion says that ¢ is unique up to similarity
transformations or proportionality transformations, or, to use Stevens’s
(1946) term, that ¢ is measured on a ratio scale. That is, if ¢ is one SSB
functional on P X P for which > ={(p, q):#(p, g) > 0}, then ¢’ is
another such functional if and only if there is a ¢ > 0 such that ¢'(p, g) =
cop(p, q) forall p, g € P.

The necessity of the SSB axioms for the representation of Theorem 4.1 is
easily verified. For C3, suppose the representation holds withp > g > r, p
> r,andg ~ %p + 3ras in the hypotheses of C3. If \p + (1 — Nr ~ %p
+ %q also, then

0=00p + (I = Nr, 50 + 39)

= 3INé(p, @) + A — Né(r, p) + A = No(r, )]
[-0 = Neop, @) + ¢(p,q) — (1 — Né(p, 1)
= No(r, @) + o(r, 9)]/2
—5\(r, @) + (1 — No(p, 1) + (I — Ne(p, 9)]
-6 r + (1 = Np, 37 + 30),

soN+ (1 — Np ~ %r + %q. Necessity proofs of C1 and C2 are included
in Section 4.3.

Henceforth in this chapter we focus on the sufficiency proof for the SSB
representation and on the uniqueness of ¢ in that representation. The next
three sections deal solely with implications of C1 and C2, including
comments on the nontransitive convex representation in Section 4.3.
Implications that follow from the addition of the symmetry axiom C3 are
noted in Sections 4.5 and 4.6, and the sufficiency proof is completed in
Section 4.7. The final section considers the extension of the SSB expecta-
tional form from simple measures to all measures in P.

I

i

4.2 PRELIMINARY LEMMAS

Axioms C1 and C2 are assumed to hold throughout this section
along with the initial hypotheses of Theorem 4.1. As in Section 3.6, P*,
P.x, and P, denote the preference interior of P, the preference-maximal
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subset of P, and the preference-minimal subset of P, respectively. Thus P*
= {p:q > p > rforsome q, r}, Pny = {p:q > p forno q},and Py, =
{p:p > g for no q}. In addition, let

A*¥ = (1 — N/ forall 0 < A\ < 1.

The following three lemmas lead to a characterization of preferences
between a fixed r € P* and all p € P by a linear functional v, on P. This
characterization is central to our construction of the SSB functional in later
sections. After proving Lemmas 4.1 through 4.3 we consider the nontransi-
tive convex representation in the next section. The sufficiency proof of
Theorem 4.1 then resumes in Section 4.4.

Lemmad.1. If p > r > s,q > r > t, and

op + (1 — a)s ~ r,

Bg + (1 - B)t ~r,
Ao+ (1 = Nt ~r,
MCI+(1—M)S~T',

then a*fB* = N*p*,

LemMAa4.2. If O < N < 1,either{p > r > s,q > rYor{s >r > p,r
> g}, and

ap + (1 - a)s ~ r,
Bg + (1 - B)s ~r,
pdp + (1 = Ng) + (1 — p)s ~ 7,

lien p* = Na* + (1 — NB*. If the same hypotheses hold except that q
r, then pu* = ha*.

Remark. Theorem 1.4(a), (b) says that «, 8, \ and p in Lemmas 4.1 and
.2 are unique numbers strictly between 0 and 1. We use this fact henceforth
ithout special mention.

LemMma 4.3. Supposer € P*. Then there is a linear functional v, on P
uch that, for allp € P,

p>reuvp >0,
r>peuvu(p) <o,
such a v, is unique up to similarity transformations.

Proof of Lemma 4.1. Given the hypotheses of the lemma, the ~ part of
yields
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< 1 - A > : < 1 — « >
paen A A G L R ey

A+ (1 =N~

>w +a—mn+<—iﬂiﬁ
r—r—) 2-6-»

“(pg + (1 = p)s) ~ 1,

>(ap+(1—a)s)+< i >
o+ u

c(pg + (A = p)s) ~r,

g
) Bg+ A - ) + <m>
SO+ (1= N8 ~ 1

=5
(=
(7

Rearrangements give
ap + (1 — a)(%s + 3t) ~ r,
bg + (1 — b)(3s + 51) ~ r,
c(zp +39) + 1 = o)s ~r,
dGp + 1q) + (1 = )t ~ r,

wherea = [a(1 = N) + N1 — ))/2 —a — N, b =[B(1 — p) + u(l -
B2 — B — ), ¢ =2ap/(a + p),andd = 26N(B + N).
The first two of the preceding ~ r expressions combine under C2 to give

2ab 1 1> 2ab 1 1
—p+=-q)+ |1- —s+=t)~
a+ b\2 2 a+b 2 2

when the first is multiplied by b/(a + b) and the second by a/(a + b).
Similarly, when the third and forth ~ r expressions (in ¢ and ) are multiplied
by(d — d)/Q2 - ¢ — d)yand (1 — ¢)/(2 — ¢ — d), respectively, and then

added, we get
cl —d)+d(1 - o) <l l)
2—-c~—-d 2 2

0] (b k) -
2—-—c—-d 2 2
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Since 5p + 3 > r > 35 + 3¢ by C2, it follows from the two preceding ~r
expressions and uniqueness from Theorem 1.4(b) that

2ab _c(l-—d)+d(1—c)
a+b 2—-c-d )

The conclusion of Lemma 4.1 follows from this equation by algebraic
reduction and rearrangement. Let x’ = 1 — x, replace a through d in the
equation by their definitions in « through u and clear fractions to get

(N + Na")(Bp” + pB)(e + p)BN + NB')
+ (B + NN + Na')]
= [(aN" + M) B + p') + (Bp" + pB')a" + N)]
X [ap(BN + NB') + BNap” + pa’)l.
Multiplication and cancellations yield
ahpPa’ B+ a?ufNp B + a?B2AN)p + a2\ (p)?
+ NP’ (B)? + NuXHa')?8” + aB’Np’ + NuBa’u’B’
= a2uf(N)u + ahuBa’ N’ + ahpBa’N'B’ + Nub(a’)B’
+ ahpla’(B) + alpBa’p’B’ + ahpBNp’B’ + aNB2N'(p')?,
which rearranges to
' 0= @BN'p' — hpa'B')apB’ + aBN + afu’
+ ABa' — apN — Apa’ — AuB’ — ABur')
= 2(afBNp’ — Apa'B9)2
Therefore af\'p’ = Auar’B’; that is, N¥p* = o*8%. B
Proof of Lemma 4.2. Suppose firstthat 0 < A < 1, {p > r > 5,9 >

r},withap + (1 — a)s ~ r ~ Bg + (1 —PB)sandup + (1 — Ng) + (1
= ws ~ r.ByC2,

| i) -
e+ al =N | P )s)

N [ a(l —N)
N + a(l — N)
garranging the left side, we have

[
m] (P + (1 = Ng)

af
!l - _
+[ m+a(l~x)]s "

] (Bg + (A = B)s) ~r.
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Since \p + (1 — N)g > r > sby C2, we conclude that u = f/[N8 + a(1
— N\)], which is tantamount to u* = Aa* + (I — NB*. The same
conclusion clearly holds if we begin with {s > r > p, r > g}. Finally, if ¢
~r,then B = 1,50 * = Qand pu* = Na*. |

Proof of Lemma 4.3. Take r € P*. Fixpandsin Pwithp > r > s
and ap + (1 — a)s ~ r. The representation of the lemma requires v(p) > 0
> v(s)and 0 = v(ap + (1 — a)s) = av(p) + (I — )u(s), where for
convenience we omit r from v,. Assign any positive number to v(p) and
define v(s) by linearity: v(s) = —[a/(1 — a)]v(p). The same thing is done
for any ¢ for whichr > r:If 8p + (1 — B)t ~ r,setv(t) = — v(p)/B*. In
addition, for any ¢ # p such that ¢ > r, define v(g) linearly as v(g) =
—u*v(s) = v(p)u*/a* when ug + (1 — p)s ~ r. Finally, set v(r’) = 0
whenever r’ ~ r.

Thus v is defined on P, it satisfies v(g) > 0 & ¢ > r,andv(q) <0 & r
> g, and if it is linear then it is essentially unique, for if the value assigned to
v(p) is changed then all other v values change by the same proportion.

It remains to show that v is linear—that v(yg + (1 — V)8 = yv(g) + (1
— yv() forall ¢, # € Pand all 0 < A < 1. The ensuing four cases cover
the possibilities for g and ¢ in relation to r.

Casel.q ~r ~ t. By C2,yq + (1 — y)t ~ r, so the definition of v
gives v(yg + (1 — v)t) = 0 = y(g) + (I — ().

Case2.{q > r,t > ryor{r > g,r > t}. Assume for definiteness that
g > randt > r. Thenyg + (1 — y)t > rby C2. With r > s for fixed s, let
o, B, and p satisfy ag + (1 — a)s ~ r, Bt + (1 — B)s ~ r, and u(yq + (1
— ) + (1 = w)s ~ r. Then, by the definition of v,

av(g) + (I — a)v(s) =0,
Bu(@) + (1 = Bu(s) = 0,
po(yg + (I = y)t) + (1 — wu(s) = 0,
with u* = ya* + (1 — ¥)B* by Lemma 4.2. Therefore
v(yg + (1 = Y1) = —pHu(s) = —(ya* + (1 = ¥)BHv(s)
yu(g) + (I = ().

Case3.q > r ~ tort ~ r > q. The proof of linearity is similar to the
preceding case. Use the final part of Lemma 4.2.

Case4: g > r > t. Suppose first that y = 8, where 8g + (1 — B)t ~ r.
Then, by the construction of v along with the notation and conclusion of
Lemma 4.1,

av(p) + (I — a)v(s) = 0,
A(p) + (1 = Nv(@) =0,
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po(@) + (1 — plu(s) =0
and a*B* = N*p*. Therefore
Bu(g) + (I — B (?) = Blv(g) + B*v(?)]
= Bl— wrv(s) — v(P)B*/N¥]
= Bu(p)lp*/a* — B*/N*] = 0.
Moreover, v(Bg + (1 — B)f) = 0 by definition. Hence linearity holds when
b= S’Ylippose next for Case 4 that yg + (1 — v)f > r. Let 3 and o satisfy Bq

+ (A -B)t~r~oyg+ (1 —y)) + (1 — o)¢. Then, using the result just
proved, we have

v(Bg + (I = B)t) = 0 = Bu(g) + (1 — Bu(?)

and
violvg + 1 —y)H) + 1 —0)t) =0
=ogv(yg + (1 — v)t) + (1 — o)v(?).

Therefore v(yq + (1 — ¥)f) = —o*v(f) and, since 8 = oy by uniqueness
_ (Theorem 1.4),

yu(g) + (I — y)u(t) = —yB* () + (I — y)v(?)

= —v(t)(y — BYB = —a*v(2).

, Hence v(iyg + (1 — 1) = y(g) + (1 — v (). A similar proof applies if
r>yg + 1A - L. [ |

4.3 NONTRANSITIVE CONVEX UTILITY

Lemma 4.3 puts us in position to consider the nontransitive convex
representation of Section 3.8. We recall that (P, >) has a nontransitive
convex representation if there is a functional ¢ on P X P such that, for all
D.q,re Pandall0O < A < 1,

p>q% é(pgq) >0,
o(p,q) > 0 ¢ ¢(q,p) <O,
d(Ap + (1 = N)g, r) = Né(p, r) + (I = N)o(q, ).

n addition, (P, >)is open if Py U Py = &, closed if Py #+ & #
P, and half-open otherwise.

_ Comments on uniqueness and cases of (P, >) not covered by the
ollowing theorem will be made after it is proved.
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THEOREM 4.2. Suppose the initial hypotheses of Theorem 4.1 hold. If
(P, >) has a nontransitive convex representation then C1 and C2 hold.
Conversely, if C1 and C2 hold, and either (P, >) is open or P is the
convex hull of a finite number of measures, then (P, >) has a
nontransitive convex representation.

Necessity Proof. Assume that ¢ provides a nontransitive convex
representation. If p > g > r, then, since ¢ is linear in its first argument,
olap + (1 — oyr, @) = ad(p, @) + (1 — a)é(r, g). By the representation,
o(p, q) > 0and ¢(r, g) < 0. Hence agp(p, q) + (1 — o)o(r, g) = 0 for
some 0 < o < 1, and this verifies C1 since ¢(s, t) = 0 & s ~ t. For the first
part of C2 supposep > q,p 2 r,and0 < A < 1, s0 ¢(g, p) < 0 and ¢(r,
) < 0. Linearity then gives ¢(Ag + (1 — Nr, p) < 0; hence ¢(p, A\g + (1
— Nr)y > 0,s0p > A\g + (1 — Nr. The other parts of C2 are proved
similarly. B

The preceding proof establishes the necessity of C1 and C2 for the SSB
representation, since the SSB representation obviously implies that (P, >)
has a nontransitive convex representation.

Sufficiency Proof When (P, >) is Open. Assume that C1 and C2 hold
with (P, >) open. Given v, on P for each r € P = P* as in Lemma 4.3,
define ¢ on P X P by ¢(p, q) = vg(p). The nontransitive convex
representation then follows directly from Lemma 4.3. [ |

To prepare for the proof when P is the convex hull of a finite number of
measures, we state a standard theorem for the existence of a solution to a
finite set of linear inequalities (Kuhn, 1956; Goldman, 1956; Fishburn,
1970a, Theorem 4.2; 1985a, Theorem 7.1) that is often referred to as a
theorem of the alternative or a linear separation theorem. In the theorem, X,
N, and n denote positive integers.

TueoreM 4.3. Suppose 1 < K < Nand x; = (X1, . - - , Xin) IS in R"
fori =1,...,N. Then exactly one of (a) and (b) is true:
(@) Thereisaw = (wy, ..., w,) in R" such that

n
M wx; >0 fori=1,...,K,
J=1

Ew,x,,/o Jori=K+1,...,N.

(b) Therearer; 2 O fori = 1,..., Nwithr, > 0 forsomei < K
such that

N
E’"ixij=0 Sforj=1,...,n.
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Thus, if the linear system in (a) has no w solution then its dual system in
(b) vanishes for some nonnegative r; for which r; + -+ + rg > 0.

Sufficiency Proof of Theorem 4.2 When P is Finitely Generated.
Assume that C1 and C2 hold with P = H({py, . . . , Pm}), where H(A) is
the convex hull of A. It suffices to prove that if r € P, U Py, then there is
a linear v, on P for whichv,(p) >0 & p > randv(p) <0 & r > p. We
then use Lemma 4.3 for r € P* and proceed as in the previous sufficiency
proof.

Assume for definiteness that r € P;,, and let

Iry={peP:p~r}, Pry={p€P:p>r}

It follows from C2 that I(r) and P(r) are convex. We wish to define linear v
on Psothatv(p) = Oforallp € I(r)and v(p) > Oforall p € P(r). Todo
this, observe first that /(r) N {py, . . . , Pm} # O, since otherwise p; > r
for all i and, by applications of C2, r > rsincer € H{pi, - - - , pm})- For
definitenesslet py, . . . , prbeinI(r)andletpi,y, . . . , P be in P(r), with
1 € k < m, since if k = m then the desired result follows from C2 and v =
0. Also, by C2, I(r) = H{p1, - - - , Dx})-

Because P = H({pi, . . . , Dm}), it suffices to define von {py, . . .,
P} withv(p;) = Ofori < kandv(p;) > 0fori > k since linear extension
to P then gives the desired result. However, since nothing has been assumed
about linear independence among the p;, some care must be used in defining v
on {py, . . ., Pm} so that the entire v is linear.

To deal with the possibility of linear dependence among the p;, first let
L, be a maximal linearly independent subset of {py, . . . , Dx}. Then each g
€ I(r) is uniquely representable in the form g = ¥, N\;p; with \; € R and X\
= 1. Also let L, be a subset of {pr+1, - - . » Dmy for which L; U L, is a
maximal linearly independent subset of {py, . . . , D}, and let L = {pi.y,

«« »Pm$ N\ L, If L is empty, we obtain the desired result simply by taking v
= 0onL;and v = 1 on L,, and then using linear extension to obtain v on all
of P.

Suppose henceforth that L # . Then each p; € L has a unique

representation of the form

D= 3 Npi + Y, wibi
Ly Ly

with the \; and p; real numbers (some of which can be negative) that sum to
1. Moreover, at least one pu; for p; € L, must be positive, since otherwise
transpositions, normalization, and the use of C2 yield a contradiction of the
form {p > r, p ~ r}. Since we require v(p;) = O for all p; € L,, our
‘method of linear extension requires

v(py) = E v (D) for each p; € L,.

Ly
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It follows that we obtain v > O throughout P(r) if and only if there is a v
solution to the following system of linear inequalities:

v(p;) > 0 for each p; € L,,

E piv(pi) > 0 for each p; € L.

Ly

This system corresponds to {Ew;x; > 0} in (a) of Theorem 4.3 with the
v( p;) playing the role of the w;. If it has a v solution, we are done. Suppose
there is no v solution. Then (b) of Theorem 4.3 applies. With I = {i:p; €
Ly} and J = {j:p; € L}, (b) says that there are s; > 0 foreach i € Iand r;
= 0 for each j € J such that Zs; + 2r; > 0 and

s + 2 riw; =0 foreachi € 1.
J

Consider the system of characterizations of p,,; through p,, that we
began with in the preceding paragraph:

Di = pi foreachi € I,
pj = 2 Njpi + E WijDi for each j € J.
Ly I

Multiply each equation here by its corresponding s; or r;, add the resulting
weighted equations, and use the final set of equations in the preceding
paragraph to conclude that
Nospi+ Y=Y, (E rj)\ij> Dis
I J L J

where all s; and r; are nonnegative, Zs; + Zr; > 0, each p on the left side has
p > r, and each p on the right side has p ~ r. When the negative terms from
the right side (for £;r;\; < 0) are transposed and we normalize and use C2
for convex combinations, we obtain an expression of the form ap + (1 —
a)g = q' where0 < o< 1,p > r,andg ~ r ~ g’. But then C2 applied to
p > rand g ~ ryields ap + (1 — a)g > r, a contradiction to g* ~ r.

It follows that (b) of Theorem 4.3 cannot hold; hence (a) holds. B

I do not presently know whether C1 and C2 are sufficient for the
nontransitive convex representation in cases not covered by Theorem 4.2. In
view of Lemma 4.3, the only problem is whether v, can be defined linearly on
P with the correct signs when 7 is in P,y or Ppy,. As just proved, this can be
done when P is finitely generated, but it might not be possible in other cases.

There is, however, some question about the desirability of having v, or
¢(-, r) linear when r € P,,, U Py, owing to uniqueness considerations.
When r is in the preference interior of P and ¢(-, r) is linear over P, we know
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from Lemma 4.3 that this r-conditional part of ¢ is unique up to similarity
transformations. However, this is not generally true when r is preference-
extreme. For example, if P = H({p,, . . . , p}) and the p; are linearly
independent, then every ¢(-, r) based on linear extension from v,(p;) = 0
for p; ~ rand v.(p;) > 0 for p; > r when r € P, will suffice for the
nontransitive convex representation.

An alternative to linearity of ¢(-, r) whenr € P, U Py, is simply to
require that this piece of ¢ satisfy the sign properties of the representation
without being linear. Then C1 and C2 are sufficient for the nontransitive
convex representation thus modified.

4.4 FURTHER IMPLICATIONS OF C1 AND C2

Axioms C1 and C2 are assumed to hold throughout the rest of this
chapter along with the initial hypotheses of Theorem 4.1.

The present section first proves lemmas involving cyclic triples in P and
transitivity, and then establishes four limit lemmas that will be needed in
Sections 4.6 and 4.7 to complete the sufficiency proof of Theorem 4.1.

Lemma 4.4. If p > q > r > pand
ap + (1 = oa)r~gq,
Bg+ (A -Bp~r,
yr+ A - 7v)g ~ p,
then a*B*y* = 1.

Proof. Given the hypotheses, apply C2 to the first two indifference
statements to get

ap + (1 — a)r ~ (@B/a)g + (1 — BYa)ap + (1 — a)r) ~ q,
Bg + (1 = B)p ~ (a/a)(Bg + (1 — B)p)
+ (1 - )1 = BYa)yr ~r,

here @ = o + 1 — (3. The middle parts of these two ~ chains are
dentical and can be written as

<a(1 - B)> [aﬁ + (1 - - 6)]
t=——)p +

a a

1 o* 3% }
. q + re .
1 + o*B* 1 + o*@*

écording to C2 and the final ~ statements in the preceding ~ chains, p ~
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yr+ (1 — y)g ~ t.Sinceyr + (1 — y)g ~ pandyr + (1 — v)g ~ ¢, C2
and the definition of ¢ imply yr + (I — v)g ~ (g + a*B*r)/(1 + a*B*).
Since g > r, we conclude that ¥y = o*8*/(1 + o*8*), or a*B¥y* = 1.
||
It can also be shown thatif p > g > r > p, then the SSB representation
holds on the convex hull H({p, g, r}) of {p, q, r}. That is, axioms C1 and
C2 imply C3 on H({p, g, r}) in the cyclic case. This is not true, however, if
> is transitive on {p, g, r}.

Lemma4.5.Ifp > q > randp > r, then ~ is transitive on H({p, q,
r}). Moreover, if Q < P and ~ Is transitive on H(Q), then »> is
transitive on H(Q).

Proof. The second part of the lemma follows immediately from
Theorem 1.4(c). For the first part, givenp > g > randp > r,let o satisfy g
~ap+ (1 = ar.Then,byC2,p > \p + (1 = Nr > gfora < A< 1,
andg > \p + (1 — Nr > rfor0 < N\ < «. The use of C1 then generates a
family of ~ lines in H({p, ¢, r}) basedon fip + (1 — fi)g ~ \p + (1 —
Mrfora <A< l,andongyg + (1 —g)r~ M + (1 = Nrfor0 <A <
o (see the “‘weighted linear’” diagram in Figure 3.2). It is easily seen that this
family in conjunction with the line for ¢ ~ ap + (1 — o)r and the corner
points p and r covers H({p, q, r}).

Suppose x, y € H({p, q, r}), x # y, and x ~ y. Then, by C2, the two
points x’ and y’ on the boundary of H determined by the straight line through
x and y must be indifferent. It follows that x” and y’ must be the end points of
one of the ~ lines in the generated family (or ¢ and ap + (1 — a)r).
Therefore x and y are themselves on an ~ line in the family (or the g line).
Since ~ is transitive on each such line, it is transitive throughout H. |

In the following limit lemmas, which do not depend on C3, “‘up | pas A
1 1°” means that p, decreases to u as \ increases to 1. Similarly, “‘u\ T pas A
117" says that u, increases to p as \ increases to 1, and “‘f, Ta(f, { @) as p l
0°" says that f, increases (decreases) to a as p approaches 0 from above. In the
lemmas x, p, q, r, and s are elements in P.

Lemma4.6. Ifp > g > r,p > A\g + (1 — N)s > r forall A near 1 (A
<,pwp+ (A —wr~gqg,andmp + (1 — p)r ~ A\g + (1 — N)s, then

prdpasANtl if s>pup+ (A — pr,
prntpasNT1 if pup+ A — pr > s,
pr = pasANt1l if s~pup+ (1 — wr.

Lemma 4.7. Suppose x ~ gandx > pp + (1 — p)g > rforallp €
0,11, and that f,x + (1 — for ~wp + (1 — wyg forall p € (0,1]. Then
f, remains constant in (0, 1) asp L 0if g ~ r, andf,*laspl0ifqg > r.
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LemMa4.8. Ifx ~q ~ p,x > p,and f,x + (1 = f)(wp + (1 — pq)
~ X + 5p for all u near 0 (u > 0), then f, L 0 as p 1 0.

Lemma 4.9. If x > p,x > g, and f,x + (1 - f)wp + (1 — wg) ~
x + 2qforall/u,nearO(y > 0), then f, 1 —as,ulO

Proof of Lemma 4.6. Given the lemma’s hypotheses, suppose first that
§~mwpp + (1 — pwr.Then, by C2,\g + (1 — N)s ~ up + (1 — p)rforall
A\; bence py, = p for all \ near 1.

Suppose next thats > up + (1 — wr.ByC2,\g + (1 — N)s > up +
(1 —wrfor0 <N<1.Sincep > q,p > \g + (1 — N)s for all A near 1,
so by Theorem 1.4(a), (b) we getpp + (1 — p)up + (1 — wWr} ~ N\g + (1
— Ns, and therefore uy = p + (1 — p)u > p for all X near 1. By C2 and py
>, + (1 — pr > g, soC2requiress > up + (1 — p)rin view of
Ag + (1 = Ns ~ up + (1 —py)r. Consequently, if y < A, thenp > yg +
(1 = vs > mp + (1 — wr(the latter > by C2), and therefore p, > py. It
follows that p, decreases as A 1 1. Finally, for some small positive § we have

s> w+dp+ (A - p—8r > qg,s0u = p + 6for some N, and
therefore puy { was A 1 1.

The proof for uyp + (1 — p)r > sis similar to the proof in the preceding
paragraph. |

Proof of Lemma 4.7. Assume x ~ g, x > up + (1 — w)q > r, and
Cfx+ A =fdr~w + (1 —pgforall0 < u < 1.If g ~ ralso, then g
~ fix + (1 = f)rby C2 for all p so, again by C2, p ~ f.x + (1 — for.
Since p = 1 in the hypotheses gives x > p > r, it follows that f, is constant
in(, 1) forall0 < u < 1.

Suppose now that ¢ > r for the final conclusion of the lemma. By C2, ¢
> Sfx+ A = for.Thenx > pg + (1 = p)lwp + (1 — waql > fix + (1
— Jr. This requires f(; ), > f,, so f, increases as u decreases. Since g >
Sx + (1 = f)r > pfor fnear 1, it follows that f = f, for some p in (0, 1).
Therefore f, T 1 as u { 0. |
, ProofofLemma4 8. Assumex ~q~p,x 7> padfx+ (1 -
LYwp + A — pg) ~ —x + pforpnearO Take 0 < 0 < p, define S by o
Bp, and note that

ff#x + (= f)op + (1 = 0)g) =B[fx+(1 = f)wp + (1 — w)q)]
+ (1 = Blfx + A - f)ql.

ByC2,g ~ 3x + zpandx > 3x + 3p,s0fx + (1 — f)g > 2% + 1p.
Therefore C2 implies

fix + (0 —f)op + (1 —0)g) > 3x +3p > op + (1 — 0)g.
t p satisfy
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plfuix + (1 = f)op + (I — 0)q)]
+ (1 — p)lop + (1 — 0)q] ~ 3x + 3P,

so f» = pf,. Therefore f, decreases as p decreases. Since fx+ A -fHg >
—x + —p > pforsma11f> 0 there is a 7 in (0, 1) such that 7(fx + (1 —
f)q) +{d-7p ~ -x + —p Hence with = (1 — 7/(1 — 7f),

(tHx + (1 — 7f)ep + (1 — @)q) ~ 5% + 3P

That is, f, = 7f. It follows that f, { O as p { 0. B

ProofofLemma 4.9. Assume x > p, x> g, and f,x + (1 — f)(up
+ (1 - wq) ~ -—x + qforunearO Take 0 < 0 < p, Let 0 = (u, and
obtain the first dlsplayed equatlon in the preceding proof. Since (’s
coefficient on its right side is ~—x + 2q by present hypotheses and the
multiplier f,x + (1 — f,,)q ofl - ,81s >, ~,or < (dual of >) —x + 2q
according to whether f, > 3, f, = 3, or fﬂ < 3, respectively, it follows
readily from C1 and C2 that

fu> 12 = f, < [, for0 < o < u,
fu=12=f,=1/72 for0 < o < p,
fu<172= f,>f, for0 < o < p.

For example, if f,, > %, thenf,x + (1 — f)(op + (1 — 0)q) > %x + %q >
op + (1 — 0)g, so by Theorem 1.4, f, < f,.

Suppose f, = % Thenf, > (1 — f)(1 — p). Let7, =[1 - 2 - w)(1
= foyi =20 = f)(0 — wl. Then

fox + (1= f)wp + (1 — wa) =20 = £)A = Wx + 19)
+ [ =21 = f)A = Wlrx + (1 = 7)p),

so C2 requrres x + 2q ~7x + (1 - 7,)p. Since x > —x + 2q, C2 also
requires » q > p and therefore ax + (1 — a)p ~ —x + 2q for a
unique « in (O 1) Since x > p, it follows that 7, = « whenever fo 2 ;

Iff, 23 L for a sequence of p values that approach 0, then « is forced to
1, which contradicts its uniqueness in (0, 1). We conclude that fu <3 for all
p near O; as already noted, f, mcreases as p decreases

Finally, suppose 0 <f< . Then + X + 2c;( >fx + (1 =f)g.Ify>0
satisfies fx + (1 — f)(yp + (1 - 'y)q) > 1 53X + 2q, we geta éin (0, 1) for
which

Sifx + (1 — Nlyp + (1 = V1 + (1 = Hlfx + (1 - gl
=fx+ 1 - Ployp + A = dy)q] ~ 53X + 39

so that, by C2, 2x + 2q >+ —~f)(7p + (1 — 7g)for0 < 7 < dy.
A similar conclusion follows from C2 if 5 X + 2q 2+ 0 =-Nep+ QA
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— ¥)q). That is, given f < 1/2,

X+ 3q > fx+ (1= Npp + (0 - p)g)
for all small u > 0. For such u we get p in (0, 1) for which px + (1 — p)[fx
+ (0 =Nwp + A - wg)l ~ 3x + 3¢, or

o+ =oflx+ 1 =p1=Nwp+ 1~ wQg ~3x + 34

By the preceding paragraph o+ (1 - p) f <1 5. Clearly, p + (1 — p)f > f.
_ Hence there are f<= arbltrarlly close to > that are f, values for small ., and
therefore f, T 5 as p i 0. B

4.5 IMPLICATIONS OF SYMMETRY

Axiom C3 is assumed to hold throughout the rest of this chapter
along with C1 and C2. Our purpose in this section is to derive a key result,
~ Lemma 4.12, that is needed in the next section where we begin our
_ construction of the SSB functional ¢. We approach Lemma 4.12 through two
intermediaries.

LemMa4.10. Ifp > g > r,p > r,and g ~ %p + %r, thenap + (1 —
r ~Bp+ (1A -PB)gear+(d-o)p~pr+0- 0B

Lemma 4.11. If p > g > r,p > r, and
Bp + (A - B)g ~ ap + (1 - ayr,
g~ ap+ (1 - ar,
g+ A -yr~ap+ 1A - ar,
then (o1 — a)as(l — B)(1 — ) = (1 — a)(a — o3)By.

Lemma 4.12. If ~ and > are transitiveon H{ p, q,r,s,t}), ifp > q
r>s >t andif

ap + (1 - a)r ~ g,
Bg + (1 - B)s~r,
yr+ (1 — v}t ~ s,

op + (1 = 68)s ~q,
0g + (1 — 6)t ~ s,

en a*Bry* = §*0*,
Proof of Lemma 4.10. Givenp > g > r,p > r,andq ~ 3p + 5ras
e hypotheses of C3, and given ap + (1 — o)r ~ Bp + (1 — B)g, we are
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FIGURE 4.1
q
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1

to prove that ar + (1 — a)p ~ Br + (1 — B)g. Thisis true by C3if 8 = 3.
Other values of 3 are now considered.

Suppose first that 0 < 8 < % as illustrated barycentrically in Figure 4.1.
Let x be the point at which the line from 8p + (1 — B)gtoap + (1 — a)r
intersects the horizontal between %p + %q and %r + %q. Let y be the mirror
image of x about the vertical between g and % D+ %r. Extend lines through g
and x and through ¢ and y to determine x’ and y’ as shown. By C2, x ~ ap
+ (1 — )r. Since g ~ 5x’ + 3y’ = 3p + 37, C3 (with x = 3q + 7%’
andy = +q + ") implies y ~ ar + (1 — a)p, and this implies by C2 that
ar+ (1 — o)p ~ Br + (1 — B)g.

We now suppose that % < B < 1 as illustrated in Figure 4.2. Our
construction proceeds as follows. First, draw the ~ lines between Sp + (1
— B)gand ap + (1 — &)r, and between 28 — 1)p + 2(1 — B)q and point
1. Position 7, 5, 3, 2, and 6 along the base so that 1 and 7 are equidistant from
q’ = %p + %r and on opposite sides of ¢’; that is, d(1, ¢') = d(g’, 7),
along with d(p, 1) = d(1,5),d(3,7) = d(1,r),d(p,ap + (1 — o)1) =
dQ,5),and d(ar + (1 — a)p, r) = d(3, 6). Finally, locate 8 and 9 on the
horizontal between 8p + (1 — B)g and 8r + (1 — B)g, where the indicated
slanted lines from 5 and 3 intersect the horizontal 8 line, then extend lines
through 2 and 8 to x and through 6 and 9 to y. When C3 is applied to the
triangles {p, 28 — Dp + 2(1 — B)g, 5} and {3, (28 — r + 2(1 - B)g,
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FIGURE 4.2
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, we get 2 ~ 8 along with

9~668r+(-Bg~ar+ 1A - a)p
if7 ~ 28 — Dr + 2(1 — B)q.

fi<B <3 s0that0< (28— 1)< 4, thenT ~28 — 1)r + 2(1 — B)g
 the result of the preceding paragraph, given (26 — 1)p + 2(1 — B8)g ~ 1.
equals or lies to the right of 9, then 9 ~ 6 by the preceding paragraph
ince 2 ~ 8 (using triangle {3, z, 5}). If 8 is to the left of 9, then x must be
etween (28 — 1)p + 2(1 — B)g and g, and y must be between 28 — D)r +
(1 = B)q and g. In this case the preceding paragraph gives y ~ 6 since x ~
y C2 applied to 2 ~8), provided that 0 < (28 — 1) < 3. Hence if 3 <
Z,theny ~ 6,509 ~ 6 by C2; then fr + (1 — B)g ~ ar + (1 — Q)p
ce 7 ~ (26 — Dr + 2(1 — B)g.

Thus the desired conclusion holds if 8 < % More generally, if the
esired conclusion holds for 8 < (27~! — 1)/27~1, then the type of analysis
the preceding paragraph shows that it holds when 28 — 1 < 2"~! — 1)/
1 thatis, when 8 < (27 — 1)/2”. It follows by induction that 8r + (1 —
~ar+ (1 —opforalf < 1. B

Proof of Lemma 4.11. Given the lemma’s hypotheses we are to show
a — adas(l — B)(1 — v) = (I — ay)(oy — a3)By. Since the
clusion follows easily from C1 and C2 if either 8 or y is in {0, 1}, assume
€ (0,1). By Lemma 4.10,if 8p + (1 = B)g ~ap + (1 — )r, @ ~
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1p + tryandyg + (1 = y)r ~ (I — )p + ar, theny = 1 — §. This is the
special case of the present lemma for o, = % and o) — ap = oy — a3, SO @y
= gand o3 = 1 — « are equidistant from o = % and on opposite sides of %
(Whether or not a; = % the assumptions for the general case with 8, v € (0,
1) require oy > a > «; see Lemma 4.5)

As just noted, Lemma 4.10 implies the conclusion of Lemma 4.11 when
(o, 0, 0i3) = (% + 7, %,% —7n)for0<r< % Our next step is to prove that
fBp+ (0 -PBg~@+np+0—-—a-1rqg~oaop+ (1 — o)r, and
yg+ (0 —yr~(@—1Dp+ 1 —a+nrthen(a@ -1 -1 -7
=( —a— 7Bywhen0 < 7 < min{e, 1 — a}, which gives the desired
conclusion of Lemma 4.11 whenever oy — a; = ay — az. Suppose for
definiteness that « > 1, since the proof for a < 5 is similar and Lemma 4.10
covers o = % Given ¢ > %,

g~ 3p+ 3Qx—Dp+ 21—yl =ap+ 1=
Then, with 2 — 1)p + 2(1 — a)r playing the role of r in Lemma 4.10,

8p + (1 — B)g ~ l:_l__:_(_x_j_T] + [1___2_:.1]
P ) 20 - |7 20 - a)
“{Qa — Dp + 2(1 — ayry=@+np+ A - a-1)r

by hypothesis, so, by Lemma 4.10,
(1 = B)g + BlRa — Hp + 2(1 — a)r]
l—a-—-71 l—a+r7
~ [m] p + [—5(1_—;)_] {(20( - l)p + 2(1 - Ol)r}
=@-np+ (1 —a+nr

The B mixture in the preceding expression can be rewritten as

[@:——D—] @ - Dp+(1—a+nr}

o - T

[a——r—ﬁ(Za——l):l
+
o -7

(1 = B)a = 7) [ (1 - B — 7) ]}
. g+ |1 - r
a— 17— BRx—1) a—7—BRxa—-1)
where the multiplying coefficients are positive. For example, @ — 7 — SR«
—D>a-(0-a@ -BRa—-1)=Qx~—-DHA-pH > 0. Since the
preceding expression as rewritten is indifferentto (o« — )p + (1 — a + 7r,

C2 requires its second term in braces to be indifferentto (« — 7)p + (1 — «
+ 7)r. Moreover, y¢ + (1 — r ~ (@ — Jp + (I — a + 7)r by
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hypothesis, and therefore C2 implies

1 -~8a-7
a—-7-BQa—-1)"

which is equivalent to (« — 7)(1 — 8)(1 — ¥) = (1 — o — 7)Bv. Therefore
Lemma 4.11 is valid whenever o; — o = oy — as.

We next extend the result to cases in which (o; — )/(0; — a3) is
rational. Let & = o, for convenience. With all («, 7) coefficients in (0, 1), a
first step is made with the hypotheses

@+Dp+ A -a-nr~pp+(1-Pg
oap + (1 —a)r ~qg ~ [l = y)/(1 = ay)lp
+ A = /0 = ayls,
(¢ —7np + (1 -—oz5+'r)r~'yq+(l - Y)r = s,
(@ —-2nNp+ (1 —a+2nr~68g+ (1 - &r
©/vs + [y — O/,
where s is defined as yg + (1 — y)r. Since ¢ ~ ap + (1 — )r,

1 - _
q~<r—l>wp+u—mn+<l~ﬂ>q
- oy 1 — ay

<a(1—'y)> <l—a>
= ————)p+| — s
1 — ay 1 — ay

; When the result established for o) — oy = ap — 3 is applied to the left
parts of the first three displayed lines in the preceding paragraph, and is
applied again to the last three lines for s, we get

(@-n0 -0 -v)=>10~-a-nby

oo (T )(5) e (T
, 1 - oy 0% I — ay Y

e solve the first of these for v, substitute this solution for v into the second
Juation, then solve the second for 6 to get

_ (@ = 271 - B)
20 —a -8 + (@ — 201 - B)°

=201 - A — v) = (1 — o — 7)2(38, which is the desired
clusion of Lemma 4.11 when oy = o, + Tand a3 = oy — 27.
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A similar proof applies when o = a; + 27 and 3 = ap — 7. The
general case for rational (a; — a)/(ay — «3) follows by induction. For
example, suppose that

(@+ndp+ A —a—-nnr~Fp+ 0 -P)g,
ap + (1 — )r ~ g ~ [al — /(1 = an)lp
+ [0 = /(1 = ay)ls,
(@-—np+ (0 —a+n)r~vyqg+ A —-yr=s,
@-m+mnp+ A —-a+ @+ mnr~3ség+ (1 —29§r
= (6/y)s + (1 = &/y)r,

and that the conclusion of the lemma has been verified when (o; ~ o2)/(c;
— a3) = n/m. Then the procedure of the preceding paragraph yields the
desired conclusion for (o; — o)/ {0y — as) = n/(n + m) (i.e., for lines 1,
2, and 4 in the preceding display). The desired result for rational ratios
follows easily.

Finally, leta = o) — opand b = o, — 3 and suppose a/ b is irrational.
Let the lemma’s hypotheses hold as stated. Keep b fixed and let a” be near a
with @’ /b rational. Also let o] = o + a’ with 87 satisfying B'p+ (1 -
B)g ~ a/p + (1 — a/)r. Then the result for rationals gives

a’( — bY(1 — A — ) = (1 — o — a’)bB’y.

When @’ > a, we require 8’ > (8, and a > a’ = § > ', as is easily
checked. Let 8+ = inf {8’:a’ > a},B~ =sup{B’:a > a’}sothat3* >
B = B~. Note also that

acr = b1 = Y1 = 1) = (1 = oz = QBB
aley, — bY(1 = XL — ) = (1 — ap — @)bB7y.
Therefore 8+ = 8 = 87 ; hence a(o, — D)1 - B — ) =1 — o —
a)bBy. [ |
Proof of Lemma 4.12. As in the hypotheses, assume p > ¢ > r > S

> t with ~ and > transitive on the convex hull H({p, g, r, s, t}). Let the
oy, Bi, and v; satisfy

Il

o p + (1 - Oll)t ~

>

Bip + (1 = Bor ~ q,
op+ (1 —a)s ~r, Bp+ (1 —-PB)s~gq,
g+ (1 —a)t ~r, Bp+ (- B)~gq,
oy + (1 — ag)s ~r,

|
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10+ (1 =yt ~ s,

Y29 + (1 — vt ~ s,
ysr + (1 — )t ~ 5.

The conclusion of Lemma 4.12 in these terms is Sfafy¥ = BFvy¥. To
verify this, note first from the transitivity of ~ with § and 6 defined in context
that

Bip + (1 — B)r ~ Bsp + (I — B3)t,
r~oap+ 1 - a)t,
var + 1 = v3)t ~vip + (1 — vt
Bop + (1 — B)s ~ Bsp + (1 — B3)t,
s ~yp + (1 - ),

3+ 3~ Op + (1= 05

1

l

ap+ (1 - a)s~ap+ (1 - al

s~mp + 1 - v)t,
t ~60p + (1 - 0
P+ 3¢ ~ 8p + (1 = )¢,

g~ Bp + (1 — Bye,

Y29 + (1 — vt ~vip + (1 — y)E;
I+ 3q ~op+ (1 -8,

g~ Bp+ (1 - B,

asg + (1 — ag)t ~ ayp + (1 — apt.

l

15+

2 2

l

Apply Lemma 4.11 to each of the five three ~ sets to get

(B; — a)vil = B — 73) = (I = B3)eu — v1)Bivs,
(Bs — 0 — 62)(172) = (I = B3)(y1 — 0)B2(1/2),
(ar = )0 — )(172) = (I = a)(v1 — Oa(1/2),
(6 = BIM(1/2)A = 7v2) = (A = 8)(B3 — v)(1/2) 72,
(6 = B)au(172)A — o) = (1 = 8)(Bs — a)(1/2)as3,

ectively, with each difference, 83 — «;, 1 — @, . . . positive. We now
ly these five equations alternately [(left of first)(right of second)(left of
<+ = (right of first)(left of second) - - - ] and cancel identical terms to

]

It

|

Il

I
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conclude that
ko ko yd = [QFa ko
PY30 0 = Py Yoy

By Lemma 4.1, a*a} = afa¥. Therefore Bfafv} = BFvi¥. |

4.6 PARTIAL CONSTRUCTION OF ¢

The preceding lemmas will now be used to construct an SSB functional ¢
on P x P for which > = {(p, q@):¢(p, q) > 0} with ¢ unique up to
similarity transformations. The sufficiency proof of Theorem 4.1 from this
point on has four parts:

1. Define ¢ on P X P* so that it is linear in its first argument and has p
>qe ¢(p,q)>0andp ~ g & ¢(p,q) =0forall(p,q) €P
X P*

2. Verify that ¢ is skew-symmetric on P* X P*.

3. Extend ¢ to all of P X P in the only way possible for it to be skew-
symmetric everywhere.

4. Verify that ¢ extended is linear in its first argument.

We deal with parts 1 and 2 in this section and with 3 and 4 in the next section.
The uniqueness property of ¢ will be verified as we proceed. It is assumed
that P* is not empty since otherwise ~ =P X P and ¢ must be identically 0
for Theorem 4.1, in which case it is trivially unique up to similarity
transformations.

1. For each p € P* let v, satisfy the representation of Lemma 4.3 and
define

PHp) ={qE€P*:q >porp > q}
so that v, never vanishes on P*(p) and v, = 0 on P*\ P*(p). If ¢ is to

satisfy the SSB representation then the linearity and order-preserving
properties of v, and ¢ require

(-, p) = au,(-)  for some a, > 0.

We adhere to this correspondence in defining ¢ on P X P*,

Henceforth, fix » € P* and define ¢(p, r) = v,(p) for all p € P. For
every t € P*(r), scale v, (by means of @) so that v,(r) = —v,(f) and define
#(-, 1) by

é(p, ) = v(p) foralp € P.

The ¢(+, ¢) for t € P*(r) must be defined in this way, for only then will we
have ¢(r, t) = — ¢(Z, r) as required for skew-symmetry. With v, fixed, ¢ as
defined thus far is unique.
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To complete the definition of ¢ on P X P* we need to specify ¢(-, w)
when w € P*and w & P*(r) U {r}, but we cannot use v, to do this since
v,(w) = 0by w ~ r. For any such w it is easily seen that P*(r) N P*(w) #
&. Accordingly, choose s € P*(r) N P*(w), scale v,, so that v,,(s) = —
vs(w), and define ¢(-, w) by

d(p, w) = vy,(p) forallp € P.

A different s can be used for different w’s. Since —v,(w) = — ¢(w, s) by the
preceding paragraph [since s € P*(r)], ¢(-, w) must be defined in this way
if the SSB presentation is to hold. Only then do we get ¢(s, w) = — ¢(w, s).

We have defined ¢ on P X P* and it is unique, given ¢(-, r) = v,(*)
__and the s choices of the preceding paragraph. If the SSB representation holds
then, given ¢(-, r) = v,(+), the rest of ¢ on P X P* is uniquely determined.
If v, is replaced by av, with @ > 0, then ¢ is replaced by a¢.

By construction, ¢ on P x P* is linear in its first argument and has
dp,q)>0ep>qgandd(p,q) <0eqg >p.

2. To prove that ¢ is skew-symmetric on P* X P*, we assume
throughout this part that p, g € P* with p+ g (p not indifferent to ¢) and r
& {p, g}, since otherwise skew-symmetry for (p, g) follows from the
definitions. Several cases need to be considered to prove that ¢(p, q) = —
9(q, p),

- Case 1. p, g € P*(r). Then, by the definitions,

¢(p1 q) = Uq(p) where Uq(r) = '"Ur(Q)s
o(g, p) = v,(q) where v,(r) = —uv/(p).

hen no two of p, g, and r are indifferent in Case 1; the three form either a

preference cycle or a transitive triple. We examine these subcases in turn.
Case 1A. Cycle. Assume for definiteness thatp > g > r >p. Let o, 3,

d v satisfy the hypotheses of Lemma 4.4. Then, by linearity and v,(y) = 0

hen x ~ y,

avg(p) + (1 — Jug(r) =0 [ap + (A - )r ~ q],

Buv(g) + A = Pu(p) =0 [Bg+ A -Pp~r]

yup(r) + 1 = Yu(g) =0 [yr + (1 — v)g ~ pl.

y Lemma 4.4, a*B*y* = 1. Therefore

I:__Uq(p):l l:_vr(Q) ] [_ Up(r) ] -1
vq(r) v p) Up(Q) ’

‘d‘icancellation leaves v (p) = —v,(g); thatis, ¢(p, q) = — (g, p).
Case 1B. Transitive Triple. Two further subcases arise depending on
ther r is between p and ¢. We consider betweenness first, assuming that p
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>r>qgandp > g.Let\ < 1benear 1sothat,byC2,p > \p + (1 — Nr
>r>Ng+ 0 —-Nr>qg.letp’ =N\p+ ({1 —-Nrandg’ =\ + (1 —
MNr.Thenp > p’ >r > q’ > gwithp’,q’ € P*(r). By Lemma4.5, ~
and > are transitive on H({p, g, r}), and we therefore have «, 3, v, 6 and 6
in (0, 1) such that

ap + (1 — ayr ~ p’, Bp" + (A —-P)g" ~r,
yr+ (1 -v)g~4q’, op + (1 — 8)g" ~p’,
p’ + (1 - 0qg ~q’.

According to Lemma 4.12, a*8*y* = §*§*. This result and linearity for

each v imply
el
vp’(r) v(q”) Uq'(Q)
) [ v/ (p) ] [ vqr(p')]
vp’(q/) Uq’(Q) '
Since p’, g’ € P*(r), v,/(r) = —v(p’), and vy/(r)
cancellations in the preceding equation leave

i

—v(q’), so

Up’(q,) = _Uq’(p’)-
Fix g’ for the time being, butlet AT 1 forp’ = \p + (1 — Nr. Sincep, r €
P*, we can choose x € P such that x > p and x > r. Given such an x we
havex > p > r,x > \p + (1 — Nr > r, so, by Theorem 1.4, let 7 and 7,
satisfy

™+ (1 -7r~p, n+ 0 =n)r~Nxp+d-Nr.

Since 7x + (1 — 7)r > rby C2, Lemma 4.6 implies that , T 7as A T 1. By
the preceding ~ statements and the definitions and properties of the v’s, we
have

TUp(x) = —(1 — Dvp(r) = (1 — 7)v(p), and
N+ -0r(X) = —(1 = 1) unpsany(7)
A = n)v,(Ap + (1 = Nr) = Ml = n)v(p).

Letting N T 1 in the latter equation, we get

7 lim U)\p+(1_)\)r(X) = (1 — v (p).
Atl
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So, by the former equation,

l)fgl Unp+ (1 =0r(X) = vp(x).

Wealsohavex > p > g’andx > \p + (1 — Nr > g’,soletpux + (1 —
wq’' ~ pand px + (1 — p)g” ~ A\p + (1 — Nr to obtain

[.LUP(X) = "'(l - P‘)vp(q’)’
I+ -nr(X) = = (1 = w)onpra-nr(@’).

By Lemma 4.6, u\ — pas A T 1. Thus, using the preceding limit result for x,
we get

=1 = wu(g’) = pu(x) = I.ngn Unp+(1=0r(X)
1
= —(1 - ) lgn Up+(1-0r(@ )
1

and therefore v,(q") = limyy; Unps-nr(@”). Since vy (p’) = vgrp + (1
= = Nr) = Mg (p) + (1 = Ny (r), which approaches v,/ (p)as A T 1, we
_have

vp(q") = —vgr(p).

We now fix p and vary A for g’ = A\g + (1 — MN)r, using y for which r > y
and ¢ > y in a manner symmetric to the foregoing analysis to obtain

I

vp(q) ligx up(Ng + (1 = N)r) = lim v,(gq’)

lim (_vq’(p)) = "'Iigl v)\p+(l—)\)r(p) = _vq(p)-

Hence skew-symmetry holds for Case 1B whenp > r > q.

Assume henceforth for Case 1B that p > g > rand p > r. (The proof
thr > g > pissimilar.) Letp’ = A\p + (1 — Ngandr’ = \r + (1 —
_qforO < AN<1l,sop >p" >qg > r" > r. Asin the preceding
paragraph, we use Lemmas 4.5 and 4.12 to conclude that

Uq(pl)vr'(Q)vp’(r/) = "“vp’(Q)Uq(r’)Ur’(p/)-

nce r’ is used here instead of r, cancellation based on r does not apply.
isedonx > p,x > gwith{x >p >r,x > \p + (1 — Ng > r}and {x
2 g, x> A+ (1 — Ng > g}, an analysis that is almost identical to
at for x in the preceding paragraph gives

vp(q) = ligl Unp+(1-Ng(q) = lim v,/ (g).
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We observe next that, with r’ € P*(r),
0 = vprra-ngAr + (1 = Nq)

= N -ng(r) + (1 = Nunrra-ng(@)

= —A,(A\r + 1 = Ng) + (0 = Nonrsa-ng(@)

= —M1=Nv(q) + (1 =Nvrrsa-0g(9)
so that Av,(g) = unr+a-ng(q). Therefore

v(q) = ligl Unp+(1-Ng(D)-

This result is used along withg > y, r > y,{g > r > y,g > & + (1 —

Ng >y}, and{p’ > r >y,p’ > \r + (1 — N)g > y} inalimit analysis
like that done earlier to obtain

v(p') = 1;31 Uart(1=N)g(P)-
Finally, note that

v/ (r) = —v(p’) = —v,(Ap + (1 = N)g)
=N (p) = (1 = Nuq) = Mp(r) = (0 = Mv(g),

SO

vp(r) = ligl Unp+(1-Ng(T)-

Given vy (P W, (Qupr(r') = =vp(@Qugr')v,/(p), as earlier in this
paragraph, firstlet AT 1inr’ = M + (1 — Ng to get v (p (v, (1) =
— v,/ (@)vy(rv,(p). Since vy(r) = —v,(g), cancel to obtain v, (p")v,(r) =
v (@ (p). Thenlet N\ T 1inp’ = A\p + (1 — Ng to get v (plv,(r) =
vp(q)v,(p), and cancel v,(r) = —v,(p) to conclude that v,(p) = — v,(q).

Case 2. p € P*(r), g € P* \ P*(r). Let s be the measure in P*(r) N
P*(q) used to define ¢(-, @) in part 1: then

(ﬁ(p, q) Uq(p) where Uq(S) = “'Us(Q),
o(q, p) = vp(q) where v,(r) = —v(p).

Since p, s € P*(r), the Case 1 proof gives v,(s) = —vs(p). Since p + g by
earlier assumption, assume with no loss in generality that p > g. We
consider subcases for p versus s.

Case 2A. s + p. Then, since g + sbecause s € P*(q), {p, g, s} form
either a preference cycle or a transitive triple. If a preference cycle obtains (p
> g > s > p), an analysis with Lemma 4.4 as in Case 1A gives v (p) =
—v,(q) since vy(s) = —vg(p) # 0and ve(s) = —vs(q) # 0.
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Assume henceforth for Case 2A that {p, g, s} forms a transitive triple.
Suppose first that p > s > g. Take y suchthatp > yandg > y, let {as +
I-a)y~qgos+0—-oo)y~N+ (1 - Np} correspond by Clto {s
>q > y,s >N+ (1 —Np >y} for \near 1, and use the properties of
the v’s and the fact that o, & « as A 1 1 by Lemma 4.6 to get

(I = aJv(y)
= —owgy(s)

= lim [— o Avg(s) + ol — MNu(p)]
A1

= lim [apAus(@) + an(l — Nus(p)] (Definition of v,)
= lim [envs(Ag + (1 — N)p)]
= lm [—opung+a-np($)]  (Case 1)
= lm [(1 — o) vngsa-np(P)]
= (1 = o) im vyg 4 1-0)p()
so that

vg(y) = 1;:111 Ung+(1-Np ()

Alsolet{fp + (1 = B)y ~ g, Bwp + (1 = By ~ Mg + (1 — Np}
correspondto {p > g > y,p > N\¢g + (1 — N)p > y}, and use Lemma 4.6
B\ = Bas N T 1) and the result just proved to obtain

Bug(p) = = (1 = Blug(») = =1 — Bim yg1q-n)p(¥)

lim [=(1 = B)ung+a-np(M] = lim [Bavrgs 1 -np(P)]
lim [~ Bywpy(Ag + (1 — N)p)] (Case 1)

lim [ NBwp(@)] = —Bup(q)

that v,(p) = —v,(g) as desired.

The next subcase of Case 2A hasp > ¢ > sandp > 5. Withg’ = \q
(1 — Np, preceding methods appliedtop > g > s,p > \g + (1 — N)p
s} give vy(p) = lim v, (p), and Case 1 gives v,(g’) = —v,/(p). Since
m v,(q’) = v,(q), it follows that v,(p) = —uv,(g). The proof fors > p >
and s > g is similar.

Case 2B. s ~ p. We get

Il

I

0 = vp24g2(30 + 3@) = 3Vp2492(D) + V124 9/2(Q)
= —5lu,(zP + 39) + v, (5GP + 39)]
= —3lv.(q) + va(p)],
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and therefore v,(p) = —v,(q). Here Case 1 is used to go from vp2, 4/2( p) to
—up(%p + %q), and, since %p + %q + s, Case 2A is used to go from
Up/2+4/2(q) to —Uq(%P + ';‘Q)-

Case3.p,q € P*\P*(@). Thenp ~ r ~ gwithp > g. Let s be any
element in P*(r) so that %p + %s and —;-q + %s are in P*(r). Then, by Cases
1 and 2,

0= vp/2+s/2(%q + %S) + Uq/2+s/2(%p + %S)
= [Up2+52(@) + Vpr2452(8) + Vgr2452(D) + Vgr2452(8)]
= —3u,(Gp + 35) + vzp + 38) + (39 + 35)
+vs(3q + 35)]
= —3lvg(D) + vg(s) + v(P) + vp(@) + V() + vs(Q)]
= —3lv(p) +up(),

0 vg(P) = —up(q)-
Cases 1, 2, and 3 exhaust the possibilities and therefore ¢ is skew-
symmetric on P* X P¥*,

4.7 PROOF COMPLETION

Since there is nothing more to prove if P = P*, assume in this section
that P, U P, is not empty. We complete the sufficiency proof of Theorem
4.1 with parts 3 and 4 outlined at the start of the preceding section.
Throughout this section x and y always denote elements in Ppa U Py,

3. To complete the definition of ¢, define v, on P and ¢ on P X
(P \ P¥*) as follows. First, if p € P* let

vx(p) = ¢)(p’ x) = —¢(X, p)‘

Given ¢(x, p) for p € P* as defined earlier, ¢(p, x) must be defined in this
way to satisfy skew-symmetry. Second, for all p ~ x take

vx(p) = ¢(p, x) = 0

as required for the SSB representation. If p ~ x and p € P*, then v,(p) =
#(p, x) = 0by both definitions. Moreover, if x and y are in the same one of
P, and Py, then x ~ y and v, (y) = v,(x) = 0.

The only cases not covered in the preceding paragraph occur when x €
Proxs ¥V € Prin, and x > y. Suppose this is so. Let ¢ = %x + %y, sox >t »>
yand t € P*. To have v, and v, linear, we require

i

() = 20e(%) + 3u(¥) = (D),

() = 20, (x) + 5u,(¥) = Fu,(X).
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Since ve(f) = —v,(x) and v,(f) = —uv,(») by the preceding paragraph,
define

u(¥) = o(r, x) = —2u,(x),
u(x) = é(x, ») = —2u(y).
Skew-symmetry holds here for x and y since
¢(x, ¥) + ¢(¥, x)= —2[v:(x) + v (¥)]
—4u(x)/2 + v(¥)/2] = —4u(t) = 0,

where v, is linear since ¢ € P*.

Thus ¢ is now defined on P X P* in a manner that is unique, given the
original ¢(-, r) = v,(*) in part 1, if it is to satisfy the SSB representation.
Hence if the defined ¢ does satisfy skew-symmetry and bilinearity every-
where, then it is unique up to similarity transformations.

The constructions in this part of the proof along with the conclusion of
part 2 show that ¢ is skew-symmetric on P X P. Moreover, it should be clear
that, forallp, g € P,p > g & o(p, q) > 0.

4. It remains only to verify that v,, or ¢(*, x), is linear for each x €
Py U Poin. We prove this for x € P,,. A symmetric proof applies for x €
P min-+

I

Given x € P,,, we are to show that
(P, g EP,OS NS =v(Ap+ (1~ Ng)
= Aux(p) + (1 = Nu ().

p~x~gqg,thenx ~Np + (1 — Ng by C2, and all v, terms in the
preceding equation vanish. Assume henceforth that x > p. We examine
specific cases as follows:

l.p € P* q € P*,
2.p € P*, q € P,
3.p € P* q € P,
4. p € Pyin, g € P*,
 5.p € Ppin, q € P
6p € Pminsq € Pmin'

hese exhaust the possibilities. Separate proofs are needed for the first three
ases; the last three can be handled together. Because ¢ satisfies skew-
mmetry, the desired linear form for v, converts to

Unp+(1-ng(X) = Aup(x) + (1 = Nu,(x).

work with this expression in the ensuing analysis.
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Casel.p,qg € P*. Lett = %x + %p sot € P*along with\p + (1 —
Ng € P*. By linearity for fixed elements in P*, v,(\p + (1 — N)gq) =
Nvi(p) + (1 = Nv(q), so by skew-symmetry vy, q-ng(t) = Avp(t) + (1
= Nug(?). Then linearity and v,(p) = 0 give
Unp+(1-0g(X) + Unpra—ng(p)
= [Aup(x) + (1 = Ng(x)] + (1 = Nug(p).

Since

Unp+(1-ng(P) — (1 = Nug(p)
(A0 + (1 = Ng) + A = MNu,(q)
=1 = MNuy(g) + (1 = Nyy(q) =0,

the desired result follows.
Case 2. p € P*, q € Py Theng ~ X, 50 v(g) = v,(x) = 0and we
are to prove that

I

Unp+(1-Ng(X) = Aup(x).

Letp =N —=7/(1 - 7n)for0 < 7 < Awithpp + (1 — p)g € P*forall 0
<pu<g<lbyClandC2.SinceAp+ (1 = Ng=m+ 1A - nup + 1 -
wq), Case 1 implies

U)\p+(l—)\)q(x) = TUp(x) + (1 - T)vup+(1—p)q(x)'
Hence, with 7 T A & p { 0, the desired result holds if and only if

1‘%1 Vup+(1-wq(¥) = 0.

To prove this, choose t € P* withp > t. Since {x > p > t,x ~ q > t},
C2givesx > up + (1 — u)g > tforall0 < p < 1, so there is a unique f,
in (0, 1) such that

Sux + 4 =St ~pp + (1 = wg,

with

fpvyp+(1~u)q(x) + (1 - f,u)vyp-i—(l—p,)q(t) =0
forall0 < u < 1.8ince f € P*, vpi-wg(t) = —vipup + (1 — wq) =
—wp) — (1 — pv(q). Therefore

i v, g = —vi().

If g ~ ¢, then v,(g) = 0 and, since f, remains constant as y | 0 by the first
part of Lemma 4.7, lim v,p4 1) = 0.If g > £, then f, T 1l asu { O by
the latter part of Lemma 4.7, so again im v,p4 (- »e(x) = 0.
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Case3.p € P*,q € Py AsinCase2lety = (A — 7)/(1 — 1) for 0
< 7 < Nto get
Unp+-0g(X) = Tup(x) + (1 = Dvypiq-pwe(X)-

We examine x versus g in subcases.

Case 3A. x ~ g. Then v,(x) = 0, so the desired result vyp 1 -xng(X) =
Av,, (%) holds if and only if v, (1 - wqe(x) goes to 0 as p | 0. Suppose first that p
>qg.Thenx > p > q,s0p ~ ax + (1 — «a)g for a unique « in (0, 1).
Therefore, sincex ~ g, up + (1 — u)g ~ ax + (1 — «)g for all u by C2.
Hence

0= vpia-melax + (1 — )q)

= upr-pe(X) + (1 = DVypra-pe(q)

= aUupraome(¥) = (1 = @)uvy(p)
since
Upp+(1-p)q(@) = —vg(up + (1 = p)q)
—[rvg(p) + (1 = w)ve(@)] = —pvg(p),
here the linearity for v,(up + (1 — p)q) follows from the dual of Case 2 [¢
€ P, p € P*]. Hence lim v, 41— »g(x) = 0.
Suppose henceforth in Case 3A that p ~ g as well as x ~ g. Since x >
k,—x + —p > wp + (1 — pg, let f, satisfy

fuox + (U= f)wp + (1= W)@) ~ 3% + 3.

Lemma 4.8, 7,1 0aspul0. Since 5x + 5p € P*,
= vypepn(fux + (1 = f)wp + (1 = p1)q)
= Fuvr2ipn(X) + (U = f)vepipnwp + (1 — 1)q)
= 3fu0p(X) = (1 = f)uprq-pe(z% + 57)  (Case2)
= $f0p(X) = 31 = f)upra-we®) (P~ wp + (1 = W)

herefore v, 1 - g (X) goes to 0 as K 1 0.
Case3B.x > g.Lett = »x + 2q By the definitions in part 3, v, (x) =
2u,(q) = 2u,4(t), so the des1red linearity conclusion in the present case is

Unps 1—ng(X) = Aup(x) + (1 = N)20,(0).

ording to the initial paragraph for Case 3, this will be true if v,, .+ 1 - )¢ (¥)
2vq(t) aspud0.Sincex > ¢t > up + (1 — p)g for small p, let £, in (0, 1)

fx + (L= f)wp + (1 - p)g) ~ ¢ = 3x + 3.
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Then f, 1 5 as u L 0 by Lemma 4.9. Now
Juor(x) + (1 = fvdpwp + (A = p)g) =0,

v(x) = —v(@)/2 = ve(x)/2 = —v(q) = v,(t) by definition and skew-
symmetry, and, since up + (1 — p)g € P*,

vup + (1 = W) = —Vupra-we(X + 30)
= —5l0upra-wg(®) + Vupra-we(@)]
= —3[0pra-we(®) + ruy(),
where the dual of Case 2 is used in the final step if p > g. Therefore
SFuvg@®) = (1 = f)Wup+1-wq(X¥) + nup(@)/2,

and it follows that v, 41— e(x¥) = 2v,(¢) as u 1 0.
Cases 4, 5,and 6. x € Py, P € Pupn, X > p. Let

t=3x+ 5300 + (1 = Ng).
Then x > ¢ > pby C2. Moreover, ¢ > \p + (1 — Ngsincex > Ap + (1
— N)g. Because -;-x + %t € P*,
Vene2(AD + (1 = N)@) = Noxaiin(p) + (1 = Nveas2(9),
which skew-symmetry converts to
Vaps (- ng(3X + 30 = Nup(3x + 30) + (I = Nvg(gx + 21).

We claim that each v term here decomposes linearly. For the first term, Ap +
(1 = Ng € P* U Py, sincex > A\p + (1 — Ng. Hence, by either linearity
of v, for s € P* or by the dual of Case 3 when A\p + (1 — Ng € Py,
[noting that ¢ > A\p + (1 — N)g, which corresponds to x > p in Case 3], we
have

Urp+(1-0g(3% + 30 = Fupaa-ng(X) + U+ (1=Ng(O)-
Since t > p and p € Py, the dual of Case 3 gives
up(3X + 31) = 30p(X) + 30,(D).
Finally, we also have
vg(3x + 51) = 30g(X) + 30,()

for the following reasons: Case 4 has ¢ € P*. Case 5 has ¢ € Ppax, 50 apply
Case 2 if ¢ > ¢ [corresponds to x > p in the original], and otherwise note
thatt ~ g ~ x with v, (3x + 32) = vg(x) = v,(f) = 0. Case 6 has ¢ € Prin,
so apply the dual of Case 3 if # > ¢ and note that if not (¢ > ¢) then all three
v, terms vanish. When the three decomposed terms are applied to their
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predecessor earlier in this paragraph, we get

Unp+(1=0g(X) + Unpra-ng(®)
= Do) + (1= Mg + Dop®) + (1 = Mgl

Since ¢ € P*, linearity and skew-symmetry give vyp+a-ng(t) = Mp(f) +
(1 — Nv,(), and cancellation in the preceding equations leaves vy 4 (1 -ng(X)
= Nup(x) + (1 — Nug(x). This completes the sufficiency proof of Theorem
4.1.

4.8 EXTENSION FOR PROBABILITY MEASURES

We have seen in Section 3.9 that the SSB representation implies

$(p, q) = 3 2 P()I(N$(x, ¥)

whenever p and g are simple measures in P, P includes the set of one-point
measures on X, and ¢ on X X X is defined from ¢ on P X P by

o(x,») = ¢(p,q)  whenp(x) = qg(») = L.
The extension of the SSB expectational form to

o) =| | 6w dox) da(y)
x€X JYyeX

for more general measures p, ¢ € P will conclude the present chapter.

As in Section 1.8 for the extension of the expected utility form, further
assumptions are needed for the SSB extension. Instead of considering two sets
of structural conditions as in Theorems 1.5 and 1.6, we consider only the
following set of conditions:

S0. @ is a Borel algebra of subsets of X that contains {x} for every x
€ Xand contains {x:¢(p, x) < c} and {x:¢(p, x) > c} foreveryp € P
and every real number c. Moreover, P is a convex set of countably
additive probability measures on Q that contains every one-point
measure and is closed under conditional measures.

‘ The direct appearance of ¢ in our structural axiom SO might be objected
to since it is preferable to avoid mention of derived functions in the axioms. It
is possible to replace ¢ in SO by assumptions about ®@’s containment of
nditional preference intervals, but it is awkward to do so, and we therefore
roceed with SO as stated (Fishburn, 1984c, p. 135).

Two other axioms patterned after A4 and AS are used in the extension.
e let x* denote the measure in P that assigns probability 1 to x € X. The
xioms apply to all p, r,s € P,allA € @,and all0 < § < 1:

C4. Dominance: Suppose p(A) = 1. Then (Bx* + (1 — B)s 2 rfor
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allx € A)y=0p+ A — B)s 2 r,and (r > Bx* + (1 — B)s for
alx e Ay=r 2> Bp + (1 — B)s;

C5. Truncation: Let A(c) = {x:¢(x, r) = c} and B(c) = {x:¢(x, r)
< ¢} for each real number c. Then

Bp+ (A —PB)s >r=Ppge+ (1 —B)s2r forsomec,
r>Bp+ (0 -B)s=r2Bpag+ (1 —Ps forsomec.

The special case of C4 for B = 1 is almost the same as A4. The
generalization for 0 < 8 < 1 allows for ‘‘separation’” by the (1 — f)s term
that is needed for the SSB case. A similar remark holds for (1 — @)s in C5.

The idea behind the truncation axiom CS5 is that whenever p > rand p
has positive probability for consequences x for which ¢(x, r) is arbitrarily
large, then p can be truncated at its upper end to the conditional measure pp()
without reversing the preference between Bp + (I — B)s and r. A dual
interpretation applies to the second half of CS5. If ¢ is bounded, then C5 holds
trivially by taking A(c) = B(c) = X.

THEOREM 4.4. Suppose SO holds along with C1, C2, and C3. Let ¢
satisfy the SSB representation of Theorem 4.1, and define ¢(x, y) = ¢(p,

q) when p(x) = q(») = 1. Then ¢§(p, q) = {id(x, y) dp(x) dq(») for all
D, @ € Pifand only if C4 and C5 hold.

Our proof is based partly on the final part of Theorem 1.6 that uses A4*
and A5* in Section 1.8, and partly on elementary properties of integrals, the
monotone convergence theorem and the iterated integrals (Fubini’s) theorem.
We refer to readers to Loéve (1960, pp. 118-24, 136) for statements and
proofs of the latter results.

Necessity Proof. Assume the integral form holds. As in the first part of
C4, assume that p(4) = 1 and Bx* + (1 — B)s 2 rforall x € A. Then
oBx* + (1 — PB)s, r) = 0 for all x € A, and therefore

oBp + (1 = B)s, r) = Bo(p, r) + (1 = B(s, 1)
= 8] ot N dp(x) + (1 - PG5, 1)

| 186G 1) + (1 = BoGs. 1 dp(x)

il

| o+ - s, ndo >0,

sothat Bp + (1 — B)s > r, the conclusion of the first part of C4. The second
part of C4 follows similarly. The necessity of C5 follows from the monotone
convergence theorem. ]

Sufficiency Proof. Assume the hypotheses of Theorem 4.4 along with
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C4 and C5. We prove that
M ) = |e(x @) dp(x) forallp,q € P.

Since this holds when either measure is a one-point measure, iteration and
skew-symmetry yield

3, 9) = | 6(p,») da(y) = | [§ b(x, ) dp(x)] dq(y)
[] 602 dp() day),

the desired conclusion.

To verify (*), suppose first that > is empty. Then p ~ g throughout P,
sod(p, q) = ¢(x,y) = O0forallp, g € Pand all x, y € X. Thus (*) holds
 trivially.

Suppose henceforth that > is not empty, so P* is not empty. Fix g €
P*, and let >, denote the weak order on P established by v, or ¢(-, g); that
i8,p >,r & ¢(p,q) > ¢, q), withp 2qrif&(p, g) > é(r, g). We prove
that >, satisfies two conditions that mimic A4* and A5* and allow us to
conclude that (*) holds for all p € P at the fixed ¢ € P*. The final
paragraph of the proof notes that (*) also holds when g is in Py, of Py,.

The conditions desired for >, are

a4 (cf. A4*). Suppose p(A) = 1. Then(x 2, rforallx € A) = p >,
roand (r Zyxforallx € 4A) = r 2, p;

a5 (cf. A5*). p >,r = pp >, r for some B of the form {x:¢(x, g) <
c};r>gp = r 2,4 p, for some A of the form {x:¢(x, g) >c}.

l

It will suffice to prove the first parts of a4 and a5.

We begin with a4, assuming that p(4) = land x 2, rforallx € 4.
iree cases are considered depending on how g and r are related.
 Casel.qg ~ r. Thenx 2,79 ¢(x,9) 209 x 2 g,andifx 2 gfor
€ A, then the first part of C4 with 8 = 1 implies p > g; hence p >, r.
Case2.r > g. Since g € P*,lets € Psatisfy ¢ > s. Since x >, r for
A (G.e., ¢(x, @) = ¢(r, @) > 0), we have x > ¢. Let a(x) and (3 satisfy

a(x)x* + (1 — a(x))s ~ q,
Br+ (1 —PBs ~gq

oz(x) B for all x € A since ¢(x, g) = o(r, @) > 0. Because 8 > a(x)
X 7 q, it follows that

Bx* + (1 — B)s 2 q for all x € A4,
conclude from the first part of C4 that 8p + (1 — B)s 2 g. This gives
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Bo(p, ) = (1 = B)e(g, s) and, since fr + (1 — B)s ~ g = (1 — B)$(q, 5)
= Bo(r, q), we get ¢(p, q) = o(r, q); hence p >, r as desired for a4.

Case 3. ¢ > r. The proof for this case is similar to the proof for Case 2.
Choose s > g and get Bx* + (1 — B)s 2 gforallx € 4.

Consider a5 next with p >, r. Again specific cases are examined as
follows.

Casel.p » q > r.Since p > g, the first part of C5 with 8 = 1 implies
pp > qforsome B = {x:¢(x, q) < c}.Hencepp 2 q 2 1,30 6(ps, q) >
#(r, ) and pp =, r, the desired conclusion of a5.

Case2.p ~ q » r.Lets € Psatisfy s > g, and let 8 in (0, 1) satisfy g
~ Br + (1 — B)s. Then Bo(g, r) = (1 — B)¢(s, g). Sincep ~ gands > q,
we have Bp + (1 — B)s > g, and the first part of C5 gives B = {x:¢(x, q)
< ¢} such that Bpp +(1 — B)s 2 g, or (1 — B)é(s, @) = Be(g, ps). Hence
#(g, r) = ¢(g, ps), or by skew-symmetry ¢(ps, g) > &(r, q). Therefore pp
24T

Case3.p > q,r > q. Letssatisfy g > swithap + (1 — a)s ~ gand
Br + (1 — B)s ~ q. By hypothesis (p >, r), o < 8, and it follows that 3p
+(1 —PB)s > q.ByC5,8ps + (1 — B)s 2 gforsome B = {x:¢(x, g) <
c}, and this plus r + (1 — B)s ~ g gives ¢(ps, q) = ¢(r,q), orpg 247

Case 4: g > pand g > r. (This is the final case possible when p >, r.)
With s > g, an analysis like that in the preceding paragraph gives pp =, r.

This verifies a4 and a5 for ¢ € P*. Because these axioms subsume A4 *
and A5* when > in those axioms is replaced by >, it follows from the final
part of Theorem 1.6 that (*) holds for all p € P at the fixed g. Hence *)
holds for all (p, g) € P X P*.

To show that (*) holds also when ¢ € Py U Ppy,, suppose for
definiteness that ¢ € Py, If ¢ € Py also, then 0 = ¢(p, q) = ¢(x, q) for
allp € Pandall x € X, so (*) holds Assume henceforth that ¢ & Ppax and
take s > g for s € P*. Since s > s + 2c] > q, 2s + 2qlsmP* and
therefore

é(p, 35 + 3q)

i

[ 60x, 35 + 30 dp(x)
[ o0x 5) + 260x, @) dp(x)

Il

Il

1
zgme@m+—wmm@m

H

—ann+—§wxm@u)

Moreover, ¢(p, 35 + 3q) = 30(p, s) + 78(p, ), and therefore ¢(p, q)
= [p(x, @) dp(x). ®




5 Transitive Nonlinear Utility Theory

When transitivity is added to the axioms of the preceding chapter, the
SSB representation reduces to the weighted linear representation, and the
nontransitive convex representation, with a further technical assumption,
reduces to the transitive convex representation. This chapter begins with the
latter representation, including its reliance on the assumption of countable
boundedness. It then looks at the weighted linear representation in detail,
oncluding with uniqueness features, equivalent axiom sets, and extension to
n expectational form.

.1 TRANSITIVE CONVEX UTILITY

This chapter considers the effects of transitivity on the nontransitive
onvex representation and the SSB representation of the preceding chapter.

he transitive convex representation is examined in this section and the next.
he weighted linear representation that results when transitivity is imposed
the SSB structure is discussed in Sections 5.3 through 5.7. Both
epresentations accommodate violations of independence.

We recall from Section 3.7 that (P, >) has a fransitive convex
resentation if there is a functional # on P such that, for all p, g € P,

p > g ¢ u(p) > u(q),
P 7> g=u(\p + (1 — N)gq) is continuous and increasing in A.

noted there, these properties imply that u(A\p + (1 — N\)q) is constant in
vhenp ~ q.

~ Our axioms for the transitive convex representation consist of Al(~)
transitive on P], C1, C2, and countable boundedness, where > is
7bly bounded if there is a countable subset Q of P such that for every p
ereare q, q’ € Qforwhichg 2> p > q’. Recall also from Theorem
that A1(~), C1, and C2 imply that > on P is a weak order.
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TueoreM 5.1. Suppose P is a nonempty convex set of probability
measures defined on a Boolean algebra of subsets of X, and > is a
binary relation on P, Then (P, >) has a transitive convex representation
if and only if A1(~), Cl, and C2 hold and > is countably bounded.

Remark. Countable boundedness is automatic if P is closed; that is,
P, and P, are not empty. The need for countable boundedness in other
cases is discussed in the next section.

Proof. We consider necessity first, assuming that (P, >) has a
transitive convex representation. Axioms Al(~) and C1 are then obvious.
For C2, assume first that p > gand p > rwith 0 < A < 1. Then u(p) 2
max{u(q), u(r)} > u(\g + (1 — Nyr), sop > A\g + (1 — N)r. The other
parts of C2 follow similarly. Since u is real valued, there must be a countable
QO < P with sup u(Q) = sup u(P), inf u(Q) = inf u(P), and with Q
containing an element of maximum (minimum) utility if such exists. Any
such Q verifies countable boundedness.

For sufficiency, assume A1{~), C1, C2, and countable boundedness.
Assume also that > is not empty since otherwise the desired conclusion is
transparent. Let Q be a countable subset of P that verifies countable
boundedness, and enumerate Q as {qi, ¢z, . . -}. Fix py > po in Q and
construct p,, p3, . . . and p_y, P_», . . . as long as possible in the following
ways:

D> is the first g; (smallest i) for which g; > p;.
Pn+1 for n = 2 is the first g; for which g¢; > p,.
P is the first g; for which py > q;.

D_n_y for n > 1 is the first g; for which p_, > ¢;.

We referto -+ p, > p1 » Py > Py - as the dual standard sequence.
Clearly, for every p € P either p ~ p; for a unique i or p;,, > p > p;fora
unique /.
Let
Py = {\pis1 + 0 = Npi: 0 < NS 1, piy
and p; are in the dual standard sequence}
and define u on P, by (for each i and N)
uApisr + 1 = Np) =N+ D+ A - Ni=i+\

Then, by C2 and weak order, p > g & u(p) > u(g) forall p, g € Py. In
view of Theorem 1.4 and the remark at the end of the preceding paragraph,
we extend u from Py to P by taking u(p) = u(p’)whenp ~ p’ andp’ €
P,. It follows that, for all p, ¢ € P, p > g & u(p) > u(q).
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To verify the final part of the representation, assume p > ¢ and let
SO =u\p + (1 = Ng) for0 <A< 1L

ByC2Z,A>u=Np+ (1 — Ng > up + (1 — u)g, so fincreases in A.
Contrary to continuity, suppose f is not continuous. For definiteness assume
that f(o) < fl)t = inf{f(\):\ > o} with @ < 1. Choose 3 sothatx < 8
< 1. By construction, f(c) < u(r) < f(«)* forsomer € P,sofp + (1 —
B)g >r > ap + (1 — w)g.Butthenr ~ yp + (1 — 7)g for a unique vy in
(a, B), so u(r) = u(yp + (1 — v)g) = f(vy). But this is impossible since
there is no vy with f(a) < f(y) < f(a)*. We conclude that f must be
_continuous. ]

. It should be clear from the sufficiency proof that u for the transitive
convex representation does not have simple uniqueness properties. Any
transformation of u that preserves order and increasing continuity in A for
mixtures \p + (1 — N\)g when p > g is an acceptable transformation.

5.2 THE NEED FOR COUNTABLE BOUNDEDNESS

The following theorem asserts that countable boundedness cannot be
_ deleted from the axioms of Theorem 5.1 without affecting its conclusion.

TueOREM 5.2. Suppose the initial hypotheses of Theorem 5.1 hold.
Then there are (P, »>) that satisfy A1(~), C1, and C2 but do not have
transitive convex representations.

We prove this in the rest of this section by constructing a (P, >) that
atisfies the initial hypothesis along with weak order, C1 and C2 but for
which > is not countably bounded so that, by Theorem 5.1, (P, >) does not
ave a transitive convex representation. Familiarity with ordinal and cardinal
numbers is presumed (Rubin, 1967; Pinter, 1971). Connections between our
nstruction and other interests in representation theory are discussed in
shburn (1983b). We begin with a few preliminaries.

Ordinals will often be denoted by «, 8, . . . , and < is their natural well
ring: 0 < 1 <2< ++» < wy < wy + 1 < ---. The first uncountable
dinal is denoted by w; and we take

X = {a: aisan ordinal and @ < w,},

e uncountable set of countable ordinals. Also, P = Py, the set of simple
ibutions on X. The distribution in P that assigns probability 1 to « is also
ted by «. For convenience in correspondence to the well ordering we
| work with the dual < of >, where p < g means that ¢ > p.

ur definition of < on P begins with o < §if @ <  for the one-point
ibutions. We extend < to P with the use of functions v, like those in
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Lemma 4.3, with v, linear on P, ¢ < p & vy(p) > 0,and p < g & vy(p)
< 0. This extension will be shown to satisfy the axioms of Theorem 5.2 when
< is defined in the natural way, with either p ~ cora < p < « + 1 for
each p € P and some o € X. It then follows that if < were countably
bounded then there would be a countable Y & X such that every « € X hasa
B € Y with « < (. But this is impossible since {a:a < 8, 8 € Y} is
countable when Y is countable by the fact that {a:a < (8} is countable for
each B € Y, whereas X is uncountable. We now consider the construction of
the v,.
First, define v,(B) for all o, B € X by

va(a) = 0:
(B = -1  ifB<aq

and, if « < B, proceed as follows. Given any 8 > 0, let vy, 2, . . . be a
countable enumeration of {a:a < 8}, take

v‘y](B) =1,
v,,(8) = 172 ifyi < 7,
2 ifWQ < 71

and for n > 2 define v,,(8) recursively by

vy, (8) 1/n ify; < yp,foralli < n,

=n ify, < y;foralli < n,
= 5[v,,(8) + v, (B wheny, < v, < vpfora, b <n
and v; < vy, 0r 7y, < ; for
all other i < n.
Thus v,(B) is defined forall o, B8 € X. If oy, . . . , @, are the first 71 +y; in the
preceding construction with oy < o, < ** < a0, < B, then vy, (8) > v4,(8)
> 0 > u,,(8) > 0. Hence vp(8) > vi(B) > -+ > v (B) > - foralla
< B, with all such v,(B) positive. Since v, () = 0, v, will play the role of v,

in the stated representation of Lemma 4.3 when r = o.
The definition of v, is completed by linear extension to all of P:

va(P) = Y va(B)P(B).

BEX

The sum is well defined since p(8) > 0 for only a finite number of 3. By the
preceding paragraph,

v(p) = = p(B) + 3 valB)P(B)

B<a B>a
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- with v(8) > 0 when 8 > «a. To adhere to < for the representation of
Lemma 4.3 for o versus p € P, we define

a<p if v, (p) > 0,
a~p if v, (p) = 0,
p <« if v, (p) < 0.

Our definition of v, for nondegenerate p € P will be based on Lemma
5.1, which we prove before continuing with the construction. The lemma
shows that for each p € Pthereis an « € X such thateitherp ~ cora < p
< a+ 1.

Lemma 5.1. For every p € P\ X either v,(p) = 0 for exactly one o
>0, or v, (p) > 0 > v, ((p) for exactly one o« > 0.

Proof. Let p denote a distribhtion in P\ X. By definition, ve(p) > 0
and v,(p) = —1 for every o > max{B:p(B) > 0}. For each @ < wy,

VolP) = Var1(P) = p(a) + ple + Dogla + 1)
+ 3 PBNvalB) ~ var1(B],

B>a+1
‘where vy(a + 1) > 0 and v(8) — ves+1(8) > O for 8 > o + 1. Hence
Uo(P) 2 vori(p) foralla € X,

valP) > vasr(p) & 3 p(B) > 0.

Bza

Moreover, it is easily seen that v,(p) = vg( p) whenever o < (3. Because
o(p) > 0and v,(p) = —1 for large «, there is a smallest o, say a*, where
.(p) is nonpositive,

ve{p) >0 if o < o,
u(p) O ifa* < B

nfact v,x( p) = Othen T {p(B):B8 = a*} > 0, and therefore vox . 1(p) <
so vg(p) < Oforall B > o*. It follows that either

0 and v (p) # O for all @ # a*, or
0 and «o* is not a limit ordinal, or
0 and o* is a limit ordinal.

(@) vax(p)
() vex(p) <
(i) vex(p) <
An ordinal is a limit ordinal if it is nonzero and has no immediate
edecessor under <. Hence if (ii) holds then «* has an immediate
decessor, say o — 1, so that vex_(p) > 0 > v.+(p). Consequently,
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Lemma 5.1 is true if (iii) is impossible, for then (i) and (ii) constitute the
conclusion of the lemma.

To prove that (iii) cannot occur, suppose to the contrary that o* is a limit
ordinal with v(p) > 0 > vox(p) forall @ < o*. Then v p) — vex(p) > 6
for all @ < «* and some 6 > 0. Clearly,

V(D) —ver(p) = Y, P+ Y v(np()

{riagy<a*} {ria<y<o*}

+ Y pPMva(y) = v (V)]

{ria*<y<oy}

Since p is simple, the first sum vanishes as o« — «*, and the second converges
to vu(a¥)p(a*). Therefore, for large o < a*,

Va(D) = var(P) = val@®)ple®) + Y [va(y) = var (MNP (y).

y>a*

We claim that v (a*) = 0 and v (y) — vex(y) = 0 as o — «* which, if true,
implies that v p) — vex(p) — 0 as @ = «*, in contradiction to v( p) —
vex(p) > 6 > Oforall @ < a*. So if the claim is true, then (iii) is impossible
and Lemma 5.1 is proved.

To substantiate the claim, consider v,(a*) first. By the definition of
v(a*) for o < a* according to the enumeration vy, vs, - . . of {a:a < a*},
there must be an infinite number of # for which v; < «y, for all i < n so that
v (@*) = 1/n for an infinite number of n. Therefore v (a*) — 0.

Consider v,(y) — vo(7y) next for @ < a* < vy with a* and v fixed. Let
Y1, Y25 - - - be the enumeration of the countably many (3 that precede v used
in defining the vg(y) for B < +. Let N be such that vy = o*. Then all but a
finite number of o < «* follow 7y, in the enumeration and, since o* is a limit
ordinal, there must be an infinite number of such o whose v, (y) are
determined by the midpoint part of the definition, i.e., by v(y) = %[vo,/ )
+ vx(y)] with ¢’ < a < «*. Since the successive averages clearly
approach v,s«(y), it follows that v (y) — vex(y) = 0 as a = o*. [ |

With Lemma 5.1 at hand, let p be a nondegenerate distribution in P. If
the first alternative of Lemma 5.1 holds [v,(p) = 0, & ~ p], define v, by

Up(q) = val(q) forall g € P,

i.e., Up = v,. If the second alternative holds [v,{p) > 0 > vy 1(p), a < p
< a+ 1], let

vo (D)
h —i
(p) va(p) - va+l(p)

and define v, by
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Up = MD)ar1 + [1 — NMp)]u,.
Clearly, v, is linear for each alternative. Moreover,
Lemma 5.2. For all p, g € P, up(g) > 0 & vy(p) < 0.

Proof. By Lemma 5.1 and the preceding paragraph there are unique
ordinals « and 8 with v(p) = 0 > v, 1(P), vs(g@) = 0 > vs,1(q), and
unique numbers M p), Mq) € [0, 1) for which

)\(p)va+1(p) + [1 - )\(p)]va(p) = 0’

M@vg+1(q) + [1 — NM@)lvg(g) = 0
such that

U = ND)ar1 + [1 = ND)]vas
vg = M@ vg+1 + [1 — Nq)]ug.

We show first that v,(g) = 0 = v,(p) = 0. Suppose v,(g) = 0. Then
the definition of v, gives

MNP)var1(q) + [1 — N(P)lva(q) = O,

S0 U(q) 2 0 > v,41(@)- [If N(p) = 0, then v(g) = 0 and Lemma 5.1 and

- monotonicity give 0 > v,.,(q); if N(p) > 0, then v (@) > 0 > vyii(q)

_since Lemma 5.1 prohibits v(¢) = 0 = v, (q). (This remains true if ¢ €

X.)] Since v,(q) > 0 > vers(q) and vp(@) > 0 > vg.1(q), @ = B and
therefore, by the definition of N(g),

M@ va+1(q) + [T — NM@)ve(g) = 0.

Since the preceding two displayed equations imply Mg) = A\(p), we have v,
= Uy, 50 v p) = v(p) = 0.

Thus v,(q@) = 0 @ vy(p) = 0. To complete the proof of Lemma 5.2, we
show that v,(g) and v,( p) cannot both be negative or positive. We consider
_ the negative case; the positive proof is similar.

Suppose v,(g) < 0. Then M p)va11(q) + [1 — N p)Iv.(g) < O. Since
Va+1(g) < v(g) and 0 < N(p) < 1, var1(g) < 0. Butug,1(q) < 0 < vp(q)
by initial specification for 8, and therefore « + 1 2 8 + 1, or ¢ > 8.
Similarly, if v,(p) < 0, then 8 > a. Hence if both v,(g) < 0and v,(p) <
0, then o« = B and

AND)var1(q) + [1 = NMP)v(g) <O [vo(q) < 0],

M@ ves1(p) + [1 = NM@]v(p) <0 [vg(p) < 01,
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ANDWer1(p) + [1 = NP)va(D)
M@ ver1(q) + [1 — M@va(q)

Since vy(p) > vas1(p) by initial specification for «, the second and third
expressions require Mgq) > N(p). But since v,(q) > Vo1 1(q), the first and
fourth require N(p) > A(g). Thus v,(g) < 0 and v, (p) < 0 are
inconsistent. B

We are now ready to complete the proof of Theorem 5.2. Thus far we
have defined linear v, for every p € P with v,(g) > 0 & v,(p) < 0. In
correspondence to Lemma 4.3 we now define < completely on P by q <p
if vy(p) > 0. It remains to show that C1, C2, and Al(~) hold.

C1. Suppose p < g < 1, 50 vg(p) < 0 < v,(r), where 0 < ug(r) by
Lemma 5.2 applied to v,(g) < 0. Hence, for some 0 < X < 1, Ayg(p) + (1
— Nug(r) =0 =v,Mp + (1 = Nr),s0q ~ A+ (1= Nr.

C2. This follows immediately from the definition of <, linearity, and
Lemma 5.2.

Al(~). Suppose p ~ gand g ~ r, S0 vp(q) = ve(r) = 0. By the second
paragraph of the proof of Lemma 5.2, v, = vgand vz = v, SOV, = v, with
v(r) = v(r) = O0andp ~ r.

0 [definition of A(p)],
0 [definition of N(g)].

5.3 WEIGHTED LINEAR UTILITY

This section states our main representation theorem for weighted linear
utility and shows by example that the weighting functional w may have to
vanish at the closed extreme of P when (P, >) is half-open. The sufficiency
proof of the theorem appears in the next section. Section 5.5 then presents
and proves the uniqueness theorem for the weighted linear representation,
and Section 5.6 establishes equivalence among the weighted linear axiom sets
of Section 3.6. The final section of the chapter discusses the extension of the
weighted linear expectational form to general probability measures.

We say that (P, >) has a weighted linear representation if there are
linear functionals # and w on P with w > O such that, for all p, g € P,

p > q & u(p)w(g) > u(@)w(p),
w(p) > 0if (P, >) is open or closed.

If (P, >) is half-open, the representation requires w(p) > 0 for every p €
P*,

THEOREM 3.3. Suppose the initial hypotheses of Theorem 5.1 hold.
Then (P, ») has a weighted linear representation if and only if A1(~),
C1, C2, and C3 hold.
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Necessity Proof. Assume that u# and w satisfy the weighted linear
representation as specified above. Let ¢(p, q) = u(p)w(g) — u(g)w(p).
Then ¢ is an SSB functional on P X Pwith > = {(p, q@):¢(p, q) > 0}, so
Cl1, C2, and C3 hold by Theorem 4.1.

To verify A1(~), suppose p ~ g and ¢ ~ r. Then

u(p)w(q) = u(q)w(p),
u(@)yw(r) = u(ryw(q).

_ Ifall w terms are positive, then u( p)/w(p) = u(q)/w(g) = u(r)/w(r), and
therefore u( p)w(r) = u(r)w(p) and p ~ r. Suppose henceforth that some w
_term vanishes, so (P, >) is half-open. Assume first that w(g) = 0. Ifu(g) =
0 also, then u(s)w(g) = u(g)w(s) and s ~ g for all s € P. But then ¢ €
 Prox N Py, 50 (P, >) is closed in contradiction to half-openness. Hence
w(g) = 0 implies u(g) # 0, and, consequently, w(p) = w(r) = 0, so
u(pyw(r) = u(ryw(p) and p ~ r. Assume next that w(g) # 0 and w(p) =
0. Then u(p) = 0,s0s ~ p for all s € P, for another contradiction. A
similar contradiction obtains if w(g) # 0 and w(r) = 0. Hence either all w
_terms are positive or all vanish. |
Although there is no direct precedent to weighted linear utility in the
iterature prior to Chew and MacCrimmon (1979), one previous contribution
deserves mention. Recall that if w > 0, then we can write the weighted linear
representation using ratios of linear functionals:

p 7 q e u(p)/w(p) > u(q)/w(q).

Bolker (1966, 1967), in a modification of the von Neumann-Morgenstern
ory that was motivated in part by Jeffrey (1965), applies > to @ \ {&},
where @ is a complete, atom-free Boolean algebra. He proves that axioms for
on @ \ {} that resemble those of Theorem 5.3 in some ways imply that
there are countably additive measures ¢ and p on @ withp > Oon @ \ { &}
ch that, forall 4, B € @ \ {&},

A > B & a(A) p(A) > o(B)/p(B).

Bolker’s representation involves quotients of measures rather than
otients of linear functionals, with additivity rather than linearity the key
operty. He avoids the vanishing-denominator problem by removing &
m the domain of > and by investing @ with nice structural properties.
ffrey’s (1978) later axiomatization applies > to @ and allows p(4) = 0.

By Theorem 5.3, the weighted linear axioms enable w > 0 when either
wx = Py = @ Of Py # & # Py We conclude this section with a
f-open (P, >) in which Py, # & and w must vanish on P,;, for the
ighted linear representation. In the example P, = {0}.
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Let X = {0,1,2,...} and P = Py. Define ¢ on X x X by

¢(0, 0) = 0,
¢(n7 O) = _QS(O‘: n) = 1, n 2 1’
¢(n,m) =n — m, n,m>=1.

Then define ¢ on P X P by bilinear extension,

¢ (0, @) = Y, ¢(n, m)p(n)q(m),

andtake p > g © ¢(p, q) > 0. Since ¢ is an SSB functional, C1, C2, and
C3 hold by Theorem 4.1.

Since no p € P is indifferent to all distributions in P, Al(~) holds if,
forallp, g, r,s € P,

) (o, Q)o(r, s) + o(p, $)o(q, r) + ¢(p, r)d(s, q) = 0.

For, if p ~ gand g ~ r, then ¢(p, q) = ¢(q, r) = 0, so (*) reduces to
o(p, No(s, g) = 0, and, since ¢(s, g) # 0 for some s, ¢(p, r) = Oand p
~ r. To show that (*) holds for our example, suppose first that p, g, r, and §
are integers in X. If all are nonzero, then

p-r-s+@-sg-nrN+@-nrs-4qg =0

if one of p, g, r, and s is 0, say s = 0, then

pPD-Pl+ N (g—-r)+ @ -r)(—-1) =0

and so forth. Next, if one of p, g, r, and s is nondegenerate and the others are
integers, then linearity with the result just proved shows that (*) holds. If
exactly two of p, g, r, and s are nondegenerate, then linearity and the one
nondegenerate result imply (*), and so forth. Hence A1(~) holds.

Now suppose that the weighted linear representation holds with w
strictly positive. The uniqueness part of Theorem 4.1 allows us to presume
that ¢(p, q) = u(p)w(q) — u(g)w(p) since the right side is an SSB form.

Since w > 0, ¢(p, q@)/[w(p)w(g)] = u(p)/w(p) — u(q)/w(g) and
therefore

o(p, @) N ¢(q, 1) N o(r, D) _
wp)w(q) w(@w(r) w(r)w(p)

For definiteness set w(g) = 1 and w(r) = a > 0 and consider (p, r, @) =
(n, 1, 0). Then

¢(n, 00 ¢0,1) ¢d,n)
+ + =0
w(n) a aw(n)

so that
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ag(n, 0) + (1, n) = w(n)é(1, 0).

Since w(n)¢(1, 0) > 0, this implies that a¢(n, 0) > ¢(n, 1) forall n, ora >
0 for all 7, which is impossible. Therefore w cannot be strictly positive.

It is easily checked that the weighted linear representation requires w(0)
-= 0 in the example. A (v, w) pair that satisfies ¢(p, q) = u(p)w(q) —
u(q)w(p) for all p, g € P is specified by

u = -1, u(n) =n, w0 =0, wn) =1, nx=l,

with # and w defined on nondegenerate distributions by linear extension.

5.4 SUFFICIENCY PROOF

We assume throughout this section that A1(~), C1, C2, and C3 hold
_and that ¢ on P X P satisfies the SSB representation of Theorem 4.1. We
~wish to prove that there are linear ¥ and w on P that satisfy the representation
_of Theorem 5.3. To do this, three lemmas will first be established. The last of
_ these is then used to construct w and u for the weighted linear representation.
. The first lemma is essentially the same as axiom E2 in Section 3.6.

Lemma 5.3. If r ~ g, not (p ~ ryand \p + (1 — N)g ~ %p + %r,
then \s + (1 = N)q ~ 35 + 37 foralls € P.

Lemma 5.4. Forallp, q,r,s € P,
) (P, b(r, 5) + (D, 1665, @) + (D, )(q, 1) = 0.

~ Lemma 5.5. If (P, »>) is open or closed, then there is a positive
unctional f on P whose reciprocal is linear such that, for allp, q, r € P,

T f(@e(p, ) + f(@f(Né(q, r) + f()f(p)é(r, p) = 0.

Proof of Lemma 5.3. Assume for definiteness that p > r ~ g with Ap
1= Ng ~ %p + %r. If s ~ rthen, by C2 and Al(~), all measures in
{r, s, q}) are indifferent to each other, so A\s + (1 — N)g ~ -Zl—s + %r.

Assume henceforth that s + r. Then Al(~), Cl, and C2 imply that
re is a unique p in (0, 1) with us + (1 — u)g ~ %s + %r. We prove that p

_For convenience, denote by o = (¢, o, a3, ay) the measure o p +
g + o3r + ausin H({p, g, r, s}). For measures « and &’ = (a/, "+,
)sa ~ a’ & ¢la, a’) = 0 by the SSB representation. Using skew-
mmetry and bilinearity,
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a~a e (ya, - a/a)ep, q) + (wa; — a/a)d(p, r)
+ (o, — o/ a)d(p, s) + (o, — aja)d(yg, s)
+ (s, — oy a)d(r, s) = 0.

Assume first fors + rthatr > ssop > r ~ g > s. Then all ¢ terms in
the preceding expression are positive. By the definitions of A and u, A¢(p, r)
= (1 — N¢(p, @) and po(r, s) = (1 — w)¢(g, 5), so with A* = (1 — N/A
and so forth,

o(p, 1) = N¢(p, @), ¢, 5) = p (g, 9).
Consider o ~ (0, %, %, 0). By the preceding paragraph this is equivalent to
0= ai9(p, @) + 1d(p, 1) — ud(q,s) — ud(r,s)
ar(l + M)eo(p, @) — as(l + p*)é(q, 5).

Let ¢y > 0 and a4 > O satisfy oy + o4 < 1 and satisfy the preceding
equation:

Il

Il

o (1 + Me(p, q)

a1+ pNe(g,s)

Alsoletp = 1 — oy — a4 and consider o« = (g, 0, 0, ag) and o’ = (o1, 0,
0, o). Since o ~ (0, %, %, 0) ~ o’ by construction, Al(~) gives ¢ ~ o',
and therefore

0= Pllar - 0 — ayp) + N(oup — . 0)]
+ ¢(q, N(oas — 0 - o) + p*(0 * oy — pay)]
+ (P, s oy — aroy)
= —a1pd(p, )1 — M) + aspd(q, s)(1 — p¥).
By the definition of /o we require
oyplog( + pIA = M) = agp[ay (I + AIA — p¥),

which after cancellation leaves p* = A*. Hence p = A.
Assume henceforth in the proof of Lemma 5.3 that s > r. We assume
also that s > p. (The proof for p 2 s is similar.) Then

a~a & (ya, — a/w)d(p, q) + (a]ay — aja))d(p, r)
= (o, — a/a)d(s, p) + (o, — aja)é(s, q)

+ (3, — ajo)o(s, r)




TRANSITIVE NONLINEAR UTILITY THEORY [27

with all ¢ > 0 except perhaps for ¢(s, p), which is 0 if s ~ p. Moreover,
o(p, r) = N*¢(p, q) and é(s, r) = p*$(s, @). Thena ~ (5, 3, 3, 0) if and
only if

(0, Pllez — ) + Moy — )] = auld(s, p) + (1 + p¥o(s, gl
Take oy = O sothat oy = 1 — oy — 3. The preceding equation becomes
(2 + Noa3)d(p, ) + (2 + )4 = A,

where A = ¢(s, p) + (1 + u®¢(s, g). Particular solutions are obtained by
setting a, or a3 to O:

a = 0: az = A/(A + No(p, q)), as =1 — a5,

ay = 0: a, = A/(A + ¢(p,q), o, =1~ o).

Leta = (0, 0, a3, ay) for the first particular solution, with o’ = (0, «,, 0,
‘a,) for the second. Since o ~ (%f%, %, 0) ~ o', we have « ~ «’, and
therefore

o
|

= —a,a9(s, ) + s/ d(s, 1)

¢@m{—[ A ][X%WJ)]
’ A+ é(p, )] LA+ No(p, q)

N *[ A ][ ¢(p, 9) ]}
P la T vem ol A + e 9

hich reduces to u* = N\*. &

Proof of Lemma 5.4. Assume that no more than two of p, g, r, and s
¢ in the same ~ class, since otherwise all three products in (*) are 0. For
finiteness take p > randp > q.If r ~ g, then ¢(g, r) = 0, and we need
 show that ¢( p, @)o(r, s) + &(p, Né(s,q) = 0. Givenp > r ~ g, let A
tisfy \p + (1 — N)g ~ 5P + 37. Then, by Lemma 5.3, As + (I — \)g ~
S + %ri Sy )\¢(Ps r) = (1 - )\)¢(p5 Q) and >\¢(Sa r) = (1 - )\)¢(S’ Q)
ith all ¢ # 0, since s + r by our initial assumption and r ~ g. Therefore
, $(s, ) = ¢(p, NP(s, g) = N1 — N); hence ¢(p, @)o(r, s) +
, Do(s, @) = 0. Thus (*) holds when there is one ~ pair.

Assume henceforth that no two of p, g, r and s are indifferent. Take p >
. r > swithno loss in generality. Let A satisfy ¢ ~ Ap + (1 — \)s. Then
é(p, @) = (1 — N)¢(q, s) and, by the result of the preceding paragraph,

(P, d(Ap + (1 = N)s, r) = ¢(p, A\p + (1 — N)s)é(q, 1),
‘4)’(19, Qe(Ap + (1 = N)s, s) = ¢(p, Ap + (1 — N)s)é(q, 5)

all ¢ > 0. We divide the preceding equations and use linearity of ¢ in its
argument to get
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[>\¢(pa r) + (1 - )\)¢(S, ")]4)(% S) = [)\(b(p’ S)]d)(q’ r),

which by A¢(p, @) = (1 — N)é(g, s) and skew-symmetry yields (). 8

Proof of Lemma 5.5 for Closed (P, > ). Assume that > is closed and
nonempty (otherwise ¢ = 0 and f = 1 satisfy the desired conclusion). Take r
€ Ppand g € Pyyp. Thenr > gandr 2 p > g forall p. Let @ and b be

any positive numbers and set f(r) = a, f(g) = b. The lemma’s conclusion
then requires

f(p)lag(r, p) + bo(p, @] = abs(r, q),
so f must be defined on P by

abo(r, q)
ad(r, p) + bo(p, q@)°

which is positive for every p. Let w = 1/f. Then bilinearity of ¢ gives w(Ap
+ (1 — N)s) = Aw(p) + (1 — N)w(s), so the reciprocal of f is linear.

To complete the proof, let p, s, and ¢ be any three elements in P and use
the definition of f and then Lemma 5.4 to get

S(D)f(s)o(p, s) + f()f (D)o (s, 1) + f)f(P)o (2, P)

= {la¢(r, p) + bo(p, Dllad(r, s) + bé(s, @llad(r, 1)
+ bo(t, PI} ' X [abo(r, P1*{lad(r, 1) + bo(E, @) d(p, 3)
+ [ao(r, p) + bod(D, DNo(s, 1) + [ad(r, s)
+ bo(s, @)lo(t, p)}

= K{a[o(r, D¢(p, 5) + ¢(r, D)o(s, 1) + ¢(r, ), P)]
+ blo(t, @Yo (p, s) + ¢ (P, Q)o(s, 1) + d(s, Q)¢ P}

= K{a[0] + b[0]} =0. ®©

Proof of Lemma 5.5 for Open (P, »>). With both P, and Py, empty,
choose r, ¢ € P withr > g. We propose to set f(r) = @ > Oand f(g) = b
> 0, in which case the lemma’s conclusion requires f( p){a¢(r, p) + bo(p,
q)] = abo(r, g) as before. If @ and b can be chosen so that f( p) as defined in
the obvious way is positive for all p € P, then the latter part of the preceding
proof shows that Lemma 5.5 holds when > is open.

Since abo(r, g) > 0, we get f > 0if and only if, for all p € P, a¢(r, p)
+ bo(p, q) > 0. Thisis clearly true ifr > p > q.If p > r > g, then a¢(r,
p) + béd(p, q) > Oifand only if ¢(p, @)/ ¢(p, r) > a/b;andifr > g > ¢,
then a¢(r, t) + bo(t, g) > 0 if and only if a/b > ¢(q, £)/¢(r, ). Hence
positive f can be defined to satisfy the lemma if and only if there is a number ¢
such that

f(p) =
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¢, @)/ d(p, 1) > ¢ > d(q, 1)/o(r, 1)
forall p and ¢ for whichp > r > g > t. Givenp > r > g > t, (¥) says that

o(p, N¢(g, ) + ¢(p, NG(r, @) = d(p, Q) 1).

Since all ¢ terms here are positive, we have o(p, @)o(r, 1) > &(p, rNé(q,
1), and therefore

(0, 9)/¢(p, r) > $(q, 1)/ d(r, 1).

Ifp’ > p > r > q,then (%) yields ¢(p, 9)/¢(p, r) >¢(p’, @)/d(p’, 1);
andifr > g > ¢ > t’, then ¢(q, ')/ o(r, t') > ¢(q, £)/¢(r, ). Therefore

il;f{qﬁ(p, Q/e(p, ) ip > 1} = supl(g, /¢(r, 1) 1 q > 1},

and, since > is open, no p attains the inf value and no ¢ attains the sup value.
Hence a c exists as desired. Any c in the closed interval from sup to inf
suffices; then, given such a ¢, any positive ¢ and b for which a/b = c serve
+ to define a suitable f. [ |

Sufficiency Proof of Theorem 5.3. Assume first that > is closed or
open and let f'be as specified in Lemma 5.5. Fix x € P and define w and u on
P by

w(p) = 1/f(p), u(p) = f(x)o(p, x).

By Lemma 5.5 and Theorem 4.1, w and u are linear and w > 0. Also, by
Lemma 5.5 and the definitions,

d(p, @) = w(PIW(QLf (x)¢(p, x)/w(p) — f(x)o(q, x)/w(q)]
' = u(p)w(q) — u(q)w(p),

sop > g & u(p)w(g) > u(g)w(p). This completes the proof if > is open
closed.
~Assume henceforth that > is half-open, and for definiteness take P, #
and P, = . (A dual proof applies to the other case.) Given r > g with
€ Py, the analysis in the open (P, >) proof of Lemma 5.5 shows that the
nclusion of Lemma 5.5 with f > 0 holds if inf,{¢( p, ¢)/¢(p, r):p > r}
0. When this is true, the preceding paragraph shows that Theorem 5.3
lds with w > 0. In the rest of this proof we allow for the possibility that the
f equals 0.
. Continuing with Py, # & and P,,, = @, it is easily seen that the
terior P* is convex. Therefore, by the sufficiency proof of Theorem 5.3 for
en >, there are linear ¥ and w on P* with w > 0 such that, for all p, ¢ €
D > q e u(p)w(g) > u(g)w(p). It remains only to extend ¥ and w
early to P, and to note that w > 0 on P, with u(p)w(g) > (=)
@)w(p) whenever p is in P*(Pp,) and ¢ € P
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Givenq € Py,and p € P*withp > g, \g + (1 — N)pis in P* for
all 0 < A < 1, so linearity for w and u requires

whg + (1 = Mp) — (1 = Mw(p)

w(q) = x ,
_ulhg + (1 - Np) - A - Nu(p)
u(q) = N .

To show that w(g) is invariant to the choice of (A, p) € (0, 1) X P¥*,
suppose A, u € (0, 1) and p, t € P*. Let7 = (N + p — Ap)~ L. Then

urw(hg + (1 = N)p) + (M — N)7w(F)
w((un)g + [(p — M)7lp + [(N = Mu)7]0)
wAT(pg + (1 = p)0) + [(p — M)7]D)
Mw(pg + (1 — w1 + (p — M)7W(D),

I

so that
[wihg + (1 = N)p) — (1 = Mw(pI/A
= [w(pg + (1 — wit) — A — pWw@))/p.

A similar computation shows that the value of #(q) is invariant to the choice
of (\, p). Therefore w and u are uniquely defined on Py, by linear extension
from w and u on P* in the preceding paragraph. Moreover, the extended w
and u are linear on all of P. For example, if g, ¢" € Py and 0 < N < 1,
then with 0 < u < 1 and p € P* we have

wkhg + (1 = Ng’)
= [wp(Ng + 1 = Ng) + (1 = wp) — A - Ww(p)/u
(whpg + (1 — p)p) + (1 = M)(pg’
+ (1= pwp) - A - pwp)/p
Nw(pug + 1 = wp) — (1 = w)w(p)/p
+ (1 = Niwpg" + 10 = wp) — A - wWwp)/p
= Mw(q) + (1 = Mw(g’).

It is clear also that w(g) > 0: fix p € P* and take \ T 1 in the initial equation
of this paragraph. Note too that since the right side of that equation is the
same forall0 < A < 1, w(g) = lim{w(\g + (1 — N)p):\ T 1}. Similarly
u(q) = lim{u(rg + (1 — N)p):\ 1T 1}.

Finally, since ¢ is bilinear and ¢(p, p) = 0, when p € P*and g €
P, we have

1l
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I

- N(p,q) = d(p, N\g + (1 — N)p)
u(ppwNg + (1 = N)p) — u(\g + (1 = N)p)w(p),

so N T 1 gives ¢(p, q) = u(p)w(q) — u(g)w(p). Therefore u(pw(q) >
u(g)w(p)whenp € P*and g € P,y,. Moreover, if D, q € P, then with ¢
€ P* we have

A(p, @) + (1 = Mot @) = ¢\ + (I — N)t, g)
=ulw + 1 - MNOw(@ - u(@wp + 1 - N1

by linearity and the result just proved, so A T 1 gives 0 = ¢(p, ¢) =

- u(p)w(@) — u(@)w(p). Hence u( p)w(q) = u(q)w(p) whenever p, g €
‘ Pmin- 8

5.5 WEIGHTED LINEAR UNIQUENESS

~ Suppose (#, w) is a pair of linear functionals on P that satisfies p > g &
u(p)w(q) > u(g)w(p) for the weighted linear representation. Theorem 5.3
emphasizes the special role of one of these functionals as a weighting function
by specifying w > 0 with w > 0if > is open or closed. However, since (",
w') = (-u, —w)and (u’, w') = (w, —u) satisfy p > q & u’(p)w’ (@)
> u'(q)w’(p), the basic representation without the sign constraint admits
other possibilities that are not covered by the theorem.

~In this section we prove two theorems that address the sign and
niqueness questions. The first shows precisely when a general linear pair (i,
) for which p > g ¢ u(p)w(q) > u(@)w(p) admits a weighted linear
presentation. We assume throughout that the initial hypotheses of Theorem
1 hold.

. TueoreMm 5.4. Suppose > is nonempty and (u, w) is a pair of linear
funcnonals on P such that, for all p, g € P,

p > q e u(pyw(q) > u(q)w(p).

Then C1, C2, and C3 hold, and Al(~) holds if and only if 0, 0) &
u(p), w(p)):p € P}.

Proof. Given the hypotheses, C1-C3 are immediate from Theorem 4.1
on defining ¢(p, q) = u(p)w(g) — u(g)w(p). For the transitivity part,
ppose first that u(p) = w(p) = O forsome p € P. Thenp ~ g for all g
P, and, since > is presumed to be nonempty, Al(~) cannot hold. Hence
1(~) = (0, 0) & {(u(p), w(p)):p € P}. To prove the converse, assume
(5), w(s)) # (0, 0) for every s € P, and suppose p ~ gand ¢ ~ r. Then
pw(g) = u(@w(p) and u(@)w(r) = u()w(g). If w(g) # 0, then
pyw(r) = [u@)/w(@lw(p)w(r) = u(ryw(p), sop ~ r. If w(q) =
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then u(g) # 0 and u(p)w(r) = [w(g)/u(@lu(p)u(r) = u(I)w(p), so
again p ~ r and Al(~) holds. [ ]

Theorem 5.4 raises the question of whether the generalized representa-
tion in its hypotheses forces at least one of u and w to have constant sign
(nonpositive or nonnegative) throughout P when A1(~) holds. The answer is
no, as we show in Remark 1, which follows the uniqueness theorem.

THEOREM 5.5. Suppose > is a nonempty weak order on P and (u, w)
is a pair of linear functionals on P that satisfies p > q & u(p)w(g) >
u(qyw(p) forall p, g € P. Then a pair (u’, w') of linear functionals on
Psatisfiesp > q & u' (p)w’(q) > u’(@)w’(p) forall p, g € Pif, and
only if, there are numbers a, b, ¢, and d such that u’ = au + bw, w’ =
cu + dw, and ad > bc.

Remark 1. Let X = R and P = Pyx. Suppose u and w on X have
codomains #(X) = Rand w(X) = (0, 1). Extend u and w linearly to P and
define > on Pbyp > g © u(p)w(g) > u(g)w(p). Then, by definition,
(P, >) has a weighted linear representation. Leta = 2and b = c = d = 1
in Theorem 5.5 so that ad > be, u’ = 2u + w,and w’ = u + w. Then p
>q e u(pw'(Q) > u'(gw'(p) for all p, g € P, and u’'(X) and
w’ (X ) both contain positive and negative numbers.

Remark 2. Suppose w > 0 in Theorem 5.5, and we wish to consider
only those (#’, w’) that have w’ > 0. Then, according to the theorem, its
final conditions must hold along with cu(p) + dw(p) = Oforall p € P.
This might limit a, b, ¢, and d substantially. For example, for the case in
Remark 1 we require ¢ = 0, d > 0, and @ > 0, but there is no restriction on
b.

Proof of Theorem 5.5. Let the hypotheses of the theorem hold.
Suppose first that ¥” = au + bw, w' = cu + dw, and ad > bc. Then

u (pyw'(q) > u' (@)w’(p)
& [au(p) + bw(p)llcu(q) + dw(q)]
> [au(q) + bw(@llcu(p) + dw(p)]
& {ad — bc)u(p)w(q) > (ad — boyu(q)w(p)
@ u(p)w(q) > u(@)w(p),

sop > q e u(pw'(q) > u (@w (p).

Conversely, suppose linear #” and w’ satisfy p > g & u’(p)w’(q) >
u’(q)w’(p) forall p, g € P. Let ¢(p, q) = u(p)w(g) — u(g)w(p) and
¢’ (p,q) = u (p)w'(g) — u’(g)w’(p). Then, by Theorem 4.1, there is a
positive number A such that ¢’ = A¢. Hence for all p, ¢ € P,

p (D)w (q) — u' (@w'(p) = Nu(p)w(q) — u(g@)w(p)l.




TRANSITIVE NONLINEAR UTILITY THEORY 133

Suppose first that ¥’ (x) = 0 for some x € P. Then w’ (x) # 0 by Theorem
5.4 and, for all p € P,

u’(p) = Mu(p)w(x) — u(x)w(p)l/w’(x) = au(p) + bw(p),
where a = Aw(x)/w'(x) and b = —Au(x)/w’(x). Since u’(x) = 0,
nonempty > requires u’(y) # 0 for some y € P, so
—{Nu(PIw(y) — uNw(p)l — v (P)w’ (M} u’(»)
cu(p) + dw(p),

with ¢ and d defined in context. Then ad > bc by the procedure in the
preceding paragraph. A similar result obtains if we presume that w’(x) = 0
for some x € P.

Finally, suppose that 0 & u«’(P) and 0 §& w’(P). Then with x > y for
some x and y since > is nonempty;

1l

w’(p)

u' Mlu’ (p)w’ (x) — w (p)u’(x)]

= u' (MNu(p)w(x) — w(p)u(x)],
u' () (p)w' (y) — w (p)u' ()]

= u ()Nu(p)w(y) — wp)u(y)l,

, by subtraction,
u (pu Mw’ (x) — u' (x)w’ ()] = Au(p) + Bw(p).

nce x > y, the term in brackets is nonzero, and therefore we get u’ (p) =
u(p) + bw(p) forall p € P. A similar procedure gives w’(p) = cu(p)
dw(p) for all p € P. As before, ad > bc. B

6 EQUIVALENT AXIOM SETS

We now establish the equivalence of the three axiom sets for the
eighted linear representation that were noted in Section 3.6. The axioms
ere that have not been used in the interim are

A3. {p>qg,g>r}=ap+ (1 —a)y >qgandqg > Bp + (1 — B)r

Jor some « and (3 in (0, 1).

C2AX. {p>qgp2r,0<A<1}=p>r+(d-Nr
{g>p,r2p,0<AN<1l}=2Ag+ 0 —-Nr>p.

D2. p~qg= forevery0 < a < lthereisa0 < 8 < 1 such that,

forallre P,ap + (1 — o)r ~ Bg + (1 — B)r.
E2. p~ g = thereisa0 < 8 < 1such that, forallr € P, -;-p + -;-r
~Bg + (1 = P
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THEOREM 5.6. Suppose the hypotheses of Theorem 5.1 hold. Then the
following three sets of axioms are mutually equivalent: {Al, A3, C2(>),
D2}, {Al(~), C1, C2, C3}, {C1, C2, E2}.

Proof. We note first that A3, D2, and E2 are necessary for the weighted
linear representation. This follows for A3 from Theorems 1.4 and 5.3. For
D2, let linear v and w > O satisfy the weighted linear representation and
suppose that p ~ gand 0 < o < 1. If r ~ g for all r € P then D2 holds
trivially (in the following display, the second equation reduces to 0 = 0).
Assume r + g for some r € P. Then

ap + (1 —a)r~pBg + (1A - B)r
ulep + (I — a)ryw(Bqg + (1 — B)r)
uBg + (1 — Byrywlep + (1 — ajr)
a(l = B)lu(p)w(r) — u(r)w(p)l
1 — a)Blu(q)w(r) — u(r)w(q)] & B
alu(p)w(r) — u(r)yw(p)]
alu(p)yw(r) — u(r)w(p)] + (1 — )u(@)w(r) — u(r)w(q)]

The ratio for 8 is in (0, 1) since r + g ~ p implies that each term in brackets
has the same nonzero sign. If s + g also, then the preceding ratio does not
change when r is replaced by s. To see this, cross multiply the two ratios,
cancel equivalent terms, and use the fact that p ~ g = u(p)w(g) =
u(q)w( p) to conclude that the ratios are equal. Since ¢ ~ g also satisfies ap
+ (A — a)t ~ Bg + (1 — B)t, D2 follows. Since D2 = E2, E2 is also
necessary for the weighted linear representation.

With necessity established, Theorem 5.3 shows that {A1(~), C1, C2,
C3} implies the other two sets in Theorem 5.6. We complete the proof by
showing that {C1, C2, E2} = {Al(~), C1, C2, C3} and then that {A1, A3,
C2(>), D2} = {C1, C2, E2}.

Assume first that C1, C2, and E2 hold. To verify Al(~), suppose to the
contrary thatp ~ g, q ~ r,and p > r. Then C2 implies p > %r + %q and r
~ 3r + 3g,soby C2forall0 < B < 1,B8p + (1 — B)r > 37 + 3q, which
contradicts E2. Hence p ~ g ~ r = p ~ r. To verify C3, assume its
hypotheses: p > g > r,p > r,andg ~ —;-p + %r. By E2thereisa0 < 8 <
1 such that, for all x € P,

k12

¢

3q + 3x ~ BGzp + 31) + (1 = B)x.
Withx = pandthenx = rwegetA\p + (1 — Nr ~ %p + %qand A+ (1
- Np ~ %r + %qwhen)\ = (/2 + (1 — B). Suppose p # Aand up + (1
— w)r ~ 5p + 3q. Then, by Al(~), A\p + (1 = Nr ~ pp + (1 — p)r.
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However, this gives a contradiction, since, with p > r, C2 allows A\p + (1
= Mr ~up + (1 — p)ronly if N\ = u. It follows that, for all v in (0, 1),

wH+ A -Yr~sp+3qge v+ (1 —-y)p~1ir+1q,

the conclusion of C3.

Assume henceforth that A1, A3, C2(>), and D2 hold. Since D2 = E2,
we need only consider C1 and C2. The only part of C2 not covered by C2( >)
s(p~q,p~r)y=p~Ng+ (1 = Nr.Assume p ~ gand p ~ r.
Suppose for definiteness and contrary to the desired conclusion that p > Ag
+ (1 = N)r. Then,by Al,g > \g + (1 — N)randr > Ag + (1 = N)r, so,
by C2(>), A\g + (1 — Nr > ANg + (1 — N\)r. But this contradicts
asymmetry, so C2 holds.

To verify C1, suppose it fails withp > ¢ > randg + ap + (I — @)r
forall 0 < o < 1. It then follows from A3, C2, and Al that there is a unique
a*in (0, 1) such that ap + (1 — a)r > gforall & > a*, qg>ap+ ({1 -
ojrforall « < o*, and either a*p + (1 — a*)r > gorqg > o*p + (1 —
a*)r. Whichever of the latter holds, a contradiction follows easily from
A3, [ |
Since D2 was not used in the last two paragraphs to derive C1 and C2, it
can be replaced in {Al, A3, C2(>), D2} by E2.

1,’5.7 EXTENSION FOR PROBABILITY MEASURES

Suppose SO, C4, and C5 of Section 4.8 hold in the context of the
weighted linear representation with ¢(p, q) = u(p)w(q) — u(qg)w(p).
_Then, with the natural extensions of #, w, and ¢ for X, we have

u(pyw(q) — u(@)w(p) = ¢(p, q)
SS é(x, ) dp(x) dg(»)

[[ 1w = ux)w) dp(x) da(y)
= Jut) dpe) [ wi) da) - [ ur) da) | weo) oo,

his gives the expectational form

p>q®§udp§wdq>§uquwdp

r the weighted linear representation.




6 Applications for Choice Theory and
Risk

Expected utility theory has been used extensively in diverse areas of
decision theory and economic analysis. Recent investigations have demon-
strated the efficacy of generalizations of expected utility in these areas as well
as areas not well suited to the expected utility assumptions. This chapter
presents results for SSB utility and weighted linear utility that illustrate their
analytical and interpretational potential for an array of topics including choice
theory with cyclic preferences, social choice theory, noncooperative games,
multiattribute utility, mean value, stochastic dominance, and risk attitudes.

6.1 VON NEUMANN’S MINIMAX THEOREM

This chapter demonstrates the application of SSB utility theory to a
variety of concerns and problems that have often been addressed from the
more restrictive linear utility perspective of von Neumann and Morgenstern
(1944). Our results also pertain to specializations of the SSB theory such as
weighted linear utility when the conditions needed for such specializations
hold. It is assumed throughout that ¢ or ¢; is an SSB utility functional on
the Cartesian product of a convex set of probability measures with itself.

The next three sections focus on contexts that use von Neumann’s
minimax theorem (von Neumann, 1928; Kakutani, 1941; Fan, 1952;
Nikaidé, 1954; Luce and Raiffa, 1957) to establish the existence of
maximally preferred measures. Section 6.5 then proves the existence of Nash
(1951) equilibria for noncooperative games in which players have SSB
utilities. The final four sections consider generalizations of popular topics in
expected utility, including multiattribute decomposition, stochastic domi-
nance, and risk attitudes. Readers familiar with these subject areas will note
that our analyses only begin to tap their potential.

For use in the next few sections we state an intermediate-level version of
the minimax theorem as given in Nikaid6 (1954). Other versions are noted in
the preceding references and in Geraghty and Lin (1985), which discusses
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relaxations of linear structure and provides a useful bibliography. Readers
 unfamiliar with the notion of a linear topological space may consult a text
such as Kelley (1955) or Kelley and Namioka (1963), or simply note that our
ensuing applications deal only with finite-dimensional Euclidean spaces (R")
~ endowed with the usual topology (Fishburn, 1970a, pp- 35-37). A subset A
of a linear topological space £ is said to be compact if every collection of
(open) sets in £ whose union includes A4 has a finite subcollection whose
union includes 4. Let f denote a functional on 4; X Aj,, where each 4;is a
convex compact subset of a linear topological space £;. Then f is quasi-

concave in its first argument if, for all x;, x, € Ay, y € A,, ¢ € R, and 0
S a <1,

OLp) 26, f(a,y) 2cl = flax; + (1 — a)x, y) = ¢

[ is quasi-convex in its second argument if, for all x € ALY,y € A, €
€ R, and0 € o < 1,

fCoy) <o, f(,y) <cl=fx,ay + (1 - a)y) <c

THeorEM 6.1 (von Neumann’s minimax theorem). Suppose A; is a
nonempty convex compact subset of a linear topological space £; fori =
1,2 and f:A; X A, = R is continuous in each argument, quasi-concave
in its first argument, and quasi-convex in its second argument. Then
ax min f(x, = m max f(x,
max min f(x, ) = min maxf(x, ).

For Euclidean spaces (R"), continuity of f in its first argument has the
usual meaning that if x; — x then, for every y € A,, f(x;, ¥) = f(x, »).
Continuity in the second argument is defined similarly.

2 CHOICE WITH CYCLIC PREFERENCES

 As first proved by Kreweras (1961) and, independently, Fishburn
984c), SSB utility theory provides a nice resolution of the problem of
00sing one alternative from a finite set when, due to cyclic preferences,
ery alternative in the set is less preferred than something else in the set (see
ction 2.7). It says that there is a probability distribution p* over the basic
ernatives that is preferred or indifferent to every other such distribution,
'k providing a basis for choice in terms of binary preferences. As before,
let P denote a convex set of probability measures or distributions and
te the convex hull of Q < P by H(Q).

 THEOREM 6.2. If Q is a nonempty finite subset of P, then there is a D*
H(Q) such that ¢(p*, q) > 0 for every ¢ € H(Q).

Proof. When H(Q) is viewed as the simplex based on Q, the continuity,
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quasi-concavity, and quasi-convexity properties of Theorem 6.1 for ¢ on
H(Q) x H(Q) follow immediately from bilinearity. Therefore the minimax
theorem applies to give

max min ¢(p, q) min max ¢(p, q) (minimax)
PEH(Q) gEH(Q) qEH(Q pEH(Q)

1l

min max[—¢(q, p)] (skew-symmetry)
q p

Il

—max min ¢(q, p) (algebra)
q p

—max min ¢(p, q) (notation)
p q

so that max,[min, ¢(p, )] = 0. Hence ¢( p*, q) > 0 for some p* and all g
in H(Q). B

Suppose p > g © ¢(p, @) > 0 as in the SSB representation. Then
Theorem 6.2 guarantees that the maximally preferred subset of H(Q), {p €
H(Q):p 2> q for all ¢ € H(Q)}, is never empty when Q is nonempty and
finite. If > is a weak order on H(Q), as in the weighted linear theory, the
maximally preferred subset is simply the convex hull of the ¢ € Q that
maximize preference over Q. In the general SSB case with Q = {ri, ...,
rn}, it follows from bilinearity and

{p € H(Q): $(p, q) > 0forall g € H(Q)}
—{p € H(Q): S p(r)s(ri,r,) > Oforj = 1,...,n}

that the maximally preferred subset of H(Q) is a polytope (Griinbaum, 1970;
Rockafellar, 1970)—that is, the convex hull of a finite number of points in
H(Q).

Our next theorem shows that the existence of maximally preferred
measures in an arbitrary nonempty subset Q < P is tantamount to a slightly
modified conclusion of the minimax theorem for Q by itself.

THEOREM 6.3. Suppose @ C Q < P. Then ¢(p*, q) > 0 for some p*
€ Qandall g € Q if and only if

inf R = min su > q)-
max ;régcb(p q) min peg o(p, q)

Proof. If the equality holds then the existence of a p* as claimed follows as
in the proof of the preceding theorem. Conversely, if ¢( p*, g¢) > 0 for some
p* and all ¢ in Q, with ¢(p*, p*) = 0, then sup, inf, ¢(p, g) > 0. But,
since ¢(p, p*) < 0 [i.e., ¢(p*, p) > 0] and therefore inf, ¢(p, q) < O for
all p € Q, it follows that
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sup inf ¢(p, g) = 0 = inf ¢(p*, g) = max inf ¢(p, g).
P q q p q

By skew-symmetry, min, sup, ¢(p, g) = O. &

' Fishburn (1984c) provides additional commentary on applications of
Theorem 6.3 and choice by randomization when Q contains no maximally
preferred alternative.

6.3 SOCIAL CHOICE LOTTERIES

Theorem 6.2 provides an appealing resolution to the problem of

choosing an alternative from a nonempty finite set X on the basis of paired-
comparison voting data when there is no clear majority winner because of
cyclic majorities and/or tied votes. This resolution was first discussed by
Kreweras (1965) and subsequently “analyzed and generalized by Fishburn
(1984d).
Assume that the voting data for X are summarized by a function v on X
X X with v(x, x) = 0 and, when x # y, with v(x, y) the number of voters
‘who reveal a preference for x over y. Let the strict majority relation > ,; on
X be defined by

X >py if v(x, y) > v(y, x),

and call x a majority candidate if y > p; x forno y € X\ {x}. Even when
voters reveal preferences based on weak orders, a majority candidate may fail
exist. If X = {x, y, z} and there are three voters with voting orders x >,y
12,2 >2X >py,andy >37 >3x, respectively, thenx >y >42 >y X.
Beginning with Condorcet (1785), election of majority candidates has
een widely advocated. The problem with majority choice comes where there
no majority candidate. Various nonlottery methods have been proposed to
solve such situations (Black, 1958; Sen, 1970; Schwartz, 1972; Fishburn,
973a,.1977b), but there is no agreement on a best deterministic rule.

~ Others, including Zeckhauser (1969), Shepsle (1970), Fishburn (1973a),
1d Barbera and Sonnenschein (1978), consider social choice by lottery. This
ieans that a probability distribution on X is used to choose the winning
indidate. Most of these discussions are based on von Neumann-Morgen-
ern utilities for voters and/or for the electorate as a whole, and they are not
ell suited to resolution of the cyclic majorities’ problem.

Kreweras’s resolution effects a nice compromise between the possibility
o majority candidate and choice by lottery. Given v on X X X, define
cew-symmetric ¢ on X X X by
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d(x, ¥) = v(x, ¥) — vy, x).

Thus ¢(x, ) is the signed vote differential between x and y, withx >y y ©
é(x, ¥) > 0. Extend ¢ bilinearly to P = Py,

o (p, @) = D > p(x)a(¥)9(x, »),

and let P* = {p € P:¢(p, q) = 0 for all g € P}. Since ¢ is an SSB
functional on P X P, we know by Theorem 6.2 that P* is not empty.
Moreover, as in the remarks following the theorem, P* is a polytope in P.
The basic proposal of Kreweras (1965) and Fishburn (1984d) is to choose a
winner using a distribution in P*.

This proposal satisfies several properties that are often considered
desirable for social choice. We note two of these here. Others are discussed in
Fishburn (1984a, pp. 81-83; 1984d). We say that a social choice procedure is
strongly Condorcet (Smith, 1973) if, whenever X can be partitioned into
nonempty A and B such that @ >, b for all (¢, b)) € A X B, the social
choice from X is in 4. In addition, the procedure is Pareto optimal if,
whenever »;, 2, ..., »,is a finite list of weak orders on X such that, for
allx, y € X,

606, ¥) = [{i:x >y} = [{i:y >ix}l,

y will never be the social choice from X when there is an x such that x 2;y
for all i and x >, y for at least one y. The weak orders »>;in such a list need
not correspond to the voters’ actual preference orders, if in fact they have
weakly ordered preferences, and their number 7 need not be the number of
voters. If there are several such lists that satisfy the vote-differential
condition, then our Pareto optimality condition is to hold for each of them.

TuroreM 6.4. Every social choice lottery procedure that uses a
distribution in P* to choose a winner is strongly Condorcet and Pareto
optimal.

Proof. For the strong Condorcet property, suppose that {4, B} is a
nontrivial partition of X with @ >, b, or ¢(a, b) > 0, forall@ € A and all b
€ B. We are to prove that (p € P* , b € B) = p(b) = 0. Consider any
lottery p € P for which p(B) = Zp p(b) > 0.If p(A) = 0, then clearly o(a,
p) = Zx p(M)¢(a, x) > 0 foreverya € A, sop & P*. If p(A) > 0, let
g(a) = p(a)/p(A) for all a € A with g(B) = 0. Then

¢(g, p) = > ¢(a, x)[g(@)p(x) — q(x)p(a)]

{a,x€ A:¢(a,x)>0}

+ D o (b, Mgd)p(») — q(¥)p®)]

{b,yEB:¢(b,y)>0}
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+ Y (g, blg@p(b) — q(b)p(@)]

a€A,bEB

=0+ 0+ E ¢(a, b)p(a)p(b)/p(A) > 0.

a,b

Therefore ¢(gq, p) > 0, or ¢(p, g) < 0, so againp & P*. Hencep € P* =
p(B) = 0.

For Pareto optimality, supose >y, ..., >,is alist of weak orders on X
that satisfies the vote-differential condition for ¢ and that x Pareto dominates
yix 2;yforalli, x >;y for some i. We are to prove that p € P* = p(y) =
0. Suppose p is any lottery in P for which p(y) > 0. Note that ¢(x, y) > 0
_and o(x, @) = ¢(y, a) for every a € X\ {x, y}. (The latter inequalities
follow easily from Pareto dominance and the vote-differential condition
under weak orders.)

Let g equal p except on {x, y}, where g(x) = p(x) + p(y)and g(») =
0. Then

(g, p)

o (x, Y)p(x) + p(MIp(¥)
+ Y o0 a{lpx) + pMIP@ ~ p@p(x)}

a€ X\ {x,y}

+ > 6, - p@p()]

a€X\{x,y}
P ox, p(x) + p(¥)]
+ > p@[(x, a) — (», @)1} > 0.

Il

Therefore p & P*,sop € P* = p(y) = 0. ]
Observe that if the original definition for ¢ as the vote differential is
replaced by

o (x, y) = flv(x, y) — v(y, X)),
here f(0) = 0, f(1) = 1,/ > k = f(J) = fk), and f(—j) = — f(J) for
1/, then Theorem 6.4 holds for P* defined on the basis of the new ¢, since
o changes are needed in its proof. The lottery procedure with f(j) = 1 for

’l; J > 0is concerned only with whether x >, ¥,y > X, or v(x, ¥) = v(y,
), and pays no attention to the sizes of strict majorities.

.4 CHOICE AMONG CHOICE CONTEXTS

This section illustrates the sequential application of the minimax theorem
y considering choice among choice contexts. Suppose a two-stage decision
rocess unfolds temporally with the selection of one of a number of finite
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subsets of alternatives X, X,, . . . , X, followed by a choice from the
selected X;. Under the lottery approach, one could adopt the precommitment
strategy of choosing a probability distribution on X = U X; and then follow
through with the x € X selected by that distribution. Such a strategy is
guided by and justified with Theorem 6.2 in the SSB setting.

On the other hand, one might consider it desirable to use a two-step
strategy that first selects an X; and then chooses a probability distribution
over the selected X; to make the final choice. When this is done, one would
naturally choose a maximally preferred p from the Py, for the selected Xj, but
it may be unclear how X; ought to be selected in the first step.

To approach this problem, Fishburn and LaValle (1986) consider choice
among choice contexts, where the set of contexts P is defined by

P = {H(Q) : Q is a nonempty finite subset of Py}.

In the preceding formulation we wish to choose one of the contexts Py, . . .,
Py,. To do this, we consider lotteries over contexts. Formally, convex
combinations of contexts p, ¢ € P are defined by

Ap+(1-=Ng={p+0~-Ng:pEpgEaq}
0< AL,

and are easily seen to be in P. A natural definition of preference between
contexts which ensures that the defined relation >, is asymmetric on P is
provided by

P >09q if p > gforsome p € pandall g € q.
Assuming that ¢ on P X P represents > as in Theorem 4.1, and defining ®
on P X P by

®(p, @) = max miné(p, q),
PEP 4q€gq

we clearly see that, for all p, q € P,
P >oq ¢ ®(p, q) > 0.

Because of this representation, which looks suspiciously like the usual SSB
representation, we work with ® in what follows.

Unlike ¢ on P X P, ® on P X P is not generally an SSB functional.
However, it is skew-symmetric and has vestiges of bilinearity that appear as
conclusions (c) and (d) in the following lemma.

LemMma 6.1. Forallp, ¢, r € Pand all0 < N < 1:

(@) ®(p, q) = ming max, ¢(p, q).
(b) ®(q, p) = — ¥(p, Q.
© &p + (1 — Mg, 1) > N(p, 1) + (I — N@(q, 1).

1l
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(d) ®(\p + (I — Na, r) is continuous in \.
Proof. (a) This follows directly from Theorem 6.1, since ¢ on p X q

has the requisite properties.
(b) Using (a) and skew-symmetry for ¢, we get

®(q, p) = max mgn o(q, p) = mgn max ¢(q, p)

= min max [—-¢(p, q)] = —max min ¢(p, q)
14 q p q

- &(p, q).

(c) Conclusion (c) follows from
®(A\p + (1 — Mg, )
= max ming(Ap + (1 — N)g, r)
p.q r

min max [Ap(p, r) + (I — N)é(q, r)]

min [A max ¢(p, r) + (1 — A) max ¢(g, r)]
r p q

> min [N max ¢(p, r)] + min [(1 — \) max ¢(q, r)]
r 1] r q

Ae(p, r) + (1 — N®(q, r).

(d) Supposep = H({ph LR apa})’ q = H({qh e qb})’ andr =
H({ry, . . ., r}). Let p, q, and r be represented by the corresponding
simplexes in the Euclidean space with coordinate set {py, . . ., r.}. Also let f
and g denote the continuous functions over r defined by f(r) = max, ¢(p, r)
and g(r) = maxq ¢(g, r). Then, as in the proof of (c),

e(hp + (I = Mg, 1) = min [M(r) + 1 = Mgl

It is easily seen that the right side of this expression is continuous in \ since
M) + (1 — Ng(r) is jointly continuous in \ and r. |

, Although & is not an SSB functional, its properties in Lemma 6.1 are
_ sufficient for application of Theorem 6.1 to show that for every nonempty
- finite set of contexts there is a p* in the convex hull of those contexts such that
®(p*, q) > 0 for every q in the convex hull.

TueoreM 6.5. If Q is a nonempty finite subset of P, then

max min ®(p,q) = min max $(p, q) = 0.
PEHQ) qEHQ) 4EHQ) PEH(Q

Proof. Suppose Q = {p;, . .., Pt and let @« = (o, . . ., ay)
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represent £ o;p; in H(Q), with @' («, B) = (2 o;p;, 2 B;p;). Parts (b), (c),
and (d) of Lemma 6.1 imply that ' is continuous in each argument, quasi-
concave in its first argument, and quasi-convex in its second argument.
Hence, by Theorem 6.1, max, ming ¢ («, 8) = ming max, ® («, 8). It then
follows from skew-symmetry that max, ming ®' («, 8) = 0. [ |

Theorem 6.5 suggests two ways of selecting a context from {py, . . .,
P.} when one of these is required from the first step of a two-step strategy.
The first way is to use a lottery p* on {py, . . . , p,} for which ®(p*, q) > 0
for all lotteries q on {py, . . . , p,}. We refer to this as the naive strategy.
The second way involves a look-ahead feature that acknowledges that once a
p; is selected the final choice will be made by some p; in

m(p)= {pi € p;: ¢(pi,q;) 20  forall ¢g; € p;}.

Forany p € P itis easily checked that m(p) € P and that m(m(p)) = m(p).
In view of this the second way, referred to as sophisticated, says to use a
lottery p’ on {m(p,), . . . , m(p,)} for which ®(p’, q’) > O for all lotteries
q’ on {m(p,), . .., m(p,)} to determine the p; or m(p;) selected in the first
step.

Fishburn and LaValle (1986) suggest that the sophisticated strategy may
be preferable to the naive strategy in the two-step case, and they give a simple
example showing that, when > is intransitive, each of the precommitment,
naive, and sophisticated strategies can give different results. They also note
that if > is a weak order, so the weighted linear model applies, then the three
strategies are essentially equivalent.

6.5 NASH EQUILIBRIA IN NONCOOPERATIVE GAMES

Linear utility theory was developed for use in the theory of games by
von Neumann and Morgenstern (1944) and has been widely adopted for
game-theoretic analyses in the intervening years. Kreweras (1961) was
among the first to show that certain results of game theory can be established
using much weaker assumptions about players’ utilities. In particular, using a
proof exactly analogous to Nash’s (1951) proof for the existence of equilibria
in finite noncooperative games, he proved that every finite noncooperative
game with SSB utilities for the players has a Nash equilibrium. This proof
was rediscovered by Fishburn and Rosenthal (1986), who give an example of
a game in which a player’s equilibrium mixed strategy not only serves the
usual strategic purpose of randomness vis-a-vis other players but also
resolves the intrapersonal problem caused by cyclic preferences over pure
strategies.

Although there are several theorems for the existence of equilibria when
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player’s preferences are assumed to satisfy conditions that are weaker than
those of the SSB theory (Mas-Colell, 1974; Shafer and Sonnenschein, 1975;

Yannelis and Prabhakar, 1983; Toussaint, 1984), their proofs rely on fixed-
 point theorems that are more advanced than Brouwer’s theorem used in the
Nash-Kreweras proof.

THEOREM 6.6 (Brouwer’s fixed-point theorem). Let S, = {x € R":|x||
< 1} denote the unit sphere in R™. If f is a continuous Junction from S,
into S, then f(x) = x for some x € §,.

Browder (1983) recounts historical developments involving this theorem
and subsequent generalizations, and Milnor (1978) gives an elementary proof
and references to other proofs. More advanced fixed-point theorems are
discussed by Kakutani (1941), Fan (1952), and Smart (1974), among others.
To formulate Kreweras’s theorem, assume there are n > 2 players and
that player i has m; € {1, 2, ...} pure strategies. Let P; = {(p, - - ., Dimy):
Pic 2 0, 2, p;; = 1}, player’s i’s simplex of mixed strategies, and let m;, =
,...,0,1 (inposition 0), 0, . . ., 0) denote the oth pure strategy of i, so p;
€ P;canbe written as p; = 2, P = (Dity - + - » Pim;)- The set of mixed
strategy n-tuples for the playersis P® = P; X - - - x P,. We let X denote
the set of pure strategy n-tuples and take P = Py. For convenience we write
(P1s- o Dicty by Dists - - - 5 Py)in P% as (p; £;) and observe that

<p; E ti07ri6> = E tia(p; 7"1'0)-

Assume that fori = 1, .. ., n, ¢;is an SSB functional on P X P that
presents /s preference relation >; on P. For p, g € PY[i.e., p = (p,,
.., p)and g = (g1, . - ., ,)], we write ¢;(p, g) to denote ¢;(p’, g’)
hen p” and g’ are the distributions in P induced by p and ¢, respectively,
der the usual assumption of independence among players.

We refer to the foregoing situation as an SSB game. In the game, p =
Di; - -, py) in PO s said to be a Nash equilibrium if, for all i and all L €
¢i(p, (p; 1)) = 0; that is, p’ >; (p; £;)’ for all i and ¢;. At a Nash
uilibrium, no player can increase his or her own preference by a unilateral
ange in strategy.

Il

;&)

TueorEM 6.7. Every SSB game has a Nash equilibrium.

Proof. Foreachp = (py, ..., p,)in Plet 7,,(p) = max{0, ¢,(( p;
p)} for all i and o. The 7, are continuous in p. Define T: PO — PO by
) = p*, where

p,* = [plz Tio(p)ﬂ'ia] / [1 + 2 Tia(p)] .

o
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Since T'is continuous, and since there exists a one-to-one continuous mapping
from P° onto a unit sphere of suitable dimensionality, it follows from
Theorem 6.6 that T has a fixed point (i.e., 7(p) = p). We show that the
fixed points of T are the Nash equilibria of the SSB game.

Suppose first that p is a Nash equilibrium. Then, for all i and o, o:(p,
(p; 7)) = 0, so ¢:;((p; ™), p) < 0 by skew-symmetry, and therefore
7i,(p) = 0. Hence p* = T(p) = p.

Observe that, given p € P°, for each i

0 = ¢i(p, P)=¢i <<p; Epiavria>,p> = > Picd:i((D; Tio)s P)-

Therefore, there is a o such that p;, > 0 and ¢,(( p; ™io), P) < 0,orpi, >0
and 7,(p) = 0.

Now suppose p is a fixed point of T, so p* = p. T hen for the ¢ at the
end of the preceding paragraph, p,, = pj = Dpi/[1 + Z,7,(p)], which
forces 7;,(p) to O for all p. This is true for each i. Hence, for all i and o,
7.(p) = 0, 50 $:((7; Tia)» P) < 0, or $:(p, (p; 7ir)) = 0. Since ¢(p, (13
1) = = otwdi(D, (D3 Tir)), it follows that ¢;(p, (p; 1;)) = 0 for all i and 7,
and hence that p is a Nash equilibrium. B

6.6 MULTIPLE ATTRIBUTES

Despite a great deal of research on decompositions of multiattribute
linear utility functionals (Keeney and Raiffa, 1976, and other references in
Section 1.7) and the aggregation of linear functionals, these topics are
relatively open for nonlinear theories. One example of the latter topic is
Chew’s (1983) application of weighted linear utility to the measurement of
income inequality; another example (Fishburn and Gehrlein, 1987) examines
generalizations of Harsanyi’s linear aggregation theorem (Harsanyi, 1955;
Fishburn, 1984e) for SSB functionals.

In this section we prove a decomposition theorem for ¢ on Py when X
= X, X X, and note its natural extension to more than two attributes along
with its specialization when preferences are transitive. Additional comments
are given by Fishburn (1984f), who identifies conditions that yield ¢(p, q)
= ¢,(p1, q1) + ¢2(p2, o) in the two-attribute case.

Recall from (1.12) that when X = X; X - - = X X, and p; is the
marginal distribution on X; induced by p in P = Py, the X; are value
independent if for all p, ¢ € P, (p; = gfori=1,...,n)=p~4q.
Given linear u on P, value independence implies #(p) = u(p1) + - = - +

u,( p,) with each u; a linear functional on P; = Px,. The situation for SSB
utilities is not as simple.
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THEOREM 6.8. Suppose X = X| X X,, ¢ represents > on P = Pyas
in Theorem 4.1, and the X; are value independent. Then there are SSB
Sfunctionals ¢, on Py X Py and ¢, on P, X P, and a bilinear functional p
on Py X P, such that, for all p, q € P,

' é(p, @) = 1(p1, @) + 2Pz G2) + p(P1, @) — p(q1, P2)-

Moreover, with ¢ fixed, ¢, ¢,, and p are unique up to transformations
¢/ (p1, q) = 61(p1, @) + 7i(p) — T(q),
¢, (P2, 2) = $2(D2; @2) + TAD2) — T(q2),

P (P, p2) = p(P1, P2) — Ti(p1) + 2(p2) + b,

_ Where 1, and 1, are linear functionals on P; and P,, respectively, and b €
“R.

This decomposition extends straightforwardly to X = X; X + - - X
X,,. Value independence in the n-attribute case gives

(D, @) = Y, di(pis ) + 3, [pi(pi @) — piais )]
i=1

i<j

with each ¢; SSB and each p;; bilinear. The proof method for Theorem 6.8

The transitive specialization of the theorem uses the modified weighted
inear representation of Theorem 5.4 in Section 5.5.

THEOREM 6.9. Suppose the hypotheses of Theorem 6.8 hold and that
ere are linear functionals u and w on P that do not vanish at the same
yoint and satisfy p > q & u(p)w(q) > u(@)w(p) for all p, g € P. Then
iere are linear functionals u; and w, on Py and u, and w, on P, such
hat, for allp € P,

u(p) = wi(p) + ux(po),
w(p) wi(p1) + wopo).

oreover, with u and w fixed, the u; and w; are unique up to
nsformations u{ = u, + a,u; = u; — a, w = w; + b, and w = w,
b, where a, b € R.

Value independence with X = X, X - - + X X, in the setting of
rem 6.9 gives u(p) = T w;(p;) and w(p) = = wi(p,).

We prove only the representation parts of the preceding theorems here.
uniqueness proofs can be found in Fishburn (1984f).

Representation Proof of Theorem 6.8. We begin with the observation
fp and p’ have the same marginals, say ( p;, p,), and if g and g’ have
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the same marginals, say (¢1, ¢2), then ¢(p, @) = qS( p,q). Assummg the
hypotheses of this claim, value independence gives 3 ip + ;q ~ —p + 2q
The SSB representation and bilinearity then imply

0=14¢ (Gp + 29", 30" + 39)
é(p,q) + (¢, @) + ¢(p, p’) + ¢(q’, ).

Value independence also gives ¢’ ~ gand p ~ p’; hence (g, q) = ¢(p,
p’) = 0 and, by skew-symmetry, ¢(p, @) = ¢(p’, ¢").

As a consequence, ¢ depends only on the marginals, and we shall
henceforth let (py, p,) in P; X P, denote the distribution p € P with plxy,
Xz) = pl(X])pz(Xz) for all (x;, x3) € X; X X, Fix (al, a,) € X X X, and
let (a;, a,) stand for the degenerate distribution in P with sure outcome (ay,
a,), and similarly for @; in P; and a; in P,. By the preceding observation,

¢ (5(p1, p2) + s(a, @), 3(q1, @) + %(013 @)
= ¢((’;'p1 + ‘12‘01, %Pz + %az),
('Xifh + %01; %Q2 + %az))
=¢(3(p1, @) + (@i, p2), ';'(qu @) + 3(a1, @)

Since the first and third ¢ terms here are equal, bilinearity and ¢((@;, @2), (ai,
@) = 0yield

o (D1, D), (@1 @) = ¢ ((P1, @), (91, @) + ¢((@1, P2), (@15 32))
+ (D1, @), (@1, @) + d((@1, p2)s (@1 @)
— o ((p1, P2, (@1, @) — o (@1, @), (1, T2))-
Two similar applications of our initial observation give
d(p1, ) (a1, @) = d((P1, @), (@1, @) + S (@1, P2, (@15 @),
¢((@, @), (@1, @) = ¢((@1, @), (@1, @) + (@, @), (@1, 3))-
Substitute these into the preceding equation and define
é1(p1, @) = 9((P1, @) (G1; @),
$:( D2, 42) = d((a1, P2), (@15 @),
o(ri, 1) = o((r, @), (@1, r2)) — (11, @),
(a1, @) — ¢((@1, @), (a1, 1)

to obtain the decomposition displayed in the theorem. ]
Representation Proof of Theorem 6.9. Given the hypotheses of the

theorem, let ¢( p, @) = u( P)w(g) — u(g)w(p). Define ¢,, ¢,, and p on the f
basis of fixed (a;, @) as in the preceding proof. When their defining right

Il

Il

il
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sides are decomposed with-¢ = uw — uw and the uw terms are rearranged in
the representation of Theorem 6.8, we get

d(p, q) = [ui(p1) + w(pP)wi(g) + wag)]
= [ui(g) + ux(g)l[wi(py) + wa(p2)l,

where u(p1) = u(p1, @) — wla, @), w(p2) = w(a, p2), wi(p)) =
w(py, @) — w(a,, @), and wo(py) = w(ay, p2).

By the initial observation of the preceding proof, # and w depend only
on the marginals, and it follows that u( p;, p2) = u(p;, @) + u(ay, p,) —
u(a, @;) = uy(p1) + uy(p,) and similarly for w. B

6.7 MEAN VALUE AND CERTAINTY EQUIVALENCE

- Throughout the rest of this chapter we assume that X is a
nondegenerate interval in R. We will often view X as a monetary variable

with preference increasing in x € X.
‘ The present section discusses a series of increasingly general notions of
_mean value, motivated in part by certainty equivalence in utility theory
(Sections 1.6, 2.8, and 3.11). As will be evident, our focus on mean value
~ constitutes a move away from specialized concerns of preference theory, but
~we make connections to this theory in process. Chew (1983) includes an
excellent introduction to the topic.
It will be assumed that P is a convex set of countably additive probability
measures on the usual Borel algebra of subsets of X (Halmos, 1950;
Fishburn, 19702, p. 131). We let m, with or without subscripts, denote a
mapping from P into X and will interpret m( p) as the mean value of p in a
designated sense.

Three increasingly general notions of mean value are defined by

m(p) = | xdp(x),
m(p) = /7! [ ) dp(x)] :

ms(p) = ! [Sxﬂx)g(x) ap() [ £ dp(x)}

here f:X — R is continuous and strictly monotonic and g: X — R is
ntinuous and nonvanishing except perhaps at a closed end point of X
hew, 1983). m, is the linear mean (expected value), m, the quasilinear
n, and m; the weighted quasilinear mean. The quasilinear mean was
axiomatically characterized by Nagumo (1930) and Kolmogorov (1930) for
mple uniform measures and extended by de Finetti (1931a) to arbitrary
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simple measures. The weighted quasilinear mean was axiomatized by Chew
(1983). Axioms similar to those of Chew and de Finetti will be noted shortly.

The direction of f’s monotonicity for m, and mj is immaterial. Indeed,
m, and mj; are unchanged when f is replaced by —f, or g by —g. More
generally, m, is invariant only under nondegenerate linear transformations ( f
- af + b;a, b € R; a # 0) of f, and my; is preserved only under paired
transformations {f’ = [af + b)/[cf + dl, g’ = [¢f + dlg} with ad +# bc
and ¢f + d nonzero on the interior of X. Problems with the existence of
m,( p) when X is unbounded can always be avoided by suitable boundedness
conditions on f and g for m;, and m; (Chew, 1983; Fishburn, 1970a, Chapter
10, 1982a, Chapter 3).

For utility theory, m(p) is usually identified with an individual’s
certainty equivalent ¢( p) for measure p in monetary contexts. 7, = c¢ for
expected value maximizers, m, = c¢ for a von Neumann-Morgenstern
expected utility maximizer with increasing utility functionu = f, and my = ¢
for Chew’s weighted linear utility representation with g = wand f = w/w
(Section 3.6, Theorem 5.3).

In a further generalization of mean value that provides a correspondence
to certainty equivalence in SSB utility theory, Fishburn (1986b) considers an
implicit characterization of m(p) as the unique solution of { xh(x, m(p))
dp(x) = 0. This characterization presumes that / is skew-symmetric and
satisfies the two additional properties of

Uniform Monotonicity: Either h(x, y) increases in x for every y € X,
(interior of X) or A(x, y) decreases in x for every y € X,.

Ratio Continuity: If x # y, then h(x, t)/h(y, t) is continuous at ¢ = x
and at all £ # y in X,.

Depending on P, 4 might also satisfy a boundedness condition. The implicit
characterization reduces to m, if A(x, ) = f(x) — f(»), and to m; if A(x, )
= [f(x) — f(»)]g(x)g(»). However, since ms does not presume the
equivalent of uniform monotonicity in Chew’s setting, his generalization is
not strictly a special case of the implicit mean characterization. This appears
true also for a different generalization considered in Chew (1984).

The implicit characterization is axiomatized in Fishburn (1986b) by
seven axioms for 7: P = X under the structural assumptions that P contains
every one-point measure and is closed under conditional measures on
intervals within X. We let AX* = (1 — A\)/Afor 0 < A < 1and let >, be the
first-degree stochastic dominance relation defined by p >; ¢ if p(X N
(—,y]) < g(X N (=0, y]) forally € X with < holding for at least one
y. The axioms are, forall p, ¢ € P, allx, x;, .. ., Xs € X, all B, v, 6,0
€ (0, 1), and all intervals A € X:
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M1. Certainty Matching: p({x}) = 1 = m(p) = x.

M2. Convexity: m(p) = m(q) = m (3p + 3q) = m(p).

M3. Betweenness: m(p) < m(q) = m(p) < m(ap + (1 — w)q) <
m(q).

M4. Continuity: m(p) < x < m(g) = m(\wp + (1 — Nq) = x for
some 0 < \ < 1.

MS5. Dominance: p >; g = m(p) > m(q).

M6. Cancellation: [x; < X, < X3 < X4 < X5, X3 = m(ax] + (1 —
X)), x5 = m(Bx; + (1 = B)x)), x4 = mlyx{ + (1 — ¥, %,
= m@x; + (1 — 0)x,), x4 = m(Ox, + (1 — Ox,))] = a*p*y* =
0%6*, where x’ denotes a one-point distribution.

M7. Truncation: m(p) < x = m(P,enx) < X forsome y € X; x
< m(p) = x < M(P-wynx) for somey € X.

All of these hold for m,, and all but M5 hold for m;. The first five
axioms are straightforward and, except perhaps for M5, seem like natural
conditions on any reasonable notion of mean value. The cancellation axiom
M6 is suggested directly by Lemma 4.12. It is needed for skew-symmetry and
appears not to be replaceable by a simpler condition, although C3 (symmetry)
sufficed in the SSB theory with its richer P X P structure. The truncation
axiom M7 serves much the same purpose as truncation axioms considered in
Sections 1.8 and 4.8. ,

, The essential difference between m,, m; and the implicit characteriza-
tion lies in their independence axioms. We use M6 for the implicit case. The
quasilinear independence axiom (cf. A2 in Section 1.4) is

- m(p) = m(g) = m(hp + (1 = Nr) =m(Ag + (1 = Nr),
and Chew’s independence axiom for m; (cf. D2 in Section 5.6) says that

m(p) = m(q) # m(r), m(Bp + 1 — B)r) = m(yqg + (1 — v)r)
=m@Bp + A — B)s) = m(yqg + (1 — y)s) foralls € P.

The implicit form reduces to 73 when this axiom is adopted, and #2; reduces
m, when the quasilinear independence axiom is imposed.

~ The principal implications of M1-M7 are summarized in the following
eorem (X, = interior of X).

TueoREM 6.10. Suppose m:P — X. Then m satisfies M1-M7 if and
nly if there is a skew-symmetric, uniformly monotonic, and ratio
ontinuous h:X X X — R such that, for all (p, ) € P X Xy, | h(x, »)
Ip(x) exists and

m(p) =y e SXh(x,y) dp(x) = 0.
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Moreover, excepting h(a, b) and h(b, a) when X = [a, b], h’ satisfies the
representation in place of h if and only if b’ (x, y) = kh(x, y) for some k
#0andallx,y € X.

The proof (Fishburn, 1986b) is patterned after the SSB proof in Chapter
4 but is simpler. When the SSB representation holds, c(p) is the solution of
[ ¢(x, c(p)) dp(x) = 0. Hence in the SSB context, m = ¢ requires h(x,y) =
ké(x, y) for some k # 0. With m = ¢ in the SSB context, m(p) > m(q)
does not necessarily imply p > ¢, and m(p) = m(q) does not entail p ~ q.
In fact, preference reversals (Sections 2.8 and 3.11) in the general sense
occur precisely when p > g and m(q) > m(p).

6.8 STOCHASTIC DOMINANCE

In Section 1.6 we noted that first (>;) and second (>;,) degree
stochastic dominance correspond to greater expected utility for increasing and
increasing concave utility respectively. A similar result for SSB utility based
on the behavior of ¢(x, ¥) on its first argument will be proved shortly as
Theorem 6.12.

We assume in this section that P = Py and, in this simple measures
setting, will use Abel’s formula for summation by parts,

n n-—1 i n
Y, aibi = E <i ai> (bj = bjs1) + by E a (a4, b €ER),
i=1

j=1 Ni=1 i=1

in our ensuing proofs. Stochastic dominance analyses for more general
probability measures and higher degrees of stochastic dominance are included
in Fishburn (1976b, 1980b) for linear utility and in Chew (1983) for weighted
linear utility. Machina (1982a) proves several results for the first- and
second-degree relations in his nonlinear smooth utility context (Section 3.4)
for probability distribution functions on X = [0, M].

We also assume that ¢(x, ¥) = ¢(p, @) when p(x) = g(y) = 1. Let @,
be the class of all skew-symmetric ¢ on X X X that increase in the first
argument for every fixed value of the second argument, and let @, be the class
of functions in ®, that are strictly concave in the first argument; that is, (x #
7,0 <A< )= Ap(x,2) + (1 — No(y, 2) < ¢(Ax + (1 — Ny, 2). Itis
natural in the monetary setting to assume that ¢ € ®; . Moreover, so long as
p and g have certainty equivalents ¢( p) and c(q) in the SSB case (which is
ensured by continuity), we must have c(p) > c(q) whenever ¢ € &; and p
>, g. In conjunction with our later theorem, this prohibits preference
reversals between p and g whenever p >, q.
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TueoreM 6.11. For all ¢ € &, that are continuous in the first
argument, and all p, q € P,

P >1q = c(p) > c(q).

Proof. Assume p > g with ¢ € &, continuous in its first argument,
andletx = c(p)andy = c(g). Alsoletx; < x, < - + - < X, be the support

points of p and g and set p; = p(x;)), ¢; = q(x;). [p* denotes the kth
cumulative of p, with p¥ = p*(x;).]

Suppose to the contrary of the theorem that y > x. Since ¢ € &, ¢(y,

X;) 2 ¢(x, x;) and therefore ¢(x;, X) > ¢(x;, y) for all i by skew-symmetry.
Then, by the definition of c,

299G, ) = 0= po(x, x) = Y pid(x, ),

so that X (g; — p)é(x;, ¥) = 0. It follows from Abel’s formula that

X

S (g} = pDléxi, ¥) — ¢(Xie1, )] = 0

i=

‘However, this is impossible since ¢(x;, ¥) — ¢(x;, 1, ¥) < 0 for each i/ and q!
2 p; for all i with g} > p! for some i. B

Just as there is doubt about the general concavity of u for linear utility,
¢ would not generally expect ¢ to be concave in its first argument in the SSB
context. Our analysis of derivatives in the next section says more about this.
owever, ¢ € &, does have nice implications for stochastic dominance.

THeOREM 6.12. For all p, g € P,
P >1q ¢ o(p,q)>0foral¢ € @,

D >2q @ ¢o(p,q) > 0foral ¢ € &,.

Proof. Since ¢(x, y) = u(x) — u(y) is a special case for ¢, the linear
tility stochastic dominance results say that if ¢(p, g) > 0 for all ¢ € &,
en u( p) > u(q) for all u in the corresponding linear class and therefore p
q.

To prove the converses (=), let x; < x; < * + - < X, be the suppon
nts of p and ¢q. For notatlonal convenience, take p; = p(x;), p! = p'(x)),
= p*x), g = q(x), g} = q'(x), @} = q*(x), v; = $(xis ;). Then,

g Abel’s formula thce, we have

o(p, q) = &(p, q) — (g, q)
2 (pi — q)) 2 q;v;j

]
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n—1

= > (! —aq}) S, gy — N Gjvis,
j=1 j=1

= > (g} = p) N @i, — vy) [>1]

i=1 Jj=1

n—1 n
Vislj — Vi
=E (g} — pDxie1 — Xi) E gj =
j=1

-1 Xiv1 — Xi

n-2 i
= {E (g} — PR)xksr — Xi)
k=1

i=1
n

. Vitr,j — Vi Vis2,j — Vit
L/ -

j=1 Xiv1 — Xi Xiv2 — Xi+1

n—1

+ > (g} — PG+ — Xi)

k=1

< Unj ~ Un-1,j
S o (e
Jj=1

Xn — Xn-1

n-2
=E (q?ﬂ - p’?H)

i=1

X E Viel,j — Vi Vis2,j — Vitl,)
;i -

j=1 Xiv1 = Xi Xiv2 = Xisy

2 2 z . Unj - Un—l, J
+ (g3 p,,)jg1 g <———~—————xn E—— ) .

The line identified by [>] shows that ¢(p, g) > 0if p >, gand ¢ € ®,,
since then all its terms are nonnegative and at least one must be positive. The
final expression implies ¢(p, q) > 0ifp >2 ¢ and ¢ € &,, since then each
qu. - pjz. is nonnegative, at least one is positive, and every v term is
positive. B

Several other SSB stochastic dominance results are noted in Fishburn
(1984c, Section 5).
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6.9 RISK ATTITUDES

We assume in this final section that X = R and that ¢ on X X X has
continuous derivatives through the second order. We let ¢, (x, ¥) = do(x, y)/

ax, $2(x, ¥) = 3d(x, y)/3y, ¢11(X, ¥) = 9p1(x, y)/0x, $12(x, ¥) = 9¢(x,
»)/dy, and so forth. Skew-symmetry and the derivatives assumption imply

dax, ¥) = —i(, x),
dn(x, ¥) = — éu(y, x),
b2(x, ¥) = X, ¥) = —du(y, X) = —dp(y, x).

Because of these we focus on ¢, ¢;;, and ¢;5,. We comment on ¢; and ¢;
first and then examine the mixed derivative.

A main feature of SSB in comparison to linear utility is its much greater
potential to reflect different risk attitudes. For example, each fixed y gives
rise to a risk attitude profile for ¢(-, y) in terms of ¢, (-, y) and ¢;(, ») in
~ much the same way that #® and #® do this for the linear case discussed in
Section 1.6. As y changes, these y-conditioned profiles can change in various
ways that reflect different attitudes that depend on comparisons between x
and the conditioning value of y. An example occurs when each ¢(-, ) is
convex (risk seeking) for small x and concave (risk averse) for larger x with
the inflection point between the two regions changing as y changes. In the
linear case with ¢(x, y) = u(x) — u(p), all y-conditioned profiles are
identical.

With A a small positive amount, ¢; > 0, ¢,(x, y) — ¢;(y, x) < 0and
o11(x, ¥) < 0 correspond to

d(x + A, ) > é(x, »),
o(x,¥) > ¢(x + A,y + 4),
20(x + A,p) > ¢(x,¥) + o(x + 24, y),

respectively. The first of these follows fromx > y = x > yifx <y < x +
A, but not otherwise. Hence the assumption that ¢ increases in its first
argument entails more than the mere presumption that preference increases as
increases. Given ¢; > 0, the second inequality holds whenever x > y if
(x, ») > 0 shrinks when the same positive amount is added to both x and y,
us indicating that the lottery-based differentials contract for equal differ-
nces in their arguments when the arguments get larger. If ¢ depends only on
e difference between x and y then ¢(x, ¥) = ¢(x + A,y + A)and ¢,(x, »)
¢1(y, x) for all x and y. Using x* to denote the one-point measure with
utcome x, we see that the third inequality is tantamount to
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d(x + A, ) > o(3x* + 3(x + 24)%, p),

which expresses a notion of conditional risk aversion in the SSB setting.
The corresponding expression for a positive mixed derivative, ¢,(x, )
> 0, 1is
¢, y) + d(x + A,y + A) > ¢d(x + 4, ) + o(x,y + A).

But note also that ¢,(x, x) = 0 since ¢12(x, ¥) + ¢(¥, X) = 0. The
following theorem reveals important connections of ¢, to specializations of

é.
Tueorem 6.13. Forall x, y € X
@) ¢2(x, ¥) = —oulx, ) if and only if ¢ depends only on x — y.

(b) If > on P is a weak order, then ¢(x, y)bpa(x, ¥) = —éi(x,

Yoi(y, x) + ¢1(x, X)o:1(, »)-
(¢) ¢12 = 0 if and only if the linear utility representation holds.

Proof. (a) Let z = x — y and define v on R? by v(z, ¥) = ¢(x, ¥). By
the chain rule with ¢;(x, ») = v(z, ») dz/dx = v,(z, )),

[Bvl(z, y)] i, [avx(z, y)]
9z ay dy

—vi(Z, ¥) + vz, ¥) = —oulx, ¥) + via(z, ¥).

Therefore ¢y, = — ¢y if and only if v;; = 0. If ¢ depends only on z so that
u(z, ¥) = v(z), then v;; = 0. Conversely, suppose v, = 0. Then vy(z, ) =
g(z) for some functional g. Let G(z) be such that dG(z)/dz = g(z). Then

av(z, ¥) — G0z = vi(z,y) — g(z) = 0,
and therefore there is a functional f such that
v(z, ) — G) = f(») for all z and y.
Hence, by the definition of v,

o(x,¥) = Gx — y) + f(») for all x and y.

Let y = x. Then, since ¢(x, x) = 0, f(x) = — G(0) for all x, so fis
constant and ¢ depends solely on x — y.

(b) Suppose ¢(x, ¥) = u(x)w(y) — u(y)w(x), as in the weighted linear
model for weak order in the SSB setting. Then ¢12(x, ¥) = v’ ()w’(y) —
u’ (y)w’ (x) [primes denote derivatives]. It follows that

o (x, Y)bia(x, ¥) + &1(x, ¥)d1(, X)
=¢(x, Y)oia(x, ¥) — &10x, Y)da(x, ¥)

il

o1(x, ¥)
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=[ux)w(y) — u(V)w)lu’' )w' () — u' (P)w’ (x)]

— [ Yw(y) — u(y)w )lu@)w’(y) — u' (¥)w(x)]
=[u()w’(x) — w’ X)wE)Iu(y)w' (y) — u' (P)wH)]
=¢1(x, x)o1(y, ¥).

(©) If (x, y) = u(x) — u(y), then ¢;(x, y) = u’(x) and ¢12(x, y) =
0. Conversely, Suppose ¢1, = 0. Then ¢,(x, ¥) = v(x) for some function-
alv. Let V(x) have derivative v(x). Then d[¢(x, ) — V(x)}/dx = 0, and there-
fore there is a functional f such that ¢(x, y) = V(x) + f(») for all x and y.
Since ¢(y, ¥) = 0, f(¥) = — V(), and therefore ¢(x, ) = V(x) —
V(y). &
Fishburn (1984g) gives specific examples to illustrate parts (a) and (b) of
_Theorem 6.13. The example for (9) is

o(x, ) =1 — exp{—(x — »)? = V2(x — y)} forx > y.
‘For fixed y, #(-, ») begins convex and then changes to concave. The
inflection point for y is at x = y. The example for (b) has

ux) = —e* and w(x) = w/2 + tan~!(x).

In this case the region for ¢;; > 0 is a proper subregion of the (—, —)
quadrant with ¢;; < O elsewhere except on the region’s boundary. In
‘addition, ¢; > 0, and ¢5(x, ¥) > 0 ¢ x > y.



7 Additive Expected Utility

There are two standard formulations for theories of decision under
uncertainty that represent preference between decision alternatives by
expected utilities based on subjective probability as well as utility. The first is
Savage’s formulation in which an alternative is an act that assigns an outcome
to each state in a set of states of the world. The second uses lottery acts, each
of which assigns a simple lottery over outcomes to each state. This chapter
explains these formulations in detail and then presents traditional normative
theories of subjective probability and expected utility developed by Savage
and others. Alternatives to the traditional theories are discussed in the next
two chapters.

7.1 DECISION UNDER UNCERTAINTY

In the last three chapters of the book we extend ideas of earlier chapters
to the realm of decision making under uncertainty in conjunction with new
considerations involving subjective probability. The present chapter de-
scribes Savage’s (1954) additive expected utility theory and related develop-
ments, including basic theory of subjective probability. Much of the work
discussed here was completed by the mid-1960s. The next chapter raises
questions about assumptions behind additive expected utility that were not
addressed in Chapter 2. In parallel to Chapter 3, it then reviews generaliza-
tions of additive expected utility that, with a few exceptions, were developed
since 1980. The final chapter concludes with detailed analyses of generaliza-
tions of Savage’s theory that presume neither transitivity nor the reduction
principle but adopt his sure-thing principle and the additivity of subjective
probability.

Because Savage’s theory is often referred to as ‘‘subjective expected
utility’” or simply ‘‘expected utility,”” a word about our designation ‘‘additive
expected utility”” (which I have used to mean something else in Fishburn,
1970a) is in order. In the traditional designation, subjective refers to the
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additive subjective probability feature of Savage’s representation. However,
alternatives to Savage’s theory have been proposed in the past few years that
also use subjective probability and an expectation operation but do not require
probabilities to be additive (see Sections 8.2 and 8.3). Because of this I now
find it more suitable to use additive as a modifier for theories of decision
under uncertainty that use additive subjective probability, and to employ
nonadditive for ones that do not assume that subjective probability is
necessarily additive.

In addition, various other modifiers will be used to identify whether a
theory’s representation uses an expectation operation and whether its
formulation uses ‘‘extraneous’’ probabilities for scaling purposes to construct
lotteries on outcomes or on acts. In this part of the book, expected utility
refers only to a formulation like Savage’s that is devoid of direct reference to
probability of any sort. Thus, for Savage, we speak of ‘‘additive expected
utility’’; in the next chapter we encounter ‘‘nonadditive expected utility,”
‘“additive nonexpected intensive utility’’ (Allais), and so forth. The modifica-
tion of Savage’s theory considered in Section 7.6, which uses the extraneous
scaling probability device but is otherwise the same as Savage’s theory, is

referred to as an ‘‘additive linear utility”’ theory, since the linear utility
theory of von Neumann and Morgenstern is directly involved in its
representation. Theories presented in the next chapter that also use
extraneous scaling probabilities include ‘‘nonadditive linear utility’” and
‘‘additive SSB utility.”
, As a final preliminary to our discussion of additive subjective probability
~ and additive expected (linear) utility in this chapter, we outline the two
~ formulations of decision under uncertainty alluded to in the preceding
_ paragraph.
Savage’s formulation begins with a set S of states of the world, or simply
 states, and a set X of consequences or oufcomes. In Savage’s approach,
_ states are the carriers of uncertainty, and outcomes the carriers of value. The
 states in S are presumed to be mutually exclusive and collectively exhaustive
so that exactly one state, the state that obfains, is the true state. The two
states of a just-picked mushroom might be ‘‘harmless’” and “‘poisonous.”’
The decision maker is uncertain about which state is the true state, the
identify of the the true state will not be known until after the decision has been
taken (if ever), and the decision is presumed not to affect the state that
obtains. Although the decision maker might conduct an experiment at some
cost to learn more about which state is the true state, we shall not deal with
experimentation as a separate feature of the decision process but note that it
can be an implicit part of the formulation. Explicit treatments are available in
Good (1950), Savage (1954), Schlaifer (1959), Raiffa and Schlaifer (1961),
Raiffa (1968), Howard (1968), DeGroot (1970), LaValle (1978), and
Hartigan (1983).
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Subsets of states are called events by Savage, and event A is said to
obtain if A contains the true state. We shall let & denote a Boolean algebra of
events with S € &. The empty set (J is the empty event, and S is the
universal event. Subjective probabilities will be assigned to the elements of
&, with 7(&) = 0 and 7(S) = 1 when 7 is a probability measure on &.
Throughout this chapter and in much of what follows, we take & = 25, the set
of all subsets of S. In this case, § is a Borel algebra.

For Savage the outcomes in X are to contain all value-relevant aspects of
the situation at hand. A decision alternative, called an act, is a function from
S into X. The outcome assigned by act f to state s is J(s). Two acts are
illustrated for an n-state S in Figure 7.1. Other illustrations appear in Figures
2.1and 2.2. Act fis constant if f(S) = {x} for some x € X and is simple if
S(8) = {f(s):s € S} is finite.

Savage applies the preference relation > to a set F of acts in his axioms.
He assumes that F contains at least all simple acts and defines > on X from
> on F'through constant acts: x > y if f > g when fi (S) = {x}and g(S) =
{¥}. We assume later that F = XS, the set of all functions from S into X , in
describing his theory.

Our other formulation for decision under uncertainty is a lottery-acts
modification of Savage’s formulation, similar to those used by Anscombe and
Aumann (1963) and Pratt et al. (1964). Let P = Py, the set of all lotteries or
simple probability distributions on X. The lottery-acts formulation replaces
outcomes in a matrix like that of Figure 7.1 by lotteries on outcomes and
defines a Jottery act as a function f from S into P. The probabilities used in
the p € P are to be thought of as extraneous scaling probabilities associated
with events for precisely calibrated random devices such as roulette wheels or
fair coins, which are imagined to be completely independent of the states in S.
Thus, if f is chosen in the lottery-acts case and state s obtains, it remains to
play out £(s) to determine the outcome.

In the lottery-acts formulation, > is applied to a set F of lottery acts.
Preferences between regular Savage acts in F are then defined from > on F
through degenerate lottery acts: f > g if £ > g when [f($)](f(s)) =
[g()]1(g(s)) = 1 forevery s € S. We will assume that F = PS5, the set of all
possible lottery acts. In this case, as well as some other cases, F is convex
under the statewise definition for NMf + (1 — N)g. For each s € S,

(M + (1 = Ng)s) = M(s) + (1 — N)g(s).

The technical advantage for the lottery-acts formulation comes from
convexity, which allows us to formulate axioms suchas (f > g,0 < X\ < 1)
= (M + (1 = Mh > Ag + (1 — Mh), which has no meaning for Savage’s
formulation. At the same time, it can be criticized for including a notion of
probability within the axioms. As several people have recognized, it is




ADDITIVE EXPECTED UTILITY /67

FIGURE 7.1 f(s;) = x;, g(s)) = y;

S
S S2 ... s,
£l oxy Xg ... Xp
9|y Y2 - Yy

possible to embed the lottery idea within Savage’s formulation by enlarging
the state space S to include events generated by random devices. This would
avoid direct reference to extraneous scaling probabilities in the axioms.
However, it would also disguise the distinctive feature of randomization in

~ the lottery-acts approach and nullify the use of convex combinations in the
axioms.

7.2 ADDITIVE SUBJECTIVE PROBABILITY

This section and the next consider subjective probability in its own right
based on a comparative probability relation >y on the event algebra &. We
read A >x B as A is more probable than B, and define ~x and 2, in the
usual ways as

A ~<B  ifnot (4 > B)and not (B > A),

Section 7.4 defines >y on & from > on F after the fashion of de Finetti
(1931b, 1964), Ramsey (1931), and Savage (1954), but until then we
consider (€, >) apart from considerations of preference or choice.

We say that (8, >4) has an additive representation if there is a
probability measure 7 on & such that, for all A, B € g,

A > B e w(A) > 7(B).

‘When this holds, = agrees with >, and when it holds for exactly one
probability measure, we say that (§, >4) has a unique additive representa-
tion. This section considers only additive representations, which require § >
@ (nontriviality), 4 >, ¥ (nonnegativity), 4 2 B = A 2« B
(monotonicity), weak order for > on &, and various additivity conditions
suchas [(A UB)NC=3,4 >Bl =AU C > B U C. Weaker
representations are surveyed in Fine (1973) and Fishburn (1986¢), and
several nonadditive representations will be introduced in Section 8.3.

‘ Necessary and sufficient conditions for an additive representation for
finite € were first presented by Kraft et al. (1959). With no loss of generality
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in this case let S = {1, 2, ..., n}and § = 25 Forall m > 2 and all
sequences (Aj, . . . , An) and (By, . . ., By) of events in &, define =, on
pairs of sequences by

(A1, . - -5 Ap) =0 By, - - - > Bm)
if|{j:i € A} = |{j:i € Bj}| forall i.

The import of this balance condition can be seen from the fact that if = with ;
= w({i}) agrees with > and if (4, . . ., An) =0 By, - - -, Bn), then Z;
m(A)) = 2 Ziea; Wi = 2 Ziegj 7; = X; m(B,), hence we cannot have 4; 2,
B, for all j and A; >x B; for at least one j.

TueoreM 7.1. Suppose & = 21, Then (8, >) has an additive
representation if and only if the following hold for all A, A;, B; € & and
allm > 2:

F1. Nontriviality: {1, . . ., 0} > &.

F2. Nonnegativity: 4 2, .

F3. Strong Additivity: [(Ay, - - - » Am) =0 Bis - - - » Bn), Aj 24 B;
forj=1,...,m — 11 = not (An >« Bp).

Remarks. The strong additivity axiom F3 cannot in general be replaced
by a simpler axiom that bounds m without regard to 7. An agreeing 7 is not
generally unique, since it is only required to satisfy a finite system of linear
inequalities.

Proof. Necessity follows from our comments prior to the theorem. For
sufficiency we are to show that F1, F2, and F3 imply that there are

nonnegative numbers 7, . . . , T, that sumto 1 such that, forall A, B € &,
A >*B=>E7r,->27r,-,
i€EA iEB
A’“*B::’Eﬂi:E?F,‘.
i€EA IEB

The resultant system of linear inequalities (> for >, = both ways for ~y)
translates directly into a system like that in Theorem 4.3(a) where the
coefficient vectors (the x;) consist entirely of numbers in {0, 1, —1}.
Because of this, if (a) is false, the 7; in (b) can be taken to be integers, and if
(b) holds it translates back into the conclusion that F3 fails. Hence F3, by
itself, implies that our system has a ; solution without regard to sign. F2 then
implies that each w; is nonnegative, and F1 implies that ¥ m; > O.
Normalization completes the proof. B

We now consider Savage’s axioms for an additive representation. These
force S to be infinite and imply uniqueness. Because of this his axioms, in
particular G5, are not wholly necessary for agreement but are considerably
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simpler than necessary and sufficient conditions for the general case
(Chateauneuf and Jaffray, 1984).

THEOREM 7.2. Suppose & = 25 and that >y on & satisfies the
following for all A, B, C € &:

Gl. S > O.

G2 A2, 0.

G3. > on & is a weak order.

G4 [(AUBNC=gl=2A>»BeAUC >»BUDZCC).

G5. A >x B = there is a finite partition of S such that A >+ B U E
for every member E of the partition.

Then (&, >) has a unique additive representation. Moreover, if
agrees with >y, then forevery A € Eand 0 < N < 1 thereisaB € A
such that w(B) = An(A).

Savage’s nonnecessary Archimedean axiom G5 turns out to have
powerful implications as seen from uniqueness and the final conclusion of the
theorem. Among other things, it leads to the condition that for every positive
integer n there is an n-part uniform partition of S with w(4) = 1/ for each
member of the partition. This condition in its qualitative form (~4) was used
earlier by Bernstein (1917), de Finetti (1931b), and Koopman (1940) for
related axiomatizations of the additive representation. Savage (1954, pp. 38-
39) defends G5 with an argument which can be paraphrased as follows: If you
consider A more probable than B, then surely there is an n and a coin of your
own choosing such that you consider 4 more probable than the union of B
and any particular sequence of heads and tails for n tosses of the coin. This
gets rather close to the notion of extraneous random devices invoked in the
lottery-acts formulation and suggests how we could enrich a finite S so that
Savage’s axioms could apply.

Although all of G1 through G5 are instrumental for the representation of
Theorem 7.2, G4 is the crucial assumption behind =’s additivity. Plausible
failures of G4 will be noted in Section 8.1.

Because Theorem 7.2 is intimately involved in one of the generalizations
of additive expected utility examined in Chapters 8 and 9, we shall outline its
proof in the next section. Before doing that, we remark that Savage’s
agreeing  is finitely additive [A N B = ¢ = w(4 U B) = w(4) + w(B)]
but not generally countably additive (Section 1.8). Countable additivity does
however follow from the addition of Villegas’s (1964) monotone continuity

axiom, which says that forall 4, B, A, Ay, * - - in & forwhichA4, € 4,

<A =J4:i B 2, A for all i> =B 2, A
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Savage recognized the possibility of adding this to G1-GS5, but declined to do
so on the grounds that it lacked the same intuitive normative status as the
other axioms. A recent analysis of the matter is given by Seidenfeld and
Schervish (1983).

7.3 PROOF OF SAVAGE’S PROBABILITY THEOREM

We assume throughout this section that & = 25 and that > on & satisfies
G1 through G5 of Theorem 7.2. To establish the existence of a unique  that
agrees with > and satisfies the final conclusion of the theorem, we begin
with a series of implications of G1-GS.

Lemva 7.1. Forall A, B, C, D € &:

@BcC=S82,C2.,B 2,0
®A~B,ANC=g)=AUC 2, BUC
© A >»BANC=g)=>AUC >»BUC
@@U~B,C~D,ANC=g)=AUC 2,
© @A 2.,B,C>»D, ANC= gy =AU C >
(f) A4 ~«B,C~«D,ANC=BND=g)=AUC~BUD.
(g) A >« @ = A can be partitioned into B and C for which B >+ &
and C >* <.
(h) (A4, B, and C are mutually disjoint, AU C > B 2, A) = there
isaD < C for whichD > @ and AU (C\D) > B U D.
i) A>%3,B >0, ANB =)= Bcan be partitioned into C
and D such that AU C 2, D 2>, C.
(G) A >« @ = A can be partitioned into B and C with B ~x C.
(k) A > & = foreveryn € {1,2, . ..} thereis a2"-part partition
of A such that ~y holds between each two members of the
partition. '

Proof. (a) Left to the reader.

(b) Assume A ~x Band A N C = @.Since B = (BNC) U (BN C)
andBN({C\B)=0,G4=>B\OOUBNC)U (CNB) ~.AU
(C\B),orBUC ~, AU (C\B).By(a,AUC 2,AU (C\B).
Hence, by G3, A U C 2, B U C.

(c) Replace ~y by >4 in the proof of (b).

(d) Assume A ~4 B, C ~xD,and A N C = . Since (DNA) N A =
g, )= AUD=AU (DNA) >,BU D\ A). Also, since (A\ D)
NC=g,b)=CUAND) 2, DUAND)=AUD.ByG3,CU
(AND) >, B U (D\A). This, (b), (c),and (A N D) N (CU 4 \D) =
@ then imply CU (AND)U A N D) 2, BU (DNA) U (A N D),or
AUC 2, BUD.

(e) Replace C ~y D in the preceding proof by C >x D and use (c).
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(f) Assume A ~x B, C ~xD,and AN C=BND = @.Byd),A4
UC2,BUDandBUD 2, AU C.Hence A U C ~, BU D.

(g) Assume A >y . G5 = there is a partition {D,, . . ., D,,} of S
such that A >y D;foreachi. (a) = D; = (D; N A) U (D;\ A) 2+DiNA.
Hence A >« D; N A foralli. If D; N A ~, & for each i, then (f) = U (D;
N A) ~ &,0or A ~4 &, a contradiction. If D; N A >, & for only one i,
say i = 1, then 4 ~4 D, N A, which contradicts A > D; N A. Hence D;
N A > @ for at least two i, and the desired result follows from (e).

(h) Assume mutual disjointnessand 4 U C >+ B 2, A.(G3,G4) = C
>« . 8ince C >« @ and A U C > B, it follows from G5 that there is a D;
€ Cfor which D, > ggand A U C >« B U D,. By (g) and G3, D, can be
partitioned into D and D’ with D’ 2, D > &, 50 (C\ND)U D U A4 >
D" UDUB.G4=(C\DYUA >»BU D', and (G4, D’ 2« D) =B
UD’ 2,BUD.Hence A U (C\ND) >»B U D.

() Assume A > &, B > g, and A N B = @.If A >, B, the
conclusion follows from (g). Assume B >y A. G5 = thereis a partition {E|,
..., E,} of Bsuchthat 4 > E; for each i. Assume for definiteness that E,,
2y - -+ 2y Eyandlet mbe such that UP+  E; > U E > UTE,.
LetC= UrEandD = U”"_  E.ThenCUE,,, >.D »,C.Since 4
?% Ep 41, this and (G3, G4) imply C U A >, D.

, (j) & (k) Since (k) follows from (e) and (j), we complete the proof of

the lemma by proving (j). Assume A >y &¥. It follows from (g) that A can be
partitioned into By, Cy, and D, such that C; U D, Z2xBiand B; U D; 2. C,.
~ If one of these is ~x, the conclusion of (j) holds, so assume henceforth that
both are >y. Then D; >; . For definiteness take C; Zs By. Then (h) =
there is a C2 < D such that C? >, & and B, U (D;\ C?) 2. C1 U C2
- Hence D, \ C? >y ¢y and, by (i), D; \ C? can be partitioned into B2 and D,
such that C> U B? >, D, >, B2. Since C; 2w B1,G4= C,UD,U C? >
C] U Dz Z* Bl U B2 LCth = B] U B2 and C2 = C] U C We then geta
partition {B,, C,, D,} of A for which

1. Cz U DZ >* Bz and Bz U D2 >* Cz.
2.Bi€ B, C < C,D, D
3. D\D, 2, D,.

By repeating this process, we get a sequence . . . , {B,, C,, D}, . . .
of three-part partitions of A4 such that, for each n > 1,

(1) C, U D, >« B,and B, U D, > C,.
(2) Bn = Bn-{-l’ Cn = Cn+1, Dn+1 & Dn-
(3) Dn\Dn+l Z* Dn+l-

Hence D, > & for all n, and D, includes two disjoint events (D, ; and
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D,\ D, ) each of which bears 2, to D, . Hence, by (3) and (e), for any

E; and E, such that D, .| >« E; and D, >« E,, we have D, >« E; U E,.
Now for any event G with G >x &, G > D, for sufficiently large n.

For example, if D, 2, Gthenwith {E\, . . ., E,} asin G5 for G > & with
G >* E,' for all i, D,, >* E,' for all i so that Dn..] >* E] N Ez, Dn—] >* E3 U
E,, ...andthenD,_, > U ‘l‘ E;, . . . and so forth; hence, with n large, D

>« U™ E;, or Dy > S, contrary to (a) and G3. Moreover, N >, D, ~« &,
forif M D, >« @ then N D, > D,, for large m, and this is false since M
D, € D,,.

B=\JB, ad C- (Oc) u <(§D,,>

n=1 n=1

{B, C} is a partition of A since (U B,) N (U C,) = (U B,) N (N D,)
= (U ¢,) N (N D,) = &. To verify B ~4 C, note first that C ~ U C,
since N D, ~% &. Suppose C >« B. Then U C, > B and, by (h), there is
aG < U C, for which G > & and

<UC,,> NG » B UG.
Since BN G = @ and B 2, B, (since B, < B), G4 implies
BUG 2, B, UG.
For large n, G >y D, so that, again by G4,
B, UG > B, U D,.

Since G > D, N (U C,) forlargenand U C, = [(U C,)NG]U G =
(U c)ND,] U (U C,) N D,), it follows by (e) for large n that

<U C,,> \ND, 2z, (U C,,> N G.
Finally, since (U C,)\D, € C,, (a) = C, 2, (U C,)\ D,. This and
the four preceding displayed expressions yield C, >« B, U D, by
transitivity, which contradicts B, U D, >x C, in (1). Therefore not (C >
B). By a similar proof, not (B > C), and we conclude that B ~ C. ]
We are now ready to prove

LemMa 7.2. (&, >x) has a unique additive representation.

Proof. Call a partition {4, . . . , A,,} of A a uniform partition when
A >* (%] andAl ~*A2 ~% " ~*Am. Let

C(r, 2") = {A : A is the union of r members of some
2"-part uniform partition of S}.

We establish Lemma 7.2 by a series of steps.
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Step 1. [4, B € C(r,2")] = A ~4 B. First, if A, B € C(1, 2") and if
A >4 B, it follows easily from Lemma 7.1(e) that S > S, a contradiction.
Hence A ~4 Bif r = 1. It follows from Lemma 7.1(f) that A ~y B for all r
< 27

Step2.[4 € C(r,2"),BE€ C@2m, 2™ = 4 ~. B. Ifr = 1 and
not (A ~« B), step 1 and Lemma 7.1(e) give S >« S. The desired conclusion
then follows from Lemma 7.1(f).

Step3.[4 € C(r,2"),BE C(t,2™] = (4 2, B o r/2" > t/2™). If
r/2% = /2™ then r2™ = 2%, and, with D € C(r2™, 2"*+™) it follows from
step2that 4 ~4 Dand D ~4 B; hence A ~4 B. If r2™ > (27, then, with D,
€ C@r2m, 2n+myand D, € C(£2", 2"*™), we get A ~4 Dy and B ~x D;.
But clearly D; > D, when r2™ > ¢2". Therefore A >« B.

Step 4. Given A € & let k(A, 2") be the /argest integer r > 0 such that
A 2, Bwhen B € C(r, 2"), and define

m(A) = sup {k(A4,2")/2":n=0,1,2, ---}.
Clearly n(@) = 0, #(S) = 1, and = > 0. Moreover,
A€ C(r,2") = w(A) = r/2n.

To prove this, observe that if A € C(r, 2") then w(A4) = r/2". If 7(4) > r/
2", then A 2, B for some B € C(t, 2™) for which /2™ > r/2". But this is
_ impossible by step 3.
. Step 5. A 2, B = w(A) = w(B) by the definition of 7.

, Step 6. 7 is additive. Take A N B = . Then for each n there is a 2”-
_ part uniform partition of S such that 4 >, A4,, B 2, B,, A, and B, are
unions of members of the partition, A, N B, = &, A, € C(k(4, 2"), 2")
and B, € C(k(B, 2"),2"). Hence A U B 2, A, U B, by Lemma 7.1(d),
(e), and k(4 U B, 2") > k(A4, 2") + k(B, 2"). Since for any A it is easily
seen that k(A4, 2")/2" does not decrease as 7 increases, it follows that

7(A) + 7(B) < (A U B).

If we now define k*(A, 2") as the smallest integer r > 0 for which B 2, A
when B € C(r, 2"), it readily follows from the fact that {r/2":r = 0, 1, . .
.,2% n=0,1,...}isdensein [0, 1] that inf{k*(4, 2")/2":n = 0, 1, .

. } = sup{k(4, 2")/2": n = 0, 1, . . . }. A proof symmetric to that just
completed then implies that

w(A U B) < 7(A) + w(B).

Hence A N B =g = w4 U B) = n(4) + n(B).

Step7. A >« @ = w(A) > 0. Take A >x . By GS there is a partition
{41, ..., A,} of S for which A > A, for each i. Then step 5 = w(4) >
w(A;), and additivity = w(A4) > 0.

Step 8. A >« B = w(A) > w(B). Suppose A >4 B. Then, using G35,
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thereisa C & SforwhichC > @, CNB = g,and A > CU B. By
steps 5 and 6, m(4) > w(C) + w(B). By step 7, n(C) > 0. Hence n(4) >
w(B).

Steps 5 and 8 give A >« B & w(A) > =w(B), and it is obvious that 7 as
defined here in step 4 is the only probability measure on & that satisfies the
additive representation. &

We conclude with the final assertion of Theorem 7.2.

Lemma73. (A € &0 N 1) = 7(B) = M(A) for some B € A.

Proof. If 7(A) = 0, the result is obvious, so assume that m(4) > 0. Let
{Al, AL}, {43, - - -, A%}, . . . beasequence of 2”-part uniform partitions
of A such that {47+, A7*'} is a 2-part uniform partition of A”. Given , let
m = sup{j:n(U/_, A7) < Am(A4)} so that

i=1

T <0Ai’> + 27"1(A) = Ar(A),

and let k = inf{j:x(U?, 47) < (1 — Nm(A4)} so that

™ <0A7> + 2 m(4) = (1 — N)7(A).
k

LetC, = Um A7and D, = U? A"sothat G, € G, - -+, D &
Dy -+ ,CyN D, = & forall n, and 7(C,) > Mr(4) — 2-"n(A) and
w(D;) = (1 — Nw(A) — 2-"n(A4) for all n. Since C, € U C,and D, ©
U D,, M(4) < m(U C,) and (1 — N7(4) < (U D,). Moreover, (U
C.) N (U D,) = . Hence by additivity, Lemma 7.1(a) and the
representation,

(06 +=(Un) == (U)o (Um) <0

which requires 7(U C,) = Ar(4) and 7(U D,) = (1 — Nw(A4). B

7.4 ADDITIVE EXPECTED UTILITY

Although Ramsey (1931) outlined a version of additive expected utility
about 25 years before Savage developed his own theory, Savage (1954) set
forth the first completely worked out axiomatization of preference between
uncertain acts for the additive expected utility representation

frege SS u(f(s)) dw(s) > L u(g(s)) dw(s)

in which u is a utility function on the outcome set X and = is a finitely
additive probability measure on the algebra of subsets of S. In addition to
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Ramsey, Savage credits de Finetti (1964/1937) for his guidance on the
treatment of subjective probability and von Neumann and Morgenstern
(1944) for their linear utility theory. The next section shows how the linear
utility representation emerges from Savage’s axioms during the course of his
proof for the additive expected utility representation.

Savage’s work has motivated a few dozen subsequent axiomatizations of
additive expected utility and related representations. These include basic
modifications of the Ramsey-Savage theory (Suppes, 1956; Davidson and
Suppes, 1956; Pfanzagl, 1967, 1968; Toulet, 1986), lottery-based theories
(Anscombe and Aumann, 1963; Pratt et al., 1964, 1965; Fishburn, 1970a,
1982a), event-conditioned theories that do (Fishburn, 1973b) or do not (Luce
and Krantz, 1971; Krantz et al., 1971, Chapter 8) have a lottery feature, and
theories that avoid Savage’s distinction between events and outcomes
(Jeffrey, 1965, 1978; Bolker, 1967; Domotor, 1978). These are reviewed in
detail by Fishburn (1981b). A review of more recent theories that depart
substantially from standard treatments of subjective probability or utility
appears in the next chapter.

The personalistic view of probability developed by Ramsey, de Finetti,
and Savage holds that probability measures the confidence that a person has in
the truth of a particular proposition as revealed by the extent to which he or
she is prepared to act on it or to bet on its being true. Savage translates this
into the comparative mode as follows. Let A and B be two events in &, and let
x and y be outcomes such that x is definitely preferred to y (i.e., x > y).
Consider acts

S get x if A obtains, y otherwise,
g: get x if B obtains, y otherwise.

Then the proposition ‘“4 obtains’> is more probable than ‘‘B obtains’’
precisely when f > g. In other words if you would rather bet on A than B to
receive a valuable prize when the event you choose contains the true state,
then for you A is more probable than B.

Savage interprets the comparative probability relation >y of Section 7.2
in this way. Since A >4 B is defined from f > g of the preceding paragraph,
we might just as well write A > B and read this as ‘A4 is preferred to B.”’
owever, I will maintain >4 and the comparative probability language since
the distinction is sometimes useful.

A main purpose of Savage’s axioms for > on F'is to give > a precise
eaning when its f > g characterization is to hold for all x > y when it
holds for one such outcome pair, in such a way that G1 through G5 of
‘Theorem 7.2 hold for (&, >4). Once this has been done, relatively few
additional assumptions are needed to obtain his additive expected utility
representation.
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To state his axioms, recall from Section 7.1 that > is to be applied to F
= XSwithx > yif (f > g, f(S) = {x}, g(S) = {»}) and similarly for x >
g, f > v, and so forth. As usual, ~ denotes the symmetric complement of
>, and 2, is the union of > and ~. Forallf, g € F, all x, y € X and all
A € S, we define

f=4x iff(s) = xforalls € 4,
f=a48 if f(s) = g(s)foralls € A4,
Ac = SNA, the complement of 4 in S,
xAy as the f € Fwith f =4 x and f = 4c).

1l

Savage’s full definition of > on & = 251is
A > Bif xAy > xBy for all x, y € X for which x > y.
A subclass of null events Y < & is defined by
A€ if forallf,g EF,f=4acg =S~ &

Itwillturnoutthat 4 € 9 & A ~4 @ & w(A) = 0. In addition, for each
event A we define a conditional preference relation >4 on F by

fragif,foral f',g" € F, (f =4l
g =48 S =acg)=f >¢g.

This reflects the part of Savage’s representation which says that preference
between f and g depends only on those states for which f(s) # g(s). The
definitions of » 4 and ~ 4 are similar to that for >, with f* > g’ replaced by
f' > g’ and f* ~ g’ respectively.

Savage’s axioms are, forall f, g, /", g" € F, allx,y,x’,y" € X, and
all 4, B € §:

Pl. > on Fis a weak order.

P2. (f:Af/’g ::Ag’,szcg,f’ ::Acg,) = (f > g @f’ > g,)

P3. A& I, f=ax,8=0y) = (248X 2.

P4. (x > y,x' > y') = (xAy > xBy & x'Ay’ > x'By’).

P5. z > w for somez, w € X.

P6. f > g = [given x, there is a finite partition of S such that, for
every member E of the partition, (f' =gx,f =g f)=f > &
and (g’ =gx, 8 =g 8 =f7>g'l

P7. (f Pag(s)foralls € A) = f 248, (f(s) >4 gforalls € A) =
fzag

P1 is a typical ordering axiom, P2 says that preference between fand g

should not depend on those states for which f(s) = g(s), and P3 says that
conditional preference between degenerate conditional acts on nonnull events
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corresponds to preference between consequences in an obvious way. P4 gives
consistency to >y for different consequence pairs with x > y, P5 is Savage’s
nontriviality postulate, and P6, his Archimedean axiom, asserts that for any f
> gand x € X one can modify for g on ‘‘small pieces’’ of S that cover S
finitely in such a way that f > g after any such change to x on a ‘‘small
piece.”’

The final axiom, P7, is a dominance condition that plays no role in the
derivation of m by way of Theorem 7.2 or in the construction of u for the
additive expected utility representation for all simple acts. It is used only in
extending the representation to other acts and, in the process, implies that « is
bounded. If one were to replace F by the set of simple acts and delete P7 then
the following representation/uniqueness theorem of Savage remains valid
without the stipulation that # is bounded. Further technical comments on P7
are given by Seidenfeld and Schervish (1983) and Toulet (1986).

THEOREM 7.3. Suppose P1 through P7 hold for > on F = X5, and >y
on & = 25 is as defined before. Then (8, >y) has a unique additive
representation with the properties of its agreeing probability measure ©
as specified in Theorem 7.2 along with, forallA € §,A € I & 7(A4) =
0; and there is a bounded functional u on X such that, forallf, g € F, f
> g & | u(f©) dn(s) > {s u(g(s)) dn(s). Moreover, u is unique up to
positive linear transformations.

We conclude this section with comments on Savage’s axioms and their

implications before discussing the proof of Theorem 7.3 in the next section.

Several implications of Savage’s representation are especially important

_ for connections to Chapters 2, 8, and 9. We consider the reduction principle

first. For any simple act f let 7, denote the probability distribution on X
induced by = through f:

mi(x) = 7({s € S:f(s) = x}) for all x € X.

The final property of Theorem 7.2 is easily seen to imply that P = Py =
{ms:fis a simple act in F'}. Two versions of the reduction principle discussed
at length in Chapter 2 are, for all simple f, /', g, g’ € F:

Reduction principle: (t; = mp, 1, = mr) = (f > g & f > g’).
Identity reduction principle: 7y = m, = f ~ g.

As before, the reduction principle asserts that (at least for simple acts)
preference between acts depends only on their probability distributions over
the outcomes. The identity reduction principle, based on P1-P6, is Theorem
”5.2.1 in Savage (1954) and Theorem 14.3 in Fishburn (1970a). It and P1
obviously imply the reduction principle.

The reduction principle is more or less similar to conditions of in-
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variance (Section 2.2) in Tversky and Kahneman (1986), extensionality in
Arrow (1982), and reduction of compound lotteries in Allais (1953, 1979b)
and Luce and Raiffa (1957). We consider it further in the next chapter.

Other important implications involve P2 and P3, which Savage refers to
as the sure-thing principle. One such implication is the

Substitution principle: (f =4 f', 8 =48, f =ac X =4c g,
S =acy =acg’) = (f>gef >g)

which is a weakening of P2 that we alluded to earlier (Section 2.5) as
‘‘Savage’s independence principle.’’ It is also referred to as the ‘‘sure-thing
principle’’ even though it entails only part of {P2, P3}.

Savage also associated the notion of statewise dominance with his sure-
thing principle. Three versions of dominance principle are:

Simple dominance principle: ({Ay, . . . , A,} is apartition of S, f = 4,
xiand g = 4, y;foralli, x; 2 y;foralli) = f 2> g; if, in addition, x; > y, for
some A; & 9, then f > g.

Monotone dominance principle: (f(s) > g(s)foralls € S) = f > g.

Conditional dominance principle: (AN B = &, f 248, f 258) = f
2 4ug & if, in addition, f >4 g, then f > 4up &.

Savage introduces his discussion of the sure-thing principle with an
example like the conditional dominance principle (with 4 U B = S) and
says that ‘‘except possibly for the assumption of simple ordering, I know of
no other extralogical principle governing decisions that finds such ready
acceptance’’ (1954, p. 21). A few pages later he proves that P1, P2, and P3
imply the simple dominance principle and notes that one could use such a
principle as a basic axiom in place of P3. The monotone dominance principle,
which Schmeidler (1984) refers to simply as monotonicity, is the natural
extension of the first part of the simple principle to arbitrary acts. This
extension appears to depend on much more than P1-P3, and the related
assertion ( f(s) > g(s) foralls) = f > g does not follow from P1-P7 when 7
is not countably additive (Fishburn, 1970a, p. 213; Savage, 1954, p. 78).

The conditional dominance principle has a different nature than the other
two since it makes no reference to preference between outcomes. In fact, it
follows from P1 and the definitions.

Lemma 7.4. P1 = conditional dominance principle.

Proof. GivenA N B = &, f > 4 g, and f > g, let 4 be any other act.
Also let f7, k, g’ € F be such that

S =4k, S =sf, J =wusch,
k=48 k =pf, k =wuup«c h,
g

7

=48, g =»& g =wuupch.
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Then, by the definitions of > 4 and >3, f" > kandk > g’,sof" > g’ by
P1. Since 4 is arbitrary, f > qup 8. If f >4 galso, then f’ > k > g’,s0f’
> g’ by Pl and f > 4y g by the definition of > 4y3- [ |

The next two chapters discuss a generalization of Savage’s theory that
drops P1 but uses the conditional dominance principle. As far as I can tell, the
principle is independent of P2-P6. Section 9.3 notes that P7 is unsuitable for
the generalization.

7.5 COMMENTS ON SAVAGE’S REPRESENTATION PROOF

In this section we comment on the proof of Theorem 7.3, omitting most
of the details which are available in Savage (1954) and Fishburn (1970a,
Chapter 14). In Ramsey’s (1931) earlier approach, outcome utilities were
scaled first with the use of simple 50-50 lotteries for bisection based on an
“‘ethically neutral proposition”” with subjective probability % Given u,
Ramsey then assessed 7 by indifference between simple acts. For example, if
x >y > zand xAz ~ y, then m(A)u(x) + [1 — w(A)]u(z) = u(y), so m(A)
= [u(y) — u@V[ulx) — u@)].

Savage reverses Ramsey’s approach by first obtaining 7 by way of
Theorem 7.2. He then obtains u by showing that the identity reduction
principle holds and that the von Neumann-Morgenstern linear utility axioms
hold for P = {m/:f1is a simple act in F'}. This gives u by way of Theorem 1.3
and, as a consequence, shows that the additive expected utility representation
holds for all simple acts in F.

P7 is not used thus far. The next step, which appears only in Fishburn
(19702, Section 14.5) since Savage did not realize earlier that his axioms
imply boundedness, adds P7 to show that # on X is bounded. The final step,
essentially carried out by Savage, proves that the representation holds for all
acts in F.

For later reference and to demonstrate the approach to Theorem 7.2, we
note that its additive representation for subjective probability via Savage’s
axioms for > on F requires no more than two outcomes in X. Let

ny = {fe F:f(S) < {X9y}}
and for the following lemma, given x > y, define > on & = 25 by
A > B if xAy > xBy.

Lemma 7.5. Suppose x > y and P1, P2, P3, and P6 hold for > on
F,,. Then (8, >4) has a unique additive representation whose agreeing =
_satisfies the final conclusion of Theorem 7.2.

Proof. Let the hypotheses of the lemma hold. In view of Theorem 7.2
we show that G1-G5 hold.
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G1. Immediate from x > y.

G2.IfA € 9, then xAy ~ x@y; hence A ~x &. If A & 9, then P3
and x > y give (xAy) >4 (x@y); hence xAy > x @y by the definition of
> 4. Therefore A >« 5. This shows that 4 € I & A ~x .

G3. By P1, >4 is asymmetric. For negative transitivity use P1 to get [not
(A >« B),not (B > C)] = (xBy > xAy,xCy 2 xBy) = (xCy 2 xAy) =
not (A >4 C).

G4. Assume (A UB)N C = . Then,usingA U BinP2,4A > B &
XAy > xBy e x(A U C)y >»xBUC)y e AU C >»BUC.

G3.Given A >« B (i.e., xAy > xBy), use P6 to conclude from the / >
g’ part that there is a finite partition of S such that xAy > x(B U E)y; hence
A >+ B U E, for every member E of the partition. B

Axiom P5 ensures at least one outcome pair with x > y, and P4
guarantees that we get the same = for all pairs x > y and that >, defined prior
to Lemma 7.5 is identical to its definition in the preceding section.

As indicated earlier, the next task is to prove that the identify reduction
principle 7y = w, = f ~ g for simple acts follows from P1-P6. Then, with
> defined on the convex set P = {7 f is a simple act in F} by

p > q if f > g whenever 7y = pand 7, = g,

we show that A1-A3 hold for > on P. This is trivial for A1, given P1 and the
reduction principle, but requires a bit more work for A2 (p > g = Ap + (1
—Nr >N+ A -=NryandA3(p > g >r=2ap+ 0 —-a)r>q > fp
+ (1 — B)r for some o, B € (0, 1)). As a consequence of Theorem 1.3 we
then obtain # on X, unique up to positive linear transformations, such that f
> g e [u(f(s) dris) > | u(g(s)) dn(s) for all simple f, g € F.

To show that u is bounded when P7 is added, we first state two lemmas
whose simple proofs are left to the reader. (Hint for Lemma 7.6: see Lemma
7.4.)

Lemma 7.6. (P1, {4, . . . , A,} isa partition of A, f 24,8 fori =1,
n) = f 24 & if, in addition, f > 4, g for some i, then f >4 g.

Lemma 7.7. (P1,P2,P7,f >sxandg > xforallx € X)=f~,8;
®P1,P2,Pl,x >sf,andx >,gforalx € X)=f~48.

Given u as above, we now prove
LemMma 7.8. (P1-P7) = u on X is bounded.

Proof. Given P1-P7, suppose u on X is unbounded above. Using the
final conclusion of Theorem 7.2, construct a sequence By, B,, ... of
mutually disjoint events in S with 7(B,) = 2 "forn = 1,2, ....If U,
B, does not exhaust S add S \ U B, to B,. Take u(x,) = 2" for each n. Let




ADDITIVE EXPECTED UTILITY I75

f=p,% fornm=12...

so that | u( f(s)) dn(s) = oo. Consider any outcome x € X. Then for some y
S {x;, X2y o+ . },

u(x) < | min{u(fs), u(} dr(s).

Let f’ equal fon {s:y > f(s)} and y on {s:f(s) > y} so that f” is simple and
has | u(f’) dm equal to the right side of the preceding inequality. Thus, by the
representation for simple acts, f° > x. Moreover, f 2 f’ by Lemma 7.6
since P7 implies that f 2 (.7¢)>,yf* - Hence f > x, and this holds for every x
€ X

Next, let z € X be such that u(z) > u(x;). Take g =g, zand g =z f. As
in the preceding paragraph, g > x for every x and therefore f ~ g by Lemma
7.7.Butg >p, fsince z > x;and 7(B;) > 0, and g ~ g5 f since g and f are
identical on B¢. Hence g > f by Lemma 7.6, so we obtain a contradiction.

It follows that u is bounded above. A symmetric proof shows that u is
bounded below. [

The final step in the proof of Theorem 7.3 is to show that the additive
expected utility representation holds for all acts in F. To do this we divide F
into three subsets as follows:

fis big if f > x for every x € X.
fis normal if x > f > y for some x, y € X.
fis little if x > f for every x € X.

Also, with no loss of generality, let inf #(X) = 0 and sup u(X) = 1, as
allowed by P5, Lemma 7.8, and uniqueness up to positive linear transforma-
tions.

Consider normal acts first. If £ is normal, it can be shown that f ~ p for
some p € P = Py, where f ~ p means that f ~ g for every simple g with 7,
= p. Then by the use of bounding lemmas for the integration, we get

f~p= | uf)drs) = T u@p0).
X
Along with [ u(g(s)) dn(s) = T u(x)p(x) for 7, = p from the simple acts part
of the proof, plus P1, it follows that the representation holds for all normal
acts.
If there are big acts then these are all indifferent by Lemma 7.7.
Moreover it can be shown that

fisbig = u(x) < 1forall x € X;
a({s:u(f@s)) =1 - 6}) = 1forall s > 0;
[ u(f(s)) dn(s) = 1.
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Hence all big acts have the same expected utility, which exceeds the expected
utility of all normal acts.

A symmetric proof shows that if there are little acts then they are all
indifferent, have the same expected utility 0, and the expected utility of every
normal act exceeds 0.

7.6 ADDITIVE LINEAR UTILITY

To consider the lottery-acts approach with P = Px as part of the
axiomatic structure, we continue to assume that & = 25 and, similar to F =
X3 in the preceding sections, will take F = PS for our set of lottery acts. As
noted earlier, convex combinations of lottery acts are defined statewise: (Af
+ (1 — Ng)s) = M(s) + (1 — N)g(s). Substantial weakenings of the
structure presumed here, including more general algebras &, the use of
mixture sets for P, and minimal overlap among the outcomes that can occur
under different states, are examined in detail by Pratt et al. (1964, 1965) and
Fishburn (1970a, 1982a).

The most important point we can make about our lottery-acts formula-
tion is that, since F is convex, virtually all axioms from earlier chapters for >
on P can be used for > on F. For example, we could begin with the linear
utility axioms Al, A2, and A3 for > on F, or the SSB axioms C1, C2, and
C3, or some other set. Axioms that make explicit use of the state structure can
then be added to obtain subjective probabilities or, short of that, to induce a
representation for > on F that goes beyond what is possible without such
axioms.

This section and the next adopt the linear utility approach for (F, >).
Other possibilities are considered in the next two chapters. We shall consider
three increasingly restricted axiom sets for (F, > ), beginning with {A1, A2,
A3} and ending with axioms that imply the full additive linear utility
representation

P> ge | u@)dns) > | ues) dns)

in which 7 is a unique additive probability measure on & and u is a linear
functional on P that is unique up to positive linear transformations. The
intermediate set will generate = and u for the additive linear representation on
the subset of simple lottery acts, that is, those f for which £(S) is finite. The
proofs of ensuing theorems appear in the next section.

Our first theorem shows that Al, A2, and A3 by themselves imply a
linear utility decomposition over any finite partition of S. It is to be
understood that each A; in a partition {A4;, . . . , 4,} is nonempty and that,
given {4, ..., A,}, F’ denotes the f € F that are constant on each
member of the partition. That is, f € Fisin F’ if and only if there are p; € P




ADDITIVE EXPECTED UTILITY [77

suchthatf =4, p;fori = 1,. .., n. Our notation throughout the section will
be analogous to the notation of Section 7.4 with F replaced by F and X
replaced by P. Thus f =, p means that f(s) = p foralls € A4, pAqisthe f
for whichf =4 pandf =,.q,4A € Niff =,,g=f ~ gforalf,g €F,
and so forth.

TueoreM 7.4. Suppose > on ¥ = PS satisfies the following for all £,
g he€Fandal0 < A< 1:

Al. > on F is a weak order.

A2. f>g= N+ (1 - Mh >N + (1 — Nh.

A3. f>g>h=0af + (1 —a)h >gandg > Bf + (1 — Bh for
some o and 8 in (0, 1).

Then for each finite partition {A,, . . . , A,} of S there are linear
Junctionals uy, . . . , u, on P such that, for all f, g € F', with f =4, p;
and g =4, qifori = 1,...,n,"

frge E ui(pi) > 2 ui(q;)-
i=1 i=1
Moreover, linear u; that satisfy this representation for the given partition
are unique up to similar positive linear transformations.

The uniqueness conclusion means that if linear u; satisfy the representa-
tion for F then so do linear «/if and only if there are real numbers a, b;, . .
. » by, with @ > O such that u/ = au; + b; for each i. The similar means that
the same scale factor @ > 0 is used for each i.

The decomposition in the representation of Theorem 7.4 hints at the
emergence of weighting factors n; > 0 for different i so that u; = mu for a
common # on P. This is accomplished by one additional axiom, S2, which is

a direct counterpart to Savage’s conditional preference postulate P3. We also
_use a nontriviality axiom, S1, which corresponds to P5, to get a unique 7.

THEOREM 7.5. Suppose the hypotheses of Theorem 7.4 hold along
with the following forall A < S, allf, g € ¥, and all p, ¢ € P:

S1. p” > q’ forsomep’,q’ € P.
2. A€ N, f=4pg=4qf=,0=>EF>gep>q.

’ Then there is a unique additive probability measure © on &, with A
€ N & mA) = 0, and a linear functional u on P, unique up to positive
"’,linear transformations, such that, for all simple £, g € F,

f>ge gs u(£(s)) dr(s) > L u(g(s)) dr(s).

No restrictions are imposed on 7 beyond those stated in the theorem. In
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particular, it need not satisfy the final conclusion of Theorem 7.2; in fact, S
can be any nonempty set in the lottery-acts theory. This greater generality by
comparison to Savage’s w is caused by the use of P in the present axioms. As
with x > y in Savage’s case, p > ¢ here is defined in terms of constant
lottery acts: p > g if f > g when £(S) = {p} and g(S) = {q}.

The extension of the additive linear representation to all Jottery acts uses
an axiom similar to Savage’s P7 without the conditionality feature.

TueoREM 7.6. Suppose the hypotheses of Theorem 7.5 hold along
with the following for ail £, g € F:

S3. (£ > g@)foralls€ S) =1 > g, (f(s) > gforalls€ §) = f 2
g.

Then there are @ on & and u on P with the properties noted in the
conclusion of Theorem 7.5 such that, forallf,g € F,f > g & | u(f(s))
dn(s) > | u(g(s)) dn(s). Moreover, given this representation:

(a) Every £ € F is bounded; that is, there are real numbers c and d
that can depend on f such that #({s: ¢ < u(f(s)) < d}) = 1.

(b) u is bounded if there is a denumerable partition of S such that
w(A) > 0 for every member of the partition.

Other than nonconstancy (S1), linearity, and (b), there are no restric-
tions on u. If S happens to be finite, then S3 is redundant since the complete
representation is covered by Theorem 7.5.

7.7 ADDITIVE LINEAR UTILITY PROOFS

Since Al, A2, and A3 are presumed for (F, >) in the theorems of the
preceding section, it follows from Theorem 1.3 that there is a linear # on F,
unique up to positive linear transformations, such that foral/f, g € F, f > g
& u(f) > u(g). We intend to define u on P by u(p) = u(f) when f(S) =
{p}, but will work only with « on F for the time being.

Proof of Theorem 7.4. Let {A4,, . . . , A,} be a partition of S, and for
convenience write fin F’ as (py, . . . , pp) when f =4, p; for each /. Fix h
=(ry,...,rp)inF’  andletp; = (r, . - .5 Fic b Dis Tivls + + - , Iy) for all
p; € P. Then, with f = (py, . . ., pa), (/M + ((n — 1)/mh = Z; (1/

n)p;. Therefore, by the linearity of # on F, u(f) + (n — Du(h) = Z; u(p)).
Define u; on P by

1)/n]u(h).
Su(p) — (n — Du(h) and

u(p;) = u(p) — [(n

Then summation over i gives Z; u;( p))
therefore

1l

u®) = S up), = (P ..., D).

i
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This verifies the representation of Theorem 7.4 so long as each u; is
linear. To show thisletq; = (ry, . . . , 7i-1, i, Fiv1> - - - » Fn). Then, by the
preceding result,

uhp; + (1 = Na@) = Qg + (1 = Ng) + Y, wi(ry).

FE
In addition,

u(Ap; + (1 — Nq)

Au(p) + (1 = Nu(q)
Aui(p) + (1 — MNui(g) + E u;(ry),

J#i
and therefore y;(A\p; + (1 — N)g:) = Mui(p) + (1 — Nuigy).

If u/satisfy the representation along with the ;, then, letting u'(f) = %
ulp)whent = (p,...,py), wegetu’ = au + b with g > 0. Holding
p; fixed for all j # i gives u/ = au; + b;. The ‘“‘converse’’ obviously
holds. B

Proof of Theorem 7.5. Assume the hypotheses of the theorem,
including S1 and S2. We first prove

Il

Lemma 7.9. Given a partition {A,, . . ., A,} of S, there is a linear
functional v on P, unique up to positive linear transformations, and
unique p; > O withX"_ p; = land p; = 0 & A; € O such that, for all {

= (pls .. '7pn)andg = (qla- -"qu)inF/s

f>ge Y ovp) > ov(q)
i=1 i=1

Proof. Let K = {i:i € {1,...,n}and A; & 9}. By S1 and the
_ preceding proof, K # . In view of S1, S2, and the representation of
_ Theorem 7.4, which we assume here, the representation of Lemma 7.9
requires p; > 0 & A; & 9N & i € K.
, If K = {i}, the lemma’s conclusion follows with p; = 1, p;, = 0 for each
j#iandv = u.
‘, Suppose henceforth that |K| > 2. For all i, j € K, it follows from S2
- that w(p) > ulq) ¢ u,(p) > u(q) for all p, ¢ € P. Fix py € P. The
__ uniqueness property for linear utility implies that for all /, j € K there is a
unique @; > O such that

u(p) — ui(po) = ay(ui(p) — ui(po)) foralp € P.
Fix k € K and define p and v by

p; =0 forall i & K,

pi = a,-k/ S, ap  foralli € K,

JEK
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v(p) = [u(p) — ui(po)l/p; forallp € Pand all i € K.

To show that v is well defined, we need to prove that

u(p) = w(p) = X 1p) ~ w(p]  when, j € K.
J

But this follows easily from the first equation above for a;; and the fact that
each u; for i € K is not constant on P. Substitution of p;u( p) + u;( py) for
u;( p) into the representation of Theorem 7.4 then gives the representation of
the lemma.

The uniqueness properties in the lemma follow easily from those of
Theorem 7.4. B

We now continue with the proof of Theorem 7.5, designating finite
partitions {4y, . . . , A,y and {By, . . . , By} of Sby o and B, respectively.

For any finite partition {A4,, . . . , A,} of S it follows from Lemma 7.9
that there are nonnegative numbers m,(A4), . . . , m,(A4,) that sum to 1 with
7 {A;)) = 0 & A; € I, and a linear functional v, on P such that, for all f =
(p1,...,pp)and g = (q1, ..., q,) inFy = F/,

f> g e E Wa(Ai)Ua(p,') > Z 7T'ot(*Ai)voz(qi)'

Moreover, the n,(A;) are unique, and v, is unique up to positive linear
transformations.

Consider any other partition {By, ..., B,} of S, with a similar
representation using wg(B;) instead of 7,(A;) and vg instead of v,. Since the
constant lottery acts give p > g ¢ v (p) > vu(q) ¢ vs(p) > vs(q), vg must
be a positive linear transformation of v,. We can therefore drop the partition
designator on v with no loss in generality to replace the preceding displayed
representation by

f>g e m(A)u(p) > ) Tu(A)v(g),

with v unique up to positive linear transformations.
Consider any event A. Suppose A is a member of both {4, . . . , A,}
and {B,, . . . , By}. Then, by the preceding representation,

T(Av(p) + [1 = ma(A)]u(q) > ma(A)v(p’) + [1 — w(A)]u(g")
& mg(A)v(p) + [1 — me(A)]u(g) > mp(A)v(p’)
+ [1 = mp(ADIv(g”)

for all p, g, p’, g’ € P since all pAq are in both F, and F;. It then follows
from the representation for the partition {4, A} that 7,(4) = wz(A).
Hence, with () = 0 and #(S) = 1, we can drop the partition designator
on 7 to obtain
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£>ge Y ad)p) > T mA)v(g).

Finite additivity for  is easily demonstrated using partitions {4, B, (4 U
B)} and {4 U B, (4 U B)} with A N B = (¥ in an analysis similar to
that just completed. Clearly, 7 is unique.

Finally, to show that the additive linear representation holds for all
simple f, g € F, suppose f = (py, . . . , p,) for partition {A4,, . . ., A,}
andg = (g1, - . - , Gm) for partition {By, . . ., B,}. When the preceding
representation is applied to the partition {4; N B:1 < i< n,1 <j<m,A;
N B, +# &}, we get

f>ge E E w(A; N B)v(p;) > E 2 w(A; N Bj)v(g)).

J

Finite additivity reduces the inequality to X; w(4;v(p;) > Z; m(Byv(g)) to
obtain the additive linear representation. B
Proof of Theorem 7.6. Assume the hypotheses of the theorem, and let
« and u (on P) be as specified in Theorem 7.5. Also let u on F be as specified
~_in the opening paragraph of this section. Since the specialization of this # on
constant lottery acts must be a positive linear transformation of v in the
preceding proof, we can presume that # on P for Theorem 7.5 is identical to
the noted specialization of # on F. With the definition of f bounded as in
Theorem 7.6(a), the proof of the theorem will be completed by proving the
following four lemmas.

Lemma 7.10. u(f) = | u(f(s)) d=(s) for all bounded f.

Lemma 7.11. u on P is bounded if there is a denumerable partition of
-8 such that w(A) > 0 for every member of the partition.

Lemma 7.12. If for eachn € {1, 2, . ..} there is an n-part partition
_ of S every member of which has w(A) > 0, then there is a denumerable
partition with this property.

LemMma 7.13. If the hypotheses of Lemma 7.12 are false, then all
lottery acts are bounded.

Remark. Lemma 7.11 is conclusion (b) of Theorem 7.6 and Lemmas
7.11-7.13 say that all f € F are bounded. This, Lemma 7.10, and f > g &
u(f) > u(g) by the opening paragraph of this section show that the additive
_ linear representation holds for all lottery acts.

Proof of Lemma 7.10. We show first that if 7(4) = 1, and if ¢ =
nf{u(f(s)):s € A} and d = sup{u(f(s)):s € A} are finite, then ¢ < u(f) <
. Given these hypotheses let g = 4 f along with ¢ < u(g(s)) < dforalls €
Ac. Since A€ € 9, g ~ fand u(g) = u(f). Suppose to the contrary of ¢ <
u(g) < dthatd < u(g). Takeq’ € Pwithc < u(g’) < dandletg’ =5q’.
Alsoleth = Ng + (1 — N)g’ with A < 1 but near enough to 1 so that d <
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u(h) = Au(g) + (1 — Nu(g’) < u(g). Theng > h. But since uh) > d =
u(g(s)) for all s, h > g(s) for all 5, soh 2 g by S3 for a contradiction.
Therefore u(g) < d. By a symmetric proof, ¢ < u(g).

Assume that £ is bounded with 4, ¢, and d as in the preceding
paragraph. If ¢ = d, then u(f) = | u(f(s)) dw(s) is immediate. Assume
henceforth that ¢ < d, and with no loss of generality let ¢ = O and d = 1.
Define g as in the preceding paragraph so that u(g) = u(f) and, as is easily
proved, | u(g(s)) dn(s) = | u(f(s)) dn(s). We show u(g) = | u(g(s)) dn(s).

Ignoring empty sets, let {Ay, . . . , A,} be the partition of S defined by
Ay = {s:0 < u(g®) < /n},
A; = {s:( — 1)/n < u(g(s)) < i/n}, i=2,...,n,

and let p; € P be such that (| — 1)/n < u(p;) < i/n for each i. Let
h; =48 h =A,¢p,- fori = 1,

ON

1
k=A,.E<—————>pj fori=1,...,n.

J#i n—1

e, N,

Then, when s € A;,

1 1

ho(s) = >, (Z) hi(s) = <;> g(s)
n—1 1

+ (—;—) g <;1T1—> Pj;

and therefore hy = (1/n)g + [(n — 1)/n]k. Hence, by linearity and the
definition of hy,

n

u(g) = Y, uth) — (n — Du(k).

i=1

Since k is simple,

u(k)

i J#Fi

1
du 2[;":—1 p; | m(A)
1

1 S u(p)) | (4.

n i J#i
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When this is substituted into the preceding expression for u(g), we get

u@ = S um) - 3 Y ulp)w(A).

i i j#i
By the bounds on u(p;), the first paragraph of this proof, and the

definition of h;,

(i — 1)/n < uy) <i/n fori=1,...,n.
Since 0 = inf{u(g(s)):s € S} and 1 = sup{u(g(s)):s € S}, the p; can be
selected so that either

u(py) = Un, u(p) = (G - 1)/n fori > 1
or

u(p;) = i/n fori < n, u(p,) = (n — 1)/n.

Applying the first of these and (i - 1)/n < u(hy) to the final equation in the
preceding paragraph, we get

no /i1 1
u(g) > 2(’—7—> ") -

i=1
and applying the second and u(h;) < i/n to the same equation, we get
n [ 1
u(g) < 3 (=) wa) + -
i=1 n n
By the definition of expectation,

i

i~ 1
D <’ - ) (A) < | u(gs) dn(s) < 3 <;> m(A)),

so that |u(g) — | u(g(s)) dw(s)| < 2/n for all n. Therefore u(g) = | u(g(s))
dn(s). B

Proof of Lemma 7.11. Let A be a denumerable partition of S with
m(A4) > 0 for all A € A. By working from a largest 7(A) on down, we
getasequence Ay, Ay, . . . with {A;, 45, ...} = Aand 1(4)) = ©(4,) =

~ Contrary to the conclusion that # on P is bounded, suppose it is
unbounded above. By a linear transformation we can assume [0, ) S u(P).
Let p; € P satisfy

u(p,») = 1/71'(/1,) fori = 1, 2,
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Also let f =4, p; for all i, and let g, be constant on each A4; for i < n and on
U i>n A,' with

u(g,(s)) = 1/n(A,) — /w(A4)) fors € A;and i < n,
u(ga(s)) =0 fors € | 4;.

i>n

Since each g, is simple,
(22) 2[ 1 : ] (45
ui(gn) = - T A
o L7(A4y) 74D

S w4 - n

i=1

I

T(An)

Moreover, u(3£(s) + 58(5)) = 1/2m(A4,) foralls € U, A,, and u(3£(s)
+ 38.(8) = 1/27(A,) for all s € U,., A;. Therefore, by the first
paragraph of the proof of Lemma 7.10, u(%f + %gn) = 1/27(A,), which by
linearity and the preceding equation for u(g,) yield

u(f) 2

[1—2%(/1,»)]-1—112}1 forn=1,2,....

i=1

T(A,)

But this requires #(f) to be infinite, contrary to the conclusion of Theorem
1.3. Hence u on P is bounded above. A symmetric proof shows that # on P is
bounded below. |

Proof of Lemma 7.12. Given the hypotheses of the lemma, let A, for
each 7 > 2 be an n-part partition of S each member of which has w(4) > 0.
Define a new set of partitions recursively as follows: B, = A, and forn > 3,

B,-={ANB:A€A,BEB, ,ANB % 3}

It is easily seen that B, has n or more positive-probability members and that
B, . is as fine as B,; thatis, B € B,.; = C € B, for some C 2 B. For
each A € B, let N!(A4) be the number of members of B, (n > 2) that are
included in 4 and have positive probability. With B, = {4, A€} it follows
that N!(A) + N (A€) > nforalln > 3. Thus, as 7 gets large at least one of
N!(A) and N, (A¢) approaches infinity. Let 4, be a member of B, for which
N,‘,(Al) — o and let By = A¢. Then w(B;) > 0 and B, will be the first
element in our desired denumerable partition.

Next, let m be such that B,, has more than one subset of 4| with positive
probability. For each 4 & A4, with A € B, let N*(A) be the number of
members of B, (n > m) that are included in A and have positive probability.
Let A = {4:4 € A,, A € B,,}. Then I, N*(4) = N!(A)), and therefore
Ni(A) — o asn — o forsome A € A. Let A, be such an A and let B, =
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Ay N AS. Then m(B;) > 0 and {B,, B,, A,} is a partition of S with Nfl(Az)
— 00,

Continuation gives a denumerable sequence B, B;, B, . . . of mutually
disjoint events with w(B;) > 0 for all i. |

Proof of Lemma 7.13. Given the hypotheses of the lemma, let m =
max{n: there is a partition of S with n members for which 7(4) > 0}.

With no loss of generality let (y) = 0 for a y € X. Contrary to the
conclusion of the lemma, suppose that g is unbounded above. Define f from g
by replacing each x for which g(s)(x) > 0 and u(x) < 0 by y, for every s.
Then u(f(s)) > O for all s, and f is unbounded above. Hence, for every n =
1, m({s:u(f(s)) = n}) > 0. By the preceding paragraph, this = quantity can
change no more than m times as n increases. Hence there is an Nand o > 0
such that

7({s:u(f(s) = n}) = « foralln > N

Let U(Pz) = ifori = 1 2 let g = su(f(s))>n}f and gn ={s: u(f(x))<n}pm
and let h, = (s.u5(s)=n}Pn and h = ) <m - Also let p,, denote the constant
lottery act with p,(s) = p, for all s. Then f + zp,, = ,gn + %h,,
and

u(f) + n = u(g,) + uh,) foralln > 1.

Since h,, is bounded, Lemma 7.10 gives u(h,) = { u(h,(s)) dn(s) = no for
all n > N. Since g,(s) > p,_, forall s, S3 implies g, 2 p,-1 so that u(gn)
> n — 1 for all n. Then, by the preceding displayed equation,

u(f) 2 na — 1 forallm > N,

which contradicts finiteness of u(f). Hence, g is not unbounded above.
Similarly, it must be bounded below. |

The hypotheses of Lemma 7.13 do not imply that 7 is a simple
probability measure (Fishburn, 1970a, p. 188).

7.8 SUMMARY

Savage’s theory of decision under uncertainty is based on axioms for
preference between functions (acts) f, g, . . . from a set S of states of the
world into a set X of outcomes. His additive expected utility representation is

£ ge | ure)dnts) > | ulg(s) dnis),

where u is a bounded utility functional on X and = is a finitely additive
probability measure on the algebra of all subsets of S. His axioms imply that
S is infinite and 7 is unique. Subjective probability is based on preference:
m(A) > w(B) if and only if, when x is preferred to y, the act that yields x if 4
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obtains and y otherwise is preferred to the act that yields x if B obtains and y
otherwise.

Another formulation uses functions (lottery acts) f, g, . . . from S into
the set P of simple probability distributions on X and views the probabilities
for P as extraneous scaling probabilities independent of S. When the von
Neumann-Morgenstern axioms for preference on the set of lottery acts are
supplemented by other independence and dominance axioms, we obtain the
additive linear utility representation

£ >ge | u)drs) > | ues) dr(s),

where u is a linear functional on P and = is a unique probability measure on
the subsets of S. Because of the lottery feature, no further restrictions apply to
S or = in this case.




8 Generalizations of Additive Expected
Utility

Prior to about 1980, the main alternative to Savage’s additive expected
utility theory and the additive linear theory of Anscombe and Aumann was
Allais’s additive nonexpected intensive utility theory for decision under
uncertainty. Since that time, several new alternatives have been developed to
accommodate violations of independence, substitution, reduction, and transi-
tivity. Most of these either assume that subjective probability is additive but
preferences need not be transitive, or that preferences are transitive and
subjective probability need not be additive. This chapter reviews these
theories after discussing violations of traditional axioms and representations
for nonadditive probability.

8.1 CRITIQUE OF ADDITIVE EXPECTED UTILITY

Chapter 2 presented an array of plausible violations of the von
Neumann-Morgenstern expected utility theory that focused on the indepen-
dence axiom (p > g = A\p + (1 — Nr > A\g + (1 — N)r), transitivity, and
the use of nontransformed outcome probabilities in numerical representations
of preference. Many of those violations apply also to Savage’s additive
expected utility of Section 7.4 and the additive linear model of Section 7.6.
Other challenges to these states theories arise directly from the states
~ formulation. They are concerned primarily with the reduction principle, the

independence or substitution principle (P2) part of Savage’s sure-thing
principle, and the approach to subjective probability developed by Ramsey,
de Finetti, and Savage.
' This section further illustrates these challenges. The next section then
_ discusses nonadditive subjective probability, and the remainder of the chapter
_reviews theories designed to accommodate observed violations of the theories
in the preceding chapter.
We have already discussed aspects of the reduction principle in Chapter
- 2. Another example is provided by Figure 8.1 with dollar payoffs and 10
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FIGURE 8.1 Payoff matrix
STATE PROBABILITIES
01 O0f 04 Ot O4 Ot O1 04 01 04

fl]10 20 30 40 50 60 70 80 SO 100
g|20 30 40 50 60 7O 80 90 100 10

equally likely states. By the identity reduction principle of Section 7.4, f ~ g
since 7, = w,. This is defended by the claim that, once an act has been
chosen, the only thing that should matter is that act’s probabilities for the
outcomes. This claim sees f and g as effectively identical. Hence they ought
to be equally attractive.

One argument against the reduction principle involves a comparative
evaluation position that asserts that alignments of outcomes under events as
well as outcome probabilities themselves can affect choices in reasonable
ways. An example of this (Tversky, 1975; Loomes and Sugden, 1982; Bell,
1982) focuses on the regret/rejoicing a person might experience by learning
that one could have done better/worse if one had chosen differently. Some
people may prefer g to f for Figure 8.1 because g gives a greater return than f
in 9 of the 10 states, reasoning that if the final state obtains it is merely a case
of bad luck. Others may prefer f to g because they would experience great
regret if they choose g and the final state obtains, but would not be troubled
by losing out on the $10 difference in the other nine cases under selection of
[

A connection to stochastic dominance arises from one change in Figure
8.1. Suppose g > f, and & = g except that A’s final outcome is $9 instead of
$10. It may well be true that # > f. This violates the combination of the
reduction principle and first-degree stochastic dominance, which yield f > A
by way of =, > w,. Note, however, that # > f does not violate the
dominance principles discussed near the end of Section 7.4.

Reduction also has intimate ties to transitivity. Consider the lottery acts
of Figure 8.2. Suppose there is a preference cycle p > g > r » p on the
three lotteries. Since f is preferred to g under each state, the obvious
dominance conclusion for lottery acts is f > g. But the reduction principle
requires f ~ g since their overall probability distributions on outcomes are
identical. If we insist on the statewise dominance principle but allow
preference cycles in P, the reduction principle must be rejected. Or, to put it
the other way around, dominance and reduction virtually force transitivity.

We now turn to independence and substitution as seen by Allais and then
Ellsberg. Figure 8.3 shows Savage’s (1954, p. 103) event-dependent
arrangement of the alternatives used in Section 2.5 to illustrate the common
consequence effect. Allais (1953, p. 526; 1979a, p. 89) used as a similar
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FIGURE 8.2 Lottery acts
STATE PROBABILITIES

1/3 1/3 1/3
flp q r
g a r p

FIGURE 8.3 Savage’s payoff matrix

TICKET NUMBERS FOR 100-TICKET
LOTTERY. ONE TO BE DRAWN AT RANDOM.

1 2-11 12 -100
$ 500,000 $ 500,000 $ 500,000
SITUATION 1
g o) $ 2,500,000 $ 500,000
‘| $500,000 $ 500,000 0
SITUATION 2
g o] $ 2,500,000 o]

arrangement described graphically. However, when he confronted Savage
with comparisons like those of Situations 1 and 2 at the 1652 Paris colloquium
on decision under uncertainty, Allais presented the situations in the event-free
mode of Section 2.5. Since both accepted the reduction principle, this would
presumably not affect choices, although we now know from framing effects
that it can. In any event Savage, like many others, initially preferred fto g
and g’ to f’ in the event-free mode, but later, after viewing them in the way
of Figure 8.3, changed to f’ > g’ along with f > g to avoid the obvious
clash with the substitution principle.

Savage, among others, felt that such arrangements would convince
(most?) people of the compelling nature of the substitution principle and, by
implication from the reduction principle, of the reasonableness of the von
Neumann-Morgenstern independence axiom. However, Allais’s original
contention to the contrary has been well supported by later experiments
(MacCrimmon, 1968; Slovic and Tversky, 1974; MacCrimmon and Larsson,
1979). Moreover, violations of substitution persist when subjects are
instructed in the arguments of Allais and Savage before they make their
choices.

As already mentioned in Section 3.3, Allais’s resolution to his
acceptance of reduction, weak order, and stochastic dominance in conjunc-
tion with his rejection of independence and substitution is a representation
that avoids an expectational form. He does, however, subscribe to additive
subjective probability for decision under uncertainty, but with a very different
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interpretation (1979b, pp. 469-73) than the personalistic one adopted by
Savage. In particular, he rejects the preference-based definition of > in the
preceding chapter (1979b, pp. 510-14) not only because it clashes with what
he believes is the correct approach to the assessment of subjective probability
(see Section 8.4) but also because it is at variance with his refutation of the
substitution principle.

The latter point was emphasized by Ellsberg (1961), who used the notion
of event ambiguity to construct examples that challenge Savage’s substitution
principle and the closely related additivity axiom G4 of Theorem 7.2. Figure
8.4 gives a case in point. Suppose an urn is filled with 90 balls, 30 of which
are red (R) and 60 of which are black (B) and yellow (Y') in an unknown
mixture. One ball is to be drawn at random with a payoff of either $0 or
$1,000 depending on the act selected and the color of the drawn ball. Ellsberg
claimed, and many subsequent experiments have verified, that a high
proportion of subjects prefer f to g and prefer g’ to f, in direct violation of
the substitution principle. The preference f > g seems to arise from the
specificity of R relative to B, or, equivalently, from the ambiguity of B
relative to R, since exactly 30 balls are known to be red while an unknown
number from O to 60 are black. The preference g’ > f' depends on the same
phenomenon: Exactly 60 balls are black or yellow, whereas an unknown
number from 30 to 90 are red or yellow. One might say that f > gand g’ >
f' demonstrate a preference for specificity, or an aversion to ambiguity,
which is something quite different than the concept of risk aversion discussed
in Section 1.6.

According to Savage’s definition of >y, f > g = R >« B,and g’ > [’
= B U Y > R U Y. Hence if we subscribe to these preferences and
Savage’s definition, = cannot be additive since it would yield w(R) > w(B)
from R >« Band 7(B) > #(R)fromB U Y » R U Y.

Raiffa (1961) gives a critique of Ellsberg (1961) that is consistent with
Savage’s position. Subsequent discussants of ambiguity include Sherman
(1974), Franke (1978), Gardenfors and Sahlin (1982), and Einhorn and
Hogarth (1985, 1986). Segal (1987) presents a two-stage decision model
designed to accommodate ambiguity.

8.2 NONADDITIVE SUBJECTIVE PROBABILITY

A variety of alternatives to the additive probability theory of Section 7.2
have been proposed to accommodate noncomparability of incommensurable
events, imprecise or vague judgment, ambiguity, failures of additivity, and
intransitivities. Some of these treat >y from an intuitional viewpoint (Keynes,
1921; Koopman, 1940; Good, 1950; Adams, 1965; Fine, 1973; Suppes,
1974; Shafer, 1976; Walley and Fine, 1979; Fishburn, 1986¢, 1986f), and
others define >y from preferences or choices (Savage, 1954; Smith, 1961,
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FIGURE 8.4 Elisberg’s urn

30 BALLS 60 BALLS
VN
R B Y
f | $1000 $0 $0
g $0 $ 1000 $0

f'| $ 1000 $0 $ 1000
g $0 $ 1000  $ 1000

1965; Heath and Sudderth, 1972; Schmeidler, 1984; Gilboa, 1987;
Fishburn, 1983c, 1986d).

In some cases full additivity is retained but weak order is relaxed to
partial order to obtain a one-way representation of the form A4 >y B = w(A)
> w(B) or perhaps A >, B = w(A) > w(B). Examples include Savage
(1954), Kraft et al. (1959), Adams (1965), Fishburn (1969, 1975b), Narens
(1974), and Wakker (1981).

Another approach that is designed to accommodate vague judgment and
may or may not involve additivity uses upper and lower probability functions
on &. We denote these by 7* and =, respectively, with 7* > 7. According
to Dempster (1968), upper and lower probabilities go back at least to Boole
(1854). It is generally assumed that 7+(&) = 7*(&) = 0, m(S) = ©*(S)
= 1, and that 74 and 7* are monotonic; thatis, A € B = [r+(4) < 7«(B),
T*(A4) < 7*(B)]. Many authors, including Koopman (1940) and Good
(1962) from an intuitive viewpoint, Smith (1961, 1965) from an adaptation of
de Finetti’s (1964) fair-bets approach, and Dempster (1967, 1968), also
assume the following:

complementary symmetry: w(A) + w*(A4°) = 1.
superadditivity of 7+: A N B = @ = w4(A) + mx(B) < w+(4 U
B).

subadditivity of 7*: A N B = g = 7%(4 U B) < 7*(4) + 7*(B).
These functions are usually taken to characterize > in the sense that, for all
A,B € §,
- A >4 B & 1(A) > 7*(B),
'dr, if we think of [7w4(A4), 7*#(A4)] as the probability interval for A, A >+ B
if and only if A’s probability interval everywhere exceeds B’s probability

interval. It may or may not be true that 7« < 7 < 7* for some additive
_measure 7 on 8.
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Additional comments on related models are given in Fishburn (1986f).
This paper provides axiomatizations of interval and semiorder representations
for (&, >x) that range from the case in which only monotonicity is presumed
for w4 and 7* to cases that assume complementary symmetry, superadditiv-
ity, and subadditivity, and 74 < 7 < «* for an additive .

Davidson and Suppes (1956), Schmeidler (1984), and Gilboa (1987)
axiomatize preference between acts or lottery acts to obtain a single
probability measure that represents >x in the weak-order manner of Section
7.2 and is monotonic but not necessarily additive. To distinguish their
measure from additive 7, denote it by o with o(&) = 0, 0(S) = 1,and 4 €
B = o(4) < o(B). Davidson and Suppes’s finite-sets theory entails

complementary additivity: o(A) + o(A°) =1,

which presumes the complementarity axiom A >« B & B¢ >y A¢. Gilboa
(1985a) presents a cogent argument for complementary additivity in the
nonadditive expected utility theories of Schmeidler (1984) and Gilboa (1987),
although it is not presumed by their axioms.

The latter theories were designed to accommodate ambiguity and
failures of the substitution principle as discussed in the preceding section.
Other probability models for ambiguity have been proposed by Einhorn and
Hogarth (1985) and Fishburn (1986d) among others. The descriptive
approach of Einhorn and Hogarth begins with an initial assessment p,4 of the
probability of A, then adjusts it to account for ambiguity by means of
nonnegative parameters 6 and (5 to yield

0(A) = pa + 01 — pa — PY).

For example, in Figure 8.4 one might begin with pp = —;; and end up with
o(B) = 0.31. Here 6 is the basic ambiguity parameter (¢ = 0 for no
ambiguity), and 3 accounts for ambiguity aversion (8 < 1), neutrality (8 =
1), or ambiguity seeking (8 > 1). Their model satisfies complementary
additivity if 8 = Qor 8 = 1.

The model in Fishburn (1986d) is

a(A) = 1(A) - T(A)T(A°) — T(A)7(A),

where 7 is an additive probability measure and 7 is an additive unsigned
measure that can take on negative as well as positive values. This model does
not satisfy monotonicity naturally, but that can be imposed. The 7 measure is
designed to account for ambiguity. The model does not generally satisfy
complementary additivity, but its correction for ambiguity, namely —
w(A)r(A°) —w(A°)7T(A), is the same for both A and A°.

A different approach to ambiguity is axiomatized in Fishburn (1983c,
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1983d) in ways suggested by SSB utility theory. The representation is
A >« B s p(A,B) >0,

where p is a ;kew-symmetric functionalon & X &, o(S, @) =1, A2 B =
p(A4, B) = 0 (monotonicity), and

ANB=@g =pAUB,C)+p(,C) =0, C) + p(B, C).

The last property, called conditional additivity, is a first-order generaliza-
tion of the usual additivity property A N B = & = 7(A U B) + «(&) =
w(A) + w(B). Positive p values for Figure 8.4 that agree with ambiguity
aversionand f > g, 8" > f',are p(R, B) = p(R, Y) = 0.02, p(R, &) =
0.38, p(B, @) = p(Y, @) = 0.31. These and p(B, Y) = 0 completely
determine p with the use of skew-symmetry and conditional additivity.

8.3 GENERALIZATIONS OF ADDITIVE EXPECTED UTILITY

Our basic classification of generalizations of additive expected utility
and additive linear utility uses three dichotomies: additive versus nonadditive
subjective probability, transitive (weak order) versus nontransitive prefer-
ence, and regular Savage acts versus lottery acts. These give eight basic
categories as follows:

I. Additive, transistive, regular acts
A. Expected (Ramsey, 1931; Savage, 1954)
B. Nonexpected intensive (Allais, 1953, 1979a, b)
C. Expected disappointment (Loomes and Sugden, 1986)
II. Additive, transitive, lottery acts
A. Linear (Anscombe and Aumann, 1963)
HI. Additive, nontransitive, regular acts
A. Expected regret (Bell, 1982; Loomes and Sugden, 1982,
1987)
B. Skew-symmetric additive (Fishburn,1986e)
IV. Additive, nontransitive, lottery acts
A. SSB (Fishburn, 1984b; Fishburn and LaValle, 1987a)
V. Nonadditive, transitive, regular acts
A. Expected finite (Davidson and Suppes, 1956)
B. Expected (Gilboa, 1987)
C. Biexpected (Luce and Narens, 1985)
VI. Nonadditive, transitive, lottery acts
A. Linear (Schmeidler, 1984)
VII. Nonadditive, nontransitive, regular acts
VIII. Nonadditive, nontransitive, lottery acts
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A. Basic SSB (Fishburn, 1984b)
B. Conditionally additive (Fishburn, 1983c¢)
C. Modified SSB (Fishburn, 1986d).

As seen by the citation dates, most of these not already discussed in
Chapter 7 are very recent, and one category (VII) is, to the best of my
knowledge, presently empty. Unlike the listing in Chapter 3, no distinction is
made for the Archimedean aspect since all theories cited above have real-
valued representations.

There are a few major differences in regard to the treatment of utility and
probability. The theories in IB, IC, and IIIA measure outcome utility in the
riskless intensive manner of Bernoulli described in Chapters 1-3. The rest
base utility measurement on preference between acts or lottery acts by natural
extensions of the approaches described in Chapter 7. A similar division
obtains for the measurement of subjective probability. In particular, Allais
assesses probability apart from the specific acts at hand, Bell (1982) and
Loomes and Sugden (1982, 1986, 1987) simply take additive state probabili-
ties as given, however they might be assessed, and the others derive
subjective probability from their preference axioms.

Most of these theories were proposed in a normative spirit. The
axiomatic style used for IA and ITA has been successfully applied to IIIB,
IVA, VA-B, VIA, VIIIA, and VIIIB, and ITA has been used to axiomatize
so-called state dependent utilities (Fishburn, 1970, Chapter 13; Karni et al.,
1983; Karni, 1985). Only partial axiomatizations exist for VC and VIIC.
The others (Allais, Loomes and Sugden, Bell) do not have comparable
axiomatizations because of their different treatment of utility and probability.

The rest of the chapter describes the generalizations in varying detail
except for VA (see Fishburn, 1981b). We begin with Allais’s additive
nonexpected intensive theory and its expected disappointment specialization
in Loomes and Sugden (1986), followed by the additive expected regret
theory of Loomes and Sugden (1982, 1987) and Bell (1982). Fishburn’s SSA
(skew-symmetric additive) theory is described in Section 8.6, followed by the
additive SSB theory in Section 8.7. These are fully developed in the next
chapter.

The final four sections discuss nonadditive theories, beginning with
Schmeidler’s linear theory in Section 8.8. Gilboa’s regular-acts version of
Schmeidler’s theory is outlined in Section 8.9. We then conclude with
sketches of the Luce~Narens model and the models in the final category.

8.4 ADDITIVE NONEXPECTED INTENSIVE UTILITY

The basic elements of Allais’s approach to decision under uncertainty
were described in Section 3.3 with the exception of his treatment of subjective
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probability. Allais (1979b, pp. 469-73) believes that so-called objective
probability is most accurately modeled by the classical notion of equally
likely cases operationalized by a reference urn with /N identical balls (except
say for a different number on each). Our intuition that the probability of
drawing one of n designated balls is n/N is supported by long-run relative
frequency of sampling with replacement. To assess your subjective probabil-
ity of event A < S, vary n until you feel that the likelihood that A obtains is
the same as the objective probability of drawing one of n designated balls
from the urn. Corrections may ne needed to assure additivity, but if S is finite
and N is large, the state probabilities can be assessed simultaneously (use all
the balls) to assure additivity.

Once additive subjective probabilities are assessed, they are used as the
‘probabilities for the distributions p, g, ... by way of the reduction
principle.We then have p > g ¢ V(p) > V(g), with

V(D) = S v)p(x) + a(p®),

where v denotes riskless intensive utility, p* is the probability distribution
induced by p on the differences v(x) — X v(x)p(x), and « is a functional on
such distributions.

A similar theory presented by Loomes and Sugden (1986) replaces
o p*) by an expectation that involves a concept of disappointment/elation.
For S finite let w(s) denote the probability of state s and let f(s) be the
- outcome for act f when s obtains, as in Savage’s formulation. Then with v( f)
= T w(s)v(f(s)) = the expected value of riskless intensive utility for f,
Loomes and Sugden consider

V() = v(f) + D 7(BLUE) - v,

- where 3 is a disappointment/elation functional on differences between
~ outcome utilities and their mean v(f). The basic intuition for § is that it has
_ the same sign as its argument: If v( f(s)) — v(f) > 0, then one is elated by
- doing better than the mean, but if v(f(s)) < v(f), then there is
_ disappointment. I refer to their representation as an additive expected
. disappointment model, since it uses additive probability and an expecta-
tional form for ¥, thatis, V(f) = T w(s){v(f(s)) + Blv(f () — v(NH1}. If
B is linear in its argument with 3(d) = Ad, then V reduces to the acts-
formulation correspondent of Bernoullian expected utility. A somewhat
different notion of disappointment is discussed by Bell (1985).

8.5 EXPECTED REGRET THEORY

~ Prior to their work on disappointment, Loomes and Sugden (1982) and
Bell (1982) formulated models for preference comparisons between acts that
incorporate a concept of regret/rejoicing. Their original papers focused on
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monetary outcomes, but this was generalized to arbitrary outcomes in
Loomes and Sugden (1987).

The most general form of the additive expected regret representation
can be written as

£>ge | s() gs) dn(s) > 0,

where ¢ is a skew-symmetric functional on X X X. As in the preceding
section, utility is based on the Bernoullian riskless intensity notion. In the
present case, this is coupled with an adjustment for regret/rejoicing that
Jointly involves f and g and is therefore quite different than the disappoint-
ment/elation notion. The concept of regret is designed to accommodate the
experience of choosing f from {f, g} and, when s obtains, of getting f(s)
rather than g(s). If f is chosen and f(s) > g(s), one might rejoice at one’s
good fortune, but one could experience regret if g(s) > f(s). One explicit
form for ¢ is

é(x, y) = v(x) — v(¥) + ylv(x) — v(¥)],

where v is a functional for which y(—d) = —v(d), ¥(0) = 0, and y(d) > 0
ifd > 0.

Given > on F defined from the additive expected regret representation,
it is easily seen that > on F satisfies all of Savage’s necessary axioms (i.e.,
P1-P4 of Section 7.4), except for P1. In particular, there can be preference
cycles and the reduction principle does not generally hold. Thus, first-degree
stochastic dominance can be violated when the reduction principle is used to
obtain 7, and =, separately for f and g. On the other hand, expected regret
theory is fully consistent with Savage’s sure-thing principle, P2 and P3, and
with the substitution and the dominance principles near the end of Section
7.4.

Loomes and Sugden (1987) note that the additive expected regret
representation reduces to the SSB representation of Section 3.9 and Chapter 4
for pairs of stochastically independent acts. For convenience assume that S is
finite. We then say that f and g are sfochastically independent if, for all x, y
€ X,

m({s € §: (f(5), g(5)) = (x, »)}) = m(0)me(¥).
When f and g are stochastically independent,

[ 60, ) dn(s) = BT 606 NI (),

which is the expectational form of the SSB representation for distributions p
= 7mrand ¢ = w,. As a consequence, the reduction principle does hold for
pairs of stochastically independent acts, and first-degree stochastic domi-
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nance also holds for such acts. But both can fail otherwise. See Sections 2.2
and 2.5 for further remarks on independence versus interdependence.

8.6 SSA UTILITY THEORY

The second theory of category III, Fishburn’s (1986e) skew-symmetric
additive theory, has the same representation f > g & | ¢(f(s), g(s)) dn(s)
> 0 as the additive expected regret theory but is interpreted very differently.
The main difference is that utility is not based on the riskless intensity
approach or on explicit regret/rejoicing but is derived from axioms for > on
F as in Savage’s theory. Similarly, = is deduced from the axioms in precisely
the same way that Savage obtains 7, by way of Lemma 7.5 and Theorem 7.2.

Given 7 as in Theorem 7.2, ¢ on X X X is scaled through indifference
comparisons of the form xAw ~ yAz. According to the SSA representation,

xAw ~ yAz = w(A)o(x, y) = [1 — w(A)]o(z, w).

Thus, if x > y and z > w, we determine 4 < S at which x4Aw ~ yAz to
specify the relationship between ¢(x, y) and ¢(z, w).

We make only one major change and two minor changes in Savage’s six
basic axioms to obtain the SSA representation for all simple acts in F. The
major change weakens the ordering axiom P1 by not assuming transitivity
except on subsets of F whose acts are confined to two outcomes. The first
minor change is to add the conditional dominance principle as an explicit

~axiom (P2*) since it no longer follows from the weakened P1; see Lemma
7.4. The other minor change is to strengthen Savage’s Archimedean axiom
P6 to a form suitable for the SSA approach.

To specify these changes precisely, let F,, denote the set of all f € F for
which f(s) € {x, y} for all s € S. Then, with the definitions as in Section
7.4, we have the following forallf, g, ', g’ € F,allx,y € X,andall 4, B
c S

P1*. > on F is asymmetric; > on F,, is a weak order.

P2*. ANB=0,f248 288 =f24au88ANB=0,f
>48 S 288 =f >aun g

P6*. f > g = [given x, y, there is a finite partition of S such that,
for every member E of the partition, (f' =gxorf =gf, &
=gyorg =pg&f =pcf, 8 =pcg =S >gl

Section 9.2 proves that P1*, P2, P2*, P3, P4, P5, and P6* imply the
‘SSA representation for all simple acts with 7 unique and ¢ unique up to
_multiplication by a positive constant. All but P6* are necessary for the
representation, and we adhere to Savage’s sure-thing principle and his
approach to subjective probability, which entails the part of weak order
retained by P1*. The only basic change from Savage is the deletion of
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transitivity throughout F and, as a consequence, the denial of the reduction
principle. If either transitivity or reduction is restored, the SSA representa-
tion reduces to Savage’s additive expected utility representation (Theorem
9.2). Comments on extension of the SSA representation to all acts appear in
Section 9.3.

8.7 ADDITIVE SSB UTILITY

The additive SSB theory from Fishburn (1984b) and Fishburn and
LaValle (1987a) bears the same relationship to the SSA theory that the
additive linear theory of Section 7.6 bears to Savage’s additive expected
utility theory. In particular, it uses the lottery-acts approach with F = PS and
replaces the SSA representation by

P> g e | o), g(s) dn(s) > 0,

where ¢ is an SSB functional on P X P.

As might be expected by analogy with additive linear utility, the additive
SSB theory applies C1, C2, and C3 (Section 4.1 or 3.6) to > on F and then
adds axioms that are necessary and sufficient for the existence of a unique
additive probability measure = on & = 25 for the representation. As before,
the use of P allows S to be any nonempty set, and no special conditions apply
to 7 apart from additivity.

Three axioms beyond C1-C3 are used for the simple lottery acts part of
the additive SSB representation. They are described more fully in Section 9.4
and consist of a nontriviality axiom and two independence axioms. The first
independence axiom says that pAr > gAr © pBr > gBr for nonnull A, B
< S. This essentially allows the derivation of probability coefficients for
each finite partition of S. The other independence axiom is a specialized
version of the Herstein—Milnor (1953) independence axiom B2 of Section 1.5
applied to > on F. In conjunction with C1-C3, the second independence
axiom implies the decomposition

o(f, g) = > ¢(fAp, gAD)

i=1

for any finite partition {4, - - -, 4,} of S and any fixed p € P, where fAp
denotes the lottery act that equals f on A4 and is constant at p throughout A4°¢.
Given the lottery-acts formulation, the axioms are necessary as well as
sufficient for the simple lottery-acts version of the additive SSB representa-
tion, with one exception, namely that only the specializations of the axioms to
simply lottery acts are needed. The complete axioms are necessary for the
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general representation, which also requires other assumptions as specified in
Section 9.6.

Just as the SSA representation of the preceding section reduces to
Savage’s additive expected utility representation when transitivity (P1) is
restored, the additive SSB representation reduces to the additive linear
representation if it is assumed that > on F is a weak order, provided that 0 <
w(A) < 1 for some event A; see Theorem 9.6 near the end of Section 9.4. If
w is degenerate, say w({s}) = 1 for some s € S, then the imposition of weak
order only reduces it to the weighted linear representation of Section 3.6 and
Chapter 5.

8.8 NONADDITIVE LINEAR UTILITY

The first broad generalization of additive expected-linear utility
designed to accommodate failures of the substitution principle and Ellsberg’s
ambiguity problem through the use of nonadditive probability in an
expectational representation was developed by David Schmeidler in the early
1980s. The theories in the preceding three sections satisfy substitution and do
not resolve Ellsberg’s problem, while Allais avoids the substitution principle
with a nonexpectational representation and additive probability.

Schmeidler (1984) presents his theory in the lottery-acts formulation of
Sections 7.1 and 7.6. Gilboa (1987) subsequently axiomatized Schmeidler’s
model in the Savage-acts format as described in the next section. Since their
representations are based on Choquet’s (1955) definition of expectation with
respect to a monotonic but not necessarily additive probability measure ¢ on
&, we say a word about this first. We assume for simplicity that & = 25.
~ Additional discussions of Choquet integration with relationships to decision
under uncertainty are provided by Schmeidler (1986) and Gilboa (1985a, b).

Given a functional w on S and a monotonic probability measure o on &,
{ w do is defined by

gs w(s) do(s) = r

c=

. o({s € S:w(s) = c})dc

- SOW_ [l - o({s € S: w(s) > c})] de,

provided that the right side is not oo — oo, in which case | w do is undefined.
The integrals on the right side are ordinary Riemann integrals with integrands
ordered in the positive and negative domains so that they are monotonic
(decreasing for + , increasing for —). When w is constant on each member of
a finite partition {A;, ---, A,} of S, say with

w(s) = ¢ foralls € 4; (i=1,...,n),
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arranged so that ¢, > ¢, > -+ > ¢,, then evaluation of the defined integral
yields

n—1 i
SWdO’ = 2 (C,' — Ci+1)0' (UA/> + C,.
i=1 j=1

Apart from the indexing of the w values, this is identical to the form for V( p)
used in the basic decumulative representation of Section 3.5 (Quiggin, 1982).

Schmeidler (1984) uses four axioms plus a nontriviality condition,
including A1 and A3 for > on F (or a subset thereof) and a weakening of the
independence axiom A2. This weakening, which is the crucial step that
allows failures of the substitution principle, uses the following definition of
comonotonicity between lottery acts. We say that f, g € PS are comono-
tonic if there do not exist s and £ in S such that f(s) > f(#)and g(¢) > g(s). In
other words, f(s) > f(¢) whenever g(s) > g(¢), and g(s) > g(¢) whenever
f(s) > f(¢). Comonotonicity is a very restrictive hypothesis. For example,
under the lottery acts specialization to ordinary acts for Figures 8.1 and 8.4, f
and g are not comonotonic in any of Figures 8.1, 8.2, and 8.4.

Schmeidler’s axioms, applied to all f, g, h € F (or a subset thereof) and
all0 < N\ < 1, are:

Al. > is a weak order.

A2*. (f, g, and h are mutually comonotonic, f > g) = M + (1 —
Mh > Ag + (1 — Mh.

A3. f>g>h=af + (1 — ah >gandg > Bf + (1 — B)h for
some o and B in (0, 1).

St*. £ > g’ for somef’, g’.

S2%, (f(s) 2 g@s) foralls € S) = f > g.

The nontriviality axiom is obviously S1* (cf. S1 in Theorem 7.5), and
S2* is the monotone dominance principle for lottery acts.

TueoREM 8.1. Suppose Al, A2*, A3, S1*, and S2* hold on the set of
simple lottery acts. Then there is a unique monotonic probability
measure o on & and a linear functional u on P, unique up to positive
linear transformations, such that, for all simple lottery acts f and g,

P>ge | ulf)do(s) > | u(g(s) dos).

Schmeidler also notes that the conclusion of the theorem implies its five
axioms. Its proof in Schmeidler (1984) begins with the fact that A1, A2*, and
A3 imply Al, A2, and A3 on P, considered as the set of constant lottery acts.
This gives u# on P by way of Theorem 1.3. The remainder of the proof is then
devoted to establishing the existence of o as asserted. A result from
Schmeidler (1986) is used in this part of his proof.
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The extension of his nonadditive linear utility representation to
nonsimple acts is examined by Schmeidler (1984, 1986). Call f € F
bounded if there are p, ¢ € Psuchthatp > f(s) > g foralls € S. He then
proves the following.

Turorem 8.2. If > on the set of simple lottery acts satisfies Al, A2*,
A3, and S2*, then it has a unique extension to the set of bounded lottery
acts that satisfies the same axioms on those acts. Moreover, if the
extended > is not empty, then there are o and u as in Theorem 8.1 such
that £ > g & [ u(f(s)) do(s) > | u(g(s)) da(s) for all bounded lottery
acts.

Additional results for the representations of Schmeidler and Gilboa are
developed by Wakker (1986).

8.9 NONADDITIVE EXPECTED UTILITY

The Savage-acts correspondent of Schmeidler’s representation is the
nonadditive expected utility representation

fr g [ us) do) > | ule(s) dots),

where u is a functional on X and ¢ is a monotonic probability measure on &
= 25, Gilboa (1987) axiomatizes this representation in Savage’s fashion for F
— XS and notes carefully just how he is changing P1-P7 for the more general
model.

Unlike the SSA situation of Section 8.6 which requires only a few
changes in Savage’s axioms, at least for simple acts, Gilboa retains only P1 in
its original form. Because of his extensive changes, I shall note only those
that involve P2—P4; see Gilboa’s paper for his modifications of P5-P7. To
avoid confusion with Section 8.6, double asterisks will be used for Gilboa’s
changes even though this work preceded and motivated Fishburn (1986e).

Comonotonicity between acts is defined by analogy to Schmeidler’s
definition. For convenience, extend the notation xAy to xA f as the act f* for
which f/ =4 x and f* = 4c f. Gilboa replaces {P2, P3, P4} by two axioms,
applied to all f, g, f', g € F,allx,y,z, w € X,andall 4, B € S:

P2#*. If xAf, yAf, zAg, and wAg are mutually comonotonic; if
xBf', yBf’, zBg’ and wBg’ are mutually comonotonic;, and
ifx > y,z > w, xAf 2 xBf', yAf ~ yBf', and wAg ~
wBg’, then zAg 2 zBg'.

P3** x > y = xAf > yAf.

The latter axiom is an appealing weakening of Savage’s P3. The former,
P2#**_ is Gilboa’s replacement for the P2 part of the sure-thing principle,

v
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designed to avoid implication of the substitution principle. It also embodies
aspects of P4 with its pairs of outcomes and two events, and implies P4 in the
presence of P1. Unfortunately, P2#* has little direct intuitive appeal. Gilboa
notes that if the comonotonicity hypotheses of P2** are removed, then it
essentially says that an improvement from y to x (x > y) that swings the
indifference yA f ~ yBf’ in A’s favor, to xAf > xBf’, cannot be reversed
by a similar change from w to z when z > w; that is, we cannot also then
have wAg ~ wBg’ and zBg’' > wAg. However, this unrestricted form is
too strong for the nonadditive expected utility representation. When the
comonotonicity restrictions are added, the resultant P2** becomes necessary
for the representation.

Gilboa (1987) proves that P1, P2** P3** and his replacements for P5-
P7 hold if and only if there is a monotonic probability measure o on & and a
bounded functional # on X that satisfy the nonadditive expected utility
representation for all f, g € Falong with, forall 4 € Bandall0 < A < I,

a(C) = ho(A) + (1 — Na(B) forsome A <€ C € B,

and for which o is unique and u is unique up to positive linear
transformations. Unlike the proofs developed elsewhere for related represen-
tations (Savage, 1954; Anscombe and Aumann, 1963; Schmeidler, 1984;
Fishburn, 1984b, 1986e), Gilboa’s cannot draw directly on the von
Neumann-Morgenstern linear utility theorem or Savage’s additive probabil-
ity measure and therefore requires a new approach.

In a sequel, Gilboa (1985a) makes a case for the complementary
additivity condition

o(A) + 0(4°) =1 forall A C S,

for Schmeidler’s representation and his own, neither of which presumes this
condition. Part of his case deals with technical aspects of Choquet
integration. For example, within the context of his representation, it may
seem reasonable to require that maximization with the form { u do should be
equivalent to minimization with the form | (—u) do, but this turns out to be
true in general if and only if o satisfies complementary additivity. He also
develops a condition for > on F that is tantamount to complementary
additivity within the setting of his other axioms, and later suggests that a
consistent theory for conditional probability arises only when ¢ is fully
additive.

8.10 NONADDITIVE BIEXPECTED UTILITY

Luce and Narens (1985) develop a model for decision under uncertainty
that illustrates how their analysis of concatenation structures in measurement
theory might be applied to the decision area. Because their formulation differs
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somewhat from those of Chapter 7 and the other generalizations of the present
chapter, I shall first give a paraphrased version of their theory in Savage’s
setting and then explain their approach.

As usual, let xAy denote the act with outcome x if 4 obtains and
outcome y otherwise, and let o = X X & X X, the set of all such acts. We
then say that (F,, >) has a nonadditive biexpected utility representation if
there is a functional # on &y, with u(x) defined as u(xSx), and monotonic
probability measures o* and ¢~ on & such that, for all x4y, zBw € F,

xAy > zBw & u(xAy) > u(zBw)
and

u(xAy)

il

u(x)ot(A) + u(¥)1 — o*(A)] ifx >y,

u(x) ifx ~ y,
u(xyo=(A) + u(y[1 — o=(A4)] ify > x.

The novel feature of this representation is its use of two monotonic measures
whose applications depend on preference between the outcomes as well as on
&. It reduces to a special case of Gilboa’s representation with ¢* = ¢~ if and
only if the complementarity condition xAy ~ yA“x holds throughout F,. My
designation ‘‘nonadditive biexpected utility’’ attempts to maintain consist-
ency with the general terminology of this chapter and Chapter 7. Necessary
axioms for the representation include weak order, (4 € B,x > y) = xBy 2
xAy,(A S B,y > x)=xAy 2 xBy,(x > z,y > w) = xAy > zAw, and
(x > v,z > w,xAy > xBy) = zAw > zBw.

The approach of Luce and Narens applies > to a set F that is built up
recursively from elements in X X &, X X, where &g is a family of events
that is not generally assumed to be a Boolean algebra and, as a technical
convenience, omits ¢ and S. I shall denote elements in §F as XAy, where x
and y are outcomes in X, or simple acts of the form x = zBw, or more
complex entities obtained recursively from X X &, X X. In an expression
like (zBw)Ay, A and B are interpreted as statistically independent; the
gamble based on A is carried out first and then, if A obtains, the zBw gamble
is-carried out. A similar interpretation applies to the two instances of A in
xA(zAy). Although this is awkward for the states setting, it fits nicely with
the measurement theory in their paper.

Luce and Narens refer to their basic utility representation for (¥, >) as
the dual bilinear utility representation. It consists of a functional u on F and
functionals ¢* and o~ from & into (0, 1) such that, for all xAy, zBw € &,

xAy > zBw & u(xAy) > u(zBw)

and
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il

u(xAy) u(x)ot(A) + u(y)[1 — o*(4)] ifx >y,

= u(x) ifx ~ vy,
u(x)o (A) + u(yll — o=(A4)] ify > x.

This representation is approached from a scale-theoretic viewpoint in Luce
and Narens (1985, p. 59), and its preference axioms are discussed by Luce
(1984).

The dual bilinear utility representation does not presume that o+ and ¢~
are monotonic, but this is readily supplied by assuming x > ¥y & xAy 2
xBy whenever B € A. Separately, their representation satisfies complemen-
tary symmetry in the form 6*(4) + 07(4¢) = 1 if and only if xAy ~
yAx, provided that &, is closed under complementation. These and other
specializations are discussed in some detail by Luce and Narens.

I have glossed over a few of the finer points in their paper and urge
interested readers to consult the original. Of special interest is their discussion
of accommodation of the Allais and Ellsberg phenomena and their demonstra-
tion that the prospect theory model of Kahneman and Tversky (1979) is a
special case of the dual bilinear model under a suitable translation of the
Kahneman-Tversky structure into their own format.

1l

8.11 NONADDITIVE, NONTRANSITIVE THEORIES

We conclude our review of generalizations of additive expected utility
by commenting on three representations that accommodate Ellsberg’s
ambiguity problem partly through nonadditive subjective probability without
assuming that preferences are transitive.

The first theory, the basic SSB theory of category VIII, applies the SSB
axioms C1, C2, and C3 to > on F, as in the initial part of the axiomatization
for the additive SSB theory outlined in Section 8.7. It uses no other axioms
and does not yield an unambiguous monotonic probability measure.
However, its representation, which is described in Theorem 9.4, involves a
partial decomposition over states.

Our second theory provides a preference-based axiomatization of the
conditionally additive skew-symmetric functional p on & X & described in
Section 8.2. The axiomatization is based on only two outcomes, x and y with
x > y, takes & as a Boolean algebra of subsets of S, and applies > to the set
G of modified simple lottery acts defined by

G = {f:8~-1[0,1]: £(4) > 0 for no more than a
finite number of 4 € &, 3 £(4) = 1}.

Thus each f assigns a “‘probability’’ £(A) to every event A in &. We interpret
f as an option that yields the preferred outcome x with probability
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Y,  f(A4)  when state s obtains,

{A€8:s€A4}

and yields y with complementary probability 1 — = {f(4):s € 4} when s
obtains. The probabilities used in the definition of G are viewed as extraneous
scaling probabilities, and it is easily seen that each f € G corresponds to a
simple lottery act as that term has been used previously. Moreover, G is a
convex set.

For convenience, let f4 denote the element in G that assigns probability
1toevent A € &. Then, in the manner of Savage, we define > on & by

A > B iffy > fp.

In terms of prior notation f4 = xAy and fz = xBy. The axioms for (G, >)
consist of the SSB axioms C1-C3 along w1th the following forall 4, B € &
and all f, g € G:

HI. f5 > f,.
H2. A2 B=1, > f3
H3 . C{fC)se C} =2{gC):s€ C} forallsc S) = ~ g.

The first two of these are obvious nontriviality and monotonicity conditions.
H3 says that if f and g have the same probability of yielding the preferred
outcome in every possible state then f ~ g.

Fishburn (1983c) proves that C1-C3 and H1-H3 hold for (G, >) if and
only if there is a unique SSB functional p on G X G such that, for all f, g €
G’

f>genfg >0,

and such that p on & X &, defined by p(A4, B) = p(f4, f5), is monotonic,

conditionally additive, and has p(S, &) = 1. By the preceding definition of

>0, A >« B & p(A, B) > 0.

There seem to be two main problems with the conditionally additive
theory. The first concerns C2. To illustrate, suppose an urn contains 100
black (B) and red (R) balls in an unknown mixture. Let f = 5f, + 2fs, so f
yields x with probability % regardless of which ball is drawn. Ellsberg’s
_ analysis suggests that many people will have f > fp and f > fz. Then C2
~requires f > fB + fR But, by H3, f ~ fB + fR since the mixture yields
x with probablhty 5 regardless of which ball is drawn Hence there are limits

on the extent to Wthh this approach accommodates ambiguity aversion.

, The second problem concerns the extension of the theory to a general
outcome set X. I have been unable to devise a natural extension that avoids
the implication that subjective probability is additive as in the additive SSB
utility theory of Sections 8.7 and 9.4. Again I suspect that the problem lies in

_unrestricted application of the convexity axiom C2.
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The third representation designed to accommodate ambiguity, failures of
the substitution principle, and intransitivities was developed in the lottery-
acts setting (Fishburn, 1986d) but can also be expressed with Savage acts for
category VII. In the latter setting with F = X and S finite, the model is

frege V(g >0
with
V(S 8) = 3 7(s)$(f(s), &(s)

N

~ T 3 71O ), F(O)] — |o(e(s), gN]],

sES teS

where each 7(s) > 0,  m(s) = 1, 7(s) € R, and ¢ is a skew-symmetric
functional on X X X, or on P X P (with bilinearity) in the lottery-acts case.
If 7 = 0, this reduces to the SSA representation for regular acts and to the
additive SSB representation for lottery acts.

In the general case the w(s) behave exactly like additive subjective
probabilities but are confounded by the other state function 7, which is
designed to accommodate ambiguity. When >y is defined by A >4 B if xAy
> xBy whenever x > y, it is easily seen that the model implies S >4 &, >«
is a weak order on & = 25, and, for all A, B € §,

A > B e o(A) > o(B),
where
6(A) = m(4) — 7(A)7(A°) — 1(A)7(A)

as in the penultimate paragraph of Section 8.2. As indicated there, >4 is not
naturally monotonic, but this can be assumed if desired.

Although neither the regular nor lottery-acts version of the V representa-
tion has been axiomatized, a few necessary conditions are noted in Fishburn
(1986d) for the lottery-acts version. These include C1-C3 on the set of
constant lottery acts (where the term in 7 vanishes) and the correspondent of
Savage’s P4. Moreover, the representation has appealing uniqueness proper-
ties in this case, with ¢ unique up to multiplication by a positive constant,
unique 7, and, except for a few special cases, unique 7.

The representation also has some undesirable implications from a
normative perspective unless its functions are constrained in certain ways. In
connection with the potential nonmonotonicity of >, the model does not
naturally imply that pAg > pBq whenever A 2 Band p > q. In addition,
because of the way it deals with ambiguity through within-act variability, it is
possible to violate the simple dominance principle or the monotone
dominance principle of Section 7.4.
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FIGURE 8.5 Expected utility theories with states

REGULAR ACTS LOTTERY ACTS
ADDITIVE, TRANSITIVE SAVAGE (1954) ANSCOMBE AND AUMANN (1963)
NONADDITIVE, TRANSITIVE GILBOA (1987) SCHMEIDLER (1984)
ADDITIVE, NONTRANSITIVE | FISHBURN (1986e) FISHBURN (1984 b)
NONADDITIVE, NONTRANSITIVE ? FISHBURN (1983c, 1984b)

Finally, I note that if ¢ in the lottery-acts case is decomposable in the
linear utility manner as ¢(p, g) = u(p) — u(g), then it can be shown that
the representation reduces to a special case of Schmeidler’s (1984) model of
Section 8.8, provided that (A 2 B, p > q) = pAq 2 pBq is assumed.

8.12 SUMMARY

Generalizations of the additive expected or linear utility theories of
Savage, Anscombe and Aumann, and others can be conveniently classified
according to whether they use additive subjective probability, whether they
assume transitivity, and whether they are based on regular Savage acts or
lottery acts. A few generalizations adopt the Bernoulli-Allais riskless
intensity approach for utility measurement, but most derive utilities from
simple preference comparisons between acts or lottery acts.

The three main additive representations developed to date are Allais’s
transitive nonexpected form, the skew-symmetric expectational form for
regular acts in the regret theories of Bell and Loomes—Sugden and the SSA
theory of Fishburn, and the additive SSB representation for the lottery-acts
formulation. The latter theories do not assume that preferences are transitive.

The primary nonadditive representations that have been satisfactorily
axiomatized thus far are Schmeidler’s nonadditive linear representation for
lottery acts and Gilboa’s corresponding nonadditive, expected utility repre-
sentation for regular acts. Both assume transitivity and can account for
Ellsberg’s ambiguity phenomenon. Figure 8.5 identifies initial contributions
for theories that have been more or less satisfactorily axiomatized in the
simple preference comparisons style of von Neumann-Morgenstern and
Savage.




9 Additive Nontransitive Nonlinear
Utility

As noted in the preceding chapter, Savage’s additive expected utility
theory and the corresponding additive linear utility theory have been
generalized to avoid transitivity and the reduction principle while retaining
additive subjective probability. This chapter proves that the resultant SSA
(skew-symmetric additive) and additive SSB representations follow from the
axioms of Chapter 7 with various modifications appropriate to these more
general representations. It also shows how the new representations reduce to
their correspondents in Chapter 7 when transitivity is restored.

9.1 SKEW-SYMMETRIC ADDITIVE UTILITY

This chapter examines in detail the SSA (skew-symmetric additive)
representation

r>ee | 606 g6 dr > 0

that generalizes Savage’s additive expected utility representation of Section
7.4, and the additive SSB representation

t>ge | 910 gs) drn(s) > 0

that generalizes the additive linear representation of Section 7.6. This section
and the next two focus on the SSA theory; the rest of the chapter considers
extensions of the SSB theory of Chapter 4 to the states setting.

The definitions and notation of Chapter 7 apply throughout the present
chapter unless noted otherwise. In particular, we take F = X5, F = PS5, and
& = 25, with P the set of all simple probability distributions on X. Also, F,
= {f € F:f(S) € {x, y}}, the set of all acts whose outcomes are confined
to {x, ¥}, xAy is the act that yields x if 4 obtains (f =4 x) and y if A does
not obtain (f =4c¥), and A >« BifxAy > xBy forallx, y € X for which x
> .
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For convenience we recall the basic SSA axioms, which apply to all f, g,
fl,8 €F, alx,y,x',y € X,andall 4, B C S:

P1*. > on F is asymmetric; > on F,, is a weak order.

P2. (f=af' 8=48f=,4c8&) =48)=>(f>gef >¢g)

P2*. ANB=0,f248f 288 =f2ausg&ANB=0,f
>48 f 288 =f >auB&.

P3. A& N, f=ax8=4y)=>(f>a20x>)).

P4, (x >y, x" > y')= (xAy > xBy & x'Ay’ > x'By’).

P5. z > wforsomez, w € X.

P6*. f > g = [given x, y, there is a finite partition of S such that,
Sfor every member E of the partition, (f' =gxorf =gf, g’
=gyorg =p&f =pf.8 =z8 =/ >¢g'l

It is easily seen that all axioms except the Archimedean condition P6*
are necessary for the SSA representation. Our basic SSA theorem shows that
these axioms are sufficient for the representation confined to simple acts.

THeOREM 9.1. Suppose P1*, P2, P2*, P3, P4, P5, and P6* hold for >
on F = X5 with > on & = 25 as defined above. Then (8, >) has a
unique additive representation with the properties of its agreeing
probability measure « as specified in Theorem 7.2 along with, for all A
€ 8,4 € N o w(A) = 0; and there is a skew-symmetric functional ¢ on
X X X such that, for all simple f,g € F, f > g & |5 o(f(5), g(s)) dn(s)
> 0. Moreover, ¢ is unique up to similarity transformations.

The proof of the theorem, which begins with Theorem 7.2 and Lemma
7.5, is completed in the next section. Section 9.3 then discusses the extension
of the SSA form to nonsimple acts in F. We note there that Savage’s P7 is
unsuitable for the extension and suggest other axioms that are presumed by
the extension, including the monotone dominance principle, but do not
provide a complete resolution of the extension problem.

We conclude the present section with the observation that full transitivity
(P1), which obviously reduces the SSA representation for simple acts to
Savage’s additive expected utility representation, is tantamount to the identity
reduction principle of Sections 7.4 and 8.1.

THEOREM 9.2. Given the representation of Theorem 9.1, P1 holds for
> on the set of simple acts in F if and only if the identity reduction
principle (n; = w, = f ~ g) holds.

Proof. It suffices to consider only simple acts. If the representation of
Theorem 9.1 holds along with P1, we obtain Savage’s representation, which
_implies the identity reduction principle; see Section 7.5 for comments.
Conversely, if the representation of Theorem 9.1 holds in conjunction with
the identity reduction principle, then with {4, B, C} a three-part uniform
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partition of S as follows from the final conclusion of Theorem 7.2, we get f
~ gwhen (f =4x,f=py,f=cz)and (g =4, & =52, & =cX), and
therefore ¢(x, ¥)/3 + ¢(y, 2)/3 + ¢(z, x)/3 = 0, or

o0,y + ¢(¥,2) + d(z,x) =0

forall x, y, z € X. Fix x, € X and define © on X by u(x) = ¢(x, Xo). Then,
by the preceding equation and skew-symmetry, take z = X, to get

o(x, ) = u(x) — u(y).

Substitution of this in the SSA representation gives Savage’s representation,
so P1 holds. ]

9.2 SSA UTILITY PROOF

The following easy consequences of P1* P2 and the definitions
preceding Savage’s axioms in Section 7.4 will be used without special
mention throughout this section:

(f > g,f:ACg) =f >Ag

(f~ gsszcg) =>f~A 8.
(f2ef=,,8=Sf2a8

AEN & (ff ~4g forallf',g" €F).
> 4 i1s asymmetric.

~ 4 is symmetric and reflexive.

f~ag e [not(f >4g) and not (g >4S)]
frage (f~agorf >48)

We assume henceforth in this section that the hypotheses of Theorem 9.1
hold. Lemma 7.5 and the paragraph following its proof give w for Theorem
9.1, so we focus henceforth on the construction of skew-symmetric ¢ on X X
X that satisfies the SSA representation for all simple acts in F. All acts used
henceforth in this section are presumed to be simple.

Our construction of ¢ is based directly on the fact that if the SSA
representation holds, then

xAw ~ yAz = 1(A)d(x, y) = w(A)d(z, W).

To prepare for our subsequent definition of ¢ and the SSA representation
verification, we first prove a series of lemmas. The crucial ones are Lemmas
9.7 and 9.9.

Lemma 9.1. (f(s) > g(s) foralls € S) = f > g. If, in addition,
{s:f(s) > g(s)} & I, thenf > g.

Remark. This is similar to the monotone dominance principle. As noted
earlier, it applies here only to simple acts.
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Proof. Partition S into events on which (f(s), g(s)) is constant. Then
P3, the definition of 9T, and a series of applications of P2 * give the desired
conclusions. |

LEmMMA 9.2. (A ~«B,ANB = &, =4%,f =Y, =4),8 =5X)
= f ~qus &

Proof.If x > yory > x, the conclusion follows from the definitions. If
X ~ y, use Lemma 9.1. ]

Lemma 9.3. (4 ~x C, B ~« D; A, B, C, and D are mutually disjoint;
S=ax,f=pW,8=4y,8 =82S =cX, [ =pw,8 =cy,8 =pz)=
(f >aug ® f" >cup&’)-

Proof. Given the hypotheses, define simple 4, k£ in part by
thx5 h=BW, h=C}’, h—_“DZ,
k=45, k=pz, k=cx, k=pw.

By Lemma 92, h ~AUCk and A ~BUD k. Hence P2 * 1mphes h ~AUBUCUD k.
Again by P2*, h > 4up k © k > cup h, which is the desired conclusion of
the lemma. [ |

For the next lemma and later define

Ao =4{k/2":n=1,2,...;k=1,...,2"}

LeMMa9.4. (ANB =g, CS A,D S B; A € Ay, 7(C) = A\r(A4),
D) = MB); f =4 X, f =W, 8 =4, 8 =32) = (f >aupg ¢ f
>cup &)

Proof. If A = —;—, then by Lemma 9.3 and P2*, f >cup g8 © f
>u~cu@-py & ¢ f > .4usp & Successive bisections of C and D, and so
forth, using the final property for = in Theorem 7.2, lead to the conclusion
whenever X € {3, 7, 3, - - -1. The same conclusion for every N € A, then
. follows from the second implication in the first paragraph of this section and
successive applications of P2*. |

Our next lemma, which extends Lemma 9.3, gives a key property of

preference invariance under equally likely events.

LEMMA 9.5. (A ~+C,B ~«D,ANB=CND=;f=4x,f =35

W, 8 =4Y,8 =82S =cX,f =pw,g =cy,8 =p2)=(f>4aupg ®
S >cup &)

Proof. According to Lemma 9.4, it suffices to prove Lemma 9.5 under

the assumption that 7(A4) + 7(B) < %, since otherwise A, B, C, and D in the

present case can be ‘reduced’ by the same factor under successive bisection.
Given 7(4) + 7(B) < 5, hence 7(C) + 7(D) < 3,letE= (AU BU
C U D)¢ so that w(E) > 5. Choose Ey, E, € E with E; N E, = & so that
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mE) = 7(A) = n(C) and w(E,) = 7w(B) = w(D). Then, by Lemma 9.3
with i =g, X, h =g, W, kK =g, ¥, k =E, z, we have

S >auB & ® h Prugr k,
S >cupg& € h Pgugk

and therefore f >4upg ¢ f >cup g’ L

LEMMA9.6. (x > v,z > wAN B = @, B & 9N, xAw > yAz) =
x(A U Byw > y(A U B)z.

Proof. Let C = (A U B), f = xAw, and g = yAz. Assume f > gas
in the hypotheses. If g > 4uc f, then, since g >z f(byz > w, B & 91, and
P3), P2* implies g > f, a contradiction. Hence f > sucg&. Letf’ =4ucf &’
=4uc& f =px,andg’ =pysothatf’ = x(4 U B)wandg’ = y(4 U
B)z. Since f' > 4uc &8 by f >aucg andf’ >pg’ byx > yand P3, P2*
implies /7 > g’. |

Lemma 9.7. If x > y and 7z > w, then there is a unique A € (0, 1)
such that, forall A € §&,

w(A) > N & xAw > yAz,
7(A) = N & xAw ~ YAz,
m(A) < N & yAz > xAw.

Proof. Assume x > yand z > w. Consider xAw and yAz. By Lemma
9.5, preference between xAw and yAz depends only on w(A) and not on A’s
specific identity. Hence, when 7(A4) = «, we write Xaw and yaz in place of
xAw and yAz, respectively. By Lemma 9.6, (u > N\, XAW > yAZ) = xuw >
yuz, and (u < N\, YAZ > xX\w) = yuz > xpw. Moreover, x1w > ylz and
0z > xOw. According to P6* with outcome pair (w, z) when (f, g) = (x, »),
and outcome pair (¥, x) when (f, g) = (z, w), we get xXA\w > YAz for some A
< 1, and YAz > xA\w for some N > 0. It follows that there is a unique A" €
(0, 1) such that

A >N = xAw > YAz,
A< N = Y\Z > XAw.

If either xXN"w > YA’z or YA’z > x\'w, then a similar application of P6*
yields a contradiction of Lemma 9.6 with {f, g} = {X\’w, y\’z} in the
hypotheses of P6*. Hence x\'w ~ y\'z. |

Henceforth we use the notation xay for (xAy, ©(A) = «) as justified
by Lemma 9.5.

Lemva 9.8. CN D = &,0 < X\ < 1, 7(C) = A\r(A), 7(D) =
M(AC), f=cX, f=pW, & =c¥, & =pZ) = (xAw > yAz ¢ f >cup 8)-
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Proof. This follows from Lemmas 9.4 and 9.5 for all A\ € A,, and it
holds for all 0 < A < 1by Lemma 9.1 and the definitions unless (x > y,z >
w)or(y > x, w > z). Assume henceforth that (x > y,z > w),0 < A < 1,
and N & Ay Also let @ = w(A4).

Suppose xaw > yoz. Then, by Lemma 9.7, there is a positive 8 < «
such that xBw > yBz. Given such a 3, choose Ny € Agsothat A < Ay, Ao <
Ao, and M1 — a) < N1 — B). Let Cy and Dy be disjoint events for which
Co C C, Dy C D, 7(Cop) = N\oB, and (D) = (1 — ). Also let simple
acts hand khave h =¢ x, h =p, w, k = ¢, y, and k =p, 2. Then, since xw
> yBz and since Lemma 9.8 holds for Ay, A > coupg k. Two applications of
Lemma 9.6 (first replacing D, by D, then Cy by C) for its straightforward
modification to the conditional case then yield f >cyp &.

A converse proof that uses the same basic method shows that f >cyp g
= xaw > yoz. g8

In our final lemma we use the notation

70(A) = 7(A)/7(A°) for all 4 € §& for which w(A4°¢) > 0.

Lemma 9.9. Supposex, y,z, w,t,v € X;A,B,CE &;x > y,z > w,
t > v, and

XAw ~ yAzZ
zBv ~ wBt
tCy ~ vCx.

Then m%A)r%B)r%C) = 1.

Proof. Given the hypotheses, let @ = m(A), B = 7(B), and v = 7(C).
By Lemma 9.7, «, 8, and y are in (0, 1). Alsolet N = B/(B + 1 — o) and let
{A, B, C, D} be a four-part partition of S with 7(4) = A, 7(B) = M1 —
o), (C) = (1 = M)B, and n(D) = (1 = N(1 — B). Let (f, g) equal (x, y),
(W, z), (z, w), and (v, ) on A, B, C, and D, respectively.

By Lemma 9.8, f ~4upgand f ~cup &, sof ~ g by P2*. Since N(1 —
a) = (1 — N)B by the definition of N, f ~puc g, s0 again by P2*, f ~,up g.
Hence, by Lemma 9.8,

X[/ + (1 = M)A - v
~yI = N0 = B)/(ha + (1 = N1 - B)lz.

Then Lemma 9.7 gives Aa/(Aa + (1 — N)(1 — B)) = 1 — v, which reduces
to oBy/[(1 — )1 — B)(1 — V] = 1. &

Proof of Theorem 9.1. Given 7 by way of Lemma 7.5 and Theorem
7.2, define ¢ on X X X as follows. Fix xp, yo € X with x, > y, as
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guaranteed by P5, and let ¢y = ¢(xy, ¥o) be any positive number. Then take
o(z, w) =0 ifz ~ w,
oz, w) = 1%(A) ¢y if z > wand x0Aw ~ yyAz,
¢z, w) = —p(w,z) ifw >z

Given ¢, it should be clear that ¢ must be defined in this way if it is to be
skew-symmetric and satisfy the SSA representation.

By Lemma 9.7, ¢ is well defined. (When (z, w) = (xo, Yo), we have
w%A) = 1 at indifference.) Moreover, ¢ is unique up to multiplication by a
positive constant since the only freedom in its definition is the value chosen
for ¢, and if this changes to ¢; then ¢ changes to ¢’ = (¢;/¢0)¢. In
addition, Lemma 9.9 assures us that the same ¢ is obtained (up to a similarity
transformation) regardless of which (x,, ¥o) is used for the definition. For
example, if Xxo > Yo, X1 > ¥1, and ¢(x;, y;) is obtained from ¢(xp, o) by

¢ (x1, y1) = TUD)d (X0, Y0) with xoDy, ~ yoDx;,
and if ¢(z, w) for z > w is scaled against each of (xy, ¥o) and (x;, ;) by
oz, w) = 7(A) d(x0, o), XoAW ~ YAz,
o(z, w) = 7%(B)d(x1, y1),  x1Bw ~ yi1Bz,

then the same value of ¢(z, w) obtains for both equations if and only if
TU(A)p(x0, yo) = TUB)P(x1, y1); that is, 7%A4) = 7(B)r%(D), which
follows from Lemma 9.9 by a rearrangement of terms.

Given simple acts fand g, let {4;, . . . , A,} be the smallest-cardinality
partition of S such that ( f, g) is constant on each member of the partition with

(f(s), g(s)) = (xi, ¥ forall s € A,
a; = W(Ai)’

i=1,...,n,and 2 o; = 1. Fix f € X. Successively replace each (x;, ¥,)
by (¢, t) for all A; € 9 and the A; & 9T at which x; ~ y;. By P2* and P3,
this does not change the preference or indifference between f and g, and it
clearly has no affect on the sign of | ¢(f, g) dr.

With f and g thus modified, assume for definiteness that 4;, . ..,
A (m < n) are the members of the partition for which ¢; > 0 and not (x; ~
y).Ifm = 0, thenf = g; hence f ~ g, and {¢(f, g) dnw = 0. If m > 1 and
x; > yiforeachi < m, Lemma 9.1 gives f > g, and clearly {o(f, g) dm >
0.

Suppose x; > y;and y; > x;for some i, j < m. Take (i, /) = (1, 2) for
definiteness. By Lemmas 9.7-9.9 there is a unique number r > O such that

¢(y2’ XZ) = rd)(x], }’1),
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and f* ~cup g’ whenever 7(C)/n(D) = r, f' =c X, f' =pX2, &' =c Vi
and g’ =p y,. If ay/ay = r, then f ~ 4,04, & and, by P2*, we can replace
both (x;, y;) and (x5, ¥,) by (¢, f) without changing the preference or
indifference between f and g thus modified. Moreover,

a1 (xy, ¥1) + ayp(xy, y3) = 0
= (al + Olz)d)(t’ t) on Al U Az.

On the other hand, if «;/c; > r, then by Theorem 7.2 there isa By C A,
with 7(B)) = ayr; hence [ ~p,u4, &. In this case we replace (x;, y;) on B,
and (x;, y;) on A, by (¢, ¢) without changing preference or indifference
between f and g. Here ( f(s), g(s)) remains at (x;, y;) on 4; \ B, and, on B,
U Ay, oré(xy, y1) + cad(xz, y2) = 0 = (aor + c)d(t, t). Similar changes
with 4, and A, interchanged are made when ay/a; < r.

The applicable changes of the preceding two paragraphs eliminate at
least one of (x;, y1) and (x;, y,) completely, replacing it by (¢, #). So long as
there are x; > y;and y; > x; with positive probabilities for the modified f and
g, we repeat the procedure. Eventually either both f and g have outcome # on
all of S, with f ~ g and [¢(f, g) dn = O for the original and modified f and
g, or positive-probability events remain that all have x; > y; or all have y; >
x;. If x; > y;in the latter case, we get f > g and | ¢(f, g) dr > 0 for the
original and modified forms of f and g. Similarly, if only y; > Xx;is left, then
g > fand | ¢(g, f) dr > 0.

Thus f > g & { ¢(f, g) dx > 0 for all simple fand g in F. |

9.3 EXTENSION FOR NONSIMPLE ACTS

Extension of the SSA representation to nonsimple acts in F = XS when
X is infinite is more complex than extensions for separable representations
(Sections 1.8, 7.5, and 7.6) and nonseparable representations based on
lotteries (Sections 5.8 and 9.6). The complexity is due to the nonseparability
of ¢ on X X X, the fact that $(X X X') can be any skew-symmetric subset of
R subject to boundedness (see below), and, unlike the additive SSB extension
of Section 9.6, the fact that we do not start with an SSB functional or some
other numerical representation with nice uniqueness properties for > on F X
F. As a consequence, I shall only comment on aspects of extension and leave
open the question of conditions beyond those of Theorem 9.1 that are
necessary and sufficient for the SSA representation for all acts.

Our first observation is that, quite apart from the cardinality of X,
Savage’s extension axiom

P7. (f >48@) foralls € A) = f > .48, (f(s) >4gforalls € A) =
fZA g’
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is unsuitable for the SSA representation. To see why, let 7(B) =
xBw, g = yBz, and suppose that

d(x,¥) + o(w, ¥) > 0> ¢(x, ),
d(x,2) + do(w, 2) > 0 > ¢d(w, 2),

which is certainly consistent with the representation. Then with A = Sin P7,
the SSA representation gives / > g(s) forall s € S (by the >0 inequalities),
hence f > g by P7. But the representation also gives g > f'since, by the 0 >
inequalities, y > xand z > w.

We focus henceforth on two conditions that are necessary for the SSA
representation within the context of Theorem 9.1 but are not implied by the
axioms of that theorem when X is infinite. They are two hold for all f, g, /",
g EF,allx,y € X,and all 4 € &.

P8. (A ~x AC, f(9)Ag'(s) 2 g&)AS'(s) foralls € S, f 2 &) =
f> g; if, in addition, f' > g’, then f > g.

P9. (f > g, x > y) = [there is a finite partition of S such that, for
every member E of the partition, (f' =gf, 8" =c& S =gy, 8’
=gcx) =g > [l

Axiom P8 is a state-by-state dominance axiom which with the use of =
and ¢ in Theorem 9.1 translates into

[B(f(5), g(5) = o(f'(s), g’ (s)) foralls €S, /" 2¢'1=f28
along with f > g when f* > g’. By taking f* =gxand g’ =gXx, P8 yields
P8*. (f(s) 2 g(s) foralls € S) = f 2 &,

which is the monotone dominance principle of Section 7.4.

The other new axiom, P9, is a sort of upside-down Archimedean axiom.
It says that if f > g and if f and g are changed to constant y and x,
respectively, on a high-probability subset of S, with x > y, then the modified
g will be preferred to the modified f. A few facts about the new axioms are
summarized in

TueoREM 9.3. Suppose the SSA representation f > g & | ¢(f(5),
g(s)) dn(s) > 0 kolds for all f, g € F with « as in Theorem 7.2and ¢ a
skew-symmetric functional on X X X. Then ¢ on X X X is bounded and
P8 and P9 hold.

Alternatively, suppose the axioms and representational conclusions
of Theorem 9.1 hold. Then P8%* and P9 imply that ¢ on X X X is
bounded.

Proof. Assume the hypotheses of the first part. Then ¢ on X X X must
be bounded, for otherwise it is easy to construct acts for which {o(f,g)dris
infinite or undefined. The hypotheses of P8 preceding /' > g’ imply ¢(f(s),
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g(s)) = ¢(f'(s), g’(s)) forall s € S. Hence if f* > (>) g’, then | ¢(f,
g')dm = (>)0,50 [ ¢(f,g)dm = (>)0andf > (>)g. For P9, suppose f
> gandx > y. Let o = ¢(x, y) > 0. Then, using the final property of
Theorem 7.2 and the boundedness of ¢, S can be partitioned into a finite
number of events such that, for each event E, [z ¢(f, g) dr < [1 — w(E)]a.
Hence [ ¢(f", g") dm = [g¢(f, &) dr — [1 — n(E)]a < 0, s0, using skew-
symmetry, g’ > f’.

For the second part of the theorem let the axioms of Theorem 9.1 hold
with 7 and ¢ as specified therein. Contrary to the conclusion, suppose ¢ is
unbounded. We then construct a denumerable partition {A4;, A,, . . .} of §
with w(A;) = 2~/ for each i along with acts f and g for which f = 4;Xiand g
=4; yi with ¢(x;, y;) > 2/ for each i. By P2* and P8%*, f > g, and of course
{ #(f, g) dm = . Givenx > y, there must be an E in the partition of S that
satisfies the conclusion of P9 for which [z ¢(f, g) dm = . Given such an E
and g’ > f’ as in the conclusion of P9, indifference tradeoffs as in the proof
of Theorem 9.1 that match parts of £¢ (where g’ = x and f* = y) against
subevents of E (where f* = x;and g’ = y;) must eliminate all of (x, y) on
E¢, replacing it by (¢, £), with g’ > f” after the changes. However, the
modified f” and g’ satisfy the hypotheses of P8 *, which yields f* > g’, a
contradiction. Therefore ¢ on X X X must be bounded. [ ]

Suppose P8 and P9 hold along with the axioms of Theorem 9.1. Then,
since ¢ is bounded, the expectation | ¢( f, g) dr is finite and well defined for
all f, g € F. To verify the SSA representation for all acts, we would like to
show that [ ¢(f, g)dr > 0= f > gand | ¢(f, g)dr = 0 = f ~ g. These
appear easy to verify in some cases but not others. For example, given | ¢( f,
g) dm > 0, if we can construct simple f” and g’ such that the hypotheses of
P8 hold and | ¢(f”, g’) dmw > 0, then f* > g’ and therefore f > g. On the
other hand, suppose inf{ ¢(x, y):x > y} = 1, é(x, ¥) never equals 1, and f
and g are such that, forall 6 > 0, n({s:1 < #(f(s), g(s)) <1 + 6}) = 1.
Then the only obvious conclusion from P8, or P8*, is f > g. An additional
condition, such as [¢( f(s), g(s)) = cforalls € Sand somec > 0] = f >
g, seems to be needed to obtain f > g here, but I can see no natural way to
formulate this as an axiom or to obtain it from other appealing axioms.

9.4 ADDITIVE SSB UTILITY

In the rest of this chapter we examine the additive SSB representation, f
> g o [ o(f(s), g(s)) dn(s) > 0, discussed in Section 8.7, after noting its
basic SSB precursor in Theorem 9.4. The present section states theorems that
roughly parallel Theorems 7.4 and 7.5 for additive linear utility, then proves
that the imposition of transitivity on a nontrivial additive SSB model reduces
it to an additive linear model. Proofs of the initial theorems in the section are
given in the next section. The final two sections of the chapter consider the
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extension of the additive SSB model to all lottery acts in F = PS. The
definitions and notations of Section 7.6 apply throughout.

Our first theorem identifies the decompositional effectson ¢ on F X F
of the basic SSB axioms for > on F.

TueoREM 9.4. Suppose > onF = PS satisfies the following for all £,
g.h€Fandall) < A< 1:

Cih.f>g>h=¢g~0of + (1 — a)hforsomel < a < 1;

C2.¢>gf2h)=f>N+0-NMy(E~gf~h)=f~)\g
+0=-Mh@E>fh>f =g+ (0-Nh>f;

C3. £ >g>h,f>hg~+f+zh)=[M+ (1 - Nh~3f+ ;g
& M+ (1 — Nf ~ 2h + 5g].

Then there is an SSB functional ¢ on ¥ X ¥ , unique up to similarity
transformations, such that £ > g o ¢(f, g) > 0 forall £, g € F. Given

such a ¢, and given any finite partition {A,, . . . , A,} of Swithn > 2,
there are bilinear functionals ¢; on P X P and linear functionals u; on P
Joralli, j € {1, ..., n} such that

éi(p, @) = —¢;(q, p)  foralli, jand allp, q € P,
and such that for all f,g € F’, withf =4, p;andg =4, q; fori =1, -+,
n,

6 2) =3 buon a) — (1 = D' [1(p) — w(a)).

i=1 j=1 i=1

Moreover, with ¢ fixed, bilinear gi)i} and linear u/ satisfy these equations
in place of the ¢;; and u; if and only if there are linear functionals 7; on P
and real numbers c; for all i, j € {1, . .., n} such that, for all i, j and
alp, q € P,

o/ (P, @ = ¢y(p, @) + 75(P) — 7:(q),

1 E 7i;(D)-

i=1

1
uj(p) = wui(p) + & + ——

The first conclusion of the theorem is simply a restatement of the
conclusions of Theorem 4.1. As might be expected for the SSB case, the
decomposition of ¢ for F’ (set of lottery acts constant on each member of the

partition {4, ..., A,}) is somewhat more involved than the linear
decomposition # = Zu; implied by Theorem 7.4 in the additive linear setting.
The condition ¢;(p, q) = —¢;(g, p) implies that ¢; is skew-symmetric

hence SSB, but it does not entail skew-symmetry for ¢; when i # j. The
linear term in the decomposition for ¢(f, g) arises in a natural way during the
proof but could be incorporated into the ¢; term to yield the simpler-looking
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o(f, g) = Z;Z; 0;(p:, g;). In the proof we fix ¢ € P and define the ¢;; and u;
by

o (p, @) = ¢(pAit, gA;1),
ui(p) = ¢(pAit, tAit) = ¢y(p, 1).

The uniqueness conclusions of Theorem 9.4 reflect the fact that uniqueness
for additive bilinear forms must involve linear additions, just as uniqueness
for additive linear forms involves the addition of constants.

Three more axioms are used to obtain 7 on & = 25 and the additive SSB
representation for all simply lottery acts. Because of technical aspects of the
present axiomatization, we define 9 here by A € N if forallp, q, r € P,
pPAr ~ qAr. The axioms apply toall f, g, h € F,allp,q,r € P,allA4,B,C
c S,andall0 < A 1:

‘T1. S & 9.

T2. A, B & 9 = (pAr > gAr & pBr > ¢Br).

T3. (A4, B, and C are mutually disjoint, AUBU C=S,f=,4¢,¢8
=ph,h =cf,f ~Ag+ (1 - Mh) = 3f + ;h ~ 50g + (I -
Mh) + sh.

Axiom T1 is a nontriviality condition that ensures uniqueness of 7. T2 is
an independence axiom that mirrors aspects of Savage’s sure-thing principle,
especially P3, and S2 in Theorem 7.5. Its necessity for the additive SSB
representation follows from the correspondences pAr > gAr & w(A)¢(p,
g) > O and pBr > gBr ¢ w(B)o(p, q) > 0.

Axiom T3 is a sort of cyclic independence condition that is tailored to the
SSB lottery-acts setting. The structure of its hypotheses prior to f ~ Ag + (1
— Mh is illustrated in Figure 9.1. For convenience let ¢z(f’, g') = [
d(£'(s), g'(s)) dn(s) forall E € & and all ', g" € F. If the additive SSB
representation holds along withA N B = &, C = (A4 U B)", f =,¢8,8 =3
h, and h =, f, then

o(f, g) + ¢(g, h) + é(h, f)

o5(f, g8) + dc(f, 8) + d4(g, h) + dc(g, h)

+ ¢a(h, £) + ¢p(h, )

[¢s(f, 8) + d5(g, £)] + [oc(f, g) + dc(g, D] + [dalg, h)

+ ¢.4(h, g)]
= 0.

1l

1l

The necessity of T3 for the full additive SSB representation follows from this
observation. Suppose the representation holds along with the hypotheses of
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FIGURE 9.1 Hypotheses of T3

A B c
f|a y c
g | a b z
h | x b c

T3. Then ¢(f, A\g + (I — Mh) = 0and, using &(f, g) + (g, h) + ¢(h, f)
=0,

o(f, h) + ¢(h, Mg + (I = Mh) = ¢(f, h) + N¢(h, g)
= ¢(f h) + Mo(f, g) + é(h, )] = ¢(f, \g + (I — Mh) = 0.
Therefore
0 = ;[o(f, \g + (1 — Mh) + o(f, h) + o(h, Ag + (1 — Mh)]
= ¢Gf + 3, 3(\g + (I = M) + 3h),

so5f + 3h ~ 3(\g + (1 — Mh) + h.

T3 alone has powerful implications for ¢ on F X F in the context of
Theorem 9.4. We extend our notation slightly as follows: given f € F, D E
P,and A € &, let fAp denote the lottery act £’ for which f’ =, fand f’ = Ae

p.

I

Lemma 9.10. Suppose ¢ on ¥ x F is an SSB functional and, for all £,
gEF,f>ge of,g) > 0. If T3 holds then for ail f, g€ FalpeP,
and every partition {A,, . . ., A,} of S,

o(f, g) = 3 o(fAp, gAp).
i=1
The addition of T1 and T2 then yields = and the additive SSB
representation for simple lottery acts.

Tueorem 9.5. Suppose > on F = PS satisfies the hypotheses of
Theorem 9.4 along with T1, T2, and T3. Also let SSB ¢ on F x F satisfy
the SSB representation for > on ¥, and define ¢ on P x P by o(p, q) =
o(f, g) when £ =5 p and g =5 q. Then there is a unique additive
probability measure = on & = 25 such that, for all A € § and all simple
f,g €F,

AEN o w4 =0,
o1, 8) = | $(5), g(s) dn(s).




ADDITIVE NONTRANSITIVE NONLINEAR UTILITY 2217

We conclude this section with an observation from Fishburn and
LaValle (1987b) on transitivity before turning to the proofs of Lemma 9.10
and Theorems 9.4 and 9.5 in the next section. The point of the observation is
that, when 7 is not completely trivial, each of transitivity and independence
reduces the additive SSB representation to the additive linear representation
of Section 7.6. Hence, unlike the situation for weighted linear utility in
Section 5.3, where transitivity for the basic SSB representation yields a model
intermediate between the linear and SSB models, the imposition of transitivity
on the additive SSB representation does not yield a model that lies strictly
between this representation and the additive linear representation.

We use the Herstein—Milnor independence axiom of Section 1.5 along
with the transitive indifference axiom:

Al(~). ~ on F is transitive.
B2. Forallf,g,h € F,f ~g= f + t}h ~ g + 5h.

THEOREM 9.6. Suppose that the additive SSB representation f > g &
{ o (£(s), g(5)) dn(s) > 0 holds for all £, g € F with w and ¢ as in Theorem
9.5. Suppose aiso that 0 < w(A) < 1 forsome A € &. Then A1(~) holds
if and only if B2 holds, and either axiom implies that (F, >) has an
additive linear representation.

Proof. Assume the hypotheses. We show that each of A1(~) and B2
reduces the representation to the additive linear representation. Since A1(~)
and B2 are implied by the latter representation, they are equivalent under the
hypotheses of the theorem.

Suppose first that B2 holds. Then B2 holds for ~ on P, and, since {C1,
C2, B2} holds for > on P, it follows from Theorem 1.4 and the equivalence
between { Al, A2, A3} and {B1, B2, B3} that ¢(p, q) = u(p) — u(g) for
linear u on P. Substitution in the additive SSB representation then gives the
additive linear representation.

Suppose henceforth that A1(~) holds. It then follows from Theorem 5.3
that there are linear functionals # and won F with w > 0, w > Oon {g:f > g

> h for some f, h € F}, and, for all f, g € F,

o(f, g) = u(f)w(g) — u(g)w(f).

Our hypotheses (7 unique) imply that £ > g > h for some lottery acts in F.

Given 0 < m(A) < 1, Let A = w(A) and consider simple lottery acts of
the form pAgq, which we write as (p, g) for convenience. By the additive
SSB representation,

é((p1, p2)s (g1, @2)) = No(p1, 1) + (1 = N)o(p2, @)
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Therefore, by the decomposition of the preceding paragraph with u(p) =
u(f) and w(p) = w(f) when f =4 p,
(*) u(p1, pIW(ar, q2) — u(qi, @) w(pi, p2)
= Nu(p)w(q:) — u(g)w(p)]
+ (1 = Nu(p)w(gz) — u(g) w(pa)l.
Set q; = g, = q in this to get
u(pr, p)w(q) — u(@)w(pi, p2)
= Mu(p)w(q) — u(q)w(p)]
+ (1 = Mup)w(q) — u(g)w(p,)]
= w@uhp; + (I = N)py) — u(@w(A\p; + (1 = N)py).
Hence, for all g, py, p, € P,
w(@u(pr, p2) — u(Ap; + (1 — N)py)]
= u(@Qw(py, p2) — wp + (1 — N)p))].

Since > is not empty on F, it is not empty on P. Therefore u(g)/w(q) takes
on all values in some nondegenerate real interval as g ranges over the part of
P on which w(g) > 0. The preceding equation then requires u(py, p2) —
u\p; + (1 = Np2) = w(pi, p)) — w\py + (1 — N)py) = Oforall py, p,
& P. Hence

u(pi, p2) = u(\py + (1 = N)p2) for all py, p, € P,
w(pi, p2) = wApr + (1 = N)py)  for all py, p, € P.
When these are used on the left side of (*) with linear expansions, we get
Dulpy) + (1 = Nu(p)lIdw(gr) + (1 = Nw(go)]
= [ulg) + (1 = Nu(@)IDw(py) + (1 — N)w(p,)]
= NMu(p)w(q)) — u(g)w(pi)]
+ (I = Nu(p)w(q2) — u(g2)w(py)l.

Set p, = g, = r here and rearrange to obtain

M1 = MNu(p)w(r) + u(ryw(q,) — u(g)w(r) — u(r)w(p))]
= N1 = Mu(p)w(q) — u(g)w(p)].
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Then cancel AM(1 — M) to get
[u(p) — u(gDIw(r) — [w(p)) — wlg)lu(r)

= u(p)w(qy) — u(q)w(py)

for all r, py, q; € P.
To complete the proof for A1(~), suppose first that there are p, g € P
such that w(p) = w(qg) and u(p) # u(q). Then, by the preceding equation,

[u(p) — u(@Plw(r) = wp)lu(p) — u(q)};

hence w(r) = w(p) for all r. Since w is constant on P, say with value wy #
0, the additive SSB expression for ¢ reduces to ¢(f, g) = | [v(f(s)) —
v(g(s))] dr(s) with v(p) = wou(p).

Contrary to the case of the preceding paragraph, suppose that w(p) =
w(q) = u(p) = u(q) for all p, g € P. Then, by a slight generalization of
Theorem 1.1 proved in Fishburn (1984e), there are real numbers @ and b such
that

u(p) = aw(p) + b for all p € P.

But then u(p)w(q) — u(g)w(p) = b[w(g) — w(p)] with b # 0 since >
on P is not empty. This reduces the additive SSB expression to ¢(f, g) =
[ () — v(g)] dn(s) with v(p) = —bw(p). B

9.5 ADDITIVE SSB PROOFS

Since C1, C2, and C3 are presumed by Lemma 9.10 and the theorems of
the preceding section for > on F, we assume throughout the present section
that  on F x F is an SSB functional with f > g & ¢(f, g) > Oforallf, g €
F, as justified by the proof of Theorem 4.1 with P replaced by F' throughout,
since that proof depended only on P’s convexity and not its specific structure
in terms of probability measures. We begin with the representation proof for
Theorem 9.4, followed by its uniqueness proof, and we then consider Lemma
9.10 and Theorem 9.5.

Representation Proof of Theorem9.4. Let ¢ on F X F be as noted, let
{A, ..., Ay} be apartition of S, and fix t in P. Define ¢;;on P X Pand ;
onPforalli,j€ {1,...,n}by

$ii(p, @) = ¢(PAit, qA;1),
ui(p) = ¢(pAit, t),
where t =g ¢. The SSB properties of ¢ imply that each ¢;; is bilinear, each u;
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is linear, and ¢;(p, ¢) = —¢;i(q, p). For example,

(A0 + (1 = Ng, r) = o((Ap + (1 = M@ AL, rA;t)
d(NpA:t) + (1 = N(qA;D), rA;t)

Ao (pAit, r4;t) + (1 — N)o(gAit, rA;D)
Aoi(p, r) + (1 — N)oy(q, r).

To verify the decompositional form for f, g € F’, letf =4, p;and g =4, g
for each i and observe first that

I

1 1
n+1 E"T"(‘IJ i) = 2———-(pzz4t)

1 n-1 LS|
—f + t =3 - (piA;t
- " gﬂpz )
1 n-—1 n ]
-g + t = —(q;A;t
ng n gn )

The properties of ¢ and the definitions for the ¢;; and u; then yield

0= ! f+ ! A;l) !
ACES T L UL
1
+ gm(PiAif)>
=(n+ 1)7? |:¢(f, g) + 3 o(f, piAit) + Y, ¢(giAt, 8)
i j

- 2 E i (pis q;)

(n+ D72 ¢(f 2) + (n — 1) Y o(piAit, 1)

- (n -1 (gAY — Y > dy(pis Qj)}

i

(n+ D72 [¢(f, g) — > > di(pis 4))
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+ (=1 <E u(p) = Y, uj(qj)>]

i Jj

which give the desired result. E

Uniqueness Proof of Theorem 9.4. With ¢ fixed and partition {A;, .
.., A,} given, assume that the ¢; and u; are as specified in the initial
conclusions of the theorem. If the qbij’. and u/ are as specified at the end of the
theorem, it is easily checked that they satisfy the initial conclusions in place of
the ¢; and ;.

Assume henceforth that the qS,;. and u; satisfy the initial conclusions in
place of the ¢; and u;. We are to show that there are linear 7; on P and
constants ¢; that satisfy the equations at the end of the theorem. To verify the
penultimate equation, fix £ € P and define 7; by

7i(p) = 3 [dulp, D) — ¢/ (p, ] — (n — 1)

k#j
Clulp) - u/(p) — w(@) + u/ @)

Since each term on the right side is linear in p, 7; is a linear functional. Using
the decompositional form and noting that ¢, (?, ) + ¢ (Z, 1) = 0, we have

® (DAL, gA;t) = &;(p, @) + D, du(D, 1) + D dii(t, @)

k#j k#i
— (n = D@u(p) + u() — wi () — u(q)].
Since the same equation holds with primes on the right side, we conclude that

6D, @) = d(p, @) + D du(p, D) — D di(p, 1)

k#j k#j
— (n = Dluw(p) — u/(p) — u(t) + u/ (V)]
- E ¢jk(.q’ t)
k#i
+ Y é5(a, 0 + (n — Diugdq) — u/(q)
k#i

= w() + u; ()]
= ¢;(p, @) + 7;(p) — T(q).

To verify the final equation of the theorem, use the decompositional
form to get

d(PAL, £) = Y, ¢u(D, ) + Y duilt, )= (n — Dlu(p) — w(®)].
X

k#i
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Since the same equation holds with primes on the right,

0= [$alp ) — ¢4(p, D] — (n = Dlup) — u/(p)
k

= w(®) + u] O + Y (o, 1) — 6,2 D]

k#i
1
= —— 3 T 6ulp, 0 = 94p, ] = (1 = D) = /()
J o ok#j

- ui(t) + u," (t)] + E [¢ki(t’ t) - qb/:,(t’ t)]

k#i

I

1
n——TE [r;(p) + (n — D{u(p) — u/(p) — w(®t) + u/(®O}]

— (n = D@u(p) — u/(p) — wi(@) + u/(@)]
+ 2 [¢ki(ty t) - ¢/:,‘(t9 t)]

k#i

Il

p— E mii(p) + [wi(p) — u/(p) — wi(®) + u/ (D]

+ E [¢ki(t9 t) - ¢/;,(t: t)]'

k#i

Let ¢; denote the sum of the terms in the last expression that do not contain p.
Then u/ (p) = uy(p) + ¢ + (n — 1)7'Z; 75(p). B

Proof of Lemma 9.10. Given ¢ on F X F, assume that T3 holds. We
prove first that if 4 € 8\ { T, S} and {f,, f,, f;} = {f4p, gAD, p}
where p =g p, then

¢(f19 f2) + ¢(f29 f3) + ¢(f3a fl) = 0.
Given A € 6\ { &, S}, there is clearly some permutation fi, f, f; of £4p,
gA°p, p and some p € [0, 1] such that f; ~ pf; + (1 - w)fs. Then ¢(f;, puf>
+ (1 — wfs) = 0, so linearity in the second argument gives

plo(fy, £2) — o(fy, £3)] = —o(fy, £3).
Also, by T3, +f, + 3 ~ 2(uf, + (1 — wfy) + 36, and ¢(-, *) = 0,
bilinearity, skew-symmetry, and ¢(f;, uf, + (1 — W) = 0 give

no(fa, £3) = o (fy, f3).

When this is added to the preceding equation, we get u[¢(f;, f2) + o(f,, £3)
+ ¢(fs, £1)] = 0, so the desired result holds if p > 0. If p = 0, simply
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interchange f, and f; throughout the preceding derivation to obtain the desired
result.
Continuing with 4 & {5, S}, observe that

3f + 5(g4p) + 3(84°D) = 12 + 1(fAp) + H(EAD),
o + 3p = 3(f4p) + ;(fAD),
32 + 3P = 3(g4p) + H(gAD).

When ¢(+, *) = 0 is expanded bilinearly for each of these and substitutions
are made in the first from the other two, we get

o(f, g) + ¢(fAp, p) + ¢(f4°p, p) + ¢(p, gAP) + & (p, gAD)
+ ¢(gA4p, £Ap) + ¢(gAp, £Ap) + ¢(gAp, £AP)
+ ¢(gA°p, tAp) = 0.
But, by the result of the preceding paragraph,
¢ (£4p, p) + ¢(p, gAP) + ¢(gA°D, £4p) = 0,
o(EAp, p) + &(p, g4p) + ¢(gAp, £Ap) = 0.
Therefore
o(f, g) = ¢(fAp, gAp) + ¢(fAD, gAD).

If n = 1, the conclusion of the lemma is obvious; otherwise, use the result
just proved to obtain

o(f, g) = ¢(f4,p, gA\p) + ¢(fASp, gASp)
= ¢(fA,p, gA,p) + ¢(fA,p, gA;p)
+ ¢(f(A; U A)p, g(A; U A4,)p)

=Y ¢(f4Ap, gdp). B

Proof of Theorem 9.5. Assume the hypotheses of the theorem (C1-C3,
T1-T3, ¢) along with the result of Lemma 9.10. We consider first a partition
{An, ..., A} of S.LetK = {izi € {1,...,n}and 4, & 9}. By TI
and the definition of 9 in the preceding section, p > ¢ for some p, g € P.
The representation of Lemma 9.10 then implies that K # ¢, and it follows
from T2 that, with ¢ € P fixed, ¢(pA;t, gA;t) is identically O for all p, g €
Pifand only if / € K, and for all /, j € K there is a unique @;; > 0 such that
d(pAit, qAit) = ayd(pAjt, qA;t) for all p, g € P. The latter conclusion
follows from the uniqueness property for SSB utilities. With normalization as
in the proof of Lemma 7.9, it follows that there are unique p; > O that sum to
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1 withp; = 0 & A4; € I, and a similarity transformation ¢’ on P X P of ¢
on P X P as defined in Theorem 9.5 such that, for all f and g of the form £
=4, piand g =4, q;, ¢(f, g) = T ;0" (i, q;)- The use of constant lottery acts
gives ¢’ = ¢ on P X P.

Thus, every partition « of the form {A;, ..., A,} has unique
nonnegative m,(A;) that sum to 1 with 7,(4;) = 0 & A; € I such that, for
all f and g as before,

¢(f! g) = E Ta(Ai)¢(pi’ qi)'

If A is in both @ and B then ¢(pAr, gAr) = w (A)P(p, @) = 7x(A)o( D, q),
and it follows that we can drop the partition designator on 7. Additivity for
disjoint 4 and B follows from 7(4 U B)¢(p, @) = [w(A) + =(B)lo(p, g),
and intersection of partitions gives the desired form for ¢(f, g) for all simple
f,g € F. |

9.6 ADDITIVE SSB EXTENSION

We assume the hypotheses and conclusions of Theorem 9.5
throughout the rest of this chapter. It is assumed also that § is infinite, for
otherwise Theorem 9.5 characterizes the additive SSB representation fully.

Three axioms will be used to extend the additive SSB representation by
way of o(£, g) = | o(f(s), g(s)) d (s) to all lottery acts. The second and third
are to hold forall f, g, f', g’ € F.

T4. For each positive integer n there is an n-part partition of S
each member of which is not null.

TS. [o(£(s), g(s)) = o(f'(s), g’ (s)) foralls € S, " ~g'] = 2 g.

T5*. (f(s) > g(s) foralls € S) = £ > g.

The first of these is not necessary for the representation but is generous
in the types of w measures it allows and is considerably weaker than Savage’s
requirements for = mentioned in Theorem 7.2. Our main use of T4 is its
implication from Lemma 7.12 that there is a denumerable partition of S each
member of which has positive probability.

Axioms T35 and T5*, which are clearly necessary for the representation,
are similar to aspects of P8 and P8* in Section 9.3. T5*, which is identical to
Schmeidler’s S2* in Section 8.8, is implied by T5 (set £’ = g’) and is the
direct image of P8* for lottery acts. It is a very appealing assumption. T5
seems less appealing but is still intuitively attractive. Its obvious deficiency
from a foundational perspective is its direct use of ¢. This can be easily
removed, as in P8, if 7(4) = % for some 4 € S, and we might assume such
an A as does Ramsey (1931). Short of that, ¢ can be replaced in T5 by
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appropriate conditions on 2 , but this seems awkward and adds nothing to its
intuitive interpretation.

Although I do not have an example to the contrary, it appears that T4 and
T5* are not sufficient for the full extension. However, they do allow several
interesting conclusions. As before, p =g p.

THEOREM 9.7. Suppose T4 and T5* hold. Then for allf, g € F and all
p &€ P:

(@) ¢ on P X P is bounded.
(b) infs ¢(f(s), p) < o(f, p) < sups o(f(s), p).
(c) If at least one of £ and g is simple, then ¢(f, g) = | ¢(f(s), g(s))
dn(s).
(d) ¢ on F X F is bounded.
The problem in extending (c) to all £ and g without the use of TS is
directly related to the need to show that

inf ¢(£(s), g(s)) < o(f, 8) < sup o(£(s), g(s)),

for without this we cannot conclude that ¢(f, g) = | ¢(f(s), g(s)) dn(s). This
generalization of (b) will be noted in Lemma 9.20 to follow from T4 and TS.
The lemma is then used to prove

THEOREM 9.8. Suppose T4 and TS5 hold. Then, in addition to the
conclusions of Theorem 9.7, ¢(£, g) = | ¢(£(s), g(s)) dn(s) for all f, g €
F.

9.7 EXTENSION PROOFS

We assume the hypotheses and conclusions of Theorem 9.5 along with
T4 (not needed for Lemmas 9.11 and 9.12) and T5*. Throughout this
section, { A, 4,, . . .} with 7(4,) > w(4,) > --- and w(4;) > Oforall / is
a denumerable partition of S (Lemma 7.12). The conclusions of Theorem 9.7
will be established by a series of lemmas. T5 is assumed later in the section
for the proof of Theorem 9.8. Asusual, f, g € ¥, p,r € P,and p =g p.

LemMma 9.11. Let a = infg ¢(f(s), p). Then a < ¢, p)ifa = Oor if
(@a>0,p > rforsomer)yorif(a <O0,r > p forsomer).

LemMma 9.12. Let b = sups ¢(£(s), p). Then ¢(f, p) < bifb = 0orif
b >0,p > rforsomer)orif(b < 0,r > p forsomer).

Proof. We prove Lemma 9.12; the proof of Lemma 9.11 is similar. If b
= oo, then there is nothing to prove, so assume b is finite. If b = Othenp 2
f(s) for all s, so p > f by T5*, and therefore ¢(f, p) < 0.
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Suppose next that b > O and p > r. Define Aby Ab + (1 — No(r, p)
= 0. By the SSB properties and the definition of b,

d(M(s) + (1 = Mr, p) = M(E(s), p) + (1 = No(r, p)
Ao (£(s), p) = Nb K AND — Nb =0

for all s. TS* implies p > M + (1 — Mr. Hence A\b = (1 — Né(p, 1) 2
No(f, p), so b = o(f, p).

Finally, suppose b < O and r > p. Define A again by Nb + (1 — No(r,
p) = 0. Then ¢(M(s) + (1 = Nr, p) = Np(f(s), p) — N> < 0,s0p 2 M
+ (1 — Nr. As before, ¢(f, p) < b. B

LemMma 9.13. If r > p for some r, then ¢ is bounded below on P X
{p}.
LemMa 9.14. If p > r for some r, then ¢ is bounded above on P X

{p}.

Proof. We prove Lemma 9.14; the proof of Lemma 9.13 is similar.
Given p > r, suppose to the contrary of Lemma 9.14 that ¢ is unbounded
above on P X {p}. Then [0, ) € ¢(P X {p}). Choose p; € P for each i
so that ¢(p;, p) = 1/m(A;) and define f by f =4, p; for each i. Let g, be a
simple lottery act in F that is constant on each A4; for i < »n with

¢(g.(5), p) = w(A4,)"' = w(4)~! foralls € A,

and that has g,(s) = pforalls € (4, U --- U A4,)°. Then, by Theorem
9.5,

n

¢(gn, ) = Y, T(ANT(A) ™" — 7(4)7"]

i=1

T(An) 7' Y w(A) — n.

ign

Note also that fors € A4;, [ < n,
S((2F + 38,)5), ) = 30(p1, P) + 3(8a(s), p) = 37(A4,)71,
and fors € A;,i > n,
S((5F + 38, p) = 3m(A)! > gm(A)
Hence infs ¢((3f + 38.)(5), p) = 37(A,) " > 0, and smcep > rby
hypothesis, it follows from Lemma 9. 11 that gb( f+ 2g,,, p) = 7r(A,,) 1
Therefore

¢(f, p) 2 W(An)vl - (;b(gn& p)
= m(A) = w(A)7 Y w(A) +n 2

isn
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Consequently, ¢(f, p) > n for all n, a contradiction, and therefore ¢ on P X
{p} is bounded above. B

Lemma 9.15 [Theorem 9.7(a)]. ¢ on P X P is bounded.

Proof. Suppose to the contrary that ¢ on P X P is unbounded, so ¢(P
X P) = (— o0, o). For definiteness let p; and g; for i = 1, 2, . . . satisfy
o(pi, ) = w(A4;) L. Also take f =4; piand g =4, q;. We shall obtain the
contradiction that ¢(f, g) is infinite.

Fix r with g > r > p for some p, g € P. Define simple f, and g, by

f, =4, p fori < nm; f.(s) = r otherwise,
gn =4, q fori < m g,(s) = r otherwise.

Then by Theorem 9.5,

»
n

¢’(fm gn) = z 7r(féli)["r(fli)_l] = H.

i=1

In addition, note that (;f + 38,)(5) = (3& + 2f,)(s) foralls € 4; U ---
U A, and that, foralls € (4, U --- U 4,)¢,

o((zE + 38.)(5), (3g + +£,)(5))
= ¢(‘;‘pi + %”, %Qi + %”)
= 2[6(pi, @) + S (pi, 1) + S(r, @]

when s € A;. Since ¢(p;, g;)) = o0 and since ¢ is bounded on P X {r} by
Lemmas 9.13 and 9.14, it follows that there is an N such that

o(pi, @) + d(pi, r) + o(r,q)) >0  foralli = N.

This N does not depend on the particular 7 under consideration. Hence for all
n>=N,

(-;-f + %g,,)(s) 2 (%g + -;‘fn)(s) foralls € S.
Then, by T5*%, %f + %g,, 2 %g + %f,, whenever n > N, so
(£, 8) = o(f,, g) + o(f,, £) + &(g, 8,)
=n+ o, f) + ¢(g, g,) forn = N.

We claim that ¢(f,,, f) and ¢(g, g,) are bounded. Consider (£, £,), which
equals (p;, p;)on A; fori < nand (p;, r) onall A; fori > n. Since ¢(x, r) is
bounded on P X {r} by Lemmas 9.13 and 9.14, let

a = inf{¢(x, r): x € P}, b = sup{o(x,r): x € P}

with @ and b finite. If b < O, then ¢(f, £,) < 0by T5*. If b > 0, define A by
N+ (1 — No(p,r) =0,letf” =4 pfori <n,andf’'(s) = N\p; + (1 —
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N)p otherwise; observe that p(f’ (s), fa(5)) < O for all s, and thus conclude
from T5* that o(f’, f,) < 0. Since

, _ . D; fori < n
¢(f,fn>—¢<xf+<1 x){p for,.>n},fn>

— N ) + (= N {1 -y w(Ai)] 6(p, 1,

i<n

it follows that

1 -2
o(f, £) < [1 -3 r(A,-)] o, ) —— = b [1 -3 w(A,-)] .
i<n isn
Hence, ¢(f, f,) < max{0, b}. By a similar proof, min{0, a} < o(f, f,)-
Thus ¢(£,, £) and ¢(g, g,) are bounded as n gets large. Since o(f,g) = n
+ o(f,, £) + &g, g, forn = N, we obtain the contradiction that ¢(f, g) is
infinite. |

LemMA 9.16 [Theorem 9.7(b)]. infs ¢(f(s), p) < ¢(f, p) < sups o(f(s),
p)-

Proof. We show ¢(f, p) < sups ¢(f(s), p) = b, where b is finite by
Lemma 9.15. The only cases not already covered by Lemma 9. 12 are (b > 0,
ry pforallr € P)and (b < 0,p 2 rfor all r € P).

Suppose first that hb>0,r> pforallr,andlet? € P satisfy t > p-
Such a ¢ is guaranteed by b > 0. Letc = sups o(f(s), 1). Forall 0 < A<,
sups o(£(s), Nt + (1 — Np) < Ae + (1 = Nb. Since { >N+ (1 —-Np >
p, it follows from Lemma 9.12 that

o(f, At + (1 — Mp) = Mo (f, t) + (1 — Mo(f, p)
< he + (1= Vb

Let \ approach O to conclude that ¢(f, p) < b.

Suppose next that b < 0, p > rforallr, andlet / satisfy p > f. Letc =
sups ¢(£(s), t) so, for 0 < N < 1, sups ¢(f(s), M + (1 — Np) € A + (1
— N)b. Since p > M + (1 — Np > t, Lemma 9.12 yields

S(F, N+ (1 = N)p) = No(f, ) + (1 — No(f, p)
< he + (1 — N)b,
and again ¢(f, p) < b. |
Lemma 9.17. ¢(f, p) = |s o(f(s), p) dn(s).

Proof. This proof mimics our later proof of Theorem 9.8 with g there
replaced by p and with Lemma 9.20 replaced by Lemma 9.16. |
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LemMa 9.18 [Theorem 9.7(c)]. ¢(f, g) = [so(f(s), g(s)) dn(s) if g is
simple.

Proof. Assume that g =g, p; for a partition {B,, . . ., B,} of S. By
Lemma 9.10, for each x € P,

o(f, g) = D, ¢(fBux, piBix).
i=1

Consider ¢(fBx, p|B1x). Write fBx as (f, x, . . ., x) and p,B,x as (p,, X,
., X), where the jth positions refer to B;. By Lemma 9.10,

¢((f9 Xy oot 3x), (pla-xs LR yx))

= (b((fs D1, X, o o vy x)a (pl; Py Xy o oy X))

+ (25((171: Xs P15« -« spl)’ (pl’ X, P1s « + - ’pl))
= ¢((f’ P X ooy x), (pl’ D, X, oo X))
= ¢((f’ pl; pl’ Xy oo vy x)s (ph pls pl:' Xy o o oy X))
= ¢((f, pi, - . ., P, (P1, D1y - - -, DY)

Hence, by Lemma 9.17, ¢(fB\x, p\Bix) = {5, ¢(£(s), p) d=(s). Since a
similar expression holds for each B,

o, 8) = 3 | 6(0), p)dn = | ¢(), g) dn». W

i

LeEMMA 9.19 [Theorem 9.7(d)]. ¢ on F X F is bounded.

Proof. Assume sup ¢(P X P) = 1 for definiteness. Let p, ¢ € P
satisfy o(p, q) > % Forany f, g € F,

166 (:£(s) + 37, 78(5) + 7p)
= ¢(£(5), g(5)) + 30(r, g(s) + 36(£(s), p) + 99(r, p) < O

since the first three terms sum to 7 or less and the last is smaller than — 7. It
follows from T5* that ¢(f, g) < 3é(g, r) + 3é(p, ) + 99(p, 1) <3 + 3
+ 9 (by Lemma 9.17), so ¢(f, g) < 15. Since f and g are arbitrary, — 15 <
o(f, g) by skew-symmetry, so ¢ on F X F is bounded. |

TS is assumed henceforth.

LemMa 9.20. infs ¢(£(s), g(s) < o(f, g) < sups o(£(s), g(s)).

Proof. Let A be an event in & for which 0 < 7(A) < 1 as guaranteed
by Theorem 9.5 and T4. By T1 and Theorem 9.7(a), (d), we assume with no
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loss of generality that sup ¢(P X P) = 1, sup o(F X F) >1,and Kis
finite. Choose y, 2 E Pwith ¢(y,z) =2 5, andletx = 7y + 22: so that ¢(x,
z) = &(y, x) > ; Also let A be any positive real number that does not
exceed min{ m(4), 7(A)}/4K.

Givenf, g € F,letgy = A\g + (1 — Mf, so o(f, go) = N(f, g) and, for
all 5, ¢(f(s), go(s)) = Ao(f(s), g(s)). We show that the conclusion of the
lemma holds for (f, go), so it must also hold for (f, g).

By Lemma 9.10,

o (f, go) = ¢(fAx, goAx) + d(£Ax, goAX)

with ¢(fAx, godx) = Ao(fAx, gAx) and d(Ax, gopAx) = Np(fA%x,
gAx). Therefore

max{|¢(fAx, goAx)|, |¢(fAx, g0Ax)|} < min{w(A4), 7(A°)}/4.

It follows from the construction of x that there are p and r in P such that
T(A)p(p, x) = $(EAx, g8oAX) and T(A)p(r, x) = $(EAX, oA X), so that

o(f, go) = 7(A)o(r, X) + T(A)$(p, X).
Moreover, Lemma 9.10 and Theorem 9.5 imply
6 (FAx, goAp) = ¢ (fAx, goAx) + ¢(xA%, pAX)
= ¢(fAx, goAx) + w(A)¢(x, p) =
d(fAx, goAx) = ¢(fAX, gAX) + ¢(xAx, rAx)
= ¢p(fA%x, goAx) + w(A)o(x, r) =

and therefore fAx ~gyAp and £4x ~ goA°r.

We apply T5 to each of these ~ statements to obtain the desired sup
conclusion. (The inf conclusion is proved similarly.) It follows from our
constructions that there are y’ and z’ in P such that

oy, x) = sup o (£(5), g0(5)),
oz, x) = s;JCp D (£(s), ().

The first of these is used with fAx ~ godp in T5 to yield y’Ax 2 xAp.
Hence, by Theorem 9.5,
(¥’ Ax, xAp) = w(A)o(y’, x) + w(A)(x, p) = 0
or
w(A4) sup ¢(£(5), go(5)) = T(A)$(p, X).
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Similarly, the defining equation for z” used with f4°x ~ g4 °r in T5 yields
T(A°) sup P (£(5), go(s)) = m(A)o(r, x).

Therefore

sup ¢ (£(s), go(s))

= w(A) sup S (£(5), go(s)) + w(A°) sup & (£(5), go(s))

WV

T(A) sup ¢ (£(5), go(s) + 7(A°) sup o (£(s), go(s))

\%

T(A)o(p, x) + w(A)(r, x)
o (f, ). u
Proof of Theorem 9.8. Given f, g € F, let

a = inf¢((s), g(s), b = sup &(£(s), 8(s))-

If a = b, then ¢(f, g) = a by Lemma 9.20, and | ¢(f(s), g(s)) dn(s) = a, so
the desired conclusion holds.
Assume henceforth that @ < b. Fora given n € {1, 2, ...} let

By = {s:a < ¢(f(s), g(s) < a+ (b — a)n},
Bi={s:a+ (b - a)i- 1)/n<¢(f(s),gs) <a+ (b— a)i/n},
2ign.
By Lemma 9.10,
o(f, g) = 3 6(tBx, gBx), x € P.
i=1

Consider one term in this sum where B; # and leta; = a + (b — a)(i —
1)/nand b; = a + (b — a)i/n. For every p, r € P for which a; < ¢(p, )
< b;, Lemma 9.20 implies that a; < ¢(fB;p, gB;r) < b;. By Lemma 9.10
and Theorem 9.5,

¢(EB:p, gBir) = ¢(fBix, gBix) + ¢(pBix, rBix)
= ¢(fBix, gBix) + w(B{)o(p, r).
Take ¢(p, r) close to @; and then close to b; to get
m(B)a; — 1/n? < $(fBix, gB:x) < w(B)b; + 1/n%.
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Since ¢(f, g) = T ¢(fB;x, gB:x), it follows that

n | 1
2 T(Bi) [{1 + fT(b - a):l - ;1‘ <¢(f’ g)

sgr(Bi) [a+;i—(b——a)] +%.

Moreover, by definition of expected value,

n | — 1
> m(B) [a + l-—n—— b - a)] < §S¢(f(s), g(s)) dn(s)

n i
QEW(B,) [a+;1—(b— (Z):| .

Hence |o(f, g) — | ¢(f(s), g(s)) dn(s)] < (b — a + 1)/n. Letn = o to
obtain the desired conclusion.
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