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 SUMMARY

 A solution is proposed to the problem of finding ajoint decision procedure for a group of n
 persons. It is any Pareto optimal solution which maximizes the generalized Nash product
 over the set of jointly achievable utility n-vectors. This result was originally proposed in
 the theory of bargaining but is readily adapted to the statistical context. The individuals
 involved need not have identical utility functions or identical prior (posterior) distri-
 butions. The solution may be a non-randomized rule but is randomized when the
 individual opinions or preferences are sufficiently diverse. Applications to hypothesis
 testing and estimation are included.
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 1. INTRODUCTION

 THIS paper is concerned with the situation, described by Savage (1954), which confronts n
 Bayesians who are required to choose a mutually acceptable solution to a statistical decision
 problem. In Section 2, we survey some of the methods now available to these Bayesians. In
 particular, we include a description of very relevant results from the normative theory of n-
 person bargaining games which do not seem to have been considered previously in this context.

 All of the methodology which has been developed in response to the fundamental issue
 raised here requires of these Bayesians that they be able and willing to state their subjective
 probability distribution on the appropriate event-set. One approach pursues a solution through
 aggregation; these n assessments are combined in some way into one which may then be used in a
 conventional uni-Bayesian analysis.

 Difficulties will arise if, however, the decision-makers have widely divergent preferences, i.e.
 utility functions; if the use of threats is disallowed, it seems likely that no amount of discussion
 among these decision-makers will produce a unanimous decision. Thus a solution through
 compromise is called for.

 In the next section various approaches involving "aggregation" and "compromise" are
 presented. Emphasis will be placed on the latter since the former has already been extensively
 treated in the statistical literature. In particular our presentation will focus on the Nash solution
 (see Nash, 1950) to the n-person bargaining game. It is the oldest such solution since it is
 embodied in Zeuthin's original work (Zeuthin, 1930) and is easily the most celebrated. To reveal
 some of its shortcomings, several competitors will be briefly discussed.

 In Section 4 we present two statistical examples in which the Nash solution is computed. The
 first is a bivariate normal estimation problem and the second, a hypothesis testing problem.

 Nash's theory, like its competitors, is normative, not descriptive. It proceeds logically from
 certain very weak assumptions to obtain a surprisingly strong conclusion. This conclusion
 ought to be acceptable to the decision-makers, if they agree that the assumptions are reasonable.
 This does not mean that all groups of decision-makers will find these assumptions reasonable
 and we are not saying that all such groups ought to find them reasonable. However, judging
 from the considerable attention the Nash theory has received, it would seem that they must
 generally be regarded as credible.

 The n-Bayesian decision theory which derives from bargaining theory has two important
 features which usually are not mentioned in presentations of the corresponding uni-Bayesian
 theory. Firstly, account is taken of each Bayesian's present (worth) utility. No decision-maker
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 would find acceptable a joint decision which on expectation would reduce his worth, and the
 theory provides the decision-maker with a veto against such decisions. Thus the group may well
 fail to agree on a decision. Secondly, randomized decision rules need to be reintroduced, as
 Savage (1954) points out. Of course, even in the uni-Bayesian theory such rules are present and
 some of them may well be optimal. However, they may be and are ignored for familiar reasons.
 In the n-Bayesian case they cannot be ignored; in many cases the solution is a randomized rule.

 It should be noted that in assessing the worth or utility of a potential decision a decison-
 maker need not be entirely selfish. He may even be altruistic and assign relatively large utilities
 to decisions which would call on him to sacrifice some of his own physical well-being to the
 benefit of other individuals or society as a whole. Harsanyi (1977, Chapter 4) discusses this issue
 at some length.

 2. MULTIPERSON DECISION PROBLEMS

 There is a considerable literature dealing with group decision analysis and some notable
 contributions have not yet been published. Aspects of the theory are surveyed by Winkler (1968),
 Bacharach (1973), Hogarth (1975) and Madansky (1978).

 As is clear from the work of Bacharach (1973, 1975) there cannot be a single solution to the
 multiperson decision problem. Consequently a variety of approaches are found in the
 contributions to this field.

 In one such approach, it is hypothesized that the group reports to a single Bayesian who is to
 make the decision after incorporating the views of the group. The result is a conventional albeit
 complex, uni-Bayesian analysis (see Morris, 1977; Lindley, Tversky and Brown, 1979).

 Alternatively, the group may enter into a "dialogue" in search of a consensus. Bacharach
 (1973) introduces the terminology "Bayesian dialogue" to distinguish the process in question
 from "bargaining". In a dialogue preferences and opinions are openly expressed while in
 bargaining these things are deliberately misrepresented to gain strategic advantages.

 A dialogue such as that embodied in the Delphi method (see Dalkey, 1967) may well lead to a
 consensus of opinion. Bacharach (1973) and De Groot (1974) propose models which entail,
 under certain circumstances, convergence of the group's opinions given sufficient time. A
 variant of this method is presented by Press (1978) who also gives a comprehensive
 bibliography.

 However, a consensus cannot always be achieved. Moreover, even in circumstances where
 the group is supervised by a Bayesian decision-maker, the task of evaluating the Bayes action
 may be exceedingly complex. For these reasons simple, direct ways of pooling opinions have
 been sought. Stone's "linear opinion pool" is one such example (see Stone, 1961). Others are
 described by Madansky (1978).

 When 7i denotes Ili's density with respect to a fixed under-lying measure, the linear opinion
 pool consists of the prescription,

 7rAM =C 1 +.1 +?Cn7Un, oCi)O OC +C.1 +c? n= 1, (2.1)

 where we use the subscript "AM" to denote "arithmetic mean" and fli is Bayesian i's prior (or
 posterior) distribution.

 When the decision-makers' utility functions, say ui, i = 1,..., n, are identical, the group's
 optimal action may be chosen by entering 7TAM into a conventional uni-Bayesian analysis (see
 Bacharach, 1975). Bacharach (1975) and Madansky (1978) present axioms which imply that the
 linear opinion pool is the one and only prescription for combining the 7i and Raiffa (1968)
 discusses these results.

 Madansky (1978) points out that the linear opinion pool is not "externally Bayesian" if the
 oci, i = 1,..., n, are fixed constants. This means that even if the group's members share a common
 likelihood function, the joint posterior density functions will not be the result obtained by first
 adopting 2TAM as the joint prior density function and then applying Bayes' rule. Madansky (1978)
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 determines the unique manner in which the o<i's must be updated using the data in order to
 achieve external Bayesianity.

 The prescription for pooling opinions embodied in the linear opinion pool has several
 features which may in certain circumstances be viewed as drawbacks. Firstly, it does not lead to

 a decision theory when the ui are not equal. In fact, Bacharach (1975) proves that no such theory
 exists if the group is required to be sufficiently coherent in its demands. Secondly, JtAM iS
 typically, multi-modal on its domain and so may fail to identify a parameter which typifies its
 modes, i.e. the individual choices. Thirdly, lEAM is not scale invariant. Thus if any 7i is
 rescaled so that, for example, sup;i(0) = 1 instead of f 7i = 1, JtAM will present a different
 expression of the group's relative preferences among the parameters, 0, no matter how it is
 normalized except when n = 1 even though individual opinions remain unaltered. This criticism
 would not be a source of concern perhaps to any Bayesian who demanded that the 7i's be
 probabilities in order that each Bayesian's expression of his degree of belief be coherent (cf. di
 Finetti, 1974). It might be of concern, however, in a situation where the decision-makers shared a
 common utility function and one of them insisted on adopting a diffuse, i.e. improper prior
 measure. In the uni-Bayesian theory of course the optimal decision cannot depend on the
 normalization chosen for the prior measure because the utility functions themselves are
 determined only to positive affine transformations. This contrasts with multi-Bayesian theory
 derived in this case from the linear opinion pool where the optimal decision rule would depend
 on these normalizations.

 This third objection given above provides the starting point for the analysis of Weerahandi
 and Zidek (1978). By requiring, axiomatically, that a pooling prescription be scale invariant,
 they derive an alternative to the linear opinion pool, namely,

 l aGM = .. * CiO, OC1+... +OC = 1, (2.2)
 where "GM" stands for "geometric mean".

 This last prescription is not new. Bacharach (1973) calls this the "logarithmic opinion pool"
 and attributes it to Hammond. Dalkey (1975) proposes the same rule on an ad hoc basis as a
 descriptive summary of the diverse opinions of the group. McConway (personal communi-
 cation) axiomatically derives a more general formula than (2.2) which includes the latter as a
 special case.

 Madansky (1978) points-out that the prescription embodied in (2.2) is externally Bayesian.
 As well, this prescription may be employed, more generally, even when the 7i's are not prior
 probability densities. For example, as noted above, the 7i's may be non-integrable, i.e. vague
 priors, or they might be fiducial density functions which need not integrate to 1 (Wilkinson,
 1977), or belief functions (Dempster, 1968; Schafer, 1976).

 In the methods described above, the n opinions are aggregated into a single expression of the
 group's joint opinion and this may then be used in a uni-Bayesian analysis. As pointed out in the
 Introduction such methods will prove unsatisfactory when there is a marked divergence in the
 decision-makers' preferences. In this case some compromise solution must be sought. One
 method of determining such a compromise is provided by Savage (1954). In the remainder of this
 section alternatives to Savage's method, i.e. the Nash solution and certain of its variants, will be
 presented. The Nash solution in particular provides a multi-Bayesian decision theory which, in
 form, more strongly resembles the univariate theory than does Savage's solution.

 Consider a statistical decision problem with parameter space 0 and action space a/. For the

 ith member of a group of n individuals, [li will denote the posterior or prior distribution
 according as data are or are not available. The corresponding utility function will be denoted by
 ui(a, 0), a E sl, 0 E 0. The domain of ui is extended in the usual way to include randomized rules,
 3, which may depend on the data when the latter is available. Thus

 ui(b, 0) = {ui(a, 0) b(da).

This content downloaded from 128.197.26.12 on Mon, 27 Jun 2016 09:08:40 UTC
All use subject to http://about.jstor.org/terms
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 We regard the multi-Bayesian decision problem as a co-operative n-person, non zero-sum
 game. This implies that the {ui} and the {FIi} are known to each member of the group.
 Furthermore, joint randomization is permissible, so, for example, the group may agree to
 choose between alternative rules, 51 and i2 say by means of a coin-toss.

 It will be assumed that the {uil are bounded, that the ith Bayesian's current worth (utility) is
 ci and that a? includes "no action" as a possible action. The use of bluffs and threats is not
 permitted, and, in fact, we intend that a? should consist of conventional statistical decisions
 except for the "no action" decision which has been appended.

 Nash's solution is implied by certain weak assumptions which will now be stated. Some of
 these assumptions are non-controversial within the ambit of the normative theory of bargaining
 and these we will label as axioms 1 and 2. The remainder are open to criticism and will be
 designated as postulates 1, 2 and 3; criticism leads to modifications of this list of postulates and
 variants of Nash's solution. While Nash's solution cannot, therefore, be declared, inarguably,
 the winner, none of the variants seems as yet to have brought it down from its distinguished
 position. Moreover, Harsanyi's recent monograph (Harsanyi, 1977) gives Nash's solution
 additional plausibility by developing it from even weaker and more qualitative assumptions
 than those of Nash (1950). In presenting below criticisms and variants our aim is to throw more
 light on the nature of the Nash solution itself rather than to provide a comprehensive account
 (which it is not) of the theory of bargaining games (cf. Luce and Raiffa, 1957; Cross, 1969; Young,
 1975).

 Let u(6) = (u1(6),.. ,uJ()) where ui(6) = fui(6,0)1Ii(d0); our assumptions imply that
 S, = {[u(3)-c] ,: 3 randomized} is a compact, convex subset of[0, 00)n where if x = (x1,.. ,x),
 [x] + = (max {x1,0}, , max {x,,0}).

 Let us now recentre for convenience all of the ui by the translation, ui -+ ui - ci. Then
 Sn= {[u(6)] : 3 randomized} represents the set of utility vectors which are attainable by
 adopting a (jointly) randomized decision rule. Observe that 0 = (0,... ,0) e S,.

 A multi-Bayesian decision rule, 5in relative to Sn may now be defined. To this end, let Vn
 designate the class of all compact convex Sn 's which contain 0 and are subsets of [0, oo)n. Then 5,n
 is any rule satisfying u(b3) = VnS,) where p -* [0, oo)n is a mapping which satisfies the
 following conditions:

 Axiom 1. (Feasibility). i(S) E S for all S Es,V.

 2. (Pareto optimality). There is no u = (u1,... , u,n) E S, u = p(S) such that 4ui(S) < ui for
 all i.

 Postulate 1. (Total invariance). If T(u) = (a1 u1,*., an un) for allu E[0, oo)n,ai >,i = 1,** ,n,
 then (To p) (S) = W(T(S)).

 2. (Symmetry). If S is symmetric, i.e. closed under permutations of the co-
 ordinates of its elements, then ui(S) = ,JU(S) for all i and j.

 3. (Independence of irrelevant alternatives). i(S) = p(U) whenever Sc: U and
 P(U) eS.

 Nash (1950) shows that these assumptions imply that i(S) is the unique point in S which
 maximizes over S the so-called Nash product, say P(u), given by

 n

 P(u) = H [ui] ", u ES. (2.3)
 i= 1

 The exponent, 1/n, could have been omitted in this expression since the resulting product would
 yield the same solution. However, as we point out below, dropping Postulate 2 leads to an
 alternative product with 1/n replaced by oci,0, i = 1,.. ,n with Loci = 1. Nash's product is
 stated in the above form so that it will then be a special case of the more general result. It then
 follows that a multi-Bayesian decision rule, 5n, may be found by. maximizing P([u(b)] +) with
 respect to 3. If the n decision-makers jointly agree that the basic assumptions are reasonable,
 then they ought to agree to accept the logical implication, the Nash solution to their problem.
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 Various authors discuss, criticize or offer inconsistent alternatives to Postulates 1, 2 or 3 (cf.
 Luce and Raiffa, 1957; Bishop, 1963; Owen, 1968; Kalai and Smorodinsky, 1975; Nydegger and
 Owen, 1975; Kalai, 1977a, b; Roth, 1977).

 Kalai (1977a) drops Postulate 2 and shows that the remaining assumptions imply that i(S) is
 the unique point in S which maximizes the Non-symmetric Nash Product,

 n

 l [ui]J, u E S.
 i = 1

 Here oci 0 for all i and ocx + ..+ cxn = 1; these constants are not arbitrary and, in fact,
 a = (OC1,.. , Cn) is the solution these decision-makers would choose if S were the set,
 I(s1, ,sn): Si 0, s1 + +Sn,, 1}. Thus the decision-makers would be called upon to agree in
 preliminary discussions on a choice of a in a hypothetical but intuitively simple situation. This
 would permit an individual i who lacked confidence in his own judgements to defer to the group
 by agreeing to accept a small value for oci < 1/n. This same individual might well insist on a large
 value for Xk> 1/n if he regarded individual k as an expert. Kalai (1977a) does not, however,
 discuss the choice of a and hence the exact method for its determination is unclear.

 Owen (1968) argues that if Sc: T and both share the same disagreement point, c, then
 (S),<p(T) should be a reasonable requirement. While reasonable, this condition is incom-
 patible with Postulates 1-3 (if the Axioms are maintained). To accommodate this condition two
 alternatives have been pursued.

 Kalai and Smorodinsky (1975) replace Postulate 3 by an assumption which Riddell (1978)
 calls the axiom of individual monotonicity:

 Postulate 4. (Individual monotonocity). If Sc: T share the same disagreement point c, and
 bi(S) = bi(T), i n-1, where bi(A) = sup {si: seA} for any Ac:[c1, oo))x... x [cn,oo), then
 p(S) <, p(T)-

 They then show that Axioms 1 and 2 and Postulates 1, 2 and 4 imply that i(S) is the unique
 point on S's Northeastern frontier which is on the line joining c (i.e. 0 in our presentation) to
 (b1(S),... , bn(S)). This solution was first proposed by Raiffa (1953).

 An alternative approach is adopted by Kalai (1977b) who replaces Postulate 1 by an
 assumption of homogeneity (in Riddell's 1978 terminology):

 Postulate 5. (Homogeneity). p(kS) = ki(S) for all k >0.

 He then shows that i(S) must provide a "proportional solution", i.e.

 lt(S) = max {t: tp E S} p,

 where p = (P1, Pn), Pi > 0, for all i. His conclusion follows from Axioms 1 and 2 and Postulates
 2-5 and one significant additional assumption: S is "comprehensive", i.e. if s1 E S andO < s2 1< S
 then s2 E S. The constants, pi, are not determined by Kalai's assumptions. In practice it may well
 be reasonable to choose the pi's so that in every bargaining situation the decision-makers would
 obtain equal gains in utility.

 As this last comment suggests, Postulate 5 unlike Postulate 1 admits the possibility of
 interpersonal comparisons of utility and so yields a qualitatively different solution than does the
 latter postulate. Whether or not such comparisons are feasible is controversial (cf. Luce and
 Raiffa, 1957;. Owen, 1968). However, Nash's solution may seem objectionable because such
 comparisons are inadmissible. As Riddell (1978) points out, it would compel subjects to split 100
 chips equally regardless of the respective monetary values of the chips to the subject. For
 example, suppose the first subject can cash-in any chips he receives as a result of any potential
 agreement, for 1 dollar each while the second subject is able to obtain 99 dollars per chip. Then
 an intuitively natural division of the chips would give the first subject 99 chips and the second,
 just 1 chip. However, the Nash solution splits the chips evenly between the two subjects. This is
 because of Postulate 1 and the resulting form of the Nash product (see equation 2.3)). The
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 factors, 1 dollar and 99 dollars, respectively, which would be inserted in an effort to "adjust" the
 two utilities to take account of the differing monetary values of the chips to the subjects would
 simply "factor out" of the product and in no way influence the computation of the Nash
 solution.

 This solution of Kalai is of very limited appeal in statistical applications because the set of
 feasible utility vectors, S, may well fail to be comprehensive. For example, in the degenerate case
 of identical preferences and opinions, S will be a radial line segment emanating from the
 disagreement point along the 450 line.

 3. EXAMPLES

 3.2. Normal Theory Example

 Here the problem is that of estimating the mean, 0, of a normally distributed random
 variable. The prior (or posterior if data are available) distributions are normal, i.e.
 7;i(0) = exp[(0-o0i)2], - oo<0< oo, i = 1, ,n. A joint action is to be chosen from

 = (-oo, oo) u {aO} where ao represents the "no action decision".
 For simplicity in this illustrative example, assume that the gain-in-utility is (approximately)

 a 0-1 function, i.e.

 u(a, 0) = 1, a-=0,o

 oo < 0 < oo. This is formally equivalent to assuming (cf. Weerahandi and Zidek, 1980a, a gain-in-
 utility function of conjugate form see Lindley, 1976), i.e. u(a, 0) = exp [- (a - 0)2] or 0
 according to whether a + aO or a = aO.

 Since the n utility functions are equal it may be reasonable to aggregate the n-opinions, for
 example by pooling them in 1GM or 1TAM as discussed in Section 2 and then to perform a
 conventional Bayesian analysis. Since the gain-in-utility function is the 0-1 function the best
 supported group decision would be the action which maximizes 1GM or 1AM if either of these is
 adopted. It is easily shown that 7rGM(O)oc exp[ - I(0 - 0)2], - oo <0< oo, where 0 = i Oi.
 Thus, the point estimate of 0 which is best supported by 7TGM(O) iS 0 = 0.

 The point estimate, U, is unsatisfactory in cases where the Oi are widely separated. If, for
 example, n = 2, oc1 = ?C2 = 2, 01 = 0, 02 = 100, then a = 50. However, 0 is not well supported by
 either of the two Bayesians and so choosing a point near 01 or 02 might well seem preferable, in
 this case, to choosing 0 itself.

 The linear pool, 1TAM (see (2.1)), has no simple expression and the point estimates best
 supported by it are difficult to evaluate. If the Oi are widely separated they will be modes of 1AM
 and hence equally good choices.

 Let us now consider the Nash solution. To keep the analysis simple assume n = 2. Our goal
 then reduces approximately to the maximization over 3 of

 A-H1 F 7i(0) (d0)j. (3.1)

 For convenience let 7i(b) = f 7i(0) 6(d0). Consider

 S = {(X,y): X = 7r1(0), Y = 7r2(0), all 0}.

 Its convex hull is

 S = {(X, y): X = 7t1(b), Y = 72(6), all 3}.

 It is clear that ['1(3) 2(3)i is maximized on the Northeast boundary of S at say 3*.
 By symmetry, P* is either degenerate at U= j0 +402, i.e. = [0] if et1(O)t2(0))
 is on the boundary of S or else 3* is the two point distribution,

 2[(1f-#*)01 +f3* 02] + 21/*01 +(1 -#*)02], which assigns half of its mass to each of the points
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 (1/-3*) 01 + * 02 and * 01 + (1/-#*) 02, where 0 < P< 1 is the point at which

 g(oc) 4 exp [2(0 - 02)2 O2] + exp [-2(01-02)2 (1 - C)2]

 is maximized or equivalently is the point corresponding to the maximum of

 f(u) A exp [- yu2]cosh u, where u = (01-02)2 (oc -) and y = 2/(01 02)2. Thus 3* is the
 non-randomized point estimate a or else (1 -,/*) 01 + /* 02 or /lC 01 + (1- l*)02 according to
 whether a fair coin-toss yields heads or tails. To determine which of these alternatives is correct
 we need only notice thatf(u) has a single maximum at 0 or has two global maximums at u;* and

 - u* (and one minimum at 0) according as 2y) 1 or 0 < 2y < 1; i.e. according to whether
 01 -02 | 2 or 01-02 > 2, where u* is the solution of tan h(u*)/u* = 2y and

 U*= 2(0 -02)2 ( y*-1) y = 2/(01 -02)2. Hence 3* is non-randomized or randomized accor-
 ding to whether I 01-02 | 2 or 0| -02 > 2.

 The last result may be described as saying that when given two normal prior distributions
 with modes 01 and 02, a point estimate for 0 may be formed by performing a preliminary test of
 significance. If 01 -02 | > 2, reject the null hypothesis of similar knowledge and toss a fair coin

 to choose between 0 + u*/(02 - 01) and J+ u*/(01 - 02). If, on the other hand, 0l -02 1 < 2 then
 a = 210l + 02) iS sufficiently well supported by both sets of prior knowledge as to render it an
 acceptable compromise between 01 and 02.

 The multi-Bayesian normal-mean estimation theory, which derives from the adoption of the
 Nash solution involves randomized rules in the manner of the special case considered here. The
 multi-Bayesian procedure is randomized unless there is fairly strong agreement in beliefs and
 preferences among the decision makers. An analytical theory is possible in the case ofjust n = 2
 decision-makers and some aspects of this theory are presented by Weerahandi and Zidek
 (1980a). The general case is largely computational. Results relevant to these computations are
 given in Weerahandi and Zidek (1980b).

 3.2. Hypothesis testing

 Suppose 0 = 0o u 01, ui is the 0-1 utility function, and a? is the two action space, with the
 "no action" decision adjoined.

 To obtain the multi-Bayesian testing procedure for 00 against 01 consider first the non-
 randomized rule "select 00". The non-symmetrical Nash product of Kalai (1977a) for this rule
 is flpi where pi = FIi(00), i = 1, , n. The corresponding quantity for 0 1 is flqi where
 qi = 1 -pi. If only non-randomized rules were admissible then the best jointly supported action
 would be "select 00" if and only if Il (pi/qi)' > 1, i.e. in terms of log-odds ratios if and only if
 ocxi ln (pi/qi)' > 0. If n = 1, we obtain the usual Bayes testing procedure.

 To find the best jointly supported randomized rule, say 6*, note that S, (see Section 2)

 consists of convex hull of 0 and the line segment joining (P1, , p,) and (q1,-.- , q,). The optimal
 rule is found by maximizing the Nash product over this line segment, i.e. by maximizing

 g(b) _ rl[bpi + (1 - 3) qi]a O < 6 < 1. It is straightforward to show that g is strictly concave. Thus
 3* = 0 if g'(0)0, 1 if g'(1)0 and the unique solution of g'(6) = 0 if g'(1)<0<g'(0). Note that,
 disregarding an always positive factor,

 n

 g(b) oc ci[b + qi/(pi - qi)] .
 i= 1

 Thus g'(1) = 1 ocxi(qi/pi) so g'(1) 0 becomes Y2cxi(qi/pi)< 1. The best supported rule then
 chooses the action, "select 00". This may be interpreted to mean that 00 is chosen because the
 average of the odds in favour of ? 1 is no larger than one. The decision, "select 0k" has a similar
 interpretation in terms of the average of odds in favour of 00.

 If in the above analysis the pi's represent posterior probabilities then we readily perceive an
 optional stopping-at-concensus rule which may be used if randomized rules are deemed to be
 objectionable: continue sampling until either g'(1) O0 or g'(0) < 0 and then take the appropriate
 terminal action. We have not investigated the properties of this rule.
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 4. CONCLUSION

 The Nash (or possibly non-symmetrical Nash) solution has been proposed in Section 2 for
 the problem facing n Bayesian decision-makers who are required to make a joint statistical
 decision even though their beliefs and preference may be quite diverse. Whether or not to adopt
 the Nash solution is itself a choice confronting the group. This decision is facilitated by the fact
 that it depends on the acceptability to the group of certain weak and intuitively natural
 assumptions of which the Nash solution is a logical consequence. Criticisms of these
 assumptions have led to certain alternatives to the Nash solutions but none of these seems to
 have been so widely accepted. Therefore, as a multi-person extension of uni-Bayesian statistical
 decision theory, that provided by the Nash solution would seem to be the most promising
 candidate.

 When the decision-makers' preferences are very similar, a broad alternate approach is to
 aggregate in some way the beliefs expressed by the decision-makers and thereafter to rely on a
 conventional Bayesian analysis. Methods for aggregating opinions were summarized in
 Section 2.

 The multi-Bayesian decision rule we propose in Section 2 is that, possibly randomized,
 3 = din which maximizes as a function of 3

 P([u(b)] +) = .i-.l { ui(a, 0) 5(da) fi (dO) - ci;

 here oci = l/n for all i if Nash's symmetry postulate holds and is otherwise determined as a
 preliminary step in the analysis, subject to the conditions cik 0, oc1 +**- + Cn = 1. The constant,
 ci, represents, essentially, the decision-maker's current worth in utility and is the amount he shall
 receive if the group fails to agree on a solution.

 We conclude with a series of observations.
 It is of interest to consider equation (2.2) when oci = n -. A Bayesian federal statistics bureau

 in designing a survey might wish to use as a prior distribution, the "democratic" combination of
 its n citizens' prior densities which is proportional to [1... 17n] /n Or, more realistically, the
 Bureau might use a random sample of prior densities, 7-c1, * , itfn. Assuming these are positive,
 independent and identically distributed, and that the law of large numbers applies, it would
 follow that

 ?c OC [ 1... *n]lIn -exp [E(ln f*)], (4.1)
 where f* has the common marginal distribution of the {Ii}. If, for example,
 7i(O) oc exp( - 1(0 - Zi)2], where Zi N(0O, 1) and 00 denotes the actual (but unknown) mean,
 equation (4.1) would then imply that, approximately, for large n,

 Z(O) oc exp [-i(O-o_)2]. (4.2)

 Thus in this case the mode of the combined prior would be situated approximately at the correct
 value. Of course, the problem of designing the survey to collect the sample of priors remains.

 Formula (2.2) may be used in an entirely different spirit than that which has motivated its
 derivation. Suppose there is just one individual whose prior, 7rl, is obtained. The decision-maker
 may well elect to throw into the analysis a second, very diffuse prior, 7t2, and then combine them
 according to (2.2). In this way he can respond to one of the frequent criticisms levelled at the
 Bayesian methodology, namely, that it offers no means by which the surmised quality of a prior
 can be reflected in the analysis. He may choose oC2 1 if he deems it1 to be of low quality and
 oC20 if he believes it to be of high quality.
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