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 THE VARIANCE OF DISCOUNTED MARKOV DECISION PROCESSES

 MATTHEW J. SOBEL,* Georgia Institute of Technology

 Abstract

 Formulae are presented for the variance and higher moments of the present
 value of single-stage rewards in a finite Markov decision process. Similar
 formulae are exhibited for a semi-Markov decision process. There is a short
 discussion of the obstacles to using the variance formula in algorithms to
 maximize the mean minus a multiple of the standard deviation.

 MARKOV DECISION PROCESS; VARIANCE; DISCOUNTED RETURN- POLICY

 IMPROVEMENT

 1. Introduction and notation

 The usual optimization criterion for a discounted Markov decision process
 (MDP) is to maximize the expected value of the sum of discounted rewards. In
 several kinds of applications (cf. Mendelssohn (1980)) practitioners are con-
 cerned with the variance of the sum as well as with its expected value. A formula
 for the variance is presented in Section 2. An analogous formula for the
 semi-Markov decision process is presented in Section 3.

 Many authors have written about alternative approaches to making decisions
 under uncertainty. Besides the MDP literature and its direct forebears, major
 research efforts include the approaches to sequential decisions examined in the
 literatures on stochastic programs with recourse and chance-constrained prog-
 rams. See Stancu-Minasian and Wets (1976) for an exhaustive bibliographic
 guide to this research. In recent years, several authors have written about choice
 over time from the point of view of utility theory; see Ferejohn and Page (1978)
 and Kreps and Porteus (1978) and its references. In the MDP literature, Derman
 (1970), Kushner (1971), and Mine and Osaki (1970) explain how probabilistic
 constraints may be incorporated into linear programs for MDP. White (1974)
 discusses the use of Lagrange multipliers for the inclusion of probabilistic
 constraints or variances in the optimization of Mop. Mandl (1971) and Jaquette
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 The variance of discounted Markov decision processes 795

 (1973) propose minimization of variance in order to resolve ties amongst policies
 which maximize mean values.

 The following Markov decision process is a standard model. See Denardo
 (1971) for its genealogy.

 Let 9' be the state space, A, be the set of actions available in state s, and
 1 = {(s, a): a E A,, s E C } which is assumed to contain only finitely many
 elements. Let s, and an indicate the state and action in the nth period. The

 reward in the nth period is specified by r(s,, an, sn,?). Let

 p= P{s,,+l =1j s,, = s, a, = a}

 and let 0 </3 <1 be the single-period discount factor. Since 6 is a finite set,
 there is no loss of generality in the assumption, made here, that 0 < r(s, a, j) for
 all (s, a)EC 6 and jE C.

 The present value of the single-period rewards is

 B = 1 1n"-'1r (sg, an, s.+,). n= 1

 Suppose that the stationary policy 8 is used to choose actions, i.e. an = 8(s.) for
 all n. Let B, denote the random variable B if s, = s and a, = 8(sn) for all n.

 Let

 F,(x)= P{BB ,x}

 v( f )=f x"dF,(x), v = v(,)
 and

 Vs = v' (2)
 be the distribution function, m th moment, and variance of B5.

 2. Formulae

 Kemeny and Snell (1960) have a formula for the second moment of first-
 passage times in Markov chains. Platzman (1978) presents formulae for the
 second moment of the total reward accumulated in transient states of a Markov

 chain with rewards. Formula (4) with (2), below, is very similar to those of
 Kemeny and Snell and Platzman and could be derived in the same way. Instead,
 the proof uses the lemma below which has independent interest. The lemma is
 closely related to Theorem 1 in Mandl (1971).

 Let r,; = r[s,$ (s),j] and ps = pt".

 Lemma.

 (1) F,(x)= C ps; [x -- r]
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 796 MATTHEW J. SOBEL

 Proof.

 F,(x) P{ nP"-'rss+,s., x I=s}=S

 n=1

 SpsiP -rs 'rs +  S+2(x - xs)/ S, s2=
 jez Y n= 1

 = psFi [(x - rs,)/l].

 Let 0 denote the vector whose sth component is

 (2) Os = psj (rsj + pv,)2 - v
 j e?

 Let P denote the matrix whose (s, j)th component is pjs and let r denote the
 vector whose sth component is

 jEf

 Let v and V denote the vectors whose s th components are v, and V,,
 respectively.

 Theorem 1.

 (3) v = r + PPv = (I - PP) ' r,

 (4) V = 0 + 2PV = (I- f2P)-'O,
 and

 (5) v(,' (m)pI) p=r m ')+/" + p\v(m)
 Comments. (i) Formula (3) is well known and is included as a consistency

 check on the method of proof. (ii) The system (4) involves inversion of two
 matrices, namely of I - PP to compute v and then of I - P2P. If for all (s, a) E 6
 r(s, a, j) does not depend on j, let p, r [s, 8(s), -]. Then (2) and (5) become

 (6) O g = p psv 2- (v, - p,)2 = P32 p~jvs2- p(vi]
 and

 rn-I ilm\sj
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 The variance of discounted Markov decision processes 797

 (iii) The conditional variance formula

 Var(X) = Var[E(X I Y)] + E[Var(X I Y)]

 can be applied with X = BS and Y = s2. Then 0, = Var[E(B, ss2)] and

 p2 > psjV, = E[Var(B, s2)l] jEy

 Dr Daniel P. Heyman observes that a proof of (4) can be constructed with the
 conditional variance formula.

 Proof. For (3), the lemma yields

 s = xdFs(x ) = ~p , dF [(x - r, )/3 ]

 = , psi, (rsj + Fu)dF,(u)

 = E Ps (rsi + pv,) = rs + 3 > Psijv. jEf jEf

 The non-singularity of I - 8P due to 0 < P < 1 is well known.

 For (4), observe that Bs has the same distribution as rss, + PB,2. Therefore,

 Vs = E[(rss,, + B,)2 - 2

 = , psi[r 2+ p2E(B2)+ 2Prqvj]- v

 2>2(
 , psj[r ,+ p' V, + v)+2prsiv,]- v
 - p2>PsIVI + OS

 jEy

 so V = 0 +2PV. Again, I- P_2P is non-singular because 0 < p < 1 so V=
 (I - p2p)-'0.

 From the lemma and the binomial theorem,

 vS'= xmdFs(x)= psi x mdxFj (x-rsj)/p]

 f0i jeo 0 = Ps, Jf(rs, +fpu)mdF, (u)

 i=0 iVjey
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 798 MATTHEW J. SOBEL

 Finite-horizon versions of the lemma and Theorem 1 can be obtained with

 minor changes in the proofs. We skip the details and present only the formulae.

 Let L(-) be a real-valued salvage value function on 9, (...-,8~,2,8,) a
 sequence of single-stage decision rules (i.e. 8,(s) E A, for all s E C and
 n = 1,2,- . ), and

 N

 BN = fl"-'r [s8, , (s.), +s+,]+ fNL (sN+1) n=1

 for N a positive integer. Let p~s (n) and r, (n) denote p'("' and r[s, 8,(s),j],

 respectively. Let F"('), uvN, v, and VEN denote the distribution function, mean, mean square, and variance of B", respectively, when s, = s. Here are the
 formulae analogous to (1), (3), and (4):

 Fl(x) = Z psi (N)F,> '{[x - ri, (N)]//3},

 vN = rN + PNVN-- I,

 VN = pL2 psj (N) VjN-I + Z ps (N)[rs, (N) + Pv,.N-.1]2 - (vN. )2, sE

 where vN and rN are the vectors with components vs,, and Ij::,psj (N)rs, (N),
 respectively, vso = L (s), Vso = 0, and PN is the matrix with elements psi(N).

 3. Semi-Markov decision process

 This section states analogues of (1), (3), (4), and (5) for a discounted finite
 semi-Markov decision process. The proofs are omitted because they are merely
 cumbersome replicas of those in Section 2.

 See Denardo (1971) for the details and genealogy of the following model.
 There is a sequence (sI, t,), (s2, t2), ... of pairs of random variables with s, the
 nth observed physical state and t, the time at which s, is first observed. As with

 the MDP, for each n, s, E 9' and an action an is taken while the observed physical

 state is s,. The constraint is an E As, for each n. Let

 W= {(s, a): a E As, s E S}
 which is assumed to be a finite set.

 A stationary policy 8 satisfies 8(s) E As for all s E CP, and an = 8 (sn) for all n.
 For (s, a)E C , jE C , and x ?0, let

 Q",(x) = P{s,, = j, t,. - t + x Is, = s, t, = t, an = a}.
 It is assumed that a stationary policy 6 is in use such that E(t I sf = s)> 0 for all
 n and s, and

 lim > QO;"(t)= 1, s ES. t--.oo jE.'f

This content downloaded from 128.197.26.12 on Mon, 27 Jun 2016 09:07:57 UTC
All use subject to http://about.jstor.org/terms



 The variance of discounted Markov decision processes 799

 The notation below uses QO,(t) in place of QO"'(t).
 There is an instantaneous discount factor y > 0. Let rs, (t) be the total income

 earned during [0, t] given that t - t, s1 = s, s2 = j, and aI = 8(s ). For each s and
 j, it is assumed that rsj(-) has bounded variation on [0,00). Let

 R,s(t) = e "dr,-(r), r, = ( Rsi(t)dQsj(t),

 psi = e e'dOQs (t), qsj = e -2y'dOs, (t),

 -> f [R(t)]2dOs (t) and ps = fRj (t)e-'"dOQ(t).

 Let B, (t) denote the total income earned during [0, t] if si = s and a, = 8(s,)
 for all n. The present value of the income and its distribution function are

 B, = e-"'dB(t) and F,(x)= P{B, - x}.

 The mth moment, first moment, and variance of B, are

 vim = E(B' ), v = v and V = v - v.

 Let

 0. (2)+ qv 2 >PsjVjV2 = r + iJ + 2 pv - v

 With this notation, the generalizations of (1), (3), (4), and (5) are listed below:

 Fs (x) = E F;I{[Ix - R s;(t)]/e-"} IdOs; (t),

 VS= rs +E p svi,

 V. = O, + qs >V,,

 and

 4. Mean-variance tradeoff

 It is natural to attempt to use formula (4) in order to optimize MDP with a
 criterion which involves the variance of B,. This section describes an obstacle to
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 800 MATTHEW J. SOBEL

 such attempts.! For example, the criterion E(B,)-A /variance of B. (A >0)
 may not be amenable to optimization with a policy iteration algorithm.

 The following notation and terminology occur often in the literature on MDP.
 Let iT = (8w, 32, -- ) be a policy, namely a sequence of single-stage decision rules.

 For a single-stage decision rule 8, let 8, ir denote the policy (8, 81, 82, ) in
 which 8 delays the use of 7r for one period. Let V (ir) and v, (1r) denote the
 variance and expected present value, respectively, of B, induced by 7r.

 Suppose 7r and ir' are two policies such that

 (7a) vj (ir) vj (Ir') for all j E C.

 It is well known that (7a) implies

 (7b) vS (8, i7) _- v, (8, i7') for all s E E9
 for all single-period decision rules 8. This property, called consistent choice,
 temporal persistence, stationarity, and monotonicity by various authors, has been

 exploited to prove the existence of an optimal stationary policy (Denardo (1967))
 and the convergence of a policy improvement algorithm to an optimum (Sobel
 (1975)). Unfortunately, the variance lacks this property as the following simple
 example demonstrates.

 The analogue of (7a, b) for the variance is

 (8) Vj (i) _ V, (ir') for all j CE9 : V, (8, r( ) V (8, Tr') for all sE C
 for all single-period decision rules 8. Let /3 = 0.5,

 S= ={1,2}, AI={1,2,3}, A2={1}, pI =p2=p 2=l,
 p1,=l-a, p12=a, r(1,-,-)O0, and r(2,-,-)l1.

 Let iT and ir' denote the policies which always take actions 2 and 1, respectively,
 in state 1. Let 8 be the single-state decision rule which takes action 3 in state 1.

 Straightforward calculations yield vI(Ir) = 1, v2(rT)= V2(Tr')= v2(6, Ir)=
 v2(6, 7r')= 2, v,(r') = 0, v,(, 7r) = (1 + a)/2, v,(8, 7r')= a, V,(T) = V2(T) =
 VI(IT') = V2(Tr') = V2(8, r) = V2(8, r') = 0, V,(8, r) = a (1 - a)/4, and
 V1(6, 7r') = a(1 - a). These values satisfy the hypothesis of (8) but violate its
 conclusion:

 V, (Tr)> V,(7r') for j = 1,2, but V,(8, Vr)< V,(8, r').

 In spite of the preceding counterexample, one could perform the calculations
 of the policy improvement algorithm (or other kinds of algorithms) while striving

 to optimize a criterion such as E(B,)-A /variance of B,. However, the

 ' The author is grateful to Eric V. Denardo for comments on an earlier draft of this section which
 focused on the criterion E(B,)-A \/variance of B,with A >0.
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 The variance of discounted Markov decision processes 801

 counterexample should make one question both finite termination of the
 algorithm and, if so, optimality of the terminal policy.

 5. Numerical example

 Let p = 0.5, = {1,2,3}, A, = A2 = {1}, A3= {1,2}, ph = p22 = 32 = 1, p=
 0.2, p3 = 0.8, r(s, a,, ) r(s, a) for all s and a, r(1, 1) = 10, r(2, 1) = 1.5, r(3, 1) =
 0, and r(3, 2) = 1.5. Let 8 and y denote the policies which always take actions 1
 and 2, respectively, in state 3.

 For y, the transposes of v and V are (20,3,3) and (0,0,0), respectively. For
 policy 8, the transposes of v and V are (20,3, 10/3) and (0,0, 13.888), respec-
 tively, as may be verified by direct calculation using the geometric distribution of
 the number of periods until departure from state 3.

 For policy y, using (6),

 0, = (0.5)2(20)2 - (20 - 10)2 = 0 and

 03 = 02 = (0.5)2(3)2 - (3 - 1.5)2 = 0

 so each component of V = (I - 82P)-10 is 0 as it should be.
 For policy 8, using (6),

 0, = (0.5)2(20)2 - (20 - 10)2 = 0, 02 = (0.5)2(3)2 - (3 - 1.5)2 = 0,

 and

 03 = (0.5)2[(0.2)(20)2 + (0.8)(10/3)2] - (10/3-0)2 = 11.1111.

 The transpose of the third column of (I - 2p)-' is (0, 0, 5/4) so the transpose of
 (I - p2P)-'O is (0, 0, 13.888) as it should be.
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