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F ORE I.IOR D

Since Ure term "Decision Analysis" was coined in 1963 (see paper #4),
both its theory and practice have developed profusely. Stanford University
has been a center for the intellectual development of decision analysis and
the catalyst for its extensive appl ication. Consultants associated witfr
Stanford, many of them graduates of the Engineering-Economic Systems
Department, have accumulated hundreds of man-years of experience.

This collection is intended to portray Ure "Stanford School of Decision
Analysis," as viewed by the editors. Because the Stanford decision analysis
community has the broadest base of practical experience, we believe these
papers represent the most successful methods of dealing with decision
problems. !{e have not attempted to represent alternative approaches or to
enter into any debate of their relative merits. I'le have, however, included
a few papers from other fields, notably psychology, that have had, and are
having, o Significant impact on the practice of decision analysis.

In these two volumes, we have collected papers on both the theory and

application of decision analysis. Although most of these readings have been
published elsewhere, we have added a few unpublished papers to represent
recent developments.*

The first volurp is desiged to be accessible to a general readership
and contains introductory papers and descriptions of actual applications.
Appl ications to corporate strategic decisions are necessari ly disguised and

underrepresented because of their proprietary nature.

The second volume is designed for the professional student of decision
analysis. In addition to containing professional and tedrnical papers, it
contains some papers discussing recent developments in methodology for
approaching health and safety problems. Uhi'le papers in this volume use
technical terminology, many of their ideas will be understandable to anyone.

* t{here possible, we have indicated authors' current affiliations on the
title page of each paper. Affiliation references appearing within the text
are taken from the original publication and, therefore, may vary from those
on the title pages.
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@,soa by NEA,,nc @;6ll/+

"Today, I'm going to tell you att you,ll need to
know about 'decision analysis.,,,

I^IHAT IS DECISION ANALYSIS?

When th i s nat i on al ly synd i cated
cartoon appeared in 1982, decision
analysis had clearly become a common
term. In common usage, however,
the term has I ost prec i s i on. By
decision_analysiS, we mean a
d i sc i pl i ne -c-mffi5 i ng the
ph i I osophy, theory, methodot ogy,
and profess i onal practi ce necessary
to formalize the analysis of
important decisions. Decision
analysis includes procedures and
methodology for assessing the real
nature of a situation in which a
dec i s i on mi ght be made, for
capturi ng the essence of that
situation in a formal but
transparent manner, for formal ly
"solving" the decision problem, and
for providing insight and motivation
to the dec i s i oll-makers and
i rnp I ementers.

Confus i ng the tool s of dec i s i on
analysis with decision analysisReprinted by permission. G) 1982 NEA, Inc.

itself has contributed to the lossof precision. Because uncertainty is at the heart oi mosl-pe"pteilng
decision problems, decision analysts frequently use speciatizea tooli,
such as decision tree techniques, to evaluate Lncertain situations.
unfortunately, many peop'le, some of them educators, have confused
oggjslgn analysis with decision trees. This is liie confusing surgery
with the scalpel. Although decision tree techniques are extrEmely" 

-

useful in solving problems where uncertainty is critical, in a rea'l
9g.i:ion analysis, most of the effort and cieativity is iocused on
finding and formulating the correct problem and on 

-interpreting 
the

results rather than on performing computations.

vi i i



HEALTH AND SAFETY





Preface

Important decisions are being made every day about our health and
safety. These papers show the advantage of making these decisions
consistently and present some recent theory that provides a sound basis for
doing so.

"0n Making Life and Death Decisions" deve'lops a conceptual framework by
considering how a person should value his own life. This paper shows that
although life may be infinitely valuable in a moral sense, a person can
rationally take on additional risks to his life or pay to remove them. The
paper reveals that a monetary "value of life" is appropriate for an
individual makir:3 choices involving a small probability of death. A

numerical example is developed for a typical individual.

"The Value of Life and Nuclear Design" addresses the question of
whether different "values of life" slrould be used in different safety
decisions. It shows that using the same monetary value in all aspects of
design produces the highest level of safety.

"The Design of Hazardous Products" addresses the design problem in a
general sett'ing, revealing that the designer of a hazardous product needs to
know the small-risk value of life that has been assigned by the individual
at risk. It also shows there is no rationale for situations where the
individual is exposed involuntarily and does not bear the product cost.

"0n Being Environmentally Decisive" demonstrates the insight
gained from applying decision analysis to environmental issues within
the corporate setting. Based on a real case, it describes a

hypothetical example involving a company's decision to make a capital
investment to reduce the exposure of workers to asbestos fibers. The
paper shows how environmental issues can be incorporated in an

economically-oriented investment decision analysis.

"0n Fates Comparable to Death" extends the ideas for treating life risk
to the risk of handicap or serious injury. The paper shows how small-risk
values can be developed for each consequence for use in decision analysis.
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ON MAKINC LIFE AND DEATH DECISIONS

Ron al d A. Howard

Department of Engi neeri ng- Econormi c Systems

Stanford Un iver si ty

Replintqd from Soqietal Risk Assessment: by R. C. Schwing and
tl.'A. Albers, J ch-Laboratoriesr-1980.
pp. 89-l 13.

Copfi ght @ 1980. Plenum Publ ishing Corporation





ON MAKING LIFE AND DEATH DECISIONS

Ronald A. Howard

Stan/brd U niv,ersity, Stan/ord, Cali/ornia

ABSTRACT

Recenl research has provided us with methods by which an individual
can make decisions that involve risk to his life in a way that is consistent
with his total preferences and with his current risk environment. These
methods may ethically be used only by the individual himself or by an
agent designated by the individual. In the absence of such delegaiion,
anyone who imposes a risk on another is guilty of assault if the risk is
large enough. Just as society has found ways to distinguish a "pat on the
back" lrom physical battery, So must it now determine what risk may be
placed upon another without his consent.

The research on hazardous decision making creates a framework for
this exploration. The basic concept of this approach is that no one may
impose on another a risk-of-death loss greater than a specified criterion
value established by the experience of society. If anyone attempted to do
so, he could be forbidden by injunction. The only way that an injuncrion
could be avoided would be by showing evidence of insurance that would
cover the damages to be paid by the imposer of the risk if the unfortunare
outcome should occur. The methodological framework is used both to
estimate the rrsk-of-death loss and the amount to be paid if death occurs,
an amount that is likely to be much larger than present "economic"
values of li[e. Evidence would be required both on the preferences of the
individual-at-risk as revealed and corroborated by his behavior and on
the magnitude of the risk as assessed by experts.

Such a system is likely to require revisions in the presenr legal codes. It
is to be expected that when a logically and ethically based risk sysrem is
functioning, lhere will be an increased interest in purchasing the consent
o[ people to imposed risk. Problems of securing the consent of con-
tiguous property owners, for example, could be handled by interlocking
options. People willalso be more likely to be informed of the risk implied
by using products or services. Thus risk would become an explicit part of
purchasing decisions. The joining of logic and ethics in these new pro-
cedures offers hope for a more effective and humane treatment of risk
issues in society.

References p. 106.
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NOTATION

p:

x:

W:

C:

I
[:
w:

n'.
,l '.

v'.

p-

(:
i:

Pnla x

v(p):
Vsl

Vel

Pn:

Qn:

probability' oI death

required pa)'ment to undertake specified death risk

present level of wealth

constant annual consumption

remaining length ol li[e
expected remaining length ol lile
worth numeraire
consu mption-lifeti me trade-off
risk preference function on worth

risk ilvcrsion coefficient
risk tolcrilncc'. l/y
annuital lactor; anrount of annuity that S I will buy

i ntercst rutc

nraxinrunr acceptable probability of death

lil'e value in expected value sense when facing death with probability p

snrall-risk lile value

econonric lile value', cl(
proba bi lity of deat h in year n of li[e
probability o[ death in year n of life given that individual was alive at

beginning o[ year n.

INT'RODUCTION

What risk nray one impose on another? This question has achieved increasing
inrportance as the sources of harm in our environment have increased. The
spectrum o[ risk that one person imposes on another ranges from the relatively
nrinor risks posed simply by existence up to the very serious risks represented by

assaull or attempted murder. Some of these risks society has chosen to ignore,
while others have been treated as very serious matters requiring extensive social
action. We shall examine both the ethical and practical questions of risk in society,
propose n'leasures for risk, suggest procedures for evaluating risk, and indicate
how these procedures could be used in practice.

f,FFICACY AND ETHICS

social arrangements for any purpose may be judged in terms of both efficacy and
ethics. Efficacy refers to what works in pursuing specific human goals; ethics refers
to what actions are morally desirable in achieving those goals. For example, killing
babies with genetic defects might be a very efficacious way of achieving the human
goal of physical perfecrion, but it would be ethically unacceptable to most people.
when we wish to judge any action or arrangement, we can think of examining it
against standards of physical knowledge, ethics, and eflicacy. For example, if
someone threatened to bring the wrath of God against another, that threat would
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LIFE AND DEATH DECISIONS

not be actionable in a court of law today because it is the present belief of a majority
of our society that no one has such power. However, in the l2th century in Europe,
such a threat may have been taken very seriously: the one who threatened might
be condemned as a witch. Actions that seem physically feasible can then be sub-
jected to the further tests of ethical acceptability and practical efficacy. Since there
is much more discussion of efficacy than of ethics, our primary concern here will
be the ethical one.

The ethical basis we shall use in our discussion is that every individual has a right
to his own person. Or to put it in negative form, no one may initiate force against
another without his consent. Of course, this allows for the use of force against the
initiator of force in the sense of self-defense. Imposing a large risk of the use of
force upon another is enjoined by the same principle. If the imposition is intended
to be coercive, then the imposition is a threat. The robber who says "your money
or your life" is thus violating the ethical principle even though you may avoid the
use of force by surrendering your money.

Even when there is no intention to harm, the principle prohibits the imposition
of a large risk on another. Thus, someone who is firing a gun in random directions
may be restrained even though he has no intention of hurting anyone simply
because he poses too great a threat to others.

While there might seem to be a wide variety of ethicalprinciples from which to
choose, the choice is not so large as one might think. In fact, the only other system
with a claim to consistency (although a faulty claim, in my opinion) is that the
king, czar, party, government, or church can do to any person whatever it likes. In
such a system, of course, we don't have to worry about risk management; we simp-
ly ask the king-equivalent what to do.

Therefore, the ethic that shall guide us in this paper is that no one may impose a

large risk on another without his consent. The remaining question, then, is how to
measure risk and how to determine how large a risk may be imposed involuntarily.

It is important to distinguish this discussion of ethic's from the usual discussion
in terms of political and economic systems. The political system in many countries
does incorporate ethical elements, such as the U.S. Constitution's Bill of Rights.

However, it may also allow actions that many individuals consider unethical. Thus

the political system technically contains both ethicaljudgments and other features

based on the power possessed by various groups. As long as there exist two

systems, political and economic, in the same society, then there exists the

possibility of arbitrage, of people using political power to achieve what they cannot

achieve economically or using economic power to achieve what they cannot

achieve politically. For example, rent control is an action to transfer property

ownership at least partially from owners to tenants. Environmerrtalists' objections

against development can be attempts by some to raise their standards of living by

political means at the expense of the standard of living of those not so well

economically situated.

The main point is that unless political and economic systems have a common

ethical basis, ethical conflict is bound to arise. The approach we take here is to

follow ethical principles that preclude political and economic contradictions.

References p. 106.
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MEASURING RISK: AN INDIVIDUAL DECISION MODEL

Recent research has shown one way life and death decisions can be made consis-

tent with the non-coercive ethical principle tl1. I2l. Naturally', then. this is a way

for people to make their own risky'decisions. ,,ora way for other people to impose

risky situations upon them. However. b1' seeing hou' an individual would view

such an imposition by his own lights. we obtuin a starting point for constructing a
legal position regarding the imposition of risk.

The Black Pill - As a useful thought experiment, we imagine an individual

faced with what we call the black pill question. He is offered the chance to take a
pill that will kill him instantly and painlessly with a probability he assigns as p. If he

takes the pill, he will receive x dollars. Should he accept? For example. should he

accept a p : l/10,000 incremental chance of death fora payment of x : $1000?

The choice is diagrammed in Fig. l.
If the individual rejects the offer, he will continue his life with wealth W and face

whatever future life lottery he presently faces. His future life lottery is the uncer-
tain, dynamic set of prospects he foresees beginning with today. If, on the other
hand. he accepts the proposition, his wealth will increase to W * x. If he lives after

Relect Future
Lif e

Lottery(Wealth W)

(Wealth W)

Live Future
Lif e

Lottery
Accept

(Wealth W + x) p
Die

(Wealth W + x)

Fig. l. The black pill decision tree

taking the pill, he will begin his future life lottery with wealth w * x, presumably a

more desirable situation. If he dies, he will leave w * x in his estate, and, of
course. have no opportunity to enjoy it. clearly the value of this benefit might be
different for different people, and could be included. But let us say, for the
moment, that it has no value to him. Naturally, there would also be tax effects, but
these too we shall ignore.

we have analyzed this question in quite generat form [2], but here we present
the simplest model we have used to answer it. we assume that everyone has a fun-
damental preference on both level of consumption and length of life. we begin by
asking the individual how much consumption (measured in today's dollars) he

(Wealth W + x)
p
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LIFE AND DEATH DECISIONS

expects to have at each year in the future. We then ask what constant level of con-
sumption beyond bare survival over his lifetime would make him indifferent bet-
ween this level and his present prospects. We call this the constant annual con-
sumption for that individual. Now we give him choices berween rhe different
futures d.escribed by different constant annual consumptions c and different
lifetimes I, and find to what combinations he is indifferent. For the simple exam-
ple, we shall assume that the indifference curves have the form

w(c,[l:.(a,),r q>0, (l)

where w(c,I) is the worth numeraire associated with each indifference curve. The
numeraire equals c when f equals [, the expected lifetime remaining.

Now we measure the risk preference on worth of the individual. For the exam-
ple, we shall use the exponential form

u(w):-g'7w:-e'wlq, (2)

where 7 is the risk tolerance. With this structure and the assessment of the
individual's joint probability distribution of c and 1, we can compure the utiliry of
the individual for the case when he does nor accept the black pill.

when he does take the pill, the probability p of dying immediarely wiil transform
his probability distribution on remaining life. The payment he receives, x , will
increase his wealth. we assume that the individual will use the amounr x to
purchase an annuity over his remaining life at the prevailing interest rate i. In the
calculation of annuity cost, we assume further that the seller of the annuity assigns
the same probabilities on remaining life as those assigned by the individual. If we
let ( be the amount of annuity that one dollar will buy, then

( (3)

@)

l+i ffi)
where < > denotesexpectation.

when we set the utility of taking the pill equal ro the utility of not raking it, we
determine that at the point of indifference p and x must satisfy the equation.

(--(r,)> (v(c*,.,(+)>
p:

By inverting this relationship computationally. we find for a given value of p whar
value of x willmake the individual indifferent between taking the pilland not tak-
ing it.

Reli,rencts p. l()6.
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If we let x grow without limit in this equation. ue find that p approaches a value

P62x given b1' 
Pnrax : .( 

"(,t)) 
(s)

Thus no amount ol'nroney, coulcl induce the individual to accept a death probability

as largc as pntax.

To derrve a measure o[ "life value". suppose that a risk-neutral observer

cxamines the relationship between x and p. He could interpret x : x(p) as the

expected loss that the individualu'ould incur from the risk i[the individualvalued

his lite at a number v(p),

x(p):pv(p). (6)

and he could then deternrine this number lionr
x(p) .

v(p) : o 
(7)

Thus v(p) is the valuc that the person is placing on his life in an expected value

sense when he confronts a risk of magnitude p.

OI'special interest in a sal'ety context is the magnitude of this life value when the

death risk is snrall. From a linriting analysis of the equation relating p and x, we

find that as p approaches zero (and, ofcourse, x also approaches zero), the ratio

v(p) approaches a value v, given by

r-1rrr('r))
\

vs: (8)

We call this value the small-risk life value. It is the one number that an individual
would need to keep in mind to make his safety decisions.

We shall be interested in comparing this small-risk value of life with an

economic value of life comparable to that produced by other analyses. We shall
define the economic life value, v", as the amount of money required to purchase

an annuity paying the constant annual consumption c. Thus v" is given by

,.:f (9)

Illustrative Results - To illustrate the calculations implied by the model, let us

consider a base case individual who is a 25-year-old male with a constant annual
consumption of $20,000 per year and a lifetime probability distribution given by a
standard mortality table, Table l. He chooses ? : 2, which means that if he is sure
to live his expected life (46.2 years), then a l0lo decrease in his life would require a

20lo increase in consumption for him to remain indifferent. From further question-

ing, we find that his risk tolerance is p : $6000, which means roughly that he is
indifferent between his present situation and equal chances of constant annual
consumption of $17,000 or $26,000 for the remainder of his life. We also find that
he faces a prevailing interest rate of 50/o per year.

(v
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LIFE AND DEATH DECISIONS

The results of the calculation appear in the upper part of Fig. 2 where we show
the amount x that he would have to be paid corresponding to each probability of
death p. we observe that this amount increases proportionally to p until about

TABLE I

Life Table for White Males. U.S.

of 100.000 Born Alive. Number Dying During Age Interval

Age

Number Dying

During Age

I nterval Age

Number Dying

During Age

I nterval

Number Dying

During Age

I ntervalAge

37

3tt

39

40

4t

4?

43

44

45

46

47

48

49

50

5r

_52

53

54

5-s

56

-s7

5tt

-sg

60

6t

62

6l
tvl

65

66

67

6t{

6e

70

7t

72

43

25

0

I

2

3

4

5

6

7

8

9

r0

lt
t?

r3

l4

l-s

l6

l7

Itt

l9
20

2t
))
2l
24

26

27

2tt

2e

-10

lr
-12

ll
l.l
ls
.16

2s92

149

99

78

67

60

55

s2

47

229

25 I

278

306

339

376

4t5
458

505

556

6t3

68 I

754

ti35

9t6
99-s

t07 I

I t44

t2r6
I 2e5

lltt_j

r4tt6

I 59tt

t7 t4

Itt27

re35

203e

2r36

223 I

2l2l
240e

2487

255e

162 I

267tt

272e

73

74

75

76

77

7tt

79

80

8t

82

tt3

tt4

tr5

tt6

tt7

tt tt

tt9

e0

9t

92

93

94

9-s

96

97

98

99

r00

r0t

t02

10.1

t04

t05

r06

r07

lOtt

277 5

28t5

284 I

2ri53

2n55

2844

282 I

278e

27 38

263e

2482

2280

20e6

t89tt

r 693

I 490

I 288

r 086

tt tttr

70e

54t{

4tl
300

216

t5l
t03

70

45

?e

l7

lt
6

l
2

I

I

40

40

46

56

73

90

r07

l2t
134

t43

r53

r62

t67

r6l
r57

t49

t4t
B7
t.l7

t4t

147

154

t6t
r70

I tto

t94

I t0
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p : l0-2, when it increases more rapidly and finally becomes infinire at
pmax : 0.103. No amount of money could induce this individual ro play Russian
roulette $ : l/6).

The lower portion of Fig. 2 shows how the life value v : v(p) depends on p. We

observe that for small valucs of x, v is approximately equal to vs : $2.43 million,
the small-risk life value of the individual. This means that for small probabilities of
death (here less than l0-2) the individual is acting as if his life were worth $2.43
million in an expected value sense. Thus, if the individual faced the black pill
problem with p : l/10,000, the required compensation would be vsp : $243. He
would accept any payment x greater than $243 as an inducement to take the pill.

x (Dolla rs)

108

107

106

105

104

103

102

10

1

o. 1

1O-7 10-6 1O-5 1O-4 1O-3 1O-2 1O-1 rOO

Probability of Death

10 x 106

v (Dollars)

5 x 1Oo

0 7 10-6 1O-5 1O 
-4 1O-3 1O-2

Probability of Death

Fig. 2. Black pill results.
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The economic life value v. for this individual is $363,000. Such a number has

sometimes been used for decision purposes. We observe that the small-risk value

is about 6.7 times the economic value. If this model and the numbers used in it are

representative, the economic values that have been used in the past considerably

underestimate the individual's own value. This discrepancy has implications for
both the eflicacy and the ethics of risk decision-making in our society.

The White Pill - Our analysis up to this point has emphasized the question of
what we must pay an individual to undertake an additional risk. However, more

often we face the problem of spending resources to avoid risk or in other words

increase safety. The same theoretical model serves to illuminate this problem with
only a few small twists.

Suppose that an individual faces a hazard that will kill him with probability p; for

example, an operation. If he survives, he will live his normal life with whatever

wealth he possesses. However, now someone arrives with a white pill that if taken

will surely eliminate the death risk from this hazard. How much, x, would the

individual be willing to pay for the white pill? Fig. 3 shows the relevant decision

tree.
The unusual feature of the white pill question is that, of course, the amount x

that he is willing to pay cannot exceed his wealth, no matter what death risk he

faces. We assume that the individual can sell an annuity based on his lifetime dis-

tribution to pay the amount x for the purchase of the white pill. Since the most he

can give up is his consumption beyond survival c, this means that in the white pill

case the x versus p curve terminates on the economic life value of the individual

Buy White Pill F utu re

Lif e

Lottery(Wealth W - x)

(Wealth W)

Live Future
Lif e

LotteryRef use
White Pall

(Wealth W)

Die

1-p

(Wealth W)

Fig. 3. The white pill decision tree.

when p _ l. The equation relating p and x,

p : (,,. 
,-,6) 

? (,: 6)')

(Wealth W) p
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confirms this obserral' c
lon. Slnce al x : 

a: 
t'a.p: l.

Fig. 4 show the results for the base case individual. When p : l, x : $363,000,
the economic value of his life. However, as p decreases, the x versus p curve
becomes coincident with that of Fig. 2, and in particular implies the same small-
risk value of $2.43 million derived for the black pill case.

Table 2 shows how the small-risk value depends on the model variables. The
first row shows the effect of changing annualconsumption level from $10,000 to
$30,000 while fixing the risk tolerance at 300/o of consumption. We observe that
the small-risk value is then proportional to consumption level. The second row
shows that the effect of varying the interest rate i from 100/o to 2.50/o is to change the
small-risk value from $1.421 million to $3.622 million, because the individual
needs a higher cash payment to obtain the same increase in consumption. The
third row shows the relative insensitivity to the consumption-lifetime trade-off
ratio 4, whereas the last row illustrates how the small-risk life value falls with age.
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104

x (Dollars) 103

102

10

1

-7 -6
10 10 1O-5 1O 

-4 
1O-3 1O-2

Probability of Death
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-1 010
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2 x 1Oo
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Fig. 4. Whire pill resulrs.
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TABLE 2

Sensitivity Analysis

Variable
Small-Risk Value. v

($ million)

10,000 20,000 30,000

3,000 6,000 9,000
1.215 2.430 3.U5

0.025

I

l5

t .42t 2.430 3.622

2.4t8 2.430 2.54t
2.t57 2.430 2.67t

Buying and Selling Hazards - Now that we have both the black pill and white
pill results before us, we are in a position to make a few general observations. First,
we see that the disparate results of the black and white pill cases for p : I show

that we have answered a continual objection to analyses that place a finite value on
life without regard to the distinction between accepting an additional risk and

removing an existing risk. Since few people, if any, will sell their lives for any linite
sum, all such analyses are doomed to failure. However, the present model shows that

it is perfectly consistent to refuse any finite offer for your life and yet be limited in what

you can spend to save it.

Of greater practical importance, however, is the result that for the wide range of
hazardous decisions where we are buying and selling small hazards in our lives, the

small-risk life value offers a simple and practical procedure to assure consistency.

To simplify the use of the small-risk life value and to emphasize the necessity

that it be used only when the risk to life is small, we find it useful to deline a unit
for small risks to life. We shall use the term "micromort" to mean a one in one

million chance of death, with symbol pmt. Then the small-risk life value can be

conveniently expressed in dollars per micromort, or $2.43 for the base case

individual. With this terminology, it is easy to explain why an individual can set a

value for a micromort that is valid up to, say, 1000 micromorts, but also why that
price is inappropriate for larger risks.

The Value of Reducing Risk - We can use the base case individual's value of
$2.43/p.mt to see what he would be willing to pay annually to remove various

hazards in his life. The first column of Table 3 shows U.S. accident statistics for
1966. The second column shows the number of micromorts/year each risk poses to

the base-case individual if. as we now assume, he uses these statistics as his

probability assignment to death from each risk. The final column shows what the

base case individual would be willing to pay each year to eliminate each hazard, an

amount obtained by multiplying the number of micromorts by the individual's
value of a micromort. Note that he would be willing to pay $900 just to eliminate

the dangers of motor vehicles and falls. All other sources of accidents contribute
collectively to an expected loss of less than $500. This calculation is an important
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TABLE 3

U.S. Accident Death Statistics for 1966

Type of Accident

Total

A nn ual

Deat hs'

Probability of Death

in Micromorts,i Year

( I Micromort [;rmt]
= 10-6)

Payment of Base

Case Individual
to Avoid Hazard

@ $2.43 I ymt

Motorvehicle....
Falls

Fire and explosion

Drowning

Firearms

Poisoning (solids and liquids)

Machinery

Poi son ing ( gase s and vapors )

Water transport

Aircraft
lnhalation and ingestion of food
Blow from falling or projected

object or missle

Mechanical suffocation

Foreign body entering orifice
other than mouth

Accident in therapeutic procedures

Railway accident
(except motor vehicles)

Electric current

Other and unspecified

Total

53.04 I

20.066

8.084

5,687

2.558

2,283

2,070

I,648

1.630

1.510

l,4g

I .459

I .263

I,t3l
| ,087

1,027

1,026

6,163

I t 3,563

270

r00

40

$ 656.00

243.00

97.20

68.00

3 r.60

26.70

24.30

19.90

r 9.70

r 8.30

t7 .70

t7 .70

r 5.30

2tt

r3

il

t0

8.2

8. I

7.5

7.3

7.3

6.3

5.7

5.5

5. I

5. I

3 r.0

r 3.90
r 3.40

t2.40

12.40

76.50

$ I ,384.00580.

t U. S. Accidenr Sratistics for 1966

starting point for determining whether feasible safety expenditures to modify these
hazards would be worthwhile. It is clear that spending $1000 to be free of motor
vehicle accidents would not be a wise choice for the base case individual. There is a
limit to the value of safety.

Continuing Risks - Hazard Modification - Many of the risks to life occur not
at a single instant, as does the black pill, but rather over several years or even a
lifetime. The risks of living with automobiles, of smoking, or of living near a power
plant are of this type. We can use the previous formulation to analyze this situation
after we deal with the concept of hazard as follows.

The lifetime mass function is defined by pn, n : 1,2,3, . . . where Rp is the
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probability that an individual will die in the lth y."r of his life. Ler qn be the
probability that the individual will die in the ntn year of his life given thar he was
alive at the beginning of that year. Then en for n : 1,2,3, . . . is the hazard dis-
tribution or force of mortality. The lifetime mass function and the hazard distribu-
tion are related by the equations:

pl:ql
n-l

-Eoi
j: I

(l r)Pn-Qn n:2r3,4,

and either may be constructed from the other.
We can now ask what present payment x would be required to induce an

individual to accept a given modification of his hazard distribution, with the pre-

vious assumption that the payment will be converted into an annuity.

Consider lirst increasing the hazard in every remaining year of a person's life by
adding 250 micromorts, a risk about equal to that posed by automobiles in
American society. To induce the base case individual to accept such a hazard

modification, which would decrease his life expectancy by 0.3 years, we would
have to give him a lump sum of $13,000, or an annuity paying $700 per year.

If we doubled his hazard in every year, a risk considered by some the equivalent

of heavy smoking, life expectancy would fall by 7.8 years and he would require a

present payment of $212,000 or an annuity of $12,400.

If all benefits and costs associated with a general pattern of hazard modification
are reduced to dollar terms, then the model can be used to determine the addi-

tional payment that the individual would demand or offer to be just indifferent to

the modification.

Summrry - We can use this model to evaluate how much an individual would
have to be paid in money or its benefit equivalent in order to accept any given level

of risk. Of special interest are those situations where the additional risk is small, for
in this case the payment that the individual would require is equal to the pro-

bability of his death multiplied by a small-risk life value in dollars. This small-risk
life value is likely to be consunt over the range of risks involved in safety situa-

tions, for example, 1000 or less micromorts per year. The small-risk life value is

typically several times larger than the economic value of life and is of the order of a

few million dollars.

RISK ISSUES IN SOCIETY

Now that we have discussed both the ethical basis of imposing risk and a pro-

cedure by which an individual can make or delegate decisions that affect his

chances of dying. we can proceed to an examination of the implications of those

observations for various situations involving risk in our society. These situations

include the treatment of risk in the marketplace and on the job, the imposition of
excessive risk. and the creation of risky projects. We shall also discuss how these

Rqli'rent'es p. 106.
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observations bear on the question o[ corporate liability

R.isk in the Merketplece end on the Job - Risks involved with the purchase

and use of products or with holding a job are likely to represent 1000 or less

micromorts per year, and hence, for practically all individuals, they will fall in the

region of life value characterized by the small-risk value of life. This means that the

individual who has assessed his chance of death can quickly calculate the expected

death loss from the situation and balance it against other benefits and costs associ-

ated with the situation to make his decision.
However, we should also note that the designer of the product or the safety

engineer of the job has already been making decisions that balance death against

other considerations. In fact, if he is to be consistent, he should be using some

small-risk life value in his design [3]. A logical next step would be to reveal this
value to the purchaser of the product or the job applicant in a statement like, "We
used a $3 million small-risk value of life in designing this car (or coal mine)."
Naturally, the individual will hope that the value used is at least his small-risk life
value. Otherwise, he would be rightly concerned that the situation will not be safe

enough for him. The small-risk value of life used in design could then become one

of the features of the product or job that is advertised to the public. Companies that
used too low a value would experience competitive pressure, based on safety con-
cerns, to raise it; whereas, those who used too high a value would f'rnd their pro-

ducts overpriced relative to competition. A similar result would apply to jobs. Thus
companies would be encouraged by the marketplace to balance safety and

economics. As the standard of living increased, so would the level of safety.

A further step in this development would be for the companies to buy insurance

thal would pay the small-risk life value used in design to anyone killed as a result of
the design. Since this amount would be listed on the product or in the job descrip-
tion, the product liability or safety liability of the company would be specified in
advance. The estate of the person who bought a cheap hammer designed with a

small-risk life value of $10,000 would be able to collect only $10,000 if the head

came offand killed him. Of course. someone who wanted the hammer for use as a

paperweight might still buy it.
The idea of describing products (or jobs) by the small-risk life value used in their

design is only useful if the number can be believed. It would be fraud to post a

number higher than was actually used, or, of course, to say that insurance paying
this value in the event of death through product design is in force when it is not. To
be fair, the insurance would pay offonly if the product failed while being reasonab-
ly employed in its intended use. (If the purchaser of the cheap hammer commits
suicide by hitting himself over the head, his estate has no claim.)

Recently one of America's largest automobile companies lost a multi-million
dollar suit involving product design. Evidence presented at the trial showed that
the value of life used in the design was an order of magnitude below those we have
discussed. How many of the purchasers of the car would have bought it if they had

known the design basis? Placing this number in view may be the most importanr
single step that can be taken to insure the proper balance of safety with other con-
siderations.
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Risk Imposition - The question of risk imposition can be addressed in terms of
the legal procedures used when one person claims that another is imposing an

unacceptable risk on him. Since nearly everyone is a potential danger to everyone

else at some level, no absolute standard is possible. The question is at what level of
risk different legal remedies may be imposed. We propose to measure the risk to an

individual using the model described above. This model provides a monetary value

of the risk in terms of the probability of death imposed and the preferences of the

individual. To make the modeloperational, we must specify the source of the pro-

babilities and the preferences.

Since there may be differences of opinion as to the probabilities of death

imposed on one person by the actions of another, one function of the legal process

would be to assign this probability in as objective and impartial a manner as possi-

ble. This may mean reviewing historical evidence, examining experimental find-

ings, and ultimately considering the statements of experts. This procedure will not

be easy, but it is necessary if serious concerns are to be separated from paranoia.

The individual's preferences, of course, are his alone. But to establish them in

court, the individual will have to show that he acts consistently with his stated

prefierences. For example, it would be difficult for a circus performer who took

large risks for money as part of his profession to then claim that no amount of
money could compensaste him for much smaller risks. The past practices and deci-

sions of the individual would in most cases provide good evidence of his

preferences.

In the majority of situations where this procedure will be implemented, the risk

faced by the individual will be small enough that his preferences can be sum-

marized by his small-risk value of life. In these cases, the procedure will reduce to

the court's determining the probability of death and the small-risk life value. The

product would then measure the extent of the risk imposed on the individual, a

number we shall call his risk evaluation.

The risk evaluation would in turn indicate the kind of relief to which the

individual is entitled. If the risk evaluation were very small, say less than 100 or

perhaps l0-5 times the average annual income, then no relief would be provided

under the principle that the law does not concern itself with trifles.

On the other hand, if the risk evaluation were greater than a serious level, say,

$10 or l0'3 times the average income, then the individual might be entitled to

injunctive relief. That would mean that the imposer of the risk would be prohibited

from imposing it. At this point, the risk imposer would either have to cease his

activity, buy the right to impose the risk from the individual (for whatever he

demands), or reduce the level of the risk evaluation below the serious level by

making his activity considerably safer.

For risk evaluations in the intermediate region between trifling and serious, the

ntedium range. a different remedy could be applied. This could be allowing the

activity to continue only if the risk imposer buys insurance sufficient to pay

damages if the activity aclually kills the individual at risk. Moreover, the damages

would not be the economic loss to the dead person's estate but rather his small-risk

value of lil'e. typically many times higher. This would mean that the risk imposer

would always find it at least as desirable to pay the individual the risk evaluation in

Rtli'rtnccs p. 106.
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exchange for rhe righr to impose the risk as he would to buy insurance. However.
the insurance option does allow people to impose relatively snrall risks on others
who may have unreasonable fears of certain kinds of activity.

Regardless of the levelof risk involved. if the inrposer buys rhe righr ro impose
that risk on another individual flrom that individual. there would be no cause for
litigation. This would include even cases of high risk, such as paying someone to
play Russian roulette. However. in cases ol'high risk. the principle that every per-
son has an inalienable right to his body would mean that the court would not allow
the risk to be imposed in a situation where the seller of the right to impose risk
changed his mind. The seller would. of course, remain liable for any damages he
had promised to pay in the contract should he change his mind. Contracts involv-
ing the selling of rights ro impose risk in the domain of safety, say, l0-3 chance of
death or less. would not be subject to the alienability criterion. but would be con-
sidered as transfers of property.

On Creating Risky Projects - Much of the modern concern with risk arises
from the building of what we might call risk-creating installations. These are
installations lhat cause increased risks to the public, that is, to people who have not
made any agreemenl to accept the increased risk. Such installations might be oil
storage facilities, airports, or nuclear power plants. According to our preceding dis-
cussion, those creating such risks could proceed unencumbered only if the risk
evaluations they created for those affected fell in the trifling range. If the risk
evaluations fell into the medium range, then insurance would have to be bought
that would pay the estate of anyone killed his small-risk life value. Of course, if no
insurance company were willing to sell such a policy, the project could not proceed.
Finally, if the risk evaluarions fell in the serious level, the project could be
prohibited regardless of insurance.

The entrepreneurs wishing to build risk-creating installations would be strongly
encouraged by such a system to purchase in advance the risk rights from iil
individuals involved. But one immediately thinks of the problem of the holdout -someone who refuses to sell. When the risk evaluation is at the serious level, no
one, including the government, could compel him to do so. For it is a violation of
our basic principle regarding the initiation of force to use ideas like eminent
domain to justify the initiation of force. How, then, can the practical entrepreneur
proceed?

The basic idea that can solve this problem is the idea of risk options. The
entrepreneur can buy from an individual an option to purchase his risk rights
under certain conditions and at a specified price. For example, the entreprerieur
might pay $10 for the option to buy ar some time in the nexi year theiigtt to
impose 100 micromorts per year at a price of $100 p.. y""r. Then if the
entrepreneur decides to build a 100 micromorts per year installation in the
individual's area, he pays him $100 per year. If he decides to build some place else,
then the individual has received only the $10 for the option. The entrepreneur can
then buy options in several different areas knowing thai he will in fact build in only
one area. If the entrepreneur encounters holdoutJ in one area, he can move on to
another.
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The option and the rights could both be negotiable to create a market in risk.
Communities of people who were relatively more willing to accept risk for money
would then be more likely to be those places where the risk-creating installation
was built. Since risk-rights could be bought more cheaply in remote locations, such
locations would also be favored for the building of the installations. Thus the risk
market, like any market, would encourage the more efficient use of resources.
However, we should remember that the efficiency in this case is not being
achieved at the expense of ethical principle.

Liability - We must still consider the case where someone imposes a risk in the
medium or serious range without having at least purchased insurance. Logically in
lhis case if someone is killed as a result. the liability of the risk imposer should be

at least the victim's small-risk life value, and more if the risk extended beyond the
safety range. There would be an additional heavy penalty if the insurance was not

bought after a finding that the risk was in the medium range. Deaths resulting from
serious range risky activities would incur criminal penalties.

The lower portion of Fig.2 shows how the minimum liability might depend on
lhe prior death probability. The region where the value becomes infinite we might
call the "murder" region.

However, to put this principle into operation when the risk imposer is a corpora-

tion will apparently require changes in corporate law. The reason is that today cor-
porations have the same limited liability to third parties (like the victim of the risk)

that they have to second parties, their knowing creditors. This means that if a cor-
poration is so structured that its assets are insufficient to satisfy a claim, the vic-
tim's estate cannot reach beyond those assets to the stockholders for the settle-

ment of the claim. While I have no objections to the limited liability to creditors

because they entered into the credit arrangement with knowledge of the limited
liability, I see no reason why this limit should extend to third parties. For example,

if a group of individuals organized th6mselves into a corporation and then the

actions of the corporation resulted in someone's death, the personal assets of those

individuals would ordinarily not come into play, whereas if the individuals had

organized as a partnership, their personal assets would be available to satisfy the
judgment.

The limited liability to third parties is not a recent feature of corporale law. Thc

corporale lbrm is. after all, a human invention. At the time corporations were first

allowed legal status. lhere was debate on this issue of third party liability. Unfor-

lunately,. lionr nry point of view, linrited liability to lhird parties was instituted as a

l'eaturc ol' corporations. But there is no reason r.r'h1' this decision could not be

revcrsc'd.
Supposc that corporations were treated like partnerships in mattcrs ol'third partl'

liabilitl'. This r+'ould meiln that elerl'stockholder would be lrable for danrages donc

bv lhc'corpor.rlion to third parlies. The result would be increased care among cor-
porations in controlling their ellects on third parlies. effects on their property as

sc'll us orr thcir lives. A corporation that u'as careless in this regard would soon find

thlt it hird lost thc' llvor ol'invcstors.
Considc'r il conrpan!'that is in the business of constructing or operating nuclear
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reactors. At the moment its stockholders are protected not only by the Price-

Anderson Act, but by the linritation o[ liability' to third parties. lf both of these

limitations were removed, anyone investing in such a conrpany would have to be

quitc sure that he was protected fronr a calamitous loss. This would n'lean. nrost

probably, that such companies would have to buy insurance against all such losses.

ll'such insurance were unobtainable or prohibitively expensive, there would be

good reason to question the eonomic viability ol'the industry. Furthermore, even

il'thc insurance were available, it is Iikely that the insurance conrpanies in their
own sell'-intercst would require that independent agencies certify the safety of pro-

duction and operation. Thus, the ultinrate effect of unlinrited liability to third par-

ties would be either prohibition o[ unsafe induslries or considerable improvement
in their sal'ety.

CONCI.USION

Our prescnt apparent inrpasse on many safety issues stems mainly from a reluc-
tancc lo re-examine the ethical basis for risk management in our society. As long
as lhese issucs are stuck between the economic and the political system, we can
cxpect little progress. Only by returning lo more fundamental ethical considera-
tions can the issues be clarified and ultimately resolved.
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DISCUSSION

F. E. Burke (University of Waterloo)

I have one question of clarification. You had a slide in which you had computa-

tions where you compared various fairly modest risks. In one case an 8 year life

expectancy change would require a present payment of $212,000 or an annuity of

$12,400. That I could understand because my mental arithmetic was fast enough.

But then you have a life expectancy change of 0.3 years which corresponds to a

lump sum payment of $13,000 or an annuity paying $700/year. My mental

arithmetic left me there and I wonder if you could help me out?

R. A. Howard

The payment is not proportional to the change in life expectancy because the

effect is nonlinear. The changes in life expectancy and payments are computed

from the same data but they are not obviously related to each other by any cons-

tants.

F. E. Burke

One is instant and the other is at the end of the expected life.

R. A. Howard

Unfortunately, there is a common belief that if I lose some expected life, the

decrease always comes off the end. If I believed this, I could think there's no

problem with smoking because it's going to hurt me after I'm too old to enjoy any-

thing else. Of course, that's not true. The increased hazard is a change in the whole

probability distribution of life.

E. V. Anderson (lohnson and Higgins)

One possible error is the use of the "falt" statistic to apply to a 20-year-old.

About 900/o of your fall deaths are of people aged 65 and over and you probably

should take the deaths between 20 and 50 and use that as a basis.

R. A. Howard

Righr. I think that's a very good observation. Everything in here should be

interpreted from the individual's point of view. A 20'year-old should use a pro-

babiliry of falls thar he believes describes his own risk. I am sure he would like your

information in assigning his probability. I believe such modilications of general

experience are proper. But the individual should realize that he may be biased. As

we know. everybody thinks he's a better driver than everybody else'
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J. H. Wiggins (J. H. Wiggins and Company)

Have you done anything that says, I'm not talking about gambling on me, but
say on my wife, my children, my next door neighbor, the fellow down the street, or
linally some person in Miami, Florida who I don't even know? In other words,
how would this same kind of a thing deal with the case when it is a person other
than mysell?

R. A. Howard

That's what we call the value of a friend; it is discussed in the report referenced
in the paper. The model shows that when you value your friend as yourself, you are

willing to pay for him as yourself. As the degree of friendship goes down and down,
of course, you will logically spend less for him than you will for yourself. But, only
in the white pill case do I find this an ethically acceptable idea. You may not impose
serious risks on others, but you can save people's lives so long as you don't affect
them in any way in terms of coercing them. If you want to contribute to someone's
medical plan, that's terrific.

J. H. Wiggins

We're doing Black Pill things all the time. All society is imposing serious risks on
others.

R. A. Howard

Many people are, but I am not intentionally going to do anything like that, or to
encourage it.

J. H. Wiggins

If you vote for a man who votes for certain legislation, then you are responsible?

R. A. Howard

I vote not because I support government coercion, but because I think it's o.k.
for a slave to use any means at his disposal to secure his freedom. I am not respon-
sible for the government any more than a slave is responsible for slavery.

M. E. Pste (Massachusetts Institute of Technologt)

I have a practical question about the evaluation of public policy. I would like to
know what kind of figure you would recommend for a group of people, with
different ages, incomes, and risks. How wourd you aggrlgate their individuat
figures?
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R. A. Howard

That's precisely what I would not do. If we start a flying club of three or four peo-
ple and we want to decide what kind of airplane to buy, then I can provide a small-
risk life value to be used in a decision process I have agreed to. But I think it's very
dangerous for people to say what other people's lives are worth. Because once you
allow them that possibility, of course, you are open to their making the value as

small as they like. So I don't like the idea of people setting a value on other peo-

ple's lives. Ethically I think that each person may want to set a value for his own
life; that's up to him. It's all right for him to make such decisions, but not for other
people.

W. D. Rowe (The American University)

My question, Ron, is how many times a day do you have to make a calculation?
For example, I get into my car and I'm driving along having made one calculation,
and suddenly I see an accident and I decide I want to remake my calculations
because of the imminence or the reminder of the reality factor. So there's a

dynamic aspect here, isn't there?

R. A. Howard

Life value should change with age and changing circumstances, as we have seen.

However, sudden changes would be unusual. You could spend your whole life
making life and death decisions, but that's not what I am recommending. What I
am saying is if you feel these issues are important this isa way to make such deci-

sions.

A. S. Currsn (Dept. of Health, Westchester County)

Getting back to the last question about putting a value on others' lives. In my
position as Commissioner of Health, I frequently have to do that in a flip-flop way

in that I am asking the taxpayer to pay a certain number of dollars so that he won't
have trichloroethylene in his well or something. I am faced constantly with this

type of analysis that has to be done, and then peoples' perceptions of what the risk

really is. I think what you're talking about today can be very beneficial. but I think
we do have to sometimes assume that responsibility.

R. A. Howard

I don't like the imposition of that responsibility on people who don't want it.
There was a discussion earlier today about the freedom of the individual. It seems

to me the ultimate freedom of the individual is to own and control his own life. So,

I don't like the idea of health commissions making decisions about my life. but I
guess a lot of other people must because we have a lot of such activity in our

society.
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B. Bruce-Briggs Slave. (Laughter) (|,{ew Class Study)

How would you handle a Typhoid Mary problem?

R. A. Howard

Typhoid Mary problem? I wouldn't eat in a restaurant that didn't inspect its

workers and require that they be healthy. Typhoid Mary worked in a restaurant'

Right? Look at the companies that have had problems with botulism in their can-

ned goods. What has happened to them? Well, they have been in real business

trouble. You can ruin your reputation when you take risks with what you put in the

can. No restaurant is going to risk im repumtion by not having health examinations

for its employees. If you're in the restaurant business, you don't need a govern-

ment regulator to tell you that having such examinations is a pretty smart idea, par-

ticularly when there is no corporate limited liability to third parties.

A. Curran

But then you're doing what you said you didn't want to do because if I'm taking

the responsibility of saying I'm going to protect your health by sending in

sanitarians to inspect that restaurant, I'm making some kind of decision for you.

I'm assuming you want to be protected.

R. A. Howard

You heard me wrong. I don't want you to protect me. I want the owner to do it in

his own self-interest. For one thing, he won't ask the taxpayers for money to do it.

M. G. Morgan (Carnegie-Mellon University)

What sort of plans do you have to use the technique to examine a significant

sample of people so that we have some notions of how it would apply to different

individuals in different walks of life?

R. A. Howard

That's a very good question. We have done, not what I would call experimenta-

tion, but rather class exercises with people of different ages and situations. There is

quite a bit of divergence; some people have $50,000,000 small-risk values and

others have $1,000,000 values. I have not done, nor am I likely to do, a sort of
demographic study based on this model. Some other people, I understand, are

interested in doing that. I wish them luck. I just hope that it won't be used for pub-

lic policy decisions.
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E. A. C. Crouch (Harvard Universie)

Then how do you evaluate the small-risk life value to apply to products if each
individual has his own?

R. A. Howard

Good point. You just display it on the product. In other words, if General
Motors is going to use a $1,000,000 value on life (l could have used other com-
panies, of course), they just stamp it on the bumper of the car. A Mercedes Benz
could have another number. As I said earlier, it becomes a product characteristic,
just like color or how soft the seats are or anything else. Stating that a particular life
value was used when it was not would be fraud. I would like the small-risk life
value stamped on the product to be the indemnity paid by the manufacturer if
someone is killed using it as a resulr of its design.

E. A. C. Crouch

Then you leave it up to the individual whether he should get that car or not?

R. A. Howard

Who else?

J. Huntsman (Applied De<'ision Analysis)

Ron, how can we be sure that the information that companies state is truthful?
A sufficiently large company can lie about their information and there's no other
information to go on.

R. A. Howard

Well. that would be fraud. Presumably at the time of trial all this would come

out. The papers would be subpoenaed and so forth and so on.

J. H. Wiggins

We have found that when you ask people what they would do and then see what
they really do. it's different. Can you use rhis method for real decisions?

R. A. Howard

I use this method but I can't tell you whether you ought to use it. I know I make
my safety decisions this way.
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D. Mclean (Universitl' of Maryland)

I'm pursuing this smalt-risk life value number that's been put on cars. Do you

propose that your analysis is limited to such personal product choices like cars or

that you put the same sort of number on a highway?

R. A. Howard

Yes, highways, too. Of course the small-risk life value applies only to small risks.

I didn't have a chance to go into it, but where do you find death probabilities

outside the safety range, that is, probabilities of death from one in one thousand up

to one? They do exist in our society, mainly in medical problems. When you go to

the doctor and he recommends an operation, you're often dealing with pro-

babilities in that range and then you might use the more detailed model rather than

simply the small-risk life value. But in the safety region, with death probabilities

less than one in one thousand, then I'm quite content to use the small-risk life

value.

A. Kneese (Resources for the Future)

I'm sorry to cut off this very interesting discussion. If somebody has a question

that is just burning, I"ll let him take one more question. Yes, sir.

M. Thompson (lnsitute for Policy & Management Research)

You say you use this method yourself.

R. A. Howard

That's correct.

M. Thompson

Well, honestly, I could not understand a word of it, so I can't use it for myself

R. A. Howerd

From this short presentation, I wouldn't expect anybody who hadn't heard it

before to understand it. The paper will be clearer, and the report that is referenced

in the paper even more explicit. But perhaps you're saying not that you didn't

understand it, but that you disagreed with it.

M. Thompson

Yes, I did disagree

R. A. Howard

There is hope on that issue, too.
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Abstract

uslng the declston analysls franework, an rnpllclt varue of rlfecan be deternlned for deslgn decistons ttrai tnve death as a posstbleoutcooe' Our survey of the llterature and our own calculattons s,ggesta great lnconslstency ln the lnplled value of rtfe. re shor tha! byuslng a conslstent, exprlclt vaiue or rrier-it" tot"r expecged nrnber ofdeaths rlon ar, proJecrs can be redueed wriuoui i;;;;;;*-i"i.r.expendltures or reduclng beneflis. Tlre 
"ipii"rt varue or-rii" <llnectryaffects deslgn dectstonE. sd; recent resiarch indlcaies that the varuetha! an lndlvldual praces on hls onn llfe can be characterlzed by a ferassessoents of the lndlvldualrs clrcrnstances and hls preferences.

I BACKGNOUND FOR DECISION I.TAKING

The declslon anarysls nethodology shors that assesslng andconblnlng three elenents ls essenttai-to uakfug a good decislon. Theseeleoents are the declslon ,"r.""r" *o""i"rniv'luout the outcones, hlsval'ues for the outcones, and hls attttude toiarcr rrsk taktng.(r)conslder a utlrltyrs hypothetlcar declsion oi-rrt"tter or not toconstruct a neH porer prant. For stnpllciti, 
"""-" that the declstondepends only on wtrether future customer oenana for electrlclty ls rhlghror tl.wrr as shown ln Flgure 1. Four outcor"" 
""" 

posslble: new

::r;{Ht}r"ti'#;nl:" r';viiw deaano, ;;;;, pranrznrgrr-aeoano, no

Begardless of rhlch declslol gh" utlrlty uakes, the outcone lsuncertaln because custoner denand r" unoe"i"Ll uncertalnty rs an
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lnportant part of a declslon, and probablllty ls the ranguage that the
declslon naker can use to descrlbe uncertalnty.(2) nor -xanpte, 

the
utlllty nlght belleve there Ls a 751 chance of rhlghr denand and, a Z5l
chance of rlorr denand, lndependent of lts constnudtton declslon.

A second eleuent of the uttlltyts declslon ls the values of the
four outcoBelt. Va1ue Eeans the rrorth that the declslon naker attaches
to one outcoue relatlve to another. A convenlent neasure of thls uorthls dollars. rtre utlrlty courd base the varue of the new prant/row
demand and no plant/hlgh denand outcones on the prlce at wtrlch lt can
buy or sell energy to nelghborlng utllltles and could also lnclude the
subJecilve value of pubric or puc reactton to these outcones.

Flnally, the uttlltyrs declslon should depend on the co6pany pollcy
!9*IA !.!ftU rlsks. Including the dectslon nakerts rlsk attltu<te lnthe dectslon anarysts ls recognltlon that deelslon nakers ao not
generally nake declslons on an expecled value basls, but evaluate each
alternatlve at less than lts expected value because the proposltlon lsuncertaln.(3) Slnce the purpose of thls paper is illustrative, we shall
lgnore rlsk atLltude for slnprlclty ln our examples. rn that case,
Ftgure 1 shors the ocpected value of the rconstruct ner plantr declslonto be 245, conpared to 230 for the tdo not construcgr declston.
Consequently, bulldlng the plant ls the utilltyrs best declslon.

As thls exanple shows, declslon analysls analyttcally conblnes the
three elenents provlded by the declslon naker to deternlne whlch
declslon ls loglcally conslstent rrlth the declslon nakerts lnfornatlon
and preferences. The deiernlnaLlon of a rdeslgn 1evel of rlskr for any
part of'the nucrear fuer cycre or for the entlre fuer cycle ls a
declslon. Thug, the deslgn shourd depend on the three essenttalelenents: the varues of the outcones, the uncertalnty, and ihe rlsk
attltude.

II NUCLEAR RISK ASSESSMET{T A}ID THE VALUE OF LIFE

Governnent and lndustry have been engaged ln quantlfylng the
uncertalnttes ln the safe operatlon of reactors, transportation of fuel,
aad storage of wagte. However, decLdlng what rlsks are acceptable also
requlres speclfylng the values of the consequences.

-There ls, perhaps, a naturar reructance to prace a value on the
posstbre urdeslrable consequences. sone speakers at the 19?? rnter-
natlonal Conference on Reltabtllty and Rlsk Assessoent ln Gatllnburr(4)
trled to avold the problen by suggestlng that a probablllty of 10-0-of-
one reactor accLdent per year for 100 operatlng reactors 1l low enor.rgh
to be acceptable rlthout expllcltry valulng the consequences of the
accldent. unfortunatery, thls approach inprles a varue of the
consequence and hldes lt fron public view.
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t{e r11I use the exanple of Flgure 2 to denonstrate hor speclfyhg
an racceptablet probablllty level lnplles a value of llfe. Suppose tro
reactor deslgns, A and B, are avallable to produce a ftxed anount of
porer. A uaJor accldent produces the sane conseguences ln both deslgns:
11000 people ldlled and $10 bllllon ln property danage, If there are
100 operatlng reactgp", the ppobablllty of occumence of a uaJor
accldent 1111 be 10-- and 10-' for a year of operatton for Deslgns A and
B, respectively. However, 100 reactors of Deslgn A cost t100 nllllon
mone than those of Deslgn B (an addltLonal S8.lg nlIllon for fonty
years, anortlzed at 8I). The beneflts D are asslned to be the sane for
both deslgns and to be obtalned ln both outcones. Ttre arpected value on
an annual basis froo uslng Deslgn A and Deslgn B ls:

Deslon A Deslan B

Death s/year

Danag e/year

Cos t/year

Beneflts/year

--{1 x 10 J

$l x 104

C+$8.39x106

D

10 x 1o-3

$to x lo4

c

D

If Deslgn A ls accepted ln preference to Deslgn B, then the Iogtcal
lnpllcatlon 1s that the orpected value of Design A nust be nore than
that of Deslgn B. Since the beneflts are the sane for both deslgns, the
expected cost of Deslgn A nust be less than the expected cost of Deslgn
B, Lettlng V be bhe value of l1fe,

t x to-3v + 8.39 x 106 + 1 x 104 * c < to x to-3v + 10 x to4 * c

or

For Deslgn A to be preferred to Design B, the lnplled value of a life
nust exceed $9Ze nlIllon.

The only dlfference between the two neactor deslgns ln thls exanple
ls the probablllty of a naJor accldent. llaklng costly reaetor deslgn
changes that reduce an already very low probablllty of a naJor accldent
lnpIles a very hlgh value of llfe. 0f courser Eaoy design changes that
reduce the probablllty of a naJor accident rlrr also reduce the
probablllty of nlnor accldents. Including thls effect and others ln a
nore reallstlc exanple could reduce the tnplled value of llfe. However,
the polnt of thls exanple ls that every declslon between alternatlve
deslgns that affects the probablllty of death also lnpties a vaLue of
Ilfe.
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III INCONSISTENCT IN THE VALUE OF LIFE

Because tacceptabler probablllty leveIs fon accldents in dlfferent
lndustrles have been deflned rtthout expllclt conslderatlon of the value
of llfe, there ls gneat lnconslstency ln the tnplled value of llfe due
to dlfferent sources of rtgk. For exanple, D. usher rlsts the lnplted
value of llfe ag $341000 to $1591000 fron the hazard pay to nlners
ronklng underground, as $1611000 froo bhe hazard pay to test pllots, and
as $1401000 frou the lnstructlons to nllltary ptlots on when to crashland.(5) Llnnerooth llsts i140,000 ag ttre vifue of life expllcltly usedln the cost-beneflt anarysls of hlghnays.(6) By conparlson, our orn
calculatlons shol, that the proposed lnterLu crlterla for Lt{R Radraste
systeos(?) Upfy a value of-llie of $S nll1lon, ard the EpArs proposed
Intertn Pr'!.uany Drlnklng l{ater Begulatlons(8) lnply a value of llfe of
$2.5 uullon.

Ilhlle we Eay disagree about the parttcular nrnber that should be
used for the varue of rlfe, we shourd agree that a conslstent
nethodology for establlshlng the value ls lnportant. There is econonlc
lnefflclency 1n treattng 1lfe as lf lt 1s worth t5 utttton when settlng
radlatlon doses and t.l4 ntllton rtren deslgnlng roads. By ustng a
conslstent value of llfe, the nrnber of deiths could be niduced rithout
reduclng total beneflts or spendlng Eore Doney.

As an lllustratlon of the advantage of uslng a conslstent value of
llfe ln destgn, conslder trc proJects, both at the deslgn stage (trlgure
3).. For ProJect r, a deelslon nust be nade regardlng the totar proJect

l-"-lt_9r1,Sloh oan yary conttnuously over sooe range. There are onrytro posslbre outcomes fon the proJect. Hlth probauurty pr(c.), the-proJect resurts ln beneflts 81 at cost cr. lilitn prouauirrly l-i.,(c.,),
the beneflts B., and cost cr stllr occurr'but ln addltlon N. rlved ate'lost. The vahie of llfe aisoclated wtth ProJect I ls assulied to be Vr.

As the cost of the proJeet increases, the proJect ts deslgned to
lnclude addltlonal safety features, aod the chance that no deaths result
fron the proJect lncreases. Hohrever, lncrenental safety ls assL&ed to
be lnareastngly expenslve, so

dlz Pt(ct)

-

dc
1

2

The second proJect, proJect rr, ls sLutrar to proJect r. Horever,
lt has a chance of kllllng N, lndtvlduals, and the value of life for
thls proJect ls taken as V2.'

The expected value of ProJect I, glven that the
set to C

1
) 1s
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(r) <vlcr> = p.,(cl)[81-ct] + tr-nr(cr)J tBt-c1-N1vtl

rhere the syubof <VlC.,) denotes expectatlon of the proJect value v
condltloned on Cr. Ttie flrst order optlnallty condltlon for na:rlnlzlng
equatton (t) ts,

Q) dP (c )l
1 1

dct

Slntlar1y, for ProJ ect II ,

(3) dPe rcz)

--
-ID

v
1 1

1

N

.-
- 

-D 

o

N v
2 2

Notlce that the value of llfe expllctly appears ln these tuo equations,
Furtheroore, slnce the second derlvatlves are negatlve, the cost of the
proJects lncreases as the value of l1fe lncreases and as the nruber of
posslble deaths lncreases.

Let C1r and Crr satlsfy equatlons (Z) ana (3) respectlvely.
are the optlnuo co5ts for each proJect.

They

Now, suppose ve nalntaln the sane totar cost for the two proJects,
Cr. * Crr, and ask how bo dlstrlbute that cost between the two-proJects
fui ordeF to nlnlnlze the tobal expected loss of llfe. The constralned
nlnlnlzatlon ls:

dcz

Mtn N1[1 - pt(cl)] + N2[1 _ pz(c2)]

SubJeet to Ct + CZ = Cl. + CZ,

As a solutton r w€ flnd

(4) dPr(cl) dPzrcz)
Nr a% =-t

Subetltutlng (2) and (3) tnto (4) glves

(5) 1 l

vt Yz

By asstgnlng a conststent value of llfe for all proJects, one nlnlmlzes
the expected loss of llfe fron arl proJects. rf the varue of life ls
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lnconslstent aoorg proJects, then lt ls alrays posslble to redlstrlbute
funds betreen the proJects and reduce the nrnber of expected deaths.

Unfortunately, oost expllclt llfe value calculatlons seen to be
based on the lndlvldualrs value to others rather than on hls own yalues.
One way to avold thls dlfflculty 1s to establlsh an lndlvtdualrs llfe
value based on the lndlvtdualrs preferences betreen the tength of hls
rlfe and hls level of constmptlon durlng tt.(9) l{hen thls bastc
prefenence ls atl8mented by hls attltude toward rlsk, hls ablllty to tunn
lncme lnto future consunptlon, and hls reualnlng lifettne dlsti.fUutfon,
re can derlve an asyuptotle llfe value that the lndlvldual muld use ln
an expected value senae, Thls value ls asyutotlc ln the sense that lt
applles to sltuattons that lnvorve a salr probabtltty of death.
Typlcally, thls value turns out to be several tlnes the econonlc value
of llfe based on the present value of f\rture earnlngs.

An exanpre fron Reference (9) ls that of a 25-:Iear ord whlte nare
wlth an annuar consunptlon of g2orooo per year faclng a 5I lnterest
rate. Suppose he feels that a 1I decrease ln hls llieblne would requ!.re
a 2I lncrease ln consunptlon to nake h1n lndlfferent. Suppose further
that hls rlsk attitude ls descrlbed by a marglnal rllllngness to accept
a lottery that 1s equally llkely to lncrease hls annual consr.rmptlon to
$26,000 or decrease lt to $1?rooo. Then we can calculate that hls
asynptotlc llfe value ls about i2.4 nllllon, rtrlle.hls econonlc llfe
varue ls only about t360r000, less than 1 /6 as great. The 92.4 nlrllon
varue would apply for 11fe_61sks less than, for aranpre, l/looo. rf
thls lndlvtduar fag6d.a !o-' cfance of dylng, he shourd requlre
conpensatlon of 10-- (2.4 x 10-) = $e4o to rrndertake the risk.

IV THERE IS AN EXPLICIT AND CONSISTE}TT VALUE OF LIFE NEEDED?

tle bave focused on one conseguence of a naJor reactor accldent,
death. A conplete value nodel for the consequences of a naJor accldent
nust also lnclude the value of non-fata1 sonatlc healbh effects and a
varlety of genetlc effects.(10)

A uaJor reactor accldent, ltself, ls onry one of the outcones of
the nany that nay result fron the operatlon of a nuclear p]ant. gther
outcones are energy, raster €rod plutonlun productlon wlthout lncldent;
sabotage of the reactor; and dlverslon of the reactor-produced
plutonlun. If the government faced the pollcy declslon of rhether to
support developent of nuclear energy generatlon ln preference to coal,
all of these nuclear plant operatlon outcooes and a slnllar set for coal
plant operatton would have to be evaluated.

For thls hlgh lever declslon, the val.ue of rlfe, or Lndeed the
value of all externar soclar costs (the cost of death, genetlc danage,
etc.) uay not be partlcularly lnportant to the declslon. for exanpte,
uslng the lllustratlve data fron nThe Econoolc and Soclal Costs of
Nucrear Porerrtr Reference (11), the total external soclal oost fron
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nuclear porer ls .08 ullls/lcrh conpared rlth the econoulc (lnternallzed)
cost of 211.9 nllls/lcrrh. slnce soclar cost ls so aarl, the total cost
of auclear energy ls not very sensltlve to the value of ltfe.

llbere conslstency ln the value of llfe and othen soclal values ls
veny lnportant ls at the englneerlng and operattng dectslon 1evels.
Tradeoffs betreen lnproved energency core coollng systeo deslgn and
lncneased cost depend dlrectly on the value of Ilfe, as suggested by orlr
last exanple. Destgnlng agalnst sabotage uay lncrease plani pensonnel
radlatl.on exposure, and both the consequences of sabotalge and- the
consequences of lncreased personnel exposure depend on the value of
ltfe. rn addttlon, an exprlclt stateoent of the value of rlfe ls
cructal slnce the dlfferent deslgn crtterla are set by dlfferent
goyenntrent agencies and loplenented by dlfferent conpanles.

V ST'I,TMARY

lfe have dlscussed the declslon analysts approach to rlsk assessnent
and used lt to shov that speclfllng an racceptably lowr probablllty for
an outcone lnvolvlng death lnplles a value of I1fe. Our brlef survey of
the lnprlclt values of lif,e used ln several lnstances shows a large
lnconslstenoy. The pnobabtltty of death courd be lowered rlthout
reduclng benefits or lacneaslng costs lf a slngle value rere used tn all
caaes, as re demonstrated wlth a slnple exanple. Flnally, we sqggested
a value of llfe oonputatlon that could be used to detemlne the value of
Ilfe to an lndlvldnal affected by governnental declslon naklng. The
deslgners of a proJect uust recognlze the varue of rlfe, elth-r
expllcltly or lnprlcltly, wtren the proJect budget ls speclfled.
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The Design of Hazardous Products

DANIEL L. OWEN

Abstract-The kind of information required by the designers of hazardous
products in order to provide individual consumers with their desired level of
safeQ is considered. Normative consumer behavior with respect to multiple
hazards, involuntary hazards, and public hazards is examined. Finally, a

free market for safety is shown to be possible if coryorate liability is
properly aranged.

INrnooucrroN

Most research in the general area of safety has addressed the
problem of how someone acting in the public interest should
make safety decisions I J, l2l. Consequently, researchers have
focused on two major components of that problem: the assess-

ment of public attitude and the appropriate procedure for balanc-
ing costs and benefits of various actions affecting the public.
Public attitude is important because from it comes the values,
uncertainties, and attitudes toward risk-taking that are included
in the cost-benefit equation.

At a recent General Motors conference on safety [2], Slovic et
a/. discussed psychological biases in public perception, including
the disagreement between the statistical frequency of death and
publicly perceived frequency of death for low-probability events

t3l. Stan [4] and Schwing [5] have felt that by analyzrng dangers
that people currently face, one might gain insight into the public
attitude toward safety.

With regard to the proper method of combining societal costs
and benefits, there is an entire economic literature of welfare
theory. The history of the application of welfare theory to safety
issues is documented by Linnerooth [6]. In addition, Linnerooth
discusses what she calls the "policy dilemma" resulting from a
conflict between the economist's desire to reduce the total num-
ber of lives lost and the willingness-to-pay principle t7l. Her
paper provides recommendations to the analyst or policymaker as
to the appropriateness of the two formulations under various
circumstances.

In this correspondence, we address a different problem from
that addressed by most research in the safety area. Our concern is
how an individual should make safety decisions about his own
life and how he can communicate his desires to the product
designers. Given an individual's information and preferences,
there are certain norrnative implications for decisions affecting
his own life that result from the theory of decision analysis [8]. A
descriptive assessment of public attitude is irrelevant to this
analysis because of our normative approach. Since our focus is
individual decisionmaking, we also do not have the theoretical
and practicd difficulties of social cost-benefit analysis.

DrslcNrNG FoR SerEry rN HezARDous Pnopucrs

In general, design problems involve trade-offs between a large
number of product attributes, such as size, output, efficiency,
safety, and cost. We are concerned exclusively with the trade-off

l,lanuscript recctved lterch 15, l980l revleed January 26,
1981 and July 7, 1981.

The autlror rae rlur ure tleciaton Nraryala Group, sRr
Internatlonal, and the Declslona and Etlrlce Centerr Stanford
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3000 Sand 8111 badr Bldg. l3r Sulte l5O, t{enlo park, CA 9a025.
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of cost against safety. In order to address this issue, we use a
simple design problem featuring only these two attributes. Though
the results are developed by focusing on engineering design, the
results are applicable to toxicity levels of various chemicals as
well as other hazardous products.

Suppose we are approached by a client who wants us to design
a hang glider for his use during the next year. Since he is very
concerned about the possibility of death or serious injury from its
use, he is not sure that the commercially available models are safe
enough. After considerable effort, we are able to determine the
feasible set of hang glider designs. Let P( c) be our client's
subjective probability assessment that he is not killed as a result
of a harrg glider accident, where c is the safety cost of the hung
glider. Let the boundary of the feasible set of hang glider designs
have the following properties over some range of c:

dP( c\

;>0
and

dzP( c\

i<0.
These properties imply that increasing safety is increasingly more
expensive, as shown in Fig. l.

The design problem is to select a safety cost c for the product
design, when the user will face death with probability I - p( c).
This problem is presented in decision tree form in Fig. 2. The box
and branches on the left represent the design decision about the
safety cost of the product. Following the design decision, the user
will use the product and live with probability P( c) or die with
probability I - P( c). The benefits B of this design are assumed
to be received whether or not the user is killed and nonfatal
injuries, pain, and suffering are not considered. Of course, these
simplifications could be rela,xed at the expense of some additional
complexity in the model.

This figure shows that any selection of safety cost implies a
particular balance between the client's resources and his chance
of death. For example, a wealthy man could easily afford to
reduce the risk of death to a very low level while a poor man
could not, and for a given level of wealth we might expect Evel
Knievel to accept a higher value of I - P( c) than you or I.

This author thinks most people would agree that this balancing
of risk and cost is best done by the individual who is exposed to
the risk. Professor Ronald A. Howard's work on life and death
decision analysis shows how an individual can characterize his
own balancing of cost against the risk of death by a single
number-the small-risk value of life [9], [0]. Howard begins with
the premise that in selecting a level of safety an individual is
trading off consumption against lifetime. The individual could
choose to live in relative safety without much consumption,
having spent it all on reducing hazards, or have relatively more to
consume by living dangerously. Howard shows how quantifying
an individuals's preferences for this trade-off leads to the compu-
tation of the small-risk value of life.

For example, Howard considers the case of a Z5-year old male
with a constant annual income of $20 000, who is indifferent to a
one percent decrease in lifetime coupled with a two percent
increase in consumption. With a risk tolerance of $6000 and a
real interest rate of five percent, this individual's small-risk value
of life is computed to be about $2.4 million. The small-risk value

00 l 8-e 472 / 8l / 1000 -07 t4
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P (c)

Probability of
Safe Operation

BCV

c

I - P(c)

P (c)

Designer's Problem

BC

B c II P(c)lVMax

c

I P (c)

P (c)
BC

Fig. 2. Designer must select safety cost c' for design. O: safety outcome.

of life is the number of dollars an individual should attach to his

life when he or a designated agent makes a decision that involves
a very small possibility of the irldividual's death.

Returning to the design problem, as designers we could send

our client to Professor Howard to have his small-risk value of life
computed. When the client returns with his small-risk value of
life V, then our design decision is described by Fig. 3. Since

the value of life, as computed by Howard's method, incorporates
the effects of the client's risk attitude, the value of the design

to the client is its expected value:

P(r)[B - cJ + [t - P(.)]lB - c - vl.

The condition for maximizing this expected value is

dP(c) I
(r)

B
c

t

Safety Cost, c

Fig. l. Properties of feasible set of designs.

Client'stsc
LI TE

Fig. 3. Designer's problem with client-supplied value of life V. D: design

decision.

TUE IuponrANCE or CoNSTsTENCY

Impressed by our understanding of the trade-off between cost

and safety, the client asks us to design a parachute for skydiving
to be used during the same period as the harg glider. The safety

decision for the simultaneous design of the two products is

displayed in Fig. 4. The cost of product l, c t, and the cost of
product2, c2, are specified during the design, and then the client
faces the possibility of death from each of these products. Notice
that each product has its own functional relationship between

safety and cost. Initially we assume that the client may provide

different value of life assignments for the two products. If death

results from product l, then it cannot also result from product 2.

Hence the expected value of the two products is

Bt - c, * Bz - c2- (l - Pt)\- P,(l - P2)vr,

and the first-order condition for the optimum design is, for
product l,

dPlc t) I

dq - v- yr11 - p) = v,

and for product 2,

dP2Q) I I

dr, - PtV2= k'
The approximation results for small risks where P, = Pz o I

Let Cf and Ci satisfy (2) and (3), respectively. Now suppose

we maintain the same total cost for the two products Ci + Ci
and ask how we can minimize the aggregate probability of death.

The constrained minimization is

minl -P,(r,)Pr(rr)
subject to

c.*cz-Cf+Ci.
As a solution we find

(2)

(3)

dcV

If the probability of proper operation of this product P( c) is
interpreted as its safety, then ( I ) states that the safety cost of the
product should be adjusted until the rnargrnal safety is equal to
the reciprocal of the client's value of life. Using a higher value of
life increases safety, represented by P(c), and since the second

derivative is negative, also increases the cost. The properties that
we have discussed above for the boundary of the feasible set of
designs assure an optimum at some cost.

A particularly popular notion is that the whole question of
value of life can be avoided by setting the chance of death from a

product at some low level, say lg - o. For example, this view was

presented by some speakers at the Symposium on Nuclear and
Non-Nuclear Energy Systems, Risk Assessment, and Governmen-
tal Decision Making held in Washington, DC, on February 5-7,
1979 tl l. However, for any particular value P(c\ there is a

corresponding level of rnargrnal safety dP(c)/dc and a value of
life implied by (l). This equation clearly shows that a safety
decision made on the basis of cost or probability implies a value

of life I l]. Studies have identified a large inconsistency in the
implied value of life in past safety decisions Uzl, probably
because they were made on the basis of cost or probability.

(4)

Substituting (2) and (3) into (4) gives

Vt: V2. (5)

By using a consistent value of life for all products, one mini-
mizes the total chance of death from all products. If the value of
life is inconsistent among products, then it is always possible to
redistribute funds to reduce the chance of death without addi-
tional expenditure I l].

INvoI-UNTARY Rrsr or DEnrH

Suppose an individual is forced to accept and pay for a

product, which we call product l, that he does not want. For
example, some people would have preferred not to have paid for
the seat-belt system that wurs mandatory on 1974 automobiles.

Presumably, the individual does not want that product because

PlP2
dP,

dr,

dPr.

drz
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TABLE I
Rrsr DrsrcN CoNpruoNs

Involuntary

Exposed individual
bears product cost

Exposed individual
does not bear prod
uct cost

he believes it has a negative expected value. We will refer to
products with a negative expected value that must be undertaken
as involuntary. (Of course, the expected value should be taken
considering all attributes of the product including fear, injury,
death, etc. Those attributes could easily be added to our model.)
Suppose there is also another product, product 2, that the indi-
vidual voluntarily accepts.

If we are requested by this individual to design the two
products for him, we find that the representation of Fig. 4 is still
appropriate, (5) still applies, and the same value of life should be
used for both products. Consequently, the involuntary nature of a
product does not alter the normative design conditions. In ob-
taining this result we assumed that the individual who is exposed
to the product pays its cost and determines its design.

A much preferable situation is for those who want an individ-
ual to use the product to compensate him so that he is indifferent
between not having the product and having the product with
compensation. Voluntary acceptance by the compensated individ-
ual requires that his expectation for the product be nonnegative,
or a minimum compensation payment D given by

D- -B *c* [t - p(r)lv.

The compensation D must equal the expected loss from the
product. Those who pay the compensation want to design the
product to minimize compensation. Hence their problem is

min{-n *c*[r -p(r)lv]
which has the familiar solution,

dP(c) I

dc V'

Notice that V, the small-risk value of life, is provided by the
exposed individual.

A summary of these results in Table I shows that the design
condition is the same in several very different situations. The first
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Bl + 82 cl c2 Vl

I P, (c1)

B

I Pr(cr)

Pl (cl)

Pr(c2l

Bl + 82 cl c2

t

t'

Design Problem Min I p, (c I ) 
pz (cz)

for Simultaneous Designs Subject to cl + c2 = 
"t* 

+ c2*

Fig. 4. Simultaneous design of two hazardous products.

VCcB,+

Rclrc-f of Inrlrvi<luals
AandB )\- --'

A ,.-| ,-'
Risk

P(c)

Probabilrty of
Saf e Operat j-ondPl

dcV

BeI r,ef of lncirvrciual
C(

/

_____D,
Total cost c
of [)r<t 1r.i-t

Fig. 5. Group of individuals disagree about absolute levgl of safety, but agree
about marginal cost of safety.

row corresponds roughly to democratic action. For example,
three individuals may have the different beliefs shown in Fig. 5
about P(c). Because individuals A and B believe a proposed
product to be relatively safe, they vote to implement it. Individ-
ual C may see the expected value of it as negative because he
believes it is relatively unsafe. The product gains a majority vote,
and the product is forced upon C. Though he disagrees about the
advisability of the product, individual C should agree with the
others about its design according to ( I ) if he has the same value
for his own life as z{ and I assign to theirs, agrees with the others
about the marginal cost of safe ty dP / dc, and pays for his own
product.

The first column of the matrix corresponds to a system in
which the group accepts only those products to which no member
objects. This unanimity is achieved through side payments. Un-
der the assumptions above, those who require compensation and
those who do not require it would still agree on the product
design.

The lower right box of the matrix occurs when an individual is
exposed to a risk but has no say in the design level of safety. In
this situation, the exposed individual must rely on the altruism of
those who make the safety decision. Hence, our conditions for
agreement on the safety design can be summarized with the
following.

Theorem; Given individuals who assign identical values to
their own lives, Z for use in the design of hazardous products,
and who agree about the marginal safety per dollar on the
boundary of the set of feasible designs dP(c) / dc, then there
should be broad agreement on how to design the hazardous
product among

I ) those who think the product has a positive expectation and
have ,to pay its cost,

52s

Voluntary
Risk

dPl
dcV

dPr
dcV
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2) those who think the product has a negative expectation and

have to pay its cost,

3) those who have been compensated to be indifferent between

not having the product and having the product with com-

pensation,

4) ihose who pay compensation to get the product accepted.

An important point is that this result is derived by considering

the valui to the individual facing the risk. It is the exposed

individual's subjective evaluation of probability (not necessarily

official estimates) and his own value of life assessment that must

be used in determining that expectation.

While there may be strong disagreement among individuals

about the absolute level of safety P(c) afforded by some particu-

lar design, agreement about the marginal safety dP(c)/dc seems

much more likely.r Agreement about the level of safety-that is,

the probability of safe operation-is not required for agreement

about the design of the product.

A MnnKET FoR SanErY

So far, our development has depended on perfect communica-

tion between the individual exposed to a hazardous product and

the designer of the product. In large projects 
-affecting 

many

individuals or where a single product is designed for consumption

by many individuals, direct communication with the product

designer is impractical. Therefore we want to consider the design

of hazardous products from the producer's side to determine

under what conditions a market for safety might exist.

The design problem for the corporate designer is shown in Fig.

6. Following a decision about the safety cost c of the product, it
will operate as intended with probability P(c) and will kill the

user with probability I - P( c). The company makes profit n(c)
in either event, but incurs a liability loss L if the user dies

because the product fails. Selecting the product cost c on the

basis of net profit maximization and assuming risk-neutral de-

cisionmaking by the corporation gives as the design condition

I - P(c)

P (c)

n (c)

Fig. 6. Corporate designer selects design cost that balances profits against

possible liability losses. Corporate designer's problem: Max, n(c) - [l -
P( c\l L.

sumer to a level of safety consistent with his own resources, just

as he settles on a level of shoe quality consistent with his own

resources.

Since profits are revenue less cost, condition (6b) requires that

the corporate revenue be independent of the safety cost of the

product. Furthermore condition (6b) will not be satisfied if
revenues depend on the probability that the product operates as

intended, since that probability depends on the cost. Given the

postulated liability payment, consumers should purchase

hazardous goods on the basis of the value of life used in design,

ignoring the probability of death and the safety cost of the

product. The value of life incorporates and balances both of these

Loncerns. Thus if consumers make decisions consistent with their

own value of life, condition (6b) is satisfied.

SnrEry As A "PUBLIC" GooD

In the above discussion on involuntary risk, we considered only

products intended for individtral use and did not address the

design of products that may be hazardous to large numbers of

people simultaneously. In the latter case, safety or P(c) takes on

the characteristics of a "public" god, because use of the safety

by one individual does not detract from the use of it by another.

Suppose a particular product has benefits B and can be purchased

from the company at a price c, the safety cost. Then a designer

authorized to act on behalf of a group of three individuals faces

the decision shown in Fig. 7. Notice that we tue not trying to

solve the problem of how a group should make a decision.

Furthermore this authorized decisionmaker is not a government

administrator. Rather, the authorized decisionmaker is a designer

for the group with perfect information about the beliefs of the

individuals in the group. This section is included primarily to

show that the previously obtained liability results hold for a
group of individuals, each with a different value of life.

Solving as before, the resulting design ,ndition is

dP(c)

B
C

t

dp 1 dn(c)
(6)

dcLdc

Two conditions that would cause the product designer to select

the same level of safety as in our previous examples, where he

works directly wilh the client are

L- v (6u)

and

dn(c) 
- -1. (6b)

dc

Hence if the level of the liability award is equal to the customer's

value of life and if each dollar of added safety decreases profits

by one dollar, the company will design according to the level of

safety desired by the client.

A possible way to implement the first condition is for the

.arruiacturer to label his products with the value of life used in

making his design safety decisions. For exdmpler a poygr l?yr-
mower manufaciurer could have an "Evel Knievel" model selling

at $39.95 with a V - $100 000 and a "Howard Hughet" model

selling at 9229.95 with a V : $2 000 000. Along with the purchase

of either one comes a guarantee to pay V in the event the

lawnmower kills its user due to design failure. Consequently, a

market for safety is created that allows the consumer the freedom

to choose his own level of safetY.

This market for safety would also eliminate the need for the

consumer to explicitly compute his own small-risk value of life.

Successive purchases of. hazardous products would lead the con-

lFor example, the probability of a core meltdown in a nuclear power plant is

difficult to assess and apparently subject to a great disparity of opinion.

However, the reduction in meltdown probability resulting from the addition of

an auxiliary feedwater pump is easier to assess and less controversial.

dc Vt + Vz1 V3

The appropriate design condition for a hazardous product affect-

ing many people is obtained by summing the values of life that

each individual assigns to his own life.

Fortunately under the liability conditions discussed in the

previous section, the company has an incentive to make decisions

as if they were the decisionmaker acting on behalf of the individ-

uals affected by the product. A company undertaking this

hazardous product sees revenue less the safety cost c as profit.

However if the company faces a liabili ty L equal to the cumula-

tive life value of the exposed individuals in the event of malfunc-

tion, then its expected profit is

r(c) - [t - P( ,)l L (8)

n(c) - [t - P(r)J(r, + vz* vr)

Ma,ximization o[ expected profit leads to

dPdc I

(7)

(e)
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1 P (c)

c

P (c)

Fig. 7. Designer's problem for a product hazardous to three people. Design-
er'sproblem: m.u(( B- c - [ - P(c)J(Vt* Vz* Vt).

Under our earlier assumption that dn / dc - - l, (9) and (7) are
identical.

One important observation about this result is that each of the
group members may assign a different value to his own life. The
company designing the product would then agree to pay different
liability payments for the death of these individuals.

Suuu,rnv

The information required by a designer of a hazardous product
is the srnall-risk value of life, which is assigned by the individual
exposed to the possibility of death. With this information the
designer can equate marginal safety to the small-risk value of life
to obtain the optimum design for that individual. An individual
should strive to maintain a constant value of life or marginal
safety for all hazardous products in order to minimize his total
chance of death from all sources. Maintaining equal probabilities
of death amonghazardous products is not desirable because the
individual could reduce his total chance of death without addi-
tional cost by redistribution of the expenditures for the products.

Even though an individual may dislike involuntary exposure to
hazardous products, if he must bear the product cost, the design
condition should be the same whether or not the risk is voluntary
and whether or not compensation is paid.

Under certain liability and consumer behavioral assumptions, a
market for safety appears possible. By tying the corporate liabil-
ity to the consumer's value of life, the corporation has an
incentive to design the product consistently with the consumer's
preferences. Even products exposing large numbers of individuals
to a chance of death would be designed as if the corporation were
acting on behalf of the individuals exposed to the risk.
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INTRODUCT ION

An environmental health decision is one that changes the health and safety
of workers or the public. Installing safety or emission-control
equipment, changing production processes or work practices, putting
warning labels on products, and setting priorities for health-related
research are examples of environmental health decisions. In the past,
many companies focused on comp'lying with current government regulations.
Compan'ies relied on government standards because the hazardous nature of
many substances had not been established, because technology was not
available to detect Iow levels of hazardous substances, and because
companies did not have an effective rnethodology for deciding whether they
should adopt stricter standards.

However, the situation is rapidly changing. Awareness of the health
impacts of many substances has increased greatly. Also, instrumentation
for detecting hazardous substances and techniques for toxicologic and
ep'idemiologic research have improved greatly. Moreover, colEerns about
potential liability have also led companies to direct greater attention
towards environmental health problems. Final'ly, court awards and

settlements amounting to millions of dollars are increasingly conunon.

Although environmental health decisions are more comnnnplace, industry is
still l'imited in its ability to adequately handle these decisions. Health
experts may not communicate their recormendations in terms that
businessmen understand, and business managers may not understand
complicated nBdical information generated by health scientists. In
addition, because envirormental health risks may be imposed involuntarily.,
management time is spent on value issues that are difficult to resolve.

Environmental health decisions are also uniquely difficult to analyze.
The probabilities of detrimental health outcomes are often so small that
it is difficult to have any confidence in whether there is justification
for concern. There may be the potential for catastrophic outcomes or
irreversible effects. In addition, there is often a long latent period
between the exposure and the onset of the health problem, maki ng it
difficult to draw cause-and-effect conclusions.

Some companies have tried a new approach to increase confidence in their
health and safety decisions: decision analysis. In the past, decision
analysis has been routinely applied to forecast the range and likelihood
of financial outcomes resulting from important decisions. Today, the same

techniques are being used to forecast health and safety outcorns.

To demonstrate the insights that can be gained by applying decision
analysis to environmental issues, we will describe an example of a

company's decision to make a capital investment to reduce its workers'
exposure to asbestos fibers. Although the example is hypothetical, it
draws heavi'ly from several actual analyses and is similar enough to them

to provide general insights. t.le have constructed a hypothetical case
because potential liability implications make the actual envirorumental
health decisions we have analyzed too sensitive to discuss.
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THE ASBESTOS RISK

In 1953, a major manufacturing company, Loftus Inc., installed spraygd-ol

asbestoi insuiation in the ceifing of its 0dessa plant. Between 1953 and

i06r, aicumulated evidence showed-that exposure to asbestos fibers caused

ie"iort-tiOe effects such as asbestosis and lung cancer. Loftus had taken

a strong stance on safety. It was unclear whether v'ibration of the plant

equipment-and deterioration of the asbestos insulation were re'leasing

asbestos fibers into the work environment. Also, since the 0ccupational

5iiJiy ind t-tealth Administrat'ion (0SHA) had not yet be.en established, no

regulitory standards existed for asbestos exposure. However, the company

vol"untariiy followed work practices to comply with the standard of
12 fibers ier cubic centimeter (f/cc) reconmendgg qy.the American

Confeienie' of Government Industrial Hygieni sts (ACGIH) .

However, in 1967, 'increasing concern that workers might be-exposed to
asbestoi fibers ied the company to cons'ider three options for handling the

insulation. One possibility wis to maintain the "status quo" and do

nothing. However, this option might not achieve a satisfactory level of
comp'liince if the proposed OSHA later promulgated regulations about

exposure to asbestos. In addition, the potential liability under the

status quo could be tremendous.

A second choice was to repair the insulation, which involved removing and

replacing any insulation containing crocidolite asbestos fibers (thought

to cause the most serious problem) and sealing any insulation containing
chrysotile asbestos. The capital cost of such repairs was.$500,000 on a

plant with an annual profit of $10 million. In add'ition, inspection and

resealing would add an annual cost of $100,000. Repairing the insulation
would be more likely to comply with 0SHA regulations and would reduce (but

not eliminate) potential liability.

The most expensive option was to remove and replace all asbestos

insulation with other materials at a cost of $5 million. This decision

would allow Loftus to comply comp'letely w'ith any air quality standard or

with a standard requiring the use of the best available material.

The medical department and the operating divi sion of the company were

divided about the asbestos decision. The medical staff was concerned

about the risks to workers and wanted to replace all asbestos insu'lation.
The staff 91as unhappy that its reconrnendations v{ere being questioned

because of a cost-tonscious mentality prevailing in the company. The

staff felt an ethical compulsion to replace the insulation, because a

clear risk had been demonstrated.

The operating divi sion, on the other hand, did_not want to change the

statui quo. It argued that any money spent before the regulations were

set miglit Ue wasted. In addition, it did not know how to evaluate the

qualit! of the health department's recommendation. The operating division
[ept alftng "How serious a problem'is this?", without getting an answer it
could understand.
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Finally, Loftus tentatively decided to repair the asbestos insulation.
This seemed a good compromise between the recomrnendations of the medical
department and those of the operating divis'ion. Although it was a
satisfactory decision, management was not confident that it was the best
decision.

THE DECISION ANALYSIS APPR,OACH

Because she was uncomfortable about the decision, the president, Ann
Loftus, decided to undertake a decision analysis. She assigned B'i1l
Rowan, her staff assistant, to'lead the analysis. Bill's first step was
to structure the analysis by defining the decisions and the uncertainties
facing the company. He reasoned that the decision about the asbestos
insulat'ion could be made immed'iately or postponed'into the future. In
addition' a decision to st'ick with the status quo now could be changed by
a decjsion to repair or replace later. A "redesign" decision would be
made if 0SHA set a standard lower than the current ACGIH standard of
12 f/cc, or if the company accumulated operating experience that exposur€s
were larger than expected. Bill dec'ided to include in his analysis an
option to redesign after five years.

Bill consulted the government relations department about whether 0SHA
standards would be set lower than those currently reconmended by ACGIH.
The department thought the OSHA standards would depend on the results of
the research currently under way at an independent laboratory. The
research was designed to investigate whether there is a threshold level
(at 2 flcc) below which there is no health effect. If a threshold was
indicated, the department expected OSHA to promulgate a standard at
2 flcc. 0n the other hand, if the threshold was disproven or if the
research was inconclusive, OSHA would revise the standard, but probably
less drastically. The government relat'ions staff assessed only a 20
percent chance that the standard would be set at Z f/cc in this
situation. There rema'ined an 80 percent chance that a standard of 5 f/cc
would be set if the threshold effect was not confirmed.

The next step in Bill's analysis was to quantify the range and likelihood
of possible worker exposur€s. Initially, the medical peisonnel were very
skeptical about whether the exposures could be quantified, because there
was so little information. Although no significant exposures had been
detected thus far in the tests of personnel samplers worn by workers, some
h!Sh, short-term exposures could have been missed, since exposures cou'ld
fluctuate greatly from time to time and place to place. In addition, the
scientists realized that the existence of other fibrous particulates in
the air made the asbestos analysis difficult.

Continuous monitoring and complete analysis by electron microscope would
have e'liminated much of the uncertainty in exposures. To date, however,
these more complete tests had not been undertaken because expected
exposure levels did not warrant the added expense.
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Bill consulted the industrial hygienist most familiar with the plant. The

tygienist, who was not used to quantifying his iudgment_about exposures,
wli initially reluctant to give any estimates. Eventually, he estimated
that if the status quo were followed, there would be about a l0 percent
chance that workers would experience significant exposures to asbestos
fibers within five years. By "significantr" he meant a level of 5 or
l0 f/cc. lh also thought that exposur€s would be lower with repair than
under the status quo. In addition, he estimated that if repairs were

done, there would be a 5 percent chance that a significant release of
asbestos would occur within five years.

Because the estimates of exposuyt were critical to the analysis, Bill
attempted to verify them. First, he consulted a materials scientist about
the chance that asbestos fibers wou'ld be released from the insulation.
Then, he asked the hygien'ist to estimate the concentration of fibers that
would be present in various plant locations if fibers were released.
Finally, he consu'lted plant operating personnel about work practices and

the time that workers spent in each location. The resulting exposure

levels that were calculated confirmed the hygienist's original direct
estimates of exposures. Seeeing this result, the hygienist was willing to
sign off on the exposure estimates.

Initially, Bill decided to focus on only one serious health effect: lung
cancer. The health experts were uncertain about the appropriate
dose-response relationship for predicting the fraction of the worker
population that, given a particular exposure to asbestos, would develop
lung cancer. The best data on the dose-response relationship was from
laboratory experiments on animals at doses above the current standard.
Because of limitations in these studies, a number of questions remained
unanswered. For example, the 'latent period between the exposure and the
onset of cancer, the existence of a threshold, and the rate at which the
number of cases increases with exposure were not known.

To model this uncertainty, Bill asked the medical staff to estimate the
number of responses that would result from a purely hypothetical situation
involving ideal laboratory or field conditions. For example, suppose that
10,000 workers received a specified constant dose for 5 years, and that a

cellular examination for cancer was performed after a latent period of
20 years. lilith this specification of the dose and the methods for
measurirg the response, the medical staff felt confident in quantifying
its judgments about response. 0f course, where hard statistical data were
available, he let the staff review the data before giving its estimates,
or he incorporated the data explicitly in the analysis. In this way, the
estimates were consistent with all the available hard and soft data.

Bill was surprised to find that experts with differing information and

exprience did not necessarily disagree about the number of workers that
would respond to a given dose. In particular, the toxicologists who

conducted experiments on laboratory animals and the epidemiologists who
gathered data on human populations estimated the same dose-response
relationship when questioned individually. However, a leading
toxicologist hired by the company as a consultant disagreed with the head

of the company's toxicology laboratory. Bill got them together to discuss
their differences and eventually discovered that they disagreed because
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they had d'ifferent recollections of a particular piece of reseanch
relat'ing to the body's defense mechanism. After reviewing the literature,
they discovered that their estimates of the dose-response relationship
were the same.

After carefu'l considerat'ion, the experts agreed that there was still
uncerEainty about the appropriate dose-response relationship. Thus, they
decided to use two curves, shown in Figure l, to represent the range of
possible relationships. Curve A is a linear relationship between dose and
response with a threshold at zero. This curve corresponds to the
conservative assumption of most regulatory agenc'ies that any exposure to a
harmful substance results in some health effect. Curve B-hTs a threshold
of 2 flcc; below this dose, there is no effect.

FIGURE 1: TwO CURVES WERE CHOSEN TO REPRESENT THE

RANGE OF DOSE-RESPONSE RELATIONSHIPS.

.01

.oo 1

10 100

Asbestos Exposure Over S-Year Period
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The medical staff believed that the estimate about which curve is
appropriate would be influenced by the outcome of the research currently
under way to investigate the existence of a threshold at 2 flcc. If there
was a threshold effect, then Curve B would certainly be appropriate.
However, if the threshold effect was not confirrned or the research was

inconclusive, they estimated a 90 pertent chance for Curve A to be
appropriate and a l0 percent chance for Curve B to be appropriate.
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The Decision Tree

A decision tree (see Figure 2) shows all the possible scenarios that could
occur, given the design and redesign decisions, and the uncertainties that
make these decisions difficult. Located at the far left is the 1967
design decision. The options to maintain the status quo, to repair, or to
replace the asbestos insulation are shown as branches at the square
decis'ion node. Then, within five years after this decision is made, the
current researth to investigate the threshold effect will be completed.
The branches marked "yes" and "no" at the round node show the two possible
outcomes of the research. Also, by this time, the newly proposed 0SHA
will have promulgated regulations about asbestos exposure, and the company
will have accumulated some operating experience with exposures. In 1972,
the company will have the option of redesigning if warranted by 0SHA

regulations or the company's operating experience. After the redesign
decision, additional operating experience will accumulate. Finally, as
shown on the far right, one of the two dose-response curves will be
appropriate. tlhich curve will be judged most appropriate depends on the
results of the current researrh.

FIGURE 2: THE DECISION TREE SHOWS ALL THE POSSIBLE

SCENARIOS THAT COULD OCCUR.
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Each scenario, or path through the decjsion tree, results in financial and
health outcomes. For example, suppose that the Company spends no money to
repair or replace the insulation, but no exposures res-ult'from equipme-nt 

-

v'ibration and deterioration of the 'insulation. This scenario mig'nt'Ue
called a "best case," because it results in a 1ow capital cost aid no
health effects. In a different scenario, one at the other extreme,
suppose that the company initially does not make any change in design, but
high exposures accidentally occur and the conservative ooie-response curve
with a zero threshold turns out to be appropriate. At the same time,
stringent 0SHA standards are set, forcing the company to replace all of
the insulation after five years. In this',worst casL,,,there are both
high cap'ital costs and substantial health effects. 0f course, these
scenarios are only two of the many that could occur. All the possible
scenarios are represented in the complete decision tree

Results

The expected net present values and health effects for each design option
are shown in Figure 3. The net present values are calculated from the
discounted cash flows of the differences between the profits from sales of
the product produced by the plant and the capital and operating costs of
the immed'iate design option and any downstream redesign. The 6ealth
effects are the expected number of cases of premature death due to lung
cancer in the population of 2,000 workers. These expected values are
averages of all the outcomes from the scenarios displayed in the decis.ion
tree, weighted by the probabilit'ies of the scenarios olcurring.

FIGURE 3: EXPECTED VALUES SHOW THE TRADE.OFFS, MADE IN THE
1967 DESIGN DECISION.

EXPECTED VALUES

1967 DESIGN
DECISION

NET PRESENT VALUE
($ MILLIONS)

NUMBER OF DEATHS
PER 2,OOO WORKERS

PER YEAR OF EXPOSURE

STATUS QUO 104 .143

REPAIR 102.5 .078

REPLACE e9

0n the basis of expected values, Loftus had to admit it faced a

"prob1em." The number of incremental premature deaths that could result
from exposure to asbestos fibers was significant. Also, the probabiiit,
of death under the status quo or repair a'lternatives was nearly as'large
as many other risks to which individuals are exposed. For example, under
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the status quo, .14 additional deaths from lung cancer would be expected
per year of exposure among the 21000 workers. By comparison, a general
population of 2,000 people would experience .6 deaths from motor vehic'le
accidents and .2 deaths from falls over the same period.

However, Bill knew that management would be reluctant to approve the
capital expenditure for replacing a'll the asbestos on the basis of a table
of expected values. Expected values do not show the complete range of
health effects that can occur. Also, there would undoubtedly be questions
about the "value of life" that was being implied by a replace decision.
l,las the company being more conservative about asbestos than about other
health and safety i ssues?

The company lawyers cautioned Bill about how to present the results to
management. Because of liability implications, they felt that the company

could not afford to put explicit dollar values on the health effects to
compare them with the financial outcones. In addition, they cautioned
that small changes in the wording of the final report could make a big
difference concerni ng I iabi 1 ity.

BiIl decided to present the case for replacement in two ways. First, he

used the decision tree to calcu'late a probabil'ity distribution on the
number of cases of premature death that could occur under the status quo

or repair alternatives (Figure 4). The probability distribution shows the
range and likelihood of cases due to uncertainty about the exposures and

the dose-nesponse relationship. The results imply that although there is
an 80 percent chance of no health effect, there could be as many as 100

cases of lung cancer under the status quo option. There is a 95 percent
chance that there will be fewer than 20 cases under either the status quo

or repair options. 0f course, this also means there is a 5 percent charrce

of more than 20 cases.

FIGURE 4: ALTHOUGH THERE lS AN 85% CHANCE OF MINIMAL HEALTH

EFFECT,THERE COULD BE AS MANY AS 1OO CASES UNDER THE

STATUS QUO OPTION.
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Bill also calculated how much the company would be spending to reduce risksif it made either a repair or a replace decision. Hiving ievieweO tneliterature on environmental health decisions, Bill was ailu.e t[it many
companies are willing !9_spend amounts in thi range of $t to $to toeliminate a one-in-a-million chance of death to a-worker. Filure 5 showsthat Loftus could iustify a replace decision if it was willini-to spend atIeast $5 to elim'inate such a risk. 0n the other hand, if it iai wiitingto spend less than $l to remove this risk, the status'quo option would bepreferred.

FIGURE 5: A REPLACE DEcrsroN tMpLtES A W|LL|NGNESS To spEND
MORE THAN $5 TO ELIMINATE ONE CHANCE tN A MILLION OF PRE -
MATURE DEATH TO A WORKER.
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Given these results, management felt confident about deciding to replaceall the asbestos insulation. This decision was generalrV coisiitent with
the amount that other companies were spending on-safety. rn aooition, a
decision either to repair or stay with'the s[atus quo Lould pui Loftus in
a difficult ethical or legal position.

The results in Figure 5 shows that the decision is very sensitive to the
willingness of thg company to spend money to reduce riits. -Management 

did
not want to find itself be'ing accused of undervalui ng 'life 

and death
outcomes. tn addition, the_possibility that as many as 100 cases of lung
cancer could occur at some later date under the staiui quo oi-repai" 

'-'-r
options was unacceptab'le. The corporate aversion to this catastrophe made
replacement 'look 

even better.
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OTHER EXAMPLES OF ENV IRON$4ENTAL HEALTH DEC IS IONS

The asbestos example is typical of the type of environmental health
decisions that companies have been making with the aid of decision
analysis. Some other examples are the following.

a A petrochem'ica1 company estab I i shed pri ori t'ies f or f urther
research relating to a newly discovered toxic effect. Limited
research from an independent toxicology laboratory indicated that
a broad class of the company's products had possib'le side effects
on workers and customers. The company considered what further
research should be underbaken. Possible programs included
long-term toxicology studies, clinical studies of exposed
workers, and surveys of custorners to determine exposure levels.
The trade-offs between the accuracy of the 'information produced
by each study and the cost of conducti ng each study were
eval uated.

A consumer products company determined the level of risk
associated w'ith the use of one of its products. The on'ly data
available were preliminary results from a short-term toxicology
program. The analysis showed how the opinions of toxicologists
could be quantif ied and combined w'ith the l imited data to
determine the level of risk. One result was a table showing the
expected number of cases and the max'imum number of cases of
various health effects that could be occurring among customers.
The probabilit'ies of death and injury from using the product were
compared with risks resulting from using other substitutes.

A major chemical company decided whether to install new equipment
that would reduce worker exposures to a toxic substance. The

options included upgrad'ing the current technology or chang'ing to
an entirely new process. This decision was difficult because of
uncertainty about future changes in regulatory requ'irements and
because of the effectiveness of the net,{ process. The analysis
showed that do'ing nothi ng or install'ing the new process were the
only viable options. Upgrading the technology, which had been
originally reconmended to management, cost nearly as much as
rep'lacement, but accomplished little'in terms of risk reduction.

IMPL ICATIONS FOR MANAGEMENT

Our experience in applying decision analysis to situatjons like those
described above has led us to some general conclusions. !'le have found
that applying decision analysis can improve the evaluation of
environmental health decisjons. One of the most 'important benefits is the
integration of the wide variety of informat'ion and data relevant to these
problems. In addition to health and safety personnel, financial,
marketing, and operating officers can be consulted to generate the inputs
for th'is type of analysis. Where differences of opinion arise, examining
them explicitly allows them to be reso'lved more quickly. This process can
be very important'in achiev'ing consensus'in the organ'ization and in
increasirE management's comfort with the decision.

o

o
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However, app)y'ing any methodology to environmental health decisions is
subject to a number of problems. These include technical difficulties in
doing guant'itatjve analyses, ethical questions, and liability implications.

Technical Difficulti es

A typical criticism of quantitative analysis is that the uncertainty about
the health effects is too great to be quant'if ied. Sometirnes, the only
data available are the results of laboratory experiments on animals at
very h'igh doses. The extrapolation of impacts resulting from high doses
to those resulting from low doses and the translation of effects in
animals to those in humans are very questionable approaches.

The lack of informat'ion, however, is precise'ly the reason that decis'ion
analysis is necessary. Decision analysis is most useful when there is a
great deal of uncerta'inty. In such a situation, the best information
avai'lable is probably the experience of the company's most trusted staff
and consultants. Decision analysis provides techn'iques for capturing the
judgment of these experts and combining it with any available hard
statistical data.

A second difficulty results from the complexity of environmental health
problems. Fjrst, there may be dependencies between the risks associated
with company actions and those to which the workers expose themselves.
For example, workers who snroke cigarettes heavily are more likely to
develop'lung cancer from exposure to asbestos than workers who do not
smoke. Second, there also rnay be latent effects that occur long after the
exposure. Finally, when the exposure ends, some effects are reversible
while others are not. !'lith effort, an experienced analyst can include
these factors in the evaluat'ion.

Inc'luding the possibility of a wide range of health effects in the
analysis reduces the chance of making an incorrect decision. In many
studies we have done, the range of health effects from a particular
product or process is not certain. Limited data indicating one possible
effect leave unanswered the question of whether there are other effects.
For example, evidence of carcinogenicity may or may not influence the
likelihood that there are reproductive or neurological effects.
Management should be aware that otherimpacts are possible and should
carefully consider whether those impacts should be included in the
analysi s.

Another difficulty surfaces because management often wants to know how the
risks associated with its product or process compare with risks in other
industries or with those to which workers or the public are exposed. This
comparative-risk approach, however, may not lead to the correct
conclusion. First, there is the philosophical problem that current risk
levels may have been set il'logica'lly and that they may not be consistent
from one situation to another. Even more importantly, the conclusions
often vary, depending on the units in which the comparison is made. For
example, if there are many individuals involved, the probability of death
or illness per person may look very small, while the expected number of
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cases may appear large. Similarly, if we express the results in terms of
a percentage change in the background rate of death or illness, a

radically different impression of the significance of the impact may be
created.

A final technical difficulty concerns biases in expert judgment. For

example, we have observed a "conservative bias" while obtaining
information from health specialists. Because of a genuine concern for
preserving life that arises from their tra'ining and orientation, health
scientists may unconsciously bias the information they provide for the
decision analysis. This conservative bias is analogous to the
motivational bias that an optimist'ic sales manager may have about next
year's forecast of sales. As a result of this conservative bias, we have

sometirnes found health specialists more concerned that management makes

what the specialists consider the "right decision" than that management
makes the decision on the basis of the best information. Skilled
interviewers can use assessment techniques to identify and greatly
mitigate this bias and others.

Ethical Questi ons

Environmental health decisions, and the analysis of those decisions, raise
difficult ethical questions. It is imporLant to realize that these
questions exist even if they are not explicitly addressed. Unfortunately,
there are no widely agreed upon answers to these quest'ions. However,
management can take a consistent ethical position and be aware of the
potential implications of these issues.

Ethical judgments arise as a result of how the analysis is conducted and

what factors are included. For example, is it ethical to trade off costs,
public image, and Iiability in analyses of corporate environmental health
decisions? In addition, is it ethical to exclude some option or some
potential outcorne from an analysis because of possible liability
implications?

The valuation or weighting of health outcomes is another ethical issue
arising in analyses. tlhat if the health effect does not impair the
individual's function in his iob or personal life, but changes only his
likelihood of developing other problems? 0r what if a toxic substance
causes cellular damage to an organ but does not affect the organ's
function? !'lhat value should be put on these effects?

The decision itself also has ethical impl ications. I'lhi le these
implications are not necessarily a part of the decision analysis, the
analysis process often brings these issues into the open. In our
experience, u,e have heard senior management debate the ethics of the
f ol lowirg actions.
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Protect a worker by denying him a particular job, when his own

actions (such as snnking) or physical condition leave him more
susceptible to certain risks.

Pay work ers h i gher s al ari es for accepti ng ri s ky j ob s .

Allow workers in some plants to be exposed to different
probabilities of death and injury than workers/ in other plants
(for example, plants in foreign countries).

Undertake research prohibited in one country in another place
where human experimentation of the type needed is allowed.

Restrict sales to customers known to use the product in a safe
way.

Inform workers or the public about risks when, although the
company is meeting current regulatory requirements, new but
uncorroborated informat'ion not reflected in the regulations
becomes avai lable.

Warn end users of risks that are not advertised by downstream
packagers or distributors of products.

Sell similar products with different levels of safety at
different prices.

Decide whether to undertake further research that may reveal
unrecogni zed hazards.

Although the above list is not exhaustive, management should be aware that
many subtle ethical issues do exist.

Li abi 1 i ty Impl i cati ons

Quantifying the probability of a health effect may increase the company's
chance of being liable for knowing about that effect. Quantification may

be interpreted as an admission that there is a finite risk and may put the
company in a worse liability position than if the analysis were not done.
Although this possibility contradicts cormon sense, it is an unfortunate
fact in today's judicial system.

However, in terms of liability, decision analysis has an important
advantage over conventional analysi s. Because the output of the decision
analysis is a probability distribution showing the range and likelihood of
hea'lth effects, the uncertainty in the environmental health decision is
appare nt. Conventi onal ana which focuses on a si I e case
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problem's severity. An analysis that presents only the best, most likely,
or even the worst case can be easily criticized.
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In addition to this advantage, there are several things that can be done
to ensure that the decision analysis does not aggravate the company's
liability position. First, it goes without saying that to protect the
company's liabi'lity position, the analysis must not have obvious technical
mi stakes.

Second, trade-offs of health anrd financial outcomes can be evaluated using
a wide range of weighting factors on the health consequences. In many
cases, the best option is obvious regardless of the values chosen. If the
decision is sensitive to the values, then, as in the asbestos example,
other considerations, such as liability, may recormend a particular option.

Third, small changes in the wording of reports and presentations may make
a big difference concerning the company's potential liability. Becluse of
the uncertainties involved, the analysis can be described as preliminary
or the data, as illustrative. value-laden words such as "1arge,"
"insignificant," or "serious" can be avoided in describing heilth effects,
and notes can be included it forthconing data may change [he conc]usions.

Fourth, the company may be able to improve its liability pos'ition by
undertakirg the decision analysis jointly with other companies through a
trade or professional association. This action may prevent one company
from beirp in a t,{orse liability position than otheis. It also spreadjtne
cost of the analysis and may increase the perceived objectivity of the
study.

Illutly, 
'legal counsel should be consulted before doing any analysis.

This does not mean that the lawyers should dictate whelrrer, or how, an
analysis is done. However, their inputs are just as important as those of
the operating division or the medical staff. In doing the analysis and in
presentirE it, companies should never place themselves in an untenable
posi ti on.

CONCLUSION

As we have discussed, environnental health decisions are fraught with
technical, ethical, and lega'l difficulties. But because manalement faces
these strategic decisions with increasing frequency, and because most
senior.managements are not equipped by experience or training to deal with
the medical aspects of environmental health decisions effectively,
management needs an analytic framework to arrive at the best decision.
Our experience with decision analysis suggests that it is one effective
tool for i ncreasi ng management's conf idence i n its decis'ion.
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I NTRODUCT I ON

Two fallacies have often impeded the studying of decision-making about

hazards to human life. Ihe first fallacy--the altruistic fallacy--is that
the value a person places on his life is primarily related to such measures

as the life insurance he carries, court judgments, and discounted future

earnings--even though these measure mainly the value of his life to others

rather than to himserf. The effect of this failacy is usuaily to prace

value on life too low for people to accept in making their own decisions.

The second fallacy is the incremental fallacy. simply stated, it is
the belief that because a person is willing to incur additional risk for
money, one can infer a cash payment that the person should accept for being

killed' clearly, this is absurd, but this fallacy is often why discussions

about placing values on lives have seemed both silly and frightening to the

public.

The incremental fallacy is also present in other spheres of life. Thus

the price a person would exact to accept a given incrementa'l risk should

rise as the total risk the person faces increases. No conceptualization of
life decision-making is complete until it has captured this phenomenon.

This paper extends previous work concerned with risks to life [1,2,3,
4,51 to include the possibility of living with various degrees of
disability. llle sha'll investigate not only risks of disability themselves,

but the interaction between death and disability risks that such events as

medical operations might pose.

lhe author thanks the referees for several helpful suggestions in both thepresentation and the citation of references.
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THE ETHICAL FOUNDATION AND ITS IMPLICATIONS

Before proceeding, we must be clear on the ethical framework of the

analysis. Our ethical assumption is that each person, and only that person,

has the right to make or to delegate decisions about risks to his life or

well-being. hle note in passing that several present social arrangements do

not meet this ethic and are the sounce of continuing controversy; for

example, consider the development of the "right-to-die" movement.

Once we accept this ethic and deal with an individual who is rational

in that he desires to follow the axioms of probabilistic logic, rre can

develop a procedure that will allow the individual to make consistent

rational choices about the hazards in his life. In particular, the

procedure focuses on what the person's life is worth to himself, using his

prefenences for different life states. Furthermore, it shows that an

individual ls consistent in being willing to trade risk of Iife or

disability for money at low risk levels and yet refusing to do so at high

risk level s.

SUMMARY OF PREVIOUS UORK

t'le shall now sunrnarize briefly the model we will use and extend in this

paper. Readers are referred to other sources [2] and [4] for a more

complete description. In the simplest model investigated, we assume the

individual has a fundamental preference on consumption and length of I ife

and ignore the question of legacies. Consumption is defined as the constant

level of consumption beyond bare survival over the remainder of life,

measured in real dollars, that would be equivalent to current expectations;

tiis is called the constant annual consumption c . !'lhen we combine c

with the remaining years of life c , we have the fundamental descriptors
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of life quality and quantity. We assume that the individual can trade

between c and l, to develop a worth numeraire w(c,r), and we use the

simple model:

Here n is the parameter governing the tradeoff, and i, is the expected

lifetime remaining, a useful benchmark, when t, = i, rr(c,,C) = c .

In fact, the emphasis of this model is on percentage changes in c and t

rather than on their magnitudes. when t is sma'l l, this property may not

be appropriate, and other models may be useful L2).

Now we must specify the risk preference of the individual on the

numeraire w . We use the exponential form with risk tolerance p ,

u(w) = -e-w/P .

To find the payments that will compensate for risk, we use those

payments to modify c in this model. [.le assume that any payment received

will be used to buy an annuity at the prevailing interest rate i from a

se]ler who agrees with the buyer's probability distribution on Iife.

Payments to be made can be financed in a complementary manner. For example,

if the individual receives one dollar, then he will be able to increase his

annual consumption by

y1, = 

-

w(c ,L) = "(;l 0n

I

1- ((#r)')
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One result is irmediately derivable from this model. If the individual

is offered larger and Iarger amounts of money to face a probability of

imminent death p , there is a maximum value of P ,

(
)

L
n

(
g
p )P,o"* e

No amount of money, however, would induce the individual to accept a risk of

death as I arge as pra, .

Ihe Micromort Value

While curves can be, and have been, derived to determine the

payments x(p) required for risks of death P. Pmax , the case of small

incremental risk is of special interest. Ile define vs , the small-risk

value of life, as

x(PJ
v

S
= l,im

P0 P

which is readily computable from the model. If a person had calculated his

small-risk life value, then it would suffice for all decisions in the safety

range, say for p < l/1000 . To determine the death risk to him, in

dollars, that should be compared with other costs and benefits, a person

would simply multiply p by vs.

However, since even the small-risk life value may lead some to the

incremental fallacy, it is better to use ,s in the form of the value of

a micromort [um] , a 10-6 chance of death. Then vum = 10-6 vr.

Now, by keepi ng i n mind a mi cromort val ue v
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in the safety range, any person can simply cunpute the number of micromorts

in the risk, multiply by vpm , and establish the death risk in dollars.

Although this change is cosmetic only, we should renrember the size of the

cosmetic industry.

As we have said, the model described is the simplest one we have

analged that both possesses the desired qualities of f inite pr.* and a

small-risk life value and is rich enough to suit many tastes. l-lowever, to

rrepresent a wide range of value functlons and risk preferences, more general

formulations are available [2].

We should note that the concept of developing a worth numeraire on

attributes and tJren assessing a risk preference upon it is as general a

procedure as using a multi-attribute utility function.

Numerical Results

To obtain a feeling for the model, it is useful to surmarize previous

numerical results. Consider a base-case individual--a 2S-year old male with

a $20,000 per year constant annual consumption. He chooses n = 2 , which

means he would foryo 2%of his consumption over his remaining life to have

it be I1 longer. His risk tolerance is $5000, which means, for example,

tiat he is roughly indifferent between his present situation and a lottery

with a 2/3 chance of $32,000 per year and a l/3 chance of $14,000 per year.

Ihe prevailing interest rate i is 5I.

How much would this individual have to be paid to accept a probability

of death p ? Figure I shows the answer. ilote that no amount of money will

induce him to accept a risk of death greater than pmax = 0.103. In the

safety region, the curve becomes a straight line corresponding to a

small-risk life value of $2.43 million.
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If the individual can avoid a risk of death p by oaying money, then

we obtain the curve of Figure 2. Even to avoid certain death, he would not

be able to pay more than the value of the annuity represented by his

constant annual consumption clc; we call this the economic value of his

life, v. = $363,000. The straight-line portion of the curve in the

safety region again corresponds to a small-risk life value of g2.43 million.

Thus, while there is a considerable difference between buying and

selling risks for large probabilities of death, the treatment is synmetric

in the safety region. The individual is willing to buy and sell micromorts

at a price of $2.43. If someone wanted hirn to take on a risk of L
I 0,000

probability of death, he would evaluate the death risk at $2a3 (100 um). 0f

course, if someone wanted to buy 1,000,000 um, he would refuse. This

micromort value will increase as the individual takes on more and more risk;

however, for most of us who are both buying and selling very small risks all

the time, it should be relatively constant and hence a useful guide to

safety decisions. Naturally, the death risk cost computed in this way must

be combined with other costs and benefits to arrive at a decision.

Continuing Hazards

t,lhile we have discussed risk as if it will occur only in the present

year, many of life's activities, like smoking, for example, imply a change

in the risk of death in future years [2] and [4]. Knowing the changes in

risks in future years will enable us to derive the corresponding lifetime

distribution and to use the model to compare this situation with any other.

A serious hazard, like smoking, which might double the chances of dying

in any year, would reduce life expectancy from 46.2 to 38.4 years. To be

consistent, the base-case individual would demand a lump-sum payment of
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$212,000 or an annuity of $l2,4OO before assuming such a risk. If smoking

ls not worth that much to him, he should reconsider whether to pursue it.

HEALTH STATES

Now let us show how to use this same structure with a slightly more

complex description of life. lle shall retain constant annual consumption as

the economic indicator of life, but consider more possibilities for the

non-economic aspects of life. Suppose we define a number of health states

i = 1121...'tI for the indlvidual that he might occupy at any time in his

life. sr.rch states might be defined in many ways; we are concerned here,

however, with the concept. The states might be characterized by the

potential mobility of the persor, bJ the amount of pain he feels, or by the

senses he has available. For any life, the transitions through the states

would be probabilistic, both as to the succession of states and as to the

time spent in each. A semi-Markov model would be a fairly simple

probabilistic model to describe this process, provided that the Markovian

assumption was justified in this particular case [6]. For related

approaclres, see references [7] and [8].

To compl ete the descri ption of the system, we need to extend the earl ier

value model, which depended only on c and s. . As a simple extension,

let us retain the original form for w(c,r) , but let s now be a weighted

sum of the years spent in each state i, [i ,

9"=

For the state of full health and capacities, the weight would be one;

however, for less desirable states, it would be less than one.

E.
t L.

t
f,

]'
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For example, suppose a person faced a normal lifetime except that frpm

this point on he would be blind. If he said that living his remaining life

blind would be equivalent to living only 30 pertent of that life sighted,

then the weighting for the blind years would be 0.3. t,lhile more complicated

schemes can be developed to represent preferences, let us see how valuable

this simple model can be.

One question that inmediately arises is whether the weights can be

negative; that is, are some life states so bad that living them would be

worse than being dead? Many people feel that there are, seeing total

paralysis as one such state. Since we have assumed that each person has the

right to make and delegate decisions about his own life, any person could

choose suicide at any time and, thus, weight that life state as zero. The

restriction to non-negative weights is, therefore, not a problem for those

who have suicide as an option.

DISABILITY

l'le shall focus our analysis on the case of disability: where the

person faces the possibility of spending the rest of his life with a serious

healtjr impairment, like blindness, paralysis, or severe pain. In each case,

we imagine assessing the worth function by asking the person the following

question: "Suppose that instead of living the rest of your life in the

state of health you expectr you would live it in this u{ay (a specified

disabled state, like blindness or total paralysis). llowever, Jou have a

droice--you can continue to live with the state of health you expect, but

for a reduced time. What fraction of your remaining years lived in this

state would be just equivalent to living all your remaining years in the

disabled state?'r The fraction f that the person answers will be used as
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the weighting factor in the value rnodel. !{e can then see how the person

would make various decisions involving a risk of disability or a risk of

either death or disability. l,le shall assume that the fraction f is

assessed independent of g , although there is only modest difficulty in

making it a function of L . For the moment, we shall further assume that

the person's income will be unaffected by his disability and, hence,

concentrate on the qualitative aspects of the disabled state.

The Di sabi I i ty Bl ack Pi I I

l'le proceed now in a manner analogous to our earlier work on death

risk. S.rppose the person is offered an amount of money x to assume a

risk p of being disabled to a level f. For example, someone could be

offered $1000 to take . 15}6d chance of becoming totally paralyzed, an

outcome he regards as equivalent to f = 0.1. The choice is diagranmed in

Figure 3. For simplicity, we can imagine the risk is contained in a pill

and that everyone agrees on the probability p . If the person refuses to

take the pill, then he Iives his normal life, receiving any windfalls and

calamities that may be in store for him--his future life lottery. This has

a utility of ((c,l)) , obtained by multiplying the utility of each

constant annual consumption level c and remaining life r by the joint

probability distribution on these quantities. If the person takes the pill,

then with probability I-p he will live his future life lottery as before,

only with more money. He converts the payment x into the constant annual

consumption c + tx , with expected util ity

(u(c + ex,C)>
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or

lbwever, if he becomes disabled, which he will with probability p , then he

transforms the payment in the same way, but has his remaining years

multiplied by f so far as his value function is concerned. Therefore, he

has expected utility

(u(c + cx,fe)>

setting the expected utility of the two alternatives equal, we find

(, (c, l,)> = p (u (c + ex,f c)> + (1-p) (uJc + (,x,t,)>

P=
(r(" + ex,g)> (u (c, l,) )
(u(c + Ex,g)> (u (c + ex,f g) >

Base-Case Resul ts

This equation allows us to calculate the risk of a disability
level f that would be assunnd for a payment x once all the other

parameters of the model have been specified. h,iti the results shown

in Figure 4, we evaluate the equation for the base-case individual

described earlier. !{e see that the curves begin to diverge from

straight lines on these scales only for p close to one and f
small' that is, when there are severe risks of serious

disabilities. l.lit}rin the safety region (p = l0-3 or less), they

are all straight lines. This means that in this region, u,e can

define a small-risk value of disability level f , vr.(f) that
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can be used by the individual in the expected value sense to

compute x as

x=pvr6(f),

where v If rre def ine1

sd
(f) = lim

:p0
P0

unl*

-6v (f) = 1o vsd (f )
ud

,

then we have the value of a tO-6 chance of a disability level

f in consonance with our definition of a micromort.

The results for the base-case individual are listed in Table I and

plotted in Figure 5. Notice that the microdisability value

approaches the micromort value of $2.43 when f is smalI, and that

it approaches zero as f approaches I .

Table I
small Rlsk ualue of Disabllity at Level f for Base-case Individual

f 0. r 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

vro(t)[r$l 2.333 2.s66 1.696 r.2s7 0.s27 0.620 0.383 0.2t0 0.087

vro(f ) [$] z 33 z.ot l.7o I .30 .e3 .62 .38 .zt .oe
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Ihe Di sabil itv hlhi te Pi I I

l,le can also think of selling risks of being disabled. Suppose that a

person facing a risk p of being disabled to level f could avoid that

risk for a payment x . lbw much should he pay? l{e call this the

disability white pill question and diagram it as shown in Figure 6. trlote

that if the person pays x , he finances the payment by reducing his

constant annual consumption to c - Ex . 0f course, the most he could pay

would be

cx = - = vee t

the economic value of his life. Equating the utility of the two

alternatives, we find

(u(c-8x,9,)) = p(u(c,fl)) +(I-p) (u(c,g))

and

p= u(c c I,

(u(c,0)> (u(c,fC)>

Base-Case ResuJ ts

Figure 7 shows how much the base-case individual would pay to avoid

a probability p of a disability level f . Note that the curves ane

again straight lines in this plot until they approach p = I . In this

region, they bend downward as the individual encounters the finiteness

of his resources. However, for values of p in the safety region, they

are straight lines and, in fact, the same straight lines as in Figure 4.

This means that the individual will buy and sell small risks of being

disabled for the microdisability values in Table I and Figure 5. lle

thus treats small risks of disability in the same way as small risks of

death.

560



CHANGES IN DISABILITY LEYEL

l'le can also consider the risks of changing from one level of disability

to another. In particular, we shall consider the case of a person who is

currently disabled becoming more disabled, even to the point of death. The

situation is diagramrnd in Figure 8: a person who is currently disabled at

level ft is offered x to assume a probability p of being disabled to

a more restricted level fZ, lncluding even the possibility of death,

fZ= 0. To find the x to which he is indifferent, we equate the

utility of the two alternatives,

(t",rrc) P (," + g.t ,rrD + (1-p) (," + Ex,tro)

and f ind

where

If u,e I et

level fl

(," + Ex,trr) (t",rls)>
P=

I

(,,,"+ex,trrDo (,"+ex,t2e;>

vsd(ft ,f Z) be the smal I -ri sk val ue of di sabi I i ty from

to 1 evel f Z defi ned by

,-
Z

vsd
I
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then in the safety region we can compute the required payment x from

x = pvsd(ft rf Z)

or from the equivalent microdisability value of this change

_5
(ff ,f 2l = 10

'ud
(fr,f 

2l
vsd

The results for the base-case individual are shown in Table II. Notice

that the first row of the table reproduces the small-risk values of Table I

for the case of risk of disability to a healthy individual. In general, the

value decreases as ft decreases for a fixed f? and increases as

fz decreases for a fixed fl . The first phenorcnon results from

contemplating the same prospect from worsening initial states, and the

second one results from contempl ating worsening final states from the same

initial state.

Table II

small-Risk value of changrng from Disability

(Thousands of Dollars)

,.rX?'

L\
1.0

0.9 0.9

87 210
96

0.3 0.2 0.1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.7

383
231

107

0.6

620
416
254
120

0.5

927
656
444
277

135

0.4

1297
944
673
464
300

156

I 696
I 256
920
667

477

325
184

?a56
I 547
I 149

855
641

482
354
225

2333
1752
l314

991

759

594
477

386
291

0

2431
I 829
I 374

I 041

802
636

52?
446
398
372
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COMBINED HAZARDS OF DISABILITY AND DEATH

Deciding to participate in certain activities, like driving a motor

vehicle or operating a chain saw, entails hazards ranging from mlnor

disabilities through death. Suppose there are n such hazards, and let
pi be the probabllity that the individual will be disabled to level

fi, i = 1121...1t1 , where fi = 0 represents death. Then, the total

probability of one of these outcomes is
n

P = E p.,
i=I '

and the conditional probability of disability to level i given that some

hazar{ occurs is e.i = gi/9. The amount x that the indivldual would

have to be paid to take on this combined hazard can be determined frorn

Figure 9 by equating the expected utility of the two alternatives:

(tc,s> = (1-p) (," + ex,c) +P qli (," + ex,trr)
n

E

i=1

or

(u(c + ex,C)) (u (c, g))
P=

(," + ex,t) qli (,. + Cx,tit)
n
E

I

i=I

l,Ie c an now I et v

defi ned by

sh be the small-risk value of the combined hazard,

vsh - lim
P0
)r+0

dp
/dx
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Dont Accept Combined Hazards
(u(c,f)

No hazard occurs
(r(.* fx,fD

1-p

Combined Hazards
Qr

for Payment x
Qz

(u(c+ fx,f;f)

(u1c+ fx,f2f)p

Some hazard
a

a

a

occurs

Qn
(u(c+ fx,fnf)

Combined Hazard Tree

Figure 9

Figure 10

No operation
Disabled ( u(c,fQ )

Usual life ( u(c,Q)

Operation
1-p

p
Die

(u(00))

Operation Decision Tree
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1.0

0.9

0.8

o.7

.Y

.9(r
-c
aJ
(U

o
o
o-

o.4

0.2

0.1

0 0.1 0.2 03 0.4 0.s 0.6 0.7 0.8

f Disability level

Maximum Probability of Death from Operation

That Could Be Tolerated by Base-Case lndividual

with Disability Level I

1. For f ree operation

2. For $ 100,000 operation

0.9 1.0

Figure 11

Figure 12

No operation
Disabled (u(c,ff)

Usual life
(r(.- fx,fD

less money

Operation
1-p

p

Die

Costly Operation Decision Tree

Pay x

( u(o,o) )
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and compute x using t - pvsh when the probability p is in the safety

rrgion. Equivalently, we can use

as the microhazar{ value of a 10-6 chance of combined hazard.

To illustrate these computations, suppose that the base-case individual

confronts a situation where he has probabilities p1 = 0.0@05 of death,

F2 = 0.00025 of disability level fZ = 0.3 (perhaps from losing a

leg), and p3 = 0.0007 of disability level f3 = 0.9 (perhaps from

losing a finger). l'le find that the microhazard value is $0.606 and

since p = 1000 x 10-6 , that the required payment to accept this

combined hazard would be 1 = $606.

An equlvalent and more convenient way to compute x in the safety

region is to add the amounts he would have to be paid to assume each of the

i ndivi dual hazards,

Pi vsd (fi)

= 10-6 v
sh

vuh

x=

x=
ud

(f) t

and using the values in Table I, we find

x = 50 (2.430) + 250 (1.696) + 700 (0.087)

= 12.|.5 + 424 + 60.9

= 606.
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n
E

i=I

where vr6 (0) is equal to vs , the smalt-risk value of life. If

Pi is measured in microprobability (10-6) units, then

p. v-a

n
E

i=1



l'le see that the maJor contributor to the paynnnt is the $424 required by the

threat of disability to level 0.3.

The payment to accept combined hazards in the safety region is thus

easily computed by adding the payments required to accept each of them

i ndivi dual ly.

Di sabi I i ty or Death

Suppose an individual disabled at level f faces an operation that

may cure him at some risk p of death. How larTe a risk of death could

he tolerate as a function of his disability level? The choice is diagranmed

in Figure 10. Equating expected utilities produces

p= (u(c,L )> (u(c,f9")>
(u(c,g)> (u (0,0) >

lde can, therefore, determine the maximum death risk p that would be

associated with each level of disability f . The results for the

base-case individual appear in Figure ll. Note that a severely handicapped

individual could tolerate very high death probabilities. This corresponds

to the fact that the riskiest treatments are reserved for patients without

much to lose.

l,le can easily add the possibility that the operation will be cosily as

well as dangerous. Figure 12 diagrams the case where the operation costs

the patient an amount X . !'le note that even if p = O, the operation

may not be desirable. If

,
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then the operation costs so much that the patient considers himself worse

off tJran he is now even if it succeeds. The maxirnrm payment for the

operation is obtained by setting the two utilities equal

(u (c, fc)) =

w(c,fL) =

;r'

0 0.I

363 359

1u(c - lxrl,))

w(c - e,xr0,)

-f n

0.2 0. 3 0.4 0. 5 0.6

349 330 305 272 232

0.9 0.9 1.0

l3l 69 0

c(il= (c - Ex) (fl
or

x=

=v tt - rn]
e

If f = 0 , the individual would pay his whole economic value ve ,

which is $363,048. As f increases, the amount he would pay falls as

shown in Table III..

Table III
Maxlmum Payment for 0peration as Functlon of Disability Level

Di sabi I
Level

l

ty

Payrnent [K$]

0.7

l8s

Provided we limit the payment as discussed, we can then use the tree of

Figure l2 to write

P=
?<-
l, L u(c f9.

(u(c - ex,L (u (0,0) )

and compute the maximum tolerable probability of death for an individual at

disability level f facing an operation that costs x .
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l,le have done this for the base-case individual for the cost

x = $100,000--the dashed line in Figure ll. For seriously disabled people,

the cost is not lmportant, but for moderately disabled people, it is. No

operation would be considered at a disability level of 0.g5. At f = 0.7

only a 0.lO rather than a 0.16 probability of death could be tolerated.

Corpens atjOn

I'le can use the model even witlrout ri sk to determine the amount of

compensation that an individual would require to be indifferent to a given

disability level. Thus, to determine the amount x he would have to be

paid for being placed at disability level f , we equate

(u(c + ex, ft,)) (, (c, [))-

w(c + xrf[) w(c,Ll

(c + Ex) c (fl(?)'

or

)

The annual consumption increase reguired would be

6x=C (l-)
Table IV shows the results for the base-case individual. Given that his

constant annual consumption is $20,000, that amount would have to be doubled

to make him indifferent to a O.l level of disability.

(rcx=
e
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Trble IU

compensatlon Requlred by the Base-case Indivldual for a Disability Level f
Disability

Level
f

Lump-Sum

0-l 0.? 0.3 0.4 0.5 0.6 0.7 o.g 0.g 1.0

tlon 35,942 9,713 3,671 1,905 l,ogg 645 379 204 g5 O

I ,980 480 202 t05 60 36 2t I I 5 o

Comoensa

x' [r$]

Annual
Pannent

rl [rt]

Income Ef f ects of Di sab i I i tv

Up to this point, we have assumed that the effect of disability ls to

decrease the deslrability of the life experience, but not to change either

the Iife expectancy or the income received by the person. Let us now relax

this income assumption, since disability will usually depress incqne. A

simple yray to investigate this effect is to assume that a person's income

will be reduced by the same factor f that appears in his value function.

(Naturally, we could make the reduction factor different from f if

necessary.) The net effect of this assumption is that in every expression

we have seen where we have multipl ied g by f tre now also multiply c

byf .

Consider' for example, the effect of this change on the microdisability

value vr6(f) of this change. Figure 13 shows that when this income

effect is incorporated, microdisability values for the base-case individual

increase substantially at every level of f except towards f = 0 and

f = I where they are bounded respectively by the micromort value and by

zero. At f = 0.5 , the increase is from 10.927 M to 91.484 M. The prospect

of losing both health and income is significantly more worrisome than losing

health aIone.
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with
lncome
Effect

Without
lncome

Effecf

2.O0

1.50

o

G
o
:l

1.00

0.50

0 0.1 0.2 0.3 0.4 0.5 0.6

f Disability larel

0.7 0.8 0.9 1.0

lncrease in Microdisability Value

Caused by lncome Ellect

!a
iE
c
ktoo
CL

1.0

09

0.8

o.7

06

0.5

0.4

03

o.2

0.1

0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9

f Disability l-eirel

Maximum Probability of Death lrom Operation
That Could Be Tolerate.d by Base-Case lndividuat

with Disability Level f

1. For free operation

2. For fred operation with income effect

2

1.0

Figure 13

Figure 14
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As we would expect, including the income effect makes the base-case

individual more willing to accept a potentially fatal operation that could

cur€ him. Figure 14 shows an increase in the tolerable death risk at all

levelsexcept f=0 and f-1. At f=0.5,forexample,the

tolerable death risk for a free operation increases from 0.38 to 0.51.

Just as we have been able to explore the incone effect rather easily

within the model, so too could we incorporate the combined effects of

disability on health state, income, and life expectancy.

CONCLUSION

Analping fates comparable to death has required only a relatively

straightforward extension of the models used earlier to analyze risks of

death. The idea of a small-risk value that can be used to evaluate safety

decisions is directly applicable to the case of disability. Using the

combined results of these analyses, an individual can evaluate safety

situations where he faces both risks of death and disability.

The concept of micromort, microdisability, and microhazard values are

more important than the details of the model used to derive them. Even

without an analytic model, an individual could directly assign such values

and tien use them for decisions in the safety region. l,lhile he would not be

assured of consistency with underlying preferences, he would be assured of

consistency across different hazardous situations.
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PROFESSIONAL PRACTICE





Preface

These papers focus on issues and rnethodology that arise in the
professional application of decision analysis.

"The Foundations of Decision Analysis" shows the steps taken, the
models constructed, and the computations made in performing a decision
analysis. It discusses the role that concepts such as stochastic dominarce
and value of clairvoyance play in professional practice.

"The Difficulty of Assessing Uncertainty" reports on an experiment on
how well engineers assess uncertainty. The results illustrate several of
the universal biases in probability assessment.

"Probabi'lity Encoding in Decision Analysis" prescribes a procedure for
obtaining probability assessment that avoids common biases. The paper
sunmarizes the results of psychological experimentation and their
implications for encodi ng procedures.

"Risk Preference" presents the use of utility functions to capture
risk-tak'ing attitude and describes both theory and assessment procedures.
The paper shows that the "delta property" axiom makes it possible to use
simpler assessment procedures.

"The Development of a Corporate Risk Policy for Capital [nvestment
Decisions" describes an early experimental effort to determine
guantitatively the risk attitude of a major industrial corporation.

"The Used Car Buyer" is an extensive examp'le of decision tree analysis
requirirg probability revision using Bayes' rule. The paper provides a

step-by-step solution of a seguential decision problem and emphasizes
qualitative interpretation and guantitative evaluation of results.

"Influence Diagrams" is a previously unpublished paper that has been
circulating among students of decision analysis for several years. It
defines influence diagrams, a promising new concept for treating decision
problems that may supersede decision trees in both structuring and

evaluating decision situations, and develops in detail an application to
screening chemicals.

"The Use of Influence Diagrams in Structuring Comp'lex Decision
Problems" emphasizes the need for communication with a decision<naker to
capture the probabilistic structure of a problem. It illustrates a

sequential process of building the influence diagram in a hierarchy
beginning with the value attributes.
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Abslroct-Decision aadysir haa enrergcd from theory to practicc

to form a discipline for bdancing the mrny factore that bear upon I
dccieion. Unustral fcaturca of thc diecipline are the trcatmeat of
unccrtainty through subjective probability and of attitude toward
riek through utility theory. Capturing the etructrue of problem
rclationships occupies a ccntral poeition; the procces can be viEual-

izcd in a graphical proble'nr specc. These featrues are combinGd with
other prefereuce meesureo to produce a ueeful conceptual model

for analyzing deciaions, the dcciaion analyeie cyclc. In itc three
phases-determlnirtic, probabilistic, and informational-the cyctc
progreesively determines the irnportance of veriables in deter-
ministic, probabilistic, and economic environments. The ability to
assign an economic vduc to the complete or partid elimination of
trncertainty through erperimentation is a particularly important
characteristic. Receut applications in business and governmeat

indicate thst the increased logicd scope afrorded by decision anal-
ysis ofiers new opportunities for rationality to those who wish it.

The Foundations of Decision Analysis
RONALD A. HOWARD, EENIoR MEMBER, IEEE

IxrHooucrroN

T\U('ISIO\ :rnalysis is a term that describes a eom-
LJ binttiotr of philosophy, methtxlology, praetiee, and

applicatiott useful in the formal introduetion of logie and

preferences to the decisions of the rvorld. There w&s a time

less than & decade ago rvhen suggestir€ that decision

theory hld praetit'al applieation evoked only doubtful
conrnrent frorn decision nrakers. The prlst five years have

showtt trot otrly thut decision theory has intportattt pra('-

tical upplicrttiott, but also thut it cau fortt't the brwis for a
Ire\1' professiottirl disciplirre, the dist'iplitte of det'isitltt irtttl-

.vsis. .\[a,trv of the professiottrrl uspet'ts of the field have

rrlreldy' been dest'ribed in tlte litet'ttut'e (see Horvard Il ]).
Here \r'r, shall t'oncetrt rate on the rittioturle attd nrethtd-
,krg.y of det'isiott arraly.*is.

I n discussing the rut iotrrtle lrrrd philosollltv of det'isiorr

rrtr:rlt'sis. \\'e shlrll f,rt'us ()tI those t'tttlt'e1lts thltt ll'e most

urrfirnrilirrr to the irrtuitivc decisiott mrrker'. These cottt'epts

iLre gcrrerllly t'orreerned rvith the nle&suremerrt of un-

cert lrirrt v lrrrd rvith the decision nrtrker's rclrctiorr to it.
Irr providirrg r methodologr' for deci.siott utttll'sis, rve slrrtll

be concenred primarily rvith developing a pr<-,cedurul fornr

that rvill be brorrd euough to cover the importirttt itreus of

rpplit'rrtiorr.

'l'xu IlrrtosAt,E or I)rctsloN Axelrsts
'l'll('lrroblcm of the decision maker is to seleet rr ('or.lrsc of

ru'tiorr in a rvorld that is perceived as uneertain, eontplex,

rrrrd d1'nunric. To folkls'a, ('ourse of aetion is to make ttt

\larrrucript reeeived July 2, l9ti8. This researeh was par_tlally
supported by the National Seienee Fortudation under Grant NSF-
(iK-1683 arid bv the Offiee of Naval Researeh ttnder Contraets
ON R N00014{Z-A-OI 12-0008 and ON It N00014{7-A{l 12{010.

The nuthor is wit h t he Depart merrt of Engineerirrg-Eeoturmic
S1'stenu, Stanford Llniversity, Stanford, Calif.

irreversible allocation of resourees, &n act that we eall

making a decision. Perhaps the resouree whose allocation
is least reversible is time, but other resources rney vie for
this characteristic.

Although the development of a theory of decision that
comprises uncertainty, eomplexit,y, arrd dynamic effeets is

a formidable task, such a theory would not be complete,

for it often turns out that what is most perplexing to the

decision maker is not the mystery of his environment, but
rather the specifieation of his own preferenees. Thus $'e

shall discuss the rationale of deeision analysis by eomment-
ing on the three topies of uneertrrinty, st rueture, arrd

preference.

Our primary interest in the topic of uneertuinty is the
philosophical basis for the treatment of uneertainty &e-

eonding to the mathematical larvs of probability. The topie
structure includes the eomplex and dynamic interactions
that may exist &mong the many faeets of a decision prob-
lem. Finally, we shall diseuss under preferenee not only
the diffieulty of assigning values, but also the neeessity for
a value language that rvill be useful in a dl,namie and rrrr-

certain environment.

Unurtainty

The problenr of dest'ribing utreertairrt.v hus tornrentrd
philosophers for t'enturies. I'aseal and Fermat l:tid t ht'
mathematical fourrdations of probability over threc
hundred yetrs &go, nttd its development eontinues ttxlal-.
It might seenl .bvious that this theory rvould tre the
ttatural meditutr for thinliing about uneertainty. Horvever,

the obvious \r'&s not proved until the present eent ury,
rvhett it wa-* sh,nvrr that reitsorttble axionts for a therlrv of
utteerttinty lcd directly to the muthemlticrl t heorv of
probability.

Subjecttuc I'robability: \\'hile virtuulll' r:ver.)'( )rre &gt.ees

on the proper use of the probubilit,l' t.ulculus, there is
cclttsidereble disagreement otr the interpretation of its re-
sults. \Iarry users of probability theory eonsider proba-
bility tr-r be & physicrrl charleteristie of an object as its
rveight, volume, tlr hardness. For example, they rvould sly
thtt a eoirr "has" u probabilitl'of falling heads orr rrnv toss

itrtd thut to nreasure this probubility rvould merely rerluire
a large nunrber of tosses. This vierv of probability is e:rlled

the objective interpretation.
Another group eonsiders probability as a'nleasure of the

state of knorvledge about phenomerra, rather than about
the pherromena themselves. This group rvould say that one

"assigns" a probability of heads on the next toss of a eoirr

based orr all the knowledge that he has about the coin. A
eoin rvould be "fair" if, on the basis of all avuilable evi-
denee, there is tro reilson for asserting that the eoin is more
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likely to fall heads thtn trrils. This vierv is cllled the sub-
j ective interpretation.

The distinctiotr betrvecn the irrterpretlrtions might seenl

snritll, but it is the key to the porver of decision unulysis.

The objectivist rcquire$ repertnbility of pherronlent under
essetttially utu'hitttged .situutions to nrrrke rvhrrt he rvould
cott.rider t,o be merrrirrgful inferences. The subjer.tivist e&n

ilt't'ept &ny itmount of dttt:t, includirrg norre, rrnd still apply
krgit' to the decisiort. The objet'tivist rvi.ts rrble to survive
itttd evett flourish, rvhett the nrrrin problenr.s of infererr<,e

ru'ose in irrelrs such ns:rgrit'trltrtre th:rt provide lurge

ltltlottttts of t'heltp dlrtit. Todty, rrhetr det'isi,|ns regtrndirrg

sprl('e pr()grruns must be brrsed on o singlc lrruneh of ir

orre hundred nrillion dolltr rocket, the ability of the sub-
jectivist to npply logit' to otte-of-tr-kirrd siturrtions hirs be-
('onl(, indisllcrrsrrble.

Thc'se exrtnrllles nright lt':rd oue to believe thrrt the sub-
jet'tive vierv of probnbility is nroderrr;in frrct, it rrrrs clelrly
held rtttd uttder.strnd by Brryes tnd Lupluce trvo hundred

.y€:rl's rtgo. The objet'tivist vietr is ns.srrcirrted prinrtrily rrith
the fottttdirrg,rf the British sehrxrl of stlttistir.s irr the elrl.r'
1900's. It is the feelirrg of nrruty, including det'ision irnrulysts,

th:tt tht. t'rcrttiott of the field of stutistics through the
ltdvelrt of thc. ,rbjective irrterpretrrtiorr wi,rs rr lreresy in the
devekrlrnrettt of the treatnretrt of urreertrtinty. While ob-
jet'tivists tt'e definitely in thc nurjority lt llreserrt, their
t'rrttks -{eenl ttl be dinrinishirrg.

SrDyect iue Probability Nolalion.'Since the det.ision rrnrrlyst
trt't'essrtrily holds the subjet'tive viervpoint, he prefers rtr

ttotrrti,rtt fr)r' problrbility thlrt reverrls thnt it is lrrr rrssigrr-

Ittt'ttt [lltserl ott iI ('et'tlrirt set of infrlrnrttiotr. Sttt.h l trotlrtiorr
is ('orrstrtrt:ttrl :u folk)\r's: Let J be lrn event urrd E be the
strtte of ittforttrntiott ott s'hit'h thc probrrbility of the ot.-
('un'err('e of J is to be itssigrred. Then lrt lsf i.* the s.ynrbol

fot'tlre prrrbrrbility of .{ givcn S. If .r is u rrrrrdonr v:rriirblc.
tltt'tt tltt' prollrtbility dcnsity ol' nlrlss ftrru.tion of .r itssigntd
otl the busis of S is lrlsl . 'l'he expectirtiorr of .r' b:r..ietl on S

is u'ritttrr (..1s) rrnd i.r dcfirurl b1'

(.r' s) : [ , ,[.. is I

\\'ltt't't' -f , i* rt gcnerltl stttnntrrtir)n ()rr .r to be irrterprettd lrs

:r sunlnlirtion or integrlrtion rrs lrppropri:rte. The nth
nrr)nr(,rrt of .r lxrstd on S rvorrld therr be

(.r'"iS) : 
[,.r^[r'lsl

'l'lrt'r'uriirrrce ol .r is u'r'itten '(..|s) nnd defirrcri b.r,

'(.,.lst: (.,.rls) (*ls)r.

Ottc vel)' spet'iltl .stittc of ittfonntrtion is the totrrl knon'l-
edge lvailuble at the begirrning of the problem under (.on-

siderrrtion, the totll prior experienee derroted by s. Then

lrlgI rvould be crrlled the pri,,r'density function urr r, or t.he

"prior" for short. The tlunnrities (r'lg) nrrd'(r.le) rvoukl
then be tlre prior nleiln and vurinnee.
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Although thi.* rurtrttiott ofterr secnrs stt'iulge, it pruvidt's
r[ nrrtthenuttit'ltl litttgttrrge for utrt'ertrrinty thrrt dest.rihes
pret'isely both the tlultttitit's orr u'hich the llrolr:rbilit.r'
rtssigttttrettt is to be nr:tde lrttd the strrte of inftlrnrlrtiorr to bt'
uscrl in the rtssigrttnettt. 'l'lre subjet'tive vierv thrrs irrdtrr.es

tttlt orrly cilre irr thc ittterpretlrtiorr of ltroll:rllilitv llrrt rrls,,

pret'isiorr irr its s'r'ittt.rr expl'(,ssiorr.

Nlr'ttr'/ta'r'

The pritrtitry ftrrtt't iott of t lte decision iuull.\'st is t ( ) (.:rl)t ure

the relrrtiotrships lulrottg the tttlrn.\' \':rrirrbles irr :r tltr.isi,rrr

llroblenr, & ptt)cess t':tlled stntctrrrirrg. The t.onrlllc\it.\' of

struct ure retluired s'ill diffcr frotu llroblenr t o llrolllt'nr :

fronr it "brtclt-of-the-ettvckrpe" 6lsf i..iiorr tree tu :r svstenr ol

itttet't'ottttet'ted progrrutrs tlurt t:.rx the lltrgest (.onlputet's.

The I'roblent .Spaee; A dirrgr:.rnl like l"iH. I is rur lid irr

visurrlizlttiott. This di:tgrlrttt, the prtlblc'nt sprr(.(., pennits

chitritt'terizirrg det'isiott ptrrblenrs l).1'tlreir rrrrtlt.rl.t'ing

strut'tut'o. The dintetrsiott.. t,f tlrc prrllrlt'nl sl)rt('e lrre dt.gl'(,(,s

of tlttt'ertititttl', tinre deperrdcn('e, rrrrd t'rlnrplexitl'. I)tgret'
of uttcert:ritrt.y ('r,ut r:ulge Ironr thc deternrirristit. sitrrlrtirlns,
rvltere ull vrrrirrbles :trc' lutowrr, to tlrt. highl.v llnrb:rbilistit.
sitttltiotts, tvltet'e little itrfornurtiorr is lrvirilnblc :rtrorrt lul.\'

probletlt t'rtt'iitbles. The titrre deptrrden('e ('tlu r:lngt. fr'orrr

stittic ttl dyturnti,', e,rnrplcxit.\' is lne:lsul'('tl irr tt'r'ltrs o[ tht,
rtunrber of vrrrirrbles l'c(luired.

Ertt'lt ('()rtler ,tf tht' pt'olllenl sp:r('e ('()r't'espotrds l o r.ert.itirr

nruthenrtttit'ltl nrrdels. Cr)nler I is the deternrinistit. st:rtit.
olle-vtlt'itrble det'isiott ptrrlrletrt, sut'h us tlurt of findirrg tlre
largest ret't:tttgtllrtr ru'err thrrt ('lur lle fcrrecrJ rvith ll givr:n

length of fettt'itrg. The ntodels rlf elt'nrentrrrv cirleultrs,

develtlped ovet' 300 ]'(!lu's trg( ). n'ottld be rrp[)t'( lltr"iittt'.

Cr lrtter 2, t ht' d t't ct'tttit rist it' d1'r rrrnrit. sir rgle-r'lr ri:rb lt'
tlet'isirltt 1lt'oblettr. u'ottld :u'ist. irr el(.nrctrt:u'\' itttto-
ntlttit't'otttltrl :tpplit'rrtiott.s. f,'lre nurthenurtir,irl rnrxlels of
differerrt i:rl e(lu:rt iorrs lrnd t r.:rrrsfornr t.rrlt.ulus s'otrld be

t'elevirttt ; thel' \\'et'rr devck)p(d ovel' 100 .r'cru's irgo. Ct,r'rrt'r,]
represettts the prolxrllilistit,.*tutir.sirrgle-vrrr.i:rble llrolrlern.
stlt'lt tt.r rrhether ()l'ttot trl bttl'life irrsrtrlrn(.(,. Three-
hurrdred-1'eitr-old elenretrtiu't' llroblrbilit.r u'otrld bc rltritt'
helpful irr reachirrg lr det'isirln. Corrrer' { irrtndut.(,s (.onl-

plexity in the ftlnll of tlrt dt'tt'rnrirristit. strttir.. btrt nl:ult'-
vtriuble pnrblenr. I)et'i.*it,tr problenrs like s1.*.*ignirrg cus-

tonters ttl witreltottses or nlerr to jobs provide lrrr illttst rrrtion.
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HOWATTD: FUUT{DATIONS OF DECTSION ANALYSIS

One-hundred-year-old matrix algebra arrd 2Gyear-old
linear optimization techniques would be very useful.

Corner 5 eombines the two faetors of uneertainty and
dynamism in the uneertain dynamic, but single-variable
problem, sueh as simple inventory control. Here the theory
of stochastic proeesses and queuing models developed over
the last 50 years would be most relevant. Corner 6 core-
sponds to the probabilistic static multivariable problem.
Decision problems like bidding on new pr(duct introduc-
tiun might have sut'h atr underlying structure. 'l'he mlrthe-
nrat,ics of joint, probability distributions n'ould be espeeially
helpful. Cortter 7 refers to the deterministic dynunrie multi-
variable decisiorr problem, such as the complic'aterl corrtrol

problems posed by a space vehicle or & steel mill. Although
probabilistic elements may be present, they are usually

treated ils perturbations of the deternrinistic mtxlel. The
modern theory of eontrol developed irr the past three
decades applies su('cessfully to these problems.

Finally, conrer 8 is the most complex corner, describing
problems irrvolving uncert,ainty, dynamism, and com-

plexity. In a serlse, all decision problems could be located

here beeause they all involve the three faetors to some

degree. However, this corrrer is used to indicate problems

rvhere the three elements are irrdisperrsable to a meurdngful

analysis. Problems Iike eleetrieal power system plannirlg or

busines.s mergers &re particular examples. Useful models

might be \[arkov pro('esses and their derivatives.

The extettt to rvhit:h formal nurdels &re available varies

considerubly over the problem sp&ce. Netr the origin there

irre usurrlly several ulternirtive models for the problem;

near corner. S it is more ir mat ter of patching together

approxinurtions to obtuin & useful representation. As tech-

rrology :ult'lrttces, rn()re reuli.stic nrtxlels of uttcertaitt, dy-
narrnie, urrd corrtplex pro('e.sses will be developed. How-

ever, it s'ill corrtirrrte to be the job of the de<'isiotr trrrtlyst

to be the engitreer rvho matr:hes teehrrology to the retluire-

rnent,s of the prrrblenr. His product is tlre embotlitnettt o[

Iogie.

Preterence

'l'he pnrblenr of preference measuremettt is to deternrine

in rluarrtitative tenn.s just s'hut the decisiorr maker rvattts.

l'alue:'l'he first step is tr, :.rssigtt a single t'lrlue u'to euch

possible r)utt't)nre of the decision problem. If the problem

is t,orrcernetl with tlre rrllocrtion of monetary resources,

therr it is logicirl to nrcrrsrlre this value itr mottetary terms.

Irr business orgilttizrttiotts, sonre form of profit may be

irpprollriirte. Btrt,the rreed for monetary t'alttes &s &

pret'crlent for nrorretlrry allocrrtiun applies even if the out-
('oJne irrvolves the krss of life or lirnb. As decisitln analysis

is itrt,reusirrgll'ttsed irr problems of stleial significallee, a

ltrottet ar.y vrtlue nrrr]' ltut'e to be assigned to such out-
('(,nle.s us:r cultttrcvJ life or:ltr igttortttt life. Thtlugh these

rrssigrrnterrts nlrt.\'be ver.\'tliflictrlt, there is tlo rationul

tlterrrat ive.

Titrrc I'referrnce: [Iorvet'er, evetl irr d.yttumie world,

t he prefererrt.e rlrresl ion rvould ttot be resolved until the

decision nruker lrrul stated his preferettee for outeomes

that are distributed in t ime : a prefererree calld time prefer-
ence. The import&n('e of time preference is revealed when
the analyst studies problems like the development of the
natiorral parklands or m&rragement of an individual's in-
vestment portfolio.

The phenomenon of time preference could be described

as the greed-impatierrce t radeoff. It is characteristic of
individuals and orgatrizations that they want more rrow.

However, the ulterrrrltives provided often give them o

t'httit'e between nlort' later or less rruw. lixl,nrples n'ottld lre

tlte t'hoit'e bet weer r hyd roelectric :r,r rd gus turbi r re el ec t rir.it y
pnxlut'tir)tI or, irr gerrer':ll, the choit'e between irrvestrnerrt

in capital gotds arrd consumer goods.

While the problem of preferenee is eomplicated, it i.s

usually treated in decision urralysis by the spet'ificatior r

of a discount or itrterest rate tnd the rule that the altenlu-
tive with the highest discounted, or present, value is to bc
preferred. Everr rvithin this framework, selectirrg thc
&ppropriate itrterest rute is turt easy; it involves the nrrture

of the interaetion between the organization and its finurrt'ial

environment.

Risk Preference: The most unusual and challengirrg

preferellce problem corr('errrs prefererrce for risk. The exis-

tence of the pherromenorr is established by notirrg thlt few

people are willirrg to bet double or nothing on rre.xt, yeur''.s

salary, evetl though the proposition is fair. ][ost people

atrd orgartizatiotrs are &verse to risk : they &r'e u'illirrg to
eltgage irr utrt'ertaitr propositions only if the expet'tal
varlue of the proposition is positive and relutively large.

The descript,it-rrr of thi.s type of preferent'e rerlrrires u set

of eottcepts that rre urrusual, but logit'al.

Tt-r be speeifie irt describing the eortt'epts, it is rret'essur'\'

t<l define the tet'hnical ternr "Lrttery." A lotterf is rr sel ,t

prizes or prospects, one rrttd orrly one of whit'h rvill be

received. Assoeiated u'ith eut'h prize is L pr,lllbilit.r,;
the sum of all the probabilities is oue. In nran)'('irses the

prizes will eaeh eorrespond to the irmourrt of s()nre conl-

modity, such as nlorrey, that will be ret'eived. In these cuses

\ve c&rr think of the lottery &s & random varirble d('scribed

by either a probability mas.s or pnrbability density func-

tion.
(' til ity theor y : f he most eornmon struct ure for err-

eoding risk prefererrce requires that the individual sub-

seribe to a set of axioms coneerlring lotteries. The first is

that he must be willing tr.r provide a trirnsitive rtttk order-

ing of ull prizes in &ny lottery. That is, if the prizes irr u
Itrttery rrre C, B, and C, he must be able to stf in rvhat

order he prefers the prizes; further, if he prefers .{ to B
urrd B tut C, then he nrust prefer A Lo C.

The set'ottd axiom is that if he s&ys he prefers I to I to C'

then there must exist u value of p sueh thtt he is indifferent

betweett receivittg B for certaitt attd participatirrg in &

lottery that pr(duces .{ rvith probability p atrd C rvith

probubility I - p.When the appropriate value of p has

been fourrd. \r'e rvould say that B is the eertain etluivalent,

of the lottery on 24, und C.

The third uxiom is that if he prefers prize A to prize I
:rnd if he i.s presented rvith trvo lotteries, each offering .d
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Fig. t. Utility ctrrve.

11d B lvith differerrt pnrbubilities, therr he mttst prefer

the lot tery that yields rl rvith the higher probability.

'l'hese irxionrs ore thc most signifieant olles. However,

two others tre ne('essary for eompletettess. One is thot a

r.ertlin rluivalerrt of a krttery mey be substit,uted for the

lottery iu urry situttion without t'hattging the preferettees of

the det'isiott maker; we nright t:rtll this a "did you really

nlettr it?" itxiom. The tlttrer is that a ltlttery whose prizes

&re themsetves lotteries is equivalent,to & klttery that

produees the same ult,imate prizes with probability eom-

pgted &t'r'otdittg to the laws of prtlbtrbility; this cottld be

ternred t "tto futt irr gambling" axiont.

\ [ :rt henrirt it.tl arguntetrt s reve&l that arr i nd ivid ulrl rvhr I

.slbsr.ribes to these lxionrs esltl etterxle his risk preferettt'e

irr tt,rlls of ir furx.tiorr otr t,lre prizes of the kltt'eries, lt ftlttt'-

tiorr ellltd t rrlilit.y furrctiorr. 'l'he utility fttttt'tiott hrus twrr

ilrport:rnt prolrcrties: first. thnt the trtility of ittry krttery

is the expet.te<l utilitl' of its prizesi secottd, thrtt if ()lle

krttery is preferrerl to tnother by the individutl, thcn its

tutility rvill bc higher.

Thus the utility funetion assigrrs to Bny lottery & re:rl

lrunrber; the lotteries rvill be prefemed in the order of these

rrumberc. Honever, the actual magnitude of the utility is

not inrprlrt ilttt , beeeruse the preferenees reverrled by the

utility funet ion ol'e uneh:rnged if the trtility fttttetirxt is

modified by nrultipliettion by t positive cottstuttt or by

ddition of &nv t.onstiurt. Thtrs the utilit.!' fttttction serves &s

a risk preference t,hermonleter thlt erttr be used for rotrk-

ing lotteries rrt.t.ording to the risk preferettce of Btl in-

dividurl.
In problenrs of profe*.*iorrrrl itrterest thc lottery prizes are

usually nrerr.surecl irr t conrnrodity sueh as molley. Irr this

e&se the utility futtctiort ean be nepresented by & curue

that shon's the utility to be assigned to atty Bmoutrt of the

eommodit.r'. Sut,h u utility curt'e uppeurs us l"ig. 2. The

eurve (zjr.S) shos's the ut,ility u assigned by sonre irrdividull

to amounts of money u betrveen 0 and 100 dollars. Bc'

IEED TnANsAcTtoNg oN sYSTEMB sclENCE AND CTBERNETTCE, gEPTEUBgx 1968

eause of the invarianee to lirrear transformatiott, the seale

of mea"suremettt can be selected arbitrarily; this eurve

assigns e utility of 0 to 0 dollars and a utility of I to 100

dollars.

The two lotteries belorv the curve show horv it is u.sed.

The expected value of a lot,tery Z is defined itt our nota-

tion by

(ulrs) : 
[,r[r'll,ef 

.

l,otlely /,1 lrrw lrr expet't,ed villtte rlf ll8 tklllltt's i L:, itll (!r-

prx.tal vtlue of 36 dollrrrs. Sonreotle whtl \\ &s indiffererrt

tg risk rvould prefer Lr. However, to deterntitte the prefer-

en(.e of the individutl rvith the utility furtet,iott irr F'i9. 2'

rve firct determine the utilit.v of eueh prize itt erteh lottery

frcm the utility eurve &lld then find the expecte<l virlttt',rf

the utility. The expected utility nf a lottery is givert b.v

1ulr,e; : [,<ulro1 
[ulr,ef .

Sirree tfic expec't,ed utility of lot,tery L1 is 0.{{. rvhiic thnt

of lott ery lais 0.51, the irrdividual rvotrld prefer krttety /,1.

i1 spite of its lon,er expa'ted virlrte. We rvottld deserille

ildividucls rvhose utility eurves rre ('otl('itve dorvttrvrtnds ns

risk aver:Je.

Thc certain equiualenl: Although this t'tleulatiott servcs

to deternrine the individulrl's preferellce, it gives us lu)

feeling ubout the strength of the preferell('e. The mngrri-

tude of the utility (.rur be no help bet'lttsewe see thrrt if rve

udded l0 to lll utility nunrbers, we would derive exilt'tl.y

t,he same preferenee ordering but with much snr:'rller per-

r.etrtrqe difference irr utilit.v ttttnrbers. To meirsure strength

9f prefererrr.e, it is helpful to retttrtr to the eoltt'ept of eer-

ttin equivalerrt.

T6 evirltrrrte 1 lotter.y in rr sirrgle meattittgftrl mtlttet'ary

Irumber, we r.lrtr &sk rvhat slnlount of nlolle.\' ret't'it'ed for

t.ertuin rvould hin'e the snme trtilit.v &s the lotter.v. 'flrc

t'ertuitt etlttivltlerrt of ir klttery Ir, dentlted b.v -(r'l/,6;, is

thrrs the anrourrt of nroney slttlrvtt b.t'the tttilit.v t'llrvt) Io

hluve t[e s1r1e utilit,y as the lottery. The cert,:titt erltlivrtlerrt

is nrat,hetrtutit'rtlly defined by the equutiott

(rl, : -(r'l fe ;,e 1 : 1u lfel.

Thrrs fronr the eurve tve see thnt the trtilitv of 0.{{ for

lottery Lr corresponds to ir eertititr ulttivltletrt of 28 dollitrs.

rrhile the utility of 0.51 for lotterl'/,: would nleitll tt cer-

tain rguivalent of ll{ dolllrs. The individurtl worrld be jtrst

indifferent bet\\'eerr reeeiving either 28 dollars for eertaitt or

lottery L1 and betrveerr receivitrg 3{ dollars fttr t'ertttitt or

lottery Lr. It rvorrld be slightly inlcettritte, bttt irrttritively

sutisfying, to sty thrrt lottery'/,.1 is rvorth ti dollars nrore ttr

the individttrtl thtrr is ltlttery L1.

Erponenlial utitity cu,'t,es.' Itr sonre ('lNes t.he irrdividtutl

is willing to subseribe to a sixth lxiom: thllt if tll prizes in

a lottery ure int,reased by uny ilnl()uttt A, the t'ertrtirr equiv-

slent of the lottery rvill tlso itrt'rerrse tlv A. The rrxiom is

pensuasive. since the int'renrent S rvill he reeeived n'ith ('er-

taint.y regandless of the outc()nle of the krtterl'. Hotvever.
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llowARD: FOUND.T',nONS Or DECISION AN.rLygts

the axiom is very powerful, for someone who subscribes to
it must have a utility curye that is linear or exponential in
form; that is, (uluS) is proportional either to u or to e-lo.
Furthermore, the curve is completely described by the
eonstant 1 called the risk aversion coefficient. Although
few individuals may in fact wish to be governed by this
axiom, the exponential utility curve is very useful in
analyses, as we shall see.

Stoclr.astic dominanu,: There is one important case in
which risk preference need not be measured at all. That
is the case in which the choice between two alternatives
would be clear to a rational man regardless of his risk pref-
erence; it, is called the ease of stochastic dominanee.

Lottery /,r stochastically dominates lottery Lz if the prob-

ability of receivirrg & monetary return in exeess of c is
higher for Lr than for Lz for any value of c; that is,

lr> rlLrl > [u> clLrl , -@ (c( @.

If one lottery stochastically dominates all others, then it
will be preferred by the individual regardless of his attitude
towand risk; there is no need to use the utility function.

Joint Tinrc-Risk Preterence: Individuals often have to
choose betweetr monetary rewands that are not only un-

eertuin, but distributed over time. In these situations time
and risk preferenee must be jointly encoded. The descrip-
tion of joint time-risk preference is a problem that admits
marry solutiors. Here we shall employ the idea of reducing

any time streanr of value to a present value using the time
preferenee mermure and therr applying the utility function
to determine rvhich lottery on present values is most de-

.sir:rllle.

THB \InrHoDoLocy oF Dpcrstox ANlt vsts

\\'ith this background we corr go on to a discussiott of

horv r deeisiorr problem ean be progressively analyzed using

decision analysis principles. The procedure is best explained

itr ternrs of a diagram like that in Fig. 3. Here rve view the

det'isiorr arralysis proeedure rLS divided into three major
phust's, the deternrirristie, probabilistic, and ittfornrational
plurst:s.'l'he deternrinistic phurse estublishes tlre deter-

nrirristit' relat iorrships ilmong the varirrbles of the llroblenr.
'l'he probubilistic phase irrtrtxluces uttcertainty urrd rislt

llreferen('e. l"irrully, the irrfornrational phase deternrirres the

ecorronlic virltte of gathering more informat,ion. l'ollowing

these phirses, a decisiorr is required ort whether to act or to
grther rrew information. If additional informatiott is ob-

tained, €.8., t hrough market testirlg or building & pilot

plarrt, therr t his irrformation nrust be incorptlrated into the

st ructure utrd probnbility assigttmettts of the problem;

the cyele is therr repeated.
'fhe deeision analysis cyele is & eonvenietrt eorleeptual

mrdel rtther than arr inevitable method for arralyzing

decision problems. With this point in mind, w€ shall ttow

exanrine the steps required in erteh phase.

The Deler ntinistic Phase

The first step in the deterministic phase is to cotrstruet

a rleterministic mqlel of the decision problenr.

oEctstoN uRtltLES

l'ig. a. I)ecerministic model.

The Delcrntinistic ll odel: Irig. 4 is rn abstrtt't rept'esentu-

tion of the model. 'l'he model relates the inrportarrt vuri-
ables in the problem that rre rrot, under the eotttrol of th,'
decisiott maker atrd the variubles that ure utrder his ('ont 'l
to the production of value in time. 'l'hese variables rre
called the state variables s; atrd decision variubles dr. lVe

ean visualize the state variables &s a set of krrobs on the

model that are set by a disinterested nature; the decisiorr

variables are knobs set by the det:isiort maker. l'ig. 4 sltols
thart the values developed over time r'(0), u( l), r,(:l),

irre ()perated uporl by the tinre llreferen('e speeifir:ltiotr trr

prulu('e:r presetrt vulue relulittg t, tlut tve nray regtutd irs

&ppe&rittg otr:r value meter.'l'hus &ny settirrg of t,lte stutc-

und decisiotr-vuriable krtobs will pnxlu('e u valtte reuding.
'fhe deterministic model will getrerrrlly be rertlizetl in the

form of a computer progr&m.

Deterntinistic Sensitruity: I-iS. 5 shorvs the first analytierrl

step in the deterministic phase, the Ineusuretnettt o[

deterministic sensitivity. In the represerrtatiorr of Iig. 5

the time preference me&sure is showtt itrcorporated into the

deterministic model to produee & single presetrt value read-

ing. The analysis begins by assigning each state variable o

nominal value and a range that might eorrespond to the

l0- and gGpercent poitrt otr its marginal eumulat,ive prob-

ability distribution. Decision variables would also be

assigned nominal values and ranges to reflet't inititl feel-

ings about what the best decision might be.

With all variables but one set to their nominal values,

that one voriable would be swept aeross its range to deter-
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mine thc effcr:t on the v:rlue rertdirrg. The figure slrorvs

t he nleusuretnent for t he ith st,lte vuri:lble s1. St.rttc ()l'

tler.isi<lrr vrrrirtbles thut shorved high settsitivity rvtluld llc

retrrined irr the further atu.rlyses of the nrodel. A vrrritblc

eould slrorv u high deternrirristic sensitivity bec&use of its

rride t'lrtrgrr. t.rut.iul nitt,ure, or u coltrbittlttiott of thesc effet'ts.

In :v)nrc prolllems this otte-ltt-rt-tittrc type of setrsitivity

Irrrrl.vsis rvill not llc sttfticiettt: tlrc joirrt settsitivit.v uf

r':r1i:rllles u'ill lrlve to lle nleitstlt'cd lty srvtupitlg ltlorc tlt:ttt

onc vltliltlllt rtt ir titrtc over their l'lttlgcs. Ilet':ttt.*e tltt'tltltll-
ller of possibilities for joitrt, scttsitivity ittt'relLses t'otltltittit-

torirrlly rvith the rrtrnrller of vitt'itlbles, tlte tttrtly.st tttttst ttse

judgnrent irr detennirrirrg rvltere joint settsitivit.y nle:rsurc-

rlrents rvill be required.
'l'he net elTet.t of the deternritristic setsitivity rrrirlysis

rvill bc to deternrine the state vrrrirrbles rrtrd det'isiott

vlrrinllles thlrt hrrve ir ur:rjor effet't ott t'rtlue. The ttext step

rvill be to intrrrlur.e the t'urrettt sttrte of krurrvledge oll tltl-

r.ertirirrt.y in t he st:rte vrrrirrbles rrtrd deterltritre rrhit'h

tler.isirul \rould be best, givett the tttrt'ertltittt.v; this is dtltte

in the prubrtbilistic phuse.

?'he P robalti/islic Phase

'l'he prolllrbilistic plttse rtrlttit'es rr*sigrttttettt uI llr,rll-
:rbility distributiotrs otr tht' stitte v:triitbles.

tEEE Tlt.{NgAL-ft(rlris (rN SYsTE}ts sClE\-('E .\!iD UYDERNE'fl('s, sEP'I'EMxBft lt}(its

Tlw l'altn Lotte r y : l'ig. 0 shorvs this assigtrtnettt as :t

marginal probability distributiorr It,lS] ,n each stalte

varinble. Since the state vtriables rvill getter:rlly be joint y

related, the complete descriptiotr of the stute of kntlwledge

about them would be the joint probability distribution

l*,,rr, 
. . . ,srlsl : Itlel , but t,he nrarginal distributions

shown will serve &s a pictorial represetttatiotr. The settings

ef the decision vnriables are sunrnrarized by the decisiurt

vector d : ldrdr,...drrl. l'or any setting d t,he joirrt dis-

tribution [tle| on the strtte variables will inrply & prob-

ability diriribution on the value, lrlae l, * distributiott rve

call t,he vulue lottery. The det'ision problenr thett reduees

to findiug the sett,ing d that prtduces the nrost desiruble

value lottery.
The determinatiorr of the vrlue lottery corresponding to

rrny det.ision veetor d rvill be perfontted by rttralytit'rtl ol'

simulrrt,ion nrethtxls, trs uppropriate. Efticient seirrclt prtl-

r.edures ure helpful iu estublishirrg the best setting f,rr d.

Bisli Pre[erence: There remaitts the question of whieh

vllue lottery is best. l'erhrrps the questiorr rvill be easil.r'

resrllt'ed by the tlbservirtirltt thut olle setting of d pr,dtu'es

rr value krttery thrrt stot'husticully donrittirtes the lotteries

prudut.ed lry ull other settings. Btrt if ttot, then it u'ill be

nc(:sJseuy to errcode the risk preferettee tlf the dt't'isi, rtt

nruker irr ir utility curve. This curve will irllurv eut'lt vrultlt'

lottery and hence eaeh setting of d tobe ruted bv its rrtilit.r'.
'l'he setting thrt pruduces the highest utility (ulaa) rvottld

then be judged the best. To gain intuitive mettrittg, tltt'

utility of each krttery eould be returned to the trtility ('urve

to show the certuin equivltlerrt t'rtlue -1r'lde; inrplial by tlre

decisiotr settir€ d.

This prtx.edure estnblishes the setting o[ the tlt't'isiott

vrrrirtllles d(S), thut is most desirrrble to t,hc det'isi,rtt lttrrkct'

ip vierv of his stirte of krrorvlcxlgc regitrdirrg tlttt'('rt:tittt it's

:rttcl his risk preferetl('e$,

dtc) : n,;,*-t(ujacl : n.)*-' ^1r'ldt;)'

lfrrrthcrnlot'(,, it shorvs thc rrtilitt'(rrlel rttrrl ('('t't:tilt trlttir'-

lrlerrt -(,,1e) of Ihe llt'st (lt'r'isi, rtt,

(ru1r,): (uld: dtn)cl

-1r'lt; _ -1r.ld 
- dtt:)t:1.

Irr rr sense, tlris stell t't,tttlllett's tltc solttt iott of tht' det'i.siott

problent. Ho\r'(.\'cr', situ'e det'isir)lt ttttltll'sis is ttrore ettgitte('l'-

ing thlrn nurthenrrttit's, the prot'edure drrcs ltot stop ltere,

but rrrther eorrt intres to t lte ttreitsuretttettt tlf :tttotltet' kirrtl

of setrsitivity, sttx'hrtstit' settsitivit.v.

Sloclroslrc Sen.silir,ily:'l'he iderr bchirrd stot'ltltstit' settsi-

tivity is the desire trl llleirsurc the effet't of :t r':rrirtble ott tlte

result of the det.ision problent ttot irr t he deterttritrist it'

errvin)trrnent s'here rrll other varilrbles rre set t,o their

nonrinul virlues. btrt in the probabilistie etrvirotlnletlt rvhere

rrll other v:rri:rbles are goverltel by their &pproprirte

pnrbability distributiotrs. As Fig. 7 shorvs, if the rth stlte

vurirrbl€ sj \\€re ktrolrtr, the other state vrtrirrbles rvrluld be

govenled by the eonditionul distributiorr ls1s,6| obttined

b.y dividing lrie ] t y lr,le | . 
'ttrus the specifieutiott of :rtty
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IIOWARD: FOUNDATIONS OP DECISION ANALYH,IS

The problems of joint sensitivity nle&su renrent arise
just &s they did in the ('a.se of deternrinistic sensitivity.
Howeveq here the cost of joitrt serrsitivity measuremerrt

is even greater tharr before because of the rreed to develop
lotteries on value rather than sirrgle numbers.

Stochastic sensitivity c&rr provide important additional
insight into problem relationships. It can shorv the need for
further strueture to alkrw available informatiorr to be

encoded more effectively. It might reveal that variables
originally thought to be of vitirl import&nce orr the basis

of deterministie analyses are relatively uninrportant in the
probabilistic environment. At a minimunl, it yield.s B use-

ful measurement of the robustrress of the indit.ated deeision.

Tlw Inforntational Phase

The probabilistie phase of tlte atralysis provides further
insight into the import&nce of urrcertairrt.y irr st,irte vari-
ables, but it stops short of rvhat we would really like to
know, namely, what is the worth in nrorretary ternrs of the
various forms of uttt'ert,iriuty renr:rirrirrg in the llroblern'l
The infornrational phase (:overs this last step of rnc'iusuring

ecottomic sensitivity artd hettce indicates rvhrrt sort of

additional itrformation could be eeononrictlly gathered.

Clairaoyance: A useful t'otx.ept, irr discus.sing the in-
formational phase will be the clairvoyarrt. The clairvoy:rrrt
is an individual who c&tl tell us the preeise vrtlue of tny
utteertain variable. Clearly, such help would be vrrluutrle,

but how valuable?

l"ig. 8 illustrates ttrc ('rrse wltere rve htrve errgrrgtrl the
clairvoyunt to tell tts tltc vulue of tlre ith.strrt('\':.tri:rblr,.r,
at rr eost kr,. Iirtorving s1 will hln'e twrt effeet.s ott thc result.

If irst, the probability ilssigtrnrertts ()rr the ot lrt'r .st tte vitri-
ables will be goverrred b1' {sls,e } . Se.',,rrd, rvhrrtt.\'(,r' pl'€s rrt
vulue u is pruluced u'ill ltuve to be redut'ctl lry tlre t.l:rir'-
voyatrt's charge A'r, to lt tret preserrt, viulue r". Orrr.€ sr is t't.-
portal, the best setting d(s1l r,6) of the rlet'isiorr vct'tol'

will be the settirrg thtt prtxluces I ttet prt'setrt vrrlut.hrttt,r'y

havirrg the highest utility. Thus

d(s,/,'-nc) : nl:r.\ -r(rrls,/i, dt,) - nlrrx ' [,r,ilsl',,dtl) 
lrl.,al

Itttrl 

r,rrx(uls,A'",dt;) - (uls,l'.,d(s,A'.,{t){lt.

Therefore, if we kttert' that the cluirvoyarrt rvould report
a particultr value of s1, the utility of the resulting lotter.r'

would be (uls1/r,,d(srk,,6)6). However, \\'e &re not sure thut
he will report thut value; irrdeed, if rve \\'ere sur(., therc
would be no point in emploving hinr. Clonsetluent ly, rl'e

ntust u'eight the utility n'e shlll derive if he rt'lrorts I vulue

of s, by the probability thut he rvill relxrrt thtt varlue in

order to deternrine the utilit.v (rr lA'.,e) of the lottery we

enter by errgaging him. The probubility \1'e us.sign to his

reporting un.v value of s, is, of ('ourse, just l*,le| .rinr.e he

is rtsstttned conrpetetrt lrrrd trustrvorth.v. Tht'refol'r,.

(rr lA',.e; : I,, *1s,4.",d1s,f,.",6)s) lr,lsl .
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vultte for s1 would imply sonle joint probubilit,y distribu-
tiotr of the renrainirrg state variables, und in turn a value
lotter.y Ir'ls,d6] f,,r the giver] settirrg of the decision vector.
'l'he risk preference encoding would describe this value
krttery by a certairr equivalent -(ulsrd6).

Suppose rrow that the deeision veetor d is adjusted to the
t'llue d(srS) that prcduces the highest eertrin equivalent
for this vrrlue of s1, ru&xf (uls1d6), thut is,

d(s1tl) : n,l* -'(uls,dS) : *:* -t -(t,[.*,d6).

If this prot'alttre is repellted for the vuriotts vrrlue.s of .si

withirr its r:urge, the plot of rr&X4 -(,'l.s,d6) u'ill show thc

stot'lru.stit' serrsitivity of the vrrriubl€ si.

Stot'hastic sensitivity shows how the t'ertairr equivalent
t-rf the dt.r'ision problem depends orr L particular state
variable rvherr all other state variables &re uncertain.

Stochru*tit' serrsitivity ('alr be measured in a different sense

if, rut,her thurr clttxrsing the best det'ision variable setting

d for eut'h sr, the set,ting d(6) that was best for lsle I is used

throughout. This technique measure.s the stochastic serni-

tivity to the rth state variables under the original deeision

rule rather tharr under a decision rule adjusted to take ad-
vtntruge of klrowledge of s1. Stochastic sensitivity to a

det'ision vtriable dt eatt be measurd by using the prob-

ubility assignment |tle| for the state variables and then

seeing how the certain equivalent ehatrges with d, either

with other det'ision vtriables fixed or eontinually optimized.
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If the cost of the clairvoyant L',, were equal to zero, \Ye

rvould expect this utility (rlk,, - 0 S) to be greater than the

utility (rlS) of the best lottery rvithout clairvoy&tree. How-

ever, as the cost of the clairvoyatrt iltereases, his service

rrill become progressively less desirable until the utility of

the lott,ery rvith t'lairvoyallce is just equal to the utility of

the best lottery without clairvoy&ltce. The value of lcr, that

sutisfies the equation

1u llc,,a; : (" lg)

is crrlled the vnlue of clrtirvoy:.rtlce ubout the vuriublc si.

The vulue of clairvoyirnce orl a variable is un intportuttt

quuntity becinlse it represettts the largest anloullt that olle

slrguld pty to elimirrate completely uttcertainty regarding

the vuritble. Since most reul itrformation grtherillg oppor-

tulities provide less than perfect itrfornutiott, they should

never be enrployed rrhett their cost ext'eeds the cost of

t'lairt,oyutlce.

\otice t[at the ut,tual availability of a clairvoyrrttt is

irrelevirnt to this lrrgumettt. The t'ltirvoyirtrt in decision

:rrurlysis pl:rys exnctly the sunle role us the Canrot ettgitte

i1 thernrodyntnrit.s: u ('otlceptuul referettee agaitrst rvhich

I o (.ollll)rlt'e t he perftlrmiltlee of physically reulizable

lrltcrttatives.
As rvith serrsitivity me&suremetrt, the value of sinrul-

turreous eltirvoy:lrce olr several variables e&Ir also be errl-

t.ultrted rvith sonres'ltitt more difficulty. In the pret'eding

ul'gunlent, s1 u'ould be'replaced by a subset of strrte vari-

ubles, but the nirturt of the ealculutions renrtitts the sattre.

Everr if t[e stute variables are indepetrdettt, the vrrlue of

r.luin'o.\'rln(.e orr several of them c&tl differ frtlttt the sum tlf

t hc t'ulut,s of eluirvoytulce oll each seprrrltely. (See [1 I'

[,,1.)
T[e yulue of t.luirvoyalrce oll &Ity strrte varirrble or set

of st ute vlriables rrill depend olt the prior dist ribut ion

lrle ]. tt is cleur that sonre prior distributiorr rvill maxinrize

tht, r':rltre sf t.lirirvoyrur('e;we nright call this the ntitxintutlr

v:rlue gf clrtirvovirnce. It is the value of elrrirvoyatlce to ir

tler.isiorr nrirker s'ho hrrd the nrost uttfortuttate initiul state

9f irrfgr.trrlrt iurr irs fltr irs llttrt'ltrrsing t'litirt'tlytttl('e is coll-

t.enlt,tl. 'l'llt. r.lllt.ulirtiott is ust'ful bet'ltuse it shou's tlte ttttlst

thrrt :lu)'on(, slrould prry for cluirvoyutl('e regirt'dle.s.* tlf his

st irt e of irrfgr'rrrlt ion. Of cours(', the culculut iorr is predit'ut t'd

on :r givt'tt tittte :tttd risk llrt'fert'tl('e.
Etlrcritn"nlaliort:'fhe rt'ul-rvorld upproxittt:rtiott to

t.luiryoyln(.o is sontc fornt of experinrettttttitlrt. Arr inr-

purtult qut.stion in guiding the gathering of ldditiotrul

irrforrrurtigrr is, thert'forc, the vrrlue tlf u giverr experinrettt.

Tlre t.ult.ulrrtir.rrr follos's lrltttost tlte srtnre forttt tts the ctlm-

ptttitt iorr of tht' r':rltlt' of t'lltirl'oy:ttt('e.

t.'iS. I illustrirtes thc rr:rturr. of tlte t'ulcultttitln. Suppose

thlrt tlu. experinltrrt costs /.'r.rtttd thrtt nfter it Ntls eotl-

rlut'tt,d, it protlurt'd thc dlttt D. Iirros'ledg. ,of D rvould

t.5rrlge the problbility distributiott ott s to IslOe | , rvhich

is lr.l1tgcl t,, il,o prior distributi,,n lsle I b5' Iltyes' equatiott,

lslncf : tnl:t]f itl
lD!sl

AFTER EXPERITENT 
6

YIILOS CATA O.

iorlfiir,r)
.itJti,,(- 

tottl

Fig. l). lixperintetttut iott.

'fhc rrew tluutttities IOlsef and lOlg] ,rr* itttt'restitrg in

themsevles. The quantity {Olsel it the probubility of

observing the prrrticular d:rta D for &tly setting of tlte strtte

variables; it is culled the likelihood futtt'titlrt. 'I'he rlttrttttitv

[Ole I is the probability of observing D ussigtttrl lx'fut't' tlte

experinrent is performed ; it is rcl:tt ed t o t lre lili t'l iltoo, I

fuut'tiott rtttd the Prior bY

{olsl : [,[ofsef lsle]

arrd is t'ulled the llreposterior distribution.

Orrt.e D is krro$'rr, the best settirrSd(Dk"S) "f 
the det'isiott

vet.tor rvill be the sett ing that produces the ttct pre.st'ttl

t'uluc lottery of highcst trtility,

d(I)A'rS) : Itr:tx - '(u lPt'r'a6)

: nurx -' 
[,(ulsA'rds) 

[slrlcI

'rrre'lrt,itY 

::[ lffi)] l,, r-r(r)r rs)s)

Hos.ever., t lri: rrt ility u'ill bc r('r'(tivccl t'otttlit iutr:rl ott t ltr'

repsrtirrg of I).'l'he llrubrrbility thlt /) rvill be t't'pot'tt'tl lr1'

tltc. expt.rirnent is the preposterigr plrbrtbilitv IlllCf .

Tlrcrcfore, the overall trtility of the experintettl :tt :t t'ttsl

A'r,, (u lt're ), u'ilt be jtrst

qulr',e; -- 
!rAlDA'd(DA'$)s1 

[nlcf .

The tttttttbel' A'r thtrt srrtisfies the equ:ttigtr

lrr lt'"e ) : ("le )

rrrd thus nrukes the utility of the best lotter.v s'ith tlre

experirnent etlual to the utility of the best lottet'.t' u'itltuttt

the experimetrt is the vtlue of the experintetrt.

Conrparing this trirlculution rvith the one for the t'rtlttc ttf

clairvoyallce shorvs thut \\'e cun irrterpret clairvoyilltt:e ils il

very speeial kirrd of experitnetrt: olre that cotnpletely

eliminotes unt.ertirirrty irr une or severrrl stute vuriubles.
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HOWARD: TOUNDATIONS OF DECISION AN.TLYEIS

Onee the value of the experiment has been computed,
it can be compared with its real-world cost. Experiments
whose value exeeeds their cost ene profitable alternatives
for the decision maker; others &re not. Determining the
profitability of various information gathering plans shows
which, if Btry, should be pursued before the primary
decision is made.

The Decision Analysis Cycle

This diseussion of the decision analysis eyele has in-
dit'ated most, but not all, of the types of analyses that
m&y be useful. l-or example, determining sensitivity of the
best decision and its present value to the discount rate

representing time preference would be an obvious test to
perform. In some decision problems, particularly those

requiring t he eonsensus of several interested parties, it
may be wise to mea^sure risk sensitivity. This u'ould involve
seeing h<lw the best decision and its certain equivalent
value ehatrge a.s the risk aversion coefficient is inereased.

Fortunately, it often happens that the same policy remains

best for a runge of risk coeffieients that includes those of

all partieipants. In these eases, there is no point in argu-

nrettt over just what attitude toward risk should govern

the det'ision.

Diuision o! Efrort: The total efrort devoted to the eycle is

not typieally equally divided emong the phases. Beeause

of the rteed for & detailed understanding of fundamental

problem relationships, the deterministic phase requires

about 00 pert'ent of total effort. The probabilistic phase

nright reeeive 25 pereent; the informational phase, the

renurining l5 percent. As the analysis progresses through
the phases, the nature of the work changes from the con-

strut'tion and tuning of the model to the development of
insight by exereising it.

Compulalional Demonds. The difficulty of exercising t,he

nrodel ehanges from phase to phase. For example, & eom-

puter run to establish stochastic sensitivity might require
t,en tinres sts much time as & run to measure deterministic
sensit ivity. Similarly, an eeonomie sensitivity run in the
ittfornurtional phase might require ten times as mueh eom-

putation as the me&surement of stochastic sensitivity.
Thus $'e see the need for the continued screening of vari-
ables t,o assure that only important factors are retained in

eaeh phase of the analysis. To think of performing a deci-

siott analysis by including all possibly relevant, variables in

eueh phase would be very unrealistic.

The llodel Sequtnce: Typically, & decision analysis is

performed not, rvith one, but with a sequerree of progres-

sively more reitlistie models. The first model in t,he sequence

rve eall the pilot, model; it is an extremely simplified repre-

sentat,ion of the problem, useful only for determining the

nrost importnnt, relat,ionships. Its &eron&utieal eounterpart

would be the n'ind tururel model of a new airplane. [t looks

very little like the desired final product, but it, is in-
dispensable in achieving that goal. Perhaps 20 percent of
total effort might be devoted to eonstruction and testing
of the pilot model.

The next model in the sequerlce is called the prototype
model. It is a quite detailed representation of the problem

that h&y, however, still be lacking a, few important at-
tributes. Ik aeron&utical analogy would be the first flying
model of a new airplane. While it will generally have bugs
that must be eliminated, it does demonstrate overall
appear&nee and performanee of the final version. Because

of the need for verisimilitude of the prototype model, it
might require fl) pereent of the total effort.

The final model in the sequenee is the production model;

it is ut aceurate & representation of reality as rvill be

produeed in the deeision nnalysis. Like the production air-
plane, it should funetion well even though it may retain
features that are treated in a less-than-ideal way. I'erhaps
20 percent of the total effort might be devoted to this
final stage of model development. When eompleted, the
production model should be able to withstand the test of

eny good engineering dmign: additiorral modeling re-

sourees could be utilized with equal effeetiveness in &ny
part of the model.

It would be unrealistie t,o expeet the decision analysis of
any large problem to employ all the pha^ses, sensitivity
analyses, and models that we have diseussed. However,

having the eoneepts and nomerreltture neeesscry to depiet

these steps is a powerful aid in the planning and executiorr

of a deeision analysis. The future should bring eontinual

refinements in the theor.y and applieat,ion of the meth-

dology.

CoNct,usIoN

The last ferv years have seen decisiotr unalysis grorv from

a theorist's toy to an important, ally of t,he deeision nurker.

Signifieant applieatiorrs have runged from the desirability
of kidney transplants through electric power systenr

planning to the development of polit.ies for spart.e explorsr-

tion. No one e&n say when the limits of this revolution will
be reaehed. Whether the limits everr exist depends more on

m&n's psyehology than on his intellect.
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The Difficulty of Assessing Uncertainty

E. C. Gapetr,

ARCO Exploration Company

Introduction
The good old days werc a long time ago. Now, though
we must harness new technology and harsh climates to
help provide needed energy supplies, we are also faced
with the complex problem of satisfying not altogether
consistent governments, the consumer, our banker, and

someone's time schedule. Judging from the delays,'
massive capital ovetruns, and rclatively low neturn this
industry has experienced lately, it would seem that we

have been missing something. At least one explana-
tion is that we have not learned to deal with uncenainty
successfully.

Some recent testing of SPE-AIME members and
others gives rise to some possible conclusions:

I . A large number of technical people have linle idea

of what to do when uncertainty crosses their path. They
are attempting to solve 197 6 problems with I 956
methods.

2. Having no good quantitative idea of uncertainty,
therc is an almost universal tendency for people to un-
derstate it. Thus, they overestimate the precision of
their own knowledge and contribute to decisions that
later become subject to unwelcome surprises.

A solution to this problem involves some bener un.
derstanding of how to trcat uncertainties and a realiza-
tion that our desire for prcciseness in such an unprcdict-
able world may be leading us astray

Handling Uncertainty
Our schooling trained us well to handte the certainties
of the world. The principles of mathematics and physics
work. [n Newton's day, force equaled mass times ac-

celeration, and it still does. The physicists, when they
found somewhat erratic behavior on the atomic and
molecular level, wene able to solve many problems
using statistical mechanics. The extrremely large number
of items they dealt with allowed these probabilistic
methods to predict behavior accurately.

So we have a dilemma. our training teaches us to
handle situations in which we can irccunately prcdict the
variables. If we cannot, then we know methods that will
save us in the prcsence of large numbers. Many of our
problems, however, have a one-time-only characteris-
tic, and the variables almost dety prediction.

You may embark on a new project whose technology
differs from that used on other projects. or perhaps
your task is to perform a familiar project in a harsh
environment. Try to estimate the totd cost and comple-
tion time. Hard! You cannot foresee everything. And,
for some rcason, that which you cannot forctell seems
to bring forth mor€ ill than good. Hence, the prcdictions
we make are often very opimistic. Even though we sec

the whole prmess unfolding and see estimate after esti-
mate turn out optimistic, our next estimate mons than
likely will be optimistic also.

What happens? Is there some deep psychological
phenomenon that prcvents our doing bener? Because we
are paid to know, do we find it difficult to admit we do
not know? Or can we obtain salvation through knowl-
edge? As we werc trained to handle certainty, can we
also find a better way to estimate our uncertainty?

I think so, but it will take some special effort 
- 

just
as it did when we first learned wharever specialty that

What do you do when uncertainty crosses your path? Though it seems that we have been
taught how to deal with a determinate world, recent testing indicates that many have not
learned to handle uncertainry successfully. This paper describes the results of that testing and
suggests a better way to treat the unlopwn.
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got us into the business. As one of the Society's Dis-
tinguished Lecturers for 1974-7s,1 had a unique oppor-
tunity to collect information on the way our membenhip
treats uncertainty. I do not claim that what you iue
about to read will set the scientific or business com-
munities to quaking (others have noticed similar phe-
nomena before'). But there are lessons that should heip to
improve our perceptions of uncertainty and, we hope,
incrcase our economic efficiency by giving us better
information on which to base decisions.

SPE-AIME Experiment
The experiment went like this. Each person put ranges
around the answers to l0 questions, ranges that de-
scribed his personal uncertainty. The questions were the
following:

I . In what year was St. Augustine (now in Florida)
established as a European settlement?

2. How many autos were registered in california in
1972?

3. what is the air distance from San Francisco to
Hong Kong in miles?

1. How far is it from Los Angetes to New orleans
via major highways in miles?

5. what was the census estimate of u.S. population
in 1900?

6. what is the span length of the Golden Gate Bridge
in feet?

7. what is the arca of canada in square miles?
8. How long is the Amazon River in miles?
9. How many eanh years does it take the planet pluto

to revolve around the sun?

10. The English epic poem "Beowulf" was com-
posed in what year?

For some, the task was to put a 90-percent range
around erch answer. The person would think up a range
such that he was 90-percent sune the range would en-
compass the true value. For example, in one section a
gentleman pur a range of 1500 to 1550 on euestion I .

He was 9O-percent surc that St. Augustine was estab-
lished after 1500, but before 1550. In his view, there
was only a 5-percent chance that the settlement came
i_nto being after 1550. If he were to apply such ranges
for many questions, we would expect to find about l0
percent of the true answers outside of his intervals.

. other groups were asked to use 98-percent ranges 
-virtual cenainty that their range would encompals the

true value. I also asked for ranges of E0,50, and 30
percent. The 30-percent interval would supposedly
allow 70 percent of the true answen to fall outliae tne
range.

Most sections used a single probability range. How-
ever, a few groups werc divided in two, with each half
using different intervals, usually 30 and 90 percent. I
shall refer to these ranges as probability intervals.

You may want to test your skill on the test, too. The
answers are in the Appendix. use a 9O-percent interval
so you can compare with results given later.

Results and Conclusions
My testing rurned up traits that should be of intercst.
[From this point oo, the people referred to are the
1,200+ people at the local section meetings who an-
swered the questions sufficiently to be counted. There

wene a significant number (350 or so) at the meetings
who either had no idea of how to describe uncertainty
or thought it chic not ro play the game.l

I . People who are uncertain about answers to a ques-
tion have almost no idea of the degree of their uncer-
tainty. They cannot differentiate between a 30- and a

98-percent probability interval.
2. The more people know about a subject. the more

likely they are ro consrruct a large probability interval
(that is, one that has a high chance of catchirg the
truth), regardless of what kind of interval they have
been asked to use. The converse seems to hold also: the
less known, the smaller the chance that the interval will
surround the truth.

3. People tend to be a lot prouder of their answers
than they should be.

4. Even when people have been previously told that
probability ranges tend to be too small, they cannot
bring themselves to get their ranges wide enough,
though they do somewhat bener.

5. Simultaneously putting two ranges on the answers
greatly improved performance, but still fell short of the
goal.

Such conclusions come from the following observa-
tions. Looking at the data collected on each of the sec-
tions, we find that the average number of "missed"
questions was close to 68 percent. We could adopt the
following hypothesis:

SPE-AIME sections will miss an average 68
percent of the questions, Do matter what prob-
ability ranges they are asked for.

Mathematical statisticians have invented a way to test
such hypotheses with what they call confidence inter-
vals. They rccognize, for instance, that the Hobbs pe-

troleum Section average of 6.26 misses out of l0 ques-
tions is subject to eror. Slightly differenr quesrions, a
different night, a longer or shorter bar iil kinds of
things could conspire to change that number. By ac-
counting for the variabil ity of responses within the
Hobbs chapter and the number of data points that make
up the average. these statistical experts can put a range
around the 6.26 much like the ranges the members were
asked to'use. Except that (unlike the members) when
the statistician says he is using a 95-percent range, he
really is !

For Hobbs, that range comes out to be 5.45 to 7 .07.
Since that range includes 6.8, or 68-percent misses, the
statistician will agree that, based on his data, he would
not quarrcl with the hypothesis as it applies to Hobbs.

Table I shows all the 95-percent ranges and Fig. I

illustrates how these ranges compare with ttre og-
percent hypothesis. You will see a ponion of the Los
Angeles Basin Section whose confidence interr.al (5.24
to 6.68) does not include 6.8. There are three possible
explanations:

l. The group has a bit more skill at handling such a

problem than most.
2. Being part of an audience that was asked to use

two different ranges, there was a more conscious effon
on their part to use a wider range.

3. The statistics are misleading, and the group is not
different from the others. we expecr thiJ to happen
about 5 percent of the time. (our testing mechanism
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TABLE 1 - SUMMARY OF 9$PERCEiIT RATI|GES

SPE.AIME
Section

Number ol
Usable

Responses

34
111

28
61

26
28
N
16

63
u
79
41

13

1N
42

27
30
41

53
27
28
15

Requested
Range

(percent)

Expected
Number of Actual Number
Misses AveragB Misses

9$Percent Confitlence
lnterval

Hobbs Petrolzum
Oklahoma City
Los Angeles Basin (1)

San Francisco
Oxnard
Long Beach (1)

New York
Bridgeport
Anchoragp
Bartlesville

,Charleston (1)

Laf ayette
Shreveport
Vernal
Denver
Cody
Columbus
Lansing
Chicago
Tulsa
Los Angeles Basin (2)

Long Beach (2)

Brid g€port rCharl eston (2)

was a 95-percent confidence interval.)
Likewise, the Bridgeport/Charleston (W. Va. ) sec-

tions had ranges that did nor encompass 6.E. In their
defense, the meal service had been poor, the public
address system had disappeared, and there werc more
than the normal misunderstandings. Even So, their
lower limits of 6.E7 and 6.97 just barely missed rhe

6.8 target.

One group of highly quantitative people also took the
test. I mention this group because of the large number
of members it includes and because it provides evidence
that the more quantitative people may do a little better
in estimating uncertainty 

- but still not as well as they
would like. (See Table 2. )

The 68 percent would not be expected to hold on all
kinds of questions or all kinds of people. In fact, it is

clear that the number would have been higher had it not
been for relatively easy questions such as Questions I

and .1. Most people know St. Augustine was a Spanish

community and, theretorc, had to be established be-

tween 1192 and 1776. By making the range a bit more

narrow than that, they could be reasonably surc of brack-
eting the true answer. Even so, more than one-third of
the members missed that one 

- 
regardless of their in-

structions on range.

Based on a sample of the 1,200+ quizzes, herrs are

the average misses for each question:

6.89 to 8.37
6.00 to 7.08
5.61 to 6.99
6.03 to 6.$)
6.18 to 7.48
6.30 to 8.16

6.12 to 6.fl)
6.74 to 7.88

6.47 to 7.45
6.16 to 7.50
5.97 to 7.11

6.33 to 7.25
6.26 to 7.74
6.0 to 7.98

6.97 to 8.67

and we found 80 percent or so misses 
- again regard-

less of the rcquested probability of a miss.
People who have no idea of the answer to a question

will apparently try to fake it rather than use a range that
truly reflecs their lack of knowledge. This trait may be

as universal a part of human nature as laughter; cer.
tainly it is not peculiar to SPE-AIME members.

Is the hoblem Costly?
Why should anyone get excited about such results? Be-
cause, I think, similar behavior on the job can cost in-
dustry a bundle. Our membership at various levels of

to 7.07
7.36
6.68
6.93

6.88
7.28

Hobbr

OLlebct CtCy

Lor Angrlor (l)

Sen Fraoctrco

Orarrd

Loq loch (l)

lfrs torl,

lrtdgrgort/Chrrl,uroo (l)

Anchorr3r

lrrthrvtllr

[rtryrttr

Shrrrrgoet

Vrrael

Dovrr

Cody

Coluobur

Leartaj

Chtce3o

?ullr

Lr. Ara.l.o (2)

Loq loreh (2)

lrtdjrgortiCbtrlertol (2)

. 
t7 

r e

Hyporhrrtr: 6Ct

Flg. 1 - The 9$percent confidence intervals of SPE-AIME
sections. Averagn number of misses on lGquestion quiz.

98
98
90
90
90
90
90
90
90
90
90
90
m
0
0
50

50
fl)
50
30
30
30

0.2
0.2
1

1

1

1

1

1

1

1

1

1

2

2

2

5

5
5
5
7

7

7

8.12

to
to
to
to
to
to

5.45
6.64
5.24
s.&)
6.64
5.20
5.76

6.26
7.00
5.96
6.41

7.38
6.04
6.s2
7.dl
454
6.30
6.51

6.83
7.23

6.46
7.31

6.96
6.83
6.54
6.78
7.00
7.39
7.&

Question

Average Misses
(percent)

39

67

60

50

69
68

76

69

74

85

I

2

3

4

)
6

7

8

9

t0

Questions such as Questions 9 and l0 were difficult,
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Section

Atlantic Richfield R&D
SPE-AIME Section

(Hobbs and Oklehoma City)

TABLE 2 - COIIPARISON OF RESULTS

Number of Requested Expected
Usable Range Number of Actual Number

Responses (percent) Misses AveragB Misges

52 98 0.2 4.52

145 98 0.2 6.&,

9$Percent Confidence
lnterval

3.84 to 5.20

6.50 to 7.16

management is rcsponsible for all sorts of daily esri-
mates that ultimately work their way into investment
decisions. To the extent that the success of the invest-
ments relies on those estimates, business can be in trou-
ble. If one's range so seldom encompasses the truth on
tough questions, then the more common single-point es-
timates have little chance of being very close. Even
those beloved "what-ifs" cannot be of much help since
such questions would only be expected to test "reason-
able" ranges. This research seems to indicate that most
of us have little idea of what is a reasonable range.

Other Experiments
Earlier, I mentioned that we might be able to practice
this business of estimating uncertainty and improve our
track record. Experience with the SPE-AIME sections
says that the practice may have to be substantial. Hav-
ing established the 68-percent norm during the early
pan of my tour, I was able to do some ofter experi-
menting later.

one section had the benefit of knowing ahead of time
what dl the other sections had done. They knew be-
forc they started that no matter what range I had asked
for, the membenhip always rcsponded with about 68-
percent misses, or a 32-percent probability interval.
This group of 143 knew, then, that the tendency was to
give much too tight a range and that they should be

yery careful nor ro fall into the same trap. (See Table
3.) It would seem that my warning had some effect. The
merc telling of the experience of others is not, how-
ever, enough to shock most people into an acceptable
performance.

Menke, Skov, and others from stanford Research In-
stitute's (SRI) Decision Analysis Group have experi-
mented along similar lines. (and. in fact, their work
gave me the idea for these tests). They say that if
groups rcpeatedly take quizzes such as those described

!.*, they are able to improve. Initially, peopre gave
50-percent ranges even though 98-percent ranges had
been asked for. After several such tests (differcnt each
time, of course), the participants wene able to reach a
70-perceil range, but could never quite break that bar-
rier. Their rcsults show, apparently, that many intelli-
gent men and women (they dedt largely with business
executives) can never admit all their uncertainty. SRI
made sure that some of their tests were built from sub-
ject matter familiar to the executives, such as questions
extracted from their own company's annual report.
Therefore, the phenomenon we are describing must
have very linle to do with the type of question.

Value of Feedback
For several years now we have asked our exploration
people for 8O-percenr ranges on rcserves before drilling
an exploratory well. But we rccognized that the act of
puni-ng down a l0-percent point and a 90-percent point
would not in itself be sufficient. we also asked ihem

to see what their 80-percent range told them about other
points on the distribution curve. If one is willing to as-
sume a certain form of probability distribution, then

l!. 80-percent range dlso specifies every other point.
Hence, rhe explorationist can essentially put himself
into a feedback loop. He puts two poinls into a sim-
ple time-share computer program, and out pop all the
others. He ngw may check the 90-percent point, the
50-percent point, or any other. He *bil may hnd some
that do not fit his notions for example, his g0-
percent range does not yield a 40-percent range that suits
him. so he compromises one or the other until he gets
the fit he likes.

All that is design and theory. In practice, mosr peo-
ple throw in the 80-percent range and just irccept what-
ever comes out. Based on the necent testing with spE-
AIME groups, I would have to guess that the g0-percent

range constructed withour feedback is actually much
more narrow 

- perhaps 50 percent. It would take a lot
of data, which we do not have, to measure the range.
Almanacs and encyclopedias cannot help much herc.

My estimate of 50 percent comes from the follow-
ing judgment. tt must be morc difficult to pur ranges
on exploration variables than to put them on questions
such as when St. Augustine was founded. on itre other
hand, it should be easier for a geologist to conceive
of his vocational uncenainties than foi him ro handle
Beowulf-type questions. Since the audiences' average
ranges on those two questions werc about 40 and AS
percent. rcspectively. I chose 50 percent.

The feedback process, if used, can be of benefit. The
following experiment was performed with some sec-
tions. I asked the members to write down two ranges
simultaneously. That forced some sort of feedback. nna
since both ranges could not have 68-percent misses. it
seemed logical ro expect that such a ploy would yield
better results 

- which. in fact, was *hat happened.
(See Table 4.)

By having to use two ranges, the members were able
to greatly improve their 90-percent range compared
with those who worked with only one interval. The
SO-percent range, however, was shoved in the other di-
rcction. I would guess that the best strategy for one
faced with an uncenainty problem would be to consider
whole distributions (that is. many ranges), continually
playing one against the others. That scheme should re-
sult in even better detinition of one's uncenainty.

Even then. studies suggest that people may come up
shon. I once saw the results of a full-scale risk analysis.
including a probability distribution of project cosr. A
few months later the same people did another risk
analysis on the very same project. Amazingly, the cost
distribrrtions did not even overlap. Changes had taken
place on that project in the space of a few months that
moved the results far beyond those contemplated when
the experts werc laying out their original ranges. people

tend to build into their ranges those events that they can
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Section

TAELE 3 - KNOWLEDGE OF PREVIOUS RESULTS

Number of Requested Expected
Usable Range Number of Actual Number

Responses (percent) Misses Average Misses

1€ 90 5.46

TABLE . - REST,LTS U$]rG FEEDBACK PRocEsts

lygl?gg f\,tisses

5.04
8.31
4.05
7.32

9$Percent Confidence
lnterval

5.08 to 5.84

9$Percent Confidence
lnterval

3.99 to 6.09
7.67 to 8.95
3.63 to 4.47
6.94 to 7.70

New Orleans

Number of
Usable

Responses

26
26
98
98

Requested Expected
Range Number of Actual Number

Sectio (percent) Misses

1

5
1

5

Bay City
Bay City

90
s0
90
50

Houston
Houston

see as possibilities. But since much of our uncertainty
comes trom events we do not foresee, w€ end up with
ran-ges that tend to be much too narrow.

Are the Tests Vatid?
There may be those who srill feel that the kinds of ques-
tions I used cannot be used as indicators of what one
does in his own specialty. I know of several arguments
to counter that view. but no proof.

The less one knows about a subject, the wider should
be his range. An English scholar might have a 90 per-
cent ran_qe of A. D. 700 to 730 for the ' 'Beowulf' '

question. The typical engineer mighr recognize his
limitations in the area and put A.D.500 to 1500. Both
ranges can be 90-percent ranges because the degree of
uncertainty is a very personal thing. One's knowledge,
or lack of it, should not affect his ability to use 90-per-
cent ranges. So the type of question should not matter.

I mentioned earlier that SRI's use of material from a
company's own annual repon did not change the re-
sults. Regardless of whether one is an expert, the ranges

.-generally come in too narrrow.

Another criticism of these questions has been that
they test one's memory of events alrcady past rather
than the ability to prcdict the future. Conceptually. is

there any differcnce regarding the uncertainty? There
may be more uncertainty associated with, for instance,
the timing of an event yet to take place. But it seems
that the difference is only one of d€gree when compared
with recalling a date in history from an obscure and
seldom-used brain cell. In either case, one does not
know for sure and must resoft to probability (likely a
nontechnical variety) to exprcss himself.

Bean Counting
You may find a third argument even mone compelling.
we asked groups of people to estimate the number of
beans in a jar. Not only werle they asked for their best-

-suess single number but also for a 9O-percent range.
The players werc mostly professional people with tech-
nical training, and most had or wene working pan time
on advanced degrees. Since we built in a neward system
(money), the estimators werc trying to do a good job, at
least with their. best guess. The following table gives
their results. The jar contained 95 I beans.

Best Guess 9O-Percent Range

2t7
2r8
250
375

The experiment provides added insighr because
everyone could see the beans. No one had to test his
memory of geography or history or his company's per-
formance reports. The jar was somewhat square in
cross-section so ils not to introduce any tricks in es-
timating volume, though no one was allowed to use a
ruler. Still, the requested 9O-percent ranges turned out
to be more like 36-percent ranges because only l2 of 33
included the true value. After our testing. Elmer
Dougherty of the [J. of Southern Cdifornia tried the
same experiment and privately rcponed very similar rc-
suls. We then asked some of our exploration people to
go through the exercise, and they too repeated the ear-
lier performances of others.

Intercstingly, we have thrce mone bean estimates made
by people using a computer model (Monte carlo simu-
lation) to get rangps. They estimated their uncertainty
on the components (length. width. heighth. and packin-e
density) to get an over-all range. All included the rrue
value of 95 l. Equally competent people not usin_E the
simulation approach could not do as welt.

385

390

450
500

626
735

750
795

800

960

1,000

I,026
I ,053

I .070
I,090
I ,152
1,200

I ,200
I .201

1,300

1,300

l,4m
1,500

1,500

1,600

1.68 I

I .850
4,655
5,000

280 to
370 to
-100 to

475

410

500
780

700

I,152
I,500

840
850

1,2 l0
l.lm
I,800
I,170
1,300

1,400

I ,352
3,600

500 to
.l6E to
500 to
730 to
750 to
710 to
900 to
700 to
953 to
700 to
700 to
952 to
500 to

1,000 to 1,500

I ,000 to 1,400

500 to 2.000
600 to 2.000

1.200 to I ,600
400 to 1.800

800 to 2,000
I .350 to 1.950

1.440 to 2.000
1.400 to 2,200
4,000 to 5,000

2,000 to 15,000

50 to

250
26
275

500

to

to

to

to

t80
2W
225

200
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Best Guess

I,120
I ,125
1,200

90-Percent Range

650 to 1,900

425 to 3,0(X)

680 to 2,3m

This experiment provides evidence that even a simple
approach to probability modeling usually will be a lot
better than what one dreams up in his head when it
comes to assessing uncertainty.

Stiil More Experiments
Few people give in easily when confronted with this
kind of material. They complain that I am testing
groups and it was the "other guys" who caused the
problems we see reflected in the data. Or they did not
know my game was a serious one. Or they had no real
incentive to do well, as they normally have on the job.
Or that while ttrey admit to having missed cosr esti-
mates, project completion times, producing rates, infla-
tion rates, crude oil prices, etc., now and then, those
werE caused by external circumstances and cenainly
nothing they could have been responsible for. (who
ever said that we should only estimate that part of un-
certainty for which we have rcsponsibility?)

To counter such talk, I have engaged in other testing.
One group had money riding on their ability to properly
assess probability ranges. I asked them for 80-percent
ranges and even agreed to pay them if, individually,
they got between 60 and 90 percent. If they did not, they
had to pay me. The group was so convinced the game
was in their favor that they agreed to pay for the privilege

9f -playing! 
And it was nor sight unseen, eirher. They

had already taken the test beforc the wager (same l0
questions given to SPE-AIME sections). They lost. But
the point is that beforc gening their results, they did not
feel that the questions werc in some way beyond their
capabil ities.

At the SPE-AIME Fall rechnical Conference and
Exhibition in Dallas, I needed to save time while pre-
senting this paper but I still needed to illustrate the
point. I used a color slide of some beans spread about in
an elliptical shape. It was the easiest test yett the audi-
ence could clearly see every single bean. we used a

l2-ft scrcen so the images would be large even for those
in the rear. Still, only about one-third of the several
hundred present came up with a 90-percent range that
encompassed the true value.

As early as 1906, cooke2 did some testing of mete-
orological questions to see how well he could assess

uncertainty. Since then, othens&{ have examined the
problem and noticed similar results. Lichtenstein et al.s
have an extensive bibliography.

Don wood of Atlantic Richfield co. has been using
a true/false test to study the phenomenon. The subject
answers a question with true or fdse and then states
the probability he thinks he is correct. Most people are

far too sure of themselves. On those questions they say
they have a 90-percent chance of answering correctly,
the average scotE is about 65 percent.

To illustrate his findings, wood describes the rcsults
on one of his test questions: "The deepest exploratory
well in the United States is deeper than 31,000 ft. 

t'

Several knowledgable oil men have said the staremenr is
false and that they are 1O0-percent sune of their answer.

other oil men have said true, also believing they are

10O-percent sure of being correct. Two petroleum en-
gineers argued about another of wood's questions:
"John Wayne never won an academy award. " Each
was l0O-percent sune of his answer, but one said true
and the other said false. By the way, irn oklahoma
wildcat has gone deeper than 31 ,000 ft and "True Grit"
won an Oscar for the actor.

where this paper reports resulrs on how SPE-AIME
groups act, wood gives a test that has enough questions
so that an individual can calibrate himself aparr from
any group. The grade one receives after taking the test
may be loosely defined as the probability he knows
what he is doing. It comes from a chi-square
goodness-of-fit test on binomial data. Typical scores
have been smaller than I x l0-i, or less than I chance
in 100,000.

Every test we have performed points in the same di-
rection, 8s have most of the tests performed by others.
The average sman. competent engineer is going to have
a tough time coming up with reasonable probabilities
for his analyses.

What Can We Do?

First, think of a range of uncertainty without puning
any probability on that range. Since our sample showed
that people tend to use the same range no maner what
kind of range they were asked for, it seems plausible
that a range such as we obtained during the tour would
be forthcoming.

Having wrinen it down, we arbitrarily assign some
relatively small probability ro the range encompassing
the truth, say 40 percent. Decide on the form of the
error. For example, in estimating project completion
time, one may feel his uncertainty is symmetrical (t 6
months). (See Fig. 2.)

If the uncertainty is best expressed as symmetrical,
then get some normal probability paper like that illus-
trated in Fig. 3. Plot the low end of your range ar the
3O-percent point and the high end ar the 70-percent
point. Note that 70 30 = 40. Your range has a 40-
percent chance of encompassing the truth. Connect the
points with a straight line and extend the line all the
way across the paper. By reading the ordinates at the
S-percent and 95-percent points, you have your 90-
percent range (95 - J = 90). Our = 6 months has been
converted to = lth years. If that range seems uncom-
fonably large, good! Remember that if you are like
most people, your natural tendency is to make such
ranges too narrow. To repeat an earlier idea, uncertainty
comes about because of what we do not know. Ranges
constructed using what we do know are likely to be too
small. (Bias, either pessimism or optimism, may be a

problem too, but we have not addressed it here.)
You may feel the uncertainties are asymmetrical with

a long tail region to the right, such as in estimating
rtserves (see Fig. 4). One cannot have less than 0 bbl,
though with small probability he can have very large
numbers.

In such cases, use log-probability paper as in Fig. 5.
Say the tange is 3 to 6 million bbl. Again, go through
the ritual of plotting the low and high, drawing the line,
and checking to see how comfonable you are with a

9Gpercent range. This time our range has been con-
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verted from 3 to 6 to something like 1.4 to 12. Dirom-
fort is a good sign.

Because they fit so much of the world so well, the

normal and lognormal distributions are logical choices
for describing uncertainty. Do not worry a great deal

about this appiuent straight jacket. A realistic range
(that is, wide) is often more important than the form of
the distribution anyway.

Nor is there anything particularly holy about defining
your original range as 40 percent. I could have used 50
or 30 percent. I am just proposing a simple way to get

staned in this business of defining the degree of your
uncertainty and at the same time paying homage to the
finding that people tend to ovenestimate the extent of
their knowledge.

If each bean counter had plotted his range on log-
probability paper as a 40-percent range and graphically
determined his 9O-percent range , 25 of the ranges (or 76
percent) would have included the true value of 95 I .

Using such a technique, the group would have achieved
a significant improvement in their ability to set ranges.

After all, 76 percent is not that far from their target of
90 percent.

As you begin to keep records of your probability
statements and compare them with actual outcomes,
you will begrn to build your own rules for making esti-
mates. And, ultimately, your own tested rule is going to
work better for you than anything others design.

The Value of Training
Winkler and Murphy0 reported on some meteorologists
who showed linle or no bias in assessing probability.
Training through years of almost immediate feedback
on their predictions very likely irccounts for this rare but
enviable behavior. The oil business seldom allows such
feedback. We may not find the answers to our predic-
tions for several years, and by then we have been rc-
tired, promoted, banished, or worse.

But since training in this area appears to be vital. I
urge you to s€t up a program for yourself. Every month
make some predictions about the future, predictions
whose outcome will become known during the follow-
ing few weeks. Assign probabilities to your predictions,
and religiously check your rcsults. Find our what hap-
pens when you are 9O-percent surc, 70-percent surc.
etc. Example:

l. The next holiday weekend will see mone highway
deaths recorded than the similar period last year.

True 60 percent
2. The Cincinnati Reds will lead their division on

July 4.

True 70 percent
3. XXX Corp. common stock will close above $Z

before Sept. l.
False 50 percenr

To find out how well you are doing, consult some

binomial probability tables (or a friendly expen). Say
you had 20 statements to which you assigned a 70-
percent chance of being right, You would have €x-
pected to get 14 of them right. Whar if you only got l0
right? Is that good? The tables show a probability of 4.8
percent of getting l0 or less right under conditions
when you expect to get la right our of 20. It would be

long odds ( I in 20) to claim, rhereforc, rhar you had
learned to set the probabilities correctly. Better pnrctice
some morc. Ask your stockbroker to do likewise.

Does a Better Range Lead to a
Better Mean?
One might be tempted to iugue that improving our un-

derstanding of uncertainty would not in itself improrc
the estimate of the mean, best guess, or whatever
people tend to use for making their decision. But look,
for example, at the Alyeska Pipeline and the 1969 cost
estimate of $900 million. Most everyone associated
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with the project knew that it could not cost much less
than $900 million. If everything had gone off withour a

hitch (roughly equivalenr in probability of occurrence.ro
all the molecules congregating on one side of a room),
it might have come in for around $800 million.

what kind of things could happen to drive the cost in
the other direction?

I . labor problems such as jurisdictional disputes and
the lack of an adequate supply of necessary skills in
such a harsh environment.

2. Weather.

3. Shonages of equipment and supplies resutting
from the unique nature of the project and rcmoteness of
the site.

4. Design problems. An axiom of engineering: All
doth not work that man designeth.

5. Economy of scale in full rctrrat. some projects
are so large that they are most difficult to manage
effectively.

6. Bureaucratic delays brought about by masses of
government rcgulations.

(Note that the list does nor include the large cosr in-
cr€ase brought about by government inflationary policies
and the oil embargo, nor does it include the problems
caused by so-calted environmentalists. Reasonably in-
telligent forecasters might have missed those events
back in early 1969. )

An analysis of these six items would have led one to
imagine some chance for a pipeline costing iN much as

$3 billion giving the following range.

Rock-bouom co,sr $0.8 billion
Best estimate $0.9 billion
High-side cosr 93.0 billion

How long could such a "best guess" survive in such a
range? Mercly writing down the numbers exposes the
best guess to sharp criticism and doubtless would force
it to a higher and mor€ realistic level. Though the new
best guess would still have been far below prcsent cost
estimates of almost $8 billion, it nevertheless would
have been very useful. crude prices, wc remember,
werc much lower then.

It seems logical, then. to expect that quite a number
of projects would benefit sirnilarty from a beuer range
analysis. Consider the bean counters mentiorpd earlier.
what if all those whose best guesses wett less than 500
had known thar &erc sras a chance ttre uuth might be
up around |,Ofr!? Is it no likely that they would have
moved thmc best guesses up somewhat?

The Payoff
The payoff for having a better grasp on uncertainty
should be quite a sum. In recent years both industry and
government could have been morc cautious in their es-
timates and perhaps achieved a better return for their
investments.

The oil and Gas Journal of ocr- 9. 1967. quored
management at the Grcat Canadian Oil Sands planr ded-
ication: "Operating in the norrhland o.ffers no unusual
problems 

- 
in fact, it has some advantages ." Business

week, Jan. 5. 1974, quoted the Gcos president:
"we'rc the proud owners of a $90 million loss. This is
the cost of being a pioneer. "

Most tax payers remember the many government

programs that ended up costing much more than origi-
nal estimates (TFx. CsA, Interstate Highway program.

BART, and the Dallas-Fort wonh Regional Airport, tbr
example). There has been a long history of cost under-
estimates for all kinds of projects because of not ade-
quately :rccounting for future unknowns.

The whole planning and budget process stands at the
mercy of supposedly expen estimates. It may be that we
have gotten ourselves into trouble by looking tor "the
answer" (never attainable) when we shoutd have con-
centrated on realistically setting our uncertainties. If the
ranges are adequate, then at least the plan can cope rvith
possible events of the future.

A better view of our uncertainties should have a

significant effect on our success as risk takers and
ultimately on profits.
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1. INTRODUCTION

Probability encoding plays an important role in the application of
decision analysis, since it is the process of extracting and quantifying
individual judgment about uncertain quantities. This paper is intended
as a start in disseminating probability encoding methodology. rt sum-
marizes the probability encoding methods currently used by the Decision
Analysis Group at Stanford Research Institute. These methods are based
on several years of experience with probability encoding in decision
analysis applications, as well as on evidence from experiments.

There is a vast literature that reLates to probability encoding.
The annotated bibliography by stael von Hotstein [8] covers the items
that are most reLevant to this paper. Some encoding techniques are sum-
marized in 17). The last rwenty years have seen a flood of psychological
experiments dealing with various aspects of man as an I'intuitive sta-
tisticianil or "processor of probabilistic informationr'1 many of the ex-
periments provide relevant insights. Two recent overviews of the field
are provided by Peterson and Beach [5] ana Rapoporr and wallsten [6].
However, the psychological studies have restricted usefulness for proba-
bility encoding in practical situations for three reasons. Most studies
deal with binary probability distributions (an event either occurs or
does not occur) rather than continuous distributions. Moreover, they
are based on laboratory experiments rather than actual decision situations.
Finally, while the studies show how welt (or poorly) subjects perform in
various tasks, they do not develop procedures for improving performance.

During our research, we have collaborated with Professors Daniel
Kahneman and Amos Tversky of Hebrew University, Jerusalem; the material
in Section 4 is based on their work. I,le have benefitted from many dis-
cussions of the subject with our colleagues in the Decision Analysis
Group, in particular with Dr. James E. Matheson, and we are gratefut for
their valuable corrnents. The paper has further benefitted from a careful
review by Dr. Michael M. Menke.
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2 . THE DECI SION AI{ALYSI S FRAI.'IE!,IORK

Probability encoding is primarily done in the context of a decision
problem. A brief overview of decision analysis is given below to provide
a frame of reference. More extensive discussions of decision analysis
are found in Howard [1], [2] and stael von Holstein [9]. A second, but

not necessarily less important, reason for encoding probabilities is
that they provide a clear means for corrnunication about uncertainty.

Decision analysis procedures usuaLly involve three phases--the de-

terministic, probabilistic, and informational phases The determinis t ic
phase accomplishes the basic structuring of the problem by defining rele-
vant variables, characterizing their relationship in formal models, and

assigning values to possible outcomes. The importance of the different
variables is measured through sensitivity analysis.

Uncertainty is explicitly incorporated in the probabilistlc phase

by assigning probability distributions to the important variables.
These distributions are obtained by encoding the judgment of knowledgeable

people. They are transformed in the model to extribit the uncertainty in
the final outcome, which again is represented by a probabiLity distribu-
tion. After the decision makerrs attitude toward risk has been evalu-
ated and taken into account, the best alternative in the face of uncer-

tainty is then established.

The informational phase determines the economic value of information
by calculating the worth of reducing uncertainty in each of the important

variables in the problem. The value of additionat information can then

be compared with the cost of obtaining it. If the gathering of additional
information is profitable, the three phases are repeated again. The

analysis is completed when further analysis or information gathering is
no longer profitable.

Throughout, the analysis is focused on the decision and the decision
maker. Expanding the analysis is considered of value only if it helps
the decision maker choose between available alternatives.
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3. I',IODELING AND ENCODING

The personal interpretation of probability represenEs a cornerstone
in the decision analysis philosophy. Probability represents an encoding
of information. Since various people are likely to have different infor-
mation, Evro persons can make different probability assignments to the
same uncertain quantity. We have found an interview process to be the
most effective way of encoding a probability distribution.

The decision maker is the person (or group of persons) who has the
responsibility for the decision under consideration. It follohrs that a

decision analysis must be based on the decision makerrs beliefs and pref-
erences. He may be willing to designate some other person or persons as
his expert(s) for encoding the uncertainty in a particular variable if
he feeLs that the expert has a more relevant information base. The de-
cision maker can then either accept the expertrs information as his input
to the analysis or modify it to incorporate his own judgment.

Definition of Decision and state variables

A decision analysis model includes two kinds of input variables:
decision variables and stat.e variables. The trr/o must be carefully dis-
tinguished from one another because while the decision maker can choose
the values of the decision variables, the values of the state variables
are beyond his control. Thus it is only meaningful to discuss encoding
with respecE to state variables. Some variables, such as price, may at
first seem difficult to classify as decision or state variabl-es. This
difficulty, however, may be resolved by further structuring of the prob-
lem: e.8.r into a controllabLe price strategy and the uncertain market
response. A similar problem can arise when variables interact. For ex-
ample, development time, program cost, and product performance are closeLy
related in new product decisions. One or two can be selected as decision
variable(s) and the other(s) become(s) a state variable(s). The problem
must be structured carefully according to which variables are best con-
sidered decision variables and which are state variables. Often this
separation is most easily achieved by redefinition of the variables.

There is atways a choice between encoding the uncertainty in an
portant variable or modeling the problem further. At one extreme, it
conceivable that the final worth or profit cont.ribution of a project

1IIl -
1S
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could be encoded directly, thus bypassing a need for examination of the
underlying variables. Generally, a distribution for final $rorth is more

easily reached, or provides more confidence, if a model- is constructed
that relaEes final worth to other variables. The modeling effort tends
to be most effective and most. economical if it starts with a gross model

that is successively refined. The model should be refined only while
Ehe cost of each addition provides at least comparabte improvement in in-
formation. This test depends on how the information bears on the deci-
sion at hand.

The choice between additional modeling and encoding may need to be

reconsidered during the encoding process, since the subject may reveal
biases during the interview that often can be treated by further sEruc-
turing of the problem.

Iorue_Encod ing P rinc ip les

The following list of principles should be used in defining and

structuring any variable whose uncertainty is to be encoded: Violating
them invariably teads to problems in the probability encoding. It serves
as a checklist before the actual encoding takes place. These principles
are:

The uncertain quantity should be important to the decision, as

determined by a sensitivity analysis.

The quantity should be defined for the subject as an unambiguous

state variable. If the subject believes the outcome of the
quantity can be affected to some extent by his decision, then
the problem needs restructuring to eliminate this effect.

The level of detail required from the encoding process depends

on the importance of the quantity and should be determined by

sensltivity analysis before the interview. It may sometimes be

sufficient to elicit only a few points on the distribution.

a

a

a

a The quantity should be well structured. The subject may think
of the quantity as conditional on other quantities; accordingly,
conditionalities should consciously be consj.dered and brought
into the structure because our minds deal ineffectively in com-

blning uncertain quantities. Mental acrobatics should be

minimi.zed.

The quantity should be clearly defined. A good test of this
quality is to ask whether a clairvoyant could reveal the value
of the quantity by specifying a single number without requesting
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clarification. To cite an exampre, it is not meaningful to ask
for the ttprice of wheat in Lgz4r" because the clai.rvoyant wourd
need to know the quantity, kind of wheat, at what date, at which
Exchange, and the buying or selling price. However, "the closing
price of durum wheat on June 3o, l-975_ at the chicago commodity
Exchange" would be a well-defined quantity.

The quantity should be described by the analyst on a scale that
is meaningful, to the subject. For exampre, in the oil industry,
the subject--depending on his occupation--may think in terms of
gallons, barrels, or tank cars. The wrong choice of scare may

cause the subject to spend more effort on fittlng his answers
to the scale than on evaluating his uncertainty. rt is important,
therefore, to choose a unit with which the subject is comfortable;
after the encoding, the scale can be changed to fit the anarysis.
As a rul,e, 1et the subject choose the scale if there is no
obvious scale.
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4. MODES OF JI.IDGI'{ENT
*

Relevance for Probability Encoding

People perceive and assess uncertainty in a manner simitar to the
way they perceive and assess distance. They use intuitive assessment
procedures that are often based on cues of limited reliability and va-
lidity. At the same time the procedures (we will use mode of judgment

as a synonyur) generally produce reasonable anshrers. For example, an

automobile driver is generally able to estimate distance accurately
enough to avoid accidents, and a business executive is generally able to
evaluate uncertainties well enough to make his enterprise profitable.
On the other hand, a particular mode of judgment may lead to anshrers

that are systematically biased, sometimes with severe consequences.

To pursue the analogy with estimation of distance, people are known

to overestimate the distance of a remote object when visibllity is poor
and to underestimate the distance when the sky is clear. Thus, they ex-
hibit a regular systematic bias. This is because we normally use the
haze as a cue to distance. This cue has some validity, because more dis-
tant objects are usually seen through more haze. At the same time, this
mode of judgment may tead to predictable errors. Three features of this
example are worth noting: (1) People are not generally aware of the
cues on utrich their Judgments are based. Fers people know that they use

haze to judge distances, although research shows that virtually every-
body does. (2) It is difficult to control the cues rde use; the object
seen through haze looks more distant, even when we know why. (3) PeopLe

can be made aware of the bias, and can make a conscious attempt to con-
trol its effects, as the captain of a ship does when navigating in a

mist.

An analogous problem exists in the assessment of uncertain quanti-
ties. Here too, one relies on certain modes of judgment that may intro-
duce systematic biases. Here too, modifying impressions and intuitions

*
Much of the material in this and the next section is based on private
conununications with Daniel Kahneman and Amos Tversky. The analogy be-
tlreen judgment of distance and judgment, of uncertainty is due to them.
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is exceedingly difficult, but it is possible to learn to recognize the
conditions under which such impressions are likely to lead us astray.

We will now briefly categorize biases that may be encountered in
probability encoding. In the subsequent sections we wtl1 discuss some

modes of judgment that are often used in responding to questions about
uncertain quantities.

Biases in Probabilitv Encoding

For the purpose of this discussion the subject is assumed Eo have
an underlying stabte knowledge regarding the quantity under investigation.
This knowledge may be changed through receiving new information. The
task of the analyst is to elicit from the subject a probability distribu-
tion that describes the underlying knowledge. Conscious or subconscious
discrepancies between the subjectr s responses and an accurate description
of his underlying knowLedge are termed biases. Biases may take many
forms. One is a shift of the whole distribution upward or downward reta-
tive to the basic judgment; this is called displacement bias. A change
in the shape of the distribut,ion compared with the underlying judgment
is calLed variability bias. Discrepancies may be a mixture of both kinds
of bias. Variability bias frequently takes the form of a central bias,
which means that the distribution is tighter (has less spread) than is
justified by the subjectr s actuat state of information. Biases are it-
lustrated in Figure 1 in the form of three density functions, where A

rePresents the underlying state of information and distributions B and
C, respectively, represent the effects of central bias and displacement
bias.

B

A = Underlying Judgment

B = Centrally Biased

C = Displacement Biased
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The sources of biases can be cogn it ive or mot ivat iona 1. Mot ivat iona 1

biases are either conscious or subconscious adjustments in the subjectr s

responses motivated by his perceived system of personal rewards for vari-
ous responses; he may want to inftuence the decision. He may also want

to bias his response because he percelves his performance will be evatu-
ated by the outcome: For example, a sales manager may consciously give
a low prediction of sales because he thinks he will look better if the
actual sales exceed his forecast. Finally, the subject may suppress the
full range of uncertainty that he actually believes to be present because

he feels that someone in his position is expected to know what will hap-
pen in hiq area of expertise.

Even when a subject is honest--in the sense that he lacks motiva-
tional biases--he may stilL have cognitive biases. Cognitive !!gg are
either conscious or subconscious adjustments in the subJectr s responses

systematically introduced by the way the subJect is intellectually pro-
cessing his perceptions. For example, a response may be biased towards
the most recent piece of information simply because that information is
the easiest to recal1. Cognitive biases depend on the judgment mode

usedg they w111 be discussed further in the next section.

Bas ic Iulodes of Judgment

A bias resutts from the use of a mode of judgment. An important
responsibility of the interviewer is to try to elicit wtrat modes of Judg-
ment may be used by the subject and then try to adapt the interview to
minimize biases. In this section, we will define five different modes

of judgment and give examples of how they might operate.

Availabilitv

Probability assignments are based on information that the subject
recalls or visualizes. The probability of a breakdown in a production
process may be assigned by recalLing past breakdowns. Availability re-
fers to the ease with which relevant information is recalled or visual-
ized [10]. It is easy to recall information that made a strong inrpres-
sion at the time it was first presented. Past results and present
business plans also become easily available. Recent information is more

availabLe than old information and is often given too much weight. For
exarnpl.e, a piece of recent nerls regarding a competitor may influence a

sales forecast much more than should be allowed on the basis of past ex-
perience with such nerils. Some events may become overly availabte because
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of their pot.entially disastrous consequences (e.g., an accident with a
nuclear reactor) and are thus assigned probabilities that are too high.

Availability will be an important judgment mode in most probability
encoding sessions. It can also be introduced deliberately by the inter-
viewer. For instance, if the interviewer believes that the subject, has
a central bias, he can ask the subject to make up scenarios for extreme
outcomes, which thereby become more available and help counteract the
central bias.

Ad ius tment and Anchorine

The most readily available piece of information often forms an ini-
tial basis for formulating responses; subsequent responses then represent
adjustments from this basis. For example, the current business plan is
often used as an available starting point. Likewise, when predicting
this yearrs sales, the subject may use last. yearts sales as a starting
point. He may use the recent years with the biggest and smalLest sales
as the bases for formulating judgment about the extreme values for this
yearts sales. The initial response many times serves as a basis for
later resPonses, especially if the first question concerns a likely value
for the uncertain quantity.

The subjectrs adjustmenE from such a basis is often insufficient.
we then say that the rs_s_p_oqrse is anchored on thg basis; the result is
likely to be a central bias. Anchoring thus occurs when some infor*"tior,
has become overly available at the beginning of the procedure. rt re-
sults from a failure to process information regarding other points on
the distribution independently from the point under consideration.

Representat iveness

RepresenEativeness means that the probability of an event or a sam-
ple is evaluated by the degree to which it is representative of, or simi-
1ar to, major characteristics of the process or popuLation from which it
originated t3l , [41. we can then say thar probability judgments are
being reduced to judgments of similarity. For example, people tend to
assign roughl,y the same distribution to the average of a sequence of un-
certain quantities (e.g.r the average production volume for a group of
machines) as t.o each individual quantity forming Ehe average when they
usually should assign a much tighter distribution to the average. The
main characteristic of the average value is the population from which
the individual quantities vrere sampledl information about that population

6l I



therefore has a much greater influence on the distribution of the average

than has the number of quantities making up the average.

There is a tendency to dlsregard general information and base proba-

billty assignments on what appears to be a specific fact. For example,

a company had to decide whether to introduce a new product that \ras con-

sidered to have a high demand potential. The product vras test-marketed

with a sllghtly unfavorable outcome, and the revised judgment of the

market was then a Low demand. This revision was made in spite of past

e:<perience with similar market tests that had been less than accurate in
predicting the final market size and in contrast to the strong prior

Judgment indicating a high demand. This is a case of focusing on infor-
mation that relates to an individual hlpothesis and of ignoring general

information, which perhaps should carry the main weight in the probability
assignment.

Biases can sometimes be explained by different modes of judgnent.

For exanrple, the fact that people attach too little weight to generaL in-
formation can also be exptained by availability. That is, the market

test information in the example above rilas more recent than the general

information, and therefore more avaitable.

The biases resulting from representativeness can often be reduced

or eliminated by further structuring of the problem. In the marketing

exanple, it is easy to encode the prior probabiLities for various levels

of demand and encode the probability distribution for the test result
conditional on the demand. A simpLe application of probability calculus
will then provide the posterior probabillties of demand level given the

outcome of the market test.

Unstated Assumptions

A subjectts responses are typicaLly conditionat on various unstated

assuurptions; consequently, the resulEing probability distribution does

not properly reflect his total uncertainty. This means that the subject
may not have considered such possibilities as future price controls, ma-

jor strikes, currency devaluation, \rar, and so on, when expressing his

Judgment. IIe does not hoLd himself responsible for considering such

event,s. One result is that he may be less surprised than might be ex-

pected when the revealed value of an uncertaln quantity falls outside

the range of his distribution. He justifies this because of a drastic
change in some condition that he did not feel responsible for incorpo-
rating into his judgment.
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The subjecE cannot be held responsible for all of the unstated as-
sumptions; rather, he is responsible for stat.ing the assumptions he is
using so they can be built into the model and so that the most appropri-
ate expert (who may or may not be the current subject) can assign their
probabi 1it ies.

Coherence

People sometimes assign probabilities to an event based on the ease
with which they can fabricate a plausible scenario that woutd lead to
the occurrence of the event. The event is considered unlikely if no rea-
sonable scenario can be found; it is judged likely if many scenarios can
be composed that could make the event occur or if one scenario is particu-
larly coherent. Ttre credibility of a scenario to a subject seems to de-
pend more on the coherence with which its author has spun the tale than
on its intrinsically r'logicalr' probability of occurrence. For example,
the probability assigned to the event that sales would exceed a high vol-
ume may depend on how well market researchers have put together scenarios
thaE woutd lead to that volume; for instance, scenarios on what markets
might be penetrated and what the penetration rate might be with a reason-
able marketing effort. Arguments in court are another example of evalu-
ation based on the coherence of the sequence of evidence (as presented
by the prosecution as well as the defense). It is thus important thar
the discussion of possible outcomes for an uncertain quantity be well-
balanced, since the discussion and generation of arguments may affect the
probability assignments.
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5. ENCODING METHODOLOGY

Encodine I"lethods and Resp e Modes

D1ost encoding methods are based on questions for which the answers

can be represented as points on a cumulative distribution function. We

cLassify encoding methods as follows:

o

o

o

P-rl€thods ask questions on the Probabil ity
values fixed.

V-rr€thods ask ques tions on the value scale

bilities fixed.

PV-methods ask questions to be anshrered on

jointly; the subjecE essentially describes

cumulat ive distributi oI1 .

scale with the

wi th the proba -

both sca le s
points on Ehe

The encoding procedure consists of a set of questions that requires

response either directly or indirectly through choices between simple

bets. In the direct response *ode, the subject is asked questions that

reguire numbers as anslilers. The answers can be given in the form of

probabllitles (or equivalently in the form of odds) or values.

In the indirect @, mode, the subject is asked to choose be-

tween two or more bets (or alternatives). The bets are adjusted until
he is indifferent; this indifference can then be translated into a proba-

bility or value assignment. With a reference P.fsgJSr one bet is defined

with respect to the uncertain quantity and the other with respect to the

reference process.

The choice can also be made between events defined on the value

scale for the uncertain quantity, where each event rePresents a set of
possible outcomes for the uncertain quantity (e.g., sales being tess

than or equal to 21000 units or sates being greater than 21000 units).
We can say that this response mode makes use of internal events.

Specific Techniques

Each probability encoding technique can be classified according to
the encoding method and response mode used. The techniques which we

have found most useful are given in Table 1.
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Table I

CI.ASSI FICATION OF PROBABI LI TY ENCODI NG TECHNI QUES

Encoding Method

Response Mode

D i rect

Indirect
External Reference

Process
I nt erna I

E vent s

Probability (value
fixed)

VaIue
( probabi I i ty fi xed)

Probabillty--Value
( nei ther fi xed)

Cumul at i ve

probabi I i ty

Fractiles

Drawing graph;
Parametric de-
scri pt ion

WheeI

Wheel; fixed
probabi I i ty event s

Odds

I nterval
t echni que

The'probabiLity wheel is usefuL with most subjects. As an external
reference process, it can be used as a p-method or a v-method, but the
former is the method generally preferred. The probability wheel is a
disk with two sectors, one blue and the other red, with a fixed pointer
in the center of the disk. The disk is spun, finalLy stopping with the
pointer either in the blue or the red sector (see Figure 2). A simple
adJustment changes the rel.ative s ize of the two sectors and thereby also
the probabiLities of the pointer indicating either sector when the disk
stoPs spinning. The subject is asked wtrether he would prefer to bet ei-
ther on an event relating to the uncertain quantity, e.E. t that next
yearts production will not exceed x units, or on the pointer ending up
in the red sector. The amount of red in the wheel is then varied until
the expert becomes indifferent. When indifference has been obtained,
the reLative amount of red is assigned as the probability of the event.
This is a P-method since the event (value) is fixed and the probability
is determined through the process.

One advantage of the probability wheel is that the probability can
be varied continuousLy from zero to one. rt is onty useful, however,
for probabilities in the range from 0. 1 to 0.9 because it is difficult
for the subject to discriminate between sizes of small sectors. One at-
ternative to the probability wheel (with the same restricted usefutness)
is a horizontal bar with a marker (defining trro events, to the left and
to the right of the marker); another is an urn with, sayr 1000 balLs of
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FIGURE 2 A PROBABILITY WHEEL

two colors (a ball is supposed to be drawn at random from the urn and

the reference event is rrthe ball drawn is redrt; the composition of the

urn can then be varied). We prefer to use the probability wheel because

it is easier to visualize the chance process than in the case of the bar

or the urn.

Other reference processes may be useful, particularLy when reference

has to be made to low-probability events. For exanrpte, the event rrten

heads in a row with an unbiased coin" has a probability close to 1/1000.

An event that some subjects might identify with is a royal flush which

has a probability of roughly 1/651 000. Typical for the reference pro-

cesses mentioned in this paragraph is that they concern events with

known probabilities and therefore only work as V-methods.

The interval technique is an exarple of the internal events resPonse

mode and is a V-method. An interval is spLit into two Parts, and the

subject is asked to choose which part he would prefer to bet on, or which

part he considers most likely. The dividing point is changed to reduce

the slze of the part considered most likely (and thereby to increase the

slze of the other part), and the subJect is asked to choose between the

two new parts. The procedure of changing the dividing point is continued
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until indifference is reached, and the subintervals are then assigned

equal probabilities. Starting from an interval covering all possible
outcomes and then splitting into two parts will first give the median,

then the quartiles, and so on. The method does not seem to be very
meaningful after the quartiles have been obtained because each question
depends on earl-ier responses, thus errors may be compounded. The inter-
val technique can also be based on splitting the interval igrto three
parts.

A P-method with the internal events response mode asks the expert
to assign the relative likelihoods (or odds) to tvro weLL-defined events.
For example, the expert may first be asked vrhether he considers next
yeart s saLes more likely to be above or below 51 000 units. The next
question is then: how much more likely is it? This method is used pri-
marily for uncertain quantities with only a few possible outcomes.

In the direct response mode one asks for the probability level (cumu-

lative probability) at a given value (e. g., what is the probabiLity that
next yearts sales will be less than or equal to 31000 units?), or asks

for the value (fractile) corresponding to a probability (e.g., what is
the level of sales that corresponds to a lO-ptsrcent probability?). The

probability response can be given as an absoLute number, 0.20; as a per-
centage, 20 percent; or can be expressed in a fractional way as |tone in
fivet'or tttwo in ten.tt The last way is particularly useful for sma1l

probabilities because the subject can discriminate more easily between
ttone in 100r' and rrone in 1000r' than between the absolute numbers 0.01
and 0.001. Expressing a probability in the fractional form is closely
related to expressing it in terms of odds, in part.icular for probabilities
close to zeto.

The direct response mode can also be used in a free format (making

it a PV-method) where the subject either draws a picture of a density
function or a cumulative distribution, or states a series of pairs of
numbers (va1ue and probability). The distribution can also be described
in parametric formt e.8., a beta distribution with parameters 2 and 7.

Verbal encoding makes use of verbal descriptors for events (e.9.,
high, medium, and low production cost) in the first phase of the encoding.
The descriptors are those that the subject is accustomed to. The inter-
pretation of the descriptors is encoded in a second phase. This method

might have some use for quantities that have no ordinal value scale. It
can be viewed as a PV-meEhod.
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6, TIiE INTERVIEI^I PROCESS

I,ltrile the structure of the interview process is stilL evolving, the
following approach has been found quite effective. The process is di-
vided into five phases.

Motivating--Rapport with the subject is established and

possible motivational biases are explored.

Structuring--The structure of the uncertain quantity is
defined.

Conditioning--The subject is conditioned to think funda-
mentally about his judgment and to avoid cognitive biases.

Encoding--This is the actual quantification of judgment

in probabilistic terms.

Verifying--The responses obtained in the encoding are
checked for consistency.

Ivlot ivat ing

This phase has two purposes. The first is to introduce the subject
to the encoding task. This may entail an explanation of the importance
and purpose of probability encoding in decision analysis, as well as a

discussion of the difference between deterministic (single number) and

probabilistic (probability distribution) predictions.

The second purpose is to explore whether any motivational biases
might operate. The interviewer and the subject should have an open dis-
cussion on what payoffs might be associated with the probability assign-
ment as well as on possible misuses of the same information. The subject
may be a\rare of misuses of single-number predictions, e.g..r that they
often are interpreted as t'cornmitments.rr It should be pointed out that
no colrunitment is inherent in a probability dist.ribution. In fact, the
distribution represents the complete judgment of the subject.

o

o

o

o

o
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S truc tur ing

The next step in the encoding process is to define and structure
clearly the uncertain quantity. This quantity is assumed to be important
to the decision. It should be defined as an unambiguous state variable
and the definition should pass the clairvoyant test, i. e., a clairvoyant
should be able to specify the outcome without asking additional questions
for clarification. The structure may have to be expanded so that the
subject does not have to model the problem further before making each
judgment. It is also important to choose a scale that is meaningful to
the subject.

The subject should be required to think the problem through care-
ful1y before the actual encoding session begins. He shouLd decide what
background information might be relevant (or irrelevant) to the problem.
Otherwise, onty the readily available information will be used initially,
and new information may later rise t,o the surface in the course of the
session and invalidate a1-L prior anshrers. Even if it does not, however,
the resulting distribution may be highly biased with respect to the sub-
jectr s underlying judgment.

Condi t ioning

The aim of this phase is to head off biases that otherwise might
surface during the encoding and to condition the subject to think funda-
mentalLy about his judgment. Basically, Ehe phase should be directed
toward finding out how the subject goes about making his probability as-
signments. This wilL reveal what information seems to be most available,
what (if any) anchors are being used, what assumptions are made, and so
on. The interviewer should thus watch out for (and make use of) the
modes of judgment, discussed in Section 4. The following are some sugges-
tions for a checkl-ist that we have found useful in many applications.

The subject can be asked to specify the most important bases for
his judgment. These may often be values from the current business plan
or results from previous years. Such values could then be expected to
act as anchors and often lead to a central bias.

Asking the subject what he is taking into account will show what in-
formation becomes most easily available. The interviewer can also make

use of availability if he suspects the subject to have a central bias.
He can then ask the subject to compose scenarios that would produce ex-
treme outcomes.
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Uncertain quantities sometimes represent averages, such as average

productivity or average reliability. The interviewer should then try to
determine whether the distribution assigned by the subJect really is a

distributLon for the average or a distribution for an individual unit.
(The reason is that people often have difficulty in discriminating be-

tween the two situations. ) If the latter is the case, it is probably
best to use the resuLting distribution and restructure the model. Rep-

resentativeness may come into play in another situation when one is con-

cerned with revising a probability assignment in the light of new infor-
mation. The best way to handl-e such a situation is often to ask for the

probability distribution of the quantity without the nenr information and

for the probability of the information conditional on the outcome of the
quantity; it is then a matter of applying probabiLity calculus to obtain
the distribution for the quantity glven the information.

It is important to specify all assumptions (conditionaLities) that
will underlie the probabiLity distribution, as well as those factors
that the subject is supposed to integrate into his judgment. The struc-
ture may sometimes be changed because some conditionalities have been

made explicit. The encoding may then be made conditional on different
sets of assumptions, and the probabilities that the various assumptions

will hold are then encoded separately (from the current subject or from

someone eLse).

When a subject is assigning a probability to the occurrence (or non-

occurrence) of some event (e.g., that a product will be successful in
the market), he may base his assignment on whether he can generate plausi-
ble scenarios leading to the occurrence of the event in question. Asking

him to state the basis for his probability assignment may reveal that the

coherence of such scenarios has been an important factor. The inter-
viewer may then want to generate more scenarios that would or would not
tead to the occurrence of the event. For example, simply devising a sce-
nario that implies the opposite outcome might considerabl;: change the
first probability assignment.

Encodins

The procedure outlined for this phase of the interview process is
suggested as a guideline. It is primarily based on the use of the proba-

bllity wheeL as the encoding technique. Responses may often indicate a

need to return to the tasks in the previous three phases.

Begin by asking for extreme values for the uncertain quantity. Then

ask for scenarios that might lead to outcomes outside of the extremes.
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Also ask for the probabilities (or odds) of outcomes outside of the ex-
tremes. This deliberate use of availability is to counteract the central
bias that is otherwise 1ikely to occur. Eliciting the scenarios makes
them available to the subject, and he is then likeIy to assign higher
probabilities to extreme outcomes; this has the effect of increasing the
variability in his assigned distribution.

Next turn to the wheeL. Take a set of values and encode the corre-
sponding probability levels. Do not choose the first value in a way
that may seem significant to the subject, otherwise you will cause him
to anchor on that value. rn particuLar, do not begin by asking for a

1ikely vatue and then encode the corresponding probability level. Make
the first few choices easy for the subject so that he will be comfortable
with the task. Plot all responses as points on a cumulative distribution
and number them sequentially. An example is shown in Figure 3. This
will point out any inconsistencies and will also show the gaps in the
distribution that need one or more additional points.

The interval technique can be used next to generate values for the
median and the quartiles. The order of the questions and of the differ-
ent types of questions should be determined by the situation. The
Length of the encoding session depends on the ease with which the sub-
ject can anshrer the questions and on the convergence to coherent
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responses. The length of the session also depends on the importance of
the variable. The interviewer should be aware of attention shifts (for
example, the shift of attention between the encoding process and the
actuat problern), changes in the subjectr s modeling of the situation, and

the appearance of new information.

Each response will lead to a point on a cumulative distribution.
The importance of the variable for the decision problem at hand deter-
mines the number of points to encode. After enough points have been en-
coded, a curve should be fitted to the points. An example is shown in
Figure 4.
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FIGURE 4 EXAMPLE OF A CURVE FITTED TO RESPONSES

Ver ifying

The judgments are tested in the last phase to see if the subject
really believes them. If needed, there may be iteration through some of
the stages ment.ioned above.

A graphical representation of the responses as points on a cumula-
tive distribution and an interpretation of this distribution (perhaps in
terms of a density function) provides an important test and feedback.
An examination of the distribution itself cannot show whether or not the
distribution agrees with the subJectrs judgmenE. However, it can show
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implications of the subjectrs responses and thereby provide feedback.
For instance, the plotted distribution may turn out to be bimodal whereas
the subject may state that he believes the distribution to be unimodal.
If some responses are not consistent with the subjectrs final judgment,
they will have to be modified.

A second part of the verification process is based on a sequence of
pairs of bets. Each pair is chosen so that the two bets would be equally
attractive if the curve from the preceding phase is consist.ent with the
subjectrs judgment.

There should be a number, say three to five, of such indifference
responses before the process is ended. This provides the subject and
the interviewer with confidence that the curve represents the subjecErs
j udgment.

Other l"lethods

It should be clear that the encoding methods discussed in this paper
stress the interaction between interviewer and subject. We find it dan-
gerous to have the subject assign a probability distribution without the
help of an analyst. This is true even for subjects that are well trained
in probability or statistics. The main reason is that it is difficult
to avoid serious biases without an analyst present.

Questionnaires have dubious value for the same reasons, namely that
they eliminate the interaction between analyst and subJect. Question-
naires can be used as a first approximation to the encoding process, but
the subjects interviewed should preferably be experienced in probability
encoding.

An interactive computer interview can make use of iterative methods,
such as the inEerval method, and thereby avoid some pitfalls with a di-
rect response mode, but the personal interaction is sti1l missing. we
do not recorunend using such a program unless the subject has been through
a number of actual interviews regarding similar uncertain quantities.
It should be avoided for new quantities even though the subject may have
had long experience with the computer interview. An example of an inter-
acEive comPuter program is the Probability Encoding Program (PEP) devel-
oped by the Decision Analysis Group at Stanford Research Institute.

There are procedures that ask the subject for the parameter of a
named distribution; e.g., a normaL distribution or a beta distribution.
our experience indicates that subjects will give such parameters, but
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they usuaLly do not understand the full implications. [,Ie consider the
choice of named distributions a modeling consideration and belleve that
it should not be made part of the encoding process.

7 . SI.'MMARY AND CONCLUSION

In thls paper we have presented a general methodology for probability
encoding. This has been done in the spirit of a checklist or rules to
remember rather than a cookbook with well-structured recipes on many dif-
ferent procedures. The ultimate form of the procedure used for a particu-
lar uncertaln quantity will depend on the quantity, its importance for a

decision, the subject, and the interviewer. The interviewer is an impor-

tant factor slnce his function is perceiving problems or biases that the

subject might have and adapting the encoding procedures accordingly.

The methodology differs considerably from what is generally described
in the literature. The following are some important points that we want

to stress in thls sunrnary. First, the pre-encoding stage is essential
and may even take Longer than the quantification of probabilities. The

purpose is to establish rapport between the interviewer and the subJect,
to make sure the problmr is welt defined, and to ensure that possible
sources for bias have been detected. Second, probability assignments

should be inferred from choices among bets that require only an ordinal
judgement rather than from answers to direct questions. Third, reference
processes, such as the probability wheel, appear to provide an effective
encoding technique for most subjects.

There are many special topics related to probability encoding that
may be relevant in particular situations. They include encoding of dis-
crete distributions, encoding of probabilities for rare events, accuracy

and calibration of probability assignments, the use of multiple experts.
These topics are presently being researched by the SRI Decision AnaLysis

Group and discusslon will be deferred to another paper.
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RISK PREFERENCE

Rona ld A. Howa rd

THE PHENOI'{ENON OF RISK PREFERENCE

One of the most difficult choices a person or an organization canface is how to choose between propositions whose outcomes are uncertain.For example, which proposition would you prefer, one that. pays $500 tf acoin falls Heads or one that pays $lorooo if a iarr of dice come up,,snakeeyes" (both show a one)? rn the corporaEe case the payoffs may be mea-sured in millions of dollars and the probabilities may result from theevaluation of marketing or research programs, but the same problem remains.our purpose is to develop a theory of risk preference and Eo show how itmay be appried to make choices under uncertainty on a consistent, logicalbasis.

A AGE OF RI PRE

To discuss risk preference we need a language.

A I.OTTERY

I,Ie shal1 describe any uncertain proposit,ion as a lottery. r,Lotteryn
is a technical term, not a gambling term. when we participaEe in a [ot,-tery we shall receive exact,ly one of a specified set of prizes or pros-
Pects' Each prize has associated with it the probability that we shallreceive that prize. Thus the proposition described above of tossing acoin for $500 is a lottery with prizes $0 and $Jee, each to be receivedwith probability 1/2. A graphicar description of rhis rotrery appears
as Figure 1.

There is no need for the prizes in a lottery to be in any $ray commen-surate. For exampre, Figure 2 shows a lottery where the prizls are the
Hope diamond, a ton of cheese, and a case of pneumonia to be receivedwith probability p6r p,r and pa where, of courser p1 * po * p^ = 1. tlemight also choose t,o d6scribe Ehis iottery in rte 

"3m.i3" rof, A; pg, B;
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PC, C). Depending on the specification of the probabilities, this 1ot-
Eery could be very favorable or very unfavorable.

LOTTERIES ON A CO},I},IODITY

Though it is interesting to speculat,e about such unusual lotteries,
the lotteries of greatest practical interesE are those whose prizes are
all measured i-n terms of some commodity like t,ime or, most usually, money.
rn this case a lottery is simply a random variable. rf Ehe lottery is
described by a discrete random variable x then we have a choice of two
rePresenEations shown in Figure 3, the tree or the probability mass func-
tion. Either represenEation shows that Ehe payoffs -$10, $20, and $50
will be received with probabilities 0.I, 0.3, and 0.6.

If Ehe lottery is described by a continuous random variable x, then
the Eree represenEation does not work and hre can specify the lottery only
by indicating the probability densiEy funcEion or cumulative probability
disEribution of the random variable. For example, if the payoff is given
by a normal density function with mean m and standard deviation o, then
we could use either the density funct.ion or cumulative distribution of
Figure 4 as its description.

EXPECTATION

one measure of a commodity lottery x that might be suggested as a
basis for comparing lotteries is the expectation i computed by multiply-
ing the amount of each prize by its probabiliEy and summing over all
prizes. This calculation is performed in Figure 5 for the two lotteries
we originally posed. Although the lottery using the dice has expectation
$27.78 higher than that, using the coin, it is not at all clear that one
would or should prefer it. Indeed, from a behavioral point of view many
people would prefer the coin lottery. Expectation just does not capture
the way most people think about uncertain propositions. our task is
therefore to replace expectation with a more useful concept.

CERTAIN EQUIVALENT

Lotteries can be meaningfully compared by using the idea of a cer-
tain equivalent. The certain equivalent of a lottery is the selling price
for the lottery, the amount you would have to be paid to give up the roE-
tery if you already ovmed it. Of courser you would really like to be paid
much more than the lottery is worth to you so hre must define the certain
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equivatent more carefully as the least you would accept in selling the
lottery. If someone offered you slightly rnore than the certain equlva-
Lent, you woutd take it; if he offered sllghtly less you would refuse
his offer and keep the lottery.

Now let us use thls idea. suppose you owned the right to toss the
coln for $500. Someone has written you a contract that you can take to
any bank, whereupon the teIler will flip a handy coin and pay you $500
if it fal1s Heads. That wouLd be a very nice lottery to own--what would
you seII it for? While the answers of lndividuals will differ because
of their different financlal circumstances and attltudes, 1et us suppose
that you say $150. That means that you would certainly sel1 for $151
and noE for $149. In this case we say that your certain equivalent for
the coin lottery is $150.

Figure 6 illustrates the meaning of certain equivalent graphlcally.
What you have said is that you are indlfferent between playlng the lottery
and receivlng $150 for sure. The diagram makes this statement by showlng
that you are lndifferent (symbol -) between the coln lottery and a lottery
that pays $150 wlth probabllity one.
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Figure 7 shows similarly that you have stated a $100 certain equiva-
lent for the dice lot,tery. If you owned this lottery you would sell it
for any offer over $100 and keep it for any offer under $100. The reason
many PeoPle would have a lower certain equivalent for the dice lottery
than they would for the coin loEt,ery is that the dice lottery seems like
a real rrlong-shot." However, the point is not what. certain equivalents
you state, but rather that the1, constitute a basis for choosing between

the lotteries. Clearly, someone who expressed the certain equivalents
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\^re have used in our illustration would prefer the coin lottery Lo the

dice lottery if he were offered a choice between the two simply because

the coin lottery has a higher certain equivalent.

If a loEtery is described by a random variable x, then we use x

as the notation for its certain equivalent. Since certain equivalents
are typically less than expectaEions,we define the difference between the

expectation i and the certain equivalent ? as the risk premtr* *0,

-nJX=X-X
P

The risk premium is the amount of expectation that the individual is
willing to forego in order to avoid risk. Thus in our example, Ehe risk
premium for the coin loEtery is 250 - 150 = $100, whereas the risk premium

for the dice lottery is 277.78 - f00 = $177.78.

If xp = 0 then * = ? and we say that the individual is risk indif-
ferent; if xn I 0, we say he is risk-sensitive. If the risk Preltium x,
is positir"r^r. call the individual "risk-averset'; if negative, t'risk-^

preferring." The case of risk aversion is the case that r^rill occuPy our

primary interest.

In principle, then, Ehe question of choosing among uncertain ProPo-

sitions becomes one of assessing the cerEain equivalent of each proposi-
tion and then seLecting the proposiLion with the highest certain equiva-

lent. But we still face two problems. The first is how to be consistent
in assessing certain equivalenEs. Is it not possible that we might assess

differenE certain equivalenEs for the same lottery on successive days even

when we have no wish to do so? We would certainly like to make sure Ehat

we have a consistent \^ray Eo make these assessmenEs.

However, the second problem is more serious. Direct assessment of
certain equivalent means thaE every uncertain proposition must be brought

directly to us for assessmenE of its certain equivalenE before any deci-
sion can be made. We have no way of delegating a policy toward these

matters so that our agents can make the choice between uncertain ProPo-
siEions for us in the sure knowledge that they are doing what we would

do if \^re r^rere there. The need for consistency and a procedure for dele-
gation leads directly to the creation of a theory and methodology for
the establishmenE of a risk policy.
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THE THEORY OF RISK PREFERENCE

The theory of risk preference rest,s on a foundaEion of five axioms.
These axioms state a set of beliefs that most people will wish to accept
as a basis for decision-making. IE is important to understand that they
do not describe how people actualty make decisions, but rather how they
wish they made them.

TTLE A)(ION{S

Axiom 1: Orderability. The decision maker must be able to state
his preferences among the prizes of any lottery. That is, if a lottery
has prizes A, B, and c he must be able to say which he likes first best,
second best, etc. lrle use the symbol > to mean t'is preferred to., Then
given any tr,Jo prizes A and B, he must state eiEher A ) B, A - B, or A < B.

I,le further require that his preference by transitive. rf A > B and
B >c iE is necessary that A >c. To violate transitivity means that
the decision maker couLd be made into a "money pump.t' For example, sup-
Pose the decision maker should express the intransitive preferences A ) Br
B ) cr c > A. Assume that his statement that he prefers one prize to
another means that he would pay a smal1 amount for substlEuting the pre-
ferred prize for the other one and that he is currently going to win pti:ze
c. Then we would pay us a sma1l amount to subst,itute B for c, another
small amount to substitute A for B, and finally a third small amount to
substitute C for A. Thus we have extracted three payments from him and
stil1 left him with the same prize.

Individuals tend to violate transitivity when they consider only one
aspect of a prize rather than the whole prize. For example, if A, B,
and c are automobiles, A might be preferred to B for its performance, B

to c for its convenience, and c to A for its durability. However, the
real question is, if you could have only one, which would you plck and
if you couldnr t have that one, then what would be your second choice.

Axiom 2: Contlnuity. If the decision maker has expressed the transi-
tive preference A > B > c, then we must be able to construct a lottery
with prizes A and C and determine a probability p of winning A such that
he is indtfferent between receiving B for certain and participaEing in
the lottery. Thls axiom is stated graphically in Figure 8. we observe
that for the appropriate p, B is the certain equivalent of the lottery.

For example, suppose the prizes A, B, and c represent winning $100,
$10, and $0 respectively. The decision maker might say that if he faced
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a lottery that would pay the $100 or nothing, the probabllity of wlnning
the $100 would have to be 0.25 before he woutd be indifferent behreen the
lottery and receiving a sure $10.

Axlom 3: Substitutability. If a decision maker has stated his cer-
tain equivalent of a totLery, then he must be truly indifferent between

the lot,tery and the certain equivalent: The lottery and its certain
equivalent must be interchangeabte without affectlng preferences. For
example, in our discussion of Axiom 2 we posEulated that an individual
had a $10 certain equivalent for the lottery (O.25r 100;0.8r 0). Then

if this individual owed us $10, he would have to be satisfied if we of-
fered to pay him $100 if a coin fel1 Heads tvice in two tosses and other-
wise nothing. This is a ttDo you really mean it?r' axiom.

A:riom 4: l,lonotoniclty. If a decislon maker has a preference beEween

Ewo prizes and if he faces two lotteries which each have these Ewo prizes
as their only prizes, then he must prefer the lottery which produces the
preferred prize with the higher probability. Figure 9 states the axiom

graphically. If A > !r then the decision maker musE prefer the lottery
(p, A; 1 - p, s) to the lotEery (p '; A; 1 - p', B) if and only if p > p'.
This axiom is so reasonable it needs no further discussion.
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Axiom 5: Decomposability. Sometimes an uncertain proposition has

a compllcated form. A lottery mEly have other lotteries as prizes. !,Ie

call these situations ttcompound lotteries.rr For example, the Irish
Sweepstakes is a compound lottery because first you must, draw a ticket
of a horse in a horse race and then your horse must win the race.

1-P'

B B

This axiom states that when faced with such a proposition, the deci-
maker will consider only the final pti-ze he might win and then com-

the probability of winning each prize using the laws of probability.
he will reduce a compound lottery to Ehe simple type of loEtery we

previously discussed.

sion

Pute
Thus

have

Figure 10 illustrates the procedure. The first lottery pays B with
probability 1 - p and with probability p permits participating in a lot-
tery with probability q of winning A and 1 - q of winning B. The deci-
sion maker must say that his probability of winning A is just p times q

and hence his probability of winning B is 1 - pq as shown in the slmple
lottery.

Sometimes we call this the "no fun in gambling[ axiom because the
momentary suspense in successive resolutions of the compound lott,ery is
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considered to have no value or cost. A gambler who satisfied this axiom
could be very efficient in his gambling. tlhen he thought of spending an
evening in Las Vegas, he could write a book stating just what games he

woutd play and what he would do depending on the amount he won or 1ost.
Then he could take this book to the doorman of a casino who would thank
him and ask him to wait a moment. The book would be submit,ted to the
casinors computer which would then simulate the possible eveningrs plays
using the probabilities associated with the various games of chance. Then

Lhe doorman would reappear and announce, t'You have lost $200--a check will
be acceptable." It is doubtful that this method of wagering will ever
catch on in the gambling fraterniEy, but it would be much cheaper to
opera te.

Incidentally, if a gambler does assign value to the suspense associ-
ated with rhe gambling process, he can include this value with the prizes
in each lottery and still use the theory of risk preference that we are
developing.

These are the five axioms of risk preference. If you accept, them,
they will have far-reaching consequences on the way you choose among

uncertain propositions.
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TIIE UTILITY FUNCTION

l,Ie shall soon show that an individual whose preferences satisfy Ehe

utility axioms may encode these preferences in a ilutility functionrr that
assigns a utility number to every prlze. This utiliEy function has two

important properties:

1) The utiliEy of any lottery is the expected utility of iEs
prizes.

2) If the decision maker prefers one lottery to another,
then it rmrst, have Ehe higher utility.

!'le can think of the utility function as a "preference thermometer.rr
The utility numbers have no meaning in themselves; they serve only to
compare the desirability of totteries. Because of the linear propert,ies
of expectation, \de can multiply the utility function by any positive num-

ber and add any constant to all utilities r{ithout changing the preferences
they express.

If all prizes are measured in terms of a cormnodity, then the utility
function can be expressed by a curve that assigns a utility number to
every value of the conmodity. If r furthermore, this cormrodity is such
that more is always better, for exampte money (you can always give it
away if you don't like it) then the utility curve will be monotonically
increasing.

USING TTIE UTILITY CURVE

We shal1 demonstrate how to use a uEility curve before proving that
the axioms imply the existence of the utility function. Later we sha1l
show how an individual can establish a utility curve for himself or for
his organization.

Consider the utility curve shown in Figure 11. It assigns a utility
number u(x) to various dollar amounts x ranging from 0 through $101000;
however, because of the wide range, only a portion of the curve is shown

in detail. The curve is normalized arbitrarily so that the utility of
zero is zero, u(0) = 0, and the utility of 101000 is 1, u(10r000) = 1.
This normatization is logically the same as fixing two points on a

temperature scale as the freezing and bolling points of water. l{e ob-
serve that the curve is concave downwardsl this type of curve is charac-
teristic of a risk averter.
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How would a person with risk preference specified by this curve
make a choice between uncertain propositions, in parEicular, between the
coin and dice lotteries we discussed earlier? [,le can make the choice
for him as his representative by remembering the properties of the uEility
curve discussed in the last secEion, namely, that he will prefer the lot-
tery with the higher utility and that he should catculate the utility of
a lottery by Eaking Ehe expectation of the utilities of its prizes.
Figure 12 shows the procedure. We begin by evaluating the utility of
each price of the coin lottery. From Ehe utility curve, u(0) = 0 and

u(500) = 0.08. Therefore the utility of the coin lotEery is 1/2 u(0) +

u2 u(500) = L/2 (0) + Llz (0.08) = 0.04.

Next we compute the utility of each prize of the dice loEtery. They

are boEh obtained directly from the curve, u(0) = 0 and u(10r000) = 1.
The utility of the dice lottery is therefore 35/36 u(O) + 1/36 u(10r000) =

35/36 (0) + Ll36 (L) = L/36 = O.O278. We can no\,{ make a choice. Since
this individual has a higher utility for the coin lottery, he rmrst prefer
iE. We have thus been able to choose between uncertain propositions for
a Person even in his absence: We have accomplished our goal of construct-
ing a procedure that will be consistent and useful in delegation.
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Certain observati.ons on the use of utility curves are important.
First, \de note that no difficulty would have been introduced if the lot-
tery had more than two prizes--the expectation would simply be computed
over all prizes. second, we see that the scaling of the utility curve
has no effect on the choice. For example, if all utilities under dis-
cussion were multiplied by 10 and then increased by 100, Ehe utilities
of the coin and dice lotteries would become 100.4 and 100.278, but the
coin lottery would sti11 be preferred.

The lack of inherent meaning in the uEility numbers demonstrates
the need for the idea of certain equivalent. Since the individual is
indifferent between the certain eguivalent and the lottery, the certain
equivalenE must have the same utiliEy as the lot.tery. In oEher words,
we find the certain equivalent of a tottery by seeing what dollar value
the utility curve shows corresponding to the utllity of the lottery. For
example, the coin lottery had a utility of 0.04. The utility curve of
Figure 11 shows that a dollar value of 150 corresponds to this utility;
therefore $150 is the certain equivalent of the coin lottery. Similarly,
the 0.0278 utility of the dice lottery implies the $100 certain equiva-
lent of this loEtery. These certain equival-ents are recorded in Figure 12;
they agree with those expressed earlier for these lotEeries.

Since monotonic utility curves mean that a higher utility will imply
a higher certain equivalent, the certain equivalent can serve just as well
as the utility number as a basis for comparing lotteries. You simply
choose the lottery wiEh the highest certain equivalenE. Ilowever, the cer-
tain equivalent, has the further advantage of indicating the rough strength
of the preference. Thus the fact Ehat the coin lottery has a certain
equi.vatent $50 higher than that of the dice lottery means, speaking
loosely, that is about $50 more valuable. We shall soon see under what
conditions this statement is precisely correct.

PROOF OF THE PROPERTIES OF T}IE UTILITY FUNCTION

We sha1l novl see that only a simple proof is required to establish
the properties of the utility funcEion that we find so valuable in prac-
tice. We shall consider the case where only a finite number N of possible
prizes can exist in composing any lottery. Since this will include the
case of every conceivable dol1ar amounE, Ehis is not a pracEical limita-
tion. We shall let R, designate the pxize (reward) i and use the ordera-
bilitv axiom to label the prizes so that
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That is, R1 is the mosE preferred prLze; \ is the least preferred prize.
Such labelIing can be performed without loss of generality. The case
where two prizes are equaLly preferred is simply expressed by - with no
difficulty.

The contlnuitv axlom provides that since R1 is preferred to any
other prizes R, and since R, is preferred to \r L = Zr3r...rN - l, we

can compose a lottery with R1 and \ "" 
prizes and find a probability ui

of winning R, such that the individual is indifferent between receiving
Rt for sure and participating in the lottery. since ui is a probability,
0 < ui < 1, i = 1r2r...rN. Figure 13 illustrates the typical equivalent
1o ttery.

Now suppose that lre consider any lot,tery A with prizes composed from
the prize set. Even if A is a compound lottery, rde can use the decomposa-
bilitv axiom to represent it in the form shown in Figure 14, namety, as a

slmple lottery with some possibly zero probabillty p1A of winning each
prlze Rr.

Next we use the substitutabllitv axiom to reptace each pri-ze in this
rePresentatlon by its equivatenE lottery developed as in Figure 13. That

R1

ui

1
Ri  J

1- ui

&'l

Fteme 13 Appt-tcATIcN oF TIE oNrrNurry Axro'l,
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We now employ the decomposabilltv axiom to determlne the equivatent,
simpte lottery. The probability of winning R, is Just

Nr ll .
1

i=l

Therefore the lot,tery A can be represenEed in the equivalent form shown
at the left of Figure 16.

Suppose Ehat we had performed the same operations on another lottery,
lottery B. I{e would have obtained the same type of result as shown ln
the right of Figure 16. Both A and B would be represented as lotterles
on the best and the worst prize. The probability of winning the best
prlze would be in each case just the sum over all posslble prlzes of the
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probability of winning each prize times the number u. for that, prize.
By the monotonicitv axiom, since R1 > R5r lottery A ilust be preferred to
lottery B if and onlv if it has a higher probability of winning R1r that
is, A > B if and only if

r rNN

A B
P. u.

11
u.

L
P a

1

i=1 i=1

we have established the result. we seek. l,le interpret ui as the
utirity of the ith prize. trrle see that we have proved that one lottery
will be preferred to another only if it has a higher utility, where the
utility of the lottery is computed as the expected utility of its prizes.
we also observe that adding a constant to all u1's and multiplying them
by any positive constant will leave the expressed preference unchanged.
It is interesting to noEe in passing that we can always normalize the
uEility function so that iE may be interpreted as specifying for any
given prize the probability of winning the best prize as opposed to the
vrorst ptize in a two-ptLze lottery whose cerLain equivalent. is the given
prize.

ASSES T OF RISK FERENCE

A utiliEy function would not be of much use if it were difficult to
determine its form for each individual or organization. We shall now dis-
cuss just how a utility function can be assessed.

THE AS SES SI',IENT PROCEDURE

We sha11 concentrate on establishing an assessment procedure for a
utility curve on a cortrnodity, in particular, money. rt is easy to deal
with a two-prize lottery like that in Figure 17. The lottery pays b with
probability pr and a with probability 1 - p; the certain equivalent of
the tottery is ?. The four numbers ?, pt dt and b express a preference
and, consequently, a utility equivalence that we can use in developing
Ehe utility curve, namely,

u(i) = p u(b) + (f - p)u(a) ( 1)

By choosing which three numbers will be supplied initially and therefore
which remaining number will be specified by the individuat, we have a
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choice of method for carrying ouE Ehe assessment. Of course, we can al-
ways fix Ewo points on the utility curve arbitrarily to begin the process.

Equiprobable Lo EEeries

In the first method we choose P = L/2, and state two out, of three

of a, b, and ?. Figure 18 illustrates EypicaL questions. In the first
case, prizes $0 and $100 are postulated and the individual is asked the

certaln equivalent. This permiLs evaluating the uEility curve at the

certain equivalent if the utilities of the prizes a and b are known. We

therefore call this interpolation.

In Ehe second case, ? is given as 0, b as $100, and the individual
is asked to specify the lower ptLze that will make him indifferent. The

wording would be trlf I offered you a lottery that would cause you to win

$100 or x with equal probablllty, how sma1l would x have to be before you

would be indifferent between playing and not playing?rr. Presumably x

would have to be a negative number. t{hen it was specified, we could find
the utility curve for an amount below $0; hence the comnent that it w111

al1ow us to extrapotate the utility curve downward.

P
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The third case is similar. The certain equivalent is given as $100
and the lower prize as zero. The individual mrst, specify the upper prize
that would make him indifferent between playing and receiving the sure
$100. His answer will aIlow us to evaluate the utility curve for amounts
over $100 and therefore to extrapoLate upward.

Assignment of Probabilitv

The other method always requires that the individual specify the
probability of winning that will make him indifferent; it is illustraEed
in Figure 19. The first question to be asked is 'rwhat probability of
winning $100 as opposed to nothing would you have to have before you would
be indifferent to playing or receiving a sure $50?". rt would serve to
determine the utility of $50 in rerms of utilities of g0 and 9100; hence
it is an interpolation. The second question would have the formrtwhag
probability of winning as opposed to losing $100 would you have to have
before you rdere indifferent to playing?". The utility of -$100 could then
be derived. The third questlon would a1low finding the utility of $200.
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Fratne 19 AssleUenT oF pRoMBILITY urlLITY ASSESSMENT.

The assignment of probability method provides a valuable atternative
to the equiprobable Lottery method. However, they can both be better ap-
preciated by using an example.

A UTILITY ASSESSI'{ENT EXA},IPLE

Let us suppose that we wish to assess some individualrs utility
curve for amounts of the order of hundreds of dollars. We sha1l be able
to do this if the individual satisfies the five axioms of risk preference
we have discussed. I,Ie might begin by assigning the utility 0 to the
amount zero and the utiLity 1 to the amount $100,

u(0)=0 , u(100)=l

Of course we could have made many other choices for these quantities
wlthout changing what follows in any important way, but these choices
wilL serve.
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We sha11 use the equiprobable lottery method and begin by investi-
gating the shape of the curve within the (01100) region. I{e can ask him
t'What is your certain equivalent for an equiprobable lottery on zero and

$100?". He ans\^rersr "$25." !,Ie have recorded this answer and subsequent,

ones i-n Figure 20. Next we ask him his certain equivalent for an equi-
probable lottery on 0 and his answer to the last question, $25. He re-
plies, "$10r" as recorded in Figure 20. Then we ask him his cerEain
equivalent for an equiprobable loEtery on $25 (his answer to the first
question) and $100. He sets this certain equivalent at $40. These

ansr^Iers will allow us to determine the rough path of the curve.

To extrapolate below the (0r100) region, we ask him as question four
what the losing prize of an equiprobable lottery with one prize of $100
would have to be before he would be indifferent about playing. His answer

i" -$:0. To extrapolate above the (01100) region, we ask what the winning
prLze of an equiprobable lottery with losing prize $O would have to be be-
fore he would be indifferent between playing and receiving a sure $100.
His judgment is $400.

While these questions would suffice for our purposes, let us ask

one more question to demonstrate the assignment of probability meEhod.

I,Ie shall ask what probability of winning $100 as opposed to winning
nothing would you have to have before you would be indifferent between
playing and receiving a sure $40. He states that a probability of 0.8
would cause him to have no preference. (Incidentally, the $40 was se-
lected because it was his answer to the third question.)

Now we shal1 process the information he has given us to determine
the form of his utility curve for money in Ehis range. The computations
are performed under the corresponding question in Figure 20. Thus from
his answer to the first question, the normalization of the utility curve,
and Equation 1 we find irmnediately that the utility of $25 is 0.5. By

using this result and his answer to the second question, we determine that
Lhe utility of $10 is 0.25. His answer to the third question a11ows us Eo

find that the utility of $40 is 0.75. These resutts are plotted in Figure
2L. We see that the utility curve is generally concave downward in the
($0r100) region, indicating that the individual is risk averse in Ehis re-
gion.

To extrapotate betow the ($01100) range \^Ie use the answer Eo the
fourth question and find u(-30) = -1. The answer to the fifth question
shows that u(400) = 2 and allows us Eo extrapolate above the ($01100)

region. These results are also shown in Figure 21. We can readily ap-
preciate that continuing the interrogation process using the same type
of questions coutd al1ow us to determine the utility curve as closely as

we like.
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u(x)
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1

0,75

0,5

0,

-n 0 qm

25, x, t{0
t

J

Fleme n THe rnrLrrY crR\E,

Let us turn now to the ans\rer to the sixth question. As we see, his
assignment of 0.8 as the probability that causes indlfference means that
u(40) = 0.8. However, we have already deter:nined from the thlrd questi.on
that u(40) = 0.75. we have discovered an inconslstency: we have two
different values for the utility of the same do11ar amount. As a practi-
ca1 matter, this inconsistency is small. rndeed, lt would be a mlracle
if anyone could answer a long series of questions of this type without a
similar result,.

Nevertheless, as a theoretical mat,ter, the inconsistency ls important,
for we have proved that anyone who satlsfies the utility axioms has a
unique utility curve. The fact that the curve we have derived is not
unique means that an axiom must have been vlolated. We have now to show
that this is the case.

RESOLUTION OF THE INCONSISTENCY

I'Ie begin by recalllng in Figure 22 hlrs ansrilers to questions 3 and
Notice that the lotteries both have certaln equivalents of $40. we6
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shall use the individualrs agreement to satisfy the axioms to place his
answer to question 3 in an alternative form. Because the individual
agrees to the substitutability axiom, we can replace the $25 payment by
Ehe lottery known to be equivalent according to his answer to question 1.
This replacement is illustrated in Figure 22. The resulting compound
lottery has only two prizes, 0 and $100. We use his agreement to satisfy
the decomposability axiom to replace the compound lot,tery by the equiva-
lent simple lottery on 0 and $100 with probability 0.75 of winning the
$100. Thus Ehe individual has said in his answer to question 3 that he
is indifferent between a sure $40 and a 0.75 probability of winning g1O0

as opposed to nothing. However, his answer to question 3 shows Ehat he
is indifferent between a sure $40 and a 0.80 chance of $100 as opposed
Eo nothing. Therefore he rmrst be indifferent between a 0.75 probability
of winning $100 and the 0.80 probability of winning 9100 when the alterna-
tive in both cases is to win nothing. Since he prefers $100 to nothing,
he has said that he is indifferent between tvro lotEeries when one has a

higher probability of winning the bettex prize. This is a direcE contra-
dicEion of the monotonicity axiom which requires that he prefer the lot-
tery with Ehe higher probability of winning the better prize. Therefore
it is not surprising that we could not develop a unique utility curve
from all six ansrrers.

CONSTANT RISK PREFERENCE

The five axioms of risk preference are all that one must accept to
have a unique utility curve. However, by accepting additional axioms,
the form of the curve may be further restricted, with attendant advantages.

TTIE DELTA PROPERTY

consider, for example, the following statement as a possible sixth
axiom: An increase of all prizes in a lottery by an amount A increases
the certain equivalent by [. I,Ie call this statement the "delEa property.rr
A graphical representation of the property appears in Figure 23.

The argument for the accepEance of the delta property can be cogent.
Suppose, for example, that you have said that your certain equivalent for
an equiprobable lottery on $0 and 9100 is $25. Then the person offering
you the lottery agrees to pay you an additional $1oo regardless of out-
come, so that your final payoffs will be $100 and-$200 with equal proba-
bility. If you feel that your cerEain equivalent would now be $125 and
reason consistently in all such situations, then you saEisfy the delta
property.
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However, acceptance of the delta property has strong consequences.

First, as sre shalL see, the uEllity curve is restricted to be either a

straight line or an exponentlal. That is, u(x) must have either the
form

u(x) = a + bx

or the form

u(x) = a + be-F

where a, b, and y are constants. Second, the buying and selLing prices
of a lottery will be the same.

Buying and Selline Price Equivalence

We shall now demonstrate that the acceptance of the delta property
reguires equlvalence of buying and selling prices by using Figure 24.

Suppose that the indlvidual is offered the opportunity to buy an equi-
probable Lottery on $0 and $100. If he pays b for the lottery, his new

(
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lottery will be an equiprobable lottery on 0 - b and 100 - b. His buying
price is the vatue of b such that he is indifferent between buying and

noE buyinBl whereupon he will receive nothing. Therefore, his buying
price is the value of b that establishes a zero certain equivalenE for
the lot,tery that remains after purchase. This is shown in the upper left,
of Figure 24.

If he already has the right to Ehe equiprobable lottery on g0 and

$100, his selling price s is the certain equivalent, of the loEtery, for
he will prefer any offer greater than s to Ehe lot.tery and prefer the
tottery to any arnount, less than s. The upper right portion of Figure 24

is a graphical statement of this result.

Because Ehe individual satisfies the delta property, we can maintain
equivalence of preference by adding the same constant to the prizes of a

tottery and to its certain equivalent. If we add the constant b in this
manner to the buying price of a lottery, r^re obEain the form shown in the
lower left portion of Ehe figure. This shows that the individual's cer-
tain equivalent of an equiprobable lottery on $0 and 9100 is rhe buying
price b. However, the upper right portion of the figure demonstrates
that the certain equivatenE of this very same lottery is the selling
price s. Since any lottery must have a unique certain equivalent, we

have b = s, the selling and buying price must be the same. The method
of proof clearly carries over to general lotteries.

P roof of the Consequences of the De l ta P roper tv

!,Ie shall now show that the delta property implies a linear or expo-
nential utility curve. rf an individual satisfies the delta property,
the utility of a lottery with prizes augmenEed by I musE be jusE the
certain equivalent of the original loEtery augmented by A for any A.

If fx(o) is the density function of the variable x describing the lottery,
then we have

li*o *O) u(x0 + A) = u(3 + A) , for any Af(
x

I f rrre dif f erentia te bo th sides of this
siveLy,

(2)

equa tion twice we ob Lair, SUCCQS-

(3)Io"o r*(*o) , '(xo + A) = ,, '(? + A)

o t*(*o) .r"(xo + A) = ,r"(? + A) (4)

and

T"
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Dividing the second of these equations by the first and setting A = 0

produces

f"o *o)f(
x

.r" (*o) .r" (*)

(x
0x

Many different density functions f_(.) will produce the same certain
equivalent ?. We may therefore cof,sider the right-hand side of Ehis
equation Eo be fixed at some constant and ask what relation Ehe ratio of
derivatives of the utility curve on the left side must have to preserve
the equation if f*(.) is allowed to vary over all density funct,ions with
the same certain equivalent. The answer is that the ratio must be a con-
s tan t,

fi"0

u" (xt
u'(x)

I
ur( *o) ) u'(x)

(s)

(6)

where have chosen the constant to be the negative of Ehe quantity desig-
nated by V.

Now we are aLmost finished. Integration of Equation 5 produces

!,n u'(x) = -[x + kO

,

where quan ti t,ie s of the f orm k are constants. If y = 0, lrre have
a

I.

u'(x) = k

u '(x) = kt"-\!K

1
,

u(x)=kI*+k,

The utility curve is linear. If y * O, then we integrate Equation 6 to
obtain

k2" Yxu (x)

659

+k
3



The utiliEy curve ls exponential. Therefore we have shown that accep-
tance of the delta property implies restriction of Ehe utility curve to
the linear or exponential form.

T}IE EXPONENTIAL UTILITY CURVE

Satisfying the delta property means Ehat the certain equivalent of
any ProPosed lotEery is independenE of the wealth already owned. This
wealth is just a rrArr that does not affect the preference. Therefore the
t'wo utility curves Ehat satisfy the delta property--linear and exponentiat--
could be ca1Led wealth-independent, utility curves.

A convenient form for parameterizing the exponential utility curve is

u(x) =
l- - V}C

el
(7)

This form provides
zeto, I^Ie find

t - e-Y

the normali,zation u(0) = O, u(f) = l. As y approaches

L'H6pi ta I

I - g-\D(
J.Lm 

-

y+0 I - e-Y

lim u (x) =

Yro

x

Therefore the linear case is contained as a specializati.on of Ehis form
and we can consider Equation 8 to be the standard equation for wealth-
independent utility curves.

The quantlty V is cal1ed the "risk aversion coefficient." When
y = 0r the individual is risk indifferent. when y is positive, the in-
dividual is risk averse; when negative, risk preferring. Thus acceptance
of the delta Property ultimately Leads to the characterization of risk
preference by a single number, the risk aversion coefficient. we some-
times call such an individual a ilconstant risk averter.r, we can think
of the risk aversion coefficient as playing the same role in risk prefer-
ence that the single discount, factor does in Eime preference.

sed -Fo the inE va

Using the exponential utillty curve atlows us to develop a closed-
form expression for the certain equivalent of any lottery. suppose we
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consider a lottery on x described by- Ehe density function f*(o).
certain equivalent of this lotteryr i, nu,rst satisfy the equition

u(D = li*o r*(xo) u(xo)

rf we substitute the form for u(o) shown in Equation 7, we have

The

-!x *o)(f I - a-\ooI e x

t - e-Y 1-"-Y

or

Yx

Io*o x
(x) 

"-\xO = 
"-W

Then,

e
l,a t (v) (8)

x

where we have used f*e1.; to represent the exponential transform of the
density function f-(.). The certain equivalent of any lottery is there-
fore the negative reci.procal of the risk aversion coefflcient times the
natural logarithm of the exponential t,ransform of the variable evaluated
at the risk aversion coefficient.

As y approaches zero, this expression becomes

te

^., t - -VXx=-Lne'=
Y

-L

Y

el-f (v)
r.X
rr-rrr 

-

x= lim
y{

e
- !rn' t (v)

x

Y
Y-{ (v)f

x

-
x

The certain equivalent of any totEery to a risk indifferent individual
is the mean.

To illustrate the computation of a certain equivalent, consider the
lottery f*(') described by the normal distribution with mean m and standard
deviation s,
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2(x - *O)

2

tr, ("0 lm, o) =
I

Crffi
o

0,n e

2

wi th exponen tia I Era ns f orm

t "(r)
x

x=

I O*Ot* (*O) e

-F0 -\An +

- i r,n r*"(v) = - i

22
YO

2

to a constanE risk averEer
the mean minus one-ha lf y

t* ( *o) e

=e

According to Equation 8, the certain equivalent of this lottery is

- lrllt +
yq
22

2

I=m-rYq 2

The certain equivalenE of a normal lottery
wiEh a risk aversion coefficient y is just
times the va riance.

We can use Equation 8 Eo deEermine the effect of playing two lot-
teries in succession. Suppose that the first lottery pays x1r the second

xZ, and that, we let x be the total winnings x = *1 * x2. The certain
equivalent of x if given by EquaEion 8 as

0ne
-{x

on 
"-v(xt 

+ *z)

!,n e- \D(1" - Vz

-L

Y

-L

Y

1

Y

x

If the two variables x1 and x, are independent, then the expectation of
the product of their exponentials will be the product of their expecta-
tions. We shall make this assumption:
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If a constant risk averler engages in several independent lotteri.es, his
cert'ain equivalent for the whole prospect is the sum of the certain equiv-
alenEs for each individual 1ott,ery.

SUMMARY

This discussion of risk preference has been all too brief. We have
been able to demonstrate the need for a theory of risk preference and to
show how it is developed. I.le have also discussed how to assess an in-
dividualrs attitude toward risk and hoh, to use his assessment in selecting
among totteries. FinaLly, we have introduced an important speciar type
of risk attitude--constant risk aversion--and studied some of its prop-
erties.

Perhaps the most imPortant conclusion we could reach is that while
the phenomenon of risk preference is very novel, it can be treated with
the same ease and precision we apply to other aspects of decision-making
Processes. It is only a rnatter of time until all organizations have an
expressed risk preference policy.

-L

Y
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CARL S. SPETZLER

Abstract-A corporate utility firaction playe a kcy role in the
application of decisioa theory. This paper describee how euch a
utility firnction was evolved as a risk policy for capital inveetsneot
decieione.

FirBt, 36 corporate erecutives were interviewed and their risk
attitudee were quantified. From tle responsec of the interviewees,
a mathematical function was developed that could reflect each
intervieweets attitude. The fit of the furction wae tested by checking
the reaction of the interviewees to adjusted .reeponees. The firnc-
tiond forur that led the interviewees to prefer the adjusted responseg
to their initial responses was finally accepted. The mathematical
form of the function was conEidered a flerible pattern for a risk
policy. The aeeumption was made that the corporate riek policy
would be of this pattern.

With the pattern for a risk policy set, it was poeEibte to simplify
the method of deriving a particular individualte risk attitude. Using
the cimplified method, the corporate policy makerg were interviewed
once more. The results from these interviewg were then used eB a
etarting point in two negotiation seesions. AB a reeult of these
negotiation sessions, the policy makers agreed on a risk poticy for
trial putposes. They also agreed to develop a number of major
projccte ruing the concepts of risk analysis and the certainty cquiv-
alcot.

The Developmenr of a corporate Risk policy

for Capital Investmenr Decisions

I. INrnoDUcrroN

aAPITAL investment analysis is the analytic process
\-rof reaching a decision between alternative investment
projects. The decision process consists of three basic steps:

1) the gathering of information about each pruject's
net effects on corporate profits through estimation
Bnd forecasting of the relevant factors;

2) the combining of the quantitative information into a
decision criterion; and

3) the reaching of the decision on the basis of the
calculated decision criterion combined with judg.
ment on the nonqua,ntffied information.

These steps will simply be referred to as the gathering of
information, the calculations, and the decision.

Traditionally, the information about a project's effects
on profits has been lumped into two categories: the qu&n-
titative or tangible information and the nonquantified or
intangible information. Criteria bssed on tangible in-
formation have been developed and are widely acceptd.
The most notable of these criteria are the present value of a

.. Malscript-received Marc! l, 1969. This paper ie based on e ph.D.
diagertstiorq trThe Explicit Corisioeration oi [Jncertainty in C"pi|"i
Inveetment Analyeigfi gubmitted to the lllinoia tnstltute of Tecfi-
notogy, Chicego, UL, 196g.

The author was with the systems scieneeg Group, stanford
Reeearct Inetitute, hdenlo park, calif. g4oz5, end currengy ie
Managlng Director of Stretegic Decisions Group.

project's net effects on profits and the rate of retunr on the
investment. However, the intangible information poses
major problems in the decision proce$,.

l) Intangible information is difficult to communicate.
Therefore, since the decision makers are seldom also the
estimatorc, much of the intangible information can be
lost or distorted in communication.

2) It is virtually impossible to formulate sb consistent
decision stratery towand intangibles. Thus the intangibles
are weighted differently from one project to the next.

In other wonds, the decision maker is commonly con-
fronted with incomplete (or distorted) intangible in-
formation and, in addition, has no consistent way of
ineorporating the intangible information in his decision.

It follows that, to reduce these problems in project
analysis, &s mueh information as possible must, be quan-
tified. I\{ost analysts are aw&ne of this and try to quantify
&s many of the relevant variables as possible. However,
it is stiil common practice to estimate only single value
forecasts for these variables, and to consider the inform&-
tion about the uncertainty in the forecasts as intangible
information. That is, risk or uncertainty is generally
not quantitatively considered in the capital investment
decision prccess.

This paper discusses some aspects of a decision tool in
which uncertainty is explicitly considered. The approach
is largely based on the normative decision model proposed

by Savage [l ]. The model combines subjective probability
with the von Neumann and Morgenstern candinal utility
theory to arrive at & "rational" nonn for individual be-
havior.

Itrhile this general approach to decision making is
widely hailed in academic circles, it has previously found
little application as & corporete decision-making tool.

II. Tne Cnnr.r.rNTr Equrv^a.LENT (CE) I\fprnoo

Figs. l, 2, and 3 compare the most commonly accepted
capital investment decision process with the proposed
proeedure. In Fig. I the courmon method of project
analysis is represented in the three steps mentioned
previously-the information gathering, the calculations,
and the decision. In Fig. 2 the three steps are revised to
represent project analysis by the technique called risk
analysis. Fig. 2 extends the second and thind steps in the
pnocess to include the expected utility model for decision
making.

In the present procedure, as shown in Fig. l, the three
steps take the following form.
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Fig. l. Typieal project arralysis.

lNEgEltAIgN _qALquLATloN _ DEclsl9hl__

Fig. 2. Risk analysis.

qALquLAIlo_N DECISION

Fig. 3. Certainty equivalent (C!l) method.

l) Gathering information. Only best guess (single-

valued) estimates of the relevant variables are quantified.

All other information is considered intangible.

2\ Calculations. The annual cash flows &re developed

from the forecast values of the variables. The rate of
rrturn, present value, or some other decision criterion is
then calculated. In addition, the sensitivities of the

decision criterion to changes in the forecasts are often

calculated.

3) The decision. First the assumption and estimates are

reviewed and then the decision is reached by considerirrg

the value of the quantified criterion while tempering this
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value with judgment on the intangible information. Note

that the sensitivities only call the decision maker's at-
tention to those variables which could strongly affect the

criterion. The sensitivities do not quantify the uncer-

tainty in the variables.

Risk analysis as represented in Fig. 2 differs from the

preceding procedure in the following way.

l) Gathering information. Instead of quantifying only

single best guess values, the uneertainty in the variables

is also quantified. This is accomplished by forecasting

for each variable the possible states and the probabilities

associated with these stat,es. By doing this, a eonsiderable

part of previously intangible information is now quan-

tified. Ideally, only the information which is too costly

to quantify (or which is overlooked) would now remain

in the intangible category.

2) Calculations. In the calculations the uncertainty

information is combined into a probability distribution of

the decision criterion. This can be aecomplished by a

i\Ionte Carlo sinrulation proeedure, by meaIIS of decision

trees, or in simple cases by analytically combining the

input distributions.

3) The deeision. In risk analysis, the decision maker is

eonf ronted wit,h probability distributions of the profit-

ability criterion instead of single values. The additional

information that a, probability distribution presents

increases the difficulty of reaching a deeision, since the

decision maker must judge the aeceptability of the risk

in each alternative. In risk analysis, this judgment is

left to the individual's intuitive risk judgment.

The certainty equivalent method, &s shown in FiS. 3,

is &n extension of risk analysis. The first and seeond

steps of the decision process are identical up to the develop-

ment of a probability distribution of the decision criterion.

However, the intuitive risk judgment, which is applied in

risk analysis, is quantified by means of a eorporate utility
function. Note that the utility function does not replace
judgment, but simply formalizes the judgment so it
can be eonsistently applied. With the utility function, a

certainty equivalent is calculated and used &s a, single.

valued decision criterion. The final decision is thereby

again reduced to a ranking process. However, in reviewing

the inputs and assumptions, the decision maker also

needs to review the acceptability of the utility function.

Risk analysis &s shown in Fig. 2 has already become

operational. A growing number of eompanies are using

such procedures today. However, due to the diffieulties

assoeiated with developing a meaningful corporate utility
function, the CE method is not yet being applied.

The CD Mdel Specifi.ed

The CE method is applicable to many profitability
measures. One useful measure is the discounted present

value which will be used throughout this paper. If &

utility function can be found that represents the prefer-

ences of the decision maker over the range of present

values, the expected utility of each act can be calculated
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end the optimal act is simply the act which maximizes the
decision maker's expecterl utility.

Whose Utility Function' In deciding on & source of the
utility function, it must be remembered that the expected
utility model is for individual rather than for group

decisions. However, as Luce and Raiffa [2 ] state:

The distinction between &n individual and e group is not a
biological-social one but simply & functional one. Any
decision maker-a single human being or &n organization-
which can be thought of as having a unitary interest mo-
tivating its decisions c&n be treated &s &n individual in
the theory. Any collection of sueh individuals having con-

flicting interests which must be resolved, either in open

conflict or by compromise will be eonsidered a group.

Thus for investment deeisions, & eorpora,tion should aet
as &n individual. But the fact remains that widely dif-
ferent attitudes towand risk exist in a company. Even if
top manegement ean be convinced that it should adopt a
single utility function, the problem of whose utility func-

tion remains.

This problem c&n be resolved in the following manner.

Setting policy is top m&nagement responsibility. Since c
normative utility function is a policy statement, the utility
function should be a produet of the top policy makers.

This statement may seem v&gue, but in actuality the top
policy-making unit of & specific organization c&n be

easily identified. Such & unit may eonsist of only the
president, a boand of directors, & man&gement committee,
the chairman of the boand, etc.

Only in the case of small partnerships or family-held
corporetions should the actual owners play a direct role.

However, in those c&se the owners &re members of the
policy-making unit. The author sees the operational
utility function es a policy tool, and thus not & direct
product of the stockholders of a large corporation. Ob-

viously, &Dy collectively strcng feelings on the part of the
stockholders will be reflected in the long run.

Wlwse Probahility Estimalns: According to decision

theory, the utility function of & decision maker should

be applied only to his own degrees of belief. This means

that in the corporate setting, the policy makers' utility
function c&n only be employed on decisions where the
probability information represents the degrees of belief
of the policy makers.

This presents a dilemm&. Can the probability informa-

tion on typical projects refleet the policy makers' degrees

of belief, when they arc not the source of such information?

Eince members of top man&gement &re generally .at the
mency of experts in so far as decision information is

eoncerned, they may often be willing to accept the fore-

casts and probability estimates of the experts as their
own.

In Bome cases, if the experts &re not able to agree on

particular estimates or if those nesponsible for the decision

dieqgree with the experts, the decision maker's beliefs

should take precedence. It is he who will c&rry the nF

sponsibility for the decision. When the utility furrction of
the decision maker is matched with probability estimates
with which he disagrees, he may find that he intuitively
disagrees with the CE value.

Of course, the responsibility of the estimation of
probability data can be delegated. Horvever, sueh delega-

tion should be made only with the understanding that it is
& total acceptance of the developed information. Typi-
cally, such delegation would be eommon on routine
investments.

What Intzrest Ratz: One more concept in the model
needs to be specified, &D interest rate for present value
calculations. While the interest rate in this model should

not differ theoretically from the mueh discussed cost

of capital, it seems worthwhile to review the meaning of
the interest rate in the model.

The simplifying assumption that present value is &

satisfactory decision criterion requires that the projects
c&n be ondered by preference or indifference using present

values, and that this preference or indifference relation-
ship is transitive. Since uneertainty is considered ex-
plicitly in the model, this requirement has to hold only in
the state of certainty. In other words, it is assumed that
there exists an interest rate that ean express the true time
preference of the decision maker so that he c&n com-
pletely ignore the cash flow pattern and rely solely on the
magnitude of present value for reaching decisions. To
repeat, however, this must hold only under certainty
conditions, i.e., when all sums of money are gueranteed.

Thus the interest rate should not inclucie any margin for
uneertainty.

If an interest rate actually fulfills this requirement, &

unique monotonically inereasing utility function for
present value should exist for a decision maker. Thus if r
decision maker wishes to maximize expectd utility, the
proposed model should be applicable.

III. MprHoDoLocy Fon EvetuATrNc Umrrrr Derrr

Intrduction,

An experimentally determined utility funetion c&n be

used for one of three purposes. It ean be used to describe a

subject's risk sttitude; it can be used to predict a subject's
future behavior irr risk situations; or it c&n be used as

& tool for improving future decisions involving risk.
Thus the objective may be a, descriptive, predictive, or
normative model of m&n. Certainly the approach to &n

experiment will difrer in aeeondanee with the objective.
A descriptive or predictive model of & subject should
reflect his overall risk attitude and also represent his

deviation frorn rational behavior, while a normative
model should lead to consistent and rational decisions

that reflect a subjmt's overall risk attitude.
Thn Darclopncnt oI o Utilily Plot: A utility function for

&n individual c&n be developed by reconding his prefer-
ence (or indifrerence) among alternative inveetments in
rigk situations. One efficient method is based on finding
alternatives between which Bn individual is indiffercnt.
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For exanrple, let it be assumed that an individual stated

that he is indifferent betweelr the altertratives A and B in
tfr. futtorving table.
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Alternative A
Probability Outcome

Alternative B
Outcome

$30 million
$0
$30 million
$0
$30 million
$ - 2 million

A sure $4 million

A srrre $10 million

A sure S4 million

Using the expected utility hypothesis, the following

mathematical statements can be made:

0.5 [,'($30 million) + 0. 5 U($0) : U(g+ million)

0 8 t'($eO million) + 0.2 U($0) : t/($tO million)

0 7 t'($:lO million) + 0.3 t/(O-2 million)
: U(g+ million).

Since the utility scale is only unique up to a linear trans-

formation, trvo values on the seale can be arbitrarily
chosen. Thus let U(O3O million) : 100 and U($0) : 0.

Then simple algebraic manipulation and subst,itution

leads to the following:

LI($4 million) - I-r0

U(UIO million) : 70

t/(CI-2 million) : -66 2/3 ^/ -67.

This information is plotted in F-ig. 4.

The results from actual interviews when plotted lead

to considerable scatter. Such actual responses from one

individual are given in Fig. 5. The specific method of how

this plot rv&s developed is discussed later. lior the moment

it is w<-rrthwhile to cotrsider this plot simply a product of

statements of indifferenee between investment alterna-

tives.

The U tility Plot as a Descriptiue or Predictiue M odel ot

Behauior: Plots such as Fig. 5 &re certainly useful for

descriptive purposes. The pattern of the poittts, as repre-

sented by the dotted line, describes the level of overall

risk aversion of the individual. With a particular choice of

seale, the more curved this pattern, the more risk-aver-{e

the individual. Of course, a straight line wottld indicate a

risk-neutral individual. However, another aspect of

behavior is described by FiS. 5, the degree of itteott-

sistency with utility theory. The scatter in the plot gives

an indication of how an individual's responses deviated

from the expected utility model. Obviously, the indi-

vidual's responses giverr in FiS. 5 deviated eonsiderably

from the responses suggested by the expected utility
model. The findings show that this plot is not untypical.

Therefore, when describing behavior, the seatter in the

utility plot should be included in the description. A single

best fitting line can only describe a, general pattern of a
risk attitude.

In using a, utility plot to predict behavior, similar

problems occur. The assumption must be made that

present behavior will be representative of future behavior.

u(s0l r o

u ($ rOnl . 30

Fig. l-r. Experimental rrtility dat,a.

Then, sinee individuals &re presently inconsistent with
utility theory, there is every reason to believe that they
will continue to be inconsistent in the future. Therefore,

at best, the utility plot can be used to predict a general

pattern of behavior and the expected deviation from this
pattern.

So far, in considering the utility plot for either deserip-

tion or prediction, the assumption has been made that
each question to the individual was phrased to elicit &

descriptive response. Difficulties arise in asking hypo-

thetical questions under risk. Generally, the greatest

problem is to create a real decision situation. Ideally, eaeh

question should result in a response that would be identical
to an actual decision.

Tlue Utility Plot as a Norrnatiue Tool: If the utility plot is

to serve &s & basis for & normative decision tool, the
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questions should elicit responses from the decision maker
that &re not necess&rily descriptive of his behavior.
Rather, the responses should represent how he feels that
he should behave in light of the corporate goals. This
implies a different phrasing of questions.

once a utility plot has been developed based on the
eorreet type of questions, scatter such as in Fis. i is still
bound to exist. But if the individual has accepted the
axioms of utility theory as & guide to rational behavior,
he should be willing to accept some partieula.r curve that
fits to his general pattern of responses. Some well-fitting
curve, such as the dotted line in Fig. 5, can be used to
represent a first approximation of the normative function.
with astute questioning, this function can be further
adjusted until it becomas an acceptable normative tool.

Definitions: For the rest of the discussion, it will be
helpful to use a number of technical terms. The definitions
of these terms follow.

1) The certainty equivalent. The certainty equivalent
for a, risky investment situation is that single value,
which under certainty results in the same utility as the
expected utility of the risky investment. Thus

U(CE) : E p@,)U@,)

where

p@r) : probability of the outeomo tt
U(r) : the utility of the outeoma xt
CE : the certainty equivalent.

Therefore, in aecordanee with utility theory, & rational
individual must be indifferent betweerr e project and his
certainty equivalent for the project.

2) The risk premium. The risk premium of a project is
the differerrce between the expected outcome of a project
and the certainty equivalent. Thus

the risli premium : EV C fi)

wlrct'c

DV : E p(rr)r,
xt : the ith outeome.

Since the certainty equivalent depends on the subject's
risk attitude, the risk premium is also dependent on the
subjeet's risk attitude.

3) The probability premium. Given & risky project
that has only two possible outcomes r and U, and Bn

alterrrativeprojectwithacertainoutcomez,wherez<

the expected value of the risky project is equal to 2..

p(r)r* p(y)y: z

wlrere

'p(u) : I p(tJ).

A risk-averse individual would have an indifrerence
probability for y, p*(U), which is greater than p(y').The

Irig. 6. Cireular reference clrar.t.

difference between I/*(y) arrd p(y) is ealled the probability
premium. Thus the probability premiurn : p*Qi - pQ).

Altnmaliue I nteru inw P rocedures

All interview procedures &re basecl orr elicitiug ppfer-
enee or indifference resporses between altenrative invest-
ment situations, where at least one of the alternatives is a
risky investment, i.e. , it has trvo or more possible out-
comes. In the simplest c&se, the two alternatives are as

follows:

p(v)

B-7-.

p (*) x

Probabi.lity --
of Success

ProbabilitY
of Fai lure

v

A

Here alternative A has the probability p(t) of the out-
come r and the probability p(U) of the outcome !/, rvhile

alternative B has a certain outcome of z. Since all studies

including this one have involved this simple type of
decision situation, the discussion will be limited to this
particular situation.

Given this simple decision situation, trvo basic methods

&re available to elicit indifference responses. The first
method is to keep the outcomes r, U, and z of both al-
ternatives constant and v&ry the probabilities until the
interviewee responds with indifference. The second

method is to keep the probabilities and trvo of the three
quantities r, U, and e eonstant and to vary the thind. In
either c&se, the interviewee is required to evaluate his

certainty equivolent z for a simple risky investmeut

situation and the same type of judgment is required of the
individual.

Either of the alternative methods leads to difficulties in
practice. The major problem is the person&l interpretation
of probability weights. A 0.2 probability of &rr outeome

has & different meaning to different individu&ls. The
meaning of probability weights becomes particularly
vague to most individuals in the ranges close to I or 0.

For example, many individuals cannot differentiate be-

tween a 0.02 and ir 0.01 probability, and any absolute

error in the personal interpretation of probabilities causes a

greater effect outside the middle range. In addition,

many individuals round probability re.sponses to the
nearest multiple of 0.05. Responses outside the middle
nrnge should, therefore, be avoided.

The problem of subjective probability interpretation
can be considerably reduced by the use of & rcference

process. An example of such & referenee process is a

circular rcferpnce chart, as shown in Fig. 6. This chart is so
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desigrred thut a simple trvist increases the red &l'ea while

reducing the grcen are&. It can be used in the folLrwing

marrner. The interviewee is asked to visualize the chart
spinning rapidly, with the throw of a single dart deter-

mining the outcome. If the dart hits red the interviewee

is assured of outcome y, and if the dart hits green he is

assured of outcome ,.
By showing a, 20-percent setting of the chart rather

than saying a 0.20 probability, an individual is given the

opportunity to evaluate the meaning of an objective 0.20

probability. Careful use of the chart e&n also eliminate

the rounding by the interviewee. The use of & reference

pn)eess does rrot improve the judgment of individuals, but

.t does grve them a common fixed scale irt evaluating their
udgmerrt.

Altematiarc IV ethds of Eualuating llesponses

At present, there seems to exist three basic methods of

eorrverting the responses into & utility plot. \Iethod I is

based on getting certainty equivalent responses for a,

risky alternative where the two possible outeomes are

always liept the same. Nlethod 2 is based on getting seg-

ments of the utility plot and then overlapping these seg-

ments. Irr \Iethod 3 a mathematieal form for the utility
function is assumed and then the best fit of this function is
found. The details of these methods are discussed later.

Method 1: This method, which is often used in text-
books, requires a certainty equivalent response to risky
investment situations with two outeomes, r and U. The

values of r and y sl.e ehosen at the extremes of the range of

utility plot. Thus, depending on the various ehoices of the
probabilities of the outcomes, each certainty equivalent

response z falls between , and y. The choice of seale is

then defined by the values of e and y; e.9., r : O, U : 100.

This allows the calculations of the utility of z immediately

from the relationship

p(r)(t(x) + p(y)(rQt) : (t(z)

0 + p(y)100 : U(z)

U (z) : 100' P(Y)'

'l'his approach certainly is the simplest method of

evaluating & utility function. However, if the range y-,
is to be significant, extreme probabilities &ne neeessary to
lead to certainty equivalent responses near x ot y.

Methd 9: The second method is found as two variants.

In the first variant, overlapping segments of & utility
funetion &re determined mueh in the monner of the
preceding method. These segments are then plotted and

visually adjusted for a good fit.
The second variant of this method starts with a defini-

tion of the scsle such as in the first method. Some of the

utility values that are derived are then assumed to contain

no ernor and are used as new definitions of the scale. With
this method, I scale ean be extended or broken up, much

the same &s the overlapping of segments. Judgment is

used in the visual method of the overlapping of line seg-

ments where eertain points are simply assumed to be

exaet in the seeond variant.
Method 9; In this method, a mathematical form of the

utility function is assumed prior to plotting of the data.

The fit of this functional form is then tested. For descrip-

tive purposes, this method has the disadvantage that
the individual's pattern of behavior is somewhat pre-
j udged by the choice of the function form. By varying the

mathematical form and by including enough degrees of

freedom in the function form, this disadvantage can be

redueed or eliminated. For normative purposes, this

approach gives the ability of incorporatirrg e "reasonable"
pattern of behavior, where the definition of "reasonable"
depends orr judgment about overall policies in the face of

risk.

This method of evolving a normative utility function
has been previously suggested by Pratt, Raiffa, and

Schlaifer [3 J:

. . . In the construction of a lrrefereuce funetion for money

it is often preferable to use &n analytical curve having
certain s1rceified qualitative features but with some ad-
justable parameters and to determine values of the peram-

eters from questions about partieular gambles. As m&ny

questions &re needed &s there are parameters. If extra
questions &re asked, then the parameters may be deter-

mined f rom some and the rest used to cheek the con-

sequences, or the parameters mey bc chosen aeeording

to some eriterion of 'best fit' to all.

An advantage of this method over the second method is

in the treatment of the seatter. In the overlapping of

segments, errors in the responses may eompound and

Iead to urrintentioned reversals of slope.

lior normative purposes, & utility function that has

been fitted to data should always be considered & first

rrpproximation. The interviewee should have a chance to

evaluate the function after it has been smoothed. All
ndjustmerrts that are made in smo<lthing the futrctiorr

must be aecepted by un individual before it is used &s o

normntive tool.

Rewlts ol Pratious Sttld;ins

The first applicntion-oriented study was by Grayurn irr

his study on oil and gas drilling decisiott. fn this study hc

phra.sed the questiotrs ( [4 J, p. 295) in the following way:

I will give you e series of hylrcthetical drilling deals, and

I want you to listen to each deal as I present it and give

me arr &nswer as to whether you would aecept that desl

today or reject it.

This phrasing of the question would tend to lead to &n

&rnwer which is basically descriptive of the interviewee's

risk attitude. [t would seem that, before the results could

be used in & normative fashion, adjustments should be

made. In Grayson's study, each individual was con-

fronted with a gambling situation in the form of the
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drilling decision. The interviewee w&s always asked to
respond with an indifference probability. The s&me

approach was used by Cramer and Smith [5 ], the only
other published study that has a normative intent.

In both of these studies, no reference process for prob-

ability judgments was used and considerable rounding in
the responses is apparent. Virtually all probability re-

sponses in both studies end in multiples of 0.05.

The functions were fitted by the overlapping of seg-

ments of the function. The alternative of noninvestmerrt,
i.e., a certainty equivalent of zero, \ry&s used throughout.

Grayson reeognized the need for the reevaluation of

ineonsistencies; however, except in orre c&se, he limited

himself to the use of the initial response. He states ( [4 J,

p. 303):

Clearly these curves are only approximations, for the

operators answered fairly rapidly and an 'error' of a few

points in probabilities, partieularly in the extremes, throws

points far apart. As suggested earlier to remove these

errorc the operator could be shown the points of incon-

sistency and asked which one came elosest to reflecting

his true prefererrces. There was no time in the researeh to
plot curves and then preseut them to operators for mod-

ification, except with one operator, Bill Beard, who had

been visited during the pilot study. He looked at his curve,

checked the points of inconsisteney. and reduced the

variances to a nominal amount.

No attempt to modify the inconsistencies seerns to

have been made by Cramer and Smith. They took all

their subjects from the same eompany, then assumed

that the mean of the responses would represent a corporate

response. This assumption is particularly open to crit-
icism. Not only does it mean that executives compromise,

but that the degree of each compromise is given by the

&ver&ge. Cramer and Smith did not try to see if their
composite w&s &n acceptable compromise to the group.

They included individuals of different authority levels

without considering that factor. The use of such a com-

posite for actual decisions would most probably run into

much opposition. However, even with all of these de-

ficiencies, the composite could provide & reasonable

starting point for discussion and review that would resttlt

in an aceeptable funetion.

Two descriptive studies that used managers &s subjects

have been published. The first by Green [6J involved 16

businessmen in a large chemical company. The second by

Swalm t7I involved about 100 executives. Both studies

used the second variant of the overlapping of line seg-

ments to evaluate responses. No referenee processes for
probability judgments were used, and no attempts to

adjust inconsistencies are apparent.

All of the above studies have used methods of evaluation

that compound the errors. This may be the ceuse of the

fascinating shapes of utility funetions documentd by

these studies. In the course of this study, intentional

behavior &mong business executives that leads to reversals

of slope has not been found.

Erperimmtal ATrproach

In the experiments for this study, all responses alr
indifference probability responses. A referenee process

was used to help the interviewee in visualizing prob-

abilities. The responses \ilere evaluated with a prior
assumption of a function &s described in \{ethod 3.

The objective of the effort was to evolve a corporate
risk policy statement in the form of a utility function.
The first step towand this goal involved interviews of
individual man&gers. The purpose of the individual
interviews w&s threefold.

l) To aceustom m&rragement to the idea of quantifyirrg

risl< nttitudes.

2) To demonstrate the need for an overall risk policy.

3) To see if some analytic function could be found which
might form the basis for an overall strategy.

In the second step of the researeh, the purpose was to
evolve a eorporate policy from individual attitudes
through group meetings and arbitration among the

policy makers.

IV. THp INuvTDUAL llexecEns IxrnnvrulvEr)

Descriptian, o! the Subject Company

All of the researeh as reported below was performed in
one organization. By request of this eompany, the name

and some of the information will be disguised. However,

every effort will be made to make all of the information

eomparable to the original situation.

Gamma Industrial, Inc., is a major eorporation in its
industry. Its total annual sales range around 82 billion
with annual after-tax earnings of $100 million. The

a,verage capital investment budget for the last three yeant

has been about $90 million per year.

The compa,ny is organized along functional lines. The

chief executive has the overall responsibility; however,

the executive committee plays a major role in the manage-

ment of the company. This committee has weekly meetings

where major decisions ane discussed and reviewed.

Intnruiew Techniqw

In total, 36 executives of Gamma Industrial, Ine.,

were individually intervierved in the initial phase of the

reseerch project. This group included all members of the

exeeutive committee, i.e., the president and functional

vice president, and 15 line managers neporting to the vice

presidents. The other individuals who wene interviewed

were scatterpd throughout the organization. \'[ost of

them wene staff memberc with special responsibilities in

economic evaluation. All interviewees were quite familiar

with major capital expenditures.

During the introduetion to the interview, the author

reminded the participants of the fact that Gamma In-
dustrial, Inc., is starting to use risk analysis for the

evaluation of projects under uncertainty. They wene then

eonfrcnted with thnee probability distributions and askd
to make a decision between the alternatives. The purpose
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38

- l;l
:10

-50
320

- 135

50%

25.39/o

C)2.lc/L

2e .7li

t This eurrtral cash flow figtrre, if received (for 20 years) after investing ti million, will resrrlt irr the pleserrt vahre.
I The rste of returu is s discounted rete of return ba,sed on a 20-year project life.
I This percerrt chance of success leads to an expected present value of t0.

of the three distributions was to underscore the difficulty
of making such decisions and to show the ned for a

subjective "risk judgment" before reaching n deeision.

Then the purpose of the interviews w&s explained as being

the derivation of a, strategSr tool to help in reaching

decisions between alternative distributions. The inter-
viewees were asked to give responses that would refleet

their best judgment for a strategy tool for the eompany.

They were not asked to describe their present deeisions.

In addition to the preceding, the following points were

emphasizd.
l) There are no right or wrong &nswers to the questions.

2) AII answers will be eompletely eonfidential.

3) Each re.sponse should be made in light of the eom-

pany's present financial position. (Some highlights of

Gamma's eapital expenditure program were reviewed

here.)

4) The emphasis is not on eonsisteney from answer to
&nswer; rather the overall pattern of answers is important.

5) This is not a quiz to see what the interviewee knows,

but an attempt to quantify his personal feelings about a

risk policy for the company.

6) Pencil and paper may be used.

Each interviewee was then esked to maLe u deeision in

each of 40 hypothetieal investment situations. The 40

situations included 20 questions at each of 2 investment
levels, t3 million and $50 million. The individual questions

wene phrased in the following m&nner.

Given a t3 million initial investment that will result
in one of two possible outcomes-either a positive present

value of t5 million (success) or a negative present value of

t3 million (failure)-would you recommend investing in

the project if you feel the clrances of success are three out
of four (i.e. , 7 5 percent) ?

Thus the required response was only to accept or not
accept. When the interviewee responded affirmatively,
the s&me proposal was repeated with the probability of
Euccessr reduced to 60 percent. If he still recommendcrl

&eceptance, the probability of success was again lowered.

The indifrerence probability between acceptance of the
project and noninvestment was determined &s closely

as possible by this search. Most interviewees seemed to be

able to respond with probability numbers that bracketed

their indifferenee point. Typically, in the response rar)ge

of 30 to 70 pereent, a ehange of 5 percentage points would

change their response from acceptanee to rejection of the
project. For example, al a, SO-percent probability of
suceess the interviewee may definitely accept a project,
while at & 4S-percent probability he would definitely
rej ect t he proj eet.

After a number of indifferenee probabilities were found
by using this seareh technique, most interviewees learned

to respond directly with their indifference probability.
A direct indifferenee response was not forced by the
interviewer, and at any time when the interviervee seemed

to experienee difficulties the initial method was again

used.

To help the subjeets in understanding the alternative
outeomes of the hypothetical investment projeets, addi-

tional measures of profitebility werc provideC to them.

An example of four question.s from the interview schedule
is given in Table I.

To help the interviewees in understanding probability
statements, the previously described referenee chart
w&s used. When an individual's response indicated that
he was indifferent at some probability of success, the chart
w&s set to reflect that portion in green. He was then asked

whether he would actually be indifferent between not
investing and investing in this project if the throw of a
single dart would determine the outeome. The use of this
reference process added realism for most individuals.

Some individuals adjusted their initial responses eon-

siderably after seeing the chart. Others would not have

been able to respond at all without reference to the chart,
particularly in the extreme probability ranges. There
were a number of individuals who personally adjusted the
chart to their indifference point. Their indifference
probability was then read from the chart.

Reillts trom Interuiews

Accuracy o.f the Resdts; When evaluating the resrrlt.s

from the interviews, the reader should keep in mind that
this portion of the study w&s primarily of an exploratory
purpose. Not too much weight should be placed on

the details of separate responses, since each interviewee
was asked not to try to be consistent. but rather to
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express his overall attitude. As previously mentioned, the
interviewees generally were unable to express their
preferences in probabilities eloser than *,2.5 pereentage

points. Some other effects which detract from the accuracy

of the results were noticed d uring the interviews. These

effects are the following.

l) The learning effect. It wa.s common for individuals to
be quite unsure of their answers at the beginning of the
interview. However, &s the interview progressd, the
interviewees learned to make the type of decisions that
were required. Beeause of this, many of the individuals
felt better about their later answers. Some even suggested

that their first few atrswers were worthless.

2) The effect of making many decisions. Irr some inter-
views it became apparent that the irrterviewees were

affected by the number of questions they were asked.

They started feeling that they had many rislty investment

opportunities available and could thus play eloser to the

averages. It was possible to keep this effect to a mirrimum

by reminding the interviewee of the number of actual

investments that are made by the eompany at the par-

ticular investment levels.

3) The effect of the order of the questions. The onder

in which the quest,ions were asl<ed seemed t<l be of par-

ticular importance. After a decision about an investment

which involved outeomes of large gains and losses, many

individuals became more neutral to smaller rislts. Had the

larger investmetrts bcen taken first in the itrterview,

presumably the results for the smaller irrvestments could

be quite different. This effect was somewhat reduced by
using a random order of the questiorrs within euch level of

inve.stment.

4) Effect of decision rules. In a rtumber of c&ses, the

interviewees adopted a decision rule early dtrring the

interview. This resulted in &nswers that were internally
eonsistent, but that did not express their feelings as well.

The author discouraged the use of such rules by explaining

the purpose of the interview and stressing that there rv&s

no right or wrong &nswer. Some decision rules thrt
reeumed were the following:

:r) use of r probability premium rvhich wus dinrct,l.y

rehted to the magnitudes of the outeomes;

b) use of a probubility premium reLlted orrly to the

possible loss;

c) use of a ratio of expected gain to expectd krss in

relation to magnitudes of outcome; arrd

d) use of a risk premium in presettt villue reluted to
mrrgrrit,udes of outcome.

However, by far, most individuals relied on their

intuitive judgment. Particularly, the top menegement

group was willing to make these decisiorrs orr an abstmct
level.

When asked about ttre quality of their respornes, most

individuals answered that they wene willing to accept

their &nswers &si their reeommendation for company

policy. A few felt no confidence in their &nswers because

t,hey wene unfamiliar with the magnitudes of the outcomes.

The top m&n&gers felt their &rNwers were meaningful,

but wanted to discuss the policy effects further.
Presmlation of Rewlts; Instead of individual utility

functions, which would be meaningless to most readers,

the raw data a,re summarized in histogram form in Figs.

7 and 8. 'f he indifference probabilities for subjects are

tabulated for eaeh investment situation as :r separate

histogram.

The horizontal axis of each histogram is shifted so that
the left extreme point of each axis is equivalent to the
probability of gain which would lead to an expected
present value of S0, i.e., a risk-neutral response. Thus

the horizontal distance represents the probability pre-

miums. Since the discounting rate for the present value

was the company's minimum acceptable return, a response

below this point would, oD the averrrge, lerd to an oppor-

tunity loss. No manager responded belorv this "break-
even" value.

The histograms are ondered acconding to the mag-

nitudes of the present values of the outcomes. The large-st

magnitudes are at the top of the figures. The present velues

for suceess and failure are given at the left, of erreh histo-
gram. The averages of the responses &re shorvn by the

heavy lines.

This type of presentation served very rvell for the

communierrtion of risk attitudes. Different p:rtterns are

quickly identified and comp&red. An individutrl's tttitude
c&n be represented by a discontirruous line such irs thnt
shown for the average responses.

Intcrpretation o{ Rezults; From }-igs. 7 and S the follow-

ing conclusions ean be drawn.

I ) The nesponses vrrry widely for eleh invest ment

situation. For example, consider the $irO rnillion irrvest-

ment that will result in either a S30 million present value

gain or & S25 million present value loss. (The lorvest

histogram in FiS. 8.) This c&n be considered a lorv-risk

project, since the worst that eirn happen is a S2ir million

negative present value, which in this e&se eorresponds to
apprcximately a l-pereent rate of retunr. On this invest-

nrent, the responses vcried from a 0.,1'10 to 0.95 prnbrfiility
of suceqss. This is a surprisingly wide r&Ilge, considering

thrrt these individuals hlve been itrter':uct,ing ilnd mrtkirrg

decisions within the s&me organizntion for yeans.

2) As the magnitudes of the outcomes inerease, t he

probability premium that is required by the individurls
inereruses. This gerreral tendency is easily reeogrtized in the

trend of the averages. This is also quite as expect,ed. The

trend does not become sttong, however, until the S.ir0

million investment level is reached.

3) The spread in the nesponses also increases as the

magnitudes of the outcomes increase. The averrlge absolute

deviation frrcm the mean of the probability premiums at

the E3 million level increases from a low of 0.08 to a high

of 0.12. At the $50 million level, the tverage deviation
goes from & low of 0.12 to & high of 0.17. The average

deviation can be interpreted &s a measune of the consensus

of feelings about a risk strategy. Thus there exists more of

an agreement on the level of aeceptable risks at the lower
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level. However, as the magnitudes of the ou tcomes in-

cre&se, this ugreement dissolves.

1) l'he probability premium secrns t,o be nruch more

influenced t y the magnitudes of the outcomes t,han the

investment level. This was to be expected, since the out-

comes were given in net present value and the outcomes

are frequently mueh larger than the investment. In eom-

paring the top of Fig. 7 with the bottom of F'ig. 8, it
becomes apparent that the influence of the investment

level is nrinor if the outcomes are stated as net effect.

This leads to the conclusion that a utility function on net

present value should be applicable over wide ranges of

initial investmeut level.

Each interviewee was sent a report otr the results of the

interviews that included similar presentations of the

data histogranls. Their persorlal responses were entered in

the histograms with a, red line. This allowed each in-

dividual to evaluate his responses in respect to all other
participants. The same analysis as the preceding was

made, but no explanations for the differences were given.

The reports led to widespread discussions of the results of

the irrterviews. A number of interviewees openly discussed

their results with others.

All participants were highly interested in the study and

the results. There seemed to be a general agreement

among the participants that the fi ndings represented a

reasonably :.uecurate description of their individual
risk attitudes. However, some were surprised at their
relative standing to others. A few that generally thought

of themselves as "risk tal<ers" found that they were not as

willing as most of their colleagues to take risks.

V. Frmrxc e Urtlrrv FuNCTIoN To rHE I),rr.q,

Initial Choice ol a Function,

One part of the objectives of the first phase of the

study was to find a mathematical form for utility functions

that would be able to represent adequately the attitudes
of the individuals over the range of the outcomes. All sueh

functions must be monotonically increasing in utility,
since individuals prefer the larger of two present values.

A number of sueh functions have previously appearcxl

in the literature. A common assumption has been iI
section of a quadratie, i.e., the inereasing seetion of a
parabola tS l. Dolbear tg I used straight line segments to

express the measured preferences of his subjeets. Iiauf-
man [10] found that the function of U (r) : A + B

[n @, + c) ] fits very closely to one of the subjects from

Grayson's study.

Since for normative purposes the function has to have

a good fit only over the range under consideration, seg-

ments of a multitude of functions could be used. How-

ever, theoretical considerations do grve some indications

as to the choice of function.

Let U (x) be the utility function of the present value u

over the range of x under consideration. The function
r(x) : - U' (x) / U' (x) can then be interpreted as a me&-

Bune of local risk aversion &s shown by Pratt [l I ]. Thus a

utility function that would lead to a present value risk

range of r. Such risk-averse or risk-neutral attitudes were

exhibited by all subjects in the study. Since a businessman

would seldom be willing to pay a premium simply for the

sake of taking a, risk, this should be part of the overall

pattern of a normative utility function.

Another overall pattern of attitude that should be

incorporated in s, normative utility function is that r(r)
should be monotonically decreasing or constant over the

range of .r. This me&ns that for identically shaped distri-
butions with different expected values, the risk premium

should either decrease or stay constant as the expected

value increases. In other words, as & decision maker

expects more of a net gain, he beeomes willing to take

more of a" chance. Certainly in most business situations,

other things being equal, & decision maker would trot

l<nowingly want to become more risk averting &s the

expected outcome increases.

Summarizing from the preceding, a prescriptive utility
funet,ion should most commonly be

I ) continuous and twice differentiable,

2) lead to a function r(t) : - U' (r) /U' (r) rvhich is

> 0 over the range of r, and

3) r(r) should be constant or monotonieally decreasing,

i.e., r'(r) < 0 over the range of r.

It is of interest that the widely used quadratic utility
function does not satisfy the last condition over any

range (Ul J, p. 122).

One function that does satisy the stat,ed conditions is

the logrrrithmic function

U(r): A+Rlog(r*c) (l)

wherer*c)0.Here

U'(x): B@* c)-'

U'(r): -R(r*c)-'
r(.r,) _ (.r + c) -t > 0,

sineer* e) 0, lrrtd

r'(r) : -(.r * c)-'< 0.

As mentioned previously, this function w&s used try
Kaufman to fit the data to one of Grayson's subjects.

The same functiorr was first investigated in this researeh.

The Methd of Fitting tlw Function

The method of fitting the functiorr to the 20 responses

at each irrvestment level was built on a least squeres

approech. The expected utility EU(r) of ecch hypothetical
investment is

EU(r) : p,U(r,) + (1 p,)U(xr) Q)

wherc U (r) : the utility of tr present value, s stands for
success, and / stands for failure. Thus p, : probability of
success, and (l - p) : probability of failure.

678



SPETZLER: IIISK POLIUY FOT' C.\PIT.\L INVESTMENT DECISIONS

Since euch response indicated indifference between

investing and rrot investing, the expected utility of the
hypothetical investments should be equal to U($0)
if the decision maker had accepted utility as his decision

criterion and were infinitely sensitive.

For the experimental data, obviously some deviation
from this criterion can be expected. Howeyer, parameters

for a given function can be determined by nrinimizing the

sum of the squares of the deviations. Thus

Elutso) - P,u(t,) + (1 - p)u(xr)l' : minimum. (3)

Since the choice of scale for a utility function is arbitrary,
fet U(S0) : 0 and U(gX million) : K. Then for the

Iunction U(r) : A + B log (c + C),

U(0): A+BlogC:0
and

A: -B logC

U(K): A + B l.,g (K + C): K
: -BlogC*Blog(K+C): K

Thtrs R : K/log t(I( + C)/C I and substituting,

.b
S IILLIOX PRESEXT VALUE

Brtt Frl ol Function

u(x).1r8Loe (X+91

C. 36

txvEsrrExT LEVEL 3lo rruurox

Subjrct 2

Fig. 9.

could be assumed that all the errors occurred in the
utility of the gain. Then the utility of the gain could be

calculated from the following equation, which is a direct
result of (2):

p,U(r,): -(l - ?,)U@)

and substitution of (a) leads to

(l p,)K log l@r + C)/CI
(6)

p, Ios t(I( + C)/C)

where the quantities marked with an asterisk are experi-
mentally implied values.

l'ig. I shows a utility function of Subject 2 using this
assumption.

Similarly, all errors could be assumed to lie in the
negative quadrant. However, for lack of any better ap-
portionment and since it is more pleasing to the ey€, it
seems reason&ble that each quadrant should bear h:llf t,he

bunden of the error. Thus from (4) and (6),

o
o

o
30

2o

-t0

'40

-so

o o

OO
ooo

Utility plot of responses for all errors in positive quadrant.

u(r):
K rog L-ts

. K + C
IOg 

C

(4)

Substituting into (3) leads to the following criterion

E(
log (r, + C)/C K(l p,) log (t, *

log (K * C)/C

: minimum. (5)

To find the value of C which minimized the above, a

simple computer search routine w&s written. This routine

calctrlated the sum of the squares of the deviations for
various values of C, and then searched for that C which

led to the minimum.

Note that the sum of the squares of the deviations is

not & very meaningful measure of the tightness of the

fit, since it depends on the arbitrary choice of the scale K.
Using the same K, however, the sums of the squares of

the deviations do give a relative measure of the fit of the

function to the different subjects. For most of the studies,

K was chosen to be 50. This choice w&s based purely on

considerations for the plotting of the functions.

Utility Plots

To get an idea of the absolute fit of the function to
various subjects, it was decided to plot the utility func-

tioru. However, here & problem &ppe&rs. Assuming that

&ny devietion from the function is due to error in judg-

ment, the questions remain as to how the error should be

apportioned between the utility of the gain and loss. It

(r * (r,) : i (ry,#rty,i f),ft)
(l p,)K tos l@r + C)/Cl

(7)
p, log l(I( + C)/CI

and similarly,

(t*(r): 
i (

K log l@r + C)/CI

los t(I( + C)/CI

p,K log [(c, * C)/Cl
(l p,) los t(I( + C)/C

where the quantities marked with an asterisk &re again

the experimentally implied values.

(8)
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Utility plot,-Subject 2.

In Fig. 10, the same data as in Fig. I is plotted using
the preceding method of calculating the experimentally
implied utility values.

Fig. l! shows the plot for Subject 2 for the responses at
the S50 million investment level. Similar plots of the

eubjects which had a relatively poor fit using the function
showed that many of the utility values fell below the
function. This tendency w&s particularly strong close to
the origin. The conclusion was reached that the function
is not able to eonvey fully the feelings of all subjects.

A Sfijectioe Test ol thn Acenptnbility of the Fmction

To confirm that these systematic deviations of the
data points were of signific&nce, adjusted indifrerence

probabilities for each investment were calculated using

the best fitting function for e&ch subject. Substituting

0.900
0. 750

u(xl,, E) u(xc, E) PGT DEV

I
2
3
4
D

6
7

8
I

l0
ll
12

l3
14

l5
l6
17

l8
l9
20

NO.

I
.)
3

3
4

5

6
-I
8
I

l0
l1
12

l3
l4
l5
l6
17

l8
l9
20

- 50.00
- 135.00

- 185.00

- 90.00

- l 15.00

- 150.00

- 25 .00

- 200.00

-70.00
- 135.00

- 25.00

- 170.00

- 200.00

- l 15.00

- 135.00

- 200.00

- 90. 00

-150.00
- 70.00

- 185.00

- l 18.31

-275.15
- 395.26

-227 .63

- 197 .04

- 392.48

- 38.52

- 378.44

-r7l. 17

u
57
76

180.
3t.

285.
385.

30.00 0.850
320.00 0.600
950.00 0.500
60.00 0.850

320.00 0.500
230.00 0.750
60.00 0.450

600.00 0.500
160.00 0.650
230.00 0.600
30.00 0.850

450.00 0.500
750.00 0.450
100.00 0.750
160.00 0.650
950.00 0.400
100.00 0.700
600.00 0.600

.40

.78

.00

.53

.74

.83

.16

.19

.74

.57

.83

.00

.19

.83

.78

.DJ

.16

.40

(K)
.28
.D/
.86
.05
.04
.98
.76

- 353

- 120

- 166

-244
-28

- 416

-89
- 208

-28
- 30r

- 416

- 166

- 208

- 416

- t20

-244
-89

- 353

t7
53
4l
32
3l
73
10

- 60. 7l
- 208. 19

31 .04
228.08
437 .r2
59.03

228.O8
180. l5
59.03

340.06
136.33

l5

30.00
450.00

92.51
136.33
437.r2
92.51

340.06
31 .04

285.57

DEV of PG

- 0. 1883

-0.1228
- 0.0530

0.
0.
0.
0.
0.
0.
0.
0.
0.

o

o
o

531 .18
72.14

251.54
20.47

201 .69

-239.20
- ro2.32
-293.57
- 366.23

-22t.76
- 230.68

- 354. 12

- 168.32

-377 .3r
- t84.27
- 605.06

20.88
l8{} . 44

395.26
40.t7

197 .04
130.83
47 .07

378.44
92.17

159.47
18.06

?p3.57
447 .6t
73.92

t24.21

0.662
0.477
0.447
0.672
0 .42r
0. 576
0.327
0.551
0.395
0.536
0.481
0.514
0.519
0.u2
0.604
0.488
0.566
0.418
0.742
0.553

- 38.39
57 .4r
24.81
22.07

- 8.00

- 55 .67
27 .88
15.75

-75.25
28.52

106.22
l9 .02

125.83

1783

0788
17 42
1225
0507
2il6
0639
3693
0136

0.0694

- 0. 1079

- 0.0457
0.0881

- 0. 1337

- 0. l8l7
- 0. 1582

- 0. 1969

(4) into (2) and solving for the indifference probability of

success p, leads to the following equation:

?s: -los l(rr + C)/Cl

log [(2, * C)/CI - los I@r * C)/CI

. - los 1@r * C)/Cl-
log [(2, * C)/@r * C)]

Here pt represerrts the probability of gain consistent

with the best fitting function. As is to be expected , p,

depends solely on the magnitude of gain and loss and the
value of C.

The adjusted values uf p, were calculated by (9) for all
hypothetical investments for eaeh subject. Example out-
put from the computer program which searched for the

best fitting function by (5) and then calculated the
various quantities of interest for Subject 2 is given in
Table II. In this table the first two columns, labeled XL
and XG, glve the present value magnitudes of loss and
gain in millions of dollars. The PG eolumn gives the
indifrerence probabilities with which the subject respondecl,

(e)

680



SPI'IIZLt:II: RIEK POLTCY f.OR CAPI'I'AL INVES,T.MT)NT DT:CITiIONS

i.e., the raw data from the interview. The columns U(XL,
T) and U(XG, T) give the utility values of loss and gain

&s calculated from the best fitting C value using (4).

The next, two columns, U(XL, E) and U(XG, E), represent
the experimentally implied utilities with the ernors
pnoportioned to gain and loss in accondanee with (7) and
(8). These two columns were used to develop the utility
plots as shown in Figs. 10 and 11. The column labeled
PGT consists of the "theoretically adjusted" probability
values as calculated from (9). The DEV (K) column
gives the values of the deviations as calculated by (5),

and the DEV of PG eolumn simply gives the differerrce

between the PG and PGT eolumns.

After the values of the adjusted probabilities in the PGT
column had been calculatd, selected subjects were

confronted with their original responses and these adjusted
responses. The subjects were then advised that the
adjustments represent only one type of adjustment which
does not need to represent their feelings. A number of
aubjects considered the adjustments to be &n improve-
ment without distorting their feelings. Some that deviated
considerably were not satisfied with these adjustments,
particularly around the origin. It was therefore decided
that the function was not flexible enough to represent the
feelings of all interviewees.

Imprwernmt in thp Initial Function

FiS. I I suggests & further improvement in the shape

could be made by allowing a stronger change in the slope

arcund the origin. This c&n be achieved by adding another
parameter D in the following manner:

U(r):A+Blog(o*C ol!) (to)

where x * C - Olrl> 0 and 0 < D < l. This adjustment
in the function diminishes the positive values and empha-

sizes the negative values, thereby leading to a break at the
origin. The effect of the parameler D is shown in Figs. 12

and 13. Fig. 12 shows the utility data for Subject 3
with D - 0.05 and the best fit of C, while Fig. l3 shows the
s&me data plotted using D : 0.50. The fit is considerably
better with the higher D. Except at the origin, this utility
function still meets ell the conditions mentioned pre-

viously.

Using the same procedure &s previously (namely, the
calculation of adjusted resporrces) to check the accept

ability of this revised funetion, more acceptance was

found. However, in the immediate range around the origin
Eome individuals wene still dissatisfied with the adjush
mentg. This was somewhat expected because of the break
at the origin. The functiorr w&s, thercforc, again revised

to include one mone peremeter D, which has the efrect of
amoothing the function through the origin. The function
now reads as follows:

U(d : A + Blog{c + C - Dl@, + Dr)ttl - IIll
(l 1)

FiS. lil. Llt.ility ploc with bre* at the origin-\rrhieet 3.

where 0 S D < l, E > 0, ond {, t C - Dl(a2 * Il2)tt,

- El| > O for the renge of s.

This function includes &s special casrcs the prcvious
two functions. Thus when D : 0, U(d : A + B log
(x * C) andwhenE :0, U(d - A + B log (r + C
Dlrl).

It can be shown that the function meete all of the
previously ststed conditions for certain combinations of
the parameters C, D, and E. However, the condition
that the risk aversion be monotonically decneasing ffl ,
is increasing is violated by some combinations of, C, D,
and E that wene the best fitting parameters for a number
of individualg. The violation of that condition oecum

cloge to the origin and is due to the so-called zero illusion

[12]. The zeno illusion ig the eudden change in curvaturc
in the vicinity of zerp and in Fig. 13. lVhile thie efrect
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Fig. 12. Utility plot-Subject 3.
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mrry IIot be acceptable irr & rvell u'orhed out ttormative

utility furretion, it carr be expected to occur (as it did) in
descriptions of attitudes.

1'he s&me procedure as described above \r'a,s used in
testing the aeeeptability of the final function (11). The

best fitting paranleters C , I), and E were found by a

someu'hat nrore complieated three-way seareh routine.

These l)rrranleters were then used to calculate adjusted

responses, and the interviewees were confronted with the

adjustments. At this point, no individual n'as found that
was dissatisfied with the proposed adjustments. In fact,

everyone preferred the adjusted responses to their original

responses, sinee the adjustnretrts did not distort the overall

attitude and clearly led to greater internal eonsist,ency.

At this point, the functional form was judged acceptable

as a reasonable starting point for an overall risk policy.

YI. THp DnvDlopMENT oF A ConponATE Rrsr Porrcy

First Presentatton to Top lfanogem,ent

I'he purpose of this first presentation to the top manage-

ment.group \r'as to explain the use of a corporat,e utility
frrnetion in decision making, to review the result,s of the

previous int,ervieu's, and finally to gain approval to
proeeed in trying to evolve a group strategy.

The lrresentatiotr wAS given at a regular rveekly meeting

clf the top management. As usual, the attetrdanee at sueh

a meetirrg included the president and the various viee

presidents. Before the meeting each person had received

a report eovering the results of the 36 interviews. In
addition, each one had been previously exposed to the

material through the personal interview which had lasted

arr &\rerage of one and one-half hours.

The presentation was started with a, eomparison be-

tween the present method of project evaluation and

risk analysis. A chart was used containing the equivalent

of Irigs. I and 2. The difficulty of reaehing decisions from

probability data was demonstrated rvith three alternative
probability distributions. The certainty equivalent method

of reaching such decisions was proposed as & tool for

reaching these decisions, and the need for a risk policy (a
utility function) w&s explained. How a risk attitude ean

he quantified was shown with a personal example.

The use of a risk policy in the calculation of a certainty
equivalent was also demonstrated. Next the dilemma of

having different attitudes among the eorporate decision

makers was pointed out and the inconsisteney among the

decision makers was emphasized by examples from the

reeent interviews. The need for a, eonsistent corporate

strategy was discussed at length. Irinally it was proposed

I ) that all top management members be reinterviewed,

using a simplified technique (this technique will be dis-

eussed below), and 2) that the results of these interviews

be used to check the reproducibility of risk attitudes
and es a starting point in evolving a eorporate rish policy

through group discussion.

The prcsentation lasted about 45 minutes. After dis-

eussion of another 45 minutes, the proposal was aecepted.

Simplified interview sehedrrle for gi million
investment level.
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Fig. 15. Simplified interview sehedule for 90.3 nrillion
invest merrt level.

In the discussion, the exeeutives requested that the levcls

of investment be reduced by a factor of 10.

The aeeeptanee of the proposill u,as by no means &s:

sured before the meeting, sinee the study demanded

considerable time of top management. The initial inter-

views had been one and one-half hours, the presentation

one and one-half hours, and the proposal meant at lea.st

another two hours of each top exeeutive's time. The tolr

managers'willingness to spend this time w&s a sign of their
belief in the possible usefulness of the eert,ainty equiv-

alent as a decision-making tool.

Tlw Retvised Intcruien Technique

With the assumption of (11) as a reasonable function

for the expression of individual risk attitudes, it is pos.sible

to simplify the interview techniqub considerably. Since

the function contains only three parameters, a minimum

of three investrnent decisions suffiees to spccify the eom-

plete function.

In the new interview techniclue, five responses at each

investment level are required. These five responses provide

the parameters of the function and two checkpoints which

a.ssure an &cceptable fit of the function over the range of

the outeomes.
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TABLE III
PaonastLl'l'IEs op Glrx CoNsrsrENT wITH THE FrN.tl, Func'rrorv

U : A + B log(X + C - D'(sort(X|)z + Ei,2) - E)),
where D : 0.40, E - 2.00 (rx Mrr,LroNs or Dout ens)

indifference probabilities of success, which correspottd

to various combinations of the parameters. One page

from this book of tables is shown as Table III. The

complete book of tables eonsists of pages similar to
Table III for all combinations of D and E, where D

ranges from 0 to 0.9 in intervals of 0.1, and E from 0 to
5.0 in intervals of 0.5. Thus there are 100 pages frtr eaeh

investment level.

In a brief introduction, each execut,ive was reminded of

the purpose of the interviervs. The interview schedules for

both investment level.s were then introduced simtrl-

taneously, and the exeeutive u:as familiarized u'ith the l0
investment situations. Copies of the schedules were given

to the interviewee as rvorksheets. To familiarize him

completely with each investment situation, the inter-

viewee was first asked qualitative questions which led to a
ranking of the investment situations by the required

ehanee of sueeess. Only after he had earefully ranked the

outeomes at eaeh level of investment was he asked to

respond with an indifferenee probability of sueeess for the

investment situations. The eireular referenee chart was

used again to help in the understanding of the probability

statements. The quantitative responses tvere reviewed in

light of the previous ranking and any discrepaneies were

immediately removed by t,he subject. After this point,,

the interviewee was asked to give his preferenee, if any,

between various pairs of alternative invest,ment situations.

If any preferenees remained, the responses were read-

justed to remove these, sinee the interviewee should shorv

indifference between all investment situations and non-

investment.

During this period, while the interviewee adjusted his

responses, & combination of probabilities was sought

from the book of tables which closely resembled the

interviewee's responses and maintained his ranking.

Generally, only one or two of the probabilities out of the

five differed somewhat from the interviewee's. The inter-

viewee was then offered these responses as an alternative

to his responses. He was given to understand that he

need not adjust his responses, but that the adjusted

responses were internally eonsistent with a partieular

utility function. In every case, responses were found in the

table that were fully aeeeptable to the interviewee.

After a, set of aeceptable responses was found, thc

interview w&s terminated with a short discussion of

the planned session for reeoneiling the att itudes antong

the policy makers. A copy of his allswers \r'&s rettuirred by

the interviewee.

Results of the Interuiercs

The new simplified technique of intervierving wrts

found to be very successful. The executives termed it
ttmore meaningful." The use of one of five ittvestmettt

situations at eaeh level of investment allorved them to
spend more t,ime on each one and to understand fully the

differences &mong the various choices. The patterns of

attitudes offered by the three-parameter funetion seemed

sufficient, since no individual insisted on deviating from

Gain :
Loss :

16.00

-7.00
6.00

-2.50
r0.00
- 9.00

32.00

- 13.50
95.00

- 20.00

28
30

C: 32
34
36
:ig
40
4f)
,l-r0

Itf'
60
6l-r

70
--l;)
80
8.;tl

90
100
ll0
r20
130
140
150
160
170
180

200
250
300
:].10

400
450
500
550
600
650
700
800
900

1000
I 100
1200
1300
I 400
2000

l0 000
100 000

0.442
0.440
0.438
0.437
0.435
0.434
0.4:t3
0.431
0.429
0.4'27
0.426
0 .425
0.424
0.423
0.422
0 .421
0 .421
0.420
0.419
0.418
0.418
0.417
o .4r7
0.417
0.416
0.416
0.415
0.415
0.414
0.414
0.4r3
0.413
0.413
0.413
0.413
0.4t2
0.4r2
0.4r2
0 .4r2
0 .4r2
0 .4r2
o.4r2
0.4t2
0.4r2
0.4r2
0.411
0.4 u

0.556
0. 550
o .545
0. 540
0. s36
0.532
0.529
O.it22
0.517
0.512
0.509
0.505
0.503
0.500
0.498
0.497
0.495
o.492
0.490
0.488
0 .487
0.485
0.484
0.483
0.482
0.482
0.480
0.478
0.476
0.475
0.474
o.474
0.473
0.473
0.472
0.472
0.472
0.471
0.471
0 .471
o.470
0.470
0.470
0 .470
0. 469
0.468
0.468

o.720
0.714
0.709
0.705
0.701
0 .697
0.694
0.688
0.683
0.679
0. 675
0.672
0.670
0.668
0.666
0.664
0.663
0.661
0.659
0. 657
0.655
0.654
0.653
0.652
0.652
0.651
0.650
0.647
0.646
0. o45
0. &4
0.644
0.643
0.643
0.642
0.642
0.642
0.M2
0 . 6,41

0.641
0.641
0.ill
0. ilO
0.640
0.640
0.639
0.639

0.660
0.646
0. 633
0.623
0.614
0.606
0.599
0. 584
0.573
0. 564
0.556
0.550
0.545
0.540
0. 536
0. 532
0.529
0.524
0.520
0. 516
0.513
0.5r0
0.508
0. 506
0.504
0.503
0.500
0.49;
0.492
0.490
0 .488
0.487
0.486
0.485
0.484
0.484
0.483
0.482
0.48r
0.481
0.48r
0.480
0.480
0.480
0.479
0.477
0.476

0. 763
0.690
0.649
0.619
0.596
0.577
0.561
0.530
0.506
0.488
0.473
0.461
0.450
0.441
0.434
0.427
0.42r
0.411
0.403
0. 396
0. 390
0.385
0.381
0.377
0.374
0.371
0. 366
0.357
0.35r
0. 346
0. 343
0.341
0.339
0.337
0. 336
0.334
0.333
0.332
0.331
0.330
0.329
0. 328
0.327
0.327
0.325
0.321
0.320

Figs. 14 and l5 &re examples of the new intervierv

schedule. For each investment situation, the information
which had been found most useful w&s provided. This

information includes the net present value, the profit-

ability index (cont inuously discounted rate of return) ,

and the uniform annual cash flow assuming a" 2O-year

duration. At the request of the interviewee, the prob-

ability of suecess, which leads to an expected present

value equal to zero, w&s given orally. The investment

situations were ordered by the magnitude of the out-

comes and, as requested by the executives, the questions

wene based on $5 million and S0.3 million investments.

For each investment situation the probability response

which is consistent with the function and a combination

of the three parameters C , D, and Z' c&n be calculated.

This calculation is & direct application of (9). Using

this equation, & short computer program w&s written

which developed an extcnsive book of tablee giving
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TABLE IV

Subject Investment Level S300 000 $5 Million

E:0
E-l
E:2
E:2
fi-2
E-2
E-0

D:0
D:0.6
D - 0.1
D :0.4
D : 0.4
D : 0.7
D - 0.7

C
C
C
C
C
C
C

E:0
E:2
E:2
E:2
E:2
D-l
E:0.5

D:0
D : 0.2
D:0.1
D : 0.4
D : 0.4
D : 0.7
D : 0.7

: I 000 000
:38
:65
: ll0
:70
:50
:65

: I 000 000C
C
C
C
C
C
c

I
2
3
4
5
6
7

5
65
ll
70
35
100

the patterns even though this alternative was repeatedly
offered.

Most of the problems that had led to inaecuracy in the
previous responses had been eliminated. By allorving the
individuals to go back and forth between the alternatives,
the effect of the order of the questions w&s almost com-
pletely eliminated. The learning effect was also elim-
inated, since the subject was encouraged to go back end

change answers if he so desired. By using only five ques-

tions, the illusion of having the opportunity to invest in
many investments of this type w&s also reduced.

The improved technique in conjunetion with & more

enlightened audience on the topic of decision theory led to
meaningful results.

The parameters of the utility function

U(r) : A + Blogfc + C Dl(r' * EzYrz E]]

for the seven top executives are given in Table IV.
The relative level of conservatism can be seen better in

Fig. 16. This figure prcsents the indifference probabilities
in the s&me manner as in Section IV, except the responses

of each executive &re given by a discontinuous line and the
investment situations &re erranged in decreasing order.

Again, the left limit of the seales nepnesents a risk-neutral
response; therefore, the horizontal distance stands for the
probability premium. One executive, Subject l, insisted

on risk neutrality. A $300 000 investment is a rather
common investment for this company, while a S5 million
investment occurs somewhere between four and eight
times each yeer.

Even though these results &re somewhat different,
comparison with the previous nesponses of each exeeutive

showed considerable consistency. About six months had

elapsed since the first interview, end each manager had

received a report detailing the results of these interviews.

Thus any consistency over time is surprising. When some

middle management w&s tested with the new interview
technique, very little consisteney with their previous

nesponses w&s found. Instead a rather interesting phe-

nomenon had occurred in the middle management. N{em-

bers of middle management seemed to have revised

their attitudes toward the Bverage of the responses as

given in the report. This difrerence between middle and

top management leads the author to believe that middle
management would welcome & eorporate risk strategy
statement by top management.

Duoluing an Acceptable Corporate Risk Policy

The First Sessaom; About two months after the initial
presentation to top management, a meeting was scheduled

with the express purpose of finding some acceptable

corporate risk policy.

In the introduction to the meeting, the author empha-

sized the need for an overall risk policy and the broad

implications of such a risk policy. The main points of this
introduction were as follows.

1) The choiee between a highly risk-averting policy

and a virtually risk-neutral policy is essentially a choice

between a safer lou' return on investment and a higher

average return on investment. However, the higher

avera,ge return earries with it a greater ehanee of fluctua-
tions over time.

2) That the present risk attitudes va,ry greatly within
the company was demonstrated by both groups of inter-
views. It is, therefore, re&sonable to eonelude that, in the

absenee of a stated risk policy, different standards &re

applied in various departments of the comp&ny. Also,

many risky investments are probably suppressed before

ever reaching top management.

3) The results from the interviews of the top exeeutives

show that everyone is willing to beeome virtually risk-
neutral in projeet,s that have out,comes within the range of
+ $300 000. However, actual decisions indieate more

conservative decisions on these projects.

4) Going to risk analysis and communicating the risk

attitudes of top management are beginning steps to
improve the situation. Agreement by the top executives is
necessary to aehieve a uniform risk policy for the company.

The results of the recently completed interviews, &s

shown in FiS. 16, were then presented. Each individual
knew which line represented his responses, sinee he had in
front of himself a copy of the interview schedule with his

answers. The differenees among the responses were pointed

out. The exeeutives were again reminded that no the-

oretically best policy exists. Thus the ehoice among the
strategies must be a subjective one. This ehoiee, however,

\tr&s to be eonsidered as an important policy decision.

At this point, the exeeutives were invited to discuss the

choice of a particular policy. To the great surprise of the
author, Subject 1, whose responses had been risk-neutral,
volunteered himself &s the target of discussion. First
he identified himself as the individual that prefers to play
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t,lrt.:.rverages up to $5 nrilliorr. He therr stutctl t,hat the

follou'ing assunlptiotrs were the basis frlr his rerrsotting.

1) We have virtually unlimited funds available at 10

percent per annum.

2) An average of l0-percent return seems to be a

satisfactory minimum to us in line with our present

policies.

3) We have errough investnrents of these types to play

t,he averages.

1) We must assume that the possible outcontes and

probabilities ean be aecurately calculated.

He cont,inued, that, if these assumptions did not hold, we

rvt-ruld need to ehange present cotnp&Ily policy.

The diseussion now started eerrt,ering urouttd the four

points. Points 1) and 2) u'ere quicltly'aceepted. Point 3), co-

vering the fre<luellcy of investmettt,s, wu,s cliscussed at length.

At the lou'er level of investment t,here resulted an agree-

ment that not much danger lies u'ith playing the aver&ges.

Hrlrvever, ut thc higher level of investment, tvhere about

five projeet,s are approved annually, IIo agreement could

be reaehed at this time. The fourth point, that probability

caleulat,ions arc feasible, \r'rtrs tentatively aecepted but

was of major concerll.

Agreement appeared that a rish-neutral attitude seems

to make sense at the lorver investment level. On examining

the present praet ices regarding sueh investments, the

group eoncluded that considerable risk aversion is apparettt.

Thus a policy of risl< neutrality u'ould allow mueh more

capital to be invested in these types of projeets. In fact,

one execut,ive seemed to feel that all of the present capital

investment, budget could be absorbed in these proiects

using & risk-neut,ral policy. However, no exeeutive felt

that t,he overall capital budget should be inereased, thus

the c<-rrnpany seemed t,o operate under a budget eonstraint

in the short, run. This is somewhat in contradiction to

point l) made by Subject 1. As a solution to this budget

limitation, one of the participants suggest,ed &n inerease

in the diseount rate. Thus, possibly, only projeets with an

average return of 12 pereertt per annum should be ae-

cepted.

The discussion returned one more t,ime to whether there

really existed arly everyduy risky projeets, which could be

added into the invest,mettt mix. In atlswer to this, some

actual examples were given by one of the executives

He demonstrated that a collservative risk attitude is

really applied and that many risliier projeets could be

considered. He also stated that the number of proiects

which can be eonsidered is in direct relation to the man-

power applied to the search and thtr,t they are presently

constrained by the availability of manpower.

When the diseussion slowed, the question w&s asked if a
decision toward a specific risk policy could be made in

light of the discussion. In &nswer, the top exeeutive

stated that this is "too big of a policy matter to be decided

on the spur of the moment." The group then asked for

another meeting to consider this matter further. A number

of examples showing the effect of various risk policies on

projects were also requested.

'fhc rneeting ekrsed rfter tu'o hottrs rvithout a specific

choice of a, risk policy. Hou'e\,'er, at the Irlwer investment

level rr eor]serrsus elose to risk-rreutral had appeared,

u'hile considerable distgreemettt still existed at the

higher inr.est,mettt levcl.

T he Second Session : Before t he second meeting, two

example projeets \r'ere prepared. The first wtrs a hypo-

t het ical projeet rvhich was based on the output of a
previous risk ana,lysis. Using the same risk aversion, it was

demonst ra,ted that the risk prentium ittereases as the

mtr,gnitude of the outeomes inereases.

The seeond example project eonsisted of a completc

eertainty equivalent analysis of a recellt,ly made decision.

The probabilistic inputs were developed using the eircular

referenee chart,. The problem st,rueture \t'as then developed,

using a stoehtstie decisiort-tree frtlmework. The prob-

ability distribut ion of the presettt value was developed

with a computer run of 7 50 samples. F or the present

value distribution, certainty equivalents using various

utility functions were calculuted.

Due to some eomputer programming problems, the

material u'as presented to top management five months

after the previotts meeting. The presentat ion was again

made and the attettdance u'as virtually the same.

Beeause of the long lapse of time between the two

meet ings, the author revierved the results of the first

ses.sion in eonsiderable detail. The executives ll'ere ne-

minded tha,t they seemed to be willing to play the averages

on small investments following the discussion of the four

points made by Subject l. The four points were then re-

viewed. The decision to play the averages had led the

exeeutives to the question of capit,al budgeting and the

eonelusion had been reached that the diseount rate should

be raised rat,her than being risk-averse at small invest-

ments. The first session had ended u'ithout a choice of a

risk policy, and the present meeting had been requested.

The purpose of this seeond meeting was then stated

as the following:

I ) to demonst rate how the certainty equivalent of tr

project is affected by changes in a risk policy and

changes in magnitudes of outcomes;

2) to show in detail how a real project analysis can

be made using the eertainty equivalent method; and

3) to get eloser to adopting an operationally acceptable

risk policy.

Before discussion of the two example projects, the

coneepts of risk analysis and the certainty equivalent

were reviewed. The previous exposure of management to

these eoneepts had by now been considerable and their

grasp of the subjeet was good.

After presenting the example projects and discussion of

the usefulness of the certainty equivalent as a decision

tool, the following proposals were introdueed:

1) that specific risk policies be adopted for trial purposes

at both levels of investment;

2) that the risk policy for investments of less than

$300 000 be eommunieated to middle managementl
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3) that the analysis of a specific very large invest,ment

decisiorr, preserrtly under consideration, be m:rde usirrg
the certainty equivalent method;

4) that a risk analysis be made or) a group of typical
investment projects at the lower investment levels

::jil:i:'J::;-'h::ect 
of probablitv anarvsis o.

Considerable diseussion about the necessity of a specific
risk policy ensued. The conelusion of this diseussion
resulted in a ehoiee of a risk-neutral policy at the lou'er
level of investment, and the policy represented by Subject
3 at the higher level of investment. The exeeutives made
it clear that their choiee was not final, but that it repre-
sented their best present choice for a policy. Since the
ehoice w&s tentative pending further examples of the
effect of the policy, they did not aecept the proposal to
communicate the policy. Both proposals for analysis of
presently important investment projects were aeeept,ed.

After the results of these studies, the eommunicat,ion of the
risk policy was to be reconsidered.

In total, the meeting resulted in a tentative choice of a

risk policy and a strong affirmation of the effort torvirrd
using the eoneepts of risk analysis and eertainty equiv-
alents. In essence, many man-months of rvork on the
projeets were approved. This is of partieular importance
sinee at this time the required skills for sueh analysis are
in very short supply.

Since the tentative choice of a eorporate risk policy,
progress has been made on the approved projeets, but
neither project has been completed.

Once fully established, the risk policy is expected to
remain a pliable policy tool through periodic reviews.
For that matter, eaeh decision using the CE method u'ill
be an automatic revierv of the effect of the risk policy.

VII. SuuraARy AND Coxcr,usroN

In this paper, the feasibility of developing a corporate
utility function was investigated. Such a utility funetion
provides an important link in the application of decision
theoretic models.

The eorporate utility funetion w&s viewed &s {r policy
statement by top marragement. Such a, policy st:rtement
w&s evolved in a unique experiment.

First,36 eorporate exeeutives were intervierved and
their risk attitudes were quantified. Ifrom the responses

of the interviewees, a mathematical function was developed
that was able to reflect each interviewee's attitude. The
fit of the function w&s tested by checking the reaction of
the interviewees to adjusted responses. The functional
form that led the interviewees to prefer the adj usted
responses to their initial responses was finally accepted.
The mathematieal form of the function was considered a
flexible pattern for a risk policy. The a.ssumption was

made that the eorporate risk policy would be of this
pattern.

with the pattern for a risk policy set, it w&s possible to
simplify the method of deriving a partieular individual's

rislt rtt t ittrtle. Using thc sinrplified rnethod, the eorpor.ate
policy malters \\'ere intervierved orree more. The re.sults
from these irrtervie\\'s \\'ere therr trsed lrs A starting point
itt tu'o negrttiatiotr sessiorrs. As a result of these negotiation
sessions, the policy makers agreed orr a risk policy for trial
purposes. They also agreed to develop a number of
major project,s using t,he eoncepts of risk analysis and the
eert,ainty equivalent.

It is still too early to report orr the compilny's experi-
ence of usirrg a rislt policy. Hon'ever, the eompany's
rvillingrress tcl commit t he required resourees first to
carry out thi-s project and now to continue rvith ap-
plication indicates a belief in the approach.

The specific choice of the trial policy is of particular
significartee. The choice was drastically different from the
average of the group members. At the lorver investment
level, the choice of iI rislt-neut ral policy by t he group
was surprising sirrce only one menrber of the group had
exhibited this a,ttitude. At the higher level of investment,
t,he group coltsellsus \vas also frlr rnrlre risk tuking tharr the
avenrge of the irrdividual attit,udes. The findings that
group conserrsus tends to be n'lore risk taking t,han the
average of the individual group members is rrot unique.
Soeial psychologists have presented similar findings i1 &

number of articles. t These articles generally used examples
of subjective real-life situations to measure risk attitudes.
While the results are not directly eomperable, the shift
toward more risk taking by a group os a general phe-
nomellon has beert rvell doeumented. This inereased rvilling-
nes.s of a group to tuke risk is, therefore, not an isolated
phenomenon and c&n be expected to oecur in further
group risk policy stat,ements.

Some of the major effeets of the study on the eompany
have been educational. Because of the exposure, mrrny
managers have beeome more &ware of the decision process

under uneertainty. They are now able to diseern betrveen
the risk in a project and their risk attitude rvhich they
bring to bear on t,he projeet. Thus they know the dif-
ferenee between the eorrservative estimator and the
eonservative deeision maker. The m&nagers are also more
fully &w&re of the shortcomings of the single-value anal-
ysis. Therefore, t,he way is paved for further steps towand
probabilistic decision techniques.

The suecess of this study great,ly depended on the
receptiveness of murrclgement to quant,itat,ive decision
tools. I n this respeet, it must be mentioned that the
managers of the subjeet compa,rry were quite open-minded.
While most of the top management did view the so-
phistication of the decision model with suspicion, they
were rvilling to be convirrced. The job of selling the
managers took considerable skill and effort. Clearly this
task was made easier by management's generally tech-
nical baekgrounds and their relative familiarity with capital

investment analysis. The eompany presently ranks among

t This finding has _been eslled to the arrt,hor's attention by Prof.
9. C. Ilqyt of [owa University, Amea, and is diseuEsed in Hdyt and
Stone t l3l .
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the leaders in the use of sophisticated capital investment

analysis techniques. Thus the int'roduction of the cer-

tainty equivalent method is just one more step, albeit a
major one, in the path of improving their decision tools.

Discounted eash flow methods had been applied in the

company for better than a decade.

There &re two major improvements in the corporate

decision process that can be derived from developing &

risk policy. Firstly, the communieation of & risk policy

throughout an organization could help to avoid oppor-

tunity costs that are ineurred by premature rejection of

risky projeets. Secondly, when incorporated into eapital

investment analysis, the risk policy permits the inter-

pretation of risk information by means of & certainty

equivalent, which is eonsistent with the goal of maximiza-

tion of expected utility. The communication of the policy

may lead to a greater improvement in the decision process

than the improvement in the analytical technique. How-

ever, to be effeetive, the risk policy statement must be

supported by corresponding control procedures that do

not penalize managers for taking risks. In the control

procedure, & god decision must be earefully distinguished

from a good outcome of a deeision.
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l"lan is called upon to make decisions about his home, his business,
and his pleasure. These decisions vary in importance, but they have one
property in common! most people do not have an orderly procedure for
thinking about them. Of course, it is not pracEical to spend much time
and effort Lhinking about the minor decisions in our lives--yet how can
we judge what, is practical until we develop a logical framework for deci-
sion problems? Our present Eask is the construction of such a decision
procedure.

There are three main points we shall attempt to make abouE the science
of decision making.

Probabilistic considerations are essential in the decision-
making process;

The lessons of the past rmrst be included;

The implications of Ehe present decision for the future
musE be considered.

Let us discuss each of these points. The importance of probability is
revealed when we realize that, decisions in situations where there is no

random element can usually be made with little difficulty. It is only
when we are uncertain abouE which of a number of possible outcomes will
occur that we find ourselves with a real decision problem. Consequently,
much of our discussion of decision-making will be concerned with Ehe ques-
tion of how besE to incorporate probabilistic notions in our decision pro-
cedure.

The quest.ion of using previous information in making decisions seems

to incite some statisticians to riot, but, most of the rest of us think it
would be unwise to make a decision without using all our knowledge. If
r^7e rrere offered an opportunity to participate in a game of chance by our
best friend, a tramp, and a business associate, lue would generally have
differenE feelings about the fairness of the game in each case. Although
we might, agree on the necessity of considering prior information, it is
not ctear just how we shal1 accomplish this objective. The problem is
intensified because the prior information available to us may range in
form from a st,rong belief that results from many years of experience to
a vague feeling that, arises from a few haphazard observations. The deci-
sion formalism to be described will atlow us to include prior information
of any form.

The influence of present decisions upon the future is a point often
disregarded by decision-makers. Unfortunately, a decision that seems ap-
propriate in the short, run may, in fact, place the decision-maker in a

I
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very unfavorable position with respect to the future. For example, a

naive Eaxi driver might be persuaded to take a cuslomer on a long trip
to the suburbs by the prospect of the higher fare for such a Erip. He

might not realize, however, Ehat he will have to return in all likelihood
wiEhout a paying passenger, and that when all alternatives are considered,
it could be more profitable for him to refuse the long Erip in favor of a

number of shorter trips that coutd be made within the city during the same

time period. The sotut,ion of such problems requires slight.ly more sophis-
Eicated reasoning Ehan t,he first two points we have discussed, but iE is
jusE as amenable to an analytic approach.

Let us now begin our analysis of decision problems with an example
thaE is so commonplace that there will be every possibility of understand-
ing the environment of the problem, and yeE is sufficiently detailed that
it is not obvious at first glance just how the decision should be ap-
proached. A fellow named Joe, of our acquaintance, is in the market for
a new car. He has declded to buy a three-year-oId Spartan Six sedan, and
has surveyed the used-car dealers for such a car. After searching for a

while, he has found a car like the one he \^rants on one dealerrs lot. The

going rate for a three-year-old spartan is $1100, but the price asked by
Ehe dearer is only $1000. consequently, Joe figures Ehat he will make

$100 profit by buying this particular car.

unfortunately, just as Joe is about to close the deal, he overhears
the salesman who has been serving him talking with another salesman. His
salesman says, I'This used-car business is a tough racket,. r have a cus-
tomer interested in Ehe Spartan on our lot, but, t,he practices of our busi-
ness prevenE me from warning him that, he may get stuck if he buys it."
The other salesman asks,rrwhat do you mean?" Joets salesman repliesr'rr
worked at a SPartan dealership when that car first came on the market.
Spartan nade ZtrL of iEs cars in a neh, plant where they were still having
production line troubles; those cars were lemons. The other 807" of total
production r,rere pretty good cars.tr The other salesman asks,rrwhat is the
dif ference between a I lemont and a tpeacht ?tt ttweltrtt says Joet s salesman,

"every car has I0 major mechanical systems--steering, brakes, transmission,
differenEial, fuel, electric, etc. The peaches all had a serious defect
in only one of Ehese 10 systems, but the lemons had serious defects in 6

of the 10 systems.rr The other salesman replies, t'we11, don't, feel so bad;
maybe some cars didnr t have any defects, or maybe the defect.s in Ehis car
have already been fixed."

t'No, thatrs jusE itrtt says Joets salesman. "Every car produced had
either 1 or 6 defects in the ratio r mentioned; and r happen to know, be-
cause the previous owner was a friend of mine, that this particular car
has never been repaired.t' "rf it is bothering you so much, why donrt you
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tell the guy itrs a lemon and forget about it?" says the other satesman.
ttAhrttans$rers Joets manrttEhatts the troubLe. r personally dontt know
whether or not it is a lemon, and rrm cerEainly not going to take the
chance of losing a sale by worrying a customer unnecessarily." To which
the other salesman replies, "Itts Eime for coffee.rl

We can now imagine the state of our friend Joe. WhaE seemed like a
real bargain has turned into a potential nightmare; he can no longer make
the $100 profiE he had hoped for. Joers first reaction is to turn and
flee, but he has Ehe icy nerves of a decision-maker and so soon regains
his composure. Joe realizes that he would be foolish to forego Ehe chance
to buy Ehe car he thought he wanted, at this price, wiEhout good reason.
He decides to catl an acquaintance who is a mechanic and get his estirnate
of whaE the possible repairs might cost. The mechanic reporgs that it
costs about $40 to repair a single serious defect in one of a carrs major
systems, but, thaL if 6 defecEs r^rere to be repaired, the price for all 6
would be only $200.

Now Joe considers the possibilities open Eo him. IIe can either buy
the car or refuse it. If he decides to buy the car, then his outcome is
uncertain. rf the car turns out, to be a peach, then only one defect will
develop and Joe will have made a profit of $60: $100 from buying the car
at a low price, less $40 for repairing the one defect,. However, if Ehe
car should be a lemon, then Joe will lose $100 because it will cost him
$200 Eo repair the 6 defecEs to be found in a lemon. rf, on the other
hand, he refuses Eo buy, then he gains and loses nothing.

We can rePresenE the decision sEructure of Joers problem by drawing
a decision tree like that shown in Figure 1. The direction of the arrows
refers to the time flow of the decision process. rn this figure, each
directed line segment, represents some event in the decision problem. We

have used B Eo indicate the event of Joers buying Ehe car, and R to indi-
cate his refusing it. P is the event of the car's ultimaEely turning out
to be a peach, while L is the event of the carrs being a lemon. The tree
as drawn in Figure l shows that the car may Eurn out to be a peach or a
lemon regardless of Joets act.ion. Note that different symbols are used
for the node joining the B-R branches and the nodes joining the p-L
branches. The X is used to indicate points in the decision tree where
the decision-maker must decide on some act,; Ehe r is used for nodes where
the branch to be taken is subject to chance rather than decision. we
shall call these two types of nodes I'decisiontt nodes and rrchancerr nodes,
respectively. rn this example, Joe's only decision is whether to buy or
refuse to buy; consequently, only the node joining the B-R branches re-
quires an x. The ultimate outcome as to whether the car is a peach or
a lemon is governed only by chance and so the p-L branches are joined
by a ..
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Car is a peach

Car is a lemon

Joe's Original Decision Tree

FIGURE I

Generally, traversing each branch on the decision tree will bring

some reward, positive or negative, to the decision-maker. !'Ie shall choose

as a convenEion to write this reward under each branch. In Figure 1 we

have written 100 under the branch labeled B to represent the inrnediate

profit to Joe in buying the car; O is wriEEen under R branch, because

Joe will neither gain nor lose by refusing to buy. The numbers under

the P and L branches refer to the cost of repairing a peach and a lemon,

respectiveLy. If the decision-maker follows a tree from iEs unique start-
ing node Eo all of its Eips, Ehen he will experience some Pattern of gains

and losses according to the branches he acEually traverses. The net profit
of all such traversals is written at, each tip of the tree. Each tip may be

designated by the sequence of branches that lead to IE. Thus in this case

the tip BP is given the value $60 as the net profit in buying the car and

then finding Ehat it is a peach. The Eip BL corresPonds to a loss of $100

from buying a lemon, while Ehe tip R is evaluated at zeto because the car

is refused. These Ehree tips of Lhe tree represent the three possible out-

comes of thls decision problem. The outcome BP is favorable to Joe, the

outcome BL ls unfavorable, and the outcome R is indlfferent.

Naturally, Joe wouLd like the outcome to be BP with a profit of $60,

but after hearing the salesmen's conversatlon he realizes that the 1ikeli-
hood of this outcome will be controlled by Nature rather Ehan by hlmself.

We can think of Nature as playing a game wiEh Joe, as folLows. I'Ihen she

P

o

B

R

P

L
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placed the car on the used-car lot, she made it a lemon with probability
0.2 and a peach with probability 0.8. she performed her selecEion by
tossing a coin with probability of rrheads" equal to 0.8 and made the car
a remon if the coin came uprrtails." Thus the nodes Ehat were chance
nodes in Joers decision tree we can imagine to have been performed by
an opPonent cal1ed Nature who is not malevolent and who selects actions
using chance mechanisms.

We can draw a tree to show Naturers options, as is done in Figure 2.
In Naturers tree, all nodes are chance nodes. t{e shal1 write above the
beginning of each branch the probability that Nature will follow that
branch. rn Ehe present example, we know that the probability of a peach
is 0.8, the probability of a lemon is 0.2. ['le also write at each tip of
Naturers Eree the probability that Nature will produce an outcome corre-
sponding to that tip. In general, these probabilities are calculated by
mtrltiPlying together the probabilities on all the branches that lead from
the init,ial node on Naturers tree to each tip. rn this simple case, all
we must, do is write 0.8 and 0.2 aE the end of both the P and L branches.

The importance of Naturers tree, as we shalI see, is that it pro-
vides all the probabilisEic information that is necessary for the decLsion
tree. To illustrate this point, we recall Ehat we have yet, to write prob-
abilities on each chance node of the decision tree. The results of the
calculations in Naturers tree allow us to draw Flgure I in the form of
Figure 3. The various features of Figure 3 will be explalned gradually.
At the moment, our example has such a simple form that it is not, at all
clear why it is necessary to consider a separate tree for Nature. As our
example becomes more complex, the need for Naturers tree will be evident.
The numbers in the square boxes at each node in Figure 3 represent the
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net profit to Joe from future acEivities if he should arrive at such a

node. Thus, if Joe is at node B (we label nodes by the branches that
must be traversed to reach Ehem), then he expects to earn $60 with the

probabil-ity 0.8, and lose $100 with probability 0.2. His expected earn-
ings are 0.8(60) + 0.2(-100) = $28. Of course, if Joe decides not to buy

the car, then he will earn nothing, and so O appears in Ehe square box

appended to node R.

As a result of evaluaEing each possible action that Joe might take

in terms of its expected value equivalent, rile are in a position to help
Joe with his declsion. If Joe buys the car, then he expects to earn $28;
if he refuses to buy, he will earn nothing. If Joe ls an expected-value
declsion-maker, he should decide to buy the car. His reconmended action
is shown by drawlng a solid arrowhead on Ehe B branch leading from the

declsion node. We then write his expecEed profit from taking that actl-on,

$28, in the square box over the decision node.

As a result of this analysis of the problem, Joe feels a little better
Ehan he dld before. He has forsaken all hope of a $100 profit and is com-

ing around to the idea that it might be wise to settle for an expected
profit of $28. However, while he is becoming reconciled to the forces of
fate, a stranger approaches him and says, "I couldnr t help overhearing you

talking to yourself about your problems. Perhaps I can help you. You see,

I worked in Ehe factory where the substandard SparEans, or lemons as you

calLed them, were made. I can tel1 you whether the car sitting on Ehis lot
is a lemon simply by looking at the seriat number.rr Joe can hardly believe
his ears. At last, a possibility of finding out whether the car is a lemon

before buylng iE.

o

0

0
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Joe looks at the man, decides he has an honesE appearance, and says,

"You are just the kind of help I need. Letrs go over to Ehe car and take
a look at it. I am eager to find out whether or not it is a good deal."
The stranger smiles and replies, t'I am sure you are, but you can hardly
expect me to go Eo all the trouble of examining the car and getting myself
dirty wiEhout some financial consideration.r' At first Joe is angry about
the stranger's mercenary attitude, but then he remembers he is not in a

posiEion to throw ar^ray potentially useful information if iE can be ob-
tained at a reasonable price. He asks for and is granted a few moments

to think over Ehe strangerrs offer.

The problem is this; how much is Joe willing to pay the st,ranger for
his informaEion? He reasons as follows. On the basis of the strangerrs
appearance and manner, Joe decides that he can be trusted in his claim of
being able to distinguish peaches from lemons. If the stranger reports
that the car is a peach, then Joe will buy it and make an expected profit
of $60. If the sEranger says it is a lemon, then Joe will refuse to buy

it and make nothing. The probability that the stranger will find a peach

is 0.8; the probabiliEy of finding a lemon is 0.2. Consequentty, Joers
expected profit after reeeiving the information is 0.8(60) + O.2(0) = $48.
Therefore, is the information worth $48? No, because even without it Joe
expects to make $28, according to our original analysis. Hence, the net
value of the strangerrs information to Joe is $20. That is, Joe as an

expected-value decision-maker should be willing to pay any amount up Eo

$20 for the strangerrs advice.

This figure of $20 seems high to Joe, so he decides to check iE in
the following way. Joe thinks, without this new information I would buy
the car and make an expected profit of $28. If I buy the information,
Ehen with probability 0.8 the stranger will report that the car is a peach

and his information will be worthless because I am going to buy the car
anyrday. On Ehe other hand, with probability 0.2 the stranger will find
that, the car is a lemon, and in this case Ehe information is worth $100
since that is Ehe amount Ehat I would lose if I bought the car and it
turned out to be a lemon. Consequently, the expected value of the infor-
mation to me is 0.8(0) + 0.2(f00) = $20, the same as before. Now Joe is
convinced that he should pay as much as $20.

l,Ie shall. call this quantity the expected value of perfect informa-
tion, or Ehe EVPI. It represents the maxlmum price that should be pald
for any experimental results in a statistical decision situation. This
follows since no partial knowledge could ever be worEh more than a report
of the actual ouEcome of naturets process. We shall have much more to say
of this quantiEy in our later discusslon.
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Joe now decides to offer the stranger $15 in hopes of getting Ehe

information at a bargain price. However, when he confronts the stranger
with this offer, the stranger replies that he couldnrt consider the job

for less than $25 and suggests that Joe think it over for a while. Joe

is upset by this turn of events, but quickly regains his composure. He

thinks to himself that the real reason for his difficulties is that he

doesnr t have a wide enough range of alternat.ives from which to select
an appropriate act,ion. Suddenly he has a brainstorm--maybe he can get
the dealer to give him the guarantee on Ehe car! He inquires of the dealer
whether a guarantee is available. The dealer says, "Yes, there is a guar-

antee plan; it cost,s $60 and covers 50% of. repair cost.r' Joe thinks fast
and replies, rrYou certainly donrt have much confidence in your cars. If
I bought a car and it Eurned out to be a lemon, I could go broke even on

my 50%." The dealer saysr "Al1 right. Just for you I will include an

anti-lemon feature in the guarantee. If Eotat repairs on Ehe car cost
you $100 or more, I will make no charge for anv of the repairs. How's

that for meeting a cust,omer half-way?t' Joe says thaErs fine and now he

would like to think it over again.

At this point Joe realizes that he has a new decision tree. It is
shown in Figure 4. This tree differs from the preceding one because there
are no\ir three possible acEions at the decision node. The new alternative
is to buy the car wiEh the guarantee; that, is, to hedge against the possi-
bility of getting a temon by spending $60. This alternative is given Ehe

symbol G. l.Ie see that although the car might still turn out to be a lemon

if Ehis alternative is followed, the costs associated with the two outcomes
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are strikingly differenE from what Ehey are in Ehe case where the car is
bought without such a guarantee.

Let us examine Figure 4 in some detail. The figures writ,ten below
each branch are again the expected profit from traversing that branch.
The numbers on the tips are the total expected profit of the chain of
branches leading to that tip. Now, as before, we shal1 choose to calcu-
late the expecEed value of each node by using the number on the tips
rather than on Ehe branches. However, this choice is arbitrary and will
be reversed when a reversal is convenient.

The expected value of the nodes B and R are calculated as before.
The vatue of $40 written under the G branch refers to the fact that our
initial profit from buying the car with the guarant,ee is only $40 because

the guarantee itself costs $60. The value of -$20 over the P branch fo1-
lowing the G action arises because even a peach will require one repair at
at cost of $40, but half of this $40 will be paid by Ehe guarantee. The

0 under the corresponding L branch is a result of the anti-lemon feature
of Ehe guarantee. Since the cost of repairs on a lemon will exceed $100,
there will be no charge for repairs. Thus the net profit of buying the
car with a guaranEee and having it Eurn out Eo be a peach is $20, while
Ehe profiE if it turns out to be a lemon is $40. Since Naturers tree of
Figure 2 still applies to this case, the probabilities of these trdo event,s

have values of 0.8 and 0.2, respectively. Hence, the expected earnings
from buying Ehe car wiEh the guarantee is 0.8(20) + 0.2(40) = $24. Since
this is less than the $28 profit to be expected if Ehe car is bought with-
out the guarantee, the guarantee does not look like a good idea. The choice
should once more be to buy the car without any protection, as is indicated
by the heavy arrowhead on the B branch.

At this point our knowledgeable stranger returns and once more offers
his advice--for a price. Has the advent of the guarantee changed what Joe
should pay? Letrs find out. If the informaEion is bought, the sEranger
will find that the car is a peach with probability 0.8. If a peach is
reported, then Joe will buy it without a guarantee and make an expected
profit of $60. With probabiliEy 0.2 the stranger will discover a lemon.

In this case, however, Joe is best advised not to refuse the car and make

nothing as he did before, but, rather to buy it wiEh the guarantee. As

Ehe number on the tip of Ehe branch GL in Figure 4 indicates, by taking
Ehis action he will earn an expected profit of $40. Thus, the amount

that Joe expects to earn by buying the car is 0.8(60) + 0.2(40) = $56.
Since Joe expects to earn $28 anylray by buying the car without this in-
formation, the value of Ehe additional information Eo him is $28.
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It may at first. seem strange that the expecEed value of perfect in-
formation, or EWI, should increase simply because an alternaEive has been

added to those aLready available to Joe. However, such an increase has

taken place as a result of the fact. that Joe is in a better position Eo

make use of information that the car is a lemon than he was previously.
We can verify the figure of $28 using the same method employed before.
If the stranger reports a peach, then Joers decision to buy the car will
be unchanged; but if a lemon is reported, then Joe will buy the car with,
rather than without, the guarantee and so will turn a loss of $100 inEo a

profit of $40. Consequently, his expected profit will increase by $140
with probability 0.2. Thus, the information is worEh 0.2(f40) = $28 to
Joe.

Now, of course, the strangerr s asking price of $25 for the perfect.
information seems quite reasonable. Joe is about to purchase the informa-
tion when he has another brainstorm. He knows that perfect information is
worth $28 to him, and so he reasons that if he can get partiat informat.ion
at a price sufficiently lower than $28 he may be able to increase his prof-
its. He firsE asks the dealer if he can take Ehe car to his mechanic friend
for a checkup. The dealer is willing to allow this, but, places a t,ime limit
of one hour on Ehe carrs absence from the lot. Somewhat elat,ed, Joe calls
his friend to ask what kind of tests could be performed in an hour and how

much they would cost. The mechanic says that he can only do at Ehe most
one or tlrto tests on the car in the time available. He then supplies Joe
wiEh the following test alternatives:

t

2

He can te s t the s teering sy s tem a lone,

He can t,e s E two sy s t,ems - - the fue I and

for a tot,al cost of $13;

at a cost of $9;

e lec t,rica I sy s t,ems - -

He can perform a ttro-test, sequence, in which Joe will be

able to authorize the second test after the result of the
first test is known. Thus, under this alternative, the
mechanic will test the transmission, at a cost of $10,
report the outcome of the test to Joe, and then proceed
to check the differenEial, at an additional cost of $4,
if he is requested Eo do so.

A11 the tests will find a defect in each system tested, if a defect exists.
The test alternatives are sufitrnarLzed in Table 1.

Including the possibility of no testing, Joe now looks over these
test alternaEives and decides Ehat it is worEhwhile at least to consider
test,ing because the cost of each of these tests is significantly less
than Ehe $28 value of perfect information. If all tests had cost over

3
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TabI e I

TTTE TEST ALTERNATIVES

Descript ion

Perforln no tests

Test steering system

Test fuel and electrical systems
(2 s)'stems)

Test transmission
wi th option on testing differentiar for
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$28, then there would be no point in considering a Lesting program be-
cause each gest will generally provide only partial information, and even
perfect information is worth a maximum of $2g. However, it is still not
ctear which test, if any, should be performed. Furthermore, Joe would
like to know the value of the strangerrs information under these new
circumstances. These problems will be approached by drawing a new deci-
sion tree for Joe and a new tree for Nature. The general structure of
the decision tree is shown in Figure 5.

This tree is quite complicated, so rile shalL explain it in gradual
steps. Notice that the first decision to be made is which of the four
test options--T1r T2, T3, To--to follow. rf some tests are made, the
mechanic will report the resutts, and then a declsion about buying the
car must be made. rf the test, To is used, of course, then there will
also be a steP in which the mechdnic is advised whether or not to continue
the test procedure. Let us now examine the siEuatlon resulting from each
test in more detail.

rf test T, is selected, then no physical test is made and Joe is re-
quired to make-a decision about buying the car irmnediately. The decision
tree from this point on looks just like that of Figure 4. rn fact, the
numbers that aPpear in Figure 4 have been reproduced exactLy in Figure 5,
with the exceptlon that only the numbers on the tips of the branches have
been copied because they are sufflcient for our purposes. Indeed, a little
reflection will reveal that regardless of the test program we foLlow, we
must end up wiEh a decision tree tike that of Figure 4. However, although
the numbers on the tiPs of the branches will be the same in all cases, the
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probabilities to be written on the branches will differ in each case. The

probability of the final outcome of a peach or a lemon will generally de-
pend on the findings of the experimentat program until the time the deci-
sion on buying the car musE be made. For example, if Ewo defects have
been found, Ehen the car is a lemon with probability one.

We see that what is now required is a mechanism that will give for
each possible result of the experimenEal program the appropriate proba-
bilities for the ultimate out,come of a peach and a lemon. Naturers Eree
is just such a mechanism. IE is drawn for this problem in Figure 6. In
this figure we have used D, Eo represent the event thaE a defect is dis-
covered in the first test on the car, if such a test is performed, and

D, is used similarly Eo indicate the finding of a defect on a second test,,
if any. The numbers on each branch represent, the condiEional probabilities
of going to each following node, given that the present node has been
reached. The numbers on the nodes represent the unconditionat probability
of occupying that node. The t,ree can then be explained as follows. Nature
first decides wheEher the car is to be a peach or a lemon wiEh probabilities
0.8 and 0.2, respectively, using some random process like Ehe biased coin-
flipping described earlier; thus, p(P) = 0.8, p(L) = 0.2.

Suppose that. the car has turned out to be a peach. Then, using our
convention that a node is labeled by the letters on the branches Ehat must
be traversed to reach it, we are at node P. Now suppose that one major
system of the car is tested. Since the car is a peach, there is probabil-
iEy 1 in 10, or 0.1, that Ehe one defective system will be checked and
found defective; thus p(D1lf ) = 0.1. If Ehis happens, hre proceed to the
node PDr; then, p(PDf) = pfp> p(DllP) = 0.08. On Ehe other hand, wirh
probabiliEy 0.9 no defecE is disco-vered and we reach node pDr'. Suppose,
further, Ehat a second test on another system is now performed. If we

are at. node PDrr then the only defective sysEem in Ehe car has already
been discovered and there is probability 0 of finding another defect and
reaching node PD1D,. IJnder these circumstances, we sha11 be certain to
proceed to node PDlD2'. The overall probability of such event as PD1D,

is determined by multiplying together the probabiliEies on a11 the branches
that lead to thaE Eip of the Eree. Thus, p(PD1Dr) = 0 and p(pDfD;) = 0.08.

If the car r^rere a peach, but no defecE had been found on the first
EesL, then we would be at node PD1 

/. If, now, a second Eest is performed,
it will yield a defect with Ehe probability Ehat Ehe system tested is the
one defective system in the remaining nine, ot L/9. of course, the proba-
bility of finding no defect in this situation is rhen 8/9. The overall
probabilities p(PDiD2) = 0.08 and p(PDiDi) = 0.64 can rhen be calculared.
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If Nature selects a lemon initially, then the same sort of reasoning
applies. The probabiliEy of finding a defect in the first test on a lemon

is equal to the chance of testing one of the 6 defective systems out of
the l0 systems on the car, or 0.6. If one defect has been found in a lemon,
then Ehe probability of finding another is the chance that one of the 5 de-
fective systems among the remaining 9 systems will be inspected, ot 5/9.
rf, on the oEher hand, no defecE is found in Ehe first lest on a lemon,
Ehen Ehe probabiliEy of finding one during the second test is the chance
of testing one of the 6 defective systems among the 9 systems remaining,
or 2/3. The probabilities of all final outcomes perEaining to Ehe lemon
branch of Ehe t,ree are then computed and written on the tips of the
branches.

Figure 6 contains all Ehe information necessary Eo ans\der any ques-
tion about the probabilist,ic strucEure of the decision process. We can
best see this by returning aE Ehis point to our discussion of the test
alternatives in Figure 5.

If the alternat,ive T2r test one system is followed, then Ehe first
requirement is that Joe pay $9 for Ehe services of the mechanic. This
payment is indicated by the -9 on Ehe T, branch. The next event, to take
place is the report of the mechanic on whether or noE he found a defect.
His report is a chance event, so indicated by the solid dot that follovrs
branch T2. The mechanic reports either Ehat he found a defect, D1, or
did noE find a defect, Dl. However, the probability that, each of the
branches D, or D, wifl occur must yeE be determined. But p(Dt) = p(pDl)
+ p(Lo1) since P and L are mutually exclusive and collectively exhaustive
events. By using the results of Naturers tree in Figure 4, we have
p(PDf) = 0.08, p(tDf) = O.LZ and so p(Df) = O.2; of course, p(Df) = 0.8.
These two probabilities are recorded on the branches D1 and Di Ehat fol-
low branch T, to indicate the nature of the chance point. once D, or Di
has occurred, Joe faces a decision Eree like that of Figure 4, bui with
differenE probabilit,ies that will be calculated from Naturers tree in
Figure 6. In particular, we require Ehe probabilities p(p lDl), p(p lDi)
and Eheir complements. These probabilities are easy to obtain because

P(P iDt) = P(PDl)/p(Df) by definition, and we have just calculated both
probabilities involved in this expression. Thus, p(P lDl) = 0.08/0.2 =
0.4, and p(LlDl) = 0.6. These numbers are entered as the probabilities
of a peach and a lemon, respect,ivelyr'on the branches thaE follow node
TrD, in Figure 5. Similarlyr p(p lri) = p(pDi)/.p(of) = 0.72/0.80 = 0.9r
again using Ehe results of Figure 6, and p(L IDr') = 0.1. The branches
for peach and lemon that follow node troi in Figure 5 are labeled with
these probabilities.
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We have now obEained Ehe complete probabilistic strucEure of Ehe test
TZ. The branches emanaEing from every chance poinE have been assigned the

appropriaEe probabilities. It is now poSsible to determine the expected

profit to be obtained by following test TZ. First, we shall compute the
decision to be made if a defect is reported. Tf, in this case, Joe decides

Eo buy the car without a'guarantee, he will earn $60 wiEh probabiliEy 0.4
and lose $100 with probability 0.6. His expected profit is then -$:0. If
he hedges by buying with the guarantee, his expected profiE is 0.4(20) +
0.6(40) = $32. If he refuses to buy, he earns nothing. Since $32 is a

better result Ehan no earnings or a loss, Joe should decide to buy Ehe car
wiEh a guarantee if he finds himself at this situation. His expected re-
turn will be $32, as indicaEed in Ehe square boxes following node TrDr.

On the other hand, if the mechanic finds no defect in Ehe sEeering,
then Joe will be at node TrDf and will again be faced by a decision. If
he buys without a guaranteer-his expected profit is 0.9(60) + 0.l(-tOO) -
$44. If he buys wiEh a guarantee, his expected profit is 0.9(20> +
0.1(40) = $22. Again, he makes nothing if he refuses to buy. Since $44

is Ehe maximum return, he should decide to buy the car without the guar-

antee. The expec ted earnings of $4+ are written a t the end of branch ,r, 
1".

There is but one step remaining in the analysis of test option Tr.
If the mechanic report,s a defect, Joe expecEs to earn $32. If he report.s
no defect, then Joe expects to earn $44. These two events happen with
probabiliEy 0.2 and 0.8, respectively, according to Ehe earlier calcula-
tions using Naturers tree. Hence, the expected profit before the results
of the test are known, but after the test has been paid for, is 0.2(32) +
0.8(44) = $41.60. Since Joe must pay the mechanic $9 t,o reach this posi-
Eion, his expected earnings from test T2r including the payment to the
mechanic, are $4I.60 - $9 = 32.60. This number is entered aE the left of
branch T, to indicate the expecEed profit from following this t,est pro-
gram. Since we have already calculated the expecEed profit of program T,
to be $28, it is clear that Joe is better advised to proceed with the
tesE on Ehe steering rather than to make the decision in the absence of
this information. By so doing he will increase his expect,ed earnings by

$4.00. Of course, it is sEill not proved that T, is the best EesE alter-
native to foltow--we have only shown that it is betEer Ehan T1. It re-
mains to invesEigate T3 and TO.

Before we do so, however, let us return once more to the concept of
the value of perfect, information. We have already shown that, the partial
information supplied by option T2 is more valuable Ehan iEs cost. How

has this revelation affected our evaluation of the strangerts information?
Before the test alternatives were introduced, Joe had calculated Ehat the
expected value of perfect information was $28. As you recall, Ehis figure
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\rras determined by calculating first the amount of money Joe could make if
Ehe perfect information was available to him ($56) and then subEracting
from this quant.ity the amount he could expect to earn in the absence of
this information ($28); thus, EVPI equalled $56 - $28. Now what has

changed in these calculations? The $56 profit to be expecEed by using
perfect information has remained unchanged since the introduction of the
guarantee plan. However, Joers expectation without the strangerrs in-
formation has been increased from $28 to $32.60. Hence, the expected
value of perfecE information has been lowered to $56 - $32.60 = $23.40.

It is interesting to note how we have vacillated about the value of
the strangerrs informaEion. Before the advent of the guarantee plan, it
was $20 and the strangerr s price of $25 seemed too high. Then the guar-
anLee possibility was introduced and the value of perfect informat,ion rose
to $28. At that poinE the strangerrs $25 price seemed like a bargain.
Finally, however, Joe calculated the results to be expected using the test
alternative T2 and saw that the value of perfect information had decreased
to $23.40, a figure below the strangerts price. Consequently, Joe is not,
in a mood to buy at the moment. Although he has not yet evaluated the
value of perfect information under test plans T, and T4r at this point he

is sure that, it cannot possibly be greater than $23.40.

The value of perfect information at each point in the tree will be

shown in Figure 5 in the ovals at pert.inent nodes. In every case the EWt
is calcutated simply by subtracting the expected earnings at each node frorSr

Ehe profiE Eo be expecEed if the perfecE information were available. At
the two nodes that begin and end branch T2t the result of the LesE is not
knovm and so the expected profit using perfecE information is sti1l $56.
Thus the node to the right of branch T2 bears the EVPI $14.40 since $56 -
$41.60 = $14.40. PerfecE information is worth $9 less than it vras to the
right of branch T^ because of the payment Eo the mechanic.

The calculat.ion of the value of perfect informaEion is performed in
the same way when the test resulE.s are known, buE in this case, Ehe ex-
pected profit from using the perfect information is different. Consider
the situation where a defect has been reported. Joe knows thaE if the car
is a peach he should buy it without the guarant,ee and make $60, and that
if it is a lemon he should buy it with the guarantee and make $40. In
the absence of any test result, the sEranger would report a peach with
probability 0.8 and a lemon with probability 0.2, so that Joers expected
profit would be 0.8(60) + 0.2(40) = 956. However, nor^, thar a defect has
been reported, the probabilities of a peach and a lemon have changed to
0.4 and 0.6, respectively. Thus, the expected profiE using perfect in-
formation is now 0.4(60) + 0.6(40) = $48. It is from this quantity that
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the expecEed value of staEe TrD, r $32, must be subt.racEed in order Eo

obtain Ehe EVPI of $16 entereil in the oval above node tZrt.

Similarly, rrre see that if no defecE had been reporEed, the proba-
bilities of peach and lemon woutd be 0.9 and 0.1, and the expecEed profit
of using perfect informaEion would be 0.9(60) + 0.1(40) = $58. When we

subtract the $44 value of node TZD|, we obtain Ehe $14 figure for the

EWI EhaE is perLinent to EhaE node.

There is one o ther observa tion \^Ie shou ld make .

information at nodes TZD' and ,2,i are $f6 and $14.

The values of perfect,
The p robabi li cie s of

arriving in each of Ehese sEates is 0.2 and 0.8, respect.ively. Conse-

quently, the expecEed value of what the expected value of perfect infor-
mation will be af ter the mechani.c report is 0.2(16) + 0.8(fa; = 914.40,
in agreement with our previous value for this quanEity entered in Ehe oval
at node Tr. Thus, it is possible t,o compuEe Ehe expected value of perfect
information aE each poinE in the Lree by using only Ehe values of perfect
information pertinenE to the final decision on buying the car and the prob-
abilistic sEructure of the tree. We shall have more Eo say of Ehese quanti-
ties later.

Let us nohr move forward to an analysis of EesE option T3. In this
case, as you recall, Ewo sysEems on the car--the fuel and electrical sys-
Eems--are subjecEed to tesE and then the result,s of both Eests are re-
ported to Joe. The possible reporEs are that 2, L, or 0 defects l^rere

found. These Ehree events are represenEed by Ehe Ehree branches, DLDZ,

O,Oj + oio2, and Dioi ttrat are drawn to the right of node T, in the Eiee

of Figure 5. Note that once more we have wriEten under branch T, Ehe

amount to be paid Eo the mechanic for performing Ehe Eests. When the

mechanicrs report is known, Joe must make a decision on buying Ehe car,
using a decision Eree similar to thaE shown in Figure 4. The expecEed

earnings at the tips of the t,ree remain the same, but. once more l^re re-
quire a new assignment of the ultimate probabilities of a peach and a

lemon as a result of Ehe mechanicrs report. These probabilities may be

found from NaEurers tree in Figure 6. The probabilities necessary are:
p(o1ol), p(DrD/ + DiD2), p(D iri>, p(p lDrDz)r- p(P lD LD; 

+ DiD2) and

n(fpiOj). By using the numbers on the nodds of Nature's tree and the

basic relaEions of probability Eheory, we obtain the following results:
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p(DID2) = p(PDlD2) + p(LDIrr) = O + I/15 = L/L5 = 0.O62

p(Dro)* DiD2) = P(PD,D;> + P(LDrr;) + p(Porrr) + p(l,or.rr)

= 6/75 + 4/zS + G/zS + 4/TS = 4/LS = 0.266

= 48/75 + 2/75 = 2/3 = 0.667

o
=-=OL/L5

)
p(Plo,.r, + or.or) = [p(orr.r;) + p(po'rr))tp(rr,r' + ,i,

r 6/zs + 6/Tst-' ]=3/S =0.6L 
4/Ls

p(plri ,;) = p(pp' ,r) /p(DiD;) = # = z4/2s = o. e6

2

Thus, we see that after Joe has cormnitted himself Eo the test, there are
probabilities of 0,067, 0.266, and 0.667 that the mechanlc will reporr 2,
1, or 0 defects. These numbers are entered in Figure 5 on the three
branches leaving the chance node Tr. rf two defects are reported,
p11 1OtO2) shows that Joe will make-hls decision with rhe sarisfying, bur
disappointing, knowledge that the car is certain to be a Lemon. This ln-
formaEion ls indicated on the tree by the 0 and 1 entered on the branches
P and L that origlnate in chance nodes T3DlDrn, T3D1D2G, and TrDrDrR.
The expected earnings from making each of thE aecisiois n, c, ir,a il. are
-100, 40, and 0. consequently, the most profitable act for Joe is to buy
Ehe car with the guarantee, even though it is a lemon, and thus earn the
$40 profit. This preferred decision is shown by the solid arrowhead on
the branch G following node T3D1D2; the profit of $40 is recorded in the
square box above that node.

The situation when only one defect is reported is very slmilar. In
this case, we observe from p(r lolui + ofo2) rhat the probabillries of a
peach and a lemon are 0.6 and 0.4. Theie probabilities appear on the p

and L branches at the ends of the sub-tree that follows node Tr(D ry +
oior). The expected earnings of the three act,s B, G, and R are 0.6(Go) +
0.4(-100) = -$4; 0.6(20) + 0.4(40) = 928; and g0. once more, rhe hlghesr
expected profit will result if Joe buys the car wlth the guarantee. NoEe
that he does thls even though the car Ls sElll more llkely to be a peach
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than a lemon. Again we record the expected profit of $28 in Che square

boxes over the decision node and indicate the preferred decision wiEh a

solid arrowhead.

If no defecEs are reported, the car is almost certain to be a peach;

Ehere is only a 4 percenE chance of its being a lemon. When we comPute

the expected profit of Ehe three decisions following node T, ,iri, using
Ehe probability 0.96 for a peach and 0.04 for a lemon, we find EhaE buying

Ehe car without a guarantee pays $53.60, buying it wiEh a guarantee Pays

$20.00, and not buying it at all pays nothing. Thus, Joe is best advised

to buy the car without Ehe guarantee, as represented by Ehe solid arrol^I-

head on rhe B branch following node TrDfD I and by the $53.60 entered in
the square box over that node.

We have now calculated the optimum decision and maxinnlm expected

earnings for each possible mechanicrs reporE under test plan Tr. As we

know, chance determines the actual reporting, but we also have learned

the probabilities of the mechanicrs reportLng 2, L, or 0 defects, and

have entered them in the decision tree. The expecEed profit to Joe when

he is waiting to learn the test results is Ehus 0.067(40) + 0.266(28) +

0.667(53.60), or $45.87. 0f course, in order to reach a situation with
Ehis expected value, Joe had to pay out $13. Hence, his expected earnings
from test T, are $32.87. Since this number is higher than Ehe expected

profit under either the policy of no test.ing or of Eesting only one sys-
tem, the option of EesEing two sysEems for $13 is the most favorable yeE

evaluated. However, its margin over test plan T, is only $0.28.

!,Ie mighE, at this point, examine once again the value of the perfecE

information offered by the stranger. As we found earlier, this quantity
can be calculated at each node of the decision tree simply by subt,racting
from the expected earnings with perfect information the expected earnings
at. that node as given in the pertinent square boxes. Accordingly, since
the expected profit using perfect information is sti1l $56 before the test
results are known, the value of perfecE informaEion when Joe has decided
to use Eest T3 is $23.13 (i.e., $56 - $32.87) before he has paid the me-

chanic, and $10.13 (i.e., $56 - $45.87) after Ehe mechanic has received
his $13.

However, after the test results have been reported, the expected

profiE using perfect informaEion is different from $56. Remember that
Joe can make a profit of $60 if he knows the car is a peach, and of $40

if he knows it is a lemon. From our tree \^re see that the pair [p(P)rp(L)]
takes on the values (0r l), (0.6,0.4), and (O.96 r0.04) according to whether

2,1, or 0 defecEs were discovered. Joers expected profit using perfect
information is Ehus $40, 552, or $59.20, depending on the defect situation.
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Since we have atready calculated the expected vatues of these states to
be $40r $28, and $53.60 without, perfect information, the EVprrs for rhem
must be $0, $24, and $5.60, respectively. As before, if we weigh these
Lhree numbers with the respecEive probabilities of zr 1, or 0 defects
being reported, namely, 0.067, 0.266, and 0.667, we oblain the figure of
$10.13, formerly compuEed as the value of perfect informaEion aE node Tr.

An observation of particular importance may be based on these num-
bers: Although we would expect the amount Joe would be willing to pay
the stranger for his perfect information to decrease after he is conrnitted
to a test plan, it is not necessary for this situation to obtain for any
experimental ouEcome, buE only on the average. Thus, after Joe has de-
cided to follow tesE plan T3r he establishes that the value of perfect
information to him is only $23.13. However, if the mechanic should re-
port that he had found exactly one defect in the car, Joe now notices
that the value of perfect information has increased to $24, a net gain
of $0.87. This means thaE if Joe had decided on T3r and the strangerts
price for his information was $23.50, Joe woutd refuse the information
and go ahead with the test, but then willingly pay g24 for the same in-
formaEion if the mechanic reporEs only one defect.

This result is really not Eoo surprising when r^re realize that Joe
had already considered the change of being placed in a siEuation where
the expected value of perfect information is $24 when he made his optimum
decision at node T3. I.Ihen Joe conEracted for test plan T, he had to con-
sider how every possible outcome of the test--2, 1, or 0 defects--would
affect his state of knowledge abouE the Eype of car on the lot. rf no
defects were found, then Joe would be very confident, that Ehe car is a

peach and would be willing to pay only $5.60 to remove his remaining un-
certainty. If two defects l^rere found, then the car is surely a lemon and
the stranger cannoE tell Joe anything of value. However, if the mechanic
rePorts one defect, then Joe does not expect to make any more money from
this point, into the future than he would have made if no tests whatever
had been performed; $28. rt is important to note that the value of per-
fect information is $24 in this situation rather than Ehe $28 figure ap-
pricable in the absence of tests. This difference is, of course, due Eo

the fact that the probability that the sEranger will discover that the
car is good has fallen from 0.8 to 0.6. Thus, we see that although the
expected value of perfect information cannot increase on an average value
basis in such trees, it is possible for it to increase for some of the
chance outcomes.

Now let us turn to the evaluation of EesE plan To. under this op-
tion the Eransmission is tested for $10; when the outcome of this test
is reported, it is possible to have the mechanic test the differential
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for an additional cost of $4. Such a test procedure is representative
of a large class of experimenEal plans which r^re may call sequential tests.
Such processes are characterized by the opt,ion to decide whether or not
to continue tesEing afEer Ehe resulEs of rhe initial tests are known.

The decision Eree pertinent to T4 is shown in Figure 5. The develop-
ment of this tree is once more most easily understood by considering the

chronological sequence of the decisions that musE be made and their out-
comes. The payment of $10 to initiate this test plan is indicated by a

-10 under Ehe branch ,+. The next event that will occur is the report
of the mechanic about whether he found a defect in the transmission. Thus,

we establish a chance poinE that generates branches U, and Ol. Regardless
of whether or not a defect has been found, Joe must make a decision on Ehe

conEinuation of the Eest. His two possible actions, continue on to test
the differenEial, and stop testing, are shown by the two branches named

CONTINUE and STOP that leave decision nodes T*D, and r+ri,. Both of the
CONTINUE branches are labeled -4 Eo indicate the cost <jf requesEing Ehe

testing of the differential.

If Joe decides to stop the tesEing program after hearing Ehe report
on Ehe t.ransmission, he will have to make his final decision on buying the
car having only the information thaL either a defecL r^ras or \^ras noE found.
But these two situations were also encounEered under test plan T, after the
mechanic had made his report. Since Joe finds himself in the same posiEions
they must have the same value to him. (Remember thaE the money paid out
for the performance of Ehe test is a fixed cosE aE this point and so does

not affecE the fuEure expected earnings.) Consequently, we should enter
in the Eree at, the tips of the T4D, STOP 

,and 
T4Di STOP branches the same

values to be found at nodes TrD, a.nd T2Dl, respectivety. tle shall denoEe

these values by v(TrDr) and 
"(trbil; 

,6 s'ee that v(TrDr) = $32, v(rrOi) =

$44.

The situation if Joe decides to continue tesEing after hearing the
mechanicrs repor! on his first test is analogous but not identical. If
the CONTINUE option is followed, the next event to take place is the re-
port by the mechanic on whether he found a defect on his second tesE.
Thus, we create chance points at the T4D1 CONTINUE and T4Di CONTINUE

nodes and D, and D/ branches emanating-fiom them. ttowevdr] when we re-
ceive the second report from the mechanic, our Lotal information is that
in two tests 2, L, or 0 defects have been found in Ehe car. Thus, \de are
in the same positions as we were under test opt.ion T, after the mechanicrs

report was known. The appropriate value for 
^T4D1 

CONTINUE D, is, therefore,
v(TrD1D2) = 40; for T4D1 CONTINUE Df and T4Di CONTINUE D2 ir is v(TrDP; +
DiD2) = 28; and for T4D{ CONTINUE Di it is v(T3DiD;> = 53.60. These numbers
have been placed at the pertinenL tips of the TO test plan tree.
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lJe have now been able to evatuaEe the terminal points of Ehe TO tree
by identifying them with nodes that had been considered earlier. Ii re-
mains to place the relevant, probabilities on the chance nodes in thls
tree so that, we can proceed to make a judgment about the utility of this
option. once more we find that Naturers tree of Figure 6 supplies the
probabilistic information we require. The probabilities of the branches
D1 and Ui ttrat leave node TO have already been computed in the tree for
test plan T2; they are 0.2 dnd 0.8. The only remaining probabilities

1.t" 
p(r? l?l] ,iu n{oj[r) ro so ro rhe righr of node r4D1 coNrrNUE and

the probabilities p(D2lDi) and p(DilDi) to go in rhe 
"ilaiogo.r" 

place on
the D,/ fork. our tasf is'again sifipliried by the fact that the sum ofI
all probabilities emerging from a chance node must be 1. From the defini-
tion of conditional probability rile can write:

p (Dz lD l) = p (o 
t, z) lp(D r)

and

and

p(P

n(o, I ,i ) = p(D' ,r) /p(ri )

From Figure 6 we find

p(Dzlrr.) = +"
n(D, )

n(nOarr) + n(t o,,r)

n (nOr rr) + n(t or rr) + p(PDrr? + n(l,orD;>

p(PD'rr) + p(Lo'rr)

p(PO'rr) + p(trir) + p(po'r;) + p(Lp'r;)

L/L5

-
L/5 = L/3

,lop =g?
n(oi )

2/L5

4/s = L/6

Of course, most of the probabilities in this calcuLation were computed
earlier in the evaluatLon of test, options T, and Tr. llowever, their rep-
eEition at this time serves to emphasize thE basic-role of Naturets tree.
Finally we have

p(D'f rr) = I - p(Dz lrr.) = 2/s

p(D'lri) = I n(o, lri) = s/6

and
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When the four conditional probabilities we have just found are entered in
their appropriate places in the tree for t.est option T4r we are ready Eo

proceed wiEh Ehe expected value compuEation.

At node T4Di CONTINUE Ehere=is a 1/3 probability of Ehe value 40 and

a 2/Z probability of the value 28. The expected value of Lhis node is
thus l/3(40) + 213(28) = $32, as indicateil in the square box. The node

T4D1 STOP also has a value of $:Z; however, in order to Teach node TOD,

CONTINUE, $4 must be paid and so when viewed from the left end of the T4D,

CONTINUE branch, this action is worth only $28. ConsequenEly, Joe is best
advised to take the st,op branch aE this juncture and thereby make the
value of decision node TOD, equal to $32. Such a decision has been indi-
cated on the tree.

AL node T Di CONTINUE we see a 1/6 probability of the value 28 and

a 516 probabilit! of Ehe value 53.60. The expecEed value of node TOD/

CONTINUE is 1/6(28) + 5/6(53.60) = $49.33. Even after the $4 expense for
continuing the test has been included, Ehis act, still has an expected
value of $45.33, an amount slightty in excess of the $44 value to be ex-
pected if branch T4Di STOP is followed. The solid arrowhead and the
number in the square-box at node TODI correspond to Ehis decision.

At chance node TO Ehere is an 0.2 probability of the mechanicts re-
porting that he found a defect on the first test and Ehus causing us to
expect a profiE of $32. lJith probability 0.8 we shall expect earnings of
$45.33 because he has reported no defect. Therefore, the expected value
of being at decision node TO is 0.2(32) + 0.8(45.33) = $42.66. Since iE
is necessary to pay $10 for the first test, the expected value of tesE
plan TO is $32,66, as shovm in the square box Eo the left of branch TO.

The expected value of perfecE information can be easily calculated
for this test plan. A11 that is necessary is Eo copy the EVPI numbers
corresponding to the value expressions at the tips of the T, tree. For
example, the EVPI in Ehe oval at node T3D1DZ is 0; Ehis figure is placed
in Ehe oval at, the node T4D1 CONTINUE D, where v(TrDrD2) has already
been copied. When this has been done for all six terminat,ing nodes of
the TO Eree, the EVPI of all other nodes in the tree can be obtained by
Eaking expected values of these quantities at chance nodes and taking
the route indicaEed by Ehe solid arrowhead at decision nodes. The solid
arrowhead will always correspond to the acE that minimizes Ehe expected
value of perfect information. To illustrate, at node T4D1 CONTINUE, the
value of perfect information will be 0 if a second defect is report,ed and

24 if noL. l,Ieighting with rhe (L|3, 2/3) probabilities of these events,
we obtain $16 at this node, or $20 before the $4 cost of the second test
is paid. At node TOD' STOP the expecEed value of perfect, information is
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We have now evaluaEed all four test plans. From Figure 5 we can see

that the expected profits from options T1r Tz, T3, and To are, respectively,
$28, $32.60, $32.87, and $32.66. Since ff1r.,'T3r-thar of-Eesring rwo sys-
tems, has the highest expected profit, it is the one indicated by a solid
arrowhead afEer the init,ial decision node. However, the evidence of the
Eree should be interpret,ed not to mean Ehat T3 is Ehe best, test plan, but,
rather that any of the plans T2r Ta, Tr* will be slightly less than $5
beEter than the option of no tesEiig, on the average. The big payoff is
not in the selection of a part.icular test plan, but. rather in the decision
to do some testing.

$16--therefore, the STOP alternative should be selecEed and the EVPI at
node TOD, is $16. The reader should finish the calculation of the EVPITs
in the T4 tree to saEisfy himsetf that the entries in Figure 5 are correct.

LeE us review these test plans to show their operational character.
If Joe does no testing, he will buy the car without a guarantee. If he

follows plan Tr, he will buy the car r^rith the guarantee if a defect, is
found in the system tested and he will buy it wiEhout the guarantee if
no defect is discovered. Our evaluation of plan T, shows that Joe should
buy the car withouE a guarantee only if no defects are found in the two
systems tested, and buy it with the guarantee otherwise.

Finally, Lt T.4 is chosen, Joe should stop further testing if a defect
is discovered on the first test and continue testing otherwise. If a de-
fect is found in the first test on the transmission, then Joe should buy
the car r^rith a guarantee, as we see from the decision at node TOD1. How-

ever, if Ehe Eransmission is not defective, then depending on whether the
further test of the differential does or does not reveal a defecE, Joe
wili either buy the car with or without the guarantee, in that order.
This is determined by locaLing the ultimate outcomes of the T4Di CONTINUE

D, and T4Di CONTINUE D; branches in rhe T, rree. Ir is inreresiing ro
note that the reason the nodes T4DI CONTINUE and T4D1 STOP have the same

values is that even if the tests were continued at this point, Joer s de-
cision would be to buy the car with a guarantee regardless of how the
second test came out. Since the test cannot affect the decision, it is
not worthwhite to pay anything for the privilege of making it. The tree
implies just this result.

We have now seen that after all the catculations have been performed,
the final decision offers no real problem. Since Eest plan T^ is most
favorable by a small amount, Joe will probably decide to fo113w it. The

expected value of perfect information is $23.13 when plan T, is usedg

therefore, the sErangerts $25 price for this information once more looks
too high. Unless the price is lowered below $23.13, Joe should proceed
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with having the fuel and electrical systems tested aE a cost of $13. He

will buy the car without the guarantee only if no defects are found and

with it otherwise. Joers expecEed profit from this plan of acEion is
$32.87, an increase of $4.87 over what he expected to make without con-

sidering tesEing. 0f course, by Ehis Eime Joe may have decided Ehat he

would rather walk than do all this calculation!

The stranger with Ehe perfect information has witnessed a good deal

of vacillation in what Joe is willing to pay him. The EVPI was $20 ini-
tia1Ly, $28 after Ehe guarantee was introduced, and $23.13 under test
plan T3. From the strangerts point of view, the guarantee was good news,

but the test options were bad news. However, even if Joe decides to
follow Trr the stranger can still sell his knowledge to Joe by reducing

its price below $23.13. Joe will realize an increase in profir equal to

the difference between $23.13 and what he pays the stranger.

LeEr s suppose, however, that Ehe sEranger had st.epped away by the

Eime Joe had completed his deliberations and that when he had reappeared,

Joe had already paid the mechanic the $13 necessary to carry out test
plan T3. Even at this point, the sEranger can make some money if he con-

siders this situat,ion carefully. His inunediate problem is thaE: should
he offer his perfecE information to Joe at a reduced price before or afEer
Joe has received Ehe Eest results from Ehe mechanic, and whaE should his
price be? Since Joe already has paid the mechanic, the EVPI Eo Joe is
now $10.13 according to Ehe figure in the rounded box above node T3; Joe

will presumably pay any amount, tess Ehan $10.13 to get perfect informa-
tion. Now the probabilities that the mechanic witl reporE 2, 1, or 0 de-

fects afa,1/15, 41L5, artd 2/3. In facE, iE is on the basis of these prob-
I

abilities and the-EVPI of 0, 24, and 5.60 recorded at nodes T3Dt

+ DiD2) and TrDfi i rnat Joe established the EVPI aE node T3 t; b

D2, T3(DlD

e $ I0. 13.
2

However, 1et us suppose that the sEranger had determined the one piece of
information that Joe does not have; namely, he has found ouE whether or not
the car is a lemon simply by observing the serial number. Using Ehis infor-
mat,i-on, the st,ranger can calculate new probabilities of the various reporEs

of the mechanic according to whether the car is a peach or a lemon. He will
Ehus obtain an expected value of EVPI after the report is known that hril1 be

different from Joers estimate of $10.13. If the sErangerrs estimate is
higher than Joets, he will do better in his expected value by not, offering
his perfect information unEil the outcome of the tesE is known. On Ehe

other hand, if Ehe strangerrs estimate is lower than Joers, he should offer
his information imnediately.

The calculations involved are quite sEraightforward. If the stranger
determines that the car is a peach, then the three probabiliEies that
should be used to weigh the numbers 0, 24, and 5.60 should be P(D1D2 lP),
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p(DrDi + DiD;1r1, ana ploioi lrl. rf rhe car is found ro be a lemon, rhen
rhe-a[propiiite probabiliiies are p(DtDz ll), p(DtDi + oiorfl), ana
p1o{oi h). These probabilities are c6mfiuted frofr fraturE'i tr". of Figure 6

as follows:

p(DrD2 
I P)

p (PDr r) 
o

=-=-=Op(P) o.8

R(Dro' P)

p(PDro;) + p(PP'rr)
O.O8 + O.O8

0. og
+ D'D Ir 2' n(n;

p(PDiD;) 
o.64p(o'D;lP)=ff=;, =4/s

p (LDr o r)
p(Dr D2 I L)

s/7s
o.2 = L/3

p(Lr,.ri) + p(Lo'rr)
,(rrr' + ,io, 8/7s

=-=8/Lso"2

p(t,)

lrl
n (1,1

p(t.o;oi) 
2/tsp(o'D;ll) = p(L, = # = z/ts

The expected value of the expected value of perfect information that will
exist after the results of the test are known is computed for the states
of knowledge of Joe, of the st,ranger when the car is a peach, and of the
stranger when Ehe car is a lemon in Table II.

The important thing to note is that the stranger expects the EVpI to
be only $9.28 after the results of the experimenC are known if the car ls
a peach, but $13.55 if the car is a lemon. rn other words, considering
that Ehe EVPI of perfect information is $10.13 in Joets eyes, the stranger
expects the EVPI to be lower than Joers when the results are reported if
the car Ls a peach and higher tf it is a lemon. rE is, therefore, prudent
for the stranger to sell the perfect informatlon to Joe before the mechanic
calts for, sayr $10 if the car is a peach, but to r{rait until after the me-
chanicrs report before offering it if the car is a temon. since p(o1D2) =
p(D1D2lP) x p(P) + p(D1D2 lL) x p(L), etc., and since p(P) = 0.8, p(L)' '= O.2,
t0.13 = 0.8(9.28) + 0.2(13.SS). That is, the expectation of the EVPI fronr
Joers point, of view is the expecEed value of the EVPI from the strangerts
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Table I I

The expected value of what the expec ted value

information will be when the results of test

Probabi I i t ies of the Report as Seen by

of perfect
a re k nowrl .T

3

EVPI of
Re por t

o

24

p(DrDz)

p(DtD'

= 4/L5

p(Dir;)

L/L5

Joe

The stranger wtren

the car is a peach

P)

The stranger when

the car is a lemon

L/3

L)

2/ Ls

13.55

o P(D,D2 I L) =

D2 lP) p(DrDz + ,i,

= 8/L5

4/15 p(Dir; 
I 
tl =

Trvo defects, D D o(orr,
2

)DDr
12

I

One defect,
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point of view. This compuEation provides E.he essential reconciliation
between Ehe viewpoints of che buyer and seller of perfecE information.

However, Eo show thaL our problem sti1l has hidden facets, we sud-

denly reaLize that a competiEive-game aspect has appeared. If the stranger
offers his information before the tesE results are known, and if Joe knows

that the stranger has reasoned according to Ehe previous paragraph, then
Joe is certain that the car is a peach. Similar1y, if Ehe offer is made

after the test, Joe is cerEain EhaE the car is a lemon. In either case,

Joe will have received perfecE information without paying for it. This
forces Ehe stranger to randomize his strategy, and so on and on and on.

[Je shall give up t,rying Eo help Joe at this point.

WelI, at last, Joe is driving away in his Spartan, having used test
plan T, and abided by the results. A mosE human quesEion is: Did he make

a good decision or didnrt he? The answer t.o this question does not depend

at all on whether his new car is actually a peach or a lemon. lrle must make

a distinction between a good decision and a good ouEcome. Joe made a good

decision because he based it on logic and his available knowledge. Whether

or not Ehe outcome is good depends on Ehe vagaries of chance.
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1. Introduetion

The rapld growth of elecfronlc cooputallon continues !o challenge ourability to coneeptuallze and descrlbe the world around us. Mathenattcal
tools and fornal descrlptlons serve poorly as a conutmlcatlon devlce wlth
the naJority of people not tralned ln nor used to mathenatlcal neans of
expression. Iet virtually everyone has lnforuatlon useful tn the solution
of his own problens or the problens of others lf only lt could be tapped.

The subJect of fhls paper ls a ner foru of descrlptlon, the lnfluence
dlagran, that ls at once both a formal descrlpglon of the probleo that can
be treated by conpuiers and a representatlon easlly undersiood by people lnall walks of life and degrees of technlcal proflcllncy. It Ehus forns a
bridge between qr:alltallve descrlptlon and quantltatlve speclflcatlon.

The reason for the power of thls representatlon is that tt can serve
at bhe three Ievels of speclfleatlon of relatton, fr:nctlon, and ntmber, andin bot,h deternlnistlc and probabtllstlc cases. In the deteruinlsllc case,
relatlon Deans thaL one variable can depend ln a general ray on several
others; for exanpre, proftt is a functlon of revenue and cost. At the
level of functlon we speclfy the relallonshlp; nanery, that proflt equals
revenue olnus cost. Flna1ly, at the level of nuuber, we speelfy the Rla€p-
ical values of revenue and cost and hence deternlne the nrnerlcal value ofproflt.

In the probablllstlc case, at the level of relatlon we uean that glven
the inforoatlon avallable, one varlable ls probablllstically dependent on
certaln other varlables and probablllstlcally lndependent of still othervariables. At the level of frrnctlon, the probablllty dlstrlbutlon of each
varlable ls asslgned condltloned on values of lhe varlables on whlch lt
depends. F1nalIY, st t,he leve1 of ntuber, uncondltlonal dlstrlbutlons are
assigned on a1l varlables t,hat do not depend on any other varlable and
hence deterulne all Jolnt and narglnal probablrlty dlstrlbutlons.

As an exanple of the probabl.llstlc case, re ulght assert at the level
of relatlon that lncme depends on age and educatlon and that educatlon
depends on age. Next, at the level of fr.rnctlon re sonld asstgn the con-
ditlonal distrlbutlon of lncome glven age and educatton and fhe dlstrl-
butlon of educatlon glven age. Flnally, at the rever of ntmber, re rould
asslgn the uncondlblonal dlstrlbutlon on age.

The successlve degrees of speclflcallon can be nade by dtfferent
lndlvlduals. rhus, an executlve oay loow that sares aepend ln sme ray
on prlce, but he nay leave to others the probablllsttc descrlptloa of the
relattonship.

Because of lts generallty, thc lnf,Luencc drrgra[ ls an lnportant
fool not only for declston analysls, but fon aay forual descrlptlon of
relattonshlp and thus for all nodellng rork.
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rn bhe present paper, we shall focus on the probablrlstic use of
lnfruence dlagrans slnce the deternlnlstle use is a speclal, but
lnportant 

' 
case of the probabllistlc. l{e now proceed to developnent of

the lnfruence diagran concept, to exanlnat,lon of its properties, and to
lllustratlon of lts use.

2. Probabillstlc Deoendencer

One of the nost perprering aspects of naklng declslons under
uncertainty ls the problen of representlng and encodlng probabillstlc
dependencles. A probablllsLlc dependency ls one that irises as a result
of uncertalnty. For exaople, lf a and b are lcrorm variables and e = a +
b, then lt ls clear that c depends on both a and b, both in a vernacular
sense and ln a nathenattcal sense. However, suppose a is known and b ls
uncertaln. Then c ls probabillstlcally dependen! on b but not on a. The
reason ls that knorlng the speclflc value of b lells us sotrethlng new
about c, but there ls no such posslbllity wlth respect to a.

3. Probablllstic Indeoendence

ProbablLlstic independence, like bhe asslgnlng of probablllty
Itse1f, depends on the state of lnfomatlon possessed by the assessor.
LeE x, y, and z be aleatory state varlables of interest, whieh can be
eiiher contlnuous or discrete. uren txlsl is the probability
dlstribution asslgned to x glven the state of lnfornation S. Two
varlables x and y are probabllisflcally lndependent glven the state ofinfornatlon S lf

(x,yls) = {xls} trlst

or equlvalently, if {x lf ,S} = {x lS}.

4. Exoansi.on

Regardless of whether x and y are probablllstlcally independent, we
can nrtte

tx,ylsl = t*ly,S) {rls}

= tylx,S) txfs)

rThb enttre dlscusslon apprles as well to events as to varlables.
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We call this the nchain rule of probabllltlesr. Note that for three events
there are slx posslble representatlons:

{x,y,z lS} = [x ly,z,S] {r lz,S} tz ls}

= [x ly,z,s] iz lv,s] (r lst

= {y lx,z,S} {x lz,S} (z 
lS}

= {ylx,z,S} {zlx,S} txlS}

= {zlx,y,S} {xly,S} tyls}

= {zlx,y,S} {ylx,S} txlS}

For n variables there are n! posslble expanslons, each requirlng the
assignoent of a dlfferent set of probabilitles and each logically equtva-
Ient lo the resE. However, whlle the assessments are logically equivalent
there nay be conslderable dlfferences in the ease wlth wfrlcn the declslon
maker can provide then. Thus the questlon of whlch expanslon Eo use in a
problen is far frou trlvlal.

5. Probabllltv Trees

Associated wlth each expanslon ls a probabillty tree. The expanslon

tx,y,z lSl = {x lr,z,S} [r Iz,s] t z lS]

lnplies the tree shorm in Flgr:re 5.1. The tree ls a suceessLon of nodes
with branches enanating fron each node to represent dlfferent posslble
values of a varlable. The flrst asslgnment nade ls the prouaUillty of var-
lous values of z. The probablllty of each value of y ls asslgned condl-
tioned on a partlcular value of z, and placed on the portlon of Uhe tree
indlcated by that value. Flnally, the probabllttles of varlous levels of x
are asaessed glven partlcular values of z and y and placed on the portlon
of the tree speclfled by Bhose values. llhen thls has been done for all
posslble varues of x, y, and z the tree ls conplete. The probablllty of
any particular path through the tree is obtalned by urrltiplylrU the values
along the branches and is [x,y,zls]. Notlce that the tree conventton uses
smaIl clrcles to represent chance nodes. If re wlsh to focus on the suc-
cesslon ln the tree rather than the detalled eonnectlons, w€ can drar the
tree in the generlc foru shown ln Flgr:re 5.2.

6. Declslon Trees

If a varlable ls controlled by a declslon uaker, lt ls represented ln
a tree by a declslon node. Thus lf y were a declslon varlable, nture 5.2
cottld be redram: as Flgrrre 6.1. Thls tree stales that the decislon naker
ls lnitially uncertain about z add, has assigned a probablllty dlstrlbutlon
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rly, t, S

Ylz, S

zlS

FIGURE 5.I A PROBABILITY TREE

zlS ylz, S rly, t, S

FIGURE 5.2 A GENERIC PROBABILITY TREE
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{r lll. to it.. However, he w111 lnow z at lhe ti.ae he nust set y, the
decislon variable. Thls node ls represented, llke alr declslon nooes, by asoall square box. 

.onc.e z and y are given, the declsion naker wirl stlll beuncertaln about x; he has reprisented thls unceit"iniy-ur-i:clr,r,rl.
Notice tha! a declslon tree lnplles both a partlcular expanslon of the pro-bablrity assesstrents and a staienent of the lnfornatlon avallabre when adeclslon is uade.

f.sI Y l,rr,.,sl

FIGURE 6.1 A GENERIC DECISION TREE

7. Pt"obabllj.tv Assisnment for Decision Trees

The maJor problen wilh declslon trees arlses fron Ehe flrsL of these

characterlstlcs. The order of expanslon requlred by the declslon tree ls
rarely the natural order ln whlch bo assess the dectslon aakerrs lnfor-
oatlon. The decision tree order ls bhe sinplest foru for assessoent only
when each varlable ls probablllstlcally dependent on all precedtng aleatory
and dectslon variables. If, as ls usually the case, nany lndependence
assertlons can be nade, assess[ents are best done tn a dtfferent order tlon
that used 1n the declslon tree. Thls neans that we flrst draw a probabl-
llby tree in an expanslon foro convenlent to the declslon naker and have
hin use thls tree for asslgnnent; lt ls called a probablllty asslgnnent
tree. Later the lnfonnatlon ls processed lnto the foru requlred by the
declsloq tree by representlng lt ln one of the alternatlve expanslon
orders.' This ls often called nuslng Bayesfs Rulei or trfllpplng the Bree.i
It is a fundanental operatlon peroltted by the arbltrarlness ln the
expanslon order.

Consider, for exanple, the declslon tree of Flgrrre 6.1wlth one

additlonal aleatory varlable v added, as shorm ln Flgr.lre f.1. tle lnterpret
z as e test result that w1ll becme lrromrr X aS our declslon, x as the
outcooe varlable to which the test ls relevant, and v as the value re shall
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zls vl lt'''t'Sl Ylx, y, t, S

FIGURE 7.1 A FOUR NODE DECISION TREE

recelve tf the tes! lndicates z, ue declde y, and x ls the varue of the
outcone vartable. Often y wl1l not affect x in any lray, even though y
affects v; we write

tx ly,z,S) = [xlz,S]

to represent this assertlon.

Wlth thls independence assertion we have the tree shown tn Flgure 7.2.
This lree requlres the speclflcatlon of IzlS] ana txlzrs]: the probablllty
of various test results and the probablllty of vartous outcones glven test
results. But typleally ln sltuatlons of thls klnd, the declslon oaker
woqld prefer to assign dlrectly the probabllltles of dlfferent outcones
tx lS) and then the probablllties of varlous test results glven the out-
eome, (zlxrsl. rn other words, he would prefer to nake hls assessnents
ln the probablllty Bree of Flgure 7.3 and then have theo processed !o f1t
fhe declslon tree of Figure 7.2. Slnce

tx ls) tz lxsl = {z lS} tx lzs} = (x,z 
lS}

thls ls no Eore than chooslng one expanslon over the other. Ttre exact
processlng requlred for lhe declslon tree ls then s"'n'natto[ r

t(zls) = llzlx,sl (xls)
I

and d lvlsion ,

,s) t x ls)
tzlslt* lz,S) =
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zls rlz, S

FIGURE 7.2 A FOUR NODE DECISION TREE GIVEN THE ASSERTION
THAT y WILL NOT AFFECT x

xlS zlr, S

FIGURE 7.3 THE PROBABILITY ASSIGNMENT TREE

l Y vlx. y, z, S

l
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Recall, however, that thls whole procedure was posstble only because
variable x did not depend on the declslon varlable y.

8. Infl.uenee Diasrans

An lnfluence dtagran ls a way of describing lhe dependencles anong
aleaEory varlables and declslons. An lnfluenee diagraE can be used to
vlsuallze the probablllstlc dependencles ln a declslon analysls and to
speclfy Ehe states of lnforoatlon for shich lndependencles can be assuoed
to exlst.

Figure 8.1 shons hor, lnfluence dlagrans represent the dependencles
anong aleatory varlables and declslons. An aleatory varlable ls repre-
sented by a clrcle conbalnlng lls nane or ntmber. An amow polntlng froo
aleatory varlable A to aleatory varlable B tre.rns that the outcme of A ean
lnfluence the probabllltles assoclated wlth B. An arow polntlng to a
decision flon elther another declslon or an aleatory varlable neans that
the decislon ls nade wiLh bhe knowledge of the outcone of the other
declsion or aleatory varlable. A connected set of squares and clreles ls
called an lnfluence dlagra.u because lt shows how aleabory variables and
declsions lnfluence each other.

The lnfluence dlagram ln Flgrrre 8.2 (a) states that the probablllty
dlstributlon asslgned to x Eay depend on the value of yr whereas the
lnfluence dlagran ln Flgr.rre 8.2 (b) asserts thab x and y are probabl-
Ilstlcally lndependent for the state of lnforrnation wlth which Ehe dlagran
was dramr. Note that the dlagran of Flgure 8.2 (a) really nakes oo iss€F-
tion about the probablllstlc relatlonshlp of x and y slnce, as rre know, any
Jolnt probablllty [x,ylS] can be represented ln the foro

{x,y ls} = (xly,s} tr ls} .

However, because

(x,y lsl = {ylx,s} tx ls} ,

the lnfluence dlagran of Flgure 8.2 (a) can be redramr as shorn ln Flgure
8.2 (c); both are conpletely general representatlons requlrlng no lndepen-
dence assertlons. llhlle Bhe dlrectlon of the arror ls lrrelevant for thls
slnpre exanple, lE ls used ln Dore cotrprlcaBed probleas to speclfy the
states of lnforuatlon upon rhlch lndependence assertlons are nade.

Slnllarly, wlth three varlables xr yr z there arc slx posslble ln(Lu-
ence dlagraus of coplete generallty, one correspondlng to each of the
posslble expanstons re developed earller. Ttrey are shornr tn Flgrrre 8.3.
t{hl.le all of these represeatatlons are logtcally equlvalent, they agaln
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THE PROBABILITES ASSOCIATEO WITH ALEATORY
VARIABLE B OEPENO ON THE OUTCOME OF
ALEATORY VARIABLE A

THE PROBABILITY OF ALEATORY VARIAELE D

OEPENDS ON DECTSION C

THE OECISION MAKER KNOWS THE OUTCOME OF
ALEATORY VARIAELE E WHEN DECISION F IS MADE

THE OECISION MAKER KNOWS DECISION G

WHEN OECTSION H IS MAOE

FIGURE 8.1 DEFINITIONS USED IN INFLUENCE DIAGRAMS

G H
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(rl A SIMPLE INFLUENCE OlAGRag

(bI AN EVEN SIMPLER INFLUENCE OIAGRAM

(ct AN ALTERNATE REPRESENTATION

FIGURE 8.2 NA'O+IODE INFLUENCE DIAGRAMS
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ALTERNATE INFLUENCE DIAGRAMS FOR fx, y,. Sl
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differ in their sult,abillly for assessnent purposes. fn large declslon
problensr the influence dlagrans can dlsplay lhe needed assessnents ln a
very useful way.

9. Graohieal Manioulatton

Slnce there are nany alternatlve representations of an lnfluence
dlagran, we night ask what manlpulatlons can be performed on an lnfluence
diagran to change lt lnto another foru that is rogicalry equlvalent.

The first obsenratlon rre should nake ls that an arrow can always be
added beiween two nodes wlthout oaklng an addMonal assertlon about t[e
lndependence of the two correspondlng variables (as long as no loops are
created). That is, saylng that x mav depend on varlable y ls not
equlvalenf to saylng that x oust depend on y. Thus lhe dlagran of Flgr.re
8.2 (b) can be changed lnio elther of the dlagrans shown ln Flgures 8.2 (a)
and 8.2 (c) wlthout naklng an emoneous assertlon. However, the reverse
procedure could lead to an erroneous assertlon. Creatlng additlonal
infruence arrows will not change any probablllty asseE$rent, but may
destroy expllclt recognltlon of lndependencies ln the influence dlagran.

Thus, Flgures 8.2 (a) and 8.2 (c) are two equlvalent lnfluence dla-
grEus. They are equlvalent ln that t,hey inply the sane -p,gESLb.LLL!.g of
dependencles between x and y glven the state of lnfomafion on whlch the
dlagran nas based.

An arrow Jolnlng two nodes ln an lnfluence dlagran nay be reversed
provided that all probablllty assignnents are based on the same set of
lnforuation. For exanple, conslder the lnfluence dlagran of Flgr:re 9.1(a). slnce bhe probablllty asslgnnenL bo both x and y are oade glven
loowledge of z the arrow Jolnlng then ean be reversed as shorm in Flgure
9.1 (b) wlthout uaklng any lncorrect or addltlonal asserttons about the
possible lndependence of x and y. Figrrre 9..t (c) shows another exanple
where bhe asslgnnent of probablllty to x does not depend on lhe value of z,
and so it olght appear that no reversar of the arrow from x to y ls
posslble. Hoerever, recalr that re can alrays add an aror lo a dlagran
without maldng an lncorrect agsertlon. Thus we can change Ehe dlagran of
Flgure 9.1 (c) to that of Flgure 9.1 (a), and then that of Flgure 9.1 (a)
to that of Flgure 9'.,| (b). The lnfluence arrow between x and y can be
reversed after an lnfluence arror is lnserted betreen z and x.

The graphlcal uanlpulatlon proeedure nay yleld uore than one result.
For exanple, eonslder the reversal of Ehe three-node lnfluence dlagran
shorm ln Step 1 of Flgr:re 9.2 (a). Suppose we ftrst attenpt Eo reverse the
y to x arfor. For x and y to have only comon lnfluences, we nust provlde
x rlth an lnfluence fron z (Step 2), before perfor"nlng the reversal (Step
3). Slnce both x and z norJ are based on the sae state of lnfotuatlon
(there are no 1nplngfut8 lnfluences, 1.e. arroHs lnto x or z frou any other
node), the lnfluence Joinlng theu nay be reversed (Step 4). Flnally, slnce
both z and y are asslgned probabllltles after x ls knowtr, the lnfluence
Jolnlng then can be reversed (Step 5).
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(rt AN INFLUENCE DTAGRAM

(bl ARROW BETWEEN r ANO v REVERSEO

lcl AilOTHER INFLUENCE O|AGRAil

FIGURE 9.1 GRAPHICAL MANIPULATION OF INFLUENCE DIAGRAMS
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Suppose, however, that lhe sane dlagran (Step A, Flgure g.Z (b)) were
tnansforued by flrst reverstng the arrow Jolning z and y (ste; B), wrrlcrr tspossible slnce y and z are based on t,he saoe state of infornatlon (1.e.
there are no i-mplnglng influences) . Then the amoy Jolnlng x and y can be
reversed (Step C) because neither x nor y now have lnpingfng fnffuences.
Both t,hls transforuatlon and the one in Flgure g.Z (a) are iomeet. Hor_ever, Step C of Flgure 9.2 (b) shorr iha! there ls no need to indlcate con-ditioning of z on x. Step ! of Flgure 9.2 (a) contalns thls rrnnecessarybut not incorrect influence.

10. Influence Diaqraos wlth Decislon Varlables

I{e shall now extend bhe concept of lnfluence diagrams to include
decision variables. t{e begin with a forual defln1t,1on of influence
diagraos.

An influence diagra.o is a directed graph havlng no 1oops. It contalns
lwo lypes of nodes:

Decision nodes represented by boxes (E)

- Chance nodes represented by ctrcles (O)

Arows between node pairs indlcate lnfruenees of two t1ryes:

rnformationar lnfluences represented by arrorr reading
into a declslon node. These shor exactly whlch
varlables wlll be known by the declslon naker at the
tlne that the decislon is nade.

condltlonlne lnfluences, represented by amowlr readlng
lnto a chance node. These shor the varlables on whlch
the probablllty asslgnuenb Bo the chance node varlabre
w111 be condltloned.

The lnforuatlonal lnfluences on a declslon node represent a baslc
eause/effect orderlng wtrereas the condttlonal lnfluences lnto a chance node
represent' as we have seen, a sonerhat arbltrary order of condltlonlng that
nay not correspond to any cause/effect notlon and that oay be changed by
appllcat,lon of the laws of probabltlty (e.g. Bayesrs Rule).

Flgure 10.1 ls an exanple of an lnfluence dlagran. Chance node varl-
ables 8, b, cr €r f-r gt_h, i, J, k, L, fr, and o aLI lndlcate aleatoryvarlables rhose probabllltles oust be-asslgned glven thetr respectlve coy1-dltionlng lnfluences. Declslon node varlables c ana n represent dectslonvarlables thab nust be set as a funcBlon of thelr respective tnforoatlonal
,influences. For exanple, the probablllty asslgnnent to vartable 1 is con-dltioned upon varlables f, g, and l, and onry Ehese varlabres. rn lnfer-entlal notatlon, thls asslgnment ls

[1lf ,g, i,E],
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where E represents a speeial S, the lnltial state of lnformatlon upon whlch
the construction of the entlre dlagran ls based. As another exanple, lhe
decislon varlable d is set with knowledge of varlables a and c, and only
these varlables. Thus, d ls a functlon of a and c.

11. Node Terminol.orrv

One of the oost important, but nost subtle, aspects of an influence
diagran is the set of posslble addltlonal lnfluences tha! are not shown on
bhe dlagran. An influence diagran asserts that lhese nisslng lnfluences do
not exlst.

To illustrate thls characieristlc of lnfluence diagrams uore clearly
we Bust Eake a few Bore deflnitions.

a A oath fron one node to another node is a set of influence
arrows connected head to lall that forus a dlrected llne
fron one node to another.

l{lth respect to any given node we uake the forloring deflnltlons:

. The oredeeessor set of a node ls the set of all nodes
having a path leadlng !g the glven node.

o The dlrect, oredeeessor set of a node is the set of nodes
having an influenee arrow eonnected dlrectrv to the glven
node.

a The indirect oredeeessor set of a node ls the seB forned by
renovlng frou lts predecessor set all eleuenEs of lts
direct predecessor set.

o The sueeessor set of a node ls the set of alr nodes havlng
a palh leadlng fron the glven node.

o The dlrect successor set of a node 1s the set of nodes
havlng an infruence amow connected dlreetrv frou the glven
node.

. rhe indlrect successor set of a node is Ehe sef forued by
renovlng fron lts successor set arl erenents of lts dlrect
successor set.

t{e refer to oenbers of these seEs as predecessors, dlrect predecessors,
lndlrect predecessors, successors, dlrect successors, and lndlrect suc-
cessors. Flgure 11.1 shows the composltton of each of these sets tn
relatton to node g.

12. Mlsslnc Influences

tJe now are prepared to lnvesttgate the loplleatlons of influences not
shown ln a dlagran. A glven node could not have any arro$r cml.rg lnto tt
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fron successor nodes because this addltlon wourd foro a roop in lhe
dlagran. A loop ls prohiblted slnce 1t could not represent any posslble
expansion order. However, Ehe glven node could concelvably have an
addiEional arrow coning fron any predecessor node.

The sltuatlon for decislon nodes ls relallvely slnple. fire dtagran
asserts fhat the only lnformatlon avallable when any declslon ls nade ls
that represented by the dlrecg predecessors of the declsion. Ttre addltlon
of a new amow, or lnforaatlonal lnfluence, wotrld usually add to bhe lnfor-
oation avallable for declslon maklng, and destroy the orlglnal loglc of the
diagran. The influence dlagran asserts that thls lnforoatlon ls nob
directly avallable; however, all or part of lt nlght be lnferred lndlreclly
froo lhe direct predecessor set.

The sltuation for chance nodes 1s nore couplex. The dlagran partlally
constralns the probabi-Llstlc condltlonlng (expansion) order for chance
nodes. In general, ihe probablllty assignnent for a glven chance node, x,
mlght be conditioned on aII non-successors ( except for x ltse1f) . Let us
call thls set N-, , and let D* be the set of dlrect predecessors of x. Ttre
t?!- D* is, of o5*r" , contalted ln N-. The dlagram asserts that, the prob-
abrll€y asslgnnent to x glven N* ls the sane as to x glven D*; tha! li,

txltt*,El : {xlo*,e}

The addition of a new arro!, or condltlonlng influence from an elenent of N
to x would lncrease the set of dlrect predecessors and seem to increase th6
dlnenslonallty of the condltlonal probablllty asslgnoent. l{hlle thls addl-
tion would not vlolate bhe loglc of the dlagran, lt would cause a loss of
infornation regardlng lndependence of the added condltlonlng lnfluence.
The origlnal dlagran asserts that all lnforuatlon ln Ehe set N that ls
relevant to the probablllty asslgnnent to x ls sr:nnarlzed Uy tfre dlrect
Dredecessors D In classical terns, rlth respect to x, D* Ls a sufflclent
itatlsttc ror ff .

x

Returnlng to Flgrrre 10.1 as an exanple, the probablllty asslgnnent to
variabre g is in prlnclple conditloned.on arl varlables except gr t, J, and
k. However, the diagran asserts that bhe variables on whlch g depends are
sufficlently s"mrnarlzed by only e and h. This ueans

{slarUrcrdrerf ,h, lrtrrnrorE} = {g lerhrE}

This strong and useful assertlon ls based as nuch on the lack of arordlt ar
on the ones that are presenB.

I{e have seen that an lnfruence dlagran tndlcates a spectflc, but
posslble non-rrnlque order for condltlonlng probablllLy asslgruents as well
as the lnfortatlon avallable as the basls for each dectslon. l{tren declsloa
rules are speclfled for each dectslon node and probablllEy asslgnoents are
nade for each chance node, the lnfluence dlagran relatlonshlps caa be used
io develop the Jolnt probabrllty dlstrlbutlon for arl vartabres.
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13. Relationshio of Influence Dlasrans to Decislon Trees

Sone influence dlagrans do not have correspondlng declslon Erees. As

ln a decision tree, dI probablllty assignnents in an influence
dlagrao--including the asslgnoent linitatlons represented by lts
structure--nust be founded on a base state of lnfor.natlon, E. Unllke the
nodes ln a decislon tree, the nodes ln an lnfluence dlagra.u do not have to
be totally ordered nor do they have to depend directly on all predecessors.
The fneedoo fron total orderlng allors convenlent probablllstlc assessuent
and conputaLlon. The freedon fron dependence on all predecessors allors
the possibillty of declsions ln the dlagran betng nade by declslon oakers
who agree on the coonon base state of lnfortnatlon E, but who dlffer ln
their abllity to observe certaln varlables ln lhe dlagran. If lhe diagran
represents a slngle decislon naker who does not forget lnforuatlon, then
the dlrect predecessor set of one declslon must be a subset of the direcL
predecessor set of any subsequent declslon. In the lnfluence dlagran of
Fkure 1 1.1, declsions d and n have outually excluslve dlreet predecessor
sets, (a,c) and (n). This situatlon could not be represenbed by a
conventlonal decislon Eree.

If the lnfornablonal arrows shown as dashed Ilnes. ln Flgrlre 13.1 are
added to Flgure 1 1.1, then bhe lnfluence dlagran can be represented by a
declslon tree. Many dlfferent valld declslon trees can be constructed froo
Ehls nelr lnfluence dlagran. The only condltlons are that they nust (1)
preserve the orderlng of the lnfluence diagram and (2) not allog a chance
node to be a predecessor of a decislon node for whlch lt ls not a dlrec!
predecessor. For exanple, the chance node o nust not appear ahead of
declslon node d in a decislon tree because thls worrld lnply that the
declslon rule for d could depend on B, whlch ls not bhe case.

The situatlon becones Bore conplex when we add a node such as p ln
Flgure '13.2. If we were to construct a declslon tree beglnnlng wlth chance
node p lt would lnply fhat the declslon rules at nodes d and n could depend
oo P, whlch ls not the actual case. Node p represents a varlable that ls
used in the probablltty assignnent nodel but that ls not observable by the
declslon naker at.the ttne that he uakes hls declslons. In thls sltuatlon,
we would norually use the laws of probabtllty (e.9. Bayesrs Rule) to elln-
inate the condltlonlng of c on p. Tbls process rould lead Eo a neu lnflu-
enee dlagran reflecting a change ln the sequence of condltlonlng, and could
result ln Bhe lncluslon of addiilonal lnfluences.

In Flgure 13.3r the dashed arror represents the lnfluence as nturned
aror:ndn by Bayesrs RuIe. The resultlng dlagran can be developed lnto a
decislon Eree rlBhout further processslng of probabllttles. Also note that
the change ln the lnfluence dtagran requlred only lnforuatlon already spec-
lfled by the orlglnal lnf,Luence dlagran (Flgure 13.2) and lts assoclated
nunerlcal probablllty asslgnnents. Thus lt can be carled out by a routtne
procedure.
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The forgolng conslderatlons notlvate two new deflnltions.

o A declsion network ls an lnfluence diagran:

( r)
( ii)

that lnplies a total orderlng anong decislon nod€s r

where eaeh deetslon node and its direet predeeessors
directly lnfluenee all sueeessor deeision nodes.

o A deetston tree network ts a dectsion network:

( 111) where all predecessors of each declslon node are
dlrect predecessors.

Requirenent ( 1) ls the nslngle declslon makern condltlon and requlreoent
(il) ls the rno forgettlngr condltlon. These two condltlons guarantee that
a decislon tree can be constructed, posslbly after sone probablllstic pro-
cessing. Requlrenent (111) assures that no probablllstlc proeessing ls
needed so that a declslon tree can be constructed ln dlrect correspondence
rith Ehe lnfluence dlagran.

As an exauple conslder the standard lnferentlal declslon problem
represented by the declsion neEwork of Flgure 13.4 (a). This tnfluence
dlagran canno! be used to generate a declslon tree dlrectly because the
declslon node c has a non-dlrect predecessor that represents an unobser-
vable chance varlable. To convert thls declslon network to a sultable
declston tree netrork we slnply reverse Bhe arrow fron a to b, whlch ls
pernissible because fhey have only contron predecessors, nanely none. l{e
Ehus aehleve the declslon tree network of Flgure 13.4 (b), and wlth
redrarlng we arrlve at Flgure t3.4 (c).

Speclfylng the llnltatlons on posslble condltlonlng by draring the
influence dlagran nay be the most slgnlflcant step ln probablllty asslgn-
uent. The reualnlng task ls to speclfy the nruerlcal probabillty of each
chance node vartable condltloned on lts dlrect predeeessor varlable by a
probablllty assesmenE procedure.

1 4. Exanole: The Used Car Buver

As an lllustratlon of the use ofrlnfluence dlagrans, we consider a
probleo lsrowa as rThe Used Car Buyern- presented elsewhere ln detall. For
our purposesr we need only speclfy that the buyer of a used car can select
anong vartoug tests T at dlfferent costs, oboenre thelr resrrlts R, choose a
purchase alternaBlve A, and then recelve soue value V that depends on the
state of the car he bought, the outcoue 0. Flgure t4 (a) shorru the
lnfluence dlagran. The arrow!, shor that the test results R depend on Ehe

test selected T and the state of the car 0. The buylng alternatlve A ls
chosen knonlng Bhe lest selected T and lts results R. The value V depends
on the buylng alternatlve chosen A, on the Eest seleeted T (as a result of
the cost of the tesg), on the outcone 0, and on the tesB resurts R. Thls
last lnfluence allows for the posstbfllty that thc value nay depend
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directly on the results of the test; for exaople, if fhe testlng ls
destructive. The outcone 0 does nob depend on any other varlable, and tnpartlcular, not on the test T,

to lEl = to lr,B)

This assunptlon ls based on the betlef that the seller of the car wlll not
switch the car to be tested as a result of the test selected.

Thls influence diagran ls a declslon network, but not a declslon tree
network because node 0 ls a predecessor of node A, but not a dlrect prede-
cessor. To create a dectslon tree network, He must reverse the arror con-
necting node 0 to to node R. The first step ln thls reversal ts to assure
that these nodes have a cotrtron lnfomat,lon state. l{e accoopllsh thls by
adding an infruence frou node T to node 0 as shonn in Flgnre 14 (b). ttren
we reverse the arror froo node 0 to node R and redraw the dlagram as a
decislon tree network in Flgtre t4 (c).

Thls reversal neans, of course, that the orlginal probablllty assess-
nents {nlr,g,F} 1td tolei,= tolI,E} nust be changed to the probablrlty dls-
bributions [R lT,E] ild [O lt,n,n] accordlng to the equation

{Rlr,E} = 
o/tRlr,o,E} 

{olr,E}

and Bayesr s equation

{n T,E){olT,R,E} =
T,o,E) to

tr
,L'

The resultlng ceneric decislon lree appears ln Flgure 14 (d), where
the value asslgned to each pabh through the tree, <vlt,RrArorE>r ls re-
corded at the endpolnt of the path. The detalled ealculations are shorm in
Reference 1.

15. Toxlc Chemical Testlnl Exanole

To illustrate the poxer of lnfluence dlagraus to solve eonplor prob-
leos of declslon-maklng and lnfornatlon acqulsltlon, se shall appfy tnfs
uethod to a problen of toxlc chenlcal testlng. l{e shall carry out the
analysls under the assr.uptlon that an autonafed lnfluence dlagran systeu ls
avatlable bo provlde the flavor of lts use.

Let us suppose that a cheulcal havlng soue beneflts also 1s suspected
of posslbre carclnogenlclty. I{e wlsb bo deterulne whether to ban,
restrlct' or pemtt lts use, and also wbether to undertake any lnfornallon
gatherlng regardlng cancer-produclng actlvlfy of the chentcal or lts degreeof exposure to htrnans.

The prlnary declslon problen can be fornr:lated by drawlng the ln11lu-
ence dlagrao on the lnput screen of the systeo as ln i.rsure t6.t. Ttrls
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figure shows that the systen has been fold thaL the econoalc value of theproduct and the cancer eost attrlbuted to lt both depend on the declslon
negarding usage of the cheuical. TIre (probablllty asslgnnent on) econoolcvarue 81ven the usage deciston ls lndepindent or ine nr:nan exposure, carct-
nogenlc actlvity and the cancer co-s_t. However, Ehe eancer colt ls aepen-dent upon the usage declslon as well as on uottr t,tre carelnogenlc actlvlty
and hupan exposure levels of Ehe chentcal. The net value of the chenlcalgiven the econooic value and bhe cancer cost ls lndependent of the othervariabres. Also, htnan exposure and carctnogenlc actlvtty 

""- 
ind"pendent.

These relationships are not necessarlly obvlous ones; they depend on
Ioowledge of the probleo at hand. For exarlte, the economtc value of apartlcular chenical mlght well depend on lti cheulcal actlvtLy whlch lnturn mlght be closely related to iEs carelnogenlc actlvity. I" such a casean a*ow nlght have to be added frou rcarclnogenrc aclivtlyr to reconontc
vaIuetr.

The next step ls to obtaln probablrlty and value assessmentg corre-
spondlng to the lnfluence dlagrau. Ttre autooated influence dlagran systen
asks for a list of usage declslon alternatlves. In thls case they ari BAN,
RESTnICT, and PERMIT. Next lt asks for the econoolc value glven each ofthese alternatlves. In t,hls case the pernlt alternatlve is consldered to
have a reference value of zero, the restrlct alternatlve a substttuteprocess cost of $1 mlllion, and the ban alternatlve a substltute process
cost of $5 mtltion.

The next request is to assess posslble outcones for hunan exposure andcarci.nogenlc actlvlty along wlth thelr correspondlng (uncondltfonaf) proU_-abilities. the probablllty trees of Flgtre ti.e urustrate these asslgn-ments. Ihen te are asked for the eancer eost glven hrrnan exposgre andcarclnogenic actl'vlty levels as well as lhe ,"ig" declslon. I{e assess the
expected values of thls cost as glven ln Table 15.1. Flnally we staBe thabthe net value ls slnply the sun of tne econonlc value and cancer cost.

0.5

0.05

HUMAN

EXPOSURE

LOW

MEOIUM

HIGH

0.5

CARCTNOGENIC

ACTIVTTY

INACTIVE

MOOERATE

VERY ACTIVE

0.45
0.4

0.1

FIGURE 75.2 INIT]AL PROBABILIT\/ ASSIGNMENTS
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Tab1e 1 5. 1

CANCER CoST ( $I,!ILLIoNS )

PERMIT ALTERNATIVE

Exoosure
Low Med H lsh

0 0

RESTRICT ALTERNATIVE

Exposure

BAN ALTERNATIVE

sure

00

Low Med Hiah Low t'led Hlah

Ac tivi,tv

Inae t ive

ModeraEe

Very Active

00 0 0 0

0

00.5 5

10 100 1000 1

50 0.05 0.5

10

5

100

00

0 0

A11 of thls infornatlon is based on detalled nodeling and expert
Jtdgnent regardlng the declslon sltuatlon. Once lt has been captured wlLh
the lnfluence dLagrao, analysls can proceed. The autonated lnfluence
diagra.a procedure generates the approprlate declslon tree, dlsplays lt tf
deslred by the user, and deterolnes that the best declslon ls to restrlcE
usage. The expected value glven this decision ls a cost of $e.2 nllllon.
An exanple display contalnlng this lnfornatlon ls shown ln Flgure 15.3. In
the exanple we conslder only the expected value or rlsk-neutral case al-
though the case of rlsk averslon can be treated wlthout dlfftculty.

15.1 The Value of Clalrvovance (Perfect Infornatlon)

Before lnvestlgatlng actual lnforoaElon gatherlng alternatlves, the
usual declslon analysls practlce ls Eo deterulne Ehe value of clalrvoyance
(perfect lnfomatton) on the uncertaln varlables. The value of clalr-
volrance furnlshes an upper llnlt on the value of real lnfomatlon
gafherlng.

l{lth the autooatlc lnfluence dlagran procedr:re ihese calculatlons are
trlvlal. For exanple, to calculate the value of the problen wlth clalrvoy-
ance on carclnogenic actlvlly re need only add the lnfluence arror lndl-
cated by a dotted line ln Flgure 15.1.1. Thls nodlflcatlon states lhat fhe
declslon maker knows the degree of earclnogenic aetlvlty when he nakes the
usage declston. The resulb ls an expected cost of i1.1 nllIlon and a
declslon rule to pernMf lnactive, restrlct lf moderate, and ban lf very
actlve. Thls tre.rns that the expected value of clalrvoy€rnce ls the orlglnal
$2.2 mllllon alnus thls $1.1 nllllon whlch ls $1.1 nilllon. Flgr:re 15.1.2
shors a Eore conplete dlsplay of the declslon tree for bhls case that would
be autooatlcally generated upon request of bhe user.
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The value of clairvoyance on exposure can be calculated to be $0.4
milllon by addlng on lnfluence arrofls from the hunan exposure aade to the
usage declslon node ln Flgure 15.1. The assoclated declslon rule ls to
restrlct lf exposure ls lot or medil.m, and to ban lf exposure ls hlsh.

Flnally by addlng lnfluence arrows frou both the carcinogenic actlvlty
node and the huuan exposure node to the usage declslon node, we flnd the
value of clairvoyance on both actlvlty and exposure to be $1.18 otlllon,
which ls less than the sr:n of the values of clairvoyance on each quanilLy
separately. The deelsion rule ls shown later ln Table 15.2.I.

15.2 Value of Imoerfeet Informati,on

To place a value on lnperfect lnfornatlon we nust nodel Ehe lnfor-
mation source. To be useful the lnforoatlonal report uust depend prob-
abillstlcally on one or oore of the uncertaLn varlables ln the probleu.
incorporate this dependence we augtrent the lnfluence dlagran wtth a oodel
of lhe lnforuatlon gatherlng actlvlty.

To

In the exanple at hand, lt olghL be posslble !o carry out a laboratory
test of the carelnogenic actlvlty of the cheulcal. In thls case we begln
by addlng a chance node to represent the report froo the actlvlty test. fn
Flgure 15.2.1 we have added an actlvLty test node, we have drawn an arrou
to lf froo the carelnogenlc acllvlty node showlng that Ehe test result
depends on the actual carcinogenlc actlvlty of the chenlcal, and we have
drawn an arrow fron the actlvtty lest to the usage dectslon showing ihat
the decision-maker rlll know the lest result rhen he makes the usage
declslon. t{e oust also check the loglc of each probabllistlc statenent
represented ln the diagrao because addltlonar loowledge, ln prlnclple,
coul.d change the probablllstlc dependence erserhere in the dlagran.

The autouated systen would now ask us to deflne the test results. tle
repry that, there are three test results catled nrNAcrrvEn, TMODERATELT

ACTMI, and rVERY ACTMi correspondlng to the posslbllttles for the
actual actlvlty. However, unllke the case of perfect lnforoatlon, these
best lndlcatlons nay be nlsreadlng. I?re systeu nor asks us to supply the
probablllties of these test results for each state of earcinogenic atttvtt,y
!1."., to supply lhe llkellhood functlon). Flgure 15.2.2 shors a posslble
dlsplay w1!h the asslgned probabtlltles.

A11 of the lnfornatlon needed to deternlne the value of bhe carclno-
genlc actlvlty test has now been supplled. Horever, the lnfluence dlagrau
of Flgure 15.2.1 ls a declslon netrork, rather than a declslon tree net-
work' so lt nust be nanlpulated lnto declslon tree nelwork foru before a
declslon lree can be generaLed and evaluated. Ttre probleu ls that the car-
clnogenic acttvlty node preeedes the usage declslon node, but acllvlty ls
unlnown to Ehe dectslon uaker when he nakes the usage declslon. A declslon
tree beglnnlng nlth resolutlon of carclnogenlc activlty would lncorrecl1y
give thls lnforuatlon to the declslon maker. lte problen ls resolved by
turnlng aror.md the lnfluence aror between carclnogenlc actlvlty and thi
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CARCINOGENIC
TY

INACTIVE

MODERATELY ACTIVE

ACTIVITY
TEST

,,INACTIVE"

0.15 "MOOERATELY ACTIVE"

,,VERY ACTIVE"

,l VE"

0.8 ERATE Y

0.8

0.05

0.r

0.1 ,,V Y IVE"

,,INACTIVE"

0.05

VERY ACTIVE 0.I5 "MODERATELY ACT|VE,,

0.8

FIGURE 15.2.2 ACTIVITY TEST PROBABILITY ASSIGNMENTS
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activtty test; the reversar ls possibre because both nodes have no
i-mpinging lnfluences. Thls nanlpulatlon requlres the apprlcatlon of
Bayesrs rule to detemine fron the orlginal probablllty asslgnnents new
asslgnnents conditlonal in the opposlLe order. The procedrrrJ ls
stralghtforrard for an autooated systeu and results ln the deslred
declslon tree netrork. In fact, a sophlstlcated systeo could delerulne
t,hat thls nanlpulatlon was requlred and cary lt out wlthout belng asked
by the user.

EvaruaLlon of thls network ylerds an expected cost, given the
activity test option, of $.|.96 mlllion. Subtractlng this cost froo the
original cost of IZ.ZO nlllion ylelds an expected value of S0.24 nlllion
fron a free actlvlly t,est. Thls ls t,he upper tlnlt on the price the
decislon maker should pay for the actual test.

A test of the degree of hrman exposure arso could be treabed by
addlng an exposure test node to the lnfluence dlagrao. The necessary
probablllty asslgnnents are shom ln Flgure 15.2.3. Flnally, the value
of testlng both carclnogenlc activlty and hunan exposure cor:rd be
deterulned by naklng both nodlflcatlons as tllustrated ln Ftgr.rre 15.2.4.
This influence dlagran lndlcates that glven hrrnan exposure and
carelnogenj.c actlvlty, exposure test and actlvlty lest results are
probablllst,lcally lndependent .

In thls exanple, we have shown how lnfluence dlagrrns can be used to
designate the lnitlal structr:re of the problen. The autonated systeo can
then lnteract wlth the user to request and develop values for Bhe prob-
abirlty assignnents that are lnplicltly speclfled in the infruence
diagran. The autonated systeo can then process the lnfornatton to solve
the declslon probrem. The autouated sysfen, not the user, develops the
decislon tree fron lhe lnfluence dlagran speciflcatlons. Ttrls uethod
allows the user to ask value of perfect lnforuallon questlons through
slnple nodlflcallons of Bhe lnMal lnfluence dlagran, and to ask value
of inperfect lnfot'oatlon questtons by augnentlng the lnflueace dlagra to
uodel the lnforuatlon gatherlng actlvttles.

For thls exanple, the deelslon rules and values for all lnforuatlon
gatherlng posslblrltles are dlsplayed ln Tables 15.2.1 and 15.2.2. The
value of the slLuatlon wlth the speclfled lnforuatlon ls glven as well as
thls value less the value of the prlnary declston (-2.2 fn t,rrfs case).
Thls dlfference ls the value of the speclfled lnfornaBlon. Ttre declslon
rules for Jolnt lnfornatlon are glven ln natrlx foro and the ones for
lndlvldual lnforuatton are glven along the edges of Bhe natrlx. Ttrese
sun'nartes allow the user to see easlly rhlch lnforuatlon ls uost useful.
For exanple, Table 15.2.2 shors that loperfect exposure lnfor:oaBlon ls
useless beeause lhe declslon rule ls to restrlct usage regardless of the
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outcotre of the Eest, even thorrgh as shoun ln Table 15.2.1, perfect lnfor-
uatlon would be valuable. Exanlnatlon of the two declslon-rule natrlces
for the Jolnt lnforuaLion eases shows four dlfferences ln cholce of
alternatlves betreen the perfeet and lnperfect lnfornatlon cases.
Perfeet Jolnt lnforratlon ls three tlnes oore valuable than lnperfect
inforoatlon.

l{e have shorm in thls exanple how lnfluence dlagrans can be used to
nodel the primary declsion problen, to determine the value of perfect
informatlon on the uncertaln varlables, and flnally to deterulne the
value of actual,, but inperfect, lnforoatlon. The latter calculatlon
usually requires the applicatlon of Bayesr s lar. Declslon tree oebhods
require the user to apply Bayesr s law and supply the answers, or at least
the fornulas, for the approprlate probabllities on the decislon tree.
Because Ehe influence dlagran captures the loglc of the problen ln a nore
fundarnental way, the user need only supply the lnlblal probabllltles that
represent his aodel of the lnfor.natlon gatherlng actlvlty, and an
autouated systen can camy out the rest of lhe analysls. This exaople
shows how lnfluence dlagrEurs can greatly sltrp1ify the probablllstic
modellng and decislon naklng process.
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THE USE OF INFLUENCE DIAGRAMS

IN STRUCTURING COI.TPLEX DECISION PROBLEUS

Danlel Owen

Declslon Analysls Group

SRI Internattonal

Menlo Park, Caltfornta

Abstraat

An influence diagram is a theoretlcally-based aid for obtainlng the declsion
makerrs structure for a complex declslon problem under uncertainty. Advantages
of uslng an influence diagram are rapid ldentlficatlon of important state and
decislon varlables, a more balanced declslon model, and the dia""t constructlonof the declsion tree. A new maEhematical characterlzation of rtlnfluence,, is also
presented.

1. INTRODUCTION

The idea of €rn influence dlagram was origlnally

the result of a need to eotrEuntcate wlth conputers

about the structure of declslon probleos. Under

contract to the Defense Advanced Researeh Projeets

Ag6ncy, researchers ln the Deelslon Analysis Group

of SRI Internat lonal were rrorktng to develop

autonated alds for dectslon €Lnalysls. ( 1) They

hoped that the declslon problem structure could be

descrlbed to a cooputer that could partially

autooate the solutton of the deetsion problem.

My expertence Hlth lnfluence dtagrams has been ln

two other areas. Flrst, Bt SRI Internablonal our

current use of tnfluenee dtagrans ts not for

lnteractlng rrlth conputers, but rather for

cotrEunlcatlng among peopre, One nlght descrlbe

our use of lnfluence dlagrans as partlclpattve
modellng Q) rather than lnteracttve nodellng.

Second, tn try research at Stanford Unlverslty, I
have attempted to extend the notton of an

influence dlagran so that lt can be used by the

declston analyst to coneeptual Lze the reratlonshtp

between the probablllty dlst,rlbutlons on dlfferent
vartables ln a declslon model.

After a brlef revlew of lnfluenee dlagran

fundanentals ln the next sectlon, the renatnder of
thls paper deals wlth the use of lnfluenee
dlagrans 1n partlclpatlve Dodellng and the

extenslon of the eoneept of lnfluence.
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2. INFLUENCE DIAGRAM FUNDA},IENTALS

An lnfluenee between two randon varlables, x and

y, ls sald to exlst when the variables are not

probablllstleally lndependent :

Deflnltr on. An lnfluence exlsts between

two random varlables x and y tf and only

1f ty I *, s) * ty I s) , where ty I s) denotes

the probablllty dlstrlbutlon for y t con-

ditloned on the state of informatlon S.

The existenee of thls lnfruenee can be shown dla-
gra@atleally by plactng the natres of the varl-
abres wlthln clreular nodes and eonnectlng those

two nodes wlth Ern arrow, such as

whlch may be read nx lnfluences I. r

uslng thls deflnltlon, sone rules for the mani-

puratlon of lnfluence dtagrams can be derlved and

are discussed thoroughly ln Referenee ( 1 ) . For

exatrple, the lnfluenee dlagram of Ftgure 1 a

represents the expanslon tx,y,z I S) = tz I xryrs) (yl

x, S) { x I S} . An alternattve expanslon, represented

by Ftgure tb, is {x,y,zlS} = {*ly,Z,S}(ztLS} {yl

s ) and therefore, Flgure 1b 1s an allorrable
rearrangenent of the tnfluences of Flgure la.
comparlng Flgures 1 b and 1 e shows that the
lnfruence between y and z has been renoved in the

Iatter case, and {x,yrzlSl = {xfzry,Sl lzlsl{ylS}.
Eaeh lnfruence dlagrau is an assertlon of
probablllsttc dependence,

slnee an lnfruenee dlagran lnpltes the exlstence

of a Jolnt probablllty dlstrlbutton over the
vartables tn the dlagrau, those varlables must be

preclsery deflned. varlables sueh as nquarlty, n

nmarket eond 1tlons , 
tr and trattractl yenessn do not

take on values that are ldentl flable events .

consequently, probablllty dlstrlbutlons cannot be

deflned over these varlables, and they should not

be lncluded ln an lnfluence dtagran.

Decl slon nodes are represented as squares on

lnfluence dlagrams. An arrow fron a dectslon node

to a state varlable node lndlcates that the
probablllty dlstrlbutlon on the state varlable

depends on the settlng of the declslon varlabre;

An amow from a state vartable to a deet ston

varlabre neans that the value of the uncertaln

state vartable wtII be known at the tlne the

declston ls made,

3. USING INFLUENCE DIAGRAI,TS

FOR PARTICIPATIVE HODELING

Three tmportant dlfflcultles artse ln structurtng
a deelston probren: unfanlllarlty, conplexlty,

and numerous partlclpants. Flrst, unfanlllarlty
treans the anarystts lnltlal unfanlrlarlty wlth the
porltleal, teehnlcal, and econoulc faetors ln a

partlcurar deeislon problen. The generallty of

the deelslon anarysls nethodology pernlts lts
apprtcatlon to deetslon probrems regardress of the

partlcular dlsclpllne or settlng ln whlch the

probrem oecurs. consequentry, the declston
anaryst nay be unfamlltar wlth the relatlonshlps
of the problem variabres, seeondly, conprexlty

refers to the fact that declston nodels often

lnvorve a large number of random yarlables,

Flnalry,lf the probren ls conprex, there are

llkery to be nany partlclpants ln structurlng the
problen, Even when there is a slngle declslon

naker, Eany experts nay be eonsurted regardlng the

relatlonshlps of the varlabres. Moreover, several

dectslon analysts Day be tnvolved.

An lnportant property of the deflnltton of the

exlstence of lnfluence glven above ls that 1t
appears to colnelde with the declston maker r s

lntultlve use of the rord rnfruence. rn our

severar experlences wlth lnfluence dlagrans at SRI

rnternatlonar, re found that when a deelslon uaker

ldentlfled the exlstence of an lnfruence, the

varlabres later turned out to be probablltstlcally
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dependent, Furthernop€, lnfluenees that were

ldentl fled as belng nstrongn represented r poughly

speaki Dg , nore probabl I I st 1 c dependenee than

lnf luences that were ldentlfied as nlreak. r Thus,

lnfluence dlagrams prov lde a language through

whtch those untralned tn the modellng of complex

probablllstic systens can deserlbe thelr
pereeptlon of the problen,

An lnfluence dlagran 1s eonstructed Jointly with

the deetslon maker by beglnnlng wlth the value

attrlbutes and working backnards from there, As

an example, suppose we have a eltent who nust

declde how nueh to expand h1s produetion

faclrttles, rf we seek the anount of addltlonar

capaclty that maxlmtzes the present value of the

bustness, then the value aitrlbutes are the eash

f lows for each future year D, slnce those future

cash flows are uncertaln, the eash flow for eaeh

year n ls drawn on an lnfluenee diagram as a

chance node ( clrcre ) . l{e ask the declslon maker

what varlable he would most Ilke to know the value

of ln order to reduce hls uncertainty about the

cash flow ln year D. If he answers nrevenue in

year D r' he ls assertlng that t cash flow year nl

S) ; teash flow year n I rerenu" year nrS).

tle then ask hln tf , glven the value of revenue for
year n, there ls another varlable , the knowledge

of whlch would firrther reduce hls uncertalnty

about cash fIow. His ansuer is that he would llke
to know hls total costs for year D, In that ease,

he ls assertlng that t cash flow year n I revenue

year D, S) # t cash flow year n I revenue year n,

costs year nrS), These lnfluences are shown tn

Flgure 2a.

Next, we select one of the two lnfluenelng

varlables r siy revenue ln year n, and ask rhat

lnfornatlon the declston maker would llke about

revenue ln year n tn order to reduce hl s

uncertalnty about the revenue ln year n. He Bay

answer that he would llke to know the number of

unlts sold ln year D. The prlce of those unlts ls
a declslon vartable and ls dlsplayed ln a square

node. The lnfruence dlagran nou appears as ln
Ftgure 2b.

Notlce that ln Flgure 2a revenues tn year n are

undoubtedly lnfluenced by costs 1n year D.

Knortng that eosts are row would suggest that
revenues are also low, Hence, an arroH could have

been drawn from eosts to revenue. Houeyer, ln
Flgure 2b no arrow needs to be drawn frou costs to
revenue because, glven unlts sord and prlce, the

revenues are lndependent of costs, 1.e., {revenuel

unlts sord, unlt prlce, s) r trevenue I unlts sord,

unlt prlce, costs, S),

rf thls procedure 1s repeated r Bn lnfluence
dlagran such as that ln Flgure zc Eay regurt.
Thls dlagram dlsprays severar noteuorthy features.

Flrst, lt ls evldent fron the dtagran that the

decislons about produetlon eapaclty and prtce are

erosery rerated, Prlee must be optlnlzed for each

setting of the addltlonal eapaetty deelslon
varlable.

A second feature ls the absence of a node called
trmarket slze ln year o, n rhlch nlght lnfruence

untts sold. rf the declslon naker 1s certatn

about the narket stze ln year n because of tts
predlctablllty, then the revelatton of 1ts actual

value uould do nothlng to reduce hls uneertalnty

about unlts sord . rn thls case r Do node for
market slze appears on the dlagranr BS lt wourd 1n

a flow or block dlagran, slmllarry, unlt cost for
exlstlng productlon capaclty ls werl knovn and not

shown as tnfluenclng eost ln year D.

A flnal noteworthy feature of the dlagran ls the

noncausar lnfluence of the conpetltorfs unlt cost

on the dectslon nakerr s unlt cost for the neu

prant, The declslon naker Day be uncertaln about

the performance of the addltlonar productlon

facllltles and therefore about the unlt cost. rf
a conpetltor has a prant of e destgn sllllar to
the declslon naker I g neu eapaclty, knoutru the

conpetttor r s unlt cost nlght conslderably rcduce

the dectston nakert s uncertalnty about hts oun
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unlt cost. Notlce that the reratlonshlp between

eonpetttorrs unlt cost and the unlt cost for the

ner plant ls stochastlc rather than deternlnlsttc.
such stochastlc and noncausal reratlonshlps are

dlffleult to represent rlth eonyentlonar fror or
block dlagrans.

Slnce the lnfluence dlagran eontalns the inportant
probabltlstlc reratlonshlps and dectslons as

percelved by the declston naker, a eonslstent

declston tree can be constructed dlreetly from

thls dlagran and the necessary condltlonal
probablllty dlstrlbutlons can be assessed.

Because the dlagran ls generated backnards fron
the varue attrlbutes, the ldentlfled varlables
tend to fan aray fron the value attrlbutes
unlfornly, resultlng ln a Dore baraneed moder.

Excesslve modellng of detall ln one area at the

expense of other areas ls avolded, Furthermore,

the backvards procedure herps the declston naker

to ldentlfy stochastlc and noncausar relatlonshlps
as rell ar deternlnlstle and casual reratlonshlps.

4. EXTETIDITIG THE COTICEPT OF INFLUENCE

There are sone deflclencles rlth the lnfluenee

uethod of structurtng declslon probrems presented

above. rn Ey oplnlon, the nost serious ls the

laek of a nathenatlcal charaeterlzatton of the

strength of an lnfruence . The deflnl tlon
presented earller glves only the condttlon for the

exlstenee of an lnfluence, but does not
characterLze the lnfluence ltself. rn generatlng

the tnfluence dlagran, rre ask the declston maker

to ldentlfy the strongegt lnfluences. Howeyerr H€

do not have a nathenatlcal expresslon

eorrespondlng to the lntult1ve notlon of the

strength of an lnfluenee, 8Dd ln sone tnstanees

the relattve strengths of tro lnfruences tray be

anblguous,

lly research to charac t ertze the lnf ruenees has

lnvolved dlstlngulshlng posslble types of
lnfluenee and then deternlnlng how to quantlfy the

strength of each type. ( 3 ) tne dtagran of Flgure

3 dlsprays the lnfruenee as transformlng a

trarglnar dlstrlbutlon {x I sl lnto another marglnal

dlstrlbutton {y I S}, through the equatton

{v I sl = I {y lx,s}{x ls}ax.
@

sinl larly, one ean thlnk of an 1 nfruence as

transfornlng the moments of {xls} tnto the nonents

of (yls), as ln Flgure 3b. For these two nodels

of lnfluence to be equlvarent, the dlstrlbutlons
{x I s} and {y I s} nust be untquety deternlned by

thelr monents, rhlch requlres analytlctty of the
exponentlar transforns of {* I s} and [y I s]. rn
thls case, speelfylng how strongly each of the

moments of {yls} depends on the monents of tx ls}
eonpletery characteri zes the tnfluence betreen the

two varlables.

The strength of each type of lnfruence can be

measured by a derlvatlve denoted as

(1 ) d. (v-i)'I s, n>1r[>1
d<(x-I)n;s,

thlsexpresstonwhenn=lorn=lshouldbe
obvlous. ) Thls derlvattve ls the change ln the

mth central moment of tyls) due to a dlfferentlal
change ln the nth centrar nonent of {xls}. rt ean

be conputed fron knowredge of the derlvatlves of
the eondltlonal monents, e,g. ,

at..r* I s, 
Idxn 
I .*lsr.

Therefore , the lnfluence of x on y 1 s

characterl zed by an lnflnlte matrtx that has lts
n, n elenent glven by expresslon ( I ) and ls
denoted by

a{yls}
d{xls}
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Thls lnfluence natrlx, has severar useful
propertles. Flrst, the matrlx is nurr if and onry

lf the moments of ty I s) are unaffected by the

nonents of {x I s} and y 1s probablrlstlcalry
lndependent of x, Hence, the matrtx ls nuII if
and onry 1f no lnfluence exlsts. Seeond, when the

matrl x has non ze?o erements , those erenents

eharac ter tze the type and s treng th of the

tnfruence , Flnarry, because the erenents of the

natrtx follow the rures of dlfferentlar carcurus,

a caleurus of lnfruences appears posslbre. For

example, ln the diagran:

the lnfluenee natrlx of x on z nay be conputed as

2. Raynond Frltz, rsysten Methods tn the publlc

Sector: A Dlalogu€ , n Systens eAn. ana CvU

Revlew, VoI . 7, No. I (February l9?B).

3, Dantel owen, trThe concept of rnfruence and rts
use ln strueturtng conprex Declslon probrenS, m

Ph.D, dlssertatlon, Englneerlng-Econonlc systens

Departnent, Stanford Unlverslty, October l9?8.

(r,y,zls) - (zfx,r,s)(ylx,s)(xls)a{zls} _ d{vls} a{zls}
aGTST=at*]:(lsl aW

5. CoNCLUSToN

There 1s a theoretleal basls for lnfluence
dlagrams: each one corresponds to a nathenatlcal

statenent of probabl 11stlc dependence , As

denonstrated ln thls paper, these dlagrans can be

used to obtaln the declston maker t s structure for
a complex dectslon problen and to communteate that

structure aoong those trylng to solve the problem.

Further research to charactertze an lnfluence may

lead to a new way to conceptual tze the relatlon-

shlp between probablllstlcally related vartables.
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a.

b. (x,y,z ls) - {rly,zrS}Ir ly,s}(yls}

c {x,y, z ls 1 - (x 
f z,y,S }(z lS lty lS }
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TECHNICAL CONTRIBUTIONS





Preface

These technica'l papers are written at the engineering level of
mathematical training. However, the ma'in ideas may be of interest to the
general reader.

"Information Value Theory" shows how to place a monetary value on
information in a decision problem. It uses a bidding examp'le to demonstrate
that the values of information on a pair of independent variables may exceed
the sum of the values of i nformation on each separately.

"The Value of Information Lotteries" shows how the profit lottery for
the bidding example changes when information is available. The results are
stri ki ngly non-i ntu'i t'i ve.

"The Economic Value of Analysis and Cornputation" extends the value of
information idea to place a monetary va'lue on further analysis or
computation. It uses the bidding problem of the previous two papers as a

computati onal examp'le.

"Compet'itive Bidding in High-Risk Situations" shows that in oil-lease
bidding the winner tends to be one who most overestimates reserves
potential. This paper presents and discusses this phenomenon, which is
sometimes called the winneq's curse, and develops nrethods for bidding that
take this phenomenon TilT5'-Edcoffi

"Decision Analysis: Perspectives on Inference, Decision, and
Experimentation" uses the formalism of decis'ion analysis to provide a

complete conceptua'l and methodological framework for design'ing experiments
and interpreting their results. An examp'le of tossing a biased co'in
illustrates the framework.

"Bayesian Decision Models in Systems EJrgineeri!9" also treats
experimentation, dealing with experimental determination of reliability. It
describes the use of decis'ion trees and the use of conjugate distributions
for conceptual and computational convenience.

"Proximal Decision Analysis" develops a methodology for using
deterministic sensitivity results to perform approximate probabilistic and
inferent'ial calculations. Although the methods are especially useful in
complex situations, they can also provide insight and guidance in simple
situations.

"Risk-Sensitive Markov Decision Processes" expands the risk
probabilistic modeling structure of Markov decision processes to allow
expression of risk attitude. A numerical exanple shows how the optirnum
decision policies change with risk attitude.
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Information Value Theo ry
RONALD A. HOWARD, SENI0R MEMBETI, IEEE

Ibstracl-Thc iaformetion theory developed by Shannon wag
desigued to plece e quandtetivc measure on the amount of io-
formation involved in any communication. The early developcre
stressed that the information measure was dependent only on the
probabilistic etnrcture of the communication process. For e:ample, if
losing all your assetg in the stock market and having whale steak
for supper have the same probability, then the informadon associ-
ated with the occurrenco of either event is the same. Attempts to
apply Shannon's information theory to problems beyond com-
munications have, in the large, come to grief. The failure of these
attemp s coutd have been predicted because Do theory that involves
just the probabilities of outcomes without considering their con-
sequetrces could possibly be adequate in describing the importance
of uncertainty to a decision maker. It is necessary to be concerned
not only with the probabilistic nature of the uncertainties that Bur-
round us, but atso with the economic impact that these uncertainties
will have on us.

In this paper the theory of the value of information that arises
from considering jointly the probabilistic and economic factors that
afrect decisions is discussed and illustrated. It is found that numer-
ical values can be assigued to the elimination or reduction of any
uncertainty. Furthermore, it is seen that the joint eliminadon of the
uncertainty about a number of even independent factors in a prob-
lem can have a value that difrers from the sum of the values of elimi-
nating the uacertainty in each factor separately.

NoterroN

A SPECIAL NOTATION will be used to make a8

-( \ explicit a.s possible the conditions underlying the
assignnrent of any probability. Thus,

r : arandomvariable
A : an eVent

s - the state of information on which probability
assignments will be made

{ ,ls | : the density function of the ra,ndom variable r
given the state of information

{als} : the probability of theevent A given the state of
information

: the expectation of the random variabl a x, which
equah,f, c[rlsf

- the experienee brought to the problem, the
special state of information represented by totat
a priori knowledge

: the density function of & random variable r
assigned on the basis of only a priori knowledge
6; designated the prior on ,.

Our notation does not emphasize the difrerence in
probability assignment to & random variable and to &n

event beeause the context always makes clear the appro-

6

(rls)

lrle l

4anuscript received March l, lgOS.
The author is Professor. oJ -Engirreerirrg-Ecorromic Systems,

Stanford University, Stanford, Calif. -
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priate interpretation. We should interpret the generalized

,urr,-"tion symbol uf used in the definition of (rlS) &s &n

integral if the random variable is continuouE and as &

summ&tion if it is discrete.

AN Ir.rnERENTIel CoNcEPT

A most important inferential concept is expansion; it
allows us to eneode our knowledge in a problem in the

most convenient form. The concept of expansion permits

us to introduce a new consideration into the problem.

Suppose, for example, that we must assign a probability

distribution to a random variabl e vt. We may find it much

easier to assign a probability distribution tn u if we had

previously speeified the value of another random variable u

and we m&y also find it easy to assign a probability dis-

tribution directly to u. In this case the expansion equation,

[rls] : .[,{ulusf [rls] (1)

shows that all we have to do to find {"lS} is multiply

{ulus} by {rls} and sum over all possible values of the

random variable u. Mathematically this equation is no

more than a consequence of the definition of conditional

probability, but in the operational solution of inference

problems it is extremely valuable. If we want to find only

the expectation of u, (rlS), rather than the entire density

function luls| we apply expansion in the form,

("ls) : toul "lsl 
: .f ,L"l"lrs) lrlsl :

J,4u[us)trls] . (2)

This equation shows that in this ca"se we must only pno-

vide the expectation of u conditional on u and the proba-

bility distribution of u in order to find the expectation of z.

The inferential coneept of expansion allows us to go

directly from the statement of an inference problem to its

solution in simple logical steps. It providee a link between

the formalism of probability theory and the path of human

reasoning; it is a tool of thought.

A BlppING Pnonlnu

To illustrate our appnoech we shall consider a, Epecific

problem. Suppose that our compeny is bidding on & con-

tract against a number of competitors. We shall let p be

our company's cost of performing on the contract; un-

fortunately, we &re uncertain of this cost. We let / be the

lowest bid of our competitors, and as you might expect,

this too iB uneertain. Our problem is to determine b, our

company's bid on the contract. Our objective in this

determination is to maximize the expected value of u, our

company's profit or value from the contraet.

Naturally, our company will not win the contract if its
bid b is higher than the lowest bid of our competitors f,,

thus, in thie ease our company's profit is zerc). flowever,

if our bid b is lees than the lowest competitive bid / our

company will obtain the contract and will make a profit

HOWASD: INNORUATION YALUE TIIIORT 23

equal to the differcnce between our bid b and our cost p.

Thus, pnofit a tn our company is defined by

a:{b - Prf b<l
t o ifb>( 

(3)

This equation indicates that the probability distribution of

profit given our bid [ulAe] would be trivial to determine

if we only knew our compeny's cost p and the lowest bid

of our competitors /, since by the expension concept

f ulue) : to1laluetel{ p,rlae} . (4)

In this equation lp,tlUef represents the joint distribution

of our cost and our competitor's lowest bid given our bid

and the state of knowledge 6 that we brought to the

problem. Horvever, since we &re interested only in the

expected profit by assumption we c&n write (4) in the

expectation form,

lulue) : I",c(rlqprs)l p,clbsl. (5)

At this point we shall make two assumptions. The first

is that our cost p and the lowest competitor's bid / do not

depend upon our bid b,'that is,

lp,tlul : lp,4el . (6)

The seeond assumption is that our cost p is independent

of t,he lowest competitive bid /, or,

I p,rle] : [pls] ltle I . (7)

With these assumptions (5) becomeg

(ulae) : I,,Aoluplellplsl l4el . (8)

In view of (3) we have immediately that the expectation

of profit conditional on our bid, our cost, and the lowest

competitive bid is simply

lulapre) : b- pifb<l
0 ifb>r'{

(e)

The next step is to assign prior probability distributions

{ple} , [fle] t" our cost and to the lowest cgryqetitive bid.

fi,"'p-U"bility distribution on our cost lplal would be

based upon the information that our company had gathered

in performing similar contracts as amended by the tech-

nical considerations involved in the new @ntraet. The

prior distribution on the lowegt competitive bid l4el
would be based on our experiences in bidding against our

competitors on previoue occasions and on other inforrns-

tion zuch as reports in the trade preaE. Although we shall

not have the opporturity to digresE on the subimt of how

these a^*signments are made, suffice it to say that efrective

procedunes for this purporc are available.

To gain eese of computation we shall state eimply that

in this problem the prior distribution on our company's

cost p is a uniform distribution between ,eno and one and

that our prior distribution on our competitor's loweet bid iE

a uniform distribution between teno and two. These prior
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{r rE} and negative for bids between 0 and l/2. Formally,

AUOUB!

(pt6)

tp -.

927
32 96'

We have, therefore, found that the best bidding stratery is
to bid 5/4 and that this strategy will have &n expected
profit of g/32.

Cr.,etnvoyANcE

Even though we have devised a bidding strategy that is
optimum in the face of the uneertainties involved we could
still face a bad outeome. We m&y not get the contract, and
if we do get it, we may lose money. It is re&son&ble, there-
fore, that if a perfect clairvoyant appeared and offered to
eliminate one or both of the uncertainties in the problem,
we would be willing to offer him a financial consideration.
The question is how large should this financial consider-
ation be.

We shall let C represerrt clairvoy&nce and C, represent
clairvoyance about a random variable r. Thus any proba-
bility assignment eonditional on C, is conditional on the
fact that the value of o will be reveaied to us. We define
uet &s the increase in profit that arises from obtaining
clairvoyance about x. It is clear that the expected increase
in profit owing to clairvoyence about r,(u",16) is just the
difference between the expected profit that we shall
obtain &s a result of the clairvoy&nce (ulc,e) and the
expected profit that we would obtain without clairvoy&nce
(rle); rhus,

(r",le) : (rlC,e) (rle). (lB)

We eompute the expected profit given clairvoyance about
,,(rlC,t), by evaluating the expected profit given that
we know e,(ulr6), for eaeh possible value of x that the
clairvoyant might reveal and then summing this expecta-
tion with respect to the probability assignment on c,lcle | ,

(ulC,e) :t"qulxe)[rlef . (14)

We use the prior probability distribution lrlel for z in this
calculation because up to the moment that the clairvoyant
actually reveals the value of x the probability that we

must assign to his statement about r is based only on our
prior knowledge 6.

By using (13) and(14) we c&n aseign the expected value
in monetary units of eliminating eny uncertainty in the
problem. We shall now spply these results to computing
the value of eliminating the uncertainty in our cost and in
the lowest eompetitive bid in the pncblem.

Arer,ysrs or Cr.elnvoyaNcE ABorrr Oun Cost

We now determine (uc,rle), the expected value to us of
eliminating uncertainty about our cost p. From (lB) and
(14) we write

(r",le) : (ulCre; (rle) (15)

1ulc,e) :I,elps)lplsl . (16)

(rle) : *f* (rlaey : (r,u - :, r) (12)

[l< {r z}

Po

tPo I tl.l-eo >rotg). Itz-trt
O( eot I oslo ( 2

Po

Fig. l. Priors on eost of perform&nce and lowest
eornpetitive bid.

(loi' {re-ul(b-*}. -{+ lo -*0. b(z

6['&

-Z
32

Fig. 2. Expeeted pro6t as function of our bid

distributions are shown in Fig. I along with the cumulative
and complementary cumulative distributions that they
imply. Frcm the symmetry of the density functions we see

immediately that our expected cost (ple): i, is just l/2
and that the expected lowest bid of our competitors (rls)
is l. However, it would be folly to assume that these ex-
pected values will occur.

We can now return to (8) and substitute these results,

(ulae) : tnl tquluptt)[ rlef I 4s]

: Iol;o(u p)lplel [4e I

: Io(b p)lpltl IEo[ 4e I

: lc > alel I"@ p)lplel

: lt > alef 1a 6le))

: lt > ulef p - i,). (lo)

our expeeted profit, given that we bid b, is therefore the
product of the probability that our eompetitor's lowest bid
will exceed ours and the difference between our bid and our
expected cost. From Fis. I we have that our expected
profit, given that we bid b, is simply

(p

b

0sb<2. (ll)

Figure 2 shows this expected profit &s a, function of our
bid. Note that a maximum profit of g/BZ is achieved by
making the bid equal to 5/4. of course, the same result is
obtained by eetting the derivative of (ll), with respect to
b, equal to Eeno and solving for b. Note that the expected
profit is positive for bids in the range between l/2 and 2,

lulue): le bt(a i)
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(27)

T'he expected profit (rlps) that we would make if we knew

our cost is just, the expected profit thst we would make if
we bid b and il our cost was p maximized with reepect to

our bid b; that is,

(rlpel == Max (rlupa). (17)

Using the assumptions of (6) and (7) we invoke the

expension concept to write

('ruPe):tl,T:llll', 
: (b err,,urer

: (D - olrr<z b) (18)

Note that if we take the expectation of this equation with

respect to the prior on p we immediately obtain (ll).
We determine our bid by maximizing (rlape) with

respect to b. By aetting its derivative with reapect to b : 0

we find immediately that

*rrtbps) 
: Q + 2 -b - (b - p) : o, 2b : 2 + P.

b z= 1 *?, (lg)

The bid should be equal to I plua l/2thevalue of our cott.

When we insert this result, in (17) we find that the ex-

pected profit given that our cost is p is

(,lper: (,,u : (r + i),*): ;(r ,r)' (20)

Now we compute the expected profit given clairvoyance

about p from (16),

%

96

(21)

This expected profit is8/96, l/96 more than we obtained

in (12) in the case of no clairvoyance. Therefore, following

(15) we have fourd

(rr,ls) : (rlcre) - (rle) == ffi - #: *. (n)

The expected incrcase in our profit that will result fiom

having our coet revealed to us by a clairvoyant is eonae

quently l/96.
If the value of thig analyeis depended on the actual

existence of clain oyance then it would have only theo-

retical intercst. However, since clairvoy&nce repreeents

complete elimination of the uncertainty about a random

variable it follows that what we would pay for clairvoyance

should be an upper bound on Bny experimentol prcgrarrt

that purports to aid us in eliminating uncertainty about

that variable. Thtu, h the pruent probleur the compsny

should not hire any cost accounting or production experts

to aid in eliminating uncertainty about p unless the cost

of these eeryices is conEiderably below (11116). The concept

of clairvoyance plays the same rcle in analyzing decision

problems that the concept of a Carnot engine plays in

analyzing thermodynamic pmblems. Theee theoretical

construets provide bench marhs against which practical

realizations cBn be tested.

Axeuvgls or Cut tnvoYANcE ABour rHE Lowust

CoupprITrYE Bru

Now we determine what it i8 worth to know the lowest

competitive bid. We write immediately,

(u",le; - (rlere) (rle) (23)

(rlcre) - Idrlrs){4el (%)

and

(ulre) : i\{ax (ulatel' Q5)

lVe e&n perform expalulion in terms of our cost p just as

we did in (18) in terms of C. We write,

(ulure) - I"@lbpca)lplel. (26)

Frcm (9) we have immediatelY that

(ulua) ==

Iro - P)[Plel =r b i' if b < c

0 if b> l.

Therefore if C < i, do not bid; if 0> 2 bid /-, just below f.

It is easy to see why this is the beet bid. Since we know

the lowest competitive bid I we can get the contraet by

bidding iust under l. However, if / is already less than our

expected coet then we would expect to lose money by such

a strategy for it would be bett€r not to get the contract

at all. Consequently, rt I is leos than our expected cost p

we should not bid; while if , i8 greater than i *e ahould

bid just below /. Therefore we hsve

(,la) : yex luluce; '= {3 
- i' :liai (28)

The expected profit given the loweet competitive bid ,,

(ulfe), is plotted as I function of f in Fig. 3. To find the

.ip".t"a profit given clairvoyance about C, (rlCes), we

integrate this function with respect to the f density func-

tion of Fig. I and obtain

(rlcee) : IArlrE)l 4el : fr',rdt (, - i) i : ,1 
: 

#.
(2e)

The expected profit grven clairvoyance about f is il/W,
twice as large as the expected profit of Tl /96 obtained in

(lZ1 wherc no clairvoyanoe waE availsble. The expectod

(utcre) : !r(olq,)[ple] : lo'dp l(, - ;)' : *-:
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Fig. 3. 
?m5#"li?fl,asrunction 

of

increase in profit with clairvoyanee about / is, therefore,

(urlltl: (ulc rcy (r[e) : # ';: '; (Bo)

By comparing (30) and (22) we see that the expected
increase in profit beeause of clairvoyance about the lowest
competitive bid , is 27 times as great as the expected in-
cre&se in profit because of clairvoyance about our cost p.
Yet the density functions for p and t shown in Fis. 1

reveal that the range of uncertainty in I is only twice the
range of uneertainty ir, p. Why, therefore, is information
about the lowest eompetitive bid so much more valuable
than information about our cost? The explanation is that
we c&n use information about t far more effectively in
controlling the profitability of the situation than we c&n
use information about our costs. If we know / then we
c&n control immediately whether or not we get the con-
tract, although we may still lose money even if we get it.
Knowing p prevents us from bidding on any contraet that
would be unprofitable for us if we got it but is no help in
determining whether or not we will get it.

Awelvsrs oF ClernvoyANCE aBour oun Costs AND THE

Lowpsr ConapETrrrvE Bro

Suppose that we are now offered clairvoyance about our
eost p and the lowest competitive bid ,. What would this
joint information be worth? We let ucrt represent the
increase in profit beeause of clairvoyance about both p and
/. Then in direct analogy with our earlier results for clair-
voyance about a single random variable we c&n write

(u,,rltl : (ulCorc) - (rle) (Bl)

(ulcrre) : .fn,tblpts> lp,tlal (82)

and

(ulptt) : 
Yu* @lapct)

(ulupra)- {'^ Pi.r.b<t
t0 if b > t. (33)

we know both our cost p and the lowest competitive
bid I we c&n get the contraet by bidding slightly less

than / and we want it if this bid exeeeds our cost p.
Consequently, our expected profit given p and / will be

| - p if / exceeds p beceuse we shall bid just less than C on
the eontract and get it. The expeeted profit will be zero
if / is less than p because we shall not bid, e.g.,

Now we substitute the results of (e4) and (z) to obtain

Qlc,cs) : I"Itelpce)lpls| [rlel
:.fldplplel t,,_fil llel U - p)

: itr dplr'dt(t - p): 
ir=B H.

(35)

The expected profit given clairvoyence about both p and I
is therefore 56/96, the highest expected profit we have
seen thus far. The expected inerea.se in profit resulting
from clairvoyance about p and / is, therefore

br,tlt): (rlc,&) - (ule; : :9 - !: 
29

e6 e6 e6' (36)

The expected value 29/96 of knowing p and / jointly is,
therefore, gre&ter than the sum of the I /go value of know-
ing p alone and the 27 /go value of knowin g t alone. The
further advantage provided by the joint knowled ge of p
and / is illustrated by the fact that now the eompany can
never lose money whereas in each of the two earlier ca.ses

it could.

However, the most striking result of our analysis iB the
s'&y in rvhich the uneertainty about the'lowest competitive
bid towers over the uneertainty in our company,e eogt as a
concern of management. In thig problem it is worth far
more to know what the competition is doing than it is the
internal perform&nce of our own company. You might say
facetiously that we have demonstrated the dollars and
eents payoff in industrial espionage.

CoNcr.,usloN

The observations made in this peper have wide sp
plication. We can treat the case where our clairvoyance
is imperfect rather than perfect. The imperfection can be
beeause of a statistical effect arising in nature or the result
of incompetence or mendacity or both in the sounoe of
the information.

Placing a value on the reduction of uncertainty is the
first step in experimental design, for only when we know
what it is worth to reduce uneertainty do we have a basis
for allocating our resources in experimentation designed to
reduee the uncertainty. These rcmarks ane as applicable to
the establishment of a nese&rch laboratory as they arc to
the testing of light bulbs.

If information value theory and associated decision
theoretic struetures do not in the futurc occupy a large
part of the education of engineers, then the engineering
profession will find that its traditional role of managing
scientific and eeonomie resources for the benefit of man
has been forfeited to another profession.

RurpnENcEs

t l l F. +..-Eqlt"Ld, "Bayeqian decision models for systen
i.9," I EE)
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Value of Inform Ltion Lotteries
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AbElrocl-fbc c3scnco of dcciaion-maling ie undcrsteadiry thc
ecoaomic ilnpect of rrnccrteinty. In thir peper I previoru dlscuerlon
of informeton veluc theory iE ertendcd to illustrate how thc evail-
ability ol informetion on thc uncertein factora of a problcm aficcta
the probebility denrity fimction of proi! the pro0t lottery. A bidding
problcm BGrvGt to demonstrate thc tyle of calculations rcquircd ead
thcir implicetioDs.

INrnooucrroN

A THEORY for the value of information, with p&r-
.( \ ticular emphasis on the expected value of information
of various kinds, was diseussed in & previous p&per.trl
Here the diseussion will be extended to illustrate the un-
certainty in the value of information by developing

probability distributione for the value. The mechanism

for the discusEion is the bidding example of Howard;tt!
however, the statement and regults of that example ane

repeated here to pneserve the integrity of the preeent

discusgion.

NouBxcL/\TURE

The same special notation introduced in Howardtrl
will be used her€. Briefly, the definitions &ne as follows:

t a random variable

A an event

E the state of information on which probability

assignments will be made

[rls] ttre density function of the random variable a

glven the state of inforuration E

la ls I ttre probability of the event .d grven the state of

information E

(rls) the expectation of the random variabla ot which

equals Lrlrls l

.. I\Ianuscript received March 20r JgoZ. The research reportd in
this paper w&s p_a_rtla-lly supportcd by the Office of Naval R^eeearch
ttnder Contraet N0001+67-A-0112-fi)10. Rcproduction in whole or
in part is permitted for any purpose of the Unitd Statea Govern-
ment.

The author ia with the Diviaion ol Elsrneering-Economic sys.
tema, Srmford University, Stanford, Calif.-
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the experience brought to the problem, the special

stal,e of information represented by total &

priori know edge

the density function of & random variable s
assigned on the basis of only a priori knowledge {;
designated the prior on ,.

The notation does not emphasize the difference in

probability assigrrment to & random variable and to &II

event because the context always makes elear the aP
propriate interpretation. The generalized summ&tion

symbol f used in the definition of (zls) should be in-

tcrpreted as an integral if the random variable is con-

tinuous and &s a summation if it is discrete.

THB IltootNc I)nosLEI\t

The bidding problemttl may be stated as follos's:

Our company is bidding on a contract against & I)umber

of cornpetitors. We let p be our company's t'ost of pcr-

forming on the contract; unfortunately, we are uncertairr

of this cost. We let tbe the lowe$t bid of the competitors;

&s one might expeet, this too is uncertain. The problem

is to determine b, our company's bid on the contract.

Naturally, the company will not win the eontract if
its bid b is higher than the lowest bid of the competitors
(; in this ca,se the company's profit is zero. Horvever, if

I b is less than the lowest eompetitive bid ,. the com-

yany will obtain the contract and will malie & profit

equal to the difference between its bid b and its eost p.

Thus profit u to the company &s a function of P, l, and b

is defined by

G)'l-e.
Oetr{ I

t.

Fig. l. Priors trn cost of perfornl&nce and lowest competitive bid.

TABLE I
Oprtuuu Btos, Expsctso PnorITs, a-htD Exppctso VTLUEs or

CretnvoyANcu Bespp on ExpssrtD Vel.up
MexturzATroN

Expectod

{et a}

{r. tt

{r'e.l

(tte)

lzit I (t.Uc)

,.

Infor-
mation

Increase
in Value
of this

State of
Information

over I

State
of

b:5/4
[ : | * (p/2)

(c-;rc>
b : f -'n:,t/2( <P : r/2

[-{:i[ iai

Optimum Bid
Expected

Profit

t
C

(u lt) : 27 /ffi
(u[crt) :28/9$ (ucaI€) : |/w

(alCct) : 54/96 (v"tl€) : 27 /xi

(u I cr75) : 56/96 (aeel I t) - 29 lgo

9

Cc

It p and / were known, then all one would have to do

would be to mzuximize a by adjusting b. However, be
(r&use p and C ure random variables, u will be a random

variable whose distribution will depend on b, the bid.

I'his probability distribution of profit is called the profit

lottery. The problem of selecting a bid is, then, the

problem of selecting from among the several profit

lotteries that c&n be produced by varying b, the one profit

lottery that is regarded most desirable. Of eourse, the

cornesponding value of b would be the bid the company

should make.

One way to attack the problem would be to assign &

utility function that would produce & scalar index of
desirability for any profit lottery. The value of b would
then be determined by maximizing this index. However,

rather than considering a geueral utility function, How-
ard tr I used & very special one: the straight line. This

'lity function is appropriate to the risk-indifferent
rrrdividual. The straight-line utility function results in
me&suring the desirability of a profit lottery by its expected

profit. This criterion of desirability will be used throughout
the preeent paper with the understanding that the results

could be developed for sny other utility function that

crt

might be desired. Thus, our problem w&!t' and is, to find

the value of bid b that m&ximizes expected profit.

To derive specifie results, it is of course necess&ry to

assign probability distributions to the eost of perforrn&nce

p and the lowest competitive bid ,. These probability

distributions ane &ssigned on the basig of prior information

t. Assume that p and I are independent and assign them

the uniform probability distributions shown in Fig. l.
Note that the expected eost of perforrn&nce p is i : I /2
and that ttrc expected lowest competitive bid , is 7 : l.

Previouslyltl the expected profit was computed as a

function of b based on the probability assignment, and

then the value of b wa"s found that would maximize the

expected profit. ?he result is shown in Table I in the

row corresponding to the state of information t. The

optimum bid is b : 5/4; this optimum bid produees &n

expeeted profit (ult) : 27 /96.
If no source of additional information wene available,

the problem would end at this point. However, even

though a biddirrg strategy wa.s devised that is optimum in

the face of the urteertainties involved, the outcome

could still be bad. The company mey not get the contract;

and if it does, it may lose money. It ie neasonable, there-

forc, that if a perfect clairvoyant sppesrcd and ofrered to

eliminate one or both of the uneertainties in the problem,

the company would be willing to ofrer him a financial

U:
b p if b<C
oif b> t.

I
\

(l)
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eonsideration. The question is how large should this
naneial eonsideration be.

Let C represent clairvoyance and C, represent clair-
voyance about a random variable r. Thus any probability
assignment conditional on C, is corrditional on the fact
that the value of z is revealed. Define uc, as the increase
in profit that arises from obtaining clairvoyance about r.
It is elear that the expected inerease in profit owing to
clairvoyance about r, (rrrlt), is merely the difference be
tween the expected profit that will be obtained &s &

result of the clairvoyanee (rlC,t) and the expected profit
that we would obtain without elairvoyance (ul{); thus

(r",lt) : @lC,t) (rlt). e)

The expected profit given elairvoyance about r, (rlc ,t),
is computed by evaluating the expected profit given that
x, is knou'n (ulrt), for each possible value of r that the
clairvoyant might reveal and then summing this expect,a-
tion with respeet to the probability assignment on x,

lrlt l,

(ulC,t) : t,Qlrt) {rlt l. (B)

The prior probability distribution I ,lE I for r is used in
this calculation beeause, up t<l the moment that the
elairvoyant actually reveals the value of r, the probability
rssigned to his statement about r is based only on prior
.nowledge t.

By using (2) and (3) the exper:ted value in monetary
units of eliminating any uncertainty in the problem c&n
be assigned.

In Hr-rward tr I three possible types of elairvoyance
were eonsidered: C u elairvoyan(re about eost of per-
formanee p; C t, clairvoyance about the competitor's
lowest bid t; and C ,t, elairvoyance about both of these
quantities. The results of these considerations are sum-
marized in Table I. It was found that if we had clairvoy-
anee about p, the bid would be b : I + p/2, or I plus
| /2 the eost of performance predicted by the clairvoyant.
'I.'he expeeted profit if one had this elairvoyanee would be
(ulC rgl - 28/96. Therefore, the inerease in expected
profit due to this clairvoyan(:e instead of merely prior
information is

Qr,lt) : Qlc,t) (rlt) : z8/e6 zz /e6 : t/s6.

When considering elairvoya,rree about the lowest
competitive bid l, it w&s found that one should not bid
(or equivalently, bid & very large amount) if the lowest
eompetitive bid I were less than the expected eost of
performance i : l/2, and that one should bid /-, slightly
less than l, if / were greater than f : l/2.The expected
profit with this clairvoyance is (rlC d) : 54/gO, &n in-
rease of (urclt) : 27 /96 over the profit to be expected

based on only prior information. Note that the expected
inerease in profit due to clairvoyance about t is 2Z times
that due to clairvoyance about p.

Finally, consider clairvoyance about p and t jointly.
In this c&se, it is clear that one should not bid if / is less

IEEE TRANSACTIOT.IS ON SYSTEMS SCIENCE AND CYBERNETICS JUNE 1967

than p and that one should bid t- if t exceeds p. The
expeeted profit with this elairvoyance is (ulC rCt) : 56/g6;
the expected inerease in profit due to the clairvoyance
rather than prior information alone is (r"rdtl : 29/96.
Clairvoyance about both p and l, then, is not worth
much more than elairvoyance about / alone. However,
the forthcoming eonsideration of the probability dis-
tributions of profit and of the value of clairvoyence
illustrates &n important feature that separates the two
types of clairvoya,nee.

THn UxcnnrArNTy or. Pnout

All r:onsiderations up to this time have been based on
the expeetation of profit and, in particular, on its mD(-
imization. However, only a rare decision-maker would be
.ontent to measure his ventures in terms of their expected
returns alone; most rvould require in addition the prob-
ability distribution of profit to show the nature of the
risk that must be trorne. Therefore, the previous analysis
will be supplemented by tleveloping the probability
distributions for profit frr the various e&ses discussed.

To begin, a general expression for the probability
distribution of profit as it depends on the state of infor-
mation is written. Thus, if the state of informution is s,
the probability distribution of profit is given by expansion
in the form

lrlsl : I,Itlrlp,/,b(s),slIp,tlsl . (4)

Here b(s) indieates the optimal bid for the state of
information s. The probability distribution for profit
when p, l, and the optimal bid ure known, lulp,l,b(s),S l,
is &n impulse distribution since the profit is uniquely
determined from p,C, and the bid. This is intlicated by
writing

'@lp,r,b(s),s): {'^ P if b<tt- 1o b>t (5)

where the presupersr.ript D connotes that a is given
deterministically by this expression.

The states of information s in (4) may be just prior
experienee f or prior experience coupled with one of the
elairvoyant events. The efrect of including a clairvoyant
event is to change the form of the function b(s) in (4).
Iior the states of information E that are being considered,
the joint distribution of p and t,lp,rls l in(a) will always
be the joint distribution based on only prior information

lp,tltf . t'or convenienee this joint distribution is shown in
Fig. 2; it is just the product of the two independent m&r-
ginal distributions fronr Fig. l. Thus, by using (4) and (s),
the probability distribution of profit, the profit lottery,
c&n be computed for any of the states of information
previously considered.

We start by calculating the profit lottery based only on
prior information t. Table I showed that the optimal
bidding strategy for thig case ig to make the bid equal to
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P

(a)l

@

Fig'2'Prior jointo'ff 
f r"*l.T::t"rtffl ij""fff ."onnanoe

?rlqt,E r -Qvlp,t, b- 5/4,6>

plementary cumulative distribution at eny point is just

the area under the density function to the right of that
point. Tor positive random variables, the area under the

comple'mentary eumulative distribution is the me&n of

the random variable. The complementary cumulative

distribution for profit is often a very convenient form in
which to represent the profit lottery.

Thus we see that the stratcgy of bidding 5/4 involves

the decision-maker in a highly risky venture. With prob
ability 5/8, the profit is zero; however, it could be

as high as 5/4. Further, it is impossible for the company

to lose money.

UNcnnrAINTy AssoclATED wITH ClelnvoYANcE

Anout Cost

How would the profit lottery change if clairvoyance

about p could be bought? Note from Table I that the

optimal bid is b : I + @/2). Then (5) becomes

ollp,l, Cotl : oblp,l,b(Crt) 
,Cot)

: "(rl ?,0,b: I + ;,r*) (Z)

I i r+

0 l+

?
2

?
2

<c

>0.

Figure 4 illustrates the calculation of lrlC rtf fo[ow-

ing the pattern of Fig. 3. Thus the joint density function

for p and / from Fig. 2 is again used to find the profit

lottery implied by the profit function from (7). There is

still t 5/8 probability of a ,eno profit and e zeto proba-

bility of & loss. The expected profit given clairvoyance

about p, (rlCrt), is 28/96, in agrcement with Table I.

Note that it, is in fact impossible for the profit to equal

28/96 under these circumstancee, because this point

is not in the domain of the random variable. The actual

profit must be either zero or a number between l/2 and

one. Obsewe that it is not possible to eam a profit larger

than one when the bid is b&sed on clairvoyence about p,

although the firm could possibly eern a profit as high as

5/4 when acting on prior experience alone.

To examine further the efrect of clairvoyance about p,

consider the question of how much profit is increased as a

reeult of having clairvoyant information. Since this in-

cne&se is itself & random variable, it has a probability

distribution that c&n be called the lottery for clairvoy&nce.

Thus the lottery for clairvoyence about some variable or

set of variables, given the prior information t is lrrrltl
and is defined by

fr",ltl :II Irr,l P,ttl Ip,rlt]. (8)

Since uc,, is known when p end I arc known, one can write

o\r,lq,tt> =: 'Q|1P,C, C*> "QlP,tE[ (9)

The value of clain oyence at a particular point (p,l) is

(qrts)

(b)
0

t't t)

(c)

.yle >-27196

{vrrle}

3t8

(d)
I

Fig. 3. Profit lottery given prior informstion. (a) lample space.
(b) Profit funetion. (c) Profit density function. (d) Pro6t eomplc
mentary cumulative distribution.

5/4.Then, from (5),

o(alp,lt) : o(rlp,l,b(t),{) : D(ulp,l,b : 5/4,t> =3

Wr-P{:lt:l (o)

The calculation of the probability distribution for profit

in this ease lrlt I is shown in Fig. 3. Figure 3(a) shows the

functional form of the profit in the p, / sample Epace;

Fig. 3(b) shows its actual height point by point over the

sample Bp&ce. Since we thus have the profit as a function

ol p and / and since we know the joint probability distri-

bution of p and / from Fig. 2, il is an elementaty, if not

trivial, application of probobility mechanics to derive the

density function of profit as indieated by (4). The resulting

density function is gtven in Fig. 3(c). Note that the density

function has an impulse of area 5/8 at zeno corresponding

to the 5/8 probability of zero prcfit. A ?nrc profit is, of

course, primarily & resdt of not winning the eontract.

The expected profit (ul$ is again 27 /96 in agreement with
Table I: however, we c&n now eee that the expectation is

far from an adequate description of the profit lottery.
Figure 3(d) ehows the complementary cumulative

probability distribution of pnofit, the probability that the

profit exceeds any given value. The height of the GoIn-

o 5/4,-0
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Note that the value of clairvoyanee about p at & point
(p,t) is just the difference in the profit funetions of Fiss.
4 and 3 at that point. This difference is shown in Fis.
5(a) and (b). observe that the value of clairvoyance may
be negative for some values of p and t. When the joint
prior on p and I is used, the density function and eom-
plementary' eumulative distribution is obtained for the
value of clairvo)'anee about p shown in Fig.b(c) and (d).
The expected value of clairvoyanee about p, (r"rlf) is
| /96 as found in Table I. Note that there is & lg/Bz
probability' that the information reeeived on p is worth-
less and a 7/32 probability that it has a negative value.
As the densitl' funetion for us, is examirred, we see that
the mean value of | /96 provides only the crudest indica-
tion of the value of clairvoyanee about the cost.

(a) |

(c)

{v lcre}

5/8

I

V4

o
l/?

(b)

(b)

I
I

f- 
.rl.pt, -zu/e6

{rr rl.re}

Fig. 4. Prg{t]ot*ry- given clairvoyance about the cost p. (a) Sample
space. (b) Profit function. (c) Profit density functi<in.'(d) prrifit
complementary cumulative distribution.

o. 
*rf o, (t, - D.rlp,thE, 

-D.rlp.ltt

Fiq, I.-.l,qttery for clai-rvoy&nce about the cost p. (a) Sample spece.
(b) Clairvoy&nee vnlue 

-funetion. 
(c) Clairvoyaric6 valu'e de'nsity

fitnetiott.. (d) Clairvoyance value 
' 
complementary curnulstivl

distrihrttion.

just the incre&se in profit it produces at that point. Since
uc,, &s a function of p and I and the joint prior on p and /
&re knorvn, (8) can be used to derive lur,lg|, the lottery
for clairvo)'&nee about c.

To apply this result to clairvoyanee about cost p,
rvrite (9) &s

ob"rlp,lt> : o(ulp,lC rll ollp,ttl. (10)

UNcBnrArNTy AssocrATED wrrH ClernvoyANCE Anour
THE LowBsr CouppTrrrvE Bro

To develop the profit lottery given clairvoyance about
t, recall that the optimal bidding strategy was to refrain
from bidding if t was less than the mean cost p, and to
bid t- otherwise. Since refraining from bidding is equi-
valent to bidding a very large number, (5) ean be written

"Qlp.t,C d) : ublp,C,b(C 
d), C d) :

,Q\pt,l= 
':,,,irr= 

,r,,ry cfit

Ic-p tf r/2<t
t0 if t/2 > t.

(l l)

Figure 6, then, shorvs the calculation of the profit lottery
given clairvoyanee about /. The expected profit <rlc *)
is 54/96, &s was first found in Table I. Observe that there
is l/4 probahility of a zero profit and a l/L6 probability
of a loss. Contrast this result with the profit lotteries of
Figs. 3 and 4, where it w&s found that acting on prior
information or clairvoyanee about p could not possibly
produce a" loss. Thus, although clairvoyance about the
Iowest competitive bid I promises greater profits than
does clairvoyarrce about the eost of perform&nee p, it also

irrtroduces the prxsibility of a loss.

To establish the lottery for clairvoy&nce about /, write
(9) in the form

'Qrrlp,tt> : DQlp,lC g) "blp,tt). (12)

The inerease in profit due to clairvoyanee about / at the
point (p,t) is merely the difference in the profit functions
of Figs. 6 and 3, a difference indicated in Fig. 7(a) and
(b). Note that the value of clairvoyance about f can take
on negative values. When the joint density function
for p and / is introdueed from Fig. 2, the density function
and complementary cumulative distribution for the value
of clairvoyance about / shown in Fig. 7(c) and (d) ene

developed. The expected value of clairvoysnce about l,

(d)
x

(a)l

(c)

(d)

-5/4

(D

p

I

ttrle)
3/4

l-.*rt.>-rle6

tq"le)

t
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o

?rf r,,tE'- ?rlp,( :::: 'r:or'-tr'/-s>
(1*,.r,)-('' Il,i:')

{v lc, 1 e}

o r)l (b)
(a) (b)

(b)

I
I

trl.re)

t'., F)

t/2

(c)
(c)

(d)

l-.rlcrt, 
- 54le6

tr'rl.,e)

| 
.r..1. > -?te6

toi,l€)

t-
<vlcqtf,;r56/96

{rx I cqe e}

v2

p 
D.tr 

lp,let -Q, te,llet -ocvlp,ttt

at4

UNcpnrArNTy AssoctarED wITH CretnvoyANcE Asour
BotH Cost aND THE Lowust ConpETITrvE Bro

Recall that when both the cost p and the lowest eom-

petitive bid C are known, the optimal bidding strategy is

to refrain from bidding when / is less than p and other-

wise to bid /-. Thus (5) becomes

oblp,t,C 
rc}) : oblp,t,b(C 

oc),C r.72t) :

(d)
T

"Tlfulli##si#tr;i"Hl"tr?HxeiT"?itrirn*'# "'ffii#ffi:itii$1lkttfifl?b*"i'3i1"*l&?"il'f"l 8i

0

(a)

o I

"blp,tbu= :,,,r a ;, 
c,d)

(c)

(d)

l-pifpat
0ifp>0. ( l3)

(r"d$, ia 27 /96, in accordance with Table I. With prob-
ability l/4, the information on / is worthlees, and with
probability l/16, of negative value. By eomparing Fige.

5(c) and 7(c), w€ e&n see that the value of clairvoyance
about the loweet competitive bid , is difrerent from the
value of clairvoyance about cost p in the shape of its
distribution as well as in expected v&lue.

Figure 8(a) and (b) shows the nature of the profit function.

By using the joint density function on p and / from Fig.

2, the profit density function and comprehensive

eumulative distribution shown in Fig. 8(c) and (d) is

derived. The probability of not winning the eontract

md, thercfore, having profit zeto is l/4; the expeeted

profit blc 
"ct) 

is 56/96, as in Table I. Note that clair-

voyance about both p and f increases the maximum profit
ta 2 and eliminates any possibility of a loss.

The value of clairvoyance about both p and I is shown

bv (9) to be

o(arnclp,tt> - "Qlp,Ct"ct) - o!lp,l|). (14)

This incrcase in profit at the point (p,C) is the difrerence

in the profit functions of Figs. 8 and 3 at that point. The

resulting function for the value of clairvoysnce about

both p and / appears in Fig. 9(a) and (b). The density

function and complenrentary cumulative dietribution

I

Fig. 7. Lottery for clairvoyanoe ebout the lowest competitive bid ,.
(a) Sample qpaog. Q) Clairvoy-anos volue frrnction.-(c) Clairvoy-
anoe value dgnsity fu-nction. (d) Clairvoysnoe value eomplemeir-
tary eumulative distribution.

o t-, 
lt-oro
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for the value of elairvo)'&nce in this c&se is obtained in
the usual manner; thel' appear in FiS. 9 (c) and (d) .

The expected value of clairvoyance about both p and I
(rrrrlf) is 29 /96, &s in Table I. Note that & negative
value for elairvo\r&rrce about both p and / eannot exist.

Coxct uslor\i

'Ihe results that have been obtained show the in-
atlequae.r' of eharaeterizing profit lotteries by their ex-
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pected values. Until sueh time as decision makers routinely
use utility curves to express risk preference, one excellent
alternative is to display profit lotteries of the type de-
veloped in this psper.

An elementarl' problem w&s used here to illustrate the
eoneept of placing monetary values on information in &

decision process. These results c&n be readily extended
to the c&se where the information purcha^sed is imper-
fect, but the essential methodology remains the s&me.

We should point out that placing & value on & re-
duction of uneertainty is the first step in experimental
design, for only when the worth of reducing uneertainty
is known does one have a basis for allocating resourees in
experimentation designed to reduee the uneertainty.

However, in addition to illustrating the eoncept of the
economie value of informatiorr, we have shown that
even an elementary problem of this type may be far
from trivial in the familiarity with probabilistic operations
required to derive the results one would like to examine.

In view of this observation, it is not surprising that so

few man&gers and engineers make use of formal decision

models in decision-making.

Yet it is inevitable that in the future both technical
and manegerial decision-makers will employ formal
logical methods in decision-making. The transition
probably will be painful.
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The Economic value of Analysis and computation

Abstract-This paper shows how the decision analysis approach
can be used to determine the most economic method of carrying
out computations or analyses. A primary decision problem is first
formulated to obtain a structure for the analysis. Then several
computational or analytical procedures, which can be used to analyze
the primary decision problem in greater detail, are evaluated to select
the most economic procedrue. The purpose of each of these pro-
cedures is to increase the available information about uncertain
parameters before making the primary decision, thereby yielding a

"better" decision. Each procedure is evaluated by combining the
value stnrcture of the primary decision problem with a model of
that procedure. The procedures considered in this paper are clair-
voyance, complete analysis, Monte Carlo analysis, and numerical
analysis. An example of a bidding problem is used to illustrate the
results.

v (o, o) V(o,o)

THE OECISION TREE NATURE'S TREE

Fig. l. Trees for the primary' decision problem.

The symbol .[is used as a generalized summation syrnbrl
representing either &n integral or a discrete summation,
depending on rvhether the random variable is eontinuous
or diserete.

ACT ION

o

OUTCOME VALUE

o

ourcoMe AcrtoN vALUE

INrnooucrroN

nflANY computations and analyses are earried out in
IVI support of decision-making processes. The primary
value of these computations is derived from improvement
in the decision that follows from the computational
results. Usually the extensiveness of such an analysis is

determined on the basis of intuitive judgment and bud-
getary eonstraint,s, rather than on an economic analysis
of the value of the eomputational results to the primary
deeision problem.

The purpose of this paper is to show how eomputational
or analytical procedures can be economically evaluated
and to illustrate the results with &n ex&mple. In order to
evaluate the proeedures, it will also be neee$sary to show
how the results of each procedure ean be taken into
aecount in the deeision policy.

Nore.rloN

The following notation will be used to describe prob-
ability assignments:

rhe *o,L,li':#,::"",H':J ilffi:*n n" pri,rary
decision problem is as follorvs:

E 4- the experie,ee or prior knru'ledge brrught
to the problem,

a g the aetion variable, the primary decisi,.
is to seleet the value of o,

o a the outcome random variable,
v (a, o) g the value funetion that assigns a value to

eaeh action-outeome pair,
u 4' the value random variable,
d(rlf) g the value of o that maximi zes @la, S), and
o*(uls) 4' the intentio. to use the decision rule aluls)

at that point in time when the informatiorr
symbolized by S becomes available.

The structure of a decision problem is most easily
represented by drawing both the decision tree and nature's
tree for the problem (Howard tl l). Fig. I illustrates
these trees for the primary decision problem. The erossed
nodes indicate decision points and the uncrossed nodes
indicate chanee points.

In this paper the term outcome is used to signify the
revelation of a " state-of-natur€," and as sueh the outeonle
is not influeneed by the aetion. This assumption is repre-
sented in nature's tree shown in Fis. l. However, the
value of the outcome is determined by both the actiorr and
the outcome, and thus information about the outeonre is
useful in determining the best action. ]Iodels in which the
aetion influenees the outcome may be ineorporated,
essentially by changing nature's tree.

Assuming the deeision maker rvould like to rnaxirnize
his, expected value, the best decision is given by aetiorr
aplQ. This aetion is the one that maximizes

(ula, E): 
[,nla, 

o, Dlola, El. (l)

A

A
r
s

a random variable,
the state of information on which prob-
ability assignments will be made,

the density function of the random vari-
able r given the state of information S,

the above density function evaluated
at A, and

-f , r{rlS} a the expeetation of the
random variable r given the state of
information S.

{ ,ls} a

{, * yls}g

(rls) a

Ilarlt5cript received March 2b, 1968. This paper was presented
at th-e_IqEq Systems Science and Cybernetics Conference, Washing-
torr, D. C., October 17,1966.

The author is with the Stanford Research Institute, Menlo park,
Calif. 94025.
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By the definition of the value function

Qlo, o, E> : V (a, o) (2)

so that

(ula, E) : L, @, o)lola, El. (3)

It is assumed thet the outcome is independent of the

aetion so

lola, El : {rla}. (4)

Thus the decision maker obtains the expected value

@la*@lr),8> : plaPln), E)

rn (s) the distinct,",;;: 

-*!,!,lrli11;,.",." 

I
use d({E), and apl$ itself is not critical. The importance

of this distinction will become apparent in the eases to

follow.
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DENSITY FUNCTTONS:

I

z

lp 2t

CUMULATIVE DI STRIEUTIONS :

le seol€l Islolef

,po 2lo

COMPLEMENTARY CUMULATIVE DISTRIEUTIONS:

1r lef

g l-po

O-(9O -(;

= | tz-lot

o€ro-<2

Tnp BroorNa PnosLEM

The results will be illustrated by a competitive bidding

problem, whieh w&s introduced by Howard.r We will
play the part of a decision analyst for a company that
has the opportunity to place & bid for & contraet. We

then &ssume the compeny wishes to maximize its expected

value of perform&nce on the contraet, less any costs it has

to pey for further analyses or computations that we

undertake. The variables in this problem are

b a our bid (our aetion),

I L- the lowest bid of our competitors (a random

variable),
p g our cost of performance on the contract (a random

variable), and

a g the value of performance on the contract.

We essume that our cost and the lowest eornpetitive

bid are independent random variables that a,re also

independent of our bid. That is,

lp, tlu, nl : lp'Dll tlr] . (6)

We further &ssume that according to our prior inform&-

tion (E) the distribution of our cost is uniforrn between

0 and 1, and that the distribution of the lowest competi-

tive bid is uniform between 0 and 2, as shown in Fig. 2.

we receive the contract and make sb profit of b p.

Otherrvise, we lose the eontraet and make nothing.

Thus our value function is

I Po 2 lo

Fig. 2. Priorg on coet of performan@ and lowest oompetitive bid.

BIO COST VALUE

b

I to-rt tz-ut

Fig. 3. Deeision tree for the primary bidding problem.

Our bid b is our aetion and the p, I pair is our outeome.

Since in this paper only p will be treated in detail, the
role of I will be suppressed by eombining its effect into
the value funetion, and creating a, new value function
with pa,ra,meters b and p. We do this by writing

(rlb, p, s) -- f ,, ,u, p, t) { { a,p,s}

I Howard l2l introduced this bidding problem and presented
anal.r'sis of the value of clairvoyance.

: 
[,-_o@ - dl|o,p,s]

: (b - p)U > blb,p,Sl (8)

where S represents E along with eny additional eonditions

that we wish to eonsider. Since I is independent of b and p

and of arry additional variables to be used in this paper,

{l > b:b,sl : {l > b',b,El: 'rr, - b) (9)

(rlb,p, s) : lru - p)(2 - b). (10)

For the remainder of the paper, the role of I will be

suppressed by using the value funetion

v(b,p): (rlb,p,,$ : 
Lru - p)(2 - b) (ll)

V(b, P,l) :
-p if b<l

if b > l.{:
(7)
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INFO ACTION OUTCOME VALUE

V (o, o)

rHE OECISION TREE

OUTCOME INFO ACTION VALUE

V (o,o)

NATURE.S TREE

Fig. 4. Treee for additional information.

Thus by differentiation we can determine that

and regarding b as the aetion variable and p as the out-
come (Fis. 3). The best bid 6 @lq is the bid maximizing

qalu, n): 
Irrru, 

p)lplol

: 
[ ,t 

(b - p)(2 - b) {pls}

: )o - <pl,))(z - b).

outcome and prior knowledge, lllo, el . This corresponds
to nature's tree in Fig. 4. Now

(uli, a, E) : 
[,(uli, 

a, o, E)lolt, o, El. (ls)

The assumption that

lolt, a, tl : lolt, ol oe)

the insertion of the value funetion, and the application of
Bayes' formula yield

eli, a, E): [,r ro,ry l-&,{lldr} (20)

The best aetion i1rll, E) is the one that ma^:rimizes the
above expression, whieh yields

Oli, o*(rl i, E), B) : qult, d1ull, E), E) : ma,x quli, a, E).

(21)

Prior to receiving the information, the expected value
given this procedure is

(rz) @lo*1ult, n), E): I trlnl(ult, a*1rlt, ny, E>

and

For the prior on cost given in Fig. 2,

bln): ;

: f t,t
J,, 

,Pl*l* 
[,rr,o)11 #]rM

(22)

where it is &ssumed that

l;la*@li, E), El : Ulnl. (28)

In some cases it is convenient to eliminate the factors

lrlsl, yielding

(ulcr(ul i, E), E>: 
,[ y Lrr, fil;lo,El { olll . (24)

Equations of the form (24) ean.be written by inspeetion
by writing integrations and maximizations in the order
of the decision tree, followed by the value function from
the tips of the tree, multiplied by the joint density of the
random variables given the decision variables. The Iatter
term may be factored using conditional probability
expressions in the order of nature's tree and simplified on
the basis of independenee assumptions. Equations in the
form of (22) retain the natural " updating" of the prob-
ability distributions, while equations in the joint density
form of (2$ &re sometimes easier to derive. For a given
problem, either form may turn out to be more straight-
forward for analysis.

Ver,un or Cr,erRvoyANcE

one particular type of information is clairvoy&nce
about the outeome. In this c&se i is a diserete random
variable with probability distribution defined by

It : olo, El : l. (25)

That is, f will have the value of o with certainty. Com-
bining (24) with (25) yields

iir44 :1 +;@lE> (13)

(14)

(15)

(16)

(17)

so that

6 @lD : t.25

and

(rlb* plq,ny : 0.28t25.

THp Yer,un or fNroRMATroN

After a primary decision problem has been structured
utilizing the available prior knowledge E, it usually is
possible to obtain more knowledge or information, which
will inerease the expected value of the decision at some
additional eost. Let

i - additional information (random variable).

In this c&se, the primary deeision is pcstponed until the
information is reeeived, and then the best decision is
made utilizing the information. This sequence is illus-
trated in the decision tree in Fig. 4.

our prior knowledge about the information is encoded
as & probability distribution of the information, given an
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(r,lo* 1uft, a1, E> :,[ ry. !,v(o, 
o)l;lr, El{ olnl

:,[ y. V(a,i)[, * lll
: 

[ ,^:* V (a, r1{ ,lr} . (26)

The optimum action d@li, E) is therefore the one that

maximi zes V (a, i) I , - {nl .

Clairuoyance about p

In the bidding problem, if we consider obtaining

elairvoyance about, our eost of performance P, we must

rnake the bid that maximizes

v(b, t)lp * tlnl : iO i)(2 b). (27)

This bid is given by

6oft,q:1+ lro (28)

and for this bid

,(, + );,,) { p ? ,tnt -- } (, 'u o)' (2e)

Applying (26) yields

(rlu* 1ult, n1, E): ,[' I (, ;r)' o, : *-
: 0.291662 . (30)

Tnp Velup oF A Conaplntp AN,q.LYSIS

In the primary deeision problem, the distribution of

outcome gir.n the prior knowledge {rlfl w&s used in

arriving at the best action. Suppose that this analysis w&s

preliminary analysis of the problem using only .easily
available knowledge and techniques to arrive at lrlf ] .

After the primary analysis, it is proposed that & more

complete analysis be made; for example, by structuring

the process of outcome generation in finer detail and

seeking out the best experts to obtain data for each

detail. Hopefully this would lead to a, n&rrower distri-

bution of outeome that would in turn lead to better

action, so that the decislion process would have higher

expected value. This section deals with the value of such

a complete analysis.

The Mod,el of a Compkte AnalYxis

A complete analysis will, in general, lead to a new

distribution of outcome. Let

d a an index over possible distributions of out-

come resulting from the complete analysis

and

[o[a, f ] g the density function of outcome given

the value of the index d and our prior

knowledge E.
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lold, E I

d= d=M

POSSIELE RESULTING DENSITIES OF OUTCOTIE

IdlEl

I Z ...

PRIOR ON OISTRIBUTION INOEX

M d

lolel = .Ti lolo,el Ialel

PRIOR ON OUTCOME

Fig. 5. Den:sities for a complet,e analysis.

The preceding densities encode our prior knowledge of the

possible results of the complete analysis. The entire

complete analysis is viewed as the determination of the

value of the index d. In this view, the complete analysis is

the identification of one of the densities from the above

family as the result of the analysis.

In addition, the prior probability distribution over the

preceding densities must be specified. Thus the prob-

ability distribution of occurrence of each possible resulting

distribution is eneoded by

\alnl : the density functio. of index d given

the experience or prior knowledge E.

For consistency with the primary a,nalysis, it is required

that

[,lr] : [,tola, 
nl{alr} . (31)

Fig. 5 illustrates the modeling of the complete analysis.

Ttw Decision Equations for a Conrpl,etn Analysis

The decision tree and nature's tree for a complete

analysis are given in Fig. 6.

The best action d@la,E) is the one that maximizes

<rld, a, E> : 
L,r,d, 

a, o,r)[o[ d,, a, El . (32)

It is &ssumed that

lola, o, El : lola, nl . (33)

Using (33) and inserting the value function, yields

(rld, a, E) : L, (a, o)lola, nl . (31)
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V (o, o)

THE OECISIOiI TREE

INDEX OUTCOME ACTION VALUE

V (o,o)

NATURETS TREE

Fig. 6. Trees for a complete analysis.

lptetZ6

{eJo = r. e} (nlo ' z, e} (c I e} (p I e)

Fig. 7. Prior densities for a complete analysis of p.

Ol,t, b, E) : I) f ile a) {pl d,u } trsl

over our bid b. Noting that this (38) is identical to (t2)
with E replaced by d, E, we can immediately write

6pla, q: 1 + )<nld, 
E> (:re)

and

lula*1ul d,, D), ,1, E): I (, 'r<, o, ,,) ({o)

Finally the applieation of (3ti) yields

(,lb* @ld, E),8): [,td,lll i (, ; @ld, ,r) ({r)

From Fig. 7 we see that

INOEX

d

ACTION OUTCOME VALUE

oo

I

z 2

3

i ird: Z

ifd_1
l9 (pla, u) : (12)

({3)

(14)

(45)

and

So

Olo*(u'd, E), d, E) : Qla@ld, E), d, E)

: *l* I"r ro,r) {rl d,, Bl. (Bs)

Prior to performing the complete analysis, the expected
value is

(rlo* (rld, E) , E) : [ ,tdlnl 
(ula* (uld,, E) , d,, E)

: 
!,talnl *:* Lu ro,r){,l d,, El (36)

assuming of course that

{alo.1ul d,, E), El : lalnl. (a7)

I NDEX

d

Bl0 cosT VALUE

* ,o-pl(2 - b)

Fig. 8. Decision tree for a complete analysis of p.

Compl.eln Analys?s oI p

Suppose that & complete analysis of our cost of per-
formanee p will result in one of two possible distributions
for p with equal probability, as given in Fig. 7. The de-
cision tree for a complete analysis in the notation of the
bidding problem is given in Fig.8. From (34) and (lt),
we see that in order to find 6 @ld,.E) we must maximize

and the value of the eomplete analysis is

lalel:lra:!,2.

::1.BBBB ird.: l

'r: 1 ' 1666 it d: 2

41: 
144: 0.284722.

Hence our bidding policy is

u@la,D:

Txp Velun or. A Moxrn Cenlo Axer,ysrs

In ma,ny c&ses, the cost of carrying out & complete
analysis is extremely high, due ta the complexity and
difrculty of performing the analysis. However, it may be

much less expensive to put the problem in the form of a

complete analysis, gather the relevant data, and then gen-

erate a number of sample outcomes using l\(onte Carlo
simulation techniques. This procedure will not be as

valuable a,s a complete analysis, but it may attain most of
the value at a mueh lower cost.

This seetion deals with the value of a Nlonte Carlo
analysis &s a function of the number of samples taken, and
the rules by which the samples should influence the choice
of aetion.
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The lllodnl ol a Montn Carlo Analy$s

The prior probability structure for the Monte Carlo

analysis is identical to that of the complete analysis,

rvhich is illustrated in Fig. 5. It is &ssumed that nature

selects a value of d which would result from a complete

analysis if it were carried out, and that eaeh Monte Carlo

sample is then drawn independently from lola, nl .

Tlw Decision, Egu,ati,ons tor a Montn Carln Analy$s

The deeision tree and nature's tree for a Monte Carlo

analysis &re presented in FiS. 9, where

N a the number of independent samples taken,

o1 g the 7th sample value, and

o a (or, ozt ' ' ', or) : the vector of the N sample

values.

At the action point in the decision tree, the best action

itolttt , o,.E) is the action which maximizes

(rlr[, o, a, E): 
LLV@, 

o)

.[rlar, o, a, d, El. {alar,o, a, El. (40)

It is assumed that

{rla[, o, a, d,, Bl : lola, nl @7)

that is, o is generated by &n independent sample from

lola, ol .

The use of Bayes' formula yields

lallr, o, a, El : lolV ' "'-a' Pllal\' "' 
El 

-. (48)

It is also assumed that

{al^itr, a, El : lalsl (4e)

{olar, a, d, El : {olar, d,, El (so)

{olar, a, El : {olar, a} . (sl)

Since the samples are independent

{rlry , d,, El : fi 1, * o,ld, El (b2)
l-1

the eombination of (a6) through (52) yields
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# sampues SAMpLES AcnoN tNoEx ouTcoME vALUE

o

V (o, o)

THE OECISION TREE

tNOEx OUTCOME # SaupuES SAMPIfS ACTIot'{ VALUE

il g

Y (oro)

NATURE.S TREE

Fig. 9. Trees for a Monte Carlo analysie.

* sampuEs sAMPrfs

ND

: 
I, {rlr, Elqlo*(rlr, o, E), N, o,E)

COST

I
8rD

b

INOEX VALUE

* ,t - pl(2-b)

Fig. 10. Decieion tree for a Monte Carlo anelysis of p.

Thus the equation for the expected value at the sample

node in the decision tree is

Qlo*(rlN, o, E), N, E)

(rlN, o, a, E) : I, !"vP, 
o)

: 
I"tol^nr, 

r) *f Ir l,v(a, o)lola, nl

N

I r {,-
l-1

laln o,la, nl

-hln,rlThis equation can either be left in the above form or the

faetors {olf, f } ean be eaneeled out leaving

(rlo*(rlr, o, E), N, E>: ,[ y L Lv(a, 
ollola, nl

.{alr}-I,f o?o,ld,Dl . (so)

The calculations may be carried out with either (55)

or (56). The best choice of iV depends on the eost of

samples .lf c is the cost of the N samples, then the optimum

number of samples is denoted

Lr(, - ,lo*(rlN, o, E), E).

In the example the number of samples will be left as &

parameter until the sununery seetion. The formal equa-

tions for determining the best N are left to the interested

reader.

(55)

N

(53)

Also

(rlr*(rlN, o, E),N, o, E): m&x (rlN, o, a, El. (54)

,, .lalrl ,,{l*otla,nl
lola,nl---Tffi
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Tlw Valuo of a Montn Carln Analysis ol p

The decision tree for & Monte Carlo analysis of our
eost of perform&nce is given in Fig. 10. Appllnng (53) and
(11), we find thar ii(rlN, l, E) is the bid which m&x-

imizes

(rlr, o, b, E>: f f I ru - p)(2 - b)
J a J 12 ''

lalnl fr f p*p,ld,El
'lpla, gl r-r

Iplar,r]

: 1 ru (rllr, p, E>)(2 - b) (s7)
2t" \f

M.TTHESON: NCONOMIC VALUE Or. ANALYSIS AND COMPUTATION

rvhere

N

qula*1ul N,o, D), N, i, E>: ; (, -;hlr, o,r>)

: 0[, (*) 
2vtt1

and

Inserting this expression in (55) yields

(rlb*(rlN, 0, E), N, E>

(pl,, p, E): 
fr*lo, 

E)ld'l +W
Evaluating the various quantities, we have

? ird,:1

@ld,E> :

; ird:2

lalnl :
z',

,2

{,t, : p,lit, El: 
{'^**"' 

ir d : t

lz*n, if d: 2

Nil
rr1 : tI Pr 72: II (l -P)l-l i=l

2N
lplar, rl : oI, lalnlry, { p * p,ld, El

: zN-'(-o, + or).

(67)

Tlw Bi.dding Policy

The bidding policy to be employed after the samples

have been observed was given in (65). For N - I

Dlrlar : t, o, E): l + I 1pr * r) (68)

which ranges from 1.1666 to 1.3333, and

(61) (rlb*(rlN, o, E), N : r, E>

(66)

(58)

(62)

(65)

I

(5e)

(60)d

rvhere

So

(pl,, n,rr::[3

: # : o.z8z4oz. (6e)

(l) 2No,

m
2n, * Tz

r* 
",

(64)

Reeognizing the form of (57) is that of (12) , w€ have

immediately

61rl^ar, i, E) : l + (i)

(;)

For N : 2 and 3, the expected value increases to 0.28303

and 0.28352, respectively. When many samples are taken,

if d: 1 the ratio rz/\ will approech zero, while if d : 2

the ratio rrf n will approa,ch zero. Thus

(,.(;)(?):,3333
if d : I

6 lrlaf -* - , f, E) * ( (20)

l,+(l) 
G) 

:,,666
t \6/\.r/ ifd:2.

In this limiting c&se, we are actually identifying the value

of d that nature has selected. Thus the bidding strategy

approaches that of the eomplete analysis and the expected

value approaches the expeeted value of a eomplete anal-
ysis, 0.284722. Fig. 1l shows how the expeeted value

of a lIonte Carlo analysis increases &s a function of N,
expressed as a percentage of the expeeted value gain from

a complete analysis; that is,

(63)

+

blr, l, E)

2o, * T2:l+
nr* t2
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TABLE I
DorpnurN.{'rroN otr' THE Bpst Auer,ysrs

Net

Analysis
Expected

Value
Additional

Cost
Expected

Value
F-
lr,
(J
G
ld
o.

Primary
Decision problem
Clairvoya,nce
Complete analysis
Monte Carlo

analysis:
N-1
N:
/v-
N-
N:

$281 250
$291 667
8284 722

s 0000 :
s20 000 :
$ 3000 :

s7;0 :
$ 1100 :
$ l4j-r0 :
$ 1800 :
$ 2150 :

$281 250
$271 667
fi281 722

2
3
4
5

$282 400
$283 080
s283 520
$283 830
s284 060

$281 650

s28l 980

$282 070

$282 030
$282 010ot*tot3

Fig. I l. Expected value increase of a Monte Carlo analysis as a
percentage of that of a complete analysis.

(rlb*(rlN, 0, E), E> (,,,|b-(rl q, E>

it X l00 percent.

This curve reaches 99 percent at approximately N : 15.

Thus for this bidding problem, only a small number of
N{onte Carlo samples are required to capture most of the
value of a eomplete analysis.

THn Ver,up op NunaERICAL ANer,ysls

A numerical analysis can be evaluated using the same

approach as that of the previous examples. If the nu-
merieal analysis is a very refined one, then it can be treated
as a complete analysis. If the numerical analysis is a less

refined one, then a model must be established for the
information which might be generated by the numerical
analysis. This model will basically determine the prob-
ability distribution of the index d, and by inference, the
probability distribution of the outcome given the results
of the numerieal analysis. In the spirit of the l\{onte
Carlo analysis, it is possible to model and determine
the expected value of a numerical analysis as a function
of the " degree cf refinement" of the analysis in order to
select the most economical analysis.

SunauenY oF THE Blpprxo PnosLEM

Suppose the values we have been dealing with in the
bidding problem &re millions of dollars. This makes the
primary decision problem have &n expected value of

$281 250. On the cost side, suppose that we c&n buy
clairvoyance by building a prototype at a eost of $20 000,

that we ean buy a complete analysis for a eost of 93000,
and that we can buy & Ilonte Carlo analysis for $400

plus $350 per sample. Table I lists expeeted value, cost,

and expected value minus eost for eaeh possibility con-

sidered. The highest net expected value of fi282070 is

achieved by a l\{onte Carlo analysis with N : 3.

CorvclusroNS

This paper has shown how the deeision analysis ap-
proaeh can be used to determine the eeonomie value of
computations or analyses of various levels of complexity.
The key to the seleetion of a computational proeedure is
the reeognition that the procedure obtains its value from
the influence of its results on the decision problem it is

serving. This epproach can also be applied to other meth-
ods of reducing uneertainty, such &s conducting experi-
ments or research programs.

This paper also provides &n indirect answer to the
question, " What is meant by & good prior probability
distribution?" Instead of wondering whether a prior is

good or bd, we can determine the economie value of

using available proeedures to improve our state of knorvl-

edge and obtain a " better" prior distribution.
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E. C. C"P"o, Atlantic Richficld Co.

R. V. Clapp, Atlantic Richfield Co.

W. M. Campbell, Atlantic Richfield Co.

Introduction
We would like to share with you our thoughts on the
theory of competitive bidding. It is a tough business.
We are not surc we undentand as much as we ought
to about the subject. As in most scientific endeavors,
we thi"k there is more knowledge to be gained by
talking with others than by keeping quiet.

Our first attempt at actually using a probability
model approach to bidding was in 1962. We borrowed
heavily from Lawrence Friedman's fine paper on the
subject.l But the furttrer our studies went, the mone
problems we noticed for our particular application.
We decided to strike out on our own. By 1965 we
had our model jtrst as it is today. But having a model
and completely undentanding its workings are not the
same thing. We are still learning.

While we refer to the "model" as though it wene

some inanimate object, it is not. What we want to
describe to you ls a system for taking the best judg-
ments of people 

- 
properly mixed, of coune, with

historical evidence 
- 

and putting those judgments
together in a rational way so they may be used to
advantage.

Lest the reader be too casual, thinking that since
he is not personally involved in lease sales he need
not pay the closest attention, we ofter this thought.
There is a somewhat subtle interaction between com-
petition and property evaluation, and this phenome-
non 

- 
this culprit 

- 
works quietly within and with-

out the specific lease sale environment. We would

venture that many times when one purchases property
it is because someone else has already looked at it
and said, "Nix." The sober man must consider, "Was
he right? Or am I right?" The method ol analysrs we
will describe is strictly for sealed bid competitive
lease sales, but the phenomenon we will be talking
about pervades all competitive situations.

Industry's Record in Competitive Bidding
In recent years, several major companies have taken
a rather careful look at their records and those of the
industry in areas where sealed competitive bidding is
the method of acquiring leases. The most notable of
these areas, and perhaps the most interesdng, is the
Gulf of Mexico. Most analysts turn tip with the rather
shocking result that, while there seems to be a lot of
oil and gas in the region, the industry probably is not
making as much return on its investment there as it
intended.2-t In fact, if one ignores the era before 1950,
when land was a good deal cheaper, he finds that the
Gulf has paid oft at something less than the local
credit union.

Why? Have we been poor estimators of hydro-
carbon potential? Have our original cost estimates
been too conservative? Have we not predicted allow-
ables well? Was our timing ofi? Or have we just been
unlucky?

It is our view that none of the facton these ques-
tions suggest has been the major cause of the in-

Il it is true, as con mon sense tells us, that a lease winner tends to be the bidder who
most overestimates reserves potential, it follows that the "successful" bidders may not
have been so successful alter all. Studies ol the industry's rate ol return support ihat
conclu_sion. By simulating the bidding game we can inuease our understanding and
thus decrease our chance lor investment error.

807



dustry's performance, though certainly all may have

contributed. Poor luck might aftect a, few oftshore

participants. But the whole industry? Not likely. In-
dustry has had enough opportunities in the Gulf to

invoke the law of averages 
- 

if we may be so loose

with mathematics.
We believe that in the competitive bidding environ-

ment normal good business sense utterly failed to give

people the return they expected. Since many industry

folk have not understood the rather complex laws of
probability at work in competitive bidding, they have

been inclined to make serious errors in arriving at

their dollar bid for a particular tract. We are not say-

ing that all of the bids turned out poorly. But enough

of them have, throughout the industry, leading to

lower rates of return than people planned for.
A new wrinkle appeared in the 1970 Offshore

Louisiana wildcat sale (an $850 million sale). Be-

cause of a Federal Power Commission order, some

of the gas companies assumed they would be able to
include their bonus investment in rate base. If they
are corr@t, then their risk in ofishore exploration has

been eftectively removed. They will make their legal

return regardless of how much or how little reserves

they find. This most recent sale, then, is very difterent

from the others we have mentioned. The bidding
model we would like to describe does not apply if
lease bonus can be included in rate base.

We want to emphasize that we are not criticizing
competitive bonus bidding as a method for acquiring
leases from selling authorities. We believe this method

is fair for all conceraed. If the industry has not per-

formed as well as it hoped, perhaps it is only because

the industry has failed to understand the laws of
probability that seem to govern the whole estimation-
bidding process.

A "Think" Sale

Let us play a little game. Think of yourself as a
manager whose task it is to set bids on parcels in
an impending sale. On any one of your parcels you
have a consensus property value put together by your
experts. (We will not worry for the moment about
how you handled risk, what your discount rate is, if
you have one, or how you arrived at your reserves

and costs.) One thing you can be sure of: Your valtre

is either too high or too low; it has no chance of
being exactly the true value.

Not to belabor a simple point, there are people in
our business who fall in love with a number and fail
to recognize the uncertainty associated with it. If a

company's estimate happens to be $5 million, who
knows what the actual worth might be? If the tract
is dry, the owner will have a loss 

- 
lplss plus ex-

ploration costs. If the tract produces 
- 

how much?
There are fields discovered 50 years ago wherc we

still do not know the reserves. And the uncertainty in
field size before drilling is fantastic. So we repeat:
Reserve estimates are either high s1 tsqr-and maybe
not even close.

We will assume, however, that on the average your
value estimates are correct. (This does not contradict
what we have already said. Most people are aware
that they are high on some and low on others, but

oyer the long haul, they ought to come out about right
on their value estimates.) You realize that other man-
agers are going through the same agony you are.

You ask yourself, "What do my competitors think
these tracts are worth?" You know that some of your
opponents may have better information than you,

some worse. There will be, on sale date, quite a

divergence of opinion as to value among the bidders.
If you doubt this, look at the published bids by serious

competitors at any recent sale. Bid ratios between the

highest and lowest serious competitors range to :ts

much as 100 and are commonly 5 or 10. (See

Table 1.)

Implications of Divergence

What are the implications of this divergence of
opinion? We could certainly argue that some people

may have overestimated the true value of the parcel,

and others may have underestimated it. Consider a

piece of land that has exactly l0 million bbl of recov-
erable oil. If you let five different people in your own
company interpret the seismic data, logs on nearby
wells, and other sundry information, you will get five

difierent estimates of reserves 
- 

even though they all

use the same basic information. The problem becomes

more confounding if we look at reserve estimates
(before drilling now) of five different companies. They
may each have different seismic data and different
logs. Isn't it likely that some companies will come up
with more than 10 million bbl? And some less? We

have already admitted that while our estimates of
resetves may be all right on the average, otr any one

tract we are going to be either high or low.
In Table I we saw evidence of this wide variation

in value estimates by different competitors. Perhaps

the several bidders had somewhat different explora-
tion information. We all know the difference one

properly placed seismic line can make in our mapping.
Whatever the reasons, it is clear that different infor-
mation leads to different value estimates.

Let us look at what difterent competitors can do
given the same basic information. In the 1969 Alaska
North Slope Sale, we find Atlantic Richfield and

TABLE I-BIDS BY SERIOUS COMPETITORS
IN RESENT SALES

(All bids in millions of dollars)

Offshorc Santa Barbara Offshorc Tcxas, Alaska North
Louisiana, 1967 Channcl, 1968 1968 Slopc, 1969
Tract SS 207 Tract 375 Tract 506 Tract 059

Ratio of Highest to Lowest Bid

32.5
17.7

I1.1
7,1

5.6
4.t
3.3

43.5
32.1

18. r
lo.2
6.3

43.5
15.5

I 1.6
8.5
8.r
5.6
4,7
2.8
2.6
0.7
o.7
0.4

r0.5
5.2
2.1

1.4

0.5
o,4
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Humble bidding independently of each other. Since

the two comPanies are equal partners in much ex-

ploration and development, both probably had essen-

tially the same information; but each company took

that information and develoPed its own evaluations

without consulting the other. Table 6 shows the ratio

of the Humble bid to the Atlantic Richfield bid for
55 tracts on which the comPanies competed against

each other. At one extreme we find Humble making

bids of about 0.03 of Atlantic Richfield's bid; at the

other, Humble's bid is about 17 times higher than

Atlantic Richfield's. And between these two extremes,

we find a smooth gradation of ratios.

We have portrayed the same information a bit
difterently in Fig. l. Here you will see a cross-plot

of Humble's bids and Atlantic Richfield's bids for the

same 5 5 tracts. No one has yet been able to identify

any pattern or hint of correlation in these numbers.

Clearly, the fact that comPanies have much the same

seismic lines and well logs does not mean that those

companies will come up with similar bids or proPerty

values.

On seeing such an exhibit, some ask if the wide

range might not be due to differing discount rates or

diftering market conditions. But those items offset all

of a company's bids in the same direction. A lower

discount rate by one company, for instance, would

force all of its evaluations uP in dollars. There still
would be large difterences in bids.

Now more often than not, he who "sees" the most

barrels will "see" the most dollar value. (Again, w€

recogruze the eftect of risk, cost estimates, production

rates, pricing, discount rates and all that. But for the

moment, let us focus on concePts and not clutter the

picture with all these other items.) Can we not then

conclude that he who thinks he sees the most reserves,

wiU tend to win the parcel in competitive bidding?

This conclusion leads straightway to another: In com-
petitive bidding, the winner tends to be the player

who most overestimates true tract value. And yet

another: He who bids on a parcel what he thinks it is
worth will, in the long otr, be taken for a cleaning.

A chorus enters sobbing, "But you told us earlier
that our evaluations were correct on the average,

albeit high sometimes and low sometimes. Doesn't
the law of averages save us from ruin?" First, the

so-called law of averages never guaranteed salvation
for anyone, though it often gives some courage to
act. Second, it is tnre (or we assume it so) that one's

evaluations are correct on the average 
- 

but it is not
tnre that one's evaluations on lracts he winr are cor-
rect on the average. There is a difterence. Only in a

noncompetitive environment, can one counter his

overevaluated parcels with his underevaluated parcels

and expect to do well on average. In bidding, how-
ever, he has a poor chance of winning when he has

underestimated value and has a good chance of win-
ning when he has overestimated it. So we say the
player tends to win a biased set of tracts 

- 
namely,

those on which he has overestimated value or reserves.

Note that we are talking now about trends and

tendencies 
- 

nst about what will happen every time

one purchases a tract. It is possible that everyone will
underestimate the value of a particular parcel. The
winner will, under those circumstances, have a very

attractive investment. But that is like winning the Irish
Sweepstakes on your first ticket and then going around
claiming that buying sweepstakes tickets is going to
be a great investment for the future. As we make our
investment decisions we must distinguish among the

lucky event, the unlucky one, and the average of what

occurs year after year.

Some may argue that the industry is smarter now

- 
has new exploration techniques 

- 
and will not

make the same kind of mistakes in the future. It is

certainly tnre that we are better able to make explora-
tion judgments these days; but it still does not mean

we are very good. Anyway, even when technology

was not so advanced, we were probably still "about
right on average".

For example, before the "new technology" one

might have expected a particular reservoir to contain

l0 mitlion bbl. If he had examined his uncertainties,

he would have said the reservoir, if it exists, might

have any amount between 2 million and 50 million

bbl. With better information, he might still say he

expects l0 million bbl, but his uncertainty has de-

crcased and now ranges from 3 million to 35 million
bbl. We claim that the eftect of new technology only

narTows our uncertainties 
- 

and does not necessarily

change our expected values 
- 

again on average.

Bid Strategy

So what is the best bid strategy? We cannot tell you

and wilt not even try. The only thing we can do is

show you one approach to the mathematical modeling

of competitive sales. The theory, as we interpret it,

agrees well with what we perceive has happened in

the real world.

For some comPetitive environments, in order to

reach some specified return on investment, the model

suggests a lower bid than one might come up with

otherwise. What are these environments? The follow-
ing rules are not without exceptions; but for the nor-
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mal level of competition and the large uncertainties
trnderlylng our value estimates, the rules seem to

APPIY

l. The less information one has compared with
what his opponents have, the lower he ought
to bid.

2. The more uncertain one is about his value esti-
mate, the lower he should bid.

3. The more bidders (above three) that show up
on a gyen parcel, the lower one should bid.

How do we know these rules? Call it simulation.
We modeled the competitive bidding process on a
computer as closely as we knew how and then sat

back to let the machinc churn away. We allowed for
srch things as difierent numbers of bidders, difterent
value estimates by the opponents, different informa-
tion positions for the opponents, different bid levels*

by the opponents, and the proper ranges of uncer-
tainty about each of these. We let the computer take

our estimates of competition (with the associated

uncertainties) and play the lease sale game over and

over again. After some thousands of runs the com-
puter tells us, for our various bid levels, the prob-

ability of our winning the parcel and its value to us.

Looking at the results, we simply choose a bid level

that assures us (in a probability sense) of not investing
incremental dollars at less than some specified rate

of return.
We made all kinds of sensitivity tests to see "what

if'. We exaurined the eftect of low rate of return
critcria for opponents and checked on iew opponents
vs many. We looked into the influence of an oppo-
nent's superior information. We varied every signifi-
cant variable we could identify.

When it was all over, we concluded that the com-
petitive bidding environment is a good place to lose

your shirt.
Previously we listed three reasons for lowering

one's bid. The first two are easy enough to turder-
stand. But the third takes some work. Most people

assume that the tougher the competition (i.e., the

more serious bidders there are) the more they must

bid to stay with the action. What action are they
wanting to stay with? If they are trying to maximize
the number of acres they boy, they are right. If they
would like to maximize the petroleum they find, they
are probably right. But if they are trying to invest
money at some given rate of return, our model says

they are probably wrong.
Although the concept may not be clear to every-

one, we are convinced that if one's mistakes tend to
be magnified with an increase in number of oppo-
nents, then he must bid at lower levels in the face of
this stiffer opposition in order to make a glven rate
of return. Let us reinforce this with an example.

Assume we have a l0-tract sale. Also, for the sake

of simplicity, let us assume that all tracts will be pro-
ductive and that after exploratory drilling costs, each
wiU be worth $ l0 million at a l0 percent discount
rate. Each competitor in this sale correctly estimates
the totd value of the sale acreage but on any one
tract he may be too high or too low. (This assumption

merely means that one tends to be unbiased in his

estimate of value. He may not be correct on any one

parcel, but he does all right on the average.)
As in the real world, let us have the competitors

disagree as to the value of the individual trasts 
- 

and
let that divergence of opinion be about the same as

we see in major lease sales. But let the average of all
the competitors' value estimates be very close to the

tnre value. (Here we are saying that when they esti-
mate value the competitors are not misled in the same

direction.)
Finally, assume that to protect himself from the

risks and uncertainties of the estimating procedure,

each competitor chooses to bid one-half his value

estimate. What we want to do is check the rate of
return of the winners as we increase the number of
bidders.

Table 2 reflects the sale as if only Company A bids.
Remember, he correctly estimates that the 10 tracts
are worth $ 100 million to him and he bids one-half
of his value estimate on each tract. The sum of his
10 bids is then $50 million. He wins all tracts since

there is no competition. Since he pays $50 million
for what is worth $ 100 million (at a l0 percent dis-
count rate) his rate of return for the sale will be about
l7 percent* * after tax. This is his reward even though
he has overestimated value on Tracts 2, 6, and 8.

Table 3 examines the consequences of adding one

competitor, Company B. Since both companies are

unbiased in their estimates, use the same discount
rate for calculating value, and bid the same frac-
tion of their respective values, then we would expect
each to win half the time. As it turns out, that is

exactly what happens. But see what else happens. In
Table I we saw that Company A won all l0 tracts 

-on seven of which he had underestimated value and
on three of which he had overestimated. Now along
comes Company B and wins five of the seven tracts
on which Company A had underestimated value. Re-
member our contention that one tends to lose those

tracts on which he has underestimated value? Com-
pany A has spent more than 70 percent as much
money as he spent when he was the only bidder, but
now he gets only half as much acreage. The only
thing that saves him is his stratery to bid one-half
his value estimates. His rate of return drops to 14
percent. The "industry" consisting of the two com-
panies has about the same return.

Now go to Table 4 and see what happens if we

raise the number of bidders to four. More and more

of Company A's underevaluated tracts have been
grabbed ofi by the competition. Company A is left
with only Tract 8, which he evaluated at $35 million.
(It is worth only $ l0 million, remember.) The selling
authority's take has climbed to about $92 million 

-the sum of dl the high bids. Company A's return
drops to about 5 percent, whereas the industry's re-
turn is about I I percent. Company A turns out to be

a little unlucky in that its return is lower than the
industry's. Somebody has to be unlucky. That should
nol detract from our argument. We could pick any

ooWe estimatcd this rcturn and othcr: in the cramplc from
studics of cash flows from typical projccts.'Bid lcvcl is thc fraction of his valuc cgtimatc a playcr will bid.
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of the competitors and see the same trend toward
lower returns.

Table 5 shows the results of eight bidden. Com-
pany A still retains its Tract 8. Bidders E through H
pick up five of the l0 tracts. The seller gets about
$26 million more than he did with the four com-
petitors. Since the tracts did not pick up any more
resewes, the additional expenditure must mean a
decreased rate of return for the industry. We estimate
about 8 percent 

- 
even though each bidder is bidding

only half his value estimate.
There is no table to show the results for 16 bid-

ders, but the trend continues onward to lower returns.
The 16 bidders spent a total of $162.6 million for a

return of about 6 percent.

What if the industry had wanted to make about
l0 percent on its investrnent? What percent of value
would each competitor have had to bid to accomplish
that goal? Just taking the results of our example, the
bid levels would have been something like this:

Total Value Estimates Bid Level for
Number for Highest Estimators l0 Percent

of Bidden on Each Tract Return

I $ 100 million 1.00

2 $139 million 0.72

4 $ 184 million 0.54

8 $237 million O.42

16 $325 million 0.3 I

(The bid levels that appear in the third column are
valid for only the particular example we have just
gone through, where everyone uses the s:rme return
criterion and everyone uses the same bidding strategy.
Companies, in the real world, are not so inclined to
play that way. Nevertheless, the phenomenon of de-
creasing rate of return with increasing numbers of

TABLE ^ CASE I-ONLY COMPANY A
BIDS ON PROPERTY

Tracl
Number:

A's bid'

bidders appears to us a general rule of sealed bidding.)
It is certainly true that the value of the tracts does

not change just because there are more bidders. What
does change drastically as the number of bidders in-
creases is the set of tracts one wins. Not only does
that set get smaller with increasing competition, but
also its quality tends to decrease compared with what
the winner thought it would be ahead of time.

The more serious bidders we have, the further from
true value we expect the top bidder to be. If one wins
a tract against two or three others, he may feel fuie
about his good fortune. But how should he feel il he
won against 50 others? ru. He would wonder why
50 others thought it was worth less. On the average,
one misjudges true value much worce when he comes

out high against 50 other bidders than when he beats

only two or three. Hence, our bidding model usually
tells us to move toward lower bids as competition
increases in order to protect ourselves from the win-
ner's curse. Tme, the probability of purchasing prop-
erty decreases 

- 
but so does the chance of losing that

shirt.

Some Mathematics

The theory of competitive bidding obviously involves
mathematics. For those so inclined, we will lay out
here and in the Appendix analytical procedures for
examining the effects we have spoken of. (Then we
will Say, "But the analytical approach is so difficult
from the practical side that we must try a simulation.")
What we will try for analytically is the expected value
ol the winnins bid. we simply compare that value with

TABLE {. G156 3-THREE COMPETITORS ENTER
SALE WITH COMPANY A

Tract
Number: I

1.9

3.8

5.7

6.5.

Company A

17.5

10.0

7.5

2345678910
5.6 2.6 3.4 3.7 5.2 1.9 17.5' 3.9 4.3

5.1 4.0 4.9 0.6 4.2 5.9.4.5 1.8 15.2.

3.1 2.6 6.50 g.g. g.g. 4.0 1.5 3.3 3.7

8.3. 7 .9. 6.4 3.3 2.2 3.3 5.0 4.5. 2.7

A's bid

B's bid

C's bid

D's bid

910
3.9 4.3

761234
1.9 5.6 2.6 3.4

5

3.7

8 .!1g!stty

91.8

100.0

8.2
Winning bids'

Valus of acrcage won'
Present-worth profit'

lnvesto/s rate of
return, percent

'ln millions of dollarg.

TABLE 3!-CASE 2-ONE COMpE1TOR ENTERS SALE
WITH COMPANY A

Tracl
Number:

A's bid

8's bid 4.2 5.9. 4.5 1.9 15.2.

'Winnlng
"Millions

bad.
of dollar:.

TABLE S--CASE 4-SEVEN COMPETITORS ENTER
SALE WITH COMPANY A

Tract
Number:

lndustry

50

1m

50

L7

::a:

-
23.3

A's bid
B's bid
C's bid
D's bid

Es bid
F's bid
G's bid
H's bid

10

4.3

6789
5.2. l.g 17.5. 3.9.

1234_t_
l.g 5.6.2.6 3.4 3.7.
3.8. 5.1 4.0. 4.9. 0.6

5.2 1.9 17.5

Company A

50

100

50

17

Winning bids"
Value of aueage won'o

Present-worth profit' o

lnvesto/s rate of
return, percent

10.3

Winning bids'
Value of acreage won'
Present-worth profit'
lnvxtor's rate of

return, percent

5 ll

Company A 4.7

!:3 r-_

5.9
6.5

89
l7s =

Company A lndustry

17.s 118.5

100.0

- 18.5

8

l0

15.2

=Winning bidsf .
Value of acreage won.r

Present-worth profit..
lnvestor's rate of

return, percent

'Winnint bid.

"Millionr of doltan.

35.9

50.0

l4. t

lndustry

69.7

100.0

30.3

l4
10.0

7.5

BII

14

'Millions of dollar:.
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true parcel value to see whether a particular bidding
strategy can lead to trouble.

I-ct

I {x) : probability density function for rttt op-
ponent's bid.

And let

Fi(x) : probability that the ith opponent bids a

value less than r.

Therefone,

n

tt Fi(x) : probability that n independent opponents
l= I all bid a value less than x.

Now lct

S@) : probability density function for our bid.

Define

One might think he could take the reciprocal of
l.7l to get his "break-even" bid level. Not so. The
subtleties of competion force the "break-even" bid
level to be even lower than that reciprocal, although
perhaps not too much lower.

We can set up the mathematics, but for the real

world, we cannot solve the equations. Instead, w€

simulate the whole process. And that is all right, for
by simulation, we can do many things we would not
eyen try with strict mathematical analysis.

How Can a Bidding Strategist Win Tracts?

Some will claim he cannot 
- 

we believe they are

wrong.
An analyst comes in claiming a tract is worth X.

The bidding strategist then recommends a bid of, say,

X /2. A voice from the rear cries, "That bid won't
be competitive." The voice is usually forgetting about

the large divergence in value estimates by com-
petitors. There is a very good chance some other

competitor will see a much larger value than X. We

could not be competitive with any bid we would rea-

sonably try. So our chance of winning depends more

upon our reserves estimate than upon our panicular
bid level. The bid level adjustment is primarily for the

purpose of achieving a certain profitability criterion.

Some interesting evidence to back up these com-

ments comes from the 1969 Alaska Nonh Slope Sale.6

Examine the second-high bids for that sale. The sum

of those second-high bids was only $370 million com-
pared with the winning bid sum of $90O million. Said

another way, the fellow who liked the tract second

best was willing to bid, on the average, only 4l Per-
cent as much as the winner. In this resPect, the sale

was not atypical.
If that is not shocking enough, try this one. For 26

percent of the tracts, had the second-high bidder in-
creased his bid by a factor of 4, he still would not

have won the tract. A SO-percent increase in bid by

the second-high man would not have won 77 percent

of the tracts. Turn the idea around. If every tract
winner had bid only two-thirds as much as he did, the

winners still would have retained 79 percent of the

tracts they worr. (The aPparent discrepancy, 77 per-

cent vs 79 percent, comes from the 15 tracts that drew

only one serious bidder.) We therefore conclude,

based on historical study, that bid manipulation to

achieve desired profitability does not drastically im-
pair one's chances of winning acreage.

TABLE 6-ALASKA LEASE SALE' 1969 
-RATIO OF HUMBLE BID TO ARCO 8ID

For the 55 tracts on which both companies bid

0.03 0.32 0.50 1.11 2.53

0.03 0.32 0.5r 1.13 2.56

0.04 0.33 0.51 1.31 3.82

0.06 0.33 0.60 1.39 5.25

0.08 0.35 0.69 1.39 5.36

0.1 1 0.36 0.76 1.40 6. 14

o.Lz 0.36 0.77 1.79 7.98

0. 16 0.39 0.78 2.O2 9. 19

0.18 0.41 0.79 2.41 13.32

0.22 0.45 0.82 2.4L 15.45

o.24 0.45 1.00 2^611 16.80

h(x) - Kn[ 
,g, 

Fi(x)] efrl - probability density

function for our winning bid,

where

Kn: constant to make the integral of that den-

sitY : I

Krn:1 lfr n

II F,(x) g(x)dx.
l= I

Then it is a simple matter to get the expected value

of our yinning bid, E(Xr)

E(X,) : xh(x)dx

-6

g(x)dx.

Then under some very simple assumptions (too

simple for the real world), wo can define some Fi(x)
and g(x) in such a way that we can evaluate the
integral. In fact, we can show that if li(;) and g(x)
are uniform on the interval of 0 to 2, and all com-
petitors bid their full value estimate, then:

K': n * I

E(x,): z(+++)
These trniforrr distributions imply a true value of I
(the mean of each is l). If there are no opponents
(n : 0), then:

E(x,): ,(+) :1.

That is what we hope if we bid our value estimate
against no opposition. On the average, we win tracts
at our value. But what if there are five opponents?

E(x'): z(+++) : + =1.7t.
That means ttrat on the average, w€ would expect
to pay 7l percent more than value on the tracts we
won. That is not good.

f '*" [,g, 
Fr(x)
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How Far Ofr Might the Winner Be?

We have been saymg that the winner of a tract tends

to be the one who most overestimates value. You may

say, "So, if we wh, we wish we hadn't. l[ we lose, we

wish we hadn't. You mathematicrans iue really saying

to stay away from lease sales." That is not what we

iue saying. The bidding model gives us a bid that we

ciur make with confidence, and be hapPy with when

we win. Yes, we may have overestimated value. But
we have brd lower than our value estimate 

- 
hedging

against expected error. In a probability sense, we

"guarantee" that we obtain the rate of return we want.
As to how far oft the highest estimator might be,

we have resorted to simutation of the estimating

process. We perhaps could have got the result through

use of extreme value theory, but we chose not to.

AIso, we want to caution the reader that we are

examining what we think will happen on the average

- 
set what will happen on a particular tract. If the

wildcat fails, obviously everyone was too high in his

value estimate. If trre well hits, it is entirely possible

everyone was too low. That is not t}e kind of prob-

lem we are talking about. The question is more likely:
"l[ I win 10 parcels at a sale, how many barrels will
they all contarn compared with my pre-sale estimate?"

Fig. 2 shows the results of our simulations (using

log-normal distributions) for various numbers of com-

petitors and degrees of uncertainty. We use the vari-
ance of a distribution 

- 
measure of its spread 

- 
to

quantify general uncertainty uts to value among com-

petitors. One can get a rough idea of the magnitude

of variance by measuring the parameter on sets of
bids on tracts in past sales. That variance, however,

will be too high since the actual bids contair "noise"
items apart from property evaluation 

- 
for example,

various company discount rates and bid levels. Ob-

viously, there is not so much uncertainty in drainage

sales as there is in North Slope-type wildcat sales.

We use variance to account for these differences.

Intuition would argue that the greatest potential

for large errors in estimating reserves exists on the

frontier 
- 

Alaska. The simulation agrees whole-

heartedly. For 12 serious bidders in an environment

of uncertainty such as the North Slope, the one esti-

mating the largest amount of expected reserves can

Number of comPotitors

Fig.2-Relation of mean high estimate to true value under
various conditions of uncertainty.

expect to be oft by a factor of 4 on average. In the

Louisiana Ofishore, facing the same kind of compe-
Ution, he would expect to miss by a factor of only 2.5.

Nature of the Model
We must choose a probability distribution for the
value estimates of vanous companies. The log-normd
seems to us the best. Many writers have documented

the variables in our busrniss that seem to follow the

Iog-normal. Here is a partial hst of them:
l. Reservoir volume
2. Productive area
3. Net pay thickness
4. Recoverable hydrocarbons
5. Bids on a parcel in a lease sale

6. Land value. estimates calculated by

companres.

The first four items have been ordained by Nature.
The last two are man-made. Why should they per-
form like Nature? There is an amazing theorem in
mathematics the Central Limit Theorem 

- 
that

says if you take sums of random samples from any
distribution with finite mean and variance, the sums

will tend toward a normal or Gaussian distribution.
The tendency will be stronger the more numbers

there are in each sum. If the original numbers come
from a normal distribution, the sum is guaranteed to
be normal. If we insert the word "product" for "sum"
we can then insert the word "log-normal" for "nor-
mal." Since we arrive at value through a series of
multiplications of uncertain parameters (reservoir

length X reservoir width X net pay X recovery X
after-tax value per barrel), it is not surprising that
bids and land-value estimates seem to take on this

log-normal characteristic. ?

There are certain problems in applying the theorem.

Negative dollars (a loss or lower-than-criterion rate

of return) will not fit the log-normal distribution. No

one knows how to take the logarithm of a negative

number. And we all know that the value calculation

involves more than simple multiplication. Even So,

the error in our assumption does not appear to be

great, and we happily use the log-normal distribution
in our computer simulation.

The evaluation of a potential cash flow stream by

different investment criteria has been the subject of
much study. We believe that methods involving the

discounting of the cash flow stream are effective for
the decision maker. The criterion we prefer is present

worth or present value (PW), using as the discount
rate the Internal or Investor's Rate of Return (IRR)
expected to be earned by the investor in the future.'
The very essence of PW is that it is the value or worth

we place on an investment opportunity at the present

time. In a situation where the future cash flow is
known with certainty, we can discount this cash flow

to the present.

We do not know the future cash flow with certainty,

however, and resort to using the expected value con-

cept. Expected value can mean difterent things to
difierent people, but we use it in the accepted proba-

bilistic sense: Expected value is the sum of all possible

events multiplied by their chance of occurrence.

Arithmetic mean is a common term for expected
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value. Expected value is not necessarily the mode
(most probable value), nor the median (the value that
is exceeded half the time). We do not specify all the

possible events, since this would be an outrageous

number. But we do try to specify enough possible

events so that the calculations with these relatively
few discrete values will yield a good value. The

"g@d" value should be close to that expected from a
consideration of. all possible events.

The tract value plays a much smaller role in our
model than one might think. We essentially normalue
everything to value : 1.0. The model tells us what

lraction of our value (bid level) to bid in order to
maximuze exrycted present worttr for the competition
we put in. The bid level can change only if our idea

of the competition somehow changes. If we think the

degree of competition is independent of tract value,

then value need never be discussed. But sometimes

there are tracts that, because of their potential, may

cause competitors to deviate from past or expected

performance. We allow for this by considering the

competition the way we think it will be for a given

tract. In that sense, then, value gets into the model.

Our model differs from some other models that
have been discussed. An earlier philosophy reasoned

thus: "Our value may be incorrect on a given tract,

but it is correct on the average. So let our value esti-

mate serve as the mean of the distribution from which
our opponents draw." We think that tack can lead to
trouble. It is inconsistent with the idea that when we

win, our estimated value wzN probably higher than
true value. Instead, we let the tnre value of a tract be

1.0 and simply take our value estimate from a dis-

tribution with mean : 1, the same as everyone else.

We treat all value estimates as independent random
variables. Our model is similar in this respect to
Rothkopf's.' The variance of our distribution may be

the same or difierent from our opponents' 
- 

depend-

ing on the relative quality of our information.

Model Input Data

Some believe that the input requirements for a com-
petitive bidding model are quite severe 

- 
that reli-

able input is impossible to obtain. We do not think so.

Unless one successfully engages in espion LEe, he is
not going to know his opponent's bid. But he does

not need to. We have found that by studying the

behavior of companies in past sales, we can get a fair
clue as to what they wiU do in the funrre 

- 
close

enough to make the model results meaningful.
Here is the information we think is necessary to

make an intelligent bid. Keep in mind that each bit
of input is an uncertain quantity. We treat it as uncer-
tain by using probabilities and probability distribu-
tions. That, after all, is the way the world is.

We believe that the input data are best determined
by a combination of historical data and the judgment

of explorationists. To illustrate the use of our model,
we will develop a set of input data for a purely hypo-
thetical example.

What sort of data do we need? Primarily, r/e need

information about the competition we are likely to
face. We try to identify companies that are likely to
bid on the parcel. This allows us to use any specific

knowledge we have about a competitor or his explora-
tion activities. For each of the potential competitors,
we then try to estimate the probability that he will
bid. To the competitors specifically named, we can
add some "other bidders" in order to make the ex-
pected number of bidders consistent with our beliefs:

Company Probability of Bidding

A
B

C

Other bidder

Other bidder

Expected number
of bidders

0.8

0.7

0.5

0.5

0.5

3.0

In this example, we expect three competitors, but we

acknowledge that there could be as few as none or
as many as five. In the simulation performed by our
model, the number of competitors will ydry, from
trial to trial, from a low of zero to a high of five. The
proportion of trials on which a given bidder appears
will be approximately equal to the probability we have

assigned above.

The next item we require is usually tl'e most diffi-
cult to estimate: the bid level of each potential com-
petitor. If he calculates a value of $X for the property,
what fraction of that value is he likely to bid? To
further complicate the matter, we need to estimate
this fraction as if the $X value were based on our own
rate of return criterion. In other words, the bid level

is used to adjust for difterences in evaluation criteria
and for the fraction of value that a given competitor
will bid.

We believe that historical data can be of help in
estimating bid levels. We can go back to a previous

sale or sales and compare a given competitor's bids
with the value estimates we made on the same tracts.
At first we were tempted to compute the ratio of a

competitor's bid to our value on each tract and then

average these ratios over all tracts. We discovered
that under the assumptions of our model of the bid-
ding process this gives a biased estimate of the com-
petitor's bid level. We can show that to get an un-
biased estimate of his bid level on a tract we need

to divide the ratio of his bid to our value by the
quantity eo2. Here 02 is the variance of the natural
logarithm of our value estimate on the tract. (Our
value estimate, remember, is considered a random
variable. Estimates of o2 are not easy to come by, but
again historical data can be of help.) We can then
calculate an average bid level for the competitor from
these unbiased estimates on all the tracts. This bid
level estimate incorporates difterences in evaluation
criteria, ES well as the fraction of value that the com-

TABLE 7-INPUT DATA FOR COMPETITION

Proba bi lity
Of Bidding

0.8
o.7
0.5
0.5
0.5

Com pany
Bid

Level

06
0.5
0.4
0.3
0.3

Va ria nce

0^5
0.6
0.5
0.8
o.8

A
B
c
Other bidder
Other bidder

814



petitor bids, on average. We then modify this accord-
ing to our explorationists' judgment about the current
sale and the particular tract in question to add another
column to our hypothetical input data:

Company Bid Level

A
B

C

Other bidder

Other bidder

We also need to specify how much variation we
think is possible in each competitor's bid. Even if we
knew that the bid levels specified above were precisely
correct we still would be uncertain as to the actual
bids because we do not know the value that each com-
petitor places on the tract. We must try to estimate
the variability in each competitor's value estimate.
we do this by specifying the variance of the estimate.
(Actually, we specify the variance of the natural
logarithm of the estimate. Hereafter, when we men-
tion variance, we will be referring to the variance of
the logarithm of a quantiiy, because this is a useful
parameter in the log-nonnal distribution.)

We can again get some help from data on past
sales. On individual tracts about 1.2 has been the aver-
age variance of the bids.ro This includes more than
just the variation in value estimates, though. ft also
includes differences in bid levels and evaluation cri-
teria among competitors. The variance in value esti-
mates for a single company would average something
less 

- 
we have guessed about 0.6.

Another way to estimate this variance, if we assume
it is constant over atl tracts, is to compare an indi-
vidual competitor's bids with our values on the tracts
in a given sale. This should eliminate variation due
to differences in evaluation criteria, assuming a com-
pany uses the same criterion in all of its evaluations.
If we measure the variance of the ratio of a com-
petitor's bid to our value, there are three components
to this variance:

1. Variance of our value estimate (n
2. Variance of the competitor's value estimate (X)
3. Variance of the competitor's bid level (r() from

tract to tract.
We can show that these components are additive.

The variable whose variance we are measuring is
log"(Kx /n We can write

log"(KX /n - log"(K) + log"(X) log.(I').

If K, X, and Y are independent,

Var [log"(KX /nl : Var [log"(K)J

* Var [og"(X)] + Var [o&(I")].

By assuming that the last two components are equal
and the first is about 0. 15, we calculated an average
variance for our opponents' value estimates in several
sales. The values were not far from the 0.6 estimated
above.

we feel free to modify this estimate in accordance
with the nature of the sale and the tract in question.

For example, we felt that the 1969 North Slope Sale
was characterized by more uncertainty than the
typical oftshore Louisiana sale. Thus, we generally
assigned higher variances to value estimates. In drain-
age situations, we use lower variances to reflect the
fact that the value estimates should be closer to the
tnre values. We also try to differentiate among com-
petitors. Those we feel have better informatiori about
a tract are given lower variances and those with poorer
information, higher variances. So we shall aoa an-
other column to our input data:

Company Variance

A 0.6

B 0.6

c 0.6

Other bidder 0.8

Other bidder 0.8

Table 7 shows a complete set of the input data on
competition.

We add another component, Var log"(K) men-
tioned above (usually about 0. l5), to these variances
to reflect our uncertainty about our competitors' bid
levels. Finally, we estimate the variance in our value
estimate by assessing the quality of our information
relative to that of our opponents'.

Mechanics of the Model
The parameters for the log-normal distributions as-
signed to the value estimates of the various bidders
(including us) come directly from the data given
above. we usually run the model thousands of times
to simulate the competitive and evaluation possibili-
ties on a single tract. (See flow chart, Fig. 3.) On
each trial, a value is drawn for each random variable,
which results in a set of bids by the participating com-
panies. The results of the "sale" are then recorded
and the whole process is repeated. After enough trials
have been iltr, the expected results are calculated and
printed.

Model Output
The output of the model includes expected results
for 15 different bid levels, from 0. I to 1.5 times our
value estimate. Results from our hypothetical example
are shown in Table 8. The values in the first column
indicate possible bidding levels as fractions of our
value estimate. The second column gives the amoturt
of our bid at each level. We have assumed that our
estimate of the value of this tract is $ 10 million. The
next column shows the probability of winning, as cal-
culated by the model, for each bidding level. This is
useful in estimating the amount of acre ?Ee, resewes,
etc., we expect to win. The expected Ermount of our
expenditure is shown in the fourth column. In the
next column we have the expected present worth for
each bidding level. The last column indicates how
high we can expect our value estimate to be if we win.
If we bid full value (bid level of 1.0) and win on
tracts such as this, our value estimate will, on the
average, be 1.35 times the tnre value. It is again
obvious that we have to bid less than full value just
to break even.

0.6

0.6

0.4

0.3

0.3
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Optimization of Bids

The expected present worth of the submitted bid

we will designate as EPWBid. Given all our usual

information about the tract and other bidders, what

bid should we submit? What is our optimum bid for
the example above?

We can use a graph of EPWsia vs bid level to con-

sider this problem (Fig. 4). First, what happens if
we do not bid? The bid level is zero. No expenditures

will be made, and the EPWB,. is zeto. Second, what

happens if we bid our estimate of the tract value?

For the tracts we win, we tend to overestimate value.

Hence, the average value of the tracts we win is less

than our original estimates. Thus in the example we

have a negative EPWBTa of $1.9 million. Third, what

happens if we bid less than our estimate? This strategy

really provides the only chance we have to get a

positive EPWBid. We must bid somewhere between

the one extreme of a very low bid (which means very

low chance of winning a big positive value) and the

other extreme of a very high bid (which means a

high chance of winning a big negative value).

What then is the optimum bid? For the single tract

illustration above, and for our investment criterion
o[ maximizing the EPWRi,r rather than maximizing

{r:serves or some other goal, we would choose a bid

level of 0.35. There may not always be a positive

value of EPWBid, in which case we would not bid.

Usually, however, there is a positive maximum value.

It is not always at the same bid level. The ma,rimum

shifts along the bid level axis with changes in the

number of bidders, their bid levels, and the variances

of their estimates.
Deviation from the optimum bid level in either

direction will decrease the EPWBid. If someone

"feels" we should bid higher or lower, we can show

what this feel costs in terms of EPW. Any bid giving

a positive EPWBid will, of course, give an expected

IRR greater than the discount rate. Suppose the dis-

count rate used is the marginal acceptable IRR. Going
to a larger bid level than that giving maximum EPW
gives a lower EPW. Therefore, that marginal increase

in bid has a negative EPW associated with it. Look
at Table 8. Going from a bid of 0.5 to 0.6 costs $283
thousand in EPW. Taking an action that decreases

the EPW is the same as taking an action that invests

money at less than the acceptable IRR. According to
the model, then, he who would go above his optimum

bid level to gain probability of win advant age can

expect to invest part of his money at a return lower

than the minimum he said he would accept.

Before leaving the subject of bid optimization, we

will comment on another frequently mentioned cri-
terion. Under the existing conditions of uncertainty,

there will be "money left on the table" (difference

between the winning bid and second-high bid) and

rightly so. We can ininimize the money left on the

NO NO
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NO

Fig. 3-A bidding model
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TABLE 8-MODEL OUTPUT

1.O
1.1
t.2
1.3
1.4
1.5

'Thougendr of dolhrs.

table by not bidding at all; or, if we have positive
knowledge of others' bids, we can bid one cent more.
Obviously both approaches are impractical. The fact
is that there will be money left on the table, so we
have chosen the objective of ma,ximizing EPW 

- 
nst

minimizing money left on the table.

Possible Weaknesses in the Approach
If we thought there were any serious flaws in our
ideas on bidding, we would not want to waste your
time. On the other hand, while we have gathered
considerable evidence to support our theory, some
chance always remains that we have simply been
fooled by the data.

The log-rwrmal distribution does not look as if it
can work very well as a model for describing uncer-
tainty on tracts of small value. People who use dis-
counted cash flows to arrive at present worths can
get negative values even though they expect the tracts
to make some, though small, positive rate of return.
The log-normal probability distribution allows for no
negative values. The effects of differences among
company discount rates become highly magnified on
the less valuable acreage.

Expected nil
of Bid $

0
232
5t2
670
664
477
L94

-2L2
-707

- 1,299

- 1,919

-2,607
- 3,313

- 4,076

The reason our model can suggest such a low bid
level as a reasonable strategy is the magnitude ol the
uncertainty that we believe is associated with the
reserves-value estimating process. We had occasion
to compare our independent reserves estimates with
those of a partner and found the disagreement to be
quite large, though there was no bias by either party.
we were as likely to be high as he. If you look at
published bids, you can, indirectly, get the same
results.

In Fig. 2 we showed that the highest estimator
would be ofi, on the average, by a factor of 2.5 in
his expected reserves estimates if he were competing
against 11 other independent estimators. Anyone
who feels his own reserves estimates are never oft by
more than 50 percent will feel severe pains swallow-
ing our factor of 2.5.

of course the amount of uncertainty is just an
input parameter for the model. one can put in what-
ever he likes.

Another problem is our assumption that reserves
and value as reflected in final bid estimates tend to
be unbiased. If we did not make this assumption we
would change our ways. No manager is going to sub-
mit a bid based on value estimates that he knows
are too high or too low. He will enter a multiplier
with the intention of being correct on the average.
But that tactic does not necessarily guarantee he
will be.

we have recognized another weakness without find-
ing much of a solution. How do we account for the
competitor who does not bid at all on a particular
lease? Does he think it worthless? Has he no interest?
or has he run out of funds? one might argue force-
fully that in a major sale he always faces 15 to 20
competitors, whether all of them bid or not.

Conclusions
It is still said that, after many years of exploration,

Tany barrels of oil found, many cubic feet of gas
found, and after much red ink, the outlook for future
offshore potential is bright. Maybe it is.

Unexpectedly low rates of return, however, follow
the industry into competitive lease sale environments
y.ear after year. This must mean that by and large in-
dustry is paying more for the property rhan ii ulti-
mately is worth. But each competitor thinks he is play-

Bidding
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Proba bility
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ing a reasonable strategy. How can the industry go

astray? Our sojourn into competitive bidding theory

tells us to expect exactly what has happened. It is, then,

a theory not only that is mathematically sound, but
also that fits reality. Even though each bidder esti-

mates his values properly on average, he tends to win
at the worst times 

- 
namely when he most over-

estimates value. The error is not the fault of the

explorationists. They are doing creditable work on a
tough job. The problem is simply a quirk of the com-
petitive bidding environment.
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APPEhtDD(

Mathematical arguments leave most people cold. On
the other hand, it is nice to know that the logrc of
English has the solid support of mathematics 

- 
espe-

cially when we try to explain why a bid level that
maximizes present worttr should often go down as the
number of competitors increases. Of course some of
you may have learned long ago to beware of the
English languag'e and to tnrst naught but mathe-
matical rigor. For you, we ofter this Appendix.

In the main text we said that we could not carry
out the necessary integrations if we used the log-
normal distribution. We canr however, analyze a

probability distribution that has properties similar to
the log-normal. The exponential distribution is our
candidate. It is properly skewed. It is defined on the
interval 0 to oo. And if we choose an exponential dis-
tribution whose mean is 1.0 (corresponding to tnre

value normalized to 1.0), we have a spread not too
unlike that log-normal whose variance describes the

kind of uncertainties faced in the Gulf of Mexico.
The level of mathematics we use is not difficult 

-a little calculus and a little probability theory. We

want to derive an equation that will tell us EPW
(Expected Present Worth) as a function of our bid
level, the opponent's bid levels, and the number of
opponents. By solving that equation, we will show

that the bid level for which we get the largest EPW
peaks out at two or three opponents and then falls.

h(x) - 
^,e 

- r', probability density function for
value estimate for each bidder

I - mean of value distribution for ourselvesr and our opponents, assumed equal to
true value

? : fraction of our value estimate we choosevo 
to bid

S@) - + "- 
\t/co, probability density function

for our bid

c i - fraction of his value estimate that Com-
pany i chooses to bid

f ,(x) : * s- xt/c;, probability density function

for bid of Company i

Fr(x) - I s-\o/ct, cumulative bid distribution
for Company i

n - number of bidding opponents

(f) : 
#, 

notation for combinations

n

rr F,(x) - probability that all opponents will bid
less than r, or the probability that we

win if we bid x

To get our EPW we multiPlY 3 terms:

PW if we bid x and win
Probability of winning if we bid x
Probability of our bidding x.

Then we integrate or sum up over all possible values

of r.

Let us

use the

EPW -

,1 Fi(x) - [Fi(x)J"
i=l 

: (1 g-)tz/et)n,

which we expand binomially

.[(+- 4[,f, 
F'(x) l* e-\'/c'dx

0

. . . . . . . . (A_1)

simplify by assuming that all opponents will
same bid levels. Then

BIB

-i (- ,,- ( l)"-,"k,/c, (A-2)



Then

EPW: ]( + - x)[-i (- 1)-( r),-*rz*]
0

o tr 
r-\o/eo/,

co

kco+1 kco * I

4

o

NUMBER OF OPPONENTS

Fig. S-Optimum bid level vs number of opponents.

the less chance there is for bargains and the higher
we must bid to get the property (make our invest-
ment). This is the kind of influence of increasing
competition that most people see immediately. we
call it competitive influence of the first kind.

But we see that after the second opponent the
optimum bid level begins to fall. For 12 opponents
it has dropped to only 0. 15 

- 
about half the maxi-

mum it achieved for two opponents. A counter-influ-
ence has begun to dominate. The tracts we win tend
to be those on which we have overestimated value.
The more opponents, the worse our error on the aver-
age when we win. we call this competitive influence
of the second kind.

Both competitive influences are always present.
They do not, however, always "weigh" the same. For
most competitive situations, we think competitive
influence of the second kind is more important.

The purist may be unhappy that we have drawn a
curve through our computed points, giving values for
such impossibilities as 3.33 opponents. In setting up
a strategy, however, we are never certain of how many
competitors we will face on a given parcel. If we
thought there was a one-third chance of facing four
opponents and a two-thirds chance of facing three
opponents, then we would be justified in "expecting"
3.33 opponents. For actual computing with the
formula just derived, we should be able to switch
from factorials to gamma functions if we expect frac-
tional opponents.

we would get somewhat different pictures if we
altered the strategies of our opponents, but the princi-
pal characteristics that we used to illustrate the two
kinds of competitive influences would remain.

our simulations using the log-normal distribution
show results similar to the ones in this analysis. That
is not too surprising. As we pointed out earlier, the
log-normal and the exponential have some important
similarities. Furtherrnore, the simulation we carry out
is really a numerical integration of the kinds of factors
we have examined analytically in this Appendix.
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In the computations we will nonnallze by setting

: 1.0.

Mathematics does not interpret anything. people

have to do that. Look at Fig. 5, which shows itre
results of the computations. For purposes of this ex-
ample, we have chosen to let all opponents use exactly
the same strateg'y: each bids one-half of his particular
value estimate. We consider that all opponents have
information of equal quality and that the mean of the
distribution from which their value estimate comes is
the true tract value. We plot our optimum bid level
(bid level that maximizes our EP!v) vs the number
of opponents we face.

At the left of the graph you see that for no opposi-
tion the mathematics says to bid a penny. That will
be the highest bid and will win. In reality that will not
work. The selling authoriU may set a minimum bid.
It may also choose, for one reason or another, not to
honor the highest bid. But then no one seriously pro-
poses the use of a competitive bidding model when
there is no competition.

The optimum bid level goes up (maximum of 0. zB)
until the number of opponents reaches two, where-
upon it begins its descent. We interpret the curve to
be saying that we should bid fairly low if the number
of opponents is very small (like one) because there is
a good chance that we will be able to pick up a bar-
gain or two. The mathematics appears to be telling
us that if we bid any higher, w€ will just be leaving
money on the table. The more competitors we have,

Ci
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UNOERLYING OISTRIBUTION IS

ALL OPPONENTS 8tD O.5 OF THEIR
VALUE ESTIMATE

EX PON E NTtA L
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Decision Analysis : Perspectives on Inference,

Decision, and Experimentation

RONALD A. HOWARD, seNlon MEMBER. IEEE

I nt:it ed Paper

Abstract-This paper illustrates by using a simple coin-tossing
example how the new discipline of decision analysis sheds light on the
perennial problems of inference, decision, and experimentation. The
inference problem is first discussed from the classical viewpoints
of maximum likelihood estimation and hypothesis testing, and then
from the viewpoint of subjective probability and Bayesian updating.
The problem is next placed in a decision setting to demonstrate how
an estimate is related to the nature of the loss structure. Experintental
possibilities are evaluated for the case where the size of the experi-
ment must be determined a priori and for the case where experimenta-
tion can cease at any point. Ttp decision-analysis philosophy allows
consideration of all these problems within one philosophical and
methodological f ramework.

I . I Nrn()DU(-noN

analysis is a term used to describe a new

professional field that conrbines the viewpoints of
decision theory and systems analysis. From decision

theory. decision analysts have learned how to be rational
in simple. but uncertain situations. while lrom systems

analysis they have learned how to extend these insights to
complex and dynamic problems. Decision analysis is usually
performed on large. one-of-a-kind decisions, but it is equally
applicable where decisions are repetitive. The last decade

has seen decision analysis progress from a curiosity to a

working tool of the largest private and public enterprises.
The communication engineer will find that the decision-

analysis viewpoint shows him how to treat inference and
decision problems when there is little or no experimental
information available. Indeed, the cornerstones of decision
analysis are that any information received can be incorpo-
rated in the process of inference and that a decision can be

made given any state of information.
Many aspects of decision analysis have been discussed in

a recent publication tl I I n particular. this publication de-

scribed the prolessional aspects o[ the field. the question ol-

how to treat large problems, and the nature of successful

applications. Since the present readership is likely to be

composed of individuals who are well aware o[ systems

analysis. I would like to take this opportunity to illustrate
how the decision theoretic side of decision analysis provides

a broad conceptual lramework for viewing the problems of
inference. decision. and experimentation. The vehicle lor
this illustration will be an example based on the simplest of
probabilistic phenomena. the Bernoulli trial.

Manuscript received March 3. 1970. This research was partially sup-
ported by thc National Sciencc Foundation under Grant NSF-GK-16125.

The author is with the Departmcnt o[ Engineering-Economic Systems.
Stanford University'. Stanford. Calil.

ll. A Corx-Tossrxc; PnoBL[M

Suppose that \t,L'are sitting with ii group ol'our asso-

ciates and that someone raises the question of the fairness o[
coins. In the course of this discussion a 1964 U. S. $0.25
piecc is offe'red lor experinrental purposes. It is examined
and lound to be frce l'rorn visible dctects and in possession

ol'both'a head and a tail. The coin is then tossed spinning
into the air and allowed to fall on the floor. In a sequence o[
lfi) tosses, 54 heads are observed. The question arises, how
should we estimate the probability of heads for this coin.

When I have asked this question of a group. a rnajority
say "0.50." a minority say "0.54." and a flew give an answer
likc "0.51" or "0.5.)." The reason fbr their diverse answers

seems to lie in thc inlcrential systems they are using. We
shall discuss a l'cw ol' these systenrs and comparc their
ad vantages.

A . tl.vytth r,.ri.r Tc.st itttl

One viewpoint on inference is that o[ the hypothesis

tester. ln this case he might say."All coins are fair unless

proved otherwise. Unless observing 54 heads in 100 tosses

is u rarc result for a fair coin. I am going to say that this coin
is [air." Taking his remarks at face value we might compute
the probability that 100 tosses o[ a lair coin will produce

exactly 54 heads. Fronr the binomial distribution we find

g ir successes in n Bernoulli trials with
probability o[ success p on each trial I

: pn(,1u. pt: (:)r,, - p)n-,. (r )

Identifying a head with a success we have

Pn$41 100. I ,2l 
- 0.058 . (21

When we point out to the hypothesis tester that this event is

not very likely. he says that we misunderstood him; that if
the actual number of heads is close enough to the expected
number for a fair coin. he will accept the hypothesis that the
coin is fair. He further explains that the observed number
o[ heads will be considered close enough to the expected
number if the probability that a fair coin would produce a
number of heads deviating from the expected number by at
least as much as the observed number is at least 0.05. Since

the expected number and standard deviation o[ the num-
ber of heads in 100 tosses o[ a fair coin are 50 and 5. it
turns out that accepting the hypothesis will require a num-
ber of heads between 40 and 60. That is. there is only a
probability 0.05 that a fair coin would produce fewer than
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40 or rnore than 60 heads. Since the coin in question pro-

duced a number o[ heads within the 40 to 60 range, the

hypothesis tester would not reject the hypothesis that the

coin is fair.

The choice ol- the probability that will distinguish the

rare event is. o[course. open to question. It is usually taken

as 0.05 or 0.01. the latter choice broadening the range of
outcomes that willnot cause rejection ol'the hypothesis.

The group members who estimated 0.50 say that their

estimate was based on the general idea of hypothesis testing.

B. Likclihood M u.rinti:trt iort

Another viewpoint on inlerence is that of the likelihood

maximrzer. He might say. "The results of tossing the coin

100 tirnes are all the information I have about it. I should

estimate the probability of heads to be the value of that
quantity that would make the experimental result most

probable." Since the experimental result is specified by the

number of tosses r and the number of successes ,', he fixes

these quantities in (l) and finds the value of 2 that makes the

observed experimental result most probable. By differ-

entiating and setting the derivative to zero, he finds that the

maximizing value of p is rf n. the empirical fraction of suc-

cesses. This value of p is called the maximum likelihood
estimate and is 0.54 in the case of the coin. Note that it de-

pends only on the observed data.

Group members who estimated 0.54 say that their reason-

ing was essentially that of the likelihood maximizer.

C. Characteri.st ic'.s oJ' C la,s.sicul Approache,s

The classical approaches of hypothesis testing and likeli-

hood maximization have difficulties as logical solutions to

the inference problem. Sometimes these difficulties are re-

vealed by supposing that we were tossing a thumbtack

rather than a coin, with point-down corresponding to heads

and point-up corresponding to tails. For example, in the

case of hypothesis testing, we must ask, "How is the hypoth-

esis to be constructed?" While this might be an obvious

matter in the case of the coin, it is far from obvious for a
thumbtack. Hypothesis testing also suffers from the need to

specify the probability of a rare outcome. What is accept-

able as a rare outcome in betting in the coffee pool may not

be acceptable in matters of safety of life and limb. Finally,
hypothesis testing becomes nonoperational if the hypoth-

esis is rejected. Suppose, for example, that 6l heads were

observed in the 100 tosses. The hypothesis o[ a fair coin is

rejected-and now what? One can imagine a procedure fior

constructing new hypotheses po.tt hoc until one is acceptable,

but this procedure would have few defenders.

Maximum likelihood has difficulties when the experiment

is small. For example, would seeing one head on one toss of
a coin or thumbtack justify estimating the probability to be

rfn- I ? It is easy to think of cases where infiormation avail-

able before the experiment casts serious doubt on the maxi-

mum likelihood estimate.

Although hypothesis testing may be an acceptable estima-

tion procedure when the sample size is small (because the

hypothesis will almost surely not be rejected) and maximum

likelihood may be acceptable when the sample size is large

(because its validity increases with sample size), we would

prefer to have an inferential methodology that made logical

sense tor any size experiment, from no tosses to an endless

stream. Fortunately, just such an approach is available,

based on the concepts of probability developed by Bayes

and Laplace.

Ill. IxreneNcr

To study inference, and indeed, the allied problems of
decision-making and experimental design, we shall need a

convenient notation. We call this notation inferential nota-

tion and define it as follows.

A. I n.ferent iul N otation

The basic concept of inferential notation is that every

probability assignment is conditional on some state of in-

formation, which we may describe generically by 9. lf A
is some event, we define tA|? ) to be the probability of A
given the state of information g.lf x is a random variable,

then we define tr*1,9 
) to be the density function of x given

g. In most cases we can ignore the distinction between

events and random variables up to the point of computa-

tion. By extension, if y is another random variable then

{r,y|/\ is the joint density function of x and y, [xly,9\ is

the conditional density function of x given y, etc.

A particularly important state of information is the prior

experience brought to the problem, which we define as E.

Any probability assignment conditional only on E is called

a prior assignment. Thus, iAlS) is the prior probability of
the event A: ',*lS ) is the prior probability density of the

random variable x.

The notation extends to moments. We define (xl.?) to

be the expectation of the random variable x given the state

of information 9, computed from

lGls): x lx |Y\ (3)

(6)

where I, ir a general summation operator. Then (r'l ,") is

the nth moment of x. We denoted the variance of x by

Krl e) : (*'le> - (xls>z - ((x - (*lfll'le>. (4)

Two operations are especially important. The first is

Bayes' theorem for determining the effect on knowledge of
a variable x o[ observing some other variable 1,.

{rly, g\ : lYl'' -,9,\-!:lg\. (5)
iyls\

The other is expansion, which allows us to describe knowl-
edge of one variable x in terms of knowledge of another
variable !,

{rle} : I 
(rly, v\ {yle\

Notice that the expansion relation can be extended to ex-

pectations by multiplying both sides by x and summing
over x,
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All thesc relations can bc considered simply as conse-
quences o[ elementary probabilit.v theory. However. their
application often provides immed iate insight into inlerence
problems.

B. The Prior Distibutiort

we now come to the question o[ how to balance experi-
ence and evidence in thc case ol the coin. we could directly
assign a probability of heads on the first toss. but this
mechanism would not let us update our state ol knowledge
as thc sequcnce o[ tosses devcloped. Consequently, let d be
the fraction of heads that would be observed in a very large
number of tosses of thc coin. No matter how knowledgeabic
we are about coins in general or about this coin in particular
we shall have some uncertainty about d. we shall represent
this uncertainty by assigning a prior density function on @,

1016), where we resrricr O ro sarisfy O<O< l. We can
alternately represent this information in the form of a cumu-
lative distribution I0 < f 16 ). plotred as a function or I .

Several techniques are available for the encoding o[ such
distributions t2l that range from interv,iew rechniques to
questionnaires to interactive computer programs; we shall
not comment on them further here.

The end result, however, is a probability density tor $
based solely on what the individual knows about the device
before it was tossed. It is clear that the lorm ol thc prior
inflormation will have a major effect on the shape of the dis-
tribution. For example, in the case of a coin the belief that
h-eads were as likely as tails in the long run would produce a
density function symmetrical about 0.5. The density [unc-
tion would not have zero width, however, unless the indi-
vidual believed that it was impossible for the coin to be
biased in either direction. In the case of the thumbtack we
would not be surprised to find the density function asym-
metrical and quite broad.

To be specific we shall choose a particular prior density
function for our example, as shown in Fig. l. It is sym-
metric about 0.5 and has a standard deviation of about
0.05. Such a density function would be consistent with the
belief that there was a 2,t3 probability that the long-run
fractional number of heads would fall berween 0.45 and
0.55. It represents neither the degree of knowledge we would
expect of a man who had spent his life observing coin tosses
at the mint nor the degree possessed by someone culturally
unfamiliar with the coin-tossing process. yet it requires
that the individual assign 0.5 as the probability thar rhe next
toss will fall heads.

To see this, let H represent the event o[heads on the next
toss and use the expansion result to expand H in terms of O,

I

PROCEEDINGS OF THE IEEE. MAY I97O

o52

PRI

o 
l"l 6

o45 0 55

Fig. l. A prior density funcrion.

However, i[@ were known to the individual, he would assign

0 at the probability of H,

',HlO, :/') - O. (9)

Therefore.

iHlql : I OIOl,yi: <Oly>, (ro)

(8)

and we have established that the probability of a head on the
next toss is just the mean of the,f density function, or 0.5 in
the present case.

C. Leurninq J'rom Obsertution

Now the question arises as to how knowledge of O is
changed by the observation of tosses. Suppose that the in-
dividual has observed one head in addition to his informa-
tion ,q.what has he learned'l From Bayes'theorem

i1lHl -'H).0-:1i4!)

However, as we have rJimpression ."rt:l
written as

lOlH. 'qt : 9i9'')Yi,v'i:ffi. (tzl

The effect o[seeing a head is to multiply the @ density func-
tion bV 0 and to divide it by a normalization factor that is
equal to its mean. Similarly, if a tail T is observed, the effect
on the rf distribution is given by

lolr,,vl -0 - ilill'r\I <OW' (13)

It is multiplied by I - 0 and divided by a normalizarion
factor equal to one minus its mean. The normalization
factor is always the integral of the numerator over all values
ot 0.

we could now design a computer to perform the updating
job. It would srart with the prior density function [Olsf.
If a head were observed, it would murtiply this density
funotion by 0, and renorm alize it to have total area one.
observing a tail would cause multiplication by I - O and
the same renormalization. Fig. 2 shows that the effect of
observing a mixed sequence o[heads and tails is to make the
rf density function narrower and narrower until it becomes

{H19| : ',Hlo,,Yi iol,yi
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{+le}

o +

furthermore that the posterior parameters arc obtained

simply by adding the numbers that describe the experi-

mental outcome to the prior parameters, a very simple

proced u re.

The conjugate family we have f6und is the family of beta

distributions. The beta density function is defined by

f^Olr',n'): # O''-'(t - 0)''-r'-' (,r)
MULTIPLICATIVE
TRANSFORMATION

IMPLIED 8Y OBSERVING
A "HEAD"

MULTI PLICATIVE TRANSFORMATION
IMPLIED 8Y OESERVING

A "TAIL"

Fig. 2. The effect of observations.

in the limit a very narrow spike located at the empirical

ratio of heads to total tosses.

To make this behavior clear, suppose that r heads are

observed in n tosses. Then in view of the effect of observing

heads and tails that we have discussed, the posterior dis-

tribution on 0, \01r, n, I ), will be given by

t Qlr,n, E\ - k0'0 - 0)^-'i0l6\ (14)

where k is whatever constant is required to make the pos-

terior a density function.

D. Conjugate Distributions

While these results constitute a complete procedure for

updating information,, they do not have the analytical con-

venience necessary if we are to demonstrate decision-mak-

ing and experimentation. Think how much easier our work

would be if the prior and posterior density functions in the

above equations could be members of the same family. This

would be so if their dependence on O were of the form

00 - |lu where a and b are constants, for then both sides

of the equation would have that form. In particular, if we

choose a prior density function of the form

{0lS\-Q''-'(t -0)n'-r'-' (15)

where r' and n' are constants, then the posterior density

function will depend on rf as

{flr,n,E\ - 0'(l - 0)'-16r'-t(l - 0)^ 
-r'-l

-0,+r'-l(l -tYtn'-(r*r')-l (16)

- O' -'(l - O)n"-r"-|

where we have defined posterior parameters v" : r * r' and

n":n*n'to show that the posterior is, in fact, in the same

family as the prior.

When we can find a family of distributions such that'the
prior and posterior belong to the family for some sampling

process, we say that the family is a conjugate family with
respect to the sampling process. We have found such a

family for the Bernoulli sampling process and have shown

with mean

r'
mp(f', n'l : 

i

the ratio of the parameters, and variance

r'/ r'\ I
L,r(r',fi'l--t t -_ l-----'

n'\' n') n' + I

+

(18)

(le)

the mean times one minus the mean divided by the second

parameter plus one.

O[ course, it is entirely possible that the individual's

state o[ knowledge will not be adequately described by a

member of the beta family. In this case, all we can do is refer

him to our general results. However, if the prior density

function is well described by a beta distribution, then both

the inferential and decision-making problems become much

easier.

To show just how restrictive the beta family is, a repre-

sentative set of beta density functions has been plotted in

Fig. 3. The upper portion shows several betas with a parame-

ter ratio and hence mean of 0.5. They range from the U-

shaped (l14, I 12) to the quite peaked (60, 120) as the second

parameter increases, and hence the variance decreases.

The uniform density function is the beta (1,2) while the two

triangular density functions are the betas (1, 3) and (2,3).

The lower portion of the figure shows a group of betas

with a parameter ratio, and hence mean, of 0.05. Their

mass is very much concentrated at the left end of the unit

interval. As the second parameter increases and the variance

decreases, the form of the beta progresses through several

quite distinct forms.

Although one can imagine many prior density functions

that do not fit within the beta family [for example, density

functions with two peaks within the (0, l) interval], the

family does describe with ease a wide variety of possible

states of information.

E. Solution of the Inference Problem

We are ready to solve the inference problem of the in-

dividual with the prior density of Fig. l, who has now seen

54 heads in 100 tosses. We begin by determining whether

his prior density function is adequately described by a

beta distribution. Since there is nothing about its appear-

ance to suggest the contrary, we might find the equivalent

beta parameters by equating the mean and variance of
the prior to their corresponding expressions in terms of
beta parameters. The mean, 0.5, should equal r'ln'; the

variance 0.0025 should equal (r'ln')(l - (r'ln'))l(n' + l). Solv-
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Fig. 3. Beta distributions.

ing for the nearest convenient values, we find r':50,
n':100,

l0lSl : fp@lr' = 50, n' : 100), (20)

with mean

<ols> :; - 0 5, (2t)

and variance

n\ n')n' + I

The ultirnate test of whether this beta distribution ade-

quately describes the original prior would be answered by
plotting both it and the prior as a density or cumulative dis-

tribution and seeing if the difference is acceptable. In this
case there is no problem.

Having encoded the original information as a beta

distribution it is a simple matter to see how the state of
information is affected by observing 54 heads in 100 tosses.

We know that the posterior will also be a beta distribution
and that its parameters will be numbers r" and n" obtained

by adding the number of heads observed, r, to the prior
parameter r' and the number of tosses, n, to the prior pa-

rameter n' .

rpr+l rln'y= nnffi +/-'t,-f 1n'-r'-t o.52

20t

o

"[:!,

r6

p

Fig. 4. Prior and posterior density functions.

y":r' +r-50+ 54:104

n" : n' + tr - 100 + 100 : 200.

r04

200
: 0.52,

The posterior density function is therefore a beta density
function with parameters y" :104, n" :200,

{filr,n,E\ : fe(01r" - 104, n" :200). (24)

The mean is

,,

(0lr,n, E) -- \ :
n

(23)

(2sl

(26)

which means, of course, that if the individual were required
to assign the probability of obtaining a head on the next

toss, he would assign 0.52. The variance is

(dr', n,E) 

I;*: _l);--os2(048)#

which is abou t I 12 the prior variance. This shows that the
posterior standard deviation and hence density function
width is about 70 percent that of the prior. The [lrior and
posterior density functions appear in Fig. 4.

Thus, the net effect of the observation has been to shift
the prior slightly toward 0: I and to narrow it. We see

that there is a basic symmetry or duality between the roles
of the prior and the experimental observations. Exactly
the same posterior would have resulted if the prior had had
parameters 54 and 100, and 50 heads had been observed in
100 tosses.

If an individual had a rather broad beta prior with
parameters 5 and 10, the 54 head out of 100 toss result would
have produced a beta posterior with parameters 59 and I l0
having a mean of 0.536. He would have been more influ-
enced by the same experiment. Conversely, an individual
with a narrow beta prior with parameters (500, 1000) would
have a beta posterior with parameters (554, I100) as the
result of the same experiment. Since the posterior mean
would now be 0.504, he would have been far less influenced
by the experimental result.

Table I shows that increasing the size of the experiment
will increase its effect on the posterior. Very large experi-
ments will result in the posterior being virtually a spike at the
observed fractional number of heads.

ryN
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TABLE I

Posrrnron MrnN (Pnosnstltry or HeEo oN Nrxr Toss) ns n FuNCrtoN
or PRIoR PERerraerERs AND ExprRtrrlENTAL REsulrs

Prior

Parameters

A. ProJit Relations

To provide us with incentive, the philanthropist an-
nounces that he will pay $2500 to each player less an amount
equal to $l 000000 times the square of the difference be-

tween @ and the player's guess g, the payment to be made

when d ir reported. Thus, the player's profit n will be

n($,g):a-c(0-il2

Beta

540

r 000

54

100

n'

(27)
510

50 100

500 1000

0.5364

0.5200

0.5036

0.5396

0.5364

0.5200

Now that we have managed to describe an individual's
state of information by the pair of numbers giving the cur-
rent beta parameters, it is a simple matter to incorporate
any further experimental evidence that he might see. For
example, suppose that the individual whose posterior was

the (l04,200) beta in Fig.4 saw 100 additional tosses that
produced 48 heads. His old posterior would become his

new prior and his new posterior would be a beta distribution
with parameters 104+48:152 and 200+ 100:300. Since

the mean would then be l52l30fJ-:0.507, the net effect of
the latest data would be to shift the rf, distribution slightly to
the left, and to assign probability 0.507 to the event that the
next toss will produce a head. This latter posterior would
have a variance about ll3 as great as the original beta
(50, 100) prior. Any future experimental evidence would
be treated in the same way.

F. Some Ob.seruations

We have now accomplished what we set out to do in the

inference problem; namely, to find an inferential methodol-

ogy that made as much sense for no data as it did for an

overwhelming amount. No matter what size the experiment
or how extensive the initial state of information, the inferen-
tial problem can be successfully treated.

While successful and complete treatment of inferential
problems is a hallmark of decision analysis, the major ad-

vantages of the approach appear when there is a decision to

be made. We shall show how the inferential concepts can

be augmented to clarify the decision-making process.

IV. DEcrsroN

Suppose that the coin under discussion, the 1964 $0.25
piece, has never been tossed. A philanthropist enters the
room and says that he would like to finance a game based

on tossing the coin. He proposes tliht the coin be sent to a
reputable research laboratory where it will be tossed, say,

ten million times. (We might have to wait a year or two for
the resUlt.) The fractional number of heads observed in this
experiment will be called rf . The task of the players is to
guess what @ will be. One might think that we had already

solved this problem in the last section in estimating the

probability of heads. However, in that case there was no

profit or loss associated with the estimate and consequently

no incentive,to examine how the guess should relate to the

state of knowledge. Our present task is to examine this ques-

tion very carefully.

where u -$2500 and c-$1000000. If the player happens

to guess rf exactly, he will earn $2500. If he misses by 0.01 he

will still earn $2400. Missing by 0.05 causes him to break

even; a miss greater than 0.05 causes him to lose money

(pay the philanthropist). It he misses by 0.10, he will lose

$7500; by 0.2, $32 500; and by 0.5, $247 500. Finally, if the

player has the bad luck to guess zero when d is one, or vice

versa, he will lose almost $l 000000. You can see that this

can be an exciting game, particularly, if played with a thumb-

tack rather than a coin.

The first question that arises is whether one should play.

While this question involves personal attitude toward risk,
a subject we shall mention later, we shall simply observe
that by increasing a the game can be made attractive to any-
one. And so everyone must face the question, what should
the guess g be.

B. Expected Profit Maximization with Quadraric Cosrs

Let us assume that the individual is an expected value
decision maker-he desires to submit a guess g that will
make his expected profit as high as possible. If we write
the above equation in the form

n(0, g) : a l(0, il, (28)

we see that his goal is equivalent to minimizing the expected
value of the loss function

l(Q,d: c(0 - O)2 : (llf,g,,E). (29)

The expected value of the loss function can be written using

the expansion result for expectation as

f
(tls,s) : 

)r,40,s, 
d){fils,s}. (30)

Since we have no reason to assume that our guess will in-
fluence the final value of 0, {Qlg, 8\: {0lS}, *. can write

s>: 
l,

:1,

(tls, (t10, s,8){fils\

c (0 - d2{0ls\

(31)

Now we can seek the value gr for the guess that will mini-
mize this expectation,

g*: min-t(llg,s). (321

To find it, we set the derivative of (llg, d) with respect to g
to zero,
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or 
<hls> - s - o

s* : <fils>. (34)

The best strategy for the expected value decision maker is to
guess the mean of his prior. His expected loss in this case is

(tls : s*: <Ols>,8> - c 

[r*- 
( Ols>f {OV\ 

(35)

- ('<@ - <fils>)'ls>

(tls*, 8) - c\fils>. (36)

The expected loss is just c or $l 000 000 times the prior
variance. Of course, if the individual is certain of the value

of O, then this variance will be zero and he will expect to
lose nothing. In general ,'<hls> will be the amount that the
individual would pay for perfect information, or clair-
voyance, on the value of @.

The Co'in-Tossing Decision; suppose now that the ex-
pected value decision maker had the beta prior with parame-

ters r'- 50, n':100 for the coin, and no other information.
Since the mean and variance of this beta were earlier found
to be 0.5 and 0.002475, this individual would guess g--0.5
and would expect a loss of $247 5 to offset his fee for playing
of $2500. Consequently, the game would be a break-even
proposition for him.

However, after he had seen 54 heads in 100 tosses, his

beta distribution has parameters 104 and 200 with mean
0.52 and variance 0.001242. Now he would guesS g : 0.52

and expect a loss of $ 1242 to diminish his playing fee of
$2500. At this point he would have a $1258 expected profit.
If he observed succeeding tosses, he would make adjust-
ments in his guess and anticipate that his expected profit
would continually increase. Note that his guess is always
equal to the probability that the next toss will fall heads.

C. Expected Profit Maximization with Bilinear Costs

To examine the generality of this result, suppose that the
philanthropist changed the problem by mak ing l(S, g) bi-
linear rather than quadratic in the guessing error; that is,

0(g - il{Ols\ + 
l= oo(Q 

- s){Ols\.

To find the guess that will maximize this quantity we differ-
entiate and set the result to zero,

fe fo
p 

)r= _ co 

lols) - aJr= 
,{ols} 

: o 
(3e)

p{0<sls}-"{Q>sls} :0

i0 < sls) a

To;M: p

Since {0> glS\ - I - l0 <glS}, we readily convert this into

{o < sls\: fr. (4r)

In other words, the best guess is the alu*p fractile of the
prior distribution. If this result is substituted into the equa-
tion for ( llg, a), we obtain a sum of two integrals that will
specify the expected loss.

The coin-Tossing Decision: If a - p the losses are sym-
metric in the error and the best guess is the median of the
prior distribution rather than the mean. However, for the
beta distribution (50, 100) there is no difference between the
two numbers and the guess will be 0.5. Suppose, however,
that e is three times p, that it costs three times as much to be
in error by a certain amount if you guess low as it does if you
guess high. Then the best guess is the 0.75 fractional of the
prior distribution. For the beta (50, 100) this turns out to be
about 0.536. Therefore, even in the absence of experimental
information the guess will be above the prior mean, and,
consequently, above the probability of a head on the next
toss.

D. Other Cost Functions

The number to be guessed depends very strongly on both
the profit structure and the state of information. We have

seen how quadratic costs lead to guessing the mean and
how bilinear costs lead to guessing a fractional. It is easy

to see that if the cost structure placed no penalty on a guess

within 0. I percent of the actual rf and a very high penalty
otherwise, then the best guess would be the mode (most

likely value) of the prior distribution. (This is sometimes
called the "William Tell" loss function.) Indeed any profit
structure will imply some guesses or set of guesses that will
maximize the expected profit. In this simple problem
selecting the best guess specifies the decision.

E. Loss Lotteries

while we have maximized the expected profit in selecting
a guess, it is not at all obvious what probability density
function on profit is implied by this guess. Returning to the
case of quadratic costs, we know that guessing the mean
will cause a loss upon revelation of @ that is given by

(ll0, sr, d) : (tl4, st : <OlS>, 5> : c(0 - <OV>f . g2)

PROCEI,DINGS OF THE IEEE, MA}' I97U

(38)

(40)

-@

(tls,S): 
J 

,

: 
T:=

tlfl, o,s>{fils\E>

hls\0{

d

dg

Ir

(tls,, 2c
[,,r-s)iolst-o

!,totnt 
- og (33)

t(0,il - (tlQ,s,8>: 0@-il 0<s
u(Q-s) s<0

(37)

If c were twice p, for example, then it would cost twice as

much to guess low by a given amount as it would to guess

high by that amount. To determine the expected effect of a
guess in this case we again use the expansion in terms of
expectations and the assumption that the ultimate value o[

d is independent of our guess,
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{llr'54, n=roo6}

. O.155

Loss. I

Fig. 5. Density function of loss for the case of quadratic costs.

The loss is proportional to the square of the difference be-

tween @ and the prior mean. Since we have assigned a prior

density function to d, we have implied some density function

on I given by

'trrlzsoo I r = 54, n.root)

Itls*,s\: 
!rt(r, 

s*, E\{ols\

plies a deterministic relationship between the final profit and

the uncertain variable. Hence, our prior on that variable

implies a density function on profit that is derived as a

change of variable problem. Displaying this profit lottery to
the decision maker may require a combination of analytical

and computational techniques.

V. ExpEnTMENTATToN

Perhaps the greatest advantage of the decision analysis

approach appears in the analysis of experimental design and

evaluation problems. The reason is that an experiment is

worthwhile only if it increases the profitability of the deci-

sion more than it costs. Since the profitability of the decision

depends on the state of information, the value of experimen-

tation cannot be determined by any method that does not

take explicit account of the information state. The only

inferential procedure consistent with this need is the one

we have described.

A. Fixed Size Experimentation

To fix ideas, suppose that the decision maker in the coin-

tossing problem who has the beta (50,100) prior is given the

opportunity to purchase the right to observe tosses of the

coin before submitting his guess. If he chooses to purchase

any samples, they will cost him $500 plus $4 per toss. The

question is how many, if any, should he buy.

We recall that if this decision maker were required to sub-

mit a guess in the absence of sampling, he would guess 0.5

and have an expected loss of one million times his prior
variance, or $2475. Since the most he can reduce his loss by

even a perfect experiment is $2475, that number is an upper

bound on the value of any experimental program. Because

the opportunity he faces could cost less than $247 5 and still

be informative, it is worth investigating.

If the experiment is performed the net profit to the de-

cision maker will be

:e-l-e (45)

where a is the fee for playing, I is the loss from the decision,

and e is the cost of the experiment. If the experiment is to

,ake""'1;iT;:::1;;:;: 
(etn d, (46,

where it is implicitly assumed that the guess will always be

the mean of the beta prior on Q at the conclusion of the

experiment. The problem is now to find the experiment size

n : n* that will maxim ize (nln, E), or,equivalently, minimize

the sum of the expected loss from the decision and the cost

of the experiment,

n* - -p*-t (nln,8)

: mjn - t ( lln, 8) + (eln,a). 
(47)

To evaluate (llr, 8) weexpand it in terms of r, the number

of heads that the experiment might produce,

fn
(lln, S) - 

J, = o( 
llr, n, S>lrln, 8\. (48)

(43)

where {{;0, g*, E} assigns probability one to the value of I

specified by the deterministic relationship (110, g*, E>. Con-

sequently, finding ',,llg*, S\ requires solving a change of

variable problem.

A useful property of beta distributions is that they can

be well approximated by a normal distribution when the

second parameter is relatively large and the mean is not

too close to zero or one. These conditions are met for the

beta distributions in our examples. If we therefore assume

that {0lS} is given by a normal distribution with the same

mean and variance as the beta, our change of variable prob-

lem becomes one of finding the density function for the

square of the difference between a normal variable and its

mean. It is easy to show that this density function is the

gamma density function,

t 
- ,-rtz-.^l- ' 

Ifr\:mr'''expL- *e), @4)

where c is $ I 000 000 and o2 is the variance of the beta.

The expected loss as derived from this density function is

just coz in accordance with our earlier results. The variance

of the loss is 2c2 oa .

Fig.5 shows the density function of loss for the case where

the individual has seen thii 54 heads in 100 tosses and has

guessed g:0.52. His beta variance at this point is 0.001242

and so he expects a loss of $ 1242. Of course, he will lose

money out of pocket only if the loss exceeds his playing

fee of $2500. The area under the density function shows that

the probability of this event is 0.155. The overall profit

lottery would be obtained by creating a new ordinate at

$2500 and then reversing the abscissa.

It is interesting to note how far from a normal density

function the actual loss density function is. Anyone who

was accustomed to "bell-shaped" thinking and who was

content to deal only with the mean ($ 1242) and standard

deviation ($ 1756) of this lottery would have a very distorted

picture of the situation he faced.

To summarize what we have learned about profit (or loss)

lotteries, every decision, including the optimum one, im-
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Thc e.xpectcd loss given that n samples have produced r
heads, (/1r,, n,6 ). is equal to c times the variance oI the beta

posterior that will result in that case,

( / lr, n, 8) - c( dlr, n, 6)

r+r'(. r*r'\ I (491
- ('i +,/\t - 

* 
+,i)i-+,/ + r

To find the probability that n samples will produce r heads,

'rrln, 6 |. we expand in terms of @,

ft
t,rln,6t, - I l rln,0,si{01r,8}.

Jo=u 
/\'r' ) 

(50)

The probability lrlu, 0,6) that n Bernoulli trials will pro-

duce r heads when we know that the long-run fractional

number of heads it d is given by the binomial distribution,

[rlrr. O.8l -- ,\:n0,0 - O),-,. (sl)

Since the mere lact that n samples are taken should not in-

fluence @, 'rflu, 6l : t,Ql8\ : I a(Qlf , n'). Consequently. we

have

f t nt
Irlrr. 8l : | 

- 

0'(l -0)'-'fp(Qlr',n')\ ' Jd=o rt.(n-r)!
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Fig. 6. Experimental design.

in accordance with our earlier result that the probability
of a head should be the mean of the @ distribution.

We are now ready to compute (lln, S) by substituting the

results of (52) and (49) into (48). The algebra involved is

considerable, but the result is amazingly simple,

=?4

(lln, E) : ,;( r't- ,

n

n

n'+ I n + n'

r | (n - r) ! I-(r')l- (n' - r') f (n + n')

nt(n' - l)!(r+ r'-l)!(n *n'-r- r'- l)!

rt(n-r)!(r'- l)!(n'-r'- l)!(n *n' - l)!
r:0, 1,,2,.. ,n

where in the last step we have assumed that r'and n'are
integers. The expression for r,rln, E\ is called the beta-bi-

nomial distribution. It answers the question, if the prob-

ability of success for a sequence of Bernoulli trials is selected

from a beta distribution with parameters r' and n', what is
the probability that r successes will be observed in n trials.

Two special cases may make this complex result more un-

derstandable. First, tf r' : l, ff'- 2 the beta distribution is the

uniform distribution on the (0, I ) interval. In this case we

find

rrrln,S\:+ r:0, 1,2,"',n; (53)' n* I

all numbers of heads between 0 and n are equally likely.

Second,tf r'and n' are general, but n:l so that we are inter-

ested in the probability of a head on one trial, we have

- c(dl s>.: , (s5)tt ' n*n'

- <4s, , .a_,

The expected loss from the decision is just the expected loss

with no sampling times a factor n'l@* n'). This result checks

when n :0 and when n is very large because in that case the

expected loss should be zero.

Experirnental Design Fig. 6 illustrates the process. Here

we have plotted the expected loss from the decision, which,

for the prior in question, is given by

(tln. 8) : 247s -]!q -. (s6)
n*100

Next, we plot the cost of purchasing n samples,

Ii'r o'0 - o)'-'
rt.(n - r) ! I-(r')l-(n' - r')

0''- '(t - o)''-r'-l
nt [-(n')

nl. f(n')

(s2)

I-(r+ r')f(n*n'-r-r')

(eln, 8) _
K*kn n-1,2,3,
0 n:0

( s7)

r

n'

r'
I --

n'

r-l
(54)

where K is the fixed cost of sampling, $500, and k is the cost

per sample, $4. The expected total cost from the decision is
then the sum of the expected loss from the decision and the

cost of sampling. Note that this expected total cost is $2475

when n:0 and jumps to 2475 '(100,'l0l)+ 500 *4-$2954
when n:1. The minimum expected total cost is incurred

when n:149 samples. At this point the expected loss from

the decision is 2475 x (100/249):$994, the sampling cost is

500 +149'4-$1096, for a total of $2090. Thus, we have

found that if an experiment is to be performed, 149 samples

should be bought. But should the experiment be performed'l

Yes, because the expected loss from the process, $2090, is

less than the expected loss of $2475 without experimenta-

tion ; that is, the minimum o[ the expected total cost curve

831
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TABLE II

Errrcr or Slrr,tplr Cosr

Col. I Col.2
Cost per Sample Optimum Sample Size

Col.3
Expected Loss

from Decision
(tln.8)

Col.4
Variable Cost

of Sampling

Col.5
Total Expected

Loss

Col. 6

Maximum
Tolerable Fixed

Sampling Cost

C'ol. 7

Total Cost ol'

Experirnent with
Maximum Tolerable

Fixed Sampling

Cost

lr47scn,r*:V k -loo
247 500

398

252

149

66

25

0

k

I

2

4

9

l6
25

kn*

398

504

596

594

400

0

Col.3 +Col.4 2475-Col.5 Col.4* Col.6
r+ + 100

496

702

994

1455

1980

2475

tr94

I 206

r 590

2049

2380

2475

r58r

t269

885

426

95

0

1979

1773

l48l

I 020

495

0

lies below $2475. The fixed cost of sampling K would have

to be increased by $2a75-$2090:$385 to $885 before ex-

perimentation would become unprofitable. We see that if

samples cost $4 either 149 should be bought or none-the

location of the minimum is not affected by changes in the

fixed cost of exPerimentation.

It is important to observe that even if the cost of buying n

tosses were not linear in n, the logical analysis we have de-

scribed would be modified only by using a different curve for

(eln, E).
Marginal Analysis: Important insights into the effect of

experimentation can be obtained by examining the expected

reduction in loss from the decision due to purchasing one

additional sample, (A/ln, E) :(lln, S> - (,1, + l, S>. By

using (55) and writing I for <ll8> we have

(L,lln, S) - I

-T I

With T:2475, n':100,

(A,l n,E) - 2475 ' (se)

This quantity is just the magnitude of the derivative of

(tln, E) in Fig. 6. At n:0 it achieves its maximum value

(Arln:0, E):$24.50. Since it would be unprofitable to

purchase a first sample unless it cost less than this amount,

$24.50 is the maximum cost of each sample before sampling

becomes unprofitable.

As n increases, (AIl n, E) will decrease. The number of

samples purchased should be increased until the cost of buy-

ing the next one is just equal to the expected savings in loss

from the decision due to having it. That is, the optimum

sample size n* (assuming sampling is profitable) is the value

of n that satisfies

(A,ln,E) - k

f n' 
- k. (60)

-(n+n')(n+n'+l)

If we assume that n*n' >> I, we have

n'
,-__k(n*r 

^ fn,
(n * n')z : ---- 

(61)
K

t=-

lln'n*: 
a/ 7- - n''

This expression shows how to compute the optimum sample

size from the variable cost per sample, the expected loss

without sampling, and the prior n' parameter. With k - 4,

T:2475, rr':100, we find n* -149 in agreement with the

graphical result. Of course, when n:149, <A/ln, S> is equal

to the cost per sample, $4.

Effec't oJ' Sample Cosr.' Table II shows how changing the

cost per sample k changes the number of samples purchased,

the total expected loss, and hence, the maximum tolerable

fixed cost o[ sampling. The first column shows the cost per

sample; the second, the optimum sample size computed

from (61 ) with I -- 247 5, n' : 100. The third column shows the

expected loss from the decision from (56) ; the fourth, the

variable cost of purchasing the samples, obtained by multi-

plying the numbers in columns I and 2. The fifth column

shows the sum of the expected loss from the decision and

the variable cost of sampling computed by adding columns

3 and 4. By subtracting the number in column 5 from

T-2475 we obtain in column 6 the maximum fixed cost of

sampling above which no experiment will be performed.

For example, when k:4 we confirm our earlier results that

the optimum sample size is 149 and that the maximum

tolerable fixed cost of sampling is 885. The seventh column

shows the total cost of the experiment with the maximum

tolerable fixed sampling cost as computed by adding the

numbers in columns 4 and 6.

We observe that as the cost per sample increases fewer are

bought. When the cost per sample reaches $25, none are

bought in correspondence with our earlier conclusion that

fi2450 is the maximum variable cost of samples. Increasing

[n'n'l
l___l

ln + n' n * n' + tJ
n'

(s8)

(n * n'\(n * n' * l)
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the cost per sample increases the expected loss lrom the
decision.

The maximum cost o[ sampling occurs between k - 4 and
k:9. To find the /t that will achieve the maximum we write
kn* - nIi+iioOk - 100k, differentiate with respect ro k, and
set the result to zero. we learn that a cost per sample of
$6. l9 will maximize variable sampring cost, and that the
maximum will be $619. This wourd be of interest ro some-
one who wanted to sell this experiment to our decision
maker, but who was constrained to charge no fixed cost of
sampling.

PROCEEDINGS OF THE IEEE. MAY I97O

beta. If he does observe a head, his new beta parameters will
be (r'+ l, n'+ l). The probability that he will observe a tail
is I - (r' ,'n'); in this case his new beta parameters are
(r', n'+ I ).

If we define L'(r', n') to be the minimum expected cost o[ a
sequential sampling plan wtren the current beta parameters
are r'and n', then the expected cost from continuing sam-
pling will be k *(r',ln')t,(r' * l, n' + l)+(l -(r,,ln,)\u(r,, n, * l).
of course, to satisfy its definition L,(r', n') must be the mini-
mum of the expected cost incurred by sampling or stopping.
Thus, L,(r', n') must satisfy the recursive equation,

Lr(r', rt') - min
c.s

We see from the sixth column that the maximum tolerable
fixed cost of sampling decreases as the cost per sample in-
creases. Coiumn 7 shows. however, that if the seller ol'the
experiment charges just slightly less than the maximum
tolerable fixed sampling cost and thus ensures that the ex-
periment is performed. his total revenue will decrease as the
cost per samplc increases. This makes sense. lor if he gave
the samplcs away free except for fixed cost, the decision
maker would take a very large number, receive virtually
perfect infiormation, reduce his expected loss from the deci-
sion to zero, and consequently be willing to pay a fixed cost
of almost $2475 for the privilege o[ having free samples.

B. Sequential Samplincl

Suppose that the decision maker does not have to commit
himself to a batch of tosses, but rather can stop purchasing
them whenever he likes; this procedure is called sequential
sampling. The question we must answer is, when should the
decision maker buy another sample and when should he
stop and submit his guess.

we began by assuming that there is no fixed cost of
sampling and that the cost per toss is $k as before. The
analysis of sequential experimental plans is significantly
simplified when we can describe the state of knowledge of the
decision maker at any time by a few numbers. This is the
case in the coin-tossing problem because the individual's
state of knowledge is completely described by his beta
parameters, r' and n'. When the reward structure of the
problem has been specified, the profitability of his actions
can depend only on these parameters. If at this point the
individual is offered the chance to observe one toss at acost
&, he has only two choices : I ) he can refuse, stop the experi-
ment, and make his decision, or 2) he can buy the toss, ob-
serve it, and then decide what to do.

If he chooses the first alternative, he will guess the mean,
g*:r'/fi', and by so doing will have an expected loss equar
to c times the variance of his prior at that point, the quantity
T - c(r' ln'X I - (r' ln'l)\fu'+ I ). However, if he decides to con-
tinue experimentation, he must first pay k for the sample
and then will observe either a head or a tail. The probability
that he will observe a head is r'f n' , the mean of his current

S.' stop r' / ''\ I,,,(t - ih-l-i
C: continue k + \ r(r' + t, n' *rl + (r - 

)1,(r,, 
n, +l)

(621

0<r'<n'

If we could solve this equation, we would know for any
state of information described by (r', n') not only the ex-
pected cost from the best sequential experimental plan, but
also whether or not a sample should be bought in that
position. This knowledge would constitute a solution of
the problem originally posed.

To develop the solution, we are going to evalu ate u(r,, n,)
over an integral grid. we realize that if we could find the
function ts(r', n'+ l) for all 0 <r'<n'+ I for some value n',
then we could use the recursive equation to find the function
u(r', n'). The process then could be repeated for smaller and
smaller values of the second parameter until the entire grid
was evaluated.

The problem is how to evaluate t)(r',, n') for some value of
n'. The reasoning we use is that for some sufficiently large
value of n', say, n-, the quantity c(r'f n'Xl - (r'ln'))l(n' + l) can
be made less than k., the cost of taking another sample. At
this point we are sure that the choice will be made to stop
and that

t)(r',n^):r;(L-;)#. (63)

It is then asimple matter to solve foru(., nm- l), u (. ,fl^-Z),
etc., and we have generated the complete solution.

However, there is one further improvement we can make
in this procedure. From (58), we know that the expected
reduction in cost from taking one sample when the current
beta parameters are (r', rr') is

(A,l n - 0,8> - i
lr'

n

n'+l "n'
I

@,TT)
(641

We would expect to purchase such a sample as long as this
expected reduction exceeds the cost of the sample k. Thus,
for any value of n', the values of r' that will separate the
regions of continuing and stopping on the (r', n') grid are
those that satisfy

";('-;)a;, 
-k (6s)
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n'

Fig. 7. Sequential sampling regions for coin-tossing problem

Fig. 7 illustrates the continue and stop regions for the

coin-tossing problem as calculated using these methods.r

The three curves correspond to sampling costs k of $3, $4,

and $5. Each is the locus of (r', n') values that satisfy (65). We

shall focus on k: $4, the cost per sample analyzed at length

in the study of batch experiments. To use the diagram, we

first locate the point corresponding to the prior, r': 50,

n' :100, in our case. Since this point is in the continue region,

a sample would be purchased. If the sample were a tail, the

state of information would move to the right to the point

(r':50,n' - l0l). If the sample were a head, it would move

to the right and up to the point (r':51, /t': l0l). Either

point would be in the continue region, so another sample

would be purchased. Every sample purchased moves the

state of information point one unit to the right, and one unit

up only if the sample is a head; consequently, the trajec-

tories leading from any point must lie within a fan bounded

by a line with slope zero and a line with slope one. It is clear

that ultimately the state of information will be in the stop

region and no further tosses will be purchased. We see that

the longest experiments are those for which the state of in-

formation moves along the line 7':n l12. The asymmetric

nature of this diagram would disappear if we plotted the

regions in the coordinates (r' - (n' l2), n') rather than in the

coordinates (r', n').

If we evaluated the expected cost u(r',n') associated with

entering upon a sequential sampling program with a beta

prior with parameters (r', fi') and if we subtracted it from the

expected loss without sampling 4r' ln')(l - (r' ln'l)l@'+ I ),

we would have obtained the maximum fixed cost of the

sequential sampling program. However, everything must

end, and so we shall conclude our discussion of experimenta-

tion with the thought that the average engineer today has at

his fingertips more computational power than did a re-

search statistician twenty years ago. Sequential sampling

I The computation of this diagram was performed by Dr. D. W. North.

programs can now be designed "to order" as the occasion

requires by anyone familiar with the type of reasoning we

have used in this example.

VI. CoNct-ustoN

The coin-tossing problem has given us the opportunity

to explore in detail the philosophy and methodology of deci-

sion analysis in questions of inference, decision, and experi-

mentation.

Perhaps the most serious omission in the presentation is

lack of a discussion of the use of utility theory to describe

and implement attitudes toward risk. The reason for the

omission is that the subject is too broad to be covered in this

paper and yet not so generally known that familiarity with

it could be assumed. In essence, utility theory shows that

if a decision maker subscribes to certain simple axioms, then

his preference among uncertain propositions can be speci-

fied by a function called the utility function. A typical axiom

is transitivity: If he likes prospect A better than prospect B

and B better than C, then he must like A better than C.

The utility function implied by these axioms has the property

l) that the decision maker will prefer one lottery to another

if and only if its utility is higher and 2) that the utility of any

lottery is the expected utility of its prices. The use of utility

theory retains the advantages of expected value computa-

tion while still allowing the choice between lotteries to be

made on a basis other than expected monetary value. Since

we usually find experimentally that individuals confronting

a lottery will forego expected profit in exchange for decreas-

ing the probability of large deviations from the expected

profit, this result is of great practical importance. The inter-

ested reader will find several discussions of the treatment of

risk attitudes in I J. We shall comment here only that adding

the possibility of risk aversion does not change in any way

the spirit of what we have done-it only makes the compu-

tational requirements greater and, in some cases, eliminates

the possibility of compact representations.

Decision analysis provides the most comprehensive phi-

losophy of the decision phenomenon that has been devel-

oped up to the present time. It will be a significant achieve-

ment when major resource allocations are routinely sub-

jected to the same degree of logical analysis we have used

in examining how to bet on coin tosses.
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Bayesian Decision Models for Systems Engineering

RONALD A. HOWARD, uEMBER, rEEE

Abstroc(-This paper shows how modern developments in statis-
tical decision theory can be applied to a tlryical systems engiaeering
problem. The problem is how to design an erperiment to evaluate
a reliability parameter for a device and then make a decision about
whether to accept a contract for the development and maintenance

of a system of these devices. We introduce the concept of subjective
probability distribution to pennit encoding prior knowledge about
the uncertainty in the process. The elpected value of clairvoyance

is computed as an upper bound to the vdue of any erperimental
program. The structure of decision trees serves aB a meane for
establishing the optimum size and type of erperimentation and for
acting on the basis of erperimental results. The subjective proba-

bi[ty approach to decision processes allowe us to consider and
solve problems that previously we could not even formulate.

Ix'rnooucrloN

fl\f THfl PAST few yeal's rve have exl)erienced a rerrais-
I sanee of comprehensive statistical nrodels for decision

lrroblems. Iu brief, these &re the methods pioneered hy

Manuecript reeeived Oetober 15, 1964.

The author is with Stanford University, Palo Alto, Calif.

Bayes and Laplace two eenturies ego. However, the inter-
vening period brought development of other statistical
techniques based primarily, not on probability theory, but
on eertain other solution principles that had an ad hoc
basis. The new developments, which go under the narnes

of Bayesian statistics, decision theory, and subjective
probability, allow us to consider questions in the analysis

of probabilistic decision problems which we previously
could not even discuss. Although adherents of these new,
or rediscovered, techniques are stiU in a minority in the
field of statisties, there is every rea^son to believe that they
will ultimately cause a revolution in the way statistics is
viewed and used by nonstatisticians. The purpose of this
paper is to indicate the character of the new appnoach by
applying it to a problem in reliability.

THp Pnoslnn

A tnanufacturer is offered a fixed price contraet to build
artd maintain & system of N devices for & period of T
years. Every failure in the system during the ? years must
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be replaced by the manufacturer at a cost of C dollars.

The system will eost lco dollars to establish, and the price of

the contract is a.

The desirability of accepting the contract depends, of

course, on the number of failures to be expected during the

operating period. Therein lies the rub, the manufacturer

does not know for sure what the failure charaeteristics of

the device are. He believes that the failures witl be Poisson

with some rate \, but he is very unsure about the value of

I. However, he can compute the expeeted cost of the con-

tract when )t is known. The expeeted number of failures

during the contract is NI?, each of which must be re-

placed at a cost C. Therefore, the total expected repair cost

is C]VIT, or IcrI, where kr : CNT. The total expected cost

of fulfilling the contract is then ko * krtr.

We show in Fig. t how the cost and price of the eontract

depends on the actual value of )t and also how the profit u

from the contract depends on )r. We see that, if the con-

tract is acceptd, the expected profit is a ko - kr\ :
kz - krl, where kz is the difrerence between the price of the

contract c and the cost of establishing the system ko. Of

course, if the contract is rejected, then the profit is zero

regardless of )t. The figure shows that if the company knew

I it would choose to accept the contract if I were less than

Io : kr/hand to reject it if tr were greater than this value.

This decision assumes that the company wants to operate

so as to maximize its expected profit.

1B
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denote the expectation of r with the sanre state of infonna-

tion S. If .4 is an event, we shall use { a ls } to represent the

probability of. A assigned on the basis of the information S.

A particularly important state of information is 6, the

total prior experience we bring to the problem. It contains,

among other things, the problem description and any other

information we have that is relevant to assigning prob-

abilities to the random variables in the problem. We call

lrlsf tte prior distribution of n because its probability

assignment is based only on prior experience.

The crux of our reliability problem is to assign a prior

I ,le I o., I that refleets everything that the engineering

sta,ff of the company can say about the failure rate. Sup-

pose that after much soul searching the staff produces the

prior density function llie| ttat a,ppears in Fig. 2. The

are& under this curye between any two points \ : o and

\ : b, b ) a represents the subjective or personal prob-

ability assigned by the staff to the event that if the device

were produced its failure rate would lie between o and b.

Drawing this density function will not be easy, but one

can make a strong case that it is the only meaningful pro-

cedure for encoding the information possessed by the en-

gineering department.

If the density function of Fig. 2 summ&rizes the com-

pany's state of information about tr, what is its best policy?

We shall let Dn be the event that the company decides to

accept the contract and Dn be the event that it decides to

reject it. Then from FiS. 1 we have,

(rlxo"e) : kz kr\

(rlro"e; : o.
e

(1)

(2)

fa
We can now write

(rlorel : ,[_r^ 
(rlxo,e) {lle}

,(:or^ lk, /crrl hlel

ho

I
Proflt v

he t o-ko

I

i'ig. 1. Eeonomic implicutions aE & futrction of failure rate tr.

IVe find it reassuring to know what to do if \ were ktrowrt,

but in fact )t is not known. Therefore, we must find some

wey of summarizing what the company knows about tr so

that it can make the best decision in the face of its un-

certainty.

IxrnnpNcE NoreuoN

To approach this goal we develop some notation. First

we let {rlS } U" the probability density of a random variable

o based ori the st&te of information E. We use (rlS) to

: k, - tcr f 
- 

dtr.tr. hle l
gI tr:0

t". _ Icl (rls)

artd

(rlo,e1 : 
,(_o 

r^ (rlxo"e> {xle} : Q. (3)

Equation (2) shows that when the cotrtract is accepted the

expected profit depends only on the me&n of the prior dis-

tribution on \ and not on any other feature of that prior.

The company preferc to accept the contract when the ex-

pected profit from this decision kz h (x 
le I is greater

than the zero profit to be expected when it is rejected.

That is, when

kz /cr (rls) > 0

or

T
k2

Lo - q
I

a

I
o
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then the eompany would aecept the contract. The decisiol
hinges on whether the mean of the prior distribution on tr

is greater or less than the critical value trs : kr/kr.
The prior on tr shown in Fig. 2 has a mean that is less

than tr0. Therefore, on the basis of this \ distribution, the
eompany should decide to aeeept the eontract.

Tlw \/al.ue of ClairuoAance

Although we have provided a basis for deeision, the
managers of the eompany would be most unusual if they
did not feel somewhat unhappy beeause they do not know
what tr will, in fact, result. However, we can measure their
unhappiness by imagirring a friendly mystic who truly
possesses clairvoyarrce: he ean foretell the value of \ that
will govern the device failures. The question is, rvhat is
the most the conrpany should be willing to pay the mystic
for his service? We shall call this sum the value of clair-
voyance. We are not surprised that the company is willing
to pay for this information beeause of the chance that the
mystic will predict a value of tr which is greater than tr0.

In this ease the eompany would benefit because it could re-
ject the eontraet and avoid the loss it would otherwise
ineur by accepting the contract under these conditions.

We eompute the value of clairvoyanee by drawing a
eurve that shorvs the amount the eompany would save by
using elairvoyanee rvhen \ turned out to be eaeh pos.sible

value. If we let uc be the value of clairvoyance, then
(u.lre; would be the designation for this eurve; it appe&rs
in lrig. 3. We observe that, sinee the conrpany has decided
to aecept the eontract, it will save nothing if the mystic
predicts tr ( \o and henee that aeceptanee is a good idea.
Horvever, if a niystic llredicts a ), that is Iarger than tro the
eonrl)any will change its decision from accepfancs to re-
jection and will save the loss of lbr), lcz which it would
have experieneed under aeceptance. Yet the mystic's pro-
nouneentents are not known in advanee: the best the
eompal)y ealr do is assign the probability distributiol
I I le I over what he rvill say. Therefore, the expected value
of clairvoyance (r.le ; is just (r,lre; weighted with re-
spect to {xls},

(u. lc) : I^-:o 
,^ (u.lre I I I ls ]

: 
"[:^.r^.tc,(r 

h)[lle ]

t. f-: 
'r,r J^_^.(^ 

tro) [llal. (4)

Equation (4) strtes that the expected value of clairvoyance
is the area under the product of the two curves in Figs. 2

and 3. It is clearly positive and possibly quite large if the
prior has much area beyond tro and the slope /cr is large.

The expeeted value of clairvoyance has a very important
interpretation in any decision problem. It is the maximum
amount that should be spent for any experimental pro-
grarn that attempts to provide information about the un-
certainty in the problem. Since nrost experinrents provide
much less information than clairvoy&nce, their experi-

<^rat'
Fig. 2. The prior on )r.

L

4""[r E
(I

1,
Y.2

BrL

Lo' Ikt

Fig. 3. The value of perfeet information.

T

mental eost should be considerably below (u"le) if they
are to be valuable.

ExpnnrMENTAL DrsrcN

The menagement of the company has now computed
(u.le) and learned the dollar value to be placed on its
uneertaint,y about tr. Suppose now that it decides to make
and test some of the devices to obtain a better estimate of
\. A typical test might be to place n devices in operation
and note their times of failure. Since the failure process is
Poisson, the number of devices placed on test n and the
sum of their times to failure r are the only statisties re-
quired to describe the outeome of the experiment. The
problem we pose is this: If c(n) is the cost of conducting
such as experiment of size n, what value of. n describes the
most profitable size of experiment for the company?

The Deeision Tree

To ansu'er this question let us consider the general struc-
ture of experimental decisions. First we select some test ?
from a set of tests. Then we observe a result R out of some
set of results for the test we selected. Next, based on the
result of the test, we take some action A from & set of
alternatives open to us in the decision problem. Finally,
Lhe problem has some outeome O from a set of outcomes
and we are now more or less happy with our selection of test
and aetion. This chronological sequenee of happenings is

best illustrated by a deeision tree like that shown in Fig. 4.
The erosses indieate actual decision points where a choice
ean be made by the decision maker. The dots represent
points where the path is selected by ehance, or nature.
At the tips of the tree we write (ul TRAos) the expected
profit for a particular test, result, action, and outeome
based on prior experience B. The problem for the decision
maker is to seleet the test ? and action .r4. that will ma:ri-
mize his expected profit in the face of the ehance moves
R and O made by nature.

The expected profit the decision maker will achieve is

(rlsl : SSSS blrntos) lrne,ole l, (s)
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where S it a, general summatitln operator over the set or

variable on which it operates. We c&n write (5) in the form

(ule1 : 
itrl'l;{nlre l;t \rna} :to',raAtl

blrn,e,os) (6)

The numbers {rls}, {nlre},[alrne ], and lolrn4e ] are

the probabilities to be assigned to the four branches in the

decision tree. Of course, l-f le I and [a lfne | &re at the

command of the decision m&ker. He will find it to his ad-

vantage to choose with certainty the test ? and action ,4',

given R and T that have the highest expected profit a

priori.

Equation (6) indicates the order of the procedure. First,

we ealculate lOlfnlS l , the probability that should be

assigned to each outcome when the test, its result, and the

decision maker's action &re known. In all noncompetitive

decision problems lOlf neel : lOlf ne| , since the out-

come is una^ffected by the action the decision maker takes.

We shall leave aside for the moment the question of how

to compute [Olrne f .

If we knew lOlf ntl *. could calculate

blrne6) : : lolrneel blrnt'os)

: : lolrnal (rlrneoq. (7)

Equation (6) then becomes

(uley : 
! lrlrl; tnlre l: { t'lrnt } (,1 rRAs>. (8)

Now the decision maker would choose lelf nA|, that is,

choose the action,{ for each test ? and result R that would

maximize his expected profit. We shall let blf n.e'*q be

the expected profit that results from a test ? and result R

when'n'T;;Til:ffi;ilR,{*6) 
(e)

If we knew the probability to assign tg each result of the

test T , lnlfe l , we coud find the expected profit from using

test T , blf l'*6), from

(uf re*e; : ! lrlrel (rlrnt'*6). (10)

Note that this expected Oi"Ot, &ssumes that the actions have

been assigned optimally to tests and results. Now the

decision maker chooses { f le } , namely, picks the test T

that ma:rimizes (rlf l'*6). He has then finally obtained

(ulel : (ulr*a *e1 (11)

the expected profit for the best choiee of test and the best

choice of action given the test and its result.

In describing this procedure, we have left unspe.cified

the method for calculating the probabilities { olrnt} and

{n I 
fe } . Wu find these probabilities by constructing a tree

we'call nature's tree for the decision problem. This tree

represents the steps that nature must take chronologically

OUTCOME TEST RESULT ACTION

(" lrn.ro 6)

lotill [, b e I {"1",6'} [^to'* eJ

Fig. 4. The decision tree.

TEST RESULT ACTION OUTCOME

(rlrne'o f,)

[,t s ] [.' , rl [errn 
E {otrnr E}

Fig. 5. Nature's tree.

as shown in FiS. 5. First nature mttst select an outcome O,

then the decision maker chooses & test T, next nature

specifies the result R of that test, and finally the decision

maker chooses his action A. The probabilities {OlS} are

assigned directly by the decision maker in accordanee with

his uncertainty about the outcome that nature will pro-

duce. The probabilities {nlOfe } specify the character-

istics of the test; they state the probability that should be

assigned to each possible test result when the outeome

is known. The decision maker again must specify these

probabilities directlY.

However, now we are in a position to evaluate the prob-

abilitie* lOlrnt| ate {Alre}. Firstwewrite

[nlre ] : S {nlora} {olre }. (12)

We use the fact that ir, ,rlr,.ompetitive decision problems

the outcome does not depend on the test selected,

{olre} : {ole}, (13)

to produce

[alre] : S {nlort} {ole}, (14)

and we have found tt . prlUabilitie* I R lfe I in ter*s of the

probability stmcture provided by the decision maker.

Next we compute [Olfne] from Bayes' theorem,

lolrnal :-W (r5)

where the denominator is found from (14) and the numera-

tor from the decision maker's probability assignments.

We have thus established a formalism that allows the

best test to be selected. To summarize, the decision maker

first assigns probabilities tOla| and lnlOfa| in nature's

tree. Then he uses (14) and (15) to express the probabilities

for the chance nodes in the decision tree in terms of these

specified probabilities. He places values blfn,l,OS) at

the tips of the tree in accordance with the economic

stntcture of the problem. Finally he proceeds backwards
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through the decision tree, takirrg expectations at chance

nodes and maximizing at decision nodes. The result is to
produce not only the best test plan and the expected profit
associated with using it, but also the rule to be used for
deciding what action to take when the result of the test
becomes known. Sequential testing plans and other more

sophisticated tests require only slight modifications of the
procedure.

Erperimental Design in the Reliability Problert,

We can apply the decision tree principles directly to the
reliability problem. The outeome distribution {Ole }in tnis
case is the continuous distribution { X le } . The test T is

specified by the number of devices n, placed on test. The

result B is the sum r of the times for all n devices to fail.
Thus { nlO T.sl : {,[xne] is tte probability distribution of
summed failure time r if n units are plaeed on test and the
failure rate is \. By convolution of the independent times

to failure we have
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The expected profits blf n,los) to write at the tip of
the tree in this case depend only on the outeome and the
test, not on the t,est result or alternative,

(rlra,tos) : (rlrot1 - (rlnre). (17)

Since c(n) is the eost of performing a test of si ze n we can

write

(rlrot! : (rloe; c(n)

where (ulfe)is the profit the company would expect if it
knew the outcome tr. The quantity (ulfel is just the
maximum of the accept and reject profit curves of Fig. 1.

We can now write all the probabilities for the decision

tree from (11) and (15) and carry out the expectation-
maximization proeedure to see which test T or sample size

n is best. It is quite eonceivable that the best experiment
is of size zero: no experiment should be performed.

Analysis ol Experimentnl Results

Suppose now that the experimental design has been

completed and that an experiment of size rls has been

chosen &s the optimum experiment. The experiment is

carried out and a summed failure time ro is observed.

What action should the eompany take? Although the

answer to this question is eontained in our discussion of the

decision tree, the actual fornr of the answer is instructive.
Irigure 6 shows how to eompute the company's new feelings

about \ as the result of the experiment. We first calculate

lnlOf tl : | ,ollnre I from (16). This is the probability of
the experimental result given the value of tr; we call it the

likelihood function. Next, according to (15),we multiply the
prior llle I Uv the likelihood function | ,oIrrrs f and divide

kz (rl "rT" e>
o=q

Fig. 6. Anslysis of experimental data.

the resulting curve by its area to norm alize it and produce

lOlf ntl : {xlnoroe }, the posterior on tr.
The experimental result (no, ,o) indicated by the likeli-

hood function in Fig. 6 corresponds to a rather high failure
rate. The effeet of eombining this likelihood function with
the prior distribution is to produce a posterior with most
of its &rea lying above tro _ lcr/kr. In partieular, the mean
of the posterior (r 

lnoroe ) is greater than tr0. Therefore
the result of this particular experiment is to cause the
company to change its mind about accepting the contract
and instead to reject it.

In general, the larger the experiment, the narrower will
be the likelihood function and consequently the posterior.
In the limit of an infinitely large experiment, the posterior
distribution becomes an impulse at the value of tr indicated
by the experiment. Note, horvever, that even in the other
extreme of no experiment, the decision struet,ure provides
a rational basis for decision in this problem.

CoNcl,usroN

We have only been able to sketch the generality that
decision theory brings to the analysis of decision problems.

There is virtually no limit to the potential application of
this theory at every level from power system operation to
voltage divider design. 'Wherever the system engineer

eneourlters decisions in the faee of uneertainty, he can
now errjoy the aid of a conceptually satisfying and prac-
tically powerful inferenee theory.
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PROXIMAL DECISION ANALYSIS*t

RONALD A. HO1YARD

Stanforil Uniuersity

This paper presents simplified techniques for anelyzing the effect of uncertainl,y
in large decision problems,

Starting with the development of approximate expressions for the moments of avalue lottery, we show that the probabilistie assessr;ents of jointly related random
variables necessery for these approximations are quite reasonable in number. The
concepts of risk av-ersion, certain equivalent, and exponential utility function thenpermit writing useful approximations for the certain equivalent of the value lottery.

Deterministic sensitivity analyses are described firsi fo. the case when the deii-
sion variables are fixed and then for the cage when they can be changed to compen-
sate for variatione in state variables. The approximateeffect and value of clairvoy-
ance (revelation of ultimate values of uncertain variables) is derived from the origin-alprobabilistic assessment and the regults of the deterministic sensitivity analysisl l4re
next determine the approximate value of wizardry (charrging uncertain variablee
into decision variables). The amount by which decision variab"lee must be adjusted
to account for risk avergion is established from earlier results.

- The final portion of the paper discusses a simple economic example that illustrates
the application of the development.

l. fntroduction

This paper presents simplified techniques for analyzing the effect of uncertainty in
large decision problems.

The difficulties of treating problems of this type are many. First, since the number of
uncertain variables is large, a logically complete solution would require that the de-
cision-maker assign a joint probability distritution over many variaLles-a task he is
hard-pressed to perform in all but the simplest cases. Second, Lven if we had the neces-
sary probability assignments' we would have to perform many expensive simulation
runs of the decision model to achieve stable results. As in any simulation, the insight
generated by the runs may not be commensur&te with their expense. Third, althorigh
the effect of risk aversion can be determined from these simulations, the'compui-a-
tional procedure is unlikely to make the effect clear. Fourth, the uncertainty in overall
outcome may be unbelievably large. An executive viewing the results may think:
"It couldn't come out that bad because r w-ould have done something aboutit.,, The
analysis does not generally take into account the ability to compensate for ultimate
state variable changes through adjustments in decision variables.

This paper discusses an approximate method of analyzing a large decision problem
that:

(1) Requires only a reasonable number of simple subjective assignments from the
decision-maker;

(2) Allows using deterministic sensitivity analysis to estimate the effect of uncer-
tainty and of risk aversion, and

(3) Permits estimating the effect and hence the value of making compensating
decision variable changes in the light of state variable changes.

'Received April 1970; revised December 1g70.

- .t-tt!s research was partially supported by the National Science Foundation under Grant
NSF-GK'fOI25 and by the Office of Naval Reeearch under Conrract ONR N0001442-A01124008.
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A simple example will illustrate application of the methodologl.

2. Notation

Throughout the paper we shall use inferential notation [2] defined as follows.

fReaders familiar with inferential notation can proceed to !3.]

Oru Vorifrln

If c is a random variable and I our state of knowledge, then we use lc I S| to repre-

sent the probability density function of c given the state of knowledge E. The mean of

o is denoted bv (c I 8) and defined bY

(2.r) (r ls; : [,r@lsl,

where we consider.f to be a general summation operator. 
'When no ambiguity about

state of can a,rise we m&y use f as an abbreviation for (r lS).The second

moment of r is then (c2 | s) and defined by

(2.2) (r'ls) : [.x'lrls] 
: F.

The variance of r is denoted by '(c I s) and defined as usual by

(2.3) "(ols): ((c - (rls))'ls): (c'ls) - (cls)'.

The varia.nce'(r I S) may be indicated by i when the state of inforuration is obvious,

(2.4) i:V-n'.

The standard deviation ol xr'(a I s), is, of course, given by

(2.5) '(cls) = "1cls)'/r.

Tuo Vorifrlas

If we are dgaling with two random va,riables u nd y, then their ioint probability

density function will be {r, y lS}.The conditional digtribution of a grven y would be

lr lySi. The mean of this distribution, the conditional mean of r given y, would be

(2.6) (clYs) : [-xfulYsl'

The covariance of c and y is gven tt. rvrllUof 
*'(r,yls); it is defined by

*"(r,y ls) : ((o - (r ls))(y - (y ls)) ls)(2'7) : @a ls) - (c lsXy ls) : *"(Y, z ls).

Where the state of information is clear we c&n write the covariance of c and y as

cov(r, y),

(2.8) cov(o, U) :4 - ng.

Note that

(2.9) cov (r, t) : i

and that when a is a constant

(2.10) cov (c, r) : 0.
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Seoeral Vorifrlcs

If we are dealing with several random variables aL r r, r . . . r a^, we ca,rr think of
them as a vector x and write their joint probability density function as {x ls}. The
vector of marginal means of the variables would then be (r ls),

(2.11) (x ls) : I .t. ls| : x.

We shall call r the centroid of the joint density function {x ls} because it establigheg
its center of mass in n-dimensional space. Any other notation can be developed by
analogr.

Erperisna

A very special state of information is the experienee available at the beginning of
the problem, a state we symbolize by 6. Any probability density function o" errp.ct"-
tion conditional only on 6 is allowed the adjective "prior.,, Thus {c le} is tne prlor
density function of a, " (r I e) is the prior varianen of. x, and (x I a) is the prior vector
of marginal means of x.

The inferential notation will be very helpful in keeping track of what we sre fattdng
about and how much we know about it.

3. The Decision Model

W'e envision a decision model like that shown in Figure 3.1 and discussed in refer-
ence[2].TheenvironmentisdescribedbyasetofiYstatevariablessrrsr,...,cr
denoted by the state vector e. The decision-maker has contrpl of M decision variobles
dr,&,...,dr,thedecisionvectord.Whenthevalues of s end d are apecified a
unique value u is produced,

(3.1) a : (o ledel - u(e, d).

Unfortunately, however, the state variables are uncertain. The prior knowledge
about them ie summarized as [s le]. Therefore, for any decision vector d the value
u will be uncertain and descdbed by {u I daf , the value lottery. This quantity is com-
puted from

(2.21
I"[u lde] : [u I eds] {" I sl,

where {u I sdS} is a unit impulse at a: u(a, d).

VALUE
v=(vlge)
v= v(9, ()

STATE
VARIABLES

s

d

DECISION VARIABLES

Frounp 3.1. The decision model
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The general problem we face is how to adjust the decision variables so that the dis-
tribution of u is "best" in some sense. We shall soon introduce the concept of risk
aversion to make the concept of "best" precise. If the number of variables were small
or the problem one of special structure we could readily derive the value lottery
analytically. If o(s, d) could be quickly evaluated by a computer, then simulation

would produce the value lottery very cheaply. However, it is far more common in
large decision analysis problems that a single evaluation of u(s, d) will cost a signifi-

cant amount of money. For example, evaluating a(s, d) may mean the deterministic
simulation of a power system over many years, or perhaps running some detailed
marketing model. In these cases of expensive u(s, d) evaluation we cannot a,fford

the luxury of simulation, and must develop new methods.

The apprcach we shall present should be view-ed in the eontext of expensive u(s, d)
evaluation. However, we shall find that it has side benefits in terms of probability
assignment and of insight.

4. An Expansion

Let us perform a Taylor series expansion of u(s, d) about the centroid 6. Rejecting

terms of higher than second degree, we have

(4.1) u(s,d) = u(s,d) * I;*4[(r, - s,) * * I,,i#[(s; - sr)(si - s,').

If we take the expectation of this equation with respect to {s I s} and recall that the
expectation of the difference between a variable and its expectation is zero, we have

(4.2)

(r(., d) I ds) : (u I da) = u(8, d) + + I,,, -f?-l
' asrasih

(s, s,) (si si)

This equation shows that the mean of the value lottery is approximated by the value
at the centroid plus a correction factor involving the covariance. Since the expansion

in Equation (4.1) would be exact for a quadratic surface, the result of Equation (4.2)
is also exact for a quadratic surface and a good approximation if the surface is almost
quadratic.

If we square Equation (a.l) and retain only terms through second degree, we have

= uG,d) + tI, ,,#,1-.o,, (sc, si).

uz(s,d) N uz(s, a; + I, ,thlr(r, sr) #rlr,r, s,)

+ u(5, d) I,,r #1" 
(q - sr)(sr - s,').

By taking the expectation of this equation with respect to {e I Sf we obtain an approxi-
mation for the second moment of the value lottery,

(,,lds) x,,(.d) * I,,,#[#[."v (s;, si)

G.*1

+ u(8, d) I,,, #[cov 
(si, si).

(4.3 )
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since Equation (4.3) is exact only for a planar surface u(s, d), this expansion is also
exact only in that circumstance.

The variance of the value lottery " (u I de) may now be appnrximated by combin-
ing the results of Equations (4.2) and, (4.4),

"(alde) : qr,lds) - (ulde),

(4'5) 
E r'''3:lr#l-*v (si 

' 
si)'

where we have dropped the term in the square of the covariance. Equation (4.8)
will be exact only if the surface is planar. While this might seem to be an importani
limitation, the alternative of extending the variance approximation to be exact for
the quadratic case is not attractive because it requires assignment of third and fourth
order covariances like

(si si) (sr sr)

and

(sr - si)(si - si)(sr - sr)(sr - sr),

a difficult task for a,nyone no matter how great his experience in the environment of
the problem.

It might seem that persuading decision-makers to assign the covariances needed
in Equations (4.2) and' (4.5) for the mean and variance would be a formidable task
in itself. Elowever, it is not too difficult. W'e recall

(4.6) cov (si, sj) : slg - s;S1 .

once we have the decision-maker assign all the marginal distributions {erle;, i:
lr 2, . .. , trfl, r-e can compute the marginal mearn sr from

(4.7) S:(eile): I sdlsdls].
J ad

To find the covariance, we still need the expectation of the product, sdsi. To obtain
it we write

(4.8) s,.q : (sis;ls) : l, (s;sllsre) {srle} : /- r,{rrlsre) {srla},

which shows us how to compute the expectation of the product s;si fiom the prior
{sr I e} and the conditional expectation (s; I srs). Thus all we have to do is *k tn.
decision-maker to draw a picture of how the mean of state variable sl depends upon
the value of state variable si. Furthermore, since the covariance is symmetric in s;
and si and since cov (s;, fi) : J;, & euantity computable from {s, I gl, we onry need
the conditional means (s; I srs) for x ( i. when there are .lf state variables, tuis witt
require that the decision-maker draw lfy(if - 1) conditional mean pictures. Since
he has already drawn .lV priors on the state variables, we are requiring a total of
*lV(fV * l) graphical contributions from him. In a ten-state varialle pioblem, this
would mean 55 inputs. However, in any well-formulated problem, most of the state
variables will be independent, and so the amount of efrort required of the decision-
maker would be considerably reduced. The important thing is 1o see just how much
return he achieves on his effort.
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5. nisk Aversion

AB it is well known that most decision-mekers, individual or organizational, are

not willing to make decisions on the basis of expected values, it is important to have a

plarce in our methodology for risk aversion. In this section we shall develop the nota-

tion and terminolory necessa,ry for the treatment of risk preference.

If an individual subscribes to certain preference a,:rioms, then his preferences can be

encoded in tprrrs of a utility function on value that we shall denote bV (z lu6). The

incorporation of 6 in the notation makes clear the subiective nature of the evaluation;

when this is not necessar5r, the simpler representation z(u) can be used. If the indi-

vidual is faced with a lottery Z that will produce a value u then the expected utility
for the lottery is computed from

I"
(s.t ) ("lLs> : (u lus) {u l.Le).

If faced with a choice among lotteries, he will select the one with highest utility. In
our model the decision vector d deterurines the value lottery; therefore the utility of a

particular vector can be derived from

(5.2) (u lde) : l,<ulue) {u I de}.

The best decision vector is then the one that generates the highest utility.

Certoin E$rhnlant

An important concept in our work is that of the "certain equivalent" of a lottery.

The certain equivalent of a lottery L orr a described bV { u I Z6f is denoted by -(o I Ze)

and is the value of u that has the same utility as the lottery:

(5.3) (ula : -(u lLs), s) : (u lLs).

In the decision model the choice of a vector d would produce some certsin equivalent

-(0 
1 dS) defined by substituting d for Z in this equation. Since the utility cun e is

monotonically increasing in u, the decision vector that maximi"es utility will maxi-

mize certain equivalent, a.nd vice versa. Therefore we can formulate our problem just

as well by seying that we seek the setting of the decision vector that wiU produce the

value lottery having highest certain equivalent.

Apprmimation

A Sood approximation to the certain equivalent is obtained from the mean and

variance of a lottery using the following eqgation [31.

(5.4) -(all,al = (u lLe) - lr((,lLs))'(u lIs),
where r(u) is called the risk aversion coefficient and is defined by

(5.5) r(a) : -uo 1a11u'1a1,

the negetive ratio of second to first derivatives of the utility curve. Note that the

epproximation requires evaluating the risk aversion coefficient at the mean of the

lottery.
The difrerence,

(5.6) (u l Zs) - -(u l Lal x *r((a l Zs))'(u l Ze),

ie called the risk premium. Anothei quantity of note is the reciprocal of the risk aver-

sion coefficient; it is called the risk tolerance and given the symbol p(u),

(5.7) p@) : r/rQ).
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Eryonmtinl Utikty

Suppose that the decision-maker will receive an amount A to augment the outcome
of the lottery la I Lal regardless of the value of the outcome. This creates a new lottery
{u * A lZe}. Some decision-makerg feel that their certain equivalent for the new
lottery should be just A greater than their certain equivalent for the original lottery,

(5.8) -(u * a lze; : -(u lZs) + a.

We say that such decision-makerc satisfy the "delta property." It can be shown that
adoption of the delta property severely limits the choice of utility function to either
a straight line (and thus implies expected value decision-making) or to an exponen-
tial [4],

(5.9) (z I uS) ^ e-'n.

If we normalize to the form

(5.10) (z lre) : u(a) : (l - e-")/(l - a-'),

then the straight line is included as the limiting case where ? : 0. Furthermore, this
expression has the useful pncperties that z(0) :0, z(l) : l.

By applying Equation (5.5) we see that the risk aversion coefficient for such a
utility curve is 7, independent of u. The approximation of Equation (b.4) then be-

comeE

(5.11) -Q I La) x (u I Le) - tn'(u I re)

for the exponential case. The approximation is good if

(5.12) "(u l.Le) (1t/12,

(5.13) 'Q I Lel (1 t/1;

that is, when the standard deviation of the lottery is small compared to the risk toler-
ance. F\rrthermore, the approximation is exact when {u IIS} is a normal distribution
regardless of the variance (Appendix A).

We shall use the exponential utility cun e in our developments not because the
delta property is always persuasive, but because the exponential will fit adequately
almost any reasonable utility cuwe in the region of interest. We must add the qualify-
ing word "reasonable" because it is easy to construct a hypothetical utility function
that fits the axioms and yet has a most unusual ohape, for example, one that looks
like the crcsE-section of a staircase.

However, the utility functions assessed by actual decision-makers seldom have this
pnrperty [5]. They are usually smooth functions that are concave downward and repre-
sentable by an exponential at least over a limited range of monetary outeomes.

Where this is not possible, the utility function can still be bounded by exponential
utility functions having risk aversion coefficients that are the maximum and minimum
values of risk aversion coefficient assumed by the actual utility function over the same

range. The certain equivalents developed for these exponential utility functions will
bound the certain equivalent for the actual utility functions over this ranse [31.

Risk Awrsion in tlw Decistm Mdal

We are now at a point where we can introduce risk avercion into the decision model.
If risk aversion is described by an exponential utility cunre with risk aversion coefr-
cient 7, then Equation (5.11) shows that the certain equivalent volue produced by
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the decision model will be grven by the approximate equation

(5.14) -(u 
J de) = (u I ds) - lr'(u I de).

In view of Equations (4.2) and (4.5) for the approximate mean and variance of value
in the decision model, n'e c&n write the further approximate equation

-(u 
I da) n: (u lde) - |7'(u lde)

(5.18) = u(8, d) + t I,,,**+l-cov (&, s.i) - *rE,,, *[3lrl,

nr u(3, d) + + 8,,,[#l- - , *;#,lJ "", ;,,"';,t:" 
"'

Note that the certain equivalent is approximated by the value at the centroid plus

I the sum of the covariances weighted by a factor representing the difference between

the effect 6f nenlinssrity on the mean and the efrect of risk aversion. If all state veri-
ables were independent, this expression would reduce to

(5.16) -(,lae) 
= u(8, d) + l E [*&L-, (**,0],,

In most practical problems maximization of the apprcximate certain equivalent of
Equation (5.15) will serve as well a.s maximizing the exact certain equivalent, and
will be considerably easier.

6. Deterministic Seneitivity{)pen Loop

An important question is how are the derivatives necessery in these expressions to
be computed. Of courte, we shall have to assume that the surface is reasonably be-

haved if all the derivatives a,re to exist. Suppose that the decision and etate variables
have been set to some values, 

0s 
a,nd 

od 
and that we increment them by amounts Ar

and Ad; that is,

(6.1) 
8i:o8d*Aci' i:l'2'"''il'
d, : oil, { AiL, lc : lr2, ... , M.

The value u will then be the value at the original setting, 
0u, plus some increment

Au. By Taylor series orpansion through squared terms we can relate the increase in
a, Ao, to the elemeats of Ae and Ad by the equation

Au : Ei * o" * * x,,i ,r*4 or,or, *
^2da

AdrAd^
I* #rud,*+ * I*,-(0.21 Ld,*Ld,^ +

^2C,A
* 

dsrdd*
I,, AsiAdr, [(0", 

od)].

The notatioo [(0", h)] at the right me&ns that all derivatives in this equation are

evaluatpd at (0e, h), the original operating point. Therefore to evaluate derivatives
at that point, all we have to do is observe in the model the Au that results fipm certain
combinations of small increments As and Ad, substitute the results into Equation
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(6.2) and solve for the derivatives. For example, if all but As; are set equal to zero,
we have

(o.B) o, : # as, * lfo iar,)', [(0", 
od)].

By giving Asi a positive and a negative increment, the equation can be solved for
the first aad second derivatives of u with respect to s; at 0s;.

Similarly, if all but one decision variable increment A d* is set ta zero then Equation
(6.2) becomes

(6.4) au : lL Ad,. r- + !! t' : frr4^ilr, 
* i;dr, @rt)', [(n",od)],

and the same procedure can be used. Now if tlo increments As6 and As; are the only
nonzero increments, Equation (6.2) shonn that in addition to terms in derivatives
already evaluated there will appear & ne\y term in Ozuf ls;Osi. The measured value of
Au at this point will then provide just the information required to evaluate 02u/0sfis; .

Similar procedures apply to estimating dzaf adhAd^ and, 02af 0s;0d4.

Computing the derivatives necessary for the approximations is a simple matter if
we have a convenient means of evaluating the decision model. Appendix B describes
the procedure in more detail.

Now suppose we use the centroid values S for 
0s 

and that we adjust the decision vec-
tor d until a(3, d) is a maximum. This would be accomplished by increasing d.r when-
ever 0tt/0d* was positive, and vice versa. The resulting optimizing decision vector
d we designate as d*,

(0.S1 d* : Maxo-l u(3, d).

At the maximum,

(6.6) ilaf Adr : g, lc : L,2, ... , M, [(3, d*)].

If we set all state variables to their mean values and determined the effect on Au of
changing one decision variable dr , rve would obtain a curye like that shown in Figure

Av

dil
Adr

Frounp 6.1. Deterministic sensitivity to decision variable d*
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6.1; it would represent a standard deterministic sensitivity analysis on a decision vari-

able. This oune is the one approximated by Equation (6.4).

If we set all incremental state variables but Aei ta zero, maintained d : d', and

tihen explored the Au that would rezult from various maguitudes of Ar;, we would

generate a curye like that shown in Flgure 6.2. This cun'e is the one epproximated in

Equation (6.3), and is the typicel deterministic sensitivity analysis to one state

variable performed in a decision problem.

Note that its curvature showB the efrect of uncertainty in Aer upon the expected

value of u. Taking the expectation of Equation (6.3) yields

(6.7)

If the curye is concave upward the expectcd value will be increased by the unoer-

tainty; if concave downward, decreased. Of coune, taking the expectation of Equa-

tion (6.2) with Ad : 0 shows the general efiect of uncertainty in the etate va,riables

upon the mean

(0.8) Iil : * >,,, fta;a* : | f,r,i #r*" (ei, er), [(3, d')1,

in accordance with Equation (4.2).

We can think of these deterministic sensitivity analyaes as representing what the

decision-maker would pay (or ask to be paid) to have the state and decision va,riables

depart from their nonns B and d* if there were no uncertainty in the stste vadableE.

Eowever, we realize that if the stet€ variables should be known to be difrerpnt from

tiheir means, then the setting d+ may no longer be optimum. Since we do not allow

such compensating changes in d we csll this sensitivity analysis "open loop" in con'

trol theory t,eminologr.

Av

a, : +*, (a,,)': *
^!

3 sr, [(8, d*)].
d8;'

As

E1

Frounp 6.2. Determinietic Bensitivity to state variable 8;

854



PROXTMAL DECISTON ANALYSIS

7. Deterministic Sensitivity-{losed Loop

Suppose that when state variables are found to depart from their expeetations, the
decision variables can be adjusted in light of the chaoge; we call this ,,closed loop,,
sensitivity analysis. The first question is: How should the decision variables be changed
in response to a change As : s - B in the state variables?

If we consider the surface appnoximated by Equation (6.2), we would like to maxi-
mize Au with respect to Ad when As is fixed. TVe do this by difrerentiating Equation
(6.2) with respect to dr and setting the result to zem. We discard aU terms of greater
than second degree and obtain,

(7.r) #,: o : I, #L*or, + fru,, [(8, d*)1.

or

(7.4)

Thus,

(2.2) 
^d,L 

: -(d*r)x,u$*or,, k: t,2,...,N, [(8, d.)].

The adjustment in the decision variable dr is the negative sum of the increments Aor
weighted by the cross derivative between s; end dr and divided by the second deriva-
tive of u with respect to dr . Note that we have already evaluated all these dedv-
atives in the open loop sensitivity analysis.

We can now substitute the changes in decision variables shown in Equation (2.2)
and Equation (6.2) to determine the net efrect of the state variable changes. W; re-
call that 0u/0iL lac. : 0 and find

au : Ii fi ar, * l X,,, **!-AsiAsi *

(z.B) rr.,- -!^(- d*x,##o,,)(- #*E,#.*)*
x,,. # o" (- d-oot, 6,ft ^,) r(6,d.)r

Lu: I,* or, + I I,,,

+*I., o|a/odrad^ s Oza O2aLi'' 
asrad.' asrtd^

^tcta

Asdas,
As;Asi

*r^l

Open
loop
Sensi-
tivity

Effect
of
Com-

CLOSED
LOOP

SENSI-
TTVITY

I, I, As;Aei, azu f os;od*

'h o\/w
^2cta

Asr.adl
pen88-

tion

[(3, d')].
This equation showB that the closed loop senritivity is composed of terms rrepre-

senting the open loop sensitivity to state variables plus tcrms that show the efiect
of compensation. Since we have already computed all the derivatives necessarlr h this
equation, it is a simple matter to provide insight on the efiect of compensation.

Because F,quation (7.4) is complex, it may be helpful to wtit€ it for the caso where
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there is only one state variable s and one decision variable d,

(azu / asod,)' (As)', [(8, d)]
02u ad2

(7.5) Open Loop

Sensitivity

CLOSED LOOP SENSITIVITY

Note that there will be an efiect of compensation only when d2u/dsAd *0, that is,

when there is a dependence of u on joint values of s and d.

lVhen decision variables can be compensated for changes in state variables, the

expected efrect on the mean value due to uncertainty in the state variables is eomputed

by taking the expectation of Equation (7.4),

E, : *|,r,, licov (s; , s;)
d8;dS;

1z.o) ++I ozafod'fid'^ s a" a'u
i,^ 

76z4i4rzy6zrJ66^1E''' #r*rffi"o" (s; 
' 
s;)

- I,* WEt#N!-rcov 
(si,si), [(B,d*)]'

8. Clairvoyance

We are now ready to discuss the value of clairvoyance. Clairvoyance is the oppor-

tunity to have revealed the actual values of the state variables that will appear in the

problem. The practical impossibility of clairvoyance in most problems does not pre-

clude its usefulness as a concept in evaluating information-gathering alternatives.

Clairvoyance has economic value only when it might change the decisions to be

made; otherwise it merely satisfies curiosity. Its value lies in the difference between

the value that can be attained with it and without it. For example, a decision-maker

who makes decisions on the basis of expected value (t = 0) would measure the value

of clainroyance by the increase in expected value that it brings. Equation (7.6) shows

the expected increment in value that will result if the decision variables can be opti-

mized after the state variables are observed. Equation (6.8) shows the increment in

expected value due to uncertainty when clairvoyance is not available. The difference

is the expected value of clairvoyance on the state vector e, written (u,. I s),

(r".le) : + I..- --= 
7:'./=!q!!T=. 

.- d2u 02u

(8.r) i,''^6uffiffi@2"''ffi*?*cov (ei's'')

- /Ji,h' #E,#!***cov 
(si , si), [(8, d*)]'

Recall, once again, that we have measured all the derivatives necessary to evaluate

this expression. A succinct description of the expected value of clairvoyance is that it
is the expected effect of compensation.

An important specialization occurs if all decision variables are independent,

o\fod*od^: o,lc * m,

(8.2) (r,.le): - * E,#dEEr,,#,#*(si,ai), [(3,d*)].

If, in addition, all state va,riablCI are uncorrelated, cov (si , ei) - 0, i * j, then

(8.3) (r..le) : - + Erfi--Juar,r,(nFJn,, [(3, d*)].

Effect of
Compensation

856



PROXIMAL DECTSION ANALYSIS

Finally, if there is only one state variable s and one decision variable d, we have

(8.4) (u,. le) : - ,(o'!laso!)'z n. t(s. d*)1.
02a/0fl2 

o' r'\o' w ,,r'

This last form is particularly easy to interpret. The quantity (02a/0s0it)' is, of
course, nonnegative as is the variance 5. Since A'a/ad2 will be negative a{r we can see

fircm Figure 6.1, the expected value of clairvoyance cannot be negative. It $,ill be 0
if 5 is 0 and hence there is no uncertainty in the state variable s, or if dza/Os1il is 0
because the state and decision variables are independent.

If the decision-maker has a risk sensitive exponential utility curve (7 I 0), then
the value of clairvoyance to him will be the increase in certain equivalent that he can
achieve as a result of the clairvoyance. Since the clairvoyance does not, to a first
approximation, change the variance of the value lottery, we see from Equation (8.4)
that the value of clairvoyance to the risk sensitive decision-maker is substantially
the same as that given by Equation (8.1) for the risk indifferent deeision-maker.

9. Wizardry

A wizard is another construction: an individual who will set any or all state variables
to any values we like. fn essence, he makes decision variables out of state variables. A
wizard is different from a clairvoyant because he eliminates uncertainty, rather than
simply resolving it in advance.

The most direct way to evaluate wizardy is just to make the state variables on which
the wizard will operate into decision variables and then see what increase in value
would result if the settings are changed. The results of the deterministic sensitivity
analysis are usually quite helpful here.

Suppose that we have the opportunity tohave one state variable, s&y s,, set toany
value we like by the wizard. on an open loop basis where we cannot change the de-
cision, the effect on the value will be that illustrated in Figure 6.2.

However, knowing si in advance rvill also a.frect the certain equivalent through the
corrections of nonlinearity and risk aversion. The reason is that the uncertainty in
variable s, has been removed, and so all covariances with this variable must be equal
to zero. Suppose we write the combined term for nonlinearity and risk aversion in the
form

(9.1) I,r,i lri cov (s; , s;),

where as we see from Equation (5.f5)

(9.2) ' f a'oI;i: ilar,ar, - r#fJ, [(s,d*)].

Since cov (si, s,) = 0 for i I r, we can write the new correction terrr as

(9.3) Er,ify cov (s;, si)(l - 6o)(l - 6ri)

where 6;; : I if ; = j and zero otherwise. Then the new correction term will be

|,r,ilu cov (s;, si)(l - 6*)(l - 6r)

(e4) : 
I'i:;,:S,;];,,?H,li;;;ll:si)0i,6*

: E;,i lri cov (si, si) - 2 Ei f,i cov (s,, sr.) *.f-$,.
Therefore the reduction in the effects of nonlinearity and risk aversion due to wizardry

857



RONALD A. EOWARD

about o, will be

(9.S1 2 Ei !,i cov (e, , sr) - .f-J',

and if a, is uncorrelated with all other state variables, just /J' . Thus from this cal-

culation and the deterministic open.loop sensitivity we can obtain an exeellent idea

of the efrect of wizardry on any state variable.

Similar considerations apply if we are allowed to change the decision variables to

take advantage of wizardry. The direct efrect on value will be given by the closed

loop sensitivity of Equation (7.4). However, the efrect on the contributions of non-

linearity and risk aversion must &l8o be considered. ThiE is done by including in fi;
not only the terms in Equation (9.2), but also those new terms appearing in F,qua'

tion (7.6). Thue

fri: +

(9.6)

f oza aa dul
l--a4 I

Lasrdei ' as, dsiJ

rlS+ e , , ozaf ad*ad^ oza oza t.
' 2 LrE'^ 

(ozaf 0d*2) (dzu/ild-z) dsr0d* d&dd- HL
azu f Os;odr, Oza

W os,adr'

Equations (9.a) and (9.5) then apply directlv.

10. Correction of l)ecision Yariables for RisL Avereion and Nonlinearity

Up to this time our setting of the decision vector has been the vector d : d* that

maximizes u(e, d), as indicated in Equation (6.5). Ilowever, it is very poesible that

the aetting to maximize certain equivalent will not be the same aa d*. Let dr* be the

setting of d that maximizes the certain equivalent -(u I de),

(10.1) d** - Max;'-(, I ds).

the question we now ask is how to find a vector A dt such that

(10.2) d*r=d*+ad*.

fn otrher words, how can we correct the decision vector that, morimizes u(3, d) to
produce a vector that will maximize -(u I dS)?

Equation (5.15) sholys the relationship between -(u I ds) and u(3, d). writing 0

for -(u I dG) we have

(103) 0 - u(3,d) + l E,,r#rcov (ei,si) - lr 8,,, **,cov 
(&,si).

Nor,li.earity Efrect Risk Premium

When d : di* we shall have

(10.4) ilfii/ilil*|u..:0, k:1,2r "'.,M,

or fiom Equation ( 10.3),

( 10.5)

o : 
#1u.. 

: # lo.. 
* * E,,, *;s;-* cov (oi , ei)

- h E,.i, #,fi "o., 
(si , si).
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( 10.6)

( 10.7 )

where we know lhat ilu/ililr la.. : 0 because d* is the deeision vector that maxi-
mizes u. When we substitute this result into Equation (10.5) we find

0ul

ffilu.. 
: 

#rlu. * ^dI *1,.

o : 
^dI *l^.+ t I,,,e$7-* cov (sc, sr)

PROXIMAL DECI$ION ANALYSIS

DEMAND
CURVE
q (P)

C TOTAL

p, PRICE q, OUANTITY

c(gl

If we assume that all higher order derivatives are equal at d+ and d** we have

(10.s) 
td1 : #,[* t,, ,#h-cov (si, si)

- r 8,, ,#,fr.o, (s, , ri)] , [(8, d*)].

This equation shows how the decision vector must be adjusted to take into account
nonlinearity and risk aversion. The correction for nonlinearity involves teims of the
form d3u/ds.dsf il, , derivatives that we have not previously measured. Ilowever, in
practice this conection is usually so small that it may be neglected. We include it
only for logical completeness.

The adjustment in decision vector is thus mainly due to risk aversion and is given by

(10.g) td1 :7 r. . @zu/oa;ad)'(u/as) 
cov (si,si), [(;, a*;1.r-tr, t 

---g/[f,j-
Since all derivatives in this expression are evaluated at the point (3, d*), they have
previously been computed. Note that the magnitude of the conection is proportional
to the risk averrion coefficient.

ll. An Example-The Entrepreneur'E Problem

To illustrate the concepts we have developed, let us apply them to the problem of an
entrepreneur trying to decide on a price for his product. The problem is described pic-
torially in Flgure ll.l. When the entrepreneur selects a price he determines a quantity
g that he will sell from the demand curve g(p). This quantity q will have a cost of

q

OUANTIT

0

zlp) =pg-cq(p)

Frounn ll.l. A pictorial repreBentation of the entrepreneur'B problem

859



BONALD A. EOWARD

manufacture c given by the total coet curve c(g). The entrepreneur's profit r will
then be the difrerence between his revenue pg and his cost c or

(11.1) t(p) : w@) - c(q(p)).

The entrepreneur desires to fiDd the price p that wiU maximize this prcfit.
This pmblem would be very simple if the demand curve and total cost curve were

known with certainty, but that is seldom the case. We shall asEuma that the quantity
q(p) determined fiom the demand sun e is only a nominal value and that the actual
quantrty sold wil be q(p) * Aq, where & is a random variable. Furthermore, pro
ducing this quantity q(p) * Aq wil not cost c(q(p) + AC), but rather

c(c@)*Aq)*Ac,
where Ac is another random variable. This modification of the problem appears dia-
grammatically as Figure 11.2. Note that the profit as a function of S, Lc, and p is now

(11.2) r(aq, ac, p) : plq@) + &1 - c(q(p) + &) - ac.

We assume further that the mndom va.riables & and Ac are independent,

(11.3) lLq, ac I sl : {aq I s}{ac I sl

aud that their prior me&ns are both equal to zero,

(11.4) (aq I s) - (Ac I e) : o.

Fundiotul Fmns

Our primary goal is to determine the efrect of these uncertainties upon the solution
of the problem. However, to pursue this goal we shsll firgt have to solve the nominal
problem originally posd. We must therefore become specific both with respect to
functionol forurs and numerical values. We shsll imagine that the product is an ex-
pensive one like a commercial air trunsport. We shall think of the quantity in units
and the monetary amounts in millions of dollars.

Ac

PROFIT

zr(AqrAc, p)

=p[q(p)+aqJ

- c (q (p)+Aq)

-Ac
Aq

PRICE
p

Frounp 11.2. Uncertain perturbations in the entnepneneur'E problem

) +Acc (q (P)+

QUANTITY

+

c(q(p)+Aq)

q(p) +Aq

pIq(p)+aqJ

COST

+
c(o)

q(p) REVENUE

q (')

+
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QUANTITY,
q (p)

20

p, PRICE

Frounp 11.3. The demand curve

Demand. For the demand curve we shall choose the functional filrm

(11.5) q(p):|tr".-topl, o,-pSa,

with the constants gven by a : 50, I : l/80. This function is plotted in Figure
11.3. We observe that the quantity falls monotonically with price and that none
will be sold when the price reaches 50. For future reference, the derivatives of the
demand curye &re

(11.6) q'(p): -l/Fp, q"(p): t/pp'.

Of course, we c&n also solve for the price as a function of the quantity

(11.7) p(q):oe4o, 0Sg,

to show that the selling price is an exponentially decreasing function of the quantity
eold. The. derivative in this form is

(11.S) p'(q) : -ope4' : -gp(q).

The function p(q) is tabulated in Table 11.1 along with several other functions that
we shall define.
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TABLE 1I.1

Eaalrntion of Certoin Functiona in thc Entrepreneut's Problem

80.00

M.l2
38.94

34 .37

30.33

%.76
8.62
n.u
18.40

16.E
14 .33

L2.U
l[.16
g.g5

8.60
7 .67

6.n

Quratity e Pricc p(e) Rwcoue r(g) Marginal
Revenue /(g)

Mgrginal
C,ort C (g)

Total Cost
c(e)

Pro6t r(c) Margiual
Pro6t r'(q)

n,n
21.47

15. 17

10 .01

5.92
2.67

0

-2.04
-3.58

0

t0
n
30

n
50

00

70

m
90

100

u0
tn
uIO

1()
150

160

0

ul.2
778 .8

1031.0

1213.0

13i18.0

r4r7 .2
1458 . g

1471 .6
14S0 .7

1432.5

1390 .4

1338 .6
lng.g
1216.6

1149 . g

1082.4

50.00
38.60

-4.74
-5.&3
-6.15
- 6.57

-6.74
- 6.84

700.0

812.5

911.9

1000.5

1090.3

1152 . 
g

1219.5

1281 .4

1339 .2

1393.9

1445.9

1495.7

t5/3-.7
1590 .3

1635.7

1680.0

t723.7

12.m
10.65

9.36

8.39

7.W
6.94
6.41
5.97

5.62

5.32

5.09
4.90
4.73
4.50

4.49
4.40

4.33

- 700 .0

-37r.3
- 1&3.1

m.5
132.7

185.2

rw.7
177 .4

t32.4
66.9

- 13.4

- 105.3

- 205. 1

- 310 .4

-419.1
-530.2
- 641 .3

38.00
29.05

19 .84

13.09

7.59

3.07

-0.49
-3.40
-5.62
-7.36
-8.66
-9.63

- r0.26

- 10 .74

- 11.06

- 11.14

- 11 .17

Raoenw. The revenue r(q) associatd with selling q is just

(11.9) 
"(q) 

: Wk) : 61qrn',

with derivative

(ll.lo) ''(q) 
: Pk) t w'k)

= p(q)[ - tul.

The revenue function is plotted in Figure 11.4.

Coel. f,'or the total cost function we arsume the form

(l1.ll) c(q) : &o * Icrg + ftr(l - orp (-eU))

with constents

(ll.l2) &o : 7fl), kr = 4, Icr = 4(X), &r - #.
The plot of this function in Flgure U.4 ehows that total costo are continually in-
creasing, as we would expect. The marginal cost

(11.13) i(il : h* 7"76exp (-ts)

approaches lcr - 4 as the quantity becomes large. The second derivative

(ll.l4) tQ) : -lcrk: exp (-&*)

ehowB that the marginal cost iB always decneasing.

Profit. Once the nevenue and coet at a given quantity are knowa, the profit at that
quantity is iust the difrerence

(11.15) 
'(s) 

: r(q) - c(s),

a difrerenoe plotted in tr'igure 11.5. We see that a maximum profit of lg8 will occur

when the quantity sold is 58.5. The venture oppears to be profitable for s&les between

about 28 and 97.
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Frounr 11.4. Revenue and total cogt curveg

We gain more insight into the solution by considering marginal quantities. By
differentiating Equation (11.15) we have

(11.16) *'(q) : r'(q) - c'(q),

where all three terms appear as curves in Figure 11.6. The maximum pncfit occure
when the marginal profit is zem; namely, &t 0 : 88.5. This point is also tie one where
marginal revenue and marginal cost curyes intersect, because we wish to increase
sales until the increase in revenue from selling the unit is just equal to the inerease in
the cost of making it. The curve p(g), the demand curve in alternate form, shows that
the price at which the optimum quantity will be sold is 24.1.

An important qua^ntity to a businessman is his margin m, the difierence between
the selling price and the marginal cost,

(ll.l7) m(q) : p(q) - c'(q).

We see that at the optimum quantity, the margin will be 17.6. Our Iater analysis will
show why margin is important to businessmen although it has not traditionally been
important to economists.

Since price p is the entrepreneur's decision variable, it is appropriate to show how
profit depends directly on price as indicated in Equation (ll.l). This function i(p)
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Frounp 11.5. Profit

is plotted in Ftgure 11.7. We verify that the maximum prcfit of 198 is achieved at a
price of 24.1 and furthermore find that prices between about 15 and 35 will lead to

positive profits. Note, however, that profit is very sensitive to price when the price

difrers from 2{.1 by even a few perrent.

Detnminhtin Sensitfutty4pen Loop

We have now established that in the absence of uncertainty, the price should be

set at p : p* : ZL.I, the quantity will be given by q : q* : 58.5, and the profit

\rill be r : t*: 198. The question now arises as to how uncertainty in the state

variables and changes in the decision variable p could a,frect the result. We define

Lp : p - p. and recall that AC and Ac are in fact the state variables in the pmblem.

Then in view of Equation (11.2) we can write

,r.rg) 
t(Lq' tc' tP)

: [p* + Apllq(3** Ap) + &1 - c(q(p* * Ap) * Aq) - Ac.
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Frounp 11.6. Marginal quantitiea

This equation shows how the profit depends on changes in all variables with respect
to the centroid; it therefore forms the basis for deterministic sensitivity analysis.
If we define Ar : t - r*,

Ar(Aq, Ac, Ap) : o(Aq, Ac, Ap) - *(&: 0, Ac : 0, Ap : 0)

(11.19) : [p*+ Apllq(w*+ Ap) *aq] - c(q(p* *ap)* aq)

- Ac - p*q(p*) t c(q(p*)),

we c&n examine changes in profit due to changes in the variables. We could,, of courge,
evaluate the sensitivity by computation, but direct analytical evaluation wiU be
easier here because of the simple functional forms we have chosen.

Smsitittily tn aq. To find sensitivity to Ag given that Ac and Ap are zero, we write

Ar(Aq,O,0) : Ar(Aq)

(11.20) :p*lq(p*) * aql -t(q(pl) *aq) -p*q(p*) -c(c@*))
: p*aq - c(q(p*) * aq) * c(q(p*)).

4

30

20

t7.6

MA
m(q)

q
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Fraunn 11.7. Profit &s a function of price

Expansion in linear and squared terms in Aq then shows

(1r.2r) ar(aq) = Hl^-, 
ac * * ffil^.* ,o0,,

: \p' - "'(q(p*))laq 
t * \-i (q(p*))l (as)',

and insertion of numerical valueg pnoduces

(t1.22) M(4): 17.58 & + 0.0219 (&)'.

Notice that the coefficient of the linear term is just the margin at the optimum point.

Figure ll.8 shows graphically the efrect of unanticipated changes in quantity sold.

The curve is slightly oonvsx upwa,nd although the cuwature is not too apparent. We

note, for exa,mple, that an increase of 10 units in the quantity sold will increase profits

by 178.3, almost doubling them, while a decrease by l0 units will reduce profits by

173.3.

Sms;1ittily to Ac. Sensitivity to Ac is readily apparent when we use Equation (11.19)

(11.23) Ar(0, Ac,O) : Ar(Ac) : -Ac.

Any change in tot&l cost has exarctly the opposite efrect on profit: if tot&l cost increases

by 100, total profit decreases by 100. Figure 11.9 makes this very clear.
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Azr(Aqt
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FrouRE 11.8. Deterministie sensitivity to aq

Lr-(Ac)

too

-too IOO Ac

- roo

Frounp 11.9. Determinietic sensitivity to ac

Smsitiaity lo Ap. Sensitivity to the decision variable change Ap also follows from
Equation (11.19)

Ar(0,0, AP) : ar(AP)
(lt.24)

: [r* * apklp* + Ap) - c(q(p* * ap)) - p*q(p*) * c(q(p*)).

If we desire to expand Ar(Ap) in the quadratic form,

(1r.2b) ar(ap) : 
ffil^,-, 

tp * *ffi1^_, (tp),,

we must evaluate the derivatives lAr/l/rp loro and a'd*1a1tp1' lor-0. We find

aArl : [c(p**ap)+ (p* *rp)q,(p**ap)dAplae-o I

- "'(q(p* 
* ap) )q'(p* * Ap)lor:o

(11.26) :q(p*)+p*q'(p*) -t'(q(p*))q'(p*)

: 
#"'0")) - c(q(P))l':'*

: lr'(q(p*)) - "'(q(p*Dlc'@*)
:0,

since marginal revenue and marginal cost are equal at the optimum. Of course, we

found p : p* by requiring lhat |Ar/l&pl l'a: 0, so this result is not surprising.
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To evaluate the second derivative we write

,'gl : ll2q,(p* * Lp) + (p* * Lp)q,, (p* + Ap)
@lo,-o

- "'(q(p* 
* ap)) lq'(p* * ap)l'

(fl'n) 
- ,'(q(p* * ap)) {(p* +Ap)llo,-
: 2q'(p*) + p*{ (p*) - d'(c@\) Iq'(p\l'

"'(q(p*))d'@*).
This erpression shows why we evaluated certain derivatives of our demand and cost

functions in Equations (11.6), (f f .f3), and (11.14). When

p : p*, a'*1a1tp1'l o* : -3.670

and thus Equation (11.25) becomes

(11.28) ar(ap) : * uffil^ n-o(tp)': -1.835 (ap)'.

Figure 11.10 illustrates the sensitivity of profit to changes in price from the op-

timum value. Obviously, any change in price will decrease profit. If the price is in-
creased or decreased by 2, for example, the profit will decrease by about 7.3.

Opm Loop Efrect ol Uncertninty

We can now evaluate the efrect on expected profit of uucertainty in the state vari-
ables using Equation (6.8). We identify Asl with A(, Asr with Ac. Then Equation
(6.8) becomes

(11.2e) o : f#A's * +ofit"* *o*asac, [(As : ac : ap: 0)].

Because & and Ac a,re independent and have zem means, the last term is zero. We

shall assume that the variances of Ag and Ac are 100 and l(Xm,

(11.30) A'g : l(X), A'c : 10000.

The correspouding standad deviations 10 and l(X) represent significant uncertainty

in quantity and cost in the nange of interest.

The derivative Orrf oqz has already been evaluated in Equations (f 1.21) and (11.22)

as

( I1.31) ozrfoqz: -c" (q(p*)) : 0.0497

Ar(Ap)

-2 2Ap

Frounn 11.10. Deterministic BenEitivity to Ap

o
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The derivative 02r/0c2 : 0, as is clear from the linear sensitivity to ac; to a first
approximation, the uncertainty in Ac does not a.frect the expected profit. Thus,

a'-

(11.32) aa : I wo'': * (o'oagz) (1oooo)

:2.49.

The effect of uncertainty in g is to increase the expected profit by 2.5 from lgg to
200.5. The reason for the increase is the upward 

"r.,"tut,,." 
oi Figr." 11.8. This means

that a decision-maker who is indifferent to risk would be willing io pry 2.8 to preserve
the uncertainty in g rather than have a wizard assure that Af : 0. 

-Uncertainty 
can

increase expected profit.

D etnrministic Smsitit'ity-C hsed Loop

suppose that a clairvoyant should reveal Aq and Ac in advance. How would the
price p be adjusted to compensate for this information, and how much would the
information be worth? Equation (7.2) shows how much the price should be changed
in response to Aq and Ac,

(11.33) Lp:-(#,Il#roo+ffio").
It is clear from Equation (11.23) that 02r/0Ac0Apr:0 and therefore that knowing
Ac will not a,ffect Ap; consequently, clairvoyance on Ac has no value.

We evaluate 02r/0Aq0Ap from Equation 1f t.fA; 
"*

02r/0Lq0ap6q_AcA?-_0 - I - c,, (q(p*))d @*)(11'34) 
:0.885.

Since we have already found that 02r/0(Ap)2 : -8.620, we write

(11.35) Ap : (0.835/3.670)Aq:0.228 aq.

Thus if Aq should be 10, Ap would be increased by 2.28.
Altering Ap in response to Ag will change the sensitivity of profit to Ag fiom open-

loop to closed loop sensitivity. From Equation (2.5) we have

o*:#^q*t#rorr - +ffffioo,
: 17.b8 aq + o.o24s (Aq)'+ + g (aq)'

( t t.B6)
: 17.58 Aq * 0.0249 (aq)' + 0.09b ( Lq)''

Open loop Sensitivity Effeet of
Compensa-

tion

Closed loop Sensitivity

The open and closed loop sensitivity to Aq is showu in exaggerated form in Figure
ll.ll' The efrect of the compensation is to make the sensitivity function even more
curyed than it was before. We found earlier that if Ag were *10, profit would increase
by 178.3 without changing p. rf ap is made 2.28 as Equation (ll.BE) would indicate,
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LOOP

Frounu l1.ll. Open and cloaed loop senritivity to Ag

then Equation (11.36) shows that Ar would increase by another 9.5 units es a result

of the compensation.

Cbilvoyonu

The expected value of clainroyance on Ag is given by Equation (8.a) as

(u37) (,.o.la) = - l sffio,,
which is iust the expected value of the efrect of the compensation tcrm in Equation

(U.36). Since A'9 : l(X),

(11.38) (u,o"l6) : 9.5.

The riek indifierent decision-maLer would pay 9.5 units to know Ag in advance,

about five per cent of his expected profit.

We can now Eummarize the efrect of uncertainty and clainoyance with respect to

&. We have eeteblished that the uncertainty in g increases e,:rpected profit by 2.5 on

an open-loop basis and that the expected efrect of compensation a,fter clain'oyance ie

9.5 utrits. Therefore the total expected increase in profit due to uncertainty on a

cloeed loop basis iB f2.0.

This means that a risk indifrerent decision-maker would pay 9.5 units to a clair-

voyant for revealing Ag. Furthermore, if the claintoyance were fite, he would pay up

to 12 unitE to avoid having a wiza.rd get & = 0. Free clain'oyants GaJI never be a bad

deal, but free wizards can.

Riak AuergionontWizarihy. Up to this point we have asgtrmed that the entrepreneur

is interest€d only in expected prcfit. Now we shell intrcduce risk avereion. Suppoee

that the decision-maker is iDdifierent between participating in a lottery with equd

probability of winning 0 aod 1(X) on the one hand and receiving 45 for certain on tihe

other. His certain equivalent for the lottery is therefore 45. If we a$,ume that the

decision-moker has a congtant risk aversion coefficient 7, then we can find f using

Equation (5.14) and the obeeration that the lottery has a mean of 50 and a variance

of 2500,

(U.39) 45-50'h-(2ffi), ?:0.(X)4.

This dsk avereion coefrcient impliee that the entrepreneur has a risk tolemnce of

lh - ?il.
Suppooe that the entrepreneur leaves the price fixed at p: p* - ?L.l and is

int€rested in deternining the certain equivalent i(p) of his uncert&in prcfit. Equa-

Ln

Aq
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tion (5'15) shorvs hou' to compute it, but u'e have already performed part of the cal-
culation. The certain equivalent rr(p) is approximatety give, UV

(11.40) n(p) : i(p) - h*@),
and rve have found that i(p) at Vt : p* is 200.5, the sum of r(p*): l9g and the
nonlinearity correction of 2.5.

The variance ii(p) is obtained from Equation (4.5) as

(tt.ar) i@) : (r9' 
^,q 

+ (#)'^",
since the covariance of Aq and Ac is zero. From the deterministic sensitivity studies n.e
have already found that the derivative tu/Oq is the margin, l7.bg at the optimum
point, while 0r/0c : -1. Therefore,

(11.42) i@) : (r7.58),a'q + (-l)2a'c.
It is interesting that the margin computed by the businessman is just the quantity
needed to determine the variance in profit produced by a variance in quantity. witir
the numerical values of the variances we have

*(p) : (17.58)'?(100) + (10000)

(11.43) :3oel3+toooo

:40913.

Returning to Equation (11.40) rve find

n(p) : 200.5 - *(0.004)(40918)

(11.M) :2(X).8-8r.8

:118.7

The certain equivalent is 118.7, an amount less than the expected value of 200.5 by
the risk premium of 81.8.

The composition of the risk premium is itself interesting. As we see from Equations
(11.40) and (ll.4l) the contribution to the risk premiui of uncertainty in q is

-fu(ar/afi'A'g : 61.8,

while the contribution of uncertainty in c is -h@r/ac)za,'c: z). w.e can there-
fore determine the value of wizardry eoneerning each variable.

Suppose that a rvizard offers to set Ac : 0. Since Ac does not contribute to the
nonlinearity term, the value of this ofrer is just the saving in risk premium, 20. rf
the wizard offers to set Ag : 0, the saving in risk premiurriis 61.g. liowever,'setting
Aq tn zerc will cost 2.5 in expected value because of the nonlinear effect of aq. ther;
fore the net value of wizardry that sets Aq : 0 is 6l.g - 2.5 : 5g.8.

- All these computations rest on the approximation of Equation (11.40). As stated
in Equation (5.13), the approximation is good if the standard deviaiion oi the lottery
is small compared to the risk tolerance, o., i., th" present case, if

(11.45) G@))rtr(l:250.
"l

Figure ll.l2 shows the standard deviation of profit computed according to Equation
(11.41) a.s a function of price. We see first that the standard deviation of pmfit in-
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Frauns 11.12. Comparison of standard deviation of profit with risk tolerance

creases with price and second that it is considerably less than the risk tolerance at the

price pt : 24..1. Consequently, we c&n feel confident that our approximationa &re

uaeful at the present operating point.

Now that we know the variance of pmfit as a function of. p it is a simple matter to

use F,quation (11.40) to determine horv certain equivalent depends on p. The result

is plotted in Figure 11.13. We see that while nominal profit is murimized at the price

p - p* : ?1..1, the certain equivalent is in fact murimized at, p : P*+ : 22.5.

This maximum certain equivalent 18 122.41 3.7 units gpeater than the certain equiva-

lent of 118.7 achieved at p*.

Ailjwtment tor Riak Auergtmt

We would like to know how to change p when risk aversion is introduced without

perforrring the entire evaluation of Figure 11.13. We can lue Equation (10.8) for this

purpose. However, computetion of the third derivative terms arising finm non-

Iinearity shows thst they can be neglected. Thus the simpler form of Equation (10.9)

is adequate,

(,.40) Ap* : p** - o* :7ffi6y1#*fooo'r* #r#o'r.
Eowever, as we have already eeen,02rf |AclAp : 0. fiterefore we can use previously
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FIGunp ll.l3. Comparison of nominal and certain equivalent profits as a functioo of price

evaluated derivatives to write

Ap
* 0.004

[(0.835) ( 17.58) loo]
- 3.670

: - 1.6.

-l

(tt.47)

This result shows that the optimum price when risk aversion is intrcduced will be
p**: p* + ap*:24.1+ (-1.6) :22.5, in aceordance with the plot of Figure

"dl;, the value of 
-p** 

rs known, changes in other problem .,r".iuut", 
"r. 

u#,o
ascertain. For example, the change in g due to this change in p is given by

(11.48) 
aq : aPq'(P) : (-l'6(-3'3))

-5.
Decrea^sing the price by 1.6 will increase the quantity sold by E.
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To find the certain equivalent of the profit at p : p**, we write

*(p**) : o(p**) * r #*1,.. 
L'e - ifi@**)

(11'49) :198.0 +2.2- *r(B6ao6)

: 195.2 - 18203r.

since 7 : 0.004 the risk premium is 18203(0.0o4) : 72.8, which is 9less than it was

at p* : 24.1. The certain equivalent al p** is then

*(P**):195'2-72'8
(11'50) : 122'4

which again agrees with Figure ll.l3. It rvould be a simple matter to recompute the

values o1 chirvoyance and wizardry when p : p**; the earlier results are not sub-

stantially changed.

nisk Ssnsititity Profi,ln

If people with several difierent attitudes toward risk must evaluate the decision

it becomes worthwhile to show how the certain equivalent of the profit will depend on

the risk aversion coefficient. We call a plot of certain equivalent versus risk aversion

coefficient the risk sensitivity profile. The profile for the entrepreneur's problem is

shown in Figure 11.14. It is drawn with the understanding that p : p** : 22.5

using Equation (f f .ag). The certain equivalent of the 0-100lottery is also shorvn for

,o-p"tutir" puTposes. We verify, for example, that when t : 0'0(X, the profit has a

certain equivalent of 122.4, while the 0-100 lottery has a certain equivalent of 45'

lVhen i : 0 the certain equivalent is the expected value; consequently the 7 : 6

axis indicates the expected values of the profit and the 0-100lottery. It is clear that a

risk indifrerent decision-maker would prefer the entrepreneur's problem to the 0-100

CERTAIN EQUIVALENT

FOR P=P**= ??.5

T O.OO2

P 500 250 167 t25
o.ol
too

Frcunp 11.14. Risk Bensitivity profile

o.or4
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lottery. This preference would exist as the risk aversion coefficient increases until it
reaches a value of 0.00856, at luhich point the tr.l'o propositions have the same certain
equivalent. lVhen7 exceeds 0.00856, the 0-100 lottery is preferred to the entrepreneur,s
problem. The risk sensitivity profile thus provides a basis for comparing the situa-
tion at hand with other standard options.

12. Conclusion

We have norv shown how a feasible number of probabilistic assessments and a limited
amount of computation can lead to extensive insights into a decision problem. Even
where the approximate formulation is not appropriate for a final analysis, it can still
provide a convenient and rapid procedure for guiding the evolution and evaluation
of a more exact model. In short, it is a first step to overcoming the computational
impasse that is so often encountered in complex decision models.

Appendix A

Certain Equiaalm,ts of Arbitrary Loilnries Under Eapanmtial Rislc Smsitiuity

Consider a lottery on a random variable a described by the density function/"(.).
The exponential transform of this variable rvritten in the transform variable s would
then be

(A1) : exp (-su

Thus we can interpret the exponential transform as the expectation of e raised to the
negative product of transform variable and random variable.

Assume that the utility function of the decision-maker is the exponential function
z(') of Equation (5.10). By definition, the utility of the certain equivalent of the
lottery must be the expected utility of the lottery,

u(a) : x'1'1,

or,

/,'(s) : I-l otrexp ( - suo ly,bo)

Therefore,

: fo' (Y ),

and

(Az1 a- -l,n/,"(r).'l

When the decision-maker has an exponential utility function with risk aversion coeffi-
cient 1, his certain equivalent for any lottery is one over 7 times the natural logarithm
of the exponential transform of the lottery evaluated at 7.
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For example, the normal lottery with mean p and standard deviation a as defined

by the density function

I,eto) : exp (- (uo - y)'/2n')/o(2r)'t2, -o ( rh ( o,

has the exponential transform

/,'(s) : exp (-rs + Js'121.

In view of Equation (A2), the eertain equivalent 0 of this lottery is then

(AB) 
! : - rlh"*R 

(-n * o''f/2)

: p - *lno.

The certain equivalent of a normal lottery is given exactly by the mean-voriance

approximation of Equation (5.11).

It is interesting to note that Equation (A2) can sen e as a basis for approximating

the certain equivalent to any desired degree of accurucy. To demonstrate this, let

C(s) be the natural logarithm of the e:rponential transform of the random variable u,

(A4) g(s) : ln/,'(s).

We can perform a power series expansion of g(s) about s : 0 according to

g(s) : EL. ro'a(io) ,.,

where gtt)(s) is the /cth derivative of g(c). Since g(0) : 0, Equation (A4) becomes

(Ab) s(s) : Ef-,ry,. : Il, e+-lE (-s)..

Let !u : (-t).g(.,(O)1then,

(Ao) s(s) : tF,I(-s)!.,k!. er.

The quantity ru 
is called the lcth cumulant of the random variable u. By direct evalua-

tion of the derivatives or fircm reference [l], we have

I 
u : a (the mea,n of u)

u:@:il (theva,rianceof u)
(A7) , ;_, : (, - il (the third central moment of u)

'u:@t -3(8.
Since the exponential transform of the sum of independent random variables is the
pmduct of their exponential transforms, the logarithm of the exponential transform

of the sum must be the sum of the logarithms of the individual exponential transforms.

In view of Equations (A4) and (A6), it follows that the cumulants of the sum of in-
dependent random variables are the sum of corresponding cumulants of those vari-
ables.

We use sumulonts to approximate the certain equivalent by combining the reeultE

RONALD A. HOWARD
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of Equations (A2), (A4), and (A5),

_1U:
^y

:I
'r

(A8)

: EL' r! t-"'-''
The certain equivalent of any lottery under exponential risk sensitivity can be repre-
eented by a power series in 7 whose coefficients are just the cumulants of the lottery
divided by corresponding factorials.

By truncating the series, we c&n obtain any degree of approximation we wish. For
example, if only the first two terms in the summation are considered, we obtain
a x 'a - *t'o - i1 - \1b, the approximation of Equation (E.ll). Considering the
first three terms produces

a el.'a - h', * *t"u
xo - hi'+ *tffiil,,

showing that lotteries with positive third central moments (skewed to the right)
tend to have certain equivalents higher than aymmetric lotteries with the same me&n
and variance.

Appendix B

N umeri,cal Ewhnt;ion ol Derhntti.aes

The numerical calculation of derivatives can be readily performed using determinis-
tic sensitivity results. Suppose that the value u is a function of two variables r and,y,
a: o(r, y).We know that if we have measured as: a(xs, Uo) at some nominal
point (co , yo), then the series expansion of u about that point can be written in terms
of the distributions of u at the point a.nd the change in the values of the variables.
We shall use tl, to represent ilu/Atl (xo,yot t u* to represent 02u/0x0y l,n,ro , etc., and
defineAr : iE - ro,AU: y - Uo;and Aa(Lx,Ay) : a(x,y) - uo.Thenwewrite,

(Bl) Au(A.r, Ay) x u,M * u"LU * a*(M)' * aur(Ly)z * u-Lr\y.

To evaluate u, and t)4 , we set Ay : 0 and measure Au(Lr,0) and Aa(- Lxr 0) ; that
is, leave y at its nominal value and determine the change in u that results fmm in-
creasing c by the amount Ar and decreasing o by the amount Ac. Then from Equation
(Bl) we have

(B2)Au(A",o)Na,Ag+u,,(Lr),
Au( - Ar, 0) x -a.,!n + u,,(A.r)'.

If we subtract these equations we produce

Au(A", 0) Au( -A?, 0) x Zu,Lr

or

(BB) u,x(Au(A",0) Au(-An,O))/zLr
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If we add the equations we find

Au(&,0) + Au(-Ar,0) *.2u,,(L.r)'

or

(B4) u,a N (Au(At, 0) + Aa(-Ln,O)) /z(An)'.

Thus Equation (BB) shows that the first partial derivative of u with respect to c
at the nominal point is approximately equal to the difrerence in the changes in u

divided by the total excureion of o, 2Ar. Equation (B4) shows that the second partial
derivative of u with respect to o at the nominal point is approximately equal to the

sum of the changes in u divided by twice the square of the r increment. Of course,

similer equations senre to detetmine u, and u- fnom the measurements u(0, Ay) and

a(0, -ay). Since zuch one-variable-at-a-time changes are usually performed in the

courte of sensitivity analysis, measurement of single variable first and second partial
derivatives is quite straightforward.

When we come to the cross derivative u,r , we have o choice. One appmach is to
combine our knowledge of. o, t uu t ut, a,nd u, with the measured Lo(A.r, Agr) to solve

Equation (Bf ) for u., . While such a procedure may be economic where evaluations

are very erpensive, it can uzually be improved upon in cases where all four of the
measurements Ao(L.r, Ly), Aa(A.r, -Ay), Au(-A.r, Ay), and &t(-A.r, -Ay) have

already been evaluated in a deterrrinistic joint sensitivity analysis. The improvement

is likely because these quantities allow us to approximate u", in a manner independent

of our calculations of the one-variable derivatives. T[e proceed by writing Equation
(Bf ) at the four points of measurement:

Ail(Lr, ay) : a.Lx * %a! * a*(Lx)'* un(til'! ooLxay,

(85)
Au( An, - Ly) : v,An ayAU + a,,(Az)' + a*(Ay)' a*L*Ly,

Au( - Ln, Ail : -a,Ln + aoaU + u,o(&r)' + a*(Ail' a*LrLy,

Au( - An, - Ay) : -a,An anNU * au(A.r)' * a*(AA)' + a-AaLy.

ff we subtract the sum of the two middle equations from the gum of the first and last

equations, the only tem remaining on the right side is 4aoL.xAy. Therefore, we obtain

(86) o* : 
&(au(Ar, 

Ly) - N)(A.x, -Ay) - &)(-LD,ay) + &)(-Lt, -Ay)),

and we have evaluated the crcss partial derivative we need directly from the four
measurements.

Tlhile we have considered only symmetric s[nnges in each va,riable, the results

can be readily exteuded to the asymmetric case for situations where the convenienee of
symmetry is uot appropriate.

Evaluatione of the derivativee for the example of $ff were performed using this

method on a time-shared computer. The increments for Lp, Ag, and Ac were 2, 10,

and 100, correqronrling to the standard deviations of the va,riables in the latter two
cases. The results were numerically indistinguiehable from those in $ll.
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ITISK.SENISITIYE NIARKOV DT]CISION PROCESSES*

RONALD A. IIOWAITDT ANI) JANIES I'. MATIII'SONI$

'lhis paper considers thc maximizatiou of certain equivalent reward generated by
a l\Iarkov decisiorr process r*'ith corrst:rnt risk serrsitivity. First, value iteratiol is
rused to optimize possibly time-v:rryirrg proccsses of finite durrtion. Then a policy
iteration procedrrre is devcloped to firrd the statiorrrry policy with highest certain
equivaleut gtirr for the infinite duratiorr ease. A simple example demonstrates both
procedures.

l. Introduction

An important limitation of previous analvses of flarkov rerl'ard and decision
processes [l] is that there has been no provision for incorporating risk sensitivity. The
present paper shorvs horv risk sensitivity may be treated in such processes if the utility
function is exponential in form (constant risk aversion).

2. Risk Sensitivity

If a decision maker subscribes to certain arguments regarding risky propositions [3],
then his risk preference may be represented by a utility function that assigns a real
number to each possible outcome. Furthermore, his preference ranking of these un-
certain propositions, called "lotteries, " rvill be in accordance n'ith the expectation of
tl'rese numbcrs. Wc slrtll call tlfs expcctation "ther utilitl'of the lottcry." Thus if u is the
real-valued outcome of a lotterl', z(u) is the utility to be assigned to the outcome u.

We assume that larger values of u are preferred, and therefore that u (' ) is monotonically
increasing.

Certain Equtualent

An important concept of our discussion rvill be that of certain equivalent. The certain
equivalent of a lottery is the outcome rvhose utility is the same as the utilit)- of the
lottery. We use the symbol D for the certain equivalent of a lottery on an outcome u

rvith utility 11(u),

ffi:u(a).
Erponential (:tiltly

In many situations a decision maker is rvilling to accept rvhat rve call the "delta
property": if all prizes in a lottery are increased by the same amount A, then he rvants
his certain equivalent for the lottery to increase by A,

ffi:^+0.
A decision maker rvho accepts the delta property is saying that his certain equivalent
for any proposed nerv lottery is independent of his current rvealth. While ferv decision
makers rvould accept the delta property in all circumstances, it can be a very useful
approximation in practical problems.

t Received February l97l; revised April 1971.

t Stanford University.
I Stanford Research Institute.
$ The authors express their appreciation to Arthur F. Veinott, Jr. for the many helpful sugges-

tions he has made regarding the presentation of this paper.
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It is easy to show [4] that the utility function of someone accepting the derr,:r,-rrop-

erty must be either linear or exponential. The linear case implies risk indifference; it
u-as treated in [1]. The exponential c&se ma,y be described by rvriting the utility func-
tion in the form

(2.1) u(u): -(sgn7)-7'
with inverse

(2.2) u-tk): -lh(-(sgnz)c),
"Y

where ? is the risk aversion coefficient, and sgn y denotes the sign of "y. The exponential
utility function implies

(2.3) u(u * A) : - (sgn"y)e l('+il : e'^u(a);

adding a constant A to all prizes in a lottery c&uses their utilities to be multiplied by
e-'L.

A positive risk aversion coefficient implies risk aversion: establishing a certain

equivalent for a lottery that is less than its expected value. A negative risk aversion

coefficient implies risk preference, the contrary behavior. We shall characterize any risk
attitude that is not risk indifferent as "risk sensitive."

3. A Tirne-Varying Markov Reward Process

Consider an N-state time-varying trIarkov process that has transition probability
matrix P (n) at a time when n transitions (stages) remain. The ijth element of this
matrix p;i(n) is the probability that the process will make its next transition to state j
if it currently occupies state i and has n transitions remaining. A transition from state
i to stateT on the zth transition pays a reward r;i(n), positive or negative. The rervard

structure for any transition n. is therefore summarized by a reward matrix .B(n) with
elements r;i(n). We are interested in analyzing this rervard process in the risk sensitive
case.

Suppose that the reward process is to be allowed to continue for z * 1 transitions
and that the process is currently in state i. The total reward the process will generate

before termination we define to be oi (n + 1). If the decision maker satisfies the delta
property, this uncertain reward will have a certain equivalent D;(n * 1) that is inde-
pendent of his wealth, and thus independent of rewards he has received previously.
This quantity represents the amount that he would be willing to take for certain
instead of receiving the reward generated by the \{arkov process.

To compute this quantity, consider what would happen on the next transition. If
the process makes its next transition from state i to state j, it will earn a reward
r;i(n * l) and place the decision maker in a position n'here he has m transitions re-
maining. This position will have a certain equivalent 0;(n) that is independent of
r;i(n * 1) as well as of previous rewards because the decision maker satisfies the delta
property. With probability p;i(n f 1) the next transition will be to state j, whereupon
the decision maker rvill use the delta property to assign the certain equivalent r;i(n * l)
* ai(n). Consistency requires that

(3.1) u(a;(n + 1)) : tL, p;i(n * r)u(r;;(n + 1) + o;(n)), n :0,r,2, ...

The utility of accepting the certain equivalent must be the same as the utility of con-

tinuing. The quantities 0,.(0) can be assigned directly by the decision maker.
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Using tlre propertv of Equation (2.5), rve curr u'rite Iiquation (3.1) as

(3.2) u(a;Qr + l)) : Il:, p;iQr I l)s-1t;i@+t)u@i@)), n :0, 1,2, ...

Note tlutt this strbstitution hns rtllou'ed us to rvrite rrn equation relating the utilitv of

the \larkov rervut'rl l)rocess lotter.r'irt l\\'o successive stnges. This hrppl'development is

directlv tracelble to the frct that the risli nttiturle of the decision mrker is independent
of his n'e:rlth.

We define the utilit'r,of the len':rrd ploet'ss rvhen it occupies sl:rte.i rvith a transitions
lemlining as z;(rr),

(3.3) u;(rt) : u(a;(n)) : - (sgn7)e-'':,("), ?r = 0, 1,2, ...

Equttion (3.2) becomes

(:].1 ) tr;(n * 1) : II:, p;iQt | 1;a-r'ij("+r)rrr(rr), n : 0, 1,2, ...

We can dirt'ctlv interllret the terms in Iiquution (;3.4). Thus in the risk-averse case

of positive ^yte-|tti@\, rvhich rve shrll call e;r.(n), is the negative utilitv or "disutility"
of the reu'ard ?'i; associated rvith the transition from state i to state.i at transition time
rr. The tern-r "disutilitl"' s'ill hererfter be tpplied to e;,(n ) regardless of the sign of .y.

We shall let qi1(n ) be the s1'mbol for the product of transition probability and dis-
utility,

g;i0t) : pi;(n)s-l''i(") : p;i(n)er; (rr ).

We shall call it the "disutility contribution" of the trnnsition from state i to state.i at
time n, and define the disutilitv contribution mttrix 0(n) rvith elements gr;(n). It is

clear that all elements of Q(z) rre nonnegstive.

Norv u'e can write Equation (3.a) in the simple form,

(3.5) utQt * t) : !,ry:, e;i\t * l)u,(rr), n: O,1,2,....

This equation or Equation (3.a) provides a recursive relation for eomputing the suc-

cessive utilities of the process. To find the certain equiv&lents of the process rve then use

the result implied b,,- Equation (3.3),

(3.6) /\
ltt\TL ) - ln t- ( sgn t)u' ( n )1.T

^Y

4. The Stationary Markov Reward Process

Our relationships assume important specill form u'hen the transition probabilities
lund rervards are the srtme for all transitions:

p;ilt) : ?ij, t';;(n) : r;i, rt : 0, 1,2, "'

In this case the process is completell' specified by the transition probability matrix P
and the rervard matlix B or, equivalently, bv the disutilitl'contribution matrix Q rvith
elements defined b1'

(4.1 ) Qii : p;p-f ii 
.

Erample

To illustrate the recursive evaluation of certain equivalents and all other computa-

tions in this paper, rve shall use the taxicrb example of [1]. This example describes the
behavior of a taxicab driver u'ho carries out his business in three torvns that rve identify
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with stetes l, 2, and 3. His trips betrveen tosns are governed by transition probabilities;
each trip entails a corresponding reward. The data for the example appear in Table 4.1.

In towns I and 3, the driver has three alternatives: to cruise, to go to a ta:<i stand, or to
wait for a radio call. In torvn 2, only the first trvo alternatives are available. The variable
/c is used to index the alternatives in each state.

We shall now investigate the policy of going to a stand, the policy composed of
alternative 2 in each state. It is shown in the reference that this policy produces the
highest possible avera,ge reward per transition for the process. The transition proba-

bilities and rewards for this policy are given by:

(4.2)

(4.3) a:

D

2.09664 x 10-5

2.09664 X 10-5

3.09g44 x 10-4

| /16 3/4 3/t6
t/16 7/8 L/t6
r/8 3/4 t/8 II

R:
24
168
42

We shall use the risk aversion coefficient r : 1.0. For this policy and 7, the matrix Q

defined by Equation (4.1) becomes:

1.01501 x 10-1

9.g46g3 x 10-'
1.37367 x 10-2

3.4341g X 10-'l
2.09664 X 1o-5 

|

1.69169 X 10-'J

Table 4.2 shorvs the results of the eomputation using Equations (3.5) and (3.6).

It provides the certain equivalent o;(n) for each state i and for a range of number of
stages remaining lt. It also shorvs the differences in the certain equivalent of each state
on successive stages under the convenient assumption that rr (0 ) : oz (0 ) : ,B (0 ) : 0.

Notice that this difference approaches the constant 4.07438 for all states as the num-

ber of transitions remaining gro\rs. We can interpret this constant difference as the

amount that a person with a risk aversion coefficient of I should be just willing to pay

to increase the number of stages available to him by one when he already has several

available. We shall call it the "certain equivalent gain" of the process.

Notice also that the differences betlveen the certain equivalents of states at the same

stage seem to approach a constant as n,increases. For example, Ar(n) - At(n) ap-
proaches 1.55518. We interpret this number as the amount that a person with a risk

evaluation coefficient of 1 should be just willing to pay to be in state 1 rather than in

TABLE 4,1

Taaicab Eaample

Transition Probabilities Transition Rewards

State Alternative
lc

0..
t1

k/..
N'

k j:t j:2 j-3 j:t j:2 i:3

8

4

4

l8
8

8

2

8

4

2

6

0

16

2

4

0

10

8

4

l4
8

10

6

4

-l_

a

l_
r6

5
8

I
2

I
l6

I
a,

.L
8

l_
r6

L
1

3
a

I
6

0
1.
8

l-
I
3
a

I
16

t
2

I
r6

I
{

I
z
I

TB'

(Cruise)

(Stand)
(Call)

(Cruise)

(Stand)
(Call)

1

2

3

1 (Cruise)

2 (Stand)
2

I
4

I
t
3
I

I
2

3

3
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TABLI' 1.2
Recursirte Eualuation o! T'aricab Problem with Risk Aaersion rmrler policy of Going to

a Stand in Eacry Toum

Certain Equivalent Change in Certain Equivalent with Stage
Stage State

State

.l
3

I
,
3

4

5

6

7

8

I
10

2.2512t
I .08988

13.02518

r7. 19456

2r.26756

25.34264

29.4r7W
33 .49138

37.56575

4l .64013

l0 . 077 l0
12.76828

18.08124

22.12856

26.21985

30.29397

34 .36847

38.44284

42.51722

46.59159

3.47495

7 .49312

rr.56472

I 5 . 63873

19 .71309

23.78746

27 .86183

3 l . 93621

36.01058

40.08495

6.83567

3 .93530

1. 16938

4 .07300

4 .07508

4.07436
4.07438
4.07437

4.07438

2.69118

5.31296

4.04732

4 .09129

4.074t2
4.074fi
4.07437

4.07438

4.07437

4 .01817

4 .07160

4 .07 401

4.07436

4.07437

4.07437

4.07438
4.07437

4.07437

state 3 rvith a large number of transitions remaining. I,'or further reference we also notethat Oz(n) - 03(n) approaches 6.50664.
we shall norv investigate the nature of the certain equivalent gain and the con_

vergenoe of certain equivalent differences in more detail.

C ertain E quiualen t G ain

The nature of the utility transformation implied by Equation (8.5) for this case
becomes evident if rve define the column vector u(n)-rvith components ui(n),rccall
that Q (z) : Q for the stationary case, and rrrite the equation in the form

u(m + l) : Qu (n),

u(n ) : 8"..(0),

n:0r1,2,
with solution

n : 0, lr2,
In the terminology of Appendix A, if the nlarkov transition probability is irreducible
and acyclic, then the disutility contribution matrix Q is irreducible and primitive.
Appendix A shows that for this case

Q.+1 rimo-. ($)0"",0) : rimo-. (#),,,, : *.,
where tr is the largest eigenvalue of Q and u is the corresponding eigenvector with Ic
chosen so that ?.{r : -sgn 7. In other words, for rarge ,, ih" utriity of any state willbe:nultiplied by I at each successive stage.

_ 
To find the implications forcertain equiralents, we apply to the component form of

this equation the transformation indicaied in Equation't5.01, 
-

(*) u,@): -i
(-1 r,,^): -i

-i r" [-(sgn r) timo*-.YL
(

Iimo*- 
t-l t., t- (ssn t)ui@)l - n

or

ln [- ( sgn y)ku;|,

ln [-(ssn flu;l 1lr, /r,
'l

(4.5 )
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where c : -ln lt/y, and, ii is defined to be the relative certain equivalent of state i,

(4.6) oi : --ln [-(sgn r)url.
"Y

Note that the normalization of u,v c&us€s Orv to be zero.

We find that the certain equivalent of the process rvill grorv linearly rvith stage at
a rate -ln |r/y that we have called the certain equivalent gain. We designate it by the
symbol T,

(4.7) 0: -lt1x.
^|

Then the asymptotic form of aa(n) can be written as nfi * 0i * c.

It is easy to show that the certain equivalent gain must be bounded by the smallest
and largest transition rewards. From Equation (A2) of Appendix A with the matrix .4
replaced by the matrix Q, we have

minr!;g;; < I < max; !;Q;;
or

min;l1p;p-rrij S tr S maxi Eiprir-r'r,.
Sinee each row sum above is a weighted average of the disutilities, we can bound each
row sum by the largest and smallest disutilities for that rol, i.e.,

min;minie 7'i' 
-( min;Eiprq-"'i < tr < max;lip;ie-a'ii S maximaxie-?'ii.

This inequality implies

exp (-max;,i"tr;i) < tr < exp (-min;,i^tr;).

By taking the natural logarithm and dividing by minus -y, and using Equation (4.7),
we find

min;,;r1; < A 
= 

tn&x;.it;i

regardless of the sign of'y.
lVe can obtain more insight into the nature of the certain equivalent gain by writing

Equation (3.5) for the stationary case,

u;(n * t) : L{:r q;fli(n),

dividing by ),", letting n ---+ @, and using Equation (4.4),

(4.8) \u; = lf:yq;pi.
'We 

recall from Equation (4.6) that we ean write zi as

7ti: - (sgn7)e-,5,

and from Equation (4.7) that )t is related to the certain equivalent gain by \, : s-r|.
Then we can write Equation (4.8) as

?-l0+ii) : Ir{-, qrp-rui

or, using the explicit form of the disutility contribution,

(4.9) e lq+i'i) : Er{:, piie-'tb;i+6'i.
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As 7 appro:rches zero trnd therefore the <lecision malter appro&ches risk in6ifferenee,
these equations impll'

0 * o;: II:, P;iQ';; * D;),

rvhieh are the usual rellrtive value equations for r ]larkov rervrrd process. In this ease
the certain equivalent gain beeomes the ordinarv gain n. 

"*p"","a 
rerrard per transi-

tion of the process, and the D;'s become the rerative v*lues of the states.
Thus $'e e:rn think of Ilquation ('1.9) as the rnalog of the u"ual relative value equa-

tions for the case of exponential risk sensitivitv. Noie that thel'shr.e rvith the usual
equations the propertl' that adding a eonstarit to all 0;,s leaves the equations un_
ehanged;consequentlv, \\'e may solve for the 0;,s onlv to rvithin *.on.turt. we shall
therefore call ,i the relative certain equivalent of state f. When the relative certain
equivalent of one state, sa1' state N, is set equal to zero, then rve ean solve Equation(4'9) for the certain equivalent gain and the relative certain equivalents of the other
states for anf irredueible acr.'clic Jlarkov process.

Inspection of Equation (4.9 ) shou's that if we aclcl the same constant A to all rervards
r';;, the ne$' solution of the equations l'ill have the same relative eertain equivalents,
but a certain equivalent gain increased by A: Increasing the rervards by a constant
inereases the certain equivalent gain bv t'he same constant.

Let us apply the results of this section to the policy formed b.r' the seeond alternative
in each state in the ttxictb examPle. The transition probabilitles and rervards for thispolicy appear in Equation (4.2);the Q matrix, in iquation f+.g1. Wu find that the
Irrgest eigenvalue of Q is r : 0.0170027. The certrin equivareni gain is then computeJ
from Equation (4.7) to be 4.0743s. Note that this is the same value for this quJntiiy
indicated bv the iterative solution.

We find that the eigenvalue associated rvith this eigenvector is proportional to(0'17413, 0'00123, 0.82464 ). If rve rvish to set the relative certain equivalent value of a
state to be zero, we see from Equation (4.6) that the corresponding component of the
eigenvector must be set to - (sgn r ). Thus if we tr.ish to set rr : 0 in this example, rve
must normalize u so that ur : _1. With this normalization, the vector u becomes
(-0.21115, 

-0.0014985, -1). We then use Equation (a.6) to find:

1r
t,1 - : ln t-(sgn t)ui

^Y

- ln (0.21115 )

_ 1.55517 ,

I,h - ^ ln t- (sgn t)uzl
^Y

: ln ( 1.49349 )

We note that these relative certain equivalents are the ones observed earlier in the
recursive calculation of certain equivalent values for this policl,.

5. A Time-Varying Markov Decision process

Suppose that at anv transition n (measured from the end of the process) different
transition probabilitl'and reward matrices ean be used to govern the process. In any
state i at transition n there is a choice among various alteinatives ft tiat specify the
transition probability pli@) and rervards rtr(r) ttut rvill characterize the next transi-
tion of the process. The number of alternatives available may be different from transi-
tion to transition and from state to state. Our problem is io find rvhich alternative
should be used at each stage and state in order to maximize the utility or, equivalently,
the certain equivalent of the reward subsequently generated by the pnocess.
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Let dr(n) be the number of the best alternative to use in state f u'hen n transitions

remain. Wherr rve have specified the columtr vector d(ru) for all rt, rve have solved the

problem. We call d (ru) the optimum policv rt time rr. We can find the optimum policy

by applying the principle of optimulitv to Iiquttion (:).4). We de{ine u;(n) to be the

highest utilitl, achievable from the process rvhen it occupies state i, and n transitions

remain. Then

(5.1 ) u;(rt + 1) _ rr&Xr tl:r proi(n + t)e-1'k {n'u1(rt),
?l 0, 1, 2,

rvhere r/; (rr * 1) is the n-raximizing value of ft. This equation allos's us to compute the

optimum policy for all stages as u'ell as the utilitl. of the process under this policy.

If rve define 0r (n) as the certain equivalent of the lottery implied by being in state i
rvith rr stages remaining under the optimum policl', then'rve can find O;(n) fromu;(n)

by using Equation (3.6).

Erantple

Table 5.1 shorvs the results of applying this procedure to the taxicab decision problem

rvhose data appear in Table 4.1. The risk aversion coefficient used is f : 1.0;reu'ards

rrre assumed to be zero after all available transitions have been made. We see that when

only one transition remains, the best policy is to use the first alternative in both states

1 and 2, and the second alternative in state 3. For all greater numbers of transitions

remaining, the best policy is to use the first alternative in each state.

The table also shorvs the change in the certain equivalent of each state as the number

of transitions increases. Note that it approaches approximately 8.48 for all states. As

tve shall see, this is the certain equivalent gain of the policy composed of the first al-

ternative in each state.

Table 5.2 shorvs the same procedure rvith the sole change that the risk aversion co-

efficient has been changed to "y : - 1'0 to illustrate a case of risk preference. When one

transition remains, the best policy is to use the first alternative in each state. Horvever,

u'hen more than one transition remains, the best policy is to use the third alternative

in state 1 and the second alternative in states 2 and 3. Note that the differences in

ecrtain cquivalent for any state appear to approach approximatell' 15.87 rvhen more

than a ferv transitions remain. We shall see that tltis is the certain equivalent gain of

TABLE 5.1

Value lteration in Taricob Problem with Risk Auersion Coefi.cient t : 1.0

Policy Certain Equivalent

S*"

3

Change in Certain Equivalent with Stage

StateStage State

t23

267t85

7

8

8

8

8

8

8

8

112
111
lll
lll
lll
lll
111
111
111
111

I
,
3

4

b

6
t?
I

8

I
10

5.36329

12 .82038

2r.39t47
29 .93613

38.40430

46.88206

55.36650

63 .84950

72.33197

80.81462

14 .67500

19 .94218

27 .47853

36 .04996

44.59130

53 .05974

61 .53781

70.02220

78 .50518

86.98765

3 .47 495

12. 15518

20.73632

29. 18795

37 .66343

46. 14960

54 .63268

63 . 1 1497

71 .59763

80 .08033

7 .457A9

8.57109

8.53466

8.46817

8.47776

8.4U44
8.48300

8.48247

8.48265

53635

57143

54134

46844

47ffi7

48439

48298

48247

8.68023

8 .581 14

8 .45163

9.47548

8.48617

8.48308

8.48229

8.48266

8.48270
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TABLE 5.2

Value Iteration in Taricob Problem with Risk Auersion Coefi,cient t - - 1.0

Policy Certain Equivalent Change in Certain Equivalent with Stage
Stage State S tate State

3 2
3

lll
3 22
3 22
3 22
3 22
3 22
3 22
3 22
3 22
3 22

I
2

3

1

b

6

I

8

I
l0

e .37349

2r.245W
37 . I 1204

52.97850

68.84-197

84 .7 tt44
100. 5779r

I 16. 44438

r32.31085

148. 17732

17 .32500

33.19147

49.05794

64.92441

80.79088

96.65735

rtz .52381

128.39028

t44 .2567 5

160. t2322

8.8535r
2l .0377e)

36 .90380

52.77027

08.63673

84 .50320

100.36967

I16.23614

t32.10261

r17 .96908

11.87231

15.86624

15.86646

15.86647

15 .86647

15.86647

15.86647

15.86647

15.86647

15.86647

15.86647

15.86647

15.86647

15.86647

15.86646

15.86647

15.86647

15.86647

t2.t8425
15.86604

15.86647

15. 86646

l5 .86647

l5 .86647

l5 .86647

15 .86647

15.86647

the policy of using the third alternative in state 1, thc second alternative in states 2
and 3 for every transition.

6. The Stationary Markov Decision process

Suppose again the individual has various alternatives available for operating the
system. Horvever, unlike the earlier case, u'hatever alternative is selected in a"state
must be used for all transitions. The alternative /c in state f therefore specifies transition
probabilities pk;i and transition reu'ards r.{'1 that rvill govern the system rvhenever state i
is entered' We describe the policy for the system by a vector d whose ath element is the
decision in state i, the number of the alternative to be used in state i. We seek the policy
that n'ill maximize the certain equivalent gain of the system.

we can find the optimum policy by a procedure analogous to policy iteration; it
appears in Figure 6.1.' First u'e select an arbitrary policy and solve the relative certain
equivalent Equations (4.9) to find the certain equivalent gain and relative certain
equivalents corresponding to it. Then we perform a policy ii,provement by selecting
as the ne*' decision in each state the alternative t that maximizes

Vnr : - I ," tEI-, pf; e-l'li+i)1

using the relative certain equivalents of the previous policy. When this has been done
for all states, rve have a nerv policy rrhich n'e evaluate and attempt to improve in the
same manner. When no change is possible in the alternative selecled in any state, we
have found the optimum policy. The proof of the optimality of this procedur" upp""".
in Appendix B.

The method can also be used rvhen strictly periodic and hence deterministic proeesses
are possible. In this ca,se pij : I for only one.i,.i * i, and, othenvise pi; : 0. The pro-
cedure of Figure 6.1 then reduces to the usual policy iteration of [l] and [2] involving
the solution of linear simultaneous equations.

The procedure of Figure 6.1 may also be vierved in the utility formulation as shorvn

I We thenk Arthur F. V_einott, Jr. for pointing out that the existenee of a solution to en eque-tion with the form of Equation (5.1) for the atationary infinite-horizon case is proved by
Itichard Bellman in the book Dynamic Programning. Princeton University press, hrincetori,
N.J., 1957, p. 329.
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Polict, Evaluation

For each state i fincl the alternttive fu that maximizes

i.r- 1

I'i" : - lrr I II:t ?o'1'-^;(rrir+i'il 1

^Y

using the relative certain equivtrlents f,r of the previous policl'. flake
this altenrative the rre\\'decision in stittc i. Repelt for nll strtcs to
find the ne\\' poliel'.

Frounp 6.1. The Policy Iteration Cycle with Risk Sensitivity-Certain Equivalent Form

PolicS' Evaluation

Frounn 6.2. The Policy Iteration Cycle with Risk Sensitivity-Utility Form.

in Figure 6.2. The quantity qf; is defined tobe plie-"I, in ugree*"nt with the definition
of. qi;. The nature of the iteration is clear from the figure.

Erample

Table 6.1 brings the results of applying this policy iteration procedure to the taxicab

example of Table 4.1. For a ra,nge of risk aversion coefficients 7 from - 1.0 to 1.0, the

table shows for each .y the optimum stationary policy, the certain equivalent gain, and

the relative certain equivalents of states I and 2 relative to state 3. In each case the

For the present policl' solve

e 
-i'(a+r j) : II:, p;j e-l(ri;*il;),

\vith Div -- 0, for the certain e(luivirlent gain fr und the relative certain

equivttlents Dr , 0z , , lN-L .

Policv Improvement

For the present policv solve the equa,tions

\\'ith u,v : -sgn 7, for the largest eigenvalue \ and the state utilities
'1.,[ttUzr "' rUN-L.

Policy Improvement

For each state e find the alternative [' that maxlmlzes

(J,o - II:, qk;iui

using the state utilities of the previous polic)'. flake this alternative

the ne\\'decision in state i. Repeat for all sta,tes to find the ne\\'policy,.
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TABLU 6.I

{rr{r o! I'olicu lrerarion in'l'a.r.ircb problcn 
Jor a Range o! Itisk ,lversion coefi.cienrs

Risk Aversion
Coefficient

^r

Policy certainaQuivalent 
Relative certain Equivalents No. of Iterations

d
7'2

- 1.0

-0.7
-0.50
-0.45
-0.11
-0.3
-0.2
-0.1
- 0.01

- 0.001

- 0 .0001

0

0.0001

0 .001

0.01

0.09

l 5 . 86647

15. 80921

15.73295

15.70329

15.69655

l 5 . 55569

15.34197

l 4 . 82655

l3 .56641

13.36751

l3 .31678

l3 .3{1il
13.3+21(i

l3 .32137

13. 1053(i

l0 .88344

10.62679

t) .56203

I .12216

I .21697

8 .98541

8 .95762

8.9t227

8.7fi25
8.62182

8.482(t7

0.20821

- 0 . 5593(i

- 1.57543

- l .96312

- 1 .9915(i

- I .9631 I

- I .89234

- I .68(i92

- I .24330

- I . 1832(i

- 1 . t7715

- I . 176{7

- I . 1757{)

- I . 1696(i

- 1 . 10755

- 0 . 57796

- 0 . 47318

1 .03740

I .20493

| .2r20t
t .22502

| .2228t)

1 . 18909

I .0.1290

0 .9039,1

0.73431

l2 . 15414

n.22ffl,8
12 .307 17

12 .34051

l 2 . 34803

12.49+27

l 2 . 66973

12.88752

12.94136

12 .66499

12 .65638

l2 . 6554(i

12 .65445

12 .(t157 |
l 2 . 54811

1 1 .00{38

10.76876

9.59114

2

3

3

3

:l

3

3

3

3

3

3

3*

3

3

3

3
.)
2

3
.)
a.

,
,
1

1

I
I
3

417 19

I
8

7

I

I

I

I

322
322
322
322
') .) .)
-u2
t) t) r)
aUa/

') 
.) r)

-22

') ') r)
-tL

') ') 
t)

--L

') ') 
r)

--L

.) ,) r)
a-ar.) .) ()
-2at,) .) .)
-H2') .) .)
-t2

')r),
-gLl.) .) .)
-4141

r22
t22
l2l
t21
t2l
111
111
lll
111
111

0.1

0. 16

0. l7
0.2
0.24

0.25

0.3
0.5
0.7

1.0

.39993

.47291

.ffi767

39437

26815

I 1748

6 .90733

t ltun by usual procedure preserrted in tl l

proeedure rva^s startcd using thc polic.y dcrivcd b}. sctting D,. : 0 for all i and then
entcring the polk.v improvement box. Tlrc numbcr of itt,rltions rcquircd to attain thcr
optimum policy appcar in thc last column of the tablt..

The table includes all values of 7 at which policy changes occur. Note that only b of
the 18 possible policies are optimum for an5, value of l. As z increases from -i, the
policyd : [3 2 2l is optimum forT through -0.45. Thend : [222] becomesoptimum
until 7 reaches 0.1. At this point d : [l 2 2l is best and remains so until d -- [1 2 U
becomes optimum at 7 : 0.17. when "y reaches 0.2J, the optimum policy changes
permanently to d : [1 I 11.

As 7 ralrges from -l to l, the certain equivalent gain decreases from 1ir.86642 to
8.48267. The number of iterations required for convergence is never more than B.

Figure 6.3 is a plot of certain equivalent gain of the optimum policy versus risk
aversion coefficient for the rallge covered by the table. The optimum jolicy regions
are indicated at the top of the figure. We see that most of the dependence of gain on
risk aversion coefficient occurs for y in the range -0.4 < ? S 0.4. The figure shorvs
quite clearly just horv sensitive the optimum policy and eertain equivalent gain are to
changes in risk attitude:
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Frounn 6.3. Certain Equivalent Gain of the Optimum Policy as a Function of Risk
Aversion Coefficient.

7. Conclusion

The ability to extend \farkov decision process analysis to the case of risk sensitivity
should have important application in many are&s. We have found the model excep-
tionally useful in considering optimum buying and selling strategies for a commodity
market. Employing this approach in such traditional applications as the optimization
of replacement and investment systems rvill provide interesting new insight into the
robustness of maximum-expected-value-per-transition policies.

Appendix A-Matrix Results Utilized in This Paper

The results in this paper are derived from the theory of matrices n'ith nonnegative
elements. An excellent discussion of this subject can be found in F. R. Gantmacher,
The Theory of Matices, Vol. 2, Chelsea, 1960, Chapter XIII. We shall now sum-
marize the important properties of ineducible nonnegative matr.ices used in the paper.

A matrix.4 is called reducible if there is a permutation that can place it in the form

( )
0

D
B
C

-o

O.t7
t

o25
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rvhere B and D &re squllre mrtrices;otherrvise, r1 is called irreducible. (An irreducible
Jlllrltov trlnsition probabilit.y matrix represents & process in n.hich all states com-
municute. )

An irreducible nonnegative matrix / alrvrys has a positive eigenvalue \ that is
It simple root of the characteristic equ:rtion. The moduli of oll the other eigenvatues do
not exceed tr' To this "mrxim&I" eigenvalue there eorresponcls an eigenvector u,ith
positive components having Ir unique direction. The matrix ;l is callef"primitive,, if
some po\\ er of -4 has all elements positive. (A primitive f [arkov transition probability
matrix is called "acyclic.") If 4 is primitive, then the moduli of all other 

"ig.nuulru.are strictly less than I. This means that asymptoticallv

(Al) ' /')
lim,*- (*).r"- : ,,

rvhere x is anv vector lvith nonnegative elements, and v is rn appropriately normalized
eigenvector (of unique direction) corresponding to tr.

If -4 is an irreducible matrix rvith nonnegative elements c;; and maximal eigenvalue
\, and x is a vector rvith positive components r;, then the follorving inequalities hold:

(A2) min, !; or; S tr _( maxi Ei a,i,

(AB) -i,,0 Eiri,r- < 1 s maxi Dio:,r, .fr; ri
Equation (AB ) holds rvith the equalitv signs if and onl.y if x is an eigenveetor cor-
responding to tr.

Appendix B-Proof of convergence of the poricy Iteration procedure to an
Optimal Policy

The proof rvill be carried out only for the case of risk aversion, i.e., positive risk
aversion coefficient and negative utilities. The same conclusions can be reached for risk
preference rvith appropriate inequality changes.

Assume that the policy iteration has converged on policl. ,B and that policy ,4 is any
other policy. Then from the policy improvement step rve know that

(Bl) Eiqfiui" 3liqiiuu,",

rvhere u' is an eigenvector of Q' corresponding to the maximal eigenvalue )rr,

(82) Liq?iuiu : lr"lttu.

Thus, rve have

(B3) Eiqliui' s \'a,'.

Since all components uiB are negative, we can write

Ds,ilail , ,,(B4) ' ,u,"1 :,., t:1,2,...,N.

The left inequality of Equation (AB ) provides the condition

*rrr- E; gf; I ur' I . 
^,.lu,, | :..,
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where tr/ is the maximal eigenvalue of Q^. Therefore we obtain

(B5) trr z mini Ei q!' !"f | , 
^'.lur' | -

To find the implication for certain equivalent gains of both policies, we note that
(B5) implies

- !t.,tr'< - lt,x'
'Y ^l

and fia < 6iu. Thus policy iteration can only converge on an optimum policy.

It norv remains to be shorvn that the policy iteration procedure s'ill converge on an

optimum policy. Assume that the procedure has improved policy A to arrive at policy

B. Then from the policy improvement step rve knorry that

(BO) Eiq?iui^ > !iqiiui^
with inequality for some i.

Recognizing u' &s an eigenvector of Q' corresponding to trr, s'e can write

(B7) Eiq?iui^ 2 \^u,^.

If ur happens also to be an eigenvector of 0' then the abbve equation implies directly
that tr'zi/ > jr^ur^ for some i, which because the ui' are negative leads to tr' < )t'.

If u'is not an eigenvector of QB then we rervrite (B7) as

(B8) Ei 
,q?i lTi^ I 

= ^^.lu,^l
fn view of Equation (A3), we have

(Be) trB < maxt E, 
,r;rli, 

, 
= ^^.

Note the strict inequality on the left occurs because rve have assumed that u' is not
an eigenvector of Q'.

In terms of certain equivalent gain these results imply

(810) A^ < A".

Thus at each iteration the certain equivalent gain must increase.

Since there is only a finite number of possible policies, the procedure will converge in
a finite number of iterations.
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Preface

The following three papers are especially relevant to decision
analysis. They either help us refine our assessment procedures or
demonstrate the need for decision analysis in important decisions

. "Judgment under uncertainty: Heuristics and Biases, clearly
demonstrates several biases that occur when people express theii judgments
nurnerically. This pPef catalogs these biases 

'Uy 
defining the unieriying-

empirical judgments that seem to be-producing them. The irobability 
- "

assessment procedure presented earlier in this collection was motivited Uy
this work.

. "Prospect Theory: An.Analysis of Decision Under Risk,, presents utiIity
tleory as a descriptive model of decision-making under risk and-develops an"
alternate model -- prospect theory. The paper identifies consistent biases
people exhibit in decision<naking situations and shows when and how they
operate.

"The Framing of Decisions and the Psychology of Choice,,shows that the
"decision frame" adopted by the decision-rnaker 6iplains many Jeiision
biases, that the frame is not often consciously cbntrolled,-and that
alternate frames account for seeming reversals-of preferenie. Thii paper
questions what we really mean by rational choice.

899





47

JUDCMENT UNDER UNCERTAINTY:

HEURISTICS AND BIASES

Amos Tversky

Stanford Uni vers i ty

Daniel Kahneman

Un i vers i ty of Bri t i sh Col umbi a

Reprinted from scignce, september 27, 1974, volume 185, pp. ll24-l13l.

Copyright @ 1974 by the American Association
for the Advancement of Science.





Manl' decisions are based on beliefs
concerning the likelihood of uncerrain

events such as the outcome of an elec-

tion, the guilt of a defendant. or the

future value of the dollar. These beliefs
are usually expressed in statentents such

as "I think that . ," "chances are

. ," "it is unlikely that . ," and

so forth. Occasionally, beliefs concern-
ing uncertain events are expressed in
numerical form as odds or subjective
probabilities. What deternrines such be-

liefs? How do people assess the prob-
abilitl' of an uncerrain event or the

value of an uncertain guantit),? This
article shows that people rell' on a

limited nunrber of heuristic principles
which reduce the complex tasks of as-

sessing probabilities and predicting val-
ues to simpler judgmental operations.

In general, these heuristics are quite
useful. but sometimes they lead to severe

and systematic errors.
The subjective assessment of proba-

bility resembles the subjective assess-

ment of physical quantities such as

distance or size. These jud-Qments are

all based on data of limited validity,
which are processed according to heu-

ristic rules. For example, the apparerrt
distance of an object is determined !n
part by its clarity. The more sharnly the

object is seen, the closer it appears to
be. This rule has some validity, because

in any given scene the more distant

objects are seen less sharply than nearer

objects. However, the reliance ou this
rule leads to sl,stematic errors in the
estimation of distance. Specifically, dis-
tances are often overestimated when

visibility is poor because the conrours

of objects are blurred. On the other
hand. distances are often underesti-

thc euthor! .re robcra of tbc depereat of
prychology rt thc f,cbrcs llnlverrlty, Jcruleleo,
Irreel.

nrated when visibilitf is good because

the objects are seen sharplv. Thus, the

reliance on claritl' as an indication of
distance leads to common biases. Such

biases are also fourrd in the intuitive
judgnrent of probabilitl,. This article
describes three heuristics that are en.t-

plol'ed to assess probahilities and to
predicr values. Biases to u,hich these

heuristics lead are enumerated, and the

applied and theoretical implicarions of
thesc observations are discussed.

Representativeness

Manv of the probabilistic questions
with which people are concerned belong
to one of the following types: What is
the probability that object A belongs to
class B? What is the probability thar
event A originates from process B?

What is the probahility rhat process B
will -uenerate event A? In answerin_q

such questions, people rl,pically rely on
the representativeness heuristic, in
which probabiliries are evaluated by the
degree to which A is representative of
B. that is. by the degree to which A
resembles B. For example. when A is

highly representative of B, the proba-
bility that A originates from B is judged

to be high. On the orher hand, if A is

not sinrilar to B, the probability that A
originates from B is judged to be low.

For an illustration of judgment by
representativeness. consider an indi-
vidual who has been described by a

former neighbor as follows: "Steve is
very shy and withdrawn. invariably
helpful. but with little interest in peo-
ple. or in the world of reality. A meek
and tidv soul. he has a need for order
and structure. and a passion for detail."
How do people assess the prohahilitl'
that Steve is engaged in a particular

Judgment under Uncertainty:

Heuristics and Biases

Bidses in judgmenrs reveal some heuristics of

thinking under uncertainty.

Amos Tversky and Daniel Kahneman

occupation from a list of possibilities
(for example. farmer. salesmarr. airlinc
pilot, librarian. or physician r') How do
people tlrder these occupat ions f rom
nrost to least likely? In the representa-
t iveness heuristic, the probability, that
Steve is a librarian, for example. is

assessed by the dcgree lo which he is

rcpresentative of. or similar to, the
stereot),pe of a librarian. Indeed, re-
search with problems of this type has
sht)wn that people order the occupa-
tions by probability and b1, similarity
in exactl), rhe sante way ( / ). This ap-
proach to the judgment of probabiliry
leads to serious errors, because sim-
ilarity. or representativeness, is not tn-
fluenced b), several factors that should
affect judgnrenrs of probability.

lnsensiti r,irl to prior probability ol
outco,ne.r. One of the factors that have
no effect on representativeness but
should have a major effect on probabil-
itv is the prior probabilitl.. or base-rare
frequenc)'. of the outcomes. In the case

of Steve. for example, the fact that
there are ntan), more farmers than Ii-
brarians in the population should enrer
into an)'reasonable estimate of the
probabilitl,that Steve is a tibrarian
rather than a farmer. Considerations of
base-rate f requencl,. however. do not
affect the similariry of Steve to the
stereotypes of librarians and farmers.
lf people evaluare probability by rep-
resentativeness, therefore. prior proba-
bilities will be neglected. This hypothesis
was tested in an experiment where prior
probabilities were manipulated (/).
Subjects were shown brief personality
descriptions of several individuals, al-
legedly sanrpled at random from a

group of . 100 professionals--+ngineers
and lawyers. The subjects were asked
to assess, for each description. the prob-
ability that it belonged ro an engineer
rather than to a lawyer. In one experi-
mental condition, subjects were told
that the group from which the descrip-
tions had been drawn consisted of 70
engineers and 30 lawyers. In another
condition, subjects were told that the
group consisted of 30 engineers and 70
lawyers. The odds that any particular
description belongs to an engineer
rather than ro a lawyer should be
higher in the first condition, where there
is a majority of engineers, than in the
second condition, where there is a

majority of lawyers. Specifically. it can
be shown by applying Baves'rule that
the ratio of these odds should be (.7 / .3)2.

or 5.44. for each description. In a sharp
violation of Bayes' rule. the subjects
in the two conditions produced essen-

L
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tially the same probability judgments.

Apparently, subjects evaluated the like-

lihood that a particular description be-

longed to an engineer rather than to a

lawyer by the degree to which this

description was representative of the

two stereot!'pes, with little or no re-Qard

for the prior probabilities of the cate-

gories.

The subjects used prior probabilities

correctly when they had no other infor'
mation. In the absence of a personality

sketch, they judged the probability that

an unknown individual is an engineer

to be .7 and .3, respectively, in the two

base-fate conditions. However, ErqI-
probabiI ities Wejg - eftestlvslljgnote9
whep a description was intygdgcg.q,

even when lhis description was tot4ly
u-ninfq1mtiy""e. The responses to the

following description illustrate this phe-

nomenon:

Dick is. a 30 year old man. He is mar-
ried with no children. A man of high
ability and high motivation, he promises

lo be quite successful in his field. He is

well liked by his colleagues.

This description was intended to convey

no information relevant to the question

of whether Dick is an engineer or a

lawyer. Consequently, the probability

that Dick is an engineer should equal

the proportion of engineers in the

group, as if no description had been

given. The subjects, however, judged

the probability of Dick being an engi-

neer to be .5 regardless of whether the

stated proportion of engineers in the

group was .7 or .3. Evidently, people

respond difierently when given no evi-

dence and when given worthless evi-

dence. Wh.n_lq=tp99$c__Jyidqltce is

given, pfior probabilities are properly

utilized; when woifhless evidence ii
given, prior probabilities are ignoted 

-

(r).
Insensitivity to sample size. To eval-

uate the probability of obtaining a par-

ticular result in a sample drawn from

a specified population, people typically

apply the representativeness heuristic.

That is, they assess the likelihood of

a sample result, for example, that the

average height in a randorn sample of
ten men will be 6 feet ( 180 centi-

meters), by the similarity of this result

to the corresponding parameter (that

is, to the average height in the popula-

tion of men). The similarity of a sam-

ple statistic to a population parameter

does not depend on the size of thc

sample. Consequently, if probabilities

are assessed by representativeness. then

the judged probability of a sample sta-

tistic will be essentially independent of

sample size. Indeed. when subjects

assessed ihe distributions of average

height for samples of various sizes.

they produced identical distributions.

For example, the probability of obtain-

ing an average height greater than 6

feet was assigned the same value for
samples of 1000, 100, and l0 men (2).

Moreover, subjects failed to appreciate

the role of sample size even when it
was emphasized in the formulation of

the problem. Consider the following
question:

A certain town is served by two hos-

pitals. In the larger hospital abbut 45

babies are born each day, and in the

smaller hospital about 15 babies are born
each day. As you know, about 50 percent

of all babies are boys. However, the exact

percentage varies from day to day. Some'

times it may be higher than 50 percent,

sometimes lower.

For a period of I year, each hospital

recorded the days on which more than 50
percent of the babies born wene boys.

Which bospital do you think recorded

more such dal's?

percent of each other) (53)

The values in parentheses are the num-

ber of under-graduate students who

chose each answer.

Most subjects jud-aed the probability

of obtaining more than 60 percent boys

to be the same in tbe small and in the

large hospital, presumably because these

events are described by the same sta-

tistic and are therefore equally repre-

sentative of the general population. In
contrast, sampling theory entails that

the expected number of days on which

more than 60 percent of the babies are

boys is much greater in the small hos-

pital than in the large one, because a

large sample is less likely to stray from

50 percent. This fundamental notion

of statistics is evidently not part of
people's repertoire of intuitions.

A similar insensitivity to samPle size

has been reported in judgments of Pos-

terior probability, that is, of the prob-

ability that a sample has been drawn

from one population rather than from

another. Consider the following ex-

ample:

Imagine an urn filled with balls, of
which % are of one color and tA of
another. One individual has drawn 5 balls
'from the urn, and found that 4 were red

and t was white Anothcr individual has

drawn 20 balls and found that 12 were

red and 8 were whitc. Which of the two
individuals should feel more confident that
the urn contains 36 red balls and rA white
balls, rather than the opposite? What odds

should each individual give?

In this problem, the correct posterior

odds are 8 to I for the 4: I sample

and I 6 to I for the 12 : 8 sample. as-

suming equal prior probabilities. How-
ever, most people feel that the first

sample provides much stronger evidence

for the hypothesis that the urn is pre-

dominantly red, because the proportion
of red balls is larger in the first than in
the second sample. Here again, intuitive
judgments are dominated by the sample

proportion and are essentially unaffected

by the size of the sample, which plays

a crucial role in the determination of
the actual posterior odds (2). In ad-

dition, intuitive estimates of posterior

odds are far less extreme than the cor-
rect values. The underestimation of the

impact of evidence has been observed

repeatedly in problems of this type (3, 4).

It has been labeled "conservatism."

M iscoeg_g pyion s ol_sharei. People ex-
pect that a sequence of events generated

by a random process will represent the

essential characteristics of that process

even when the sequence is short. In
considering tosses of a coin for heads

or tails, for example, people regard the

sequence H-T-H-T-T-H to be more
likely than the sequence H-H-H-T-T-T,
which does not appear random, and

also more likell, than the sequence H-H-
H-H-T-H. which does not represent the

fairness of the coin Q\ . Thus, people

expect that the essential characteristics

of the process will be represented, not

only globally in the entire sequence,

but also locally in each of its parts. A
locally representative sequence, how-

ever, deviates systematically from chance

expectation: it contains too many al-

ternations, and too few runs. Another

consequence of the belief in local rep-

resentativeness is the well-known gam-

bler's fallacy. After observing a long

run of red on the roulette wheel. for
example. most people erroneously be-

lieve that black is now due, presumably

because the occurrence of black will
result in a more representative sequence

than the occurrence of an additional

red. Chance is commonly viewed as a

self-correcting process in which a devi-

ation in one direction induces a devia-

tion in the opposite direction to restore

the equilibrium. In fact, deviations are

not "corrected" as a chance process

unfolds, they are merely diluted.

Misconceptions of chance are not

limited to naive subjects. A study of
the statistical intuitions of experienced

research psychologists (5 ) revealed a

lin-eering belief in what may be called

the "law of small numbers." according

to which even small samples are highly
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represenrarive of the populations from
which thel' are drawn. The responses

of t hcse investi-sators reflected the ex-
pectation that a valid hl,pothesis abour
a popularion n,ill be represenred by, a

statisticalll, significant result in a sam-
ple-with lirtle regard for its size. As
lu consequence. the researchers put too
much faith in the results of smalt sam-
ples and grossly overestimaled the
replicability of such results. In the
actual conduct of research, this bias
leads to the selection of samples of
inadequate size and to overinterpretation
of findings.

lnsensitiyir.v to predictabiliry,. people

are sometimes called upon to make such
numerical predictions as the future value
of a stock, the demand for a commod-
ity, or the outcome of a football game.

Such predictions are often nrade by
representativeness. For example, SUp-

pose one is given a description of a

company and is asked to predict its
future profit. If the description of rhe
company is ver), favorable, a ver),
high profit will appear most represen-
tative of that description; if the descrip-
tion is med iocre. a mediocre perform-
ance u,ill appear most representative.
The degree to which the description is

favorable is unaffecred by the reliability'
of that description or by the de_eree to
which it permits accurate prediction.
Hence. if people predict solely in terms
of the favorableness of the description,
their predictions will be insensitive to
the reliability of the evidence and to
the expected accuracy of the prediction.

This mode of judgment violates the
normative statistical theory in which
the extremeness and the range of pre-
dictions are controlled by considerations
of predictability. When predictability
is nil, the same prediction should be
made in all cases. For example, if the
descriptions of companies provide no
information relevant to profit, then the
same value (such as average profit)
should be predicted for all companies.
If predictability is perfect, of course.
the values predicted will match the
actual values and the range of predic-
tions will equal'the range of outcomes.
In general, the higher the predictability,
the wider the range of predicted values.

Several studies of numerical predic-
tion have demonstrated that intuitive
predictions violate this rule, and that
subjects show little or no regard for
considerarions of predictability (I). In
one of these studies, subjects were pre-
sented with several paragraphs, each
describing the performance of a stu-

dent teacher during a particular prac-
tice lesson. Some subjects were asked
to cyaluote the quality of the lesson
described in the paragraph in percenrile
scores. relative to a specified population.
Other subjecrs were asked to predicr.
also in percentile scores, the standing
of each student teacher 5 years after
the practice lesson. The judgments made
under the two conditions were identicat.
That is, the prediction of a remote
criterion (success of a teacher after 5
years ) was identical to the evaluation
of the information on which the predic-
ti6n was based ( the quality of the
practice lesson ). The students who made
these predictions were undoubtedly
aware of the Iimited predictability of
teaching competence on the basis of a

single trial lesson 5 years earlier; never-
theless. their predictions were as ex-
treme as their evaluations.

The illusiort ol validitl,. As we have

seen. people often predict by selecting
the oulcome ( for example. an occupa-
tion ) that is most representative of the
input (for example, the description of
a person ). The confidence they have
in their prediction depends primarily
on the degree of representativeness
( that is. on the quality of the match
between the selected outcome and the
inputl with little or no regard for the
factors that limit predictive accuracy.
Thus, people express great confidence
in the prediction that a person is a

librarian when given a description of
his personality which marches the
stereotype of librarians, even if the
description is scanty, unreliable, or out-
dated. The unwarranted confidence
which is produced by a good fit between
the predicted outcome and the input
information may be called the iilusion
of validity. This illusion persists even
when the judge is aware of the factors
that limit the accuracy of his predic-
tions. It is a common observation that
psychologists who conduct selection
interviews often experience considerable
confidence in their predictions, even
when they know of the vast literature
that shows selection interviews to be

highly fallible. The continued reliance
on the clinical interview for selection.
despite repeated demonstrations of its
inadequacy. amply attests to the strength
of this effect.

The internal consistency of a pattern
of inputs is a major determinant of
one's confidence in predictions based

on these inputs. For example. peop.le

express more confidence in predicting the
final grade-point average of a student

whose first-vear record consists entirell,
of B's rhan in predicring rhc grade-
point average of a student whose first_
year record includes rnar.y A's and C.s.
Highly'consistent parterns are most
of ten observed when the input vari-
ables are highly redundant or correlated.
Hence, people tend to have great co!-
fidence in predictions based on redun-
dant input variables. However, aln

elemenrary result in the statisrics of cor-
relation asserts that, given input vari-
ables of stared validity, a prediction
based on several such inputs can
achieve higher accuracy when they are
independent of each other than when
they are redundant or correlated. Thus.
redundancy among inputs decreases
accuracy even as it increases confidencc.
and people are often confident in pre-
dictions that are quite likely to be off
the mark (/).
_ Ll_ltronceptions ol regression. Suppose
a lilEe gioup of children has been
examined on two equivalent versions of
an aptitude test. If one selects ten chil-
dren from among those who did best on
one of the two versions, he will usualll,
find their performance on the second
version to be somewhat disappointing.
Conversell,. if one selects ten children
f rom among those who did worst on
one version, they will be found. on the
average, to do somewhat better on the
other version. More generally, consider
two variables X and Y which have the
same distribution. If one selects indi-
viduals whose average X score deviates
from the mean of X by & units. then
the average of their Y scores will usual-
ly deviate from the mean of y by less

than & units. These observations illus-
trate a general phenomenon known as !t

regression toward the mean, which was I

first documented Uy Galton more than I

I oo years ago. I

In the normal course of life, one
encounters many instances of regression
toward the mean, in the comparison
of the height of fathers and sons, of
the intelligence of husbands and wives.
or of the performance of individuals
on consecutive examinations. Neverthe-
less, people do not develop correct in-
tuitions about this phenomenon. First.
they do not expect regression in many
contexts where it is bound to occur.
Second, when they recognize the occur-
rence of regression, they often invent
spurious causal explanations for it (, ).
We suggest that the phenomenon of re-
gression remains elusive because it is in-
comparible with the belief thar the
predicted outcome should be maximallv
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representative of the input, and, hence,

that the value of the outcome variable

should he as extreme as the value of

the input variable.

The failure to recognize the import

of regression can have pernicious con-

sequences. as illustrated by the follow-

ing observation ( / ). In a discussion

of flight training, experienced instruc-

tors noted that praise for an exception-

ally smooth landing is typically followed

by a poorer landing on the next try,

while harsh criticism after a rough

landing is usually followed by an im-

provement on the next try. The instruc-

tors concluded that verbal rewards are

detrimental to learning, while verbal

punishments are beneficial, contrary to

accepted psychologicat doctrine. This

conclusion is unwarranted because of

the presence of regression toward the

mean. As in other cases of repeated

examination. an improvement will usu-

ally follow a poor performance and

^ 
deterioration will usually follow an

outstanding performance, even if the

instructor does not respond to the

trainee's achievement on the first at-

tempt. Because the instructors had

praised their trainees after good land-

ings and admonished them after poor

ones, they reached the erroneous and

potentially harmful conclusion that pun-

ishment is more effective than reward.

Thus, the_ f1ilure 11 understand the

efiect of regression leads one to ovef-

estimate the efiectiveness of punish_;

ment and to underestimate the efiec-

tiveness of reward. In social interactiiin,

as well as in trainiiig, rewards are tytr
ically administered when performance

is good, and punishments are typically

administered when performance is

poor. By regression alone, therefore,

behavior is most likely to improve after

punishment and most likely to deterio-

rate after reward. Consequentty, the

human condition is such that, by chance

alone, one is most often rewarded for
punishing others and most often pun-

ished for rewarding them. People are

generally not aware of this contingency.

In fact, the elusive role of regression

in determining the apparent conse-

quences of reward and punishment

seems to have escaped the notice of stu-

dents of this area.

Availability

There are situations in which people

assess the frequency of a class or the

probability of an event by thc ease with
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which instances or occurrences can be

brought to mind. For example, one ma)'

assess the risk of heart attack among

middle-aged people b1, recalling such

occurrences among one's acquaintances.

Similarly, one may evaluate the proba-

bility that a given business venture will

fail by imagining various difficulties it

could encounter. This judgmental heu-

ristic is called avajlabjlity. Availability
is a useful clue for assessing frequency

or probability, because instances of

large classes are usually recalled better

and faster than instances of less fre-

quent classes. However, availability is

affected by factors other than frequency
and probability. Consequently, the re-

liance on availability leads to predicta-

ble biases. some of which are illustrated

below.

Biases due to the retrievability ol in-

stanies-.-When the size of a elasi is

judged by the availability of its in-

stances, a class whose instances are

easily retrieved will appear more nu-

merous than a class of equal frequency

whose instances are less retrievable. In

an elementary demonstration of this ef-

fect, subjects heard a list of well-known

personalities of both sexes and were

subsequently asked to judge whether the

list contained more names of men than

of women. Difierent lists were presented

to different groups of subjects. In some

of the lists the men were relatively more

famous than the women, and in others

the women were relatively more famous

than the men. In each of the lists, the

subjects erroneously judged that tbe

class (sex) that had the more famous

personalities was the more numerous

(6).

In addition to familiarity, there are

other factors, such as salience, which

afiect the retrievability of instances. For

example, the impact of seeing a house

burning on the subjective probability of
such accidents is probably greater than

the impact of reading about a fire in
the local paper. Furthermore, recent oc-

currences are likely to be relatively

more available than earlier occurrences.

It is a common experience that tbe

subjective probability of traffic accidents

rises temporarily when one sees a car

overturned by the side of the road.

Diases due to the eflectiveness ol a

search sel. Suppose one samples a word

(of three letters or more) at random

from an English text. Is it more likely

that the word starts with r or that

r is the third letter? People approach

this problem by recalling words that

begin with r ( road ) and words that
have r in the third position (car) and

assess the relative frequency by the

ease with which words of the two types

come to mind. Because it is much easier

to search for words by their first letter

than by their third letter. most people
jud-ee words that begin with a given

consonant to be more numerous than
words in which the. same consonant ap-

pears in the third position. They do so

even for consonants, such as r or k,
that are more frequent in the third
position than in the first (6).

Different tasks elicit different search

sets. For example, suppose you are
asked to rate the frequency with which
abstract words ( thought, love) and con-
crete words (door, water) appear in
written English. A natural way to

answer this question is to search for
contexts in which the word could ap-
pear. It seems easier to think of
contexts in which an abstract concept

is mentioned (love in love stories) than

to think of contexts in which a concrete

word (such as door) is mentioned. If
the frequency of words is judged by the

availability of the contexts in which

they appear, abstract words will be
judged as relatively more numerous than

concrete words. This bias has been ob-

served in a recent study O which

showed that the judged frequency of
occurrence of abstract words was much

higher than tha.t of concrete words,

equated in objective frequency. Abstract
words were also judged to appear in a

much greater variety of contexts than
concrete words.

Biases ol imaginability. Sometimes

one has to assess the frequency of a

class whose instances are not stored in
memory but can be generated accord-
ing to a given rule. In such situations,
one typically generates several instances

and evaluates frequency or probability
by the eese with which ,the relevant in-
stances can be constructed. However,
the ease of constructing instances does

not always reflect their actual frequency,

and this mode of evaluation is prone

to biases. To illustrate, consider a group

of l0 people who form committees of
k members, 2<e<8. How many
different committees of & members can

be formed? The correct aDswer to this

problem is given by the binomial coef.

ficient (t*o) which reaches a maximum

of. 252 for k - 5. Clearly, the number

of committees of k members equals

the number of committees of (10 - t)
members, because anv committee of k
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members defines a un ique group of
(10 - A) nonmembers.

One wa), to answer this question with-
out conlputation is to mentally, con-
stl uct conrmittees of /t members and
to evaluate their number by the ease

with u,hich thel,come to mind. Conr-
m ittees of few members. sa), 2, are
more available than committees of many
members, say 8. The simplest scheme
for the construction of committees is.a
partition of the group into disjoint sets.

One readill, sees that it is easy to con-
struct five disjoint committees of z
members, while it is impossible ro gen-

erate even two disjoint committees of
8 members. Consequentll'. if f re-
quenc), is assessed by' imaginabilitl,. or
by availability for construction, rhe

small commirtees will appear more num-
erous than larger committees, in con-
trast to the correct bell-shaped f unc-
tion. Indeed. when naive subjects were

asked to estimare the number of distinct
committees of various sizes, their esti-

mates were a decreasing monotonic
function of committee size 6).For
erample. the median estimate of the
number of committees of 2 members
was 70, while the estimate for com-
mittees of 8 members was 20 (the cor-
rect answer is 45 in both cases).

Ima_qinability plays an important role
in the evaluation of probabilities in real-
life situations. The risk involved in an

adventurous expedition, for example, is

evaluated by imagining contingencies
with which the expedition is not
equipped to cope. If many such difficul-
ties are vividly portrayed, the expedi-
tion can be made to appear exceedingly
dangerous. although the ease with which
disasters are imagined need not reflect
their actual likelihood. Conversely, the
risk involved in an undertaking may be

grossly underestimated if some possible

dangers are either difficult to conceive
of, or simply do not come to mind.

, Illusory correlation. Chapman and
Chapman (8) have deicribed an interest-
ing bias in the iudgment of the fre-
quency with which two events co-occur.

They presented naive judges with in-
formation concerning several hl,pothet-
ical mental patients. The data for each

patient consisted of a clinical diagnosis

and a drawing of a person made by
the patient. Later the judges estimated
the frequenc), with which each diagnosis
( such as paranoia or suspiciousness )

had been accompanied by various fea-
tures of the drawing (such as peculiar

ey'es). The subjects markedly overesti-

mated the frequenc), of co-occurrence of

natural associales, such as suspicious-
ness and peculiar eyes. This effect \A,as

labeled illusory correlarion. In their er-
roneous judgments of rhe data to which
they' had been exposed, naive subjects
"rediscovered" much of the common.
but unfounded, clinical lore concern-
ing the interpretation of the draw-a-
person test. The illusory correlation
effect was extremely, resistant to con-
tradictorl, data. It persisted even when
the correlation between symptom and
diagnosis was actually negarive, and it
prevented the judges from detecting

rblationships that were in fact present.

Availability provides a natural ac-
count for the illusory-correlation effect.
The judgment of how frequentlv two
events co-occur could be based on the
strength of the associative bond between
them. When the association is strong,
one is Iikell' ro conclude that the events

have been frequentlt,paired. Conse-
quentll'. strong associares u,ill be judged

to have occurred together frequently.
According to this view, the illusory
correlation between suspiciousness and
peculiar drawing of the e)'es, for ex-

anrple. is due to the fact that suspi-

ciorrsness is more readily associated with
the eyes than with any other part of
the body.

Lifelong experience has raughr us

that. in _eeneral, instances of large
classes are recalled better and faster
than instances of less frequent classes;

that likely occurrences are easier to
imagine than unlikely ones; and that
the associative connections between
events are strengthened when the events

frequently co-occur. As a result, man
has at his disposal a procedure (the

availability heurisric) for esrimating the
numerosity of a class, the likelihood of
an event, or the frequency of co-occur-
rences, by the ease with which the
relevant mental operations of retrieval,
construction, or association can be

performed. However, as the preceding

examples have demonstrated, this valu-
able estimation procedure results in
systematic errors.

Adjustment and Anchoring

In many situations. people make esti-
mates by starting from an initial value
that is adjusted to yield the final answer.
The initial value, or starting point, may
be suggested by the formulation of the
problem. or it may be the result of a

partial computation. In either case,

adjustments are typically insufficient (4).

Thar is, differenr srarring points yield
differenr estimates. which are biased
toward rhe initial values. We call rhis
phenonrenon anchoring.

I nsufficient ad justment, In a demon_
strarion of the anchoring effect, subjects
were asked to estimate various quanti_
ties. stared in percentages ( for example,
the percentage of African countries in
the United Nations). For each quanrity,
a number between 0 and 100 was deter-
mined by spinning a wheel of fortune
in the subjects' presence. The subjects
were instructed to indicate first whether
that number was higher or lower than
the value of rhe quantiry, and then to
estimate the value of the quantity by
moving upward or downward from the
given number. Different groups were
given difierent numbers for each quan-
titl', and these arbitrary numbers had a
marked effect on estimates. For example.
the median esrimates of the percentage
of African countries in the Unired Na-
tions were 25 and 45 for groups that re-
ceived l0 and 65. respectively', as start-
ing points. Payoffs for accuracv did not
reduce the anchoring effect.

Anchoring occurs not only, when the
starting point is given to the subject,
but also when the subject bases his
estimate on the result of some incom-
plete computation. A study of intuitive
numerical estimation illustrates this ef-
fect. Two groups of high school students
estimated, within 5 seconds, a numerical
expression that was written on the
blackboard. One group estimated the
product

8x7x6><5x4x3x2xl
while another group estimated the
product

I xZ x 3 x 4 x S x 6 x 7 x g

To rapidly answer such questions, peo-
ple may perform a few steps of compu-
tation and esrimate the product by
extrapolation or adjustment. Because ad-
justments are typically insufficient, this
procedure should lead to underestima-
tion. Furthermore, because the result of
the first few steps of multiplication (per-

formed from left to right) is higher in
the descending sequence than in the
ascending sequence, the former expres-
sion should be judged larger than the
latter. Both predictions were confirmed.
The median estimate for the ascending
sequence was 5l 2. while the median
estimate for the descending sequence

was 2,250. The correct answer is 40,320.

Biases in the eval uation ol conjunc-
rive and disjunctivi iients. In"a recent
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study by Bar-Hillel (9) subjects were

given the opportunitl' to bet on one of

two events. Three t)'pes of events were

used: (i) simple events. such as drawing

a red marble from a bag containing 50

percent red marbles and 50 percent

white marbles: (ii) conjunctive events.

such as drawing a red marble seven

times in succession, with replacement,

from a bag containing 90 percent red

marbles and l0 percent white marbles;

and (iii) disjunctive events, such as

drawing a red marble at least once in
seven successive tries, with replacement,

from a bag containing I 0 percent red

marbles and 90 percent white marbles.

In this problem, a significant majority

of subjects preferred to bet on the con-
junctive event ( the probability of which

is .48) rather than on the simple event

(the probability of which is .50). Sub-

jects also preferred to bet on the simple

event rather than on the disjunctive

event, which has a probability of .52.

Thus, most subjects bet on the less likely
event in both comparisons. This pattern

of choices illustrates a general finding.

Studies of choice among gambles and

of judgments of probability indicate
that people tend ro overe_s!!m{e_ J_!e
probability of conjunctive events (/,0\

and to underestimate the probability of

disjunctive events. These biases are

readily explained as effects of anchor-

ing. The stated probability of the

elementary event (success at aDy one

stale) provides a natural starting point
fOr the estimation of the probabilities of
both conjunctive and disjunctive events.

Since adjustment from the starting point

is typically insufficient, the final esti-

mates remain too close to the probabili-

ties of the elementary events in both

cases. Note that the overall probability

of a conjunctive event is lower than

the probability of each elementary

event, whereas the overall probability of
a disjunctive event is higher than the

probability of each elementary event.

As a consequence of anchoring, the

overall probability will be overestimated

in conjunctive problems and underesti-

mated in disjunctive problems.

Biases in the evaluation of compound

events are particularly significan.t in the

context of planning. The successful

completion of an undertaking, such as

the development of a new product, typi-
cally has a conjunctive character: for
the undertaking to succeed, each of a

series of events must occur. Even when

each of these events is very likely, 'the

overall probability of success can be

quite low if the number of events is

large. The general tendency to overesti-

mate the probability of conjunctive

events leads to unwarranted optimism in

the evaluation of the likelihood that a

plan will succeed or that a project will
be completed on ,time. Conversely, dis-

junctive structures are typically encoun-

tered in the evaluation of risks. A com-

plex system, such as a nuclear reactor

or a human body, will malfunction if
any of its essential components fails.

Even when the likelihood of failure in
each componen,t is slight, the probability

of an overall failure can be high if
many components are involved. Be-

cause of anchoring, people will tend to

runderestimate the probabilities of failure

in complex systems. Thus, the direc-

tion of the anchoring bias can some-

times be inferred from the structure of
the event. The chain-like structure of
conjunctions leads to overestimation, the

f unnel-like structure of disjunctions

leads to underestimation.

Ancfioring in the assesstnent ol sub-

iectit,e probab,ilitl' distributiorts. In deci-

sion analysis. experts are often required

to express their beliefs about a quantity,

such as the value of the Dow-Jones

average on a particular day, in the

form of a probabili,ty distribution. Such

a distribution is usually constructed by

asking the person to select values of

the quantity that correspond to specified

percentiles of his subjective probability
distribution. For example, the judge

may be asked to select a number, Xs,,
such that his subjective probability that

this number will be higher than the

value of the Dow-Jones average is .90.

That is, he should select the value Xe.

so that he is just willing to accept 9 to
I odds that the Dow-Jones average will
not exceed it. A subjective probability

distribution for the value of the Dow-

Jones average can be constructed from
several such judgments corresponding to

different percentiles.

By collecting subjective probability

distributions for many difierent quanti-

ties, it is possible to test the judge for
proper calibration. A judge is properly

(or externally) calibrated in a set of
problems if exactly n percent of tbe

true values of the assessed quantities

falls below his stated values of Xn. For
example, the true values should fall
below X,,, for I percent of the quanti-

ties and above Xjn for I percent of the

quantities. Thus, the true values should

fall in the confidence interval between

X,,, and Xnj on 98 percent of the prob-

lems.

Several investigators (l l) have ob-

tained probability distributions for many

quantities f rom a large number of
judges. These distributions indicated

large and systematic departures from
proper calibration. In most studies, tbe

actual values of the assessed quantities

are either smaller than X,n or greater

than X nn for about 30 percent of tbe

problems. That is, the subjects state

overly narrow confidence intervals which

reflect more certainty than is justified by
their knowledge about the assessed

quantities. This bias is common to

naive and to sophisticated subjects, and

it is not eliminated by introducing prop-

er scoring rules. which provide incentives

for external calibration. This effeo is at-

tributable, in part at least, to anchoring.

To select X on for the value of the

Dow-Jones average, for example, it is

natural to begin hy thinking about one's

best estimate of the Dow-Jones and to
adjust this value upward. If this adjust-

ment-like most others-is insufficient,

then X.,,, will not be sufficiently extreme.

A similar anchoring effect will occur in
the selection of X1tt, which is presumably

obtained by adjusting one's best esti-

mate downward. Consequently. the con-
fidence interval between X rn and X so

will be too narrow. and the assessed

probability distribution will be too tight.

In support of this interpretation it can

be shown that subjective probabilities

are systematically altered by a proce-

dure in which one's best estimate does

not serve as an anchor.

Subjective probability distributions
for a given quantity (the Dow-fones
average) can be obtained in two differ-
ent ways: (i) by asking the subject to
select values of the Dow-Jones that

correspond to specified percentiles of
his probability distribution and (ii) by
asking the subject to assess the prob-

abilities that the true value of the

Dow-Jones will exceed some specified

values. The two procedures are formally
equivalent and should yield identical

distributions. However, they suggest dif-
ferent modes of adjustment from difter-
cent anchors. In procedure (i), the
natural starting point is one's best esti-

mate of the quantity. In procedure (ii),

on the other hand, the subject may be

anchored on the value stated in the
question. Alternatively, he may be an-

chored on even odds, or 50-50 chances,

which is a natural starting point in tbe

estimation of likelihood. In either case,

procedure (ii) should yield less extreme

odds than procedure (i).

To contrast the two procedures, a

set of 24 quantities (such as the air dis-
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tance from New Delhi to peking) was
presented to a group of subjects who
assessed either Xro or Xeo for each prob-
lem. Another group of subjects re-
ceived the median judgment of the first
group for each of the 24 quantities.
They were asked to assess the odds that
each of the given values exceeded the
true value of rhe relevant quantity. In
the absence of any bias, the secobd
group should retrieve the odds specified
to the first group, that is, 9 : l. How-
ever, if even odds or the stated value

serue as anchors, the odds of the sec-

ond group should be less extreme, that
is, closer to I : I. Indeed, the median
odds stated by this group, across all
problems, were 3 : 1. When the judg-
ments of the two groups were tested
for external calibration. it was found
that subjects in the first group were too
extreme, in accord with earlier studies.
The events that they defined as having
a probability of .l 0 actually obtained in
24 percent of the cases. In contrast,
subjects in the second group were too
conservative. Events to which they as-

signed an average probability of .34
actually obtained in 26 percenr of the
cases. These results illustrate the man-
ner in which the degree of calibration
depends on the procedure of elicitation.

Dlccussion

This article has been concerned witb
cognitive biases that stem from tbe .reli-
ance on judgmental heuristics. These
biases are not attributable to motiva-
tional efiects such as wishful thinking or
the distortion of judgments by payoffs
and penalties. Indeed, several of the
severe errors of judgment reported
earlier occurred despite the fact that
subjects were encouraged to be accurate
and were rewarded for the correct
answers (2, 6) .

The reliance on heuristics and the
prevalence of biases are not restricted
to laymen. Experienced researchens are
also prone to the same biases-when
they think intuirively. For example, the
tendency to predict the outcome that
best represents the data, with insufficient
regard for prior probability, has been

observed in the intuitive judgments of
individuals wbo have had extensive
training in sratisrics (l , 5). Although
the statisrically sophisticated avoid
elementary errors, such as the gambler's
fallacy, their intuitive judgments are
liable to similar fallacies in more in-
tricate and less transparent problems.

It is not surprising that useful heuris-
tics such as representativeness and
availability are retained, even though
they occasionally lead to errors in pre-
diction or esrimation. What is perhaps
surprising is the failure of people to
infer f rom lifelong experience such
fundamental statistical rules as regres-
sion toward the mean, or the eftect of
sample size on sampling variabitity. Al-
though everyone is exposed, in the Dor-
mal course of life, to numerous ex-
amples from which these rules could
hive been induced, very few people

discover the principles of sampling and
regression on their own. Statistical prin-
ciples are not learned from everyday
experience because the relevant in-
stances are not coded appropriately. For
example, people do not discover that
successive lines in a text differ more in
average word length than do successive

pages. because they simply do not at-
tend to the average word length of in-
dividual lines or pages. Thus, people
do not learn the relation between sample
size and sampling variability, although
the data for such learning are abundant.

The lack of an appropriate code also
explains why people usually do not
detect the biases in tbeir judgments of
probability. A person could conceivably
learn whether his judgments are exter-
nally calibrated by keeping a tally of the
proportion of events that actually occur
among those to which he assigns the
same probability. However, it is not
natural to group events by their judged
probability. In the absence of such
grouping it is impossible for an indivi-
dual to discover, for example, that only
50 percent of the predictions to which
he has assigned a probability of .9 or
higher actually came true.

The empirical analysis of cognitive
biases has implications for the theoreti-
cal and applied role of judged probabili-
ties. Modern decision theory e 2, I 3)
regards subjective probability es tbe
quantified opinion of an idealized per-
son. Specifically, the subjective proba-
bility of a given event is defined by the
set of bets about this event that such a

person is willing to accept. An inter-
nally consistent, or coherent, subjective
probability measure can be derived for
an individual if his choices among bets
satisfy certain principles, that is, the
axioms of the theory. The derived prob-
ability is subjective in the sense that
difierent individuals are allowed to have
different probabilities for the same event.
The major contribution of this ap-
proach is that it provides a rigorous

subjective inrerpretation of probability
that is applicable to unique events and
is embedded in a general theory of ra_

tional decision.

It should perhaps be noted that, wbile
subjective probabilities can sometimes
be inferred from preferences amoDg
bets, they are normally not formed i;
this fashion. A person bets ou team A
rather than on team B because he be-
lieves that ream A is more likely to
win; he does not infer this belief irom
his betting preferences. Thus, in reality,
subjective probabilities determine pref-
erences among bes and are not de-
rived from them, as in the axiomatic
theorl, of rational decision ( l2).

The inherently subjective nature of
probability has led many students to the
belief that coherence, or internal con_
sistency, is the only valid criterion by
which judged probabilities should be
evaluared. From the standpoint of the
formal theory of subjecrive probability,
any set of internally consistent probabil-
ity' judgments is as good as 

"ny 
other.

This criterion is not entirely satisfactory,
because an internally consistent set of
subjective probabilities can be incom-
patible with orher beliefs held by the
individual. Consider a person whose
subjective probabilities for all possible
outcomes of a coin-tossing game reflect
the gambler's fallacy. That is, his esti .

mate of the probability of tails oD a
particular toss increases with the num-
ber of consecutive heads tbat preceded
that toss. The judgmenr of such a per-
son could be internally consistent ald
therefore acceptable as adequa,te sub-
jective probabilities according to tbe
criterion of the formal theory. These
probabilities, however, are incompatible
with the generally held belief tha.t a
coin has no memory and is therefore in_
capable of generating sequential de-
pendencies. For judged probabilities ro
be considered adequate, or rational, in-
ternal consistency is not enough. The
judgments musr be compatible with the
entire web of beliefs held by the in-
dividual. Unfortunately, there can be
no simple formal procedure for assess-
ing the compatibility of a set of proba-
bility judgments with the judge'i total
system of beliefs. The rational judge
will nevertheless strive for compatibility,
even though internal consistency is
more easily achieved and assessed. In
particular, he will attempt to makc his
probability judgments compatible with
his knowledge about the subject mat-
ter, the laws of probability, and his owo
judgmental heuristics and biases.
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Summery

This ar,ticle described three heuristics

that are employed in making judgments

under uncertainty: (i) representativeness,

which is usually employed when peo-

ple are asked to judge the probability

that an object or event A belongs to

class or process B; (ii) availability of in-

stances or scenarios, which is often ern-

ployed when people are asked to assess

the frequency of a class or the plausibil-

ity of a particular development; and

(iii) adjustment from an anchor, which

is usually employed in numerical predic-

tion when a relevant value is available.

These heuristics are highly economical

and usually effective, but they lead to

systematic and predictable errors. A
better understanding of these heuristics

and of the biases to which they lead

could improve judgments and decisions

in situations of uncertainty.
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PROSPECT THEORY: AN ANALYSIS oF DECISION UNDER RISK

By DeNrer- KnnNeueN eNn Ar.aos Tvensryl
, This paper presents a critique-of expected utility theory as a descriptive model of

decision making under risk, and develops an alternitive 
'n,ia.r, 

o["a plorp".t tr,.orv.
lhoicel among risky prospects exhibit siveral pervasive effects t'hat ar" in-iti.i"nt rritt,
the hasic tenets of utility theory. In particulai, people underw"igrri ourcoi"r-ih"t 

"."merely probable in comparison with outcomes thai are obtainei with certainty. This
tendency, called the certainty effect, contributes to risk aversion in ctroi"cs in"oi"ing.u."
gains and to risk seeking in choices,involving sure losses. In aaarion, peopie lenera[ydiscard components that are shared by all prospects under considerati"n. rfiis Gnaen"v,
called the isolation eftect, leads to inconiistent preferences *rr"n tt" sa-e-iiroice is
presented in different forms. An atternative theory of choice is developed, in *trict ratre
is assigned to gains and losses rather than to finil assets and in which prou"uiiiti", 

"r.replaced by decision weights. The value function is normally con*r" to, i"ins, .ommonty
convex-for losses, and is generally steeper for losses than for gains. o"al".ion *"igt t, 

"r"generally lower than the corresponding probabilities, except-in the range of loi prou-
abilities. Overweighting of low probabiiities may contributsto the anraciireness of both
insurance and gambling.

1. lxrnooucrroN
ExpE'srBp UuLITYTHEoRv has dominated the analysisof decision makingunder
risk. It has been generally accepted as a normative model of rational ctroil [zl],
and widely applied as a descriptive moder of economic behavior, e.g. tri,lj.
Thus, it is assumed that all reasonable people would wish to obey the axioms of the
theory [47,35f, and that most people actually do, most of the time.

The present paper describes several classes of choice problems in which
preferences systematically violate the axioms of expected utility theory. In the
light of these observations we argue that utility theory, as it is commonly
interpreted and applied, is not an adequate descriptive model and we propose an
alternative account of choice under risk.

2. cnmreue

Decision making under risk can be viewed as a choice between prospects or
gambles. A prospect (xv pi . . . i xn p") is a contract that yields outcome x; with
probability p;, where pr+p2+...ipn:1. To simplify notation, we omit null
outcomes and use (x, p) to denote the prospect (x, pio, r -p) that yierds x with
probability p and 0 with probability t -p. The (riskless) piospect ihat yields r
with certainty is denoted by (x). The present discussion is iestricted to prospects
with so-called objective or standard probabilities.

The application of expected utility theory to choices between prospects is based
on the following three tenets.

(i) Expectation: f,I(xr, pt,.. . i xn pn): pfl(x)+ .. . +pnu(x).

. 
r 
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of Naval Rescarch under contract N0o0r4-78-c-titoo (enpe oraer xo.Jlosiuider subcontract
78-072'0722 from Decisions and Designs, Inc. to Perceptronics, Inc. We also thank the Center for
Advanced Study in the Behavioral Sciences at Stanford fbr its support.
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D. KAHNEMAN AND A. TVERSKY

That is, the overall utility of a prosPect, denoted by U, is the expected utility of

its outcomes.

(ii) Asset Integration: (xy Pr; . . .i xn p,) is acceptable at asset position w iff
(J(w * xt pri. . . ; w I xn p")> u(w).

That is, a prospect is acceptable if the utility resulting from integrating the

prospect with one's assets exieeds the utility of those assets alone. Thus, the

domain of the utility function is final states (which include one's asset position)

rather than gains or losses.

Although the domain of the utility function is not limited to any particular class

of consequences, most applications of the theory have been concerned with

monetary outcomes. Furthermore, most economic applications introduce the

following additional assumption.

(iii) Risk Aversion: a is concave (n"< 0).

A person is risk averse if he prefers the certain prospect (x) to any risky prospect

with expected value x. [n expected utility theory, risk aversion is equivalent to the

concavity of the utility function. The prevalence of risk aversion is perhaps the

best known generalization regarding risky choices. It led the early decision

theorists of the eighteenth century to propose that utility is a concave function of
money, and this idea has been retained in modern treatments (Pratt [33], Arrow

t4l).
In the following sections we demonstrate several phenomena which violate

these tenets of expected utility theory. The demonstrations are based on the

responses of students and university faculty to hypothetical choice problems. The

respondents were presented with problems of the type illustrated below.

Which of the following would you prefer?

A: 50% chance to win L,000,

50% chance to win nothing;

B: 450 for sure.

The outcomes refer to Israeli currency. To appreciate the significance of the

amounts involved, note that the median net monthly income for a family is about

3,000 Israeli pounds. The respondents were asked to imagine that they were

actually faced with the choice described in the problem, and to indicate the

decision they would have made in such a case. The responses were anonymous,

and the instructions specified that there was no 'correct' answer to such problems,

and that the aim of the study was to find out how people choose among risky

prospects. The problems were presented in questionnaire form, with at most a

dozen problems per booklet. Several forms of each questionnaire were con-

structed so that subjects were exposed to the problems in different orders. In

addition, two versions of each problem were used in which the left-right position

of the prospects was reversed.

The problems described in this paper are selected illustrations of a series of
effects. Every eftect has been observed in several problems with difterent

outcomes and probabilities. Some of the problems have also been presented to
groups of students and faculty at the University of Stockholm and at the
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University of Michigan. The pattern of results was essentially identical to the
results obtained from Israeli subjects.

The reliance on hypothetical choices raises obvious questions regarding the
validity of the method and the generalizability of the results. We are keenly aware
of these problems. However, all other methods that have been used to test utility
theory also suffer from severe drawbacks. Real choices can be investigated either
in the field, by naturalistic or statistical observations of economic behavior, or in
the laboratory. Field studies can only provide for rather crude tests of qualitative
predictions, because probabilities and utilities cannot be adequately measured in
such contexts. Laboratory experiments have been designed to obtain precise
measures of utility and probability from actual choices, but these experimental
studies typically involve contrived gambles for small stakes, and a large number of
repetitions of very similar problems. These features of laboratory gambling
complicate the interpretation of the results and restrict their generality.

By default, the method of hypothetical choices emerges as the simplest pro-
cedure by which a large number of theoretical questions can be investigated. The
use of the method relies on the assumption that people often know how they
would behave in actual situations of choice, and on the further assumption that the
subjects have no special reason to disguise their true preferences. If people are
reasonably accurate in predicting their choices, the presence of common and
systematic violations of expected utility theory in hypothetical problems provides
presumptive evidence against that theory.

Certainty, Probabilily, and Possibility

In expected utility theory, the utilities of outcomes are weighted by their
probabilities. The present section describes a series of choice problems in which
people's preferences systematically violate this principle. we first show that
people overweight outcomes that are considered certain, relative to outcomes
which are merely probable-a phenomenon which we label the certainty efiect.

The best known counter-example to expected utility theory which elploits the
certainty eftect was introduced by the French economist Maurice Allais in 1953
[2]. Allais' example has been discussed from both normative and descriptive
standpoints by many authors [28, 3t]. The following pair of choice problems is a
variation of Allais' example, which differs from the original in that it refers to
moderate rather than to extremely large gains. The number of respondents who
answered each problem is denoted by N, and the percentage who choose each
option is given in brackets.

-
Pnosler\a 1: Choose between

A: 2,500 with probability

2,400 with probability

0 with probability

N :72 [18]

B: 2,400 with certainty..33,

.66,

.01;

[82]*
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Pnost-r,v. 2: Choose between

C: 2,500 with probability

0 with probability

N :72 [83]*

D. KAHNEMAN AND A. TVERSKY

.33,

.67.

D: 2,400 with probability .34,

0 with probability .66.

[ 17]

The data show that 82per cent of the subjects chose B in Problem 1, and 83 per

cent of the subjects chose C in Problem 2. Each of these preferences is significant
at the .01 level, as denoted by the asterisk. Moreover, the analysis of individual
patterns of choice indicates that a majority of respondents (61 per cent) made the

modal choice in both problems. This pattern of preferences violates expected

utility theory in the manner originally described by Allais. According to that
theory, with n(0):0, the first preference implies

u(2,400) > .33u(2,500) + .66u(2,400) or .34u(2,400) >.33u(2,500)

while the second preference implies the reverse inequality. Note that Problem 2 is

obtained from Problem 1 by eliminating a .66 chance of winning 2400 from both

prospects under consideration. Evidently, this change produces a greater reduc-

tion in desirability when it alters the character of the prospect from a sure gain to a

probable one, than when both the original and the reduced prospects are

uncertain.

A simpler demonstration of the same phenomenon, involving only two-

out@me gambles is given below. This example is also based on Allais [2].

Pnost-ppt 3:

A: (4,000,.80),

N:95 120)

PnosLEM 4

C: (4,000,.20),

N :95 [65]*

B: (3,000).

[80]*

D: (3,000,.25\.

[3s]

or

or

In this pair of problems as well as in all other problem-pairs in this section, over

half the respondents violated expected utility theory. To show that the modal

pattern of preferences in Problems 3 and 4 is not compatible with the theory, set

z(0):0, and recall that the choice of B implies u(3,000)/u(4,OOO)>4/5,
whereas the choice of C implies the reverse inequality. Note that the prospect

C : (4,000, .20) can be expressed as (A, .25), while the prospect D = (3,000, .25)

can be rewritten as (.B,.25). The substitution axiom of utility theory asserts that if
B is preferred to A, then any (probability) mixture (.B, p) must be preferred to the

mixture (A, p). Our subjects did not obey this axiom. Apparently, reducing the
probability of winning from 1.0 to .25 has a greater eftect than the reduction from
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'8 to .2. The following pair of choice problems illustrates the certainty effect with
non-monetary outcomes.

PnosLEM 5

A: B: A one-week tour of
England, with certainty.

N :72 122)

50Yo chance to win a three-
week tour of England,

France, and Italy;

[78]*

Pnosleu 6:

PnosLeu 7:

A: (6,000, .45), B

N:66 U4l

C: 5%o chance to win a three-

week tour of England,

France, and Italy;

N :72 [67]*

D: l0Yo chance to win a one-
week tour of England.

[33]

The certainty eftect is not the only type of violation of the substitution axiom.
Another situation in which this axiom fails is illustrated by the following problems.

(3,000, .90)

[86]*

Pnoslevr 8:

C: (6,000, .00L), D: (3,000, .002).

N:66 U3)* 127)

Note that in Problem 7 the probabilities of winning are substantial (.90 and .45),
and most people choose the prospect where winning is more probable. [n Problem
8, there is a possibiliry of winning, although the probabilities of. winning are
minuscule (.002 and .001) in both prospects. [n this situation where winning is
possible but not probable, most people choose the prospect that offers the larger
gain. Similar results have been reported by MacCrimmon and Larsson [2t].

The above problems illustrate common attitudes toward risk or chance that
cannot be captured by the expected utility model. The results suggest the
following empirical generalization concerning the manner in which the substitu-
tion axiom is violated. Il (y, pq) is equivalent to (x, p), then (y, gr) is preferred to
(x,pr),01p,q, r< 1. This property is incorporated into an alternative theory,

developed in the second part of the paper.

917



D. KAHNEMAN AND A. TVERSKY

The Reflection Effect

The previous section discussed preferences between positive prospects, i.e.,

prospects that involve no losses. What happens when the signs of the outcomes are

reversed so that gains are replaced by losses? The left-hand column of Table I

displays four of the choice problems that were discussed in the previous section,

and the right-hand column displays choice problems in which the signs of the

outcomes are reversed. We use -x to denote the loss of x, and ) to denote the

prevalent preference, i.e., the choice made by the majority of subjects.

TABLE I

PnereneNces Berweex Posttvs nNo NeGerIvE PRosPEqrs

Positive prospects Negative prospects

Problem 3:

N :95
Problem 4:

N:95
Problem 7:

N=66
Problem 8:

N :66

[e2]* t8l

142) [s8]

t8l lez)*

[70]* [30]

Problem 3':

N:95
Problem 4':

N=95
Problem 7':

N:66
Problem 8':

N:66

In each of the four problems in Table I the preference between negative

prospects is the mirror image of the preference between positive prospects. Thus,

the reflection of prospects around 0 reverses the preference order. We label this

pattern the reflection efiect.

Let us turn now to the implications of these data. First, note that the reflection

eftect implies that risk aversion in the positive domain is accompanied by risk

seeking in the negative domain. In Problem 3', for example, the majority of

subjects were willing to accept a risk of .80 to lose 4,000, in preference to a sure

loss of 3,000, although the gamble has a lower expected value. The occurrence of

risk seeking in choices between negative prospects was noted early by Markowitz

[29]. Williams [4t] reported data where a translation of outcomes produces a

dramatic shift from risk aversion to risk seeking. For example, his subjects were

indifterent between (100, .65; - 100, .35) and (0), indicating risk aversion. They

were also indifierent between (-200, .80) and (-100), indicating risk seeking. A
recent review by Fishburn and Kochenberger [14] documents the prevalence of

risk seeking in choices between negative prospects.

Second, recall that the preferences between the positive prospects in Table I are

inconsistent with expected utility theory. The preferences between the cor-

responding negative prospects also violate the expectation principle in the same

manner. For example, Problems 3' and 4', like Problems 3 and 4, demonstrate that

outcomes which are obtained with certainty are overweighted relative to

uncertain outcomes. In the positive domain, the certainty eftect contributes to a

risk averse preference for a sure gain over a larger gain that is merely probable. In

the negative domain, the same eftect leads to a risk seeking preference for a loss
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that is merely probable over a smaller loss that is certain. The same psychological
principle-the overweighting of certainty-favors risk aversion in the domain of
gains and risk seeking in the domain of losses.

Third, the reffection effect eliminates aversion for uncertainty or variability as
an explanation of the certainty effect. consider, for example, the prevalent
preferences for (3,000) over (4,000, .80) and for (4,000, .20) over (3,000, .25). To
resolve this apparent inconsistency one could invoke the assumption that people
prefer prospects that have high expected value and small variance 1see, e.g., A[ais
[2]; Markowitz [30]; Tobin [41]). Since (3,000) has no variance white (4,000, .go)
has large variance, the former prospect could be chosen despite its lower expected
value. when the prospects are reduced, however, the difference in variance
between (3,000,.25) and (4,000,.20) may be insufficient to overcome the
diflerence in expected value. Because (-3,000) has both higher expected value
and lower variance than (-4,000,.80), this account entails that the sure loss
should be preferred, contrary to the data. Thus, our data are incompatible with the
notion that certainty is generally desirable. Rather, it appears that certainty
increases the aversiveness of losses as well as the desirabiliiy of gains.

Pro babilistic Ins urcnce

The prevalence of the purchase of insurance against both large and small losses
has been regarded by many as strong evidence for the concavity of the utility
function for money. why otherwise would people spend so much money to
purchase insurance policies at a price that exceeds the expected actuarial cost?
However, an examination of the relative attractiveness of various forms of
insurance does not support the notion that the utility function for money is
concave everywhere. For example, people often prefer insurance programs that
ofter limited coverage with low or zero deductible over comparable policies that
offer higher maximal coverage with higher deductibles-contrary to risk aversion
(see, e.g., Fuchs [16]). Another type of insurance problem in which people's
responses are inconsistent with the concavity hypothesis may be called prob-
abilistic insurance. To illustrate this concept, consider the following problem,
which was presented to 95 Stanford University students.

PnosLrM 9: Suppose you consider the possibility of insuring some property
against damage, e.g., fire or theft. After examining the risks and the premium you
find that you have no clear preference between the options oi purchasing
insurance or leaving the property uninsured.

It is then called to your attention that the insurance oompany offen a new
program called probabilistic insurance.In this program you pay half of the regular
premium. In case of damage, there is a 50 per cent chance that you pay the other
half of the premium and the insurance company covers all the losses; and there is a
50 per cenlchance that you get back your insurance payment and suffer all the
losses. For example, if an accident occurs on an odd day of the month, you pay the
other half of the regular premium and your losses are covered; but if the accident
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occurs on an even day of the month, your insurance payment is refunded and your

losses are not covered.

Recall that the premium for full coverage is such that you find this insurance

barely worth its cost.

Under these circumstances, would you purchase probabilistic insurance:

Yes, No.

N = 95 [20] [80]*

Although Problem 9 may appear contrived, it is worth noting that probabilistic

insurance represents many forms of protective action where one pays a certain

cost to reduc.e the probability of an undesirable event-without eliminating it

altogether. The installation of a burglar alarm, the replacement of old tires, and

the decision to stop smoking can all be viewed as probabilistic insurance.

The responses to Problem 9 and to several other variants of the same question

indicate that probabilistic insurance is generally unattractive. Apparently, reduc-

ing the proUaUitity of a loss from p to p/2 is less valuable than reducing the

probability of that loss from p/2 to 0.- 
[n contrast to these data, expected utility theory (with a concave r) implies that

probabilistic insurance is superior to regular insurance. That is, if at asset position

i on" is just willing to pay a premium y to insure against a probability p of losing

.r, then one should definitely be willing to pay a smaller premium ry to reduce the

probability of losing x from p to (1-r)p, 0( r( 1. Formally, if one is indifterent

Letween (n-*,piw,l-p) and (w-y), then one should prefer probabilistic

insurance (w - x, (t - r)p ; w - l, rp i w - fy, 1 - p) over regular insurance (w - y).

To prove this proposition, we show that

Pu(w - x) + (l - P)u(w) : u(w - Y)

implies

(l - r)pu(w - x) + rpu (w - y) + (1 - p)u(w - rv) > u (w - v)'

Without loss of generality, we can set n(w -x):0 and n(w) = 1. Hence, u(w -
y\ = | - P, and we wish to show that

rp(l-p)+(1 -p)u(w-ry\>L-p or u(w-ry)>l-rp

which holds if and only if n is concave.

This is a rather puzzling consequenoe of the risk aversion hypothesis of utility

theory, because probabilistic insurance appears intuitively riskier than regular

insurance, which entirely eliminates the element of risk. Evidently, the intuitive

notion of risk is not adequately captured by the assumed concavity of the utility

function for wealth.

The aversion for probabilistic insurance is particularly intriguing because all

insurance is, in a sense, probabilistic. The most avid buyer of insurance remains

vulnerable to many financial and other risks which his policies do not @ver. There

appears to be a significant difierence between probabilistic insurance and what

may be called contingent insurance, which provides the certainty of coverage for a
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specified type of risk. compare, for example, probabilistic insurance against all
forms of loss or damage to the contents of your home and contingent insurance
that eliminates all risk of loss from theft, say, but does not cover other risks, e.g.,
fire' We conjecture that contingent insurance will be generally more attractive
than probabilistic insurance when the probabilities of unprotected loss are
equated. Thus, two prospects that are equivalent in probabilities and outcomes
could have different values depending on their formulation. Several demon-
strations of this general phenomenon are described in the next section.

The Isolation Effect

In order to simplify the choice between alternatives, people often disregard
components that the alternatives share, and focus on the components that
distinguish them (Tverskv [aa]. This approach to choice problems may produce
inconsistent preferences, because a pair of prospects can be decomposed into
common and distinctive components in more than one way, and difterent decom-
positions sometimes lead to difterent preferences. We refer to this phenomenon as
the isolation effect.

PnosLeM 10: consider the following two-stage game. In the first stage, there is
a probability of .75 to end the game without winning anything, and a probability of
.25 to move into the second stage. If you reach the second stage you have a choice
between

(4,000,.80) and (3,000).

Your choice must be made before the game starts, i.e., before the outcome of the
fint stage is known.

Note that in this game, one has a choice between .25 x.80: .20 chance to win
4,000, and a .25 x 1.0 = .25 chance to win 3,000. Thus, in terms of finar outcomes
and probabilities one faces a choice between (4,000,.20) and (3,000,.25), as in
Problem 4 above. However, the dominant preferences are difierent in the two
problems. of 141 subjects who answered Problem 10,78 per cent chose the latter
prospect, contrary to the modal preference in Problem 4. Evidently, people
ignored the first stage of the game, whose outcomes are shared by both prospects,
and considered Problem 10 as a choice between (3,000) and (4,000,.80), as in
Problem 3 above.

The standard and the sequential formulations of Problem 4 are represented as
decision trees in Figures 1 and 2, respectively. Following the usual convention,
squares denote decision nodes and circles denote chance nodes. The essential
difference between the two representations is in the location of the decision node.
In the standard form (Figure 1), the decision maker faces a choice between two
risky prospects, whereas in the sequential form (Figure 2) he faces a choice
between a risky and a riskless prospect. This is accomprished by introducing a
dependency between the prospects without changing either probabilities or
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Ftcune 1.-The representation of Problem 4 as a decision tree (standard formulation).

Ftcune 2.-The representation of Problem 10 as a decision tree (sequential formulation).

outcomes. Specifically, the event'not winning 3,000' is included in the event'not
winning 4,000' in the sequential formulation, while the two events are indepen-

dent in the standard formulation. Thus, the outcome of winning 3,000 has a

certainty advantage in the sequential formulation, which it does not have in the

standard formulation.
The reversal of preferences due to the dependency among events is particularly

significant because it violates the basic supposition of a decision-theoretical

analysis, that choices between prospects are determined solely by the probabilities

of final states.

It is easy to think of decision problems that are most naturally represented in

one of the forms above rather than in the other. For example, the choice between

two different risky ventures is likely to be viewed in the standard form. On the

other hand, the following problem is most likely to be represented in the

sequential form. One may invest money in a venture with some probability of
losing one's capital if the venture fails, and with a choice between a fixed agreed

return and a percentage of earnings if it succeeds. The isolation efiect implies that

the contingent certainty of the fixed return enhances the attractiveness of this

option, relative to a risky venture with the same probabilities and outcomes.
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The preceding problem illustrated how preferences may be altered pv different
representations of probabilities. we now show how choices may be altered by
varying the representation of outcomes.

consider the following problems, which were presented to two different groups
of subjects.

Pnosler, 11: In addition to whatever you own, you have been given 1,000.
You are now asked to choose between

A: (1,000,.50), and B: (500).

N:70 t16l [84]*

PnoeLelvr 12: In addition to whatever you own, you have been given 2,000.
You are now asked to choose between

C: (-1,000,.50), and D: (-500).

N:68 [69*] t3ll

The majority of subjects chose I in the first problem and c in the second. These
preferences conform to the reflection effect observed in Table I, which exhibits
risk aversion for positive prospects and risk seeking for negative ones. Note,
however, that when viewed in terms of final states, the two choice problems are
identical. Specifically,

A = (2,000, .50; 1,000, .50): g, and B : (1,500): D.

In fact, Problem 12 is obtained from problem ll by adding 1,000 to the initial
bonus, and subtracting 1,000 from all outcomes. Evidently, the subjects did not
integrate the bonus with the prospects. The bonus dii not enter into the
comparison of prospects because it was common to both options in each problem.

The pattern of results observed in Problems 1 1 and 12 is clearly inconsistent with
utility theory. In that theory, for example, the same utility is asiigned to a wealth
of $100, 000, regardless of whether it was reached from a prior wlalth of $95,000
or $105,000. consequently, the choice between a total wealth of $100,000 and
even chances to own $95,000 or $105,000 should be independent of whether one
currently owns the smaller or the larger of these two amounts. with the added
assumption of risk aversion, the theory entails that the certainty of owning
$100,000 should always be preferred to the gamble. However, the responses to
Problem 12 and to several of the previous questions suggest that this pattern will
be obtained if the individual owns the smaller amount, but not if he owns the
larger amount.

The apparent neglect of a bonus that was common to both options in problems
11 and 12 implies that the carriers of value or utility are changis of wealth, rather
than final asset positions that include current wealth. This conclusion is the
cornerstone of an alternative theory of risky choice, which is described in the
following sections.
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3. THEoRY

The preceding discussion reviewed several empirical effects which appear to

invalidate expected utility theory as a descriptive model. The remainder of the

paper presents an alternative account of individual decision making under risk,

called prospect theory. The theory is developed for simple prospects with
monetary outcomes and stated probabilities, but it can be extended to more

involved choices. Prospect theory distinguishes two phases in the choice process:

an early phase of editing and a subsequent phase of evaluation. The editing phase

consists of a preliminary analysis of the offered prospects, which often yields a

simpler representation of these prospects. In the second phase, the edited

prospects are evaluated and the prospect of highest value is chosen. We next

outline the editing phase, and develop a formal model of the evaluation phase.

The function of the editing phase is to organize and reformulate the options so

as to simplify subsequent evaluatiort and choice. Editing consists of the appli-

cation of several operations that transform the outcomes and probabilities

associated with the oftered prospects. The major operations of the editing phase

are described below.
Coding- The evidence discussed in the previous section shows that people

normally perceive outcomes as gains and losses, rather than as final states of
wealth or welfare. Gains and losses, of course, are defined relative to some neutral

reference point. The reference point usually corresponds to the current asset

position, in which case gains and losses coincide with the actual amounts that are

received or paid. However, the location of the reference point, and the

consequent coding of outcomes as gains or losses, can be aftected by the

formulation of the oftered prospects, and by the expectations of the decision

maker.

Combination Prospects can sometimes be simplified by combining the prob-

abilities associated with identical outcomes. For example, the prospect

(20O,.25;200,.25\ will be reduced to (200, .50). and evaluated in this form.

Segregation. Some prospects contain a riskless component that is segregated

from the risky component in the editing phase. For example, the prospect

(300, .80; 2OO,.2O\ is naturally decomposed into a sure gain of 200 and the risky
prospect (100, .80). Similarly, the prospect (-400, .40; -100, .60) is readily seen

to consist of a sure loss of 100 and of the prospect (-300, .40).

The preceding operations are applied to each prospect separately. The follow-
ing operation is applied to a set of two or more prospects.

Cancellation The essence of the isolation effects described earlier is the

discarding of components that are shared by the offered prospects. Thus, our
respondents apparently ignored the first stage of the sequential game presented in

Problem 10, because this stage was common to both options, and they evaluated

the prospects with respect to the results of the second stage (see Figure 2).

Similarly, they neglected the common bonus that was added to the prospects in
Problems 11 and 12. Another type of cancellation involves the discarding of
common constituents, i.e., outcome-probability pairs. For example, the choice
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between (2OO,.20;100,.50; -50,.30) and (200,.20; 150,.50;-100,.30) can be
reduced by cancellation to a choice between (100,.50; -50,.30) and
(150,.50; -100,.30).

Two additional operations that should be mentioned are simplification and the
detection of dominance. The first refers to the simplification of prospects by
rounding probabilities or outcomes. For example, the prospect (101, .49) is likely
to be recoded as an even chance to win 100. A particularly important form of
simplification involves the discardingof extremely unlikely outcomes. The second
operation involves the scanning of offered prospects to detect dominated alter-
natives, which are rejected without further evaluation.

Because the editing operations facilitate the task of decision, it is assumed that
they are performed whenever possible. However, some editing operations either
permit or prevent the application of others. For example, (500, .20; l0l, .49) will
appear to dominate (500, .15; 99, .51) if the second constituents of both prospects
are simplified to (100, .50). The final edited prospects could, therefore, depend on
the sequence of editing operations, which is likely to vary with the structure of the
offered set and with the format of the display. A detailed study of this problem is
beyond the scope of the present treatment. In this paper we discuss choice
problems where it is reasonable to assume either that the original formulation of
the prospects leaves no room for further editing, or that the edited prospects can
be specified without ambiguity.

Many anomalies of preference result from the editing of prospects. For exam-
ple, the inconsistencies associated with the isolation effect result from the cancel-
lation of common components. Some intransitivities of choice are explained by a
simplification that eliminates small differences between prospects (see Tversky
[43]). More generally, the preference order between prospects need not be
invariant across contexts, because the same ofiered prospect could be edited in
different ways depending on the context in which it appears.

Following the editing phase, the decision maker is assumed to evaluate each of
the edited prospects, and to choose the prospect of highest value. The overall
value of an edited prospect, denoted v, is expressed in terms of two scales, a
and u.

The first scale, z', associates with each probability p a decision weight z(p),
which reflects the impact of p on the over-all value of the prospect. However, zr is
not a probability measure, and it will be shown later that r@)+r(l-p) is
typically less than unity. The second scale, u, assigns to each outcome x a number
u(.r), which reflects the subjective value of that outcome. Recall that outcomes are
defined relative to a reference point, which serves as the zero point of the value
scale. Hence, u measures the value of deviations from that reference point, i.e.,
gains and losses.

The present formulation is concerned with simple prospects of the form
(x, pi y, q), which have at most two non-zero outcomes. In such a prospect, one
receives x with probability p, y with probability q, and nothing wiitr piouauitity
l-p-q, where p+q< 1. An offered prospect is strictly positive if its outcomes
are all positive, i.e., if x, y >0 and p+q= 1; it is strictly negative if its outcomes
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are all negative. A prospect is regular if it is neither strictly positive nor strictly

negative.

The basic equation of the theory describes the manner in which a' and u are

combined to determine the over-all value of regular prospects.

If (x, p ; y, 4) is a regular prospect (i.e., either p + q < 1, or x >- 0 > y, or x < 0 <
y), then

(1) V(x, p; y, q)= r(p)o(x)+ r(q)o(y)

where u(0):Q zr(0):0, and r(l):1. As in utility theory, V is defined on

prospects, while u is defined on outcomes. The two scales coincide for sure

prospects, where V(x, 1.0) : V(x): u(x).

Equation (1) generalizes expected utility theory by relaxing the expectation

principle. An axiomatic analysis of this representation is sketched in the Appen-

dix, which describes conditions that ensure the existence of a unique z' and a

ratio-scale u satisfying equation (1).

The evaluation of strictly positive and strictly negative prospects follows a

difterent rule. In the editing phase such prospects are segregated into two

components: (i) the riskless component, i.e., the minimum gain or loss which is

ceftain to be obtained or paid; (ii) the risky component, i.e., the additional gain or

loss which is actually at stake. The evaluation of such prospects is described in the

next equation.

lf. p + q: 1 and either x > y >0 or .r < y <0, then

(2\ V(x, p; !, e): u (y) + zr(p)[u(x) - u (y)].

That is, the value of a strictly positive or strictly negative prospect equals the value

of the riskless component plus the value-difference between the outcomes,

multiplied by the weight associated with the more extreme outcome. For example,
y(400, .25 ; 100, .75) : r11gO) + z(.25)[u(400) - u(100)]. The essential feature

of equation (2) is that a decision weight is applied to the value-difference

u(x)- o(y), which represents the risky component of the prospect, but not to u(y),

which represents the riskless component. Note that the right-hand side of

equhtion (2) equals r@)o(x)+U-r@))o(y). Hence, equation (2) reduces to

equation (1) if zr(p)+ r(l-p):1. As will be shown later, this condition is not

generally satisfied.

Many elements of the evaluation model have appeared in previous attempts to

modify expected utility theory. Markowitz [29] was the first to propose that utility

be defined on gains and losses rather than on final asset positions, an assumption

which has been implicitly accepted in most experimental measurements of utility
(see, e.g., U,32)). Markowitz also noted the presence of risk seeking in pref-

erences among positive as well as among negative prospects, and he proposed a

utility function which has convex and concave regions in both the positive and the

negative domains. His treatment, however, retains the expectation principle;

hence it cannot account for the many violations of this principle; see, e.9., Table I.

The replacement of probabilities by more general weights was proposed by

Edwards [9], and this model was investigated in several empirical studies (e.g.,
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[3,42]). Similar models were developed by Fellner [12], who introduced the
concept of decision weight to explain aversion for ambiguity, and by van Dam [46]
who attempted to scale decision weights. For other critical analyses of expected
utility theory and alternative choice models, see Allais [2], Coombs [6], Fishburn

[13], and Hansson [22].
The equations of prospect theory retain the general bilinear form that underlies

expected utility theory. However, in order to accomodate the effects described in
the first part of the paper, we are compelled to assume that values are attached to
changes rather than to final states, and that decision weights do not coincide with
stated probabilities. These departures from expected utility theory must lead to
normatively unacceptable consequences, such as inconsistencies, intransitivities,
and violations of dominance. Such anomalies of preference are normally cor-
rected by the decision maker when he realizes that his preferences are inconsis-
tent, intransitive, or inadmissible. In many situations, however, the decision
maker does not have the opportunity to discover that his preferences could violate
decision rules that he wishes to obey. In these circumstances the anomalies
implied by prospect theory are expected to occur.

The Value Function

An essential feature of the present theory is that the carriers of value are
changes in wealth or welfare, rather than final states. This assumption is compati-
ble with basic principles of perception and judgment. Our perceptual apparatus is

attuned to the evaluation of changes or differences rather than to the evaluation of
absolute magnitudes. When we respond to attributes such as brightness, loudness,
or temperature, the past and present context of experience defines an adaptation
level, or reference point, and stimuli are perceived in relation to this reference
point [23]. Thus, an object at a given temperature may be experienced as hot or
cold to the touch depending on the temperature to which one has adapted. The
same principle applies to non-sensory attributes such as health, prestige, and
wealth. The same level of wealth, for example, may imply abject poverty for one
person and great riches for another{epending on their current assets.

The emphasis on changes as the carriers of value should not be taken to imply
that the value of a particular change is independent of initial position. Strictly
speaking, value should be treated as a function in two arguments: the asset
position that serves as reference point, and the magnitude of the change (positive

or negative) from that reference point. An individual's attitude to money, say,

could be described by a book, where each page presents the value function for
changes at a particular asset position. Clearly, the value functions described on
difterent pages are not identical: they are likely to become more linear with
increases in assets. However, the preference order of prospects is not greatly
altered by small or even moderate variations in asset position. The certainty
equivalent of the prospect (1,000, .50), for example, lies between 300 and 400 for
most people, in a wide range of asset positions. Consequently, the representation
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of value as a function in one argument generally provides a satisfactory approxi-

mation.
Many sensory and perceptual dimensions share the property that the psy-

chological response is a concave function of the magnitude of physical change. For

"*"-[1", 
it is easier to discriminate between a change of 3o and a change of 6o in

room temperature, than it is to discriminate between a change of l3o and a change

of 16o. We propose that this principle applies in particular to the evaluation of

monetary changes. Thus, the difterence in value between a gain of 100 and a gain

of 200 appears to be greater than the difterence between a gain of 1,100 and a gain

of 1,200. Similarly, the difterence between a loss of 100 and a loss of 200 appears

greater than the difterence between a loss of 1,100 and a loss of 1,200, unless the

larger loss is intolerable. Thus, we hypothesize that the value function for changes

of wealth is normally @noave above the reference point (u"(r) < 0, for r > 0) and

often convex below it (u"(x) > 0, for .r < 0). That is, the marginal value of both

gains and losses generally decreases with their magnitude. Some support for this

hypothesis has been reported by Galanter and Pliner [17], who scaled the

perceived magnitude of monetary and non-monetary gains and losses.

The above hypothesis regarding the shape of the value function was based on

responses to gains and losses in a riskless context. We propose that the value

function which is derived from risky choices shares the same characteristics, as

illustrated in the following problems.

PnosLEM 13

(6,000, .25),

N:68 [18]

(4,000, .25; 2,000, .25\

[82]*

or

PnosLEM 13':

(-6,000, .25), or (-4,000, .25; -2,000, .25\.

N :64 [70]* [30]

Applying equation 1 to the modal preference in these problems yields

ir(.25)u(6,000) 1 tr(.25)lu(4,000) + u(2,000)l and

7r (.25)u (-6,000) ) r(.25)[u (-a,000) * u(-2,000)].

Hence, o(6,000) < o(4,000) + u(2,000) and o(-6,000) > u(-4,000) + o(-2,000)'

These preferences are in accord with the hypothesis that the value function is

concave for gains and convex for losses.

Any discussion of the utility function for money must leave room for the effect

of special circumstances on preferences. For example, the utility function of an

individual who needs $60,000 to purchase a house may reveal an exceptionally

steep rise near the critical value. Similarly, an individual's aversion to losses may

increase sharply near the loss that would compel him to sell his house and move to

928



PROSPECT THEORY

a less desirable neighborhood. Hence, the derived value (utility) function of an
individual does not always reflect "pure" attitudes to money, since it could be
affected by additional consequences associated with specific amounts. Such
perturbations can readily produce convex regions in the value function for gains
and concave regions in the value function for losses. The latter case may be
more common since large losses often necessitate changes in life style.

A salient characteristic of attitudes to changes in welfare is that losses loom
larger than gains. The aggravation that one experiences in losing a sum of money
appears to be greater than the pleasure associated with gaining the same amount
[17]. Indeed, most people find symmetric bets of the form (x,.50; -x,.50)
distinctly unattractive. Moreover, the aversiveness of symmetric fair bets
generally increases with the'size of the stake. That is, if x>y>O, then
(y, .50; -y, .50) is preferred to (x, .50; -x, .50). According to equation (l), there-
fore,

o(y)+u(-y)>u(.r)+u(-x) and u(-y)-u(-x)>u(x)-u(y).

Setting I:0 yields u(x)<-u(-x), and letting y approach x yields u,(x)<
a'(-x),provided u', the derivative of u, exists. Thus, the value function for losses is
steeper than the value function for gains.

In summary, we have proposed that the value function is (i) defined on
deviations from the reference point; (ii) generally @ncave for gains and com-
monly convex for losses; (iii) steeper for losses than for gains. A value function
which satisfies these properties is displayed in Figure 3. Note that the proposed
s-shaped value function is steepest at the reference point, in marked contrast to
the utility function postulated by Markowitz [29] which is relatively shallow in that
region.

VALUE

LOSSES GAINS

Ftcune 3.-A hypothetical value function.
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Although the present theory can be applied to derive the value function from
preferences between prospects, the actual scaling is considerably more compli-
cated than in utility theory, because of the introduction of decision weights. For
example, decision weights could produce risk aversion and risk seeking even with
a linear value function. Nevertheless, it is of interest that the main properties
ascribed to the value function have been observed in a detailed analysis of von
Neumann-Morgenstern utility functions for changes of wealth (Fishburn and
Kochenberger [1a). The functions had been obtained from thirty decision makers
in various fields of business, in five independent studies [5, 1t, 19,21,40]. Most
utility functions for gains were concave, most functions for losses were convex,
and only three individuals exhibited risk aversion for both gains and losses. With a
single exception, utility functions were considerably steeper for losses than for
gains.

The Weighting Function

In prospect theory, the value of each outcome is multiplied by a decision weight.
Decision weights are inferred from choices between prospects much as subjective
probabilities are inferred from preferences in the Ramsey-Savage approach.
However, decision weights are not probabilities: they do not obey the probability
axioms and they should not be interpreted as measures of degree or belief.

Consider a gamble in which one can win 1,000 or nothing, depending on the toss

of a fair coin. For any reasonable person, the probability of winning is .50 in this
situation. This can be verified in a variety of ways, e.g., by showing that the subject
is indifterent between betting on heads or tails, or by his verbal report that he
considers the two events equiprobable. As will be shown below, however, the
decision weight zr(.50) which is derived from choices is likely to be smaller than
.50. Decision weights measure the impact of events on the desirability of pros-
pects, and not merely the perceived likelihood of these events. The two scales

coincide (i.e., r(p): p) if the expectation principle holds, but not otherwise.
The choice problems discussed in the present paper were formulated in terms of

explicit numerical probabilities, and our analysis assumes that the respondents
adopted the stated values of p. Furthermore, since the events were identified only
by their stated probabilities, it is possible in this context to express decision
weights as a function of stated probability. In general, however, the decision
weight attached to an event could be influenced by other factors, e.g., ambiguity

[10,11].
We turn now to discuss the salient properties of the weighting function z, which

relates decision weights to stated probabilities. Naturally, z is an increasing
function of p, with zr(01 :0 and zr(1):1. That is, outcomes contingent on an
impossible event are ignored, and the scale is normalized so that zr(p) is the ratio
of the weight associated with the probability p to the weight associated with the
certain event.

We first discuss some properties of the weighting function for small prob-
abilities. The preferences in Problems 8 and 8'suggest that for small values of. p, tr
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is a subadditive function of p, i.e., r(rp)>rt(p) for 0<r<1. Recall that in
Problem 8, (6,000,.001) is preferred to (3,000,.002). Hence

by the concavity of u.

The reflected preferences in Problem 8'yield the same conclusion. The pattern of
preferences in Problems 7 andT', however, suggests that subadditivityneed not
hold for large values of p.

Furthermore, we propose that very low probabilities are generally over-
weighted, that is, t(p)> p for small p. consider the following clioice p.Lbl"-s.

PnogLpIvI 14

?r(.001) u (3,000) I
n(.002) u(6,000) 

- 
2

(5,000, .001),

N :72 172)*

or (s).

[28]

Pnosleru t4'

(-5,000,.001),

N :72 U7)

or (-s).

[83]*

Note that in Problem 14, people prefer what is in effect a lottery ticket over the
expected value of that ticket. In Problem 14', on the other hand, they prefer a
small loss, which can be viewed as the payment of an insurance premium, over a
small probability of a large loss. Similar observations have been reported by
Markowitz [29]. In the present theory, the preference for the lottery in problem
14 implies zr(.001)u(5,000)>u(5), hence z(.001)>u(5)/o(5,000)>.001,
assuming the value function for gains is concave. The readiness to pay for
insurance in Problem 14' implies the same conclusion, assuming the value
function for losses is convex.

It is important to distinguish overweighting, which refers to a property of
decision weights, from the overestimation that is commonly found in the assess-
ment of the probability of rare events. Note that the issue of overestimation does
not arise in the present context, where the subject is assumed to adopt the stated
value of p. In many real-life situations, overestimation and overweighting may
both operate to increase the impact of rare events.

Although r(p)> p for low probabilities, there is evidence to suggest that, for all
0<p< l,r(p\+o(l-p)< 1. We label this property subcertainty. It is readily
seen that the typical preferences in any version of Allias' example (see, e.g.,
Problems 1 and 2) imply subcertainty for the relevant varue of p. Applying
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equation (1) to the prevalent preferences in Problems I and} yields, respectively,

u(2,400)> r(.66)u(2,400) + 7t(.33)u(2,500), i'e',

U- r(.661t:(2,400) > zr(.33)u(2,500) and

r(.33)o(2,500)>zr(.34)u(2,400); hence,

1-zr(.66)> r(.34), or zr(.66) +r(.34)<1.

Applying the same analysis to Allais'original example yields z(.89)+ a,(.11) < t'

"nd.o-" 
data reported by MacCrimmon and Larsson [2t] imply subcertainty for

additional values of p.

The slope of z in the interval (0, 1) can be viewed as a measure of the sensitivity

of preferences to changes in probability. Subcertainty entails that z' is regressive

with respect to p, i.e., that preferences are generally less sensitive to variations of

probability than the expectation principle would dictate. Thus, subcertainty

captures an essential element of people's attitudes to uncertain events, namely

that the sum of the weights associated with complementary events is typically less

than the weight associated with the certain event.

Recall that the violations of the substitution axiom discussed earlier in this

paper conform to the following rule: If (x, p) is equivalent to (y, pq) then (x, pr) is

not preferred to (y, Per), O< P, q, r 41. By equation (1),

ddu(x): r(w)o(v) implies z(pr)u(x)< r(wr)o(v); hence,

r(pq\ -r(Pqr)
r(p) - t(pr)'

Thus, for a fixed ratio of probabilities, the ratio of the corresponding decision

weights is closer to unity when the probabilities are low than when they are high.

This property ol r,called subproportionality, imposes considerable constraints on

the shape of z: it holds if and only if log z is a convex function of log p.

It is of interest to note that subproportionality together with the overweighting

of small probabilities imply that z is subadditive over that range. Formally, it can

be shown that if T(p)> p and subproportionality holds, then r(rp\> n(p),O<
r ( 1, provided a' is monotone and continuous over (0, 1).

Figure 4 presents a hypothetical weighting function which satisfies overweight-

ing and subadditivity for small values of p, as well as subcertainty and sub-

proportionality. These properties entail that z' is relatively shallow in the open

intbrval and changes abruptly near the end-points where zr(0) = 0 and zr(1) = l.
The sharp drops or apparent discontinuities of z' at the endpoints are consistent

with the notion that there is a limit to how small a decision weight can be attached

to an event, if it is given any weight at all. A similar quantum of doubt could

impose an upper limit on any decision weight that is less than unity. This quantal

effect may reflect the categorical distinction between certainty and uncertainty.

On the other hand, the simplification of prospects in the editing phase can lead the

individual to discard events of extremely low probability and to treat events of

extremely high probability as if they were certain. Because people are limited in
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their ability to comprehend and evaluate extreme probabilities, highly unlikely
events are either ignored or overweighted, and the difterence between high
probability and certainty is either neglected or exaggerated. consequently, zr is
not well-behaved near the end-points.

r.o

3
tr
F
-
IrrJ .5
3
z
I
9,
o
UJ

o

o .5 t.o

STATED PROBABILITY: P

Flcune 4.-A hypothetical weighting function.

The following example, due to Zeckhauser, illustrates the hypothesized
nonlinearity of z. Suppose you are compelled to play Russian roulette, but are
given the opportunity to purchase the removal of one bullet from the loaded gun.
would you pay as much to reduce the number of bullets from four to three as you
would to reduce the number of bullets from one to zero? Most people feel that
they would be willing to pay much more for a reduction of the probability of death
from 1/6 to zero than for a reduction from 4/6 to 3 /6. Economic considerations
would lead one to pay more in the latter case, where the value of money
is presumably reduced by the considerable probability that one will not live to
enjoy it.

An obvious objection to the assumption that zr(p)#p involves comparisons
between prospects of the form (x, p i x,q) and (x, p' i x,q,), where p + q = p, * q, <
1. Since any individual will surely be indifterent between the two prospecti, it
could be argued that this observation entails T(p) + r(q): n(p,) + z(q,), which in
turn implies that a, is the identity function. This argument is invalid in the present
theory, which assumes that the probabilities of identical outcomes are combined
in the editing of prospects. A more serious objection to the nonlinearity of zr
involves potential violations of dominance. Suppose x ) y ) 0, p ) p, , and p + q :
p' + q' <li hence, (x, pi y, q) dominates (x, p,i y, q,\. If preference obeys
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dominance, then

r (p)u (x) + r (q) o (y) > r (p' ) u (x) + r (q' ) u (y),

or

r(p)-r(p') - u(y)

T@')-t@'u(r)'

Hence, as y approaches t, Tr(p)- zr(p') approaches z(q')-zr(g). Since p-p':
e'- q, r must be essentially linear, or else dominance must be violated.

Direct violations of dominance are prevented, in the present theory, by the

assumption that dominated alternatives are detected and eliminated prior to the

evaluation of prospects. However, the theory permits indirect violations of

dominance, e.g., triples of prospects so that A is preferred to B, B is preferred to

C and C dominates A. For an example, see Raiffa [34, p. 75].

Finally, it should be noted that the present treatment concerns the simplest

decision task in which a person chooses between two available prospects. We have

not treated in detail the more complicated production task (e.g., bidding) where

the decision maker generates an alternative that is equal in value to a given

prospect. The asymmetry between the two options in this situation could intro-

duce systematic biases. lndeed, Lichtenstein and Slovic [27] have constructed

pairs of prospects A and B, such that people generally prefer A over B, but bid

more for B than for A. This phenomenon has been confirmed in several studies,

with both hypothetical and real gambles, e.g., Grether and Plott [20]. Thus, it
cannot be generally assumed that the preference order of prospects can be

recovered by a bidding procedure.

Because prospect theory has been proposed as a model of choice, the inconsis-

tency of bids and choices implies that the measurement of values and decision

weights should be based on choices between specified prospects rather than on

bids or other production tasks. This restriction makes the assessment of u and zr

more difficult because production tasks are more convenient for scaling than pair

comparisons.

4. olscusslox

In the final section we show how prospect theory accounts for observed

attitudes toward risk, discuss alternative representations of choice problems

induced by shifts of reference point, and sketch several extensions of the present

treatment.

Risk Anitudes

The dominant pattern of preferences observed in Allais'example (Problems 1

and 2) follows from the present theory iff

il.33) u(2,400\ zr(.33)

il.34\' o(2,500)' |- d.66)'
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Hence, the violation of the independence axiom is attributed in this case to
subcertainty, and more specifically to the inequality r(.34)<1-zr(.66). This
analysis shows that an Allais-type violation will occur whenever the u-ratio of the
two non-zero outcomes is bounded by the corresponding zr-ratios.

Problems 3 through 8 share the same structure, hence it suffices to consider one
pair, say Problems 7 and 8. The observed choices in these problems are implied by
the theory ifi

zr(.001) u(3,000) t(.45\
r(O0atr(6P00)=zrC90)'

The violation of the substitution axiom is attributed in this case to the sub-
proportionality of z. Expected utility theory is violated in the above manner,
therefore, whenever the u-ratio of the two outcomes is bounded by the respective
z-ratios. The same analysis applies to other violations of the substitution axiom,
both in the positive and in the negative domain.

We next prove that the preference for regular insurance over probabilistic
insurance, observed in Problem 9, follows from prospect theory-provided the
probability of loss is overweighted. That is, if (-r, p) is indifferent to (-y), then
(-y) is preferred to (-x, p/2; -y, pl2; -y/2, | - p). For simplicity, we define for
x >0, f (x): - u(-x). Since the value function for losses is convex, / is a concave
function of x. Applying prospect theory, with the natural extension of equation 2,
we wish to show that

r(p)f(x) = f(y) implies

f 0 ) < f (y / 2) + n @ I 2)l fly ) - f 0 I 2)) + r (p I z)t f@\ - f 0 I 2))

= r (p I 2) f (x) + r (p / 2) f (y) + U - 2r (p I 2)V 0 / 2).

Substituting for /(x) and using the concavity of /, it suffices to show that

M <ffi f O\ + tr (p / 2)f (y\ + f 0\ I 2 - dp I z)f (y)

or

t(p)12< r(plZ), which follows from the subadditivity of z.

According to the present theory, attitudes toward risk are determined jointly by

u and n, and not solely by the utility function. It is therefore instructive to examine

the conditions under which risk aversion or risk seeking are expected to occur.

Consider the choice between the gamble (x, p) and its expected value (px). If
x ) 0, risk seeking is implied whenever t(p)> ofutx)lo(xl,which is greater than p

if the value function for gains is concave. Hence, overweighting (zr(p)>p) is

neoessary but not sufficient for risk seeking in the domain of gains. Precisely the

same condition is necessary but not sufficient for risk aversion when .r < 0. This

analysis restricts risk seeking in the domain of gains and risk aversion in the

domain of losses to small probabilities, where overweighting is expected to hold.
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Indeed these are the typical conditions under which lottery tickets and insurance

policies are sold. In prospect theory, the overweighting of small probabilities

i""o.s both gambling and insurance, while the S-shaped value function tends to

inhibit both behaviors.

Although prospect theory predicts both insurance and gambling for small

probabilities, we feel that the present analysis falls far short of a fully adequate

account of these complex phenomena. Indeed, there is evidence from both

experimental studies [37], survey research [26], and observations of economic

behavior, e.g., service and medical insurance, that the purchase of insurance often

extends to the medium range of probabilities, and that small probabilities of

disaster are sometimes entirely ignored. Furthermore, the evidence suggests that

minor changes in the formulation of the decision problem can have marked effects

on the attractiveness of insurance [37]. A comprehensive theory of insurance

behavior should consider, in addition to pure attitudes toward uncertainty and

money, such factors as the value of security, social norms of prudence, the

aversiveness of a large number of small payments spread over time, information

and misinformation regarding probabilities and outcomes, and many others.

Some effects of these variables could be described within the present framework,

€.g., 3S changes of reference point, transformations of the value function, or

manipulations of probabilities or decision weights. Other effects may require the

introduction of variables or concepts which have not been considered in this

treatment.

Shifts of Reference

So far in this paper, gains and losses were defined by the amounts of money that

are obtained or paid when a prospect is played, and the reference point was taken

to be the status quo, or one's current assets. Although this is probably true for

most choice problems, there are situations in which gains and losses are coded

relative to an expectation or aspiration level that differs from the status quo. For

example, an unexpected tax withdrawal from a monthly pay check is experien-

ced as a loss, not as a reduced gain. Similarly, an entrepieneur who is weathering a

slump with greater success than his competitors may interpret a small loss as a

gain, relative to the larger loss he had re{rson to expect.

The reference point in the preceding examples oorresponded to an asset

position that one had expected to attain. A discrepancy between the reference

point and the current asset position may also arise because of recent changes in

wealth to which one has not yet adapted [29]. Imagine a person who is involved in

a business venture, has already lost 2,000 and is now facing a choice between a

sure gain of 1,000 and an even chance to win 2,000 or nothing. If he has not yet

adapted to his losses, he is likely to code the problem as a choice between

(-2,000,.50) and (-1,000) rather than as a choice between (2,000,.50) and

(1,000). As we have seen, the former representation induces more adventurous

choices than the latter.

A change of reference point alters the preferenoe order for prospects. In

particular, the present theory implies that a negative translation of a choice
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problem, such as arises from incomplete adaptation to recent losses, increases risk
seeking in some situations. Specifically, if a risky prospect (x, pi _'y,1 _p) is just
acceptable, then (x -Z,pi -l-2,1-p) is preferred over 

-(_zi 
for-x,y,-z)

0, with r >2.
To prove this proposition, note that

V(x,p;y,l-p)=0 iff n(p)u(x):-n(l_p)u(_y).

Furthermore,

V(x-z,p;-y-z,I-p)

- tr(p)u(x - z)+ 7r(l - p)u(- y - z)

) r(p)u(x) - nr(p)u(z) + r(l - ilu( - y)

* tr(l - p)u(- z) Uy the properties of u,

: - nr(L-p)u(-y)- n(p)u(z)+r(l- ilu(-y)

* r( I - p)u (- z ) Uy substitution,

: - lr(p)u(z) + rr(1 - p)u(- z)

> u(-z)lo(p)* n(1 -p)l since u(-z)< - u(z),

) u(- z) Uy subcertainty.

This analysis suggests that a person who has not made peace with his losses is likely
to accept gambles that would be unacceptable to him otherwise. The well known
observation [31] that the tendency to bet on long shots increases in the course of
the betting day provides some support for the hypothesis that a failure to adapt to
losses or to attain an expected gain induces risk seeking. For another example,
consider an individual who expects to purchase insurance, perhaps because he has
owned it in the past or because his friends do. This individual may code the
decision to pay a premium y to protect against a loss x as a choice between
(-x * y, p; y,l -p) and (0) rather than as a choice between (-x, p\ and (-y). The
preceding argument entails that insurance is likety to be more attractive in the
former representation than in the latter.

Another important case of a shift of reference point arises when a person
formulates his decision problem in terms of final assets, as advocated in decision
analysis, rather than in terms of gains and rosses, as people usually do. In this
case, the reference point is set to zero on the scale of wealth and the value function
is likely to be concave everywhere [39]. According to the present analysis, this
formulation essentially eliminates risk seeking, ex@pt foi gambling with low
probabilities. The explicit formulation of decision problems in terms of final assets
is perhaps the most effective procedure for eliminating risk sceking in the domain
of losses.
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Many economic decisions involve transactions in which one pays money in

exchange for a desirable prospect. Current decision theories analyze such prob-

lems as comparisons between the status quo and an alternative state which

includes the acquired prospect minus its cost. For example, the decision whether

to pay 10 for the gamble (1,000,.01) is treated as a choice between
(990,.01; -10,.99) and (0). [n this analysis, readiness to purchase the positive

prospect is equated to willingness to accept the corresponding mixed prospect.

The prevalent failure to integrate riskless and risky prospects, dramatized in the

isolation effect, suggests that people are unlikely to perform the operation of
subtracting the cost from the outcomes in deciding whether to buy a gamble.

Instead, we suggest that people usually evaluate the gamble and its cost

separately, and decide to purchase the gamble if the combined value is positive.

Thus, the gamble (1,000,.01) will be purchased for a price of 10 if z
(.01)u(1,000) + u (- 10) > 0.

If this hypothesis is correct, the decision to pay 10 for (1,000, .01), for example,

is no longer equivalent to the decision to accept the gamble (990,.01; -10,.99).
Furthermore, prospect theory implies that if one is indifferent between (x(t -
p), p i - px, 1 - p) and (0) then one will not pay px to purchase the prospe ct (x, p).

Thus, people are expected to exhibit more risk seeking in deciding whether to
accept a fair gamble than in deciding whether to purchase a gamble for a fair price.

The location of the reference point, and the manner in whichthoice problems are

coded and edited emerge as critical factors in the analysis of decisions.

Extensions

In order to encompass a wider range of decision problems, prospect theory
should be extended in several directions. Some generalizations are immediate;

others require further development. The extension of equations (1) and (2) to

prospects with any number of outcomes is straightforward. When the number of
outcomes is large, however, additional editing operations may be invoked to

simplify evaluation. The manner in which complex options, e.g.' compound

prospects, are reduced to simpler ones is yet to be investigated.

Although the present paper has been concerned mainly with monetary

outcomes, the theory is readily applicable to choices involving other attributes,

e.g., quality of life or the number of lives that could be lost or saved as a

consequenoe of a policy decision. The main properties of the proposed value

function for money should apply to other attributes as well. In particular, we

expect out@mes to be coded as gains or losses relative to a neutral reference

point, and losses to loom larger than gains.

The theory can also be extended to the typical situation of choice, where the

probabilities of outcomes are not explicitly given. [n such situations, decision

weights must be attached to particular events rather than to stated probabilities,

but they are expected to exhibit the essential properties that were ascribed to the

weighting function. For example, iL A and B are complementary events and

neither is certain, r(A\ + r(B) should be less than unity-a natural analogue to

subcertainty.
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The decision weight associated with an event will depend primarily on the
perceived likelihood of that event, which could be subject to major biases [45]. In
addition, decision weights may be aftected by other considerations, such as
ambiguity or vagueness. Indeed, the work of Ellsberg [10] and Fellner [12] implies
that vagueness reduces decision weights. consequently, subcertainty should be
more pronounced for vague than for clear probabilities.

The present analysis of preference between risky options has developed two
themes. The first theme concerns editing operations that determine how prospects

are perceived. The second theme involves the judgmental principles that govern
the evaluation of gains and losses and the weighting of uncertain outcomes.
Although both themes should be developed further, they appear to provide a
useful framework for the descriptive analysis of choice under risk.
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APPENDIX2

In this appendix we sketch an axiomatic analysis of prospect theory. Since a completc sclf-contained
treatment is long and tedious, we merely outline the esscntial steps and exhibit thc kcy ordind
properties needed to establish the bilinear represcntation of equation (l). Similar mcthods could be
extcnded to axiomatize equation (2).

Consider the set of all regular prosp€cts of the form (x,p;y,Sl with p+4< l. The extension to
regular prospects with p +4 = I is sraightforward. I-et > dcnote thc rclation of prcfcrence bctwecn
prospccts that is assumed to be connected, symmetric and transitive, and let : denotc thc associated
relation of indifierence. Naturally, (x,p;y,ql-(y,qix,p). We also assume, as is implicit in our
notation, that (.:, p;0, q)-(x, p;0, r), and (x, p; y,0) = (r, pi z,Ol. That is, thc null outoome and thc

impossible event havc the property of a multiplicative zcro.
Note that the desired rcprcscntation (equation (l)) is additive in the probability-outcome pairs.

Hence, the theory of additive conjoint mcasurcment can be applicd to obtain a scde l/ which
prcscrves the prefcrence ordcr, and interval scales / and g in two argumcnts such that

v(x, p; v, q) = f(x, pt + s$, sl.

The kcy axioms uscd to dcrivc this rcprescntation are:
Indepcndencc: (r, p ; y, ql > k, p i y' q') ifr (x', p' ; y, q) > (x', p' ; y', q'1.

Canccllation: If (r,p; y'q'lz(x',p'; y,q) and (x',p';y',q'l>b,p':y',q'\, then (ap; y',q\>
(x" , p'; y, q).

Solvability: If (r, p; y, q) a ( z, r)>(x, p; y' 4') for some outoome z and probability r, then there exist
y',4'such that

(x, p; y'q')=(2, r\.

It has bccn shown that these conditions are sufficient to oonstruct thc dcsircd addirivc rcpr6cn-
tation, providcd the preference ordcr is Archimedean [t,2!l]. Furthcrmorc, sine (t,p;y,{)=
(y, q; x, pl, fk, pl+ sO, d = f(y, til+ sQ, pl, and lctting 4 = 0 yiclds /= s.

Ncxt, considcr thc sct of all procpcas of thc lorm (r, p) with a dnglc non-zcno outoomc. In thir carc,
thebilincarmodclreducccto V(r,pl= rr(p)u(:).Thisisthcmultiplicativcmodcl,invcrtigatcdintS5l
and [25]. To construc{ thc multiplicativc rcprcscntation wc arsumc that thc ordcring of thc prob-
ability-outome pairssatisficsindepcndcnce, canellation, rclvability, and thc Archimcdean axiom.In
addition, we assumc sign dcpcndcncc [2!l] to ensurc thc propcr multiplication of sigrr. It shoutd bc
notcd that thc solvability axiom uscd in [35] and [25] must bc vcekencd bccausc thc probability faaor
pcrmits only boundcd rclvability.

2 Wc arc indcbted to David H. Krantz for his help in the formulation of this scc{ion.
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Combining the additive and the multiplicative representations yields

V(x, p: y, ql-- flt(p)o(x)l+fl2(q)u(r)J.

Finally, we impose a new distributivity axiom:

(x,p;y,p)-(z,p) iff (x,q;y,q)-(z,q).

Applying this axiom to the above representation, we obtain

flr(p)u (x))+ llr (p)o (y\ = flr (p)o (z))

implies

flt (q)o (x)) + ltn (q\ o (y\l = lltt (s) u (z)).

Assuming, with no loss of generality, that r(q)<r(d, and letting a=r(p)o(x),9=o(p)o(y),
y=ddo(;), and d= r(q)/r(p), yields /(a)+/(9\=fQ) implies /(do)+ f(9p)=f(07) tor all

0<d< 1.

Because / is strictly monotonic we can set t=ft[f(d)+f(9)]. Hence, O"y=0f1f@)+f(P))=
rtlflod)+f(op)).'The 

solution to this functional equation is /(a)=Ica" tll. Hence, V(x'p;y,q)=
k[z(p)o(x)]' + &[z(q)u( y)]", for some &, c > 0. The desired bilinear form isobtained by redefining the

scales 
'r, 

u, and V so as to absorb the constants /< and c.
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Explanations and predictions of
people's choices, in everyday life as well
as in the social sciences, are often found-
ed on the assumption of human rational-
ity. The definition of rationality has been
much debated, but there is general agree-
ment that rational choices should satisfy
some elementary requirements of con-
sistency and coherence. In this article

tional choice requires that the preference
between options should not reverse with
changes of frame. Because of imperfec-
tions of human perception and decision,
however, changes of perspective often
reverse the relative apparent size of ob-
jects and the relative desirability of op-
tions.

We have obtained systematic rever-

The Framing of Decisions and the

Psychology of Choice

Amos Tversky and Daniel Kahneman

The majority choice in this probtem is
risk averse: the prospect of certainty
saving 200 lives is more attractive than a
risky prospect of equal expected vatue,
that is, a one-in-three chance of saving
6fi) lives.

A second group of respondents was
given the cover story of problem I with a

different formulation of the alternative
programs, as follows:

hoblem2[N: l-551:

lf Program C is adopred 400 people witt die.
[22 percentl

If hogram D is adopted there is l/3 probabil-
ity that nobody will die, and2l3 probabili-
ty that 6fi) people will die. [78 percent]

Which of the two programs would you favor?

The majority choice in problem 2 is

risk taking: the certain death of 400
people is less acceptable than the two-in-
three chance that 600 will die. The pref-
erences in problems I and 2 illustrate a

common pattern: choices involving gains
are often risk averse and choices in-
volving losses are often risk taking.
However, it is easy to see that the two
problems are effectively identicat. The
only difference between them is that the
outcomes are described in problem I by
the number of lives saved and in problem
2by the number of lives lost. The change
is accompanied by a pronounced shift
from risk aversion to risk taking. We
have observed this reversat in several
groups of respondents, including univer-
sity faculty and physicians. Inconsistent
responses to problems I and 2 arise from
the conjunction of a framing effect with
contradictory attitudes toward risks in-
volving gains and losses. We turn now
to an analysis of these attitudes.

The Evaluation of Prospects

The major theory of decision-making
under risk is the expected utility model.
This model is based on a set of axioms,
for example, transitivity of preferences,
which provide criteria for the rationality
of choices. The choices of an individual
who conforms to the axioms can be de-
scribed in terms of the utilities of various
outcomes for that individual. The utility
of a risky prospect is equal to the ex-
pected utility of its outcomes, obtained
by weighting the utiliry of each possible
outcome by its probability. When faced
with a choice, a rational decision-maker
will prefer the prospect that offers the
highest expected utility (t , 2y.

Summary. The psychological principles that govern the perception of decision prob-
lems and the evaluation of probabilities and outcomes produce predictable shifts of
preference when the same problem is framed in different ways. Reversals of prefer-
ence are demonstrated in choices regarding monetary outcomes, both hypothetical
and real, and in questions pertaining to the toss of human lives. The efiects of frames
on preferences are compared to the effects of perspectives on perceptual appear-
ance. The dependence of preferences on the formulation of decision problems is a
significant concern for the theory of rational chobe.

we describe decision problems in which
people systematically violate the re-
quirements of consistency and coher-
ence, and we trace these violations to the
psychological principles that govern the
perception of decision problems and the
evaluation of options.

A decision problem is defined by the
acts or options among which one must
choose, the possible outcomes or con-
sequences of these acts, and the contin-
gencies or conditional probabilities that
relate outcomes to acts. We use the term
"decision frame" to refer to the deci-
sion-maker's conception of the acts, out-
comes, and contingencies associated
with a particular choice. The frame that a
decision-maker adopts is controlled part-
ly by the formulation of the problem and
partly by the norms, habits, and personal

characteristics of the decision-maker.
It is often possible to frame a given de-

cision problem in more than one way.
Alternative frames for a decision prob-
lem may be compared to alternative per-

spectives on a visual scene. Veridical
perception requires that the perceived

relative height of two neighboring moun-
tains, say, should not reverse with
changes of vantage point. Similarly, ra-

SCIENCE. VOL. 2II. 30 JANUARY lgtI

sals of preference by variations in the
framing of acts, contingencies, or out-
comes. These effects have been ob-
served in a variety of problems and in
the choices of different groups of respon-
dents. Here we present selected illustra-
tions of preference reversals, with data
obtained from students at Stanford Uni-
versity and at the University of British
Columbia who answered brief question-
naires in a classroom setting. The total
number of respondents for each problem
is denoted by N, and the percentage

who chose each option is indicated in
brackets.

The effect of variations in framing is
illustrated in problems I and 2.

hoblem I [N : l52l: Imagine that the U.S.
is preparing for the outbreah of an unusual
Asian disease, which is expected to kill 6m
people. Two alternative programs to combat
the disease have been proposed. Assume that
the exact scientific estimate of the con-
sequences of the programs are as follows:

If hogram A is adopted, 200 people will be
saved. [72 percentJ

If Program B is adopted, there is l/3 probabil-
ity that 6fi) people will be saved, and
A3 probability that no people will be
saved. [28 percent]

Which of the two programs would you favor?

- ?r, Tversky is_a professor of psychology at Stan-
ford University, Stanford, Califdrnia 94305. and Di.
Kahneman 

1s I Rryfessor of psychology at the Uni-
versity of British Columbia. Vancoiver. Canada
v6T tws.
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As will be illustrated below, people ex-
hibit patterns of preference which appear

incompatible with expected utility theo-

ry. We have presented elsewhere (J) a
descriptive model, called prospect theo-

ry, which modifies expected utility theo-

ry so as to accommodate these observa-

tions. We distinguish two phases in the

choice process: an initial phase in which

acts, outcomes, and contingencies are

framed, and a subsequent phase of eval-

uation (4). For simplicity, we restrict the

formal treatment of the theory to choices

involving stated numerical probabilities

and quantitative outcomes, such as mon-

ey, time, or number of lives.

Consider a prospect that yields out-

come .r with probability p, outcome y
with probability e, and the status quo

with probability I - p - q. According

to prospect theory, there are values v(.)

associated with outcomes, and decision

weights r(.) associated with probabili-

ties, such that the overall value of the

prospect equals ?r(p) r.,(x) + r/.q) v(y). n
slightly different equation should be ap-
plied if all outcomes of a prospect are on

the same side of the zero point (5).

In prospect theory, outcomes are ex-
pressed as positive or negative devia-
tions (gains or losses) from a neutral ref-
erence outcome, which is assigned a val-
ue of zero. Although subjective values

differ among individuals and attributes,
we propose that the value function is
commonly S-shaped, concave above the
reference point and convex below it, as

illustrated in Fig. l. For example, the dif-
ference in subjective value between

gains of $ l0 and $20 is greater than the
subjective difference between gains of
$l l0 and $120. The same relation be-

tween value differences holds for the

corresponding losses. Another property

of the value function is that the response

to losses is more extreme than the re-

sponse to gains. The displeasure associ-

ated with losing a sum of money is gener-

ally greater than the pleasure associated

with winning the same amount, as is re-

flected in people's reluctance to accept

fair bets on a toss of a coin. Several stud-

ies of decision (3, 6) and judgment (7)

have confirmed these properties of the
value function (8).

The second major departure of pros-

pect theory from the expected utility
model involves the treatment of proba-

bilities. In expected utility theory the

utility of an uncertain outcome is weight-

ed by its probability; in prospect theory
the value of an uncertain outcome is mul-
tiplied by a decision weight T(p), which
is a monotonic function of p but is not a

probability. The weighting function n

Value

Losses Gains

Fig. l. A hypothetical value function.

has the following properties. First, im-

possible events are discarded, that is,

?r(0) : 0, and the scale is normalized so

that zr(l) : l, but the function is not well

behaved near the endpoints. Second,

for low probabilities dp) ) p, but
tdp) + r(l - p) = l. Thus low proba-

bilities are overweighted, moderate and

high probabilities are underweighted,
and the latter effect is more pronounced

than the former. Third, flpqlr(p) <
dpqr)ldpr)forall 0 {p,e,r 3l.That
is, for any fixed probability ratio q , the
ratio of decision weights is closer to
unity when the probabilities are low
than when they are high, for example,
r4.Dh4.2) > 74.4)1d.8). A hypothetical
weighting function which satisfies these
properties is shown in Fig. 2. The major
qualitative properties of decision weights

can be extended to cases in which the
probabilities of outcomes are subjective-
ly assessed rather than explicitly given.

In these situations, however, decision
weights may also be affected by other
characteristics of an event, such as am-

biguity or vagueness (9).

Prospect theory, and the scales illus-
trated in Figs. I and 2, should be viewed

as an approximate, incomplete, and sim-
plified description of the evaluation of
risky prospects. Although the properties

of v and ?, summarize a common pattern

of choice, they are not universal: the
preferences of some individuals are not
well described by an $shaped value

function and a consistent set of decision
weights. The simultaneous measurement

of values and decision weights involves
serious experimental and statistical diffi-
culties (10).

If zr and y were linear throughout, the
preference order between options would
be independent of the framing of acts,

outcomes, or contingencies. Because of
the characteristic nonlinearities of zr and
v, however, different frames can lead to
different choices. The following three

sections describe reversals of preference

caused by variations in the framing of
acts, contingencies, and outcomes.

The Framing of Acts

Problem 3 [N : l50l: lmagine that you face

the following pair of concurrent decisions.
First examine both decisions, then indicate
the options you prefer.

Decision (i). Choose between:
A. a sure gain of $240 [84 percentl

B. 25Vo chance to gain $10(X), and

75Vo chance to gain nothing [6 percentl

Decision (ii). Choose between:
C. a sure loss of $750 [3 percentl
D. 75Vo chance to lose $10(X), and

25Vo chance to lose nothing [87 percentl

The majority choice in decision (i) is
risk averse: a riskless prospect is pre-

ferred to a risky prospect of equal or
greater expected value. In contrast, the

majority choice in decision (ii) is risk tak-
ing: a risky prospect is preferred to a
riskless prospect of equal expected val-

ue. This pattern of risk aversion in

choices involving gains and risk seeking

in choices involving losses is attributable
to the properties of v and z'. Because the

value function is S-shaped, the value as-

sociated with a gain of $240 is greater

than 24 percent of the value associated

with a gain of $ 1000, and the (negative)

value associated with a loss of $750 is
smaller than 75 percent of the value asso-

ciated with a loss of $ 1000. Thus the

shape of the value function contributes
to risk aversion in decision (i) and to risk
seeking in decision (ii). Moreover, the

underweighting of moderate and high

probabilities contributes to the relative

attractiveness of the sure gain in (i) and

to the relative aversiveness of the sure

loss in (ii). The same analysis applies to
problems I and 2.

Because (i) and (ii) were presented to-
gether, the respondents had in effect to

choose one prospect from the set: A and

C, B and C, A and D, B and D. The most

common pattern (A and D) was chosen

by 73 percent of respondents, while the
least popular pattern (B and C) was

chosen by only 3 percent of respondents.

However, the combination of B and

C is definitely superior to the combina-
tion A and D, as is readily seen in prob-

lem 4.

hoblem 4 [N : 861. Choose between:

A & D. 25Vo chance to win $240, and
75Vo chance to lose $760. [0 per-
centl

B & C. 25Vo chance to win $250, and
75Vo chance to lose $750. [00 per-
centl

When the prospects were combined
and the dominance of the second option
became obvious, all respondents chose
the superior option. The popularity of
the inferior option in problem 3 implies
that this problem was framed as a pair of

SCIENCE, VOL.2II
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separate choices. The respondents ap-
parently failed to entertain the possibility

that the conjunction of two seemingly

reasonable choices could lead to an un-

tenable result.

The violations of dominance observed

in problem 3 do not disappear in the

presence of monetary incentives. A dif-
ferent group of respondents who an-
swered a modified version of problem 3,

with real payoffs, produced a similar pat-

tern of choices (l I \. Other authors have

also reported that violations of the rules

of rational choice, originally observed in

hypothetical questions, were not elimi-

nated by payoffs (/2).
We suspect that many concurrent de-

cisions in the real world are framed inde-
pendently, and that the preference order
would often be reversed if the decisions

were combined. The respondents in
problem 3 failed to combine options, al-

though the integration was relatively

simple and was encouraged by instruc-
tions (/J). The complexity of practical
problems of concurrent decisions, such
as portfolio selection, would prevent
people from integrating options without
computational aids, even if they were in-

clined to do so.

The Framing of Contingencies

The following triple of problems illus-
trates the framing of contingencies. Each
problem was presented to a different
group of respondents. Each group was

told that one participant in ten, pre-

selected at random, would actually be
playing for money. Chance events were
realized, in the respondents' presence,

by drawing a single ball from a bag con-
taining a known proportion of balls of the
winning color, and the winners were paid
immediately.

hoblem 5 [N = 77]: Which of the following
options do you prefer?

A. a sure win of $30 [78 percent]
B. \Wc chance to win $45 122 percentl

hoblem 6 [N : 851: Consider the following
two-stage game. In the first stage, there is a
75Vo chance to end the game without winning
anything, and a 25% chance to move into the
second stage. If you reach the second stage
you have a choice between:

C. a sure win of $30 [74 percentJ
D. EWc chance to win $45 [26 percentl

Your choice must be made before the game

starts, i.e., before the outcome of the first
stage is known. Please indicate the option you
prefer.

Problem 7 [N = El]: Which of the following
options do you prefer?

E.25% chance to win $30 I42 percentl
F. ZWc chance to win $45 [58 percentJ

30 JANUARY I9EI

o o.5 1.O

Stated probability: p

Fig. 2. A hypothetical weighting function.

lrt us examine the structure of these
problems. First, note that problems 6
and 7 are identical in terms of probabili-
ties and outcomes, because prospect C

offers a .25 chance to win $30 and pros-

pect D offers a probability of .25 x

.80 : .20 to win $45. Consistency there-

fore requires that the same choice be

made in problems 6 and 7. Second, note
that problem 6 differs from problem 5 on-
ly by the introduction of a preliminary
stage. If the second stage of the game is

reached, then problem 6 reduces to prob-
lem 5; if the game ends at the first stage,

the decision does not affect the outcome.
Hence there seems to be no reason to
make a different choice in problems 5

and 6. By this logical analysis, problem 6
is equivalent to problem 7 on the one
hand and problem 5 on the other. The
participants, however, responded simi-
larly to problems 5 and 6 but differently
to problem 7. This pattern of responses

exhibits two phenomena of choice: the
certainty effect and the pseudocertainty

effect.

The contrast between problems 5 and
7 illustrates a phenomenon discovered
by Allais (/4), which we have labeled the

certainty effect: a reduction of the proba-

bility of an outcome by a constant factor
has more impact when the outcome was

initially certain than when it was merely
probable. hospect theory attributes this
effect to the properties of r. lt is easy to
verify, by applying the equation of pros-
pect theory to problems 5 and 7, that
people for whom the value ratio v(30)/

v(45) lies between the weight ratios
n(.20)lri(.25) and zr(.80)ldl.0) will pre-

fer A to B and F to E, contrary to ex-
pected utility theory. hospect theory
does not predict a reversal of preference

for every individual in problems 5 and
7 .lt only requires that an individual who
has no preference between A and B pre-

fer F to E. For group data, the theory
predicts the observed directional shift
of preference between the two problems.

The first stage of problem 6 yields the
s:une outcome (no gain) for both acts.
Consequently, we propose, people eval-
uate the options conditionally, &S if the
second stage had been reached. In this
framing, of course, problem 6 reduces to
problem 5. More generally, we suggest

that a decision problem is evaluated con-
ditionally when (l) there is a state in
which all acts yield the same outcome,
such as failing to reach the second stage

of the game in problem 6, and (ii) the
stated probabilities of other outcomes
are conditional on the nonoccurrence of
this state.

The striking discrepancy between the
responses to problems 6 and 7, which are
identical in outcomes and probabilities,
could be described as a pseudocertainty
effect. The prospect yielding $30 is rela-

tively more attractive in problem 6 than
in problem 7, as if it had the advantage of
certainty. The sense of certainty associ-

ated with option C is illusory, however,
since the gain is in fact contingent on
reaching the second stage of the game
(r5 ).

We have observed the certainty effect
in several sets of problems, with out-
comes ranging from vacation trips to the

loss of human lives. In the negative do-

main, certainty exaggerates the aversive-
ness of losses that are certain relative to
losses that are merely probable. In a

question dealing with the response to an

epidemic, for example, most respond-

ents found "a sure loss of 75 lives" more

aversive than "80Vo chance to lose 100

lives" but preferred " I Vo chance to lose

75 lives" over "$Vo chance to lose 100

lives," contrary to expected utility theo-

ry.
We also obtained the pseudocertainty

effect in several studies where the de-
scription of the decision problems fa-
vored conditional evaluation. Pseudo-

certainty can be induced either by a se-

quential formulation, as in problem 6, or
by the introduction of causal contin-
gencies. In another version of the epi-
demic problem, for instance, respond-

ents were told that risk to life existed on-
ly in the event (probability . l0) that the

disease was carried by a particular virus.
Two alternative programs were said to
yield "a sure loss of 75 lives" or " 80Vo

chance to lose 100 lives" if the critical
virus was involved, and no loss of life in
the event (probability .90) that the dis-

ease was carried by another virus. In ef-
fect, the respondents were asked to
choose between l0 percent chance of
losing 75 lives and 8 percent chance of
losing 100 lives, but their preferences

were the same as when the choice was
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between a sure loss of 75 lives and 80

percent chance of losing 100 lives. A

conditional framing was evidently

adopted in which the contingency of the

noncritical virus was eliminated, giving

rise to a pseudocertainty effect. The cer-
tainty effect reveals attitudes toward risk
that are inconsistent with the axioms of
rational choice, whereas the pseudo-

certainty effect violates the more funda-

mental requirement that preferences

should be independent of problem de-

scription.
Many significant decisions concern ac-

tions that reduce or eliminate the proba-

bility of a hazard, at some cost. The

shape of zr in the range of low probabili-

ties suggests that a protective action
which reduces the probability of a harm

from I percent to zero, say, will be val-

ued more highly than an action that re-

duces the probability of the same harm

from 2 percent to I percent. Indeed,

probabilistic insurance, which reduces

the probability of loss by half, is judged

to be worth less than half the price of
regular insurance that eliminates the risk
altogether (J ).

It is often possible to frame protective
action in either conditional or uncon-
ditional form. For example, an insurance
policy that covers fire but not flood could
be evaluated either as full protection

against the specific risk of fire or as a re-

duction in the overall probability of
property loss. The preceding analysis

suggests that insurance should appear

more attractive when it is presented as

the elimination of risk than when it is de-

scribed as a reduction of risk. P. Slovic,
B. Fischhoff, and S. Lichtenstein, in an

unpublished study, found that a hypo-

thetical vaccine which reduces the prob-

ability of contracting a disease from .20

to . l0 is less attractive if it is described as

effective in half the cases than if it is pre-

sented as fully effective against one of
two (exclusive and equiprobable) virus
strains that produce identical symptoms.

In accord with the present analysis of
pseudocertainty, the respondents valued

full protection against an identified vi-

rus more than probabilistic protection

against the disease.

The preceding discussion highlights
the sharp contrast between lay responses

to the reduction and the elimination of
risk. Because no form of protective ac-

tion can cover all risks to human welfare,

all insurance is essentially probabilistic:

it reduces but does not eliminate risk.
The probabilistic nature of insurance is

commonly masked by formulations that
emphasize the completeness of pro-

tection against identified harms, but the

sense of security that such formulations

provide is an illusion of conditional fram-
ing. It appears that insurance is bought

as protection against worry, not only
against risk, and that worry can be ma-

nipulated by the labeling of outcomes

and by the framing of contingencies. It is
not easy to determine whether people

value the elimination of risk too much or
the reduction of risk too little. The con-

trasting attitudes to the two forms of pro-

tective action, however, are difficult to
justify on normative grounds (16).

The Framing of Outcomes

Outcomes are commonly perceived as

positive or negative in relation to a refer-

ence outcome that is judged neutral.
Variations of the reference point can

therefore determine whether a given out-
come is evaluated as a gain or as a loss.

Because the value function is generally

concave for gains, convex for losses, and

steeper for losses than for gains, shifts of
reference can change the value dif-
ference between outcomes and thereby
reverse the preference order between

options (6). Problems I and 2 illustrated
a preference reversal induced by a shift
of reference that transformed gains into
losses.

For another example, consider a per-

son who has spent an afternoon at the

race track, has already lost $140, and is

considering a $10 bet on a 15: I long shot

in the last race. This decision can be

framed in two ways, which correspond
to two natural reference points. If the

status quo is the reference point, the out-
comes of the bet are framed as a gain of
$140 and a loss of $10. On the other

hand, it may be more natural to view the

present state as a loss of $140, for the

betting day, and accordingly frame the

last bet as a chance to return to the refer-
ence point or to increase the loss to $150.

Prospect theory implies that the latter
frame will produce more risk $eeking

than the former. Hence, people who do

not adjust their reference point as they
lose are expected to take bets that they

would normally find unacceptable. This
analysis is supported by the observation
that bets on long shots are most popular

on the last race of the day (17).

Because the value function is steeper

for losses than for gains, a difference be-

tween options will loom larger when it is
framed as a disadvantage of one option
rather than as an advantage of the other
option. An interesting example of such

an effect in a riskless context has been

noted by Thaler (18). In a debate on a
proposal to pass to the consumer some

of the costs associated with the process-

ing of credit-card purchases, representa-

tives of the credit-card industry re-

quested that the price difference be la-

beled a cash discount rather than a

credit-card surcharge. The two labels in-

duce different reference points by implic-
itly designating as normal reference the
higher or the lower of the two prices. Be-

cause losses loom larger than gains, con-

sumers are less willing to accept a sur-

charge than to forego a discount. A simi-
lar effect has been observed in
experimental studies of insurance: the
proportion of respondents who preferred
a sure loss to a larger probable loss was

significantly greater when the former
was called an insurance premium (19,

20).

These observations highlight the labil-
ity of reference outcomes, as well as

their role in decision-making. In the ex-
amples discussed so far, the neutral ref-
erence point was identified by the label-
ing of outcomes. A diversity of factors
determine the reference outcome in
everyday life. The reference outcome is

usually a state to which one has adapted;

it is sometimes set by social norms and
expectations; it sometimes corresponds
to a level of aspiration, which may or
may not be realistic.

We have dealt so far with elementary
outcomes, such as gains or losses in a
single attribute. In many situations, how-

ever, an action gives rise to a compound
outcome, which joins a series of changes

in a single attribute, such as a sequence

of monetary gains and losses, or a set of
concurrent changes in several attributes.
To describe the framing and evaluation
of compound outcomes, we use the no-

tion of a psychological account, defined

as an outcome frame which specifies (i)

the set of elementary outcomes that are

evaluated jointly and the manner in
which they are combined and (ii) a refer-
ence outcome that is considered neutral
or norrnal. In the account that is set up
for the purchase of a car, for example,
the cost of the purchase is not treated as

a loss nor is the car viewed as a gift.
Rather, the transaction as a whole is

evaluated as positive, negative, or neu-

tral, depending on such factors as the
performance of the car and the price of
similar cars in the market. A closely re-

lated treatment has been offered by Tha-
ler (/8).

We propose that people generally

evaluate acts in terms of a minimal ac-

count, which includes only the direct
consequences of the act. The minimal
account associated with the decision to
accept a gamble, for example, includes

the money won or lost in that gamble and

excludes other assets or the outcome of
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previous gambles. People commonly
adopt minimal accounts because this
mode of framing (i) simplifies evaluation
and reduces cognitive strain, (ii) reflects
the intuition that consequences should
be causally linked to acts, and (iii)
matches the properties of hedonic expe-
rience, which is more sensitive to desir-
able and undesirable changes than to
steady states.

There are situations, however, in
which the outcomes of an act affect the
balance in an account that was pre-

viously set up by a related act. In these

cases, the decision at hand may be eval-
uated in terms of a more inclusive ac-
count, as in the case of the bettor who
views the last race in the context of ear-
lier losses. More generally, a sunk-cost
effect arises when a decision is referred
to an existing account in which the cur-
rent balance is negative. Because of the
nonlinearities of the evaluation process,

the minimal account and a more in-
clusive one often lead to different
choices.

Problems 8 and 9 illustrate another
class of situations in which an existing
account affects a decision:

hoblem E [N : l83l: Imagine that you
have decided to see a play where admission is

$10 per ticket. As you enter the theater you
discover that you have lost a $10 bill.

Would you still pay $10 for a ticket for the
play?

Yes [8E percentJ No [12 percent]

Problem 9 [N = 2(X)J: Imagine that you
have decided to see a play and paid the admis-
sion price of $10 per ticket. As you enter the
theater you discover that you have lost the
ticket. The seat was not marked and the ticket
cannot be recovered.

Would you pay $10 for another ticket?

Yes [46 percent] No [54 percent]

The marked difference between the re-
sponses to problems 8 and 9 is an effect
of psychological accounting. We pro-
pose that the purchase of a new ticket in
problem 9 is entered in the account that
was set up by the purchase of the original
ticket. In terms of this account, the ex-
pense required to see the show is $20, a

cost which many of our respondents ap-
parently found excessive. In problem 8,

on the other hand, the loss of $10 is not
linked specifically to the ticket purchase

and its effect on the decision is accord-
ingly slight.

The following problem, based on ex-
amples by Savage (2 , p. 103) and Thaler
(/8), further illustrates the effect of em-
bedding an option in different accounts.
Two versions of this problem were pre-
sented to different groups of subjects.
One group (N : 93) was given the val-
ues that appear in parentheses, and the

]O JANUARY I98I

other group (N : 8E) the values shown
in brackets.

hoblem l0: Imagine that you are about to
purchase a jacket for (9125) l$151, and a calcu-
lator for ($15) l$1251. The calculator salesman
informs you that the calculator you wish to
buy is on sale for ($10) l$1201 ar the orher
branch of the store, located 20 minutes drive
away. Would you make the trip to the other
store?

The response to the two versions of
problem l0 were markedly different: 68
percent of the respondents were willing
to make an extra trip to save $5 on a $ l5
calculator; only 29 percent were willing
to exert the same effort when the price of
the calculator was $ 125. Evidently the
respondents do not frame problem l0 in
the minimal account, which involves on-
ly a benefit of $5 and a cost of some in-
convenience. Instead, they evaluate the
potential saving in a more inclusive ac-

count, which includes the purchase of
the calculator but not of the jacket. By
the curvature of r,, a discount of $5 has a
greater impact when the price of the cal-
culator is low than when it is high.

A closely related observation has been
reported by Pratt, Wise, and Zeckhauser
(21), who found that the variability of the
prices at which a given product is sold by
different stores is roughly proportional to
the mean price of that product. The same
pattern was observed for both frequently
and infrequently purchased items. Over-
all, a ratio of 2: I in the mean price of two
products is associated with a ratio of
1.86: I in the standard deviation of the
respective quoted prices. If the effort
that consumers exert to save each dollar
on a purchase, for instance by a phone

call, were independent of price, the dis-
persion of quoted prices should be about
the same for all products. In contrast,
the data of Pratt et al. (21) are consistent
with the hypothesis that consumers
hardly exert more effort to save $15 on a
$150 purchase than to save $5 on a $50
purchase (/8). Many readers will recog-
nize the temporary devaluation of money
which facilitates extra spending and re-
duces the significance of small discounts
in the context of a large expenditure,
such as buying a house or a car. This
paradoxical variation in the value of
money is incompatible with the standard
analysis of consumer behavior.

Discussion

In this article we have presented a se-

ries of demonstrations in which seem-

ingly inconsequential changes in the for-
mulation of choice problems caused sig-

nificant shifts of preference. The in-

consistencies were traced to the inter-
action of two sets of factors: variations
in the framing of acts, contingencies, and

outcomes, and the characteristic non-
linearities of values and decision
weights. The demonstrated effects are

large and systematic, although by no
means universal. They occur when the
outcomes concern the loss of human
lives as well as in choices about money;
they are not restricted to hypothetical
questions and are not eliminated by mon-
etary incentives.

Earlier we compared the dependence

of preferences on frames to the depen-
dence of perceptual appearance on per-

spective. If while traveling in a mountain
range you notice that the apparent rela-
tive height of mountain peaks varies with
your vantage point, you will conclude
that some impressions of relative height
must be erroneous, even when you have
no access to the correct answer. Similar-
ly, one may discover that the relative at-
tractiveness of options varies when tl:e
same decision problem is framed in dif-
ferent ways. Such a discovery will nor-
mally lead the decision-maker to recon-
sider the original preferences, even when
there is no simple way to resolve the in-
consistency. The susceptibility to per-

spective effects is of special concern in
the domain of decision-making because
of the absence of objective standards
such as the true height of mountains.

The metaphor of changing perspective
can be applied to other phenomena of
choice, in addition to the framing effects
with which we have been concerned here
(/,9).The problem of self-control is natu-
rally construed in these terms. The story
of Ulysses' request to be bound to the
mast of the ship in anticipation of the ir-
resistible temptation of the Sirens' call is

often used as a paradigm case (22). In
this example of precommitment, an ac-
tion taken in the present renders inopera-
tive an anticipated future preference. An
unusual feature of the problem of inter-
temporal conflict is that the agent who
views a problem from a particular tem-
poral perspective is also aware of the
conflicting views that future perspectives

will offer. In most other situations, deci-
sion-makers are not normally aware of
the potential effects of different decision
frames on their preferences.

The perspective metaphor highlights
the following aspects of the psychology
of choice. Individuals who face a deci-

sion problem and have a definite prefer-
ence (i) might have a different preference

in a different framing of the same prob-
lem, (ii) are normally unaware of alterna-
tive frames and of their potential effects

on the relative attractiveness of options,
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(iii) would wish their preferences to be

independent of frame, but (iv) are often
uncertain how to resolve detected incon-

sistencies (2J). In some cases (such as

problems 3 and 4 and perhaps problems 8

and 9) the advantage of one frame be-

comes evident once the competing
frames are compared, but in other cases

(problems I and 2 and problems 6 and 7)

it is not obvious which preferences

should be abandoned.

These observations do not imply that
preference reversals, or other errors of
choice or judgment (24), are necessarily

irrational. Like other intellectual limita-

tions, discussed by Simon (2J) under the

heading of "bounded rationality," the

practice of acting on the most readily
available frame can sometimes be justi-

fied by reference to the mental effort re-

quired to explore alternative frames and

avoid potential inconsistencies. How-

ever, we propose that the details of the

phenomena described in this article are

better explained by prospect theory and

by an analysis of framing than by ad

hoc appeals to the notion of cost of
thinking.

The present work has been concerned
primarily with the descriptive question

of how decisions are made, but the psy-

chology of choice is also relevant to the

normative question of how decisions

ought to be made. In order to avoid the

difficult problem of justifying values, the

modern theory of rational choice has

adopted the coherence of specific prefer-

ences as the sole criterion of rationality.
This approach enjoins the decision-
maker to resolve inconsistencies but of-
fers no guidance on how to do so. It im-
plicitly assumes that the decision-maker

who carefully answers the question
"What do I really want?" will eventually

achieve coherent preferences. However,

the susceptibility of preferences to varia-

tions of framing raises doubt about the

feasibility and adequacy of the coher-
ence criterion.

Consistency is only one aspect of the

lay notion of rational behavior. As noted

by March Q6), the common conception

of rationality also requires that prefer-

ences or utilities for particular outcomes

should be predictive of the experiences

of satisfaction or displeasure associated

with their occurrence. Thus, a man could
be judged irrational either because his
preferences are contradictory or because

his desires and aversions do not reflect
his pleasures and pains. The predictive

criterion of rationality can be applied to

resolve inconsistent preferences and to
improve the quality of decisions. A pre-

dictive orientation encourages the deci-

sion-maker to focus on future experience

and to ask " What will I feel then?"
rather than "What do I want now?" The
former question, when answered with
care, can be the more useful guide in dif-
ficult decisions. In particular, predictive

considerations may be applied to select

the decision frame that best represents

the hedonic experience of outcomes.

Further complexities arise in the nor-
mative analysis because the framing of
an action sometimes affects the actual

experience of its outcomes. For ex-

ample, framing outcomes in terms of
overall wealth or welfare rather than in
terms of specific gains and losses rhay at-

tenuate one's emotional response to an

occasional loss. Similarly, the experi-
ence of a change for the worse may vary
if the change is framed as an uncompen-

sated loss or as a cost incurred to
achieve some benefit. The framing of
acts and outcomes can also reflect the

acceptance or rejection of responsibility
for particular consequences, and the de-

liberate manipulation of framing is com-
monly used as an instrument of self-

control (22). When framing influences
the experience of consequences, the

adoption of a decision frame is an ethi-
cally significant act.
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