
ROBUSTNESS IN STATISTICS 

Robustness in the Strategy 
of Scientific Model Building 

G. E. P. Box 

Robustness may be defined as the property of a procedure 

which renders the answers it gives insensitive to departures, 

of a kind which occur in practice, from ideal assumptions. 

Since assumptions imply some kind of scientific model, I 

believe that it is necessary to look at the process of 

scientific modelling itself to understand the nature of and 

the need for robust procedures. Against such a view it might 

be urged that some useful robust procedures have been derived 

empirically without an explicitly stated model. However, an 

empirical procedure implies some unstated model and there is 

often great virtue in bringing into the open the kind of 

assumptions that lead to useful methods. The need for robust 

methods seems to be intimately mixed up with the need for 

simple  models. This we now discuss. 

* 
An example (1), (2) was the application in the 1950's of 
exponential smoothing for business forecasting and the wide 
adoption in this century of three-term controllers for 
process control. It was later realized that these essentially 
empirical procedures point to the usefulness of ARIMA time 
series models since both are optimal for disturbances 
generated by such models. 
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THE NEED FOR SIMPLE SCIENTIFIC MODELS - PARSIMONY 

The scientist, studying some physical or biological 

system and confronted with numerous data, typically seeks for 

a model in terms of which the underlying characteristics of 

the system may be expressed simply. 

For example, he might consider a model of the form 

yu = f (R) (xu
q) + eu (u = 1,2,...,h) (1) 

in which the expected value hu of a measured output yu is 

represented as some function of k inputs x and of p 

parameters Q, and Eu is an "error". One important measure 

of simplicity of such a model is the number of parameters 

that it contains. When this number is small we say the model 

is parsimonious. 

Parsimony is desirable because (i) when important aspects 

of the truth are simple, simplicity illuminates, and complica-

tion obscures; (ii) parsimony is typically rewarded by 

increased precision (see Appendix 1); (iii) indiscriminate 

model elaboration is in any case not a practical option 

because this road is endless . 

ALL MODELS ARE WRONG BUT SOME ARE USEFUL  

Now it would be very remarkable if any system existing 

in the real world could be exactly represented by any simple 

model. However, cunningly chosen parsimonious models often do 

* 
Suppose for example that in advance of any data we postulated 

a model of the form of (1) with the usual normal assumptions. 
Then it might be objected that the distribution of eu might 
turn out to be heavy-tailed. In principle this difficulty 
could be allowed for by replacing the normal distribution by 
a suitable family of distributions showing varying degrees of 
kurtosis. But now it might be objected that the distribution 
might be skew. Again, at the expense of further parameters 
to be estimated, we could again elaborate the class of distri-
bution considered. But now the possibility might be raised 
that the errors could be serially correlated. We might 
attempt to deal with this employing, say, a first order auto-
regressive error model. However, it could then be argued that 
it should be second order or that a model of some other type 
ought to be employed. Obviously these possibilities are 
extensive, but they are not the only ones: the adequacy of 
the form of the function f(x,q) could be called into ques-
tion and elaborated in endless ways; the choice of input vari-
ables x might be doubted and so on. 
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provide remarkably useful approximations. For example, the 

law PV = RT relating pressure P, volume V and temperature 

T of an "ideal" gas via a constant R is not exactly true for 

any real gas, but it frequently provides a useful approxima-

tion and furthermore its structure is informative since it 

springs from a physical view of the behavior of gas molecules. 

For such a model there is no need to ask the question 

"Is the model true?". If "truth" is to be the "whole truth" 

the answer must be "No". The only question of interest is 

"Is the model illuminating and useful?". 

ITERATIVE PROCESS OF MODEL BUILDING 

How then is the model builder to know what aspects to 

include and what to omit so that parsimonious models that are 

illuminating and useful result from the model building 

process? We have seen that it is fruitless to attempt to 

allow for all contingencies in advance so in practice model 

building must be accomplished by iteration the inferential 

stage of which is illustrated in Figure 1. 

Conditional inference 

Tentative model 

    

   

Tentative analysis 

   

Criticism using 
residual diagnostic checks 

Figure 1. Interative Model Building 

For example, preliminary graphical analysis of data, and care-

ful thought about what is known about the phenomenon under 

* 
The iterative building process for scientific models can take 
place over short or long periods of time, and can involve one 
investigator or many. One interesting example is the process 
of discovery of the structure of DNA described by 
J. D. Watson [3]. Another is the development by R. A. Fisher 
[4] of the theory of experimental design between 1922 and 
1926. The recognition that scientific model building is 
an iterative process goes back to such classical authors as 
to Aristotle, Grossteste and Bacon. The suggestion that 
statistical procedures ought to be viewed in this iterative 
context was discussed for example in [1], [5], [6], [7], [22]. 
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study,may suggest a first model worthy to be tentatively 

entertained. From this model a corresponding first tenta- 

tive analysis may be made as if we believed it. The tentative 

inferences made, like all inferences are conditional  on the 

applicability of the implied model, but the investigator now 

quickly switches his attitude from that of sponsor to that of 

critic. In fact the tentative analysis provides a basis for 

criticism of the model. This criticism phase is accomplished 

by examining residual quantities using graphical procedures 

and sometimes more formal tests of fit. Such diagnostic 

checks may fail to show cause for doubting the model's 

applicability, otherwise it may point to modification of the 

model leading to a new tentative model and, in turn, to a 

further cycle of the iteration. 

WAYS TO ALLOW FOR MODEL DISCREPANCIES  

How can we avoid the possibility that the parsimonious 

models we build by such an iteration might be misleading? 

There are two answers. 

a) Knowing the scientific context of an investigation we 

can allow in advance for more important  contingencies. 

b) Suitable analysis of residuals can lead to our fixing up 

the model in other needed directions. 

We call the first course model robustification  the second 

iterative fixing. 

JUDICIOUS MODEL ROBUSTIFICATION  

Experience with data and known vulnerabilities of 

statistical procedures in a specific scientific context will 

alert the sensitive practitioner to likely discrepancies 

that can cause problems. He may then judiciously and grudg-

ingly elaborate the model and hence the resulting procedure 

so as to insure against particular hazards in the most 
* 

parsimonious manner. Models providing for simple forms of 

* 
It is currently fashionable to conduct robustness studies 
in which the normality assumption is relaxed (in favor of 
heavy tailed distribution or distributions containing out-
liers) but all other assumptions are retained. Thus it is 
still assumed that errors are independent that transforma-
tions are correctly specified and so on. This seems to be 
too naive and narrow a view. 
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autocorrelation in serial data, for simple transformation in 

data covering wide ranges, for outliers in the almost 

universal situation where perfect control of the experimental 

process is not available, are all examples of commonly needed 

parsimonious elaborations which can have major consequences. 

ITERATIVE FIXING USING DIAGNOSTIC CHECKS 

Once it is recognized that the choice of model is not 

an irrevocable decision, the investigator need not attempt to 

allow for all contingencies a priori which as we have said is 

in any case impossible. Instead, after appropriate robus-

tification, he may look at residual quantities in an attempt 

to reveal discrepancies not already provided for. 

To better appreciate such a process of iterative fixing, 

write the model (1) in the form 

yu = + e(x2) (2) 

where now the vector 
Xlu 

previously denoted in (1) by xu 
represents those variables the investigator has specifically 

decided to study. The expression e(x2u)  which replaces eu 
indicates explicitly that the error eu represents the joint 

influences on the output of all those other input variables 

2u which are omitted from the model (usually because they 

are unknown). Many statistical procedures (in particular 

quality control, residual analysis and evolutionary opera-

tion) are concerned with discovering "assignable causes" - 

elements of  2u - which may be moved out of the unknown to 

the known as indicated by 
r  

yu = lu + e(2u) . (3) 

Now let {at}  be a white noise sequence. That is a 

sequence of identically and independently distributed random 

variables having zero mean. If we now denote the n values 

of response and known inputs by y and xl  respectively 

then an ideal model 

Ft{Ÿ i xl} = at, t = 1,2,...,h (4) 

would consist of a transformation of the data to white noise 

which was statistically independent of any other input. 
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Iteration towards such a model is partially motivated by 

diagnostic checking through examination of residuals at each 

stage of the evolving model. 

Thus, patterns of residuals can indicate the presence 

of outliers or suggest the necessity for including specific 

new inputs. Also serial correlation of residuals shown for 

example by plotting â
t+k 

versus ât  (or more formally by 

examining estimates of sample autocorrelations for low lags k) 

can point to the need for allowing for serial correlation in 

the original noise model. Again as was shown by Tukey [8], 

dependence of y - Ý on 92  can indicate the need for 

transformation of the output. Examination of residuals at 

each stage parallels the chemical examination of the filtrate 

from an extraction process. When we can no longer discover 

any information in the residuals then we can conclude that 
* 

all extractable information is in the model. 

MODEL ROBUSTIFICATION AND DIAGNOSTIC CHECKING  

Robustification and iterative fixing following diagnostic 

checking of residuals are of course not rival but complemen-

tary techniques and we must try to see how to use both 

wisely. 

Subject matter knowledge will often suggest the need for 

robustification by parsimonious model elaboration. For 

example, when models such as (2) are used in economics and 

business the output and input variables {yu}, {xlu}  are 

often collected serially as time series. They are then very 

likely to be autocorrelated. If this is so then the 

* 
It should be remembered that just as the Declaration of 

Independence promises the pursuit of happiness rather than 
happiness itself, so the iterative scientific model building 
process offers only the pursuit of the perfect model. For 
even when we feel we have carried the model building process 
to a conclusion some new initiative may make further improve-
ment possible. Fortunately to be useful a model does not 
have to be perfect. 

In particular notice that, even though residuals from 
some model are consistent with a white noise error, this does 
not bar further model improvement. For example, this white 
noise error could depend on (theoretically, even, be propor-
tional to) the white noise component of some, so far 
unrecognized, input variable. 
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components of 
{x2u} 

in the error e{x2u} are equally 
likely to have this characteristic. It makes little sense, 

in this context, therefore, to postulate even tentatively a 

model of the form of (1) in which the eu are supposed 

independent. Instead the representation of Lu by a simple 

time series model (for example a first order autoregressive 

process for which serial correlation falls off exponentially 

with lag) would provide a much more plausible starting place. 

Failure either, to robustify the model in this way initially, 

or, to check for serial correlation in residuals, resulted in 

one published example in t values (measuring the signif-

icance of regression coefficients) which were inflated by an 

order of magnitude [9,10]. We discuss this example in more 

detail later. 

Again statistical analysis in an inappropriate metric can 

lead to wasteful inefficiency. For instance, textile data are 

presented in [11] where appropriate transformation would have 

resulted in a three fold decrease in the relative variance 

accompanied by reduction in the number of needed parameters 

from ten to four, for the expenditure of only one estimated 

transformation parameter. 

In both examples discussed above a profound improvement 

in statistical analysis is made possible by suitable robus-

tification of the model the need for which could have been  

detected by suitable diagnostic checks on residuals. 

AVOIDANCE OF UNDETECTED MISSPECIFICATION 

Unfortunately we cannot always rely on diagnostic checks 

to reveal serious model misspecification. The dangerous 

situation is that where initial model misspecification can 

result in a seriously misleading analysis whose inappropriate-

ness is unlikely to be detected by diagnostic checks. 

For example, the widely used model formulation (1) 

supposes its applicability for every observation y u 
(u = 1,2,...,n) and so explicitly excludes the possibility 

of outliers. If such a model is (inappropriately) assumed 

in the common situations where occasional accidents possibly 

leading to outliers are to be expected, then any sensible 

method of estimation such as maximum likelihood if applied  
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using this inappropriate model must tend to conceal model 

inadequacy. This is because, in order to follow the 

mathematical instructions presented, it must choose 

parameters which make residuals even with this wrong model  

look as much as possible like white noise. That this has led 

some investigators to abandon standard inferential methods 

rather than the misleading model seems perverse. 

As a further example of the hazard of undetected 

misspecification consider scientific problems requiring the 

comparison of variances. Using standard normal assumptions 

the investigator might be led to conduct an analysis based 

on Bartlett's test. However this procedure is known to be 

so sensitive to kurtosis that nonnormality unlikely to be 

detected 
s. 

diagnostic checks could seriously invalidate 

results. This characteristic of the test is well known, of 

course, and it has long been recognized that the wise 

researcher should robustify initially. That is he should use 

a robust alternative to Bartlett's test ab initio rather than 

relying on a test of nonnormality followed by possible fix up. 

The conclusion is that the role of model robustification 

is to take care of likely discrepancies that have dangerous  

consequences and are difficult to detect by diagnostic checks. 

This implies an ability by statisticians to worry about the 

right things. Unfortunately they have not always demonstrated 

this talent, see for example Appendix 2. 

ROBUSTNESS AND ERROR TRANSMISSION  

Since we need parsimonious models but we know they must 

be false we are led to consider how much deviation from the 

model of a kind typically met in practice will affect the 

procedure derived on the assumption that a model is exact. 

The problem is analogous to the classical problem of 

error transmission. In its simplest manifestation that 

problem can be expressed as follows: 

Consider a calibration function 

U = f (b) (5) 

which is used to determine y at some value say b = b0. 

Suppose that the function is mistakenly evaluated at some 
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other value of b, then the resulting error e transmitted 

into g is 

(U 0 + e) - g 0 = f(b) - f(30 )  = (3 - b 0 )  c p ( 6) 

where r = 
2~ 
áe ß_0 

The expression for the transmitted error e contains 

two factors b and p. The first is the size of the input 

error the second which we will call the specific transmission  

is the rate of change of g as b is changed. It is 

frequently emphasized in discussing error transmission that 

both factors are important. In particular the existence of 

a large discrepancy b - 
ß0 

does not lead to a large 

transmitted error e if r  is small. Conversely even a 

small error b can produce a large error e if p is large. 

Now consider a distribution of errors r( ~) .  Knowledge 

of the relation g = f(b) allows us to deduce the correspond-

ing distribution p(e) . In particular if the approximation 

(6) may be employed then s u = rs6.  The relevance of the 

above robustness studies is as follows. Suppose g is some 

performance characteristic of a statistical procedure which 

it is desired to study. This characteristic might be some 

measure of closeness of an estimate to the true value, 

significance level, the length of a confidence interval, a 

critical probability, a posterior probability distribution, 

or a rate of convergence of some measure of efficiency or 

optimality. Also suppose b is some measure of departure 

from assumption such as a measure of nonnormal kurtosis or 

skewness or autocorrelation of the error distribution and 

suppose that b = ß0 is the value taken on standard assump-
tions. Then in the error transmission problem three features 

of importance are 

(1)  The distribution of b. This provides the probability 

distribution of deviations from assumption which are actually 

encountered in the real world. Notice this feature has 

nothing to do with mathematical derivation or with the 

statistical procedure used. 

(ii)  The specific transmission r. This is concerned with 

the error transmission characteristics of the statistical 
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procedure actually employed and may be studied mathematically. 

It is well known that different statistical procedures can 

have widely different p's. An example already quoted is the 

extreme sensitivity to distribution kurtosis of the signif-

icance level of likelihood ratio tests to compare variances 

(Bartlett's test) and the comparative insensitivity of 

corresponding tests to compare means (Analysis of variance 

tests). 

(iii)  If the data set is of sufficient size it can itself 

provide information about the discrepancy b - b0  which 

occurs in that particular sample, thus reducing reliance on 

prior knowledge. Conversely if the sample size is small or 

if b  is of such a nature that a very large sample is needed 

to gain even an approximate idea of its value, heavier reli-

ance must be placed on prior knowledge (whether explicitly 

admitted or not). 

It seems to me that these three characteristics taken 

together determine what we should worry about. They are all 

incorporated precisely and appropriately in a Bayes formula-

tion. 

BAYES THEOREM AS A MEANS OF STUDYING ROBUSTNESS  

From a Bayesian point of view given data y all valid 

inferences about parameters Q can be made from an appro-

priate posterior distribution~ p(q ~ y). To study the robust-

ness of such inferences when discrepancies b from assump-

tions occur we can proceed as follows: 

Consider a naive model relating data y and parameters 

Q.  For example, it might assume that p(y ~ q) was a 

spherically normal density function, that E(y) was linear 

in the parameters Q and that before the data became avail-

able the desired state of ignorance about unknown parameters 

was expressed by suitable non-informative prior distributions 

leading to the standard analysis of variance and regression 

procedures. Suppose it was feared that certain discrepancies 

* 
However even the small amount of information about b avail- 

able from a small sample can be important. See for instance 
the analysis of Darwin's data which follows (Example 1). 
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from the model might occur (for example lack of independence, 

need for transformation, existence of outliers, non-normal 

kurtosis etc.). Two questions of interest are (A) how sensi-

tive are inferences made about q to these contemplated 

misspecifications of the model? (B) If necessary how may 

such inferences be made robust against such discrepancies as 

actually occur in practice? 

QUESTION (A) SENSITIVITY  

Suppose in all cases that discrepancies are parameterized 

by b. Also suppose the density function for y given q 
and b 

 

is p(u ~ q,b) and that r(qIb) is a non-informative 

prior for Q given 8. Then comprehensive inferences about 

q  given b  and y may be made in terms of the posterior 

distribution  

p(Q ~ b, y) = k P(U j Q,b)R(q1b) (7) 

where k is a normalizing constant. Sensitivity of such 

inferences to changes in Q may therefore be judged by 

inspection of p(q l b,y) for various values of 8. 

QUESTION (B) ROBUSTIFICATION  

Suppose now that we introduce a prior density p(b) 
which approximates the probability of occurrence of Q  in the 

real world. Then we can obtain p(b ~ y) from J p(q,b ly)dq. 
This is the posterior distribution of b  given the prior 

p(b) and given the data. Then 

R( Q ~ U )  = Ip ( Q Iß, U ) R ( ß I U ) dß 

from which (robust) inferences may be made about q indepen-

dently of b as required. 

Inference are best made by considering the whole poste-

rior distribution however if point estimates are needed they 

can of course be obtained by considering suitable features of 

the posterior distribution. For example the posterior mean 

More generally the density function for y will contain 
nuisance parameters s Equations (7) and (8) will then apply 
after these parameters have been eliminated by integration. 

(8) 
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will minimize squared error loss. Other features of the 

posterior distribution will provide estimates for other loss 

functions (see for example [6], [12]). 

It does seem to me that the inclusion of a prior 

distribution is essential in the formulation of robust 

problems. For example, the reason that robustifiers favour 

measures of location alternative to the sample average is 

surely because they have a prior belief that real error 

distributions may not be normal but may have heavy tails 

and/or may contain outliers. They evidence that belief 

covertly by the kind of methods and functions that they favour 

which place less weight on extreme observations. I think it 

healthier to bring such beliefs into the light of day where 

they can be critically examined, compared with reality, and, 

where necessary, changed. Some examples of this alternative 

approach are now given. 

EXAMPLE 1 KURTOSIS AND THE PAIRED t TEST 

This section follows the discussion by Box and Tiao [6], 

[13], [14] of Darwin's data quoted by Fisher on the differ-

ences in heights of 15 pairs of self and cross-fertilized 

plants. These differences are indicated by the dots in 

Figure 2. The curve labeled ß = 0 in that diagram is a t 

distribution centered at the average y = 20.93 with scale 

factor s/ N = 9.75. On standard normal assumptions it can 

be interpreted as a confidence distribution, a fiducial 

distribution or a posterior distribution of the mean differ-

ence Q. From the Bayesian view point the distribution can 

be written 

_n 
~ - y) 21  

p(Ejy) = const 1 + n(0 Jç 

vs2 

and results from taking a non-informative prior distribution 

for the mean Q and the standard deviation s. Alternatively 

we may write the distribution (9) in the form 

n 

R(q ~ U) = const[O(y - Q)
2
]  

(9)  

(10)  

and if 
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Figure 2. Posterior distributions p(8l b,y) of mean differ-
ence q  for parent distributions having differing 
amounts of kurtosis parameterized by q. Darwin's 
data. 

M( q.q) = SI Ui  

(10) may be written as 

a > 1 

r(Q ~ U) = const{M(q,2)} 2 

SENSITIVITY TO KURTOSIS 

One way to consider discrepancies arising from non-normal 

kurtosis is to extend the class of density functions, usinq 

the exponential power family 

  

2/(l+b) 1 

 

r(U ~ q.s.b) = s-1 expj-c(ß) g - Q  
s (12) 

    

1 

(1 + q)]  
where with c(b) - j 1 } and q  and s are the 

r[- (1 + q)] 

(11)
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mean and standard deviation as before. Then using the same 

noninformative prior distribution as before p(8,s ~ b),s-1 

it is easily shown that in general 

- n(1+b) 
p(qIb,Y) = const M{8,2/(1 + b)} (13) 

and in particular if b = 0 (13) and (11) are identical. 
The performance characteristic here is not a single 

quantity but the whole posterior distribution from which all 

inferences about Q can be made. 

Sensitivity of the inference to changes in b is shown 

by the changes that occur in the posterior distributions 
p(q ~ b,y) when b is changed. Figure 2 shows these distribu-

tions for various values of b. Evidently, for this example, 

inferences are quite sensitive to changes in the parent 

density involving more or less kurtosis. 

ROBUSTIFICATION FOR KURTOSIS 

As was earlier explained, high sensitivity alone does not 

necessarily produce lack of robustness. This depends also 

on how large are the discrepancies which are likely to occur, 

represented in (8) by the factor p( y). It is convenient 

to define a function ru (bI y) = r(bI y)/r(b) which fills the 

role of a pseudo-likelihood and represents the contribution 

of information about b coming from the data. This factor 

is the posterior distribution of b when the prior is taken 

to be uniform. With this notation then for the present 

example 

1 1 

r(Q ~ U) =fl R(QIb,g)R~(ß IU)R(ß)dß=fl Ru (Q, ß IU)R(ß)dß. (14) 

For Darwin's data the distributions ru (q,bI y) and a 

particular p(b) are shown in Figure 3. Figure 4 shows 

* 
Notice however, the distinction that must be drawn between 
criterion and inference robustness [6], (14]. For example, 
for these data the significance level of the t criterion is 
changed hardly at all (from 2.485% to 2.388%) if we suppose 
the parent distribution is rectangular rather than normal. 



ROBUSTNESS IN SCIENTIFIC MODEL BUILDING 215 

~o 
F~~ 

Q1~ 

Figure 3. Joint posterior distribution pu (8,b ~ y) with 

a particular prior r(b). Darwin's data. 

r( y)  for various choices of p(b) while Figure 5 shows 

the corresponding distribution p(8~y). 

a) Making p(b) a delta function at b = O corresponds 

with the familiar absolute assumption of normality. It 

results in distribution (a) in Figure 5 which is the 

scaled t referred to earlier. 

b) This choice for p(b) is appropriate to a prior assump-

tion that although not all distributions are normal; 

variations in kurtosis are such that the normal distribu-

tion takes a central role. For this particular example 

the resulting distribution (b) in Figure 5 is not very 

different from the t distribution. 

c) Here, by making p(ß) uniform the modifier or pseudo-

likelihood r( y) is explicitly produced which repre-

sents the information about kurtosis coming from the 

sample itself. For this extreme form of prior distribu-

tion, distribution (c) in Figure 5 is somewhat changed 

although not dramatically. The reason for this is that 
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Figure 4. Posterior distributions r( y)  for 

various choices of r(b). Darwin's 

data. 

Figure 5. Posterior distributions p(Ojy) for various 

choices of p(b). Darwin's data. 
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the widely discrepant distributions in Figure 2 for nega-

tive values of b are discounted by the information 

coming from the data. 

d)  This distribution is introduced to represent the kind of 

prior ideas which, following Tukey, many current robus-

tifiers seem to have adopted. The resulting posterior 

distribution is shown in Figure 5(d). 

This example brings to our attention the potential 

importance even for small samples of information coming from 

the data about the parameters B.  In general if we compute 

the modifier r (b ly) from 

fp(8,B y)d8 
pu ~ Od U) - r(b) ~ 

(15) 

then we can write 

R ~ QIU) = fp(E ,y)p(y)p(B)dB . (16) 

Now even when the sensitivity factor is high that is 

when p(Q ~ b,y) changes rapidly as b changes, this will 

lead to no uncertainty about p(Q ly) if p(Bjy) is sharp. 
This can be so either if p(b) is sharp - there is an 

absolute assumption that we know b  a priori - or if p (b ly) 
u 

is sharp. In the common situation, the spread of p (b ly) 
u 

will be proportional to 1/N and for sufficiently large 

samples there will be a great deal of information from the 

sample about the relevant discrepancy parameters b.  For 

small samples however this is not generally so. This amounts 

to saying that for sufficiently large samples it is always 

possible to check assumptions and in principle to robustify 

by incorporating sample information about discrepancies b 
into our statistical procedure. For small samples we are 

always much more at the mercy of the accuracy of prior 

information whether we incorporate it by using Bayes theorem 

or not. Notice however, how a Bayes analysis can make use 

of sample data which would have been neglected by a sampling 

theory analysis. Comparison of Figures 2 and 5(c) makes 

clear the profound effect that the sampling information 

about b for only n = 15 observations has on the 

inferential situation. This sample information represented 
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by pu(131y)  in Figure 4(c), although vague, is effective in 

discounting the possibility of platykurtic distributions 

which are the major cause of discrepancy in Figure 2. This 

effect accounts for the very moderate changes that occur in 

r(8 y) accompanying the drastic changes made in r(b). 

EXAMPLE 2: SERIAL CORRELATION AND REGRESSION ANALYSIS 

Coen, Gomme and Kendall [9] gave 55 quarterly values of 

the Financial Times ordinary share index y ,  U.K. car t 
production  lt and Financial Times commodity index C2t. 
They related yt to the lagged values lt-6 

and 

X2t-7 
by a regression equation 

yt = Q0 + Qlt + 8
2lt-6 + 

8
32t-7 + e

t 
(17) 

which they fitted by least squares. As mentioned earlier they 

obtained estimates of 62  and 03  which were very highly 

significantly different from zero and concluded that X1 
and X2  could be used as "leading indicators" to predict 

future share prices. Box and Newbold [10] pointed out that 

if allowance is made for the serial correlation which exists 

in the error et then the apparently significant effects 

vanish and much better forecasts are obtained by using today's 

price to forecast the future. This is a case where infer-

ences about q are very non-robust to possible serial 

correlation. 

In a recent Wisconsin Ph.D. thesis [15] Lars Pallesen 

reassessed the situation with a Bayesian analysis, supposing 

that et may follow a first order autoregressive model 

et - = at,  where at is a white noise sequence as 

earlier defined. 

The dramatic shifts that occur in the posterior distribu-

tions of 82  and 83  when it is not assumed a priori that 

8 = 0 are shown in Figures 6 and 7. The situation is 

further illuminated by Figures 8 and 9 which show the joint 

distribution of 02  and b and of 03  and 8, together 

with the marginal distribution ru (b1u)  based on non-
informative prior distributions. 
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-8 -6 -4 -2 0 2 4 

Q 2  

Figure 6. Effect of different assumptions on posterior dis-

tribution of 02.  r(82 y)  allows for possible 

autocorrelation of errors p(82 ~ u, ß = 0) does not. 

82  
is regression coefficient of Share Index on 

car sales lagged six quarters. 

r( 8 3 y) r(83 U, 6=0) 

I i ( ~ ~ 1 t  1 ______ I  
-2 -1 0 1 2 3 4 5 6 7 8 c 10-4 

0
3 

l 

Figure 7. Effect of different assumptions on posterior dis-

tribution of 03.  p(831y)  allows for possible 

autocorrelation of errors p(83 I y,8 = 0) does not. 

03  
is regression coefficient of Share Index on 

Consumer Price Index lagged seven quarters. 
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in 95% interval as ß is changed. 
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Autoregressive parameter ß + 

Figure 9. Joint posterior distribution of 
03 

and b  and 

marginal posterior distribution of ß. Note shift 

in 95% interval for 
03 

as b  is changed. 
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EXAMPLE 3: OUTLIERS IN  STANDARD STATISTICAL MODELS  

Consider again the model form (1) 

yu = f( u ,2) + eu u = 1,2,...,n . (18) 

With standard assumptions about eu with the restriction that 

the expectation function is linear in Q this is the widely 

used Normal linear model. The remarkable thing about this 

model is that it is ever seriously entertained even when 

assumptions of independence and normality seem plausible. For 

it specifically states that the model form is appropriate 

for u = 1,2,...,n (that is, for every one of the experiments 

run). Now anyone who has any experience of reality knows that 

data are frequently affected by accidents of one kind or 

another resulting in "bad values". In particular it is 

expecting too much of any flesh and blood experimenter that 

he could conduct experiments unerringly according to a pre-

arranged plan. Every now and again at some stage in the 

generation of data, a mistake will be made which is unrecog-

nized at the time. Thus a much more realistic statement 

would be that model like (18) applied, not for u = 1,2,...,n, 

but in a proportion 1 - a of the time and that during the 

remaining proportion a of the time some discrepant, impre-

cisely known, model was appropriate. Such a model was 

proposed by Tukey in 1960 [16]. We call observations from 

the first model "good" and those from the second model "bad". 

This type of model was later used in a Bayesian context 

by Box and Tiao [17]. They assumed that the discrepant model 

which generated the bad values was of the same form as the 

standard model except that the error standard deviation was 

k times as large. The results are rather insensitive to the 

choice of k. A Bayesian analysis was later carried out by 

Abraham and Box [18] with a somewhat different version of the 

model which assumes that the discrepant errors contain an 

unknown bias d. 
Either approach yields results which are broadly similar 

in that the posterior distribution of the parameters Q 
appears as a weighted sum of distributions. 

n n 
R(QIU) =w 0p 0 

(q ~ y) + S wiRi(
6 ~ U) + S w~3r~~ ( Q ~ U) +... (19) 

i=1 i=3 
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The distribution r0(q jy)  in the first term on the right 

would be appropriate if all n observations were good, i.e. 

generated from the central model. The distribution r 
i

(q ly) 

in the first summation allows the possibility that n - 1 

observations are good but the ith is bad. The next summa-

tion allows for two bad observations and so on. The weights 

w are posterior probabilities, wo that no observation is 

bad, wi  that only the ith observation is bad, wij  that 

the ith and jth observations are bad and so on. 

Strictly the series includes all 2n possibilities but 

in practice terms after the first or second summation 

usually become negligible. 

Figure 10 shows an analysis for the Darwin data men-

tioned earlier. In this analysis it is supposed that the 

error distribution for good values is 1(0,02)  and that for 

bad values is N(O,k2s2).  The analysis is made, as before, 
using a non-informative prior for Q and s with k = 3 and 

a = .05. This choice of a is equivalent to supposing that 

with 20 observations there is a 63.2% chance that one or 

more observations are bad. The probability of at least one 

outlier for other choices of n and a are given below 

a 

n 0.10 0.05 0.01 

10 63.2 39.2 9.5 

15 77.7 52.8 13.9 

20 86.5 63.2 18.1 

40 98.0 86.5 33.0 

The results [17] are very insensitive to the choice of 

k but are less insensitive to the choice of a. However 

1) it should be possible for the investigator to guess this 

value of a reasonably well. 

2) the calculation can be carried out for different a 
values and the effect of different choices considered 

[18]. 
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k=5 a = .05 

~  
i `/ 
i i 

I 
i l 

Figure 10. A. Assuming no outliers. 

B. Allowing the possibility of outliers. 

C.  Assuming y1  and y2  are outliers. 

Inspection of the weights w can also be informative 

in indicating possible outliers. For example [19] the time 

series shown in Figure 11 consists of 70 observations 

generated from the model: 

yt = FUt-1 + d.1  + at 

where 

5  if t = 50 

0  otherwise 
d t = (20) 

f = .5 and {at}  a set of independent normally distributed 
random variables with variance s 2 = 1.  The plot in Figure 12 

of the weights wi  indicates the probability of each 

being bad and clearly points to discrepancy of the 50th 

observation. 
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Figure 11. A time series generated from a first order 

autoregressive model with an outlier 

innovation at t = 50. 

.9 

.8 

.6 

10.0 20.~~ 30.0 40 ~~ 50.0 60.0 70.0 

Figure 12. Posterior probabilities of bad values 

given that there is one bad value. 
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EXAMPLE 4: TRANSFORMATION OF THE DEPENDENT VARIABLE 

Parsimony favors any device that expands model applica-

bility with small expenditure of additional parameters. As 

was emphasized by Fisher, in suitable circumstances, para-

metric transformation can provide such a device. For example 

a suitable power transformation Y = y  can have profound 

effect when ymax/ym. is not small. 

In this application then the discrepancy parameter b 
measures the need for transformation. In particular for the 

power transformations no transformation corresponds to 

b = l = 1. 
The Bayes approach to parametric transformations was 

explored by Box and Cox [11]. One example they considered 

concerned a 3 c 4 factorial design with 4 animals per cell 

in which a total of n = 48 animals were exposed to three 

different poisons and four different treatments. The 

response was survival time. Since for this data 

y   max 
/

min y = 12.4/1.8 = 7 we know a priori that the effect 

of needed transformation could be profound and it would 

be sensible to make provision for it in the first tentative 

model. 

For this particular set of data, where there is a blatant 

need for transformation, an initial analysis with no transforma-

tion followed by iterative fix up would be effective also. 

Diagnostic checks involving residual plots of the kind sug-

gested by Anscombe and Tukey [20], [21] certainly indicate [22] 

the dependence of cell variance on cell mean and less clearly 

non-additivity. Whatever route we take we are led to 

consider a transformation yl  where l approaches -1. As 

will be seen from the analysis of variance below this trans-

formation not only eliminates any suggestion of an interaction 

between poisons and treatments but also greatly increases preci-

sion. This example seems to further illustrate how Bayesian robus-

tification of the model illuminates the relation of the data 

to a spectrum of models. Using noninformative prior distribu- 

tions Figure 13 shows posterior distributions for l with differ- 

ent constraints applied to the basic normal, independent, model 

yrci - arc + ~rci (21) 

where the subscripts r, c, i apply to rows, columns and replicates. 
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Analyses of Variance of the Biological Data 

Mean squares c 1000 

Degrees Degrees Reciprocal 
of Untransformed of transformation 

freedom freedom (z  form) 

Poisons 2 516.3 2 568.7 

Treatments 3 307.1 3 221.9 

P c T 6 41.7 6 8.5 

Within groups 36 22.2 36(35) 7.8(8.0) 

-3 -2 -1 0 1 2 3 4 
l+ 

Figure 13. Posterior distributions for l under various 

constraints N-Normality, Homogeneity of 

variance, A-Additivity. 

The nature of the various distributions is indicated in 

the following table in which N, H, and A refer respec-

tively to Normality, Homogeneity of Variance and Additivity 
and rr and gc are row and column effects 

Distribution Constraint 

p (l1N, y) V(e
rci)  = rc u

Pu (l ~ HN U) src = S2 

Pu (lIAHN y) Mrc = + Pr + Uc and src = S2 . 

The disperse nature of the distribution ru (l1N,y)  is to be 
expected since a sample of size n = 48 cannot tell us much 

about normality. The greater concentration of pu (l ~ HN,y) 
arises because there is considerable variance heterogeneity 

in the original metric which is corrected by strong 
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transformations in the neighborhood of the reciprocal. 

Finally p(l I AHN) is even more concentrated because trans-

formations of this type also remove possible non-additivity. 

The analysis suggests among other things that for this data 

the choices of transformations yielding approximate addi-

tivity, homogeneity of variance and normality are not in 

conflict. From Figure 14 (taken from [221) we see that for 

this example appropriate adjustment of the discrepancy para-

meter ß= l affects not only the location of the poison main 

effects, it also has a profound effect on their precision . 

Indeed the effect of including l in estimating main effects 

is equivalent to increasing the sample size by a factor of 

almost three. 

, 0.3 0.~ 0.5 ~ 06, /   
/ / 

'

_
~

~

~~ g = 0.123 / ' / 
/ ///  \ / // 
/ /~ / 

analysis op reciprocal scale / 

Figure 14. Posterior distributions for individual means 

(poisson main effects) on original and 

reciprocal scale. Note greatly increased 

precision induced by appropriate transformation. 

PSYCHING OUT THE ROBUSTIFIERS 

To apply Bayesian analysis we must choose a p(ß) which 

roughly describes the world we believe applies in the problem 

context. 

There are a number of ways we can be assisted in this 

choice. 

(1)  We can look at extensive sets of data and build up suit-

able distributions p(ß) from experience. 

* 
Similar results are obtained for the treatment effects and 
as noted before the transformation eliminates the need for 
interaction parameters. 

0.037 
or~g~nal analysis 

.'  I I I  ." I  f  

f

3.5 3.0 2.5 

~ 
2.0  

111 II I 
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(ii) We can consult experts who have handled a lot of data 

of the kind being considered. 

(iii) We can consider the nature of the robust estimates 

proposed and what they reveal about the proposer's prior beliefs. 

Consider, for example, the heavy tailed error problem. 

Gina Chen in a recent Ph.D. thesis [23] has found prior 

distributions r(b) yielding posterior means which approxi-

mate robust estimates of location already proposed on other 

grounds. In one part of her study she considers a model in 

which data come from an exponential power distribution. 

p(y~8,s,b) of the form of (11) with probability 1 - a, 
and, with probability a to have come from a similar distri-

bution but with a standard deviation k times as large. 

Thus 

r(UIq,s,a,b) = (1 - a)r(y Iq,s,b) + a•r(gIq,ks,b) • (22) 

It turns out in fact that priors which put all the mass at 

individual points in the p(a,b) plane can very closely 

approximate suggested M estimators as well as trimmed 

means, Winsorized means, and other L estimators. 

Three objectives of her study were 

(i) To make it possible to examine more closely and hence 

to criticize the assumptions about the real world which 

would lead to the various robust estimates. 

(ii) To compare these revealed assumptions with the 

properties of actual data. 

(iii) To allow conclusions obtained from simple problems to 

be applied more generally. Once we agree on what p(b) 
should be for a location parameter then the same p(b) can 

be used for more complicated problems occurring in the same 

scientific context. Direct application of Bayes theorem 

can then, for example, indicate the appropriate analysis for 

all linear and nonlinear models formerly analyzed by least 

squares. 

SUMMARY AND CONCLUSIONS 

A major activity of statisticians should be to help the 

scientist in his iterative search for useful but necessarily 

inexact parsimonious models. While inexact models may 



230 G. S. P. BOX 

mislead, attempting to allow for every contingency a priori is 

impractical. Thus models must be built by an iterative feed-

back process in which an initial parsimonious model may be 

modified when diagnostic checks applied to residuals indicate 

the need. 

When discrepancies may occur which are unlikely to be 

detected by diagnostic checks, this feedback process could 

fail and therefore procedures must be robustified with respect 

to these particular kinds of discrepancies. This writer 

believes that this may best be done by suitably modifying 

the model rather than by modifying the method of inference. 

In particular a Bayes approach offers many advantages. 

Suppose the scientist wishes to protect inferences about 

primary parameters Q  from effects of discrepancy parameters  

b.  Bayes analysis automatically brings into the open a 

number of important elements. 

(i) The prior distribution p(b) reveals the nature of 

the supposed universe of discrepancies from which the 

procedure is being protected. 

(ii) The distribution pu (b1 y) = p(Ejy)/p(E) represents 
information about b coming from the data itself. This 

distribution may be inspected for concordance with p(E). 

(iii) The conditional posterior distribution p(Q1Q,y) shows 

the sensitivity of inferences to choice of Q. 

(iv) From the marginal posterior distribution p(Q ~y) 

appropriate inferences which are robust with respect to Q 
may be made. 

(v) Implications of inspired empiricism can lead to useful 

models. For example, we can ask "What kind of p(b) will 

make some empirical robust measure of location a Bayesian 

estimator?" This p(b) may then be examined, criticized and 

perhaps compared with distributions of Q encountered in 

the real world. 

(vi) Once p(b) is agreed on then that same p(b) can be 

applied to other problems. For example, we do not need to 

give special consideration to robust regression, robust 
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analysis of variance, robust non-linear estimation. We 

simply carry through the Bayesian analysis with the agreed 

r( B) . 

(vii)  In the past the available capacity and speed of computers 

might have limited this approach but this is no longer true. 

It will be necessary however, to make a major effort to 

produce suitable programs which can readily perform analyses 

and display results of the kind exemplified in this paper. 

APPENDIX 1 

Suppose that, in model (1), n observations are available 

and standard assumptions of independence and homoscedasticity 

are made about the errors {eu}.  Suppose finally that the 

object is to estimate E(y) over a region in the space of x 
"covered" by the experiments 

{X
u}. Then the number of para-

meters p employed in the expectation function is a natural 

measure of prodigality and its reciprocal 1/r of parsimony. 

estimates ~~ obtained by least squares and by 

Now denote by ÿúP)  = f(P)(xu,bp)  a fitted value with 

~(P) = (A.1) 

the average variance of the n fitted values. 

It is well known that (exactly if the expectation func-

tion is linear in O, and in favorable circumstances, 

approximately otherwise) no matter what experimental design 

{xu}  is used 

V(P) = rs2/n . (A.2) 

Now if the 
{hu} 

can be regarded as a sampling of the func-

tion over the region of interest,then v(P)  provides a 

measure of average variance of estimate of the function over 

the experimental region. 

Equation (A.2) says that this average variance of 

estimate of the function is proportional to the prodigality p. 

Alternatively it is reasonable to regard ~(P) =  

as a measure of information supplied by the experiment about 
the function and 

I (R) = n/rs
2 
. (A.3) 
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Thus this measure of information is proportional to the 

parsimony 1/p. For example, if the expectation function 

needed as many parameters as there were observations so that 

p = n then Yt = Yt and 

v(n) = N(y) = ~2 ~(n) = 1/s2 . (A.4) 

In this case the model does not summarize information and 

does not help in reducing the variance of estimate of the 

function. 

At the other extreme if the model needed to contain only 

a single parameter, for example, 

Yt = q + et 

then Q = Ýt = g and 

V(l) = N() = s2/n I ~ 1) = n/s2 . 

In this case the use of the model results in considerable 

summarizing of information and reduces the variance of estimate 

of the function n times or equivalently increases the 

information measure n-fold. 

Considerations of this sort weigh heavily against 

unnecessarily complicated models. 

As an example of unnecessary complication consider an 

experimenter who wished to model the deviation Yt from its 

mean of the output from a stirred mixing tank in terms of 

the deviation xt from its mean of input feed concentration. 

If data were available to equal intervals of time, he might 

use a model 

gt = { + 8
1t-1 + 2 t2 

+ . . . + 
Qkxt-k} + et 

in which k was taken sufficiently large so that deviations 

in input xt_k_q for q > 0 were assumed to have negligible 

effect on the output at time t. This model contains k + 1 

parameters  q  which need to be estimated. Alternatively 

if he knew something about the theory of mixing he might 

instead tentatively entertain the model 

yt = qof xt + 81xt-1 + 81t-2 
+ ...} + et (A.8) 

or equivalently 

(A.5) 

(A. 6) 

(A.7) 
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Q yt it-1 + 
Q + Q 
it 

e
t  1

e
t-1 

(A.9) 

which contains only two parameters Q. 
Thus if the simpler model provided a fair approximation, 

it could result in greatly increased precision as well as 

understanding. 

APPENDIX 2 

The practical importance of worrying about the right 

things is illustrated, for example, by the entries in the 

following table taken from [7], [22]. This shows the results 

of a sampling experiment designed to compare the robustness 

to non-normality and to serial correlation of the signifi-

cance level of the t test and the non-parametric 

Mann-Whitney test. One thousand pairs of samples of ten of 

independent random variables ut were drawn from a rectan-

gular distribution, a normal distribution and a highly skewed 

distribution (a X
2  with 4 degrees of freedom) all adjusted 

to have mean zero. In the first row of the table the errors 

et = ut were independently distributed, in the second and 

third rows a moving average model et = ut - Out-1 was used 

to generate errors with serial correlation -0.4 and +0.4 

respectively. The numbers on the right show the corresponding 

results when the pairs of samples were randomized. 

In this example the performance characteristic studied 

is the numbers of samples showing significance at the 5% 

level when the null hypotheses of equality of means was in 

fact true. Under ideal assumptions the number observed 

would, of course, vary about the expected value of 50 with a 

sampling standard deviation of about 7. It is not intended 

to suggest by this example that the performance of signifi-

cance tests when the null hypothesis is true is the most 

important thing to be concerned about. But rightly or 

wrongly, designers of non-parametric tests have been concerned 

about it, and demonstrations of this kind suggest that their 

labors are to some extent misdirected. In this example it is 

evident that it is the physical act of randomization and much 

less so the choice of criterion that protects the signifi-

cance level. 
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