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Preface

The theories of John von Neumann and Oskar Morgenstern for

preference comparisons under risk and of Frank P. Ramsey and Leonard J.

Savage for preference comparisons under uncertainty have been widely

adopted as the quintessential paradigms for rational decision making in the
face of uncertainty. Their expected (linear) utility models have profoundly

affected economic analysis, risk assessment, and statistical decision theory

over the past 35 years.

During this period there has been a growing awareness—stimulated in
large part by Maurice Allais’s work in the early 1950s—that people’s

reasoned judgments often violate the basic assumptions of expected utility.

Numerous studies have demonstrated that such violations tend to follow

systematic and predictable patterns. Investigators have therefore proposed

alternative theories of rational preference that accommodate systematic

departures from expected utility while retaining much of its mathematical

elegance and computational convenience. With the notable exception of

Allais’s own theory from the early 1950s, most of the alternatives have

emerged during the past decade.

This book attempts to make sense of recent and not so recent

developments in preference theory for risky and uncertain decisions. It is

arranged in two main parts: Chapters 1 through 6 focus on decision under

risk, Chapters 7 through 9 on decision under uncertainty. Each main part

answers three questions:

1. What is expected utility theory?

2. What is wrong with it from a rational preference perspective?

3. What has been proposed to correct the problems?

Question | is dealt with in Chapter 1 for decision under risk (von Neumann

and Morgenstern) and in Chapter 7 for decision under uncertainty (Savage).

Chapter 2 and the first part of Chapter 8 address question 2. Question 3 is
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partly answered by surveys of alternative theories of preference in risky

situations (Chapter 3) and in uncertain situations (Chapter 8). These five

chapters (1-3, 7-8) comprise a book within the book whose purpose is to

provide an up-to-date view of expected utility and its alternatives that aims

for organizational clarity and inclusiveness.

The other four chapters expand on question 3 by detailing new theories

that I have had somerole in developing. These chapters form a second book

within the book that organizes material previously available only in a

scattered set of journalarticles.

The book is intended for graduate students and research workers in

mathematics, economics, statistics, operations research, psychology, and

related fields that are interested in the foundations and potential applications

of decision making under risk and uncertainty.
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NONLINEAR PREFERENCE AND UTILITY THEORY



1 Historical Background: Expected

Utility

Expected utility has served for more than a generation as the preeminent

model of rational preferences in decision making under conditions of risk.

During this time, and especially in the past decade, the assumptions of

expected utility have come under attack as principles that any reasonable

person’s preferences ought to satisfy. New theories have recently been

developed to accommodate someof the more persistent violations of expected

utility without giving up too muchof its mathematical elegance. This chapter

reviews the fundamentals of expected utility theory to set the stage for a

critique of its axioms and a discussion of alternative theories in ensuing

chapters.

1.1 DANIEL BERNOULLI AND GABRIEL CRAMER

It was widely held in the early years of the development of probability

theory that risky monetary ventures ought to be evaluated by their expected

returns—the more the better. Thus, suppose p and q are probability

distributions on a set _X of monetary gains (x > 0) and losses (x < 0) that

correspond to two risky ventures. Then, with

E(x, p) = S) xp(x),
xEX

p is more desirable than qg precisely when E(x, p) > E(x, q).

Thefirst major challengeto this principle of expected return maximiza-

tion appeared in 1738 at the hand of Daniel Bernoulli, a member of the Swiss

family of distinguished mathematicians. Bernoulli proposed two theses. His

first thesis does not involve risk or probability. It says that a person’s

subjective value uv(w) of wealth w does not increase linearly in w but rather

increases at a decreasing rate, a proposition knownlater in economicsas the
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principle of diminishing marginal utility of wealth. Bernoulli argued further

that the rate of increase in v(w)is inversely proportional to w and, hence,that

v is a logarithmic function of wealth.

Bernoulli’s second thesis, set forth in opposition to maximization of

expected return or expected wealth, says that a risky prospect p’ on levels of

wealth ought to be evaluated by its expected subjective value 2 u(w)p’(w).

Alternatively, if wo is present wealth and p(x) = p’(Wo + X), so that p is the

probability distribution induced by p’ on increments to present wealth, then

the expected subjective value of p is

E(u, p) = YS} v(w + x)p(x),
xEX

with p more desirable than g when E'(v, p) > E(v, q).

Bernoulli defended his theses with examples from games of chance and

insurance. Would you engage in a one-time not-to-be-repeated wager that

yields gain $21,000 or loss $20,000 each with probability 5) If you refuse,

you violate the principle of maximum expected return, which is $500 for the

wager(versus $0 otherwise). According to Bernoulli’s principle, your refusal

simply meansthat [v(wo + 21,000) + v(wo — 20,000)]/2 < u(wo) and that

you are acting prudently in accord with your subjective values. In another

instance, merchants insure seabound cargoes against loss even though they

know that the insurer expects to gain at their expense from the transaction.

Nevertheless, the merchants are simply acting in their own best interests by

maximizing their expected subjective value.

A prime motivator for Bernoulli’s work on the evaluation of risky

ventures was the famousSt. Petersburg game, devised by his cousin Nicholas

Bernoulli in 1713. In current terms, a fair coin is tossed until a head appears.

If the first head occurs at the nth toss, the payoff is 2” dollars. Suppose you

owntitle to one play of the game; that is, you can engage in it without cost.

Whatis the least amount you would sell your title for? According to the

Bernoullis, this least amount is your equivalent monetary value of the game.

Nicholas observed that the expected payoff

(24+ Q224+Q2+--=1+14¢1.4-::

is infinite, but most people wouldsell title for a relatively small sum, and he

asked for an explanation of such a flagrant violation of maximum expected

return. Daniel showed how his theory resolves the issue by providing a

unique solution s to the equation

S uv(Wo + 27)27" = v( Wo + S)
n

for any finite wo, where s is the minimum selling price or equivalent

monetary value. Moreover, except for the very rich, a person would gladly
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sell title for about $25 or $30. The effect of wo can be seen indirectly by

estimating your minimum selling price when the payoff at m is 2” cents

instead of 2” dollars and comparing 100 times this estimate to your answer

from the preceding paragraph.

In a postscript to his 1738 paper, Daniel said that Nicholas told him that

another Swiss mathematician, Gabriel Cramer, developed a theory to explain

the St. Petersburg game that is remarkably similar to Daniel’s own theory.

Moreover, Cramer did so in 1728, several years before Daniel wrote his

paper. The postscript quotes extensively from the letter to Nicholas in which

Cramer describes his resolution of the issue, and includes the following

passage:

You asked for an explanation of the discrepancy between the mathematical calculation

and the vulgar evaluation. I believe that it results from the fact that, in their theory,

mathematicians evaluate moneyin proportiontoits quantity while, in practice, people

with commonsense evaluate moneyin proportion to the utility they can obtain fromit.

(Translated from the French by L. Sommer in Bernoulli [1954], p. 33.)

Unlike Bernoulli, Cramer payslittle attention to initial wealth, and for x > 0

sets u(x) = x. In his terms, the minimumselling price is the value of s that

satisfies

G)V2 + Ov4 + Ov8 + «+: = Vs,

whichis a little under $6.
Later reviews and discussion of the St. Petersburg gameare available in

Menger (1967) and Samuelson (1977).

1.2 RISKLESS UTILITY IN ECONOMICS

Bernoulli’s notion of the diminishing marginalutility of wealth became a

centerpiece of the riskless theory of consumer economics during the second

half of the nineteenth century, especially in the works of Gossen (1854),

Jevons (1871), Menger (1871), Walras (1874), and Marshall (1890). See

Stigler (1950) and Kauder (1965) for historical details.

During this period, utility was adopted as the standard term for what

otherwise might be referred to as subjective value, moral worth, or psychic

satisfaction. Utility was predominantly viewed ‘‘as a psychological entity

measurable in its own right’’ (Strotz, 1953, p. 84), and there was active

debate about the extent to which utility was measurable in any precise sense.

However, interest in the measurability issue waned under the ordinalist

revolution of Edgeworth (1881), Fisher (1892), Pareto (1906), and Slutsky

(1915), which insisted that utility represented nothing more than an
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individual’s preference ordering over consumption bundles or aiternative

riskless futures. In particular, it makes no sense to measure gradations in

utility apart from a simple ordering, not to mention the impossibility of

interpersonal comparisonsofutility.

Despite the popularity of the ordinal position, a modest revival of

interest in the measurability of intensive utility occurred during the 1920s and

1930s, aided in part by the emerging use of axiomatic theory in mathematics.

The proponents of measurability included Frisch (1926), Lange (1934), and

Alt (1936), each of whom axiomatized the notion of comparable preference

differences or intensities of preference in somewhat different ways. Their

basic argument was that we do in fact make intensity or strength-of-

preference comparisonsall the time, and that it was possible to be precise

about such comparisons. Consider, for example, monetary gains. Surely you

prefer $100 to $0, so set v($100) = v, and v($0) = uo, subject only to vy >

Up. Now vary x overthe interval between $0 and $100 to determine the point

at which the intensity of your preference for $100 over x equals the intensity

of your preference for x over $0. Suppose the answeris x = $40. Then $40

lies midwayin preference between $0 and $100, so v($40) = (vo + v1)/2. By

ascertaining additional preference midpoints between $0 and $40, between

$40 and $100, and so forth, you can obtain a good picture of yourutility

function on the interval from $0 to $100. Moreover, this function is

‘“‘measurable’’ in the sense that it is fully determined once up and v, are

specified. In particular, if v and v’ are any two such functions, then they are

related by the equation [v(x) — vo]/[v; — vo] = [v'@) - ugi/[v; — v9] for

all x; that is,

(1.1) v/(x) = av(x) + b

for all x in [$0, $100], where a and D are real numbers with a > 0.

This approach to measurable, or ‘‘cardinal’’ (Hicks and Allen, 1934;

Fishburn, 1976a) utility can be made precise by a set of assumptions or

axioms about a binary relation >* on X x X, where X is a set of things to be

evaluated and (x, y) >* (z, w) is interpreted to mean that the individual’s

strength of preference for x over y exceedshis or her strength of preference

for z over w. Equal intensity can then be defined by

(x, y) ~* (z, w) if neither (x, y) >* (z, w) nor (z, w) >* (x, ¥),

and the underlying preference relation > on X can be defined from >* by

x >y if, y) >* OY).

Under a sufficiently strong set of axioms, examples of which appear in

Fishburn (1970a, Chapter 6) and Krantz et al. (1971, Chapter 4), we can
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derive the utility representation for comparable differences,

(x, y) >* (Z, w) @ v(x) — v(y) > v(z) — v(w),

with v unique up to the type of transformation noted at the end of the

preceding paragraph.

The importance of this for our study of preference between risky

decisions is that it put Bernoulli’s theory of maximum expectedutility on a

more rigorous foundation by providing an axiomatic basis for the value

function v used in his expectation operation. Moreover, by rendering v unique

up to positive linear transformations, or positive affine transformations, as

in (1.1), it endowshis type of riskless utility function with the properties that

are needed to preserve expected utility order under admissible transforma-

tions of that function.

To be more precise aboutthis, let _X be an arbitrary nonempty set, and

let Py denotethe set ofall simple probability measures on X sothatp is in Py

if and only ifp(x) > 0 for all x, p(x) > 0 for at most a finite number of x €

X, and Ly p(x) = 1.

THEOREM 1.1. Suppose v and v’ are two real-valuedfunctions on X.

Then, for all p,q © Px,

(1.2) Sv@p@) > Yv@aqeo) & Vv/COp) > YJ v' Wat)
if and only if there are real numbers a and b, with a > 0, such that

(1.1) v’(x) = av(x) + Bb for allx © X.

Proof. Let v be given. If v’ = av + b, a > 0, then (1.2) clearly holds.

Conversely, suppose (1.2) holds. If v is constant, so equality holds on both

sides of (1.2) at all p and q, then v’ must also be constant and v’ = v + D for

some real number b. Suppose henceforth that v is not constant. For

definiteness take v(x) > v( yo). Since v’ must preserve the ordering of v on

X, v'(X%) > v’(¥o). Then, for each z © X, exactly one of the following

obtains:

(i) v(z) > v(x) > v( yo) and there is a unique 0 < d < 1 such that

v(Xo) = Av(z) + (1 — A)u( Yo); hence also v’(%) = Av’(z) + CA

— d)v’( Yo) by (1.2) [take p(x) = 1, g(Z) = A, g(¥o) = 1 — NM.
(ii) v(%o) > v(Z) > v( yo) and there is a unique 0 < dX < 1 suchthat

v(Z) = Av(%) + (1 — A)v( yo); hence also v’(z) = Av’(%) + C1

— d)v’( Yo) by (1.2).
(iii) v(%) > v(¥o) > v(Z) and there is a unique 0 < dX < I suchthat

v( Vo) = Av(Xo) + (1 — A)v(Z); hence also v’( yo) = Av’ (Xo) +

(1 — A) v’(z) by (1.2). .
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Regardless of which of(i), (ii), or (ii) holds, we have

v’(z) = av(z) + 5,

where

a = [v’(X%o) — v’(¥o)\/[v(%o) — v(%o)] > 9

and

b = [v(%)v’(vo) - v’(Xo)u(Yo)I/Lv(%) — vCro)I. ce

If the set of probability distributions on which expected utilities are

computed is not as rich as supposed in Theorem 1.1, then it may be possible

to transform v in ways other than (1.1) without violating (1.2). However, we

are assured of consistency in (1.2)-in all circumstances only when the

admissible transformationsof the utility function do not go beyond (1.1) with

a > 0. However,it might be noted that when_X is finite, there is a problem in

ensuring (1.1) with the comparable preference differences approach unless

utilities are evenly spaced (Davidson and Suppes, 1956) or X is embeddedin

a richer structure.

Forlater reference we say that a theory of choice among risky decisions

is a Bernoullian expected utility theory whenit consists of

1. A set X of outcomes and a set P of probability distributions or

measures on X

2. A utility function v on X based on a notion of riskless comparable

preference differences, usually presumed unique up to positive linear

transformations

3. The principle of choice which says that the most desirable distribu-

tions, or their corresponding risky alternatives, are those that

maximize expected utility 2 v(x)p()

The third element is sometimes stated as an injunction: Some distribution

from a feasible set that maximizes © v(x)p(x) over the p in the feasible set

ought to be chosen when such a maximizing distribution exists.

1.3 VON NEUMANN AND MORGENSTERN

In Bernoullian expected utility theory, preference between probability

distributions, if consideredatall, is defined by expected utilities, so p is said

to be preferred to g just when & u(x)p(x) > Y v(x)q(x). The expected utility

theory introduced in 1944 by von Neumann and Morgenstern differs radically

from the Bernoullian theory despite the fact that their mathematical forms of

expected utility are identical. To distinguish notationally between them, we

write © u(x)p(x) for the von Neumann-Morgenstern context, reserving  
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¥ v(x)p(x) for the Bernoullian context. The difference between u andv lies in

their interpretations and the ways they are assessed. We note these shortly.

There are also similarities. Both u and v preserve the individual’s

preference order on outcomes in X, so for all x, y € X, u(x) > u(y) @ v(x)

> u(y). Moreover u, like v in (1.1), is unique up to positive linear

transformations, so if u is a von Neumann-Morgenstern utility function on

outcomesin a particularsituation then so is wu’ if and only ifu’ = au + b for

numbers a > 0 and b. The similarities end here. In particular, u need not be a
positive linear transformation of v, and, consequently, the orderings of P by

expected utility magnitudes under uw and under v can be quite different.

The theory of von Neumann and Morgenstern begins with a binary

relation > on a convex set P. It then makes assumptions about the behavior

of > on P, which are stated formally as axioms. The axiomsare then shown

to imply the existence of a real-valued function u on P that preserves the

order of > on P andis linearin the convexity operation. That is, for all p, q

€ PandallO <A <l,

(1.3) prqeu(p) > u@q),

(1.4) u(Ap + (1 — A)g) = Au(p) + C1 — ANU),

where (1.3) is the order-preserving property and (1.4) is the linearity

property. Henceforth, we refer to a real-valued function on a convexset that

satisfies (1.4) for all OQ < X < 1 and all p and q in the set as a /inear

functional. If (1.3) holds, it is an order-preserving linear functional.

Interpretations are in order before we consider the mathematical

structure of the von Neumann—Morgenstern theory in detail. Although > is

an undefined primitive in their system, it is natural to interpret it as a

preference relation and to read p > q as ‘‘p is preferred to g.’’ The set P

need not be a set of probability distributions or measures, but we shall

interpret it in this way. Generalizations that treat P axiomatically as a

‘mixture set’’ are discussed by Herstein and Milnor (1953) and Fishburn

(1970a, 1982a). In the probability setting, the convex combination Ap + (1

— ))q is defined pointwise as the usual convex combination of real-valued

functions p and g. Thus, when p and q are simple measures on X, \p + (1

— ))q assigns probability Ap) + (1 — A)g(xX) toeachx € X, sohp + (1

— )\)q is also a simple measure on X. More generally, if p and q are

probability measures on an algebra @ of events, then (Ap + (1 — A)q)(A)

= \p(A) + (1 — A)q(A) for each A € @, and dAp + (1 — Ajq is also a

probability measure on @.

The axioms of the von Neumann-Morgenstern theory apply simply and

solely to > on P. Unlike Bernoullian theory, preference applies immediately

to comparisons of risky alternatives, not just to outcomes. Moreover, their

axioms involve no notion of comparable preference differences or strength of
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preference, since they use only ‘‘ordinal’’ preference comparisons. In a

manner of speaking, the role of strength of preference in Bernoulli’s

approach, which guarantees preservation of the Bernoullian expected utility

order under admissible transformations of v as in Theorem 1.1, is replaced by

the global application of > to P in conjunction with the linearity property

(1.4).

The fact that u is unique up to positive linear transformations whenit is

an order-preservinglinear functional on P, even thoughit is based solely on

simple preference comparisons, led Baumol (1958) to describe it as *‘the

cardinal utility which is ordinal.’ There are other examples of this. In the

riskless ‘setting, if > is a preference relation on a commodity space or

multiattribute space X = X, X X, X +--+ xX X,, that is representable

additively as

(M1, 2 Xn) > Vis ee Vn) @ LM 6 Xn) > LOD + + Pads

(1.5) F(X15 X25 2 2 Xn) = fi) + pO) + 007 + Sn On)

for all x, y © X,then suitably strong structural assumptions (Debreu, 1960;

Fishburn, 1970a, Chapter 5; Krantz et al., 1971, Chapter 6) imply that / is

unique up to positive linear transformations. Here the additivity property

(1.5) rather than the linearity property (1.4) induces uniqueness.

This section began with remarks about u on_X, then switched to u on P

with no mention of X. The reason is that X plays no role in the formal theory

of von Neumann and Morgenstern, but enters, almost as an afterthought,

when P is interpreted as a set of probability distributions on X. This

interpretation customarily assumes that P contains each measure that assigns

probability 1 to some outcome,andit defines u on X from u on P by

(1.6) u(x) = u(—p) when p(x) = 1.

The anticipated expected utility form follows from this definition and

linearity.

THEOREM 1.2. Suppose u is a linear functional on a convex set P of

probability measures on X that contains every one-point measure, and u

is extended to X by (1.6). Then for every simple measure p in Px,

(1.7) u(p) = 3) u(x)p(x).

Proof. Let n be the numberofpoints in X assigned positive probability

by p in Py. Then (1.7) follows from (1.6) for n = 1, from (1.4) forn = 2,

and from (1.4) by a straightforward induction on 7 when n > 3. a

Theorem 1.2 highlights anotherdistinction between the two approaches

to expected utility. Bernoulli invokes the expectational form at the outset,

whereas von Neumann and Morgenstern deduce it from their axioms.
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The difference between the two approaches can also be seen in their

assessment procedures for v or uw on X. Consider again the determination of

an amount x whoseutility is midway betweenthe utilities of $0 and $100. In

Bernoulli’s approach, x is the amount at which yourstrength of preference for

$100 over x equals your strength of preference for x over $0. For von

Neumann and Morgenstern, x is the amount at which you are indifferent

between receiving x as a sure thing and playing out the lottery that pays either

$0 or $100, each with probability >: Indifference between x and the lottery

translates to

u(x) u($100 with probability = or $0 with probability >)

[u($100) + u($0)]/2.

Weconclude this section with a few historical remarks before turning to

the von Neumann-Morgenstern axioms and theorem in the next section.

When it was introduced, their theory was widely misunderstood and it took

about a decade, with considerable help from expositors such as Marschak

(1950), Strotz (1953), Luce and Raiffa (1957), and Baumol (1958), to set

matters straight. One cause for confusion was the long-established use of

utility as a measure of psychic satisfaction with strength-of-preference

connotations wheneverit was measurable, that is, unique up to positive linear

transformations. Several writers have wished that von Neumann and

Morgenstern had used a term other than wtility for their value function to

avoid entanglement with prior uses of the term in economics, but the usage

stuck.

Another cause for confusion wasthe terse and somewhat enigmatic style

used by von Neumann and Morgenstern to express their axioms. One oftheir

axiomatic curiosities is their treatment of the indifference relation. They

divided out indifference without warning and proceeded to axiomatizestrict

preference between indifference classes, but this was not clarified until the

appearance of their second edition (1947), which for the first time presented

their proof of the linear utility representation. The proofitself is rather hard

to follow and was substantially improved by later writers.

The axioms stated in the next section differ slightly from the originals

and are due to Jensen (1967). Other axiom sets that are equivalent to Jensen’s

set will be noted in Section 1.5.

1.4 THE LINEAR UTILITY THEOREM

We assume throughout this section that P is a nonempty set of

probability measures p, g, . . . defined on a Boolean algebra @ of subsets of

X. Thus for each p € P, p(A) > 0 forevery A € @, p(A U B) = p(A) +

D(B) whenever A and are disjoint events in @, and p = 1 on the universal
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event X in @. By definition, @ is closed under complementation and finite

unions. We assumealso that P is convex; that is, Ap + (1 —- Aq is in P

whenever 0 < A < landp,g € P.

Given this structure for P, let > be a binary relation on P, interpreted as

strict preference. The indifference relation ~ on P and the preference-or-

indifference relation > on P are defined from > by

p ~ qif neither p > qnorg > p,

p> qifeitherp > qorp ~ q.

It is natural to assume that > is asymmetric; that is, for all p, gq © P, p >q

= not (¢ > p). When > is asymmetric, ~ is both reflexive (p ~ p) and

symmetric (p ~ q > q ~ P).

Wesaythat a binary relation R on P is transitive if, for all p, g, r © P,

{pRq,qRr}=pRr,

andthat it is negatively transitive if, for all p, g, r © P,

{not (p R q), not (q Rr)} = not (p Rr)

or, equivalently,

pRr=(pRqogRr).

When R is both asymmetric and negatively transitive, it is a weak order

(asymmetric sense).

Weshall assume that > on P is a weak order. This implies that each of

>, ~,and > is transitive and that {p ~ 9,q > rih=p>rand{p > qq

~ r} = p > r. The proofs are easy and are omitted. Under the weak-order

assumption, ~ is an equivalence relation (i.e., reflexive, symmetric, and

transitive) on P, and the indifference classes in the quotient set P/ ~ , each of

which consists of all measures indifferent to one another,are totally ordered

by the natural extension of > from P to P/~ . As mentionedin the preceding

section, this is the point at which von Neumann and Morgenstern begin their

axiomatization.

We consider three axioms for > on P. They are to be understood as

applying to all p, g, r © P and all 0 < A <1:

Al. Order: > on P is a weakorder.

A2. Independence: p > g = Ap + (1 — Nr > Aq + A — AP.

A3. Continuity: {p > g,q > r} = (ap + (i - a)r > qandq >

Bp + (1 — 6)r for some a and B in (O, 1)).

The ordering axiom A1 has been a mainstay of the economic conception

of rationality at least since the time of Bernoulli and Cramer. Violations of  
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A1, and especially of its implication that > is transitive, are usually viewed

as aberrations that any reasonable person would gladly ‘‘correct’’ if informed

of his or her “‘error.”’ '
Axiom A2 is also known as a linearity assumption and is closely

associated with similar axioms that are referred to as substitution principles,

cancellation conditions, additivity axioms, and sure-thing principles. It

simply says that ifp is preferred to qg, then a nontrivial convex combination of

p and is preferred to the similar combination of q and r. It is usually

defended as a criterion of consistent and coherent preferences by imaging \p

+ (1 — \)ras a two-stage lottery that yields either p with probability \ or r

with probability 1 — in the first stage and then makes the final choice

according to the one ofp and r that obtainsin the first stage. Under a similar

interpretation for \q + (1 — A)r,it is argued that since both mixtures lead to

r with identical probabilities 1 — » in the first stage, and since you are

equally well off in these cases, your preference between the mixtures ought to

depend solely on your preference between p and q.

The continuity or Archimedean axiom A3 is designed to prevent one

measure from being infinitely preferred to another and is more a concession

to our system of real numbers than to an intuitive notion of rationality.

Without A3 in the presence of Al and A2, there is no guarantee that the

entities in P can be mappedinto real numbers whoseorder preserves > on P.

Nevertheless, A3 does embody a degree of common sense, since it seems

reasonable that, ifp is preferred to q and is preferred to r, then there ought

to be a probability a < 1 at which ap + (1 — a)ris preferred to q and

another probability 8 > 0 at which g is preferred to Bp + (1 — #)r.

Criticisms of the axioms are deferred to Chapter 2. For the time being

weshall be content to explore their technical implications.

THEOREM 1.3. Suppose P is a nonempty convex set of probability

measures defined on a Boolean algebra of subsets of X, and > is a

binary relation on P. Then axioms Al, A2, and A3 hold if and only if

there is a linear functional u on P such that, for allp,q€& P,p>q@#

u(p) > u(q). Moreover, such a u is unique up to positive linear

transformations.

This is the main representation and uniqueness theorem for linear (von

Neumann-Morgenstern) utilities. The simple proof that the linear utility

representation satisfying (1.3) and (1.4) implies Al, A2, and A3is left to the

reader. We also omit the proof of uniqueness, which, apart from notation, is

essentially the same as the proof of Theorem 1.1.

For convenience, the proof that Al-A3 imply the existence of an order-

preserving linear functional u on P is divided into three parts: part I |

establishes preliminary lemmas for >; part II constructs u on a closed
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preference interval; part III extends the results of part II to all of P. Axioms

Al-A3 are presumed to hold throughout the rest of this section.

PartI. In this part we prove the following five lemmas, which apply to

all p, gq, r, s © Pand all A, » & [0, 1]:

Ll. {p> q,X> pp =w+ 1 - AG > wp t+ CU — w)e.
L2.{p>q2>rnp>r}=q-~dp+t (i — A)rfor a unique X.
L3.{p > qr>st=>rpt+ (1 — Ayr > Aq + (1 — Ads.

lA.p~q>p~ p+- Adjq.
L5.p~q>rAp+d —-Ayr~dAq+ CU — AP.

Lemmas L1 and L3 are monotonicity conditions for >, LA is an

antimonotonicity condition for the preservation of indifference, L2 is an

intermediate-value property, and L5 is the independence axiom for indiffer-

ence. Their proofs follow.

Ll. Assume p > g and \ > yp. Then p > pp + (1 — p)q—by

assumption if 4 = 0, by A2 otherwise. If \ = 1, this completes the proof of

Li. If \ < 1, then A2 gives

 

AN p 1-27
sp + ana = ($=) p + (F=*) wr +- 00)

N—- yp
> i) (up + (I — 4)q)

— p

1-A7
+ —— (up + (I — 4)q)
~

=pp + — #)@.

L2. Assume p > g >randp > r.Ifp ~ q, theng ~ |p + Or, andq

> pp + (i — p)r by LI for any p < 1, sod = is the unique ) for the

conclusion of L2. If r ~ q, the unique ) is 0. Suppose henceforth that p > q

> r. It follows from Al, A3, and L1 that there is a unique \ in (0, 1) such

that

(1.8) ap +(1-a)r>q>bp+ —- B)r for alla >> 8B.

We claim that g ~ \p + (1 — A)r. To the contrary, if, say, Ap + (1 — A)r

> q, with q > r, then A3 implies that phAp + (1 — Ar) + 1 - wr =

(up + (1 — Ap)r > qg for some 0 < p < 1, which contradicts (1.8), since

\ > Au. A similar contradiction follows from gq > Ap + (1 — A)jr.

L3.Ifp > q,r > sand0 < X < 1, two applications of A2 give Ap +

(1 —- Ayr > Aq + (1 — Nr > Aq + C1 — A)s. Hence Ap + (1 — Ayr >

Ag + (1 — QN)s bytransitivity.
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LA. Given p ~ g, ifp > Ap + (1 — Aq then L3 and Alyield

Ap + I —- A)q > AfAD + GA — AJ]

+ (1 —A)fAp + G - ANg] = AD + A — Ada,

which contradicts asymmetry. A similar contradiction obtains if\p + (1 —

Ng > p. Hence p ~ Ap + (1 — Aj bydefinition.

L5. Since this is obvious if \ € {0, 1}, we assume 0 < A < 1 along

with p ~ g.Ifr ~ p, the conclusion of L5 follows from L4, so we assume

that p > r. (The proof for r > p is similar.) Suppose Ag + (1 — A)r > Ap

+ (1 — N)r. Then, by L2,

Ap + (1 — A)r ~ afv\q + dU —- ADI

+ — a)r = (ad\)¢g + (1 — a@d)r

for a uniqueO <a < l. Since q > r, A2 implies g > ag + (1 —- ay)r.

Hence p > aq + (1 — a)r bytransitivity. But then A2 implies

Apt+(—- A)r > Altag + UA —- a)r]

+d —- A)r = (aA)g + UI — e@d)dr,

which contradicts Ap + (1 — A)r ~ (aA)g + (1 — aA)r. Hence not [Ag +

(1 — Ayr > Ap + C1 — D)r], and similarly when p and gq are interchanged.

Hence Ap + (1 — A\r ~ Aq + CU — Ayr.

Part Il. Assume p > gq for some p, g © P; otherwise any constant

functional on P satisfies (1.3) and (1.4). Fix p > qandlet[pq] = {rp 2>r

> q}, the closed and convex (by A2 and L5) preference interval between p

and q. L2 implies that there is a unique f(r) in [0, 1] for each r in [pq] such

that

(1.9) r~fir)pt+ tl - fra

with f(p) = 1 and f(g) = 0.
Suppose r, s € [pq] and f(r) > f(s). Then f(Np + [1 - fM]a >

fis)p + [1 — f(s)l¢ by L1, so (1.9) and transitivity giver > s. If f(r) =

J(s), then

r~f(np+0 -fMl¢ =f(s)ptll - f()l¢ ~ s,

sor ~ s. Therefore f preserves > on [pq] since r > s @ f(r) > f(s).

To verify linearity for f on [pq], take r, s € [pg] andO < A < 1. By

convexity Ar + (1 — A)s is in [pq], and by (1.9),

Ar+ (1 — A)s ~ fArt+ A - Asp + Fl -— fart A — A)s)a.
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Moreover, two applications of L5 give

Ar + (1 -— A)s ~ ALF(r)p + A — f))a)

+ {1 — AILf(s)p + G — f(s))a];

that is,

Ar + (1 — A)s ~ [Af(r) + G — AYSF(S)Ip

+ {1 — [Af(r) + CU - ASO)4a.

By transitivity for ~, the right sides of the preceding ~ statements are

indifferent, and it then follows from L1 that f(Ar + (1 — A)s) = Af(7) +

(1 — A) f@).
Thus, wheneverp > q,there is an order-preserving linear functional on

[pq].

Part Il. To show that one such functional serves for all of P, fix p > q¢

and let [p;q,] and [p2q2] be any closed preference intervals that include

[pq]. Using the result ofpart II,letf; be an order-preserving linear functional

on [p;q;], scaled by positive linear transformation so that {\(p) = fo(p) =

1 and f\(q) = x(q) = 0.
We show next thatr © [piq:] N [mq] = AM = A). Given in

the intersection, one of the following obtains:

p>q>r with g ~ ap + (1 — a)rby L2,

O<a<il;

p2r2zq_ withr~ Bp + (1 — B)q by L2,

0<6 <<];

r>p?>q with p ~ yr + (1 — y)q by L2,

0<y<l.

Under order preservation and linearity for each fj, these correspond

respectively to

O0O=a+( —- a)f(r),

Sir) = B,

1 = yfi(r),

and therefore /,(r) = f2(r) in each case. Hence f, = fp on [p1q;] N [p2q@2]-.

Finally, let u(r) be the commonvalueof/;(7) thus scaled for every [p;q;]

that contains p, q, and r. Since every pair of measures in P is in at least one

[p:gi] that includes [pq], it follows that u is an order-preserving linear

functional on P.  
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1.5 ALTERNATIVE AXIOMS FOR LINEAR UTILITY

The following axioms of Herstein and Milnor (1953) provide an

interesting comparison to Jensen’s axioms:

Bl. Order: > on P is a weak order.

B2. Independence: p ~ gq = =P + sr ~ 54 + sf.

B3. Continuity: {a:0 <a < landap + (1 — a)r > ghand{B:0<
B < landq > Bp + (1 — B)r} are closed subsets of {0, 1].

Although Al and B1 are identical, neither A2 nor B2 implies the other;it

can be shown (Fishburn, 1982a, p. 16) that B3 implies A3, but not

conversely. The Herstein-Milnor independence axiom B2 is especially

attractive in its simple statement of indifference preservation under 50-50

convex combinations. Their continuity axiom B3 brings the preference-or-

indifference relation into the picture and implies, for example, that if ajp +

(1 — a;)r is as good as gq for all i while the a; converge to a, then ap + (1

— a)r is also as good as g. The strengthening of A3 to B3 is compensated for

by the weakening of A2 to B2.

Herstein and Milnorprove that their axioms are necessary andsufficient

for the existence of an order-preserving linear functional u on P. An

alternative proof in Fishburn (1982a) shows that {B1, B2, B3} = {Al, A2,

A3}. Then Theorem 1.3 can be invoked to complete the sufficiency proof for

their axioms.

Our next set of axioms that is equivalent to {A1l, A2, A3} has a very

different flavor than those of von Neumann-—Morgenstern, Jensen, and

Herstein—Milnor in that it makes no mention of the ordering properties of

asymmetry, negative transitivity, and transitivity. This set uses the Herstein-

Milnor independence axiom B2 along with an ‘‘intermediate-value’’ continu-

ity condition related to L2 in the preceding section and a convexity axiom.

The new axioms, applied to all p, g, r © P and allO < Xd < 1, are the

following:

Cl. Continuity: {p > g,qg>r}=q~ap+( —- arforsomed <
a<l.

C2. Convexity: {p > g,p >r} =p > rq +—- Ay;

{p~qp~r}=p~dqt (1 - dr
{q>p,r > p} = rq +—- dj > p.

Weshall have morethan a passing interest in C1 and C2, since they are

cornerstones of the nonlinear utility theories introduced in Chapter 3 and

examined in detail in Chapters 4 through 6.

Axiom C1 is an unremarkable condition that is clearly motivated by A3
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and L2. As noted shortly, it implies that > is asymmetric and, in conjunction

with C2, that a in the statement of C1 is unique.

The convexity axiom C2 implies that, for every p € P,each set {qip >

gt, {gp ~ qh, and {¢:q > p} is convex. Hence, in the presence of Cl’s

implication of asymmetry, these three sets partition P into convex compo-

nents (the first or last of which might be empty). In addition, each nontrivial

combination of a measure from {q: p > q} and {q: p ~ q} lies in {q: p 7

q}, and similarly with > replaced by its dual.

A few basic implications of the new axioms are noted in the following

theorem; others will be derived in Chapters 4 and 5.

THEOREM 1.4. Suppose P is as specified in Theorem 1.3 and > isa

binary relation on P. Then

(a) Cl = > is asymmetric.

(b) {C1, C2} = a@ in the statement of Cl is unique.

(c) {Cl, C2, ~ is transitive} = > is transitive.

(d) {Cl, C2, B2} = {B1, B2, B3}.

Proof. (a) If p > q and q > Pp, Cl implies g ~ p, contrary to the

definition of ~.

(b) Suppose p > g, g > r, and q ~ ap + (1 — a)r,0 <a < |, as

guaranteed by Cl. Then C2 implies g > Bp + (i — B)rif 8 < a, and Bp +

(1 — Br > gif B > a, sow is unique.

(c) Supposefirst, contrary to the transitivity of >, that{p > 9,q > 7,

p~r}.Theng ~ ap + (1 —- a)r for some a by Cl, andap + (1 — a)r

~ rby C2. Hence g ~ rbythe transitivity of ~ , in contradiction to g > 1,

If{p>qq>r,r > p}, the hypotheses of (c) give {gq > 7,7 > ap + ad

— a)r,g ~ ap + (1 — a)r} for some a, which is impossible by the result

just proved. Hence {p > 9, q 7 rh=p>r.

(d) Assume C1, C2, and B2. Suppose ~ is not transitive, say with {p~

g,g~r,p > r}. By B2,r ~ 54 + zr; by C2, p > sq + 5° so by C2

again, =p + sr > sq + ;r. But this contradicts B2. Therefore ~ is

transitive, and this in combination with (a) and (c) implies that > is a weak

order. Since B3 follows easily from Cl and C2, we conclude that the

Herstein-Milnor axioms are implied by C1, C2, and B2. i

We conclude our discussion of axioms equivalent to those of von

Neumann-Morgenstern or Jensen by considering an approach based on two

primitive binary relations on P, denoted by > and ~, that provides several

generalizations of the basic linear utility theorem. This approach uses five

axioms:

1. > is asymmetric; ~ is reflexive and symmetric.
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2.{p >q,r>sb>rpt+ ii — Ar > rAqtd — Ns.

3.{p~qr=s}>rpt+ i — Ar= drAq+ CU — De.

4.{p>q,r=s}=>rdrp+U-Ar#hkqt+d —- Ds.

5.{p>qr>shrapt+ (i

for some 0 < a < l.

a)s > ag+ (Ud - ayr

The second and third axioms are monotonicity—convexity conditions (cf. L3),

the fourth prevents certain mixtures from being identical, and the fifth is

another version of the continuity axiom. We usually think of ~ as some

portion of the indifference relation ~ for >.

Drawing on a result for linearly ordered vector spaces in Hausner and

Wendel (1952), Fishburn (1982b) proved that the preceding five axioms

imply that there is a linear functional uw on P such that, for all p, g € P,

p> q.= u(p) > u(q),

p~q= u(p) = u(q).

The maximal = that can satisfy the axioms is the indifference relation ~
defined from > , and in this case we obtain another equivalent to Jensen’s set

of axioms. The minimal ~ for the axioms is = , in which case axioms 3 and 4

are redundant and the representation reduces just to the one-way implication

Dp > q= u(p) > u(qg). Other possibilities for ~ are discussed in Fishburn

(1982b).

1.6 RISK ATTITUDES

This section and the next two commentbriefly on special topics in linear

utility theory that we return to later in our discussions of nonlinearutility.

The present section considers risk attitudes and stochastic dominance with

monetary outcomes; the next two consider more general types of outcomes.

The theory ofrisk attitudes developed by Pratt (1964) and Arrow (1974)

is concerned with curvature properties of u on X as defined by (1.6) when X

is an interval of monetary amounts interpreted either as wealth levels or gains

and losses around a given present wealth. Its purpose is to interpret various

types of economic behavior in risky situations in terms of curvature and

perhaps other properties of u on X within the von Neumann-Morgenstern

framework of maximizing expected utility. A classic exampleis the effort by

Friedman and Savage (1948) to explain the simultaneous acts of insurance

buying and gambling in actuarially unfair lotteries by a doubly inflected
utility function.

Assumethat u on_X is twice differentiable and increasing in x, so u(x)
> 0. Following Pratt and Arrow,wesay that wu is risk averse in an interval of

Xif u(x) < 0 onthatinterval; u is risk seeking if u(x) > 0; and wu is risk
neutral if u(x) = 0. Let p denote a nondegenerate simple measure in P.
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The certainty equivalent of p, denoted by c(_p), is the sure amount in X at

which the individual is indifferent between this amount andp. Its existence,

with c( p) ~ pand u(c(p)) = 2% u(x)p(), is ensured by our assumptions on u

and p. With E(x, p) the actuarial expectation of p, risk aversion, risk

seeking, and risk neutrality imply c( p) < E(, p), c(p) > E(x, p) and c( p)

= E(x, p), respectively. Risk-averse utility functions, which increase in x at

a decreasing rate, are further characterized by their indices of absolute risk

aversion —u®(x)/u“ (x) and relative risk aversion —xu®(x)/u(x).

These indices, which can also be used when u®is not negative, are invariant

to positive linear transformations of u.

The terminology of the preceding paragraph makesno reference to the

riskless utility function v of the Bernoullian approach, since v plays no role in

the theory of von Neumann and Morgenstern. Some writers, including

Bernard (1986), would reserve the term risk neutrality only for the case in

which u = v (up to linear transformation), regardless of curvature, and use

risk aversion only when u is obtained as an increasing concave function ofv.

The papers by Camacho, Krzysztofowicz, and McCord and de Neufville in

Stigum and Wenstop (1983) provide extensive discussion of the u-versus-v

comparison.

The basic Pratt-Arrow theory of risk has been generalized by Ross

(1981) and Machina and Neilson (1987) to address questions of economic

concern andriskattitudes not easily dealt with by the original approach. They

are especially interested in the nonavailability of risk-free alternatives and the

impact of this on comparative economic analysis. See their papers for details.

With respect to the Pratt-Arrow theory applied to changes in present

wealth, it has been observed that some people tend to be risk averse in gains

but risk seeking in losses (Fishburn and Kochenberger, 1979; Kahneman and

Tversky, 1979; Schoemaker, 1980), although the generality of this finding is

open to question (Hershey and Schoemaker, 1980; Cohenet al., 1985). If you

prefer a sure gain of $4,000 to a lottery p with a 70% chance at $6,000
(nothing otherwise), then

c(p) < $4,000 < $4,200 = E(, p).

If you also prefer a lottery g with a 70% chance of losing $6,000 (noloss

otherwise) to a sure loss of $4,000, then

E(x, q) = —$4,200 < —$4,000 < c(q).

Although the ubiquity of attitude reversal between gains and losses is
doubtful, there is little doubt that people’s utility for money depends mainly

on changes from present wealth rather than absolute level, at least locally.

To state an important result of the Pratt-Arrow theory when is

presumed to be defined on absolute wealth levels, let u[x] = — u®(x)/
u(x), the absolute risk aversion of u at x. Also let r(u, p) = E(x, p) —
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C(p) be the risk premium for PD, so

u(c(p)) = u(E(x, p) — x(u, p)) = Dd 4u(x)p(x).
Then the followingare mutually equivalent for any two utility functions u andu*:

1. u*(x) = f(u(x)) for all x and some increasing concave St.
2. u* [x] > u[x] for all x.
3. a(u*, p) > x(u, P) for all simple p.

In addition, if both u and u* are concave, and if one’s initial wealth Wo isdivided betweena riskless asset and a risky asset whose expected return perdollar invested exceeds that of the riskless asset, then each of 1, 2, and 3 isequivalent to the assertion that for all such Wo and asset returns an expectedutility maximizer with u* would put at least as muchinto theriskless asset aswould an expected utility maximizer with u.
Stochastic dominance also involves the shape of u on_X.It is concernedwith comparative aspects of measures P and q and with classes of utilityfunctions whose members have the same preference implication between Dand qg. Weconsider only the standard formsoffirst (>1)- and second (>>5)-degree stochastic dominance. An array of theory and applications of theSubject is available in Whitmore and Findlay (1978), and Bawa (1982) givesan extensive bibliography.
Let p' and p? denotethe first two cumulatives of the simple measure Don xX:

P(x) = ¥ p(y),
YSX

Px) = [) p') dy.

Then >, and >, are defined on Py by

P>,qifp # qandp'(x) < q'(x) for all x,

<P>2qifp # qand p(x) q(x) for all x.
Thusp >, q if the cumulative distribution ofp lies at or below the cumulativedistribution of g, and Pp #q. Whenp >, q, p generally has a better chancefor better outcomes than does q. The second-degreerelation > 2 has a similar_ effect with respect to concave (risk-averse) utility functions, as shown by the_ following well-knownresults.

Let U, be the class ofall strictly increasing u on _X., and let U, be the_ Subclass of U, whose members are strictly concave (u® < 0), Then, with
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u(p) = & u(x)p(x), it is not hard to show that

p>iq? up) > u(q) for alu € Uj,

p>21q4 e up) > u(q) for all u € U).

Thus, for >2, all risk-averse utility functions correspond to p > q when p

>» q. We shall see in Section 6.8 that very similar results hold for nonlinear

utilities.

1.7 MULTIATTRIBUTE LINEAR UTILITY

Weturn nowto decisions underrisk that involve multiattribute outcomes

of the form x = (X1, X2,--- , Xn) with X = X; X xX xX°°° xX X,,. It is

customary in economic theory to interpret x; as a quantity of a good or

commodity indexed by i, but X; could refer to any numberof things, such as

levels of a qualitative variable or whatever happens in year /.

Multiattribute linear utility deals with problems of formulating and

assessing von Neumann—-Morgenstern utility functions on X.It has focused

on special assumptionsthat simplify assessment by decomposing u(%,--->

Xn) into algebraic combinations of functions of the individual variables and on

interactive techniquesthat allow decision makers to maximize expected utility

without having to assessall of u. A broad introduction is given by Keeney and

Raiffa (1976), and useful surveys include Farquhar (1977, 1978) and

Fishburn (1977a, 1978a).

The two simplest decomposed forms for u are the additive form

(1.10) U(X1, X25 2 2 Xn) = uy(X1) + Ua(%) tor + Un (Xn)

and the multiplicative form

(1.11) ku(x1,---5%n) +1 = [ku,(x;) + 1] °°: [kun(Xn) + 1)

where u; is a functional on X; and kis a nonzero constant. Wesay that the X;

are value independentif, for all p, @ € Px,

(1.12) (p, = qfori=1,..-,) > P~ |

where p; is the marginal distribution of p on X;. It can then be proved

(Fishburn, 1965; Pollak, 1967) that u can be decomposed additively as in

(1.10) if and only if the X; are value independent.

Multiplicative decompositions of u arise from utility independence

conditions. We say that a nonempty proper subset J (or its corresponding

attributes) of {1,2,..-; n} is utility independentofits complement I° =

{1,2,...,a}1 if the preference order over probability distributions on the

productof the X; fori € J, conditioned onfixedlevels of the X; for © I¢, is

independentof those fixed levels. If all such J are utility independentof their
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complements and the X; are not value independent, then (Keeney, 1968;

Pollak, 1967) uw has a multiplicative decomposition like (1.11) with

restrictions on signs of the terms in brackets over X; on the right side of

(1.11). We also say that J is generalized utility independent of I° if any two

conditional orders for the 7 © J (conditioned on fixed levels of the other

attributes) are identical, duals of one another, or one is empty. Then
(Fishburn and Keeney, 1975) if {1, . . . , m}\ {i} is generalized utility
independent of {i} fori = 1,..., 7, and if the X; are not value independent,

u can be decomposed multiplicatively as in (1.11). Since (1.11) is not

generally preserved underpositive linear transformations, it is necessary to

scale u in a suitable manner so that (1.11) can be used.

A variety of other decomposed forms for u are discussed in the

preceding references.

1.8 EXTENSIONS FOR PROBABILITY MEASURES

- Theorem 1.2 showsthat the linearity property for u on P and definition

(1.6) imply that u( p) = & u(x)p(x) for every simple probability measure in

P, given convexity and one-point distributions in P. However, the same

hypotheses do not imply the expected utility form

(1.13) u(p) = |we)dp(x),

when p is a nonsimple measure on X. For example, if u on X is unbounded

above andp is a discrete measure that assigns probability 2~” to an outcome

with utility at least 2” form = 1,2,..., then | u(x) dp(x)is infinite but up)

is finite by Theorem 1.3 under the axiomsfor linearutility.

A failure of (1.13) for bounded u is obtained by letting @ be the Borel

field of subsets of X = [0, 1], taking P as the set of countably additive

measures on @, and setting

u(x) = -1 ifx < 4,

u(x) = 1 ifx > 5,

u(p) = S) u(x)p(x) for all p € P.

Then u(p) is well defined since p(x) > O for no more than a countable

number of x € [0, 1]. Define > by p > q # u(p) > u(Q). It is easily

checked that wu is linear, so it satisfies the representation of Theorem 1.3.

However, withp the uniform measure on [5 1], u(p) = Osince p(x) = 0 for

all x, but | u(x) dp(x) = 1 since u(x) = 1 forall x > 5.
These examples and others (Fishburn, 1970a, Chapter 10) show that

axioms that go beyond Al, A2, and A3 are needed to obtain (1.13) when P
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contains nonsimple measures. An early exampleis the axiom of Blackwell

and Girshick (1954) that extends A2 to a denumerable form toyield (1.13) for

all discrete measures. Other examples are given in Arrow (1958), Fishburn

(1967, 1970a, 1975a, 1982a), DeGroot (1970), and Ledyard (1971). We

consider two main cases here: one for bounded uw, and the other for uw not

necessarily bounded. The proofs are given in Fishburn (1982a).

Somepreliminary definitions are needed. Recall that @ is a Boolean

algebra ofsubsets ofX ifX € @ and @ is closed under complementation and

finite unions. If, in addition, @ is closed under countable unions (A; € @ for

i= 1,2,...= U;A; € @), then @ is a Borel algebra. A probability

measure p on @ is countably additive if

p (U4) =(ad

whenever the A; are pairwise disjoint members of @ whose union is in @.

When p is a probability measure on @ and p(A) > 0 for A € @, the

conditional measure ofp given A is the measure p,4 on @ defined by

pa(B) = p(B 1 A)/p(A) for all BE @.

P is said to be closed under conditional measures ifp, © P wheneverp ©

P, A € @, and p(A) > 0.

A subset A ofX is a preferenceinterval if z © A whenever x, y © A,Xx

> zandz > y. Here > on X is defined from one-point measures in the

natural way from > on P. Wesay that P is closed under conditional

measures on preference intervals if ps © P whenever p © P, A is a

preference interval in @, and D(A) > 0.

Letf be an @-measurable functional on X; thatis, {ixfwME Hea

for every real interval J. The expected value of f with respect to p € P,

written E(f, p) or | f(x) dp(x), is defined as follows. First, iffis constant on

each set in a finite partition {A,, ..., An} of X, with f = a; on A;, then

E(f, p) = %; ap(A)). Second,iff is bounded above and below, then

E(f, p) = sup{E(fi,p)in = 1,2,..-},

where fi, fo, - - - is any sequence of simple @-measurable functionals

(constant on each set in a finite partition) that converges uniformly from

below to /; that is, i) <A@) < °° -, f(x) = sup{f,()}, and for every 6

> 0 there is an 7 such that, for all x, f(x) < f,(@0) + 6. Next, iffis bounded

below,

E(, p) = sup{E (fa), P) : 2real},

where fia (x) = f(x) iff) < 4 andfia(x) = f(a) otherwise. Iff is bounded   
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above, E(f, p) = — E(—f, p). Finally, for arbitrary f, definef* andf~ by

ft(x) = ie fF) >0 rey K {f(x) iff(x) < 0,
0 otherwise; 0 otherwise.

Then E(f, p) = E(f*, p) + E(f-, p) unless E(f*, p) = wand E(f-,
Pp) = — ©, in which case E(f, p) is undefined.

Our boundedutility extension for u(p) = | u(x) dp(x) = Eu,p) uses
the following appealing dominanceprinciples, applied to all p, g © P, all A
€ @, andall y € X:

A4. Dominance: Supposep(A) = 1. Then (x > qforallx © A) = p

2 q, and (q > xforallx © A) => > p.

A4*, Dominance: Supposep(A) = 1. Then (x > yforallx € A) =

p> y,and(y > xforallx € A) => y > p.

The weaker axiom A4* can be used under countable additivity.

THEOREM 1.5. Suppose @ is a Boolean algebra of subsets ofX that

contains every singleton subset, P is a set ofprobability measures on @

that contains every one-point measure and is closed under countable

convex combinations and under conditional measures, > is a binary

relation on P that satisfies Al, A2, and A3, and @ contains every

preference interval. Then there is a bounded order-preserving linear

functional u on P thatsatisfies (1.13) for all p © P if either A4 holds or

all measures in P are countably additive and A4* holds.

If we drop the assumption that P is closed under countable convex

combinations (p; € P,)d; > Ofori = 1,2,...and dA; = 1 imply > djp; €

P), then u can be unbounded. However, to ensure (1.13) in this case, it is

necessary to add another axiom. To specify this axiom, we first define

preference intervals (— oo, x) = {y:x > y}, (— ©, x] = {y:x > yh, (&,

oo) = {y:y > x}, and [x, ©) = {y:y > x}, along with special classes of

measures in P:

P*+ = {p € P: p([x, )) = 1 for some

x, D((x, )) > 0 for all x},

P- = {p € P: p((—™, x]) = 1 for some

x, D((— ~, x)) > 0 for all x}.

The measures in P* are bounded below with upper preference tails; those in

P~ are bounded above with lowerpreference tails. As before, Py is the set of

simple measures. In addition, let x* denote the one-point measure in P that

assigns probability 1 to x. The following applies to all po, p; © Py and all x

Ee X:
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AS. Truncation: If p © P*, p (- ©, x]) > 0 and p, > Do, then

there is ay © X such that

p(—-~, yI)pr + DY, ©)¥* 2 PD(-—& Y)Po + D(Y, ©))Pv,~)3

ifp © P-,p (Ix, ©)) > 0, and p; > Po; then there isay © X

such that

D((—- ©, Y))D-»,») + PLY, ©)Pi 2 PC- ™; y)y* + DULY, ©))Po-

This basically says that the tails of measures in P* and P~ do not force

infinite expectations. The notations Py,.) and Py—«,») refer to conditionals D4

ofp with A = (y, ©) andA = (— 0, y), respectively. Axiom A5 can be

simplified significantly under countable additivity to the following, for all p

€ P and all po © Px:

A5*. Truncation: p > Po = Di-~,y) 2 Pofor some y © X; po > Pp =

Do > Dy.» for some y © X.

THEOREM 1.6. Suppose the hypotheses of Theorem 1.5 hold with the

following changes: P is only assumed to be closed under finite convex

combinations and under conditional measures on preference intervals.

Then there is an order-preserving linear functional u on P thatsatisfies

(1.13) for all p © P if either A4 and AS hold or @ is a Borelalgebra, all

measures in P are countably additive, and A4* and A5* hold.

1.9 SUMMARY

The version of expectedutility developed by Daniel Bernoulli was based

on a riskless notion ofthe utility of wealth coupled with maximization of

expectedutility as a guiding principle for decision making under risk. More

than 200 years later, von Neumann and Morgenstern axiomatized another

version of expectedutility in terms of a preferencerelation on a mixture set or

on a convexset of probability measures. Theirutility measure for outcomesis

inextricably intertwined with probability, and their expected utility represen-

tation is derived from the preference axioms.

The linear utility representation of von Neumann and Morgenstern

follows from axioms for simple preference comparisons that refer to

ordering, independence, and continuity properties. Several equivalent sets of

axioms exist for their representation. Additional axioms are needed to extend

the expected utility form from simple measures to nonsimple measures.

Special topics that have been extensively developed in the linear utility

context of von Neumann and Morgenstern includethe theory ofrisk attitudes,

stochastic dominance, and multiattribute utility theory.

 

 



   

2 Critique of Expected Utility

Violations of the axioms and underlying principles of expected utility

theory have been generated by certain experimental conditions and framing

procedures. It is no longer regarded as an accurate descriptive theory, and

many other models have been proposed to explain or describe risky choice

behavior. An important task for normative theory is to decide which

violations of the von Neumann-Morgenstern axioms are experimental

artifacts and which violations constitute fundamental rejections of the axioms

by intelligent and well-informed people. This chapter reviews the experimen-

tal evidence and philosophical arguments in preparation for the discussion of
normative theories in the next chapter.

2.1 NORMATIVE VERSUS DESCRIPTIVE THEORY

In reviewing evidence against linear utility presented in this chapter and

in interpreting alternative nonlinear theories in ensuing chapters, we shall

differentiate between the normative status and the descriptive status of these

theories. This is desirable for two reasons. First, most of the empirical

evidence for avowed preferences or actual choices involves the descriptive,

behavioral side of decision theory, andit is not always clear whetherit should

also affect the normative status of a theory. Second, our later chapters are
primarily concerned with the normative side of decision theory. Hence, some

care must be taken in deciding which arguments against linear utility or other

theories also deserve consideration as arguments against their normative
viability. This ultimately rests of course on personal opinion as well as
collective wisdom, and I shall try to be clear about my ownposition as well

as the positions of others.

The terms normative and descriptive are but two of a number of

modifiers that signal particular interpretations and intended uses of decision

theory. Each is a neighbor to other terms that have many of the same

connotations, and I shall use them simply as representatives of their larger

families.
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Neighbors of descriptive include behavioral, psychological, predic-

tive, positive, and explanatory. The descriptive approach seeksto identify

patterns in an individual’s preferences or actual choices and, subsequently, to

develop a model that characterizes these patterns and which can be used to

predict preferencesor choices notyet revealed. Models with few parameters

and high explanatory-predictive power are most desirable. A model may

have a processing or algorithmic flavor, such as Tversky’s elimination-by-

aspects model (1972a, b), or be based on a simple parametric equation, such

as some moment models for choices between monetary lotteries (Payne,

1973; Libby and Fishburn, 1977). Descriptive theory is interested in actual

choice behavior rather than in guidelinesor criteria for ‘‘right’’ decisions.

Neighbors of normative include rational, prescriptive, and recom-

mendatory. The normative approach is concerned with criteria of coherence,

consistency, and rationality in preference patterns that, as in linear utility

theory, are often set forth as axioms. It does not necessarily assume that

intended or actual choice behavior adheresto the axioms, but it does presume

that reasonable people who understand the axioms would want their

preferences or implied choices to agree with the axiomatic guidelines.

Applications of normative theory should entail careful reasoning and

evaluations so that its imperative for a ‘‘right’’ decision can be carried out

properly. Desirable attributes of a normative model,in addition to its appeal

as a transparently rational model, are clear specifications for the measure-

mentof its componentsanda simple rule for combining these components for

the evaluation of more complexalternatives. Proponents of expected utility in

either the Bernoullian version or the von Neumann-Morgenstern version

claim that their model epitomizes these attributes for decisions underrisk.

The normative-descriptive distinction has an interesting history bounded

by Bernoulli’s views at one end and the research of Daniel Kahneman and

AmosTversky at the other end. Bernoulli appears notto distinguish between

the two, saying in one place that his approach for evaluating risky ventures

‘‘renders the entire procedure universally acceptable without reservation’’

(1954, p. 24), and in another place that ‘‘all our propositions harmonize

perfectly with experience’? (p. 31). On the other hand, Tversky and

Kahneman (1986) argue persuasively that ‘‘no theory of choice can be both

normatively adequate and descriptively accurate” since some principles

widely viewed as normatively essential are descriptively invalid. We consider

this further in the next section.

2.2 FRAMING EFFECTS

Psychologists and sociologists have long knownthat the way a question

is asked can affect its answer. This has been dramatically illustrated by

Kahneman and Tversky in experiments on choice behavior conducted over  



 

CRITIQUE OF EXPECTED UTILITY 27

many years and summarized, for example, in Kahneman and Tversky (1979,

1984) and Tversky and Kahneman (1981, 1986). They refer to ways in which

questions are posed as frames for decisions, and to responses induced by

different frames as framing effects. Roughly stated, a main conclusion of

their research is that virtually any principal of choice, no matter how

intuitively appealing, can be violated in certain frames.

A case in point is the axiom of asymmetry: ifp > q, then not (q > p).

By placing the p/q comparison in different frames, it may be possible to

induce a preference for p over qg in one, and a preference for qg over p in

another. Well-known examples of this involve comparisons of situations

involvinglife and death (McNeilet al., 1982; Tversky and Kahneman, 1981),

where preferences can depend on whether the comparisonis stated in terms of

lives saved oroflives lost. Tversky and Kahneman (1981, p. 453) consider a

situation paraphrased as follows. Six hundred people have contracted a

potentially fatal disease. Two treatment programsare possible. If program |

is adopted, 400 people will die and 200 will live. If program 2 is adopted,

either all 600 will die, with probability Z, or all will live, with probability ;

One group of respondents preferred program 1 over program 2 bya ratio of

2.6 to 1 when the two werestated in terms of lives saved: 200 saved versus

600 saved with probability 5) and nobody saved with probability :. Another
group preferred program 2 over program | by a ratio of 3.5 to 1 in the lives-

lost frame: 400 die versus nobody dies with probability ¥, and 600 die with

probability +.
Tversky and Kahneman (1986) refer to the ability to elicit either p > q

org > p, depending on frame,as a violation of invariance. We considerthis

along with a closely related reduction principle:

Reduction Principle: For comparative purposes of preference and

choice in risky decisions, it suffices to characterize each alternative in

terms of its probability distribution over potential outcomes;

Invariance Principle: ‘‘Different representations of the same choice

problem should yield the same preference. That is, the preference

between options should be independent of their description’’ (Tversky

and Kahneman, 1986).

The reduction principle is invoked in the basic formulation of preference

theory for risky alternatives by Bernoulli and by von Neumann and

Morgenstern, and is widely regarded as a key normative principle. It

presumes that the outcome probabilities are given, or known, or easily

computable, and although this is seldom true in realistic situations we shall

defer its consideration until Chapter 7. More to the point of our present

discussion, the reduction principle asserts that the degrees of causal or

stochastic dependence among the events that give rise to the probabilities

across different alternatives should not affect preferences. In the original
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game-theoretic context of von Neumann and Morgenstern (1944), this was of

little concern since probabilities are used there to form mixed strategies and

we may imagine that each mixedstrategy refers to its own random devicethat

generates its probabilities. In other words, it is appropriate for mixed

strategies in game theory to assume complete stochastic independence among

their corresponding probability distributions. Under stochastic independence,

the reduction principle seems essential for normative decision theory.

I believe that the case for the reduction principle is less compelling when

the probability distributions are interdependent through their underlying

events. For example, consider two different frames that have identical

probability distributions for alternatives a, and a):

SI: A fair coin is to be flipped. Under a, you win $1,000 if a head

appears and get $0 if a tail appears; under a, you win $1,200 if a head

appears and lose $80 if a tail appears.

SII: Twofair coins are to be flipped. Under a, you win $1,000if the first

coin lands heads and get $0 otherwise; under a, you win $1,200 if the

second coin landstails and lose $80 otherwise.

Under the reduction principle, your choice should be the samein SI and SII.

However,it is not obvious, to this writer at least, that one’s reasoned choice

in the interdependent SI ought to be the same as in the independent SII.

Many readers will recognize the preceding exampleas a situation thatis

better suited for analysis in the states-of-the-world formulation of Savage

(1954) than for the reduced formulation of Chapter 1. Figure 2.1 shows the

usual outcome matrix whenthe first coin in SII is the coin for SI. There are

three different acts and four states, where H; and 7; denote heads andtails,

respectively, for coin 7. Although we shall not consider Savage’s formulation

for decisions under uncertainty in any detail until Chapter 7, it is introduced

here because it plays a role in subsequent examples.

Tversky and Kahneman (1986) regard the invariance principle as an

essential condition for normative choice theory and note that it is tacitly

assumed rather than explicitly stated by many writers. It has at least two

variants. In the first, which is illustrated by the lives-saved-versus-lives-lost

example given earlier in this section, only the wording of the frames is

different. There is no difference between the probability distributions in the

two frames or in the way the probabilities arise, insofar as this is specified.

The second variant uses differences between the ways in which the

probabilities arise, or are generated, to induce violations of asymmetry under

the reduction principle that characterizes each alternative only by its

probabilities for the outcomes. Violations of invariance in this case can also

be viewed as violations of reduction.

The difference between the ways the probabilities arise in the two frames

may be implicit or explicit. We illustrate the implicit mode first with a  
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FIGURE 2.1 Payoff matrix

H4 H4 Ty Ty
He Te Ho T2
 

a4(SI ORSII) |1,000 1,000 O 0

ST do 1,200 1,200 -80 ~-80

SI do -80 1,200 -80 1,200

violation of first-degree stochastic dominance, and then we consider an
explicit violation of invariance or reduction that illustrates a so-called
isolation or pseudocertainty effect.

Tversky and Kahneman (1981, 1986) report’ that 150 subjects were
asked to choose between (A) a sure gain of $240 and (B) a 25% chanceto gain
$1,000 but nothing otherwise, and between (C) a sure loss of $750 and (D) a
75% chance to lose $1,000 but nothing otherwise, with the understanding that
the two selected options would be played out independently and simultane-
ously. About 84% chose (A) over (B) and 87% chose (D) over (C), 73%
chose the (AD) combination, and 3% the (BC) combination.

Also consider a choice between (E) a 25% chance to win $240 and a
75% chance to lose $760, and (F) a 25% chance to win $250 and a 75%
chance to lose $750.It is ‘‘natural’’ to think of the outcome of (E) or (F) as
being determined bya ‘‘coin’’ with probability 5 for heads and ; for tails. In
this comparison subjects invariably prefer (F) to (E), which adheres to the
first-degree stochastic dominance principle. However, the (AD) combination
is identical to (E) in its aggregate outcomeprobabilities, and (BC)is identical
to (F) in its aggregate outcome probabilities. Thus the prevalent choice of
(AD) in the preceding paragraphviolates first-degree stochastic dominance
through the separated-choice framingeffect.

Three further remarks on this exampleare in order. First, the implicit
difference between the two frames is probably not the main reason for (AD)
> (BC) and (F) > (EB). It is more likely due to the psychological difference
between attitudes to gains and lossesin thefirst frame, perhaps coupled with
an inability in that frame to mentally or manually aggregate pairs before
making the twochoices. Second,the authors note that preferences agree with
first-degree stochastic dominance when dominanceis transparent, as in (E)
versus (F). Finally, although the probability aggregated comparison between
(AD)and (BC) seemsstraightforward in the pure outcomes form, the actual
comparison between the two in Savage’sstates formulation is not so obvious.
See Figure 2.2, where coin 1 refers to (B), coin 2 to (D), and the probabilities
of H; and 7; are ; and 3, respectively. Although (BC) stochastically
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FIGURE 2.2 Another payoff matrix

H4 Hy T4 T4

He Te He =Te2
(4/16) (3/16) (3/16) (9/416)

AD 240 -760 240 -760
 

BC |250 250 -750 -750

dominates (AD) in the reduced form, (BC) does not dominate (AD) in state-

by-state comparisons since (AD)is better in the third state.

The final example of this section, based on Tversky and Kahneman

(1981, p. 455), assumesthat probabilities are generated by drawing a marble

at random from a bag of 100 marbles, numbered 1 through 100. Thefirst

comparison is between (A) win $30 if number drawn is <25, and nothing

otherwise, and (B) win $45 if number drawn is <20, and nothing otherwise.

This is reframed as a two-stage game for the second comparison. In stage 1

the game endswith no payoff if the number drawn is <75, and goesto stage

2 otherwise. If you get to stage 2, your choice is between (A*) win $30 and

(B*) win $45 if number drawn in a second draw is <80, and nothing

otherwise. You must choose (A*) or (B*) before the draw in stage 1. Despite

the fact that the overall outcome probabilities for (A) and (A*) are identical,

and similarly for (B) and (B*), most subjects chose (B) in the first case and

(A*)in the second. Thereversal in this example is referred to as an isolation

effect in Kahneman and Tversky (1979, p. 271), because subjects tend to pay

attention only to the dissimilar parts in the two-stage frame, and as a

pseudocertainty effect in Tversky and Kahneman (1986), because of its

relationship to the certainty effect of Allais (1953, 1979a, 1979b) that we

shall consider later in our discussion of the independence axiom.

2.3 MONEY

Because monetary outcomes have been so important in expected utility

theories, a few comments on moneyand wealth are in order before we turn to

other aspects.
As seen in Section 1.1, monetary outcomes were central to Bernoulli’s

expected utility theory. He believed thatutility or subjective value should be

defined on wealth withoutintervention of probability or risk, and he proposed

a logarithmic function v(w) = log w for the psychological value of wealth,

unique up to positive linear transformations. This is pictured in Figure 2.3.

The preeminent proponent in modern times of Bernoulli’s position on

the utility of monetary outcomesis Allais (1979a, b), whose experimental

measurements (1979b) lend support to Bernoulli’s logarithm function. Let Wo  
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denote an individual’s estimate of the present value of his or her stream of

future income, and let x be a gain or loss presently considered. Then Allais

believes (1979b, pp. 480-81, 614-20, 627-33; footnote 34, p. 639) that his

experimental results justify the proposition that, with very little error, the

psychological value of Wo + x for all subjects is given by log(1 + x/wpo), or,

more precisely, that u(wo + x) = f(X/Wo), where f is the same for all

subjects but is not given explicitly (p. 633).

Unlike Bernoulli, Allais does not assume that individuals act to

maximize the expected value of their riskless utility. Moreover, he presume

that an individual’s preferences on a set P of probability distributions

(granting the reduction principle, which he adopts as a basic axiom) are

weakly ordered and that they satisfy first-degree stochastic dominance,

referred to as the ‘‘axiom of absolute preference’’ (1979b, p. 457). It follows

(p. 465) that preferences on P depend not only on expected subjective values

Xu(Wo + X)p(X) but on the distributions of the v values about their expected
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values. His theory, which he interprets normatively but believes to be in good

accord with people’s behavior, will be discussed further in the next chapter.

Allais believes (1979b, pp. 591-93) that von Neumann and Morgen-

stern, whose formulation he refers to as neo-Bernoullian, intended their

cardinal utility function “ on monetary outcomes to measure psychological or

subjective value, in the manner of Bernoulli or Allais. Although there are

hints of this in their writing, other commentators, including Strotz (1953),

Luce and Raiffa (1957), and Baumol (1958), make it quite clear that such an

identification is unjustified, and they themselves (1953 edition, pp. 16, 20)
denyit.

Oneof the great attractions of the von Neumann-Morgenstern theory is

its complete generality on the nature of outcomes. However, monetary

outcomes have played a prominent role in later work based on their theory

(Section 1.6) largely because of its fascination for economists, its conven-

ience in experiments on risky choice, and its use as a measurement surrogate

for other outcomes. These aspects explain the prevalence of the monetary

factor in our critique of linear utility theory.

Numerousstudies, beginning with Mosteller and Nogee (1951), report

assessments of people’s von Neumann—Morgenstern utility functions u for

monetary outcomes. Somestudies are normatively oriented, and others are

purely descriptive. Most focus on the measurementof utility for modest gains

and losses, but a few, including Grayson (1960), consider large changes.

Regardless of scope, and in sharp contrast to the everywhere concave v

of Bernoulli and Allais, a prevalent, but by no meansuniversal, finding is that

u is concave in gains and convexin losses except for losses in the vicinity of

ruin, where concavity reappears.

The prevalence of risk aversion in gains and risk seeking in losses has

led Kahneman and Tversky to refer to its increasing S-shaped pattern as the

reflection effect. They also observethat their u tends to be steeper for losses

than for gains (see Figure 2.4). I say ‘‘their u’’ because their assessment of

value is made according to their descriptive theory of choice between risky

monetary prospects, referred to as ‘‘prospect theory,’’ and not according to

the von Neumann-Morgenstern paradigm. However, like von Neumann and

Morgenstern, they assess values by comparisons between simple lotteries,

and the qualitative aspects of the two are similar.

As noted in Section 1.6, several studies take exception to the prevalence
of the reflection effect, and others confirm it. A recent confirmation is given

by Budescu and Weiss (1985). On the other hand, Cohen et al. (1985)

conclude that, while subjects exhibit consistent risk attitudes in gains, and

also in losses, there is no correlation between a subject’s attitudes toward

gains and losses. They also note that probabilities are accounted for rather

precisely in the gains region butnot in the loss region, where they are treated

coarsely, if at all. Related work on the relative importance of four risk  
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FIGURE 2.4 wu convexin losses, concave in gains
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dimensions, namely win probability, loss probability, amount to win, and
amount to lose, was reported by Slovic and Lichtenstein (1968) and Payne
and Braunstein (1971). An overview of this and similar descriptive research
is presented by Schoemaker (1980).

The importance of changes from one’s ‘‘present position’ is highlighted
by the following example from Tversky and Kahneman (1986):

Situation 1. Assume yourself richer by $300 than you are today. You
have to choose between (A) a sure gain of $100 and (B) a 50% chanceto
gain $200 but nothing otherwise.

Situation 2. Assume yourself richer by $500 than you are today. You
have to choose between (A’) a sure loss of $100 and (B’) a 50% chance
to lose $200, but nothing otherwise.

Although the final positions of (A) and (A’) are the same, and probabilisti-
cally so for (B) and (B’), 72% of 126 respondents chose (A) in Situation 1,
and 64% of 128 respondents chose (B’) in Situation 2. The majority choices
thus agree with risk aversion for gains and risk seeking for losses.

Onthebasis of available evidence, Kahneman and Tversky conclude that
the effective carriers of values in decisions between risky prospects are gains
and losses, or changes in wealth, rather than levels of wealth. I concur.
Moreover, so long as one’s wealth levelis not drastically changed,the utility
function on gains and losses will not be significantly sensitive to current
wealth.

Although these conclusions apply first and foremost to descriptive
theory, I believe they have important implications for normative theory. In
particular, in accord with the considered choices of reasonable people,
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normative decision theory for risky decisions with monetary outcomes ought

to be primarily concerned with changes from present positions. For the linear

utility theory of von Neumann and Morgenstern, this suggests that the

outcomes in X should be such changes (i.e., gains and losses). Insofar as

present position is considered explicitly, it could be included in u as a

parameter, giving the bivariate functional u(x, Wo). In fact, this is often

assumed implicitly with wo suppressed in writing u(x).

Since it might be imagined that this position is inconsistent with the

reduction principle when appliedto a series of potential payoffs over time, we

note that outcomes in the series context are much more involved than the

simple monetary outcomes we have considered. Normative theory does not

seek to collapse sucha series into a single number, such as present monetary

value, but regards it for what it is—a vector of payoffs with timing clearly

noted. The probabilities for outcomes in such a case refer to the holistic

payoff vectors.

2.4 PROBABILITY TRANSFORMATIONS, PROBABILITY

PREFERENCES

The experimental work of Preston and Baratta (1948), perhaps the

earliest reported test of the von Neumann-Morgenstern theory, explored

whether subjects accounted for chance events at their true (mathematical)

probabilities or whether they systematically distorted probabilities in their

presumed expectation-maximizing choices. Unlike Mosteller and Nogee

(1951), Preston and Baratta assumed u(x) = ax + b for small changes in

wealth. Since the logarithmic function is approximately linear locally, their

results also pertain to the descriptive accuracy of Bernoulli’s theory.

However, they do not pertain to Allais’s theory because he does not adopt an

expectation maximization principle.

Preston and Baratta found that subjects tend to overvalue small

probabilities and undervalue large ones, with accurate valuation at about 0.2.

Thus, if 7(\) denotes a person’s valuation of probability \, with 7(A)x the

holistic value for a random prospect with probability \ for x and 1 —

A

for0,

then 7(\) > A for small A, 7(A) < ) for large A, and 7(0.2) = 0.2 (see Figure

2.5). Edwards (1954a, p. 397) cites other studies with similar results, except

perhapsfor the points, if any, where 7(\) = 2.

In other early work on the psychology of probability, Edwards (1953)

observed that subjects’ bets revealed preferences among probabilities. For

example, for lotteries with equal expected values, subjects consistently liked

bets with win probability ; to others with different win probabilities, and

avoided bets with win probability Z, Moreover,these probability preferences

were reversed in the loss domain, were insensitive to the amounts of money  
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FIGURE 2.5 Distortion of probabilities
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involved (Edwards, 1954b), and could not be explained by curved utility

functions (Edwards, 1954b, c).

There is now a huge literature on the psychology of probabilistic

information processing and its biases, distortions, and illusions. Interested

readers will find discussions and further references in Edwards (1954a, 1961,

1968), Karmarkar (1978), Schoemaker (1980), Kahneman et al. (1982),

Machina (1983a), Kahneman and Tversky (1972), Tversky and Kahneman

(1973), and papers of Kahneman and Tversky cited earlier.

Various descriptive models that incorporate transformed or subjectively

weighted probabilities 7(\) have been proposed. Handa (1977) discusses the

natural extension of the Preston-Baratta model with p — Y7r(p(x))x,

Karmarkar (1978) proposes p ~ X7(p(x))u(x)/27(p(x)) with 7A) = A%/

[A* + (1 — A)®] for a positive parameter a, and Kahneman and Tversky

(1979) use a 7 function in their prospect theory. The properties for 7

suggested by Kahneman and Tversky include 7(0) = 0, 7(1) = 1, 7(uA) >

u7(A) for small X > O and 0 < yp < 1, subadditivity for complementary

events (i.e., 714) + 7(1 — A) < I forO < XX < 1), and 7(pA)r(up) <

T(u)7(uAp) for 0 < pw, A, o < 1.
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The large body of evidence already alluded to supports the claim that a

normative theory that does not include a transformation of probabilities

cannot be an accurate descriptive theory. However, even if a normative

theory includes 7 in some form,it wouldstill not be an acceptable descriptive

theory according to Tversky and Kahneman (1986) because of violations of

reduction andinvariance that lead to contradictionsof the asymmetry ofstrict

preference and first-degree stochastic dominance.

In fact, most normatively interpreted theories of preference and choice

among risky prospects do not include a probability transformation feature.

They take probabilities as given and, withoutalteration, combine them in

some way with valuesorutilities of outcomes underthe reduction principle.

Moreover, framing effects that lead to violations of asymmetry are felt to

have no place in normative theory even if they are acknowledged as

psychologically valid. It follows thattests of the axiomsof a normative theory

ought to avoid framing effects insofar as possible by, for example, simply

listing the holistic outcomes and their probabilities when comparisons

between prospects are considered. However, since even the way that

outcomes are listed (e.g., worst to best, best to worst, randomly) might

induce framing effects, it seems difficult to avoid such effects altogether.

Despite this difficulty, it is my understanding that most normative theorists

would be disturbed by a purported empirical violation of an axiom or

principle of choice viewed normatively only if they were convinced that the

violation was not induced by framing. At the same time, an axiom proposed

as a normative principle should not be taken too seriously if its general

satisfaction is induced only by special framing. A case in point is considered

in the next section.

2.5 INDEPENDENCE AND THE CERTAINTY EFFECT

Ofthe three numbered axiomsin Section 1.4, the one most often denied,

relaxed or abandonedas both a descriptive and normative principle of choice

is A2, the independence axiom.It is also the most extensively investigated

axiom from an empirical perspective. Several investigators, beginning with

Allais (1953, 1979a) and including Morrison (1967), MacCrimmon (1968),

MacCrimmon and Larsson (1979), Hagen (1979), Kahneman and Tversky

(1979), and Tversky and Kahneman (1981), have shown persistent and

systematic violations of independence. An extensive review is provided by

Machina (1983a, pp. 62-76).

To paraphrase an early exampleof Allais (1979a, p. 91), consider first

your preference between p and gq:

p: $1 million with probability 1,

q: $3 million with probability 0.98, nothing otherwise.  
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Consider also your preference between

r: $1 million with probability 0.050, nothing otherwise,

s: $3 million with probability 0.049, nothing otherwise.

Many péople have p >q because of p’s certainty of giving $1 million, yet

also have s > r because the difference between their payoff probabilities of 1

chance in 1000 is outweighed by the significantly larger payoff for s. This

pair of preferences violates A2 since

r = (1/20)p + (19/20)z, s = (1/20)¢ + (19/20)f,

where ¢($0) = 1. According to A2, if p > qg, thenr > s.

A similar example in Kahneman and Tversky (1979) uses more modest

payoffs:

p: $3,000 with probability 1,

q: $4,000 with probability 0.8, nothing otherwise;

r: $3,000 with probability 0.25, nothing otherwise,

s: $4,000 with probability 0.20, nothing otherwise.

Of 95 respondents, 80% had p >qg, 65% had s > r, and more than half had

the independence-violating pair {p > g, 5 > r}.

In such examples it is instructive to consider the effect of on

preferences when p > q:

r=)Ap+( —- A), s=dXq+— Ade.

Assuming that ¢’s payoff, if any, is less attractive than those for p and q, as X

decreases from 1 the attraction to certainty in the p/qg comparison fades and

the difference between their payoffs assumes more significance in the overall

comparison between r and s. When independenceis violated, we expect r > s

for large \ and s > r for small \. The change point as \ decreases from 1 will

depend of course on the person as well as on the parameters of p, q, and ¢.

Allais refers in various places to the effect, advantage, or security of

certainty as the driving force behind violations of independence of the type

just illustrated. This is commonly known today as the certainty effect,

althoughit is well to bear in mind that this does not meanthat the violation is

due to a framing effect, as discussed earlier, since, in adherence to the

reduction principle, the prospects are presented in a straightforward manner

without special framing devices, such as decompositions or multiple stages.

When certainty as such is not involved, but the ratio of positive-payoff

probabilities is the same in two comparisons (such as 0.9/0.6 and 0.3/0.2),

failures of independence are sometimes described as the common ratio

effect.
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Another descriptor is the common consequence effect, which has been

used in connection with Allais’s most famous example (1979a, p. 89), which

was designed,in part, to challenge Savage’s independence principle. You are

asked to compare

p: $1 million with probability 1,

g: $5 million with probability 0.10, $1 million with
probability 0.89, nothing otherwise;

and to compare

p’: $1 million with probability 0.11, nothing otherwise,

q’: $5 million with probability 0.10, nothing otherwise.

Many people have p > qandq’ > p’, andit is clear that certainty plays a

role in this. Now with ¢($0) = 1 and with s the prospect with probability +

for $5 million and nothing otherwise, we have

p = (0.11)p + (0.89)p, gq = (0.11)s + (0.89)p,

and

p’ = (0.1))p + (0.89)t, q’ = (0.11)s + (0.89)t.

The ‘‘common consequence’’ inp versus q is $1 million, and in p’ versus q’

it is $0 (i.e., £4). According to A2 and its indifference companion LS in

Section 1.4, the preference between p and q, and between p’ and q’, should

depend on the p-versus-s preference, independent of the common conse-

quence in each case. Thus A2 requires p > gandp’ > q’ ifp > s,org >

pandq’ > p’ ifs > p; also, L5 requires p ~ q and p’ ~ q’ ifp ~ s.

The most common defense of independenceasa postulate of rationality

involves the two-stage argument of Section 1.4. Consider the first example of

this section, where r = =P + at and s = od + sat. The two-stage

argument imaginesthat either s or ¢ would be played out in twostages. In the

first stage you get ¢ (i.e., $0) with probability = and p (if r) or qg (Gif s) with

probability xe Your final payoff is then determined in the second stage

according to whatever results from the first stage. Since you shouldn’t care

which of r and s is chosen if ¢ comesup in the first stage, your preference

between r and s ought to depend solely on your preference between p and q.

This argument once persuaded manytheorists to accept A2 as a valid

normative principle, and it maystill appeal to some. However, as Allais

originally argued and hasinsistently maintained,it is inadmissible as a guide

to rationality since it destroys the holistic natures of the prospects under

consideration and is based on a specialized framing effect illustrated in the

final example of Section 2.2. When distributions are viewed holistically,

important comparative aspects may be evident that could be disguised by the  
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two-stage argument. Moreover, there is a potentially unlimited number of

waysthat two distributions could be decomposed for multiple-stage presenta-

tion that, because of psychological suggestions induced by decompositional

framing that should have no part of our conception of rationality, could lead

to opposite preferences between the two. Examples of this have already been

given in Section 2.2.

Since Allais defends first-degree stochastic dominance as a normative

principle but denies independence the samestatus, it is interesting to compare

his position with that of Tversky and Kahneman (1986). These authors

believe that the two principles are on a similar footing. They say that both

rules are intuitively compelling as abstract principles of choice, and note that

they are consistently obeyed in situations wheretheir structure is transparent

and frequently violated otherwise.

My ownviewdiffers slightly from both Allais and Kahneman-Tversky

and requires qualification of the degree of interdependence among eventsthat

generate probabilities for alternative prospects. We hold a common view on

the normative statusof first-degree stochastic dominance, and I am convinced

by Tversky and Kahnemanthat descriptive failures of this principle can arise

when dominance is not transparent or is disguised by framing.

If the reduction principle is accepted as a normative criterion, which I-

feel comfortable about, but only when the underlying events for different
prospects are causally independent, then I must agree with Allais on the

normative inadmissibility of the independence axiom. In the independent-

prospects case, the independence axiom seemsintuitively compelling only by

way of an illusion created by two-stage interdependent framing. When the

prospects are presented in holistic form, which suggests that their underlying

events are more or less independent, the judgments of reasonable people

speak strongly against the independence axiom as a normative principle.

On the other hand, both the reduction principle and the independence

axiom appear in a different light if the underlying events are interdependent,

as I have suggested in Section 2.2. In particular, if the framing of

independence by the two-stage argument discussed earlier adheres to the

actual process by which final payoffs are determined, then independence is

normatively attractive, and I tend to side with Tversky and Kahnemaninthis

case.

There is also, I believe, a substantive difference between the dominance

and independence principles. With monetary outcomes,first-degree stochas-

tic dominance is the natural probabilistic extension of the greater-than

relation between sure outcomes. On the other hand, independence is merely

one of a large numberof rules of combination for preferences between convex

combinationsofdistributions. Its simplicity is appealing, and it is enormously

useful mathematically via the linear utility representation, but it does not have

the same intuitive standing as dominance.
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Violations of A2 and related independence conditions can be accommo-

dated by probability—utility models by the use of subjectively weighted

probabilities (see 7 in Section 2.4) or by a conception of how probabilities and

utilities combine to form valuesorutilities of risky alternatives that differs in

some way from the expected utility form. The descriptive models of Handa

(1977) and Kahneman and Tversky (1979) use both meanssince their quasi-

expectational forms are not true expectations. However, Karmarkar (1978)

uses only the 7 device, since his weighted probabilities are normalized.

Theories interpreted normatively that do not transform probabilities rely on

the combination aspect to accommodate independence violations. The rules

of combination are not specified explicitly in the theories of Allais (1953,

1979a, b) and Machina (1982a), but are given concrete form in the weighted

expected utility theory of Chew (1982, 1983) and in Fishburn’s (1982c) SSB

utility theory. We consider these further in the next chapter.

Wenote also that plausible violations of independence can occur outside

the narrow realm of monetary outcomes. Kahneman and Tversky (1979, p.

267) give an example with tours of European countries as outcomes, and Sen

(1985) presents three examples with various kinds of outcomes. Sen’s first

example illustrates the potential of psychological dependence among out-

comes in the common consequence format. In abstract form consider (A) a

10% chance for a, 90% chance for b and (B) a 10% chance for a, 90%

chance for c as one comparison, and (A*) a 10% chance for a*, 90% chance

for b and (B*) a 10% chance for a*, 90% chance for c as a second

comparison. Although independence requires a similar preference between

(A*) and (B*) as between (A) and (B), the individual may view the b versus c

comparison differently in the two cases because of different psychological

dispositions caused by association with common consequence a in one case

and with a* in the other. Even though the outcomes are mutually exclusive,

psychological associations and interdependence could lead to (A) > (B) and

(B*) > (A*).

Sen’s paper also contains an interesting analysis of notions of rational

choice that emphasizes the correspondenceof actual choice with the use of

reason. He distinguishes irrationality due to hasty or unthinking action

(something else would have been done on careful reflection) from failures of

rational action due to limited reasoning ability. Those of us who are

sometimes perplexed by the notion of rationality may find some solace in

Sen’s claim (1985, p. 113) that it involves inherent ambiguities.

2.6 VAGUENESS AND NONTRANSITIVE INDIFFERENCE

The asymmetry part of the weak ordering axiom Al was considered in

Section 2.2 as part of our discussion of reduction and invariance. We now

consider transitivity implications of Al, beginning with the most innocuous  
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failure of transitivity—nontransitive indifference. Failures of the transitivity
of strict preference will be discussed in the next two sections.

Wesay that the indifference relation ~ is nontransitive, or intransi-
tive, ifa ~ b,b ~ c, anda > c for some a, b, and c. In the risky-prospects
setting, a, b, and c could be outcomesin _X or probability measures in P or a
mixture of the two. When outcomesare involved, we identify x with the one-
point measure that yields x with certainty.

Early discussants of nontransitive indifference in economics include
Georgescu-Roegen (1936, 1958) and Armstrong (1939, 1948, 1950).
Armstrong speaks in one place (1950, p. 122) about nontransitive indiffer-
ence as arising from ‘‘the imperfect powers of discrimination of the human
mind whereby inequalities become recognizable only when of sufficient
magnitude’’ and asserts elsewhere (1948, p. 3) ‘‘that indifference is not
transitive is indisputable, and a world in which it were transitive is indeed
unthinkable.’’ A more recent examination of nontransitive indifference in
consumer demandtheory is provided by Chipman (1971).

Armstrong’s first quote is reminiscent of the notion of a just noticeable
difference in psychophysical measurementas it arose from the work of E. H.
Weber and Gustav Fechnerin the mid-1800s. An example suggested by Luce
(1956) makes the point in the preference domain. A person who likes
sugarless coffee will be indifferent between x and x + 1 grains of sugarin his
coffee, between x + 1 and x + 2 grains, ... , but for each x there will
come a smallest y = f(x) at which x > y (granting imprecision in y’s
determination) so that ~ is not transitive. One might also expect f(x) to
increase as x increases, so the threshold of discriminability shifts upward as
the base stimulus x increases.

When > is assumed to be asymmetric and transitive (but ~ is not
assumedtransitive), we refer to > as a partial order instead of a weak order.
The partial order of the preceding paragraph is likely to have the additional
properties

(x > a,y > b) = (x > bory > a),

(x > y,y > Z) > (xX > core > 2),

in which caseit is called a semiorder (Luce, 1956).If it has only thefirst of
these properties then it is an interval order (Fishburn, 1970a). These and
related concepts are discussed at length in Fishburn (1985a).

A single-peaked example (Fishburn, 1970b)illustrates a partial order
that is not an interval order. A planning board memberfeels that $200,000 is
the right sum for a community to budget for a new playground. The
member’s preference decreases in both directions from $200,000, but some
comparisons on opposite sides of the peak are problematic. Although
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$191,000 > $190,000 and $205,000 > $206,000, the memberfinds that

$191,000 ~ $206,000 and $190,000 ~ $205,000.

The difficulty of specifying certainty equivalents precisely leads to

simple examples of nontransitive indifference with risky prospects. Let p be a

50-50 gamble for $0 or $1000. Then the combination of $367 ~ p and p ~

$366 seems reasonable, but surely $367 > $366.

Failures of transitivity, both for ~ and >, are usually dealt with in

descriptive preference theory either by stochastic or random utility models

(Luce and Suppes, 1965; Manski, 1977) or, in multiattribute cases, by

deterministic models whosealgebraic rules of evaluation allow intransitivities

(Tversky, 1969; Luce, 1978; Fishburn, 1980a).

In normative utility theory, Aumann (1962) and Fishburn (1970a,

1982a) axiomatized linear utility models for > on P that reflect > (i.e., p

>gq = u(p) > u(q)), but not ~ , since they do not assumethat indifference

is transitive. The axioms at the end of Section 1.5 are indicative of this

approach. The SSB model discussed in ensuing chapters accommodates

certain forms of nontransitive indifference and preference. However,it is not

designed to deal with the certainty-equivalent vagueness illustrated in the

preceding example.

2.7 PREFERENCE CYCLES AND MONEY PUMPS

A preference cycle, usually written aS @} > @) > °°: > @, > a, isa

set {a > @j.,;:i = 1, +++, n,n > 3, a,,; = a}. There are two types of

nontransitive preference patterns for asymmetric >, those with cycles and

those without cycles (but a > b, b > c, a ~ c). In the noncyclic case the

transitive closure >‘ of >, defined by

a >'b if@=a > a>: >? a=b

for some ” > 2 and some q;,

is a partial order. This case can be grouped with partial orders in the

preceding section, so we focus here on patterns with cycles.

Several writers, including Flood (1951-2), May (1954), and MacCrim-

monand Larsson (1979), suggest that preference cycles have the best chance to

arise in multiattribute situations. For example, May asked 62 college students

to make binary comparisons between hypothetical marriage partners

x, y, and z who were characterized by three attributes:

 

Intelligence Looks Wealth

x: Very intelligent Plain Well off

y: Intelligent Very good looking Poor

Zz: Fairly intelligent Good looking Rich
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Seventeen of the 62 students had cyclic choices. Since there are two cyclic

patterns (x > y > z > x and x > z > y > x) amongtheeight possible

patterns (~ was not permitted), about eight cycles of each type would occur

if the students chose randomly on each comparison. However,all 17 of the

transitivity violators had cycle x > y > z > x, and May (1954, p. 7) notes

that ‘‘the intransitivity pattern is easily explained as the result of choosing the

alternative that 1s superior in two out ofthree criteria.’’

Some people, including Davis (1958), have argued that preference

cycles can be explained purely on the basis of random choice and do not

represent systematic patterns, but May’s example showsthat this is not

alwaystrue.

An example from Tversky (1969) gives another case of systematic

intransitivity. Let [x, A] denote the lottery that pays x with probability \ and

nothing otherwise. Tversky observed that a numberof people havethe cyclic

pattern

[$5.00, 7/24] > [$4.75, 8/24] > [$4.50, 9/24] > [$4.25, 10/24]

> ($4.00, 11/24] > [$5.00, 7/24].

He notes that this and other intransitive patterns can be explained by

Morrison’s (1962) nonlinear additive difference model, which is one of the

deterministic models alluded to in the penultimate paragraph of Section 2.6.

The following example (Fishburn, 1984a) reverses the relative impor-

tance of changes in payoff and probability from Tversky’s example. Let [x,

A] be the lottery that gives you an x % raise in salary with probability \ and no

raise with probability 1 — . Although your preferences might not be cyclic,

the cyclic pattern [6, 0.90] > [7, 0.80] > [8, 0.72] > [9, 0.66] > [10,

0.61] > [6, 0.90] does not seem unreasonable. Here the amount ofthe raise

is less important than the chance of getting someraise until the difference in

raises (10% versus 6%) becomes large enough to incur the added risk. In

Tversky’s example, payoff probabilities were relatively unimportant until

they showeda sizable difference.

Normative decision theorists are often averse to the notion that cyclic

preferences may be quite reasonable or rational, in part because there is no

basis for choice from a set on which preferences cycle so long as choice is to

be governed by the existence of an alternative that is preferred or indifferent

to all others. To show how foolish or irrational cyclic preferences are, they

have invented the moneypump. Suppose you have the cyclep > q >r>p

and presently havetitle to p. Then, since you prefer 7 to p, you would surely

be willing to pay something to exchange p for r; then, given 7, you will surely

pay something to exchangeit for the preferred gq; finally, given g, you will

again pay something to exchangeit for the preferred p. Thus, you begin and

end at p but are poorer in the process. In short, you are a money pump.
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There are, however, a few things about this invention that can be
criticized. First, it envisions a dynamicsituation with aspects of strategy and
deception that transcend the basic choice problem.It is indeed irrational to be
a money pump,butit is also hard to imagine a sensible person engagedin the
money-pump game if he or she understands what is involved, cyclic
preferences notwithstanding.

The money-pump concept also reveals a narrow perspective on how
choice might be based on preferences, and perhaps a lack of imagination in
dealing with cyclic patterns. Although there is no transparent way to make a
sensible choice from {p, g, r} when p > g > r > p, nothing prevents a
person from considering preferences over the set of convex combinations of
Pp, q, and r. And if there is a combination in this set that is preferred or
indifferent to everything else in the set, then that person has an ex ante
maximally preferred alternative. As first shown by Kreweras (1961), this can
indeed be the case, and we shall considerit later as a part of the SSB theory.

2.8 THE PREFERENCE REVERSAL PHENOMENON

Section 2.2 illustrated reversals in preferences that violate asymmetry
through framing. We now consider a systematic form ofintransitivity known
as the preference reversal phenomenonthat does not appearto rely on special
framing and which must therefore be addressed by normative as well as
descriptive theories. This phenomenon is second only to violations of
independencein the extent to which it has been investigated empirically.

Let p and q be risky prospects for monetary outcomes with certainty
equivalents c(p) and c(q). Thus c(p) is the (assumed unique) minimum
amount the individual would accept in exchangefortitle to p, and similarly
for c(q). Then the preference reversal phenomenonoccurs ifp > g and c(p)
< c(q), i.e., if the individual prefers p to g but would selltitle to p for less
than he or she would sell title to g.

Given that more moneyis preferred to less, > cannot be a weak order
when p > qg and c(p) < c(q), since otherwise

c(p) ~ p > q ~ c(q) = c(p) > c(qg) & e(p) > c(q).

Moreover, preference reversals generate cyclic preferences since for small
positive 6 for which c(p) + 26 < c(q),

DP>q>c(q)-6 > c(p) +6 > p.

To illustrate, consider

p: $30 with probability 0.9, nothing otherwise,

q: $100 with probability 0.3, nothing otherwise.  
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I have used this example informally with several groups and note a majority

response of p > gq, c(p) about $25, and c(qg) about $27. It reflects a

predominant theme of experiments on preference reversals that use a

‘‘probability lottery’’ or ‘‘p-bet’’ with a high chance for modest winnings (p)

and a ‘‘money lottery’’ or ‘‘$-bet’’? with a lower chance for large

winnings (q). Comparatively small losses are often included as parts ofp and

q. Whenreversals occur, they usually follow the pattern given earlier: p > q

and c(p) < c(q). Whenthe lotteries are turned around and stated primarily

in terms of losses, the reversal goes the other way, as might be expected from

our previous comments on different attitudes toward gains and losses in

Sections 1.6 and 2.3. Although preference reversals can be seen as violations

of transitivity, an alternative explanation of the phenomenon is suggested by

Karni and Safra (1987); see Section 3.5. .
Initial experiments on the preference reversal phenomenon were made

by Lichtenstein and Slovic (1971, 1973) and Lindman (1971). More recent

experiments, motivated in part by skepticism with previous findings, are

discussed by Grether and Plott (1979), Pommerehne et al. (1982), Reilly

(1982), and Goldstein and Einhorn (1985). Slovic and Lichtenstein (1983)

provide extensive commentary on prior research and other matters related to

the phenomenon. They emphasize information processing aspects that are

involved with people’s preference judgments andthat could play a significant

role in the elicitation of choices that lead to preference reversals. They note,

as did Grether and Plott (1979), that modifications in extant theories might

yield reasonable models that could accommodate preference reversals. The

recent work by Goldstein and Einhorn (1985), which emphasizes psychologi-

cal dispositions toward judgments, choices, and evaluations of worth,

suggests one such descriptive model that they refer to as “‘expression

theory.”’

Despite a succession of attempts to tighten experimental controls and

give subjects greater motivation to reflect carefully on their choices, partly in

the hope that these measures might banish preference reversals, the

phenomenonhaspersisted. In reviewing the recent experiments of Grether

and Plott (1979) and others, Slovic and Lichtenstein (1983, p. 599) say that,

in their opinion, ‘‘the most striking result of these studies is the persistence of

preference reversals in the face of determined efforts to minimize or eliminate

them.”’

It thus seems reasonable to submit that preference reversals are no mere

artifact of casual experiments, framing effects, or unmotivated subjects. The

task this poses for normative theory is either to provide defensible normative

models that allow preference reversals or to explain convincingly why they

are irrational.

To consider the normative side a bit further at this time, we distinguish

between weak and strong preference reversals. Assume as before for the

probability lottery p and the moneylottery qg that q has positive probability
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for an outcomethat is larger than anything that can be won under p and that

the total probability assigned by qg to outcomesthat are greater than the largest

amount m that can be won underp is less than p(m). Formally,

m = max{x: p(x) > 0},

p(m) > YS) {q(x):x > m} > 0.

Then, given a preference reversal p > qandc(p) < c(q), we refer to it as a

weak reversal if c(q) < m, and as a strong reversal if c(q) > m. Thus a

strong reversal occurs if the certainty equivalent of the moneylottery g is as

large as the most that can be won with the probability lottery p.

Although I see nothing unreasonable about weak reversals, strong

reversals are another matter. Assume

q~c(q)2m-zc(p) and c(qg) > c(p),

so a strong reversal occurs ifp > q. Supposefirst that c(q) > m. Then, by

the definition of c(q), the individual would refuse to exchangetitle to g for

m. Moreover, since m is as large as anything that might result from p,it is

reasonable to suppose that an individual would not exchange q for p either.

But then g > p, contrary to strong reversal. Similarly, if c(qg) = mandp(m)

< 1, then qg > pis the only reasonable conclusion. Finally, if c(qg) = mand

p(m) = 1, then p is tantamount to c(q), so g ~ p.

The argument against strong reversals can be stated the other way

around, as follows. Suppose that p(m) < 1, you prefer p to q, and z is any

amount as great as the most you can win underp. It then seems reasonable

that you will prefer z to qg. But then, by the definition of certainty

equivalence, z > c(q) for all z > m; hence m > c(q). This allows a weak

reversal but not a strong reversal.

The data presented in the experimental studies cited earlier do not reveal

the proportions of reversals in the predominant direction [p > g, c(p) <

c(q)] that were weak and strong, but it seems likely that at least some were

strong.

2.9 NON-ARCHIMEDEAN PREFERENCES

The Archimedeanor continuity axiom A3 says that if you prefer p to q

and q to r, then you will prefer some nontrivial convex combination ofp and

r to qg, and prefer g to some nontrivial combination of p and r. Plausible

examples of its failure are suggested by Georgescu-Roegen (1954), Thrall

(1954), and Chipman (1960) among others, but there is almost no

experimental evidence for such failures. It would be violated when(p, q, r)

= (win $2, win $1, be executed), and there is no probability a < 1 at which

ap + (1 — a)r > q. Less dramatically, suppose you are faced with a choice  
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between (A) receive $10,000,020 if the first head in a series of flips of a fair

coin comes before the mth toss, receive $0 otherwise; and (B) receive

$10,000,000 with certainty. If you prefer (B) regardless of how big n is, then

you violate A3. The certainty of a large prize could overwhelm a risky

prospect with an even larger prize no matter how absurdly small its

probability of no payoff becomes.

Three aspects of A3 and its comparison to Al and A2 deserve comment.

First, many normative theorists regard it more as a technical convenience

than a rationality postulate, and some have suggested that its standard defense

(Section 1.4) using extremely small probabilities removesit from the class of

easily intuited principles. Second, as emphasized by Narens (1974, 1985), A3

has a different formal standing in logic than the other axioms. In a manner

of speaking, it lies in a more complex class of axioms than do Al and A2.

Third, unlike cyclic preference violations of Al or failures of the indepen-

dence axiom A2, denial of A3 leaves the underlying notion of expectedutility

intact.

The third aspect has been discussed by various people, including

Hausner (1954), Chipman (1960), Richter (1971), Narens (1974), Skala

(1975), and Fishburn (1982a), and I shall say more about it in the next

chapter. The basic idea is that if A3 is not assumed to hold, but the other

axioms of von Neumann and Morgenstern are adopted, then there is a

mapping U from P into a linear space ordered by a relation >’ such that U

on P is a linear function and p > g # U(p) >’ U(q).

Apart from the discussion in Section 3.2, we shall generally assumethat

utilities are real valued. Thus the failure of A3 and other Archimedean-

continuity axioms will not be at issue in the main part of the book.

2.10 SUMMARY

Virtually any axiom of preference or principle of choice can be violated

by suitable framing in experiments on preference judgments and choice

behavior. Moreover, even when special effects due to framing are mini-

mized, systematic and persistent violations of some traditional axioms are

observed. This has been the case most notably for violations of the

independence axiom and for the preference reversal phenomenon.

The empirical evidence amassed in support of violations of traditional

axioms poses a twofold challenge for normative decision theory. First, the

experimental and philosophical evidence must be weighed to decide which

principies and axioms remain acceptable as characteristics of reasonable or
‘‘rational’’ decision making and which do not. Acceptable relaxations may

emerge in the latter case. Second, it is necessary, or at least desirable, to

specify a mathematical model that incorporates the acceptable principles and

axiomsin an efficient representation of underlying preference structures. The
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next chapter discusses several models ofthis type along with someoftheir
principles.

Although the evidence weighing process involves personal judgment,
there is some agreementas well as disagreement about normative acceptabil-
ity. At the present time, mosttheorists regard the reduction principle (perhaps
qualified), asymmetry of strict preference, and first-degree stochastic
dominance as normatively essential, and thereis little concern about possible
failures of the Archimedean axiom. Some people stand by the independence
axiom, but many theorists no longer acceptits normative inviolability and
have replaced it with weaker conditions. Of the von Neumann-Morgenstern
axioms, this leaves transitivity, the bulwark of economic rationality. My own
view that transitivity can no longer be regarded as a tenet of the normative
creed is presently a minority position.

 



3 Generalizations of Expected Utility

Many generalizations of the Bernoullian and von Neumann—Morgen-

stern expected utility theories have been proposed to accommodate violations

of those theories. Systematic failures of the independence axiom or

expectation principle have received special attention, but continuity failures

and intransitivities have not been ignored. This chapter reviews a numberof
more general theories that appear to be of some normative interest, then

discusses how they accommodate independence violations and, in one

instance, nontransitive preferences and preference cycles.

3.1 ALTERNATIVES TO EXPECTED UTILITY

The following generalizations of the expected utility theories of

Bernoulli and von Neumann and Morgenstern will be considered in this

chapter:

I. Linear, arbitrary outcomes

A. Non-Archimedean weak order (Hausner, 1954; Chipman, 1960)

B. Archimedean partial order (Aumann, 1962)

C. Non-Archimedean partial order (Kannai, 1963)

II. Nonlinear Archimedean weak order, monetary outcomes

A. Intensity (Allais, 1953, 1979a; Hagen, 1972)

B. Smooth (Machina, 1982a)

C. Decumulative (Quiggin, 1982; Yaari, 1987)

III. Nonlinear Archimedean weak order, arbitrary outcomes

A. Weighted (Chew and MacCrimmon, 1979; Chew, 1982, 1983;

Fishburn, 1981la, 1983a)

B. Transitive convex (Fishburn, 1983a; Dekel, 1986; Chew, 1985)

IV. Nonlinear nontransitive Archimedean, arbitrary outcomes

A. Nontransitive convex (Fishburn, 1982c)

B. SSB (Kreweras, 1961; Fishburn, 198la, 1982c). 
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The generalizations of von Neumann and Morgenstern (1944) in

category I that preserve linearity and at least the transitivity of strict

preference had run their course by about 1970. The reason is that these

generalizations exhaust the obvious linearity-preserving weakenings of the

von Neumann—Morgenstern theory.

During the 1970s, while Hagen (1972) and others promoted and refined

Allais’s approach, there wasa small explosionof interest from other quarters

in violations of the independence axiom, due in part to new experiments that

supported Allais’s (1953, 1979b) findings. The first wave of new nonlinear

theories were plainly descriptive (Handa, 1977; Karmarkar, 1978; Kahneman

and Tversky, 1979) and normatively inadequate for reasons noted shortly.

These were soon followed by other theories (Chew and MacCrimmon, 1979;

Machina, 1982a; Quiggin, 1982; Fishburn, 1982c) that were often inter-

preted descriptively but could, I believe, be seen also as normatively

interesting. The third and most recent wave, including Chew (1984, 1985),

Nakamura (1984), Yaari (1987), Dekel (1986), and others mentioned in this

chapter represents refinements and extensions of the second wave.

The preceding list makes no pretense of being exhaustive, and I shall

mention a few omissions as we proceed. Oneof these, which is axiomatized

by Gilboa (1986), is a tradeoff model between expected utility and the utility

of a worst consequence. It was designed to account for Allais-type violations

of independence in a very simple way.

The only theories in the list that are overtly Bernoullian in their use of a

riskless ‘‘cardinal’’ value function v on outcomes are those in category IIA

(Allais and Hagen) althoughit is possible to interpret Kreweras (1961) and

perhapsthe theories in IIB and TIC in this way. Other theories that involve

the use of a riskless intensity-measured v on monetary outcomes, including

Bell (1982) and Loomes and Sugden (1982), will be discussed in Chapter 8

since they follow Savage’s (1954) states formulation. The theories in

categories I, III, and IV (and IIB-C if so interpreted) adhere to the von

Neumann-Morgenstern approach in which outcomes’ utilities follow from

simple preference comparisons between risky prospects that do not involve

riskless comparable preference differences.

All theories in categories I through IV have three things in common.

First, they subscribe to the reduction principle of Section 2.2. To the extent

that this creates problems for normative interpretation because ofinterdepen-

dent events, one might suppose that prospects are stochastically independent

and refer to Chapter 8 for other cases.

Second,the theories assume that > ona set P of probability measuresis

asymmetric. Third, each theory in categoriesI, III, and IV satisfies one or

more monotonicity or dominanceprinciples involving convex combinations

of measures, such as independence or (p > 4,7 >s)=> (Ap + (1 - Ar?

\g@+(1—-Ns)or(p>G@rA>wH > AD+A-Na rept Cl — »)q)
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or(p > q,p > r) > (p > »9q + CU — Aj)r). Moreover, the monetary

theories in category II assumea version offirst-degree stochastic dominance.

The theories in TA and II through IV,like those of Bernoulli and von

Neumann and Morgenstern, assumethat preferences are ‘‘precise’’ (if not

alwaystransitive) in the sense of excluding fuzzy indifference zones that are

better handled by partial orders or stochastic utility.

In view of the discussion in Chapter 2 and the foregoing properties, I

feel that each of the theories in the list is normatively interesting. Since some

of them have been proposed only in a descriptive spirit, I apologize to authors

who might feel misrepresented by this judgment.

At the same time, not all theories on the list have equal claims to

normative adequacy. My ownposition is that the category I theories are not

normatively suitable because oftheir linearity implications, and that those in

II are normatively questionableto the extent that they are insensitive to

differential local attitudes towards gains and losses. The normative adequacy

of the theories in IC can be challenged because of effects involved with

transformed probabilities that are mentioned later. Moreover, unless they are

restricted, the theories in II often violate monotonicity conditions such as (p

>QG,\>p)>Ap+U—-Ag > up + (1 — wg.People whostill regard

transitivity as an essential part of rationality and normative theory must find

IVA and IVB normatively inadmissible; others, myself included, who

believe that a general normative theory must accommodate someintransitivi-

ties, regard the weak order theories in If and IMIA-B as too narrow.

Only subcategory IIC uses direct transformations of probabilities, but

does so in a different way than the descriptive theories mentioned in Section

2.4. Recall that Handa (1977) uses © 7( p(x))x and Karmarkar (1978) uses

2 7(p(x))u(x)/=z 7( p(x)) with a power form for 7(\). The presentation of

prospect theory in Kahneman and Tversky (1979) views outcomes as

increments to present wealth and considers prospects with at most two

nonzero outcomes. Let (x, A; y, 4) denote a prospect with probability ) for x,

p for y and 1 — \ — pw 2B O for 0. Their form for u on prospects varies in

_ different regions. If eiherA + »< l,orx 20 >y,orx <0 y,then

u(x, dA; y, w) = T(A)uCx) + r(H)U(y),

where u(0) = 7(0) = 0, 7(1) = 1, and both w and 7 are increasing. On the

other hand, if\ + w = 1 andeither x > y > 0 (sure minimum gain ofy) or

x < y < 0 (sure minimum loss of y) then

u(x, 3 ¥, 1 — A) = u(y) + rA)J[uCx) — u(y].

Kahneman and Tversky (1979) axiomatize the first form in their appendix but

do not axiomatize the second form.

The problem with theories that transform probabilities unconditionally is

that, under modest structural assumptions for P, they either force 7 to be the
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identity function or violate simple formsoffirst-degree stochastic dominance.

Fishburn (1978b) shows that Handa’s assumptions lead to 7(A\) = i,so his

model reduces to maximization of expected return. Quiggin (1982) showsthe

same thing for models like Karmarkar’s, which therefore reduce to the von

Neumann-Morgenstern form. Kahneman and Tversky (1979, pp. 283-84)

note that their representation yields violations of first-degree stochastic

dominanceif 7 is not the identity. However, they also assume that dominated

alternatives are eliminated prior to the evaluation of prospects in a
preliminary editing phase. But this can lead to further difficulties as

discussed, for example, by Kahneman and Tversky (1979, p. 284) and

Machina (1983a, pp. 96-98), which detract from its normative interest.

Readers interested in the proponents’ recent thoughts on the descriptive

accuracy of prospect theory should consult Tversky and Kahneman (1986).

The theories in subcategory IIC avoid the preceding problems by

transformations of probabilities that depend on the entire structure of each

risky prospect. They are designed to honorfirst-degree stochastic dominance,

but in the process introduce second-order problems for normative theory. We

say more about this in Section 3.5.
The theories in our list are described in modest detail in the next eight

sections. Section 3.2 discusses category I. Sections 3.3 through 3.9 consider

IIA through IVB in sequence. Section 3.10 explains how violations of

independence are accommodatedbythe theories of II through IV, and 3.11

shows how IVB accommodates someviolations of transitivity.

3.2 RELAXATIONS THAT PRESERVE LINEARITY

We assume throughout the rest of this chapter that the reduction

principle of Section 2.2 holds and that > is a binary relation on a convex set

P of probability measuresor distributions with ~ and > defined from > as

in Section 1.4.

The category I theories are mainly of historical interest from this book’s

perspective since they do not accommodate commonviolations of indepen-

dence (A2). Since they will not be used later, their descriptions will be brief.

The generalization of the von Neumann-Morgenstern linear utility

theory that may be most faithful to their conception arises when the
Archimedean axiom A3 is dropped, but the others are retained in their
entirety. This was mentioned by von Neumann and Morgenstern (1953

edition, p. 631) and worked out in detail by Hausner (1954) with axioms Al,

A2 and its indifference companion LS (p ~ q > Ap + (1 — Ayr ~ Ag +

(1 — A)r). With A3 absent, the linear utility representation of Theorem 1.3

holds for vector-valued utilities U(p) ordered lexicographically.

Lexicographic orders (>) are widely discussed and used (Fishburn,
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1974). For points in R”,

(Xi... 6 5 Xn) >i, ~~ +s Yn) if Oy, Xn) EO oe Va)

and x; > y; for min{i: x; # y;}.

Moregenerally, suppose (7, <9) isa linearly ordered set (<9 is a weak order
with ~ 9 the identity relation) and F is the set of all f: T > R that are nonzero
on at most a well-ordered subset of (T, <o), with addition and scalar
multiplication defined pointwise: (Af + ug)(t) = f(t) + pe(t). Then with
>, defined on F' by

f>.giff # gand f(t) > g(t) for the first ¢ in (T, <o)

at which f(t) # g(f),

(F, >) is a linearly ordered vector (linear) space. Hausner proves that Al,
A2, and LS hold for (P, >) ifand only if there is such an (F, >,) anda
linear mapping U: P >

F

suchthatforall p, g € P,

p>q-* U(p) >, U(gq),

with U(Ap + (1 — Ag) = AU(p) + (1 — ANU(Q). Additional discussions
of this lexicographic representation appear in Chipman (1960) and Fishburn
(1971a, 1974, 1982a).

The first axiomatization for Archimedean partially ordered or acyclic
preferences in IB is due to Aumann (1962) with later versions in Fishburn
(1971b, 1972, 1982a). Oneset of sufficient conditions for the one-way linear
utility representation p > g = u(p) > u(q)is L3 from Section 1.4 (p>q
andr > s = Xp + (1 — Ar > Ag + (1 — N)s) and the following
Archimedean condition mentioned nearthe end of Section 1.5: (p?q,r>
Ss) > \p + (1 — A)s > Aq + (1 — A)r for some 0 < d < 1. The original
Archimedean axiom, A3, is not sufficient along with L3 for the one-way
representation (Fishburn, 1982a, p. 58).

The main axiomatization for non-Archimedeanpartially ordered prefer-
ence in IC, due to Kannai (1963), was inspired by Aumann’s contribution. As
Kannai shows, this case is rather delicate mathematically. Under suitably
strong conditions he obtains the one-way lexicographic linear utility
representation p > q = U(p) >, U(q).

Fishburn (1971b, 1979) sought to reduce the linearity idea of von
Neumann and Morgenstern to its lowest common denominator by assuming
only asymmetry and L3. Henotesthat if the set _X of outcomesisfinite, say
|X| = m > 1, then the one-waylinear lexicographic representation holds in
some dimension n < m. Thus, if P contains each one-point distribution and
u,(x) is defined as u,(p) when p(x) = 1, then for some n < m there are u;.X
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—> R fori = 1,..., m such that

p?rq= (x uy(x)p(x),.--5 > uP)

>1 (x uy(x)g(x),.- +. >) un(2)a(0))

When Hausner’s axioms hold in this context, this one-way lexicographic

expected utility representation become a two-way (#) representation.

Uniqueness properties for the u; in the latter case are specified in Fishburn

(1982a, p. 40).

3.3 ALLAIS’S NONLINEAR INTENSITY THEORY

Weshall summarize Allais’s nonlinear preference theory for risky

prospects on monetary outcomes before considering the other theories in

category II. As already noted in Section 2.3, the basic carriers of value for

Allais are levels of wealth, suitably interpreted, combined with potential

changes in wealth. When wo denotes present wealth and x is a potential

increment to wealth, the psychological value of the final position Wo + x,

conditioned on Wo, is a function of x/wo that is essentially the same forall

people. Moreover, this function, which is assessed in a riskless comparison-
of-preference-differences manner, is approximated very well by log(1 + x/

Wo).

Apart from an addition noted shortly, the core of Allais’s position as set

forth in his early writings (1953, 1979a) and refined in (1979b), consists of

the reduction principle, his viewpoint on psychological value, and the

following:

1. Al: > on P is a weak order.

2. Weakfirst-degree stochastic dominance: ifp >, gor p = q, then p

2 q.
3. An Archimedean axiom sufficient to ensure the existence of V: P >

R such that, for all p, g € P,p > q @ V(p) > V(q).

Axioms 1 and 3 are combined in Allais’s axiom for the ‘‘existence of an

ordered field of choice’’ (1979b, p. 457), and he does not specify a separate

Archimedean axiom. The existence of a countable order dense subset

(Fishburn, 1970a, p. 27; Krantz et al., 1971, p. 40) would suffice for axiom

3. Axiom 2 is regarded as an acceptable weakening of the von Neumann-

Morgenstern independence axiom A2. As already mentioned, Allais strongly

rejects A2, believes that V cannot be decomposed into an expectational form,

and does not promote an alternative algebraic decomposition for V.  
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Hagen (1972, 1979) elaborates on Allais’s theme with someadditional

axioms and a focus on the first three moments (in terms of psychological

value) of risky prospects as determinants of V. One of his new axioms was

subsequently adopted by Allais (1979b, pp. 481, 549). This axiom saysthat if

p’ is obtained fromp by replacing each x by x’ such that v(x’) — v(x) = A,

then V(p’) — V(p) = A. In Hagen’s words (1979, p. 272), ‘‘a uniform

addition to all utilities in the probability distribution of a game adds the same

amountto the utility of the game.’’ Whenthisrestriction is placed on V,it can

be written as

Vip) = >) v(x)p(x) + f(p*),

wheref is a functional and p* denotes the probability distribution induced by

p on the differences v(x) — 2% v(x)p(x) of psychological values from their

mean (Allais, 1979b, pp. 481-82, 607-9). A further refinement on this form

is described in Allais (1986).

3.4 SMOOTH PREFERENCES

Machina (1982a) considers the set of cumulative distribution functions

defined on a boundedinterval [0, M] whose elementsare interpreted as levels

of wealth. Thus,in his case it is appropriate to view P as the set of countably
additive probability measures on the Borel field of subsets of [(0, M]. The

distribution function for p € P is p', where p'(x) = |% dp(y) = p({0,x]).
Three of Machina’s assumptionsare essentially the same as axioms 1-3

for Allais in the preceding section, with axiom 2 replaced by regularfirst-

degree stochastic dominance; that is, (p'(x) < q'(x) for all x € [0, M] and

Pp! # q') = p > q. Machinadoesnot, however, overtly adopt the Bernoulli-

Allais viewpoint on psychological value, and his formulation is phrased as a

nonlinear alternative to the von Neumann—Morgenstern theory. Although we

write Machina’s representation as

p>qe# V(p) > V(q)

with V:P — R,his V should not be confused with Vof the preceding section.

The distinctive feature of Machina’s approachis his assumption that V is

‘“‘smooth’’ over P. In crude terms, this means that Vchanges continuously as

p changes continuously and that V(p) is nearly a linear functional in a

neighborhood around p. More precisely, it is assumed that V is Fréchet

differentiable on P with respect to the norm ||A(p — q)|| = |A|I4 |p'@) -
q‘(x)| dx, which defines p and q as ‘‘close together’ if the integral of the
absolute difference of their cumulative distributions is small.

Analternative characterization of Fréchet differentiability is obtained by
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writing

M

Vip) — Vig) = \, u(x; g) (dp(x) — dq(x)) + o(||p — 4),

where u(- ; q) is absolutely continuous on [0, M] for each gq € P and o

denotes a function that equals 0 at 0 and that approaches0 at a faster rate than

the decrease in its argument as the argument goes to 0. The function u(- ; q)

is Machina’s local utility function, that is, local with respect to gq. He

assumes (1982a, p. 296) that u(x; q) strictly increases in x, from whichit

follows that > satisfies first-degree stochastic dominance.

If the higher-order terms summarizedby in the preceding characteriza-

tion are ignored, thenit reducesto essentially the von Neumann—Morgenstern

expectedutility form. Thus, when p and q are ‘‘close together,’’ > behaves

very much like the von Neumann-Morgenstern >. Machina (1982a, b,

1983b, 1984) uses this to good advantage to show that many economically

interesting results obtained by expected utility analysis also follow from his

‘‘seneralized expected utility analysis.”’

In a similar vein, iff(p*) — f(q*) in the preceding section is o(||p —

q|\), then the Allais-Hagen V will emulate Bernoullian expected utility

locally.
Recently, others have commented on Machina’s use of Fréchet

differentiability and have proposed alternative versions of ‘‘smooth’’

preferences over P. Allen (1987) adapts Debreu’s (1972) notion of smooth

preferencesto the risky prospects setting, and Chew, Karni and Safra (1985)

argue that Gateaux differentiability, which is weaker than Fréchet differentia-

bility, is still strong enough to give Machina’s (1982a) mainresults.

3.5 DECUMULATIVE REPRESENTATIONS

I refer to the final nonlinear Archimedean weak-order theories for

monetary outcomes in our list (IC) as ‘‘decumulative’’ since their

representations transform decumulative probabilities defined by

In(x) = p(x, &)) = 1 — p'(x).

The representations can also be stated in terms of transformations of

cumulative probabilities, but the decumulative form seems more natural.

First-degree stochastic dominance with decumulative probabilities is charac-

terized by

p>;qif'p # 'q and 'p(x) > 'q(x)for all x.

This is equivalent to the closed-interval characterization

p>: qif'!p # 'q and p([x, ~)) > q([x, ©)) for all x,  



 

GENERALIZATIONS OF EXPECTED UTILITY 357

so thatp >, q if, for any x, p yields at least x with probability greater than or

equal to q yielding at least x, with strict inequality for some x.

For convenience we assume that X = [0, MM] with P as defined in the

preceding section. As in the two preceding sections, the decumulative

representations for (P, >) postulate or derive a functional V on P suchthat,

for all p, g € P,

p>q-* V(p) > V(q).

Whatdistinguishes decumulative representations is the form of V. Whenp is

a simple measure with support {x, < x» < +--+ + < x,}andp; = p(x), » pD;

Il

j=l i=j+l
V(p) Ss u(x;) > (2) - r( Sy ») + U(Xn)T(Pn)

i=]

ll u(x) + >) [u(xj) — ug-i)I7 © »’
j=2 ij

where wu, the utility function on the outcomes, is continuous and usually

assumed to be strictly increasing on [0, M], and 7, the probability

transformation function, is a continuous nondecreasing function from [0, 1]

onto [0, 1] with 7(0) = O and 7(1) = 1. When 7(A) = ) forall A, V(p) = &

u(x)p(x), the von Neumann-Morgenstern form for expected utility. Note

also that V(p) = u(x) when p(x) = 1.

Although the form of V(p) for simple measures is written in the

decumulative closed-interval form, with >Pi = P({x;, M)]), representations

for arbitrary measures in P are usually written in the open form of 'p as

V(p) = |" ux) dire pix) = |"eCpce)aux),
where the integrals here correspond to the two lines for the simple case in the
preceding paragraph. The properties of u and 7 in the preceding paragraph

apply also to the general case. Given these properties, including strictly

increasing u, we easily see that > satisfies weak first-degree stochastic

dominance as expressed by axiom 2 in Section 3.3. If, in addition, 7 is strictly

increasing, then > satisfies first-degree stochastic dominance: p >; g > Dp

> q. For example,if !p(x) > 'q(x) for all x, then (p(x) > 7C.g(x)) forall
xX and, since du > 0, V(p) — V(q) 2 0.

Thus, even though transformed probabilities are used directly in

decumulative representations, their structure is designed to satisfy first-

degree stochastic dominance. Hence the decumulative representations share

basic ordering, Archimedean, and stochastic dominance properties with the

representations of Allais and Machina.
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The first axiomatization for the decumulative model is due to Quiggin

(1982) although problems have been noted with his axioms (Yaari, 1987, p.

113). His representation has the special feature 7(5) = s which implies that

preferences adhere to the von Neumann-Morgenstern model for simple 50-50

gambles. This restriction was subsequently removed in the axiomatizations of

Chew (1984) and Segal (1984).In the general case, the axioms include weak-

order, first-degree stochastic dominance, and Archimedean axiomssufficient

to ensure the existence of certainty equivalents in X for each p € P and

extension from simple to nonsimple measures. The key axiom forthe specific

form of the decumulative representation can be expressed in several ways.

The following version is similar to Chew’s third axiom.

Suppose 7 is any positive integer, x) << °° * <Xqn,V1 <<ny Xi

< y; for all i, x; < y; for some i, a; > Ofori = 1,...,nand2a; = 1.

Define simple distributions p and g by p(x) = q(¥i) = ajfori=1,...,n

(so g >, p, hence g > p). Let x* denote the distribution with probability 1

for x, and let c(r) be the certainty equivalent of measure r so that c(r) ~ r.

Then, for allO < A <1,

Ae(p)* + (1 — A)e(q)* ~ S ajc(Ax* + (1 — A)y®)*.

This is an independence axiom for indifference applied to distributions

defined on monetary equivalents of other distributions rather than on those

distributions themselves. Its necessity for the decumulative representation is

demonstrated as follows. Suppose the representation holds. Then, given the

special structures defined earlier,

V(re(p)y* + (i — Aje(g)*)

= u(c(p)) + [u(e(q)) — u(e(p)7C — A)

Vip) + [V(q) — Vip)7Q — )

s u(xj) \" (= «) - at y «)| + Ul%q)T(ep)
j=l izj izj+l

+ » [u(y;) — u(x)] |? e «) - r( Sy «|

+ [uOrn) - utd)| r(1 — d)

ll
il
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n-1

SS {uly) + [udy) — usr — 0} [7 (= «)
j=l iZj

- at S «) + {u(%q) + [W_) — wx)— d)}7)
izj+1

SI vot +d - wy) [7 (= x) - at y «)
j=l izj izj+l

+ V(Ax* + (1 — A)y*)T(an)

= r(z ajc(Ax# + (1 - ni) .

The utility function u on X in the general decumulative representation is

unique up to positive linear transformations, and 7 is unique when 7(0) = 0

and 7(1) = 1.

Yaari (1987), independently of Quiggin (1982), axiomatized the

decumulative representation for the special case of u(x) = x, so that

M

V(p) = | r(x)ax.

Part of Yaari’s aim was to show that even if the underlying utility or value

function on money is linear in the amount, one can characterize nonneutral

risk attitudes by special properties of 7 in the decumulative representation.

His theory is technically interesting because it turns the von Neumann-

Morgenstern theory on its side, yielding a representation that is “‘linear in

money’’ rather than ‘‘linear in the probabilities.’’ This feature allows him to

use the linear utility theorem to obtain a very short proof of his own theorem.

An analysis of risk aversion in the general decumulative context is

provided by Chew et al. (1987), and Karni and Safra (1987) use the

decumulative model in an attempt to reconcile transitivity and the preference

reversal phenomenon. Yaari (1986) explores the notion of risk aversion in an

extension of his “‘dual theory’’ to the multidimensional context.

As suggested in Section 3.1, decumulative theories may have descriptive

and normative problems of their own even if they avoid violations offirst-

degree stochastic dominance. Yaari (1987) observes that violations of linear

utility that rely on linearity in the probabilities have dual violations in his

theory that rely on linearity in money. One example is suggested by the
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common ratio effect of Section 2.5. Let p™ denote the risky prospect

obtained fromp by multiplying each ofp’s outcomes by a > 0. Then Yaari’s

theory requires p™ ~ g™for all a > 0 (within limits) whenp ~ q,and this

is unattractive descriptively and normatively.

Apart from intransitivities, reasonable violations of the general decumu-

lative theory are less apparent. Onenatural thing to examine is the axiom that

delineates the decumulative form. In the foregoing, this is the axiom with

conclusion Ac(p)* + (1 — A)c(g)* ~ Z aic(Ax* + (1 — A)y*)*. For the

special case of n = 2, this axiom says that if x; < x2, ¥1 < Y2,%1 SV, %2 <

Yo, X; < y; for some i, 0 < a < 1, andO < A < 1, then

A[e(ax* + (1 — a)xF)]* + (1 — Aj[e(ay*# + (1 — a)y¥)I*

~ afce(ax* + 1 — A)yP)I* + A - a)[e(Ax# + CU — A)YP)I*.

Even more specially, and omitting * for convenience, we require

He(gxi + po) + gleGyi + 32)

~ Helge + 5) + zle(g%2 + 392)I-

There are two problems even with this very simple case. First, it is almost

surely inaccurate descriptively andis likely to be violated in somesituations

by careful people. Second, since it posits a second-orderindifference effect,

it has little direct appeal to rational intuition. A plausible example ofits

failure in the gains andlosses setting with (x1, x2, V1, ¥2) = (- $1000, $0,

$2000, $2002)is

c((— $1,000) + }($0)) = —$300
c(4($2,000) + 5($2,002)) = $2,001

& c(5(— $300) + 5($2,001)) = $600,

c(+(— $1,000) + 5($2,000)) = mm)

c(+($0) + 5($2,002)) = $900

& c(4($200) + 5($900)) = $450.

Since [0, M]is often presumedto represent a rescaling of monetary outcomes

that include gains and losses, the theory accommodates the setting of this

example.

A somewhat different violation of the general decumulative model is

suggested by Chew (1984). As a consequence of his method of assessing 7 he

showsthat either 7(\) = ) forall \, in which case the representation reduces

to that of von Neumann and Morgenstern, or there must be an indifference

between probability distributions defined by similar mixtures of certainty

equivalents such that the underlying distribution for one of the mixtures first-  
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degree stochastically dominates the underlying distribution for the other

mixture. This does not occur in the preceding example, since the underlying

distributions are identical—that is, probability ; for each of — $1,000, $0,

$2,000, and $2,002.

3.6 WEIGHTED UTILITY THEORY

This section and the next three begin our examination of nonlinear

Archimedean theories with arbitrary outcomes. Each theory has been

axiomatized with assumptions for > on P as in the von Neumann-

Morgenstern approach. The axioms will be introduced in this chapter after

the functional representations are specified. Theories that assume weak order

are presented in this section and the next; theories that accommodate

intransitivities are discussed in Sections 3.8 and 3.9. Proofs and further

discussion for the nontransitive theories are in Chapter 4, and those for the

transitive theories are in Chapter 5.

It is worth reemphasizing that the theories in categories III and IV,

unlike those in II, apply to arbitrary outcomes so that they lay claim to a
degree of generality and applicability not shared by the monetary-oriented

theories. In fact, as was done by von Neumann—Morgenstern and others

(Section 1.3) for linear utility, outcomes need never enter our discussion

when is assumedto be a ‘‘mixture set.’” However, we forego this modest

technical generalization and maintain the assumption that P is a convex set of

probability measures defined on an algebra of subsets of X.
The following definitions for subsets of P will be used here and in

ensuing chapters:

  

   

  

   

  
   

    
  

P*={q€P:p>q>rforsomep,r € P},

Pmx = {p © P: pz q forallg € P},

Phin = {D © P: q> p forall g € P}.

P* is the preference interior of P, and Piya, and Pmin are the preference-

maximal and preference-minimal subsets of P, respectively. We define (P,

_ >), orjust >, as closed if Pax and Pj, are nonempty, open if Pinax = Prin

= @, and half-open otherwise. When > is closed, some authorsreferto it as

bounded, especially when > is assumed to be a weak order. Finally, we say

that > is countably boundedif there is a countable subset O ofP suchthat,

for all p € P,

p © P = there are g, g’ © QO such that g > p > q’.

If > is closed, it is clearly countably bounded; otherwise, it need not be.

_ Countable boundedness is comparable to and has much the sameeffect as

confinal and coinitial sequences in Chew and MacCrimmon (1979).
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The first nonlinear Archimedean weak-order theory for arbitrary

outcomes that we consider is Chew’s weighted utility theory. This was

introduced in Chew and MacCrimmon (1979) and refined by Chew (1982,

1983), Fishburn (1981a, 1983a), and Nakamura (1984, 1985). Its functional

representation can be specified in two basic ways. Exercising author’s

prerogative, I shall begin with my own characterization.

We say that (P, >) has a weighted linear representation if there are

linear functionals u and w on P with w nonnegative, and strictly positive if

> is closed or open, such that, for all p, g € P,

p> q# u(p)w(q) > u(g)w(p).

If > is half-open, w mightbe strictly positive, but some half-open situations

force w to vanish on the one of Pyin and Pma, that is not empty. In all cases, w

must be positive throughout P*, else with w(q) = O and p > q > rwe get

u(q)w(r) > 0 > u(qg)w(p), hence u(q) > 0 > u(q).

The w functional is called the weightingfunction.If it is constant, then

the weighted linear representation reduces to the von Neumann-—Morgenstern

form with utility functional u. Otherwise, if w cannot be made constant, the

weighted linear representation is not equivalent to any linear representation

and, by Theorem 1.3, the independence axiom A2 must fail since Al and A3

are easily seen to hold.

Suppose is positive everywhere. Then,for all p, g € P,

p> qe u(p)/w(p) > u(q)/w(q),

so > is represented by a quotient of linear functionals with positive

denominator. This form is attractive because it arranges the same argument

on the sameside of the inequality and gives the sense of u(_p) being weighted

by 1/w(p). A related representation by quotients of probability measures for

another type of utility theory is axiomatized by Bolker (1966, 1967) and

Jeffrey (1978). Fishburn (1983a, pp. 301-2) provides a summary; see also

Section 5.3.

Continuing with w > 0, define v as u/w. Then the weighted linear

representation can be expressed by

p>4q# vp) > v(q),

_ rw(p)o(p) += Nw(qv(a)
Vp +E ND = Spy += dw)
without mention of u. This is Chew’s form:v is the main utility functional, w

and vw (=u) are linear, and the expression for v(Ap + (1 — A)jq)is the

weighted linearity property. If w is constant, it cancels and weare left with

von Neumann—Morgenstern linearity. When > is closed or open, Chew’s

form can be used as an alternative definition of the weighted linear
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representation. Chew (1983) also argues that his form can be used in the
general case, but this necessitates the possibility of letting u(p) = +0 or
u(p) = — oo and is somewhat awkward. I refer interested readers to his
paper for details.

As the original axiomatization for the weighted linear representation of
Chew and MacCrimmon (1979) was refined by Chew and others, several
equivalent systems of axioms emerged. I note three of these here. For
convenience, we first recall some axioms from Chapter 1 and introduce a few
new ones.

Ordering Axioms

Al. > on P is a weak order.

Al(~). ~ on Pis transitive.

Archimedean Axioms

A3.{p > q,q >r} = ap + (1 — or > qandgq > Bp

+ (1 — 6)r for some a and B in (0, 1). |

Cl.{p>q,q>r}s=q~op+(1-—a)r

for some0 <a < 1.

Convexity Axioms (0 < d\ < 1)

C2.{ip>qaprr}3p>rhq+(1- dy,

{p~@ap~r}=p~rdq+(1—- dy,

ig > pr 2 p} = hq t+ (1 - Ar > p.
C2(>). ip > ap zr} >p>drq+ (1 - Ayr,

{g > pr > p} = hq t+ (1 - d)r > p.
Symmetry Axiom (0 < \ < 1)

C3.{p >q,q>rp> r,q~ 5p t+ 4r}

= [\p + (1 — A)r ~ sp + 3q
@ dr + (1 — A)p~ grt 4q].

Weak Independence Axioms

D2. p ~ q = for every0 < a < 1 thereisa

0 < 6 < 1 such that, for every r € P, ap +(1-ay)r

~ Bq + (lL — B)r.  
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E2.p ~ q = thereisa0Q < B < 1 such that,

for everyr © P,zp + sr ~ Bq + (1 - B)r.

Axiom Al(~) retains only the transitive indifference part of Al, and

C2( >) retains only the strict preference parts of convexity axiom C2. As

noted in Theorem 1.4, {A1l(~), Cl, C2} = Al.
The symmetry axiom C3 is a way of extending the notion that q is

midway in preference between p and r to other comparisons of convex
combinations ofp, g and r. Call ga >-midpoint betweenp and rifp > r, p

> q > randq ~ 5p +>5r. Notethat this is based solely on > and does not
entail any notion of (riskless) intensity comparisons (Section 1.2). The

general principle behind C3is that if g is a >-midpoint between p and r then

every ~ comparison between two measuresin the convex hull of {p, q, r}
will remain an ~ comparison when p and are interchanged throughout.

The form of C3 written above is a simple example of this interchange

principle: If g is a >-midpoint between p andr, thenAp + (1 — Ajrisa >-

midpoint betweenp and q if and only if (interchanging p and r throughout) Ar

+ (1 — \)p is a >-midpoint between g and r. Thisis illustrated in Figure

3.1, where the arrows denote directions of decreasing preferences.

The weak independence axiom D2 was introduced in Chew and

MacCrimmon (1979), and its specialization to a = ; is used by Nakamura

(1984, 1985). The intuition behind Nakamura’s E2is that, given p ~ q,the

asymmetry reflected by the difference between the coefficients ; and 6 in the

indifference statement =P + sr ~ Bq + (i — B)r when is not indifferent to

p or q will be invariant to changes in r. The Herstein—Milnor independence

axiom B2 of Section 1.5 is precisely E2 when 6 = 5 Chew’s D2 has a

similar interpretation to E2 when a@ values other than 1/2 are used for ap +

(1 — ayr.

The three systems of axioms alluded to earlier that are necessary and

sufficient for the weighted linear representation and are therefore mutually

equivalent are

Chew: Al, A3, C2( >), D2

Fishburn: Al(~), C1, C2, C3

Nakamura: Cl, C2, E2.

Chew’s axioms are most like the von Neumann-Morgenstern axioms since

they use Al and A3, replacing A2 by the jointly weaker C2( >) and D2.

Fishburn uses the symmetry axiom C3 in conjunction with Cl and full

convexity C2, then requires transitive indifference Al(~) since Cl, C2, and

C3 jointly do not imply Al(~). Nakamura also uses C1 and C2, but replaces

Al(~) and C3 by E2 to obtain an axiomatization devoid of explicit

transitivity assumptions. This is similar to the set {C1, C2, B2} of Theorem
1.4, which is necessary and sufficient for linear utility. When B2 is weakened
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FIGURE 3.1
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to E2, we see that {C1, C2, E2} is necessary and sufficient for weighted
linear utility. (Proofs are in Chapter 5.)

One can challenge axiomslike C3, D2, and E2 in much the same way
that independence was challenged in Section 2.5. Consider the following
three pairs of monetary prospects:

a. $0 (status quo) with certainty,
b;. 50% chance to win $2,000, 50% chance to lose $1,000;

a. 50% chance to win $2,000, nothing otherwise,
by. 80% chance to win $2,000, 20% chanceto lose $1,000;

a3. 50% chance to lose $1,000, nothing otherwise,
b3. 70% chance to lose $1,000, 30% chance to win $2,000.

Suppose a person has a; ~ b; for each i, which does not seem unreasonable.
_ Then, under usual monotonicity assumptions such as first-degree stochastic
dominance, C3 and E2 are violated. For C3 let DP, q, and r have probability 1
for $2,000, $0, and — $1,000, respectively. Then the hypotheses of C3 hold,
but \ = 0.8 forAp +(1 — \)r ~ sp + zqandd = 0.7 for kr +(1 — Np
~art+ +4: For E2 let p($0) = 1 and q($2,000) = g(— $1,000) = +. Then
8B = 0.4 for the conclusion of E2 when r($2,000) = 1, and B = 0.6 when
_r(—$1,000) = 1.

_ Generalizations of weighted linear utility are discussed by Nakamura
(1984) and Chew (1985). Nakamura axiomatizes weighted linear utility for
_the multilinear context (Fishburn, 1982a, Chapter 7) in which > is defined
_on the Cartesian product P; x P, X - - - x P, of convex sets of probability
measures andlinearity is to apply to each P; when p; = q; for all j # i. This

_is especially relevant to the n-person gamesituation in which P; denotes the
set of mixed strategies for player i. Chew (1985) axiomatizes a semiweighted

_ form that uses two weighting functions on X, say w~ and wt. In the
semiweighted expression for v(p) with p simple, w- applies if x is less 
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preferred than p, and w* applies otherwise:

Yx<pP(x)w(x)u(x) + Vxppp(x)w* (x)u(%)

XLx<pD(X) we (x) + Yx>pp(x)w* (x)

This reduces to Chew’s original weighted form if w~ = w*.

u(p) = 

3.7 TRANSITIVE CONVEXITY

This section and the next two consider weakenings of weighted utility

theory. In terms of the set {Al(~), Cl, C2, C3} for the weighted linear

representation, the present section drops symmetry (C3), the next section

drops Al(~) as well, then Section 3.9 restores C3 but not Al(~).

Wesay that (P, >) has a transitive convex representation if there is an

order-preserving functional u on P such that, for all p, g © P,

D>aq-= u(dp + (i — A)Qq)is continuous and increasing in X.

This entails

DpD~q=> u(rp + (i — A)g) is constant in X,

for if, say, jp + (1 — A)g > q ~ Pp,then

Ap + (1 — AYg > (A/2)p + (A - A/2)q > p-~ gq,

but the second > gives

(\/2)p + 1 — A4/2)q > Ap t+ 1 - ANG > p

for a contradiction of asymmetry.

This is the weakest weak-order representation that we shall consider in

ensuing chapters. It is not, however, weaker than some theories discussed

earlier. In particular, the monetary theories in category II do not generally

assume monotonicity conditions such as L1 and L4 of Section 1.4, and these

conditions are implied by the transitive convex representation.

The following observations are from Fishburn (1983a, b). If > is

closed, or bounded (Prax # @; Pmin # @), then (P, >) has a transitive convex

representation if and only if axioms Al(~), C1, and C2 hold. If > is not

closed, we also require > to be countably bounded (Section 3.6) sincethis is

necessary for the representation but is not implied by Al(~), Cl, and C2.

Chew (1985) and Dekel (1986) obtain the transitive convex representa-

tion from other axioms underthe assumption that > is closed. Chew uses Al,
the Herstein-Milnor continuity axiom B3 of Section 1.5 (in its open-set

form), and the following weakening of D2:

D2W. p ~ gq = forevery0 < a < landeveryr € P there isaQ <

B < 1 such thatap + (1 - ar ~ Bq + CU — B)r.  
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Dekel assumes that X is a compact metric space and uses Al, Cl, and the

monotonicity axioms L1 and L4. He characterizes transitive convex utilities

u(p) implicitly as the unique solutions of

| ¥(x, w(p)) dole) = u(p),
where y increases in the induced preference orderoverits first argument and

is continuousin its second argument.In this simplified form, Dekel notes that

WXnin *) = O and Wma, +) = 1, where %nx > D > Xmin for all p. The

expected utility form is the special case of his representation in which y(x,

u(p)) = u(x).
Dekel first obtains the preceding representation when P is the set of

simple probability measures on _X. He then extendsit to all countably additive

measures on the Borel field of X by strengthening C1 to B3.
tf

3.8 NONTRANSITIVE CONVEXITY

Whentransitivity is dropped, it is no longer possible to represent

preferences in the familiarp > g # u(p) > u(q) form. Thereis, however, a

simple way to represent > numerically in the presenceof intransitivities and

preference cycles, namely to adopt a two-argument functional ¢ on P x P

with p > gq * o(p, gq) > O. With no other restrictions on ¢@ this

representation is uninteresting since it holds universally with @(p, g) = 1

when p > q and ¢(p, q) = 0 otherwise. On the other hand, it can be very

demanding whenrestrictions are imposed on @. For example, if we require @

to be decomposable as ¢(p, g) = u(p) — u(qg) with u linear, then it

represents von Neumann—Morgenstern preferences.

Weconsider two nontransitive versions of the @ representation. A

nontransitive convex form is outlined here; the SSB form is discussed in the

next section.

Wesay that (P, >) has a nontransitive convex representation if there

is a functional ¢ on P x P such that, forall p,g,r © PandalO<)A< 1,

p>q*# (p,q) > 90,

o(p, gq) > 0 © o(q, p) < 9,

(Ap + (I — A)G, r) Adb(p, r) + A — A)O(G, Fr).

The second expression is an asymmetry property for ¢. By the definition of

~,D~q-* (p,q) = (g, p) = 0. The final expression says that @ is

linear in its first argument.

_ This representation can also be thought of as a conditional linear

representation. Let vu, be defined by

ll

vg(p) = (Pp, q).
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Then the nontransitive convex representation says that each vg is a linear

functional on P with p > g # u,(p) > 0 @ u,(g) < 9.

When > is open, so that P* = P, (P, >) hasa nontransitive convex

representation if and only if C1 and C2 hold. Moreover, each u, or @(: , g) is

unique up to similarity transformations; that is, given {vg} that satisfy the

representation, {vas also satisfy the representation if and only if for each g

there is positive @, such that

vu; (p) = Ag’q(P) for all p © P.

Similarity transformationsare also referred to as multiplicative transforma-

tions or proportionality transformations.

Comments on the nontransitive convex representation for cases in which

P is closed or half-open will be deferred to Section 4.3.

3.9 SSB UTILITY THEORY

The functional ¢ on P x P is skew-symmetric if

$(q, Pp) = —(P, g)

for all p, g © P. If this property is added to those for the nontransitive

convex representation of the preceding section, then ¢ is linear also in its

second argument:

o(r, \p + (1 — A)g) = Ad(, P) + A — ANO™, Q).

When is linear separately in each argument,it is said to be bilinear, and it

is called an SSB functionalif it is skew-symmetric and bilinear.

We say that (P, >) has an SSB representation if there is an SSB

functional ¢ on P x P suchthat, for all p, g, €P,

p>qe# (p,q) > 90.

Thus, (P, >) has an SSB representation precisely whenit has a nontransitive

convex representation in which ¢ is skew-symmetric.

It is known (Fishburn, 1982c) that (P, >) has an SSB representation if

and only if C1, C2, and the symmetry axiom C3 hold. This will be proved in

the next chapter along with the uniqueness property for the SSB utility

function @, which says that ¢ is unique up to similarity transformations.

The SSB representation was previously discussed by Kreweras (1961),

who proved two important theorems for SSButilities concerning the existence

of maximally preferred prospects and the existence of Nash equilibria in

noncooperative m-person games whose players have SSB instead of von

Neumann-Morgenstern utilities. We consider these in Chapter 6.  
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Suppose $(p, g) = (gq, r) > 0. Then by skew-symmetry,

79(P, @) + 59(r, g) = 0,
and by linearity in the first argument,

$(5P + 5°, g) = 0,
which by the SSB representation says that 5p + sr ~ q. One might therefore

think of @(p, q) and ¢(q, r) as representing equal increments of preference

for p over q and for g over r. However, as in the case of von Neumann-

Morgenstern utilities, this must be qualified by the fact that the equality is

obtained within the probabilistic setting, and it does not mean that the

preference intensity for p over q equals that for g over r in the sense of

Bernoulli or Allais. Moreover, when $(p, q) and $(q, r) are both positive in

the SSB representation, this does not imply ¢(p, r) > 0 sinceit is quite

possible to have g(r, p) > 0 forthe preference cycle p > g > r > p. Thus,

in the language used to describe C3 in Section 3.6, d(p, g) = $(q, r) > 0

and therefore g ~ =P + sr characterize q as a >-midpoint between p and r

only if p > r.

On the other hand, one can use the SSB representation with a riskless

intensity interpretation for d(x, y), as done by Bell (1982) and Loomes and

Sugden (1982) in the states setting of Chapter 7. Suppose in the present

context that preference intensities or strength-of-preference differences for

outcome pairs are measured by a functional @ on X x X with

(x, y) >* (Zz, w) & d(x, y) > OZ, w)

and with @ skew-symmetric on X xX X, which is perfectly natural in the

intensity mode. Even though >* is a weak order on X x X,there is nothing

inherent in this approach that requires > to be transitive on_X, so there can be

basic preference cycles (Fishburn, 1986a). Given ¢ on X x X, we extendit

bilinearly to pairs of simple measures in P x P, defining o( p, q) by

o(p, 4) = YY p(x)a(v) o(x,y).
y

Then, in the manner of Bernoulli, we can postulate that p is more desirable

than q precisely when $(p, q) > 0. In fact, this is precisely the approach

taken by Bernoulli when ¢ happensto have the separable form ¢(x, y) = v(x)

— u(y), since then ¢(p, gq) = 2 p(x)v(x) — 2 g(x)v(X)by thebilinear

extension.

The extension process can be reversed when ¢( p, q) is obtained for the

SSB representation through axioms Cl, C2, and C3. Given the SSB
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functional @ on P x P, define ¢ on X X X by

(x, y) = (p,q)

~~

when p(x) = g(y) = 1.

Then, by Theorem 1.2 we have

(DP; Q) II o > p(x)x*, a) = ¥) p(x)6%, @)

S) P(x)o (x*, Sai)y*

S} P(x) SY) (1)ox", y*)

il STS p(xya(v)o(x, ¥)

for simple measures p and gq. In other words, for SSB utilities and simple

measures, $(p, q) is the expected value of (x, y) with respect to the product

measure p X q. The extension of this expectation to the integral form

o(p, a) = || o(x,y) do(x) day)
will be considered at the end of the next chapter.

3.10 ACCOMMODATION OF INDEPENDENCEVIOLATIONS

Figure 3.2 illustrates differences among linearutility and the theories in

categories II through IV with indifference lines through the convex hull

H({p,ar}) = pup + eg t+ rib 29, YN = 1

of measures p, g, and r represented barycentrically. Each point in H

corresponds to a point in an equilateral triangle with vertices p, g, and r.

When the perpendicular distance from each side to its opposite vertex is 1,

hip + oq + Agr is the point with perpendicular distances \,, 2, and 3

from sides gr, pr, and pq, respectively. Selected points are described in the

top triangle.
A common orientation for the lower six diagrams is provided by

assuming in each case that p > g,q > r,andq ~ ip + sr. All points on a

line within a triangle are mutually indifferent. The arrows show directions of

decreasing preference. The lower right triangle has r > p for the preference

cycle p > q > r > p. The other five have p > r for cases in which > is a

weak order on H.
The key differences between the indifference maps in H forour theories

are as follows. The indifference lines for von Neumann—Morgenstern linear  
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FIGURE 3.2 Indifference lines
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utility are parallel straight lines. Those for weighted linear utility (IIIA,

Section 3.6) and, equivalently, SSB whenp > r,are also straight lines; when

w is not constant, these lines intersect at a common point outsidethe triangle.

For the right-hand diagram in the second row ofthe figure, the commonpoint

lies above q and slightly to the left of the vertical through gq. Transitive

convex utility (IIIB, Section 3.7) also has straight indifference lines that do

not touch or intersect within the triangle, but since it does not presume the  
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symmetry axiom there is no otherrestriction on the slopes of its indifference

lines.

Theories in category II allow curvilinear indifference lines. The theories

of Allais and Machina (IIA-B, Sections 3.3 and 3.4) are shown with wavy

indifference lines in the middle right diagram. Since decumulative theories

(IIC, Section 3.5) use a separable algebraic form for V(p), there must be

more regularity in their indifference lines as suggested in the lower left

diagram of Figure 3.2.

The cyclic preference case for SSButilities is shown in the lowerright of

the figure. Given p > q > r ? Dp with q ~ ip + sr, supposealso that r ~

=p + 3q. Then the third indifference line from a vertex, namely p, to the

opposite side must pass through the intersection point of the other two

indifference lines through vertices. For the particular case of the figure,

q~ sp t+ 4r @ 2¢(p, g) = (4,7),

r~ isp +4q @ o(r, p) = $(@, r).

Therefore 2¢(p, gq) = (7, p); hence p ~ q + sr. The common

intersection point \*p + A¥q + Fr has

h*¥ = o(g,r)/d, dA = O(r,p)/d, A# = (yp, g/d,

with d = $(p, g) + 6(qg, r) + $(r, p). This point is indifferent to all other

points in H({p, q, r}) by the indifference part of C2, so it is both a maximal
preference point and a minimal preference point in H that is contained in

every indifference line through H. Whenpreferences cycle on {p, q, r}, the

nontransitive convex representation of Section 3.8 is equivalent to the SSB

representation on H because C3 is implied by Cl and C2 for this case;

otherwise, when p > r, the transitive and nontransitive representations are

equivalent on H.

All nonlinear theoriesillustrated in Figure 3.2 accommodate violations

of standard independence axioms such as A2 and B2 (Section 1.5). Since

these theories were partly designed to accommodate Allais-type violations of

independence associated with the certainty, common ratio, and common

consequenceseffects of Section 2.5, their authors usually mention this, but

only briefly in most cases. The most eloquent spokesman of independence

violations is Machina (1982a, pp. 302-306; 1983a, b, 1985). Machina

observes that the most common independence violations are described by

indifference lines that fan out from a ‘‘central vertex line’’ such as the one

from g to sr + 2p on Figure 3.2. Whenthe indifference lines for {p > q >

r,p > r} are straight, we get the picture for weighted linear utility shown in

the figure. The predominanceof this form of weighted utility is corroborated  
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by experiments reported in Chew and Waller (1986). When the lines are

curved, as allowed by category II theories, a similar picture obtains with

bowedlines that tend to spread out as we come down towardthe rp boundary.

Machina (1985, p. 579) also cites experimental evidencethat suggests that the

straight-line indifference hypothesis is often violated.

For a simple example, suppose weighted linear utility theory applies

with

x = $5000 p(x) = 1 u(x) = 1 w(x) = 4

y = $3000 q(y) = 1 u(y) = 3/5 w(y) = 3

z = $0 rz) =1 uz) =0 w(z) = 2

Then y ~ 5x* + 52%, since

u(y)[2w(x) + w(z)] = 6 = [2u(x) + u(z)] Ww).

In addition,

x. 3 16
jor + ox", 7 > 0.842... ;

1
5X* + sy*® ~

ay + Az ~ Oy 4 aa", <= 0.316...,

so that this case approximates the weighted linear picture in Figure 3.2. If

utilities were linear with y ~ x* + 52%, then the leading coefficients on the
right sides of the preceding indifferences would be 3 instead of 0.842. . . and

¥ instead of 0.316... . With the weighted linear model,

yt + be > dere det) + be
s(Gx* + fz*) + 4z* > py* + 42%

for a violation of B2.
To illustrate independence accommodation in the general SSB context of

the preceding section with nonnegative monetary outcomes, suppose X = [0,

co) and

o(x%,y) = (x -y)f(y)  forx>y 20

with f positive, continuous and decreasing. Thus the ‘‘preference differen-

tial’ for x over y is a weighted difference of the outcomes, the weight f(y)

depending only on the smaller outcome. Suppose lim f(x) < /(0)/2, andlet

y be the unique outcome with f(y) = f(0)/2. Consider gambles

P(A) : y with probability , 0 otherwise,

Qo(X) : 2y with probability ad, 0 otherwise,  
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with 0 < a < 1. Under bilinear extension and skew-symmetry,

b(p(A); Gald)) = ad?G(y, 2y) + AC — ad)G(), 9)

+ (1 — A)add(O, 2y) + CL — ANU — ad)G(O, 0)

= (ad — 4a + 2)dAyf(0)/2.

If \ = 1, then p(1) > q,(1) for each a < 2/3, so y as a sure thing is

preferred to a gamble with probability a for 2y so long as a < -. Moreover,

with a fixed and 5 < a < 5,

DO) > qr) for \ > 4 — 2/a,

DO) ~ G6A) for\ =4 — 2/a,

GAA) > POV) for \ < 4 — 2/a.

This is an example of the commonratio effect since the ratio of the positive

payoff probabilities, \/(wA) = 1/a, does not changeas A varies over(0, 1].

3.11 INTRANSITIVITY ACCOMMODATION

Since the SSB theory makes no demands on @ on X x X other than

skew-symmetry, it accommodates cyclic preferences over outcomes in a

straightforward manner. For example, May’s (1954) preference cyclex > y

> z > x of Section 2.7 is reflected by (x, y) > 0, (y, Z) > 0, and $(Z,x)

> 0. But, as noted in the preceding section, there will still be a distribution

p* in the convex hull H({x*, y*, z*}) of the one-point measures for x, y, and

z such that p* > p for every p € H.

It is also entirely possible for > to be a weak order on X while > on P

has intransitivities. In other words, with ,

o(p, 9) = YYPanosy)
x

for simple measures p and q, skew-symmetry for @ on X X X induces skew-

symmetry for ¢ on P x P,but negative transitivity for > on X x X—that

is, d(x, Y) > 0 = (H(x, Zz) > 0 or H(z, y) > 0)—doesnot induce negative

transitivity for > on P x P. Fishburn (1984a) shows how the preference

cycles of Section 2.7 that use monetary outcomes and percentage raises in

salary can be accounted for by the SSB representation even when $(x, y)

depends only on the difference between x and y. Consider, for example, the

short cycle [6, 0.90] > [8, 0.72] > [10, 0.61] > [6, 0.90] for the salary

situation, where [x, \] is the gamble that gives you an x% raise with

probability \, and no raise otherwise. Suppose (x, y) = v(x — y),x BY,

with (v(2), v(4), v(6), v(8), v(10)) = (1.2,3, 6, 8, 9.8); see Figure 3.3. Then

([6, 0.90], [8, 0.72]) = 0.1584, o([8, 0.72], [10, 0.61]) = 0.04552, o({10,  
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FIGURE3.3
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0.61], [6, 0.90)] = 0.1388, so ¢ is positive for each successive pair in the

cycle.

Weakorder for > on monetary X withoutentailing transitivity of > on

P also accounts for the preference reversal phenomenon of Section 2.8 as

shown by Bell (1982), Loomes and Sugden (1983), and Fishburn (1984a,

1985b). In the monetary context we assume that x > y = (x, y) > 0, s0 >

on X is the natural linear order. It is also natural to assume that ¢ is

nondecreasing in its first argument so that

x>y = (xX, Z) = 6V), Z) for all x, y, z © X.

This additional condition allows weak reversals but prohibits strong

reversals. To consider the strong reversal prohibition, recall that the typical

form of preference reversal is p > g and c(p) < c(q) with p the probability

lottery, q the moneylottery, and m = max{x:p(x) > 0}, p(m) > = {q(x):x

> m} > 0. The reversal is strong if c(q) > m. Given strong reversal, the

_ SSB representation and the assumption that ¢@ is nondecreasing in its first
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argument on X x X imply

0< YYop) byp>g
y

IN Sy o(m, y)p(x)aty) by $(m, y) B (x, ¥)
y

ll S) o(m, y)a(y)

< ¥) o(c(q), ya(y) by c(q) Bm

=0O  byc(q) ~ g.

Hence 0 < OQ, which is absurd.

To simplify our examination of weak reversals, suppose p and q are

two-outcome prospects with

Ilp(m) =a, pO) =1- a,
g(M) = 6, gO) = 1-8,

Suppose p > q and c(p) < c(q). Then, by decreasing M or 6 or both

continuously, we can reach a point where g thus modified satisfies p > q and

c(p) = c(q). Werefer to this as the boundary case for preference reversal

and will proceed with this case because of its analytical tractability. Thus,

suppose p > g and c(p) = c(qg) = x. Then, by the SSB representation,

o(p, g) = abo(m, M) + a(l — B)d(m,0)

+ (1 — aBd(0, M) > 0,

o(p, xX) ad(m, x) + (1 — a) $0, x) 0,

$(q, x) BO(M, x) + (1 — B)d(0, x) 0.

Whenthe inequality for ¢(p, q) is divided by a@ and substitutions are made

therein from the equations for p ~ x and q ~ x, the inequality ¢(p, q) > 0

can be rewritten as

(*) $(M, x)o(m, 0) > o(M, 0)o(m, x) + o(M, m)¢(x,0).

Whenthis inequality holds, we can reverse the process to recover p and q by

way of (1 — a)/a = o(m, x)/o(x, 0) and (1 — 8)/B = (M,x)/o(, 0). In

other words, each instance of the boundary case p > qandc(p) = c(q) = x

is precisely captured by an inequality like (*). Consequently, weak reversals

will arise for the simple two-outcome prospects p and q if and only if (*)

holds for values of x, m, and M that satisfyO <x << m< M.

Weillustrate (*) with @ functions similar to those discussed in the

O0<m<M,a>B>d0.

Il il

il il
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preceding section. Supposefirst that

o(a, b) = [g(@) — g(d)If(b) fora zbeao0

with g strictly increasing and f positive, continuous, and decreasing. When

this form is used in (*), that inequality reduces to 1 > f(m)/f(x), whichis

true since f is assumed to be decreasing. Hence ourfirst form for é(a@, b)

guarantees weak reversals in abundance.

Suppose next that ¢(a, D) is a simple power function of the difference

between a@ and Db:

o(a, b) = (a — db) fora>b>0

with y > 0. Then (*) always holds when y > 1, but it cannot hold when y <

1.

Also note that (*) can never hold when > on P is a weak order, whichis

as it should be since weak order on P prohibits the preference reversal

phenomenon.As will be shown in Chapter 5, if @ is an SSB functional on P

x Pwithp > q @ o(p, q) > 0, andif > on P is a weak order, then there

are linear functionals u and w > 0 on P such that

(Dp, g) = u(p)w(q) — u(q)w(p),

thus giving the weighted linear representation of Section 3.6. When ¢(a, b)

= u(a)w(b) — u(b)w(a), substitution in (*) and cancellation leaves 0 > 0.

3.12 SUMMARY

Generalizations of the expected utility theories of Bernoulli and von

Neumann-—Morgenstern are conveniently partitioned into four main catego-

ries:

I. Theories that preserve linearity

II. Nonlinear Archimedean weak-order theories designed for monetary
outcomes

HZ. Nonlinear Archimedean weak-order theories designed for arbitrary
outcomes

_IV. Nonlinear nontransitive Archimedean theories

The theories in category I do not accommodate common violations of

independence and are included mainly for historical continuity. They are not

discussed later. The theories in categories II-IV wereall designed to account

_for independence violations. Those in category II will receive scant attention

later, due in part to their concentration on particular types of outcomes and in

part to their broad generality and attendant lack of clear axiomatization. This

should not be interpreted negatively since these theories, especially as set
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forth by Allais and Machina, hold significant promise for the monetary

context. However, the emphases of ensuing chapters lie elsewhere, and I

encourage readersto consult the primary sources for category II.

All category III and IV theories were developed for arbitrary outcomes

and share the axioms of continuity and convexity, C1 and C2, introduced in

Section 1.5. The four main theories of III and IV are distinguished by

whether they presume Al(~) or C3:

 

Al(~)? C3? Theory

No No Nontransitive convex

No Yes SSB

Yes No Transitive convex

Yes Yes Weighted linear

The two cases that do not assume Al(~), which are the only theories

described in this chapter that avoid transitivity and hence accommodate

preference reversals, are examinedin detail in the next chapter; the other two

are analyzed in Chapter 5.
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The preference axioms for the SSB utility representation are easily

stated, but it is no easy matter to show that they imply the representation. The

principal aim of this chapter is to develop a series of lemmas from the SSB

axioms and to construct the representation on the basis of the lemmas. The

nontransitive convex representation will be considered along the way, and the

final section shows what is needed to extend the SSB expectational form to

pairs of nonsimple measures.

4.1 THE SSB THEOREM

The main purpose of this chapter is to prove the fundamental SSB

representation and uniqueness theorem. For convenience werecall the SSB

properties,

skew-symmetry: $(¢g, p) = —$¢(p, q)
bilinearity: @ is linear in each argument

and restate the SSB axioms: for all p, g, r © PandallO < \ < l,

Cl. Continuity: p > q>r=q~ap+(— a)rforsome0<a<

I;
C2. Convexity: {p > g,p >r} =p > dq + (1 — Ar,

{p~Qp~r}s=p~hdq+ (1 — dy,
{q>p,r zp} => dAq+ (lL — Nr > p;

C3. Symmetry:

{p>q>rp>rnq~ 3p + sr}
= [\p+(1-A)r~ sp + 3¢

@dr+ (1 — Ap ~ or + sq).

See Sections 1.5 and 3.6 for discussion of C1-C3.
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and restate the SSB axioms: for all p, g, r © PandallO < A < 1,

Cl. Continuity: p> q>r=q~ap+0 —-a)rforsome0<a<

1;
C2. Convexity: {p > g,p >r} >p > d»q+ 1 —- Ay,

{ip~Q@p~r}s=p~hqt+(1-dy,
{q >p,r > p}>hrq+ (1 — Ny > p;

C3. Symmetry:

{p>q>np>rnqa~spt sr}

= [\p + (1 -A)r~ 3p + 34

@dr+ (1 —A)p ~ gr + 34).

See Sections 1.5 and 3.6 for discussion of C1—C3.
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THEOREM 4.1. Suppose P is a nonempty convex set of probability

measures defined on a Boolean algebra of subsets of X, and > is a

binary relation on P. Then axioms C1, C2, and C3 hold if and only if

there is an SSBfunctional ¢ on P x P such that, forallp,q€& P,p>q

@ o(p, g) > 0. Moreover, such a ¢ is unique up to multiplication by a

positive constant.

The uniqueness conclusion says that @ is unique up to similarity

transformations or proportionality transformations, or, to use Stevens’s

(1946) term, that @ is measured on a ratio scale. That is, if @ is one SSB

functional on P x P for which > ={(p, qg):¢(p, gq) > O}, then ¢’ is

another such functional if and only if there is ac > 0 such that d’(p, g) =

co( p, g) for all p, g © P.

The necessity of the SSB axiomsfor the representation of Theorem 4.1 is

easily verified. For C3, suppose the representation holds with p > gq > r, p

> r,andg ~ sp + sr as in the hypotheses of C3. IfAp + (1 — A)r ~ 3P

+ s4 also, then

0 (Ap + (l — A)r, gp + 39)

= 5[\do(p, a) + A - NO(r, p) + A - AYO, QI

[-C — A)¢(y, a) + o(, g) - Ul - AYO, 1)

— Ad(r, g) + O(7, q)y/2

= -5[\¢(r, g) + ( - AOD, 7) + 1 - AOL, —)I

—(Ar + (lL — A)p, gr + 39),

sor + (1 — \)p ~ =r + 3g. Necessity proofs of C1 and C2 are included
in Section 4.3.

Henceforth in this chapter we focus on the sufficiency proof for the SSB

representation and on the uniqueness of ¢ in that representation. The next

three sections deal solely with implications of Cl and C2, including

comments on the nontransitive convex representation in Section 4.3.

Implications that follow from the addition of the symmetry axiom C3 are

noted in Sections 4.5 and 4.6, and the sufficiency proof is completed in

Section 4.7. The final section considers the extension of the SSB expecta-

tional form from simple measures to all measures in P.

4.2 PRELIMINARY LEMMAS

Axioms C1 and C2 are assumed to hold throughout this section

along with the initial hypotheses of Theorem 4.1. As in Section 3.6, P*,

Prax, and Pyi, denote the preference interior of P, the preference-maximal  
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subset of P, and the preference-minimal subset of P, respectively. Thus P*
= {p:q > p > rfor some g,r}, Pmax = {p:q > p for no q}, and Prin =
{p:p > q for no q}. In addition,let

A*¥ = (1 — AYA foralO <A < 1.

The following three lemmaslead to a characterization of preferences
between a fixed r € P* and all p € P bya linear functional v, on P. This
characterization is central to our construction of the SSB functional in later
sections. After proving Lemmas 4.1 through 4.3 we consider the nontransi-
tive convex representation in the next section. The sufficiency proof of
Theorem 4.1 then resumesin Section 4.4.

 

  

   
  

  

    

 

   
 

Lemma 4.1. [fp > r>s,q>pr > t, and

ap+(1-a)s~r,

Bq + (1 - Bt ~r,
Ap +(1— A)t ~ 7,

uqt+ (1 — p)s ~ 7,

then a*B* = \*p*.

Lemma 4.2. 1f0 << 1, either{p >r > s,q > rhor{s>r>p,r

> q}, and

ap+(1-a)s~r,

Bq+ (1 — B)s ~ 7,

w(Ap + (1 — AYq) + (Il - p)s ~ 7,

then p* = ha* + (1 — A)B*. If the same hypotheses hold except that q
~ r, then n* = da*.

Remark. Theorem 1.4(a), (b) says that a, 8, \ and » in Lemmas4.1 and
4.2 are unique numbersstrictly between 0 and 1. We use this fact henceforth
without special mention.

Lemma4.3. Suppose r © P*. Then thereis a linearfunctional v, on P
such that, for all p € P,

p>rs#o,(p) > 0,

r > p #u,(p) < 0,

and such a v, is unique up to similarity transformations.

ProofofLemma 4.1. Given the hypotheses of the lemma, the ~ part of
C2 yields
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( 1-—-2X ) \ ( l—ea

Poway) OP + A ws) + a

“Op + Ud - AND ~ 7

1—p 1-86oeone a inn (58)
‘“(uq + ( — p)s) ~ 7,

~) ep + 1 - as) + (2)

“(ug t+ (1 - ws) ~ 7,

~) (Ga += 8)++ ( =

-QAp+d-NAHD-~.r.

 
 

 

Corer

(a

(FA C
Rearrangements give

ap+(i —- a)(5s

bg + (i - b)Gs + 5t) ~ 1,

+

v
l = | a

e(4p +5q)+ U1 -c)s~r,

dsp +3q)+(-d)t~r,

where a = [a(1 — A) + ACL — @)I/2 — a - Dd), 5b = [80 — pw) + wl -

B)V/(2 — B — p), ¢ = 2ap/(a~ + p), and d = 26d/(8 + dD).

The first two of the preceding ~ r expressions combine under C2 to give

2ab (; 4) 2ab (; 1)
=pt+e + j,1- ~s+-—t)~r

a+b\2 2 a+b ]\2 2

whenthe first is multiplied by b/(a + b) and the second by a/(a + b).

Similarly, when the third and forth ~ 7 expressions(in c and d@)are multiplied

by (1 — d)/(2 — c — d)and (1 — c)/(2 — c — d), respectively, and then

added, we get

WO21 +54)

2-c_d 2? 37%

%" —c)l - o)(: 1 )
2-c-d 2° 2
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Since 5P + 54 > Tr > zs + zt by C2, it follows from the two preceding ~r

expressions and uniqueness from Theorem 1.4(b) that

2ab _ el - d) + dl — c)

a+b 2-c-d ‘
 

The conclusion of Lemma 4.1 follows from this equation by algebraic

reduction and rearrangement. Let x’ = 1 — x, replace a through d in the

equation by their definitions in a through yw and clear fractions to get

(adh’ + Aa’)(By? + wB’)i(a + w)(BA’ + AB’)

+ (6 + A)(ar’ + ra’)]

= [Cad + Aa’)(Bo + pw’) + (Bu + wB’Yla’ + X’))

xX [ap(Br’ + AB’) + BrCap’ + po’)).
Multiplication and cancellations yield

arpa’ r’B’ + apBrA’p'B’ + a?B>(A’)2p’ + a?B2A'(n’)?

+ d?p700'(B")? + A2u2(a’)7B’ + aAB2a’ A’ p’ + 2Ba’ pw’ B’

= a7uB(N’)*h’ + adpBa’r’ pu! + adhpBa’d’B’ + NuB(a’)?B’

+ adpa’(B')? + arpBa’u’B’ + aduBd’p’B’ + adB?r’(u’)?,

which rearranges to

0 = (@BA’p’ — Apa’B’)apB’ + aBr’ + aBy’

+ \Ba’ — apr’ — Apa’ — ApB’ — ABp’)

= 2(aBd’p’ — Apa’B’)?.

Therefore aB\’u’ = Apa’B’; that is, AX*p* = a*G*. ia

ProofofLemma 4.2. Suppose first thatO << AX <1,{p >r>s,q>

r}, withap + (1 — as ~r~ Bq + (1 — B)sand wp + (1 — A)g) +
— ps ~ r. By C2,

ener| + (1 — a@)s)B+ all —v) | ws

+ a(l — A)

AB + a(l — A)

Rearranging the left side, we have

Leeswr(Xp + (1 - dq)

apee
+| wroowl* ”

| (8q + (1 — B)s) ~ r.
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Since Ap + (1 — Nq > r > sby C2, we conclude that p = af/[AB + a(l

— }))], which is tantamount to p* = Aa* + (1 — A)JB*. The same

conclusion clearly holds if we begin with {s > r > p,r > q}. Finally,if qg

~ r, then 8 = 1, so 6* = O and p* = da*. |

Proof ofLemma 4.3. Taker © P*. Fix p andsin Pwithp >r>s

and ap + (1 — a)s ~ r. The representation of the lemmarequires v(p) > 0

> v(s) and 0 = v(ap + (1 — ads) = av(p) + (1 — a)u(s), where for

convenience we omit r from v,. Assign any positive number to v(p) and

define u(s) by linearity: v(s) = —[a/(1 — a)Jv(p). The same thing is done

for any ¢ for which r > t: If Bp + (1 — 8)t ~ r, set v(t) = — v(p)/8*. In

addition, for any g # p such that g > r, define v(q) linearly as v(g) =

—p*v(s) = v(p)p*/a* when wg + (1 — p)s ~ r. Finally, set v(r’) = 0

whenever r’ ~ TF.

Thus is defined on P,it satisfies v(g) > 0 # g > r,andu(q) <O0¢r

> q, andifit is linear then it is essentially unique, for if the value assigned to

v(p) is changed then all other v values change by the same proportion.

It remains to show that v is linear—that v(yqg + (1 -— y)) = yu(q) + C

— y)v(f) for all g, t © Pand all 0 < A < 1. The ensuing four cases cover

the possibilities for g and f in relation to r.
Case 1.qg ~ r ~ t. By C2, yq + (1 — y)t ~ 1, so the definition of v

gives u(yg + (1 — yt) = 0 = yg) + 1 — yv(2).
Case2.{q > r,t > r}or{r > q,r > t}. Assumefor definitenessthat

q > randt > r.Thenyg + (1 — y)t > rby C2. Withr > s for fixed s,let

a, 8, and p satisfy ag + (1 — as ~ r, Bt + (1 — B)s ~ r, and w(yg + (1

— y)t) + (1 — p)s ~ r. Then, by the definition ofv,

av(q) + (1 — a)v(s) = 0,

Bu(t) + (1 — B)u(s) = 0,

po(yg + (1 — y)t) + CU — p)v(s) = 9,

with p* = ya* + (1 — y)8* by Lemma4.2. Therefore

viyg + (i — y)t) = —p*u(s) = —(ya* + Ud — y)B*)u(s)

yu(q) + (i — y)u(Z).

Case 3.qg > rr ~ tort ~ r > q. The proofoflinearity is similar to the

preceding case. Use the final part of Lemma4.2.

Case 4: g > r > t. Supposefirst that y = 8, where Bg + (1 — B)t ~ r.

Then, by the construction of v along with the notation and conclusion of

Lemma4.1,

av(p) + (1 — a)v(s)

Av(p) + (1 — A)v(E)

0,

0,il  
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wu(q) + (1 — p)v(s) = 0

and a*@* = \*y*. Therefore

Bu(q) + (1 — B)uv(t) = Blv(qg) + B*v(t)]

= B[— p*u(s) — v(p)B*/d*]

= Bu(p)[n*/a* — B*/d*] = 0.

Moreover, v(Gg + (1 — 8)t) = 0 by definition. Hence linearity holds when

B= ¥.
Suppose next for Case 4 that yq + (1 — y)t > r. Let 6 and o satisfy Bg

+ (1 —- 6)t.~r~ o(yqg+ (U1 — y)t) + UA — o)t. Then,using the result just

proved, we have

v(Bq + (1 — 6)t) = 0 = Bo(q) + A — B)v(2)

and

vo(yq + (1 — y)t) + CU — o)t) = 0

= ov(yg + (1 — y)t) + A — o)v(?).

Therefore u(yg + (1 — y)t) = —o*v() and, since 8 = oy by uniqueness

(Theorem 1.4),

yu(q) + (1 — y)u() = —yb*u(t) + Ch — y)u(2)
= —v(t)(y — B)/B = —o*v(t).

Hence v(yq + (1 — y)t) = yuo(g) + C1 — y)v(0). A similar proofapplies if

reyqt+i(- ye. i

4.3 NONTRANSITIVE CONVEX UTILITY

Lemma 4.3 puts us in position to consider the nontransitive convex

representation of Section 3.8. We recall that (P, >) has a nontransitive

convex representation if there is a functional ¢ on P x P suchthat, for all

pD.g,r€& PandalO <dA <1,

p>qe* (p,q) > 9,

o(p, g) > 0 @ o(q, p) < 0,

@(Ap + (1 — Aja, r) = Ad(p, r) + CA — ANC, 7).

In addition, (P, >) is open if Pmax U Pmin = @, Closed if Pnaxx # OG #

Prin, and half-open otherwise.

Comments on uniqueness and cases of (P, >) not covered by the

following theorem will be made after it is proved.
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THEOREM 4.2. Supposethe initial hypotheses of Theorem 4.1 hold. If

(P, >) has a nontransitive convex representation then C1 and C2 hold.

Conversely, if C1 and C2 hold, and either (P, >) is open or P is the

convex hull of a finite number of measures, then (P, >) has a

nontransitive convex representation.

Necessity Proof. Assume that @ provides a nontransitive convex

representation. If p > q > r, then, since ¢ is linearin its first argument,

d(ap + (1 — a)r, g) = ad(p, g) + A — a)d(’, g). By the representation,

o(p, gq) > Oand ¢(7, g) < 0. Hence ad(p, g) + (1 — a)d(r, g) = 0 for

some 0 < a < 1, and this verifies C1 since #(s, t) = 0 @ s ~ t. Forthefirst

part of C2 suppose p > q,p > r, and0 < d < 1, so $(q, p) < Oand o(7,

PD) < 0. Linearity then gives ¢(\g + (1 — A)r, p) < 0; hence $(p, Aq + (1

— \)r) > 0, sop > Aq + CU — A)r. The other parts of C2 are proved

similarly. x

The preceding proof establishes the necessity of C1 and C2 for the SSB

representation, since the SSB representation obviously implies that (P, >)

has a nontransitive convex representation.

Sufficiency Proof When (P, >) is Open. Assume that C1 and C2 hold

with (P, >) open. Given v, on P for each r € P = P* as in Lemma 4.3,

define ¢ on P X P by $(p, Gg) = v,(p). The nontransitive convex

representation then follows directly from Lemma 4.3. |
To prepare for the proof when P is the convex hull of a finite numberof

measures, we state a standard theorem for the existence of a solution to a

finite set of linear inequalities (Kuhn, 1956; Goldman, 1956; Fishburn,

1970a, Theorem 4.2; 1985a, Theorem 7.1) that is often referred to as a

theorem of the alternative or a linear separation theorem. In the theorem, K,

N, and n denote positive integers.

THEOREM 4.3. Suppose 1 < K < Nand x; = (Xj, ..., Xin) isin R”

fori =1,...,N. Then exactly one of (a) and (b) is true:

(a) There isa w = (wi, ... 5 Wn) in R” such that

n

SS) wixy > 0 fori=1,...,K,

j=l

SI wixy > 0 fori=K+1,...,N.

(b) There arer; > 0 fori=1,...,Nwithr; > 0forsomei < K

such that

N

Si nixy = 0 forj=l,...,n.
i=]  
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Thus,if the linear system in (a) has no w solution then its dual system in

(b) vanishes for some nonnegative 7; for which r; + --* + re > 0.

Sufficiency Proof of Theorem 4.2 When P is Finitely Generated.

Assumethat C1 and C2 hold with P = H({p,,...,Dm}), where H(A)is

the convex hull of A. It suffices to prove that ifr © P,,., U Pmin then there is

a linear v, on P for which u,(p) > 0 @ p > randu,(p) <0 Tr > p. We

then use Lemma 4.3 for r € P* and proceedas in the previous sufficiency

proof.

Assume for definiteness that r © P,,j,, and let

I(r) = {pe P:p~ r}, P(r) ={pEP:p > r}.

It follows from C2 that 7(7) and P(r) are convex. We wishto define linear uv

on P so that v(p) = 0 forall p € J(r) and v(p) > 0 forall p € P(r). Todo

this, observe first that I(r) N {p1,-.- Dm} # G, since otherwise p; > r
for all i and, by applications of C2, r > rsincer © A({p),...-,Dm}). For
definiteness let p;,.. . , px be in J(r) and let pyi1,... Dm bein P(r), with

1<k < m, since if k = m then the desired result follows from C2 and v =

0. Also, by C2, I(r) = H({pi,.. - 5 Dx}).
Because P = H({pi,..., Dm}), it suffices to define v on {p,,...,

Dm} with v(p;) = 0 fori < k and v(p;) > 0 fori > k since linear extension

to P then gives the desired result. However, since nothing has been assumed

aboutlinear independence amongthep;, some care mustbe used in defining v

on {p;, -. . » Pm} so that the entire v is linear.

To deal with the possibility of linear dependence amongthe p;, first let

L, be a maximallinearly independent subset of {p;, . . . , p,}. Then each g

€ I(r) is uniquely representable in the form q = 2,,A,p; with 4; © R and 2);

= 1. Also let Lz be a subset of {py41, .-., Dm} for which L; U Lz, isa
maximal linearly independent subset of {p;,..., Dm}, andletL = {Dya1,

. + > Dm} L,. IfL is empty, we obtain the desired result simply by taking v

= 0on LZ, and v = 1 on L;, and then using linear extension to obtain v onall

of P.

Suppose henceforth that L # @. Then each p; € L has a unique

representation of the form

Dp = > Pi + DY wai
Ly Ly

with the A, and yzreal numbers (some of which can be negative) that sum to
1. Moreover, at least one yu; for p; © Lz must be positive, since otherwise

transpositions, normalization, and the use of C2 yield a contradiction of the

form {p > r, p ~ r}. Since we require v(p;) = 0 for all p; © L,, our

method of linear extension requires

v(pj) = >) wyv(pi) for each p; € Ly.

Ly
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It follows that we obtain v > O throughout P(r) if and only if there is a uv

solution to the following system of linear inequalities:

u(p;) > 0 for each p; © Ly,

Ss Liv (pi) > 0 for each Pj € L.

L2

This system corresponds to {2w,x; > 0} in (a) of Theorem 4.3 with the
u(p;) playing the role of the w,. If it has a v solution, we are done. Suppose

there is no v solution. Then (b) of Theorem 4.3 applies. With J = {i:p; €

L,} and J = {j:p; © L}, (b) says that there are s; > 0 for each i € Jand r;

= 0 for each y € J such that Xs; + ur; > O and

so+ S)rjmy = 0 for eachi € I.
J

Consider the system of characterizations of p,., through p,, that we

began with in the preceding paragraph:

Di = Di for each i € J,

Pj = S NyPi + > LifDi for each j € J.
Ly I

Multiply each equation here by its corresponding s; or r;, add the resulting

weighted equations, and use the final set of equations in the preceding

paragraph to conclude that

S Sipi + S rjpj = S e om) Dis
I J Ly J

where all s; and 7; are nonnegative, Zs; + Zr; > 0, each p ontheleft side has

D > r, and each p onthe right side has p ~ r. When the negative terms from

the right side (for 2;r;Ay < 0) are transposed and we normalize and use C2
for convex combinations, we obtain an expression of the form ap + (1 —

ajg = q’ where0 <a <1,p > 7,andg ~ r ~ q’. But then C2 applied to

p> randg ~ ryields ap + (1 — aq > r, a contradiction to gq’ ~ r.

It follows that (b) of Theorem 4.3 cannot hold; hence (a) holds. a

I do not presently know whether Cl and C2 are sufficient for the

nontransitive convex representation in cases not covered by Theorem 4.2. In

view of Lemma 4.3, the only problem is whetherv, can be defined linearly on

P with the correct signs when is in Prax OF Prine AS just proved, this can be

done when is finitely generated, but it might not be possible in other cases.

There is, however, some question about the desirability of having uv, or

$(-, r) linear when r © Pyax U Prin Owing to uniqueness considerations.

Whenr is in the preference interior ofP and ¢(-, r) is linear over P, we know  
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from Lemma 4.3 that this r-conditional part of ¢ is unique up to similarity

transformations. However, this is not generally true when r is preference-

extreme. For example, if P = H({pi, ..., Dm}) and the p;are linearly

independent, then every $(-, r) based on linear extension from u,(p;) = 0

for p; ~ rand u,(p;) > 0 for p; > r when r € P,,, will suffice for the

nontransitive convex representation.

Analternative to linearity of ¢(-, r) when r © Prax U Prin is simply to

require that this piece of @ satisfy the sign properties of the representation

without being linear. Then C1 and C2 are sufficient for the nontransitive

convex representation thus modified.

4.4 FURTHER IMPLICATIONS OF C1 AND C2

Axioms C1 and C2 are assumedto hold throughoutthe rest of this

chapter along with the initial hypotheses of Theorem 4.1.

The presentsection first proves lemmasinvolving cyclic triples in P and

transitivity, and then establishes four limit lemmas that will be needed in

Sections 4.6 and 4.7 to complete the sufficiency proof of Theorem 4.1.

LemmMa 4.4. ]fp > q > r > pand

ap + (1 — a)r~ q,

Bqa+ (1 - B)p ~r,

yr + (1 — v)q ~ B,

then a*B*y* = 1.

Proof. Given the hypotheses, apply C2 to the first two indifference

statements to get

ap + (1 — a)r ~ (aB/a)q + (1 — 6)/ayap + (1 — a)r) ~ g,

Bq + (1 — B)p ~ (a@/a)(Bqg + (1 - B)p)

+ (1 — a)(1 — B)/a)r ~ 7,

where a = a8 + 1 — 8B. The middle parts of these two ~ chains are

identical and can be written as

ee - > |=" + - ae)- |t= ————_ pp +
a a

1 a* B* {

- gg 4st
1 + a*B* 1 + a*B*

According to C2 and the final ~ statements in the preceding ~ chains, p ~
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vr+(1— yq ~ t. Since yr + (1 — yg ~ pandyr + (1 - yq ~ 4, C2

and the definition of imply yr + (1 — y)q ~ (¢ + a*B*r)/(1 + a*B*).

Since g > r, we conclude that y = a*6*/(1 + a*6*), or a*B*y* = 1.

a

It can also be shownthat ifp > q > r > p, then the SSB representation

holds on the convex hull H({p, g, r}) of {p, g, r}. That is, axioms C1 and
C2 imply C3 on H({p, q, r}) in the cyclic case. This is not true, however,if

> is transitive on {p, q, r}.

Lemma 4.5. Ifp > q > randp > r, then ~ is transitive on H({p,q,
r}). Moreover, if Q S P and ~ is transitive on H(Q), then > is

transitive on H(Q).

Proof. The second part of the lemma follows immediately from

Theorem 1.4(c). Forthe first part, givenp > q > randp > r, let a satisfy q

~ap + (1 — a)r. Then, by C2,p > Xp + (1 — Ayr > qfora<A< 1,

andg > Ap + (1 — A)r > rfor0 < X < a.The use of C1 then generates a

family of ~ lines in H({p, g, r}) based onfip + (1 —- fla ~ Aw + U -
Ayr fora << l,andongg+ (l—-—a)r~A +1 - AyrforO<A<

a (see the ‘‘weighted linear’’ diagram in Figure 3.2). It is easily seen that this

family in conjunction with the line for g ~ ap + (1 — a)r and the corner

points p and r covers H({p, q, r}).
Suppose x, y € H({p, q, r}), x # y, andx ~ y. Then, by C2, the two

points x’ and y’ on the boundary ofHdeterminedbythestraight line through

x and y mustbe indifferent. It follows that x’ and y’ must be the endpoints of

one of the ~ lines in the generated family (or gq and ap + (1 — ay)r).

Therefore x and y are themselves on an ~ line in the family (or the q line).

Since ~ is transitive on each suchline, it is transitive throughout 7. z

In the following limit lemmas, which do not depend on C3, ‘‘y, + was A

+ 1’? meansthat pz, decreases to pu as d increases to 1. Similarly, ‘‘u, T was A

t 1°’ says that p increases to p as D increases to 1, and ‘‘*f, T a(f, Laj)aspt

0”’ saysthatf,, increases (decreases) to a as » approaches 0 from above.In the

lemmas x, P, g, r, and s are elements in P.

Lemma 4.6. 1fp > gq >r,p > \q+ (1 — Ns > rfor alld near 1 (r

<1),yp + (1 -— wr ~ g, and pp + (1 — yr ~ Ag + Cl — N)s, then

pw tpasrdtl if s>ppt+( - py),

ptpwasdtl if ppt+d-yp)r?s,

p= pasrtl if s~pp +— p)r.

Lemma 4.7. Supposex ~ qandx > pp + (1 — wg > rforally €

(0, 1], and thatf,x + (1 —-f,)r~ wp +- u)qfor all wu € (0, 1]. Then

f, remains constant in (0, 1) asl Oifq ~ r,andf, tTlasplOifg > r.  
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Lemma 4.8. Ifx ~ q ~ p,x > p,andf,x + (1 — f,)(up + U — wWq)

~ 5x + sp for all w near 0 (u > 0), then f, 1 O0aspl 0.

Lemma 4.9. Ifx > p,x > q,andf,x + 1 — f,)(up + Ud - wg) ~

3x + 3q for all p near 0(u > 0), then f,t + as p40.

ProofofLemma 4.6. Given the lemma’s hypotheses, supposefirst that

s~ pp + (1 — p)r. Then, by C2, Ag + (1 -— A)s ~ pp + (1 — p)rforall

d; hence yw, = p for all \ near 1.

Suppose next thats > wp + (1 — w)r. By C2, Aq + (1 — A)s > pp +

(1 — »)r for0 < \ < 1. Since p > g, p > Aq + (1 — N)s for all \ near1,

so by Theorem 1.4(a), (b) we get pp + (1 — p)[up + (1 - p)r] ~ Ag + C1

— )s, and therefore w, = p + (1 — p)y > pw forall \ near 1. By C2 and py

> pb, wyp + (1 — w)r > g, so C2 requires s > up + (1 — m))rin view of

Aq + (1 — A)s ~ wp + (1 —py)r. Consequently, ify < d, thenp > yq +

(1 — y)s > wp + (1 — py)r (the latter > by C2), and therefore w, > py. It

follows that 4 decreases as  t 1. Finally, for some small positive 6 we have
s > (u + dp t+ (1 — pw — 4)r > g, so py = pw + 6 for some X, and

therefore p, 4 was dT 1.
The proof for np + (1 — w)r > sis similar to the proof in the preceding

paragraph. Z
. Proof ofLemma 4.7. Assume x ~ g,x > up + (1 -— wg > r, and

JX + (1 —- fr ~ up + (i - wg forall0 < » < 1. Ifq ~ ralso, then g

~f,x + (i — f,)r by C2 for all » so, again by C2, p ~ f,x + (1 —- f,)r.

Since 4 = | in the hypotheses gives x > p > r,it follows that f,, is constant

in (0, 1) forallO <p <1.

Suppose now that g > r for the final conclusion of the lemma. By C2, g

> fx + (1 —f,)r. Thenx > pg+ (1 —- pup + 1 - wal > fx+d

— f,)r. This requires fi\_»), > f,, Sof, increases as y decreases. Since g >
jx + (1 — f)r > p forf near1, it follows thatf = f, for some p in (0,1).

Therefore f, T 1 as p J 0. ma
Proof of Lemma 4. 8. Assume x~q~p,x > p,andf,x + (1 -

JJ(p + d - wWq) ~ 3x + sP for » near 0. Take O < o < yp, define 6 by o

= By, and note that

fx + 1 - flop + 1 — o)g) =BI4x+0 - A)(up + Ud - 4)Q)]

+ (1 — B)Fx + UA - f,)a.

By C2, q ~ 5x + spandx > 5x + 4p,sof,x + (1 — fq > 4x + 4p.
Therefore C2 implies

fx + 1 - flop + (lL - o)qg) > 5x + 5p > op + (1 — oD.

Let p satisfy
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elf.x +  — f,op + A - o)q))

+ (1 — plop + (1 — o)g] ~ 5x + ap,

s0 tf. = of, Therefore f, decreases as decreases. Since fx + (1 — f)q >

5x + =P > p for small f > 0, there is a 7 in (0, 1) such that 7(fx + (1 —

f)q) + (1 — 7r)p-~ ax + sD. Hence with a = (1 — 7)/0 — 7f),

(cf)x + ( — rfp +  - a)q) ~ 4x + 5p.

That is, f, = 7/f. It follows that f, | Oas w J 0. a

Proof ofLemma 4.9. Assume x > p,x'> q, and f,x + (1 — f,)(up

+ (1 —- pq) ~ sx + x4 for u near 0. Take 0 < o < p, Leto = Bp,and

obtain the first displayed equation in the preceding proof. Since )’s

coefficient on its right side is ~5Xx + s4 by present hypotheses, and the

multiplier f.x + (1 — fq of 1—- 61is S, , or < (dual of >) 5x + x4

according to whether f, > $s SI, = zs orf<< 5, respectively, it follows

readily from C1 and C2 that

f, > W/2>fo< hh forO <o< yp,

i, = 1/2 =f, = 1/2 forO <o< 4p,

i, <W/22 fo > Sfp for0O << o< yp.

For example,iff, > Ss thenf,x + (1 — f,)(op + (1 — 9)q) > 5x + 54 >

op + (1 — o)q, so by Theorem 1.4, f < f,.

Suppose f, > 3. Then f, > I — fC — »). Letr, = [11 - 2 - wU

— f)VU — 20 - f)0 — »)]. Then

fx + (1 — Fup + (i - wg) = 20 - FG — wGx + 39)

+1 — 2d - £0 - (x + ( - 1)p),

so C2 requires 77x + sq ~ T,X + (1 — 7,)p. Since x > 5x + 29>,C2 also

requires 5x + +4 > p and therefore ax + (1 — a)p ~ 5x + 54 for a

unique q@ in 0, 1). Since x > p, it follows that 7, = a whenever S 2 >

Iff, > 5 for a sequenceof » values that approach 0, then a is forced to

1, which contradicts its uniquenessin (0, 1). We conclude that Sn <5+ for all

u near 0; as already noted, f, increases as pt decreases.

Finally, suppose 0 <f<y. Then =5x + 54 ?Ix + (1 —f)q.Ify > 0

satisfies fx + (1 — f)(yp + (1 — ¥)q) > 5x + 59) we get a 6 in (0,1) for

which

ésifx +d -Aiwe +d - yal +d - Le + A - fal

= fe + (1 —f\loyp + I - bya] ~ 3x + 34

so that, by C2, 5x + 54 > fx + — SCP + (1 — r)q) for0 < 7 < dy.

A similar conclusion follows from C2if +5X + 54 >wk+d-Aop+d  
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— y)q). That is, given f < 1/2,

wx +5q > fe + (1 - f(up + Cl - pq)
for all small » > 0. For such p weget p in (0, 1) for which px + (1 — p)[fx

+ (1 —f)(p + ( — wa] ~ 5x + 3g, oF

[o + (I — p)flx + A — pl — f(up + Gd - wg) ~ 5x + 34.
By the preceding paragraph, p + (1 — p)f< > Clearly,op + (1 — p)/f>/f.
Hencethere aref < } arbitrarily close to 5 that are f,, values for small y, and
therefore f, T 5 as p 4 0. a

4.5 IMPLICATIONS OF SYMMETRY

Axiom C3 is assumed to hold throughout the rest of this chapter

along with C1 and C2. Ourpurpose in this section is to derive a key result,

Lemma 4.12, that is needed in the next section where we begin our

construction of the SSB functional @. We approach Lemma 4.12 through two

intermediaries.

Lemma 4.10. Ifp > q >r,p > r,andq ~ 5D + sr, thenap + 0 -

ar~ Bp + (1 —- Bq ear+ (1 - ap ~ r+ (1 — Bdq.

Lemma 4.11. [fp > q > r, p > r, and

Bp +- B)q~ apt (1 — ay)r,

q~ mp + (1 — ay)r,   

  
    

yq+ (i - y)r ~ app + (1 — a3)r,

then (a, — ayjo3(1 — 8)— y) = Cl — a)(a, — a3)Ry.

Lemma 4.12. [f ~ and > are transitive on H({ p, q,r,s,t}),ifp > q

->r>s > t, and if

ap+(1-a)r~ q,

Bq +- B)s~r,

yr+(U-y)t~s,

and

dp + (1 — 4)s ~ q,

6qg+U - O#)t~s,

then a*B*y* = 5*0*.
_ Proof ofLemma 4.10. Givenp > q > r,p > r,andg ~ 3p + 5ras
n the hypotheses of C3, and givenap + (1 — a)r ~ Bp + (1 — B)q, weare
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apt+(i-q@)r ar+(1-a)p

to prove thatar + (1 — a)p ~ Br + (1 — B)q.Thisis true by C3 if B = 5

Other values of 8 are now considered.

Supposefirst thatO < 6 < > as illustrated barycentrically in Figure 4.1.
Let x be the point at which the line from Bp + a — B)q toap + (1 — a)r

intersects the horizontal between 5spt 7] and 3sr + 54: Let y be the mirror

image ofx about the vertical between q and 25D + zr. ‘Extend lines through q

and x and through q and y to determine x and y as shown. By C2, x~ OP

+ (1 — a)r. Since g ~ ax’ + sy’ = sD + sl; C3 (with x = 54 + 5x’

and y = 59 + .y’)implies y ~ ar + (1 — a), and this implies by C2 that

ar+ (1—a)p ~ 6r+ (1 —- Bq.

We now suppose that . < 8 < 1 asillustrated in Figure 4.2. Our
construction proceedsas follows. First, draw the ~ lines between Bp + (1

— B)g and ap + (1 — a)r, and between (28 — 1)p + 2(1 — 8)q and point
1. Position 7, 5, 3, 2, and 6 along the base so that 1 and 7 are equidistant from

q' = 5p + sr and on opposite sides of gq’; that is, d(1, g’) = d(q’, 7),

along with d(p, 1) = d(1, 5), d(3, 7) = d(7,r), d(p, ap + 1 - a)r) =

d(2, 5), and d(ar + (1 — a)p, r) = d@3, 6). Finally, locate 8 and 9 onthe

horizontal between Bp + (1 — 8)q and Gr + (1 — 8)q, where the indicated

slanted lines from 5 and 3 intersect the horizontal 6 line, then extend lines

through 2 and 8 to x and through 6 and 9 to y. When C3 is applied to the

triangles {p, (28 — 1)p + 201 — B)q, 5} and {3, (28 — 1)r + 21 — B)q,  
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r}, we get 2 ~ 8 along with

9~6¢6r+(1- B)q~ar+ (1 -—a)p

if7 ~ 26 — Ir + 20 — B)q.

If; < 6B < 3, sothatO < (26 — 1) < 3, then7 ~(26 — 1)r + 2(1 — B)g
_ by the result of the preceding paragraph, given (26 — 1)p + 2(1 — B)g ~ 1.

If 8 equals or lies to the right of 9, then 9 ~ 6 by the preceding paragraph

since 2 ~ 8 (using triangle {3, z, 5}). If 8 is to the left of 9, then x must be
between (26 — 1)p + 2(1 — @)q and q,and y must be between (26 — 1)r +

2(1 — £)q and q. Inthis case the preceding paragraph givesy~6 since x ~
2 (by C2 applied to 2 ~ 8), provided that 0 < (28 — 1) < 5. Hence if 5 <p
< 5, then y ~ 6, so 9 ~ 6 by C2; then Br + (1 — B)g ~eer + (1 — a)p
since 7 ~ (28 — 1)r + 2(1 — B)q.

Thus the desired conclusion holds if B < 2. More generally, if the

desired conclusion holds for 8 < (2"-! — 1)/2”-!, then the type of analysis
in the preceding paragraph showsthat it holds when 28 — 1 < (2”~! — 1)/

2”-!, thatis, when 8 < (2” — 1)/2”.It follows by induction that Br + (1 —

Bq ~ ar + (1 — a)p forall B < 1. a
_ Proof ofLemma 4.11. Given the lemma’s hypotheses we are to show

that (a; — a)o3(1 — B)(1 -— y) = (1 — ay)(aq, — a)By. Since the
conclusion follows easily from C1 and C2 if either 8 or y is in {0, 1}, assume

,v € (0, 1). By Lemma4.10, if Bp + (1 — Bq ~ ap + (i -— ay, g ~
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5P + sr, and yq +(1—-yr~ (1 — op + ar, then y = 1 — 8. This is the

special case of the present lemma for a. = 5 and a, — Q2 = Q) — G3, SOQ

= ganda; = 1 — ware equidistant from a2 = 5 and on opposite sides of >

(Whether or not a2 = +, the assumptionsfor the general case with B, y € (0,
2

1) require a, > a) > a3; see Lemma 4.5.)

As just noted, Lemma 4.10 implies the conclusion of Lemma 4.11 when

(a1, 2, 03) = (5 + 7, 7 ~— 7r)for0<T< > Ournextstep is to prove that

ifpp+Ud-Bq~t@t+npt+d-a-7D,q~apt (1 — a)r, and

vat-yr~(a-npt+d-a+t+7)r, then (a — 7)(1 — BU — y¥)

= (1 — a — 7)By when0 < 7 < min{a, 1 — a}, which gives the desired

conclusion of Lemma 4.11 whenever a; — a) = Q — 3. Suppose for

definiteness that a > $s since the proof fora < 5 is similar and Lemma 4.10

covers a = 5. Given a > $s

q~ 3p + 42a — Dp + 20 - a)r] = ap + i - @)r.

Then, with 2a — 1)p + 2(1 — a)rplaying therole of r in Lemma4.10,

Bp +—- Bq ~| +|
P 4 a1 - a) |” 1 — a)

-{Qa —- Ip + 20 - a)r}=(@a + r)p + (l-—a-r)r

by hypothesis, so, by Lemma4.10,

(1 — B)q + BIQo — 1)p + 20 — a)r]

l-a-T l-at+T
Ssa | pt|es | tc ~ l)p + 21 - a)r}

=(a -7)p+(l-adtn)r.

The 8 mixture in the preceding expression can be rewritten as

“= {a —- 7p +(-a+t 7)r}
a—- T

joe

a-T

je | (1 — Be — 7) |;
2) es

|

L -|
a—-7— BQa —- 1) a —7T — Ba — 1)

wherethe multiplying coefficients are positive. For example, a — 7 — B(2a

—~1)>a-(-— a) - BQa —- 1) = Qa - 10 - B) > 0. Since the

preceding expression as rewritten is indifferent to (a-7pt+(l-a+t7)r,

C2 requiresits second term in bracesto be indifferent to (a — 7)p + (1 -— a

+ r)r. Moreover, yg + (1 — yr ~ (@ - 7p + (1 — a + 7)r by
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hypothesis, and therefore C2 implies

(1 — Ba — 7)
a — 7 — Ba — 1)’

which is equivalent to (a — 7)(1 — 6)(1 — y) = (1 — @ — 7)By.Therefore

Lemma 4.11 is valid whenever a, — a2 = a) — 3.

We next extend the result to cases in which (a; — a2)/(a, — a3) is

rational. Let a = a, for convenience. With all (a, 7) coefficients in (0, 1), a

first step is made with the hypotheses

(a+ p+ (l-a-7r~ 6+ — sa,

ap + (1 -—ajr~q~ fall — y)/U — ay)Ip

+ [QZ — a)/— ey)Is,

(a -7)p+d - a+ Tr~yqtUd-yre=s,

(a — 27)p + (1 — a + 27)r ~ 6g + C1 — 8)

(6/y)s + [Wy — 6)/yIr,

where s is defined as yq + (1 — y)r. Since g ~ ap + (1 — ayr,

1 —- _
a~ (=)+a - an + (7) g

— ay 1 — ay

(Soa)?* GS)= ————_ p + —-——- ]
1 — ay 1 — ay

Whenthe result established for a; — a2 = a2 — a3 is applied to the left

parts of the first three displayed lines in the preceding paragraph, and is

applied again to the last three lines for s, we get

(a — 7)— BA — y) = A - a — 7)by

(w — 2r) (=) _ *) = (1 — a) ()(2)
1 — ay Y 1 - ay Y

Wesolvethe first of these for y, substitute this solution for y into the second

equation, then solve the second for 6 to get

_ (a — 21 - 8)
41 —a— ne + (a — 270 — 8)’

or (a — 27)(1 — B)(1 — y) = (1 — @ — 7)286, which is the desired
-conclusion of Lemma 4.11 when a; = a, + 7 and a3 = a, — 27.

and
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A similar proof applies when a, = a + 27 and a3 = a — T. The

general case for rational (a; — a2)/(a@2 — a3) follows by induction. For

example, suppose that

(a+ n7)p+(1-a-anyr~ Bp + (1 — Ba,

ap + (1 — a)r~q ~ fall — y)/0 — ay)lp

+ [1 - a)/( — ay)Is,

(a-nrpt+d-atarnr~ytd-yre=s,

(a -—-(n+ m)r)p+(1- at (n+ mr ~ 6g + (1 —- Or

= (6/y)s + (1 — 4/y)r,

and that the conclusion of the lemma has been verified when (@,; — a2)/(a2

— 3) = n/m. Then the procedure of the preceding paragraph yields the

desired conclusion for (a; — a)/(a2 — a3) = n/(n + m) (i.e., for lines 1,

2, and 4 in the preceding display). The desired result for rational ratios

follows easily.

Finally, let@ = a; — a, and b = a) — a3 and suppose a/b isirrational.

Let the lemma’s hypotheseshold asstated. Keep b fixed and let a’ be near a

with a’/b rational. Also let aj = a2 + a’ with 8’ satisfying B’p+a -

Bq ~ ajp + (1 — ay)r. Then the result for rationals gives

a’(a. — Bb) — BL — y) = A — a — a@’)bB'y.

When a’ > a, we require B’ > 8, anda > a’ = B > 8B’, as is easily

checked. Let 8+ = inf {B’:a’ > a}, 8~ = sup {B’:a > a’}sothatBt >

GB > B-. Note also that

ala, — b\l — Bt) -— y) =A - & — abby,

ala, — b\l — B-)\L — y) = A - & — abby.

Therefore 8+ = 6 = B-;hencea(a, — D1 - BA -y =A-m-

a)bBy. a

Proof ofLemma 4.12. As in the hypotheses, assume p > g > Tr > Ss

> t with ~ and > transitive on the convex hull H({p, q, 7, s, t}). Let the

a;, B;, and +; satisfy

ajp + (U1 — a)t ~ “ ; Bip t+ ( — Bi)r~ q,

amp+ (1 - as ~ 7, Bap + (1 — Bo)s ~ @,

a3q + (1 — a3)f ~ r, B3p + (1 — B3)t ~ @,

aq + (1 — ag)s ~ 7,  
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yp+Ud-yt~s,

vq + (1 — y2)t ~ 5,

3" + a _ y3)t om §.

    

     

The conclusion of Lemma 4.12 in these terms is B*a¥y¥ = Byyz. To

verify this, note first from the transitivity of ~ with 6 and 6 defined in context

that

|Bip+ (1 — B)r~ Bp + UI Bs)t,

r~apt (Il — a)t,

wrt- y)t~mpt+ CU - wes

Bop + (1 — B)s ~ Bp + UA — B3)t,

‘sS~umpt( - wet,

38 + ar ~ Op + (1 — OE;
ap + (1 - o)s~ ap + (Vl — a)t,

s~ypt+(Q - wet

so t+ st Op t+— )e;

sp + 5q ~~ dp + (1 — 4),

q~ Bp + (1 — Bs)t,

nqa+d-wt~npt+ Ud - wes

sp +5q ~ dp + (1 - 6)t,

q~ Bp + (1 — Bs),

a3q + (1 — a3)t~ ap + (i — a).

Apply Lemma 4.11 to each of the five three ~ sets to get

(83 — oy)yil — BY)— 3) = A — Bsr — Yi)Bi¥3,

(83 — yO — B2)(1/2) = 1 B3)v1 — 8)62(172),

(a, — yO — a)(1/2) (1 — aly — O)o(1/2),

(5 — Bs)yi1/2)1 — v2) Cl 6)(83 — y1)C/2)y2,

(6 — B3)a,(1/2)(1 — a3) (1 — 6)(B3 — ay)(1/2)as,

respectively, with each difference, B; — a,, 1 — fi, .. . positive. We now

ultiply these five equationsalternately [(left of first)(right of second)(left of

ird) ++ = (right offirst)(left of second) --- ] and cancelidentical terms to

il
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conclude that

Ka, KA KK — KA, K py*
Biyxayay = Byyyay.

By Lemma 4.1, a*a¥* = a¥a}. Therefore BFaky* = Byyt. i

4.6 PARTIAL CONSTRUCTION OF ¢

The preceding lemmaswill now be used to construct an SSB functional ¢

on P x P for which > = {(p, qg):¢(p, g) > 0} with ¢ unique up to

similarity transformations. The sufficiency proof of Theorem 4.1 from this

point on has four parts:

1. Define ¢ on P X P*so thatit is linearin its first argument and has p

>q @ (p,q) > Oandp ~ g © $(p, gq) = 0 forall (p, g) © P
x P*.

2. Verify that @ is skew-symmetric on P* x P*.

3. Extend ¢ to all of P x P in the only way possible for it to be skew-

symmetric everywhere.

4. Verify that @ extended is linear in its first argument.

Wedeal with parts 1 and2 in this section and with 3 and 4 in the next section.

The uniqueness property of ¢ will be verified as we proceed. It is assumed

that P* is not empty since otherwise ~ =P x P and ¢ must be identically 0

for Theorem 4.1, in which case it is trivially unique up to similarity

transformations.

1. For each p € P*let vu, satisfy the representation of Lemma 4.3 and

define

P*(p) = {q © P*:q > porp > g}

so that vu, never vanishes on P*(p) and v, = 0 on P* \ P*(p). If ¢ is to

satisfy the SSB representation then the linearity and order-preserving

properties of v, and ¢ require

o(*, DP) = 4v,(-) for some a, > 0.

Weadhere to this correspondence in defining ¢ on P x P*.

Henceforth, fix 7 € P* and define ¢(p, r) = u,(p) for all p € P. For

every t € P*(r), scale v, (by meansof a,) so that v,(r) = —v,(Z) and define

o(-, ¢) by

o(p, t) = u,(p) for all p © P.

The ¢(-, ¢) for t € P*(r) mustbe defined in this way, for only then will we

have 4(r, 1) = —(¢, r) as required for skew-symmetry. With u, fixed, as

defined thus far is unique.  
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To complete the definition of ¢ on P x P* we need to specify (-, w)

when w € P* and w € P*(r) U {r}, but we cannotuse vu, to do this since
u;(w) = 0 by w ~ r. For any suchw it is easily seen that P*(r) N P*(w) #

@. Accordingly, choose s € P*(r) NM P*(w), scale v,, so that v,,(s) = —

us(w), and define ¢(-, w) by

o(p, Ww) = vy(p) for all p € P.

A different s can be used for different w’s. Since —u,(w) = —(w, s) by the

preceding paragraph [since s € P*(r)], o(-, w) must be defined in this way

if the SSB presentation is to hold. Only then do weget o(s, w) = —¢(w,S).

Wehave defined ¢@ on P X P* andit is unique, given o(-, 7) = u,(-)

and the s choices of the preceding paragraph.If the SSB representation holds

then, given ¢(-, r) = u,(-), the rest of 6 on P X P* is uniquely determined.

If v, is replaced by av, with a > 0, then ¢ is replaced by a¢.

By construction, ¢ on P X P* is linearin its first argument and has

o(p,q) > 0 p > qand d(p, g) <0 > p.
2. To prove that ¢ is skew-symmetric on P* x P*, we assume

throughoutthis part that p, g © P* with p+ gq (p notindifferent to g) and r

€ {p, g}, since otherwise skew-symmetry for (p, q) follows from the

definitions. Several cases need to be considered to prove that ¢(p, gq) = —

o(4; P),
Case 1. p, g © P*(r). Then, by the definitions,

    

    

   

   

 

   
   

   

  
   

 

o(p, q) = Ug(p) where u,(r) = —u,(q),

6(q, P) = up(q) where v,(r) = —v,(p).

Then no twoofp, q, and r are indifferent in Case 1; the three form either a

preference cycle or a transitive triple. We examine these subcases in turn.

Case 1A. Cycle. Assume for definiteness that p > g > r >p. Leta, BG,

and ¥ satisfy the hypotheses of Lemma 4.4. Then,by linearity and v,( vy) = 0

when x ~ y,

llaug(p) + (1 — aur) 90 [ap + (i — ar ~ Q],

Bu(q) + 1 - B)u(p)=90 [Ba +- Bp ~ 7),

yur) +- y)u(g)= 90 [y+ —- vq ~ Pl.

y Lemma 4.4, a*8*y* = 1. Therefore

ewea [2] _
u(r) v-(p) vp(q)

and cancellation leaves u,(p) = —v,(q); that is, 6(p, g) = —$¢(, P).

Case 1B. Transitive Triple. Two further subcases arise depending on

hether 7 is betweenp and gq. We consider betweennessfirst, assuming that p
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>r > qandp > qg.LetdA < 1 benear 1 so that, by C2, p > Ap + (1 — AYr

>r>rq+(U-Ajyr>q.Letp’ =Ap + Ci — Ayrandg’ = dAqt+ U1 -

\)r. Then p > p’ > r > q’ > qwithp’,q’ © P*(r). By Lemma 4.5, ~

and > are transitive on H({p, qg, r}), and we therefore have a, 6, y, 6 and 6

in (O, 1) such that

ap+(l1—a)r~p’, Bp’ +(U- Bq’ ~7,

ywt+d-ya~q', d6p+ (1 - 6)q’ ~ p’,

6p’ + (1 - #Iq~q’.

According to Lemma 4.12, a*6*y* = 56*6*. This result and linearity for

each v imply

Up’(P) v,(p’) Ug/(r)

Up’ (7) u-(q’) Ug/(q)

vp’(P) Vq/(p")

up/(q’) Ug’(q)

Since p’, g’ € P*(r), up/(r) = —u,(p’), and vg/(r) = —v,(q'), 80
cancellations in the preceding equation leave

Up'(q’) = —vq'(p’).

Fix q’ for the time being, but let \ T 1 forp’ = Ap + (1 — A)r. Since p, r €

P*, we can choose x © P such that x > pandx > r. Given such an x we

have x > p > r,x > Ap + (1 — A)r > 7, so, by Theorem 1.4, let 7 and 7)

satisfy

m+(1-7r-~p, mnx+(1—-n)r~rApt+d — Ader.

Since 7x + (1 — 7)r > rby C2, Lemma 4.6 implies that 7, T 7 as \ T 1. By

the preceding ~ statements and the definitions and properties of the v’s, we

have

Tu,(x) = —(1 — 7)u,(r) = (1 — 7)v,(p), and

TUyp+-r»yr(X) = -—C —- Tr)Uyp+(1—ryr(7)

= (1 — 1)u-(Ap + (1 — A)r) = AC = 7)u,(p).

Letting \ fT 1 in the latter equation, we get

T lim vyp4a—-xr(*) = C1 — 7)u-(p).
ATI  
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So, by the former equation,

lim Urxp+(1-dr(X) = vp(x).

We also have x > p > q’ andx > \p + (1 — Ayr > q’, soletpx + (1 -

Kg’ ~ pand px + (1 — wg’ ~ Ap + (1 — A)rto obtain

Hup(x) = -—(1 — p)v,(q’),

PrUyp+(-r»r(%) = —( = pa)uypsa—ay(q’).

By Lemma 4.6, 1, ~ » asd T 1. Thus, using the preceding limit result for x,

we get  

  
  

   

    

     
   

—(1 — p)up(q") = pu,(x) w lim Vr»p+(1—ryr(X)
1

il —-( —- p) lim Urp+(1—-dyr(Q')s
1

and therefore u,(q’) = limyt vyp+a—nr(Q’). Since vg/(p’) = vg/(Ap + (1

— A)r) = Aug/(p) + (1 — jug’ (7), which approaches vg’(p) as \ T 1, we

have

up(q’) = —ug/(p).

Wenowfix p and vary \ for g’ = Ag + (1 — D)r, using y for which r > y

and g > y in a manner symmetric to the foregoing analysis to obtain

Ilu,(q) lim v,(Ag + (1 — A)r) = lim v,(qg’)
MI

lim (—vg’(p)) = ~ tim Urxp+(1—-ryr(P) = —Ug(P).

Hence skew-symmetry holds for Case 1B when p > r > gq.

Assume henceforth for Case 1B that p > q > rand p > r. (The proof

with r > q > pis similar.) Letp’ = Xp + (1 — A)gandr’ = Ar + (1 -

Nq forO < X < 1, sop > p’ > q > r’ > +r. As in the preceding

paragraph, we use Lemmas 4.5 and 4.12 to concludethat

Ug(D’)Ur(Q)up (1) = —up/(Q)ug(r’)ur?(p’).

Since r’ is used here instead of r, cancellation based on r does not apply.

Based onx > p,x > qwith{x > p > r,x > \p + (1 — Nq > r} and {x
>p>qx >dp+ (1 — Aq > q}, an analysis that is almost identical to

that for x in the preceding paragraph gives

up(q) = lim Urp+(1—r)g(Q) = lim up’(q).
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Weobserve next that, with r’ € P*(r),

0 = vyr4-rngAr + GU — A)JQ)

= Nyreci-ryg(T) + Ue — A)yr+G-nq(@

= —hu,(Ar + (1 — A)g) += A)Uyr+a-nq(Q)

= —AU—A)u,(g) + U-Nuynr+a-ryo(Q),

so that \u-(¢) = vyr+-r¢(qQ). Therefore

u-(q) = lim Ur»p+(1—-d)q(Q)-

This result is used along withg > y,r > y,{q>r>yqr>rAt+QU -

Ng > y},and{p’ >r>y,p’ > r+ (1 — Aq > Y} ina limit analysis

like that done earlier to obtain

u-(p’ ) = lim UVrr+( —r)q(P’ ).

Finally, note that

vp (r) = —u,(p’) = —v,(Ap + (1 — Aj)
—du,(p) — (1 — d)u-(q) = dv,(r) — CL — A)v,-(Q),

so

vp(r) = lim Up +1-r)q(7)-

Given vg(p’)u-(q)up(r’) = —vp/(q)u(r’)u,-/(p), as earlier in this

paragraph,first let \ fT linr’ = Ar + (1 — A)@qto get ug(p’)u-(q)up/ (7) =

—v,'(q)vg(r)u-(p). Since ug(r) = —u,(q), cancel to obtain u,_( D')up(r) =

vy’(q)u,-(p). Then let XT lin pp’ = Ap + (1 — Ajq to get vg(p)u(r) =

Up(qg)v-(p), and cancel v,(7) = —v,(p) to conclude that vz(p) = — Up(q).

Case 2. p € P*(r), gq € P* \ P*(r). Let s be the measure in P*(r) M

P*(q) used to define (-, q) in part 1: then

$(p, q) = vg(p) where v,(s) = —v,(q),

$(q, P) —v,(p).

Since p, s € P*(r), the Case 1 proof gives u,(s) = —v;(p). Since p + q by

earlier assumption, assume with no loss in generality that p > q. We

consider subcases for p versus Ss.

Case 2A. 5 4 p. Then, since g + s because s € P*(q), {p, g, 5} form
either a preference cycle or transitive triple. If a preference cycle obtains (p

> q > S > p), an analysis with Lemma 4.4 as in Case 1A gives u,(p) =

—v,(q) since u,(s) = —u,(p) # 0 and u,(s) = —v,(g) # 0.

II Ilu,(q) where v,(r)  
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Assumehenceforth for Case 2A that {p, g, s} forms transitivetriple.
Supposefirst that p > s > gq. Take y such that p > yandg > y, let {as +

(1 — ay ~ g, ays + (1 — a)y ~ Aq + (1 — A)p} correspond by C1to {s

>q>y,s > dq + (1 — Ap > y} for d near 1, and use the properties of

the v’s and the fact that a, > a as X Tf 1 by Lemma4.6 to get

(1 — a)ug(y)

= —au,(s)

= lim [—aAu,(s) + a1 — A)us(p)]
M1

= lim [a,du,(q) + a(1 — Aju;(p)] (Definition of u,)

= lim [ayu,(Ag + (1 — A)p)]

= lim [— ayg+~-pp()P (Case 1)

= lim [1 — a)vg+0-np)]

= (1 — a) lim y94.¢~-»p()

so that

Ug(y) = lim Urg+(1-d)p())-

Also let{Bp + (1 — B)y ~ g, Bp + (1 — By ~ Aq + (1 — A)p}
correspond to{p > q > y,p > \q + (1 — Ap > y}, and use Lemma 4.6

(8, > 6 as \ fT 1) and the result just proved to obtain

Bug(p) = —( — B)ug(y) = —G — A)lim yg4¢0-np()

lim [-(1 — By)vyg40-r»p)] = lim [Brg40-»p(P)I

lim [—B,v,(Aq + (1 — A)p)] (Case 1)

lim [—AB,v,(q)] = — Bu,(q)

so that v,(p) = —v,(qg) as desired.

The next subcase of Case 2A has p > g > sandp > s. Withg’ = dq

+ (1 — A)p,preceding methods applied top > g > s,p > q+ (1 —A)p

> S} give v,(p) = lim vg’(p), and Case 1 gives u,(g’) = —vg’(p). Since
lim v,(q’) = v,(q), it follows that v,(p) = —v,(q). The proof fors > p >

qands > gq is similar.

Case 2B. s ~ p. Weget

0 = Upr4q2(sP + 59) = sUp/req/2(P) + F%p/249/2(Q)

= —slu,(sp + 59) + ug(sp + 3Q)]

= — +[vp(q) + Ug(p)I,    
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and thereforeval DP) = —v(q). Here Case 1 is used to go from vz/2+ 9/2p) to

—u,(5p + 59) and, since =P + 54 + s, Case 2A is used to go from

Up/2+ q/Aq) to —v9(5P + 39).
Case 3. p,g © P* \ P*(r). Thenp ~ r ~ qwithp > q. Lets be any

element in P*(r) so that sP + zs and 54 + x) are in P*(r). Then, by Cases

1 and 2,

0 = Upasaloq + 55) + Vg/r+s/2(sP + 5S)

= 5l¥p24s/2(Q) + Ypr+s/2(S) + U9/245/2(P) + Yq/2+5/2(S)I

= —4[u,(4p + 4s) + usp + 55) + u(q + 55)

tu(5q + 35)]

= —qlvg(p) + vg(s) + v(p) + vp(q) + vp(s) + v5(9)]

= —7lv,(p) +,(9)I.

so Ug(P) = — u,(q).

Cases 1, 2, and 3 exhaust the possibilities and therefore ¢ is skew-

symmetric on P* xX P*.

4.7 PROOF COMPLETION

Since there is nothing more to prove if P = P*, assumein this section

that P.,ax U Pmin is not empty. We complete the sufficiency proof of Theorem

4.1 with parts 3 and 4 outlined at the start of the preceding section.
Throughoutthis section x and y always denote elements in Pmax U Prmin-

3. To complete the definition of ¢, define v, on P and ¢ on P X

(P \ P*) as follows. First, if p € P* let

ux(p) = o(p, x) = —O(x, Pp).

Given $(x, p) for p € P* as defined earlier, ¢(p, x) must be definedin this

wayto satisfy skew-symmetry. Second, for all p ~ x take

ux(p) = o(p, x) = 0

as required for the SSB representation. Ifp ~ x andp € P*, then v,(p) =

$(p, x) = 0 by both definitions. Moreover, if x and y are in the same one of

Prax and Prin, then x ~ y and v,(y) = v,(x) = 0.

The only cases not covered in the preceding paragraph occur when x €

Prax» ¥ © Pmin, and x > y. Supposethis is so. Let f = ax + ays sox >t >

y and ¢t © P*. To have v, and v, linear, we require

u,(t) 5Uy(X) + 5Uy(¥) “Ux(¥),2

vy(t) = vy(x) + 5¥y(¥) svy(x).

II il

N
l
~  
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Since u,(t) = —v,(x) and v,(t) = —v,(y) by the preceding paragraph,
define

ux(Y) (9, x) = —2u,(x),

vy(x) O(%, y) —2u,(y).

Skew-symmetry holds here for x and y since

O(x, y) + O(¥, x)= —2[v,(x) + v,(y)]

= —4[u,(x)/2 + v,(y)/2] = —4u,(t) =

where v, is linear since t € P*.

Thus ¢ is now defined on P x P* in a mannerthat is unique, given the

original ¢(-, r) = u,(-) in part 1, if it is to satisfy the SSB representation.

Hence if the defined ¢ does satisfy skew-symmetry and bilinearity every-

where,then it is unique up to similarity transformations.

The constructions in this part of the proof along with the conclusion of

part 2 show that ¢ is skew-symmetric on P x P. Moreover, it should be clear

that, for allp, g © P,p > q © o(p, q) > 0.

4. It remains only to verify that v,, or ¢(-, x), is linear for each x €

Prax U Prine We prove this for x © P,,,x. A symmetric proof applies for x €

P.min>

Given x € P,,,x we are to show that

(p,9EP,0 << 1) = u,(Ap + (L — A)Q)

= dox(p) + (1 — A)ux(q).

Ifp ~ x ~ q, then x ~ Ap + (1 — Aq by C2,and all v, termsin the

preceding equation vanish. Assume henceforth that x > p. We examine

specific cases as follows:

Hl li

 

   

 

   

   

  

  
   

 

  

   

l.p € P*,q € P*.

2.p © P*,q © Prax.

3.p © P*,q © Prin.

4.p © Phin, GQ © P*.

5. DP © Pains Q © Prax:

6. p € Prins J € Proin-

_ These exhaustthe possibilities. Separate proofs are needed for thefirst three

_cases; the last three can be handled together. Because ¢ satisfies skew-
symmetry, the desired linear form for v, converts to

Uyp+(1=ryg(X) = Aup(X) + CL = AQug(~x).
_Wework with this expression in the ensuing analysis.
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Case 1. p, g © P*. Lett = 5x + =P sot € P* along with Ap + (1 —

A)q © P*. By linearity for fixed elements in P*, u,(A4p + (1 — Ag) =

du,(p) + (1. — A)u,(g), so by skew-symmetry uyp4(1-nyg(t) = Av, (t) +

— d)ug(t). Then linearity and v,(p) = 0 give

Uxp+(1—-r)g(X) + Upec—rnq(P)

= [Au,(x) + (1 — A)ug(x)] + Cl — A)ug(p).

Since

Urxp+(1-dg(P) — CU — A)ug(P)

—u,(Ap + (i — dA)g) + Cl — A)u,(q)

—(1 — A)u,(q) + CU — A)u,(qg) = 0,

the desired result follows.

Case 2.p © P*,q © Prax. Then g ~ xX, so u,(q) = vg(x) = 0 and we

are to prove that

Ur»p+(1-d)g(X) = Aup(X).

Let wu = (A — 7)/0 — 7) for0 <7 < Awithyp + (1 — wg € P* for all 0

<p <1by Cl and C2. SinceAp + 1 —-Ag=r7p+ 1 —-7wp+ i -

1)q), Case 1 implies

Urxp+(1—A)g(X) = TUX) += DDuUypsc—pyg(*)-

Hence, with 7 TX # pw J O, the desired result holds if and only if

lim Yup+(1-pqg(X) = 0.

To prove this, choose ¢ € P* withp > t. Since {x > p > t,x ~ q > t},
C2 givesx > up + (1 — wg > tforall0 < p < 1, so there is a unique f,

in (0, 1) such that

ix+ 1 -f,)t~ up +d - wa,

with

FYyp+a—wa®) + Ch - Su)%up+a-mq@) = 0
for allO < wp < 1. Since tf © P*, ype a-pg(t) = —u(up + U — pg) =

—pu;(p) — (1 — p)u,(q). Therefore

lim Uppsa-wq() = —¥(q)-

If q ~ t, then v,(q) = 0 and,since f,, remains constant as u J O bythe first

part of Lemma4.7, lim v,5+¢-,q(*) = 0. Ifq > ¢, then f, T las wp 1 0 by
the latter part of Lemma 4.7, so again lim v,zp+(-,q(%) = 9.  
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Case 3. p © P*, gq © Prin. AS in Case 2 let » = (A — 7)/(1 — 7) for 0

<7 < to get

Uxp+(1—dA)g(X) = Tup(x) + CL — 7)Uypsc—pyqg(*)-

Weexamine x versus g in subcases.

Case 3A. x ~ q. Then v,(x) = 0,so the desired result54-»g) =

du, (x) holds if and only if vy + (1 - p)g(X) goes to 0 as » J 0. Supposefirst thatp
> q. Thenx > p > gq, sop ~ ax + (1 — a)q for a unique a in (0, 1).

Therefore, since x ~ g, up + (1 — wg ~ ax + (1 — adq for all p by C2.

Hence

0 = Upici—pglex + (U1 —- ag)

= OVyp+(—pyg(*) + Le — O) Up+-na(Q)

= App4(1—pq(X) ~ (1 — @)pv,(p)
since

Vyp+(1—pn)qg(Q) = —Ugl(ep + GU — #)q)

—[pug(p) + (lL — w)ug(Q)] = —pvg(P),

wherethe linearity for v,(up + (1 — u)q) follows from the dual of Case 2 [¢

€ Phin, D © P*]. Hence lim vyp+a-pyq(*) = 9.

Suppose henceforth in Case 3A that p ~ q as well as x ~ q. Since x >

5x + =P > pp + (1 — p)q,let f, satisfy

f,.x + (1 - f.(up + (1 — wa) ~ 3x + ap.
By Lemma 4.8, f, | 0 as » J 0. Since 5x + =P € P*,

0 = Yr4+pr7Kx + 1 — f,)(up + Gd — #)g))

FuYx/24p/X) + Ud - fu)ex2+pra(up + UA —- 2g)

= tfiup(x) —  — f,)¥pea—walaX + 4p)

—

(Case 2)

= shiv) — 7 - f%psa-wg®) (p ~ wp + (1 - 4)9).
Therefore v,.5+(1-,)q(X) goes to 0 as pw 1 0.

Case 3B. x > q. Lett = 3x + 5q. By thedefinitionsin part 3, v,(x) =
— 2v,(q) = 2u,(t), so the desired linearity conclusion in the present caseis

Urp+(-rg(X) = Aup(x) + CL — A)2vg(2).

_ Accordingto the initial paragraph for Case3, this will be trueif u,,4—,)q¢()

— 2u,(t) as uw 0. Sincex > t > wp + (1 — p)q for small p, letf, in (0, 1)

atisfy

f,.x+-Sf,)(up + 1 - wg) ~ t= 4x + 3a.
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Then f, t 5 as » + 0 by Lemma 4.9. Now

fiv(x) + A — f,)udup + ( - 4)q) = 9,

u(x) = —u,(g)/2 = vg(x)/2 = —v,(q) = v,(t) by definition and skew-

symmetry, and, since wp + (1 — p)g € P*,

v(up + (i - w)g) = ~Vyp+—nq(s® + 39)

- — FLpp+a—nq(*) + Vup+(1—wq(Q)]

= —51¥yp+a—pg(*) + pu,(q)],

where the dual of Case 2 is used in the final step if p > g. Therefore

fivgt) = A - SD)ypta-we) + Hvp(Q)l/2,

and it follows that v,54¢—pq(x) 7 2u,(t) as pw J 0.
Cases 4, 5, and 6. x © Pyax, D © Pmin, X > p. Let

t= 4x + (Ap + (l - DQ).

Then x > ¢ > pby C2. Moreover, t > Ap + (1 — Aqsincex > Ap + C1

— dq. Because 3x + 5f € P*,

Vy24r2Ap + (1 — AY@) = AYysi2(P) + CL — A)vx2412(4),

which skew-symmetry converts to

Urxpe(i—-ng(ax + Ff) = dup(gx + Ff) + CL — AJug(Gx + ZA).

Weclaim that each v term here decomposeslinearly. For the first term, \p +

(1 — \)q € P* U Prin Sincex > Ap + (1 — A)q. Hence,by eitherlinearity

of uv, for s € P* or by the dual of Case 3 when Ap + (1 — AG © Prin

[noting that ¢ > Ap + (1 — A)q, which corresponds to x > p in Case 3], we

have

Urpsa—rg(aX + 54) = ZYapsa—ryg(X) + 5Yyp+1 —-nq(t)-

Since f > p and p © Prin, the dual of Case 3 gives

Up(sx + Af) = Zu,(x) + Zu(?).

Finally, we also have

vg(4x + 4t) = Gug(x) + ZuQ(2)

for the following reasons: Case 4 has g © P*. Case 5 has g © Pyax, 80 apply

Case 2 if g > ¢ [corresponds to x > p in the original], and otherwise note

that t ~ q ~ x with ug(4x + 52) = vg(x) = v,(t) = 0. Case 6 has g © Prin,
so apply the dual of Case 3 if ¢ > q and note that if not (¢ > q) then all three

v, terms vanish. When the three decomposed terms are applied to their 
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predecessorearlier in this paragraph, we get

Vrp+(1—r)g(*) + Upta—-nqM

= [Au,(x) + (1 — A)ug(x)] + [Av,(f) + CU — A)v,(2)].

Since t € P*, linearity and skew-symmetry give vyp4(1-ng(f) = Avp(t) +

(1 — d)u,(¢), and cancellation in the preceding equations leaves up 4.1 —ryq(*)

= du,(x) + (1 — A)ug(x). This completesthe sufficiency proof of Theorem

4.1.

    

   

   

  

  
   

  

   

  

    

  

4.8 EXTENSION FOR PROBABILITY MEASURES

Wehaveseen in Section 3.9 that the SSB representation implies

o(p, 7) = > Yd p(ya(y)ox, y)
x YY

whenever p and q are simple measures in P, P includesthe set of one-point

measures on X, and ¢ on X x X is defined from ¢ on P x P by

o(x, y) = 6(p,q) ~—~when p(x) = q(y) = I.

The extension of the SSB expectational form to

op,=| | 60% ») dp(x) daty)
xEX 4YyEX

for more general measures p, q © P will conclude the present chapter.

As in Section 1.8 for the extension of the expected utility form, further

assumptions are needed for the SSB extension. Instead of considering twosets

of structural conditions as in Theorems 1.5 and 1.6, we consider only the

following set of conditions:
SO. @ is a Borel algebra ofsubsets ofX that contains {x} for every x

€ Xand contains {x:¢(p, x) < c} and {x:6(p, x) > c} for every p © P
and every real number c. Moreover, P is a convex set of countably

additive probability measures on Q@ that contains every one-point

measure andis closed under conditional measures.

The direct appearance of ¢ in our structural axiom SO might be objected

to since it is preferable to avoid mention of derived functions in the axioms.It

is possible to replace @ in SO by assumptions about @’s containment of

conditional preference intervals, but it is awkward to do so, and we therefore

proceed with SO as stated (Fishburn, 1984c, p. 135).

Two other axioms patterned after A4 and A5 are used in the extension.

Welet x* denote the measure in P that assigns probability 1 tox € X. The

_axioms apply toallp,7r,s € P,allA © @,andallO < 6 <1:

C4. Dominance: Suppose p(A) = 1. Then (6x* + (1 — B)s 2 rfor   
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allx € A) = Bp + (i — B)s > r, and(r > Bx* + (1 — B)sfor

allx € A)=>r> Bp + — B)s;

C5. Truncation: Let A(c) = {x:6(%, r) > c} and B(c) = {x:6(x, r)

< c} for each real number c. Then

Bp+U- —s > r= Bog, + A - Bs zr for somec,

r>6p+da-6—s>r?> Bpaw + U1 — B)s for some c.

The special case of C4 for 6 = 1 is almost the same as A4. The

generalization forO0 < 6 < 1 allows for ‘‘separation’’ by the (1 — 8)s term

that is needed for the SSB case. A similar remark holds for (1 — @)s in CS.

The idea behind the truncation axiom C5 is that whenever p > rand p

has positive probability for consequences x for which $(x, r) is arbitrarily

large, then p can be truncated atits upper end to the conditional measure Da,c)

without reversing the preference between Bp + (1 — @)s and r. A dual

interpretation applies to the second half of C5. If ¢ is bounded, then C5 holds

trivially by taking A(c) = B(c) = X.

THEOREM 4.4. Suppose SO holds along with C1, C2, and C3. Let ¢

satisfy the SSB representation of Theorem 4.1, and define o(x, y) = $(p,

q) when p(x) = q(y) = 1. Then $(p, g) = \\o(x, y) dp(x) dq(y) forall
Dp. g © P if and only if C4 and C5 hold.

Our proof is based partly on the final part of Theorem 1.6 that uses A4*

and A5* in Section 1.8, and partly on elementary properties of integrals, the

monotone convergence theorem andthe iterated integrals (Fubini’s) theorem.

Werefer to readers to Loéve (1960, pp. 118-24, 136) for statements and

proofs of the latter results.

Necessity Proof. Assume the integral form holds. Asin the first part of

C4, assume that p(A) = 1 and 6x* + (1 — 6)s > r for all x € A. Then

o(Bx* + CU — B)s, r) > O for all x © A, and therefore

o(6p + (1 — B)s, r) Bb(p, r) + Ui — BOCs, 7)

B |olan) dp(x) + Ul ~ Bs, 7)

il

| (86, 7) + @ — B)6(s, nN] d(x)

il | o(6x* + C — B)s, 7) dp(x) 0,

so that 8p + (1 — 8)s > r, the conclusion ofthe first part of C4. The second

part of C4 follows similarly. The necessity of C5 follows from the monotone

convergence theorem. a
Sufficiency Proof. Assume the hypotheses of Theorem 4.4 along with  
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C4 and C5. Weprove that

©) $a.= | oa) dpe) forallp,g € P.
Since this holds when either measure is a one-point measure, iteration and

skew-symmetry yield

 

   
  

   

   

   

  
   

   

  

o(p, a) = | d(p, ») day) = | | (x, ¥) ata] dq(y)

\ (x, y) dp(x) dq(y),

the desired conclusion.

To verify (*), suppose first that > is empty. Then p ~ g throughout P,

so o(p, g) = o(x, y) = 0 forall p, g © Pand all x, y € X. Thus (*) holds

trivially.

Suppose henceforth that > is not empty, so P* is not empty. Fix g €

P*, and let >, denote the weak order on P established by vu, or o(-, qg); that

is,p >gr @ O(p, g) > o(, g), withp >, rif d(p, g) = (7, g). We prove
that >, satisfies two conditions that mimic A4* and A5* and allow us to
conclude that (*) holds for all p © P at the fixed g © P*. Thefinal

paragraph of the proof notes that (*) also holds when q is in Prax oF Prin-

The conditions desired for >, are

a4 (cf. A4*). Suppose p(A) = 1. Then2,rforallx € A) => p 3B,
r, and (r >, x for allx € A) > r By p;

aS (cf. A5*). p >gr > Dp >,r for some B of the form {x:¢(%, g) <
ce}; r >, p = r 3, paz for some A of the form {x:6(x, g) 2c}.

 

It will suffice to prove the first parts of a4 and a5.

__ Webegin with a4, assuming that p(A) = 1 and x >, rforallx € A.

Three cases are considered depending on how g and are related.

_ Casel.q~r.Thenx >,r 6 ¢%,q) 20x > q,andifx > q for

allx € A, thenthefirst part of C4 with 8 = 1 implies p > q; hence p 2,r.

Case 2.r > qg. Since g € P*, lets € P satisfy g > s. Since x >, for

xE A (i.e., 6%, g) > O(7, g) > 0), we have x > q. Let a(x) and 8 satisfy

a(x)x* + (1 — a(x))s ~ q,

Br+(1— B)s ~ q

ith a(x) < 6 for allx € A since o(x, g) > o(r, g) > 0. Because 8 > a(x)

and x > q,it follows that

6x* + (1 — B)s > for all x € A,

we conclude from thefirst part of C4 that 8p + (1 — 8)s > q. This gives
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Bo(p, g) > (CL — B)b(@, 5) and, since Br + (1 — B)s ~ g = (1 — BO],S)
= Bd(r, q), we get (yp, g) > O(r, g); hence p 2, r as desired for a4.

Case 3. q > r. The proof for this case is similar to the proof for Case 2.

Choose s > g and get Bx* + (1 — 6)s > qgforallx € A.

Consider a5 next with p >, r. Again specific cases are examined as

follows.

Case 1. p > g > r. Since p > q, the first part of CS with 6 = 1 implies

Pe > q for some B = {x:9(x, q) < c}. Hence pg 2 g 2 7, 80 9(Ps, g) 2
o(r, g) and pg >, r, the desired conclusion of a5.

Case2.p ~ q > r. Lets € Psatisfy s > q, andlet 6 in (0, 1) satisfy q

~ Br + (1 — B)s. Then BO(g, r) = (1 — B)O(s, g). Since p ~ qands > @,

we have Bp + (1 — B)s > q, and thefirst part of C5 gives B = {x:¢(x,q)

< c} such that Bpg +(1 — B)s > g, or (1 — B)G(S, g) > BOG, Paz). Hence
o(g, r) > $(q, Ps), or by skew-symmetry ¢(pz, g) 2 $(r, q). Therefore pz
Zql.

Case 3.p > q,r > q. Lets satisfy g > swithap + (1 — a)s ~ qand

br + (1 — B)s ~ q. By hypothesis (p >, 7), a < 8B,and it followsthat Bp

+ (1 — B)s > gq. By C5, Bpg + (1 — B)s > q for some B = {x:6(%, g) <

c}, and this plus Br + (1 — B)s ~ q gives o(pg, Q) => Or, qd), OF Da 2q!-

Case 4: g > pandg > r.(Thisis the final case possible when p >, r.)

With s > gq, an analysis like that in the preceding paragraph gives pg 2,1.

This verifies a4 and a5 for g © P*. Because these axioms subsume A4*

and A5* when > in those axiomsis replaced by >,, it follows from the final

part of Theorem 1.6 that (*) holds for all p € P at the fixed g. Hence (*)

holds for all (p, gq) © P X P*.

To show that (*) holds also when g © Prax U Pmin, Suppose for

definiteness that g © Prin. If g © Pmax also, then0 = $(p, g) = $(, g) for

allp € Pandallx € X, so(*) holds. Assume henceforth that gd € Prax and

take s > q fors € P*. Sincees > 55 + 5q > @, 5s + 5q@ is in P*, and

therefore

o(p, ts + 49) = | (x, 48 + 39) dpe)
= [so(x, s) + 5o(x, m dp(x)

3

5 | 605 9) daw) + 5~ | 6s, @)dee)

3
, 5 (0.8) + 5| | 6s @)dp.

Moreover, $(p, +5 + +g) = 40(p, 5) + (Bp,q), and therefore $(p, 9)

= |o(x, gq) dp(x). i  



 

  

   

          

   
   

   

   

  

5 Transitive Nonlinear Utility Theory

Whentransitivity is added to the axioms of the preceding chapter, the

SSB representation reduces to the weighted linear representation, and the

nontransitive convex representation, with a further technical assumption,

reducesto the transitive convex representation. This chapter begins with the

latter representation, including its reliance on the assumption of countable

boundedness. It then looks at the weighted linear representation in detail,

concluding with uniqueness features, equivalent axiom sets, and extension to

an expectational form.

5.1 TRANSITIVE CONVEX UTILITY

This chapter considers the effects of transitivity on the nontransitive

convex representation and the SSB representation of the preceding chapter.

The transitive convex representation is examined in this section and the next.

The weighted linear representation that results when transitivity is imposed

on the SSB structure is discussed in Sections 5.3 through 5.7. Both

representations accommodate violations of independence.

We recall from Section 3.7 that (P, >) has a transitive convex

representation if there is a functional u on P such that, for all p, g € P,

p>q#u(p) > u(q),

P > q => u(rp + (1 — A)q)is continuous and increasing in ).
 
Asnoted there, these properties imply that u(Ap + (1 — A)q)is constant in

Our axioms for the transitive convex representation consist of Al(~)

[~ is transitive on P], C1, C2, and countable boundedness, where > is

untably boundedifthere is a countable subset Q ofP such that for everyp

 P there are g, g’ © QO for which g > p > q’. Recall also from Theorem

4 that Al(~), C1, and C2 imply that > on P is a weak order.
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THEOREM 5.1. Suppose P is a nonempty convex set of probability

measures defined on a Boolean algebra of subsets of X, and > is a

binary relation on P. Then (P, >) has a transitive convex representation

if and only if Al(~), Cl, and C2 hold and > is countably bounded.

Remark. Countable boundedness is automatic if P is closed; that is,

Prax and Pypin are not empty. The need for countable boundednessin other

cases is discussed in the next section.

Proof. We consider necessity first, assuming that (P, >) has a

transitive convex representation. Axioms Al(~) and Cl are then obvious.

For C2, assumefirst thatp > gandp > rwithO < A’ < 1. Thenu(p) 2

max{u(q), u(r)} > uAaq + (1 — Ajr), sop > Aq + C1 — A)r. The other

parts of C2 follow similarly. Since u is real valued, there must be a countable

QO © P with sup u(Q) = sup u(P), inf u(Q) = inf u(P), and with QO

containing an element of maximum (minimum)utility if such exists. Any

such Q verifies countable boundedness.

For sufficiency, assume Al(~), C1, C2, and countable boundedness.

Assume also that > is not empty since otherwise the desired conclusion is

transparent. Let Q be a countable subset of P that verifies countable

boundedness, and enumerate O as {q), qo, .. .}. Fix p; > po in Q and
construct P>, P3,... and p_j, p_2, . . . as long as possible in the following

ways:

D> is the first g; (smallest i) for which g; > py.

Pn+1 for n > 2 is the first g; for which q; > Dn.

p-_, is the first g; for which po > qj.

D-n-1 for n > 1 is the first g; for which p_, > qj.

We refer to --* Do > Pi > Do > D-1 °** as the dual standard sequence.

Clearly, for every p © Peither p ~ p; for a unique/or pj,; > p > p;fora

unique/.

Let

Py = {\pin1 + (A — NYBIFO SA KM, Dis

and p; are in the dual standard sequence}

and define u on Po by (for each i and ))

u(dpini + 1 — Np) = AE + D+ -Ai=E+d
Then, by C2 and weak order, p > q @ u(p) > u(q)for all p, g © Po. In

view of Theorem 1.4 and the remark at the end of the preceding paragraph,

we extend u from Po to P by taking u(p) = u(p’) whenp ~ p’ andp’ ©

Pp. It follows that, for all p, g € P, p > gq # u(p) > u(@q).
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To verify the final part of the representation, assume p > q andlet

JS) = u(ap + U — A)Jq) forO <A <1.

By C2,A >u>Apt+(U — Aq > wp + CU — p)q, sof increases in X.

Contrary to continuity, suppose f is not continuous. For definiteness assume

that f(a) < f(a)* = inf{f():\ > a} with a < 1. Choose 8 so thata < B
< 1. By construction, f(a) < u(r) < f(a)* for some r € P, so 6p + (1 —

Bq >r>ap+ (i — ag. Butthenr ~ yp + (1 — y)q for a unique y in

(a, B), sou(r) = u(yp + (1 — y)q) = f(y). But this is impossible since

there is no y with f(a) < f(y) < f(a)*. We conclude that f must be

continuous. Ei
_ It should be clear from the sufficiency proof that u for the transitive

convex representation does not have simple uniqueness properties. Any

transformation of u that preserves order and increasing continuity in d for

mixtures \p + (1 — A)g when p > q is an acceptable transformation.

   

   

                  

   

  

  

    

   

  

5.2. THE NEED FOR COUNTABLE BOUNDEDNESS

The following theorem asserts that countable boundedness cannot be

deleted from the axioms of Theorem 5.1 without affecting its conclusion.

THEOREM 5.2. Suppose the initial hypotheses of Theorem 5.1 hold.

Then there are (P, >) that satisfy Al(~), Cl, and C2 but do not have

transitive convex representations.

Weprovethis in the rest of this section by constructing a (P, >) that

satisfies the initial hypothesis along with weak order, C1 and C2 but for

which > is not countably bounded so that, by Theorem 5.1, (P, >) does not

have a transitive convex representation. Familiarity with ordinal and cardinal

numbers is presumed (Rubin, 1967; Pinter, 1971). Connections between our

construction and other interests in representation theory are discussed in

_ Fishburn (1983b). We begin with a few preliminaries.
Ordinals will often be denoted by a, 8, . . . , and < is their natural well

ordering: 0 < 1 <2 < +--+ < wo < wy + 1 < °-:. Thefirst uncountable
ordinal is denoted by w, and wetake

X = {a: qa is an ordinal and a < w,},

the uncountable set of countable ordinals. Also, P = Px, the set of simple

distributions on X. The distribution in P that assigns probability 1 to a is also
denoted by a. For convenience in correspondence to the well ordering we

shall work with the dual < of >, where p < qg means that g > p.

_ Ourdefinition of < on P begins with a < 6 if a < @ for the one-point

stributions. We extend < to P with the use of functions v, like those in  
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Lemma4.3, with v, linear on P, g < p © u,(p) > 0, and p < q © u,(p)

< 0. This extension will be shownto satisfy the axioms of Theorem 5.2 when

< is defined in the natural way, with either p ~ a ora < p < a + 1 for

each p € P and some a € X.It then follows that if < were countably

bounded then there would be a countable Y © X such that every a € Xhas a

6 € Ywith a < @. But this is impossible since {a:a < 6B, B € Y} is

countable when is countable by the fact that {a:a < 8} is countable for

each B € Y, whereas_X is uncountable. We now consider the construction of

the ug.
First, define v,(8) for all a, 6 © X by

Vala) = 9,

Ue(B) = —] if B <a,

and, if a < 8, proceed as follows. Given any 8B > 0, let yi, y2,... bea

countable enumeration of {a:a < B}, take

v,,(8) = 1,

v,(8) = 1/2 ify < v,

2 if Y2 < Vis

and for n > 2 define v,, (G8) recursively by

Vy, (8) l/n if y; < y, for alli <n,

=n if y, < y; for alli <n,

= 5[v,,(8) + v,,(8)] when vq < Yn < yp fora, b <n

and y; < Y,g Or yp < ¥; for

all other i <n.

Thus v,(@) is defined for alla, 8 € X. Ifa,,... , a, are the first n y; in the

preceding construction with a; < a, <-+°: <a, < 8, then v,,(8) > v.,(8)

> +++ > Ug,(8) > 0. Hence uo(8) > u,(8B) > +++ > v(8) > °°: for all a

< 6, with all such v,(() positive. Since v,(a~) = 0, v,, will play the role of vu,

in the stated representation of Lemma 4.3 when r = a.

The definition of v, is completed by linear extension to all of P:

ve(P) = SY) va(8)p(8).
BEX

The sum is well defined since p(8) > 0 for only a finite number of 8. By the

preceding paragraph,

vp) = ~¥ p(8) + ¥ vel8)P(8)
B<a Boa  
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with v,(8) > 0 when 6 > a. To adhere to < for the representation of

Lemma 4.3 for a versus p © P, we define

a<p if v.(p) > 0,

a~p  ifu(p) = 9,

p<a if v,(p) < 0.

Our definition of v, for nondegenerate p € P will be based on Lemma
5.1, which we prove before continuing with the construction. The lemma

showsthat for each p € P there is ana € X such that eitherp ~ awora < p

<a+il.

Lemma 5.1. For every p © P\X either v,(p) = 0 for exactly one «

> 0, or u,(p) > 0 > veii(p) for exactly one a > 0.

Proof. Let p denote a distribution in P\ X. By definition, vo( p) > 0

and v,(p) = —1 for every a > max{8:p(B) > 0}. For each a < a,

ValP) — Va+i(P) = pla) + pla + Iug(a + 1)

+ Ss P(B)[v.(8) ~ Vo+i(B)I,

Boatl

where u,(a + 1) > 0 and v,(8) — v,.1(8) > 0 for 8 > a + 1. Hence

Ue(P) 2 Va+i(p) —foralla © X,

Ua(P) > Vo+1(P) ° Ss D(B) > 0.

Boa

Moreover, it is easily seen that v.(p) > vg(p) whenever a < 6. Because

Uo( p) > Oand v,( p) = —1 for large a, there is a smallest a, say wa*, where

v,( Pp) is nonpositive,

Us(p) > 0 ifa < a*,

ve(P) <0 ifa* < B.

"Tf in fact v,x( p) = O then E {p(8):6 > a*} > 0,and therefore v,x+1(p) <
0, so vg(p) < 0 for all 6 > a*. It follows that either

(i) v,#( pp) 0 and v,(p) # 0 for all a # a*, or

(ii) v,*(p) < 0 and a* is not a limit ordinal, or

(ili) vax( p) < 0 and a®*is a limit ordinal.

An ordinal is a limit ordinal if it is nonzero and has no immediate

predecessor under <. Hence if (ii) holds then a* has an immediate

predecessor, say a* — 1, so that uyx-1(p) > 0 > vyx(p). Consequently, 
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Lemma5.1 is true if (iii) is impossible, for then (i) and (ii) constitute the

conclusion of the lemma.

To provethat (iii) cannot occur, supposeto the contrary that a* is a limit

ordinal with v,(p) > 0 > vy«( p) for all a < a*. Then v,(p) — vg#(p) > 6

for all a < a* and some 6 > 0.Clearly,

Uo (P) _ Ug*(p) = Ss PCy) + Ss Valy)PCY)

{yia<gy<a*} {yia<y<a*}

+ SS piyvely) — var(y)1-
{ya*<y<ay}

Since p is simple, the first sum vanishes as a ~ a*, and the second converges

to u,(a*)p(a*). Therefore, for large a < a*,

Ue(D) — Vor(P) = vala*)p(a*) + DS) [vely) — var(y1P(y).
y>a*

Weclaim that v,(a*) ~ 0 and u,(y) — vgx(y) > 0 as a > a* which,if true,

implies that v.(p) — uygx(p) > 0 as a > a*, in contradiction to v,(p) —

Uyx(p) > 6 > O forall a < a*. So if the claim is true, then (iii) is impossible

and Lemma 5.1 is proved.

To substantiate the claim, consider v,(a*) first. By the definition of

u,(a*) for a < a* according to the enumeration y;, y2,.. . of {a:a < a*},

there must be an infinite numberof n for which y; < , for all i < nso that

u,(a*) = 1/n for an infinite number of n. Therefore u,(a*) > 0.

Consider v,(y) — vg*(y) next fora < a* < y with a* and vy fixed. Let

V1, Y2, - - - be the enumeration of the countably many 6 that precede y used

in defining the ug(y) for 8 < y. Let N be such that yy = a*. Then all but a

finite number of a < a* follow ya in the enumeration and, since a* is a limit

ordinal, there must be an infinite number of such a whose v,(y) are

determined by the midpoint part of the definition, i.e., by u(y) = slve! (y)

+ vugx(y)] with a < a@ < a*. Since the successive averages clearly

approach u,x(y), it follows that u(y) — vey) 7 0 asa > a*. Lt

With Lemma 5.1 at hand, let p be a nondegenerate distribution in P. If
the first alternative of Lemma 5.1 holds [v,(p) = 0, a ~ p], define v, by

vp(q) = valq) forall g € P,

i.€., Up = Uy. If the second alternative holds [v,(p) > 0 > veis(p), a < D

< a + 1], let

Va(P)
r =

(?) Ue(P) ™ Ve+i1(P)

and define vu, by  
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Up = A(P)va+1 + [1 — A(P)] vg.

Clearly, v, is linear for each alternative. Moreover,

Lemma5.2. For all p, gq © P, u,(q) > 0 © ug(p) < 0.

Proof. By Lemma 5.1 and the preceding paragraph there are unique

ordinals a and 6 with v.(p) > 0 > va+i(P), ve(q) SO > vg41(g), and

unique numbers A( p), A(g) € [0, 1) for which

A(P)va+1(P) + [1 ~ A(P)]va(P) = 0,

A(q)vg+1(g) + [1 — ACg)]ug(q) = 0

such that

Up MP)va+i + [1 — ACD)Ives
Ug = A(g)upe1 + HL — AMQ)lvp.

Weshowfirst that v,(¢) = 0 = u,(p) = 0. Suppose v,(q) = 0. Then

the definition of u, gives

A(P)¥a+i(g) + [1 — A(pP)]v.(g) = 0,

so u,(q) > 0 > v,+:(g). [If \(p) = 0, then v,(¢g) = 0 and Lemma 5.1 and

monotonicity give 0 > v,.1(qg); if \(p) > 0, then v,(¢g) > 0 > v944(g)

since Lemma5.1 prohibits v.(q) = 0 = v,+3(q). (This remains true if g €

X.)] Since v.(q) > 0 > va+1(g) and ug(g) > 0 > vg41(g), a = B and
therefore, by the definition of \(q),

A(q)¥a+1(g) + 1 — A(Q)ve(qg) = 0.

Since the preceding two displayed equations imply \(qg) = \(p), we have v,

= Up, SO U,( Pp) = v,(p) = 0.

Thus v,(q) = 0 @ v,(p) = 0. To complete the proof of Lemma 5.2, we

show that v,(q) and v,(p) cannot both be negative or positive. We consider

the negative case; the positive proof is similar.

Suppose u,(q) < 0. Then A(p)ug+i1(¢g) + [1 — AC p)]u.(g) < 0. Since

Va+1(Q) < vo(g) and0 < A(p) < 1, veii(G) < 0. But vgi.s(q) < 0 < u4(Q)
__ by initial specification for 8, and therefore a + 1 > 6+ 1, ora > B.

Similarly, if v,(p) < 0, then 8 > a. Hence if both u,(g) < 0 and u,(p) <

_0, then aw = 6 and

A(P)¥e+1(G) + [1 — A(P)]u.(g) < 0 [v,(q) < 0],

M(Q)¥a+i(p) + [1 -— A(Q)vu.(p) <0 [ug(p) < O],
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Mp)va+1(p) + [1 — AP)v(p)

=

0 [definition of A(p)],

N(q)va+i(g) + [1 — A(Q)lva(g) = 0 [definition of X(q)].

Since v,(P) > ve+i(p) by initial specification for a, the second and third

expressions require \(g) > A(p). But since u.(q) > Uy+1(@), the first and

fourth require \(p) > (q). Thus v,(q) < O and ug(p) < 0 are

inconsistent. ey

Weare now ready to complete the proof of Theorem 5.2. Thus far we

have defined linear v, for every p € P with v,(q) > 0 @ u¢( p) < 0. In

correspondence to Lemma 4.3 we now define < completely on P by g <p

if vg(p) > 0. It remains to show that C1, C2, and Al(~) hold.

Cl. Suppose p < qg < r, so ug(p) < 0 < u,(r), where 0 < u,(r) by

Lemma5.2 applied to u,(g) < 0. Hence, for some 0 < A < 1, Au,g(p) +

— dju,(r) = 0 = uf(Ap + C1 — A)r), sog ~ Ap + (1 — Wr.

C2. This follows immediately from the definition of < , linearity, and

Lemma5.2.

Al(~). Supposep ~ gand gq ~ r, so u,(q) = vg(r) = 0. By the second

paragraph of the proof of Lemma 5.2, up = vg and vg = U,, 80 Up = v, with

u(r) = u(r) = O and p ~ r.

5.3 WEIGHTED LINEAR UTILITY

This section states our main representation theorem for weighted linear

utility and shows by example that the weighting functional w may have to

vanish at the closed extreme of P when (P, >) is half-open. The sufficiency

proof of the theorem appearsin the next section. Section 5.5 then presents

and proves the uniqueness theorem for the weighted linear representation,

and Section 5.6 establishes equivalence among the weighted linear axiom sets

of Section 3.6. The final section of the chapter discusses the extension of the

weighted linear expectational form to general probability measures.

Wesay that (P, >) has a weightedlinear representationif there are

linear functionals uw and w on P with w > 0 suchthat, for all p, g € P,

p>q* u(p)wq) > u(q)w(p),
w(p) > Oif (P, >) is open or closed.

If (P, >) is half-open, the representation requires w(p) > 0 for every p €

P*,

THEOREM 5,3. Suppose theinitial hypotheses of Theorem 5.1 hold.

Then (P, >) has a weighted linear representation if and only if Al(~),

C1, C2, and C3 hold.  



TRANSITIVE NONLINEAR UTILITY THEORY 123  
   

   

     

   

   

  

  

     

  
   

   

Necessity Proof. Assume that u and w satisfy the weighted linear

representation as specified above. Let (p, g) = u(p)w(qg) — u(qg)w(p).

Then ¢ is an SSB functional on P X Pwith > = {(p, g):¢(p, qg) > 0}, so
C1, C2, and C3 hold by Theorem 4.1.

To verify Al(~), suppose p ~ g and g ~ r. Then

u(p)w(q) u(q)w(p),

u(q)w(r) u(r)w(q).

If all w terms are positive, then u(p)/w(p) = u(q)/w(q) = u(r)/w(r), and

therefore u( p)w(r) = u(r)w(p) andp ~ r. Suppose henceforth that some w

term vanishes, so (P, >) is half-open. Assumefirst that w(q) = 0. If u(q) =

0 also, then u(s)w(q) = u(q)w(s) and s ~ q for alls © P. But theng €

Pax 1 Pmin, 80 (P, >) is closed in contradiction to half-openness. Hence

w(q) = 0 implies u(g) # 0, and, consequently, w(p) = w(r) = 0, so

u(p)w(r) = u(r)w(p) andp ~ r. Assume next that w(q) # O and w(p) =

0. Then u(p) = 0, sos ~ p for all s © P, for another contradiction. A

similar contradiction obtains if w(q) # 0 and w(r) = 0. Henceeither all w

terms are positive or all vanish. i
Although there is no direct precedent to weighted linear utility in the

literature prior to Chew and MacCrimmon(1979), one previous contribution

deserves mention. Recall that if w > 0, then we can write the weighted linear

representation using ratios of linear functionals:

II

p> q @ u(p)/w(p) > u(q)/w(q).

Bolker (1966, 1967), in a modification of the von Neumann—Morgenstern

theory that was motivated in part by Jeffrey (1965), applies > to @ \ {@},

where @ is a complete, atom-free Boolean algebra. He proves that axioms for

> on@ \ {@} that resemble those of Theorem 5.3 in some ways imply that

there are countably additive measures o and p on @ with p > Oon@\ {@}
such that, for all A, BE @N {oO},

A > B® o(A)/p(A) > o(B)/p(B).

Bolker’s representation involves quotients of measures rather than

quotients of linear functionals, with additivity rather than linearity the key

property. He avoids the vanishing-denominator problem by removing @

from the domain of > and by investing @ with nice structural properties.

Jeffrey’s (1978) later axiomatization applies > to @ and allows p(A) = 0.

By Theorem 5.3, the weighted linear axioms enable w > 0 wheneither

Pox = Poin = © OF Prax # OD # Prin. We conclude this section with a

half-open (P, >) in which Pai, # @ and w must vanish on P,,;, for the

weighted linear representation. In the example Prin = {0}.
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Let X = {0, 1, 2,...} and P = Py. Define ¢ on X x X by

(0, 0) = 0,

o(n, 0) = -— (0, n) = 1, nM 2 1,

o(n,m) =n - m, nzm >.

Then define @ on P X P bybilinear extension,

o(p, g) = SY) o(n, m)p(n)ag(m),

and take p > g # $(p, g) > 0. Since ¢ is an SSB functional, C1, C2, and

C3 hold by Theorem 4.1.

Since no p € is indifferent to all distributions in P, Al(~) holdsif,

for all p, g, r, s © P,

(*) o(p, gor, 8) + (Dp, s)O(g, r) + (yp, N)O(S, g) = 0.

For, if p ~ g and q ~ r, then ¢(p, q) = ¢(q, r) = 0, so (*) reduces to

o(p, r)o(s, g) = 0, and, since ¢(s, g) # 0 for some s, 6(p, r) = O and p

~ r. To show that (*) holds for our example, supposefirst that p, g, r, and s

are integers in X. If all are nonzero, then

(p —- gr - s)+ (p- sq-7r) + (p- rys - Gg) = 9;

if one of p, g, r, and s is O, say s = 0, then

(p- gl + llaq-r)+w-ry-) = 9;

and so forth. Next, if one ofp, g, r, and s is nondegenerate and the others are

integers, then linearity with the result just proved shows that (*) holds. If

exactly two of p, q, r, and s are nondegenerate, then linearity and the one

nondegenerate result imply (*), and so forth. Hence Al(~) holds.

Now suppose that the weighted linear representation holds with w

strictly positive. The uniqueness part of Theorem 4.1 allows us to presume

that 6(p, g) = u(p)w(q) — u(qg)w(p)sincethe right side is an SSB form.

Since w > 0, o(p, g)/[W(p)wq@)] = u(p)/w(p) — u(g)/w(q) and
therefore

d(D, q) + $(q, r) ; o(r, DP) _

w(p)w(q) wqg)w(r)  wl(r)w(p)

For definiteness set w(qg) = 1 and w(r) = a > O and consider (p, r, g) =

(n, 1, 0). Then

 

o(n, 0) (0,1) (1, n)
+ + = 0

w(n) a aw(n) 7
 

so that  
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ao(n, 0) + (l,m) = w(n)o(1, 0).

Since w(7)¢(1, 0) > 0, this implies that aé(n, 0) > ¢(n, 1) for all n, or a >

0 for all n, which is impossible. Therefore w cannotbestrictly positive.

It is easily checked that the weighted linear representation requires w(0)

= 0 in the example. A (uw, w) pair that satisfies (p, g) = u(p)w(q) —

u(q)w(p) for all p, g © P is specified by

u(0) = -1, u(n) =n, w0) = 0, wn) = 1, n>l,

with u and w defined on nondegenerate distributions by linear extension.

5.4 SUFFICIENCY PROOF

Weassumethroughoutthis section that Al(~), Cl, C2, and C3 hold

and that ¢ on P x satisfies theSSB representation of Theorem 4.1. We

wish to provethat there are linear u and w on P thatsatisfy the representation

of Theorem 5.3. To do this, three lemmaswill first be established. The last of

these is then used to construct w and u for the weighted linear representation.

The first lemmais essentially the same as axiom E2 in Section 3.6.

Lemma5.3. ifr ~ 4, not (p ~ r)and\p + (1 - Ng ~ sp + 5

then ds + (1 — A)g ~ 58 + sr foralls © P.

Lemma 5.4. For all p, q, r,s © P,

(*) (py, a)o(7, 5) + O(a, r)O(s, g) + O(p, 5)b(qg, r) =

Lemma 5.5. If (P, >) is open or closed, then there is a positive

_ functionalfon P whose reciprocalis linear such that, for all p, q, r © P,

I(P)F(Dep, a) + MOS(N)O(@ 1) + FU)S(D)O™, P) = 9-

Proof ofLemma 5.3. Assume for definiteness that p > r ~ q with Ap

+ (1 — Ag ~ sP + 5r. If s ~ r then, by C2 and Al(~), all measures in

H({r, s, q}) are indifferent to each other, so As + (1 — Ng ~ 55 + sr.
Assume henceforth that s + r. Then Al(~), Cl, and C2 imply that

there is a unique p in (0, 1) with ws + (1 — pg ~ zs + zr. Weprovethat p

x.

For convenience, denote by a = (a), Q2, a3, a4) the measure a,p +

aq + a3r + ays in H({p, g, r, S}). For measures a and a’ = (a/, °°,

al ), a ~ a’ & (a, a’) = 0 by the SSB representation. Using skew-

symmetry and bilinearity,  
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a~ a’ & (aja; — a/a)d(p, Gg) + (aa; — a/a3)d(p, 7)

+ (aja; — a ag)o(p, S) + (2a; — a5 a4) O(Q, S)

+ (a3a, — a, a4)P(7, 5) = 0.

Assumefirst fors # rthatr > ssop > r~ q > s. Thenall ¢ terms in

the preceding expression are positive. By the definitions of \ and p, AP(p, Fr)

= (1 — A)b(p,g) and po(7, s) = (1 — 4)O(g, 5), so with A¥ = (1 — A)/A
and so forth,

b(p, r) = A*o(p, gq), (7, 5) = w*O(G, 5).

Consider a ~ (0, - +, 0). By the preceding paragraphthis is equivalent to

0 ad(p, g) + ao(p, rT) — a46(G, 5) — o4d(7, 5)

ai(1 + A*)O(p, gq) — o4(1 + w*)O(G, 5).

Let a; > 0 and a, > 0 satisfy a; + a, < 1 and satisfy the preceding

equation:

{|

os (1 + d*)4(p, @)
a (1+ 2*)¢(qg, 5)

Also let p = 1 — a, — a4and consider a = (a1, p, 0, a4) anda’ = (a, 0,

p, a4). Since a ~ (0, $. $s 0) ~ a’ by construction, Al(~) gives a ~ a’,

and therefore

0 = $(p, gar: 0 — ap) + A*(aip — a OD]

+ (gq, S)[(pa, — 0+ a4) + p*(O + a4 — parg)]

+ (Dp,S)(a;a4q — 104)

= —apd(p, g)(l — A*) + asoG(q, Ss)— p*).

By the definition of a4/a, we require

ayplo4(] + p*)} — A*) = agolor(] + A*)IC — 4%),

which after cancellation leaves 1* = A*. Hence p = X.

Assume henceforth in the proof of Lemma 5.3 that s > r. We assume

also that s > p. (The proof for p > s is similar.) Then

a~ a’ & (ajay — a/ar)d(p, g) + (asa3 — ajas)o(p, Fr)

(ajay — a; ago(s, p) + (maz — a; a4) (5, G)

+ (a3a, — a; a4)(5, 1)  
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with all @ > 0 except perhaps for o(s, p), which is 0 if s ~ p. Moreover,

o(p, r) = A*O( PD, q) and d(s, r) - L*(s, q). Then a ~ G, 3) 33 0) if and

only if

O(p, Q)i(az — a1) + A*(a3 — a)] = aglO(s, p) + 1 + w*)O(s, QDI.

Take a, = 0 so that ag = 1 — a — a3. The preceding equation becomes

(a2 + A*¥a3)O(p, g) + (2 + a3)A = A,

where A = ¢(s, p) + (1 + p*)d(s, g). Particular solutions are obtained by

setting a, or a; to 0:

a= 0: a3 = A/(A + A*O(p, q))s a4 = 1 —- 3,

a, = 0: ay = A/(A + $(p, q)), af = 1—- ay.

Let a = (0, 0, a3, a4) for the first particular solution, with a’ = (0, a,, 0,
: 1’ 1 1

a,) for the second. Since a ~ (5, 3, 3, 0) ~ a’, we have a ~ a’, and

therefore

0 — a7 a4(S, J) + aga, (Ss, 7)

#(s, a) {- A | M*$(D, @)
A + $(p,q)}] LA + d*o(p, 9)

« Latealls2225)A + d*b(p, g) LA + O(D, Q)

which reduces to p* = X*. @

Proof ofLemma 5.4. Assumethat no more than two of p, q, r, and s

are in the same ~ class, since otherwise all three products in (*) are 0. For

definiteness take p > randp > q.Ifr ~ q, then d(g, r) = 0, and we need

to show that (p, q)¢(7, 5) + $(p, r)o(s, g) = 0. Given p > r ~ q, let d

satisfy Ap + (1 — A)g ~ 5p + gr. Then, by Lemma 5.3, As + (1 — A)q ~
75 + 5r, 80 MO(p, 7) = (1 — A)O(p,g) and AP(s, 7) = (1 — AGS, g)
with all ¢ # 0, since s + r by ourinitial assumption and r ~ qg. Therefore

OCD, 24s, Tr) = O(p, r)o(s, g) = ACL — A); hence o(p, g)o(r, s) +
—o(p, r)d(s, g) = 0. Thus (*) holds when there is one ~ pair.

__ Assumehenceforth that no two ofp, g, rand s are indifferent. Takep >

q > r > swith noloss in generality. Let \ satisfy g ~ Ap + (1 — X)s. Then

AO(D, g) = (1 — A)O(G, S) and, by the result of the preceding paragraph,

o(D, g)o(rp + (1 — A)s,r) = b(p, Ap + 1 — A)S)O, 7),

9(p, Dd(Xp + 1 — A)s, 5) = Cp, XW + (1 — d)5)O(4, 5)
with all @ > 0. Wedivide the preceding equations anduselinearity of ¢ inits

irst argument to get
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[Ad(p, r) + (i ™ A)P(s, r)l¢o(q, S) = [Ad(p, s)]o(q, r),

which by \¢(p, g) = (1 — A)db(G, 5S) and skew-symmetry yields (*). i

Proof ofLemma 5.5 for Closed (P, >). Assume that > is closed and

nonempty (otherwise @ = 0 andf = satisfy the desired conclusion). Take r

€ Prax andg € Py. Thenr > gandr > p > q for all p. Let a and b be

any positive numbers and set f(r) = a, f(q) = b. The lemma’s conclusion

then requires

F(p)lad(r, p) + bb(p, g)] = abd(r, 9);

so f must be defined on P by

abd(r, q)

ag(r, p) + bb(p, 4g)’

whichis positive for every p. Let w = 1/f. Then bilinearity of @ gives wAp

+ (1 — A)s) = Aw(p) + C1 — AJWG), so the reciprocal off is linear.

To complete the proof, let p, s, and ¢ be any three elements in P and use

the definition off and then Lemma5.4 to get

f(p)f(s)o(y, 5) +INFOS, 1 + FOF)P)

{lad(r, p) + bd(p, Q)llag(r, s) + bg(s, Q)lag(r, 1)

+ bo(t, g}7! x Labo(r, AI? {lao(7, 4) + b¢@, DIO, 5)

+ [ad(r, p) + bd, Q)l¢(s, t) + [ad(7, 5)

+ bo(s, g)lo(t, P)}

K{alo(r, )o(p, s) + o(, pols,+ O(7, SOG,P)I

+ DI¢t, Do(p, Ss) + o(D, DHS, 1) + OCs, NOE, PI}

= K{a[0] + b[0]}} = 0.

ProofofLemma 5.5 for Open (P, >). With both P,,,, and Pyj, empty,

choose r, g © Pwithr > gq. We proposeto set f(r) = a > Oandf(q) = b

> 0, in which case the lemma’s conclusion requires f( p)[agd(r, p) + boCp,

q)| = ab¢(r, q) as before. If a and b can be chosenso thatf( p) as defined in

the obvious wayis positive for all p € P, then the latter part of the preceding

proof shows that Lemma 5.5 holds when > is open.

Since abd(r, g) > 0, we getf > Oif and only if, for all p € P, ag(r, p)

+ bé(p, g) > 0. This is clearly trueifr > p > g.Ifp > r > q, thenadg(r,

D) + bd(p, qg) > Oif and only if 6(p, g)/o(p, r) > a/b; andifr > q > t,

then ad(r, t) + bd(t, g) > 0 if and only if a/b > ¢$(q, 1)/¢(7, t). Hence

positivefcan be defined to satisfy the lemmaif and only if there is a numberc
such that

J(p) = 

H
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b(p, 9)/b(p, r) > ¢ > 6(4, D/o(7, D

for all p and ¢ for which p > r > q > t. Givenp > r > q > ft, (*) says that

b(P, r)(q, t) + o(p, tor, g) = O(p, 9), FD).

Since all ¢ terms here are positive, wehave o(p, gdo(r, t) > o(p, r)d(q,

t), and therefore

o(p, g)/o(p, r) > (4g, t)/o(,, 0).

Ifp’ > p > r > q, then (*) yields $(p, g)/6(p, r) >o(p', g)/b(p’, 1);
andifr > q > ¢t > t’, then d(q, t’)/d(r, t’) > d(q, t)/d(r, tf). Therefore

inf {$(p, Q/o(p,r):p >r} > sup{ $(q, )/d(r,sg > th,

 

  

 

   

   

  

  

  

  
   

     

 

and, since > is open, no p attains the inf value and no attains the sup value.

Hence a c exists as desired. Any c in the closed interval from sup to inf

suffices; then, given such a c, any positive a and b for which a/b = c serve
: to define a suitable /. za

Sufficiency Proof of Theorem 5.3. Assumefirst that > is closed or

open andletfbe as specified in Lemma 5.5. Fix x € P and define w and u on
P by

w(p) = 1/f(p), u(p) = f(x)o(p, x).

By Lemma 5.5 and Theorem 4.1, w and wu are linear and w > 0. Also, by

Lemma5.5 and the definitions,

o(p, g) = w(p)w(g@)Lf(x)op, x)/w(p) — f(x)6(g, x)/w(qg)]

= u(p)w(q) — u(qg)w(p),

sop > q @ u(p)w(q) > u(q)w(p). This completes the proof if > is open
or closed.

Assume henceforth that > is half-open, and for definiteness take Pin #

© and Prax = @. (A dual proof applies to the other case.) Givenr > g with

qd © Prin, the analysis in the open (P, >) proof of Lemma 5.5 showsthat the

conclusion of Lemma 5.5 withf > 0 holdsif inf,{@(p, g)/¢(p, r):p > r}

> 0. Whenthis is true, the preceding paragraph shows that Theorem 5.3

holds with w > 0.In the rest of this proof weallow for the possibility that the
inf equals 0.

Continuing with Prin # @ and Pyax = QO, it is easily seen that the

interior P* is convex. Therefore, by the sufficiency proof of Theorem 5.3 for

open >, there are linear u and w on P* with w > 0 suchthat, for all p, g €
P*,p > q # u(p)w(g) > u(qg)w(p). It remains only to extend u and w

linearly to Pj, and to note that w > 0 on Pri, with u(p)w(qg) > (=)

u(q)w(p) wheneverp is in P*(Pyin) and g © Prin.
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Given g © Prin and p © P* withp > g,\q + (1 — A)p is in P* for

allO0 < X\ < 1, so linearity for w and uw requires

w(rq + (1 — A)p) — Gd — A)w())
 

 

w(q) = x

_ u(rq + i — A)p) — G — ANUP)
u(q) = x

To show that w(q) is invariant to the choice of (A, p) € (0, 1) x P*,

suppose A, » & (0, 1) and p, ¢ © P*. Lett = (A + pw — Ap)7!. Then

utrw(hq + (lL — A)p) + (A — Ap)rw)

w(Aur)q + [Ce — Aw)7]p + [CA — Ap)7]D

wAr(ug + (L — wt) + (Ce — Ap)7]p)

Arw( eq + (1 — p)t) + (wu — Ap)rw(p),lI

so that

[wAg + Ud — A)p) — G — A)w(p)I/A

= [wud + GC - wt) — A — 2)w@))/e.

A similar computation showsthat the value of u(q)is invariant to the choice

of (\, p). Therefore w and wu are uniquely defined on P,,i, by linear extension

from w and uw on P* in the preceding paragraph. Moreover, the extended w

and u are linear on all of P. For example, if g, g’ © Pmin andO < A < 1,

then with O < » < 1 and p € P* we have

wrq + (1 — A)q’)

[w(u(sq + G — A)g’) + U - wp) - CU - w)w(p)/n

[wACug + GU — p)p) + CU — A)Cug’

+ (1 — »)p)) - G — 2)w(p)l/p

= A[w(uq + (1 — wp) — CG — 2)w(p))/p

+ (1 — A)\[w(uq’ + UA — p)p) — CA — 2) w(p))/u

= dw(q) + (1 — A)w(q’).

It is clear also that w(q) > 0: fixp € P* and take dT 1 in the initial equation

of this paragraph. Note too that since the right side of that equation is the

samefor allO < \ < 1, w(g) = lim{w(\g + (1 — A)p):A T 1}. Similarly

u(q) = lim{u(dg + (1 — A)p):AT I}.

Finally, since ¢ is bilinear and ¢(p, p) = 0, when p © P* andqg &

Prin We have

il
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ilAO(D, G) =O(D, AG + (1 — A)p)

u(p)w(hq + (1 — d)p) — u(Xhg + (1 — ADP) w(p),

so T 1 gives $(p, g) = u(p)w(q) — u(q)w(p). Therefore u(p)w(q) >
u(q)w(p) whenp © P* and g © Prin. Moreover,ifp, g © Pry, then with ¢
€ P* we have

Ad(p, g) + (1 — ANH, Gg) = CAD + (1 — ADE, g)

= u(rsp + (1 — A)t)w(g) — u(g)wiAp + (1 — ADD

by linearity and the result just proved, so \ Tt 1 gives 0 = o(p, gq) =
u(p)w(q) — u(q)w(p). Hence u(p)w(g) = u(q)w(p) whenever p, g €
Porin- iz

5.5 WEIGHTED LINEAR UNIQUENESS

Suppose (u, w)is a pair of linear functionals on P thatsatisfies p > q #
u(p)w(q) > u(q)w(p)for the weighted linear representation. Theorem 5.3
emphasizesthe special role of one ofthese functionals as a weighting function
by specifying w > 0 with w > Oif > is open or closed. However, since (u’,
w') = (—u, —w) and (u’, w’) = (w, —u)satisfy p > gq & u’(p)w’ (q)
> u’(q)w’(p), the basic representation without the sign constraint admits
other possibilities that are not covered by the theorem.

In this section we prove two theorems that address the sign and
uniqueness questions. The first shows precisely when a general linear pair (uw,
w) for which p > q # u(p)w(qg) > u(q)w(p) admits a weighted linear
representation. We assume throughoutthat the initial hypotheses of Theorem
5.1 hold.

THEOREM 5.4. Suppose > is nonempty and (u, w) is a pair of linear

functionals on P such that, for all p, q © P,

p> q# u(p)w(@) > u(qg)w(p).

Then C1, C2, and C3 hold, and Al1(~) holds if and only if (0, 0) €

{(u(p), w(p)):p © P}.

Proof. Given the hypotheses, C1-C3 are immediate from Theorem 4.1

on defining ¢(p, g) = u(p)w(q) — u(q)w(p). Forthe transitivity part,

supposefirst that u(p) = w(p) = 0 for some p € P. Then p ~ forall g

€ P, and, since > is presumed to be nonempty, Al(~ ) cannot hold. Hence

Al(~) = (0, 0) € {(u(p), w(p)):p © P}. To prove the converse, assume

(u(s), w(s)) # (0, 0) for every s € P, and suppose p ~ g and q ~ r. Then

u(p)w(q) = u(qg)w(p) and u(g)w(r) = u(r)w(qg). If w(g) # 0, then
u(p)w(r) = [u(g)/w@)]w(p)w(r) = u(r)w(p), so p ~ r. If w(q) = 0,
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then u(g) # 0 and u(p)w(r) = [w(g)/u(qg)]u(p)u(r) = u(r)w(p), so
again p ~ rand Al(~) holds. a

Theorem 5.4 raises the question of whether the generalized representa-

tion in its hypotheses forces at least one of u and w to have constant sign

(nonpositive or nonnegative) throughout P when A1l(~) holds. The answeris

no, as we show in Remark 1, which follows the uniqueness theorem.

THEOREM 5.5. Suppose > is a nonempty weak order on P and (u, w)

is a pair of linear functionals on P that satisfies p > q # u(p)w(q) >

u(q)w(p) for all p, q © P. Then a pair (u’, w’) of linearfunctionals on

P satisfies p > q @ u’(p)w'(q) > u'(q)w’(:_p)for all p, g © Pif, and

only if, there are numbers a, b, c, and d such that u’ = au + bw, w' =

cu + dw, and ad > be.

Remark 1. Let X = R and P = Py. Suppose u and w on X have

codomains u(X ) = Rand w(X) = (0, 1). Extend u and w linearly to P and

define > on Pby p > g @ u(p)w(q) > u(g)w(p). Then, by definition,

(P, >) has a weighted linear representation. Leta = 2andb =c=d= 1

in Theorem 5.5 so that ad > be, u’ = 2u + w,andw’ = u + w. Then p

> qe u'(pyw’(qg) > u’(qg)w’(p)for all p, g © P, and u’(X) and

w’(X) both contain positive and negative numbers.

Remark 2. Suppose w > 0 in Theorem 5.5, and we wish to consider

only those (u’, w’) that have w’ > O. Then, according to the theorem,its

final conditions must hold along with cu(p) + dw(p) > 0 for all p © P.

This might limit a, b, c, and d substantially. For example, for the case in

Remark 1 we require c = 0, d > 0, and a > 0,butthere is no restriction on

b.

Proof of Theorem 5.5. Let the hypotheses of the theorem hold.

Supposefirst that u’ = au + bw, w’ = cu + dw, and ad > bc. Then

u’(p)w'(q) > u'(q)w’(p)

# [au(p) + bw(p)\[cu(g) + dw(q)]

> [au(q) + bw(q)l[cu(p) + dw(p)]

# (ad — bc)u(p)w(q) > (ad — be)u(q)w(p)

# u(p)w(q) > u(q)w(p),

sop > q # u’(p)w’(q) > u'(q)w’(p).
Conversely, suppose linear u’ and w’ satisfy p > q @ u’(p)w’(q) >

u’(q)w’(p)for all p, g © P. Let 6(p, g) = u(p)w(q) — u(q)w(p) and
6'(p, q) = u'(p)w’(q) — u'(q)w’ (p). Then, by Theorem 4.1, there is a

positive number ) such that 6’ = d. Hence for all p, g € P,

pu’ (p)w'(qg) — u'(q)w'(p) = Alu(p) w(qg) — u(g)w(p)I.  
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Supposefirst that u’(x) = 0 for some x € P. Then w’ (x) # 0 by Theorem

5.4 and, for all p € P,

u'(p) = d[u(p) w(x) — u(x)w(p)]/w' (x) = au(p) + bw(p),

where a = Aw(x)/w’(x) and b = —du(x)/w’ (x). Since u’(x) = 0,

nonempty > requires u’(y) # 0 for some y € P, so

—{Alu(p)w(y) — u(y) w(p)] — 4’ (p)w’(y)}/u'(y)

cu(p) + dw(p),

with c and d defined in context. Then ad > bc by the procedure in the

preceding paragraph. A similar result obtains if we presume that w’(x) = 0

for some x € P.

Finally, suppose that 0 € u’(P) and 0 € w’(P). Then with x > y for
some x and y since > is nonempty;

w'(p)

H

u'(y)[u’(p)w'(x) — w'(p)u’(x)]

= u'(y)d[u(p) w(x) — w(p)u(x)],

u’(x)[u’(p)w’(y) — w'(p)u’(y)]

= u'(x)A[u(p)w(y) — w(p)u(y)],

so, by subtraction,

u’(p)[u'(y)w’ (x) — u’(x)w'(y)] = Au(p) + Bw(p).

Since x > y, the term in brackets is nonzero, and therefore we get u’(p) =

au(p) + bw(p)for all p € P. A similar procedure gives w’(p) = cu(p)

+ dw(p) for all p © P. As before, ad > be. i

5.6 EQUIVALENT AXIOM SETS

We nowestablish the equivalence of the three axiom sets for the

weighted linear representation that were noted in Section 3.6. The axioms

there that have not been used in the interim are

A3. {p>q,q>r}=s=apt+(1-a)r > qandq > Bp + (1 —- B)r
for some a and 8 in (0, 1).

C2U(>). {fp > gaprzrdo<rA<t}=p>rq+( -—- Ay.
{q>p,r2>p,0<rX< 1} =>dAq+(—- Aj > p.

D2. p ~ gq = forevery0 < a < 1 there isa0 < B < 1 such that,
forallr&e P,ap+(1-a)r~ B¢qt+ (1 —- Br.

E2. p ~ q = thereisa0 < 6 < 1 such that, for ailr € P, sP + sr

~ Bq + (1 — P)r.
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THEOREM 5.6. Suppose the hypotheses of Theorem 5.1 hold. Then the

following three sets ofaxioms are mutually equivalent: {A1, A3, C2(>),

D2}, {Al(~), Cl, C2, C3}, {C1, C2, E2}.

Proof. Wenotefirst that A3, D2, and E2 are necessary for the weighted

linear representation. This follows for A3 from Theorems 1.4 and 5.3. For

D2, let linear u and w > 0 satisfy the weighted linear representation and

suppose thatp ~ gand0 <a < 1. Ifr ~ gq forall r © P then D2 holds

trivially (in the following display, the second equation reduces to 0 = Q).

Assume r + g for some r € P. Then

ap + (1 - ar ~ Bq + (Ql - B)r

# u(ap + (1 — a)r)w(Bgq + UI — B)r)

u(Bq + (1 — B)r)wlap + (1 — a)r)

a(l — B)[u(p)w(r) -— u(r) w(p)]

(1 — a)B[u(q)w(r) — u(r)w(g)] & B

a[lu(p)w(r) — u(r) w(p)] .

alu(p)w(r) — u(r)w(p)] + Cl — a)lu(g)w(r) — u(r)w(q)]

Theratio for 6 is in (0, 1) since r + gq ~ p implies that each term in brackets

has the same nonzero sign. If s + q also, then the preceding ratio does not

change when r is replaced by s. To see this, cross multiply the two ratios,

cancel equivalent terms, and use the fact that p ~ g = u(p)w(q) =

u(q)w( p) to concludethat the ratios are equal. Since t ~ q also satisfies ap

+ (1 —-— a)jt ~ Bq + UT — £6)t, D2 follows. Since D2 = E2, E2 is also

necessary for the weighted linear representation.

With necessity established, Theorem 5.3 showsthat {Al(~), Cl, C2,
C3} implies the other two sets in Theorem 5.6. We complete the proof by

showing that {C1, C2, E2} = {Al(~), Cl, C2, C3} and then that {A1, A3,

C2(>), D2} = {Cl, C2, E2}.

Assumefirst that C1, C2, and E2 hold. To verify Al(~), supposeto the

contrary thatp ~ g,q ~ r,andp > r. Then C2 implies p > sr + 54 and r

~ sr + 3q,so by C2 for all0 < B < 1, Bp + (1 — B)r > or + 59, which
contradicts E2. Hence p ~ q ~ r => p ~ r. To verify C3, assumeits

hypotheses: p > g > r,p > r,andg ~ 5P + sr. By E2 there isa0 < 6B <

1 such that, for all x € P,

39. + 5x ~ B(gp + gr) + (1 — B)x.

With x = pandthenx = rwe getAp + (1 — A)r ~ =P + =q and Xr +

—\)p~ ar + sq when \ = 6/2 + (1 — 6). Suppose wp # Nand up + (1

— p)r ~ 4p + 3q. Then, by Al(~), Ap + (1 — Ayr ~ pp + (1 pdr.

t
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However, this gives a contradiction, since, with p > r, C2 allows \p + (1

— \)r ~ wp + (1 — p)r only if \ = up. It follows that, for all y in (0, 1),

yt -—yr~ p+ 7q et (l— yp ~ ar + 3a
the conclusion of C3.

Assumehenceforth that Al, A3, C2( >), and D2 hold. Since D2 = E2,

we need only consider C1 and C2. The only part of C2 not covered by C2( > )

is(p ~q,p ~r)>p~ dq + — A)r. Assume p ~ g and p ~ r.

Suppose for definiteness and contrary to the desired conclusion that p > dq

+ (1 — A)r. Then, by Al, g > X\q + (1 — A)randr > Aq + (1 — Ayr, 80,

by C2(>), Ag + (1 — Ar > Aq + (1 — A)r. But this contradicts

asymmetry, so C2 holds.

To verify C1, supposeit fails withp > q > randg 4 ap + (1 — a)r

for allO < a < 1. It then follows from A3, C2, and A1 thatthere is a unique

a* in (0, 1) such thatap + (1 — a)r > qforalla>a*,g >ap+(1-
a)r for alla < a*, and either a*p + (1 — a*)r > gorg > a*tp + (1 —

a*)r. Whichever of the latter holds, a contradiction follows easily from

A3. i
Since D2 wasnotused in the last two paragraphsto derive C1 and C2,it

can be replaced in {Al, A3, C2(>), D2} by E2.

5.7. EXTENSION FOR PROBABILITY MEASURES

Suppose SO, C4, and C5 of Section 4.8 hold in the context of the

weighted linear representation with ¢(p, g) = u(p)w(q) — u(qg)w(p).

Then, with the natural extensions of u, w, and ¢ for _X, we have

u(p)w(q) — u(qg)w(p) = o(p, g)

\\ $(x, y) dp(x) dq(y)

\ [u(x)w(y) — u(y) w(x)] dp(x) dq(y)

= J wx dpeJ wi») daca — J uo) aay) | wo) dpc.
This gives the expectational form

pD>qe | udp | wag > | wag | w dp

for the weighted linear representation.

  



6 Applications for Choice Theory and

Risk

Expected utility theory has been used extensively in diverse areas of

decision theory and economic analysis. Recent investigations have demon-

strated the efficacy of generalizations of expected utility in these areas as well

as areas not well suited to the expected utility assumptions. This chapter

presents results for SSB utility and weighted linear utility that illustrate their

analytical and interpretational potential for an array of topics including choice

theory with cyclic preferences, social choice theory, noncooperative games,

multiattribute utility, mean value, stochastic dominance, and risk attitudes.

6.1 VON NEUMANN’S MINIMAX THEOREM

This chapter demonstrates the application of SSB utility theory to a

variety of concerns and problems that have often been addressed from the

more restrictive linear utility perspective of von Neumann and Morgenstern

(1944). Our results also pertain to specializations of the SSB theory such as

weighted linear utility when the conditions needed for such specializations

hold. It is assumed throughout that ¢ or ¢; is an SSB utility functional on

the Cartesian product ofa convex set ofprobability measures withitself.

The next three sections focus on contexts that use von Neumann’s

minimax theorem (von Neumann, 1928; Kakutani, 1941; Fan, 1952;

Nikaid6, 1954; Luce and Raiffa, 1957) to establish the existence of

maximally preferred measures. Section 6.5 then proves the existence of Nash

(1951) equilibria for noncooperative games in which players have SSB

utilities. The final four sections consider generalizations of popular topics in

expected utility, including multiattribute decomposition, stochastic domi-

nance, and risk attitudes. Readers familiar with these subject areas will note

that our analyses only begin to tap their potential.

For use in the next few sections we state an intermediate-level version of

the minimax theorem as given in Nikaid6é (1954). Other versions are noted in

the preceding references and in Geraghty and Lin (1985), which discusses 
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relaxations of linear structure and provides a useful bibliography. Readers
unfamiliar with the notion of a linear topological space may consult a text
such as Kelley (1955) or Kelley and Namioka (1963), or simply note that our
ensuing applications deal only with finite-dimensional Euclidean spaces (R”)
endowed with the usual topology (Fishburn, 1970a, pp. 35-37). A subset A
of a linear topological space £& is said to be compactif every collection of
(open) sets in & whose union includes A has a finite subcollection whose
union includes A. Letfdenote a functional on A, x A, where each A;is a
convex compact subset of a linear topological space £;. Then f is quasi-
concavein its first argumentif, for all x;, x. © A, y € Ax, c GE R, andO

<a cl,

[f(%1, ¥) 2 ¢, f(a, ¥) Sc] = flax, + (1 — a), y) > ec:

J is quasi-convex in its second argumentif, for allx € A1 Yi ¥2 © Ao, ec
€ R,and0 <a < 1,

[f(x v1) < ¢, f(x, 2) < c] = f(x, ay, + (1 -— a)y) <c.

THEOREM 6.1 (von Neumann’s minimax theorem). Suppose A, is a
nonempty convex compact subset ofa linear topological space &;fori =
1, 2 andf:A, X A, = R is continuous in each argument, quasi-concave
in its first argument, and quasi-convex in its second argument. Then

max min f(x, y) = min max f(x, y).
xEA] YEA, YEA XEA]

For Euclidean spaces (R”), continuity off in its first argument has the
usual meaning that if x; - x then, for every y € Ao, f(x;, y) > f(x, Y).
Continuity in the second argumentis defined similarly.

6.2 CHOICE WITH CYCLIC PREFERENCES

As first proved by Kreweras (1961) and, independently, Fishburn

(1984c), SSB utility theory provides a nice resolution of the problem of

choosing onealternative from a finite set when, due to cyclic preferences,

every alternative in the set is less preferred than something else in the set (see

Section 2.7). It says that there is a probability distribution p* over the basic

alternatives that is preferred or indifferent to every other such distribution,

thus providing a basis for choice in terms of binary preferences. As before,

we let P denote a convex set of probability measures or distributions and
denote the convex hull of Q < P by H(Q).

THEOREM 6.2. IfQ is a nonemptyfinite subset ofP, then thereis ap*
€ H(Q) such that $(p*, q) > 0 for every g © H(Q).

Proof. When H(Q)is viewed as the simplex based on Q, the continuity,
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quasi-concavity, and quasi-convexity properties of Theorem 6.1 for ¢ on

H(Q) x H(Q)follow immediately from bilinearity. Therefore the minimax

theorem applies to give

max min $(p, qd) min max $(p, q) (minimax)
pEH(Q) gEH(Q) qeH(Q) pEH(Q)

Hl min max[—¢(q, p)] (skew-symmetry)
q p

il —max min $(q, PD) (algebra)
q p

—max min o(p, qg) (notation)
P q

so that max,[min, 6(p, q)] = 0. Hence $(p*, q) > 0 for some p* andall g

in H(Q). i

Suppose p > g @ $(p, g) > 0 as in the SSB representation. Then

Theorem 6.2 guarantees that the maximally preferred subset of H(Q), {p ©

H(Q):p > q for all g © H(Q)}, is never empty when Q is nonempty and

finite. If > is a weak order on H(Q), as in the weighted linear theory, the

maximally preferred subset is simply the convex hull of the gq € Q that

maximize preference over Q. In the general SSB case with OQ={n,...,

r,}, it follows from bilinearity and

{p © H(Q): o(p, g) 2 0 for all g © H(Q)}

={p © H(Q): S) PIO: rj) > Oforj=1,...,7}

that the maximally preferred subset of H(Q)is a polytope (Grinbaum, 1970;

Rockafellar, 1970)—that is, the convex hull of a finite number of points in

H(Q).
Our next theorem showsthat the existence of maximally preferred

measures in an arbitrary nonempty subset Q ©

P

is tantamountto

a

slightly

modified conclusion of the minimax theorem for Q byitself.

THEOREM 6.3. Suppose @ C O © P.Then $(p*, g) > 0for somep*

€ Qand all q € Q if and only if

max inf (p,q) = min sup ¢(p, q).
pEQ gqeQ qEQ peg

Proof. If the equality holds then the existence of ap* as claimed followsas

in the proof of the preceding theorem. Conversely, if 6( p*, g) > 0 for some

p* and all g in Q, with ¢(p*, p*) = 0, then sup, inf, 6(p, g) 2 O. But,

since $(p, p*) < 0 [i.e., 6( p*, p) > 0] and therefore inf, (Pp, gq) < 0 for

all p € Q,it follows that  
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sup inf ¢(p, g) = 0 = inf o(p*, gq) = max inf $(p, q).
p q q Pp q

By skew-symmetry, ming sup, ¢(p, g) = 0. i

Fishburn (1984c) provides additional commentary on applications of

Theorem 6.3 and choice by randomization when Q contains no maximally

preferred alternative.

6.3 SOCIAL CHOICE LOTTERIES

Theorem 6.2 provides an appealing resolution to the problem of

choosing an alternative from a nonemptyfinite set X on the basis of paired-

comparison voting data when there is no clear majority winner because of

cyclic majorities and/or tied votes. This resolution was first discussed by

Kreweras (1965) and subsequently “analyzed and generalized by Fishburn
(1984d).

Assumethat the voting data for X are summarized by a function v on X

x X with v(x, x) = 0 and, when x ¥ y, with v(x, y) the number of voters

whoreveal a preference for x over y. Let the strict majority relation > yy on
X be defined by

x >My if u(x, y) > vy, x),

_and call x a majority candidate if y >y x for no y © X~\ {x}. Even when

voters reveal preferences based on weak orders, a majority candidate mayfail

to exist. IfX = {x, y, z} and there are three voters with voting orders x >, y

>\ 2,2 >2X >2y, andy >3zZ >3x, respectively, thenx >yy >ywZ >mX.

Beginning with Condorcet (1785), election of majority candidates has

been widely advocated. The problem with majority choice comes wherethere

is NO majority candidate. Various nonlottery methods have been proposed to

resolve such situations (Black, 1958; Sen, 1970; Schwartz, 1972; Fishburn,

1973a, 1977b), but there is no agreement on a best deterministic rule.
Others, including Zeckhauser (1969), Shepsle (1970), Fishburn (1973a),

and Barbera and Sonnenschein (1978), consider social choice by lottery. This

means that a probability distribution on X is used to choose the winning

candidate. Most of these discussions are based on von Neumann-—Morgen-

stern utilities for voters and/or for the electorate as a whole, and they are not

well suited to resolution of the cyclic majorities’ problem.

Kreweras’s resolution effects a nice compromise betweenthe possibility

of no majority candidate and choice by lottery. Given v on X x X, define

skew-symmetric ¢ on X X X by
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p(x, y) = v(x, y) — vy, x).

Thus $(x, y) is the signed vote differential between x andy, withhx >ywy ¢

(x, y) > 0. Extend ¢ bilinearly to P = Px,

o(p,4) = Yd P&)a(y)o, ¥);

and let P* = {p © P:4(p, g) > 0 for all gq € P}. Since ¢ is an SSB

functional on P x P, we know by Theorem 6.2 that P* is not empty.

Moreover, as in the remarks following the theorem, P* is a polytope in P.

The basic proposal of Kreweras (1965) and Fishburn (1984d) is to choose a

winner using a distribution in P*.
This proposal satisfies several properties that are often considered

desirable for social choice. We note two ofthese here. Others are discussed in

Fishburn (1984a, pp. 81-83; 1984d). Wesay that a social choice procedureis

strongly Condorcet (Smith, 1973) if, whenever X can be partitioned into

nonempty A and B such that a >y b for all (a, b) € A xX B,the social

choice from X is in A. In addition, the procedure is Pareto optimalif,

whenever >|, >2,..+, > i8a finite list of weak orders on X suchthat, for

allx, y © X,

o(x, vy) = [fix >sy}| — [{isy >i x},

y will never be the social choice from X whenthere is an x such that x >; y

for alli and x >; y for at least one y. The weak orders >; in such a list need

not correspond to the voters’ actual preference orders, if in fact they have

weakly ordered preferences, and their number 7 need not be the number of

voters. If there are several such lists that satisfy the vote-differential

condition, then our Pareto optimality condition is to hold for each of them.

TueoreM 6.4. Every social choice lottery procedure that uses a

distribution in P* to choose a winner is strongly Condorcet and Pareto

optimal.

Proof. For the strong Condorcet property, suppose that {A, B} is a

nontrivial partition ofXwith a >, b,or $(a, b) > 0, for all a € A and all b

€ B. Weareto prove that (p € P* , b © B) = p(b) = 0. Consider any

lottery p © P for which p(B) = Zp, p(b) > 0. Ifp(A) = 0,then clearly (a,

Dp) = Xy p(x)d(a, x) > 0 for every a € A, sop € P*. If p(A) > 0,let

q(a) = p(a)/p(A) for all a € A with q(B) = 0. Then

6(q, P) = S o(a, x)[g(a)p(x) — gx)p@]
{a,xEA:6(a,x) >0}

+ S) o(b, yigh)p(y) — gv)p)I
{b,yE B:6(b,y) >0}  
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+ SS) $4, b)lg@p(b) — ¢(b)p@)
a€A,beB

=0+0+ ¥ oC, b)p@p(b)/p(A) > 0.
a,b

Therefore $(g, p) > 0, or d(p, g) < 0, so againp € P*. Hencep € P* =

p(B) = 0.
For Pareto optimality, supose >,,..., >, is alist of weak orders on X

that satisfies the vote-differential condition for ¢ and that x Pareto dominates

y: x 2; y for alli, x >; y for some i. Weare to prove that p € P* = p(y) =

0. Suppose p is any lottery in P for which p(y) > 0. Note that d(x, y) > 0

and $(x, a) > ¢(y, a) for every a © X\ {x, y}. (Thelatter inequalities

follow easily from Pareto dominance and the vote-differential condition

under weak orders.)

Let qg equal p except on {x, y}, where q(x) = p(x) + p(y) and g(y) =

0. Then

o(q, P) = o(x, yp) + p(Y)IPO)

+ DS ol, a){[p() + pOe@ — p@pP}
a&X~ {x,y}

+ SS 60, a- p@pvyl
aEX\ {x,y}

= DIVo(x, y)Lp(x) + p(y)

+ S) p@[d(x, a) — o(y, a)]} > 0.

Therefore p € P*, sop © P* = p(y) = 0. is
Observe that if the original definition for @ as the vote differential is

replaced by

d(x, y) _ S(u(x, y) ™ u(y, x)),

wheref(0) = 0, f(1) = 1,j>k = f(s) 2 fk), andf(—j) = — f(s) for
all 7, then Theorem 6.4 holds for P* defined on the basis of the new @, since

no changes are neededin its proof. The lottery procedure with f(j) = 1 for

allj > 0 is concerned only with whether x > yy, ¥ >, or vx, y) = u(y,

xX), and pays no attention to the sizes of strict majorities.

6.4 CHOICE AMONG CHOICE CONTEXTS

This section illustrates the sequential application of the minimax theorem

by considering choice among choice contexts. Suppose a two-stage decision

process unfolds temporally with the selection of one of a numberoffinite
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subsets of alternatives X), X>, . .., X, followed by a choice from the

selected X;. Under the lottery approach, one could adopt the precommitment

strategy of choosing a probability distribution on X = UX; andthen follow

through with the x © X selected by that distribution. Such a strategy is

guided by and justified with Theorem 6.2 in the SSBsetting.

On the other hand, one might consider it desirable to use a two-step

strategy that first selects an X; and then chooses a probability distribution

over the selected X; to make the final choice. When this is done, one would

naturally choose a maximally preferredp from the Py, for the selected X;, but

it may be unclear how _X; oughtto be selected in the first step.

To approach this problem, Fishburn and LaValle (1986) consider choice

among choice contexts, where the set of contexts P is defined by

P = {H(Q): Qis a nonemptyfinite subset of Py}.

In the preceding formulation we wish to choose one of the contexts Py,,..-

Py. To do this, we consider lotteries over contexts. Formally, convex

combinations of contexts p, q © P are defined by

Apt+ (i - Aq = {Ap +0 -Ag:peEpg€ qh,

0O<rd <1,

and are easily seen to be in P. A natural definition of preference between

contexts which ensures that the defined relation > is asymmetric on P is

provided by

P >o q if p > q for some p © p and all qg € q.

Assuming that ¢ on P X P represents > as in Theorem 4.1, and defining ®

on P x P by

$(p, q) = max min¢g(p, q),
pep g&q

weclearly see that, for all p, q € P,

P >od @ P(p, q) > 0.

Because of this representation, which looks suspiciously like the usual SSB

representation, we work with ® in what follows.

Unlike ¢ on P X P, ® on P X P is not generally an SSB functional.

However, it is skew-symmetric and has vestiges of bilinearity that appear as

conclusions (c) and (d) in the following lemma.

Lemma 6.1. For allp, q,r © Pandall0 <d <1:

(a) O(p, q) ming max, $( Pp,Q).
(b) (q, p) — P(p, q).
(c) @(Ap + (i — Aja, r) > AP(p, r) + C1 — APG(G, r).

il
ll  
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(d) Ap + (1 — Aja, vr) is continuous in d.

Proof. (a) This follows directly from Theorem 6.1, since @ on p X q

has the requisite properties.

(b) Using (a) and skew-symmetry for ¢, we get

#(q, p) max min ¢(qg, p) = min max ¢(q, p)
g Bp p q

min max [—¢(p, qg)] = —max min ¢(p, @)
p q p q

—(p, q).

(c) Conclusion (c) follows from

@(Ap + (1 — Aja, r)

= max mind(Ap + (1 — A)qg, r)
Bq r

II min max [A¢(p, r) + (1 — A)d(q, F)]
Fr |

min [\ max $(p, r) + (1 — \) max (gq, r)]
r p q

WV min [A max $(p, r)] + min [(1 — A) max ¢(q, r)]
r p r q

AP(p, r) + (1 — ANG, r).

(d) Suppose p = H({pi,.--, Pot), d = ACG, .--, Qo}), andr =
A({r;, ..., re}). Let p, q, and r be represented by the corresponding

simplexes in the Euclidean space with coordinate set {p;,..., 7r-}. Also letf

and g denote the continuous functions over r defined by f(r) = max, $(p, 7)

and g(r) = max, $(qg, 7). Then, as in the proof of (c),

P(Ap + (i — Ada, r) = min [Af(r) + A — Ag).

It is easily seen that the right side of this expression is continuous in ) since

Mir) + (1 — Ag”)is jointly continuous in d and r. |

Although ® is not an SSB functional, its properties in Lemma 6.1 are

sufficient for application of Theorem 6.1 to show that for every nonempty

finite set of contexts there is a p* in the convex hull of those contexts such that

@(p*, q) > O for every q in the convex hull.

THEOREM 6.5. If Q is a nonempty finite subset of P, then

max min ®(p,q) = min max ®(p, q) = 0.
pEHQ) aEHQ) gEH(Q) pEH(Q)

Proof. Suppose Q = {p;,..., Pr} and let a = (qj, ..., ay)
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represent L a,;p; in H(Q), with ®’(a, B) = $C a;p;, D B;p;). Parts (b), (c),
and (d) of Lemma 6.1 imply that ®’ is continuous in each argument, quasi-

concave in its first argument, and quasi-convex in its second argument.

Hence, by Theorem 6.1, max, ming ®’ (a, 6) = ming max, ®’ (a, ). It then

follows from skew-symmetry that max, ming ®’(a, 8) = 0. a

Theorem 6.5 suggests two ways of selecting a context from {p),...,

p,} when one ofthese is required from thefirst step of a two-step strategy.

Thefirst way is to use a lottery p* on {p;,..., Py} for which ®(p*, q) > 0
for all lotteries q on {p;, ..., P,}. Werefer to this as the naivestrategy.

The second way involves a look-ahead feature that acknowledges that once a

p; is selected the final choice will be made by some p;in

m(p)= {pi © pi: (p,q) 20 for all g; € pj}.

For any p € it is easily checked that m(p) € P and that m(m(p)) = m(p).

In view of this the second way, referred to as sophisticated, says to use a

lottery p’ on {m(p;), ..., ™(p,)} for which &(p’, q’) > 0 forall lotteries

q’ on {m(p,), ... , (p,)} to determine the p; or (p;) selectedin thefirst

step.

Fishburn and LaValle (1986) suggest that the sophisticated strategy may

be preferable to the naive strategy in the two-step case, and they give a simple

example showing that, when > is intransitive, each of the precommitment,

naive, and sophisticated strategies can give different results. They also note

that if > is a weak order, so the weighted linear modelapplies, then the three

strategies are essentially equivalent.

6.5 NASH EQUILIBRIA IN NONCOOPERATIVE GAMES

Linear utility theory was developed for use in the theory of games by

von Neumann and Morgenstern (1944) and has been widely adopted for

game-theoretic analyses in the intervening years. Kreweras (1961) was

amongthefirst to show that certain results of game theory can be established

using much weaker assumptions aboutplayers’ utilities. In particular, using a

proof exactly analogous to Nash’s (1951) proof for the existence of equilibria

in finite noncooperative games, he proved that every finite noncooperative

game with SSB utilities for the players has a Nash equilibrium. This proof

wasrediscovered by Fishburn and Rosenthal (1986), who give an example of

a game in which a player’s equilibrium mixed strategy not only serves the

usual strategic purpose of randomness vis-a-vis other players but also

resolves the intrapersonal problem caused by cyclic preferences over pure

strategies.

Although there are several theoremsfor the existence of equilibria when 
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player’s preferences are assumed tosatisfy conditions that are weaker than
those of the SSB theory (Mas-Colell, 1974; Shafer and Sonnenschein, 1975;
Yannelis and Prabhakar, 1983; Toussaint, 1984), their proofs rely on fixed-
point theorems that are more advanced than Brouwer’s theorem used in the
Nash-Kreweras proof.

THEOREM 6.6 (Brouwer’sfixed-point theorem). Le S, = {x © R”:||x||
< 1} denote the unit sphere in R". Iff is a continuous function from S,,
into S,, then f(x) = x for some x € S,,.

Browder (1983) recounts historical developments involving this theorem
and subsequent generalizations, and Milnor (1978) gives an elementary proof
and references to other proofs. More advanced fixed-point theorems are
discussed by Kakutani (1941), Fan (1952), and Smart (1974), among others.

__ To formulate Kreweras’s theorem, assume there are n > 2 players and
that player i has m; € {1, 2, ...} puire strategies. Let P; = {(Dits + + «5 Dim):
Pir 2 0, Xo Pic = 1}, player’s i’s simplex of mixed strategies, and let z,, =
(0,..., 0, 1 (in position 0), 0, . . . , 0) denote the oth purestrategy of i, so p;
© P;can be written as pj = Ly DigTig = (Diy... , Pim;). The set of mixed
strategy n-tuples for the players is P0) = P; x - +--+ x P,. We let _X denote
the set of pure strategy n-tuples and take P = Py. For convenience we write
(Diy. 5 Di-ts tis Ditty » » » » Dn) in P® as (p; #;) and observe that

(3 ti) = (>: y tai) = Vi fic(p; Tic).

Assumethat for? = 1,..., 7, ¢; is an SSB functional on P x P that
represents i’s preference relation >; on P. For p, g € P®[i.e., p = (P1,
-++ Pn) and q = (q1,..-, Gn)], we write $;( p, g) to denote ¢;(p’, q’)
when p” and q’ are the distributions in P induced by p and q,respectively,
under the usual assumption of independence among players.

Werefer to the foregoing situation as an SSB game. In the game, p =
(D1; .~. 5 Pn) in P°is said to be a Nash equilibrium if, for all i and all ¢t; €

is Pi(D, (Dp; t;)) S 0; that is, p’ >; (p; ¢,)’ for all i and t;. At a Nash
equilibrium, no player can increase his or her own preference by

a

unilateral
hange in strategy.

THEOREM 6.7. Every SSB game has a Nash equilibrium.

Proof. For each p = (pi, ... , Pn) in P° let 7;,(p) = max{0, o;((p;
Tio), P)} for all i and o. The 7;, are continuous in p. Define T: P® > P° by

(p) = p*, where

DF = | oy neoyn| / : + S nto] .

o
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Since T is continuous, and since there exists a one-to-one continuous mapping

from P° onto a unit sphere of suitable dimensionality, it follows from

Theorem 6.6 that T has a fixed point (i.e., T(p) = p). We show that the

fixed points of T are the Nash equilibria of the SSB game.

Supposefirst that p is a Nash equilibrium. Then, for all i and o, o;( D,

(D3 Tic)) > 0, 80 O(( D3 Tic), P) < O by skew-symmetry, and therefore

Tio( PD) = 0. Hence p* = T(p) = Pp.
Observe that, given p € P®, for each i

0 = oi(P; P)=9%i P; S) Piskia }» P = S Pichi(D; Tio)s p).

Therefore, there is a o suchthat p;, > 0 and $((3 Tis), P) < 0, OF Dis > 0

and 7;,(p) = 0.

Now suppose p is a fixed point of T, so p* = p. Then for the o at the

end of the preceding paragraph, pj, = Pig = Dis/[1 + 2,7,p)], which

forces 7;,(p) to 0 for all ». This is true for each 1. Hence, for all 7 and o,

Tip( PD) = 0, 80 $/((D3 Tio), P) < 0, or $:( Ps (D3 Tio)) 2 9. Since (Pp, CP;

t;)) = D oticbi(Ds (D3 Tia))s it followsthat ¢;(p, (p; ti) 2 0 for all 7 and 4,

and hence that p is a Nash equilibrium. i

6.6 MULTIPLE ATTRIBUTES

Despite a great deal of research on decompositions of multiattribute

linear utility functionals (Keeney and Raiffa, 1976, and other references in

Section 1.7) and the aggregation of linear functionals, these topics are

relatively open for nonlinear theories. One example of the latter topic is

Chew’s (1983) application of weighted linear utility to the measurement of

income inequality; another example (Fishburn and Gehrlein, 1987) examines

generalizations of Harsanyi’s linear aggregation theorem (Harsanyi, 1955;

Fishburn, 1984e) for SSB functionals.

In this section we prove a decomposition theorem for ¢ on Py when x.

= X, x X, and noteits natural extension to more than two attributes along

with its specialization whenpreferencesare transitive. Additional comments

are given by Fishburn (1984f), who identifies conditions that yield ¢(p, q)

= $,(D1, G1) + ¢2(p2, G2) in the two-attribute case.

Recall from (1.12) that when X = X; X °* °° X X, and p; is the

marginal distribution on X; induced by p in P = Py, the X; are value

independentif for all p, g © P, (pi = qfori=1,...,n)>p-~ q.

Given linear u on P, value independence implies u(p) = “4 (pi) + +

Un( Dn) With each u; a linear functional on P; = Px,. The situation for SSB

utilities is not as simple.
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THEOREM 6.8. Suppose X = X, X X», o represents > on P = Py as
in Theorem 4.1, and the X; are value independent. Then there are SSB

functionals 6; on P, X P, and ¢, on P, x P, and a bilinearfunctional p

on P, X P, such that, for all p, q © P,

(Pp, @) = O:(P1, G1) + $2(P2, G2) + 0(D1, G2) — (G1, D2).

Moreover, with ¢ fixed, $1, 62, and p are unique up to transformations

$, (Pi, 91) = O1(P1, G1) + (D1) — 71(Q)),

5 (D2, G2) = $2(P2, G2) + T2(P2) — 722),

P' (Pi, Pr) = PCPi, Pr) — 71(P1) + 72(D2) + B,

where 1, and 7, are linearfunctionals on P,; and P>, respectively, and b €
R.

This decomposition extends straightforwardly to X = X; xX --- x

X,. Value independencein the n-attribute case gives

(Pp, g) = S) di(Di, Gi) + S) Loy(Pi, 9) — py(Gi, Pi)
i=l] i<j

with each ¢; SSB and each p;; bilinear. The proof method for Theorem 6.8

applies to the general case.

The transitive specialization of the theorem uses the modified weighted

_ linear representation of Theorem 5.4 in Section 5.5.

THEOREM 6.9. Suppose the hypotheses of Theorem 6.8 hold and that

_ there are linearfunctionals u and w on P that do notvanish at the same

point and satisfy p > q # u(p)w(q) > u(q)w(p) for all p, gq € P. Then

there are linear functionals u, and w; on P, and u, and w, on P> such

that, for all p € P,

u(p) u;(P1) + uA(p2),

w(p) wi(D1) + W(p2).

Moreover, with u and w fixed, the u; and w; are unique up to
transformations uj = u, + a, uy = u, — a, Ww, = Ww, + b, and w; = wy

b, where a, b © R.

Value independence with X¥ = X,; xX - ++ x X,, in the setting of

Theorem 6.9 gives u(p) = 2 u;(p;) and w(p) = ¥ w,(p;).

____ Weproveonly the representation parts of the preceding theoremshere.

The uniqueness proofs can be found in Fishburn (1984 f).

Representation Proofof Theorem 6.8. We begin with the observation

that ifp and p’ have the same marginals, say (p,, p2), and if g and q’ have   
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the same marginals, say (q;, q2), then (p, g) = $(p', a ). Assuming the

hypothesesof this claim, value independence gives 5sp +5q' ~ sp’ + 54:

The SSB representation and bilinearity then imply

= 46 (4p + 34’, 5p’ + 39)

= o(p, gq) + (q’, ga) + o(p, p') + $(@', D’).

Value independencealso gives g’ ~ q and p ~ p’; hence ¢(q’, q) = O(D,

p’) = Oand, by skew-symmetry, 6(p, g) = $(p’, q’).
As a consequence, ¢ depends only on the marginals, and we shall

henceforth let (1, D2) in P; X P, denote the distribution p € P withp,

Xo) = Di(%1)P2%2) for all (x1; X2) € r¢ x X>. Fix (a, a) € AY x Xx) and

let (a), a) stand for the degenerate distribution in P with sure outcome (a,

a), and similarly for a; in P; and a, in P. By the preceding observation,

@ (SP, Pr) + 3(m, a), 3(M1, Q2) + 3(m, a))

= (SP + 541, sP2 + 542),

(5% + sas, 5h + +))

=$(4(p1, @) + $(a1, Pr), (Gi, &) + 7(41, %)).

Since the first and third terms here are equal, bilinearity and ¢((q, a), (a;

a)) = 0 yield

b((Dis Pr)s (Gis G2)) = O((P1s &), (Gis &)) + GCG; D2), (Qi, G2)

+ (Pi, &), (41, G)) + OCA, Pr), Gis %))

— o((Di, D2); (a1, 4)) — (1, %), (Gis %))-

Two similar applications of our initial observation give

$((Pis Pa), (@1, 4)

=

(D1, 4), (@1, 4) + OCA, Pr), (1, 4),

((a1, a2), (G1, G2)

=

O(a, 2), (G1, 4) + (1, &), G1, G2).

Substitute these into the preceding equation and define

b(P1, G1) = (Dis 2); (G1, 4),

b2(Pr, G2) = $((A1, D2), (Ai, 2),

o(N, M2) = (1, &), Gi, 72)) — OC&);

(a, @)) — $((@1, 42), (G1, 72))

to obtain the decomposition displayed in the theorem. |

Representation Proof of Theorem 6.9. Given the hypotheses of the

theorem,let ¢(p, g) = u(p)w(q) — u(g)w(p). Define $1, 2, and p on the

basis of fixed (a), a) as in the preceding proof. When their defining right

Il
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sides are decomposed with = uw — uw and the uw termsare rearrangedin

the representation of Theorem 6.8, we get

o(p, 7) = [ui(pi) + u2(p2)ILwilg:) + we(q2)]

— [u,(91) + U2(g2)][wi(pi1) + we(p2)],

where 4,(P1) = u(Pi, a2) — Ua), a2), U2(P2) = Ula, Pr), Wi(P1) =
W(P1, 42) — Wa, a), and w2(p2) = wa, Po).

Bythe initial observation of the preceding proof, u and w depend only

on the marginals, and it follows that u(p1, D2) = u( pi, a) + u(a;, Pr) —

U(a;, A>) = Uy( Py) + U2(p2) and similarly for w. im

6.7 MEAN VALUE AND CERTAINTY EQUIVALENCE

Throughout the rest of this chapter we assume that X is a

nondegenerate interval in R. We will often view X as a monetary variable

with preference increasing in x © X.

The present section discusses a series of increasingly general notions of

mean value, motivated in part by certainty equivalence in utility theory

(Sections 1.6, 2.8, and 3.11). As will be evident, our focus on mean value

constitutes a move away from specialized concerns of preference theory, but

we make connections to this theory in process. Chew (1983) includes an

excellent introduction to the topic.

It will be assumed that P is a convex set of countably additive probability

measures on the usual Borel algebra of subsets of X (Halmos, 1950;

Fishburn, 1970a, p. 131). We let m, with or without subscripts, denote a

mapping from P into X and will interpret (p) as the mean value of p in a

designated sense.
Three increasingly general notions of mean value are defined by

m,(p) = |x dpi),

map) = f-! |fe) ap| ,

mp) = f-! | 1.ereeo dps) |) 8) “700

where f:X — R is continuous and strictly monotonic and g:X — R is

continuous and nonvanishing except perhaps at a closed end point of X

(Chew, 1983). my is the linear mean (expected value), m, the quasilinear

mean, and m; the weighted quasilinear mean. The quasilinear mean was

axiomatically characterized by Nagumo (1930) and Kolmogorov (1930) for

simple uniform measures and extended by de Finetti (1931a) to arbitrary
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simple measures. The weighted quasilinear mean was axiomatized by Chew

(1983). Axiomssimilar to those of Chew and de Finetti will be noted shortly.

The direction off’s monotonicity for 77, and m; is immaterial. Indeed,

m, and m, are unchanged when /f is replaced by —/f, or g by —g. More

generally, 77is invariant only under nondegenerate linear transformations (f

~ af + b; a, b © R; a # 0) of f, and m; is preserved only under paired

transformations {f’ = [af + b]/[cf + d], g’ = [ef + d]g} with ad # be

and cf + d nonzero on the interior of X. Problems with the existence of

m,(p) when X is unbounded can always be avoided by suitable boundedness

conditions onf and g for m, and m; (Chew,1983; Fishburn, 1970a, Chapter

10, 1982a, Chapter 3).
For utility theory, m(p) is usually identified with an individual’s

certainty equivalent c(p) for measure p in monetary contexts. m, = c for

expected value maximizers, m2, = c for a von Neumann-—Morgenstern

expected utility maximizer with increasing utility function u = f, and m3 = c

for Chew’s weightedlinear utility representation with g = wand f = u/w

(Section 3.6, Theorem 5.3).

In a further generalization of mean value that provides a correspondence

to certainty equivalence in SSB utility theory, Fishburn (1986b) considers an

implicit characterization of m(p) as the unique solution of | xh(x, m(p))

dp(x) = 0. This characterization presumes that A is skew-symmetric and

satisfies the two additional properties of

Uniform Monotonicity: Either h(x, y) increases in x for every y © Xo

(interior of X) or h(x, y) decreases in x for every y © Xp.

Ratio Continuity: If x # y, then h(x, t)/h(y, t) is continuousat tf = x

and at all ¢ # yin Xo.

Depending on P, h mightalso satisfy a boundedness condition. The implicit

characterization reduces to mif h(x, y) = f(x) — f(y), and to m;if h, y)

= [f() — f(y)le()g(y). However, since m3 does not presume the

equivalent of uniform monotonicity in Chew’ssetting, his generalization is

not strictly a special case of the implicit mean characterization. This appears

true also for a different generalization considered in Chew (1984).

The implicit characterization is axiomatized in Fishburn (1986b) by

seven axioms for m: P > X underthestructural assumptions that P contains

every one-point measure and is closed under conditional measures on

intervals within _X. We let \* = (1 — A)/\ for 0 < A < 1 andlet >, be the

first-degree stochastic dominance relation defined by p >1 q if p(X

(—2, y]) < g(XN (-~&, y)) forall y © X with < holding for at least one

y. The axiomsare, for all p, gq © P, all x, x1,...,%5 © X, alla, B, y, 6, 4

€ (0, 1), and all intervals A € X:  
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M1. Certainty Matching: p({x}) = 1 = m(p) = x.
M2. Convexity: m(p) = m(q) = m (sp + 3q¢) = m(p).
M3. Betweenness: m(p) < m(q) = m(p) < m(ap + (1 — a)g) <

m(q).
M4. Continuity: m(p) < x < m(g) > mp + (1 — Ng) = x for

some0 <r < 1.

M5. Dominance: p >; g = m(p) > m(Qq).

M6. Cancellation: [x; < x. < *3 < x4 < Xs, %. = max; + (1 —

4), x5 = m(Bx; + (1 — B)X/), x4 = myx} + (1 — xd), 2
= m(6x; + (1 — 6)x)), x4 = m(Ox; + (1 — @)x)] = a*B*y* =

6*6*, where x’ denotes a one-point distribution.

M7. Truncation: m(p) < x = M(Pty,0)nx) < x forsome y © X;x

< mp) > xX < M(xnx) for some y © X.

All of these hold for m,, and all but M5 hold for m3. Thefirst five

axioms are straightforward and, except perhaps for M5, seem like natural
conditions on any reasonable notion of mean value. The cancellation axiom

M6issuggested directly by Lemma 4.12. It is needed for skew-symmetry and

appearsnot to be replaceable by a simpler condition, although C3 (symmetry)

sufficed in the SSB theory with its richer P x P structure. The truncation
axiom M7 serves much the samepurpose as truncation axioms considered in

Sections 1.8 and 4.8. .
The essential difference between m, m; and the implicit characteriza-

tion lies in their independence axioms. We use M6for the implicit case. The

quasilinear independence axiom (cf. A2 in Section 1.4) is

m(p) = m(q) = m(iAp + (1 — A)r) = mg + GA —- A)Dr),

and Chew’s independence axiom for m; (cf. D2 in Section 5.6) says that

[m(p) = m(q) # m(r), m(Bp + (i —- Br) = m(yvq +- yr))

=> m(Bp + (1 — B)s) = mM(yq + U — y)s) foralls € P.

The implicit form reduces to m3; when this axiom is adopted, and m; reduces

to m, when the quasilinear independence axiom is imposed.

The principal implications of Mi-M7 are summarized in the following

theorem (Xp = interior of X).

THeoreM 6.10. Suppose m:P — X. Then m satisfies M1-M7 if and

only if there is a skew-symmetric, uniformly monotonic, and ratio

continuous h.X x X — R such that, for all (p, y) © P xX Xo, § h(x, y)

dp(x) exists and

m(p)=ye [_ hex,») dp(x) = 0.
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Moreover, excepting h(a, b) and h(b, a) when X = [a, b], h’ satisfies the

representation in place of h if and only if h’(x, y) = kh(x, y) for some k

# Oandallx,y © X.

The proof (Fishburn, 1986b)is patterned after the SSB proof in Chapter

A but is simpler. When the SSB representation holds, c( p) is the solution of

| o(x, c(p)) dp(x) = 0. Hencein the SSB context, m = c requires h(x, y) =

ko(x, y) for some k # 0. With m = c in the SSB context, m(p) > m(q)

does not necessarily imply p > qg, and m(p) = m(q) does not entail p ~ q.

In fact, preference reversals (Sections 2.8 and 3.11) in the general sense

occur precisely when p > g and m(q) > m(p).

6.8 STOCHASTIC DOMINANCE

In Section 1.6 we noted that first (> ,) and second (> 2) degree

stochastic dominance correspondto greater expectedutility for increasing and

increasing concaveutility respectively. A similar result for SSB utility based

on the behavior of (x, y) on its first argument will be proved shortly as

Theorem 6.12.
Weassumein this section that P = Py and, in this simple measures

setting, will use Abel’s formula for summation byparts,

n n~-t j n

Ss a;b; = Ss) (x aj) (bj — bj+1) + On Sy a; (a;, b; © R),
i=l j=l i=l i=l

in our ensuing proofs. Stochastic dominance analyses for more general

probability measures and higher degrees of stochastic dominanceare included

in Fishburn (1976b, 1980b)forlinear utility and in Chew (1983) for weighted

linear utility. Machina (1982a) proves several results for the first- and

second-degree relations in his nonlinear smooth utility context (Section 3.4)

for probability distribution functions on X = [0, M].

Wealso assumethat o(x, y) = $(p, g) when p(x) = q(y) = 1. Let $,

be the class of all skew-symmetric ¢ on X X X that increase in the first

argument for every fixed value of the second argument, andlet ®, be the class

of functions in ®, that are strictly concavein the first argument;that is, (x #

y,0<r< 1) = Ad, z) + A — AOCY, Z < AX + C1 — APY, 2). It is

natural in the monetary setting to assume that @ € ®, . Moreover, so long as

p and q have certainty equivalents c( p) and c(qg) in the SSB case (whichis

ensured by continuity), we must have c(p) > c(q) whenever @ € @,and p

>, q. In conjunction with our later theorem, this prohibits preference

reversals between p and g whenever p >, @q.  
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THEOREM 6.11. For all ¢ © , that are continuous in the first
argument, and all p, q € P,

P>1q = c(p) > c(q).

Proof. Assume p >, q with @ € 4%, continuous inits first argument,
and let x = c(p) and y = c(q). Alsoletx, <x) <--+- < xX, be the support
points of p and q and set p; = p(xi), gq; = q(x;). [p* denotes the kth
cumulative of p, with p* = p*(x;).]

Supposeto the contrary of the theorem that y > x. Since d € @1, PCY,
X;) > (x, x;) and therefore (x, x) > (x; y) forall i by skew-symmetry.
Then, by the definition ofc,

DdHi») = 0 = Y pide, x) > Y pid, y),

so that & (gq; — p;)(x;, y) > O. It follows from Abel’s formula that

S (a! — pb: ») — bien WB 0.
i=l

However,this is impossible since $(x;, y) — $(%j41,.¥) < 0 for each i and g }

2 p; for all i with g} > p! for somei. zi
Just as there is doubt about the general concavity of u for linearutility,

we would not generally expect ¢ to be concaveinits first argument in the SSB

context. Our analysis of derivatives in the next section says more aboutthis.

However, ¢ € ®, does have nice implications for stochastic dominance.

THEOREM 6.12. For all p, q © P,

P>1q¢ @ o(p, gq) > Oforalld € %,

P>2.q ° o(p,q) > 0 forall ¢d € $,.

Proof. Since $(x, y) = u(x) — u(y) is a special case for ¢, the linear

utility stochastic dominanceresults say that if ¢(p, q) > 0 for all d € 4;

then u(p) > u(q) for all uw in the corresponding linear class and therefore p

>, @.
: To prove the converses (=), let x) < x. < - + + < x, be the support

_ points ofp and q. Fornotational convenience, take p; = p(x;), Dp; = p'(%),

(DP? = px), gi = 9%), a} = Q'%i), a? = gx), vy = Oj, x;). Then,
using Abel’s formula twice, we have

o(p, a) o(p, g) — O(4, @)

x (Di — qi) » Qjill
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n-1 n n

— a 1 —
= S (p; q;) S Qjrij > QjVieij

f=] j=l j=l

n= n

= > (qi — p}) S) Qj(vi41,7 — Vy) [>]
j=li=1

_S (gi p! yg, itty TMH
=) (q; _ D; \MXi+1 — xj) Ss) qj —

a Xi41 — Xii=1

n~2 i

= Db Gi — PiOn+1 — Xe)
k=1i=l

; Ss Viet ~ Vy Vi42,7 7 YiFLs; _
j=l Xi4) — Xi Xi42 — Xi+t

n~1

+ Sh — DiCr+1 — Xe)
k=]

Xx Unj ~ Un-1j¥ a (“
j=] Xn ~— Xn-1

n-2

=> (G74, ~ P74)
i=]

. x Viet 7 Yip Vit2,7 7 YiFd ysj _
Xit-, —~ Xi Xit2 —~ Xi+t

 

j=l

4 (g2 — p? . Unj ~ Un-i,j
(Gi, Pr) » qj X, — Xn-4 ,

n numj=l

Theline identified by [> ] shows that ¢(p, q) > 0ifp >, qand¢ € ®,,

since thenall its terms are nonnegative andat least one mustbe positive. The

final expression implies ¢(p, q) > Oifp >2q and @ € ®», since then each

gq; - p; is nonnegative, at least one is positive, and every uv term is

positive. Bi
Several other SSB stochastic dominance results are noted in Fishburn

(1984c, Section 5).  
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6.9 RISK ATTITUDES

Weassume in this final section that X = R and that ¢ on X x X has

continuous derivatives through the second order. Welet ¢;(x, y) = 06(%,y)/

Ox, ha(x, y) = Ab, Y)/OY, 11%, Y) = Abi, Y)/dxX, bX, y) = Adi,
y)/dy, and so forth. Skew-symmetry and the derivatives assumption imply

o(xX, y) = —o1(y, x),

hol(X, ¥) = — on(y, x),

dalX, Y) = bn(X%, ¥) = —d2(¥, X) = -—on(y, X).

Because of these we focus on 4, $1;, and ¢;2. We comment on ¢, and $1,

first and then examine the mixed derivative.

A main feature of SSB in comparisonto linear utility is its much greater

potential to reflect different risk attitudes. For example, each fixed y gives

rise to a risk attitude profile for @(-, y) in terms of $;(-, y) and $1;(-, y) in

much the same way that uw“and u®do this for the linear case discussed in
Section 1.6. As y changes, these y-conditioned profiles can change in various

waysthat reflect different attitudes that depend on comparisons between x

and the conditioning value of y. An example occurs when each ¢(-, y) is

convex (risk seeking) for small x and concave (risk averse) for larger x with

the inflection point between the two regions changing as y changes. In the
linear case with ¢(%, y) = u(x) — u(y), all y-conditioned profiles are

identical.

With A a small positive amount, ¢; > 0, ¢,(%, y) — $:(y, x) < O and

$1,;(%, ¥) < 0 correspond to

o(x + A, y) > (x, y),

d(x, y) > o(x + A, y + A),

26(x + A, y) > (xX, y) + (x + 2A, y),

respectively. The first of these follows fromx > y= x > yifx << y<qxt

A, but not otherwise. Hence the assumption that ¢ increases in its first

argumententails more than the mere presumption that preference increases as

X increases. Given ¢, > 0, the second inequality holds whenever x > y if

¢(x, y) > O shrinks when the same positive amountis added to both x and y,

thus indicating that the lottery-based differentials contract for equal differ-

ences in their arguments whenthe arguments get larger. If @ depends only on

the difference between x and y then d(x, y) = (x + A, y + A) and (x, y)

= @;(), x) for all x and y. Using x* to denote the one-point measure with

outcome x, we see that the third inequality is tantamount to
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o(x + A, y) > (5x* + 5(x + 2A)*, y),

which expresses a notion of conditional risk aversion in the SSBsetting.

The corresponding expression for a positive mixed derivative, ¢i2(x, y)

> 0, is

o(x, y) + Gx + Avy + A) > Oe + A,y) + O(%, yy + A).

But note also that ¢,.(x, x) = 0 since d(x, y) + On(y¥, x) = 0. The

following theorem reveals important connections of $1, to specializations of

dQ.

THEOREM 6.13. For all x, y © X:

(a) dio, y) = —b11(%, y) if and only if ¢ depends only on x — y.
(b) If > on P is a weak order, then $(x, yoo, y) = —bi,

Y)bi Cy, X) + GX, x)Oi(Y, Y).
(c) dy = 0 if andonly if the linear utility representation holds.

Proof. (a) Let z = x — y and define v on R? by u(z, y) = $(x, y). By

the chain rule with ¢,(x, y) = v;(z, y) dz/dx = v,(z, y),

Pe>| az joe >|
OZ ay oy

= —vy(Z, ¥) + vz, ¥) = —On(% ¥) + lz, Y).

Therefore ¢;. = — $1, if and only if v;. = 0. If ¢ depends only on z so that

u(z, Y) = v(z), then vj, = 0. Conversely, suppose vy. = 0. Then v;(Z, y) =
2(z) for some functional g. Let G(z) be such that dG(z)/dz = g(z). Then

d[u(z, y) — G(z)\V/dz = ui(z, y) — g(z) = 9,

and therefore there is a functional f such that

v(z, y) — G(z) = f(y) for all z and y.

Hence, by the definition of v,

o(x, y) = Gx — y) + fYY) for all x and y.

Let y = x. Then, since ¢(x, x) = 0, f(x) = — G(0) for all x, so f is

constant and ¢@ depends solely on x — y.

(b) Suppose (x, y) = u(x)w(y) — uC y)w(X), as in the weighted linear

model for weak order in the SSB setting. Then ¢1.(x, y) = u’ (X)w’(y) —

u’(y)w’ (x) [primes denote derivatives]. It follows that

(x, VOX, Y) + bX, y)bi1V, X)

= (x, voix, Y) — Oi(%, V)b2(*, Y)

b12(x, ¥)
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=[ux)w(y) — uly) w(x)lu’ (x) w’(y) — u(y) Ww’ (x)]

—[u'(x)w(y) — u(y)w' (x)[u(x w'(y) — u(y)w(x)

=[u(x)w' (x) — u’(x) wx)[u(y w’(y) — u(y) wy)]

= (x, X)Gi(), ¥).

(c) If (x, y) = u(x) — u(y), then ¢,(x, y) = u’ (x) and dy (x, y) =
0. Conversely, Suppose ¢1;2 = 0. Then ¢;(x, y) = v(x) for some function-
al v. Let V(x) have derivative v(x). Then d[¢(x, y) — V(x)]/dx = 0, and there-

fore there is a functional f such that ¢(x, y) = V(x) + f(y) for all x and y.

Since $(y, y) = 0, f(y) = — V(y), and therefore d(x, y) = Vix) -

V(y). i
Fishburn (1984g) gives specific examplesto illustrate parts (a) and (b) of

Theorem 6.13. The example for (a) is

  

 

    

  

  

  
   

o(x, y) = 1 — exp{-(x — y)? — V2(x — y)} forx By.

For fixed y, #(-, y) begins convex and then changes to concave. The

inflection point for y is atx = y. The example for (b) has

u(x) = —e* and w(x) = 2/2 + tan7!(x).

In this case the region for ¢;, > 0 is a proper subregion of the (—, —)
quadrant with ¢;,; < 0 elsewhere except on the region’s boundary. In

addition, ¢; > 0, and dp2(x, vy) > 0 e x> y.

 



7 Additive Expected Utility

There are two standard formulations for theories of decision under

uncertainty that represent preference between decision alternatives by

expectedutilities based on subjective probability as well as utility. The first is

Savage’s formulation in which an alternative is an act that assigns an outcome
to eachstate in a set of states of the world. The seconduseslottery acts, each

of which assigns a simple lottery over outcomesto each state. This chapter

explains these formulations in detail and then presents traditional normative

theories of subjective probability and expected utility developed by Savage

and others. Alternatives to the traditional theories are discussed in the next

two chapters.

7.1 DECISION UNDER UNCERTAINTY

In the last three chapters of the book we extend ideas of earlier chapters

to the realm of decision making under uncertainty in conjunction with new

considerations involving subjective probability. The present chapter de-

scribes Savage’s (1954) additive expectedutility theory and related develop-

ments, including basic theory of subjective probability. Much of the work

discussed here was completed by the mid-1960s. The next chapter raises

questions about assumptions behind additive expected utility that were not

addressed in Chapter 2. In parallel to Chapter 3, it then reviews generaliza-

tions of additive expectedutility that, with a few exceptions, were developed

since 1980. The final chapter concludes with detailed analyses of generaliza-

tions of Savage’s theory that presume neither transitivity nor the reduction

principle but adopt his sure-thing principle and the additivity of subjective

probability.

Because Savage’s theory is often referred to as ‘‘subjective expected

utility’’ or simply ‘‘expected utility,’’ a word about our designation ‘‘additive

expected utility’ (which I have used to mean something else in Fishburn,

1970a) is in order. In the traditional designation, subjective refers to the 
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additive subjective probability feature of Savage’s representation. However,

alternatives to Savage’s theory have been proposed in the past few years that

also use subjective probability and an expectation operation but do not require

probabilities to be additive (see Sections 8.2 and 8.3). Because of this I now

find it more suitable to use additive as a modifier for theories of decision

under uncertainty that use additive subjective probability, and to employ

nonadditive for ones that do not assume that subjective probability is

necessarily additive.
In addition, various other modifiers will be used to identify whether a

theory’s representation uses an expectation operation and whether its

formulation uses ‘‘extraneous’’ probabilities for scaling purposes to construct

lotteries on outcomes or on acts. In this part of the book, expected utility

refers only to aformulation like Savage’s that is devoid ofdirect reference to

probability of any sort. Thus, for Savage, we speak of ‘‘additive expected

utility’; in the next chapter we encounter ‘‘nonadditive expected utility,”’

‘‘additive nonexpected intensive utility’’ (Allais), and so forth. The modifica-

tion of Savage’s theory considered in Section 7.6, which uses the extraneous

scaling probability device but is otherwise the same as Savage’s theory, is

referred to as an ‘‘additive linear utility’’ theory, since the linear utility

theory of von Neumann and Morgenstern is directly involved in its

representation. Theories presented in the next chapter that also use

extraneous scaling probabilities include ‘‘nonadditive linear utility’? and

‘additive SSB utility.”’
Asa final preliminary to ourdiscussion of additive subjective probability

and additive expected (linear) utility in this chapter, we outline the two

formulations of decision under uncertainty alluded to in the preceding

paragraph.

Savage’s formulation begins with a set S of states of the world,or simply

states, and a set X of consequences or outcomes. In Savage’s approach,

states are the carriers of uncertainty, and outcomesthe carriers of value. The

states in S are presumed to be mutually exclusive and collectively exhaustive

so that exactly one state, the state that obtains, is the true state. The two

states of a just-picked mushroom might be ‘‘harmless’’ and ‘‘poisonous.”’

The decision maker is uncertain about which state is the true state, the

identify of the the true state will not be knownuntil after the decision has been

taken (if ever), and the decision is presumed not to affect the state that

obtains. Although the decision maker might conduct an experiment at some

cost to learn more about whichstate is the true state, we shall not deal with

experimentation as a separate feature of the decision process but note that it

can be an implicit part of the formulation. Explicit treatments are available in

Good (1950), Savage (1954), Schlaifer (1959), Raiffa and Schlaifer (1961),

Raiffa (1968), Howard (1968), DeGroot (1970), LaValle (1978), and

Hartigan (1983).
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Subsets of states are called events by Savage, and event A is said to
obtain ifA containsthe true state. We shall let & denote a Boolean algebra of
events with S € &. The empty set @ is the empty event, and S is the
universal event. Subjective probabilities will be assigned to the elements of
&, with 7(@) = 0 and x(S) = 1 when gis a probability measure on &.
Throughoutthis chapter and in much of what follows, we take & = 2°, the set
of all subsets of S. In this case, & is a Borel algebra.

For Savage the outcomesin_X are to contain all value-relevant aspects of
the situation at hand. A decision alternative, called an act, is a function from
S into X. The outcomeassigned by act f to state s is J(s). Two acts are
illustrated for an n-state S in Figure 7.1. Otherillustrations appearin Figures
2.1 and 2.2. Actfis constant iff(S) = {x} for some x © Xand is simple if
J(S) = {f(s):s © S} is finite.

Savage applies the preference relation > to a set F of acts in his axioms.
He assumesthat F containsat least all simple acts and defines > on X from
> on F' through constant acts: x > yiff > g whenf(S) = {x} and g(S) =
{y}. We assume later that F = X°, the set ofall functions from S into XY, in
describing his theory.

Our other formulation for decision under uncertainty is a lottery-acts
modification of Savage’s formulation,similar to those used by Anscombe and
Aumann(1963) and Pratt et al. (1964). Let P = Py, the setofall lotteries or
simple probability distributions on X. The lottery-acts formulation replaces
outcomes in a matrix like that of Figure 7.1 by lotteries on outcomes and
defines a /ottery act as a function f from S into P. The probabilities used in
the p € P are to be thoughtof as extraneous scaling probabilities associated
with events for precisely calibrated random devices such as roulette wheels or
fair coins, which are imagined to be completely independentofthestatesin S.
Thus, if f is chosen in the lottery-acts case and state s obtains, it remains to
play out f(s) to determine the outcome.

In the lottery-acts formulation, > is applied to a set F of lottery acts.
Preferences between regular Savageacts in F are then defined from > on F
through degenerate lottery acts: f > g if f > g when [f(s)](/(s)) =
[g(s)](g(s)) = 1 for every s € S. We will assume that F = P°, thesetofall
possible lottery acts. In this case, as well as some other cases, F is convex
under the statewise definition for Af + (1 — A)g. For each s € S,

(Af + (1 — A)g)(s) = Af(s) + (1 — A)g(s).

The technical advantage for the lottery-acts formulation comes from

convexity, which allows us to formulate axioms such as (f > g,0 < \ < 1)

= Qf + (1 — Ah > Ag + (1 — A)h), which has no meaning for Savage’s

formulation. At the same time, it can be criticized for including a notion of

probability within the axioms. As several people have recognized, it is 



 

ADDITIVE EXPECTED UTILITY /6/]

FIGURE 7.1 f(s;) = x; g(s;) = y;
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possible to embed the lottery idea within Savage’s formulation by enlarging
the state space S to include events generated by random devices. This would
avoid direct reference to extraneous scaling probabilities in the axioms.
However, it would also disguise the distinctive feature of randomization in
the lottery-acts approach and nullify the use of convex combinations in the
axioms.

7.2 ADDITIVE SUBJECTIVE PROBABILITY

This section and the next consider subjective probability in its own right
based on a comparative probability relation >, on the event algebra &. We
read A >, Bas A is more probable than B, and define ~ and >,, in the
usual ways as

A ~,B if not (A >, B) and not (B >, A),

A >, B ifA > BorA ~, B.

Section 7.4 defines >, on & from > on

F

after the fashion of de Finetti
(1931b, 1964), Ramsey (1931), and Savage (1954), but until then we
consider (&, >) apart from considerations of preference or choice.

Wesay that (§, >,) has an additive representation if there is a
probability measure 7 on § suchthat, for all A, B € &,

A > Bo (A) > r(B).

Whenthis holds, + agrees with >, and when it holds for exactly one
probability measure, we say that (6, >) has a unique additive representa-
tion. This section considers only additive representations, which require S >,
@ (nontriviality), A >, © (nonnegativity), A > B= A 2, B
(monotonicity), weak order for >, on &, and various additivity conditions
such as [(A U B)N C= 0,A & B]) > AUC > BU C. Weaker
representations are surveyed in Fine (1973) and Fishburn (1986c), and
several nonadditive representations will be introduced in Section 8.3.

Necessary and sufficient conditions for an additive representation for
finite & were first presented by Kraft et al. (1959). With no loss of generality
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in this case let S = {1, 2,..., m} and & = 25. For all m > 2 and all

sequences (A;,..., Am) and (B;,... , Bn) of events in &, define =o on

pairs of sequences by

(Aj,..-- ,» Am) =o (Bi, ..- » Bm)

if {7:7 © Aj} = {72 i © By} for alli.

The import of this balance condition can be seen from the fact that if 7 with 7;

= m({i}) agrees with >, and if (4,,...,Am) =o (B1,.-- , Bm), then 2;

m(A;) = yj VieA; Tj; = yj VieB; tj = uy 1(B;), hence we cannot have Aj 2x

B; for all j and A; >, B; for at least one /.

TueoreM 7.1. Suppose & = 2%", Then (&, >») has an additive

representation if and only if thefollowing holdfor all A, Aj, B; © & and

allm > 2:

Fl. Nontriviality: {1,..., 7} * ©.
F2. Nonnegativity: A >, ©.

F3. Strong Additivity: (Ai, ..., Am) =0 (Bi. -- Bn), Aj 24 B;

forj=1,...,m — 1] = not (Am >x Bm).

Remarks. Thestrong additivity axiom F3 cannotin general be replaced

by a simpler axiom that bounds m without regard to n. An agreeing 7 is not

generally unique, since it is only required to satisfy a finite system of linear

inequalities.

Proof. Necessity follows from our commentsprior to the theorem. For

sufficiency we are to show that Fl, F2, and F3 imply that there are

nonnegative numbers 7), ... , 7 that sum to 1 such that, for all A, B € &,

A >, B= yu > Dm
i€A i€B

A~wB= Yom = >

i€A i€B

The resultant system of linear inequalities (> for >», 2 both ways for ~x)

translates directly into a system like that in Theorem 4.3(a) where the

coefficient vectors (the x;) consist entirely of numbers in {0, 1, —1}.

Becauseofthis, if (a) is false, the r; in (b) can be taken to beintegers, and if

(b) holds it translates back into the conclusion that F3 fails. Hence F3, by

itself, implies that our system has a 7; solution without regard to sign. F2 then

implies that each 7; is nonnegative, and Fl implies that 2a; > 0.

Normalization completes the proof. a

Wenow consider Savage’s axioms for an additive representation. These

force S to be infinite and imply uniqueness. Becauseof this his axioms, in

particular G5, are not wholly necessary for agreementbutare considerably  
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simpler than necessary and sufficient conditions for the general case

(Chateauneufand Jaffray, 1984).

THEOREM 7.2. Suppose & = 2° and that >» on & satisfies the
following for all A, B, C © &:

Gl. S >» @.

G2. A >, SO.

G3. >» on & is a weak order.

G4. (A UB)N C= @] = (4 >» Be AUC>BUC).

G5. A >, B = there is a finite partition of S such that A > BUE

for every member E of the partition.

Then (&, >) has a unique additive representation. Moreover, if x

agrees with >,, then for every A © &and0 <d < lthereisaBCaA

such that x(B) = )\r(A).

Savage’s nonnecessary Archimedean axiom G5 turns out to have

powerful implications as seen from uniqueness andthe final conclusion of the

theorem. Among other things, it leads to the condition that for every positive

integer n there is an n-part uniform partition of S with w(A) = 1/n for each

memberofthe partition. This condition in its qualitative form (~,) was used

earlier by Bernstein (1917), de Finetti (1931b), and Koopman (1940) for

related axiomatizations of the additive representation. Savage (1954, pp. 38-

39) defends G5 with an argument which can be paraphrasedas follows: If you

consider A more probable than B, then surely there is an n and a coin of your

own choosing such that you consider A more probable than the union of B

and any particular sequence of heads andtails for 1 tosses of the coin. This

gets rather close to the notion of extraneous random devices invoked in the

lottery-acts formulation and suggests how we could enrich a finite S so that

Savage’s axioms could apply.

Althoughall of G1 through G5 are instrumental for the representation of

Theorem 7.2, G4 is the crucial assumption behind z’s additivity. Plausible

failures of G4 will be noted in Section 8.1.

Because Theorem 7.2 is intimately involved in one of the generalizations

of additive expected utility examined in Chapters 8 and 9, we shall outline its

proof in the next section. Before doing that, we remark that Savage’s

agreeing 7 is finitely additive [A 1 B = @ = 7(A U B) = w(A) + zB)

but not generally countably additive (Section 1.8). Countable additivity does

howeverfollow from the addition of Villegas’s (1964) monotone continuity

axiom, whichsaysthat for all A, B, Aj, An, - - in & for which A; © A, &

3

(4 = Ai, B >, Aifor all ‘ = B>A.
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Savage recognizedthe possibility of adding this to G1-G5,but declined to do

so on the groundsthat it lacked the same intuitive normative status as the

other axioms. A recent analysis of the matter is given by Seidenfeld and

Schervish (1983).

7.3 PROOF OF SAVAGE’S PROBABILITY THEOREM

Weassumethroughoutthis section that § = 25 and that >on & satisfies

G1 through G5 of Theorem 7.2. To establish the existence of a unique 7 that

agrees with >, andsatisfies the final conclusion of the theorem, we begin

with a series of implications of G1-G5.

Lemma 7.1. For all A, B, C, D © &:

(ay BO C=S8 2,C 2, B 2, OS.

(bt) (A ~~ B,ANC= @B)=> AUC 2, BUC.

() (A & BANC= OG) => AUC%BUC.

(d) (A ~, B,C ~,xD, AN C= @)2= AUC 2, BUD.

(ce) (A 2, B,C %D,ANC= O)=A UC > BU D.

(f) (A ~,B,C~,.D,ANC=BOND=@0)2= AUC~.BUD.

(g) A > @ = A can be partitioned into B and Cfor which B >x @

and C >. @.

(h) (A, B, and C are mutually disjoint, A U C > B 2, A) = there

isa D © C for which D >» @ and AU (CND) > BU D.

(i) (A > @, B > @,AN B= O) = Bean be partitioned into C

and D such that AUC >, D 2, C.

(j) A >« @ = A can be partitioned into B and C with B ~x C.

(k) A > @ = for everyn € {1,2,.. . } there is a2"-part partition

of A such that ~x holds between each two members of the

partition. .

Proof. (a) Left to the reader.

(b) Assume A ~, Band A NC = @. Since B = (BNC) U (BNC)

andB NM (C\B) = @, G4 = (B\C)U (BNC) U (C\B) ~. A U

(C\ B), or BU C ~, A U (CNB). By (a), AU C 2, A U (CNB).

Hence, by G3, AUC >, BUC.

(c) Replace ~» by >, in the proof of (b).

(d) Assume A ~x B, C ~, D, and A M C = @. Since (DN A)N A =

@,(b) = AUD=AU (D\A) >, BU (DNA). Also, since (A \ D)

NC= 2,() = CU(AND) >, DU (AND) = AUD. By G3,CU

(A\D) >, BU (D\A). This, (b), (c), and(A N DIN (CU AND)=

@ then imply CU (A\ D) U (AND) >, BU (NA) U (A/D), or

AUC 2, BU D.

(e) Replace C ~, D in the preceding proof by C >, D and use (c). 
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(f) Assume A ~, B,C ~,D,andANC=BOD= @.By(d),A

UC 2, BU Dand BUD >, AUC. Hence A UC ~, BUD.

(g) Assume A >» @. G5 = there is a partition {D,,..., Dn} of S

such that A >, D; for each i. (a) = D; = (D;N A) U (D;\ A) 24D; 0A.

Hence A >, D; M A for alli. If D; N A ~» @ for each i, then (f) = UD;

1 A) ~. @, or A ~~ @, a contradiction. If D;N A >» @ for only one /,

say i = 1, then A ~, D; MN A, which contradicts A >, D, M A. Hence D;

| A >x ©@ for at least two i, and the desired result follows from (e).

(h) Assume mutual disjointness and. A U C >, B 2, A. (G3, G4) = C

>x ©. Since C >, @ and A U C >, B,it follows from G5that there is a D,

© C for which D, >, @ and A UC > BU Dy. By (g) and G3, D, can be

partitioned into D and D’ with D’ >, D >» @,so(C\D) UDUA >

D’ UDUB.G4= (C\D)UA > BU D’, and (G4, D’ 2D) = B

UD’ >, BU D. Hence A U (C\D) > BU D.

(i) Assume A > @, B > O, and AM B= @.IfA >, B, the
conclusion follows from (g). Assume B >, A. G5 = thereis a partition {F,,

...,£,} ofB such that A >, E; for each i. Assumefor definiteness that E,

24+ ++ 2» EB; and let m be such that U7*! FE; >, U"E>, UE,
LetC = UP E,andD = U",, E;. ThenCU En: >, D >, C. Since A
?x Ems, this and (G3, G4) imply C U A >, D.

(j) & (k) Since (k) follows from (e) and (j), we complete the proof of

the lemmaby proving (j). Assume A >, @. It follows from (g) that A can be

partitioned into B,, C;, and D, such that C; U D, 2, B, and B, U D; >, Ch.

If one of these is ~,, the conclusion of (j) holds, so assume henceforth that

both are >. Then D, >» @. For definiteness take C, 2 B,. Then (h) =

there is a C? © D, such that C? >, @ and B, U (Di\ C’) >, C; U C?.
Hence D; \ C? >, @ and, by (i), D, \ C? can be partitioned into B? and D,

such that C? U B? >, D, >, B?. Since C, 2» Bi, G4 = C; U D, U C? Dy

C, U D, >, By U B?. Let B, = B, U B? and Cy = C, U C?. We then get a
partition {B,, C,, D2} of A for which

1. Cr U Dy», Px B, and B, U D, Px C).

2. B, © B,C; S Cy, Dy © Dy.

3. Di\ Dz >,, Do.

By repeating this process, we get a sequence... , {B,, Cy, Dn}, . .
of three-part partitions of A such that, for each n > 1,

(1) C, U D, > B, and B, U D, > Cy.

(2) B,, © Bris C, S Ch+ts Dri © D,.

(3) Dr Dns 2x Dn +1:

Hence D, >» © for all n, and D, includes two disjoint events (D,,; and  
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D, ~\ Dn+1) each of which bears >, to D,.1. Hence, by (3) and (e), for any

E, and FE, such that D,4,; > E, and Dns; > E,, we have D, > E, U Ep.

Now for any event G with G > @, G >» D, for sufficiently large n.

For example, ifD, >,,G then with {£,,..., £,,}asinG5 for G > @ with

G Px E; for all 1, D, Px E; for all 7 so that D,-} Px E, N EF, D,-| Px EB; U

E,,...and then D,-. >» U+&;,. . . and so forth; hence, with n large, D,
>, U" Ej, or D, >» S, contrary to (a) and G3. Moreover, 1*_, D, ~ ©,
for if 11 D, >» @ then M D, > D,» for large m, andthis is false since
D, | Dm.

Let

B=UB, and C= UC, U (\ DP,

=]n=] n=1

{B, C}isa partition ofA since (U B,) N (U C,) = (U B,) ACN D,)
=(UC,)N(/N D,) = @. To verify B ~, C, note first that C ~, U C,
since { D, ~x @. Suppose C >, B. Then U C, >» Band, by (h), thereis
aGc¢ UC,for which G > @ and

Uc.) \G & BUG.

Since B11 G = @ and B >, B, (since B, & B), G4 implies

BUG 2, B, UG.

For large 1, G >» D, so that, again by G4,

B, U G > B, U Dy.

Since G > D, A (U C,) forlargenand U C, = [(U C,)\G] UG =
[(U C,)\D,] U (CU C,) A D,), it follows by (e) for large n that

IC.) Dn 2, (UG) \G.

Finally, since (U C,)\D, © Cy, (a) = Cy 24 CU Cz) Dy. This and
the four preceding displayed expressions yield C, > B, U D, by

transitivity, which contradicts B, U D, >» C, in (1). Therefore not (C >»

B). By a similar proof, not (B >, C), and we conclude that B ~» C. ma

Weare now ready to prove

LemMMA 7.2. (&, >») has a unique additive representation.

Proof. Call a partition {A,,... , Am} ofA auniform partition when
A x QO and A, ~, Ad ~ye 8 ff ~y Am. Let

C(r, 2”) = {A:

A

is the union of r members of some

2"—-part uniform partition of S$}.

Weestablish Lemma 7.2 by a series of steps.  
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Step 1. [A, BE C(r,2")] = A ~, B. First, ifA, B © Ci, 2”) and if

A >x B, it follows easily from Lemma 7.1(e) that S >, S, a contradiction.

Hence A ~, Bifr = 1. It follows from Lemma 7.1(f) that A ~, B for all r

< 2",

Step 2. [A € C(r, 2”), B © C(r2”, 2"*™)] => A ~, B. If = 1 and

not (A ~, B), step 1 and Lemma 7.1(e) give S > S. The desired conclusion

then follows from Lemma 7.1(f).

Step 3. [A € C(r, 2"), B © C(t, 2”)] = (A 2, B @ r/2”" DB t/2”). If

r/2" = t/2™, thenr2” = t2”, and, with D € C(r2”, 2”*”)it follows from

step 2 that A ~, Dand D ~, B; hence A ~, B.Ifr2” > 2”, then, with D,

€ C(r2™, 2"*™) and D, © C(t2", 2"*'), we get A ~x D, and B ~x Dy).

But clearly D; >, D2, when r2™ > 2”. Therefore A >, B.

Step 4. Given A € & let k(A, 2”) be the /argest integer r > O such that

A >, Bwhen B € C(r, 2”), and define

m(A) = sup {kK(A, 2”)/2":n = 0, 1,2, ---}.

Clearly 7(@) = 0, a(S) = 1, and « > O. Moreover,

A €E C(r, 2”) = a(A) = r/2".

To provethis, observe that ifA € C(r, 2”) then 7(A) 2 r/2". If r(A) > r/

2”, then A >, Bfor some B € C(t, 2”) for which £/2” > r/2”. Butthis is

impossible by step 3.

. Step 5. A >, B = (A) 2 x(B)by the definition of 7.

Step 6. a is additive. Take A  B = @. Thenfor each n there is a 2”-
part uniform partition of S such that A >, A,, B >, B,, An and B, are

unions of membersofthe partition, A, 0 B, = @, An © C(K(A, 2”), 2”)

and B, € C(K(B, 2”), 2”). Hence A U B >, A, U B, by Lemma 7.1(d),

(e), and K(A U B, 2”) > k(A, 2”) + k(B, 2”). Since for any A it is easily

seen that kK(A, 2”)/2” does not decrease as n increases, it follows that

w(A) + 2(B) < aA U B).

If we now define k*(A, 2”) as the smallest integer r > 0 for which B >, A

when B € C(r, 2"), it readily follows from the fact that {7/2":r = 0,1,..

.,2"7n = 0,1,... } is dense in [0, 1] that inf{k*(A, 2”)/2": n = 0, 1,.

.} = sup{k(A, 2”)/2":n = 0,1,...}. A proof symmetric to that just
completed then implies that

a(A U B) < (A) + x(B).

Hence A 1 B= @ = (A VU B) = z(A) + w(B).

Step 7. A > @ = (A) > 0. Take A > @. By GSthereis a partition

{A,,...,A,} of S for which A >, A; for each i. Then step 5 = 2(A) >
m(A;), and additivity > (A) > 0.

Step 8. A >, B = 2(A) > x(B). Suppose A >, B. Then, using G5,
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there is aC © S for which C > @,CO B= @,andA >C U B. By

steps 5 and 6, t(A) > a(C) + x(B). By step 7, r(C) > 0. Hence x(A) >

m(B).

Steps 5 and 8 give A >, B © 2a(A) > x(B), andit is obvious that 7 as

defined here in step 4 is the only probability measure on & that satisfies the

additive representation. il

Weconclude with the final assertion of Theorem 7.2.

Lemma 7.3. (4 € 6,0 <d < 1) = a(B) = An(A) forsome BC A.

Proof. lf 7(A) = 0,the result is obvious, so assume that 1(A) > 0. Let

{A}, Aj}, {42,° + > , AZ}, . . . be a sequence of 2”-part uniform partitions
ofA such that {A3*1,, A3*1} is a 2-part uniform partition ofA”. Given 7, let
m = sup{j:m(U/_, A”) < da(A)}so that

i=]

m{ \_JA”) + 2-"4(A) > dx(A),
1

and let k = inf{j:r(U 2, A") < (1 — )a(A)} 80that

gn

w( (JA) + 2-"9(A) >— A)a(A).
k

LetC, = U™, AtandD, = U%, A™sothatC; ©C,6°--:-:, DS
D,S*+:+,C,0D, = @ forall n, and (C,) > Aw(A) — 27"7r(A) and

(Dn) > (1 — A)a(A) — 2>"x(A) for all n. Since C, ¢ U C, and D, ¢

U D,, \a(A) < r(U C,) and (1 — A)a(A) < a(U D,). Moreover, (U
C,) A (U D,) = @. Hence by additivity, Lemma 7.1(a) and the
representation,

T Uc, + 7 UD, = 7 UC, U JD, < 7(A),

which requires 7(U C,) = Aa(A) and x(U D,) = (1 — Aj)a(A). a

7.4 ADDITIVE EXPECTED UTILITY

Although Ramsey (1931) outlined a version of additive expected utility

about 25 years before Savage developed his own theory, Savage (1954) set

forth the first completely worked out axiomatization of preference between

uncertain acts for the additive expected utility representation

f>ge |wf) dn(s) > |u(e(s)) ax(s)

in which is a utility function on the outcome set X and = is a finitely

additive probability measure on the algebra of subsets of S. In addition to 
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Ramsey, Savage credits de Finetti (1964/1937) for his guidance on the
treatment of subjective probability and von Neumann and Morgenstern
(1944) for their linear utility theory. The next section shows how the linear
utility representation emerges from Savage’s axiomsduring the courseofhis
proof for the additive expected utility representation.

Savage’s work has motivated a few dozen subsequent axiomatizations of
additive expected utility and related representations. These include basic
modifications of the Ramsey~Savage theory (Suppes, 1956; Davidson and
Suppes, 1956; Pfanzagl, 1967, 1968; Toulet, 1986), lottery-based theories
(Anscombe and Aumann, 1963; Pratt et al., 1964, 1965; Fishburn, 1970a,
1982a), event-conditioned theories that do (Fishburn, 1973b) or do not (Luce
and Krantz, 1971; Krantz et al., 1971, Chapter 8) have a lottery feature, and
theories that avoid Savage’s distinction between events and outcomes
(Jeffrey, 1965, 1978; Bolker, 1967; Domotor, 1978). These are reviewed in
detail by Fishburn (1981b). A review of more recent theories that depart
substantially from standard treatments of subjective probability or utility
appears in the next chapter.

The personalistic view of probability developed by Ramsey, de Finetti,

and Savage holds that probability measures the confidence that a person has in

the truth of a particular proposition as revealed by the extent to which he or

she is preparedto act onit or to bet on its being true. Savage translates this

into the comparative modeas follows. Let.A and B be twoevents in &, andlet

x and y be outcomes such that x is definitely preferred to y (i.e., x > y).

Consider acts

J: get x if A obtains, y otherwise,

g: get x if B obtains, y otherwise.

Then the proposition ‘‘A obtains’’ is more probable than ‘‘B obtains’’

precisely whenf > g. In other words if you would rather bet on A than B to

receive a valuable prize when the event you choose contains the truestate,

then for you A is more probable than B.

Savage interprets the comparative probability relation >, of Section 7.2

in this way. Since A >, B is defined fromf > g of the preceding paragraph,
we might just as well write A > B andread this as ‘‘A is preferred to B.”’

However, I will maintain >, and the comparative probability language since

the distinction is sometimes useful.
A main purpose of Savage’s axioms for > on F is to give >» a precise

meaning when its f > g characterization is to hold for all x > y whenit

holds for one such outcome pair, in such a way that G1 through G5 of

Theorem 7.2 hold for (6, >). Once this has been done, relatively few

additional assumptions are needed to obtain his additive expected utility

representation.
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To state his axioms, recall from Section 7.1 that > is to be applied to F

= X5withx > yif(f > g,f(S) = {x}, g(S) = {y}) and similarly for x >

g, f > y, and so forth. As usual, ~ denotes the symmetric complement of

>, and >,, is the union of > and ~. For all f, g € F, all x, y © X and all

A C §, we define

f =4x if f(s) = x for alls € A,

f =ag iff(s) = g(s) for all s € A,

Ac‘ = SNA, the complement of A in S,

xAy as the f € F with f =, x and f =acy.

Savage’s full definition of > on & = 2° is

A >» Bif xAy > xBy for all x, y © X for which x > y.

A subclass of null events SU © is defined by

A€ MN if, forall f,g EF, f=acg>f~ 8.

It will turn out that A € 91 © A ~x @ @ (A) = O.In addition, for each

event A we define a conditional preference relation > 4 on F by

f >agif, forall f’, 2 CR=al
8 =48,f' =acg') >of 7 8B.

This reflects the part of Savage’s representation which says that preference

between f and g depends only on those states for which f(s) # g(s). The

definitions of >, and ~, are similar to that for >, withf’ > g’ replaced by

St’ > g’ and f’ ~ g’ respectively.

Savage’s axiomsare,for all f, g, f’, 8’ © F, all x, y, x’, y’ © X, and

all A, BCS:

Pl. > on Fis a weak order.

P2. (f=aS',8 =428',f =4c8s,f" = 4c8') = (f > & ef’ > g’).

P32. (A EN, f =4%,8 =ay) = (f r48 OX > Y).
P4. (x > y, x’ > py’) = (XAy > xBy @ x’Ay’ > x’ By’).

P5. z > w for some Z,w © X.

P6. f > g = [given x, there is a finite partition of S such that, for

every memberE of thepartition, (f’ =X, f’ =pef) =f > &:

and (g’ =£%, 8’ =gce8) > f > 8’).
P7. (f >4 as) foralls © A) =f 248; (F(9) >a gforalls © A) =

St 2a 8.

Pl is a typical ordering axiom, P2 says that preference between f and g

should not depend on those states for which f(s) = g(s), and P3 says that

conditional preference between degenerate conditional acts on nonnull events
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correspondsto preference between consequences in an obvious way. P4 gives

consistency to >, for different consequencepairs with x > y, P5 is Savage’s

nontriviality postulate, and P6, his Archimedean axiom,asserts that for anyf

> gand x € X one can modify f or g on ‘‘small pieces’’ of S that cover S$

finitely in such a way that f > g after any such change to x on a ‘‘small

piece.”’

The final axiom, P7, is a dominance condition that plays no role in the

derivation of « by way of Theorem 7.2 or in the construction of u for the

additive expected utility representation for all simple acts. It is used only in

extending the representation to other acts and, in the process, implies that wu is

bounded. If one were to replace F' by the set of simple acts and delete P7 then

the following representation/uniqueness theorem of Savage remains valid
without the stipulation that u is bounded. Further technical comments on P7

are given by Seidenfeld and Schervish (1983) and Toulet (1986).

THEOREM 7.3. Suppose P1 through P7 holdfor > on F = X%, and >»

on & = 2% is as defined before. Then (8, >») has a unique additive

representation with the properties of its agreeing probability measure x

as specified in Theorem 7.2 along with, for allA © &, A © 3 @ a(A) =

0; and there is a boundedfunctional u on Xsuch that, for allf, g © F, f

> g © |s u(f(s)) da(s) > |s u(g(s)) dx(s). Moreover, u is unique up to

positive linear transformations.

Weconclude this section with comments on Savage’s axioms and their

implications before discussing the proof of Theorem 7.3 in the next section.

Several implications of Savage’s representation are especially important

for connections to Chapters 2, 8, and 9. We consider the reduction principle

first. For any simple act f let a, denote the probability distribution on X

induced by a through /:

a(x) = r{s © S: f(s) = x}) for allx € X.

The final property of Theorem 7.2 is easily seen to imply that P = Py =

{a,:f is a simple act in F}. Two versionsof the reduction principle discussed

at length in Chapter 2 are, for all simple f, f’, g, g’ © F:

Reduction principle: (my = ms", T; = Tz’) > (f > 8 @ f’ > Bg’).

Identity reduction principle: ny = 1, > f ~ 8.

As before, the reduction principle asserts that (at least for simple acts)

preference between acts depends only on their probability distributions over

the outcomes. The identity reduction principle, based on P1-P6, is Theorem

5.2.1 in Savage (1954) and Theorem 14.3 in Fishburn (1970a). It and P1

obviously imply the reduction principle.

The reduction principle is more or less similar to conditions of in-
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variance (Section 2.2) in Tversky and Kahneman (1986), extensionality in

Arrow (1982), and reduction of compoundlotteries in Allais (1953, 1979b)

and Luce and Raiffa (1957). We consider it further in the next chapter.

Other important implications involve P2 and P3, which Savagerefers to

as the sure-thing principle. One such implication is the

Substitution principle: (f =4 f’, g =4 8’, f =acX =4c 8,

J’ =acy =4c8') = (f >gef’ > g’),

which is a weakening of P2 that we alluded to earlier (Section 2.5) as

‘*Savage’s independenceprinciple.’’ It is also referred to as the ‘‘sure-thing

principle’ even thoughit entails only part of {P2, P3}.

Savage also associated the notion of statewise dominancewith his sure-

thing principle. Three versions of dominanceprinciple are:

Simple dominanceprinciple: ({A,, . . . , An} is a partition of S, f = 4;

x; and g = 4, y;for alli, x; > y;for alli) = f > g;if, in addition, x; > y; for

some A; € 9, then f > g.
Monotone dominanceprinciple: (f(s) > g(s) foralls € S) = f > g.

Conditional dominanceprinciple: (A 1 B= @,f 2428,f 23a) =f

Zaus &; if, in addition, f >, g, then f >yup g.

Savage introduces his discussion of the sure-thing principle with an

example like the conditional dominanceprinciple (with A U B = S) and

says that “‘except possibly for the assumption of simple ordering, I know of

no other extralogical principle governing decisions that finds such ready

acceptance’’ (1954, p. 21). A few pageslater he proves that P1, P2, and P3

imply the simple dominance principle and notes that one could use such a

principle as a basic axiom in place of P3. The monotone dominanceprinciple,

which Schmeidler (1984) refers to simply as monotonicity, is the natural

extension of the first part of the simple principle to arbitrary acts. This
extension appears to depend on much more than P1-P3, and the related

assertion (f(s) > g(s) for alls) = f > g does not follow from P1-P7 when x

is not countably additive (Fishburn, 1970a, p. 213; Savage, 1954, p. 78).

The conditional dominanceprinciple hasa different nature than the other

two since it makes no reference to preference between outcomes. In fact,it

follows from P1 and the definitions.

LemMaA 7.4. Pl = conditional dominance principle.

Proof. Given AN B= @,f >4g, andf >=» g, let h be any otheract.

Also let f’, k, g’ © F'be such that

tS’ =af, J’ o=sh, ff =auaeh,

k =, 8, k =sf, k =4upyeA,

f

g’ =4 8, & =n 8, &" =aupy A.  
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Then, by the definitions of >, and >», f’ > kandk > g’,sof’ > g’ by
P1. Since / is arbitrary, f >4ueg. ff >, g also, then f’ > k > g’, sof’

> g’ by Pl andf >yup g by the definition of >4Uz- a

The next two chapters discuss a generalization of Savage’s theory that

drops P1 but uses the conditional dominanceprinciple. As far as I cantell, the

principle is independent of P2-P6. Section 9.3 notes that P7 is unsuitable for

the generalization.

7.5 COMMENTS ON SAVAGE’S REPRESENTATION PROOF

In this section we comment on the proof of Theorem 7.3, omitting most

of the details which are available in Savage (1954) and Fishburn (1970a,

Chapter 14). In Ramsey’s (1931) earlier approach, outcomeutilities were

scaled first with the use of simple 50-50 lotteries for bisection based on an

“ethically neutral proposition’? with subjective probability > Given u,

Ramsey then assessed x by indifference between simple acts. For example,if

x >y > zandxAz ~ y, then r(A)u(x) + [1 — 2(A)]u(z) = u(y), so m(A)

= [u(y) — u(@))/[u&) — u)].
Savage reverses Ramsey’s approach byfirst obtaining a by way of

Theorem 7.2. He then obtains u by showing that the identity reduction

principle holds and that the von Neumann-Morgensternlinear utility axioms

hold for P = {z;:fis a simple act in F}. This gives u by way of Theorem 1.3
and, as a consequence, showsthat the additive expected utility representation

holds for all simple acts in P’.
P7 is not used thus far. The next step, which appears only in Fishburn

(1970a, Section 14.5) since Savage did not realize earlier that his axioms

imply boundedness, adds P7 to show that u on X is bounded. Thefinal step,

essentially carried out by Savage, proves that the representation holds for all

acts in FP.
Forlater reference and to demonstrate the approach to Theorem 7.2, we

note that its additive representation for subjective probability via Savage’s

axioms for > on F requires no more than two outcomes in X. Let

Fy = {f © F:f(S) & {x, y}}

and for the following lemma, given x > y, define > on & = 2° by

A >» B ifxAy > xBy.

Lemma 7.5. Suppose x > y and P1, P2, P3, and P6 hold for > on

Fy. Then (&, >) has a unique additive representation whose agreeing

satisfies the final conclusion of Theorem 7.2.

Proof. Let the hypotheses of the lemmahold. In view of Theorem 7.2

we show that G1-G5 hold.
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G1. Immediate from x > y.

G2. IfA € DW, thenxAy ~ x@y; hence A ~, @.IfA € OW, then P3

and x > y give (XAy) >4 (X@y); hence xAy > x@y bythe definition of

>4. Therefore A >, @. This shows that A € 0 &¢ A ~x @.

G3. By Pl, >, is asymmetric. For negative transitivity use P1 to get [not

(A > B), not(B >, C)] = (XBy > xAy, xCy > xBy) = (xCy > xAy) =

not (A >» C).

G4. Assume (A U B)N C = @. Then, using A U BinP2,A >& Be

xAy > xBy 9 (A UC) > xBUCyYseAUCYBUC.

G5. Given A >, B(i.e., xAy > xBy), use P6 to conclude from thef >

g’ part that thereis a finite partition of S such that xAy > x(B U E)y; hence

A >, BU E, for every member of the partition. a

Axiom P5 ensures at least one outcome pair with x > y, and P4

guarantees that we get the same z for all pairs x > yand that >, defined prior

to Lemma7.5 is identical to its definition in the preceding section.

Asindicated earlier, the next task is to prove that the identify reduction

principle 1; = a, = f ~ g for simple acts follows from P1-P6. Then, with
> defined on the convex set P = {z,:f is a simple act in F} by

Dp -q iff > g whenever ty = p and a, = q,

we show that Al-A3 hold for > on P. Thisis trivial for Al, given P1 and the
reduction principle, but requires a bit more work for A2(p > gq = Ap + (1

—))r >Aq+U —A)r)andA3(p>q>re=apt+l-ayr>gq> Bp

+ (1 — 6)r for some a, 8 € (0, 1)). As a consequence of Theorem 1.3 we

then obtain u on X, unique upto positive linear transformations, such that f

> g @ | u(f(s)) dx(s) > | u(g(s)) dx(s) for all simple f, g € F.

To show that u is bounded when P7 is added, wefirst state two lemmas

whose simple proofs are left to the reader. (Hint for Lemma 7.6: see Lemma

7.4.)

Lemma7.6. (P1, {Aj,... , An} isa partition ofA, f 24,8fori = 1,

n) = f 242; if, in addition, f > 4; g for some i, then f >, g.

Lemma 7.7. (P1, P2, P7, f >,xandg >,xforallx€ X) > f ~,4 8;

(P1, P2, P7,x >4f, andx >,gforallx€ X) > f ~4g.

Given u as above, we now prove

LEMMA 7.8. (PI-P7) = u on X is bounded.

Proof. Given P1-P7, suppose u on X is unbounded above. Using the

final conclusion of Theorem 7.2, construct a sequence B,, B,, ... of

mutually disjoint events in S with a(B,) = 27~"forn = 1,2,....If U,
B,, does not exhaust S add S\ U B,, to B;. Take u(x,) > 2” for each n. Let  
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St =B, Xn forn = 1,2,...

so that | u(f(s)) da(s) = o. Consider any outcome x € X. Then for some y

E {X1, X25 eee ,

u(x) < | min{u(f(s)), uo} dx(s).
Letf’ equalfon {s:y > f(s)} and y on {s:f(s) > y} so that f’ is simple and

has | u(f’) dx equal to the right side of the preceding inequality. Thus, by the

representation for simple acts, f’ > x. Moreover, f > f’ by Lemma 7.6

since P7 implies thatf > s:/s)>; /’. Hencef > x, and this holds for every x

E€ X.
Next, let z € Xbe such that u(z) > u(x). Take g =p, zand g =af. As

in the preceding paragraph, g > x for every x and thereforef ~ g by Lemma

7.7. But g >p, f since z > x, and 7(B;) > 0, and g ~gc f since g and f are

identical on B‘. Hence g > f by Lemma 7.6, so we obtain a contradiction.

It follows that u is bounded above. A symmetric proof showsthat u is

boundedbelow. i

The final step in the proof of Theorem 7.3 is to show that the additive

expected utility representation holds for all acts in F. To do this we divide F

into three subsets as follows:

Sis big iff > x for every x € X.

fis normal if x > f > y for some x, y € X.

Sf is little if x > f for every x © X.

Also, with no loss of generality, let inf u(x) = O and sup u(X) = 1, as

allowed by PS, Lemma 7.8, and uniquenessup to positive linear transforma-

tions.

Consider normalactsfirst. Iffis normal, it can be shown thatf ~ p for

somep © P = Px, wheref ~ p meansthatf ~ g for every simple g with 7,

= p. Then by the use of bounding lemmasfor the integration, we get

f~ p= \ufo)drs) = Y uedp0o.
x

Along with | u(g(s)) dx(s) = 2 u(@x)p(x)for x, = p from the simple acts part

_ of the proof, plus P1, it follows that the representation holds for all normal

acts.

If there are big acts then these are all indifferent by Lemma 7.7.

Moreoverit can be shown that

S is big = u(x) < 1 forallx € X;

a({s:u(f(s)) > 1 — 5}) = 1 for all 6 > 0;

| u(f(s)) das) = 1.
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Henceall big acts have the same expected utility, which exceeds the expected

utility of all normal acts.

A symmetric proof shows that if there are little acts then they are all

indifferent, have the same expected utility 0, and the expected utility of every

normal act exceeds 0.

7.6 ADDITIVE LINEAR UTILITY

To consider the lottery-acts approach with P = Py as part of the

axiomatic structure, we continue to assume that § = 2° and, similar to F =

X® in the preceding sections, will take F = P*for ourset of lottery acts. As

noted earlier, convex combinations of lottery acts are defined statewise: (Af

+ (1 — A)g\s) = Af(s) + CG — A)g(s). Substantial weakenings of the

structure presumed here, including more general algebras &, the use of

mixture sets for P, and minimal overlap among the outcomes that can occur

under different states, are examined in detail by Pratt et al. (1964, 1965) and

Fishburn (1970a, 1982a).

The most important point we can make about ourlottery-acts formula-

tion is that, since F is convex,virtually all axioms from earlier chapters for >

on P can be used for > on F. For example, we could begin with the linear

utility axioms Al, A2, and A3 for > on F, or the SSB axioms Cl, C2, and

C3, or some other set. Axioms that make explicit use of the state structure can

then be added to obtain subjective probabilities or, short of that, to induce a

representation for > on F that goes beyond what is possible without such

axioms.

This section and the next adopt the linear utility approach for (F, >).

Otherpossibilities are considered in the next two chapters. We shall consider

three increasingly restricted axiom sets for (F, >), beginning with {A1, A2,

A3} and ending with axioms that imply the full additive linear utility

representation

frge \. u(f(s)) dx(s) > \. u(g(s)) dx(s)

in which 7 is a unique additive probability measure on & and is a linear

functional on P that is unique up to positive linear transformations. The

intermediate set will generate a and u for the additive linear representation on

the subset of simple lottery acts, that is, those f for which f(S) is finite. The

proofs of ensuing theorems appear in the next section.

Our first theorem shows that Al, A2, and A3 by themselves imply a

linear utility decomposition over any finite partition of S. It is to be

understood that each A; in a partition {A,, . . . , A,} is nonempty andthat,

given {A;, ..., A,}, F’ denotes the f © F that are constant on each
memberofthe partition. That is, f © Fis in F’ if and onlyifthere are p; © P 
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such that f =4,p;fori = 1,... , 2. Our notation throughoutthe section will

be analogous to the notation of Section 7.4 with F replaced by F and X

replaced by P. Thus f =, p meansthat f(s) = p for alls € A, pAgqis the f

for which f =, pandf =,.q, A € Viff =,cg > f ~ gforallf,g € F,

and so forth.

THEOREM 7.4. Suppose > on F = P*®satisfies the following forall f,

g,h © Fandall0 <2d <1:

Al. > on is a weak order.

A2.f > g => df + (1 — Nh > Ag + (1 — Ah.

A3. f > g > h= af + (1 —- ah > gandg > Bf + (1 — Bh for

some a and B in (QO,1).

Then for each finite partition {A,, ..., A,} of S there are linear

functionals u,, ..., u, on P such that, for allf, g © F’, with £ =4, p;

and g =4,q;fori=1,...,n,°

n n

frge Ss) u;(pi) > >> u;(qi).
i=] i=]

Moreover, linear u; that satisfy this representation for the given partition

are unique up to similar positive linear transformations.

The uniqueness conclusion meansthatif linear u; satisfy the representa-

tion for F’ then so do linear wu /if and only if there are real numbers a, by, . .

. , b, with a > O such that u/ = au; + b; for each i. The similar meansthat

the same scale factor a > 0 is used for each /.

The decomposition in the representation of Theorem 7.4 hints at the

emergence of weighting factors 7; > 0 for different i so that u; = aj;u for a

common u on P. This is accomplished by one additional axiom, S2, which is

a direct counterpart to Savage’s conditional preference postulate P3. We also

use a nontriviality axiom, S1, which corresponds to P5, to get a unique 7.

THEOREM 7.5. Suppose the hypotheses of Theorem 7.4 hold along

with the following for all A CS, allf, g © F, and all p, q © P:

Sl. p’ > q’ for some p’,q’ € P.

$2. (A € N, f =47,8 =49,f =,-g) = (f >g ep > Q).

Then there is a unique additive probability measure a on &, with A

€ W © a(A) = 0, and linearfunctional u on P, unique up to positive

linear transformations, such that, for all simple f, ¢ € F,

f>ge \. u(f(s)) dx(s) > \. u(g(s)) dx(s).

Norestrictions are imposed on z beyondthosestated in the theorem. In
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particular, it need not satisfy the final conclusion of Theorem 7.2; in fact, S

can be any nonemptysetin the lottery-acts theory. This greater generality by

comparison to Savage’s 7 is caused by the use of P in the present axioms. As

with x > y in Savage’s case, p > q here is defined in terms of constant

lottery acts: p > giff > g when f{(S) = {p} and g(S) = {q}.
The extension of the additive linear representation to all lottery acts uses

an axiom similar to Savage’s P7 without the conditionality feature.

THEOREM 7.6. Suppose the hypotheses of Theorem 7.5 hold along

with the following for allf, g € F:

S3. (f > g(s) foralls E S) > f > g; (f(s) > gforallsE S) =f >

g.

Then there are x on & and u on P with the properties noted in the

conclusion of Theorem 7.5 such that, for allf,g € F,f > g © | u(f(s))

dr(s) > | u(g(s)) dx(s). Moreover, given this representation:

(a) Every f © F is bounded;that is, there are real numbers c and d

that can depend on f such that x({s: c < u(f(s)) < d}) = 1.
(b) u is boundedif there is a denumerable partition of S such that

m(A) > 0 for every memberof the partition.

Other than nonconstancy (S1), linearity, and (b), there are no restric-

tions on uw. If S happensto be finite, then S3 is redundant since the complete

representation is covered by Theorem 7.5.

7.7 ADDITIVE LINEAR UTILITY PROOFS

Since Al, A2, and A3 are presumed for (F, >) in the theorems of the

preceding section, it follows from Theorem 1.3 that there is a linear u on F,

unique upto positive linear transformations, such that for al/f,g © F,f > g

@ u(f) > u(g). We intend to define u on P by u(p) = u(f) when f(S) =

{pt, but will work only with u on F for the time being.

Proof of Theorem 7.4. Let {Aj,..., An} bea partition of S, and for

convenience write f in F’ as (p1,.--, Pn) when f =,,p; for each i. Fix h

=(rj,.-..,7,)inF’, and let p; = (4,. ~~ 5 7i-1) Dis Tits + + , Tn) for all

p; © P. Then, with f = (pi, . ~~, Dn), (/n)f + (a — 1)/n)h = 2%; (1/

n)p;. Therefore, by the linearity of u on F, u(f) + (7 — 1)u(h) = &; u(p;).

Define u; on P by

1)/nju(h).

yju(pi) — (2 — Iuch) and

uj(p;) = u(pi) — (a

llThen summation over i gives 2; u;(p;)

therefore

u(f) = Sup), £ = Di. - > Dn)
i  
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This verifies the representation of Theorem 7.4 so long as each 4;is

linear. To show this let q; = (71, . . - 5 Ti-1, Gis "i419 +» » » “n). Then, by the

preceding result,

u(dp; + (L — A)qi) = up; + CG — AYqi) + Y ur).
J#i

In addition,

u(Ap; + (1 — A)qi) Au(pi) + 1 — A)uCai)

huj(p;)) + ( — Aug) + SY) ur),
J#i

and therefore uAp; + (1 — A)q;) = Au; p;) + A — AuQ;).

If usatisfy the representation along with the u;, then, letting u’(f) = 2

upi) when f = (pi,... Dn), we getu’ = au + bDwitha > 0. Holding

p; fixed for all j # i gives uj = au; + b;. The “‘converse’’ obviously

holds. i

Proof of Theorem 7.5. Assume the hypotheses of the theorem,

including $1 and S2. Wefirst prove

Lemma 7.9. Given a partition {A,, ..., An} of S, there is a linear

functional v on P, unique up to positive linear transformations, and

unique p; > 0 with &"_, po; = 1and p; = 0 # A; € W such that, for allf

= (Pi,---, Pn) andg = (q1,--- 5 Gn) inF’,

f > g @ S) piv(pi) > S piv(qi).
f=] i=]

Proof. Let K = {i:i © {1,..., m} and A; € 9U}. By SI andthe
preceding proof, K # @. In view of S1, S2, and the representation of

Theorem 7.4, which we assume here, the representation of Lemma 7.9

requires pj > 0 @ A; € Weiec K.
IfK = {i}, the lemma’s conclusion follows with p; = 1, p; = 0 for each

j # i, andv = yj.

Suppose henceforth that |K| > 2. Forall i, j € K,it follows from S2
that u,(p) > ufq) & uj(p) > u,(q) for all p, g © P. Fix po € P. The

uniqueness property for linear utility implies that for all i, 7 © K there is a

unique a;; > 0 such that

uj(p) — ui(Po) = aj(uj(p) — uj(Po)) ‘for all p © P.

Fix k € K and define p and vu by

pi = 0 for all i € K,

pj = aix | S) jx for all i € K,
JEK
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v(p) = [u;(p) — u;(Do)]/p; for allp € Pand alli € K.

To show that v is well defined, we need to prove that

Qiu(p) — ui(Do) = 7 [uj(p) — uj(po)] wheni, j € K.
J

But this follows easily from the first equation above for a, and the fact that
each u; for i © K is not constant on P. Substitution of p;v(p) + u;( Po) for

u;( p) into the representation of Theorem 7.4 then gives the representation of

the lemma.

The uniqueness properties in the lemma follow easily from those of

Theorem 7.4. a

We now continue with the proof of Theorem 7.5, designating finite

partitions {A;,...,A,}and {B,,...,B,} of S by a and 8, respectively.

For any finite partition {A,,..., A,} of S it follows from Lemma 7.9

that there are nonnegative numbers 7,(A;), . . . , 7,(A,) that sum to 1 with

T,(A;) = 0 & A; © O, and a linear functional v, on P such that, for all f =

(Pi,--.-+5,DPn) andg = (q,...,G,)in F, = F’,

f > g ° Ss Ka(Aj) Vo(Di) > Ss) Ta(Aj)Vg(Qi)-

Moreover, the 7,(A;) are unique, and v, is unique up to positive linear

transformations.

Consider any other partition {B,, ..., B,} of S, with a similar
representation using 7,(B;) instead of 7,(A;) and vg instead of v,. Since the

constant lottery acts give p > g @ u,(P) > v(g) © ve(p) > v¢(qg), vg must

be a positive linear transformation of v,. We can therefore drop the partition

designator on v with no loss in generality to replace the preceding displayed

representation by

f£>ge S)2.(A)v(p) > > t(Ai)v(qi),

with v unique up to positive linear transformations.

Consider any event A. Suppose A is a memberof both {A;,..., An}
and {B,,..., Bm}. Then, by the preceding representation,

T(A)v(p) + [1 — m.(A)]v(g) > mo(A)v(p’) + [1 — m(A)] 09")

@ mg(A)u(p) + [1 — me(A)]u(q) > me(A)u(p’)

+ [1 — m(A)]v(@")

for all p, g, p’, q’ © P since all pAgare in both F, and Fg.It then follows

from the representation for the partition {A, A°} that 7,(A) = (A).

Hence, with 7(@) = 0 and z(S) = 1, we can drop the partition designator

on z to obtain  
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f>ge Py a(Aj)v(p) > Sy 7(Aj) v4).

Finite additivity for a is easily demonstrated using partitions {A, B, (A U

B)°} and {A U B, (A U B)*} with A N B = @ in an analysis similar to
that just completed. Clearly, a is unique.

Finally, to show that the additive linear representation holds for all

simple f, g © F, suppose f = (pi, . . . , Dn) for partition {A;,...,A,}

and g = (q;,.-.-, Gm) for partition {B,, ..., B,}. When the preceding

representationis applied to the partition {A;N Bl <i<gn,1l<j<m,A;

 B; # O}, we get

f>rge x S W(A; O B;)v(p;) > Ss) > T(A; OM B;)v(q;).

Finite additivity reduces the inequality to X; 1(A;)v(_p;) > 2%, m(B,)v(qg;) to

obtain the additive linear representation. i

Proof of Theorem 7.6. Assumethe hypotheses of the theorem, andlet

a and u (on P) be as specified in Theorem 7.5. Also let u on F be as specified

in the opening paragraphof this section. Since the specialization of this u on

constant lottery acts must be a positive linear transformation of v in the

preceding proof, we can presume that u on P for Theorem 7.5 is identical to

the noted specialization of uw on F. With the definition of f bounded as in

Theorem 7.6(a), the proof of the theorem will be completed by proving the

following four lemmas.

Lemma 7.10. u(f) = | u(f(s)) dx(s) for all bounded f.

Lemma 7.11. u on P is boundedifthere is a denumerable partition of

S such that x(A) > 0 for every memberof the partition.

Lemma 7.12. Iffor eachn © {1,2,... } there is an n-part partition

of S every member of which has x(A) > 0, then there is a denumerable

partition with this property.

LemMa 7.13. If the hypotheses of Lemma 7.12 are false, then all

lottery acts are bounded.

Remark. Lemma 7.11 is conclusion (b) of Theorem 7.6 and Lemmas

_7.11-7.13 say that all f © F are bounded. This, Lemma 7.10, andf > g

_u(f) > u(g) by the opening paragraph of this section show that the additive
linear representation holds for all lottery acts.

Proof of Lemma 7.10. We showfirst that if 7(4) = 1, and ifc =

inf{u(f(s)):s € A} and d = sup{u(f(s)):s € A} arefinite, thenc < u(f) <
d. Given these hypotheses let g =, f along with c < u(g(s)) < dforalls €
AS. Since A° € OW, g ~ f and u(g) = u(f). Supposeto the contrary of c <

u(g) < dthatd < u(g). Take g’ € Pwithe < u(q’) < dandletg’ =sq’.

Also leth = Ag + (1 — A)g’ with \ < 1 but near enough to | so that d <
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u(h) = \u(g) + (1 — Aju(g’) < u(g). Then g > h. But since u(h) > dB

u(g(s)) for all s, h > g(s) for all s, soh 2 g by S3 for a contradiction.

Therefore u(g) < d. By a symmetric proof, c < u(g).

Assume that f is bounded with A, c, and d as in the preceding

paragraph. If c = d, then u(f) = | u(f(s)) da(s) is immediate. Assume

henceforth that c < d, and with noloss ofgenerality letc = Oandd = 1.

Define g as in the preceding paragraph so that u(g) = u(f) and,asis easily

proved, | u(g(s)) dx(s) = | u(f(s)) dx(s). We show u(g) = | u(g(s)) dx(s).

Ignoring emptysets, let {A,, . . . , A,} be the partition of S defined by

A, = {5:0 < u(g(s)) < 1/7},

A; = {s:(i — 1)/n < u(g(s)) < i/n}, i=2,...,4,

and let p; € P be such that (i — 1)/n < u(p;) < i/n for each 7. Let

h; =A; &> h; =A¢ Di fori=1,...,4%,

1

J#i

Then, when s © A;,

1 1
ho(s) = »} n hj(s) = a g(s)

n—-1 1
Sy — Pj

j#i n—l

+  

n

and therefore ho = (1/n)g + [(n — 1)/n]k. Hence, by linearity and the

definition of ho,

u(g) = ¥5 u(hy) — (n — tuk).
i=]

Since k is simple,

Ulu(k)
i j#

il St u(p)) (Ad.
i j#i

1
Sy u Ls Dj (Ai)

x
1

n-—-1  
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Whenthis is substituted into the preceding expression for u(g), we get

u(g) = Ss u(h;) — Ss) S u(p;)x(A)j).
i i j#i

By the bounds on u(p;), the first paragraph of this proof, and the

definition of h,,

(i — 1)/n < u(h;) < i/n fori = 1,...,24.

Since 0 = inf{u(g(s)):s © S} and 1 = sup{u(g(s)):s € S}, the p; can be
selected so that either

u(pi) = 1/n, u(p;) = Gi - 1)/n fori > 1

or

u(p;) = i/n fori <n, U(Pn) = (n — I)/n.

Applying the first of these and (7 - 1)/n < u(h,) to the final equation in the

preceding paragraph, we get

n fi-I| I
u(g) > ——) (4) - =,

i=l n n

and applying the second and u(h;) < i/n to the same equation, we get

n fi 1
u(g) < ~ Aj) +—.

— \fA n
t

By the definition of expectation,

_ |
¥ (G+) way < J wen ano) < ¥ (£) nao.

nA

 

so that |u(g) — | u(g(s)) dx(s)| < 2/n for all n. Therefore u(g) = | u(g(s))
dr(s). a

Proof of Lemma 7.11. Let A be a denumerable partition of S with

a(A) > 0 for all A € A. By working from a largest (A) on down, we

get a sequence A;, A2,.. . with {A;, Ao,.. .} = Aand r(A)) > m(A2) 2

Contrary to the conclusion that u on P is bounded, suppose it is

unbounded above.Bya linear transformation we can assume[0, 09) € u(P).

Let p; € P satisfy

u(pi) = 1/7(A;) fori = 1,2, °°
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Also let f =, p; for all 7, and let g, be constant on each A; fori < n and on

u(g,(s)) = 1/7(A,) -— 1/2(A;) fors © A; andi < 4n,

u(g,(s)) = 0 fors € |) Ai.

Since each g,, is simple,

=

 
1 1

WB) dy ln - =a mA)

 i

Moreover, u(>f(s) + 58n(S)) = 1/2n(A,) for alls € Ujc, Aj, and u(Sf(s)
+ 32,(s)) > 1/2n(A,) for all s € Uj, A;. Therefore, by the first
paragraphof the proof of Lemma 7.10, u(;f + +Bn) => 1/27(A,), which by

linearity and the preceding equation for u(g,) yield

 u(f) > fi - Satay] nee form = 1,2,---.

i=]m(A,)

But this requires u(f) to be infinite, contrary to the conclusion of Theorem

1.3. Hence u on P is bounded above. A symmetric proof showsthat u on P is

bounded below. a

Proof of Lemma 7.12. Given the hypotheses of the lemma,let A, for

each n > 2 be an n-part partition of S each memberof which has z(A) > 0.

Define a new setof partitions recursively as follows: B. = A, and forn > 3,

B, = {AN B:AE€EA,,BEB,.,ANB # Q}.

It is easily seen that B, has n or more positive-probability membersandthat

B,,., is as fine as B,; that is, B © B,,,; => C © B, for some C D B. For

each A € B,let N}(A) be the number of members of B, (” > 2)that are

included in A and have positive probability. With B, = {A, A‘}it follows

that N}(A) + N'(A‘) > n forall n > 3. Thus, as7 gets large at least one of
N’(A) and N}(A°) approachesinfinity. Let A; be a memberof B, for which

N}(A)) > o and let B; = A‘. Then 7(B;) > O and B, will be the first

element in our desired denumerable partition.

Next, let 77 be such that B,,, has more than one subset of A, with positive

probability. For each A © A, with A € B,, let N?(A) be the number of

members of B,, (7 > m) that are included in A and havepositive probability.

Let A = {A:A © Aj, A © B,,}. Then 24 N2(A) = N’(A)), and therefore

N?(A) > © asn > o for some A € A.Let A, be such an A andlet By =
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A, AS. Then 7(B2) > 0 and {B,, By, A>} is a partition of S with N*(A2)
> C,

Continuation gives a denumerable sequence B,, B:, B3, . . . of mutually

disjoint events with 7(B;) > 0 forall 7. a

Proof of Lemma 7.13. Given the hypotheses of the lemma, let m =

max{n: there is a partition of S with n members for which 1(A) > 0}.

With no loss of generality let u(y) = 0 fora y € X. Contrary to the

conclusion of the lemma, suppose that g is unbounded above. Define f from g

by replacing each x for which g(s)(x) > 0 and u(x) < 0 by y, for every s.

Then u(f(s)) > 0 forall s, and f is unbounded above. Hence, for every n 2

1, w({s:u(f(s)) > n}) > 0. By the preceding paragraph,this 7 quantity can

change no more than m times as n increases. Hence there is an Nand a > 0

such that

a({s: u(f(s)) > n}) = @ for alln > N.

Let u( pi) = ifori = 1,2, , let Sn ={s:-u(f(s)) > ny 4 and Bn ={s:u(t()<n}Pn>

and let hy, ={s:ug(9>n}Pn and h, = {5:u(e()) <n} f. Also let Pr denote the constant

lottery act with p,(s) = p, for all s. Then =f + Pr = s8n + sh,

and

u(f) + n = u(g,) + u(h,) for alln > 1.

Since h, is bounded, Lemma 7.10 gives u(h,) = | u(h,(s)) dx(s) 2 no for

alln > N.Since g,(s) > Dn_, for all s, S3 implies g, > Dn—1 So that U(Zn)

> n — 1 for all 1. Then, by the preceding displayed equation,

u(f) > na —- 1 for alln > N,

which contradicts finiteness of u(f). Hence, g is not unbounded above.

Similarly, it must be bounded below. a

The hypotheses of Lemma 7.13 do not imply that 7 is a simple

probability measure (Fishburn, 1970a, p. 188).

7.8 SUMMARY

Savage’s theory of decision under uncertainty is based on axioms for

preference between functions (acts) f, g, . . . from a set S of states of the

world into a set X of outcomes. His additive expected utility representation is

f> ge |wf) dr(s) > |ules) dx(s),

where u is a bounded utility functional on X and

7

is a finitely additive

probability measure on the algebra ofall subsets of S. His axioms imply that

S is infinite and a is unique. Subjective probability is based on preference:

a(A) > 7(B)if and only if, when x is preferred to y, the act that yields x ifA
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obtains and y otherwise is preferred to the act that yields x if B obtains and y

otherwise.

Another formulation uses functions (lottery acts) f, g, . . . from S into

the set P of simple probability distributions on X and views the probabilities

for P as extraneous scaling probabilities independent of S. When the von

Neumann-—Morgenstern axioms for preference on the set of lottery acts are

supplemented by other independence and dominance axioms, we obtain the

additive linear utility representation

> ge |u(t) dr(s) > |u(g(s) dx(s),
where is a linear functional on P and 7 is a unique probability measure on

the subsets of S. Because of the lottery feature, no further restrictions apply to

S or zw in this case.

 



 

8 Generalizations of Additive Expected

Utility

Prior to about 1980, the main alternative to Savage’s additive expected

utility theory and the additive linear theory of Anscombe and Aumann was

Allais’s additive nonexpected intensive utility theory for decision under

uncertainty. Since that time, several new alternatives have been developed to

accommodate violations of independence, substitution, reduction, and transi-

tivity. Most of these either assume that subjective probability is additive but

preferences need not be transitive, or that preferences are transitive and

subjective probability need not be additive. This chapter reviews these

theories after discussing violations of traditional axioms and representations
for nonadditive probability.

8.1 CRITIQUE OF ADDITIVE EXPECTED UTILITY

Chapter 2 presented an array of plausible violations of the von

Neumann—Morgenstern expected utility theory that focused on the indepen-

dence axiom (p > q > Ap + (1 — A)r > Aq + C1 — A/D»), transitivity, and

the use of nontransformed outcomeprobabilities in numerical representations

of preference. Many of those violations apply also to Savage’s additive

expected utility of Section 7.4 and the additive linear model of Section 7.6.

Other challenges to these states theories arise directly from the states

formulation. They are concerned primarily with the reduction principle, the

independence or substitution principle (P2) part of Savage’s sure-thing

principle, and the approach to subjective probability developed by Ramsey,

de Finetti, and Savage.

This section further illustrates these challenges. The next section then

discusses nonadditive subjective probability, and the remainderof the chapter

reviewstheories designed to accommodate observedviolations of the theories

in the preceding chapter.

Wehavealready discussed aspects of the reduction principle in Chapter

2. Another example is provided by Figure 8.1 with dollar payoffs and 10



188 NONLINEAR PREFERENCE AND UTILITY THEORY

FIGURE 8.1 Payoff matrix

STATE PROBABILITIES

01 O41 Of Of O1 Of O41 O41 O14 O.4
 

f|10 20 30 40 50 60 70 80 90 100

gj};20 30 40 50 60 70 80 930 100 10

equally likely states. By the identity reduction principle of Section 7.4, f ~ g

since m7 = a,. This is defended by the claim that, once an act has been
chosen, the only thing that should matter is that act’s probabilities for the

outcomes. This claim sees f and g as effectively identical. Hence they ought

to be equally attractive.

One argument against the reduction principle involves a comparative

evaluation position that asserts that alignments of outcomes under events as

well as outcome probabilities themselves can affect choices in reasonable

ways. An example of this (Tversky, 1975; Loomes and Sugden, 1982; Bell,

1982) focuses on the regret/rejoicing a person might experience by learning

that one could have done better/worse if one had chosen differently. Some

people mayprefer g toffor Figure 8.1 because g gives a greater return thanf

in 9 of the 10 states, reasoning that if the final state obtains it is merely a case

of bad luck. Others may prefer f to g because they would experience great

regret if they choose g and the final state obtains, but would not be troubled

by losing out on the $10 difference in the other nine cases underselection of

Sf.
A connection to stochastic dominance arises from one change in Figure

8.1. Suppose g > f, andh = g exceptthat h’s final outcomeis $9 instead of

$10. It may well be true that h > f. This violates the combination of the
reduction principle and first-degree stochastic dominance, which yieldf > h

by way of a, >; a,. Note, however, that h > f does not violate the

dominance principles discussed near the end of Section 7.4.

Reduction also has intimate ties to transitivity. Consider the lottery acts

of Figure 8.2. Suppose there is a preference cycle p > q > r > pon the

three lotteries. Since f is preferred to g under each state, the obvious

dominance conclusion for lottery acts is f > g. But the reduction principle

requires f ~ g since their overall probability distributions on outcomesare

identical. If we insist on the statewise dominance principle but allow

preference cycles in P, the reduction principle must be rejected. Or, to put it

the other way around, dominance and reduction virtually force transitivity.

Wenowturn to independence and substitution as seen by Allais and then

Ellsberg. Figure 8.3 shows Savage’s (1954, p. 103) event-dependent

arrangementofthe alternatives used in Section 2.5 to illustrate the common

consequenceeffect. Allais (1953, p. 526; 1979a, p. 89) used as a similar  
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FIGURE8.2 Lottery acts

STATE PROBABILITIES

 

4/3 1/3 1/3

f |p q

gi4q r p

FIGURE 8.3 Savage’s payoff matrix

TICKET NUMBERS FOR 100-TICKET
LOTTERY. ONE TO BE DRAWN AT RANDOM.

 

 

4 2-11 12 -100

$ 500,000 $ 500,000 $ 500,000
SITUATION 1 °

g O $ 2,500,000 $ 500,000

‘| $500,000 $ 500,000 0
SITUATION 2

g' 0 $ 2,500,000 0 
arrangement described graphically. However, when he confronted Savage

with comparisonslike those of Situations 1 and 2 at the 1952 Paris colloquium

on decision under uncertainty, Allais presentedthe situations in the event-free

mode of Section 2.5. Since both accepted the reductionprinciple, this would

presumably not affect choices, although we now know from framing effects

that it can. In any event Savage, like many others, initially preferred f to g

and g’ to f’ in the event-free mode,butlater, after viewing them in the way

of Figure 8.3, changed to f’ > g’ along with f > g to avoid the obvious
clash with the substitution principle.

Savage, among others, felt that such arrangements would convince

(most?) people of the compelling nature of the substitution principle and, by

implication from the reduction principle, of the reasonableness of the von

Neumann-Morgenstern independence axiom. However, Allais’s original

contention to the contrary has been well supported by later experiments

(MacCrimmon,1968; Slovic and Tversky, 1974; MacCrimmonand Larsson,

1979). Moreover, violations of substitution persist when subjects are

instructed in the arguments of Allais and Savage before they make their
choices.

As already mentioned in Section 3.3, Allais’s resolution to his

acceptance of reduction, weak order, and stochastic dominance in conjunc-

tion with his rejection of independence and substitution is a representation

that avoids an expectational form. He does, however, subscribe to additive

subjective probability for decision under uncertainty, but with a very different
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interpretation (1979b, pp. 469-73) than the personalistic one adopted by

Savage. In particular, he rejects the preference-based definition of >, in the

preceding chapter (1979b, pp. 510-14) not only because it clashes with what

he believes is the correct approach to the assessmentof subjective probability

(see Section 8.4) but also becauseit is at variance with his refutation of the

substitution principle.

The latter point was emphasized by Ellsberg (1961), who used the notion

of event ambiguity to construct examples that challenge Savage’s substitution

principle and the closely related additivity axiom G4 of Theorem 7.2. Figure

8.4 gives a case in point. Suppose an urn isfilled with 90 balls, 30 of which

are red (R) and 60 of which are black (B) and yellow (Y) in an unknown

mixture. One ball is to be drawn at random with a payoff of either $0 or

$1,000 depending on the act selected and the color of the drawnball. Ellsberg

claimed, and many subsequent experiments have verified, that a high

proportion of subjects preferf to g and prefer g’ to f’, in direct violation of

the substitution principle. The preference f > g seems to arise from the

specificity of R relative to B, or, equivalently, from the ambiguity of B

relative to R, since exactly 30 balls are knownto be red while an unknown

number from 0 to 60 are black. The preference g’ > f’ depends on the same

phenomenon: Exactly 60 balls are black or yellow, whereas an unknown

numberfrom 30 to 90 are red or yellow. One might say thatf > gandg’ >

jf’ demonstrate a preference for specificity, or an aversion to ambiguity,

which is something quite different than the concept of risk aversion discussed

in Section 1.6.
According to Savage’s definition of >», f > g = R >» B,andg’ > f’

= BU Y > RU Y. Hence if we subscribe to these preferences and

Savage’s definition, 7 cannot be additive since it would yield 7(R) > (B)

from R >, Band 7(B) > 7(R) from BU Y > RU Y.

Raiffa (1961) gives a critique of Ellsberg (1961) that is consistent with

Savage’s position. Subsequent discussants of ambiguity include Sherman

(1974), Franke (1978), Gardenfors and Sahlin (1982), and Einhorn and

Hogarth (1985, 1986). Segal (1987) presents a two-stage decision model

designed to accommodate ambiguity.

8.2 NONADDITIVE SUBJECTIVE PROBABILITY

A variety of alternatives to the additive probability theory of Section 7.2

have been proposed to accommodate noncomparability of incommensurable

events, imprecise or vague judgment, ambiguity, failures of additivity, and

intransitivities. Some of these treat >, from an intuitional viewpoint (Keynes,

1921; Koopman, 1940; Good, 1950; Adams, 1965; Fine, 1973; Suppes,

1974; Shafer, 1976; Walley and Fine, 1979; Fishburn, 1986c, 1986f), and

others define >, from preferences or choices (Savage, 1954; Smith, 1961,  
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FIGURE 8.4  Ellsberg’s urn

 

30 BALLS 60 BALLS
ieR B Y

f $1000 $0 $0

g $0 $1000 $0
 

f' $ 1000 $0 $ 1000

g' $0 $1000 $1000 
1965; Heath and Sudderth, 1972; Schmeidler, 1984; Gilboa, 1987;
Fishburn, 1983c, 1986d).

In some cases full additivity is retained but weak order is relaxed to
partial order to obtain a one-way representation of the form A >, B = (A)
> m(B) or perhaps A >, B = (A) > 7(B). Examples include Savage
(1954), Kraft et al. (1959), Adams (1965), Fishburn (1969, 1975b), Narens
(1974), and Wakker (1981).

Another approachthat is designed to accommodate vague judgment and
may or may not involve additivity uses upper and lowerprobability functions
on &. We denote these by x* and 7x respectively, with 7* > 1. According

to Dempster (1968), upper and lower probabilities go back at least to Boole

(1854). It is generally assumed that 73(@) = a*(@) = 0, t2(S) = 1*(S)

= 1, and that 7, and 1* are monotonic; that is, A © B = [rx(A) < 7(B),

m*(A) < 2*(B)]. Many authors, including Koopman (1940) and Good

(1962) from an intuitive viewpoint, Smith (1961, 1965) from an adaptation of

de Finetti’s (1964) fair-bets approach, and Dempster (1967, 1968), also

assumethe following:

complementary symmetry: wx(A) + w*(A‘) = 1.

superadditivity of rz: AN B= @ = mx(A) + 1x(B) < a3(A U

B).

subadditivity of r*: AN B= @ = r*(A U B) < w*(A) + w*(B).

These functions are usually taken to characterize >, in the sense that, for all

A, BE &,

A > B@ mx(A) > 1*(B),

or, if we think of [7(A), 7*(A)] as the probability interval for A, A >» B

if and only if A’s probability interval everywhere exceeds B’s probability

interval. It may or may not be true that rx < m < a* for some additive

measure z on &.
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Additional comments on related models are given in Fishburn (1986f).

This paper provides axiomatizationsof interval and semiorder representations

for (6, >) that range from the case in which only monotonicity is presumed

for 7, and 2* to cases that assume complementary symmetry, superadditiv-

ity, and subadditivity, and 7. < a < a* for an additive 7.

Davidson and Suppes (1956), Schmeidler (1984), and Gilboa (1987)

axiomatize preference between acts or lottery acts to obtain a single

probability measure that represents >, in the weak-order manner of Section

7.2 and is monotonic but not necessarily additive. To distinguish their
measure from additive 7, denote it by o with o(@) = 0, o(S) = 1, andA ¢

B = o(A) < o(B). Davidson and Suppes’s finite-sets theory entails

complementary additivity: 0(A) + o(A‘) = 1,

which presumes the complementarity axiom A >, B # B° >, A‘. Gilboa

(1985a) presents a cogent argument for complementary additivity in the

nonadditive expected utility theories of Schmeidler (1984) and Gilboa (1987),

although it is not presumed by their axioms.

The latter theories were designed to accommodate ambiguity and

failures of the substitution principle as discussed in the preceding section.

Other probability models for ambiguity have been proposed by Einhorn and
Hogarth (1985) and Fishburn (1986d) among others. The descriptive

approach of Einhorn and Hogarth begins with aninitial assessment p, of the

probability of A, then adjusts it to account for ambiguity by means of

nonnegative parameters 6 and 6 to yield

o(A) = pa + O01 — py — p4).

For example, in Figure 8.4 one might begin with pg = ; and end up with

o(B) = 0.31. Here @ is the basic ambiguity parameter (@ = O for no
ambiguity), and 6 accounts for ambiguity aversion (6 < 1), neutrality (8 =

1), or ambiguity seeking (8 > 1). Their model satisfies complementary

additivity if @ = Oor 6 = 1.
The model in Fishburn (1986d) is

o(A) = (A) — m(A)7(A*) — 2(A*)7(A),

where a is an additive probability measure and 7 is an additive unsigned

measure that can take on negative as well as positive values. This model does

not satisfy monotonicity naturally, but that can be imposed. The 7 measure is

designed to account for ambiguity. The model does not generally satisfy

complementary additivity, but its correction for ambiguity, namely —

mw(A)r(A°) —72(A°*)7(A), is the same for both A and A°.

A different approach to ambiguity is axiomatized in Fishburn (1983c, 



 

GENERALIZATIONS OF ADDITIVE EXPECTED UTILITY 193

1983d) in ways suggested by SSB utility theory. The representation is

A > B® p(A, B) > 0,

where p is askew-symmetric functional on & x &, o($, @) = 1,A 2>B=>

p(A, B) > 0 (monotonicity), and

ANB= @ = p(AUB,C) + 0(G, C) = ofA, C) + p(B,C).

The last property, called conditional additivity, is a first-order generaliza-

tion of the usual additivity property AN B= @ = w(A U B) + r(G) =

m(A) + x(B). Positive p values for Figure 8.4 that agree with ambiguity

aversion andf > g,g’ > f’, are o(R, B) = po(R, Y) = 0.02, p(R, @) =

0.38, p(B, @) = e(Y, @) = 0.31. These and p(B, Y) = 0 completely

determine p with the use of skew-symmetry and conditional additivity.

8.3 GENERALIZATIONS OF ADDITIVE EXPECTED UTILITY

Our basic classification of generalizations of additive expected utility

and additive linear utility uses three dichotomies: additive versus nonadditive

subjective probability, transitive (weak order) versus nontransitive prefer-

ence, and regular Savage acts versus lottery acts. These give eight basic

categories as follows:

I. Additive, transistive, regular acts

A. Expected (Ramsey, 1931; Savage, 1954)

B. Nonexpected intensive (Allais, 1953, 1979a, b)

C. Expected disappointment (Loomes and Sugden, 1986)

II. Additive, transitive, lottery acts

A. Linear (Anscombe and Aumann, 1963)

II. Additive, nontransitive, regular acts

A. Expected regret (Bell, 1982; Loomes and Sugden, 1982,

1987)

B. Skew-symmetric additive (Fishburn, 1986e)

IV. Additive, nontransitive, lottery acts

A. SSB (Fishburn, 1984b; Fishburn and LaValle, 1987a)

V. Nonadditive, transitive, regular acts

A. Expected finite (Davidson and Suppes, 1956)

B. Expected (Gilboa, 1987)

C. Biexpected (Luce and Narens, 1985)
VI. Nonadditive, transitive, lottery acts

A. Linear (Schmeidler, 1984)

VII. Nonadditive, nontransitive, regular acts

VIII. Nonadditive, nontransitive, lottery acts
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A. Basic SSB (Fishburn, 1984b)

B. Conditionally additive (Fishburn, 1983c)

C. Modified SSB (Fishburn, 1986d).

As seen by the citation dates, most of these not already discussed in

Chapter 7 are very recent, and one category (VII) is, to the best of my

knowledge, presently empty. Unlike the listing in Chapter 3, no distinction is

made for the Archimedean aspect since all theories cited above have real-

valued representations.

There are a few major differences in regard to the treatmentof utility and

probability. The theories in IB, IC, and IIIA measure outcomeutility in the

riskless intensive manner of Bernoulli described in Chapters 1-3. The rest

base utility measurement on preference betweenactsor lottery acts by natural

extensions of the approaches described in Chapter 7. A similar division

obtains for the measurement of subjective probability. In particular, Allais

assesses probability apart from the specific acts at hand, Bell (1982) and

Loomes and Sugden (1982, 1986, 1987) simply take additive state probabili-

ties as given, however they might be assessed, and the others derive

subjective probability from their preference axioms.

Most of these theories were proposed in a normative spirit. The

axiomatic style used for TA and ITA has been successfully applied to TTIB,

IVA, VA-B, VIA, VIIA, and VIIIB, and IZA has been used to axiomatize
so-called state dependentutilities (Fishburn, 1970, Chapter 13; Karni etal.,

1983; Karni, 1985). Only partial axiomatizations exist for VC and VITIIC.

The others (Allais, Loomes and Sugden, Bell) do not have comparable

axiomatizations because of their different treatmentof utility and probability.

The rest of the chapter describes the generalizations in varying detail

except for VA (see Fishburn, 1981b). We begin with Allais’s additive

nonexpected intensive theory and its expected disappointment specialization

in Loomes and Sugden (1986), followed by the additive expected regret

theory of Loomes and Sugden (1982, 1987) and Bell (1982). Fishburn’s SSA

(skew-symmetric additive) theory is described in Section 8.6, followed by the

additive SSB theory in Section 8.7. These are fully developed in the next

chapter.

The final four sections discuss nonadditive theories, beginning with

Schmeidler’s linear theory in Section 8.8. Gilboa’s regular-acts version of

Schmeidler’s theory is outlined in Section 8.9. We then conclude with

sketches of the Luce-Narens model and the models in the final category.

8.4 ADDITIVE NONEXPECTEDINTENSIVE UTILITY

The basic elements of Allais’s approach to decision under uncertainty

were described in Section 3.3 with the exception of his treatment of subjective  



 

GENERALIZATIONS OF ADDITIVE EXPECTED UTILITY 195

probability. Allais (1979b, pp. 469-73) believes that so-called objective

probability is most accurately modeled by the classical notion of equally

likely cases operationalized by a reference urn with N identical balls (except

say for a different number on each). Ourintuition that the probability of

drawing one of n designated balls is n/N is supported by long-run relative

frequency of sampling with replacement. To assess your subjective probabil-

ity of event A © S, vary n until you feel that the likelihood that A obtains is

the same as the objective probability of drawing one of n designated balls

from the urn. Corrections may ne neededto assure additivity, but if S is finite

and N is large, the state probabilities can be assessed simultaneously (useall

the balls) to assure additivity.

Once additive subjective probabilities are assessed, they are used as the

‘probabilities for the distributions p, g, ... by way of the reduction

principle.We then have p > g # V(p) > V(q), with

Vip) = Sivp) + a(p*),
where v denotes riskless intensive utility, p* is the probability distribution

induced by p on the differences v(x) — & v(x)p(x), and a is a functional on

such distributions.

A similar theory presented by Loomes and Sugden (1986) replaces

a(p*) by an expectation that involves a concept of disappointment/elation.

For S finite let 7(s) denote the probability of state s and let f(s) be the

outcomefor actfwhen s obtains, as in Savage’s formulation. Then with v(/)

=  m(s)v(f(s)) = the expected value of riskless intensive utility for f,

Loomes and Sugden consider

V(f) = o(f) + & a(s)BIv(F(s)) — oI,

where 6 is a disappointment/elation functional on differences between

outcome utilities and their mean v(/). The basic intuition for @ is that it has

the same sign as its argument: If v(f(s)) — v(f) > 0, then oneis elated by

doing better than the mean, but if v(f(s)) < v(f), then there is

disappointment. I refer to their representation as an additive expected

disappointment model, since it uses additive probability and an expecta-

tional form for V,that is, V(f) = 2 a(s){v(f(s)) + BluCf(s)) — v(f)}}. If

G is linear in its argument with 6(d) = Ad, then V reduces to the acts-

formulation correspondent of Bernoullian expected utility. A somewhat

different notion of disappointment is discussed by Bell (1985).

8.5 EXPECTED REGRET THEORY

Prior to their work on disappointment, Loomes and Sugden (1982) and

Bell (1982) formulated models for preference comparisons between acts that
incorporate a concept of regret/rejoicing. Their original papers focused on
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monetary outcomes, but this was generalized to arbitrary outcomes in

Loomes and Sugden (1987).

The most general form of the additive expected regret representation

can be written as

f> ge | 64), as) dx(s) > 0,

where ¢ is a skew-symmetric functional on X x X. As in the preceding

section, utility is based on the Bernoullian riskless intensity notion. In the

present case, this is coupled with an adjustment for regret/rejoicing that

jointly involves f and g andis therefore quite different than the disappoint-

ment/elation notion. The concept of regret is designed to accommodate the

experience of choosing f from {f, g} and, when s obtains, of getting f(s)
rather than g(s). Iff is chosen and f(s) > g(s), one might rejoice at one’s

good fortune, but one could experience regret if g(s) > f(s). One explicit

form for ¢ is

o(x, vy) = v(x) — v(y) + ylv(@) — vy),

where ¥ is a functional for which y(—d) = — y(d), y(0) = 0, and y(d) > 0

ifd > 0.

Given > on F' defined from the additive expected regret representation,

it is easily seen that > on F satisfies all of Savage’s necessary axioms(i.e.,

Pi-P4 of Section 7.4), except for P1. In particular, there can be preference

cycles and the reduction principle does not generally hold. Thus, first-degree

stochastic dominance can be violated when the reduction principle is used to

obtain a, and 7, separately for f and g. On the other hand, expected regret

theory is fully consistent with Savage’s sure-thing principle, P2 and P3, and

with the substitution and the dominance principles near the end of Section

74.

Loomes and Sugden (1987) note that the additive expected regret

representation reduces to the SSB representation of Section 3.9 and Chapter 4

for pairs of stochastically independent acts. For convenience assumethat S is

finite. We then say thatfand g are stochastically independentif, for all x, y

€ X,

m{s © S: (f(s), 8(5)) =  ¥)}) = me)me().
When / and g are stochastically independent,

| $6), as) dx(s) = YY $evax)re),

which is the expectational form of the SSB representation for distributions p

= ay;and gq = qm,. As a consequence, the reduction principle does hold for
pairs of stochastically independent acts, and first-degree stochastic domi- 
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nance also holds for such acts. But both can fail otherwise. See Sections 2.2
and 2.5 for further remarks on independence versus interdependence.

8.6 SSA UTILITY THEORY

The second theory of category III, Fishburn’s (1986e) skew-symmetric

additive theory, has the same representation f > g | (f(s), 2(s)) dx(s)
> 0 as the additive expected regret theory butis interpreted very differently.

The main difference is that utility is not based on the riskless intensity

approach or on explicit regret/rejoicing but is derived from axioms for > on

Fas in Savage’s theory. Similarly, a is deduced from the axiomsin precisely

the same way that Savage obtains 7, by way of Lemma 7.5 and Theorem 7.2.

Given z as in Theorem 7.2, 6 on X X X is scaled through indifference

comparisonsof the form xAw ~ yAz. According to the SSA representation,

xAw ~ yAz = m(A)d(x, y) = [1 — r(A)]O(,w).

Thus, if x > y and z > w, we determine A € S at which xAw ~ yAz to

specify the relationship between $(x, y) and ¢(z, w).

Wemake only one major change and two minor changes in Savage’s six

basic axioms to obtain the SSA representation for all simple acts in F’. The

major change weakens the ordering axiom Pl by not assumingtransitivity

except on subsets of F whose acts are confined to two outcomes. Thefirst

minor change is to add the conditional dominance principle as an explicit

axiom (P2*) since it no longer follows from the weakened P1; see Lemma

7.4. The other minor changeis to strengthen Savage’s Archimedean axiom

P6 to a form suitable for the SSA approach.
To specify these changesprecisely, let F,, denote the set of allf © F for

which f(s) © {x, y} for all s © S. Then, with the definitions as in Section

7.4, we have the followingfor allf, g, f’, 2’ € F, allx, y © X, andall A, B

cS:

P1*. > on is asymmetric; > on Fy is a weak order.

P2*, (AN B= 6,f 248,f 22pQ) > Sf 2avsgs(ANB= of

>48,f 288) >f >aus és.
P6*. f > g = [given x, y, there is a finite partition of S such that,

for every member E of the partition, (f’ =z x orf’ =gf, 8’

=py org’ =£8,f' =ecf, 8’ =scg)>f > 8’).

Section 9.2 proves that P1*, P2, P2*, P3, P4, P5, and P6* imply the

SSA representation for all simple acts with a unique and ¢ unique up to

multiplication by a positive constant. All but P6* are necessary for the

representation, and we adhere to Savage’s sure-thing principle and his

approach to subjective probability, which entails the part of weak order

retained by P1*. The only basic change from Savage is the deletion of
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transitivity throughout F and, as a consequence, the denial of the reduction

principle. If either transitivity or reduction is restored, the SSA representa-

tion reduces to Savage’s additive expected utility representation (Theorem

9.2). Comments on extension of the SSA representation to all acts appear in

Section 9.3.

8.7 ADDITIVE SSB UTILITY

The additive SSB theory from Fishburn (1984b) and Fishburn and

LaValle (1987a) bears the same relationship to the SSA theory that the

additive linear theory of Section 7.6 bears to Savage’s additive expected

utility theory. In particular, it uses the lottery-acts approach with F = P* and

replaces the SSA representation by

£ > ge |d((s), es) dx(s) > 0,

where ¢ is an SSB functional on P x P.

As might be expected by analogy with additive linear utility, the additive

SSB theory applies C1, C2, and C3 (Section 4.1 or 3.6) to > on F and then

adds axioms that are necessary and sufficient for the existence of a unique

additive probability measure 7 on & = 2° for the representation. As before,

the use ofP allows S to be any nonemptyset, and no special conditions apply

to x apart from additivity.

Three axioms beyond C1-C3 are used for the simple lottery acts part of

the additive SSB representation. They are described morefully in Section 9.4

and consist of a nontriviality axiom and two independence axioms. Thefirst

independence axiom says that pAr > qAr # pBr > qBr for nonnull A, B

¢ S. This essentially allows the derivation of probability coefficients for

each finite partition of S. The other independence axiom is a specialized

version of the Herstein—Milnor (1953) independence axiom B2of Section 1.5

applied to > on F. In conjunction with C1-C3, the second independence

axiom implies the decomposition

o(f, g) = Db o(fAip, gAip)
i=]

for anyfinite partition {A,, ---, A,} of S and any fixed p € P, where fAp
denotes the lottery act that equals f on A andis constant at p throughout A°.

Given the lottery-acts formulation, the axioms are necessary as well as

sufficient for the simple lottery-acts version of the additive SSB representa-

tion, with one exception, namely that only the specializations of the axioms to

simply lottery acts are needed. The complete axioms are necessary for the  
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general representation, which also requires other assumptionsas specified in

Section 9.6.

Just as the SSA representation of the preceding section reduces to

Savage’s additive expected utility representation when transitivity (P1) is

restored, the additive SSB representation reduces to the additive linear

representation if it is assumed that > on F is a weak order, provided that 0 <
m(A) < 1 for some event A; see Theorem 9.6 near the end of Section 9.4. If

m is degenerate, say 7({s}) = 1 for somes € S,then the imposition of weak
order only reducesit to the weighted linear representation of Section 3.6 and

Chapter 5.

8.8 NONADDITIVE LINEAR UTILITY

The first broad generalization of additive expected-linear utility

designed to accommodatefailures of the substitution principle and Ellsberg’s

ambiguity problem through the use of nonadditive probability in an

expectational representation was developed by David Schmeidlerin the early

1980s. The theories in the preceding three sections satisfy substitution and do
not resolve Elisberg’s problem, while Allais avoids the substitution principle

with a nonexpectational representation and additive probability.

Schmeidler (1984) presents his theory in the lottery-acts formulation of
Sections 7.1 and 7.6. Gilboa (1987) subsequently axiomatized Schmeidler’s

modelin the Savage-acts format as described in the next section. Since their

representations are based on Choquet’s (1955) definition of expectation with

respect to a monotonic but not necessarily additive probability measure o on

&, we say a word aboutthis first. We assume for simplicity that § = 2°.

Additional discussions of Choquet integration with relationships to decision

under uncertainty are provided by Schmeidler (1986) and Gilboa (1985a,b).

Given a functional w on S and a monotonic probability measure o on &,

| w dois defined by

\. w(s) do(s) = \"
c=

; o({s © S: w(s) > c}) de

_ i [1 — o({s © S: w(s) > c})J de,

providedthatthe right side is not 00 — oo, in which case | w dois undefined.

The integrals on the right side are ordinary Riemannintegrals with integrands

ordered in the positive and negative domains so that they are monotonic

(decreasing for + , increasing for —). When w is constant on each memberof

a finite partition {A,, ---, A,} of S, say with

w(s) = G foralls € A; G=1,...,n),
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arranged so that c; > Cc, > *** > C,, then evaluation of the defined integral

yields

n-l1 i

| wdo= > (Cc; _ Cin 1) 0 (U4) + Cy.

isl j=l

Apart from the indexing of the w values, this is identical to the form for V(p)

used in the basic decumulative representation of Section 3.5 (Quiggin, 1982).

Schmeidler (1984) uses four axioms plus a nontriviality condition,

including Al and A3 for > on F (or a subset thereof) and a weakening of the

independence axiom A2. This weakening, which is the crucial step that

allows failures of the substitution principle, uses the following definition of

comonotonicity between lottery acts. We say that f, g © P* are comono-

tonic if there do not exist s and f in S such that f(s) > f(¢) and g(t) > g(s). In

other words, f(s) > f(t) whenever g(s) > g(t), and g(s) > g(t) whenever

f(s) > f(t). Comonotonicity is a very restrictive hypothesis. For example,

underthe lottery acts specialization to ordinary acts for Figures 8.1 and 8.4, f

and g are not comonotonic in any of Figures 8.1, 8.2, and 8.4.

Schmeidler’s axioms, applied to all f, g, h © F (or a subset thereof) and

allO < dX < 1, are:

Al. > is a weak order.

A2*. (f, g, and h are mutually comonotonic, f > g) > f + (1 —-

yh > Ag + C1 — Ah.

A3. f > g > h= af + (1 — ah > gandg > Bf + (i - Bh for

some a and £ in (0, 1).

S1*. f° > g’ for some f’, g’.

S2*. (f(s) > g(s) foralls © S) =f > g.

The nontriviality axiom is obviously S1* (cf. S1 in Theorem 7.5), and

S$2* is the monotone dominance principle for lottery acts.

THEOREM 8.1. Suppose Al, A2*, A3, S1*, and S2* hold on the set of

simple lottery acts. Then there is a unique monotonic probability

measure o on & and a linear functional u on P, unique up to positive

linear transformations, such that, for all simple lottery acts f and g,

f > ge |w(s)) do(s) > |_u(g(s)) dois).

Schmeidler also notes that the conclusion of the theorem impliesits five

axioms. Its proof in Schmeidler (1984) begins with the fact that Al, A2*, and

A3 imply Al, A2, and A3 on P,considered as the set of constantlottery acts.

This gives u on P by way of Theorem 1.3. The remainderof the proofis then

devoted to establishing the existence of o as asserted. A result from

Schmeidler (1986) is used in this part of his proof.
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The extension of his nonadditive linear utility representation to

nonsimple acts is examined by Schmeidler (1984, 1986). Call f € F

boundedif there are p, g © Psuch that p > f(s) > q foralls € S. He then

proves the following.

TueoreM 8.2. If > on the set ofsimplelottery acts satisfies Al, A2*,

A3, and 82*, then it has a unique extensionto the set of bounded lottery

acts that satisfies the same axioms on those acts. Moreover, if the

extended > is not empty, then there are o and u as in Theorem 8.1 such

that f > g & | u(f(s)) do(s) > | u(g(s)) do(s) for all boundedlottery

acts.

Additional results for the representations of Schmeidler and Gilboa are

developed by Wakker (1986).

8.9 NONADDITIVE EXPECTED UTILITY

The Savage-acts correspondent of Schmeidler’s representation is the

nonadditive expected utility representation

f> ge |uf(s) dots) > |u(g(s) do(s),

where u is a functional on X and o is a monotonic probability measure on &

— 25, Gilboa (1987) axiomatizes this representation in Savage’s fashion for F

= X% and notes carefully just how he is changing P1-P7 for the more general

model.

Unlike the SSA situation of Section 8.6 which requires only a few

changesin Savage’s axioms,atleast for simple acts, Gilboaretains only P1 in

its original form. Because of his extensive changes, I shall note only those

that involve P2-P4; see Gilboa’s paper for his modifications of PS-P7. To

avoid confusion with Section 8.6, double asterisks will be used for Gilboa’s

changes even though this work preceded and motivated Fishburn (1986e).

Comonotonicity between acts is defined by analogy to Schmeidler’s

definition. For convenience, extend the notation xAy to xAfas the act f” for

which f’ =4x and f’ =,c f. Gilboa replaces {P2, P3, P4} by two axioms,

applied to all f, g, f’, 8° © F, all x,y,z, w © X,andallA, BS S:

p2**, If xAf, yAf, zAg, and wAg are mutually comonotonic, if

xBf', yBf’, zBg’ and wBg’ are mutually comonotonic; and

ifx > y,z > w, xAf > xBf’, yAf ~ yBf’, and wAg ~

wBg’, then zAg > zBg’.

P3**, x > py = xXAf > VAS.

The latter axiom is an appealing weakening of Savage’s P3. The former,

P2**, is Gilboa’s replacement for the P2 part of the sure-thing principle,

v
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designed to avoid implication of the substitution principle. It also embodies

aspects of P4 with its pairs of outcomes and two events, and implies P4 in the

presence of P1. Unfortunately, P2** haslittle direct intuitive appeal. Gilboa

notes that if the comonotonicity hypotheses of P2** are removed, then it

essentially says that an improvement from y to x (x > y) that swings the

indifference yAf ~ yBf’ in A’s favor, toxAf > xBf’, cannot be reversed

by a similar change from w to z when z > w; that is, we cannot also then

have wAg ~ wBg’ and zBg’ > wAg. However, this unrestricted form is

too strong for the nonadditive expected utility representation. When the

comonotonicity restrictions are added, the resultant P2** becomes necessary

for the representation.

Gilboa (1987) proves that P1, P2**, P3** and his replacements for P5-

P7 hold if and only if there is a monotonic probability measure o on & and a

bounded functional u on X that satisfy the nonadditive expected utility

representation for all f, g € F along with, for all A € BandallO <A <1,

o(C) = Ao(A) + (1 — A)o(B) forsome A © CC B,

and for which o is unique and wu is unique up to positive linear

transformations. Unlike the proofs developed elsewhere for related represen-

tations (Savage, 1954; Anscombe and Aumann, 1963; Schmeidler, 1984;

Fishburn, 1984b, 1986e), Gilboa’s cannot draw directly on the von

Neumann-Morgenstern linear utility theorem or Savage’s additive probabil-

ity measure and therefore requires a new approach.

In a sequel, Gilboa (1985a) makes a case for the complementary

additivity condition

a(A) + ofA‘) = 1 for all A ¢ S,

for Schmeidler’s representation and his own, neither of which presumesthis

condition. Part of his case deals with technical aspects of Choquet

integration. For example, within the context of his representation, it may

seem reasonable to require that maximization with the form | u do should be
equivalent to minimization with the form | (— 1) do, butthis turns out to be

true in general if and only if o satisfies complementary additivity. He also

develops a condition for > on F that is tantamount to complementary

additivity within the setting of his other axioms, and later suggests that a

consistent theory for conditional probability arises only when o is fully

additive.

8.10 NONADDITIVE BIEXPECTED UTILITY

Luce and Narens (1985) develop a model for decision under uncertainty

that illustrates how their analysis of concatenation structures in measurement

theory might be applied to the decision area. Because their formulation differs
f  
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somewhatfrom those of Chapter 7 and the other generalizations of the present

chapter, I shall first give a paraphrased version of their theory in Savage’s

setting and then explain their approach.

As usual, let xAy denote the act with outcome x if A obtains and

outcome y otherwise, and let Sp = X x & x_X,the set of all such acts. We

then say that (So, >) has a nonadditive biexpectedutility representation if

there is a functional uw on Jo, with u(x) defined as u(xSx), and monotonic

probability measures o* and o~ on suchthat, for all xAy, zBw € Fo,

xAy > zBw © u(xAy) > u(zBw)

and

u(xAy) u(x)o*(A) + u(y)[{1 — ot (A)] ifx > y,

u(x) . ifx ~ y,

u(x)o"-(A) + u(y)[1 -— o-(A)] ify > x,

The novel feature of this representation is its use of two monotonic measures

whoseapplications depend on preference between the outcomesas well as on

&. It reduces to a special case of Gilboa’s representation with o+ = o7 if and

only if the complementarity condition xAy ~ yA‘x holds throughout J. My

designation ‘‘nonadditive biexpected utility’’ attempts to maintain consist-

ency with the general terminology of this chapter and Chapter 7. Necessary
axiomsfor the representation include weak order, (A © B,x > y) > xBy >

XAy,(A © B,y > x) => xAy > xBy, (x > Z,y > Ww) > XAy > ZAw, and

(x > y,Z > w,xAy > xBy) = zAw > ZBw.

The approach of Luce and Narens applies > to a set & that is built up

recursively from elements in X X & xX X, where &is a family of events

that is not generally assumed to be a Boolean algebra and, as a technical

convenience, omits @ and S. I shall denote elements in ¥ as xAy, where x

and y are outcomes in X, or simple acts of the form x = zBw, or more

complex entities obtained recursively from X xX & X X. In an expression

like (zBw)Ay, A and B are interpreted as statistically independent; the

gamble based on A is carried outfirst and then, ifA obtains, the zBw gamble
is carried out. A similar interpretation applies to the two instances of A in

xA(zAy). Although this is awkward for the states setting, it fits nicely with

the measurement theory in their paper.

Luce and Narensreferto their basic utility representation for (J, >) as

the dualbilinearutility representation.It consists of a functional u on SF and

functionals ot and o~ from & into (0, 1) such that, for all xAy, zBw € f,

xAy > zBw ¢ u(xAy) > u(zBw)

and
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iu(xAy) u(x)ot(A) + uly)[1 — of (A)] ifx > y,

= u(x) ifx ~ y,

u(x)o~ (A) + u(y)[f1 -— ao(A) ify > x.

This representation is approached from a scale-theoretic viewpoint in Luce

and Narens (1985, p. 59), and its preference axioms are discussed by Luce

(1984).
The dual bilinear utility representation does not presume that o* and o~

are monotonic, but this is readily supplied by assuming x > y # xAy >

xBy whenever B C A. Separately, their representation satisfies complemen-

tary symmetry in the form o*(A) + o(A‘) = 1 if and only if xAy ~

yA‘x, provided that & is closed under complementation. These and other

specializations are discussed in some detail by Luce and Narens.

I have glossed over a few of the finer points in their paper and urge

interested readers to consult the original. Of special interest is their discussion

of accommodation of the Allais and Ellsberg phenomena and their demonstra-

tion that the prospect theory model of Kahneman and Tversky (1979) is a

special case of the dual bilinear model under a suitable translation of the

Kahneman-Tversky structure into their own format.

ll

8.11 NONADDITIVE, NONTRANSITIVE THEORIES

Weconclude our review of generalizations of additive expected utility

by commenting on three representations that accommodate Ellsberg’s

ambiguity problem partly through nonadditive subjective probability without

assuming that preferences are transitive.

Thefirst theory, the basic SSB theory of category VIII, applies the SSB

axioms C1, C2, and C3 to > on F, asin the initial part of the axiomatization

for the additive SSB theory outlined in Section 8.7. It uses no other axioms

and does not yield an unambiguous monotonic probability measure.

However, its representation, which is described in Theorem 9.4, involves a

partial decomposition overstates.

Our second theory provides a preference-based axiomatization of the

conditionally additive skew-symmetric functional p on & x & described in

Section 8.2. The axiomatization is based on only two outcomes, x and y with

x > y, takes & as a Boolean algebra of subsets of S, and applies > to the set

G of modified simple lottery acts defined by

G = {f: & — [0, 1]: f(A) > 0 for no more than a

finite number of A € &, 5) f(A) = 1}.

Thuseach f assigns a ‘‘probability’’ f(A) to every event A in &. Weinterpret

f as an option that yields the preferred outcome x with probability  
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Si) £(A) whenstate s obtains,
{AEE:sEA}

and yields y with complementary probability 1 — © {f(A):s © A} whens

obtains. The probabilities used in the definition of G are viewed as extraneous

scaling probabilities, and it is easily seen that each f © G corresponds to a

simple lottery act as that term has been used previously. Moreover, G is a

convexset.
For convenience,let f,, denote the element in G that assigns probability

1 to event A € &. Then, in the manner of Savage, we define >, on & by

A> B iff, > fp.

In termsof prior notation f, = xAy and fg = xBy. The axiomsfor (G, >)

consist of the SSB axioms C1-C3 alongwith the following for all A, B € &

and all f, g © G:

Hl. fy > fg.
H2.A 2B =f, > fr.
H3. (2 {f(C):s © C} = 2 {g(C): s € C} foralls © S) > f ~ g.

The first two of these are obvious nontriviality and monotonicity conditions.

H3 says that if f and g have the same probability of yielding the preferred

outcome in every possible state then f ~ g.

Fishburn (1983c) proves that C1-C3 and H1-H3hold for (G, >) if and

only if there is a unique SSB functional p on G X G suchthat, for all f, g ©

G,

f > g @ o(f, g) > 0,

and such that p on & x &, defined by o(A, B) = p(f4, fg), is monotonic,

conditionally additive, and has p(S, @) = 1. By the preceding definition of

>x, A >» Be p(A, B) > 0.

There seem to be two main problems with the conditionally additive

theory. The first concerns C2. To illustrate, suppose an urn contains 100
black (B) and red (R) ballsiin an unknown mixture. Let f = ato + sfs, so f

yields x with probability += Tegardless of which ball is drawn. Elisberg’ S

analysis suggests that many people will have f ; fg and f > fp. Then C2

requires f > ofp + ofp. But, by H3, f ~ ofp + ofr since the mixture yields

x with probability += regardless of which ball iis drawn. Hencethere are limits

on the extent to which this approach accommodates ambiguity aversion.

The second problem concerns the extension of the theory to a general

outcome set X. I have been unable to devise a natural extension that avoids

the implication that subjective probability is additive as in the additive SSB

utility theory of Sections 8.7 and 9.4. Again I suspect that the problem lies in

unrestricted application of the convexity axiom C2.
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The third representation designed to accommodate ambiguity, failures of

the substitution principle, and intransitivities was developed in the lottery-

acts setting (Fishburn, 1986d) but can also be expressed with Savage acts for

category VII. In thelatter setting with F = X°% and S finite, the model is

f>rgeV(f8)>0

with

VF, 8) = Yrs)os), a(s))
Ss

— YY a5)OOK), F/O) — |o(g(s), g(O) 1,
sES t€s

where each 7(s) > 0, 2 a(s) = 1, 7(s) € R, and ¢ is a skew-symmetric

functional on_X xX X, or on P xX P (with bilinearity) in the lottery-acts case.

If 7 = 0, this reduces to the SSA representation for regular acts and to the

additive SSB representation for lottery acts.

In the general case the a(s) behave exactly like additive subjective

probabilities but are confounded by the other state function 7, which is

designed to accommodate ambiguity. When >, is defined by A >, B if xAy

> xBy whenever x > y, it is easily seen that the model implies S >» @, >»

is a weak order on & = 2°, and, for all A, B € &,

A > B # o(A) > a(B),

where

o(A) = mA) — T(A)r(A‘) — 2(A‘)7(A)

as in the penultimate paragraph of Section 8.2. As indicated there, >, is not

naturally monotonic, but this can be assumed if desired.

Althoughneither the regular nor lottery-acts version of the V representa-

tion has been axiomatized, a few necessary conditions are noted in Fishburn

(1986d) for the lottery-acts version. These include C1-C3 on the set of

constant lottery acts (where the term in 7 vanishes) and the correspondent of

Savage’s P4. Moreover, the representation has appealing uniqueness proper-

ties in this case, with @ unique up to multiplication by a positive constant,

unique 7, and, except for a few special cases, unique 7.

The representation also has some undesirable implications from a

normative perspective unless its functions are constrained in certain ways. In

connection with the potential nonmonotonicity of >», the model does not

naturally imply that pAq > pBq whenever A > Band p > q.In addition,

because of the way it deals with ambiguity through within-act variability, it is

possible to violate the simple dominance principle or the monotone

dominance principle of Section 7.4.  
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FIGURE 8.5 Expected utility theories with states

 

REGULAR ACTS LOTTERY ACTS

ADDITIVE, TRANSITIVE SAVAGE (1954) ANSCOMBE AND AUMANN (1963)

NONADDITIVE, TRANSITIVE GILBOA (1987) SCHMEIDLER (1984)

ADDITIVE, NONTRANSITIVE FISHBURN (1986e) FISHBURN (1984 b)

NONADDITIVE, NONTRANSITIVE ? FISHBURN (1983c, 1984b)

Finally, I note that if ¢ in the lottery-acts case is decomposable in the

linear utility manner as ¢(p, g) = u(p) — u(q), then it can be shownthat

the representation reduces to a special case of Schmeidler’s (1984) model of

Section 8.8, provided that (4 > B, p > q) = pAgq > pBgqis assumed.

8.12 SUMMARY

Generalizations of the additive expected or linear utility theories of

Savage, Anscombe and Aumann,and others can be conveniently classified

according to whether they use additive subjective probability, whether they

assume transitivity, and whether they are based on regular Savage acts or

lottery acts. A few generalizations adopt the Bernoulli-Allais riskless

intensity approach for utility measurement, but most derive utilities from

simple preference comparisons between acts or lottery acts.

The three main additive representations developed to date are Allais’s

transitive nonexpected form, the skew-symmetric expectational form for

regular acts in the regret theories of Bell and Loomes—Sugden and the SSA

theory of Fishburn, and the additive SSB representation for the lottery-acts

formulation. The latter theories do not assume that preferencesare transitive.

The primary nonadditive representations that have been satisfactorily

axiomatized thus far are Schmeidler’s nonadditive linear representation for

lottery acts and Gilboa’s corresponding nonadditive, expected utility repre-

sentation for regular acts. Both assume transitivity and can account for

Elisberg’s ambiguity phenomenon. Figure 8.5 identifies initial contributions

for theories that have been more orless satisfactorily axiomatized in the

simple preference comparisons style of von Neumann—Morgenstern and

Savage.



9 Additive Nontransitive Nonlinear

Utility

As noted in the preceding chapter, Savage’s additive expected utility

theory and the corresponding additive linear utility theory have been

generalized to avoid transitivity and the reduction principle while retaining

additive subjective probability. This chapter proves that the resultant SSA

(skew-symmetric additive) and additive SSB representations follow from the

axioms of Chapter 7 with various modifications appropriate to these more

general representations. It also shows how the new representations reduce to

their correspondents in Chapter 7 when transitivity is restored.

9.1 SKEW-SYMMETRIC ADDITIVE UTILITY

This chapter examines in detail the SSA (skew-symmetric additive)

representation

f>2e |6/6), (9)dx(s) > 0

that generalizes Savage’s additive expected utility representation of Section

7.4, and the additive SSB representation

f>ge | $C), g(s)) dr(s) > 0

that generalizes the additive linear representation of Section 7.6. This section

and the next two focus on the SSA theory; the rest of the chapter considers

extensions of the SSB theory of Chapter 4 to the states setting.

The definitions and notation of Chapter 7 apply throughout the present

chapter unless noted otherwise. In particular, we take F = X5, F = P*%, and

& = 2°, with P theset of all simple probability distributions on X. Also, Fy

= {f © F:f(S) © {x, y}}, the set of all acts whose outcomesare confined

to {x, y}, xAy is the act that yields x ifA obtains (f =, x) and y ifA does

not obtain (f =4cy), and A >, BifxAy > xBy forallx, y © Xfor which x

> y.  
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For convenience werecall the basic SSA axioms, which apply to all f, g,

t’,g’ © F,allx, y, x’, vy’ © X, andall A, BC S:

P1*. > on F is asymmetric; > on Fy is a weak order.

P2. (f=al'. 8 =48fayetl=yceR)>(f>eef’ > g’).
P2*. (AN B= 0,f 248,f 288) =f 2auvsgisANB= Of

>4a8,f 288) >f Pause.

P3. (A EN, f=4%,8 =4y) > (f >48 Ox > y).
P4. (x > y, x’ > y’) = Ay > xXBy © x’Ay’ > x’By’).

P5. z > wforsomez,w€ X.

P6*. f > g = [given x, y, there is a finite partition of S such that,

for every member E of the partition, (f’ =z x orf’ =zrf, g’

=e yorg’ =£8,f' =e, 8=p8) > f> 8’).

It is easily seen that all axioms except the Archimedean condition P6*

are necessary for the SSA representation. Our basic SSA theorem showsthat

these axiomsare sufficient for the representation confined to simple acts.

THEOREM 9.1. Suppose P1*, P2, P2*, P3, P4, PS, and P6* holdfor >

on F = X%5 with >, on & = 2% as defined above. Then (&, >) has a

unique additive representation with the properties of its agreeing

probability measure w as specified in Theorem 7.2 along with, for all A

€ &,A € W @ x(A) = 0; andthere is a skew-symmetricfunctional ¢ on

X X Xsuch that, for all simplef, g © F,f > g @ \s o(f(s), 2(s)) dx(s)

> 0. Moreover, ¢ is unique up to similarity transformations.

The proof of the theorem, which begins with Theorem 7.2 and Lemma

7.5, is completed in the next section. Section 9.3 then discusses the extension

of the SSA form to nonsimple acts in F. We note there that Savage’s P7 is

unsuitable for the extension and suggest other axioms that are presumed by

the extension, including the monotone dominance principle, but do not

provide a complete resolution of the extension problem.

Weconcludethe present section with the observation thatfull transitivity

(P1), which obviously reduces the SSA representation for simple acts to

Savage’s additive expected utility representation, is tantamountto the identity

reduction principle of Sections 7.4 and 8.1.

THEOREM 9.2. Given the representation of Theorem 9.1, P1 holdsfor

> on the set of simple acts in F if and only if the identity reduction

principle (ms = 1, > f ~ g) holds.

Proof. It suffices to consider only simple acts. If the representation of

Theorem 9.1 holds along with P1, we obtain Savage’s representation, which

implies the identity reduction principle; see Section 7.5 for comments.

Conversely, if the representation of Theorem 9.1 holds in conjunction with

the identity reduction principle, then with {A, B, C} a three-part uniform
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partition of S as follows from thefinal conclusion of Theorem 7.2, we get f

~ g when (f =4 x, f = Y, f =c 2) and (8 =4y, 8 = 2, & =c x), and
therefore (x, y)/3 + O(¥, Z)/3 + o(@, x)/3 = 0, or

o(x, y) + o(y, Zz) + o(%, x) = 0

for all x, y, z © X. Fix x) € X and define u on Xby u(x) = (x, Xo). Then,

by the preceding equation and skew-symmetry, take Z = Xp to get

o(x, y) = u(x) — u(y).

Substitution of this in the SSA representation gives Savage’s representation,

so PI holds. gi

9.2 SSA UTILITY PROOF

The following easy consequences of P1*, P2 and the definitions

preceding Savage’s axioms in Section 7.4 will be used without special

mention throughout this section:

(f > 8, f =4c¢8) af a8.
(f ~ 8, f =4c8) =f ~a 8.
(f 2 gf =4c 8) =f 2a 8.

AEN S(Sf’ ~42’ forall f’,g’ € F).

>, is asymmetric.

~, is symmetric and reflexive.

f ~ag @ [not (f >4 g) and not (g >4f)I.
frag e (f~agorf >a4 8).

Weassumehenceforthin this section that the hypotheses of Theorem 9.1

hold. Lemma 7.5 and the paragraph following its proof give 7 for Theorem

9.1, so we focus henceforth on the construction of skew-symmetric ¢ onX X

X

that satisfies the SSA representation for all simple acts in F. All acts used

henceforth in this section are presumedto be simple.

Our construction of @ is based directly on the fact that if the SSA

representation holds, then

xAw ~ yAz = 4(A)o(x, y) = 7(A)OG,W).

To prepare for our subsequent definition of ¢ and the SSA representation

verification, we first prove a series of lemmas. The crucial ones are Lemmas

9.7 and 9.9.

Lemma 9.1. (f(s) > g(s) for alls © S) > f 2 g. If, in addition,

{s:f(s) > g(s)} €& OW, then f > g.

Remark. This is similar to the monotone dominanceprinciple. As noted

earlier, it applies here only to simple acts.  
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Proof. Partition S into events on which (f(s), g(s)) is constant. Then

P3, the definition of DU, and a series of applications of P2* give the desired

conclusions. Ea

Lemma 9.2. (A ~,B, AN B= @,f =4%,f =p, & =a y, & =X)

=> f ~aup &.

Proof. l£x > yory > x, the conclusion follows from the definitions. If

x ~ y, use Lemma 9.1. i

Lemma 9.3. (A ~x C, B ~, D; A, B, C, andD are mutually disjoint;

Sf =4X,f =BW, 8 =ay,& =U Sf=cx,f' =pW, 8’ =cy, 8=p%) >
(f >ausne & Sf >cuvd 8’).

Proof. Given the hypotheses, define simple h, k in part by

h =, x, h =, Ww, h =c), h =pZ,

kK=4,)y, Kk =gp2, k=cx, k =pw.

By Lemma 9.2, h ~a4uck and h ~BUD k. Hence P2* implies h ~™AUBUCUD K.

Again by P2*, A >4ugk @ k > cup /h, which is the desired conclusion of

the lemma. a

For the next lemma and later define

No = {k/2":n =1,2,...;k =1,..., 27}.

Lemma 9.4.(4 1 B= @,C GC A,DCB;X€E Ao, a(C) = Anr(A),

m(D) = dAa(B); f =4 x, f =p W, & =4), 8 =p2) > (Sf Pause ef
> cup &).

Proof. If \ = 5, then by Lemma 9.3 and P2*, f >cung @ f
> (A\Que pv) & & f > aus &. Successive bisections of C and D, and so

forth, using the final property for 7 in Theorem 7.2, lead to the conclusion

whenever \ © {5 +: ? . . .]. The same conclusion for every \ © Apo then

follows from the second implication in the first paragraph of this section and

successive applications of P2*. ml
Our next lemma, which extends Lemma 9.3, gives a key property of

preference invariance under equally likely events.

Lemma9.5.(A ~xC,B~xD,ANB=CND= @;f=ax,f =p

W,8 =4¥,8 =235f’ =cx,f’ =pW,8' =cy, 8 =p2Z) > CS Pause &
St’ >cup 2’).

Proof. According to Lemma 9.4,it suffices to prove Lemma 9.5 under

the assumption that 7(A) + 7(B) < * since otherwise A, B, C, and D in the

present case can be ‘reduced’ by the same factor under successive bisection.

Given 7(A) + 7(B) < 3, hence 7(C) + aD) < 5, letE = (A UBU
C U D)¢so that 1(E) > +. Choose E,, Ey © E with E, N E, = @ sothat
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w(E,}) = (A) = x(C) and r(Z,) = 7(B) = x(D). Then, by Lemma 9.3

with h =g, x, h =g, w, k =z, y, k =E, Z, we have

SF rausg &h PgueE, k,

J’ >cun&’ &@ A PRUE Xk,

and therefore f >4ueg @ f’ >cupv@’. a

Lemma 9.6.(x > y,z > wwANB= @,BE€E MN, xAw > yAz)=

x(A U B)yw > y(A U B)z.

Proof. Let C = (A U B)°, f = xAw, and g = yAz. Assumef > gas

in the hypotheses. If g >4uc/J, then, since g >gf (by z > w, B € OW, and

P3), P2* implies g > f, a contradiction. Hencef >4ucg. Letf’ =4ucl, 2’

=4uc8,f =gxX, and g’ =z, ysothatf’ = x(A U B)wandg’ = y(4 U

B)z. Since f’ >4ucge’ by f >aucg, and f’ >gg’ by x > y and P3, P2*

implies f’ > g’. i
Lemma 9.7. [fx > y and z > w, then there is a unique d € (0, 1)

such that, for all A © &,

w(A) > X\ @ xAw > yAz,

w(A) =X © xAw ~ yAZ,

w(A) <X © yAz > xAw.

Proof. Assume x > y and z > w. Consider xAw and yAz. By Lemma

9.5, preference between xAw and yAz dependsonly on 7(A) and not on A’s

specific identity. Hence, when (A) = a, we write xaw and yaz in place of

xAw and yAz,respectively. By Lemma 9.6, (u > \, xAW > yAZ) > XuW >

ypz, and (u < », yAXZ > XAW) > YuZ > xXpw. Moreover, xlw > ylz and

y0z > x0w. According to P6* with outcomepair (w, z) when (f, g) = (%, y),

and outcomepair ( y, x) when (/, g) = (Z, w), we getx\w > ydz for some »

< 1, and y\z > xdw for some d > 0.It follows that there is a unique A’ ©

(0, 1) such that

A> Xd’ > xdw > prz,

AN < Xd’ => YAZ > XW.

If either x\’w > yd’Z or yA’Z > Xd’ w, then a similar application of P6*

yields a contradiction of Lemma 9.6 with {f, g} = {x\’w, yN’z} in the
hypotheses of P6*. Hence xX\’w ~ yr’Z. i

Henceforth we use the notation xayfor (xAy, m(A) = a) asjustified

by Lemma9.5.

Lemma 9.8.(C N D = @,0 < Xd < 1, aC) = Aa(A), r(D) =

AMA‘), f =cx, f =p W, & =cY, & =p2) = WKAw > YAzZ & f >cuD8g). 



 

ADDITIVE NONTRANSITIVE NONLINEAR UTILITY 2/3

Proof. This follows from Lemmas 9.4 and 9.5 for all ) © Ao, andit

holds for allO < X < 1 by Lemma9.1 andthe definitions unless (x > y, z >

w)or(y > x, w > z). Assume henceforth that (x > y,z > w),0<A <1,

and \ € Apo. Also let a = a(A).
Suppose xaw > yaz. Then, by Lemma 9.7, there is a positive 8 < a

such that x8w > y@6z. Given such a B, choose Ny € Ag so that \ < Ao, Nob <

Aa, and A(1 — a) < Ao(1 — 8). Let Co and Dy be disjoint events for which

Co C C, Do C D, (Co) = AoB, and x(Do) = Ao(1 — 8B). Also let simple

acts hand k have h =c)x,h =p, w,k = c,y, andk =p, Z. Then, since x8w

> yz and since Lemma 9.8 holds for Ao, A ? CoUDy K- Two applications of

Lemma9.6 (first replacing Dp by D, then Cp by C)forits straightforward

modification to the conditional case then yield f > cup g.

A converse proof that uses the same basic method showsthatf > cup g

=> xXaw > yaz. i .

In our final lemma we usethe notation

W°(A) = 1(A)/m(A‘) for all A € & for which 7(A‘) > 0.

Lemma9.9. Suppose x, y, Z, Ww, t, v © X;A, B,C € &;x > y,z> w,

t > v, and

xAw ~ yAZz

zBu ~ wBt

tCy ~ vCx.

Then 1(A)r(B)x(C) = 1.

Proof. Given the hypotheses, let a = a(A), 8 = m(B), andy = 2(C).

By Lemma9.7, a, 8, and y are in (0, 1). Also let\ = 8/(68 + 1 — a) and let

{A, B, C, D} be a four-part partition of S with 7(A) = da, 7(B) = (1 —

a), m(C) = (1 — A)B, and r(D) = (1 — A)(1 — 8B). Let (F, 8) equal (x, y),
(w, Z), (z, w), and (uv, f) on A, B, C, and D,respectively.

By Lemma 9.8, f ~4ue g andf ~cupg, sof ~ g by P2*. Since M(1 —

a) = (1 — Q)B bythe definition of \, f ~guc g, so again by P2*, f ~4up gz.

Hence, by Lemma 9.8,

x[Aa/(Aw + (1 — A) — B))]v

~ y[(Q — ANA = B)/Qa + GU - AY — Be

Then Lemma 9.7 gives AXa/(Aw + (1 — A)(1 — B)) = 1 — ¥y, which reduces

to aBy/[ —- a)(1 — p)- y)J = 1. mB
Proof of Theorem 9.1. Given 7 by way of Lemma 7.5 and Theorem

7.2, define ¢ on X x X as follows. Fix x9, vo © X with x) > yo as
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guaranteed by P5, and let do = $(X%, Yo) be any positive number. Then take

o(z, w) = 0 ifz ~ w,

o(z, w) = 1°(A) dbo ifz > wand xAw ~ WAZ,

o(Z, Ww) = —¢(y, Z) ifw > z.

Given @9, it should be clear that @ must be defined in this way if it is to be

skew-symmetric and satisfy the SSA representation.

By Lemma9.7, ¢ is well defined. (When (z, w) = (X, Yo), we have

1°(A) = | at indifference.) Moreover, ¢ is unique up to multiplication by a

positive constant since the only freedom in its definition is the value chosen

for @o, and if this changes to ¢; then ¢ changes to ¢’ = ($)/¢o)¢. In

addition, Lemma9.9 assuresusthat the same ¢ is obtained (up to a similarity

transformation) regardless of which (Xo, Yo) is used for the definition. For

example, if X)» > Yo, X; > y:, and @(X, y;) is obtained from (Xo, Vo) by

O(%1, 1) = T°(D)O(Xo, Yo) with X»Dy, ~ yoDx1,

and if 6(z, w) for z > w is scaled against each of (Xo, Yo) and (x1, ¥;) by

o(Z, w) = 7°(A)b(Xo, Yo), XoAW ~ WAZ,

O(Z, Ww) = 1(B)$(x1, 1), X41 Bw ~ yBz,

then the same value of ¢(z, w) obtains for both equations if and only if

T(A)b(Xo, Yo) = T°(B)O(X1, yi); that is, t°(A) = 2°(B)r(D), which
follows from Lemma 9.9 by a rearrangement of terms.

Given simple actsfand g, let {A;,. . . , A,} be the smallest-cardinality

partition of S suchthat (f, g) is constant on each memberofthe partition with

(f(s), e(s)) = i, Yi) for alls € Aj,

Qi = (A),

i=1,...,n,and2a; = 1. Fixt € X. Successively replace each (%;, yj)

by (t, ¢) for all. A; © SU and the A; € OW at which x; ~ y;. By P2* and P3,

this does not change the preference or indifference between f and g, and it

clearly has no affect on the sign of | 6(f, g) dz.

With f and g thus modified, assume for definiteness that A,, ...,

Am(m < n) are the membersofthe partition for which a; > 0 and not (x; ~

y;). If m = 0, thenf = g; hencef ~ g, and [6(/, g) dx = 0. If m > 1 and

x; > y; for eachi < m, Lemma 9.1 gives f > g, and clearly \ Cf, g) dx >

0.

Suppose x; > y; and y; > x; for some i, j < m. Take (i, 7) = (1, 2) for

definiteness. By Lemmas 9.7-9.9 there is a unique number 7 > 0 such that

$(¥2, X2) = rh(X1, V1),  
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and f’ ~cup g’ whenever 1(C)/a(D) = 7, f! =c%™, f" =p X28’ =cyV1,

and g’ =p y2. If ay/a, = r, then f ~4,u4, g and, by P2*, we can replace

both (x, y¥,) and (%, 2) by (f, f) without changing the preference or

indifference between f and g thus modified. Moreover,

ay O(X1, V1) + c2G(X2, ¥2) = 0

= (ay + a2) o(t, t) on A, U A».

On the other hand,if a;/a2 > r, then by Theorem 7.2 there isa B; C A,

with 7(B)) = ar; hence f ~g,u4, g. In this case we replace (x), y;) on B,

and (x2, y2) on A, by (¢, ¢) without changing preference or indifference

betweenf and g. Here (f(s), g(s)) remains at (x,, y;) on A; \ B; and, on B,

U Ao, agro, V1) + ab(%2, ¥2) = 0 = (ar + a2)d(f, t). Similar changes

with A, and A; interchanged are made when a;/a. < r.

The applicable changes of the preceding two paragraphs eliminate at

least one of (x;, ¥,) and (2, y2) completely, replacing it by (¢, t). So long as

there are x; > y;and y; > x; with positive probabilities for the modifiedfand

g, we repeat the procedure. Eventually either bothfand g have outcomef on

all of S, withf ~ g and |¢(/, g) dx = 0 for the original and modifiedfand

g, Or positive-probability events remain that all have x; > y; or all have y; >

x;. If x; > y; in the latter case, we get f > g and | (f, g) dx > 0 for the

original and modified forms off and g. Similarly, if only y; > x; is left, then

g > fand | d(g, f) dx > 0.
Thus f > g @ | o(f, g) da > 0 forall simple f and g in F. &

9.3 EXTENSION FOR NONSIMPLE ACTS

Extension of the SSA representation to nonsimple acts in F = X° when
X is infinite is more complex than extensions for separable representations

(Sections 1.8, 7.5, and 7.6) and nonseparable representations based on

lotteries (Sections 5.8 and 9.6). The complexity is due to the nonseparability

of ¢ onX x _X, the fact that 6(X x X) can be any skew-symmetric subset of

R subject to boundedness (see below), and, unlike the additive SSB extension

of Section 9.6, the fact that we do not start with an SSB functional or some

other numerical representation with nice uniqueness properties for > on F X
F.. As a consequence,I shall only comment on aspects of extension and leave

open the question of conditions beyond those of Theorem 9.1 that are

necessary and sufficient for the SSA representation for all acts.

Our first observation is that, quite apart from the cardinality of X,

Savage’s extension axiom

P7. (f >42(s)foralls € A) =f >48;(f(s) >4gforalls © A) =

f 2a &>
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is unsuitable for the SSA representation. To see why, let 7(B) = $5 f=

xBw, g = yBz, and supposethat

(x, y) + o(w, vy) > 0 > O(%,¥),

(x, z) + o(w, Z) > 0 > o(%,2),

whichis certainly consistent with the representation. Then with A = Sin P7,

the SSA representation givesf > g(s) for alls € S (by the >0 inequalities),

hencef > g by P7. But the representation also gives g > f since, by the 0 >

inequalities, y > x and z > w.
Wefocus henceforth on two conditions that are necessary for the SSA

representation within the context of Theorem 9.1 but are not implied by the

axiomsof that theorem when X is infinite. They are two hold for all f, g, /’,

g’ © F,allx,y € X, andall A € &.

P8. (A ~x A‘, f(s)Ag’(s) > g(S)Af'(s) for alls © S,f" 2 8’) =
S> 8; if, in addition, f’ > g’, thenf > g.

P9. (f > g,x > y) = [thereis a finite partition of S such that, for

every memberE ofthepartition, (f’ =f, 8’ =28,f° =scy,&’

=pex) = g’ > f').

Axiom P8is a state-by-state dominance axiom which with the use of a

and @ in Theorem 9.1 translates into

[o(f(s), a(s)) = OU(5), g’(s)) for alls ES, f’ 2 Bl =f 28,

along with f > g when f’ > g’. Bytaking f’ =sxand g’ =5 x, P8 yields

P8*. (f(s) 2 g(s) foralls ES) =f 28,

which is the monotone dominanceprinciple of Section 7.4.

The other new axiom, P9,is a sort of upside-down Archimedean axiom.

It says that if f > g and if f and g are changed to constant y and x,

respectively, on a high-probability subset of S, with x > y, then the modified

g will be preferred to the modified f. A few facts about the new axioms are

summarized in

THEOREM 9.3. Suppose the SSA representation f > g # | o(f(s),

g(s)) dx(s) > 0 holdsfor all f, g © F with x as in Theorem 7.2andoa

skew-symmetricfunctional on X x X. Then on X x X is bounded and

P8 and P9 hold.

Alternatively, suppose the axioms and representational conclusions

of Theorem 9.1 hold. Then P8* and P9 imply that @ on X xX X IS

bounded.

Proof. Assumethe hypothesesof the first part. Then ¢ on X x X must

be bounded, for otherwise it is easy to construct acts for which \ OCF, g) dx is

infinite or undefined. The hypotheses of P8 precedingf’ > g’ imply o(/(),  
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&(s)) > (f(s), g'(s)) for all s € S. Hence iff’ > (>) g’, then | o(/’,

g’)dx > (>)0, so | o(f, g) dx > (>) Oandf > (>) g. For P9, supposef
> gandx > y. Leta = ¢(x, y) > 0. Then, using the final property of

Theorem 7.2 and the boundedness of ¢, S can be partitioned into a finite

numberof events such that, for each event E, |7 o(f, g) da < [1 — a(E)ja.

Hence | $(f’, g’) da = |r (f, g) dx — [1 — (E)Ja < 0, so, using skew-
symmetry, g’ > f’.

For the second part of the theorem let the axioms of Theorem 9.1 hold

with « and ¢ as specified therein. Contrary to the conclusion, suppose ¢ is

unbounded. We then construct a denumerable partition {A,, A,,...} of S

with 7(A;) = 2~' for each i along with acts f and g for whichf =A; Xj and g

=4,¥; with (;, y;) > 2‘ for each i. By P2* and P8*, f > g, and of course

\ Cf, g) dr = 0. Given x > y, there must be an inthepartition of S that
satisfies the conclusion of P9 for which |- é(f, g) dx = o. Given such an E

and g’ > f’ as in the conclusion of P9, indifference tradeoffs as in the proof

of Theorem 9.1 that match parts of E° (where g’ = x and f’ = y) against

subevents of EF (where f’ = x; and g’ = y,) must eliminate all of (x, y) on

E*, replacing it by (¢, 2), with g’ > f’ after the changes. However, the

modified f’ and g’ satisfy the hypotheses of P8*, which yields f’ > g’, a

contradiction. Therefore ¢ on X x X must be bounded. i

Suppose P8 and P9 hold along with the axioms of Theorem 9.1. Then,

since ¢ is bounded, the expectation | 6(f, g) dz is finite and well defined for

all f, g © F. To verify the SSA representationfor all acts, we would like to

show that | ¢(f, g)dt > 0 =f > gand | (f/f, 2g) dx = 0 = f ~ g. These

appear easy to verify in somecases but not others. For example, given | é(f,

g) dx > 0, if we can construct simple f’ and g’ such that the hypotheses of

P8 hold and | 6(/’, g’) dx > 0, then f’ > g’ and therefore f > g. On the

other hand, suppose inf{ (x, y):x > y} = 1, d(x, y) never equals 1, andf

and g are suchthat, for all 6 > 0, a({s:1 < o(/(s), g(s)) < 1 + 6}) = 1.
Then the only obvious conclusion from P8, or P8*, is f > g. An additional

condition, such as [@(f(s), g(s)) > c for alls © Sand some > 0] = f >
g, seems to be needed to obtain f > g here, but I can see no natural way to

formulate this as an axiom or to obtain it from other appealing axioms.

9.4 ADDITIVE SSB UTILITY

In the rest of this chapter we examine the additive SSB representation, f

> g © | (f(s), g(s)) dx(s) > 0, discussed in Section 8.7, after notingits

basic SSB precursor in Theorem 9.4. The present section states theorems that
roughly parallel Theorems 7.4 and 7.5 for additive linearutility, then proves

that the imposition of transitivity on a nontrivial additive SSB model reduces

it to an additive linear model. Proofs of the initial theoremsin the section are

given in the next section. The final two sections of the chapter consider the
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extension of the additive SSB model to all lottery acts in F = P*%. The

definitions and notations of Section 7.6 apply throughout.

Ourfirst theorem identifies the decompositional effects on ¢ on F x F

of the basic SSB axioms for > on F.

THEOREM 9.4. Suppose > on F = P*®satisfies the following forall f,

g¢,h € FandallOQ <A <1:

Cl. f >g > h = g ~ af + 1 -— a)h forsome0 <a <1;

C2. (ff >g,f >h) =f > Ag + (1 — NA (f ~ g, f ~ h) = f ~ dg
+ (1 — \)h; (g > f,h > f) => Ag + (1 — Nh > EF;

C3. f >g >h,f >h,g ~ 3f + Sh) = [Af + (1 — Dh ~ Sf + 52
# Ah + (1 — Af ~ sh + fel. |

Then there is an SSBfunctional ¢ on F X F , unique up to similarity

transformations, such that f > g @ $(f, g) > 0 forallf, g © F. Given

such a ¢, and given any finite partition {A,,...,An} of S withn > 2,

there are bilinearfunctionals $;;0n P x P andlinearfunctionals u; on P

for alli, j © {1,...,n} such that

oij(P, Q) = —oi(g,p) foralli, j and all p,q © P,

and such thatfor allf,g © F’, withf =4,p;and g =4,q;fori =1,---,

n,

of, g) = SS bilo, a) — (2 — 1) DY [upd — ual.
f=] j=l i=]

Moreover, with ¢ fixed, bilinear o; andlinear u; satisfy these equations

in place of the $;; and u; if and only if there are linearfunctionals 7; on P

and real numbers c; for alli, j © {1,..., n} such that, forall i, j and

all p, qg © P,

o;(P, 9) = bi(D, q) + Tip) — Ti(Q),

1] n

n-1 Ss) Tij(p).
Jol

u;(p) = up) + c +

The first conclusion of the theorem is simply a restatement of the

conclusions of Theorem 4.1. As might be expected for the SSB case, the

decomposition of ¢ for F’ (set of lottery acts constant on each memberofthe

partition {A,, ..., A,}) is somewhat more involved than the linear

decomposition u = Lu; implied by Theorem 7.4 in the additive linear setting.

The condition ¢;(p, q) = —9,(q, p) implies that $j; is skew-symmetric

hence SSB, but it does not entail skew-symmetry for ¢;, when i # j. The

linear term in the decomposition for $(f, g) arises in a natural way during the

proof but could be incorporated into the ¢, term to yield the simpler-looking  
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o(f, g) = 2; 2; $;(p;, g;). In the proof we fix ¢ € P and define the ¢, and u;

by

bi(D, g) = o(pAit, GAjt),

uj(p) = o(pAjt, tA;t) = di(p, ft).

The uniqueness conclusions of Theorem 9.4 reflect the fact that uniqueness

for additive bilinear forms must involve linear additions, just as uniqueness

for additive linear forms involves the addition of constants.

Three more axiomsare used to obtain 7 on & = 2° andthe additive SSB

representation for all simply lottery acts. Because of technical aspects of the

present axiomatization, we define t here by A € WV iffor all p, q, r € P,

DAr ~ qAr. The axiomsapply to allf, g,h € F, allp,g,r © P,allA, B,C

C S,andallO <A <1:

“Tl. SE MW.

T2. A,B € NM = (pAr > qGAr @ pBr > qBr).
T3. (A, B, and C are mutually disjoint, AU BUC =S,f =,48,2

=,h,h =cf,f ~ \g + (1 — Nh) = Gf + Gh~ FAg + (1 -
\)h) + Sh.

Axiom T1is a nontriviality condition that ensures uniqueness of 7. T2 is

an independence axiom that mirrors aspects of Savage’s sure-thing principle,

especially P3, and S2 in Theorem 7.5. Its necessity for the additive SSB

representation follows from the correspondences pAr > gAr # x(A)d(p,

q) > O and pBr > qBr © x(B)¢(p, g) > 9.

Axiom T3is a sort of cyclic independence condition thatis tailored to the

SSBlottery-acts setting. The structure of its hypotheses prior tof ~ Ag + (J

— ))h is illustrated in Figure 9.1. For convenience let ¢g(f’, g’) = |e

o(f’(s), g’(s)) dx(s) for all E € & and all f’, g’ € F. If the additive SSB

representation holds along wih A 1 B = @,C = (A U B)’, f =42,2 =z

h, and h =¢c f, then

o(f, g) + $(g, bh) + o(h,f)

= o,(f, g) + dc(f, g) + d4(g, h) + Oc(g, b)

+ o4(h, f) + da(h,f)

[oa(f, g) + oa(g, f)] + [oc(f, g) + oc(g, f)] + [ea(g, b)

+ ¢4(h, g)]

= 0.

The necessity of T3 for the full additive SSB representation follows from this

observation. Suppose the representation holds along with the hypotheses of
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FIGURE 9.1 Hypotheses of T3
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T3. Then o(f, Ag + (1 — Ah) = 0 and,using ¢(f, g) + o(g, h) + o(h,f)
— 0,

o(f, h) + d(h, Ag + (1 — A)h) = O(f, h) + AGH,g)

= o(f, h) + ALO(f, g) + O(h, f)] = of, Ag + (1 — Ah) = O.
Therefore

0

=

s[¢(f, Ag + (1 — ADA) + O(f, h) + O(h, Ag + C1 — d)h)]

o(5f + sh, 5(Ag + (1 — ADh) + Sh),

so sf + sh ~ 5g + (1 — Dh) + Gh.
T3 alone has powerful implications for ¢ on F x F in the context of

Theorem 9.4. We extendour notationslightly as follows: givenf € F, peE
P,and A € &, let fAp denote the lottery act f’ for which f’ =, fandf’ =Ac
D.

Lemma9.10. Suppose ¢ on F x

F

isan SSBfunctionaland,forall f,
gCF,f > g @ o(f, g) > 0. IfT3 holds then for all f, g € F, allp © P,
and every partition {A,,...,A,} of S,

o(f, 2) = >) o(fAip, gAip).
i=]

The addition of T1 and T2 then yields + and the additive SSB
representation for simple lottery acts.

THEOREM 9.5. Suppose > on F = P*satisfies the hypotheses of
Theorem 9.4 along with T1, T2, and T3. Also let SSB ¢ on F x F Satisfy
the SSB representation for > on ¥, and define ¢ on P x P by é(p, gq) =
o(f, g) when f =; p and g =s q. Then there is a unique additive
probability measure x on & = 25 such that, for all A € & andall simple
f,g € F,

AE MW  r(A) = 0,

o(f, 8) = |ds), g(s)) dx(s).  
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We conclude this section with an observation from Fishburn and

LaValle (1987b) on transitivity before turning to the proofs of Lemma 9.10

and Theorems 9.4 and 9.5 in the next section. The point of the observation is

that, when z is not completely trivial, each of transitivity and independence

reduces the additive SSB representation to the additive linear representation

of Section 7.6. Hence, unlike the situation for weighted linear utility in

Section 5.3, wheretransitivity for the basic SSB representation yields a model

intermediate between the linear and SSB models, the imposition of transitivity

on the additive SSB representation does not yield a model that lies strictly

between this representation and the additive linear representation.

We use the Herstein-Milnor independence axiom of Section 1.5 along

with the transitive indifference axiom:

Al(~). ~ on Is transitive.

B2. Forallf,g,h € Ff ~g = 4f + ¢h ~ 4g + sh.

THEOREM 9.6. Suppose that the additive SSB representation > g

| d(f(s), g(s)) dx(s) > 0 holdsfor all f, g © F with x and ¢ as in Theorem

9.5. Suppose also that 0 < 1(A) < 1 forsomeA € &. Then A1(~) holds

if and only if B2 holds, and either axiom implies that (F, >) has an

additive linear representation.

Proof. Assume the hypotheses. We show that each of Al(~) and B2

reduces the representation to the additive linear representation. Since Al(~)

and B2 are implied by the latter representation, they are equivalent under the

hypotheses of the theorem.

Supposefirst that B2 holds. Then B2 holds for ~ on P, and, since {C1,

C2, B2} holds for > on P,it follows from Theorem 1.4 and the equivalence

between {Al, A2, A3} and {B1, B2, B3} that d(p, g) = u(p) — u(q) for
linear uw on P. Substitution in the additive SSB representation then gives the

additive linear representation.

Suppose henceforth that Al(~) holds. It then follows from Theorem 5.3

that there are linear functionals u and w on F with w > 0, w > Oon{g:f > g

> h for some f, h € F}, and, for all f, g € F,

o(f, g) = u(f)w(g) — u(g)w(f).

Our hypotheses (a unique) imply that f > g > h for somelottery acts in F.

Given 0 < m(A) < 1, Let \ = x(A) and consider simple lottery acts of

the form pAq, which we write as (p, q) for convenience. By the additive

SSB representation,

}((P1, D2), (G1, G2) = Ab(D1, G1) + A — A)O(D2, G2).
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Therefore, by the decomposition of the preceding paragraph with u(p) =

u(f) and w(p) = w(f) when f =; p,

(*) U(Pi, P2)W(Gi, G2) — Udi, G2) W(P1, Pr)

= Alu(pi) wg) — ular) w(pi)]

+ CL — A)[uCp2) w(q2) — u(g2) w(p2)].

Set di = qd = q in this to get

U(Pi, Po)w(q) — u(q)w(pi, Pr)

A[u(pi) w(q) — u(qg)w(py)]

+ GZ — A)LuCp2)w(q) — u(g)w(pr)]

w(g)u(Api + (1 — A)p2) — u(g)w(Api + CL — A)p»).

Hence,for all g, p;, po © P,

w(q)[u(p1, D2) — u(Ap; + (1 — A)pr)]

= u(qg)[W(P1, P2) — WAP, + C1 — A)po)I.

Since > is not empty on F,it is not empty on P. Therefore u(q)/w(q)takes
on all values in some nondegeneratereal interval as g ranges overthe part of
P on which w(qg) > 0. The preceding equation then requires u(p,, po) —
u(hp; + (1 — A)p2) = w(pi, Po) — wp, + (1 — A)po) = 0 for all p;, p2
€ P. Hence

U(Pi, P2) = u(Ap, + (1 — A)pr) for all pj, pr. © P,

W(Pi, P2)

=

wApi + (lL — A)po) for all p1, py € P.
Whenthese are used on the left side of (*) with linear expansions, we get

[Au(pi) + (1 — A)u(p2)ITAw(qi) + 1 — A)w(q)]

— [Au(qi) +  — d)u(g2)TAw(p1) + CL — A)w(pr)]

= d[u(pi)w(qi) — u(qi)w(pi)]

+ (1 — A)[u(p2)w(g2) — u(g2) w(p2)I-

Set P2 = gq, = r here and rearrange to obtain

ACL — A)lu(pi)w(r) + u(r) wg) — ug)wr) — u(r) w(p,)]

= AV — A)u(pi))w(qi) — u(qi)w(p,)I.  
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Then cancel (1 — A) to get

[u(pi) — u(qi)] wr) — [wip1) — w(qi)lu(r)

= u(p:)w(qi) — u(qi)w(p1)

for all r, D1, gq; © P.

To complete the proof for Al(~), supposefirst that there are p, gq © P

such that w(p) = w(q) and u(p) # u(q). Then, by the preceding equation,

[u(p) — u(g)|w(r) = w(p)[u(p) — u(q@)l;

hence w(r) = w(p)for all r. Since w is constant on P, say with value Wo #

0, the additive SSB expression for ¢ reduces to ¢(f, g) = | [v(f(s)) —

v(g(s))] dx(s) with v(p) = wou(p).
Contrary to the case of the preceding paragraph, suppose that w(p) =

w(q) = u(p) = u(q)for all p, gq © P. Then, by a slight generalization of

Theorem 1.1 proved in Fishburn (1984e), there are real numbers a and b such

that

u(p) = aw(p) + b for all p € P.

But then u(p)w(q) — u(q)w(p) = b[w(q) — w(p)] with b # 0 since >

on P is not empty. This reduces the additive SSB expression to $(f, g) =

| [v(f()) — v(g(s))] dx(s) with v(p) = —bw(p),

9.5 ADDITIVE SSB PROOFS

Since C1, C2, and C3 are presumed by Lemma 9.10 and the theoremsof

the preceding section for > on F, we assume throughout the present section

that dé on F x F is an SSB functional with f > g « ¢(f, g) > Oforallf,g ©

F, as justified by the proof of Theorem 4.1 with P replaced by F throughout,

since that proof depended only on P’s convexity and notits specific structure

in terms of probability measures. We begin with the representation proof for

Theorem 9.4, followed by its uniqueness proof, and we then consider Lemma

9.10 and Theorem 9.5.

Representation Proofof Theorem 9.4. Let¢onF xX F be asnoted,let

{Aj,...,A,} bea partition of S, and fix tin P. Defineon P x P and u;

on P for alli, 7 € {1,..., a} by

Pi(D; q) = o(pAjt, qgAjt),

u(p) = o(pAit, t),

where t =s ¢. The SSB properties of @ imply that each ¢; is bilinear, each u;
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is linear, and ¢;(p, g) = —9%,(g, p). For example,

bj(Ap + ( — AYa,r) = (Ap + CU — ANQ)A:, TAjt)

b(A(pA;t) + Cl — AGA), TAjt)

AG(pA;t, rAjt) + (1 — A)O(GAit, TA;t)

Agii(p, 7) + CL — A)Oi, 7).

To verify the decompositional form for f, g € F’, let f =4, pj and g =4, Qi

for each i and observe first that
ll

  

 

 

1 n | 1 nd
f+ —— (q,A;t) = ——g + ;Ait

n+1 uaa 1A n+1° Yaad ?

1 n—-1 nd
—~f + t= -— (Ait7 ds 7, (PAI)

1 n—-1 nd
—g+ t= -(qAyt
n® n uA ‘

The properties of @ and the definitions for the @,; and u; then yield

1

+ aad
 

 

1
0=¢ (gjA;¢), nal g

n+1

1

+ aad

= (n + 1)-* o(f, g) + S o(f, piA;t) + S $(g;Ajt, g)

(pA jt) 

- > S bij(Dis Y)

(n + 1)-? d(f, g) + (n — 1) >} o(pAAit, Ot)

—(n- D> o(GAt, 0 - YY oye, a

(n+ 1)-? off, 8) — % DY oulvi a)  
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+ (n — 1) (x ui(Di) — Ss ua)|
i J

which give the desired result. i
Uniqueness Proof of Theorem 9.4. With ¢ fixed and partition { Aj, .

.., A,} given, assume that the ¢, and u; are as specified in the initial

conclusions of the theorem.If the @ij and u / are as specified at the endof the

theorem,it is easily checkedthat they satisfy the initial conclusionsin place of

the , and uj.
Assume henceforth that the ¢,, and u/ satisfy the initial conclusionsin

place of the ¢, and u;. We are to show that there are linear 7;; on P and

constants c; that satisfy the equations at the end of the theorem. To verify the

penultimate equation, fix ¢ € P and define 7;; by

Ti(p) = Ss [ox(p, 0) - $,(p, DO] - (2 - I
k#j

* [u(p) — u;(p) -— ut) + u/ MI.

Since each term on the right side is linear in p, 7; is a linear functional. Using

the decompositional form and noting that $,;,(¢, 1) + @nx(¢, f) = 0, we have

o(pAit, GAjt) = bi(P, gq) + Dd) bix(p, 1) + DY) bait, g)
k#j k#i

— (n — Ilu(p) + ut) — u(t) — u(g)].

Since the same equation holds with primes onthe right side, we conclude that

b(Pp, q) = di(D, q) + Ss) dix(D, t) ™ S biz (D, t)

k#tj kej

— (n — 1)[u(p) — uj (p) — ui) + 4; OI

— S jx(Q; t)

k#i

+ VAG 0 + (n — Diya) - u/(Q)
k#i

— u(t) + u; (t)]

= di(p, g) + Ty(P) — 7;:(Q).

To verify the final equation of the theorem, use the decompositional

form to get

b(pAit, t) = SI dbx(p, t) + SY) det, O- (n — VYiui(p) - uO).
k k#i
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Since the same equation holds with primes on the right,

0 = S [dic(p, t) ™ dD, t)) — (n ~ 1)[u;(p) ™ u/(p)

k

™ u;(t) + u; (t)] + S [oxi(t, t) ~ b(t, t)]

k#i

1

rTSD [¢ule, D - O4(2, 0) -— (2 — Due) — uj)
joke

™” u(t) + u; (t)] + Ss [dxilt, t) ™ $Xt, t)]

k#i

il

1
yo S [7(p) + (n — I{ui(p) — uj (p) — uit) + 4; (A)})

— (n — Iludp) — uj (p) — ui) + 4; Ol

+ Ss (oxi, t) ™ bt, t))

k#i

1

rule) + (uid) ~ 4(p) ~ a) + 47 Ol

+ S [dxilt, t) ™ $y(t, t)}.

k#i

Let c; denote the sum of the termsin the last expression that do not contain p.

Then u/(p) = uj(p) + ¢ + (n — 1)7'%; 7y(p). a

Proof ofLemma 9.10. Given ¢ on F x F, assumethat T3 holds. We

provefirst that if A € &\{@, S} and {f,, f), f3} = {fAp, gAD, Pp},

where p =s p, then

o(f;, f) + (fo, f;) + $(f3, f;) = 0.

Given A € &\{@, S}, there is clearly some permutation f,, f, f; of fAp,

gA‘p, p and some p € [0, 1] such that f; ~ uf, + (1 — p)f;. Then $(f,, uf

+ (1 — p)f;) = 0, so linearity in the second argumentgives

wlo(fi, £2) — o(f:, f3)] = —o(h, fs).

Also, by T3, 2f; + $f; ~ 3(uf + (1 — pfs) + zfs, and (-, -) = 0,

bilinearity, skew-symmetry, and $(f;, wf, + ( — p)f3) = 0 give

uo(fp, £3) = o(fi, fs).

Whenthis is added to the preceding equation, we get p[¢(f;, f2.) + o(fp, £3)

+ o(f;, f,)] = 0, so the desired result holds if » > 0. If » = 0, simply  
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interchangef, and f; throughout the preceding derivation to obtain the desired

result.

Continuing with A € {@, S}, observe that

sf + 7(gAp) + +(gA) = zg + 4(fAp) + H(A‘),

sf + tp = 3(fAp) + (fA),

sg + 5p = 3(gAp) + (gAp).

When ¢(-, -) = 0 is expandedbilinearly for each of these and substitutions

are madein the first from the other two, we get

o(f, g) + o(fAp, p) + o(fA%p, p) + o(p, gAp) + o(p, ZA)

+ o(gAp, fAp) + o(gA‘p, fA‘p) + o(gAp, fA‘p)

+ (gA‘%p, fAp) = 0.

But, by the result of the preceding paragraph,

o(fAp, p) + o(p, gA‘p) + o(gA‘p, fAp) = 0,

o(fA%p, p) + o(p, gAp) + o(gAp, fA‘p) = 0.

Therefore

o(f, g) = o(fAp, gAp) + o(fA‘p, gA‘p).

If n = 1, the conclusion of the lemma is obvious; otherwise, use the result

just proved to obtain

o(f, g) = d(fAip, gAip) + o(fA‘p, gA<p)

= $(fA,p, gA;p) + o(fArp, gArp)

+ (f(A; U Az), g(A; U A2)p)

= Vi o(fAip, gAip). i

Proofof Theorem 9.5. Assume the hypothesesof the theorem (C1-C3,

T1-T3, ) along with the result of Lemma 9.10. Weconsiderfirst a partition

{Al,...,An} of S. Let K = {isi € {1,..., nm} and_.A; € 9}. By T1
and the definition of 9V in the preceding section, p > qg for some p, gq € P.

The representation of Lemma 9.10 then implies that K # @, andit follows

from T2 that, with ¢ © P fixed, 6(pA;t, gA,t) is identically 0 for all p, g €

P if and only if i € K, and for all i, 7 © K there is a unique aj > 0 such that

(pA;t, GA;t) = ajo(pAjt, gA,t) for all p, g © P. The latter conclusion

follows from the uniqueness property for SSButilities. With normalization as

in the proof of Lemma7.9,it follows that there are unique p; > 0 that sum to
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1 with p; = 0 @ A; € OU, and a similarity transformation ¢’ on P x Pof¢

on P X Pas defined in Theorem 9.5 suchthat, for all f and g of the form f

=4,piand g =4,;q;, $(f, g) = 2 pid’ (Di, gi). The use of constant lottery acts

gives 6’ = donP X P.

Thus, every partition a of the form {A;, ..., A,} has unique

nonnegative 7,(A;) that sum to 1 with 7,(A;) = 0 # A; € OW suchthat, for

all f and g as before,

o(f, g) = Ss KlANb(D;, qi).

IfA is in both a and 6 then @(pAr, gAr) = 7,{A)o(p, g) = m(A)O(D, @),

and it follows that we can drop the partition designator on a. Additivity for

disjoint A and B follows from 7(A U B)¢(p, g) = [m(A) + a(B)]O(D, Q),

and intersection of partitions gives the desired form for $(f, g) for all simple

f,g &F. i

9.6 ADDITIVE SSB EXTENSION

We assume the hypotheses and conclusions of Theorem 9.5

throughout the rest of this chapter. It is assumed also that S is infinite, for

otherwise Theorem 9.5 characterizes the additive SSB representation fully.
Three axioms will be used to extend the additive SSB representation by

way of o(f, g) = | (f(s), g(s)) dz (s) to all lottery acts. The second andthird

are to hold for all f, g, f’, g’ € F.

T4. For each positive integer n there is an n-part partition of S

each member of which is not null.

TS. [d(f(s), g(s)) = (f(s), g’(5)) foralls © S,f’ ~ g’] =f 28.
T5*. (f(s) > g(s) foralls € S) > > g.

The first of these is not necessary for the representation but is generous

in the types of x measuresit allows and is considerably weaker than Savage’s

requirements for mentioned in Theorem 7.2. Our main use of T4 is its

implication from Lemma 7.12 that there is a denumerable partition of S each
member of which has positive probability.

Axioms T5 and T5*, which are clearly necessary for the representation,

are similar to aspects of P8 and P8* in Section 9.3. T5*, whichis identical to

Schmeidler’s S2* in Section 8.8, is implied by TS (set f’ = g’) andis the

direct image of P8* for lottery acts. It is a very appealing assumption. T5

seems less appealing butis still intuitively attractive. Its obvious deficiency

from a foundational perspective is its direct use of @. This can be easily

removed, as in P8, if 7(A) = $ for some A © S, and we might assume such

an A as does Ramsey (1931). Short of that, ¢ can be replaced in T5 by  
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appropriate conditions on >, but this seems awkward and adds nothingto its

intuitive interpretation.

Although I do not have an exampleto the contrary, it appears that T4 and

T5* are not sufficient for the full extension. However, they do allow several

interesting conclusions. As before, p =z p.

THEOREM 9.7. Suppose T4 and T5* hold. Thenfor allf, ¢ © F and all

DEP:

(a) ¢ on P X P is bounded.

(b) infs o(f), DP) < of, PD) < sups $(f(S), p).
(c) If at least one of f and g is simple, then o(f, g) = | (f(s), g(s))

dn(s).

(d) 6 on F X Fis bounded.

The problem in extending (c) to all f and g without the use of T5 is

directly related to the need to show that

inf (f(s), g(s)) < o(f, g) < sup o(f(s), g(s)),

for without this we cannot concludethat ¢(f, g) = | o(f(s), g(s)) dz(s). This

generalization of (b) will be noted in Lemma 9.20 to follow from T4 and TS.

The lemmais then used to prove

THEOREM 9.8. Suppose T4 and TS hold. Then, in addition to the

conclusions of Theorem 9.7, o(f, g) = | é(f(s), g(s)) dx(s) for all f, g €

F.

9.7 EXTENSION PROOFS

We assume the hypotheses and conclusions of Theorem 9.5 along with

T4 (not needed for Lemmas 9.11 and 9.12) and T5*. Throughout this

section, {A;, Az, . . .} with r(A,) > m(A2) > --- and r(A,) > 0 forall Zis

a denumerable partition of S (Lemma 7.12). The conclusions of Theorem 9.7

will be established by a series of lemmas. T5 is assumedlater in the section

for the proof of Theorem 9.8. As usual, f, g € F, p, r © P, and p =s p.

Lemma 9.11. Let a = infs o(f(s), p). Thena < $(f, p) ifa = Oorif

(a > 0,p > rfor some r) or if(a < 0,r > p for some r).

Lema 9.12. Let b = sups $(f(s), p). Then o(f, p) < bifb = Oorif

(6b > 0, p > r for some r) or if (b < 0, r > p for some r).

Proof. We prove Lemma 9.12; the proof of Lemma 9.11 is similar. If b

= oo, then there is nothing to prove, so assume is finite. If b = Othenp >

f(s) for all s, so p > f by T5*, and therefore o(f, p) < 0.
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Suppose next that b > O and p > r. Define \ by AD + (1 — AOC, D)

= 0. By the SSB properties and the definition of D,

b(Af(s) + (1 — A)r, p) AG(EGS), D) + CL — AYO, D)

AO(f(s), PD) — AB < AB — AD =0

for alls. T5* implies p > Af + (1 — Ar. Hence AD = (1 — A)d(p, 7) 2

AP(f, p), sob > Off, Pp).
Finally, suppose b < Oandr > p. Define d again by Xb + (1 — A)OC(r,

p) = 0. Then (f(s) + (1 — Ayr, p) = AP(f(S), PD) — AD < 0, sop > Af

+ (1 — N)r. As before, o(f, p) < DB. |

Lemma 9.13. [fr > p for some r, then ¢ is bounded below on P X

{Pp}.

Lemma9.14. Ifp > rfor some r, then ¢ is bounded above on P X

{p}.

Proof. We prove Lemma 9.14; the proof of Lemma 9.13 is similar.
Given p > r, suppose to the contrary of Lemma 9.14 that ¢ is unbounded

above on P x {p}. Then [0, ©) © ¢(P x {p}). Choose p; € P for each i
so that $(p;, Pp) = 1/7(A;) and define f by f =4, p; for each 7. Let g, be a

simple lottery act in F that is constant on each A; fori < n with

$(gn(s), Pp) = T(A,)~! — 2(Aj)7! for all s € Aj,

and that has g,(s) = p for alls € (A; U --- U A,)*°. Then, by Theorem

9.5,

ll

$(gn P) Si a(ADEM(A,)-! = 1(A)~']
i=]

(An)! 5) (Ai) = 7.
ign

Note also that fors © A;,1 < 7,

o((4f + 42,)(s), P) = 3O(Di, P) + 5O(Bn(5), D) = 3O(An)7,

and fors € Aj, i > 7n,

PSE + 4en\s), p) = ¢a(Ai)~! B 5x(A,)I.
Hence infs b((5 f + 52n)(S), Pp) = 5m(A,)~! > 0, and, since P > Tr "

hypothesis, it follows from Lemma9.11 that o(sf + 52n> p) = 5mA,)7!

Therefore

o(f, p) > t(A,)~! — O(n, P)

= 0(A,)"! — 2(A,)"! S) (A) +n B01
ign  
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Consequently, #(f, p) 2 7 for all n, a contradiction, and therefore ¢ on P x
{pp} is bounded above. a

Lemma 9.15 [Theorem 9.7(a)]. ¢ on P x P is bounded.

Proof. Supposeto the contrary that ¢ on P x P is unbounded, so ¢(P

x P) = (—©, oo). For definiteness let p; and g; fori = 1, 2, .. . satisfy

$(Di, Gi) = 7(A;)~'. Also take f =4, p; and g =,4, g;. We shall obtain the

contradiction that ¢(f, g) is infinite.

Fix r with g > r > p for some p, g € P. Define simple f,, and g, by

{, =4,D;i fori <n; f,(s) = r_ otherwise,

$n, =4;9i fori <n; g,(s) = r_ otherwise.

Then by Theorem 9.5,

b (fas Bn) = SE (ADIa(AD- 4) = 1.
i=}

In addition, note that (5f + >g,)(s) = (gg + sf,)(8) for alls € A, U =:
U A, and that, for alls © (4, U +-- UA,)*¢,

O(sf + 78n)(s), (GE + Z£,)(5))

= (5p + 57,54 + 57)

= z(¢(pi, qi) + b(pi, rT) + (7, g)]

when s € Aj. Since $(p;, g;) ~ © and since ¢ is bounded on P x {r} by

Lemmas 9.13 and 9.14,it follows that there is an N such that

O(Di, Gi) + (pi, 7r) + O(7, gi) > 0 for alli > N.

This Ndoes not depend on the particular m under consideration. Hence for all

n2>vN,

(sf + sens) > Ge t+ cfs)  foralls € S.

Then, by T5*, sf + 52n 2 52 + sf, whenever n > N, so

o(f, g) > o(f,, g) + O(f,, f) + O(g, 2.)

=n-+ (f,, f) + $(g, En) forn > N.

Weclaim that $(f,,, f) and $(g, g,) are bounded. Consider(f, f,,), which

equals (p;, p;) on A; fori < n and (p;, r) on all A; for i > n. Since (x,7) is

bounded on P x {r} by Lemmas 9.13 and 9.14,let

a = inf{d(x, r): x € P}, b = sup{ d(x, r): x € P}

with a and b finite. If b < 0, then $(f, f,) < 0 by T5*. If b > 0, define \ by

Ab + (1 — ANO(p, r) = O, let ff’ =4,p; fori < n, andf’(s) = Ap; + (1 —
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\)p otherwise; observe that o(f’(s), f,(s)) < 0 for all s, and thus conclude

from T5* that o(f’, f,) < 9. Since

, _ _ p; fori<gn

off) =e (M +O wte fori nf]

— alt, f,) + A - ! -¥ a0 o(p.");
ign

it follows that

1—A

o(f, fn) < f -¥ (Ao| ar, p) —— => [ -¥ (Ad| ,
ign

ign

Hence, o(f, fn) < max{0, b}. By a similar proof, min{0, a} < ¢(f, f,,)-

Thus $(f,,, f) and ¢(g, g,) are bounded as n gets large. Since $(f, g)2n

+ o(f,, f) + O(8, Sn) forn > N, weobtain the contradiction that #(f, g) is

infinite. a

Lemma 9.16 [Theorem 9.7(b)]. infs d(f(s), p) < $f, p) < sups o(f(s),

p).

Proof. We show $(f, P) < sups o(f(s), p) = b, where

D

is finite by

Lemma 9.15. The only cases not already covered by Lemma9. 12 are (b > 0,

r > pforallr€ P) and (b < 0, p 2 r for all r © P).

Supposefirst that b > 0, r > p for all r, and let ¢ € P satisfy t > p.

Such a ¢ is guaranteed by b > 0. Letc = sups $(f(s), f). For all O < r< I,

sups o(f(s), 2 + CU — dp) < Ace + A — AYO. Sincet > At + Gl — AYP ?

p, it follows from Lemma 9.12 that

o(f, M+ (1 — Ap) = APE, OD + (1 — A)o(F, P)

< he +— ADD.

Let \ approach 0 to conclude that $(f, p) < 0.

Suppose nextthat b <0,p > rforallr, and let / satisfy p > t. Letc =

sups $(f(s), £) So, for0 < \ < 1, sups $(f(s), A? + (1 — Np) < Ae + (1

— )d)b. Since p > AE + (1 — \)jp > t, Lemma 9.12 yields

o(f, At + (1 — Np) = AOE, OH + GA — AE, P)

<he+ (1 - ADD,

and again $(f, p) < b. a

Lemma 9.17. $(f, p) = |s of), P) dr(s).

Proof. This proof mimics our later proof of Theorem 9.8 with g there

replaced by p and with Lemma 9.20 replaced by Lemma 9.16. a
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LemMa 9.18 [Theorem 9.7(c)]. o(f, g) = |sd(f(s), 2(s)) dx(s) if g is

simple.

Proof. Assume that g =,, p; for a partition {B,,..., B,} of S. By

Lemma 9.10, for each x € P,

o(f, g) = Ss) PEBx, D;B;x).

i=l

Consider @(fB)x, p,B\x). Write £B,x as (f, x, . . . , x) and p,B,x as (pi, x,

. , X), where the jth positions refer to B;. By Lemma9.10,

o((f, x, ... 5X), Gi, X%,..-, *X))

= (8, Di, x, ..- 5X), Dis Pas % ~~» X))

+ (Pr, X%, Dis +++ Di), (Pi Xs Pts + +» Pid)

= (Ef, Dis xX, -- + 5X), Dis Pir % ~~ 5 X))

= (Ff, Pi, Pir Xs, --- 5 X),1s Ps Pi, X) - - - » X))

= (ff, Pi, -- +. Pi), Pi, Ps - + + » P1))-

Hence, by Lemma 9.17, ¢(fB,x, p:B\x) = |p, o(f(s), pi) da(s). Since a

similar expression holds for each B;,

olf, 8) = Y |6G), p) dx(s) = | 4(f), g(9)) dx(s).

Lemma 9.19 [Theorem 9.7(d)]. 6 on F x F is bounded.

Proof. Assume sup ¢(P x P) = 1 for definiteness. Let p, gq © P

satisfy 6(p, gq) > ; For any f, g € F,

166(5f(s) + fr, zg(s) + 3p)

= (f(s), g(s)) + 34(r, g(s)) + 36 (f(s), D) + 9d(7, p) < 0

since the first three terms sum to 7 orless andthe last is smaller than — 7. It

follows from T5* that ¢(f, g) < 3¢(g, r) + 3¢6(p, f) + 96(p, rT) < 3 + 3

+ 9 (by Lemma 9.17), so $(f, g) < 15. Since f and g are arbitrary, —15 <

o(f, g) by skew-symmetry, so ¢ on F X is bounded. a

TS is assumed henceforth.

LemMaA 9.20. infs $(f(s), g(s)) < $f, g) < sups O(f(S), g(s)).

Proof. Let A be an event in & for which 0 < 2(A) < I as guaranteed

by Theorem 9.5 and T4. By T1 and Theorem 9.7(a), (d), we assume with no
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loss of generality that sup ¢(P x P) = 1, sup 6# x F)=K 21, and K is

finite. Choose y, z © P with o(y, z) = 3 and let x = a + 4 so that d(x,

z) = (yy, xX) > i Also let \ be any positive real number that does not

exceed min{ (A), 1(A)}/4K.

Given f, g € F, let gy = Ag + (1 — NE, so Off, Bo) = APC, g) and, for

all s, $(f(s), go(s)) = AP(f(s), g(s)). We show that the conclusion of the

lemmaholds for (f, go), so it must also hold for (f, g).

By Lemma 9.10,

o(f, 29) = O(FAx, BAX) + GFA, BA)

with o(fAx, goAx) = AP(fAx, gAx) and O(fA%, BoA) = APTA,

gA‘x). Therefore

max{|¢(fAX, goAx)|, |o@(FAX, gAcx)|} < min{r(A), 1(A‘)}/4.

It follows from the construction of x that there are p and r in P such that

m(A‘)(p, x) = o(fAx, BoAx) and 1(A)O(7, x) = G(£A%x, 804%), So that

O(f, Zo) = t(A)O(r, x) + (A)Ol,~).

Moreover, Lemma 9.10 and Theorem 9.5 imply

$(fAX, BAp) = (LAX, BAX) + O(KA%, PA)

= $(fAx, goAx) + m(A)O(X, p) = 9,

b(£A‘x, BAX) = (FAX, BoA) + O(XAX, TAX)

= (fA, gAcx) + r(A)dO(x, r) = 9,

and therefore fAx ~ gAp and fA‘x ~ goA‘r.

Weapply T5 to each of these ~ statements to obtain the desired sup

conclusion. (The inf conclusion is proved similarly.) It follows from our

constructions that there are y’ and z’ in P such that

o(y’, xX) = sup o(f(s), go(s)),

o(z', x) = sup (f(s), gols)).

The first of these is used with [Ax ~ gAp in TS to yield y’Ax > xAp.

Hence, by Theorem 9.5,

b(y’Ax, xAp) = 1(A)O(9’, x) + @(A‘)O(% Dp) 2 9,

or

m(A) sup (f(s), go(s)) > t(A)O(, x).    
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Similarly, the defining equation for z’ used with f4°x ~ g,)A‘r in TS yields

m(A°) sup $(f(s), Zols)) 2 m(A)O(7, x).
Ac

Therefore

sup P(f(s), Zo(s))

m(A) sup (f(s), Zo(s)) + mA‘) sup (f(s), go(s))

WV (A) sup @(F(s), go(s)) + 1(A%) sup o(f(s), go(s))

WV T(A°)b(y, x) + TA)O(7, x)

P(F, go). a

Proof of Theorem 9.8. Given f, g € F,let

a = inf (f(s), g(s)), = sup $(f(s), g(s)).

If a = b, then (f, g) = a by Lemma 9.20, and | (f(s), g(s)) dx(s) = a, so

the desired conclusion holds.

Assume henceforth that a < b. For a givenn € {1, 2,.. .} let

B, = {s:a < o(f(s), g(5)) < a + (b — @)/n},

B; = {s:a+ (b — ai — 1)/n < $(f£(5), g(s)) < a + (b - @)i/n},

2<1€ nN.

By Lemma9.10,

o(f, g) = Sid(QBx, gBx), x © P.
i=1

Consider one term in this sum where B; # @and let a; = a + (b — a)(i -

1)/n and b; = a + (b — a)i/n. For every p, r © P for which a; < $(p, r)

< b;, Lemma 9.20 implies that a; < (fBip, gB;r) < b;. By Lemma 9.10

and Theorem 9.5,

o(fBip, gBir) = (FBix, gBix) + o(pBEx, rBix)

= O(fBx, gBix) + 1(Bi)O(p, 1).

Take $(p, r) close to a; and then close to 5; to get

a(B;)a; — 1/n? < o(£B;x, gBix) < 7(B)b; + 1/n?.
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Since $(f, g) = = o(fB;x, gB;x), it follows that

n i-l 1
Sy (Bi) E + (b — a| _ <¢(f, g)
is]

 

n I 1
< 5) a(Bi) Je+iw-a| ro.

i=]

Moreover, by definition of expected value,

n i -

> T(B;) E +
n

n i
< 5) x(Bi) Ja += - a| .

i=]

Hence |¢(f, g) — | (f(s), g(s)) dx(s)| < (6 — a + 1)/n. Letn > & to

obtain the desired conclusion. i

 

1 (b - a| < |of), a(S) dx(s)

 



 

References

Adams, E. W. (1965). Elements of a'theory of inexact measurement. Philosophy of
Science 32, 205-28.

Allais, M. (1953). Le comportement de l’hommerationnel devant le risque: Critique
des postulats et axiomes de l’école américaine. Econometrica 21, 503-46.

Allais, M. (1979a). The foundationsofa positive theory of choice involving risk and a
criticism of the postulates and axioms of the American school. Expected Utility
Hypotheses and the Allais Paradox (ed. M. Allais and O. Hagen), pp. 27-
145. Dordrecht, Holland: Reidel. Translation of ‘‘Fondements d’une theorie
positive des choix comportantun risque et critique des postulats et axiomes de
l’école américaine,’’ Colloques Internationaux du Centre National de la
Recherche Scientifique. XL. Econométrie, Paris, 1953, pp. 257-332.

Allais, M. (1979b). The so-called Allais paradox and rational decisions under
uncertainty. Expected Utility Hypotheses and the Allais Paradox (ed. M.
Allais and O. Hagen), pp. 437-681. Dordrecht, Holland: Reidel.

Allais, M. (1986). The General Theory of Random Choices in Relation to the
Invariant Cardinal Utility Function and the Specific Probability Function.
Dordrecht, Holland: Reidel (in press).

Allen, B. (1987). Smooth preferences and the approximate expected utility hypothe-
sis. Journal of Economic Theory 41, 340-55.

Alt, F. (1936). Uber die Messbarkeit des Nutzens. Zeitschrift fiir Nationaloekono-
mie 7, 161-69. English translation: On the measurementof utility. Preferences,
Utility, and Demand(ed. J. S. Chipman,L. Hurwicz, M. K. Richter, and H.
F. Sonnenschein), pp. 424-31. New York: Harcourt Brace Jovanovich, 1971.

Anscombe, F. J. and Aumann, R. J. (1963). A definition of subjective probability.
Annals of Mathematical Statistics 34, 199-205.

Armstrong, W. E. (1939). The determinateness of the utility function. Economic
Journal 49, 453-67.

Armstrong, W. E. (1948). Uncertainty andthe utility function. Economic Journal
58, 1-10.

Armstrong, W. E. (1950). A note on the theory of consumer’s behaviour. Oxford
Economic Papers 2, 119-22.

Arrow, K. J. (1958). Bernoulli utility indicators for distributions over arbitrary spaces.



238 REFERENCES

Technical Report 57, Department of Economics, Stanford University, Stan-

ford.

Arrow, K. J. (1974). Essays in the Theory of Risk Bearing. Amsterdam: North-

Holland.

Aumann,R.J. (1962). Utility theory without the completeness axiom. Econometrica

30, 445-62; 32 (1964), 210-12.

Barbera, S. and Sonnenschein, H. (1978). Preference aggregation with randomized

social orderings. Journal of Economic Theory 18, 244-54.

Baumol, W. J. (1958). The cardinalutility which is ordinal. Economic Journal 68,

665-72.

Bawa, V. S. (1982). Stochastic dominance: a research bibliography. Management

Science 28, 698-712.

Bell, D. (1982). Regret in decision making underuncertainty. Operations Research

30, 961-81.

Bell, D. E. (1983). Risk premiums for decision regret. Management Science 29,

1156-66.

Bell, D. E. (1985). Disappointment in decision making under uncertainty. Opera-

tions Research 33, 1-27.

Bernard, G. (1986). A discussion of the present state of utility theory (FUR U,

Venice, 1984). Theory and Decision 20, 173-88.

Bernoulli, D. (1954). Exposition of a new theory on the measurementof risk.

Econometrica 22, 23-36. Translated by L. Sommer from ‘“‘Specimen theoriae

novae de mensura sortis,’’ Commentarii Academiae Scientiarum Imperialis

Petropolitanae 5 (1738), 175-92.

Bernstein, S. N. (1917). On the axiomatic foundations of probability theory (in

Russian). Soobshcheniya i Protokoly Khar’kovskago Matematicheskago

Obshchestva 15, 209-74.

Black, D. (1958). The Theory of Committees and Elections. Cambridge:

Cambridge University Press.

Blackwell, D. and Girshick, M. A. (1954). Theory of Games and Statistical

Decisions. New York: Wiley. .
Bolker, E. D. (1966). Functions resembling quotients of measures. Transactions of

the American Mathematical Society 124, 292-312.

Bolker, E. D. (1967). A simultaneous axiomatization of utility and subjective

probability. Philosophy of Science 34, 333-40.

Boole, G. (1854). An Investigation of the Laws of Thought. New York: Dover

(1958).

Browder, F. E. (1983). Fixed point theory and nonlinear problems. Bulletin of the

American Mathematical Society 9, 1-39.

Budescu, D. and Weiss, W. (1985). Reflection of transitive and intransitive

preference: a test of prospect theory. IPDM Report 29, University of Haifa,

Israel.

Chateauneuf, A. and Jaffray, J.-Y. (1984). Archimedean qualitative probabilities.

Journal of Mathematical Psychology 28, 191-204.

Chew, S. H. (1982). A mixture set axiomatization of weighted utility theory.

Discussion Paper 82-4, College of Business and Public Administration,

University of Arizona, Tucson.



REFERENCES 239

Chew, S. H. (1983). A generalization of the quasilinear mean with applications to the

measurement of income inequality and decision theory resolving the Allais

paradox. Econometrica 51, 1065-92.

Chew, S. H. (1984). An axiomatization of the rank dependent quasilinear mean

generalizing the Gini mean and the quasilinear mean. Preprint, Department of

Political Economy, Johns Hopkins University, Baltimore.

Chew, S. H. (1985). From strong substitution to very weak substitution: mixture-

monotoneutility theory and semi-weighted utility theory. Preprint, Department

of Political Economy, Johns Hopkins University, Baltimore.

Chew, S. H., Karni, E. and Safra, Z. (1987). Risk aversion in the theory of expected

utility with rank-dependent probabilities. Journal of Economic Theory 42,

370-81.

Chew, S. H. and MacCrimmon, K. R. (1979). Alpha-nu choice theory: a

generalization of expected utility theory. Working Paper 669, Faculty of

Commerce and Business Administration, University of British Columbia,

Vancouver.

Chew, S. H. and Waller, W. S. (1986). Empirical tests of weighted utility theory.

Journal of Mathematical Psychology 30, 55-72.

Chipman,J. S. (1960). The foundations of utility. Econometrica 28, 193-224.

Chipman, J. S. (1971). Consumption theory without transitive indifference. Prefer-

ences, Utility, and Demand(ed. J. S. Chipman, L. Hurwicz, M. K.Richter,

and H. F. Sonnenschein), pp. 224-53. New York: Harcourt Brace Jovanovich.

Choquet, G. (1955). Theory of capacities. Annales de |’Institut Fourier 5, 131-295.

Cohen, M., Jaffray, J. Y., and Said, T. (1985). Individual behavior under risk and

under uncertainty: an experimental study. Theory and Decision 18, 203-28.

Condorcet, Marquis de (1785). Essai sur l’application de l’analyse 4 la probabilité des

décisions rendues 4 la pluralité des voix. Paris.

Davidson, D. and Suppes, P. (1956). A finitistic axiomatization of subjective

probability and utility. Econometrica 24, 264-75.

Davis, J. M. (1958). The transitivity of preferences. Behavioral Science 3, 26-33.

Debreu, G. (1960). Topological methods in cardinal utility theory. Mathematical

Methods in the Social Science, 1959 (ed. K. J. Arrow, S. Karlin, and P.

Suppes), pp. 16-26. Stanford: Stanford University Press.

Debreu, G. (1972). Smooth preferences. Econometrica 40, 603-15; 44 (1976), 831-

32.

de Finetti, B. (1931a). Sul concetto di media. Giornale dell’Instituto Italiano degli

Attuari 2, 369-96.

de Finetti, B. (1931b). Sul significato soggettivo della probabilita. Fundamenta

Mathematicae 17, 298-329.

de Finetti, B. (1964). Foresight: its logical laws, its subjective sources. Studies in

Subjective Probability (ed. H. E. Kyburg and H. E. Smokler), pp. 93-158.

New York: Wiley. Translated by H. E. Kyburg from ‘‘La prévision: ses lois

logiques, ses sources subjectives,’’ Annales de l’Institut Henri Poincaré 7

(1937), 1-68.

DeGroot, M. H. (1970). Optimal Statistical Decisions. New York: McGraw-Hill.

Dekel, E. (1986). An axiomatic characterization of preferences under uncertainty:

weakening the independence axiom. Journal ofEconomic Theory 40, 304-18.



240 REFERENCES

Dempster, A. P. (1967). Upper and lower probabilities induced by a multivalued

mapping. Annals of Mathematical Statistics 38, 325-39.

Dempster, A. P. (1968). A generalization of Bayesian inference. Journal of the

Royal Statistical Society, Series B 30, 205-47.

Domotor, Z. (1978). Axiomatization of Jeffrey utilities. Synthese 39, 165-210.

Edgeworth, F. Y. (1881). Mathematical Psychics. London: Kegan Paul.

Edwards, W. (1953). Probability-preferences in gambling. American Journal of

Psychology 66, 349-64.

Edwards, W. (1954a). The theory of decision making. Psychological Bulletin 51,

380-417.
Edwards, W. (1954b). The reliability of probability preferences. American Journal

of Psychology 67, 68-95.

Edwards, W. (1954c). Probability preferences among bets with differing expected

values. American Journal of Psychology 67, 56-67.

Edwards, W.(1961). Behavioral decision theory. Annual Review ofPsychology 12,

473-98.
Edwards, W. (1968). Conservatism in human information processing. Formal

Representation of Human Judgment(ed. B. Kleinmuntz), pp. 17-52. New

York: Wiley.

Einhorn, H. J. and Hogarth, R. M. (1985). Ambiguity and uncertainty in probabilistic

inference. Psychological Review 92, 433-61.

Einhorn, H. J. and Hogarth, R. M. (1986). Decision making under ambiguity.

Journal of Business 59, 225-50.

Elisberg, D. (1961). Risk, ambiguity, and the Savage axioms. Quarterly Journal of

Economics 75, 643-69.

Fan, K. (1952). Fixed-point and minimax theorems in locally convex topological

linear spaces. Proceedings of the National Academy of Sciences (U.S.A.) 38

121-26.
Farquhar, P. H. (1977). A survey of multiattribute utility theory and applications.

TIMSStudies in the Management Sciences 6, 59-89.

Farquhar, P. H. (1978). Interdependentcriteria in utility analysis. Multiple Criteria

Problem Solving (ed. S. Zionts), pp. 131-80. Berlin: Springer-Verlag.

Fine, T. (1973). Theories of Probability. New York: Academic Press.

Fishburn, P. C. (1965). Independence in utility theory with whole productsets.

Operations Research 13, 28-45.

Fishburn, P. C. (1967). Bounded expected utility. Annals of Mathematical

Statistics 38, 1054-60.

Fishburn, P. C. (1969). Weak qualitative probability on finite sets. Annals of

Mathematical Statistics 40, 2118-26.

Fishburn, P. C. (1970a). Utility Theory for Decision Making. New York: Wiley.

Fishburn, P. C. (1970b). Intransitive indifference in preference theory: a survey.

Operations Research 18, 207-28.

Fishburn, P. C. (1971la). A study of lexicographic expected utility. Management

Science 17, 672-78.

Fishburn, P. C. (1971b). One-way expected utility with finite consequence spaces.

Annals of Mathematical Statistics 42, 572-77.  



 

REFERENCES 24]

Fishburn, P. C. (1972). Alternative axiomatizations of one-way expected utility.

Annals of Mathematical Statistics 43, 1648-51.

Fishburn, P. C. (1973a). The Theory of Social Choice. Princeton: Princeton

University Press.

Fishburn, P. C. (1973b). A mixture-set axiomatization of conditional subjective
expected utility. Econometrica 41, 1-25.

Fishburn, P. C. (1974). Lexicographicorders,utilities, and decision rules: a survey.
Management Science 20, 1442-1471.

Fishburn, P. C. (1975a). Unbounded expected utility. Annals of Statistics 3, 884-

96.

Fishburn, P. C. (1975b). Weak comparative probability on infinite sets. Annals of
Probability 3, 889-93.

Fishburn, P. C. (1976a). Cardinal utility: an interpretive essay. International

Review of Economics and Business 23, 1102-14.

Fishburn, P. C. (1976b). Continuaof stochastic dominance relations for bounded

probability distributions. Journal of Mathematical Economics 3, 295-311.

Fishburn, P. C. (1977a). Multiattribute utilities in expected utility theory. Conflict-

ing Objectives in Decisions (ed. D. E. Bell, R. L. Keeney and H.Raiffa), pp.
172-94. New York: Wiley.

Fishburn, P. C. (1977b). Condorcet social choice functions. SIAM Journal on

Applied Mathematics 33, 469-89.

Fishburn, P. C. (1978a). A survey of multiattribute/multicriterion evaluation

theories. Multiple Criteria Problem Solving (ed. S. Zionts), pp. 181-224.

Berlin: Springer-Verlag.

Fishburn, P. C. (1978b). On Handa’s ‘‘new theory of cardinality utility’’ and the

maximization of expected return. Journal of Political Economy 86, 321-24.

Fishburn, P. C. (1979). On the nature of expected utility. Expected Utility

Hypotheses and the Allais Paradox (ed. M. Allais and O. Hagen), pp. 243-

57. Dordrecht, Holland: Reidel.

Fishburn, P. C. (1980a). Lexicographic additive differences. Journal ofMathemati-

cal Psychology 21, 191-218.

Fishburn, P. C. (1980b). Continua of stochastic dominance relations for unbounded

probability distributions. Journal of Mathematical Economics 7, 271-85.
Fishburn, P. C. (1981a). An axiomatic characterization of skew-symmetric bilinear

functionals, with applications to utility theory. Economics Letters 8, 311-13.

Fishburn, P. C. (1981b). Subjective expected utility: a review of normative theories.

Theory and Decision 13, 139-99.

Fishburn, P. C. (1982a). The Foundations of Expected Utility. Dordrecht,

Holland: Reidel.

Fishburn, P. C. (1982b). A note onlinearutility. Journal ofEconomic Theory 27,

444-46.

Fishburn, P. C. (1982c). Nontransitive measurable utility. Journal ofMathematical

Psychology 26, 31-67.

Fishburn, P. C. (1983a). Transitive measurable utility. Journal of Economic

Theory 31, 293-317.

Fishburn, P. C. (1983b). Utility functions on ordered convex sets. Journal of

Mathematical Economics 12, 221-32.



242 REFERENCES

Fishburn, P. C. (1983c). Ellsberg revisited: a new look at comparative probability.

Annals of Statistics 11, 1047-59.

Fishburn, P. C. (1983d). A generalization of comparative probability on finite sets.

Journal of Mathematical Psychology 27, 298-310.

Fishburn, P. C. (1984a). SSB utility theory: an economic perspective. Mathematical

Social Sciences 8, 63-94.

Fishburn, P. C. (1984b). SSB utility theory and decision-making under uncertainty.

Mathematical Social Sciences 8, 253-85.

Fishburn, P. C. (1984c). Dominance in SSB utility theory. Journal of Economic

Theory 34, 130-48.

Fishburn, P. C. (1984d). Probabilistic social choice based on simple voting

comparisons. Review of Economic Studies 51, 683-92.

Fishburn, P. C. (1984e). On Harsanyi’s utilitarian cardinal welfare theorem. Theory

and Decision 17, 21-28.

Fishburn, P. C. (1984f). Multiattribute nonlinear utility theory. Management

Science 30, 1301-10.

Fishburn, P. C. (1984g). Elements of risk analysis in non-linear utility theory.

INFOR 22, 81-97.

Fishburn, P. C. (1985a). Interval Orders and Interval Graphs. New York: Wiley.

Fishburn, P. C. (1985b). Nontransitive preference theory and the preference reversal

phenomenon. /nternational Review of Economics and Business 32, 39-50.

Fishburn, P. C. (1986a). Ordered preference differences without ordered preferences.
Synthese 67, 361-68.

Fishburn, P. C. (1986b). Implicit mean value and certainty equivalence. Econome-

trica 54, 1197-1205.

Fishburn, P. C. (1986c). The axiomsof subjective probability. Statistical Science 1,

345-55.

Fishburn, P. C. (1986d). A new model for decisions under uncertainty. Economics

Letters 21, 127-30.

Fishburn, P. C. (1986e). Nontransitive measurable utility for decision under

uncertainty. AT&T Bell Laboratories, Murray Hill, NJ.

Fishburn, P. C. (1986f). Interval models for comparative probability on finite sets.

Journal of Mathematical Psychology 30, 221-42.

Fishburn, P. C. and Gehrlein, W. V. (1987). Aggregation theory for SSB utility

functionals. Journal of Economic Theory 42, 352-62.

Fishburn, P. C. and Keeney, R. L. (1975). Generalized utility independence and some

implications. Operations Research 23, 928-40.

Fishburn, P. C. and Kochenberger, G. A. (1979). Two-piece von Neumann-

Morgenstern utility functions. Decision Sciences 10, 503-18.

Fishburn, P. C. and LaValle, I. H. (1986). Context-dependent choice with nonlinear

and nontransitive utilities. Econometrica (in press).

Fishburn, P. C. and LaValle, I. H. (1987a). A nonlinear, nontransitive and additive-

probability model for decisions under uncertainty. Annals ofStatistics 15, 830-

44.

Fishburn, P. C. and LaValle, I. H. (1987b). Transitivity is equivalent to independence

for states-additive SSB utilities. Journal of Economic Theory (in press).



REFERENCES 243

Fishburn, P. C. and Rosenthal, R. W. (1986). Noncooperative games and

nontransitive preferences. Mathematical Social Sciences 12, 1-7.

Fisher, I. (1892). Mathematical investigations in the theory of values and prices.

Transactions of Connecticut Academy of Arts and Sciences 9, 1-124.

Flood, M. M. (1951-52). A preference experiment. The Rand Corporation Papers P-

256, P-258, and P-263.
Franke, G. (1978). Expected utility with ambiguous probabilities and ‘‘irrational’’

parameters. Theory and Decision 9, 267-83.

Friedman, M. and Savage, L. J. (1948). The utility analysis of choices involvingrisk.

Journal of Politcal Economy 56, 279-304.

Frisch, R. (1926). Sur un probléme d’économie pure. Norsk Matematisk Forenings

Skrifter 16, 1-40. English translation: On a problem in pure economics.

Preferences, Utility, and Demand (ed. J. S. Chipman, L. Hurwicz, M. K.

Richter, and H. F. Sonnenschein), pp. 386-423. New York: Harcourt Brace

Jovanovich, 1971.

Gardenfors, P. and Sahlin, N.-E. (1982). Unreliable probabilities, risk taking, and

decision making. Synthese 53, 361-86.

Georgescu-Roegen, N. (1936). The pure theory of consumer’s behavior. Quarterly

Journal of Economics 50, 545-93. Reprinted in Georgescu-Roegen (1966).

Georgescu-Roegen, N. (1954). Choice, expectations, and measurability. Quarterly

Journal of Economics 58, 503-34. Reprinted in Georgescu-Roegen (1966).

Georgescu-Roegen, N. (1958). Threshold in choice and the theory of demand.

Econometrica 26, 157-68. Reprinted in Georgescu-Roegen (1966).

Georgescu-Roegen, N. (1966). Analytical Economics: Issues and Problems.

Cambridge, MA: Harvard University Press.

Geraghty, M. A. and Bor-Luh Lin (1985). Minimax theorems without linear

structure. Linear and Multilinear Algebra 17, 171-80.

Gilboa, I. (1985a). Duality in non-additive expected utility theory. Working Paper 7-

85, FoerderInstitute for Economic Research, Tel-Aviv University, Ramat Aviv,

Israel.
Gilboa, I. (1985b). Subjective distortions of probabilities and non-additive probabili-

ties. Working Paper 18-85, FoerderInstitute for Economic Research, Tel-Aviv

University, Ramat Aviv, Israel.

Gilboa, I. (1986). A combination of expected utility and maxmin decision criteria.

Working Paper 12-86, Foerder Institute for Economic Research, Tel-Aviv

University, Ramat Aviv, Israel.

Gilboa, I. (1987). Expected utility with purely subjective non-additive probabilities.

Journal of Mathematical Economics 16, 65-88.

Gilboa, I. and Schmeidler, D. (1986). Maxmin expected utility with a non-unique

prior. Working Paper 16-86, Foerder Institute for Economic Research, Tel-Aviv

University, Ramat Aviv, Israel.

Goldman, A. J. (1956). Resolution and separation theorems for polyhedral convex

sets. Linear Inequalities and Related Systems, Annals of Mathematics

Studies 38 (ed. H. W. Kuhn and A. W. Tucker), pp. 41-51. Princeton:

Princeton University Press.



244 REFERENCES

Goldstein, W. and Einhorn, H. J. (1985). A theory of preference reversals. Preprint,
Graduate School of Business, University of Chicago.

Good, I. J. (1950). Probability and the Weighing of Evidence. London: Griffin.
Good, I. J. (1962). Subjective probability as the measure of a non-measurableset.

Logic, Methodology and Philosophy of Science (ed. E. Nagel, P. Suppes,
and A. Tarski), pp. 319-29. Stanford: Stanford University Press.

Gossen, H. H. (1854). Entwickelung der Gesetze des menschlichen Verkehrs, und
der daraus fliessenden Regeln fiir menschliches Handein. Braunschweig:
Vieweg and Sohn.

Grayson, C. J. (1960). Decisions under Uncertainty: Drilling Decisions by Oil and
Gas Operators. Cambridge, MA: Harvard University.

Grether, D. M. and Plott, C. R. (1979). Economic theory of choice andthe preference
reversal phenomenon. American Economic Review 69, 623-38.

Griinbaum,B. (1970). Polytopes, graphs, and complexes. Bulletin of the American
Mathematical Society 76, 1131-1201.

Hagen, O. (1972). A new axiomatization ofutility under risk. Teorie A Metoda 4,
55-80.

Hagen, O. (1979). Towards a positive theory of preferences under risk. Expected
Utility Hypotheses and the Allais Paradox (ed. M. Allais and O. Hagen),
pp. 271-302. Dordrecht, Holland: Reidel.

Halmos, P. R. (1950). Measure Theory. New York: Van Nostrand.
Handa, J. (1977). Risk, probabilities and a new theory ofcardinalutility. Journal of

Politcal Economy 85, 97-122.

Harsanyi, J. C. (1955). Cardinal welfare, individualistic ethics, and interpersonal
comparisonsofutility. Journal of Political Economy 63, 309-21.

Hartigan, J. A. (1983). Bayes Theory. New York: Springer-Verlag.
Hausner, M. (1954). Multidimensional utilities. Decision Processes (ed. R. M.

Thrall, C. H. Coombs, and R. L. Davis), pp. 167-80. New York: Wiley.
Hausner, M. and Wendel, J. G. (1952). Ordered vector spaces. Proceeding of the

American Mathematical Society 3, 977-82.

Heath, D. C. and Sudderth, W. D. (1972). On a theorem of de Finetti, oddsmaking,
and game theory. Annals of Mathematical Statistics 43, 2072-77.

Hershey, J. C. and Schoemaker, P. J. H. (1980). Prospect theory’s reflection
hypothesis: a critical examination. Organizational Behavior and Human
Performance 25, 395-418.

Herstein, I. N. and Milnor, J. (1953). An axiomatic approach to measurable utility.
Econometrica 21, 291-97.

Hicks, J. R. and Allen, R. G. D. (1934). A reconsideration of the theory of value:I,
Il. Economica 1, 52-75, 196-219.

Howard, R. A. (1968). The foundations of decision analysis. IEEE Transactions on
System Science and Cybernetics SSC-4, 211-19.

Jeffrey, R. C. (1965). The Logic of Decision. New York: McGraw-Hill.
Jeffrey, R. C. (1978). Axiomatizing the logic of decision. Foundations and

Applications of Decision Theory, Vol. 1: Theoretical Foundations (ed. C.
A. Hooker, J. J. Leach, and E. F. McClennan), pp. 227-31. Dordrecht,
Holland: Reidel.  



 

REFERENCES 245

Jensen, N. E. (1967). An introduction to Bernoullian utility theory. I. Utility

functions. Swedish Journal of Economics 69, 163-83.

Jevons, W. S. (1871). The Theory of Political Economy. London: Macmillan.

Kahneman, D., Slovic, P., and Tversky, A. (eds.) (1982). Judgement under

Uncertainty: Heuristics and Biases. Cambridge: Cambridge University Press.

Kahneman, D. and Tversky, A. (1972). Subjective probability: a judgment of

representativeness. Cognitive Psychology 3, 430-54.

Kahneman, D. and Tversky, A. (1979). Prospect theory: an analysis of decision under

risk. Econometrica 47, 263-91.

Kahneman, D. and Tversky, A. (1984). Choices, values and frames. American

Psychologist 39, 341-50.

Kakutani, S. (1941). A generalization of Brouwer’s fixed point theorem. Duke

Mathematical Journal 8, 457-59.

Kannai, Y. (1963). Existence of a utility in infinite dimensional partially ordered

spaces. Israel Journal of Mathematics 1, 229-34.

Karmarkar, U. S. (1978). Subjectively weighted utility: a descriptive extension of the

expected utility model. Organizational Behavior and Human Performance

21, 61-72.

Karni, E. (1985). Decision Making under Uncertainty: The Case of State-

Dependent Preferences. Cambridge, MA: Harvard University Press.

Karni, E. and Safra, Z. (1987). ‘‘Preference reversal’’ and the observability of

preferences by experimental methods. Econometrica 55, 675-85.

Karni, E., Schmeidler, D. and Vind, K. (1983). On state dependent preferences and

subjective probabilities. Econometrica 51, 1021-32.

Kauder, E. (1965). A History of Marginal Utility Theory. Princeton: Princeton

University Press.

Keeney, R. L. (1968). Quasi-separable utility functions. Naval Research Logistics

Quarterly 15, 551-65.

Keeney, R. L. and Raiffa, H. (1976). Decisions with Multiple Objectives:

Preferences and Value Tradeoffs. New York: Wiley.

Kelley, J. L. (1955). General Topology. New York: American Book Company.

Kelley, J. L. and Namioka, I. (1963). Linear Topological Spaces. Princeton: Van

Nostrand.

Keynes, J. M. (1921). A Treatise on Probability. New York: Macmillan.

Torchbook edition, 1962.

Kolmogorov, A. (1930). Sur la notion de la moyenne. Rendiconti Accademia dei

Lincei 12, 338-91.

Koopman,B. O. (1940). The axioms and algebra of intuitive probability. Annals of

Mathematics 41, 269-92.

Kraft, C. H., Pratt, J. W., and Seidenberg, A. (1959). Intuitive probability on finite

sets. Annals of Mathematical Statistics 30, 408-19.

Krantz, D. H., Luce, R. D., Suppes, P., and Tversky, A. (1971). Foundations of

Measurement, Volume I. New York: Academic Press.

Kreweras, G. (1961). Sur une possibilité de rationaliser les intransitivités. La

Décision, Colloques Internationaux du Centre National de la Recherche

Scientifique, pp. 27-32. Paris: Editions du Centre National de la Recherche

Scientifique.



246 REFERENCES

Kreweras, G. (1965). Aggregation of preference orderings. Mathematics and Social

Sciences I (compiled by S. Sternberg et al.), pp. 73-79. Paris: Mouton.

Kuhn, H. W. (1956). Solvability and consistency for linear equations and inequalities.

American Mathematical Monthly 63, 217-32.

Lange, O. (1934). The determinateness of the utility function. Review ofEconomic

Studies 1, 218-24.

LaValle, I. H. (1978). Fundamentals of Decision Analysis. New York: Holt,

Rinehart and Winston.

Ledyard, J. O. (1971). A pseudo-metric space of probability measures and the

existence of measurableutility. Annals ofMathematical Statistics 42, 794-98.

Libby, R. and Fishburn, P. C. (1977). Behavioral models of risk taking in business

decisions: a survey and evaluation. Journal ofAccounting Research 15, 272-

92.

Lichtenstein, S. and Slovic, P. (1971). Reversals of preferences between bids and

choices in gambling decisions. Journal of Experimental Psychology 89, 46-

55.

Lichtenstein, S. and Slovic, P. (1973). Response-induced reversals of preferences in

gambling: an extended replication in Las Vegas. Journal of Experimental

Psychology 101, 16-20.

Lindman, H. R. (1971). Inconsistent preferences among gambles. Journal of

Experimental Psychology 89, 390-97.

Loeve, M. (1960). Probability Theory, 2nd ed. Princeton: Van Nostrand.

Loomes, G. and Sugden, R. (1982). Regret theory: an alternative theory of rational

choice under uncertainty. Economic Journal 92, 805-24.

Loomes, G. and Sugden, R. (1983). A rationale for preference reversal. American

Economic Review 73, 428-32.

Loomes, G. and Sugden, R. (1986). Disappointment and dynamic consistency in

choice under uncertainty. Review of Economic Studies 53, 271-82.

Loomes, G. and Sugden, R. (1987). Some implications of a more general form of

regret theory. Journal of Economic Theory 41, 270-87.

Luce, R. D. (1956). Semiorders and a theory ofutility discrimination. Econometrica

24, 178-91.

Luce, R. D. (1978). Lexicographic tradeoff structures. Theory and Decisions 9,

187-93.

Luce, R. D. (1984). Existence of dual bilinear representations. Preprint, Harvard

University, Cambridge, MA.

Luce, R. D. and Krantz, D. H. (1971). Conditional expected utility. Econometrica

39, 253-71.

Luce, R. D. and Narens, L. (1985). Classification of concatenation measurement

structures according to scale type. Journal of Mathematical Psychology 29,

1-72.

Luce, R. D. and Raiffa, H. (1957). Games and Decisions. New York: Wiley.

Luce, R. D. and Suppes, P. (1965). Preference, utility, and subjective probability.

Handbook ofMathematical Psychology, ITI (ed. R. D. Luce, R. R. Bush, and

E. Galanter), pp. 249-410. New York: Wiley.

MacCrimmon, K. R. (1968). Descriptive and normative implications of the decision-



REFERENCES 247

theory postulates. Risk and Uncertainty (ed. K. Borch and J. Mossin), pp. 3-

32. New York: Macmillan.

MacCrimmon, K. R. and Larsson, S. (1979). Utility theory: axioms versus

‘‘paradoxes.’”’ Expected Utility Hypotheses and the Allais Paradox (ed. M.

Allais and O. Hagen), pp. 333-409. Dordrecht, Holland: Reidel.

Machina, M. J. (1982a). ‘‘Expected utility’? analysis without the independence

axiom. Econometrica 50, 277-323.

Machina, M. J. (1982b). A stronger characterization of declining risk aversion.

Econometrica 50, 1069-79.

Machina, M. J. (1983a). The economic theory of individual behavior toward risk:

theory, evidence and new directions. Technical Report 433, Center for Research

on Organizational Efficiency, Stanford University, Stanford.

Machina, M. J. (1983b). Generalized expected utility analysis and the nature of

observed violations of the independence axiom. Foundations of Utility and

Risk Theory with Applications (ed. B. Stigum and F. Wenstép). Dordrecht,

Holland: Reidel.

Machina, M.J. (1984). Temporal risk and the nature of induced preferences. Journal

of Economic Theory 33, 199-231.

Machina, M. J. (1985). Stochastic choice functions generated from deterministic

preferences overlotteries. Economic Journal 95, 575-94.

Machina, M. J. and Neilson, W. S. (1987). The Ross characterization’ of risk

aversion: strengthening and extension. Econometrica 55, 1139-49.

Manski, C. F. (1977). The structure of random utility models. Theory and Decision

8, 229-54.

Marschak, J. (1950). Rational behavior, uncertain prospects, and measurable utility.

Econometrica 18, 111-41. Errata, 1950, p. 312.

Marshall, A. (1890). Principles of Economics. London: Macmillan.

Mas-Colell, A. (1974). An equilibrium existence theorem without complete or

transitive preferences. Journal of Mathematical Economics 1, 237-46.

May, K. O. (1954). Intransitivity, utility, and the aggregation of preference patterns.

Econometrica 22, 1-13.

McNeil, B. J., Pauker, S. G., Sox, H. C., Jr., and Tversky, A. (1982). On the

elicitation of preferences for alternative therapies. New England Journal of

Medicine 306, 1259-62.

Menger, C. (1871). Grundsdtze der Volkswirthschaftslehre. Vienna: W. Braumul-

ler. English translation: Principles of Economics. Glencoe, IL: Free Press,

1950.

Menger, K. (1967). The role of uncertainty in economics. Essays in Mathematical

Economics (ed. M. Shubik), pp. 211-31. Princeton, NJ: Princeton University

Press. Translated by W. Schoellkopf from ‘‘Das Unsicherheitsmoment in der

Wertlehre,’’ Zeitschrift fiir Nationaloekonomie 5 (1934), pp. 459-85.

Milnor, J. (1978). Analytic proofs of the ‘‘hairy ball theorem’’ and the Brouwerfixed

point theorem. American Mathematical Monthly 85, 521-24.

Morrison, D. G. (1967). On the consistency of preferences in Allais’ paradox.

Behavioral Science 12, 373-83.



248 REFERENCES

Morrison, H. W. (1962). Intransitivity of paired comparison choices. Ph.D.

Dissertation, University of Michigan, Ann Arbor.

Mosteller, F. and Nogee, P. (1951). An experimental measure ofutility. Journal of

Political Economy 59, 371-404.

Nagumo, M. (1930). Uber eine klasse der mittelwerte. Japan Journal of

Mathematics 7, 71-79.

Nakamura, Y. (1984). Nonlinear measurable utility analysis. Ph.D. Dissertation,

University of California, Davis.

Nakamura, Y. (1985). Weighted linear utility. Preprint, Department of Precision

Engineering, Osaka University, Osaka, Japan.

Narens, L. (1974). Measurement without Archimedean axioms. Philosophy of

Science 41, 374-93.

Narens, L. (1985). Abstract Measurement Theory. Cambridge, MA: MIT Press.

Nash, J. (1951). Non-cooperative games. Annals of Mathematics 54, 286-95.

Nikaid6, H. (1954). On von Neumann’s minimax theorem. Pacific Journal of

Mathematics 4, 65-72.

Pareto, V. (1906). Manuale di Economia Politica, con una Intraduzione alla

Scienza Sociale. Milan: Societa Editrice Libraria.

Payne, J. W. (1973). Alternative approaches to decision making under risk: moments

versus risk dimensions. Psychological Bulletin 80, 435-53.

Payne, J. W. and Braunstein, M. L. (1971). Preferences among gambles with equal

underlying distributions. Journal of Experimental Psychology 87, 13-18.

Ptanzagl, J. (1967). Subjective probability derived from the Morgenstern-von

Neumannutility concept. Essays in Mathematical Economics (ed. M. Shubik),

pp. 237-51. Princeton: Princeton University Press.

Pfanzagl, J. (1968). Theory of Measurement. New York: Wiley.

Pinter, C. C. (1971). Set Theory. Reading, MA: Addison-Wesley.

Pollak, R. A. (1967). Additive von Neumann-Morgenstern utility functions.

Econometrica 35, 485-94.

Pommerehne, W. W., Schneider, F., and Zweifel, P. (1982). Economic theory of

choice and the preference reversal phenomenon: a reexamination. American

Economic Review 72, 569-74.

Pratt, J. W. (1964). Risk aversion in the small and in the large. Econometrica 32,

122-36.

Pratt, J. W., Raiffa, H., and Schlaifer, R. (1964). The foundations of decision under

uncertainty: an elementary exposition. Journal of the American Statistical
Association 59, 353-75.

Pratt, J. W., Raiffa, H., and Schlaifer, R. (1965). Introduction to Statistical

Decision Theory. New York: McGraw-Hill.

Preston, M. G. and Baratta, P. (1948). An experimental study of the auction value of

an uncertain outcome. American Journal of Psychology 61, 183-93.

Quiggin, J. (1982). A theory of anticipated utility. Journal of Economic Behavior

and Organization 3, 323-43.

Raiffa, H. (1961). Risk, ambiguity, and the Savage axioms: comment. Quarterly

Journal of Economics 75, 690-94.

Raiffa, H. (1968). Decision Analysis: Introductory Lectures on Choice under

Uncertainty. Reading, MA: Addison-Wesley.



REFERENCES 249

Raiffa, H. and Schlaifer, R. (1961). Applied Statistical Decision Theory. Boston:

Harvard Graduate School of Business Administration.

Ramsey, F. P. (1931). Truth and probability. The Foundations ofMathematics and

Other Logical Essays, pp. 156-98. London: Routledge and Kegan Paul.

Reprinted in Studies in Subjective Probability (ed. H .E. Kyburg and H.E.

Smokler), pp. 61-92. New York: Wiley, 1964.

Reilly, R. J. (1982). Preference reversal: further evidence and some suggested

modifications in experimental design. American Economic Review 72, 576-

84.

Richter, M. K. (1971). Rational choice. Preferences, Utility, and Demand(ed. J. S.

Chipman, L. Hurwicz, M. K. Richter, and H. F. Sonnenschein), pp. 29-58.

New York: Harcourt Brace Jovanovich.

Rockafellar, R .T. (1970). Convex Analysis. Princeton: Princeton University Press.

Ross, S. (1981). Some stronger measures of risk aversion in the small and the large

with applications. Econometrica 49, 621-38.

Rubin, J. E. (1967). Set Theory for the Mathematician. San Fransicso: Holden-

Day.
Samuelson, P. A. (1977). St. Petersburg paradoxes: defanged, dissected, and

historically described. Journal of Economic Literature 15, 24-55.

Savage, L. J. (1954). The Foundations of Statistics. New York: Wiley.

Schlaifer, R. (1959). Probability and Statisticsfor Business Decisions. New York:

McGraw-Hill.

Schmeidler, D. (1984). Subjective probability and expected utility without additivity.

Preprint 84, Institute for Mathematics and Its Applications, University of

Minnesota, Minneapolis.

Schmeidler, D. (1986). Integral representation without additivity. Proceedings of the

American Mathematical Society 97, 255-61.

Schoemaker, P. J. H. (1980). Experiments on Decisions under Risk. Boston:

Martinus Nijhoff.

Schwartz, T. (1972). Rationality and the myth of the maximum. Nois 6, 97-117.

Segal, U. (1984). Nonlinear decision weights with the independence axiom. Working

Paper 353, Department of Economics, University of California, Los Angeles.

Segal, U. (1987). The Ellsberg paradox and risk aversion: an anticipated utility

approach. International Economic Review 28, 175-202.

Seidenfeld, T. and Schervish, M. J. (1983). A conflict betweenfinite additivity and

avoiding Dutch Book. Philosophy of Science 50, 398-412.

Sen, A. K. (1970). Collective Choice and Social Welfare. San Francisco: Holden-

Day.

Sen, A. (1985). Rationality and uncertainty. Theory and Decision 18, 109-27.

Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton: Princeton

University Press.

Shafer, W. and Sonnenschein, H. (1975). Equilibrium in abstract economies without

ordered preferences. Journal of Mathematical Economics 2, 345-48.

Shepsle, K. A. (1970). A note on Zeckhauser’s ‘‘Majority rule with lotteries on

alternatives’: the case of the paradox of voting. Quarterly Journal of

Economics 84, 705-9.



250 REFERENCES

Sherman, R. (1974). The psychological difference between ambiguity and risk.

Quarterly Journal of Economics 88, 166-69.

Skala, H. J. (1975). Non-Archimedean Utility Theory. Dordrecht, Holland: Reidel.

Slovic, P. and Lichtenstein, S. (1968). The relative importance of probabilities and

payoffs in risk taking. Journal of Experimental Psychology 78, 1-18.

Slovic, P. and Lichtenstein, S. (1983). Preference reversals: a broader perspective.

American Economic Review 73, 596-605.

Slovic, P. and Tversky, A. (1974). Whoaccepts Savage’s axiom? Behavioral Science

19, 368-73.

Slutsky, E. (1915). Sulla teoria del bilancio del consumatore. Giornale degli

Economisti e Rivista di Statistica 51, 1-26.

Smart, D. R. (1974). Fixed Point Theorems. Cambridge, MA: Cambridge

University Press.

Smith, C. A. B. (1961). Consistencyin statistical inference and decision. Journal of

the Royal Statistical Society, Series B 23, 1-37.

Smith, C. A. B. (1965). Personal probability and statistical analysis. Journal of the

Royal Statistical Society, Series A 128, 469-99.

Smith, J. H. (1973). Aggregation of preferences with variable electorate. Econome-

trica 41, 1027-41.

Stevens, S. S. (1946). On the theory of scales of measurement. Science 103, 677-80.

Stigler, G. J. (1950). The developmentof utility theory: I, Il. Journal of Political

Economy 58, 307-27, 373-96.

Stigum, B. P. and Wenstdp, F. (eds.) (1983). Foundations of Utility and Risk

Theory with Applications. Dordrecht, Holland: Reidel.

Strotz, R. H. (1953). Cardinal utility. American Economic Review 43, 384-97.

Sugden, R. (1985). Regret, recrimination and rationality. Theory and Decision 19,

77-99.

Suppes, P. (1956). The role of subjective probability and utility in decision making.

Proceedings of the Third Berkeley Symposium on Mathematical Statistics

and Probability, 1954-1955, 5, 61-73.

Suppes, P. (1974). The measurement of belief. Journal of the Royal Statistical

Society, Series B 36, 160-91.

Thrall, R. M. (1954). Applications of multidimensional utility theory. Decision

Processes (ed. R. M. Thrall, C. H. Coombs, and R. L. Davis), pp. 181-86.

New York: Wiley.

Toulet, C. (1986). An axiomatic model of unboundedutility functions. Mathematics

of Operations Research 11, 81-94.

Toussaint, S. (1984). On the existence of equilibria in economies with infinitely many

commodities and without ordered preferences. Journal of Economic Theory

33, 98-115.

Tversky, A. (1969). Intransitivity of preferences. Psychological Review 76, 31-48.

Tversky, A. (1972a). Elimination by aspects: a theory of choice. Psychological

Review 79, 281-99.

Tversky, A. (1972b). Choice by elimination. Journal ofMathematical Psychology

9, 341-67.

Tversky, A. (1975). A critique of expected utility theory: descriptive and normative

considerations. Erkenntnis 9, 163-73.



REFERENCES 25]

Tversky, A. and Kahneman,D.(1973). Availability: a heuristic for judging frequency

probability. Cognitive Psychology 5, 207-32.

Tversky, A. and Kahneman, D. (1981), The framing of decisions and the psychology

of choice. Science 211, 453-58.

Tversky, A. and Kahneman, D. (1986). Rational choice and the framing of decisions.

Rational Choice (ed. R. M. Hogarth and M. W.Reder), pp. 67-94. Chicago:

University of Chicago Press.

Villegas, C. (1964). On qualititive probability o-algebras. Annals of Mathematical

Statistics 35, 1787-96.

von Neumann, J. (1928). Zur theorie der gesellschaftsspiele. Mathematische

Annalen 100, 295-320.

von Neumann, J. and Morgenstern, O. (1944). Theory of Games and Economic

Behavior. Princeton, NJ: Princeton Univeristy Press; 2nd ed. 1947; 3rd ed.

1953.

Wakker, P. (1981). Agreeing probability measures for comparative probability

structures. Annals of Statistics 9, 658-62.

Wakker, P. P. (1986). Representations of Choice Situations. Catholic University,

Nijmegen, Holland.

Walley, P. and Fine, T. L. (1979). Varieties of modal (classificatory) and

comparative probability. Synthese 41, 321-74.

Walras, L. (1874). Eléments d’economie politique pure. Lausanne: Corbas.

Whitmore, G. A. and Findlay, M. C. (eds.) (1978). Stochastic Dominance.
Lexington, MA: Heath.

Yaari, M. E. (1986). Univariate and multivariate comparisonsofrisk aversion: a new

approach. Essays in Honor ofKenneth J. Arrow (ed. W. W. Heller, R. Starr,

and D. Starrett). Cambridge: Cambridge University Press.

Yaari, M. E. (1987). The dual theory of choice under risk. Econometrica 55, 95-

115.

Yannelis, N. C. and Prabhakar, N. D. (1983). Existence of maximal elements and

equilibria in linear topological spaces. Journal of Mathematical Economics

12, 233-45.

Zeckhauser, R. (1969). Majority rule with lotteries on alternatives. Quarterly

Journal of Economics 83, 696-703.



 

Index

Absolute risk aversion index, 18

Accommodation: of ambiguity, 190-93; of

independence violations, 70~74; of in-

transitivities, 74-77; of preference rever-

sals, 74-77

Acts, 160; big, 175; comonotonic, 201; con-

stant, 160; little, 175; normal, 175; sim-

ple, 160; stochastically independent, 196
Actuarial expectation, 18

Adams, E. W., 190-91, 237

Additive expected utility, 158-76; critique

of, 187-90; generalization of, 193-98

Additive linear utility, 176-85; generaliza-

tion of, 198-201

Additive SSB utility, 198-99, 217-36; exten-

sion of, 228-36

Aliais, M., 30-32, 34, 36-40, 49-50, 54-

57, 69, 71-72, 77, 159, 172, 187-89,

193-95, 199, 204, 207, 237, 241, 244,

247

Allen, B., 56, 237

Allen, R. G. D., 4, 244

Alt, F., 4, 237

Ambiguity, 190, 192, 204~7

Ambiguity aversion, 192

Ambiguity seeking, 192

Anscombe, F. J., 160, 169, 187, 193, 202,

207, 237

Arbitrary outcomes, 61
Armstrong, W. E., 41, 237

Arrow, K. J., 17-18, 22, 172, 237-39, 251

Asymmetry, 10

Aumann, R. J., 42, 49, 53, 160, 169, 187-

91, 193, 202, 207, 237-38

Axioms: absolute preference, 31; Archime-

dean (see continuity); betweenness, 151;

certainty matching, 151; conditional
dominance, 197, 209; conditional prefer-

ence, 170, 177; consistency, 170, 209;

continuity, 10, 15, 47, 54, 63, 79, 151,

163, 170, 197, 200, 209, 216, 218; con-

vexity, 15, 63, 79, 151, 218; dominance,

23, 111-12, 151, 170, 172, 178, 197,

200, 215, 216, 228; independence, 10-

12, 15, 38, 151, 163, 170, 200, 201,

209, 219, 221; Jensen’s, 10; monotonic-

ity, 205; nonnegativity, 162, 163; nontri-

viality, 162, 163, 170, 177, 200, 205,

209, 219; ordering, 10-11, 15, 54, 63,

163, 170, 197, 200, 209; partition, 170,

228; Savage’s, 170; stochastic domi-

nance, 54; strong additivity, 162; subjec-

tive probability, 162-63; symmetry, 63,
79, 93-100, 218; transitive indifference,

63, 221; transitivity (see ordering); trun-

cation, 24, 112, 151; von Neumann and

Morgenstern’s, 10; weak independence,

63, 66. See also Violations

Baratta, P., 34-35, 248

Barbera, S., 139, 238

Barycentric representation, 70-71

Baumol, W. J., 8-9, 32, 238

Bawa, V. S., 19, 238

Bell, D. E., 50, 69, 74, 188, 193-95, 207,

238, 241

Bernard, G., 18, 238

Bernoulli, D., 1-3, 5-10, 24, 26-27, 30-32,

34, 49-51, 55-56, 69, 77, 207, 238

Bernoulli, N., 2-3

Bernoullian utility. See Utility
Bernstein, S. N., 163, 238



254

Bilinearity, 68
Black, D., 139, 238

Blackwell, D., 22, 238

Bolker, E. D., 62, 123, 169, 238

Boole, G., 191, 238

Boolean algebra, 9-10, 22

Borch, K., 247

Borel field (algebra), 21-22, 67

Braunstein, M. L., 33, 248

Browder, F. E., 145, 238

Budescu, D., 32, 238

Bush, R. R., 246

Camacho, 18

Certainty effect, 37, 72

Certainty equivalent, 2-3, 18, 58, 149-52

Chateauneuf, A., 163, 238

Chew, S. H., 40, 49-50, 56, 58-62, 64-66,

72, 123, 146, 149-51, 238-39

Chipman, J. S., 41, 46-47, 49, 53, 237,

239, 243, 249

Choice: behavior, 26; among choice con-

texts, 141-44; with cyclic preference,

137-46

Choquet, G., 199, 239

Choquetintegration, 199, 202

Closed preference set, 61, 128

Closure: under conditional measures, 22; un-

der convex combinations, 16; under

countable convex combinations, 23

Cofinal sequence, 61
Cohen, M., 18, 32, 239

Coinitial sequence, 61

Common consequenceeffect, 37, 72, 188-

89

Commonratio effect, 37, 72

Comparable preference differences, 4-5

Complementary additivity, 192

Complementary symmetry, 191, 204

Conditional additivity, 193, 202

Conditional dominance principle, 172
Condorcet, Marquis de, 139, 239

Consumer economics, 3

Coombs, C. H., 244, 250

Countable boundedness, 61, 115; need for,

117-22

Countable order dense subset, 54

Cramer, G., 3

Cyclic majority, 139

Cyclic preference. See Preference cycle

NONLINEAR PREFERENCE AND UTILITY THEORY

Davidson, D., 6, 169, 192-93, 239

Davis, J. M., 43, 239

Davis, R. L., 244, 250

Debreu, G., 8, 56, 239

Decision underrisk, 1

Decision under uncertainty, 158

de Finetti, B., 149-50, 161, 163, 169, 187,

191, 239

DeGroot, M. H., 22, 159, 239

Dekel, E., 49-50, 66-67, 239

Dempster, A. P., 191, 240

de Neufville, 18

Denumerable partition lemma, 181

Descriptive decision theory, 25-26, 36, 50

Disappointment, 195

Domotor, Z., 169, 240

Dual standard sequence, 116

Edgeworth, F. Y., 3, 240

Edwards, 34-35, 240

Einhorn, H. J., 45, 190, 192, 240, 244

Elisberg, D., 18%, 190, 199, 204, 207, 240

Equivalence relation, 10

Event, 160; empty, 160; null, 170, 177,

219; universal, 160

Expected regret theory, 195-97

Expected return, |

Expected subjective value, 2

Expected utility, 1-48; alternatives to, 49;

critique of, 26-48; nonadditive, 201-2;

subjective, 158; tradeoff models for, 50.

See also Linearutility; Utility

Expected value, 22-23

Fan, K., 136, 145, 240

Farquhar, P. H., 20, 240

Fechner, G., 41

Findlay, M. C., 19, 251

Fine, T. L., 161, 190, 240, 251

Fishburn, P. C., 4, 7-8, 15, 17-18, 20-22,

26, 40-43, 47, 49-50, 52-54, 61-62,

64-66, 68-69, 74, 86, 111, 117, 137,

139-40, 142, 144, 146-47, 149-50, 152,

155, 157-58, 161, 169, 171-73, 176,

185, 190-94, 197-98, 201-2, 205-7,

221, 223, 240-43, 246

Fisher, I., 3, 243

Fixed-point theorems, 145

Flood, M. M., 42, 243

Frames, 27



Framing effects, 26-30

Franke, G., 190, 243

Fréchet differentiability, 55

Friedman, M., 17, 243

Frisch, R., 4, 243

Functional, 7; bilinear, 68; linear, 7; mea-

surable, 22; simple, 22; skew-symmetric,

68

Galanter, E., 246

Gametheory, 65, 68, 144-46

Gardenfors, P., 190, 243

Gateaux differentiability, 56

Gehrlein, W. V., 146, 242

Georgescu-Roegen, N., 41, 46, 243

Geraghty, M. A., 136, 243

Gilboa, I., 50, 191-94, 199, 201-3, 297,

243

Girshick, M. A., 22, 238

Goldman, A. J., 86, 243

Goldstein, W., 45, 244

Good, I. J., 159, 190-91, 244

Gossen, H. H., 3, 244

Grayson, C. J., 32, 244

Grether, D. M., 45, 244

Griinbaum, B., 138, 244

Hagen, O., 36, 49-50, 54-56, 237, 241,

244, 247

Half-open preference set, 61

Halmos, P. R., 149, 244

Handa, J., 35, 40, 50-52, 244

Harsanyi, J. C., 146, 244

Hartigan, J. A., 159, 244

Hausner, M., 17, 47, 49, 52-54, 244

Heath, D. C., 191, 244

Heller, W. W., 251

Hershey, J. C., 18, 244

Herstein, I. N., 7, 15, 64, 66, 198, 221,

244

Hicks, J. R., 4, 244

Hogarth, R. M., 190, 192, 240, 251

Hooker, C. A., 244

Howard, R. A., 159, 244

Hurwicz, L., 237, 239, 243, 249

Indifference maps, 70; fanning effect for, 72

Indifference relation, 10; independence ax-

iom for, 12; nontransitive, 41-42; sec-

ond-order effect for, 60; von Neumann-

Morgenstern treatment of, 9

INDEX 255

Intermediate-value property, 12

Interval order, 41, 192

Invariance principle, 27

Isolation effect, 30

Jaffray, J.-Y., 163, 238-39

Jeffrey, R. C., 62, 123, 169, 244

Jensen, N. E., 9, 15-17, 245

Jevons, W. S., 3, 245

Kahneman, D., 18, 26-30, 32-33, 35-37,

39-40, 50-52, 172, 204, 245, 251

Kakutani, S., 136, 145, 245

Kannai, Y., 49, 53, 245

Karlin, S., 239

Karmarkar, U. S., 35, 40, 50-52, 245

Karni, E., 45, 56, 59, 194, 239, 245

Kauder, E., 3, 245

Keeney, R. L., 20-21, 146, 241-42, 245

Kelley, J. L., 137, 245

Keynes, J. M., 190, 245

Kleinmuntz, B., 240

Kochenberger, G. A., 18, 242

Kolmogorov, A., 149, 245

Koopman, B. O., 163, 190, 91, 245

Kraft, C. H., 161, 191, 245

Krantz, D. H., 4, 8, 54, 169, 245-46

Kreweras, G., 44, 49-50, 68, 137, 139-40,

144-45, 245-46

Krzysztofowicz, 18

Kuhn, H. W., 86, 243, 246

Kyburg, H. E., 239, 249

Lange, O., 4, 246

Larsson, S., 36, 42, 189, 247

LaValle, I. H., 142, 144, 159, 193, 198,

221, 242, 246

Leach, J. J., 244

Ledyard, J. O., 22, 246

Lexicographic order, 52-53

Libby, R., 26, 246

Lichtenstein, S., 33, 45, 246, 250

Limit lemmas, 90-93

Limit ordinal, 119

Lin, B.-L., 136, 243

Lindman, H. R., 45, 246

Linear functionals, 7; quotients of, 123

Linear property, 7; weighted, 62

Linear mean, 149

Linear order, 53; on vector space, 53

Linear topological space, 137



256 NONLINEAR PREFERENCE AND UTILITY THEORY

Linear utility, 6-11; critique of, 26-48; ex-

tension of, 21-24; multiattribute, 20-21;

one-way, 53; one-way lexicographic, 53;

theorem for, 11; weighted (see Weighted

linear utility). See also Utility
Loéve, M., 112, 246

Loomes, G., 50, 69, 74, 188, 193-96, 207,

246

Lottery act, 160, 176; bounded, 178, 181,

201; comonotonic, 200; modified simple,

204; simple, 176

Luce, R. D., 9, 32, 41-42, 136, 169, 172,

193, 202-4, 245-46

McClennan, E. F., 244

McCord, 18 ;

MacCrimmon, K. R., 36, 42, 49-50, 61-62,

64, 123, 189, 239, 246-47

Machina, M. J., 18, 35-36, 40, 49-50, 52,

55-57, 71-72, 77, 152, 247

McNeil, B. J., 27, 247

Majority candidate, 139

Majority cycle, 139

Manski, C. F., 42, 247

Marschak, J., 9, 247

Marshall, A., 3, 247

Mas-Colell, A., 145, 247

Maximal alternative, 137

Maximally preferred subset, 138

May, K. O., 42-43, 74, 247

Mean value, 149-52; implicit, 150-52

Menger, C., 3, 247

Menger, K., 3, 247

Milnor, J., 7, 15, 64, 66, 145, 198, 221,

244

Minimax theorem, 137

Minimum selling price. See Certainty equiv-

alent

Mixedstrategy, 28

Mixture set, 7, 61

Monetary outcomes, 17-20, 30-34, 54-61

Money pump, 43

Monotonecontinuity, 163

Monotone convergence theorem, 112

Monotone dominance principle, 172, 200,

207

Monotonicity, 12
Morgenstern, O., 6-11, 15-18, 24, 26-28,

32, 34, 47-62, 64, 67-70, 77, 123, 136,

139, 144, 150, 159, 169, 173, 186-87,

189, 207, 251

Morrison, D. G., 36, 247

Morrison, H. W., 43, 248

Mossin, J., 247

Mosteller, F., 32, 34, 248

Nagel, E., 244

Nagumo, M., 149, 248

Nakamura, Y., 50, 61, 64-65, 248

Namioka, I., 137, 245

Narens, L., 47, 191, 193, 202-4, 246, 248

Nash, J., 136, 144, 248

Nash equilibrium, 68, 145

Negative transitivity, 10

Neilson, W. S., 18, 247

Nikaid6é, H., 136, 248

Nogee, P., 32, 34, 248

Normative decision theory, 25-26, 33-34,

36, 39, 48

Open preference set, 61, 128

Outcomes: arbitrary, 61; monetary, 17-20,

30-34, 54-61; in Savage’s theory, 159

Pareto, V., 3, 248

Pareto optimality, 140

Paris colloquium (1952), 189
Partial order, 41, 51, 53

Pauker, S. G., 247

Payne, J. W., 26, 33, 248

Pfanzagl, J., 169, 248

Pinter, C. C., 117, 248

Plott, C. R., 45, 244

Pollak, R. A., 20-21, 248

Pommerehne, W. W., 45, 248

Positive linear transformations, 5; similar,

177

Prabhakar, N. D., 145, 251

Pratt, J. W., 17-18, 160, 169, 176, 245,

248

Preference. See Preferences

Preference cycle, 42, 67, 69; generated by

reversals, 44

Preference interior, 61, 80-81

Preference interval, 22

Preference-maximal subset, 61, 80-81, 106-

il

Preference-minimal subset, 61, 80-81, 106-

11

Preference-or-indifference, 10

Preference relation, 7; conditional, 170

Preference reversals, 44-46, 59, 74-77;   



 

boundary case for, 76; strong, 46, 74-

77; weak, 46, 74-77

Preferences: between acts, 160; bounded,

66; closed, 61, 85, 128; comparable dif-

ferences of, 4, 54; countably bounded,

61, 115-22; cyclic, 42-46, 67, 69, 71-

72, 74, 89, 137-46; for gains versus

losses, 18; half-open, 61, 85; intensity

of, 4, 30-31, 64, 69; between lottery

acts, 160; midpoint of, 9, 64, 69; non-

Archimedean, 46-47; non-Archimedean

partially ordered, 53; nontransitive, 42-

46, 67-70, 74-114; open, 61, 85, 128;

ordinal, 8; partially ordered, 41, 53; be-

tween probabilities, 34-35; between

probability distributions, 6-24; riskless,

30-31, 64, 69, 196; single-peaked,41;

smooth, 55; strict, 10

Preston, M. G., 34-35, 248

Probabilistic information processing, 35
Probability: conditionally additive, 193, 204;

cumulative, 19; decumulative, 56; distor-

tion of, 34-36; interval for, 191; lower,

191; subadditive, 191; subjectively

weighted, 34-36, 40; superadditive, 191;

upper, 191. See also Probability mea-

sures; Subjective probability

Probability distribution. See Probability mea-
sures

Probability measures, 7; agreeing, 161;

bounded, 23; conditional, 22; convex set

of, 10; countably additive, 22, 67; dis-

crete, 21-22; expected value under, 22-

23; for finite algebras, 162; interdepen-

dent, 28; monotonic, 191-92; nonsimple,

21; not necessarily additive, 192-93;

one-point, 23; of psychological values,

55; quotients of, 123; simple, 5; subad-

ditive, 191; superadditive, 191; uniform,

21

Probability preferences, 34-35

Probability relation, 161-169

Proportionality transformation, 80

Prospect theory, 32, 35, 51-52, 204

Pseudocertainty effect, 30

Quasi-concave functional, 137

Quasi-convex functional, 137

Quasilinear mean, 149

Quiggin, J., 49-50, 52, 57, 59, 200, 248

INDEX 257

Raiffa, H., 19, 20, 32, 136, 146, 159, 172,

190, 241, 245-46, 248-49

Ramsey, F. P., 161, 168-69, 173, 187, 193,

228, 249

Ratio continuity, 150

Ratio scale, 80

Reder, M. W., 251

Reduction principle, 27, 34, 39, 52, 54,

171, 187-88, 196; identity, 171, 209

Reflection effect, 32 .

Reflexivity, 10

Regret, 188, 195-96

Reilly, R. J., 45, 249

Richter, M. K., 47, 237, 239, 243, 249

Risk attitudes, 17-20; in nonlinear theory,

155-57

Risk aversion, 17, 32; absolute index of, 18;

relative index of, 18

Risk dimensions, 32-33

Risk neutrality, 17

Risk premium, 19

Risk seeking, 17, 32

Risky asset, 19

Rockafellar, R. T., 138, 249

Rosenthal, R. W., 144, 243

Ross, S., 18, 249

Rubin, J. E., 117, 249

Safra, Z., 45, 56, 59, 239, 245

Sahlin, N.-E., 190, 243

Said, T., 239

St. Petersburg game, 2

Samuelson, P. A., 3, 249

Savage, L. J., 17, 28-29, 38, 50, 158-64,

168-73, 177-78, 185, 187-91, 193,

195-99, 201-2, 205-7, 208-10, 215,

243, 249

Savage’s probability theorem, 163
Savage’s utility theorem, 171

Schervish, M. J., 164, 171, 249

Schlaifer, R., 159, 248-49

Schmeidier, D., 172, 191-94, 199-202,

207, 228, 243, 245, 249

Schneider, F., 248

Schoellkopf, W., 247

Schoemaker, P. J. H., 18, 33, 35, 244, 249

Schwartz, T., 139, 249

Segal, U., 58, 190, 249

Seidenberg, A., 245

Seidenberg, T., 164, 171, 249



258

Semiorder, 41, 192

Sen, A. K., 40, 139, 249

Shafer, G., 145, 190, 249

Shepsle, K. A., 139, 249

Sherman, R., 190, 250

Shubik, M., 247-48

Similarity transformation, 68, 80

Simple dominanceprinciple, 172, 207

Skala, H. J., 47, 250

Skew-symmetry, 68

Slovic, P., 33, 45, 189, 245-46, 250

Slutsky, E., 3, 250

Smart, D. R., 145, 250

Smith, C. A. B., 190-91, 250

Smith, J. H., 140, 250

Smokler, H. E., 239, 249

Social choice lotteries, 139-42

Social choice procedures: Pareto optimal,

140; strongly Condorcet, 140

Sommer, L., 3, 238

Sonnenschein, H. F., 139, 145, 237-39,

243, 249

Sox, H. C., Jr., 247

SSA utility, 197-98, 208-17; extension of,

215-17; theorem for, 209

SSB functional, 68

SSB game, 145

SSB utility, 68-70, 79-114; construction of,

100; example of, 73-74; extension of,

111-14; in game theory, 145; theorem

for, 80; transitive outcomes in, 74-77.

See also Utility

Starr, R., 251

Starrett, D., 251

’ States of the world, 159

Sternberg, S., 246

Stevens, S. S., 80, 250

Stigler, G. J., 3, 250

Stigum, B. P., 18, 247, 250

Stochastic dependence, 27

Stochastic dominance, 19-20; in Allais’s

theory, 31, 39; first degree, 19-20, 54,

56-59, 150, 188, 196; in nonlinear the-

ory, 152-54; second degree, 19-20; vio-

lations of (see Violations)

Stochastic independence, 28

Strotz, R. H., 3, 9, 32, 250

Subadditivity, 191

Subjective expected utility. See Additive ex-

pected utility; Utility

Subjective probability: additive, 61; Allais’s

NONLINEAR PREFERENCE AND UTILITY THEORY

view of, 195; for finite sets, 161-62;

monotonic, 191-92; nonadditive, 190-

93; Savage’s view of, 162-68; unique,

161

Substitution principle, 172, 190

Sudderth, W. D., 191, 244

Sugden, R., 50, 69, 74, 188, 193-96, 207,

246, 250

Summation by parts, 152

Superadditivity, 191

Suppes, P., 6, 42, 169, 190, 192-93, 239,

244-46, 250

Sure-thing principle, 172, 196-97

Symmetry property, 10

Tarski, A., 244

Theorem of the alternative, 86

Thrall, R. M., 46, 244, 250

Toulet, C., 169, 171, 250

Toussaint, S., 145, 250

Transitive closure, 42

Transitivity, 10; negative, 10

True state, 159

Tucker, A. W., 243

Tversky, A., 18, 26-30, 32-33, 35-37, 39-

40, 42-43, 50-52, 172, 188-89, 204,

245, 247, 250-51

Uniform convergence, 22

Uniform monotonicity, 150

Uniform partition, 166

Utility: additive expected, 158-76; additive

expected disappointment, 195; additive

expected regret, 196; additive linear,

176-85; additive multiattribute, 8, 20;

additive nonexpected intensive, 194-95;

additive SSB, 198-99, 217-36; alterna-

tives to expected, 49, 193-94; antici-

pated (see decumulative); assessmentof,

9; Bernoullian expected, 6, 195;

bounded, 22-23, 173-74, 181, 216, 229,

231; cardinal, 4, 8; comparable differ-

ences of, 5; curvature of, 17-20; decu-

mulative, 56-61; dual bilinear, 203-4;

dual theory of, 59; expected, 1-48; of

gains versus losses, 32-33; intensive, 4;

interpersonal comparisons of, 4; lexico-

graphic, 52-54; linear, 11; linear in first

argument, 67; linearity property of, 7;

local, 56; maximal, 137; measurable, 3-

4; multiattribute linear, 20-21; multipli-



cative multiattribute, 20; nonadditive

biexpected, 203; nonadditive expected,

201-2; nonadditive linear, 199-201; non-

linear intensive, 54-55; nontransitive

convex, 67-68; 85-89; one-way lexico-

graphic linear, 53; one-way linear, 53;

order-preserving property of, 7; ordinal,

4; as psychic satisfaction, 3; random, 41;

rank-dependent (see decumulative); risk

averse, 17, 32; riskless, 3-6, 30-31, 54,

196; risk neutral, 17; risk seeking, 17,

32; smooth, 55-56; SSA, 197-98, 208-

17; SSB, 68-70, 73, 79-114; stochastic,

41, 51; transitive convex, 66-67, 115-

22; unbounded, 22; unique up to positive

linear transformation, 5; unique up to

similar positive linear transformations,

177; unique up to similarity transforma-

tion, 68; vector-valued, 52; von

Neumann-Morgenstern, 11; of wealth,

30, 54; weighted linear, 60-65, 72-73,

122-35, 221. See also Utility theorem

Utility independence, 20; generalized, 21

Utility theorem: additive expected, 171; ad-

ditive linear, 177-78; additive SSB, 220;

additive SSB decomposition, 218; linear,

11; linear extended, 23, 24; for maximal

preference, 137; for multiple attributes,

146-47; nonadditive linear, 200-201;

nontransitive convex, 86; Savage’s, 171;

SSA, 209; SSB, 80; SSB extended, 112;

for stochastic dominance, 153; transitive

convex, 116; uniqueness for weighted

linear, 131-32; weighted linear, 122. See

also Utility

Value independence, 20, 146

Villegas, C., 163, 251

Vind, K., 245

Violations: of additive subjective probability,

=pp

INDEX 259

190; of asymmetry, 27; of continuity,

46-47; of first-degree stochastic domi-

nance, 29, 52, 188; of independence,

36-40, 70-74; of reduction, 188; of sub-

stitution, 189-90; of symmetry, 64-65;

of transitive indifference, 41-42; of tran-

sitivity, 42-46; of weak independence,

65. See also Accommodation

von Neumann, J., 6-11, 15-18, 24, 26-28,

32, 34, 47-62, 64, 67-70, 77, 123, 136-

37, 139, 144, 150, 159, 169, 173, 186-

87, 189, 207, 251

Wakker, P. P., 191, 201, 251

Waller, W. S., 72, 239

Walley, P., 190, 251

Walras, L., 3, 251

Weakorder, 10

Wealth: diminishing marginal utility of, 2,

54; subjective value of, 1, 30, 54

Weber, E. H., 41

Weighted linearity property, 62

Weighted linear utility, 60-65, 122-35, 221;

equivalent axiomatizations of, 134; ex-

ample of, 72-73; extension of, 135; gen-

eralizations of, 65. See also Linear Util-

ity

Weighted quasilinear mean, 149

Weighting function, 62

Weiss, W., 32, 238

Wendel, J. G., 17, 244

Wenstgp, F., 18, 247, 250

Whitmore, G. A., 19, 251

Yaari, M. E., 49-50, 57, 59, 251

Yannelis, N. C., 145, 251

Zeckhauser, R., 139, 251

Zionts, S., 240-41

Zweifel, P., 248

Seatase


