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This paper investigates fundamental investment strategies to detect and exploit the public’s 

systematic errors in horse race wager markets. A handicapping model is developed and applied 

to win-betting in the pari-mutuel system. A multinomial logit model of the horse racing process 
is posited and estimated on a data base of 200 races. A recently developed procedure for 

exploiting the information content of rank ordered choice sets is employed to obtain more 

efficient parameter estimates. The variables in this discrete choice probability model include 

horse and jockey characteristics, plus several race-specific features. Hold-out sampling procedures 
are employed to evaluate wagering strategies. A wagering strategy that involves unobtrusive 
bets, with a side constraint eliminating !ong-shot betting, appears to offer the promise of 

positive expected returns, even in the presence of the typically large track take encountered at 

Thoroughbred racing events. 

(MULTINOMIAL LOGIT MODEL; HORSE RACE WAGERING; STOCHASTIC UTILITY 
MODEL; RANKED CHOICE SET DATA; DISCRETE CHOICE MODELING) 

Introduction 

For as long as there have been horse races, bettors have searched for profitable 
wagering systems. The general form of any horse race wagering system involves betting 

against the public. If the public makes systematic and detectable errors in establishing 

the betting odds, it may be possible to exploit such a situation with a superior wagering 

strategy and make wagers with a positive expected rate of return. 

Academic researchers have also searched for profitable wagering systems to evaluate 

the efficiency of horse race wager markets (cf, Ziemba and Hausch 1984). Such 

investigations have been motivated by the basic similarities of race track and stock 

markets, such as uncertain future returns from investments, the presence of many 

participants, and the availability of a variety of information concerning investments 
and participants. (See Copeland and Weston 1979, Fama 1970, 1975, or Rubinstein 

1975 for discussions of market efficiency.) 
This paper searches for a profitable wagering system to apply to win-betting in a 

pari-mutuel setting. Wagering systems have two components: a model of the horse 

race process and a wagering strategy. A model of the horse race process attempts to 

predict the outcome of a race. Its main output is a prediction of the probabilities of 

each horse winning a race. A wagering strategy then uses these probabilities as inputs 

to a betting algorithm which determines the amounts to wager on each horse. 

Academic researchers have tended to focus primarily on devising a betting algorithm 

to determine the amounts to wager on each horse. These algorithms may be categorized 

according to whether they require knowledge of each horse’s true winning probabilities. 
Assuming these probabilities are known with certainty, optimal wagering theorems for 

win-betting in a pari-mutuel setting have been developed for the expected value 

maximizer with infinite wealth (Isaacs 1965) and for the risk averse decision maker 
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(Rosner 1975). If the true winning probabilities are not known with certainty, wagering 

strategies may be fundamental (Arveson and Rosner 1971, 1973) or technical (Willis 
1964; Harville 1973; Hausch, Ziemba, and Rubinstein 1981) in nature. 

Previous research concerning the first component—modeling the horse race process— 

focused on the public’s odds preferences, the existence of inside information, or 

handicapping ability. If the public consistently underestimates the true winning 

probabilities for horses in the low odds range (Fabricand 1965), then playing the 

favorites will improve upon a random betting strategy, but such a strategy may not 

yield positive returns (Snyder 1978; Asch, Malkie!, and Quandt 1982; Ali 1979). If 

horse race wager markets are weakly efficient (Dowie 1976), it may be possible to earn 

extraordinary returns by exploiting publicly available or inside information. Rosett 

(1965) and Ali (1979) found that horse race data are consistent with the efficient 
market hypothesis. However, handicapping systems based on publicly available infor- 

mation may yield positive returns (Vergin 1977). 

In this paper, we focus on developing a statistical model of the horse race process. 

The multinomial logit mode! is used to analyze the horse race process since it explicitly 

recognizes that there are only a finite number of outcomes to a horse race, namely 

that one of the entered horses wins. It explicitly analyzes the effects of competition in 

modeling these outcomes. A recently developed approach to estimating the multinomial 
logit model’s parameters is employed (Chapman and Staelin 1982): the rank order 

finishing data are exploited to yield improved statistical efficiency of the parameter 

estimates. Hold-out sampling is used to assess the model’s predictions as inputs to 

various wagering strategies for pari-mutuel win-betting. 

The Pari-Mutuel System 

In a pari-mutuel system, bettors place wagers on a set of horses in a given race. 
These wagers form the betting pool from which 6, the track take, is deducted. 

Approximately 18% goes to the track and the various levels of government, although 

this amount varies across jurisdictions. The specific track take in any race is also 

influenced by “breakage,” the practice of rounding payoffs down to the next lowest 

nickel or dime. (The analysis in this paper ignores breakage.) The remainder of the 

betting pool is allocated to the bettors on the winning horse in proportion to their 

bets. Hence, the final track probabilities are proportional to the amounts bet on the 

horses by all bettors. The pari-mutuel probability for horse A, x,, can be written as 

follows: 

i, > wf (1) 

where w, is the total amount wagered on horse A by the public and J¥ is the total size 

of the win-betting pool. These probabilities represent the public’s consensus probabilities 

as reflected by their wagering patterns. 
The x, values cannot be determined until! all the bettors have wagered. However, 

each bettor’s wagering strategy depends on knowledge of the 7, values to place bets. 

Eisenberg and Gale (1959) have resolved this apparent contradiction by showing that 

a set of final track probabilities and individuals’ wagers consistent both with the 

bettors’ strategies and the pari-mutuel system do exist, and that the probabilities are 
unique. The bettors wager with reference to their subjective expectations of the final 

a, values, in the absence of precise information about them. 

A dollar bet on horse / will return r,, if horse # wins the race: 

ad- 6)W 

Wa 
1. (2) rh = 
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From equation (1), it follows that r, = (I — 6 — z,)/x,. On the track toteboard, the 
odds typically appear in the form of (1 — 6 — z,)/a, to 1. 

How can the risk neutral bettor achieve positive returns at the race track? Define p, 

to be the true unknown winning probability associated with horse 4. Then the expected 

payoff of betting on horse A is given by p,(r, + 1). Suppose that the public’s consensus 

probabilities are equal to the true winning probabilities. In such a situation r,7, = 1 

— 6 — x,, and it follows that p,(r, + 1) = 1 — 6. Therefore, it does not matter which 
horse the bettor wagers on, he will always expect to lose the track take, 6. In principle, 

then, it is only possible for a bettor to expect to discover a betting procedure that 

yields positive returns when the public misestimates the true winning probabilities (i.e., 

when 7; # p,). Thus, positive returns at the track are only possible when p,{r, + 1) > I. 

A Statistical Model to Estimate Winning Probabilities 

To operationalize any wagering strategy, a statistical model of the horse race process 

is required. It must estimate the true winning probabilities for each horse. Since 
accuracy is Critically important, the estimates must possess good predictive ability. The 

results of Vergin (1977) suggest that it may be possible to develop such a model. 

Existing models of the horse race process are generally based on ad hoc filter rules 

(“don’t bet on any horse that ran within the last 10 days and which lost ground in the 

stretch in its previous race”) or regression analysis where the dependent variable is 
binary (a horse wins or not) conducted across many races. These models fail to account 
for the within-race competitive nature of the horse racing process. In addition, they 

have no theoretical foundation, and consequently may perform poorly. For example, 
Bratley (1973, p. 85) reports abandoning the search for a regression model using past 

performance information available before a race to predict its outcome due to lack of 

overall statistical significance. 

A fundamental axiom of any model of the horse race process should be that the 
race is a probabilistic event. In this paper, this issue is recognized by developing a 

stochastic utility model to assess the worth of a horse. This model is parameterized in 

the form of the multinomial logit model. This model has been applied to a wide range 

of discrete choice problems in marketing and economics. Representative applications 

include college choice (Punj and Staelin 1978; Chapman 1979; Manski and Wise 

1983), shopping center choice (Chapman 1980; Arnold, Oum, and Tigert 1983), and 
transportation model choice (Domencich and McFadden 1975; Hensher and Johnson 

1981). In the horse racing context, Fighewski (1979) used the multinomial logit model 
to measure the information content of the published forecasts of professional handi- 

cappers and found that the track odds had already accounted for most of it. 

a Stochastic Utility Model of the Horse Racing Process 

A horse race may be thought of as an event in which a decision maker—‘‘nature”— 

chooses the winning horse from among the available horses in a given race. In each 
race, “nature” is presented with a choice set which consists of the horses scheduled to 
run. Each horse #t has a vector of K observed attributes (e.g., class, speed rating 

performance, etc.) associated with it, denoted x, = [Xm1, Xaz, .-.-, Xax]. In addition, 

each horse is ridden by a jockey characterized by a vector of Mf attributes, y, = [¥a1, 

Va2dy 2-09 Vasil. 

A general specification of a statistical model of the horse racing process may be 
postulated as follows: 

pr = p(X, ¥), (3) 

where X and Y are the relevant horse and jockey data, respectively, for all of the 
horses in a given race. A suitable parameterization of this choice model must be 
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chosen so that the estimated winning probabilities satisfy the standard axioms of 
nonnegative probabilities and probabilities which sum to unity across all of the horses 

in a race. The multinomial logit model, described below, intrinsically satisfies these 
axioms. 

Let us now assume the existence of a function which measures the worth (or 

“utility”) of a horse 4 with attribute vector x,, ridden by a jockey with attribute vector 

yh in a given race. The overali worth of horse A in a race can then be written as 
ollows: 

Un = U(Xn, Yn). (4) 

There is typically some measurement error in the modeling process because the 

attribute vectors do not capture all of the factors operating in the ‘‘choice” of a winning 

horse, the correct functional form for the model may not be specified, and there may 

be idiosyncratic aspects to any single race. Thus, the overall worth of a horse is 

assumed 1o have two parts. One part is a deterministic component, denoted V,, = V(x,, 

y,). The other part is a random component, «, = e(x;, y,), which reflects the 
measurement errors in the modeling process. Assuming that the stochastic error term 

is independent of the deterministic component, equation (4) can be decomposed as 

follows: 
U;, = V,, + €,. (5) 

The presence of the stochastic error term in equation (5) leads to this mode! being 

described as a stochastic utility model. 

Suppose that horse A* is observed to win a race. This is equivalent to observing that 
nature “chose” alternative A* from the choice set. Since nature is “rational” by 

definition (i.e., nature “chooses” the best horse at the time the race occurs), revealed 

preference implies that U,. = U,, for A = 1, 2, ..., H. Since the utility function is 

partly stochastic, the probability of horse #* winning the race may be written as: 

Pre = Prob(Ure = U,, # = 1, 2,..., 4). (6) 

Further development and simplification of equation (6) requires that a joint distribution 

function be specified for the error terms. A natural assumption would be to invoke 

the normal distribution. With such an assumption, the parametric form of the model 
would become the multiple choice generalization of the probit model. Daganzo (1979) 

and Maddala (1983, pp. 62-64) may be consulted for the details of this particular 

discrete choice probability model. The normal distribution assumption is not without 

considerable cost: a formidable series of numerical integrations 1s required to explicitly 
determine the choice probabilities. Alternative error term specifications must be 
considered. One possible candidate is the logistic distribution. The logistic distribution 

assumption leads to a tractable choice probability expression, as described below. In 

addition to considerations of parsimony and reduced computational complexity, it 
may be noted that the cumulative logistic and normal distributions exhibit little 

numerical differences, except at the extremes. All of these considerations have led 
researchers to favor the logit model form over the probit model form in discrete choice 

modeling. 
By assuming that the stochastic error terms are identically and independently 

distributed according to the double exponential distribution, 

Prob(e, <= «) = exp[—exp(—e)], {7) 

then the choice probabilities assume the tractable, closed-form expression of the 

multinomial logit model: 

Pag = —oCVi) toe ee = 1,2... H. (8) H 
> exp(V;) 
hel 
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To operationalize the choice probability expression in equation (8), the functional 
form of the deterministic component of the stochastic utility model must be specified. 

A linear-in-parameters specification leads to: 

N 

Va = 2 OnZin (9) 
n=] 

where Zan = Zh(X,, Y,) is the measured value of attnbute m for horse A in a race. The 

Z functions describe either the horse (x), the jockey (y), or both. 4, is the relative 

importance of attribute 7 in the determination of the winning horse. The @ values in 

equation (9) are the parameters of the stochastic utility model that must be estimated 

from a sample of races. 

Estimating the Parameters of the Multinomial Logit Model 

The likelihood function associated with a particular sample of races can be written 

in the following form for the multinomial logit model: 

J 

exo(L) = [[ Pine (10) 
jel 

where the j subscript denotes a race (j = 1, 2,..., J), A* in equation (10) is the horse 

that is observed to win race j, and L refers to the log-likelihood function. Standard 

software packages, such as Manski (1974), are available to calculate the maximum 

likelihood estimates. Since maximum likelihood estimates are, in general, consistent 
and asymptotically normally distributed, approximate large sample confidence bounds 
may be constructed for parameter estimates and hypotheses may be tested in stan~ 

dard ways. 

It is useful to describe several features of the multinomial logit model that are used 
extensively in this study. First, an overall goodness-of-fit measure has been proposed 

by McFadden (1974), which is analogous to the familiar multiple correlation coefficient 
in linear statistical models: 

L(@ = 6) 
L(@ = 0)" 

To the extent that the MLE parameters, 6, explain the horse race process completely, 

R? will approach unity in value. If the vector of MLE parameters is essentially equal 
to 0 (implying an equal chance of each horse winning the race), then R? will approach 

zero in value. Hence, R? varies between zero and one depending on the “explanatory 
power” of 6. 

Second, there is a convenient statistical test to assess whether two data subsets are 

characterized by the same underlying parameter vector, which would imply that the 

two subsets should be pooled for estimation purposes. To test the null hypothesis that 
6) = 6), the appropriate test statistic is: 

—2(L(8 = 6979) — [Le = KY) + L6 =) (12) 

where 6'*?) is the MLE obtained by pooling the two data subsets, and 6‘ and 6” are 
the MLEs for the two data subsets, respectively (Watson and Westin 1975). This test 

statistic will be asymptotically distributed x? with N degrees of freedom, the number 
of parameters in the model (Wald 1943). 

Re=1- qa) 

Exploiting Rank Ordered Choice Set Data 

The multinomial logit mode! is estimated on the basis of choice set observations of 

the form: nature “chooses” horse A* from among all of the competing horses in a 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



SEARCHING FOR POSITIVE RETURNS AT THE TRACK 1045 

race. However, in addition to observing the winning horse in a race, it is also possible 
to conveniently observe the second finishing horse, the third finishing horse, and so 
on. Chapman and Staelin (1982) describe how the extra information inherent in such 

rank ordered choice sets may be exploited. The Chapman and Staelin “explosion 
process” is based on a Ranking Choice Theorem developed by Luce and Suppes (1965, 

pp. 354-355) for the class of models of which the stochastic utility model is a member. 

To illustrate this procedure, suppose that a race results in the finishing order (from 

first to last) 4, 2, 1, and 3. By applying the Chapman and Staelin explosion process, it 

is possible to decompose these rank ordered data into the following three statistically 

independent choice sets: [horse 4 finished ahead of horses 2, 1, and 3}, [horse 2 finished 

ahead of horses |, and 3], and [horse | finished ahead of horse 3}, where no ordering 
is implied among the “nonchosen” horses in each “choice” set. 

These exploded choice sets are statistically independent, so they are equivalent to 

completely independent horse races. This leads to an increase in the number of 

independent choice sets available for analysis and, ultimately, to more precise parameter 

estimates. Extensive small-sample Monte Carlo results reported in Chapman and 

Staelin (1982) document the improved precision that can accrue by making use of the 

explosion process. This is valuable because it is costly to generate a sufficiently rich set 

of horse race data to estimate a multinomial logit model of reasonable complexity. 

The rank order explosion process should only be used if it illuminates the choice 

process, and not if it just adds random noise. This is an important estimation issue 

because the reliability of the rank order finishing data may decrease for horses far 

behind the winner and the runners-up. The first three finishers typically receive a 

portion of the purse and are subject to considerable public scrutiny from track officials 

and bettors due to the existence of the win, place, and show betting poois. It seems 

reasonable to assume that those horses and their jockeys are trying and that their 

finishing position reflects well on their relative “‘worths.” However, this may not be 

true for horses that finish: out of the money. 

An approach to resolving this rank order reliability issue is to only partially explode 

the data. Define E as the researcher-chosen depth of explosion. Then the number of 
independerit choice set observations that may be generated from J races is defined as 
follows: 

Jj 

HE) = Y min (E, d, Hj - 1). (13) 
j=l 

J(E) is only defined for nonnegative values of E and d; represents the depth of available 

rank ordered choice set information for choice set (race) /. 

There are three approaches to determining the appropriate depth of explosion. First, 

the researcher’s a priori knowledge about the choice process may provide clues to the 

range of plausible values of E. For reasons described above, E might be as large as 

three in the horse race context. 

Second, a heuristic approach may be utilized. This approach involves plotting values 
of the likelihood ratio index, R?, versus different values of E. Since this index does not 
depend on the number of available choice sets, the calculated R? values should remain 

approximately constant as E increases, if the subsequently “exploded” observations 

are of equivalent reliability. If the values of R? start to decrease substantially after 

some value of E, this would imply that “‘noisy” observations had been added and the 

explosion process should be terminated prior to that value of £. 

Third, a formal approach to choosing the appropriate value of F involves grouping 

choice observations by depth of explosion and sequentially testing whether the 
observation groups may be pooled. Define the first subset of choice observations to 
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consist of the J(E) choice sets generated by an explosion to a depth of E. The second 

subset then consists of the incremental J(E + 1} — J(E) choice sets generated by 
exploding to a depth of E + 1. Assuming that the J(E + 1) — J(E) subset is large 

enough, the hypothesis that 6“) = #&*") can be tested using the Watson and Westin 
(1975) procedure. This grouping and sequential hypothesis testing procedure can be 
iterated for successive values of E until the hypothesis that the subset parameter vectors 

are equal is rejected, or the quantity J/E + 1) — JE) yields too few exploded 

observations to permit meaningful maximum likelihood parameter estimates to be 

obtained. 

Estimating a Multinomial Logit Model of the Horse Race Process 

The Data Base 

The horse race data base was assembled from information reported in the Daily 

Racing Form. The 200 race observations are from Aqueduct (43), Pimlico (52), Garden 

State (42), Keystone (32), and Suffolk Downs (31). 

Each of the races satisfied the following restrictions: (i) the race was run over good 

or fast tracks; (ii) the race distance was in the 1-1.25 mile range; (iii) each horse in 

the race was a separate betting entry (i.e., there were no coupled entries); and (iv) the 

horses were at least three years of age. The first two restrictions were applied because 

the logit model only permits the direct inclusion of variables which vary across the 

choice set alternatives. Thus, track characteristics, which are the same for every horse 
in a race, cannot be directly included in the model, except possibly as interaction 

effects with other horse and/or jockey variables. Races were selected to hold track 

condition and distance roughly constant, thus obviating the need for inclusion of these 

variables in the model. The third restriction was made to simplify the win-betting 

procedure. The fourth restriction ensured that adequate past data would be available 

on the relevant attributes of each horse. This restriction also avoids the potential 
problem of dealing with high variability in performance among two-year olds. 

The relevant data for each race required about one hour to assemble and code. The 

use of the previously described explosion process thus had a significant influence on 

reducing data collection costs. Instead of gathering 600 races at a corresponding cost 

of 600 hours, it was possible to obtain about the equivalent statistical precision in the 

multinomial logit model estimates by using each of the 200 races exploded to a depth 

of three. 

Specification of the Model 

The specific form of the multinomial logit model employed in this study was as 

follows: 

U, = 0,LIFE% WIN, + @,.AVESPRAT, + 63///RACE, + 8,LSPEDRAT, 

+ éJOCKSWIN, + &JOCK#FWIN, + 6,JMISDATA, + 83WEIGHT,, 

+ @,POSTPOS, + OioNEWDIST,, + «&. (14) 

This model specification is explained in the following text. 

The quality of the competing horses is presumed to be the primary determinant of 

horse race outcomes. The long-term quality of a horse is reflected by two aspects of 
its past performance: winning potential and competitive level. Current quality/ 

performance will also be influenced by weight, post position, whether a horse is run- 

ning at a new distance, and recent workout data. The final component of the 

model concerns the jockey’s characteristics. Each of these model components is dis- 

cussed below. 
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A horse's quality is reflected by measures of its winning potential and competitive 

level. Measures of winning potential may include races won or earnings. Competitive 

level refers to the types of races in which a horse has previously competed. A horse 
which changes class is competing with horses of different quality levels. Its past 

performance (e.g., races won or earnings) is not directly comparable wit!: competitors’ 
measures. Winning potential should be adjusted by a measure of cornpetitive level 
which is comparable across different past performance conditions, such as speed rating. 

Overall winning potential is proxied by LIFE%WIN, the percentage of races won of 

those entered in the past two years. Overall competitive level is nzpresented by 

AVESPRAT, an average speed rating for the last four races of each horse. (A speed 

rating for a horse compares its time in a race with the track record for that distance. 
The track record is assigned a value of 100 and a point is deducted for each one-fifth 

of a second that the horse’s time is below that mark. The horse’s raw speed rating is 
then adjusted by a factor to equate the track records at the various tracks used in this 

study, to attempt to account for differences in tracks. Thus, speed rating has been 

transformed to be comparable across tracks.) Recent winning potential is proxied by 
W/RACE, winnings per race in the current year (in $000s). The recent competitive 

level component of past performance is LSPEDRAT, a track-adjusted speed rating for 

the previous race in which the horse ran. 
The effect of weight (WEIGHT) on winning probability may be positive or negative. 

Since weight levels are designed to handicap better horses and result in more even 

competition, a higher weight should result in a decrease in winning probability, ceteris 

paribus. However, higher weight levels are assigned to higher quality horses, so a 
positive effect may actually be observed because weight carried is positively correlated 

with a horse’s quality. 

An inside (lower) post position theoretically improves the probability of a horse 

winning because a slightly shorter race distance is involved. Higher values of POSTPOS 
are expected to result in a decrease in winning probability. 

A horse running at a new (unfamiliar) longer distance may not perform as well 

initially due to the different requirements of pace, stamina, and speed. Several races 

may be required at the new distance before a horse is fully acclimated. Thus, running 

at a new distance may have a negative effect on performance. An indicator variable, 

NEWDIST, captures this effect. NEWDIST equals one if a horse had run three or four 

of its last four races at distance levels of less than one mile, and zero otherwise. 

Workouts could be important in assessing a horse’s current condition. If a horse has 

changed tracks, has not raced recently, or has experienced an injury, workout data 

represent an important signal as to current performance capabilities. Unfortunately, 

such data are difficult to interpret since a trainer’s objectives for a given workout may 

not require that a horse perform at the maximum possible !evel. For this reason, 

workout data were considered to be of dubious value especially in comparison with 
the other horse quality and performance variables in the model. Thus, a workout 

variable was not included in the model. 

Jockey characteristics may be of secondary importance in determining a horse’s 

overall “worth.” A jockey, no matter how skilled, cannot consistently win with an 

inferior horse. However, given horses of roughly equal quality, the more accomplished 

jockey may be more likely to win. There will be some positive correlation between 

horse and jockey quality, because owners of better horses seek to employ the better 

jockeys and better jockeys, in turn, prefer to ride better horses since jockeys are 

compensated partially on a commission system based on horses’ earnings. 
Jockey data on percentage of winning rides, JOCK%WIN, and number of winning 

rides, JOCK#WIN, over the current year were included in the model. Some jockeys’ 

records were not available in the Daily Racing Form. Such missing data were accounted 

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1048 RUTH N. BOLTON AND RANDALL G. CHAPMAN 

for by creating an indicator variable, JMISDATA, which takes on the value one when 

the other jockey variables are missing, and is zero otherwise. (By construction, when 

JMISDATA equals one, JOCK% WIN and JOCK#WIN equal zero.) Since the jockey 

data were missing for those who were not in the published list of leading jockeys, such 

missing data correspond to relatively inexperienced jockeys who are probably of lower 

quality than the leading jockeys. The coefficient on JMISDATA will serve as a proxy 

for the average values of JOCK%WIN and JOCK#WIN for such nonleading jockeys. 

Results of Estimating the Base Model 

The base model in equation (14) was estimated using the 200 races in the study 

data base. The associated empirical results are displayed in Table 1. 

  

  

  

TABLE |! 

Midtinomial Logit 3fodel Results—Base Model Estimated on 200 Races with Explosion Depths of 1, 2, and 3 

Coefficient Estimates Standard Standardized 
Deviation of Coeffictent 

Variable B=1 E=2 E=3 the Variable Estimates 

LIFE% WIN 0.0143 0.0076 0.0066 11.74 0.077 

(0.0082) (0.0061) (0.0050) 

AVESPRAT 0.0789 0.0615 0.0546 10.29 0.562 

(0.0178) (0.0123) (0.0101) 

W/RACE 0.0865 0.0846 0.1103 2.07 0.228 

(0.0506) (0.0398) (0.0356) 

LSPEDRAT 0.0073 0.0046 0.0067 14.78 0.099 

(0.0113) (0.0079) (0.0064) 

JOCKS WIN 0.6205 0.0297 0.0236 8.26 0.195 

(0.0339) (0.0242) (9.0201) 

JOCK#&WIN 0.0017 0.0019 0.0017 43.41 0.076 

(0.0042) (0.0029) (0.0025) 

IMISDATA —0.0284 0.1962 0.1765 0.48 0.086 

(0.4159) (0.2927) (0.2425) 

WEIGHT 0.0227 0.0076 0.0030 4.01 0.012 

(0.0225) (0.0158) (0.0130) 

POSTPOS —0.0804 0.0478 —0.0439 2.49 —0.109 

(0.0332) (0.0235) (0.0189} 

NEWDIST —0.2548 ~0.3902 —0.3754 0.46 ~-0.172 
(0.2005) (0.1446) (0.1189) 

Summary Statistics 

# of “Exploded” 

Choice Sets 200 400 600 

Lg = 0) —401.4 —773.6 —EL10.5 

16 = 6) —364.9 —724.1 —1049.3 

R 0.091 0.064 0.055 
  

Notes: ' Asymptotic standard errors of parameter estimates are in parentheses below each coefficient estimate. 
? The standard deviations of the variables are taken from the raw data for an “explosion” depth of 1. 

Thus, the “unexploded” standard deviation is used as an approximation for the “exploded” data standard 

deviation for each of the variables in the madel. 
*“Standardized Coefficient Estimates” are equal to the product of each variable’s E = 3 coefficient 

estimate and its standard deviation. 
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The test of the null hypothesis that the parameter vector is equal to zero is rejected 

at the 0.005 level of significance. Thus, it may be concluded that the model is 
explaining a statistically significant amount of the variation in racing performance. 

Note that the overall goodness-of-fit index, R?, has a different interpretation than the 

multiple correlation coefficient in linear statistical models. The standard of reference 

for R? within the multinomial logit model is the equal probability model, @ = 0 (where 

each horse has an equal probability of winning). The multinomial logit model then 

attempts to explain a significant amount of the variation in the win probabilities based 

on the available independent variables. Furthermore, low values of R? should be 
expected in the horse racing context, since most races have a variety of constrainis 

placed on the compeiing horses by the racing secretary. These constraints are designed 

to equalize, to some extent, the chances of the competing horses. Weight allowances, 

age restrictions, and specific past performance profiles (such as nonwinners in the last 

two months) are examples of explicit devices used to attempt to equalize the horses’ 
win probabilities. For E = 1, R? equals about 9%, indicating that the model explains 

9% more variation than the null hypothesis that all the horses have equal probabilities 

of winning. 

The choice set data were exploded to depths of two and three. Three was chosen as 

the maximum depth of explosion for which prior theory would suggest that reliable 

rank order information might be available from the finishing order information. The 

results displayed in Table 1 illustrate the main value of the explosion process: the 

standard errors of the parameter estimates decrease when the rank ordered data are 
exploded to yield more choice sets for analysis. In going from E = 1 to E = 2 the 

average decrease in the standard errors is about 28.3%; a further 16.8% average decrease 

in the standard errors is achieved in going from E = 2 to E = 3. This pattern is 

consistent with the Monte Carlo results reported in Chapman and Staelin (1982). 

The Watson and Westin (1975) sequential pooling and hypothesis testing procedure 

was employed to determine whether E = 3 was appropriate. The relevant log-likelihood 

values and x? are described in Table 2. The null hypothesis being tested in each case 

is whether & = 6&=*"), To assess whether a move from E = 1 to E = 2 is appropriate, 
the relevant x? test statistic (with ten degrees of freedom, the number of variables in 

the model) is: 
x? = —2(-—724.13 — [(-—364.94) + (—353.69)]) = 11.0. 

Comparing this calculated test statistic with the relevant critical values leads to the 
conclusion that the null hypothesis should not be rejected on the basis of this sample 

evidence. Therefore, it is feasible to pool the observations and explode the rank ordered 

choice set data to a depth of two. In iterating this test to determine if an explosion 

TABLE 2 

Relevant Log Likelihood Values for Determining the Optimal Explosion Depth 
  

  

Choice # of Races Calculated 

Observation Group in This Set Log Likelihood Value x? Value* 

HE = 1) 200 Lo = &)}= —364.94 
AE = 2)- HE = 1) 200 L6=)= —-353.69 
AE = 3)- SE = 2) 200 L(8 = @) = —322.06 
JE = 2) 400 6 = 8%) = —724.13 11.1 
JME = 3) 600 LO = #2) = — 1049.26 6.0 
  

* This is the sta-istic calculated to test whether the choice set data can be pooled to level £. Critical 
values of x3 are 18.3 and 23.2 at the 5% and 1% levels of statistical significance, respectively. The 
degrees of freedom in this test are 10, corresponding to the number of variables in the model. 
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depth of three is appropriate, the relevant test statistic value is equal to 6.1, which 
again is sufficiently small that the null hypothesis should not be rejected on the basis 

of the sample evidence. Hence, an explosion depth of three is appropriate for these 

horse racing choice set data. 

In examining the results reported in Table | for E = 3, it may be noted that the 

signs of the coefficients are consistent with a priori theoretical expectations. It is useful 

to attempt to measure the relative importance of each variable. This is done by 

calculating the coefficient estimates which would have been obtained if all variables 

had been standardized (to unit variance) prior to estimation. This is equivalent to 

assessing a variable’s relative importance by taking the product of its coefficient 
estimate and its standard deviation. The interpretation of the standardized relative 

importances, also displayed in Table !, is subject to the usual difficulties in uniquely 

partitioning the explained variance among any set of collinear independent variables. 
The results in Table 1 suggest that average speed rating (AVESPRAT) accounts for 
the most variation in the model. Winnings per race in the current year (W#/RACE) 
appears to be more important than lifetime percentage wins (LIFE% WIN). This may 

be attributed to H//RACE taking inte account high but nonwinning performances and 
to W/RACE being based on recent performance information. WEIGHT does not seem 
to be an important determinant of finishing position, given the presence of the other 
variables in the model. Post position (POSTPOS) and new distance (NEWDIST) 

appear to exhibit nontrivial effects on winning probabilities. The jockey variables 
appear to have less overall importance than the horse’s attributes in determining 

winning probabilities, although this finding may be due to collinearity among the horse 

and jockey variables. 
This model has substantial face validity on several dimensions. First, the multinomial 

logit model considers the competitive nature of the horse racing process. The choice 
probability expression explicitly includes the characteristics of each horse in comparison 

with all other horses in a specific race, and not relative to all horses in the universe. 

Second, an intuitively appealing theoretical utility maximizing (revealed preference) 
framework was utilized in developing the model. Third, the empirical results indicate 

that the model operationalizatiou passes the usual tests of statistical significance. The 

empirical findings are consistent with a priori theoretical beliefs. However 11 remains 

to be determined whether this model is sufficiently accurate to allow for the a. velopment 

of a superior wagering system which will earn positive returns. 

Analysis of Wagering Systems: Searching for Positive Returns at the Track 

In this section, the multinomial logit model of the horse race process is employed 
to evaluate alternative wagering strategies. Two classes of wagering strategies are 

considered: algorithms involving multiple bets per race and algonthms involving a 

single bet per race. A sequential hold-out sampling procedure was used to evaluate 
each wagering strategy. The model in equation (14) was estimated separately on four 

data subsamples drawn from the available 200 races. Each sample was a set of 150 
(overlapping) choice set observations exploded to a depth of three. For each of the 

four estimated models, a hold-out sample of the remaining 50 races was then available 
to evaluate the wagering strategies. This validation approach avoids the upward bias 

of goodness-of-fit statistics calculated by applying a statistical model back on to the 
same data base from which it was originally estimated. 

Strategies Involving Multiple Bets Per Race 

An “optimal” set of wagers can be derived from a variety of wagering strategies 

based on different objective functions. For example, a wagering algorithm based on 
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expected value maximization might be appropriate for a risk neutral bettor, Alternatively, 
an algorithm that maximizes expected log returns would be consistent with risk averse 

behavior. In addition, wagering strategies may entail either larze bets whose influence 

on the track odds is explicitly taken into account or unobtrusive bets which do not 
influence the track odds. 

Isaacs' Wagering Strategy. Isaacs (1953) determined the optimal amoun‘s to wager 

for a risk neutral bettor with infinite wealth who has perfect estimates of the true 
winning probabilities. His algorithm incorporates the impact of the expected value 

maximizing bettor’s wagers on the track odds. In operationalizing Isaacs’ strategy, it is 
necessary to assume that the expected value maximizing bettor is the last bettor. If 

not, then some subsequent bettor might place wagers which would change the track 

odds, and thus the optimal amount the expected value maximizing bettor should have 

wagered. It should be recognized that there are nontrivial logistical problems associated 

with being the final bettor in a race, particularly if large wagers are being placed. 

Isaacs’ algorithm was applied to each of the four hold-out samples of 50 races. The 
winning probabilities were predicted using the multinomial logit model estimated on 

each set of 150 remaining races. The algorithm identified an average of 3.46 bets per 

race with expected positive returns. The average amount wagered was $958. (This was 

calculated as a weighted average across the four data subsets, where the weights were 

the total number of bets placed in each subset of 50 races.) The average return per 

race was —39.5%, while the weighted average return across our four hold-out samples 
of races was —27.8%.' This is considerably worse than a random betting strategy might 

be expected to yield. It is also much worse than Isaacs’ wagering algorithm would 
perform if the true winning probabilities were known, rather than using fallible 
estimates. There was considerable variation in the returns across she four data subsets 

(of 50 races each). The individual 50-race subsamples had average returns of —2.6%, 
—65.9%, —35.6%, and —7.7%. Even allowing for sampling variation, these results 

Suggest that the probability estimates are too imprecise to be useful in implementing 

Isaacs’ optimal wagering strategy for the expected value maximizing bettor. 
Why does Isaacs’ algorithm perform so poorly? Modest errors in the estimates of 

the true winning probabilities could cause substantial deviations from the optimal 

returns of Isaacs” strategy. Isaacs’ wagering algorithm determines the amounts of the 

wagers based on four factors: the true winning probabilities, the public’s consensus 

probabilities (as reflected by their actual betting behavior), the size of the track take, 
and the size of the betting pool. The optimal amount to bet involves a trade-off 
between the attractiveness of wagering large amounts and the feedback effect of the 

resultant changes in the track odds. The bettor observes the discrepancy between the 

true winning probabilities and the track odds, and subsequently makes wagers which 
yield payoffs according to the revised track odds, where the revisions take into account 

the bettor’s obtrusive wagers. The wagering of the expected value maximizing bettor 
results in the track consensus probabilities being driven closer to the true winning 

probabilities. When a fallible estimate is substituted for the true winning probability, 
the bettor observes the discrepancy between the estimated winning probability and the 

public’s consensus winning probability, and then wagers in such a way as to drive the 

public’s consensus winning probabilities toward the bettor’s estimated winning proba- 

bilities. Since the estimates of the winning probabilities may be different from the true 

(unknown) values, the odds will be driven toward revised odds which may not 

necessarily yield the optimal payoffs. Therefore, Isaacs’ strategy is unlikely to be 

'“Return per race” is defined to be return per wager averaged across a number of races. “Return across 
races” is defined to be average return divided by average wager. These measures of return would, of course, 

be identical if wagers were of constant value. 
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profitable—unless the bettor has very precise estimates of the true winning probabilites— 
because the wagers will significantly lower the odds.” This finding suggests that wagering 

necessarily yield the optimal payoffs. Therefore, Isaacs’ strategy is unlikely to be 

profitable unless the estimates of the true winning probabilities are sufficiently accurate. 

Rosner’s Wagering Strategy. Rosner (1975) determined the optimal amounts to 
wager for a risk averse bettor who has perfect estimates of the true winning probabilities. 

He derived a closed form solution for the optimal amount to bet under the assumption 

that the wagers have no effect on the odds. His algorithm maximizes expected log 

return. It has the desirable property of maximizing the long-run rate of asset growth, 
termed the Kelly criterion (Thorp 1975). Rosner’s wagering strategy involves differentia! 

bets, where the size of the bet is a function of the attractiveness of the wager. 
Unlike Isaacs’ wagering strategy, Rosner’s closed form solution does not take into 

account the effect of the wagers on the track odds. Consequently, if we take Rosner’s 
suggested optima! wagers and do not correct the odds for our bettor’s wager, then we 

will overestimate the returns to some extent. However, this simplification is progressively 

more reasonable as the public’s wagers increase and/or our bettor’s bankroll decreases. 
Another effect of this simplification is that the performance of the system should be 

less sensitive to errors in the estimation of the true winning probabilities. 
Rosner’s strategy was evaluated in the following way. The winning probabilities were 

predicted using the multinomial logit model estimated on each set of 150 races. For 

each of the four hold-out samples, wealth was assumed to be $1000 at the start of the 
first race, and then updated after each race.* The algorithm was applied to each of the 

four hold-out samples of 50 races. It identified an average of 3.48 bets per race. The 

average amount wagered per bet was $85. The bettor’s initial wealth of $1000 decreased 

to $95.63 (an average across the four data subsets). In other words, the bettor had lost 

most of his “stake”! It is useful to examine the average return per race and average 

return across 50 races for Rosner’s strategy, in order to compare it to Isaacs’ wagering 

strategy. The average return per race was —14.1%. This is a substantial improvement 

over Isaacs’ wagering strategy. However, the average return across 50 races was 

—37.4%. This is worse than a random wagering strategy, and worse than Isaacs’ 

wagering strategy. 

As before, there was considerable variation in the return per race within the 50 races 

of each data subset. (The standard error of the mean return per race is about 27.5% 

for each data subset.) This variation leads to large fluctuations in wealth from race to 

race and creates two problems. First, the bettor’s wagers in a given race can be large 

enough to significantly affect the track odds. Since Rosner’s closed form solution for 

the optimal amount to wager does not take into account the effect of the wagers on 
the track odds, these large wagers will not be “optimal.” Second, large fluctuations in 

wealth from race to race lead to considerable variability in the size of the bettor’s 

? One of the referees commented that Isaacs’ wagering strategy does poorly because it tries to “grab all the 
inefficiency.” Since the probabilities are estimated with error, the stiategy sometimes wagers incorrectly or 
too much. As a result, Isaacs’ wagering strategy performs poorly relative to a strategy that makes a single 

“small” bet on a randomly chosen horse. However, it’s likely that the estimated probabilities are sufficiently 

accurate that Isaacs’ wagering strategy would perform well (in large samples) compared to a strategy that 

places multiple “large” bets on randomly chosen horses. 

*The selection of $1000 for initial wealth is arbitrary. This amount was selected for calculation/ 
demonstration purposes. The closed form solution from Rosner's wagering strategy assumes the wagers do 
not affect the track odds. Hence, initial wealth of $1000 was selected with the intention that the resultant 

wagers from Rosner’s strategy would not materially affect the existing track odds. Note that initial wealth of 

$1 (which would yield wagers which do not affect the existing track odds) would yield the same relative 
returns (on a percentage basis). As the discussion in the text indicates, the resultant wagers exhibited 

considerable variability in size, and this variability led to a modification of the strategy. 
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wagers per race, since the bettor’s wagers on horses are calculated as a fraction of 
current wealth. Hence, the return across S0 races for a particular data subset will 
depend on the sequence of the races. For example, the return across 50 races will be 

lower in the situation where all the winning wagers occur in the “early” races, than in 

the situation where all the winning wagers occur in the “‘later” races. In other words, 

race sequence critically affects the average return across 50 races in the relatively small 
data subsets of races used in this study. 

An ad hoc modification of Rosner’s wagering strategy was utilized to make the 

wagers less obtrusive (i.e., to make the wagers have less impact on the track odds) and 

to remove the effect of race sequence on the return across races.* Both difficulties were 
removed by eliminating the variability in the size of the bettor’s current wealth. In the 

modified strategy, wealth is fixed to be equal to $1000 for each race, and the bettor 

wagers some fraction of this amount.’ The average return across 50 races was --6.4%. 

As before, there was substantial variation in the average returns for the four data 

subsets: 18.7%, —58.6%, —32.1%, and 46.4%. This is an improvement over a random 

wagering strategy (and over Isaacs’ wagering strategy). However, this finding sti!l 
indicates negative returns across races and a decrease in initial wealth. 

The results of the “fixed wealth” modification provide an estimate of the returns 

across races that Rosner’s wagering strategy should generate in the long run (i.e., when 

race sequence effects would “cancel out’’). However, this estimate of the returns will 

be inaccurate for two reasons. First, returns are somewhat overestimated because they 

do not take into account the effect of the wagers on the track odds. Second, returns 
may be underestimated because the modification to Rosner’s wagering strategy is 
suboptimal in the sense that it no longer maximizes the long run rate of asset growth. 
Therefore, the results of the fixed wealth modification suggest that Rosner’s wagering 

strategy may generate returns across races of approximately —6.4% in the long run. 

Constrained Versions of Rosner's Wagering Strategy. Rosner’s wagering strategy 
fails to yteld positive returns across races because the true winning probabilities are 

estimated with error. As a result, the algorithm generates some wagers with low or 

negative actual returns. How can the bettor avoid these wagers? Two constrained 
versions of Rosner’s wagering strategy are considered here. 

Studies of place and show betting suggest that the bettor should wager only on 

horses with estimated expected returns which are substantially greater than one 

(Harville 1973; Hausch, Ziemba, and Rubinstein 1981). That is, the bettor should 
wager only if fs(7, + 1)}> a, where a@ is some constant exceeding one. Rosner’s 

wagering strategy and its “fixed wealth” modification were re-evaluated utilizing the a 

* An alternative solution to the problem of large wager effects is to extend Rosner’s wagering strategy to 
take into account the effect of wagers on the track odds (e.g., Hausch, Ziemba and Rubenstein 1981). 

However, the results of applying Isaacs” wagering strategy indicate that a wagering strategy that alters the 

track odds requires very precise estimates of the true winning probabilities in order to be profitable. Hence, 

we chose to modify Rosner’s wagering strategy to constrain the size of the wagers. An alternative solution to 

the problem of race sequence effects is to use a measure of wagering strategy performance which is not 

affected by race sequence. Since the effect of race sequence is reflected in average return across races, but not 

in final wealth, final wealth could be used to compare the performance of alternative wagering strategies. 
Final wealth is a relevant criterion for Rosner’s strategy, but less useful for other wagering strategies. For 
example, Isaacs’ wagering strategy assumes that the bettor has infinite wealth. These considerations led us to 

modifying Rosner’s strategy by eliminating the variability in the size of the bettor's current wealth. The 
modification described in the text “solves” both difficulties (ie, the effect of “large” wagers and race 
sequence), albeit in an ad hoc fashion. 

5 The selection of $1000 for the fixed wealth modification is arbitrary. This amount was selected for 
calculation/demonstration purposes. It is meant to yield wagers which are unobtrusive in the sense that they 
do not materially affect the existing track odds. Fixed wealth of $1 (which would not affect the existing track 

odds} would yield the same relative returns (on a percentage basis). See footnote 3. 
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constraint, for levels of @ between 1.0 and 1.8 in increments of 0.!. (About 50% of 

the wagers are eliminated at a equals 1.8.) The average return per race and the average 

return across 50 races does not improve with the addition of the a constraint.® 

It is likely that poor estimates for long shots cause the most serious errors in the 

calculation of expected returns and the formulation of the optimal wagering strategy. 
Why? First, in relative terms, errors for long shots will be larger. To illustrate the 

nature of this problem, a misestimate of 0.01 on a favorite whose true winning 

probability is 0.20 is, in percentage terms, quite small compared to a misestimate of 

0.01 on a long shot whose true winning probability is 0.04. While identical in absolute 

size, the former represents an error of only 5% while the latter represents an error of 

25%! Second, it may be easier to predict winning probabilities for favorites since their 

performance is likely to be more “regular”, and thus more easily represented and 

predicted with a statistical model. This reasoning suggests the bettor may be able to 

avoid wagers with low or negative actual returns by wagering only on horses with an 

estimated probability of winning greater than some minimum value. That is, the bettor 

should wager only if 6, > pmin, Where pmin iS a specified minimum winning probability 

estimate. It should be noted that fewer wagers are made as the value of pj, is raised. 

Hence, the race returns are calculated on correspondingly smaller sample sizes, and 

should be interpreted with caution. 
Rosner’s strategy and its “fixed wealth” modification were re-evaluated utilizing the 

Pmin Constraint, for levels of p,,i, between 0.00 and 0.25 in increments of 0.01. The 

average return per race and the average return across races are displayed in Table 3. 

As the prespecified value of pai, increases, fewer wagers are made because long 

shots are omitted from consideration. The average returns per race associated with 
Pmin > 0.17 are positive for 6 of the 8 tabulated values. (The two negative values may 

be small sample results.) The pmin constraint improves the average return across races 

generated by Rosner’s strategy and its fixed wealth modification for the majority of 

the tabulated values. However, the effect of the p,;, Constraint is more evident in the 

average return across races generated by the “fixed wealth” modification. The average 
return across 50 races improves for 18 of the 25 tabulated p.i, values, and the 

improvement is quite large. In fact, seven of these values are positive! 

The above results indicate that Rosner’s wagering strategy may yield long-run 

positive returns when a side constraint eliminates wagers on horses for which the logit 

model provides poor estimates of the winning probabilities and expected returns. The 

bettor should wager on the horses identified by Rosner’s strategy, except in the case of 

long shots. Long shots are horses with (estimated) winning probabilities which do not 

meet a pmin Constraint of at least 0.07. (The constraint could be as high as 0.11, but 

apparently not higher.) Such a constraint eliminates about 17% of the wagers, and 

generates returns across races of about 1.3%. It is important that the p,j, constraint 
not be set too high (e.g., higher than 0.11), or too many horses will be eliminated, 

resulting in negative returns across races. For example, at pain = 0.12, 55% of the bets 

are eliminated and Rosner’s differential wagers generate returns across races of —3.1%. 

Multiple Unit Bets Strategy. The results obtained by applying Isaacs’ and Rosner’s 

strategies identify two features which should be incorporated in an “optimal” wagering 
strategy that employs fallible estimated probabilities as inputs. First, the results of 

® Isaacs’ strategy was evaluated with an a@ constraint, for a equals 1.05, 1.10, 1.15, and 1.20. The race 

returns for Isaacs’ strategy with an a constraint do not differ substantially from the results reported in this 

paper. This result is not unexpected because the primary reason for the poor performance of Isaacs” strategy 
is the feedback effect on the track odds. The wagering strategies discussed in the remainder of this paper 
were also evaluated with an a constraint. The race returns do not differ substantially from the results 
reported. 
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TABLE 3 

Sirategies Involving Multiple Bets: Weighted Average Returns Across the Four Data Subsets*** 

Rosner’s Wagering Strategy Unit Wagers Strategy 

Across Races 
# of as 

Pain Races* Per Race Updated W Fixed HV** Per Race Across Races 

0.00 200 —0.1411 —0.3737 —0.0638 —0.1599 ~—0.2178 

0.01 200 —0.141t —0.3737 —0.0638 —0.1599 0.2178 
0.02 200 —0.1411 —0.3736 —9.0635 —0.1599 —0.2138 
0.03 200 —0.1402 —0.3730 —0.0617 —0.1473 —-0.2050 
0.04 199 —0,1324 ~0.3684 ~0,0516 9.1370 —0.1818 
0.05 199 —0.1265 ~0.3619 —0.0386 —0.1242 —0.1479 

0.06 199 —0.1197 ~0.3486 —0.0169 —0.1103 —0.1040 

0.07 199 —0.1019 —0.3322 0.013! —0.0799 —0.0506 
0.08 198 —0.0613 —0.3051 0.0649 ~0.0282 0.0230 
0.09 198 —0.1527 —0.2897 0.0442 —0.0840 0.0293 
0.10 197 —0.2241 —0.2934 0.0238 —0.1671 —0.0060 

0.11 191 —0.1830 —0,2495 0.0820 0.1151 0.0833 
0.12 180 -0.2277 -0.2737 —0.0307 —0.1699 0.0045 
0.13 170 —0.1650 ~-0.3342 —0.0629 —0.1349 —0.0207 
0.14 159 ~0.2547 —0.4648 —0.2005 0.2604 —0.1744 
O15 148 —0.1763 —0.4795 —0.1972 ~0.1633 ~0.1763 

0.16 135 —0.0874 —0.4433 —0.1416 0.0896 —0.0872 

0.17 127 —0.0608 —0,4318 —0,1219 —0.0476 —0.0680 
0.18 119 0.0374 —0,3889 —0.0487 0.0627 0.0393 
0.19 11 0.0545 —0.3687 —0,0591 0.0757 0.0638 
0.20 101 0.0780 —0.3472 —0.0401 0.0861 0.0696 

0.21 93 0.0670 —0.3566 —0.0360 0.0780 0.0609 
0.22 81 0.1744 —0.3074 0.0513 0.1713 0.1504 

0.23 72 0.2366 —0.2888 0.0946 0.2199 0.2019 

0.24 62 —0.0656 0.3978 —0.2723 —0.0802 —0.0630 
0.25 53 —0.1145 —0.4427 —0.3417 —0.1306 —0.1050 
  

* This column describes the number of races in which at least one bet was placed for Rosner'’s Wagering 
Strategy. The number of races in which at least one bet was placed for the Unit Wagers Strategy was identical 
to Rosner’s strategy for most values of p, and never differed by more than one race. 

** “Updated W’” denotes the pure Rosner’s Wagering Strategy, in which wealth equals $1000 at the beginning 
of the first race, and is updated with the results of subsequent races. “Fixed }’" denotes the modification of 

Rosner’s Wagering Strategy, in which wealth is fixed to be equal to $1000 for each race. 
*** The weighted averages reported in this table were calculated by using the number of races in which bets 

were placed (of the 50 races in a data subset) as the weight for the return from a data subset. 

Isaacs’ strategy indicate that wagers should be sufficiently unobtrusive that the track 

odds are not affected (in order to maximize average return acfoss races and average 

return per race). Second, the results of Rosner’s strategy indicate that the bettor should 
wager on horses with positive expected returns—i.e., wagers should be placed on horses 

when p,(r;, + 1)> 1. Since the logit model provides relatively poor estimates of 

expected returns for long shots, the results of Rosner’s strategy imply that the bettor 

should wager on horses with estimated probabilities of winning which are greater than 

some minimum value. One possible ad hoc wagering strategy which satisfies these 

concerns is the following: 

Wager one unit on each horse for which fs(7 + 1) > 1 as long a8 pa > Poin. WhETe Poin iS a 
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specified minimum winning probability estimate and a “unit” is a dollar amount which is 
sufficiently small that it does not affect the track odds. 

Unlike Rosner’s wagering strategy, the Multiple Unit Bets strategy does not wager 

larger amounts on more attractive bets. 
The results of applying the Multiple Unit Bets strategy to the four data subsets are 

displayed in Table 3. The table shows the mean returns from a $1 bet on each horse 
that satished the two conditions stipulated above. The strategy of wagering on all 

horses with positive predicted expected values yields a return per race of —16.0%. The 

average return across 50 races is —21.8%, somewhat worse than would be expected on 

the basis of random betting. As before, this poor performance illustrates the impact 

that inaccurate winning probability estimates can have on betting outcomes. As the 

prespecified value of pin increases, fewer wagers are made because long shots are 

omitted from consideration. Once extreme long shots (more than 20 to [) are removed 

from consideration, the picture improves tremendously. In particular, the average 

returns across races associated with p,,i, in excess of 0.07 are positive for 10 of the 18 

tabulated values. 
It is interesting to compare the Multiple Unit Bets strategy with the fixed wealth 

modification of Rosner’s wagering strategy. The Multiple Unit Bets strategy yields a 

higher average return per race for almost ali values of pmin, such that 0.04 < pain 

< 0.22. However, the fixed wealth modification of Rosner’s strategy yields a higher 

average return across races for all values of pmin < 0.11. The pattern of dominance 

then reverses, and the Multiple Unit Bets strategy dominates Rosner’s strategy for all 

values of pmin 2 0.11. 
This comparison indicates that the estimates of the winning probabilities are 

sufficiently accurate to justify employing a differential betting strategy (such as Rosner’s) 

to maximize returns across races, rather than a unit betting strategy. Differential 

betting dominates unit betting for strategies involving unconstrained multiple bets. 

This finding can be explained by the observation that Rosner’s strategy tends to bet 

very lightly on long-odds horses, for which the winning probabilities seem to be poorly 

estimated. Differential betting also yields positive returns, as well as dominates unit 

betting, if a smal! number of misestimated long shots are eliminated from consideration. 
However, if too many wagers are eliminated by the p,»in constraint (i.€., at Poin 2 0.11), 

unit betting frequently yields positive returns, as well as dominating differential betting. 

This finding cannot be completely explained by the fact that the (misestimated) long 

shots—for which differential wagers are better than unit wagers—have been eliminated. 

Strategies Involving a Single Bet Per Race 

In the popular literature, the bettor is often advised to bet only on the horse with 

the highest winning probability. Most handicapping systems are based on attempting 

to identify the “best” horse, where “best” means most likely to win. This is, of course, 

suboptimal since such a betting strategy does not take the expected return (the public’s 

wagers) into account. Thus, a superior approach for the bettor desiring to wager only 

on one horse would be to bet on the horse with the maximum expected return in the 

race, as long as that expected return exceeds one. The bettor could wager the same 

amount in each race, or wager differential amounts across races. Strategies involving a 

single bet per race could be constrained to eliminate long shots, in the same way that 

strategies involving multiple bets per race were constrained. 

Single Unit Bet Strategy. This strategy can be formally described as follows: 

Wager one unit on the horse for which the expected return, f,(r, + 1), is a maximum, as long 

as the expected return exceeds one and fp, = pmin- 

The results of applying this strategy to the four data subsets are reported in Table 

4. Note that the average return per race and the average return across 50 races must, 
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TABLE 4 

Single Bet Strategies: Weighted Average Returns 
Across the Four Data Subsets** 
  

  

# of Mean Return Return Across Races 

Pesin Races Per Race* With Differential Wagers 

0.00 200 0.0310 0.0359 

0.01 200 0.0310 0.0359 
0.02 200 0.0310 0.0359 
0.03 199 0.0362 0.0407 
0.04 195 0.0574 0.0465 
0.05 188 0.0968 0.0673 

006 81 0.1392 0.0712 
0.07 170 0.2129 0.0968 
0.08 £51 0.3656 0.1756 
0.09 135 0.1919 0.0287 
0.10 119 0.2009 0.0416 

0.11 103 0.3874 0.1688 
0.12 94 —0.1000 —0.2004 
0.13 84 —0.1726 —0.2331 
0.14 75 ~0.0733 —0.1883 
0.15 64 —0.1406 —0.2274 

0.16 54 0.0185 —0.1317 
0.17 44 0.2500 —0.0060 
0.18 4] 0.3415 0.0565 
0.19 37 0.1622 —0.0282 
0.20 33 0.3030 0.0506 

0.21 33 0.3030 0.0506 
0.22 28 0.3143 0.1608 
0.23 27 0.1889 0.1756 
0.24 21 —0.7333 —0.8077 
0.25 20 —0.7200 —0.8079 
  

* This is the average return per race from any strategy involving a single bet per 
race (i.¢., a unit or differential wagering strategy). In addition, it is the average return 

across races for a Single Unit Bet strategy. 
** The weighted averages reported in this table were calculated by using the 

number of races in which a bet was placed as the weight for the return from a data 

subset. 

by definition, be identical for this wagering strategy. The results indicate that wagering 

on the horse with the maximum expected return yields an average return of 3.1%. 

This strategy wagers on the horse with the highest expected percentage return and 
does not wager additi:nal dollars on horses with lower returns. Hence, it would be 

expected that the average return per race from the Single Unit Bet strategy would 

dominate the average return per race from any of the strategies involving multiple bets 

per race. (This statement refers to percentage returns, not absolute returns.) In fact, 

the average return per race from the Single Unit Bet strategy does dominate the 

majority of the values in Table 3. In addition, the average return across 50 races is 
typically much higher for the Single Unit Bet strategy. In fact, 19 of the 26 tabulated 

values are positive! These positive values are quite large, ranging from 3.1% to 38.7%! 

Single Differential Bet Strategy. A method to increase the average return across 50 

races generated by the Single Unit Bet strategy is to wager different amounts of money 
in different races, wagering larger amounts when the betting opportunity is particularly 
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attractive. For example, Rosner’s strategy wagers smaller amounts on long shots. An 
ad hoc single differential bet strategy is the following: 

Wager on the horse for which the expected return, p,{r, + [), is a maximum, as long as the 

expected return exceeds one and pf, > Pmia. The amount of the wager should be the amount 

that Rosner’s wagering strategy recommends for that horse, assuming a current wealth 

of $1000. 

The results of applying this strategy to the four data subsets are reported in Table 

4. The average return per race is the same for both single bet wagering strategies. The 
average return across 50 races for the Single Differential Bet strategy (without a pin 

constraint) is 3.6%. This is a slight improvement over the Single Unit Bet strategy. 

However, the Single Unit Bet strategy dominates for all values of p»i, greater than 

0.03. Apparently, a differential betting strategy cannot improve returns when long 

shots have already been eliminated. 

Concluding Remarks 

A trade-off exists between the “optimality” of a wagering strategy and the accuracy 

of the statistical model of the horse race process. When the true (unknown) winning 
probabilities are fallibly estimated, it is necessary to recognize the existence of such 

estimation errors within the wagering strategy. The major consequence of using 

estimates of the winning probabilities within a wagering strategy is that the size of the 
wagers and the number of wagering opportunities must be constrained. 

The size of the wagers must be constrained so that the wagering strategy does not 

affect the track odds. Since Isaacs’ wagering strategy includes feedback effects on the 
track odds, errors in estimating the true winning probabilities (particularly for horses 
which are long shots) result in an average return of —27.8% across 50 races. In contrast, 

Rosner’s wagering strategy—which involves unobtrusive bets—improves upon a random 

wagering strategy. It yields an average return of —6.4% across 50 races, after adjusting 

for the race sequence effects that arise when this strategy is applied to small samples. 

The number of wagering opportunities must be constrained so that the wagering 

strategy involves bets on horses which are more predictable. The multinomial logit 

model provides relatively poor estimates of long shots’ winning probabilities and, 

consequently, their expected returns. Hence, the returns of most wagering strategies 

improve when a side constraint eliminates wagers on long shots. For example, a 
modification of Rosner’s wagering strategy may generate positive returns once horses 
with predicted winning probabilities of less than about 0.07 are eliminated from 

consideration. 

Two simple wagering strategies equal or surpass the results of Rosner’s wagering 

strategy. The bettor can achieve comparable returns by betting identical amounts on 

all the favorites (winning probabilities greater than 0.19) that have positive expected 

returns. Or, the bettor can generate returns of 3.1% (or more) by betting a fixed 

amount on the horse with the highest expected return. Both these strategies involve 
unit bets on a limited number of horses. A strategy involving differential bets on 

multiple horses, such as Rosner’s wagering strategy, has the potential to yield higher 

long-run returns than any strategy involving a limited number of unit bets. This study 

did not have a large enough data base to adequately assess the long-run rates of return 
across races for the various wagering strategies. 

Can a horse race wagering system involving win betting yield positive returns? Given 
this paper’s results, there appears to be room for some optimism. While this study 

represents a pioneering effort in statistical modeling of the determinants of horse race 

outcomes, a variety of avenues for followup research exist. The variability in the results 
across the four data subsets suggests the need for additional empirical analyses of larger 
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samples of races to confirm or refute these findings. It is also possible that future 
multinomial logit modeling efforts might lead to reduced estimation errors. For 

example, a separate multinomial logit model could be estimated for each track, instead 

of pooling across tracks as was the case in this study. It would be useful to attempt to 

devise a complete wagering system for win, place, and show betting. Such a research 
effort could combine a fundamental wagering strategy similar to the one developed in 
this paper with a technical approach similar to Ziemba and Hausch (1984). These and 

other related questions will no doubt draw the future attention of researchers interested 
in race track wager markets.’ 

? The helpful comments of the Departmental Editor, an Associate Editor and the referees are gratefully 
acknowledged. 
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