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P R E F A C E  A N D  A C K N O W L E D G M E N T S  

THIS BOOK IS motivated by the democratic premise that social policy, 
group choice or collective action should be based on the preferences of 
the individuals in the society, group, or collective. It is based on the 
notion of a social choice function, which assigns a nonempty subset 
of feasible alternatives to each potential combination of a feasible 
set of social alternatives and a profile of individuals' preferences on 
the alternatives. Individual preferences are assumed to be irreflexive 
and transitive, but individual indifference relations are not necessarily 
assumed to be transitive. Transitive indifference is noted explicitly 
when it is used. 

The first chapter outlines the plan of the study and acknowledges 
some of its limitations. The text is divided into three parts: social 
choice between two alternatives, which examines a variety of majority
like functions; simple majority social choice, which focuses on social 
choice among many alternatives when two-element feasible subset 
choices are based on simple majority; and a general study of aspects 
and types of social choice functions for many alternatives. I have 
tried to provide in-depth coverage of the topics included in the 1 ook 
without attempting a broad survey of the subject. 

A modest knowledge of elementary set theory and linear algebra is 
a useful prerequisite. 

The work was supported by a grant from the Alfred P. Sloan Foun
dation to The Institute for Advanced Study. I am indebted to the 
Institute for providing the environment in which the book was written. 
Special thanks are offered to Catharine Rhubart and Anna Holt, who 
typed the manuscript, to Professor Bengt Hansson, who kindly shared 
some of his recent research findings with me and allowed substantial 
improvements in the text, and to Professor Julian H. BIau whose care
ful analysis of the entire work was extremely valuable. 

Peter C. Fishburn 
University Park, Pennsylvania 
January 1972 
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Introduction 

DEMOCRATIC THEORY is based on the premise that the resolution of a 
matter of social policy, group choice or collective action should be 
based on the desires or preferences of the individuals in the society, 
group or collective. Following a tradition established by Arrow (1963), 
Black (1958), Murakami (1966), Sen (1970), and others, this book is 
primarily motivated by this premise of democracy. In brief, our study 
will be concerned with relationships between individuals' preferences 
and social choices. 

The medium through which the investigation will proceed is pro
vided by the notion of a social choice function. The purpose of the 
present chapter is to define this notion in a precise manner and to 
provide a suitable orientation for the chapters that follow. In doing 
this we shall also mention some topics that are not dealt with in detail 
in the present volume. 

1.1 SOCIAL CHOICE FUNCTIONS 

In general, we shall let η denote the number of individuals in the 
group or society under consideration, with η a positive integer. The 
types of groups that might be considered seem almost endless. The 
group might be a husband and wife (n = 2), the United States Su
preme Court (η = 9), a faculty senate, the eligible voters in a political 
district, a corporation's common stockholders, a labor council or labor 
union, a religious congregation, a farmers' cooperative, a board of 
directors, a jury, the General Assembly or Security Council of the 
United Nations, and so forth. In some cases the group may have well-
recognized subgroups or be built up in a hierarchy of levels. 

The generic situation for our study is characterized by a group of 
η individuals who must select one alternative from a set X of social 
alternatives. It is presumed that the alternatives are so structured 
that the choice of any one of them implies the rejection of every other 
alternative. Moreover, by inclusion of alternatives such as "delay the 
decision to a later time" or "maintain the status quo," we can assure 
that some alternative in X must be selected. 

To provide a general framework for the analysis, two aspects of the 
generic situation will be open to variation. First, in any specific real
ization of the situation, it will be presumed that each individual or 
"voter" prefers some social alternatives to others. However, we shall 
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not presume to fix these preferences in advance. That is, we want to 
be able to deal with any set of individual preference orders that 
might arise. 

Second, in any specific realization of the situation it need not be 
true that every alternative in X is feasible or available for implemen
tation. For example, in an election of some kind, the only feasible 
candidates may be those who have qualified to have their names 
placed on the ballot. As in the case of individuals' preferences, we 
shall not presume to fix the feasible alternatives in advance. That is, 
we want to be able to deal with any set of feasible alternatives that 
might arise. 

Suppose in fact that Y turns out to be the feasible subset of X 
and that D specifies the individual preference data in a specific real
ization of the generic situation. Based on the pair (Y,D), a nonempty 
subset F(Y,D) of Yis specified as the "choice set" for this specific case. 
In a manner of speaking, F(Y,D) might be viewed as the "socially 
best" alternatives in the feasible set Y when the preference data speci
fied by D obtain. If F(YtD) is a unit subset of Y, containing only one 
social alternative, the social choice is unambiguous in the case at hand. 
However, when F(Y,D) contains more than one alternative in Y, the 
issue before the group may not be fully resolved and some form of tie-
breaking procedure might be required. Although we have specified 
that X is structured so that exactly one social alternative will be 
implemented, we shall PermitF(F1Z)) to contain more than one alter
native in order to allow a degree of generality in the analysis. Our 
basic approach might thus be characterized as an examination of 
group decision, excepting tie-breaking procedures. We shall say more 
about this at later points in the study, especially in Chapters 6 and 18. 

SOCIAL CHOICE FUNCTIONS 

For different possibilities of feasible sets and individual preference 
data we will have different choice sets. The choice set for the possi
bility (Y,D) will be F(Y,D), as before. The collection of all possibili
ties in conjunction with their respective choice sets constitutes a social 
choice function. 

In abstract terms a soc ia l  cho ice  func t ion  is a function F:  9C X SD-+ 
(P(X) where 9C is a nonempty set of nonempty subsets of a nonempty 
set X, 33 is a nonempty set, (P(X) is the set of all subsets of X and, 
fo r  each  (Y ,D)  G 9C X  SD 1  F(Y ,D)  G <P(X)  i s  a  nonempty  subse t  o f  Y.  
In terms of the preceding interpretations, 9C is the set of all subsets of 
X that might turn out to be feasible subsets of X, D is the set of all 
configurations or profiles of individual preference data that might arise, 
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and F ( Y , D )  G < ? ( X )  with 0 C F ( Y 1 D )  C Y  is the choice set when 
(Y,D) obtains. 

An example might help to make the idea of a social choice function 
somewhat clearer. Suppose that X contains two social alternatives and 
that only X itself is considered as a feasible possibility so that a: = {X]. 
Suppose further that there are three individuals or voters, each of 
whom either prefers one alternative to the other or is indifferent be
tween them. Let D specify the preferences (or indifferences) of the 
three voters. Since each individual has three options, the set SD of all 
p o s s i b l e  D  h a s  3  X  3  X  3  =  2 7  e l e m e n t s .  F o r  e a c h  o f  t h e  2 7 D ,  F ( X , D )  
can take one of three values: it can specify exactly one of the two 
alternatives, or it can specify both (a tie). Thus there are 327 different 
social choice functions that can be defined on 9C X SD. Hence, even in 
this simple case there are more than 7 trillion (7 X IO12) possible 
social choice functions. Naturally, a great many of these will violate 
one or more conditions that are felt to reflect the basic premise of 
democracy. 

1.2 INDIVIDUAL PREFERENCES 

Until fairly recently, most studies of individual or group decision 
theory that are based on individual preference have assumed that an 
individual's preference order on a set of alternatives is a weak order. 
This means that if > denotes preference on X, with χ > y meaning 
t h a t  χ  i s  p r e f e r r e d  t o  y ,  t h e n  >  i s  a s s u m e d  t o  b e  a s y m m e t r i c  ( i f  χ  >  y  
then not y > x) and transitive (x > y &y > ζ => χ > z); moreover, 
with indifference ~ defined as the absence of preference, so that 

not χ  >  y  &  not y  >  x ,  

it is assumed that indifference is transitive. 
In this book we shall retain the assumption that each individual 

preference relation > is asymmetric and transitive (i.e. a strict partial 
order), but individual indifference will not generally be assumed to be 
transitive. Those cases where ~ is taken to be transitive will be clearly 
identified in context. Although the question of transitive indifference 
does not arise when X has only two alternatives, and hence will have 
no affect on Part I of the book, it will be very much in evidence in 
Parts II and III, which consider social choices from larger sets of 
alternatives. Additional background on order relations is presented in 
the initial chapter of Part II. 

As pointed out by Armstrong (1939, 1948, 1951), Luce (1956), and 
many others, it is rather unrealistic to suppose in general that indi-
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vidual indifference is transitive. Luce's coffee example, where an indi
vidual will be indifferent between χ and χ + 1 grains of sugar in his 
coffee for a reasonable range of χ but will not be indifferent between 
χ and χ + m for sufficiently large m, is a case of intransitive or non-
transitive indifference. 

For another example, suppose that Mr. Jones is a member of a group 
that must decide how much money to allocate to a certain project. 
Mr. Jones favors an amount in the vicinity of $1000. He likes each of 
$900, $1060 and $1070 less than $1000, and he prefers $1060 to $1070. 
However, he is indifferent between $900 and $1060 and also indifferent 
between $900 and $1070, so that his indifference relation is not 
transitive. 

For a third example, suppose that the Browns are going to buy a 
new car and have agreed to buy either a certain model of Ford or a 
certain model of Chevrolet. Mrs. Brown prefers (Ford, at $2800) to 
(Ford, at $2830), but is indifferent between (Ford, at $2800) and 
(Chevrolet, at $2900), and also indifferent between (Chevrolet, at 
$2900) and (Ford, at $2830). 

Additional material on intransitive individual indifference is pre
sented in the surveys by Roberts (1970) and Fishburn (1970d), and in 
Fishburn (1970). 

SOCIAL CHOICE AND INDEPENDENCE FROM 

INFEASIBLE ALTERNATIVES 

The general characterizatl· a of SD in the foregoing section leaves 
open the question of just what types of individual preference data 
are to be included in the domain of the social choice function. In 
this book it will generally be assumed that each D £ 3) is an n-tuple 
of strict partial orders on X, one order for each individual in the 
group or society. Thus, if >, is the preference relation on X for the 
ith individual in a possible realization of the situation then D = 
(> i, > 2, ·. · · » >" n) for this possible realization. Section 1.4 notes some 
other things that might be included in the elements of 'D but which will 
not be considered in detail in later chapters. 

It should be observed that, by taking each >, on all of X and not 
just on the particular subset Y of X that happens to be feasible, we 
are leaving open the possibility that individual preferences that 
involve infeasible alternatives may influence the social choice. My 
present feeling, which is shared by some but certainly not all social 
choice theorists, is that such preferences ought not to affect the social 
choice from the feasible set. In terms of the social choice function, this 
feeling can be expressed by the condition that F(YtD) = F(Y,D') 
whenever D= (> i, . . . , > „) and D' = (>'u . . . ,>'„) are identi-
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cal on Y, although they may differ on X. This says that, when Y is the 
feasible set in each of two possible realizations and when each indi
vidual has the same preference order on Y in each of the two possible 
realizations (the restriction of >, on 7 equals the restriction of >' on 
Y, for each i)> then the choice sets should be identical in the two possi
ble realizations. We shall call this condition the condilion of indepen
dence from infeasible alternatives. It is proposed in the same spirit as 
Arrow's condition of the independence of irrelevant alternatives (1963, 
p. 27). 

This condition will be used, either implicitly or explicitly, in much 
of the book. The most notable exception arises in Chapter 17, which 
presents some general theory for social choice functions that are based 
on sums of individual utilities. 

Because independence from infeasible alternatives plays a signifi
cant role throughout this study, a word on its possible merits is in 
order. First of all, when Y is recognized as the relevant feasible set, 
there may be serious question about the significance or meaning of 
individual preferences that involve infeasible elements in X — Y. 
When independence applies, the question of preferences that involve 
infeasible alternatives becomes academic, and individuals need only 
specify preferences within the feasible subset. 

If in fact the social choice can depend on infeasibles, which infea-
sibles should be used? For with one set of infeasibles, feasible χ might 
be the social choice, whereas feasible y Ti χ might be the social choice 
if some other infeasible set were adjoined to Y. Hence, the idea of 
allowing infeasible alternatives to influence the social choice introduces 
a potential ambiguity into the choice process that can at least be 
alleviated if not removed by insisting on the independence condition. 

This obviously ties into the choice of the universal set X of alter
natives in a particular situation. If independence is adopted, then the 
contents of X are not especially important as long as they include, 
at least conceptually, anything that might qualify as a feasible can
didate or alternative. If independence is not adopted, the ambiguity 
noted in the preceding paragraph may cause significant problems in 
attempting to specify just what should and should not be included 
in X. 

The question of just what is or is not a feasible alternative may also 
present problems in a group decision process, but the independence 
condition says nothing about this as such. Related to this, we may 
consider a maneuver in which an alternative is legally placed in nomi
nation not because its sponsors think it has any chance of being elected 
but because they feel that its introduction will increase the chance of 
the election of their favored alternative. This is more a question of the 
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process of identifying feasible alternatives than it is of the indepen
dence condition, which deals only with the feasible set that arises. 
It is also a question of the design of the choice procedure, and other 
conditions might play a part in its analysis. It is also clearly con
nected with individual and coalition strategies in social choice pro
cesses. This book will not go into the fascinating subject of voter 
strategy in any detail, although a few comments on the topic are 
presented in the final section of Chapter 8. 

It should also be pointed out that our use of the independence con
dition is not, in itself, an argument against the inclusion of individual 
intensities of preference. For example, if individual intensities of pref
erence were taken to be relevant along with the basic preference orders, 
then we would have to change our viewpoint about the contents of SD. 
If each D included data on intensities as well as basic preferences, 
then the intention of the independence condition would be preserved 
if the form of the condition were not changed. In this case the con
dition would say that F(YtD) = F(Y,D') whenever the data in D and 
D' are the same (including any data on intensities) within Y. We 
shall say more about the matter of intensity and the related subject 
of interpersonal comparisons in the final section of this chapter. 

1.3 PREVIEW 

With the foregoing introductory material at hand, a brief sketch of 
the contents of later chapters will indicate the scope of the present 
study. The text is presented in three parts, as follows: 

Part I. Social Choice with Two Alternatives. 
Part II. Simple Majority Social Choice. 
Part III. Social Choice Functions. 

Parts II and III are generally concerned with the case where X con
tains more than two social alternatives. 

The initial emphasis in Part I is on the structure of individual pref
erence profiles DgS and social choice functions when X contains 
only two alternatives. In the spirit of the independence condition, only 
preferences that involve the two alternatives will be considered as rele
vant. Potential conditions for social choice functions, such as mono-
tonicity, unanimity, duality, and anonymity, are introduced, and their 
effects on social choice functions are analyzed. Various types of ma
jority functions, including simple, weak, weighted, and representative 
majorities, are characterized in terms of such conditions. Each of these 
types of majorities satisfies the duality condition, which requires equal 
treatment for the two alternatives. 
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The final chapter of Part I discusses several forms of special ma
jority which do not generally treat the two alternatives equally—the 
"status quo" usually has a built-in advantage. 

Part II focuses on social choice functions for larger X whose binary 
parts agree with simple majority. This says that, for any feasible subset 
Y  =  { x , y }  t h a t  c o n t a i n s  j u s t  t w o  e l e m e n t s  f r o m  X ,  F ( { x , y j , D )  =  { x \  
i f  m o r e  i n d i v i d u a l s  p r e f e r  χ  t o  y  t h a n  p r e f e r  y  t o  x ,  a n d  F ( { x , y } , D )  —  
{y\ if more i prefer y to χ than prefer χ to y. It is generally assumed in 
P a r t  I I  t h a t  E C  i s  t h e  s e t  o f  a l l  n o n e m p t y  s u b s e t s  o f  X .  

Following some comments on the well-known fact that simple ma
jorities may be intransitive when X contains more than two alter
natives, the central segment of Part II examines structural features 
of situations that give rise to transitive majorities or, short of that, 
to one alternative having a simple majority over every other alter
native. This analysis begins with the case of single-peaked preferences, 
which dates at least to Galton (1907) and was studied extensively 
some years later by Black (1948, 1958). 

The penultimate chapter of Part II examines the contention of 
Condorcet (1785) that an alternative that has a simple majority over 
every other alternative should be the social choice, assuming that the 
simple-majority rule is sanctioned in any case where the feasible set 
contains just two alternatives. The final chapter of Part II looks at 
several explicit social choice functions that agree with simple majority. 

Part III begins with a general classification of conditions for social 
choice functions. The categories of this classification are then related 
to several topics, including the transitivity of binary (but not neces
sarily simple-majority) choices, an analysis of structural conditions in 
conjunction with order-related conditions, and Arrow's impossibility 
theorem (1963) and some of its close relatives. 

As noted earlier, Chapter 17 presents a general theory of summation 
social choice functions. The final chapter discusses the use of lotteries 
to make social choices. If a group decides to use a lottery, an alterna
tive is then chosen randomly according to the probabilities specified by 
the lottery. As in preceding chapters, individual preference orders will 
be assumed to be strict partial orders, on lotteries in this case. Other 
assumptions for individual preferences in the lottery context will gen
erally be weaker than the typical von Neumann-Morgenstern (1947) 
axioms for expected utility. 

1.4 PREFERENCE INTENSITY 

Because the present study concentrates on social choice functions in 
which the elements of S) are rc-tuples of preference orders on social 
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alternatives, data on intensities of preferences will not be included in £>. 
This is not to say that such data ought not to be used in determining 
social choices, and it by no means implies that the author regards the 
intensity topic as sterile or unimportant. Rather it points out one of 
the self-imposed limitations on the present volume. 

As we have mentioned intensities, a few words about what is being 
excluded in later chapters seem appropriate. There are at least two 
distinct senses in which the phrase "preference intensity" is used. The 
first is an intrapersonal sense and the second is an interpersonal sense. 

Intrapersonal preference intensity (degree of preference, strength of 
preference) applies solely to a particular individual. If, for example, you 
prefer χ to y and y to z, it asks whether your "degree of preference" 
for χ over y exceeds, equals, or is less than your "degree of preference" 
for y over z. If you preferred Nixon to Humphrey to Wallace in the 
1968 United States Presidential election, was the intensity of your 
preference for Nixon over Humphrey greater than, equal to, or less 
than the intensity of your preference for Humphrey over Wallace? 

Theories of intrapersonal preference intensity go back at least to 
Pareto (1927) and Frisch (1926). Later contributors include Lange 
(1934), Alt (1936), Armstrong (1939), Weldon (1950), and Suppes and 
Winet (1955). The inclusion of vagueness in preference-difference com
parisons, which is related to the phenomenon of intransitive indiffer
ence, is discussed by Fishburn (1970e; 1970, Chapter 6). 

A simple example will illustrate one way in which intrapersonal 
intensity might be taken into account in social choice theory. Suppose 
that Y = \x,y,z\, η = 2, the first person prefers χ to y to z, and the 
second prefers  ζ  to  y  to  x .  I f  the  f i r s t  person fee ls  that  y  i s  c loser  to  χ  

than to ζ in terms of his relative preference differences, and the second 
feels that y is closer to ζ than to χ in his own view, then it might seem 
appropriate to "elect" y as the social choice. On the other hand, if the 
reverse holds and y is nearer to the worst rather than the best alterna
tive for each person, then y might be excluded from the choice set. 

INTERPERSONAL PREFERENCE COMPARISONS 

As the name suggests, interpersonal preference comparisons purport 
to compare preference differences of different individuals. For example: 
Mr. Smith's intensity of preference for Nixon over Humphrey exceeds 
Mr. Jones' intensity of preference for Humphrey over Nixon. Another 
example: the husband would rather stay home than go to a movie, but 
he really doesn't feel strongly about this; on the other hand, his wife 
is "dying to get out of the house" and has a very "strong" preference 
for "movie" over "stay home." A third example concerns the intense 
and passionate minority versus the apathetic majority. 
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Needless to say, the idea of accounting for interpersonal preference 
comparisons has received a great deal of attention in the literature of 
social choice theory. Rather than attempting to survey this, we shall 
simply indicate several resources that present various points of view on 
the topic. The following list is by no means complete, but will lead the 
interested student to additional references: Dahl (1956), Buchanan 
and Tullock (1962), Kendall and Carey (1968); Harsanyi (1955), Roth-
enberg (1961), Arrow (1963, pp. 108-118), Sen (1970), Luce and Raiffa 
(1957, Chapter 14); Churchman (1966). 

At several places in the present study it might appear that questions 
of interpersonal comparisons are very much at issue. Some cases in 
point are the theory of weighted majority in Chapter 5 and the theory 
of summation social choice functions in Chapter 17. Indeed, it has 
been suggested by several authors that any specific social choice 
function or social choice procedure incorporates some notion of inter
personal comparisons, whether or not this is explicitly recognized by 
its sponsor. Regardless of how one feels about this, it should be remem
bered that this study is based on η-tuples of individual preference 
orders, and does not, at any point, explicitly include intensity data 
(either intrapersonal or interpersonal) in the elements of 3D. 
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Social Choice Functions for 

Two Alternatives 

THIS CHAPTER has three purposes. The first is to set forth some nota
tions and conventions that will be used throughout Part I. The second 
purpose is to examine structures of preferences and social choice func
tions for two alternatives. Thirdly, we shall investigate the conditions 
of monotonicity and unanimity for social choice functions. These con
ditions are used throughout the succeeding chapters of Part I. 

2.1 NOTATIONS AND STRUCTURES 

For any set S let be the number of elements in S, and let Sn be the 
η-fold Cartesian product of S with itself so that S" = {(.?i, . . . ,sn): 
SiG S for each i}. We write f:S—> T to denote a function / with 
domain 5 and codomain T. Sn can be viewed as the set of all functions 
/:{1, . . . ,n} ->5. 

In mathematical terms, Part I will deal with the set of all functions 
F:Sn —> S when #S = 3 and η is a positive integer. The symbols used 
for the three elements in S can be anything we want them to be. How
ever, for mathematical and interpretive purposes it is very efficient to 
take 5 = {1,0,-1}. 

Our interpretation of this structure in terms of choice between the 
two alternatives in the set X = {x,y} is the following. First, η is the 
n u m b e r  o f  i n d i v i d u a l s  i n  t h e  g r o u p  o r  s o c i e t y ,  a n d  i  =  1 ,  .  .  .  ,  n  
indexes these individuals. Let Di be a variable whose values represent 
the possible preferences of individual i on X. It is assumed that indi
vidual preference is asymmetric, so that Di has three possible values, 
identified as follows: 

D i -  1 <=> i prefers χ to y 
D i  = 0 <;=> i is indifferent between χ and y 
D i  = — 1 <*=> i prefers y to x. 

The set SD = {1,0,-1)" is the set of all individual preference profiles, 
of the form D = (Du . . . ,Dn), that might obtain in a particular 
situation. In terms of voting we can think of Di = 1 as a vote for x, 
Di = — 1 as a vote for y, and Di = 0 as an abstention. 
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The function F : £ > — > {1,0,-1} assigns a social choice F ( D )  G 
{1,0,— 1) to each preference profile D G £). To maintain consistency 
with the foregoing 1,0, —1 interpretation for individual preference, 
we interpret 

F ( D )  =  1 <=» sc is the social choice under D  
F ( D )  = 0 <=> χ  and y are tied under D  
F ( D )  =  —  1 <=> y is the social choice under D. 

Because the situation that arises when only one of χ  and y  is avail
able is of no real interest, F as here defined is to be viewed as the choice 
function when both χ and y are feasible alternatives. In terms of the 
notation of Chapter 1, F(D) = F({x,y},D). Since our definition of 
s o c i a l  c h o i c e  f u n c t i o n  r e q u i r e s  F ( { x \ , D )  =  { x \  a n d  F ( { y } , D )  =  { y }  

for all DG 2D, we dispense with these trivial cases and simply refer to 
F:£>-+ {1,0,-1} as a social choice function. 

GEOMETRIC INTERPRETATION 

Since SD = {1,0,-1}", #SD = 3". Figure 2.1 illustrates the 27 points 
in SD when η = 3. The central point is the origin 0 = (0,0,0) of a 

α 

J[ \~λ 

/+0 + 

α 

α 

FIGURE 2.1 

three-dimensional Euclidean space. The point labeled + is (1,1,1) and 
the point labeled — is (-1,-1,-1). Each point labeled "a" has 
Di + Di + D3 = 0. 

A particular social choice function F  for η  = 3 can be identified on 
the figure by labeling each point D with its corresponding F(D) value 
from {1,0,— 1}. This will partition the set of 27 points into three sub
sets (one or two of which may be empty) according to the three values. 



2.1 NOTATIONS AND STRUCTURES 

More generally, for any let 

and (2.1) 

for is thus the inverse image of k. Any social choice 
function F is completely described by the triple 
Correspondingly, any triple of disjoint subsets of 2D whose 
union equals determines a social choice function F in the obvious 
way. 

Our intuitions about "acceptable" social choice functions suggest 
that the elements in a given should be bunched together, or that 
the sets in the triple should form clusters that 
are simply described in a figure such as Figure 2.1. For example, we 
may feel that it is reasonable to prescribe so 
that x is the social choice when everyone prefers x to y, and that other 

should be in the vicinity of + . Similarly, F(-) = —1, 
with other in the vicinity of —, may seem reasonable. As 
we shall see, the conditions for social choice functions that we investi-
gate tend to separate the into more or less cohesive groupings. 

VECTOR OPERATIONS AND H Y P E R P L A N E S 

The usual operations on vectors in n-dimensional Euclidean space 
Ren will be used extensively in Part I. 

For any Re and and in 
Ren, and 
Also, " The inner product a • 6 of a and b is 

(2.2) 

Equality and inequality between vectors i will be denoted 
in the following way: 

for each i 
for each i, and a, > 6, for some i 
or a > b. 

Naturally, and 
Consider the set 

(2.3) 

where p is a fixed vector in and This set is a hyperplane 
in Ren. It is a hyperplane through the origin if If then 

equals or accordingto whether 
If then the hyperplane is neither nor 

17 
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Every hyperplane of the form (2.3) partitions Ren into three dis
joint subsets (some of which can be empty) according to whether 
a • ρ > X, a • ρ = X, or a • ρ < X. Thus, we see that a host of social 
choice functions can be characterized by using hyperplanes. In par
ticular, ρ and X determine a social choice function F as follows: 

F ( D )  =  l < = > p - D > X  F * ( l )  =  \ D \ p  •  D  >  \ ]  
F ( D )  =  O ^ p - D  =  X  F * (  0 )  =  { D : p  - D = X )  ( 2 . 4 )  
F(D) = -1 <=>P · D < λ F*(-\) = {D:P • D < λ}. 

The following are some examples. 
(i) F  =  0, the completely indecisive social choice function ( x  ties y  

regardless of D), is described by ρ = 0 and X = O. 
(ii) F= 1, the imposed function which prescribes χ as the social 

choice regardless of D, is described by ρ = 0 and λ = — 1. 
(iii) F  =  —  1, the imposed function which prescribes y  as the social 

choice regardless of D, is described by ρ = 0 and X = I. 
(iv) The simple majority social choice function has ρ = (1, . . . ,1) 

and X = 0 so that χ beats y whenever more individuals prefer χ to y 
than prefer y to χ (i.e. 2D1 > 0), and y beats χ whenever the converse 
holds. The hyperplane that defines simple majority for Figure 2.1 is 
the plane that contains the origin and the "a" points. Each "a" point 
has F(a) = 0, each D on the + side of the plane has F(D) = 1, and 
each D on the — side has F(D) = —1. 

(v) Simple majority with a tie-breaking chairman, individual 1, 
can be described by ρ = (3,2,2, . . . ,2) and X = 0. A tie can arise in 
this case only if the chairman does not vote. The greater weight for 
the chairman makes a difference as compared to simple majority only 
when there is a simple majority tie. 

(vi) The case where χ wins if the number of votes for χ exceeds the 
number for y by at least a positive integer r, and y wins otherwise, 
is described by ρ = (1, . . . ,1) and X = r — Yi. Since ρ · D must be 
an integer in this case, ties cannot arise. 

(vii) We shall call F a weighted majority social choice function if 
and only if it can be described as in (2.4) with ρ > 0 and X = 0. Of 
the foregoing examples, only (iv) and (v) are weighted majorities. In 
terms of Figure 2.1, the weighted majorities are described by planes 
through the origin with ρ a nonzero vector or point in the nonnegative 
octant (+ octant) of the space. 

2.2 SIGN FUNCTIONS 

Many interesting social choice functions cannot be expressed in the 
linear way as in (2.4). To deal with some of the nonlinearities that 



2.2 SIGN FUNCTIONS 

will arise, we shall use the sign function s: defined by 

(2.5) 

A hint of the usefulness of s comes from observing that the social 
choice function F defined by (2.4) is specified by 

for all 

We shall let s operate on vectors in in the 
following way: 

(2.6) 

It should be noted here that is a number in 
and not an n-tuple in Re". An alternative way of writing (2.6) is 

where has 1 for every component. 
Thus simple majority is 

described by , and any weighted majority social choice 
function is given by with for all i 
and for some i. 

OPERATIONS ON FUNCTIONS 

The real usefulness of s requires its extension to operations on 
social choice functions. 

Let be the set of social choice functions , ,. Then 
with is defined to be the function 
on 2) specified by 

for all 
(2.7) 

It is clear from this definition that so 
that we may designate {1 ,0 , -1 } as the codomain of the function. 
Hence we see that 

(2.8) 

A standard interpretation of j goes as follows. 
The society uses F to specify its decision. The society has K councils 
or legislatures. These councils may have overlapping memberships or 
they may be disjoint. is the social choice function for the feth 
council. To determine the social choice, a "vote" is taken in each 
council with outcomes specified by the . The overall outcome is then 
determined by F, which operates by simple majority on the outcomes 
of the votes of the councils. 
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Readers familiar with group theory will note that, with . ^ „ 
for all the algebraic system with has 

all the properties of an idempotent abelian group, except for associa-
tivity. For example, for all F, 

(commutative, or abelian) 
(identity) 
(inverse) 
(idempotent). 

However, associativity fails since „ _ , is not 
necessarily the same function as For 
nonassociativity it suffices to observe that whereas 

In the preceding paragraph we have suggested that it makes sense to 
put one s function inside of another. Indeed, we can structure any 
finite hierarchy in this way, such as 

(2.9) 

and the resultant expression still defines a social choice function in fF. 
For (2.9), is a social choice function. Call it Then 
and are social choice functions. Call them G and H. Then 
(2.9) has the form which, as we observed above, is a 
social choice function in J. 

Hierarchies of the form of (2.9) will be referred to as representative 
systems when it is possible to write the Fk as simple majority social 
choice functions that apply to subsets of individuals. If for (2.9), each 
Ft except F\ is such a simple majority, and 
then we can write this as 
where each is a simple majority for the subset {i} that 
contains only the individual i. Replacing/<\ in (2.9) by s 
we see that (2.9) can in fact be written in the manner required to make 
it a representative system. 

Representative systems, which were first studied extensively by 
Murakami (1966, 1968), will form the basis of our analysis in the next 
three chapters. 

2 . 3 M O N O T O N I C SOCIAL C H O I C E F U N C T I O N S 

Henceforth, Part I will concentrate on specific conditions for social 
choice functions. We shall examine structural characteristics and func-
tional forms of social choice functions that satisfy these conditions. 

20 



2 . 3  M O N O T O N I C  S O C I A L  C H O I C E  F U N C T I O N S  

All social choice functions of further interest in Part I will be 
monotonic. 

DEFINITION 2.1. F:S)~> {1,0,-1} i s  monotonic i f  and only i f  
D > D'  => F(D) > F(D'),  for  al l  D,D'  E 2D. 

Imagine two possible realizations of individual preferences in a 
given situation, say D and D'. With regard to preferences between the 
two alternatives χ and y, D > D' means that any change in preference 
from D' to D favors x. F(D) > F(Dt) then requires that 

1. if χ is chosen under D',  then χ is chosen under D, 
2.  if χ and y tie under D',  then either χ is chosen under D or χ and y 

t ie  under D. 

Conversely, if y is chosen under D then y must be the group choice 
under D', and if χ and y tie under D then χ cannot be the unique choice 
under D'.  

Another way to look at this is with a "lost votes" example. Suppose 
a society uses a monotonic F, and a secret ballot is taken. Each person 
votes for χ or for y or abstains. Before the ballots can be processed, a 
fire breaks out and consumes the ballot box. A second ballot is taken. 
Suppose that every voter who voted for χ the first time votes for χ 
again and that each voter who abstained the first time either abstains 
or votes for χ the second time. Monotonicity says that if χ would have 
won with the first ballot then χ must win with the second ballot, and 
that if χ and y would have tied on the first ballot then they either tie 
or χ wins on the second ballot. 

On Figure 2.1 consider any path from — to + that proceeds only in 
positive directions. Monotonicity says that F must not decrease as we 
proceed along the path from — to +. 

Monotonicity can also be defined in terms of a change by a single 
voter  thus:  F(D) > F(D')  whenever D t  = D[ for  al l  but  one i ,  say j ,  
for which D1 > D'r This is easily seen to be equivalent to Definition 
2.1 since D > D' implies that we can go from D' to β by a succession 
of single changes. 

We can easily verify that monotonicity holds for each of the seven 
examples following (2.4), and that every representative system is 
monotonic. 

BASIC THEOREMS AND UNANIMITY 

The "inverse" or dual  of F is —F, where (—F)(D) = -F(D) for 
every D. F is constant <=> F(D) = F(D') for every D,D' £ 3D· The 
three constant functions in SR were specified in examples following (2.4). 
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T H E O R E M 2 . 1 . Let g be the set of all monotonic social choice functions 
. Then 

and there are exactly three functions in g whose duals are in g, namely 
the three constant functions. 

Proof. If and _ then for 

each k. Therefore, 
For the latter part of the theorem, suppose that Then 

and and therefore, 
Since for every only constant 

functions in g can have duals in g. Each constant function is clearly 
monotonic. 

We shall now consider the inverse sets defined by (2.1). To 
avoid the uninteresting possibility that we 
shall introduce the unanimity condition at this point. 

D E F I N I T I O N 2.2. is unanimous if and only if 
F( 1) = 1 andF(-l) = - 1 . 

This simply prescribes that x wins when everyone prefers x to y, 
and that y wins when everyone prefers y to x. Although hindsight 
may suggest cases where the unanimous choice was judged to be a 
bad choice, temporal considerations prevent inclusion of this in the 
social decision. (This is not to say that experience and foresight should 
not affect the decision.) 

Instead of using unanimity directly, it would suffice to use a weaker 
condition of nonimposition which says simply that F*( 1) 0 and 

Then this and monotonicity imply unanimity. 
The effect of unanimity on Theorem 2.1 is obvious. 
T H E O R E M 2 . 2 . Let 3C be the set of all monotonic and unanimous social 

choice f unctions Then 

and no is constant. 

For _ the boundary of ' is 

and the boundary of is 22 
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According to these definitions, supports in the sense that 

Figure 2.2 shows two for n = 2. In each case the points in 
and are circled and squared respectively. Given 

, Figure (a) shows that theremay be no 
with D' > D. Figure (b) shows that . may have no 

for which 

FIGURE 2 . 2 

Given the boundaries are unique and determine F by 
the preceding "support" equalities, with the complement of 

) in In general, any two "boundaries" determine a 
unique : in the sense of the following theorem. 

T H E O R E M 2 . 3 . Let A and B be nonempty subsets of 23 such that, for 
all 

(i) 
(ii) 

Then there is a unique such that and 

Proof. Given the hypotheses, define F by 

for some 
_ for some _ 

otherwise. 

Suppose there are and _ such that _ and 
_ Then which contradicts hypothesis (ii). Hence 23 
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F G 5, and by (i), A = BF*(1) and B = BF*( — 1). Since A and B 
are not empty, F must be unanimous. To verify mono tonicity suppose 
that D > D'. If F(D') = 1 then, since D' > D* for some D* G A, 
D > D* and therefore F(D) = 1. If F(Dr) — 0, then D* > D' for 
no D* G B; consequently, D* > D for no D* G B, and therefore 
F(D) Ti —1. Therefore F(D) > F(Dt). Uniqueness follows from the 
paragraph that precedes the theorem, φ 

The following theorem states that common support points carry 
through s. 

T HEOREM 2 . 4 .  Suppose that FU . . . , FK G  3 C  andF =  s ^ i ,  .  .  .  ,FK)· 
Then 

BFt (!) Q BF*(j) for each j G { -1,1}. 

Proof. For j = 1, suppose that D G BF* (1) for each k. Since 
F(D) = 1, D & BF*(I) => D > D' for some D' G BF*(1), which re
quires Fk(Dr) = 1 for some k. But then D Q BF*(1) for any such k, 
a contradiction. Hence D G BF*( 1). The j = — 1 proof is similar. 4 

STRONG MONOTONICITY 

Monotonicity allows F(D) = O when F(D') = O and D > D'. This 
says that if χ ties y under D', and if one or more individual preferences 
change in favor of χ but none changes in favor of y in going from D' to 
D, then χ and y may still tie under D. Strong monotonicity prevents 
this. 

D EFINITION 2.3. FiSD-> { 1 ,0, - 1 }  is strongly monotonic if and only 
if it is monotonic and, for all D,D' G 2D, 

F(D) = 0 and D' > D => F(D') = 1 
F(D)  = 0  and  D >  D'  => F(D')  =  - 1 .  

This condition has a very practical appeal. Compared to monoton
icity, it tends to limit the region F*(0) of ambiguity or ties. It says that 
any abstainer under a tie vote can break the tie so long as others do 
not change their votes or abstentions. If in fact ties are prohibited by 
F, so that F* (0) = 0, then monotonicity and strong monotonicity are 
equivalent. 

One argument against strong monotonicity that is not also an argu
ment against monotonicity concerns the ability of a "change" by any 
person to resolve a tie. For example, there may be situations where an 
individual may be "ineligible," or may not be able (or allowed) to 
influence the social choice by his vote. Short of this, there may be 
cases where the power to break a tie is allowed only to certain indi
viduals in certain cases. 



2.3 MONOTONIC SOCIAL CHOICE FUNCTIONS 

A simple example where monotonicity holds but strong monotonicity 
fails is the bicameral representative system F defined by 

This function decides the social choice by simple majority on the out-
comes of two three-member simple majority councils. Observe that 

, but nei-
ther individual 3 nor individual 6 (nor both together) can change the 
F = 0 outcome by changing 

Structurally speaking, the important aspect of strong monotonicity 
is given by the following obvious implication: for some This can fail under monotonicity, when D' > D and 

STRONG UNANIMITY 

D E F I N I T I O N 2 . 4 . _ ^ , , _ , is strongly unanimous if D > 
and for all 

This says that only Pareto optimal alternatives can be chosen. 
I leave it to the reader to check the following simple implications: 

F(0) ~ 0 and strong monotonicity => strong unanimity, 
F not constant and strong monotonicity => unanimity. 
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C H A P T E R  3  

Duality and Representative Systems 

IN THIS CHAPTER we shall first examine the condition of duality for 
social choice functions in conjunction with monotonicity and unanim
ity. Representative systems are then defined recursively and discussed 
in some detail. The chapter centers on the Fundamental Theorem for 
Representative Systems, which is stated and proved in section 3.4. 
The Theorem of The Alternative, which concerns the existence of a 
solution for a set of linear inequalities, is used in the proof. Two ver
sions of the Theorem of The Alternative are presented in section 3.3. 
These will be used also in later chapters of Part I. 

Several corollaries of the fundamental theorem are proved in sec
tions 3.4 and 3.5. The main corollary is Corollary 3.2. Other corollaries 
state the following: F is a representative system if it is strongly mono-
tonic and dual; F is a representative system if it is mono tonic, dual, and 
F* (0) = {0}; if F is monotonic, strongly unanimous and dual then it 
can be written as the product of an odd number of representative 
systems FU . . . , FK for which .F*(l) C F* (1) for each k. The chapter 
concludes with the weak majority social choice function, which is 
monotonic, unanimous, and dual, but which is not strongly unanimous 
and cannot be written as a product of representative systems as just 
noted. 

Necessary and sufficient conditions for representative systems are 
given in the next chapter. 

3.1 DUALITY 

For D = (Di,  .  .  . ,Dn) G £>, the dual of D is 

- D  =  ( - D u  .  .  .  ,  —  D n ) .  

In terms of χ and y,  the dual of a preference profile is obtained by 
reversing each individual preference. The condition of duality for a 
social function F says that if χ and y tie under D then they tie under 
— D, that χ wins under D if and only if y wins under —D, and that 
y wins under D if  and only if  χ wins under —D. 

DEFINITION 3.1. F : S ) — » {1,0,-1} is  dual i f  and only if  F (  —  D )  =  
— F ( D ) ,  f o r  a l l  A G S ·  

Such a function F  is also called "self-dual" and "odd." Duality is 
also referred to as "neutrality" and "neutrality of alternatives." 



3.2 REPRESENTATIVE S Y S T E M S 

The essential feature of duality is that it treats the two alternatives 
equally, apart from the actual preferences of the individuals in the 
society. In other words, duality prohibits the social choice function 
from having a built-in bias or favoritism for one of the two alternatives. 
The prime examples of social choice functions that are not dual are the 
special-majority functions in which one alternative (the "challenger") 
requires a two-thirds or three-quarters majority to defeat the other 
alternative (the "status quo"). Nondual social choice functions are 
discussed in Chapter 6. 

If S is a subset of We shall refer to — £ 

as the dual of S. Clearl ~ is the dual of "T, and if F is dual then 
and - Obviously, duality requires 

and it and strong monotonicity imply strong unanimity. 
Some other basic facts are summarized in the following theorem. 

T H E O R E M 3 . 1 . Let 9TC be the set of all monotonic, unanimous, and dual 
social choice functions Then 

The last part of the theorem states that the dual of the boundary of 
is the boundary o f . which is easily seen to follow from 

and the definitions of section 2.3. Closure in 311 
under s follows from Theorem 2.2 and 

3 . 2 R E P R E S E N T A T I V E SYSTEMS 

We now define an important subfamily of SHt, namely the set (R of all 
representative systems. 

For each let v be defined by 
for all If then individual i completely dic-

tates the social choice. 
Let and, proceeding recursively, for each 

. be the set of all functions s 
with K any positive integer and for each k. Finally, let (R 
be the union of the that, for some 

D E F I N I T I O N 3 . 2 . is a representative system if and 
only if 
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D U A L I T Y AND REPRESENTATIVE S Y S T E M S 

Several remarks about this definition are in order. First, it differs 
from Murakami's definition, which requires that F be nondictatorial 
in the sense that there is no i such that whenever 
Because this nondictatorship condition is not essential to the rest of 
our analysis, it will be deferred until later. 

Second, the definition does not require F to be given in the terms of an 
s hierarchy in order for it to be a representative system. However, F is a 
representative system only if it is possible, in principle, to write it in 
terms of an s hierarchy. To illustrate this point, let n = 4 and let F 
be defined by simple majority except that when two Z), 
equal 1 and the other two D, equal — 1. This F is not given in terms 
of an s hierarchy, but it is a representative system, as will be noted 
below. 

Thirdly, since s (F) = F for any social choice function 
Since is finite is finite and therefore there 

is an m such that 
From the definition of 61 and our preceding observations it is obvious 

that 

and that Thus, every representative system is monotonic, 
unanimous, and dual. In fact, only when n = 1. For n = 2, 
one can show that F defined by and 
F(D) = 0 otherwise is in 3TC but not in (R. 

Since for some m, it is clear that a given can be 
written in many different ways as an s hierarchy. Indeed, note that 

and that „ . , 

nontrivial example of equal representations will 
be stated shortly. ADDITIONAL NOTATION 

An evaluational form for is obtained by replacing each 
by For example, if then 

for every ~ ~ For any given this is 

obviously evaluated from the inside outward. Thus F( l , —1,1) = 
and 

Identical and contiguous expressions in a string of this form will 
often be pre-added to shorten the string, as in 

Another example is 
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3.2 REPRESENTATIVE SYSTEMS 

An even simpler notation results when the s are omitted, with the 
understanding that s is applied immediately before each left parenthesis. 
Under this convention, the preceding string is (2(Dl5Z)2), (ZD3t(DttDi), 
( D u D 3 ) , ( D u D 2 ) ) ) .  

Consider again the case where η  = 4 and F  is defined by simple 
majority except that F(D) = Di when two D1 = 1 and the other two 
D1 = —1. One evaluative form for this F is 

F ( D )  =  ( ( 2 D i , D 2 , D 3 , D i } , ( D i , 2 D 2 , 2 D 3 ) , ( D \ , 2 D 2 , 2 D i ) , ( D \ , 2 D 3 , 2 D i ) ) .  

It is a useful exercise to show that this agrees with the given definition 
of F. Although the above string PresentsF(D) in a two-level hierarchi
cal form, it can be written in other ways. One of these is the following 
three-level form: 

F ( D )  =  ( ( ( i D u 2 D t , ( D M ) ,  
((2>Di,2Di,2Dz,2Di),(Di,Di)) ,  
( (3Di ,2D 2 ,2D 3 ,2D 4)  , (D 3,D 4 ) ) ,  

(D2 jDM). 

Using duality and the natural symmetry in D 2 ,  D 3  and D i ,  it is not too 
h a r d  t o  s h o w  t h a t  t h i s  a l s o  a g r e e s  w i t h  t h e  g i v e n  F .  

INTERPRETATION 

As in the interpretation following (2.8), we can think of a representa
tive system as a hierarchy of voting councils, although, as we have just 
seen, there may be a number of different hierarchical structures that 
have identical social choice functions. The outcomes of the votes of 
lower councils act as votes in higher councils. This continues up 
through the hierarchy until a final aggregation is made at the highest 
level. The interest in representative systems obviously stems from the 
large number of social choice procedures that operate (more or less) 
in this fashion. 

As Murakami notes, the definition of a representative system pro
hibits fixed ballots, or votes from outside the system, from influencing 
the social choice. For example, F defined by F(D) = (DuD2,1) is not a 
representative system. The definition also prohibits the choice process 
f r o m  r e v e r s i n g  a n  i n d i v i d u a l ' s  v o t e .  F o r  e x a m p l e ,  F  d e f i n e d  b y  F ( D )  =  
(Du-D2) is not a representative system. In this regard, it would ap
pear from the definition that if a person votes in a certain way in one of 
the councils of which he is a member, then he must vote the same way 
in every other council to which he belongs. Although this is true in a 
sense, it may be relaxed by treating one person as different individuals 
in different councils. This can be effected by assigning more than one 
subscript i to the same person for his voting in different councils. 
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To illustrate a case where an individual might vote differently in 
different councils, suppose a society is partitioned into two disjoint 
groups of approximately equal size. The chairman of the society is in 
one of these groups. A simple-majority vote is taken in each group. 
If the simple-majority aggregation of the outcomes of the two groups, 
as given by s(s(group 1), s(group 2)), yields a tie between χ and y, 
then the chairman can break the tie by another vote. With D1 for 
the chairman in his tie-breaking capacity, the process can be repre
sented as s(Di,2s(s(i>2, · • . ,Dm),a(Dm+i, . . . ,Dn))), or simply as 
(DI,2((D2, • · · ,Dm),{Dm+Χ, . . . ,Dn))). Suppose that the chairman, 
in his role as a member of a group, votes for x, which he personally 
prefers to y. Suppose further that χ beats y by a slim margin in group 1, 
and that y overwhelms χ in group 2. Then the chairman, in his role as 
tie-breaker, might very well vote for y. The temporal aspects of this 
example suggest a complex formulation that incorporates certain in
formational variables, but we shall not pursue this here. 

The effects of monotonicity, unanimity, and duality relate to the 
foregoing aspects of representative systems. Monotonicity and una
nimity tend to require a social choice function to be faithful to the 
preferences of the individuals, and duality tends to prevent the inter
vention of fixed votes or outside interests from affecting the decision. 
(Needless to say, pressures from outside the voting group can influ
ence the votes of individuals in the group.) 

3.3 THE THEOREM OF THE ALTERNATIVE 

Before presenting the fundamental theorem for representative sys
tems, we shall state a theorem that will be used in its proof and in 
later chapters. 

Let A = {a1, . . . ,ακ} and B = {ax+1, . . . ,aM} be finite sets of 
vectors in Ren, with 1 < K < M so that /1?ί0. Our first form of the 
Theorem of The Alternative concerns the possibility of passing a 
hyperplane {a: ρ • a = 0} through the origin 0 of Ren so that all points 
in A lie completely on one side of the hyperplane, and all points (if 
any) in B lie in, or on the other side of, the hyperplane. The theorem 
states explicitly what must happen when it is not possible to separate 
A and B by such a hyperplane. 

Figure 3.1 pictures three situations in Re2, where hyperplanes 
through the origin are straight lines. In figure (a), A has four points 
and B has three points, and there are many lines that separate A and 
B. This separation depends on precisely the fact that the convex 
closure A of A does not intersect the convex cone with origin, B', 
that is generated by B. (If B = 0, then B' = (Oj.) In figure (b), B is 
empty but A contains the origin, and no line through the origin can 



3.3 THEOREM OF THE A L T E R N A T I V E 

FIGURE 3 . 1 

have the three points in A on only one side. In figure but 
B' and A have a nonempty intersection. 

A vector is rational if each component a, is a rational num-
ber, and integral if each a, is an integer. The following theorem re-
mains valid when "rational" and "integral" are deleted and "integers" 
is replaced by "numbers." 

T H E O R E M 3 . 2 . ( T H E O R E M OF T H E A L T E R N A T I V E ) . Suppose that 
are rational vectors in Ren with 

Then E I T H E R there is an integral, _ such that 

( 3 . 1 ) 

( 3 . 2 ) 
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OR there are nonnegative integers at least one of which is 
positive, and nonpositive integers such that 

(3.3) 

Although theorems on the existence of solutions for systems of linear 
inequalities such as (3.1) and (3.2) date at least from early in this cen-
tury, alternative forms such as Theorem 3.2 appeared more recently. 
For example, apart from the rational-integral aspects of Theorem 3.2, 
that theorem is equivalent to Theorem 2 in Goldman (1956). 

The following theorem can be seen as a corollary of Theorem 3.2 
by replacing each equality in (3.4) with the pair 

to be used as in (3.2). 

T H E O R E M 3 . 3 . Suppose that are rational vec-
tors in with Then E ITHER there is an integral vector 

such that 

(3.4) 

OR there are nonnegative integers at least one of which is 
positive, and integers - such that 

This version of the Theorem of The Alternative is similar to the 
form used by Aumann (1964). 

3 . 4 T H E F U N D A M E N T A L T H E O R E M 

One more definition is needed before we can state the Fundamental 
Theorem for Representative Systems. 

D E F I N I T I O N 3 . 3 . With respect to a social choice function F, individual 
i is essential if and only if 

is false for some 

If i is not essential, then F is completely insensitive to his preference. 
Unanimity and duality require some i to be essential, for if no i were 
essential then 
F(0). If F is a representative system and i is not essential, then no 
s hierarchy for F can contain 

Many succeeding results in this and the next chapter will be based on 
the following theorem. 
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T H E O R E M 3 . 4 . ( F U N D A M E N T A L T H E O R E M FOR R E P R E S E N T A T I V E S Y S -
T E M S ) . Suppose that is monotonic, unanimous and 
dual, so that F Suppose further that (possibly empty) is a subset 
of such that 

for an essential (3.5) 

Then there is a representative system such that i is essential for G 
only if i is essential for F, and 

( 3 . 6 ) 

One immediate corollary of this is 

C O R O L L A R Y 3 . 1 . If F is monotonic and dual and then F is 
a representative system. 

Expression (3.5) has no effect on the corollary: any that satisfies 
(3.5) cannot contain 0. More generally, if satisfies (3.5) then 

. since is false for all i. A second corollary of 
Theorem 3.4 involves (3.5) and will serve as the basis of further results 
to be deduced using the fundamental theorem. 

C O R O L L A R Y 3 . 2 . Suppose that the hypotheses of Theorem 3 . 4 hold, and 
suppose further that (3.5) holds when £ therein is replaced by — £. Then 
there is an such that i is essential for H only if i is essential for 
F, and 

Proof. Under the hypotheses of the corollary, let G satisfy ( 3 . 6 ) . Since 
(3.5) is assumed to hold for Theorem 3.4 implies also that there 
is a such that i is essential for G' only if i is essential for F, and 

for all 

Let Then 
= 1. Since H is dual, . _ when _ s , Finally, if 

then and if 
then 

Other corollaries are given in the next section. The rest of this section 
proves Theorem 3.4. 

PROOF OF THE F U N D A M E N T A L THEOREM 

Throughout this proof, F and are as specified in the hypotheses of 
the theorem. Before applying the Theorem of The Alternative, we shall 
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prove two lemmas. The conclusion of the second lemma will be pivotal 
in the later use of Theorem 3.2. 

L E M M A 3 . 1 . for an essential i. 

Proof. If (3.5) gives the conclusion. Henceforth assume 
that Then, by duality, , _ for 
every essential i then, by monotonicity and Definition 3.3, 
— 1. This contradicts Therefore for an 
essential i. This is the same as for an essential 

Since nonessential i have no effect on F, all i to be used henceforth will 
be assumed to be essential. Without any loss in generality, 
will be the set of essential i. 

L E M M A 3 . 2 . Suppose that m is a positive integer and that 
are all in Then 

for some (3.7) 

Remark. The various in need not all be distinct. 
For example, with m — 5, we could have and 

Proof. We shall prove the lemma by constructing an H that sat-
isfies (3.7). The proof is accomplished by induction on even m in 

This proof serves also for odd m, for if m is odd then 
the number of terms in the sequence is 
even, and (3.7) holds 

Given with each and m even, 
has m(m — l ) / 2 two-element subsets. For each subset 

with Lemma 3.1 implies that there is an 
for which (and hence also). Let be such 
an i for 

Clearly, for each pair. 
With j fixed, suppose that and 
m/2. If this were true for each j then there would be 
at least m(m/2) distinct {j,k} pairs with Since there are in fact 
only i such pairs, it follows that there is a j, which for 
definiteness we shall suppose is j = 1, such that 

for at least 

Re-indexing these k as required, we obtain the array of components 
shown in Figure 3.2. Only the components that we shall use (except 
for m —4) are shown. Some of the columns may represent the same 

since it is possible to have when 
Apart from this, the blank spaces could be filled in any way 
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from and the end result would not vary. The last column (i') 
in the figure must be used when all entries in the first row preceding 
the last column are zeros: Lemma 3.1 ensures that for some i. 

The number of j in Figure 3.2 exceeds m/2. To satisfy (3.7) we shall 
construct an . (R such that. 

For gives For 
m = 4, we have the situation shown in Figure 3.3, where an additional 

FIGUBE 3 .3 

column has been added for i{2,3}. [The (0,1) in this column can be re-
placed by (1,0) or (1,1) and the same end result can be obtained.] With 

we obtain 
Continuing by induction on even suppose that the result just 

established for and holds for each even m' less than 
m > 6. Let Figure 3.2 apply to m. By ignoring the last row and next-to-
last column of Figure 3.2, we have precisely the Figure 3.2 situation 
for The induction hypothesis then gives a representative 
system Hi with 

for all except 
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Similarly, by ignoring the next-to-last row and second-from-last col-
umn of Figure 3.2, the induction hypothesis gives with 

for all except 

Finally, deletion of the second-from-last row and third-from-last col-
umn gives an for which 

for all except 

It follows that has for all 
We shall now use the Theorem of The Alternative. Let 

with We note first that (3.6) holds if and 
only if there are positive integers , such that 

for all (3.8) 

If this is true, then satisfies (3.6), where 
ptFt denotes Ft repeated pt times. Conversely, suppose that 
satisfies (3.6). Then G is one of the Ft. For definiteness let 
Then also satisfies (3.6). 

We shall use only the (3.1) part of Theorem 3.2. The theorem is 
applied to with The K vectors ak for 
(3.1) are the vectors for each 
and the vectors (0, . . . ,0,1,0, . . . ,0) for each _ 
Theorem 3.2 states that either there is an integral vector 
such that 

for each 
for each 

in which case (3.8) holds, since 
for each or the stated alternative 

holds. 
Suppose that the alternative holds. Then, with 

and there are nonnegative integers 
at least one of which is positive such that 

for (3.9) 

If some then at least one Consequently, at least one 
is positive. Let and let be a sequence of 

that contains times for k = 1, . . . , A. Then, 
according to (3.9), since for each t, 

for 
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Hence, since there is no such that 
But this contradicts Lemma 3.2. Hence the alter-

native is false and (3.8) holds for positive integers 

3 . 5 T w o T H E O R E M S 

We shall now use Corollary 3.2 of the fundamental theorem to 
establish theorems that use strong monotonicity (Definition 2.3) and 
strong unanimity (Definition 2.4). These theorems add new results to 
Corollary 3.1, whose conditions imply that F is both strongly mono-
tonic and strongly unanimous. The conditions of the following theorem 
also imply strong unanimity, but they permit to contain ele-
ments in other than 0. 

T H E O R E M 3 . 5 . If F is strongly monotonic and dual then it is a repre-
sentative system. 

Proof. Let equal minus then Corollary 3.1 
implies that . Henceforth suppose that Since the dual 
of is we can partition 33° into 8 and its dual — £. Each of £ and 
— £ satisfies (3.5). To show this for £, suppose that (3.5) fails with 

and for no essential i. Then for every 
essential i. Since the hypotheses of the theorem imply that every i is 
essential, Now and since we 
must have D < —D'. But this contradicts strong monotonicity since 
both D and —D' are in . , Therefore must hold for 

some i. The proof of (3.5) for —8 is similar. Corollary 3.2 then com-
pletes the proof. 

T H E O R E M 3 . 6 . Suppose that F is monotonic, dual and strongly unani-
mous. Then there are representative systems with K odd 
such that (3.10) (3.11) 

Proof. As in the preceding proof let 33°, if it is not empty, be par-
titioned into £ and — £. Let D be any preference profile in £. Then 
D, > — D, for some i, for otherwise we get D, < 0 for every i, and 
hence D < 0, and hence D < 0 (since D ^ 0), which contradicts 
strong unanimity since F(D) = 0. Hence (3.5) holds for the singleton 
subset , and by a similar proof (3.5) holds also for Cor-
ollary 3.2 then gives the representative systems , one for each 

that satisfy the conclusions of the theorem. is even (and 
positive) then one of these can be repeated in the product to ensure 
that when 
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A somewhat naive interpretation of the representation in Theorem 
3.6 suggests itself if we view the Fk as K parallel councils. Each council 
actively involves all voters and is a representative system. For every 
D G F*(0) there will be at least one council that gives Fk(D) = 0. 
Because of the product form this will negate the votes of other councils 
and require an overall tie between χ and y. Alternative χ is the group 

choice when it is the choice of every council, and similarly for y. 

WEAK MAJORITY 

We conclude this chapter with a social choice function which shows 
that the conclusions of Theorem 3.6 can be false when "strongly unani
mous" is replaced by "unanimous" in the hypotheses. 

The social choice function that we shall use for this purpose is the 
so-called nonminority or weak majority social choice function, defined by 

F(D)  = l«=»#{i:Z>, = 1} > n/2 
F(D)  = -1 «=>#{£:/), = -1} > n/2. K ' 

Thus, χ is the unique winner only if more than half of the voters vote 
for x, and similarly for y. A tie results when neither candidate receives 
a clear majority. If at least half the voters abstain then, regardless of 
how the others vote, a tie will result. 

The weak majority social choice function is neither strongly unani
mous nor strongly monotonic. However, it is monotonic, unanimous, 
and dual, so that F G SfTl. 

To show the effect of this F on the conclusions of Theorem 3.6, let 
η = 3, and let G be any representative system that satisfies (3.10). 

That is, F*(l) C G*(l) and G G (ft· Any evaluative form for G must 
conta in  a l l  o f  D 1 ,  D 2  and D 3 .  For  example ,  i f  G  were  a  funct ion  o f  D 1  

only, say G(D) = D1, then we have G( —1,1,1) = -1, contrary to 
F*( 1) C G*(l). Or suppose that only D1 and D2 appear in G(D). Then, 
since we require G(l, —1,1) = 1 and G(-1,1,1) = 1 and since duality 
would require G( —1,1,*) = —G(l, —1,*) if only D1 and D2 were essen
tial with respect to G, we see that this supposition is false. Thus all 
of D1, D2, and D3 must be essential with respect to G G (ft· But then 
every such G has G(1,0,0) = G(0,1,0) = G(0,0,1) = 1 and the product 
of any number of G's that satisfy (3.10) will yield 1 for each D G 
{(1,0,0),(0,1,0),(0,0,1)}. However, F(D) = 0 for each of these three 
D's by (3.12), and therefore (3.11) must be false. 

In the latter part of Chapter 5 we shall note conditions on F which 
are necessary and sufficient for weak majority and compare these with 
the necessary and sufficient conditions for simple majority which are 
given in Chapter 5 also. 
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Decisive Coalitions and Representative 

Systems 

THIS CHAPTER concludes our study of general representative systems by 
establishing a set of necessary and sufficient conditions for them. The 
next chapter examines some specialized representative systems. 

We have already seen that every representative system is mono tonic, 
unanimous, and dual. A fourth condition, which we shall call condition 
RS, completes the set of necessary and sufficient conditions. Condition 
RS, which shares some of the aspects of strong unanimity, will be 
introduced in section 4.2. The theorems that make use of it are in 
section 4.3. 

Condition RS is somewhat difficult to interpret as a reasonable pre
scription for a social choice function. Because of this we shall begin the 
chapter with another condition which is also necessary for representa
tive systems and which has a rather easy interpretation. This other 
condition asserts the possibility of simple majority winning coalitions 
and contains much of the essence of condition RS. However, it is not 
sufficient for the existence of a representative system in the presence 
of the three basic conditions of monotonicity, unanimity, and duality. 
It must of course be implied by the four necessary and sufficient 
conditions: we shall note in section 4.2 that it is implied by mono
tonicity and RS. 

4.1 DECISIVE COALITIONS 

Let F be a social choice function in an η-voter context and let J be a 
subset of {1, . . . ,n\. With respect to F, J is decisive for χ over y if χ 
wins under F when all i G J vote for χ and all i J vote for y. That 
is, J is decisive for χ over y if F(D) = 1 when D1 = I for all i G J and 
Di = — 1 for all i J. The decisiveness of J for y over χ is defined 
similarly. If F is dual, then J is decisive for χ over y if and only if J is 
decisive for y over x. Hence, when F is dual, we simply say that J 
is decisive when J is decisive for χ over y. 

If F is imposed with F=I then every J, including 0, is decisive 
for χ over y, and no J is decisive for y over x. If F is unanimous then 
{1, . . . ,n] is decisive (both ways). If F is monotonic and if J is 
d e c i s i v e  f o r  χ  o v e r  y ,  t h e n  F ( D )  =  1  w h e n  D i  =  1  f o r  a l l  i  £  J ,  
regardless of the values of the Di for i J. If the group contains a 
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dictator j  in the sense that F(D) = D j  whenever D1  ?£ 0, then J is 
decisive if and only if j G J- Under both simple majority and weak 
majority (3.12), J is decisive if and only if §J > n/2. 

Suppose that F is monotonic and dual, and let N be an integer that 
exceeds n/2 but not n. Thus, if #J = N, then J contains more than 
half of the individuals. Now some coalitions of size N might not be 
decisive. However, in view of the facts that a tie vote does not resolve 
an issue and that "majority will" in some form or other plays a part 
in most social choice procedures, it would seem somewhat strange if 
no J with jfJ = N were decisive. The condition that we shall develop 
in this section asserts the existence of at least one decisive coalition J 
of size N for each N for which n/2 < N < n. For example, if there are 
nine voters in the group then there is some subset of five voters who 
can ensure the election of χ by voting for x. Depending on F, other 
subsets of five voters may or may not be able to ensure the election 
of x. 

There might also be decisive coalitions that contain less than half of 
the voters, but we shall not focus on these here. 

DECISIVE COALITIONS WITHIN SUBSETS 

We shall now extend the notion of decisive coalitions to account for 
cases where some voters abstain or are indifferent. 

DEFINITION 4.1. Let F: {1,0, — 1}"—> {1,0,-1}, let J be a nonempty 
subset of {1, .  . . ,rc}, and let I be a subset of J. Then, with respect to F, 
I is decisive for χ over y within J if and only if F(D) = 1 when D1 = 1 
for all i£ I, D1  = — 1 for all i G J — I, and D t  = 0 for all i ξ? J. 

That is, I is decisive for χ over y within J if χ is elected when all 
i G I vote for x, all i in J but not I vote for y, and all other voters 
abstain. A similar definition holds for I decisive for y over χ within J. 

Suppose that jfJ = N > 0. Then, under simple majority, every 
IQJ for which N/2 < §1 < N is decisive within J. However, under 
weak majority, I can be decisive within J only if // > n/2. Thus, if 
§J < n/2 then no I QJ is decisive within J when F is the weak major
ity social choice function. 

The foregoing condition for J decisive within {1, . . . ,n} extends 
in an obvious way to / decisive within J. This extension seems reason
able provided that we adopt the viewpoint that abstentions (indiffer
ences) can be disregarded in determining the social choice. This point 
of view is shared by all representative systems, including simple and 
weighted majority, but it is not shared by weak majority. In Chapter 6 
we shall distinguish between special majority social choice functions 
according to the effect of abstentions on the outcome of the vote. 
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We now state our general condition for the possibility of decisive 
majority coalitions. The condition will not presuppose that F is dual, 
and it takes account of the possibility of nonessential voters (Definition 

3.3). The dual of the condition (interchange χ and y) is implied by 
duality and the condition. 

DEFINITION 4.2. F satisfies the condition of decisive majority coali
tions if and only if for every nonempty JQ {1, . . . ,n] that contains 
an essential i and every integer mfor which HJ/2 < m < if J, there exists 
an I C J such that fJ = m and I is decisive for χ over y within J. 

The essential facts about the relationship of this condition to repre
sentative systems are summarized in the following theorem. 

THEOREM 4.1. Every representative system satisfies the condition of 
decisive majority coalitions. There are social choice functions that are 
monotonic, unanimous, dual and satisfy the condition of decisive majority 
coalitions, but which are not representative systems. 

Because it is efficient to use condition RS of the next section in 
proving the first part of this theorem, we defer its proof to the next 
section. However, we can prepare for the proof and the introduction of 
RS with an example. 

EXAMPLE 

Let η = 5 and consider the five potential preference profiles dis
played in Figure 4.1. There is an obvious pattern to these profiles. 

i 

1  2  3  4  5  

1 

1 

-1 

1 

-1 

1 -1 

-1 X 

1 -1 

1 1 

-1 1 

FIGURE 4.1 

Each has three χ votes and two y votes, and each voter "votes" for 

χ three times and for y twice in the five situations under consideration. 
A key feature of the patterns in Figure 4.1 that may not be immedi

ately obvious is that, for each column or voter, Dh
i > -Df+1 for 

k = 1, 2, 3, 4, and Di
l > — D\. This follows from the fact that the — l's 
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are not adjacent (or at the beginning and end) in any column. In fact, 
we have 

D1  > -D1, D2  > -D3, D3  > -D i, D i  > -D\ D5 > -D1. (4.1) 

Another way to write this is D1  > — D1 < D3 > — D i  < D5 > -D1, 
which imparts a cyclic pattern to the figure. 

Expression (4.1) makes a connection through > between D1 and 
its dual -D1, or between any Dk and its dual for that matter. For 
the moment, call D and D' adjacent if either D > D' or D' > D, 
and call them connected within a subset '£)' of 2D if they are both 
in £)' and there is a finite sequence D, E1, . . . , Er, D' of elements 
in 2)' such that each two contiguous elements in the sequence are 
adjacent. Then (4.1) shows that D1 and -D1 are connected within 
{D1, -  D\D3, - D\D\ - D1 j. 

The point of this example for representative systems is that when 
(4.1) holds, when at least one of the i in Figure 4.1 is essential, and 
when F is a representative system, then it must be true that F(Dk) = 1 
for at least one of the five Dk. In other words, we cannot have F(Dk) < 0 
for  al l  f ive k. 

Stated another way, if F is a representative system, then at least one 
of the five three-voter subsets of {1,2,3,4,5 J that arise from the figure— 
namely {1,3,5}, {1,2,4}, {2,3,5}, {1,3,4}, and {2,4,5}—must be de
cisive. These five subsets, determined by the χ votes in each Dk, are not 
the only three-voter subsets since there are 10 such subsets. The reason 
that the condition of decisive majority coalitions is not sufficient for 
representative majority (along with monotonicity, unanimity, duality) 
follows directly from this observation. This condition requires at least 
one of the 10 three-voter subsets to be decisive, but it does not require 
one of the noted five to be decisive. 

To elaborate on this, let F be defined on {1,0,— I}5 by simple 
majority, except that F(Dk) = F( — Dk) = 0 for the five Dk of Figure 
4.1 and their duals. This F is clearly monotonic, unanimous, and dual. 
Moreover, since F(l,l,l, —1,-1) = 1, it follows easily that it satisfies 
the condition of decisive majority coalitions. However, according to the 
claim made above, F is not a representative system. 

Thus, except for proving that one of the F(Dk) = 1 when F is a 
representative system, we have just proved the latter half of Theorem 
4.1. 

4.2 A CONDITION FOR REPRESENTATIVE SYSTEMS 

Enough has been said in the preceding section to permit us to state 
the special condition for representative systems without further delay. 
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D EFINITION 4.3. F:iD — >  { 1 ,0, - 1 }  satisfies condition RS if and only 
if F(Dk) = 1 for some k G {1, · · · ,m J whenever m is an odd positive 
integer, D1 > -D2, D2 > — D3 Dm~1 > — Dm, Dm > -D1, and 

> 0 for some essential i. 

Because this condition and monotonicity imply the condition of 
decisive majority coalitions (see the end of this section), the intuitive 
aspects of the coalitions condition apply also to condition RS. The 
essential way that RS goes beyond the coalitions condition has already 
been brought out in the preceding example. Not only does it require 
decisive majority coalitions in the same subsets as specified in the 
coalitions condition, but it requires decisiveness in certain "cyclic" 
subsets of 30 that are not covered under the former condition. 

There are, as one might expect, other ways to phrase condition RS. 
One of these, which hinges on the notion of connectedness within 
F*(0), is developed further in the next section. 

Before we prove the necessity of RS and the first part of Theorem 4.1, 
we shall comment on some of the structural aspects of the condition. 

SOME FEATURES OF RS 

For m = 1, condition RS implies that if D > 0 (so that D > —D) 
and if Dt > 0 for some essential i then F(D) = 1. Thus, if every i is 
essential, then the m = 1 part of RS along with duality implies that 
F is strongly unanimous. Even when some i are not essential, a slight 
variation of Theorem 3.6 shows that the conclusions of that theorem 
hold (the product of representative systems) when F is monotonic, 
unanimous, dual, and satisfies the m = 1 part of condition RS. The 
effect on the product form (3.11) for F in Theorem 3.6 that results 
from allowing larger values of m under condition RS is a reduction in 
the number of representative systems whose product equals F. For 
sufficiently large m we can reduce the product until it has only one 
function. In other words, the conditions of monotonicity, unanimity, 
duality, and RS imply that F is a representative system. This is proved 
in the next section. 

The hypothesis (D1 > -D2
iD2 > -D3, . . . ,Dm > -D1) of RS 

requires that Dk~l = Dk+l = 1 when Dk
i = —1, and that Dk"1 > 0 

and Dk+1 > 0 when Dk = 0. (Here 0 —» m and m + 1 —> 1 for the 
superscripts.) An example of an acceptable (D\, . . . ,DJ1) with m = 7 
is (0,1,1,-1,1,0,0). 

Note also that (D1 > -D2,D2 > -D3 Dm > - D1) implies 
that > 0, so that ZkDk

l  > 0 for all i and 2kDk > 0 for some i. 
The reason that condition RS states explicitly that XicDk > 0 for some 
essential i arises from the possibility that Dk = 0 for all k and every 
essential i. In this case duality requires F(Dh) = 0 for every k. For 
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example, suppose that η = 2 with i  = 1 essential and i  = 2 not essen
tial. With m = 1 and D1 = (0,1), all hypotheses of condition RS hold 
except for the final essentiality condition. Duality requires F(Dl) = 0. 

The other major structural feature of condition RS is that m be 
odd. The obvious reason for this is that the condition is not neces
sary when m is allowed to be even. Thus, suppose that η = 3 and 
F(D) = (D 2,(2Di,D2,D i)).  Take m = 2 with D 1  = (1,-1,1) and D i  = 
( — 1,1,0). Then Di > -D2, D2 > -D1 and D\ + D\ > 0 so that all 
hypotheses except for m odd are satisfied. The given representa
tive system F yields F(Dt) = F(D2) = 0, so that F(Dk) = 1 for no 
k G {1, ·  ·  ·  ,m}. 

The difference between m even and odd can be illustrated graphi
cally, as in Figure 4.2. A line from a higher point β to a lower point D' 

- D  - D  

m even 

4  
- D  - D  - D  

m odd 

F I G U R E  4 . 2  

shows that D > D'. In the even case we see that D 1  > -D 2,  .  .  .  , 
Dm > — D1 does not imply that D1 and its dual -D1 are connected, 
as this term was defined following (4.1). But when m is odd, D1 and 
-D1 are connected, as is evident from the diagram on the right. 

The critical use of odd m in the following theorem occurs in the 
chain of implications which leads to Fr(Dk) = 0 under the supposition 
of the proof. 

THE NECESSITY OF RS 

THEOREM 4.2. Every representative system satisfies condition RS. 

Proof. Let F be a representative system. In accord with Definition 
3.2 we can write F as 

F = a(FuF t ,  .  .  .  ,F r) (4.2) 

where each F r  is also a representative system. 



4.2 REPRESENTATIVE S Y S T E M S ' CONDITION 

Assume that the hypotheses of condition RS hold, but suppose that 
its conclusion fails so that 

(4.3) 

We shall use (4.2) to show that this is impossible. 
For each k from 1 torn let 

By (4.2) and (4.3), for each k. Moreover, if 
then (with m + 1 —> 1) monotonicity, duality and imply 
that Therefore 

so that, in fact, 

Hence for all k. 
Suppose that Then monotonicity, duality and 

imply that Therefore 

(by preceding paragraph) 
(this paragraph and 2+ = 3~) 
(by preceding paragraph) 

(since m is odd) 
(preceding paragraph), 

which yields a contradiction. Hence for all r, and therefore 
= 0. Consequently, 

for 

and for all r and k. 
Now each can be treated in precisely the same way that we 

treated F. That is, can be written as with 
each a representative system. for all k takes the place of 
(4.3) and, by the analysis just completed, we conclude that 
for all t and k. 

For definiteness let i = 1 be essential with by the hypothe-
ses of RS. Since F is built up in a finite number of steps from the pro-
jections . for which we eventually arrive at the conclu-
sion that for all k. (Since 1 is essential, must be used in 
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the recursive construction of F.) But since ~ZD\ > 0 we must have 
Si(Dk) — 1 for some k, and we have thus arrived at the desired contra
diction of (4.3). + 

We conclude this section by noting that monotonicity and RS imply 
the condition of decisive majority coalitions. This conclusion then 
serves to prove the first part of Theorem 4.1 by the following implica
tions: FG (ft =* F is monotonic and satisfies condition RS (just 
proved) => F satisfies the condition of decisive majority coalitions. 

THEOREM 4.3. If F is monotonic and satisfies condition RS then F 
satisfies the condition of decisive majority coalitions. 

Proof. It will suffice to prove that condition RS implies that there 
is an I C J that is decisive for χ over y within J when #·/ is odd and 
contains an essential i and when m = (JJ + 1)/2 so that #/ = m. The 
rest of the coalitions condition then follows easily from monotonicity. 

Given an odd positive integer #J = N < n, construct D1, D2, . . . , 
Dn in the manner of Figure 4.1, assuming without loss of generality 
that some voter in {1, . . . ,N\ is essential. The leading diagonal of 
this matrix and the diagonal immediately below the leading diagonal 
are filled in with l's. The other diagonals alternate sign, as in Figure 
4.1. Di = 0 for i > N. It follows that D1, . . . , Dn satisfy the hy
potheses of condition RS with StDf = 1 for each i < N. Hence, by 
condition RS, F(Dk) = 1 for some k G {1, . . . ,Nj. Regardless of 
which k this might be, its Dh has one more 1 than —1, and I = 
{i-i G {1, · · · ,N] and D\ = 1} with #/ = (N + 1)/2 is decisive 
for χ over y within J. + 

4.3 NECESSARY AND SUFFICIENT CONDITIONS 

Section 3.4 shows that a monotonic, unanimous, and dual social 
choice function FG 311 fails to be a representative system only when 
F*(0) lacks an appropriate structure. The clue to the structure required 
for F*(0) has already appeared in the Fundamental Theorem for Repre
sentative Systems and in Corollary 3.2. We proceed to explore this clue. 

First, a word about nonessential voters is in order. If i is not essential 
then he has no effect on F. We shall therefore ignore all D1 for non
essential i and, for definiteness, assume that each i G {1, · · · >ni 
is essential. Unanimity and duality assure us that η > 1. SD will be 
taken to be {1,0,-1}". A representative system for 3D can of course be 
extended in the obvious way to be a representative system defined on 
all preference profiles (including nonessential i). The properties for F 
hold also on the restricted domain 2D for essential voters, as can be seen 
by fixing each Dj for nonessential j > η at D, = 0 throughout. 
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Under this convention let 

and 

If then _ is a representative system according to Corol-

lary 3.1.Henceforth assume that . Then, according to Corollary 
3.2, is a representative system if SD° can be partitioned into 
dual subsets and such that 

for s o m e ( 4 . 4 ) 
for some (4.5) 

These expressions are the same as ( 3 . 5 ) , and constitute the clue referred 
to above. 

Suppose that and . Suppose further that 
and . Then - Now with and 
(4.5) requires that for some 
But this is false since by hypothesis. Therefore, in order to 
satisfy (4.4) and (4.5) it is necessary to have both D and D' in either S 
or — S when 

Conversely, suppose that and or 
. Let J and . be any elements in 8. Then it is false that 

, for this would require , contrary to . 

since _ is already in Moreover, . is false since 
Therefore for some i, and we have proved 

L E M M A 4 . 1 . With and there is a partition of into 
dual subsets and that satisfy (4.4) and (4.5) if and only if there is a 
partition of into dual subsets and such that a n d o r ( 4 . 6 ) 

The ability to partition in either of the equivalent ways indicated 
by this lemma could be stated as an "acceptable" alternative to condi-
tion RS. Before using RS we shall establish yet another way of view-
ing ( 4 . 6 ) . This is done in the graph-theoretic terms used in the para-
graph that follows ( 4 . 1 ) . 

Call adjacent if and only if either We 
shall say that D and D' are connected if and only if there is a sequence 

of elements in such that each two contiguous 
elements in the sequence are adjacent. Such a sequence is a path from 
D to D'. 

Suppose that (4.6) holds with , . and 
Then if and there is no path from D to D', since 
such a path would require for some and 
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, contrary to ( 4 . 6 ) . Hence, ( 4 . 6 ) implies that no pair of dual 
elements in 3D0 is connected. 

Conversely, suppose that D and D' are not connected when D = 
Let be the connected components of That is, 

partitions with D, D' in the same if and only if 
they are connected. By duality and the fact that D > D' if and only if 

We can 
therefore group half the .. in one group and their duals in another 
group and let be the union of the 7* in the first group and let be 
the union of the in the second group. Then (4.6) will hold. Thus we 
have proved Lemma 4.2. 

L E M M A 4 . 2 . Expression ( 4 . 6 ) holds for some dual partition of 
if and only if 

and —D are not connected. (4.7) 

Expression (4.7) is of course another possible alternative for con-
dition RS since (4.7) and _ imply that F is a representative 

system. We shall now show that - and condition RS imply ( 4 . 7 ) . 
In view of Corollary 3.2, Lemmas 4.1 and 4.2, and Theorem 4.2, this 
will complete the proof of Theorem 4.4. 

T H E O R E M 4 . 4 . is a representative system if and only 
if it is monotonic, unanimous, dual, and satisfies condition RS. 

Proof. Under the conventions and definitions of this section we are 
to prove that. and v T o the contrary, suppose that 
the hypotheses hold and that and and _ are connected. 
Consider a shortest path from , Such a path will exhibit no 
transitivities under > and it will yield the form 

(4.8) 

or else 
which is essentially the same as (4.8) since it is 

,, with r even and either 
(In the latter case disregard Dr.) 

Suppose first that in (4.8). We then get 

which contains an odd number and satisfies the other 
hypotheses of condition RS with there replaced by 

in the present case. Condition 
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RS and duality then imply that F(Dk) ̂  0 for one of the Dk  in (4.8). 
But this contradicts the supposition that the elements in (4.8) are all 
from D0, and it therefore contradicts the initial supposition that D1  

and -D1 are connected. 
Suppose then that -D1  = D r~1  in (4.8). Then, since D1  > D2 and 
D1 > Dr~2 imply -Dr~2 > D2, (4.8) reduces to 

-D'-1  > Di, -D2 > -D8, D3 > D\ . . . , Dr-3 > D*'2  

which again has an odd number r — 3 of Dk and which, as before, 
leads to a contradiction. • 

THE NONDICTATORSHIP CONDITION 

As we have seen, the nondictatorship condition stated after Defi
nition 3.2 (there is no i such that F(D) = D1 whenever Dt Ti 0) has 
had no bearing on our analysis. Except for small values of η (espe
cially η = 1), it appears to be a quite reasonable condition. In practice, 
of course, many groups are dominated by de facto dictators regardless 
of the particular voting procedures that are used by these groups, but 
this is not the place to go on about group dynamics. 

To incorporate the nondictatorship condition back into Murakami's 
notion of representative system, F may be called a proper representa
tive system if and only if F is not dictatorial and is a representative 
system. When η = 1, there is clearly no proper representative sys
tem. When η = 2, there is exactly one proper representative system, 
namely the simple majority social choice function. In general, F is a 
proper representative system if and only if it is monotonic, unani
mous, dual, nondictatorial, and satisfies condition RS. This is obvious 
from Theorem 4.4. 



C H A P T E R  5  

Weighted Voting and Anonymous 

Choice Functions 

WEIGHTED MAJORITY social choice functions are an important subclass 
of representative systems. They have the form F = s(piSu  . .  .  ,p„Sn) 
where Si(D) = Z), and ρ > 0, and are characterized by monotonicity, 
unanimity, and an extension of duality called strong duality. We shall 
comment on the fact that the p, weights may not accurately reflect 
the voting power of the individuals in the group. 

The anonymity condition characterizes the one-man one-vote doc
trine. Following a general characterization of monotonic, dual, and 
anonymous social choice functions, we shall give necessary and suf
ficient conditions for two special members of this class, simple and 
weak majority social choice functions. 

May's theorem (1952) says that F is a simple majority social choice 
function if and only if it is strongly monotonic, dual, and anonymous. 
A second set of conditions for simple majority replaces anonymity by 
weak nonreversibility, which says that if χ would win in one situation 
and if a second situation is like the first except that one z-voter ab
stains, then y will not be the unique winner in the second situation. 

A stronger condition of nonreversibility is used in the theorem for 
weak majority. 

5.1 WEIGHTED MAJORITY 

At the end of section 2.1 we defined weighted majority social choice 
functions in terms of hyperplanes through the origin 0 of Ren. We 
shall make this our general definition. 

DEFINITION 5.1. F:iD —» {1,0,-1} is a weighted majority social 
choice function if and only if there is a ρ > 0 such that 

F(D) = s(p • D) = s(piDi, . . . ,pnDn) for all D £ £>· (5.1) 

Thus, if F is a weighted majority social choice function, then each 
voter has a nonnegative "weight" that he assigns to χ or to y or to 
neither. The definition requires that at least one p, be positive, so that 
weighted majority social choice functions are unanimous. They are 
also monotonic (p > 0) and dual, since s(p · D) = — s(p · (-D)). Since 
pi = 0 is allowed for some i, they are not necessarily strongly mono
tonic or strongly unanimous. However, they are strongly dual as we 
shall define this term shortly. 
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According to (5.1) and Definition 3.3, individual i is essential if 
and only if p% > 0. In effect, pi = 0 can be used to identify ineligible 

voters. 
Weighted majority social choice functions appear to arise most often 

under proportional representation, where each voter represents a por
tion of some resource (population, land, common stock, etc.) and has a 
vote whose weight is proportional in some way to the proportion of the 
resource that he represents. Needless to say, the question of how a 
person's voting weight p, should relate to his proportion of the resource 
can be very difficult and controversial. Involved with this question is 
the frequently-cited fact that an individual's power or voting effective
ness within a group need not be directly proportional to his p, weight. 
We shall comment further on this at the end of this section. 

A SPECIAL CASE OF REPRESENTATIVE SYSTEMS 

Weighted majority social choice functions can also be characterized 
in a simple way in terms of the recursive definition used for representa
tive systems in section 3.2. As before, let St(D) = D1 for each i, and let 
(Ri be the set of all functions s(F1, .  .  . ,FK) :£> —> {1,0,-1} with K 
any positive integer and Fk  G (S1, .  .  . ,<S„} for each k. 

Clearly, ®i if and only if there are nonnegative integers 
Pi) P2, · · · , Pn at least one of which is positive such that F(D) = 
s(p\Di, . . . ,pnDn) for all 3). (Just let pt be the number of Fk that 
equal St in the foregoing definition for (Rj.) This is precisely the same 
as (5.1) except for the integer condition. And since the D1 values are 
rational it is not hard to show that, for any ρ G Ren, there is an 
integral p' G Ren such that s(p • D) = s(p • D) for all D G 3). (This is 
obvious by small changes in the p„ to make them rational, if ρ · D is 
never zero. If ρ · D = 0 for some D, the elimination method for the 
solution of linear equations leads to the result.) Thus we have the 
following theorem. 

THEOREM 5 .1 .  F: £>—> {1 ,0 ,  —1) is a weighted majority social choice 
function if and only if F EL ®I-

This shows that (Ri could be used as the definition of weighted 
majority, and that the weights in a weighted majority function can 
always be taken to be nonnegative integers. 

STRONG DUALITY 

By Definition 3.1, F is dual if and only if F( — D) = -F(D) for all 
D G D. Equivalently, F is dual if and only if, for all D,D' G SD, 

D + D' = 0 => [F(D) = 1 F(D') = -1]. (5.2) 
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For example, since (5.2) shows that 
, that J and that 

The condition of strong duality extends (5.2) by permitting more 
than two _ in the sum of (5.2). 

D E F I N I T I O N 5 . 2 . is strongly dual if and only if, 
for all and all 

for some 
if and only if for some 

(5.3) 

This says that when we consider a sequence of possible 
situations that might arise in which each i "votes" for x the same num-
ber of times that he "votes" for y, so that for each i, then x 
will win in at least one situation if and only if y will win in at least one 
situation. For a simple example of this suppose that n = 3 with 

(5.4) 

Strong duality says that if , then for some 
Another example, with n = 4, is 

(5.5) 

If . then strong duality requires either or 
It also requires if both and equal 

zero. 
An example of a representative system that is not strongly dual is 

the n = 4 system 

of section 3.2. For this system the three in (5.5) have 
Another example, with n = 3, is 

since 
Weak majority illustrates a dual function that is not a representative 

system and is not strongly dual. The four in (5.4) have 
and when F is the weak majority function of 
(3.12). 
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NECESSARY AND SUFFICIENT CONDITIONS 

Strong duality is necessary for weighted majority, for suppose that F 
satisfies (5.1) and Then so that for 
some k if and only if for another k. The following theorem 
notes that strong duality is also sufficient for weighted majority in the 
presence of monotonicity and unanimity. 

T H E O R E M 5 . 2 . is a weighted majority social choice 
function if and only if it is monotonic, unanimous and strongly dual. 

Proof. Assume that F is monotonic, unanimous and strongly dual. 
Let By unanimity, Let consist 
of one element from each dual pair on which but 
exclude 0 from 

Suppose there is no integral such that for all 
and for all Then, by Theorem 3.3 (Theo-

rem of The Alternative), there are nonnegative integers at least one 
of which is positive that correspond to the . ., and integers rk 

that correspond to the that satisfy for each i. If 
is negative for a then we can replace " and replace 

by its dual • In this way we obtain for all _ 
, Using the to give multiplicities of the 

implies that there is a sequence J such 
that this contradicts duality since it implies that 

and then strong duality is contradicted 
since , for all j and for at least one j (since 
for at least one in v Hence there is an integral p that satisfies 

for all and for all _ Duality 

shows that F is a weighted majority social choice function provided 
that. 

Since by duality, monotonicity shows that for 
each i. Unanimity clearly requires VOTER EFFECTIVENESS 

It should be clear from Definition 5.1 that any weighted majority 
social choice function is determined completely by certain equality 
and inequality relationships between sums of the The actual values 
of the p, that satisfy these relationships are of secondary importance. 
For example, for and completely 
determine a weighted majority social choice function. Several p vec-
tors that characterize this particular function are ( 4 , 3 , 2 ) , ( 1 1 , 9 , 3 ) and 
( 1 0 0 , 9 7 , 9 6 ) . In terms of Definition 4 . 1 , a weighted majority social 
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choice function can be described by identifying all decisive majority 
coalitions (minimal coalitions will suffice) within nonempty subsets of 

For example, the following statements describe 
and is decisive within j 

decisive within is decisive within , and is decisive 
within {1,2,3}. Provided that such statements of decisiveness, when 
translated into p, inequalities (and equalities, in the case where neither 
I nor J — I is decisive within J), have a solution that is un-
ambiguous concerning the relationship between any "disjoint" pair in 

they 
do indeed characterize a weighted majority social choice function. 

From this it is clear that the p, values do not necessarily reflect the 
relative effectiveness of voters in the group. Such an effectiveness or 
"power" for each voter should depend, of course, at least on the ability 
of the voter to affect an outcome of the social decision by his vote, or 
on the decisive coalitions of which he is a member. Here we will define 
one measure of relative effectiveness based directly on an individual's 
ability to affect an outcome by his vote, and then comment on this 
definition and its implications for some weighted majority functions. 
The definition used is similar to one given by Banzhaf (1965). 

Let 3D1 denote all preference profiles of all voters except for voter i. 
That is, for all 

For let denote the D that has D* for voters 
other than i, and Dt = 1. Similarly is the D given by 

Given voter i can 
affect the outcome in this situation if and only if 
(This will be true for any monotonic F.) The unnormalized effective-
ness of voter i is then defined as the number of D* that voter i can 
affect: 

The relative effectiveness of voter i can then be taken as 
so that for all i and 

Several aspects of this definition, which might be viewed as short-
comings, are: 1. it treats all potential D equally, 2. it makes no dis-
tinction between an ability to completely change an outcome (x to y, 
or y to x) and an ability to only partially change an outcome (x to 
a tie, or conversely), and 3. it takes no account of dynamic variables 
such as the ability of an individual to persuade other voters. For 
further discussion along these lines the reader is referred to Banzhaf's 
paper and the references in his footnote 31. 

Finally, we note the effect of our definition of voter effectiveness 
on all weighted majority social choice functions for n = 3. By con-

54 



vention we take and list the eleven possible cases in 
descending order of the "power" of voter 1. The figures are accurate 
for the number of places shown. 

For a sample calculation, consider the fifth row where 
and Each has elements. Since voter 1 

can offset any combination of votes by 2 and 3 (at least up to a tie 
since When voter 1 abstains, voter 2 can 
affect anything that voter 3 does (3 cases of Z)2), and voter 2 can 
also affect' the outcome when voters 1 and 3 oppose each other (2 
cases). Hence Finally, voter 3 is influential when both 1 and 
2 abstain and when 1 and 2 oppose each other. Therefore, 
In summary, , and 

5 . 2 A N O N Y M I T Y 

For a given n, the simple majority social choice function F(D) = 
l is the one weighted majority social choice function 

that gives equal "power" to each voter. The new condition that we 
shall use in characterizing simple majority is a direct reflection of the 
equal power or one-man one-vote doctrine. The two most common 
names for this condition are "equality" and "anonymity." It is also 
referred to as the egalitarian principle. We shall use "anonymity." 

D E F I N I T I O N 5.3. . , is anonymous if and only if, for 
all I whenever a is a 
permutation on 
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T A B L E 5 . 1 

" P O W E R " DISTRIBUTIONS FOR 

CHARACTERIZATION OF 
W T D . MAJORITY 

VOTER 1 
1 0 0 WI 

VOTER 2 
1 0 0 ID 2 

VOTER 3 
1 0 0 TV3 

PI > pi = P3 = 0 1 0 0 0 0 
PI > P2 > P3 = 0 7 5 2 5 0 
PI > Pi > P3 > 0, pi > p2 + P3 6 9 2 3 8 
PI > pi = pi > 0 , PL > P2 + PS 6 0 2 0 2 0 
Pi > P2 > P3 > 0 , PL = Pi + p3 5 3 2 9 18 
Pl = Pi > P3 = 0 5 0 5 0 0 
Pl > pi = Pi > 0, PL = p2 + P3 4 7 26 2 6 
Pl > pi > P3 > 0 , PL < p2 + P3 4 7 3 3 2 0 
PL = p; > pi > 0 4 1 4 1 18 
Pl > pi = pi > 0, PL < p2 + Pi 4 1 2 9 2 9 
Pl = Pi = P3 > 0 3 3 3 3 3 3 
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This is equivalent to: F ( D )  —  F ( D ' )  when D1 =  D [  for all but two 
voters j and k for which D1 = D'k and Dk = D':. A series of such two-
voter interchanges will give a desired permutation. 

What matters for any anonymous social choice function is not who 
votes for χ and y but rather how many voters vote for χ and y. Unlike 
general weighted majorities, which require voters' "names on the bal
lots" so that the proper p, weights can be assigned, anonymous func
tions do not require "names on ballots." Thus, let 

I(Z)) = Hi--Dl = 1} 
-1 ( D )  = #{i:Dt = -1}. (5.6) 

Then any anonymous F  can be described by a function/: {( j , k )  : j , k  ζΞ 
{ 0 , 1 ,  .  .  .  , r a j  a n d  j  +  k  <  n \  — >  { 1 , 0 , - 1 }  s u c h  t h a t  F ( D )  =  
f (1(D),-1(D)) for all D E SD-

Anonymity is to voters as duality is to alternatives. Duality treats 
alternatives equally, whereas anonymity treats individual equally. To
gether, these conditions give conclusions (ii) and (iii) of the following 
lemma. 

LEMMA 5 .1 .  Suppose that F: SD—> {1 ,0 , -1}  is anonymous. Then, for 
all D,D' E 25, 

(i) ( l ( D ' ) - l ( D ' ) )  =  ( I ( D ) - I ( D ) ) = ^ F ( D f )  = F ( D ) .  
I f ,  i n  a d d i t i o n ,  F  i s  d u a l  t h e n ,  f o r  a l l  D , D '  G  D ,  

(ii) ( - 1 ( D ' ) , 1 ( D > ) )  =  ( 1 ( D )  - 1 ( D ) )  F ( D ' )  =  - F ( D ) ,  
(iii) I(O) = -1 ( D ) = *  F ( D )  =  0. 

Proof. Conclusion (i) is an immediate consequence of anonymity. 
Conclusion (ii) is an easy consequence of duality and anonymity. 
For (iii), I(D) = -I(D)^l(D) = -I(D) = 1(-D) = -l(-D). 
Then F(D) = F( — D) by (i) and F(D) = —F( — D) by (ii), so that 
F(D) = 0.+ 

Lemma 5.1 suggests a simple way of representing any monotonic, 
dual, and anonymous social choice function. We now give such a repre
sentation, recalling that when F is dual it is completely determined by 
F * (  1 ) .  T h e  l a r g e s t  i n t e g e r  t h a t  d o e s  n o t  e x c e e d  k  i s  [ k ] .  

THEOREM 5 .3 .  I f F - . iD  —> {1 ,0 , -1}  is monotonic, dual and anonymous 
then there are integers r(0), r(l), . . . , r([n/2]) such that 

0 < r(0) < r (  1) <  <  r ( [ n / 2 ] )  <  n ,  (5.7) 
F*( 1) = {D:-I(D) < n/2 and 1 (D) > r(-l(D))}. (5.8) 

For simple majority, (/-(0),/-(1), . . . ,r ( [ n / 2 ])) = (0,1, . . . , [ n / 2 ] ) ,  
and for weak majority the r vector is ([n/2], . . . ,[n/2]). 



5.3 SIMPLE MAJORITY 

Proof. Let F be monotonic, dual, and anonymous. Let r(0) be the 
largest integer in for which F(D) = 0 when — 1 (D) = 0 
and 1 . Since F(0) = 0, such a unique r(0) exists. If F(D) = 0 
for all D that have , then r(0) = n. By monotonicity, 

and and 
(5.9) 

This set is empty if and only if If then 
so that by monotonicity, and in this case we take 
for each k. This satisfies (5.7) and (5.8). 

To continue, suppose that ~ In this case we define r(l) as the 
largest integer in for which when 
= 1 and . Lemma 5.1 and monotonicity assure that r(l) is 
well defined and that 

and and 
(5.10) 

Contrary to . , _ suppose that i Then there is a 

D with , , , and Let 
except for the one which we replace by . Then 

, and by monotonicity, contrary 
to (5.9). Hence v v must be false. 

If, when then (5.10) is empty and we take 
so that (5.7) holds. In this case (5.8) 

holds also, since, by monotonicity, whenever 

If we continue with r(2) as in the paragraph of (5.10). 
The process continues in the obvious way either until n , for 
some _ in which case we take for 
or until we obtain , for odd n. • 5 . 3 S I M P L E M A J O R I T Y 

In the rest of this chapter we concentrate on the two special types 
of monotonic, dual, and anonymous social choice functions that we 
identified following Theorem 5.3. 

The following theorem, due to May (1952), follows directly from 
Lemma 5.1 (iii) and strong monotonicity. The conditions in the theo-
rem are obviously necessary for simple majority. 

T H E O R E M 5 . 4 . is a simple majority social choice 
function if and only if it is strongly monotonic, dual, and anonymous. 
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A N ALTERNATIVE AXIOMATIZATION 

One of the necessary properties of simple majority social choice 
functions that was not used in Theorem 5.4 is a nonreversibility 
property. Suppose that F is a simple majority social choice function 
and that F(D) = 1, so that x wins under D with : . Sup-
pose that D' is the same as D except that one voter who voted for x in D 
abstains in D'. Then and n ,, so that 

This requires that F(D') > 0. Hence, under simple 
majority, the change by one voter from a vote for x to an abstention 
cannot change the social choice from x to y although it may change 
the social choice from x to a tie between x and y. 

D E F I N I T I O N 5 . 4 . is weakly nonreversible if and 
only if, for all, except that j for one ifor which 

, then 

The condition of weak nonreversibility is of at least passing interest 
since it allows us to characterize simple majority without making 
direct reference to anonymity. 

T H E O R E M 5 . 5 . is a simple majority social choice 
function if and only if it is strongly monotonic, dual and weakly 
nonreversible. 

Proof. Necessity has been demonstrated. For sufficiency, assume 
that F is strongly monotonic, dual, and weakly nonreversible. If 

then D = 0 so that F(D) = 0 by duality. Then, 
by strong monotonicity, 

Using induction on m, assume for m > 0 that 

Suppose that and that . Let 

except for some i w h e r e a n d 
except for some j where and 

Now by induction hypothesis 2, and by in-
duction hypothesis 3. Weak nonreversibility and. x , prohibit 
F(D) = 1. Similarly, the dual of weak nonreversibility and 
prohibit J Therefore F(D) = 0. It then follows from strong 
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5.4 WEAK MAJORITY 

monotonicity that 2 and 3 hold for m  + 1 in place of m ,  so long as 
2 ( m  +  1 )  +  1  <  η . φ  

Shortly, in Part II, we will examine simple majority in detail for 
situations with many alternatives. 

Bengt Hansson has noted (in correspondence) that weak nonre-
versibility is closely related to a condition which expresses the idea 
that "the effect is not greater than the cause," which we can write 
as follows: if D = D' except that D1 > D1

i for some i then D1 — D1
t > 

F(D) — F(Dt). It is easily seen that this condition is necessary for 
simple majority, and it implies weak nonreversibility since it requires 
F(Dt) > O when D1 — Dt

l = 1 and F(D) = 1. 

5.4 WEAK MAJORITY 

If we use (5.6), the weak majority social choice function F  of (3.12) 
can be defined by 

F ( D )  =  1 ^ 1  ( D )  >  n / 2  
F ( D )  =  -1  < = >  - 1  ( D )  >  n / 2 .  

Weak and simple majority share a lot in common. Both are monotonic, 
unanimous, dual, anonymous, and weakly nonreversible. The parting 
of the ways between these two functions arises because: 1. simple 
majority is strongly monotonic whereas weak majority is not, and 
2. weak majority is strongly nonreversible whereas simple majority 
is not. 

DEFINITION 5.5. F : 2 D —> {1,0,— 1} i s  strongly nonreversible i f  a n d  
o n ly if, for all D ξζ ΐ>, if Dt = D excepl that D[ = 0 for one i for which 
D t  =  1 ,  t h e n  F ( D )  >  0  F ( D t )  >  0 .  

The only difference between this definition and Definition 5.4 is 
that F(D) = 1 in 5.4 has been replaced by F(D) > 0. Thus, strong 
nonreversibility says that if χ and y tie under D, and if one χ voter in 
D  c h a n g e s  t o  a b s t e n t i o n  i n  D t ,  t h e n  χ  a n d  y  w i l l  s t i l l  t i e  u n d e r  D t  

(assuming monotonicity). Strong nonreversibility, which is clearly 
necessary for weak majority, is felt by some to be the most vulnerable 
aspect of weak majority. 

Related to this, weak majority is often felt to be inferior to simple 
majority because of its greater propensity for ties. In practice, a 
special majority function, which is closely related to weak majority 
but does not permit ties, is sometimes used when a challenger χ is 
put against the status quo y for a vote. This special majority takes 
F(D) = 1 <=> 1 (D) > re/2, and F(D) = —1 otherwise. Thus, the chal
lenger wins if and only if it obtains more than half of the possible 
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votes. Otherwise the status quo stays in effect. This example of "non-
minority rule" will be examined further in the next chapter. 

In order to characterize weak majority we need one more condition 
that holds also for simple majority. This condition is part of strong 
monotonicity. It says that if there are no abstentions in D, and if D' is 
obtained from D by one voter changing his vote from y to x, then x 
will be the choice under D' if x beats or ties y under D. A slightly 
different form of this condition is stated in the following theorem. 

T H E O R E M 5 . 6 . is a weak majority social choice 
function if and only if it is monotonic, dual, anonymous, strongly non-
reversible, and if. whenever J and• . t . 
for each i. 

Proof. The conditions are easily seen to be necessary for weak 
majority. Assume henceforth that they hold. 

By Lemma 5.1 (iii), Monotonicity and 
strong nonreversibility then imply that 
Lemma 5.1 (ii) then says that _ _ 

If n is even let li , Anonymity 
and the final condition of the theorem then imply 

if and for each i. 

From this and monotonicity, Duality then 
yields whenever 

For n odd let % with all . . and let 
except that for one i for which _ Then 

The second paragraph of this proof gives 
and If in fact then 

by anonymity and the final condition of the theorem. But _ , 
by Lemma 5.1 (ii), which contradicts - v - , 

Therefore, J . and , by Lemma 5.1 (ii). Mono-
tonicity and anonymity then imply that v , whenever 

, Duality yields whenever 
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C H A P T E R  6  

Strong Decisiveness and Special Majorities 

THUS FAR the special social choice functions that we have discussed 
satisfy the condition of duality. In this chapter we shall consider 
strongly decisive functions, which never permit a tie between χ and y. 
Since these cannot be dual (which requires F(0) = 0), this chapter is 
also concerned with nondual social choice functions. 

The first section discusses the conditions of decisiveness and then 
characterizes social choice functions that are monotonic, strongly de
cisive, and anonymous. This characterization is similar to that of 
Theorem 5.3 for monotonic, dual, and anonymous functions. A weak 
duality condition, which is compatible with strong decisiveness, is 
shown to lead to a social choice function that agrees with simple 
majority when the latter does not yield a tie. 

The second half of the chapter focuses on two types of strongly 
decisive special majority social choice functions. These are: 1. the 
absolute special majority, in which an abstention counts as a vote 
for the status quo, and 2. the relative special majority, under which the 
challenger wins if and only if it receives a certain percentage of the 
votes that are actually cast. 

6.1 STRONGLY DECISIVE SOCIAL CHOICE FUNCTIONS 

A possible virtue of some social choice functions is their avoidance of 
ties. Indeed, as we have remarked before, it is obvious that a tie result 
does not resolve the issue before the group. When ties are permitted 
by a social choice function, the practical procedure for breaking the 
deadlock—whether by coin flip, chairman's duty, a new ballot (which 
may well differ from the first since the voters have additional informa
tion to act on), or by some other means—is not part of the function. 
In some cases, however, it may be possible to alter the function to 
reflect the tie-breaking procedure. 

A simple example will illustrate this. Let η = 3 and suppose that the 
group uses simple majority, written as F= S(SiiSitSi). If a tie occurs, 
then voter 1 breaks the tie by his vote, provided that D1 ^ 0. If 
voter 1 abstains, then voter 2 breaks the tie, provided that D2 0. 
If both 1 and 2 abstain, then a tie occurs if and only if 3 abstains. 
This tie-breaking procedure, when combined with F, can be written 
as F' = s(3F,2Si,S-i). It can also be written in the weighted form 
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F' = S(4SI,3S2,253) whose voter "powers" W 1  are approximately .47, 

.33, and .20, by Table 5.1, for the three voters respectively. 
But even F' does not resolve the issue when all three voters abstain 

or are indifferent. If they are in fact indifferent then it should not 
matter to any of them which of χ and y is implemented. Therefore, 
from the viewpoint of the voters, it would not matter if χ were de
signated as the choice when JD = 0. This can be incorporated into 
the choice function by taking F" = s(2/<1',l) or, equivalents, by writ
ing F" = 3(8^,652,453,1). 

In this example the weighted majority function F' is weakly decisive 
a n d  F "  i s  s t r o n g l y  d e c i s i v e .  F * ( 0 )  =  { J D : F ( D )  =  0 } .  

DEFINITION 6.1. F: 2D —* {1,0, — 1} is decisive if and only if D ^ 0 => 
F(D) Ti 0. It is weakly decisive if F*(0) = {0}, and strongly decisive 
if F*(0) = 0. 

Thus, a decisive social choice function is either weakly decisive or 
strongly decisive, and not both. In logic, weak decisiveness and strong 
decisiveness are contrary conditions. They are not contradictories, 
since a social choice function need not be either weakly or strongly 
decisive. 

Similarly, since duality implies F(O) = 0, duality and strong decisive
ness are contrary conditions: if F is dual then it is not strongly decisive; 
if F is strongly decisive then it is not dual; and F may be neither dual 
nor strongly decisive. 

We have already seen in Corollary 3.1 that every weakly decisive 
social choice function that is monotonic and dual is a representative 
system. This is implied also by Theorem 3.5, since every monotonic 
and decisive function is strongly monotonic. 

Clearly, since strong decisiveness and duality are contrary condi
tions, F cannot be a representative system when it is strongly decisive. 
Since the remainder of this chapter concentrates on strongly decisive 
functions, duality will play no role except in comparisons and in a 
modified form called "weak duality" that is compatible with strong 
decisiveness. 

STRONG DECISIVENESS AND ANONYMITY 

Continuing along the lines developed in the latter part of the preced
ing chapter, this chapter will maintain the emphasis on anonymity. 
When this condition is joined by monotonicity and strong decisive
ness, the following correspondent of Theorem 5.3 results. 



6.1 STRONGLY DECISIVE FUNCTIONS 

T H E O R E M 6 . 1 . If is monotonic, strongly decisive and 
anonymous then there are integers such that 

(6.1) 
(6.2) 

We will recall that and 
and that completely determines F when F is strongly 

decisive since ifT*( — 1) is then the complement of in Unanimity 
has not been used in the theorem. If unanimity does not hold, then 
either in which case we take for each k, or 

in which case for each k. 
The comparison between Theorems 5.3 and 6.1 can be illustrated 

visually by F arrays for the two cases. Since F(D) depends only on 
1(D) and —1(D) when F is anonymous, it will suffice to identify F 
for each for which . Figure 6.1 

1(D) 

- 1 ( D ) 

FIGURE 6 . 1 . Monotonic, dual, anonymous 

shows an F for Theorem 5.3, and Figure 6.2 shows an Ffor Theorem 6.1. 
Since F is monotonic in each case, the entries must not decrease from 
left to right across any row, and must not increase from top to bottom 
down any column. In both figures, n = 7. 

Duality for Figure 6.1 requires zeros in the main diagonal, and the 
array must satisfy for each j, k with No 
— l 's can appear above the main diagonal, and no l 's can appear 
below the main diagonal. Since only half of the displayed array is 



S P E C I A L M A J O R I T I E S 

FIGURE 6.2. Monotonic, strongly decisive, anonymous 

needed to specify the dual F, it is completely determined by the r(k) 
for as described in Theorem 5.3. 

Appropriate s(k) for an F satisfying the conditions of Theorem 6.1 
are shown on Figure 6.2. The first five s(k) must be as shown. The 
last three can be any numbers that satisfy 
If there is a 1 in row of the F array then, according to 
(6.2), s(k) must be the column number for the first column 
that has a 1 in the row. If a row has no 1 then s(k) must exceed n — k 
so that and for ( 6 . 2 ) . Monotonicity 
guarantees that s(k) can be chosen in this way so as to satisfy (6.1). 

W E A K DUALITY 

Strong duality, Definition 5.2, extends duality. That is, it implies 
duality, but not conversely. We now define a condition that is implied 
by duality but does not imply duality. 

D E F I N I T I O N 6 . 2 . is weakly dual if and only if, for 
all 

For an anonymous function that is representable in the manner of 
Figure 6.1 or 6.2, weak duality says that duality applies to all sym-
metric pairs that are not on the main diagonal. If F is strongly decisive 
as well as weakly dual then, in such an array, for all 

with Finally, if F is monotonic also, then 
for all D above the main diagonal and for all D below the 
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main diagonal. In this case the elements along the main diagonal can 
have any sequence of values in {1,-1 j. These facts are summarized 
in Theorem 6.2. 

THEOREM 6.2. Suppose that F:S> —> {1,0,-1} is monotonic, strongly 
decisive, anonymous, and weakly dual. ThenF(D) = S(Di1Z)2, · · · ,Dn) 
for all D for which I(D) ^ —1(D), and, for each k £ {0,1, . . . ,[n/2]}, 
all D with 1 (D) = —l(O) = k have the same F(D) value, which can be 
either 1 or —1. 

This says that every F that satisfies the conditions of the theorem 
agrees with simple majority except when I(O) = — l(O). With t = 
[n/2] + 1, there are exactly 2' such functions (for the given n) accord
ing to the 2' ways that l's and — l's can be placed along the main di
agonal in a figure like Figure 6.2. When only l's are placed on the main 
diagonal, the function is representable as F = s(2s(OllO2, . . . ,D„),l). 

6.2 SPECIAL MAJORITIES 

A very important class of social choice functions that are strongly 
decisive and are not generally weakly dual is the class of special 
majority functions. These arise most often in practice when a chal
lenger, whom we shall suppose is x, requires something more than a 
simple majority to displace the status quo y. 

Special majorities occur in many forms. A famous example involves 
changing the Constitution of the United States of America. An amend
ment to the Constitution requires ratification by % of the state legis
latures (38 of 50) before it becomes law, assuming of course that the 
amendment has been passed by Congress. This can be expressed by 
F(D) - 1 if and only if I(O) > (%)n, and F(D) = —1 otherwise, 
where η = 50 and D1 represents the vote of state i. This function 
treats states (the "individuals" in this case) equally, despite differ
ences in population. Since nine of the 50 states have more than half 
the population, a constitutional amendment could be ratified by states 
which contain less than half of the population, unlikely as this may be. 
Any amendment to change this or some other Constitution decision 
rule would of course require a % majority of the states for ratification. 

For another example, suppose that a government has a bicameral 
legislature, that the executive head of the government has the power 
of veto over the legislature, and that a % majority is required in each 
house to override a veto. Given a veto, the social choice function from 
that point on can be represented by s(Fi,Fi, — l), where Fi and F·, are 
% special majority social choice functions for the two houses. 
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TWO TYPES OF SPECIAL MAJORITY FUNCTIONS 

Besides differing in the percentage vote required to unseat the status 
quo, elementary special majority social choice functions differ in their 
interpretation of percentage, or in their treatment of abstentions. For 
example, "the challenger requires a two-thirds majority to win" might 
be interpreted in any of the following ways: 

1. at least % of all eligible voters must vote for x; 
2. more than % of all eligible voters must vote for x; 
3. at least % of all nonabstaining voters must vote for x; 
4. at least % of all nonabstainers within an assembled quorum of 

voters must vote for x; 
5. more than % of all assembled voters must vote for x. 
In the rest of this chapter we shall deal only with two simple types 

of special majorities, namely absolute and relative. An absolute special 
% majority requires % (or more than %) of all voters to vote for x, 
as in cases 1 and 2 above. A relative special % majority requires % 
(or more than %) of all voters who actually vote (do not abstain) to 
vote for x, as in case 3 above. 

D EFINITION 6 .3. F :SD—> { 1 , 0 , - 1 }  is an absolute special majority 
social choice function if and only if there is an a (EL (0,1) such that 

F is a relative special majority social choice function if and only if 
there is a number β > 0 such that 

Abstentions count as votes for the status quo under absolute special 
majorities. In the relative case, abstentions affect the outcome only 
so far as they change the ratio between χ votes and y votes. Thus, if 
β — 2 (that is, χ needs more than two-thirds of the votes cast to win), 
if η = 9, I(O) = 6 and —l(O) = 3, then F(D) = —1 by (6.6). But if 
one of the χ voters and one of the y voters abstain, so that I(O) = 5 
and —l(O) = 2, then F(D) = 1 by (6.5). 

"Non-minority rule" is identified by α = If χ needs at least two-
thirds of all potential votes to win, then a is slightly less than % (or 
equal to % if η is not divisible by 3). If χ needs all votes to win then 
a > (n — l)/n. If χ needs all votes cast to win then β > η — 1. 

Our two forms of special majority have simple representations in the 
terms of Theorem 6.1. For an absolute special majority function we can 

F ( D )  =  1 <=» 1 (O) > a n  
F(D) = -1 <=* I(O) < an. 

(6.3) 
(6.4) 

F ( D ) =  1 <=> I(O) > /3(-1(0)) 
F(D) = -1 I(O) < 0(-1(0)). 

(6.5) 
(6.6) 
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take .s'(0) = .s(l) = · · · = s(n). For a relative special majority, 
s(k) = ftk, with β' slightly less than β, will suffice (until fi'k exceeds 
η + 1). 

According to the definitions, each type of special majority social 
choice function is monotonic, unanimous, anonymous and strongly 
decisive. Two additional conditions will distinguish between the types. 

6.3 SPECIAL CONDITIONS 

The new condition for absolute special majority says that a vote 
for the status quo is equivalent to an abstention. 

CONDITION A. If D = D' except for one i where D1  = 0 and D1
1  = — 1 

then F(D) = F(D'). 

THEOREM 6.3. F:S> —> {1,0,-1} is an absolute special majority social 
choice function if and only if it is monotonic, unanimous, anonymous, 
strongly decisive and satisfies condition A. 

Proof. Anonymity and condition A imply that F(D) is a function of 
I(Z)). Unanimity requires F(D) = 1 when 1 (D) = n, and unanimity 
and condition A imply F(D) = —1 when 1 (D) = 0. Monotonicity and 
strong decisiveness then show that there is a number an between 0 
and η that satisfies (6.3) and (6.4). + 

The special condition that we shall use for relative special majority 
combines an aspect of anonymity and the notion that what is sig
nificant for F(D) is the ratio of I(O) to -I(Z)). 

CONDITION B. If D1, . . . , Dm and E1, . . . , Er are sequences of 
elements from © with m > 1 and r > 1, if 

ZjL1I (E') = SLil (Dk) (6.7) 
s;_i - ιm = SL1 - I(Z)IO, (6.8) 

and if F(Dk) > 0 for k = 1, . . . , m, then F(E i) > 0 for some j G 
{1 ,rj. 

This says that if χ would beat or tie y in each of the potential Dk  

situations, and if the totality of χ (y) votes in all Ei situations listed 
equals the totality of χ (y) votes in all Dk situations, then χ must beat 
or tie y in at least one of the Ei situations. Since there is no restric
tion on m and r other than that they be positive integers, the via
bility of condition B depends critically on the notion that the ratio 
of χ to y votes is significant. For example, if η = 9 and if F is strongly 
decisive with f(1,1,1,1,1,1,-1, —1,-1) = 1, then at least one of 
F(l,1,0,0,0,0,-1,0,0), F(0,0,1,1,0,0,0, —1,0) and ^(0,0,0,0,1,1,0,0,-1) 
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must equal 1. In fact, the hypotheses of the preceding sentence along 
with condition B require that whenever and 

since with 
and requires 

Condition B holds for simple majority but does not generally hold for 
representative systems or for absolute special majorities. To prove that 
the condition is necessary for relative special majority, suppose that F 
satisfies (6.5) and (6.6) for some and suppose that the hypothe-
ses of condition B hold for some Dk and E'. Then for each 
Dk so that Expressions (6.7) and (6.8) then 
give so that for some j , or 

by (6.5). 

THEOREM 6 .4 . is a relative special majority social 
choice function if and only if it is unanimous, strongly decisive and satis-
fies and condition B. 

Proof. Let the specified conditions hold. According to unanimity and 
strong decisiveness, can be partitioned into two nonempty subsets 

and . The system that corresponds to (6.5) and (6.6) with 
is 

(6.9) 
(6.10) 

If this system has no integral p solution then, by Theorem 3.2, there 
are nonnegative integers r*, at least one of which is positive, and non-
negative integers s, such that 

where and If 
for some j then condition B is contradicted. If for all j then 

for all k with and, since there is at least one such rwe 
get a contradiction to as stated in the theorem. 
Hence there is a p solution. Unanimity then gives by (6.9) and 

by (6.10), so that 
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Binary Relations and Binary Choices 

BECAUSE THE REST of our study deals with social choice from more than 
two alternatives, we shall require mathematical concepts that were 
not used in Part I. The first purpose of this chapter is to set forth the 
most basic of these concepts, namely binary relations. After discussing 
some general properties, such as asymmetry and transitivity, we shall 
examine four order relations that are used extensively in the sequel. 
Readers who are familiar with the theory of binary relations may wish 
to take note only of the terminology that will be used. 

The specific introduction to Part II begins in section 7.3 with a 
brief look at interrelations among binary choices. We shall comment 
on the case where, given D, every nonempty finite subset of X con
tains an alternative that beats or ties every other alternative in the 
subset on the basis of binary choice comparisons under F. Some differ
ences between transitive individual indifference (weak orders) and in
transitive individual indifference (strict partial orders) are illustrated 
with the use of Pareto dominance conditions. 

The next chapter begins our detailed examination of the particulars 
of simple majority social choice. 

7.1 BINARY RELATIONS 

Because binary relations play a fundamental role in this and suc
ceeding chapters of the book, we shall set forth at this time many of 
the definitions that will be used. 

A binary relation R on a set X is a subset of X X X. Thus R can 
range anywhere from the empty relation 0 to the universal relation 
X X X. When an ordered pair (x,y) is in R, or (x,y) G R, we shall 
often write xRy and say that χ stands in the relation R to y. When 
(x,y) R, so that χ does not stand in the relation R to y, we shall 
write not xRy. That is, not xRy means that it is false that xRy. Clearly, 
for any binary relation R on X, it is true for any (x,y) ξζ X Υ. X that 
either xRy or not xRy, and not both. 

In section 2.1 we defined binary relations =, >, and > on Ren. 
Each of these relations has certain properties. For example, all are 
transitive, since xRy and yRz => xRz in each case. A number of other 
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potential properties are presented in the following list. A binary rela
tion R on X is 

reflexive <=> xRx for all £ G X 
irreflexive <=> not xRx, for all χ G X 
symmetric <=> xRy => yRx, for all x,y G X 

asymmetric <=> xRy ==> not yRx, for all x,y G X 
antisymmetric <=> xRy and yRx => χ = y, for all x,y G X 

connected «=> x/?y or yRx, for all x,y G X 
weakly connected ^y=> xRy or yRx, for all x,y G -Y 

transitive <=> xfty and y/?z => zflz, for all x,y,z G -Y 
negatively transitive ¢=* not χRy and not yRz => not a-fiz, 

for all cc,y,z G 

We shall look first at the four groupings suggested by the terms used. 
The use of =, >, and > in the examples is for Ren, as defined after 
(2.2). 

First, both = and > are reflexive, and > is irreflexive. Reflexivity 
and irreflexivity are contrary properties, but they are not contradic
tories since R may be neither reflexive nor irreflexive when JfX > 1. 
If R is a relation of "respects" on a set of people, and if some people 
respect themselves but others do not respect themselves, then R is 
neither reflexive nor irreflexive. 

Second, = is symmetric, > is asymmetric, and > is antisymmetric 
since χ > y and y > χ => χ = y. In this particular case, it turns out 
that = is also antisymmetric {x — y and y = χ => χ = y), and so is > 
since we can never have both χ > y and y > x. In fact, every asym
metric R is trivially antisymmetric. There are of course antisymmetric 
relations that are not asymmetric, an example of which is >. Sym
metry and asymmetry are contrary properties so long as R ^ 0. If 
R = 0 then R is symmetric, asymmetric, and antisymmetric. Note 
also that every asymmetric relation is irreflexive. 

Consistent with our use of "weak" and "strong" in Part I, every 
connected binary relation is weakly connected, but not conversely. 
(Sometimes "strongly connected" and "connected" are used instead 
of "connected" and "weakly connected," respectively. Connected 
relations are also referred to as "complete.") If η > 1, then no one 
of =, >, and > is weakly connected. However, if η = 1, then > is 
weakly connected and > is connected, since a > b or b > a for any 
two real numbers a and b. R is connected if and only if it is weakly 
connected and reflexive. 

We have already noted that each of =, >, and > is transitive. 
However, none of these is negatively transitive if η > 1. For example, 
not (1,3) > (0,5) and not (0,5) > (1,2), but (1,3) > (1,2). On the 
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other hand, if η = 1, then both > and > are negatively transitive. 
This is easily seen by the above definition or by observing that nega
tive transitivity is the same as 

xRz => xRy or yRz, for all x,y,z E X. (7.1) 

(Proof: The original definition says that not (not xRz) => not (not χRy 
and not yRz), which is just χRz => χRy or yRz. The original definition 
then follows from (7.1) by contradictories.) 

The following lemma states three simple interconnections among 
some of the foregoing properties. It is proved in detail only to illustrate 
some proof methods to readers who are not used to working with 
binary relations. 

LEMMA 7.1. Thefollowing implications hold for any binary relation on a 
set: 

a. (transitivity & irreflexivity) => asymmetry 
b. (negative transitivity & asymmetry) => transitivity 
c. (transitivity & irreflexivity & weak connectedness) => negative 

transitivity. 

Proof: 
a. Suppose that xRy. If yRx also, then aRx by transitivity. But this 

contradicts irreflexive. Hence not yRx. 
b. Suppose that xRy and yRz. By (7.1), (xRz or zRy), and not zRy 

by asymmetry. Therefore xRz. 
c. Suppose that not xRy and not yRz. If either χ = y or y — z, then 

not a-Rz. If χ 5* y and y Z, then yRx and ζRv by weak connectedness, 
and hence zRx by transitivity. Asymmetry, by part (a), then implies 
not xRz. • 

RESTRICTIONS, DUALS, AND COMPOSITIONS 

If R is a binary relation on X and if Y C X then R Γλ (Υ X Y) = 
{(x,y): xRy and x,y £ Y\ is the restriction of R on Y. An example of the 
use of restrictions in social choice arises in the condition of indepen
dence from infeasible alternatives. As we noted in Chapter 1, this says 
that the social choice shall not depend on preference data involving 
infeasible or unavailable alternatives. When each D consists of an 
n-tuple of preference orders on X, so that D= (>i, . . . , > „), this 
condition is: F(Y tD) = F(Y,D') whenever the restriction of > t  on Y 
equals the restriction of >' on Y, for each i G {1, · • · ,n\-

The dual or converse of a binary relation R on X is R* = {(x,y): (y,x) 
G R1 · That is, xR*y «=> yRx. Thus the duals of =, >, and > are =, <, 
and <, respectively. R is symmetric if and only if R = R*, and asym
metric if and only if R ΓΛ R* = 0. In addition, R is connected if and 
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only if RVJ R* = X X X, the universal relation. The dual  of an 
η-tuple  (R 1 ,  .  .  .  ,R n )  of  binary relat ions  i s  the η-tuple  (R*,  .  .  .  J l*)  
of  duals .  This  i s  consistent  with our  usage of  cal l ing — D the  dual  of  D 
in Part I. 

The composi t ion of binary relations R and S on X, written here as 
(R)(S), is defined by 

(R)(S)  = j (x ,z):  xRy & ySz for some yGl}. 

That is, x(R)(S)z  if and only if there is a y such that xRySz.  Clearly, 
with X = Ren, (>)(>) = (>) and ( = )(>) = (>). It is not quite 
as obvious that, for any n, (<)(>) = (Ren)2. That is, for every 
a,b G Ren, there is a c G Ren such that a < c and c > b. Any c larger 
than both a and b will do. 

Transitivity is expressed in terms of composition by (R)(R)  C R. 
W i t h  R c  =  { ( x , y ) : ( x , y )  E X X  X  a n d  ( x , y )  $  R ]  = X X X - R ,  
the complement of R in X X X, negative transitivity is given by 
(R c ) (R c )  C R c .  Composi t ion is  associat ive,  so  that  ( (R)(S))(T)  = 
(R)((S)(T)). The m-fold composition of R with itself will be written 
as (R)m. An important property of duals and complements is that the 
dual  of  the  complement  is  the  complement  of  the  dual :  R c* = R* c .  
Also, the dual of a composition is the composition of the duals in 
reverse order ,  thus:  ( (R)(S))* = (S*)(R*) .  

TRANSITIVE CLOSURE 

The transi t ive  closure R t  of a binary relation R on X is R t  = R U 
(R) 2  W (R) 3  U ·  ·  ·  ,  so that  xR'y  <=> xRy or  xRxiRx^R • • •  RxmRy 
for some xu Xi, . . . , xm G X· The transitive closure of R is always 
transitive, since x(R)my and y(R)kz => x(R)m+kz. R itself is transitive 
if and only if R = R1. 

If R is reflexive, then R C (R)2 C (R)3 C · · • , so that R t  = (R)m  

for some m if X is finite. If R is irreflexive, then Rt need not be irreflex-
ive, for we might have xRyRx (if R is not asymmetric or antisym
metric) or xRyRzRx. In general, Rt is irreflexive if and only if R is 
i r ref lexive and there  is  no R cycle  X 1Rx iRx 3R ·  ·  ·  RxmRxi-

7.2 ORDER RELATIONS 

Many of the binary relations that we will use arise in connection with 
individual preferences and binary social choices. Four of the order 
relations that will be used in this connection are listed in order of 
decreasing generality in the following definition. Each of these is 
asymmetric. 
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DEFINITION 7.1. A binary relation R on X is a 

1. suborder <=> R t  is irreflexive, 

2. strict partial order <=> R is irreflexive and transitive, 

3. weak order <=> R is asymmetric and negatively transitive, 

4. linear order R is irreflexive, transitive and weakly connected. 

One should have no difficulty in showing that (R is a linear order) =*• 
(R is a weak order) => (R is a strict partial order) => (/? is a suborder). 
Although the converse implications do not hold in general, each of the 
first three relations in the definition is included in some relation in each 
successor class. That is, if R is a suborder, then there is a strict partial 
order S (S = Rt will suffice) such that RQS (that is, xRy => xSy for 
all x,y G X); if R is a strict partial order then there is a weak order S 
such that R C S; if R is a weak order then there is a linear order S 
such that R Cl S. The second of these implications follows from 
Szpilrajn's theorem (1930), which says that every strict partial order 
is included in some linear order, and from the fact that a linear order is 
a weak order. The final implication also follows from this reasoning: 
a weak order is a strict partial order; a strict partial order is included 
in a linear order; therefore a weak order is included in a linear order. 

EQUIVALENCE RELATIONS AND INDIFFERENCE 

Some of the differences among the four orders of Definition 7.1 can 
be brought out with the use of equivalence relations, compositions, 
and several derived relations. 

An equivalence (or "equivalence relation") is a reflexive, symmetric, 
and transitive binary relation. The most common equivalence is the 
identity relation = on a set. Another equivalence E is obtained by 
taking xEy <=> x,y G X, in which case E - X X X, the universal 
relation. 

An equivalence E on X partitions X into a set of equivalence classes 

such that xEy if and only if χ and y are in the same equivalence class. 
Conversely, any partition of X determines an equivalence E on X by 
taking a',Ey if and only if χ and y are in the same element of the par
tition. The set of equivalence classes of X under E is usually written 
as X/E, which is often called a quotient set. When E is the identity 
relation, X/E = {{cc} :x G X\. When E is the universal relation, 
X / E  =  j X } ,  t h e  s e t  w h o s e  o n l y  e l e m e n t  i s  X .  

Let > be a binary relation on X. Using this relation we define 
several new relations as follows: for all x,y G X, 

x ~ y *=> not χ > y & not y > x, 

χ  >  y  < = *  χ  >  y  o r  £ ~ y ,  
x « y <=> (χ ~ ζ <=> y ~ z, for all ζ G X)· 

(7.2) 
(7.3) 
(7.4) 
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Using duals and complements, (7.2) is the same as ~ = (> W >- *)c = 
>c ΓΛ >*c. (7.3) is > = > W ~. When > is viewed as a preference 
relation, with χ > y interpreted as "x is preferred to y," ~ is referred 
to as an indifference relation, and > is a preference-or-indifference 
relation. 

We shall now state a number of theorems that involve the relations 
of Definition 7.1 and those defined in the preceding paragraph. Like 
other assertions in this and the preceding section that are not proved 
here, the proofs are left to the reader as exercises. Many of these 
proofs are contained in Fishburn (1970, Chapter 2). 

When we write a relation in a "strict" notation, such as >, >„ >, 
or >o, it will always be assumed, if it is not otherwise evident, that 
the relation is asymmetric. Given that > is asymmetric, exactly one 
of χ > y, y > x, and χ ~ y holds for each (x,y) GlXi1 so that 
> is connected. Moreover, ~ is reflexive (¾ ~ x) and symmetric 
(χ ~ y => y ~ x), and ~ is reflexive, symmetric, and transitive, and is 
therefore an equivalence. 

A difference between suborders and strict partial orders arises from 
the fact that if > is a strict partial order then 

( « ) ( > )  C  >  a n d  ( > ) ( « )  C  > .  ( 7 . 5 )  

That is, ( ( χ  ~  y  &  y  >  z )  or ( x  >  y  &  y  ~  ζ ) )  => χ  >  ζ .  This can be 
false when > is a suborder, for with X = {x,y,z} and χ > y, y > ζ 
a n d  χ  ~  ζ ,  w e  g e t  ζ  =  χ ,  χ  >  y  a n d  y  >  ζ  i n  v i o l a t i o n  o f  (  —  ) ( > )  Q  > .  

A familiar example of a strict partial order that is not a weak order 
is the strict inclusion relation C on the set of subsets of a set with 
more than three elements. Another example is > on Re2 .  

When > is a strict partial order, ~ is not necessary transitive. In 
fact, a strict partial order > is a weak order if and only if ~ is tran
sitive. Thus, if > is a weak order then ~ is transitive and is therefore 
an equivalence. The quotient set Xf ~ is referred to as the set of in
difference classes when > is a preference weak order. The following 
correspondent of (7.5) holds for all weak orders but not for all strict 
partial orders: 

( ~ ) ( > ) C >  a n d  ( > ) ( ~ ) C > .  ( 7 . 6 )  

Moreover, when > is a weak order, > is connected and transitive. 
Such a > is also referred to as a "weak order" or as a "complete 
preorder." 

A weak order is a linear order if and only if χ ~ y <=φ  χ = y. The 
prime example of a linear order is > on Re. Suppose that X is a set 
of people and χ > y means that χ is heavier than y, with weight being 
reckoned to the nearest whole pound. Then > is a linear order if no 
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two people in X weigh the same. Otherwise > is a weak order, but 
not a linear order. 

If > on X is a weak order then >', defined on X/~ by α >' χ > y 
for some (and hence for all) χ (Ε a and y E fc, is a linear order. 

The dual of any binary relation has the same properties as the 
original relation. Thus, the dual of a suborder is a suborder, the dual 
of a linear order is a linear order, and so forth. 

NUMERICAL REPRESENTATIONS 

Another way to express the differences among the four orders of 
Definition 7.1 is through numerical representations. The following 
theorem summarizes this for countable sets (either finite or denumer-
ably infinite). 

THEOREM 7.1. Suppose that X is countable, and that > on X is a 
binary relation. Then, for each case listed below, there is a real-valued 
function u on X that satisfies the displayed properties for all x,y £ V: 

1. > is a suborder <=> [x > y => u(x) > u(y)], 
2. > is a strict partial order => [x > y => u(x) > u(y), and χ « y <=> 

u(x) = u(y)], 
3. > is a weak order <=> [x > y <=> u(x) > «(y)], 
4. > is a linear order » [i > y « u(x) > u(y), and u(x) = u(y) =^ 

χ = y]. 

The numerical representation for each of the last three cases is not 
generally valid for each of its predecessors. In the first two cases, 
u(x) > u(y) does not indicate that χ > y, although it does signify that 
χ > y, for if y > χ then we must have u(y) > u{x). In all cases, 
u(x) > u{y) => χ > y. In the weak order case, the definition of ~ 
insures that χ ~ y <=> u(x) = u(y), so that the indifference classes are 
identified by their different u values. In the linear order case, no two 
distinct elements have the same u value, and (as in the weak order 
case also) > is completely determined by the u values. 

It should be evident that the u values can be changed in drastic 
ways without affecting the validity of the representation. For example, 
if χ > y > ζ > w, then u values of IO6, 15.375, —1 and —1.0001 for 
x, y, z, w, respectively, are just as appropriate as u values of 4, 3, 2, 
and 1. The latter are certainly easier to view. 

The proofs that ensure the existence of u functions as specified in 
Theorem 7.1 are not too difficult. First, with X enumerated as x\, x-i, 
Xi, . . . , u(x) = Σ{2~η:χ > xn\ shows the existence of u for case 4. 
The suborder representation then follows from the fact that a sub
order can be embedded in a linear order (R Q S, as after Definition 
7.1). Case 2 follows from the fact that >' on X/** (defined in the 
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natural way) is a strict partial order when > on X is a strict partial 
order, and case 3 follows from the fact that >' on A7~ is a linear 
order when > on X is a weak order. 

DISPLAYS OF ORDERS 

As noted above, suborders and strict partial orders are not generally 
uniquely determined by numerical representations as in Theorem 7.1. 
For suborders that are not also strict partial orders, it may be neces
sary to explicitly identify all pairs in >. One such suborder, on 
X = j a,b,c,d,e,f], is 

> = {(a, 6), (b,c) , (c, d),(a,d),(b,e),  (e,  rf),  (/,e),  ( / ,  e?)}.  

This can be displayed as in Figure 7.1, where χ > y if and only if there 
is a line from χ to y. In graph-theoretic terms, a suborder on X (usually 

α 

d 

FIGURE 7.1. A suborder 

taken to be finite) is a directed graph (i.e. irreflexive binary relation) 
with no cycles (i.e. Xi > X2 > ' ' ' > xm > X\ for no Xi, . . . , 

Xm £Ξ X^) ·  
A suborder can also be displayed by a 0-1 matrix, as in Figure 7.2, 

where there is a 1 in the cell for row χ and column y if  and only i f  χ > y, 

and a zero otherwise. 
Needless to say, any irreflexive binary relation can be displayed 

either in the form of Figure 7.1 (with no loops, but perhaps with 
cycles) or Figure 7.2 (with zeros on the main diagonal), at least when 
X is finite. 

Strict partial orders can be displayed more easily since they are 
transitive. Let > be a strict partial order and call > ι a generator of > 
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if and only if >\ = >. Then, if X is finite, > has a unique minimal  

generator > 0 defined by 

> ο = {(x,y)  :x  >  y  and χ  >  ζ  >  y  for no ζ (Ε X] . 

It should be clear that > 0 generates > and that every other generator 
of > must include >0. To identify a strict partial order it is only 
necessary to specify its minimal generator. The minimal generator can 
be displayed in the manner of Figure 7.1, or we can omit the arrows 
and agree that χ > y if and only if χ is above y in the figure and there 
is a path of lines from χ to y that always goes downward. For example, 
Figure 7.3 represents the strict partial order whose minimal generator 

FIGURE 7.2. A 0-1 matrix for Figure 7.1 

is {(a,b),(b,c) ,(c ,d),{b,h),(e,g) ,( f ,g) ,(g ,d)} .  The other elements in > are 
(a,c) ,  (a,d), (a,h), (M), (e,d),  and ( f ,d) .  

FIGURE 7.3. A strict partial order 
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In the sense of Figure 7.3, a linear order can be represented by points 
on a vertical line segment, with no two elements represented by the 
same point. A weak order can be displayed in a similar way with each 
point representing an indifference class. Of course, a horizontal line is 
also used to show this, with χ > y if and only if χ is to the right of y 
on the line. In some of our displays we shall use the reverse orientation, 
as when we write 

Voter i : x  y  ζ  w  r  s  t  (7.7) 

to mean that the preference order >t for the ith individual is linear 
with χ >, y >, • • • >ts>tt. A weak order in this notation may be 
written as 

Voter i : x  ( y  z )  w  ( r  s  t ) ,  (7.8) 

where the elements within parentheses are indifferent. That is, the 
foregoing display means that χ > iW > ir s t. These 
may also be represented by appropriate u  values for the representations 
of Theorem 7.1, as follows: 

(7.7) (7.8) 

χ 7 4~ 
y 6 3 
2 5 3 

w 4 2 
r 3 1 
s 2 1 
t  1  1  

Another way to picture a weak order or linear order is by a Cartesian 
display of an appropriate numerical representation. Suppose that a 
university is considering changing its policy for the length of time an 
assistant professor can remain as an assistant professor. It is consider
ing nine proposals, represented by k = 1, 2, . . . , 9 in the following: 
"An individual hired as an assistant professor or promoted to the rank 
of assistant professor can remain in that category for k years, and if 
at the end of k years in that category he has not been promoted then 
his services with the university shall be terminated." A member of the 
f a c u l t y  c o u n c i l  d e c i d e s  t o  r a n k  h i s  p r e f e r e n c e s  f o r  t h e  n i n e  v a l u e s  o f  k  
a n d  e v e n t u a l l y  a r r i v e s  a t  t h e  o r d e r  5 > 4 > 3 > 6 > 7 > 8 > 2 >  
9 > 1, as displayed on Figure 7.4. This sort of unimodal or single-
peaked preference pattern seems to arise in many situations where 
the alternatives correspond to a natural order of points on a line or 
continuum. We shall see later that such patterns play an important 
role in simple majority social choice. 
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FIGURE 7.4.  Single-peaked preferences 

7.3 BINARY CHOICES 

As noted in Chapter 1, a social choice function is a function F from 
the Cartesian product 9C X 30 of a nonempty set 9C of nonempty sub
sets of X and a nonempty set 3J of profiles of individuals' preference 
data on X, to the nonempty subsets of X, such that F(Y,D) C Y for 
e a c h  ( Y , D )  B X S .  

In this part of the book we shall generally assume that 9C is the set of 
all nonempty subsets of X. There are other cases of interest that we shall 
not look at here, for example when 9C = |7:io G ^and Y C Xj with 
Xo the status quo, and when EC is the set of all finite subsets of X in 
cases where X is not finite. 

We shall also assume throughout Part II that 2) is a set of n-tuples 
D= (> i, . . . , > n) of strict partial orders on X. The binary relation 
>, is a preference relation for the ith individual. The indifference and 
preference-indifference relations defined from > l by (7.2) and (7.3) 
will be denoted by and > „ respectively. Some situations in which 

might not be transitive were mentioned in Chapter 1. In general, 
it is felt that intransitive individual indifference arises in situations 
where a series of indifferences, each of which seems reasonable, adds 
up to a sufficiently large difference to yield a definite preference 
between the first and last items in the series. 
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B I N A R Y CHOICES 

Binary social choices arise from the two-element subsets of X. In 
writing one should keep in mind that this represents a situa-
tion where x and y are the only available or feasible alternatives in X. 

For a given D, the binary part of F is the restriction of F to subsets 
of X with no more than two elements. From this restriction we can 
define an asymmetric binary relation FD on X as follows: 

and (7.9) 

Thus XFDJ if and only if and x is the unique social choice from 
j x,y} when D obtains. If and which indi-
cates a tie, then not xFoy and not yFox. 

The binary relation FD may or may not be transitive or have an 
irreflexive transitive closure. This will depend on the particular D 
and the way that the binary social choices are determined by F under 
D. For example, if binary choices are made by simple majority, then 
FD will be transitive for some D and intransitive for other D when 

and 
Suppose that there is a that is never defeated in a binary 

comparison with any other That is, suppose that z beats or 
ties each other given D and F: 

and yFDx for no 

It may then seem reasonable to h a v e f o r each such z and 
only such z, so that 

and yFDx for no (7.10) 

The following theorem specifies precisely when F(Y,D) can be defined 
on the basis of binary social choices in the manner of (7.10), at least 
for finite Y. 

T H E O R E M 7 . 2 . FD on X is a suborder if and only if, for every nonempty 
finite 

and yFoxfor no (7.11) 

Proof. If Y is finite and (7.11) fails, so that for every there is an 
such that X'FDX, then there must be 

with , and hence FD is not a suborder. Conversely, if 
FD is not a suborder, then for some 

and (7.11) then fails with 
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PARETO DOMINANCE AND UNANIMITY 

We now develop some notions which highlight the difference between 
transitive and intransitive individual indifference. 

For given we define binary relations of Pareto dominance 
and indifference as follows: 

for all 
for some 

(7.12) 
for all 
or 

If each is a strict partial order then is transitive and is therefore 
a strict partial order. But none of and need be transitive. 
For example, if and is given by 

(7.13) 

each of which is a strict partial order, then so 
that is not even a suborder. On the other hand, if each is 
a weak order, then every relation in (7.12) is transitive, and = D is an 
equivalence. 

Strong unanimity and unanimity are defined for a general social 
choice function in a manner similar to the definitions for binary 
choices in section 2.3. 

D E F I N I T I O N 7.2. A social choice function is unanimous 
if and only if, for all and 

and (7.14) 

and is strongly unanimous if and only if, for all cases, 

and ( 7 . 1 5 ) 

The following lemma states the observations of the preceding para-
graph in a slightly different way. 

L E M M A 7 . 2 . Assume thai X is finite. If every is an n-tuple of 
weak orders on X then there are social choice functions 
that are strongly unanimous. If 3D is the set of all n-tuples of strict partial 
orders on X then there are social choice functions that are 
unanimous, but if and then no social choice function can 
be strongly unanimous. 
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The final assertion follows from ( 7 . 1 3 ) , where strong unanimity 
requires and similarly for z and x, so that 

But this contradicts the definition of a social choice function. 

ANOTHER PAIR OF CONDITIONS 

To further illustrate the difference between weak orders and strict 
partial orders, we may consider the following binary conditions for F: 

a n d ( 7 . 1 6 ) 
a n d ( 7 . 1 7 ) 

Condition ( 7 . 1 6 ) is the same as and it has the natural 
companion Likewise, ( 7 . 1 7 ) is 

Both conditions seem like monotonicity conditions. The first says 
that if everyone prefers x to y and if y beats z in their binary choice 
comparison, then x beats z in their binary comparison. When every , 
in D is a strict partial order, the hypotheses of the condition say that 

when and . when When every , is a weak 
order, the hypotheses of ( 7 . 1 6 ) give whenever In any 
event, ( 7 . 1 6 ) seems like a rather reasonable condition. 

On the other hand, although ( 7 . 1 7 ) seems fine when weak orders 
apply, it is generally unacceptable under strict partial orders. To argue 
this, let binary unanimity mean that ( 7 . 1 4 ) holds for all Y with 
that is, xFpy. 

L E M M A 7 . 3 . Suppose that or is 
the set of all n-tuples of strict partial orders on X, and F is a social choice 
function that satisfies ( 7 . 1 7 ) . Then F cannot satisfy binary unanimity. 

It will suffice to verify the lemma for and 
for For the case let the minimal gener-
ators of and be and 

Then and which give 
yFoy if both ( 7 . 1 7 ) and binary unanimity hold. But yFi,y contradicts 
( 7 . 9 ) . For the case let the minimal generators for D be 

and . Then 
and which again give yFDy if both ( 7 . 1 7 ) and binary 

unanimity hold. 
We shall conclude this chapter with two theorems suggested by a 

theorem of Pattanaik ( 1 9 6 8 ) . Our theorems will use conditions ( 7 . 1 6 ) 
and ( 7 . 1 7 ) in the appropriate contexts along with the "Pareto optimal 
sets" 

a n d f o r no 
and for no 
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The theorems show that, if we are interested in a particular Y  C X ,  
then FD does not have to be a suborder on all of Y for there to be an 
alternative in Y that beats or ties every other alternative in Y under 
binary comparisons. In each case it may be noted that condition (7.16) 
or (7.17) holds if binary choices are made according to some one repre
sentative system, or if weak majority is used for the binary choices. 
First, the weak-order theorem. 

THEOREM 7.3. Suppose that Y CZ X is finite, that each >,· in D is a 
weak order, that the restriction of FD on Y(>D) is a suborder, and that 
(7.17) holds on Y. Then there is an alternative in Y(>D) that is in 
{Χ: Χ E Y and yFDx for no y (EL Y} · 

Proof. Assume that the conditions of the theorem hold. Then the 
weak-order assumption (which implies that >D is transitive) and 
finiteness imply that Y(>D) ^ 0. Then, by Theorem 7.2, there is a 
Ζ E Y(>D) such that yFDz for no y E Y(>D) — {ζ}· That is, ζ beats 
or ties each other alternative in Y(>D) on the basis of binary choice 
comparisons. 

Suppose that Χ  E Y  —  Y ( > D ) ·  Then, by the transitivity of >D, 
finiteness and the definition of Y(>D), there is a y E Y(>D) such 
that y >D x. Then not XFDZ by (7.17), and therefore not xFnz for 
every χ E Y + 

The following theorem modifies Theorem 7.3 in an obvious way, 
and its proof is similar to the proof just given. 

THEOREM 7.4. Suppose that YQX is finite, that each >, in D is a 
strict partial order, that the restriction of FD on Y(»D) is a suborder, 
and that (7.16) holds on Y. Then there is an alternative in Y(»D) that is 
i n  { x : x  E  Y  a n d y F D x  f o r  n o  y  E  Y J -



C H A P T E R  8  

Simple Majority Social Choice 

THIS CHAPTER begins our specific consideration of general social choice 
functions whose binary choices F{{x,y},D) agree with simple majority. 
Conditions sufficient for F to agree with simple majority in this way 
are presented in the first section. 

We then go on to examine the binary relations PD, RD, and ID of 
strict simple majority, simple majority, and simple-majority ties, 
noting that any asymmetric binary relation on a finite set X is equal 
t o  s o m e  P D  o n  X  f o r  a n  a p p r o p r i a t e  c h o i c e  o f  D  a n d  n .  

As in section 7.3, the binary simple-majority relations are considered 
in compositions with Pareto dominance relations, both for individual 
weak orders (transitive indifference) and strict partial orders (intran
sitive indifference). General conditions for the existence of an alterna
tive that has a simple majority over each other alternative are noted. 

The final section discusses why one might be concerned about the 
existence of a "best" simple-majority alternative. In this setting, we 
shall examine two simple-majority voting procedures in which the 
alternatives are voted on in a definite order. The chapter concludes 
with a brief look at voter strategies in the two sequential voting 
procedures. 

8.1 AGREEMENT WITH SIMPLE MAJORITY 

The rest of Part II concentrates on social choice functions whose 
binary choices coincide with the simple majority decision rule. The 
binary part of a social choice function F \ 9C X SD —> SC is fully deter
mined by the indexed family \FD  •  D G 2D} of  binary relat ions FD  on X 
as defined by (7.9). We recall that xFDy if and only if χ ^ y and 
F { { x , y } , D )  =  { * } .  

Correspondingly, for the simple majority decision rule for binary 
c h o i c e s  w e  d e f i n e ,  f o r  a l l  x , y  G  X ,  

x P D y  < & $ { i \ x  > { y ]  >  # { i : y  > , χ } .  (8.1) 

For a given D = (>i, . . . ,>„), PD is the asymmetric binary rela
tion of strict simple majority. 

DEFINITION 8.1. A social choice function F: 9C X 2D—• 9C agrees with 
simple majority if and only if FD = PD for every D G 2D. 
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One aspect of this definition that deserves special emphasis is that, 
when F agrees with simple majority, the definition says absolutely 
nothing about the behavior of F for subsets that contain more 
than two alternatives. Although we shall be conceraed with relation-
ships between F(Y,D) when and the restriction of PD on Y, 
Definition 8.1 avoids any mention of such relationships. 

CONDITIONS F O R A G R E E M E N T 

Another significant aspect of the definition is that, by assumption, 
9C is the set of all nonempty subsets of X. If and {x,y} were 
not in 9C, then F({x,y \ ,D) would not be defined, in which case neither 
xFDy nor yFDx, regardless of the nature of D. Hence no such F could 
agree with simple majority by our definition unless 

for every 
As specified in section 7.3, 33 is presumed to be a nonempty subset of 

n-tuples of strict partial orders on X. Although agreement with simple 
majority does not place any restriction on 2D when for all 

we shall generally suppose that every pair {x,y J is free in 3D, 
by which we mean the following: 

and for 
there is a in 2D such that the restric- (8.2) 

tion of on {x,yj equals for 

Thus a given with is free in 2D if and only if each pos-
sible /r-tuple of individuals' preferences on {x,y} appears in some 

Later cases in which 33 is restricted in some manner will 
always satisfy the condition that each pair of alternatives is free in 2D. 

The notion of free pairs enters directly into the following theorem 
for agreement with simple majority. 

T H E O R E M 8 . 1 . Suppose that is a social choice func-
tion and that, for all and all 

in 33 , and each i 

(1) is free in 2D, 
(2) for every i, 
(3) if and and if the restriction of on equals 

the restriction of on {x,y\ for each then not yFo'X. 
Then F agrees with simple majority. 

Proof. In view of condition (1), the proof of Theorem 5.5 shows that 
F agrees with simple majority if (in terms of Part I) for any 
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with strong monotonicity, weak nonreversibility and its dual, 
and the part of duality given by hold. The condi-
tion is condition (2) of Theorem 8.1. Since x and y are not fixed in 
condition (3), but may not vary over X, the implication in the 
conclusion of condition (3) verifies weak nonreversibility and its dual 
(interchange x and y). 

To verify strong monotonicity we need to show that if on {x,y} 
equals on for all then 

(not yFD'X, and or (8.3) 

The general form of strong monotonicity on {x,y\ then follows from 
sequences of single-component changes under condition (1). We shall 
consider cases for i in (8.3). 

a . T h e n xF^y by condition (3). 
b. If not xFDy then yFjyX by condition (3), and this 

contradicts not yFo>x in the hypotheses of (8.3). 
c. Let be like D and D' on [x,y] for and 

take Condition (1) implies the existence of such a D°. By 
case so that not Then, by condition (3) for D 
and 

As is frequently the case in theorems such as Theorem 8.1 that con-
tain fairly weak structural conditions, it is possible to simultaneously 
strengthen a structural condition and weaken some other condition 
without affecting the conclusion of the theorem. The following variant 
of Theorem 8.1 illustrates this principle. Condition (1) has been 
strengthened (more structure is assumed for and (3) has been 
weakened. The proof of the theorem is left as an exercise. 

THEOREM 8 . 2 . Suppose thai is a social choice function 
and that, for all and and each 

(1') where each A{ is a set of strict 
partial orders on X (which can differ for different i) such that each dis-
tinct pair of alternatives is free in A„ 

(2') for every i, 
(3') if and and i f f o r each then 

not yFo'X. 
Then F agrees with simple majority. 

It should be noted that (3') requires on all of X, and not 
just on jx,y}. However, as in condition (3) of Theorem 8.1, condition 
(3') does not require any specific relationships between and > , 
outside of {x,y|. 
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8 .2 SIMPLE MAJORITY RELATIONS 

Along with the binary dominance relations of ( 7 . 1 2 ) and the strict 
simple majority relation PD of ( 8 . 1 ) , we shall use the following: 

( 8 . 4 ) 

so that XIDJ if and only if x and y tie under simple majority, and xRDy 
if and only if x beats or ties y under simple majority. Clearly, ID and RD 

can be defined from PD in the way that we defined and from 
n o t XPDV a n d n o t VPDX 
xPoy or XIDV-

We shall say that x has a strict simple majority over y if and only if 
xPDy, and that x has a simple majority over y if and only if xRDy. In 
particular, it should be noted that y can have a simple majority over x 
when x has a simple majority over y, in which case xloy-

To illustrate the relation PD with simple examples, suppose that 
there are three voters and four alternatives x, y, z, w with each voter 
having a linear preference order on X as follows: 

( 8 . 5 ) 

For example, for voter 1. The directed graph 
for strict simple majority is as indicated. PD is not a suborder be-
cause it contains cycles such as and 

Harary, Norman, and Cartwright ( 1 9 6 5 , pp. 3 1 3 -
314) provide an interesting context for this situation, in which a 
faculty committee of three is to decide whether to spend an alumnus' 
gift of $100,000 on athletic scholarships (x), a botanical garden (y), a 
faculty club (z), or a parking structure (w). 

In (8.5) there is no alternative that has a simple majority over each 
other alternative. In contrast to this, the following situation with 
and has a linear PD in the order x y z w v. 

(8.6) 

Our third example comes from an actual situation. Two neighbor-
hood church congregations decided to join together to form a new 
congregation. Robert Elwood, who was kind enough to share his data 
with me, chaired a committee that was responsible for guiding the 
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selection of a name for the new congregation. After long deliberation, 
his committee submitted five names (here denoted A, B, C, D, E) to 
the combined membership. Ballots were distributed, and each mem
ber who wished to vote was instructed to rank the five names from 
most preferred to least preferred (ties prohibited). One hundred and 
seventy-five members responded. Of the 120 possible linear prefer
ence orders, 56 appeared on the ballots. The most frequent of these 
(ACBDE) appeared on 30 ballots. The next most frequent (BDCAE) 
was on 11 ballots. The analysis of simple majority comparisons is 
shown in Figure 8.1, where the ordered pair in row χ and column y 

B C D E  

A (99,76) (118,57) (118,57) (138,37) 

(88,87) (134,41) (147,28) 

(106,69) (139,36) 

(133,42) 

FIGURE 8.1. Simple majority with η = 175 

gives the number of voters who preferred χ to y and then the num
ber who preferred y to x. It is clear from the figure that PD is linear 
(ABCDE) and that A had a significant strict simple majority over 
each of the other names. The only close comparison was B versus C, 
where a change by one voter could have caused PD to be ACBDE 
(still linear). Despite the fact that A had a significant majority in each 
comparison, less than half the voters had A listed first. The number of 
first-place votes for (A,B,C,D,E) was (76,60,15,13,11). 

We shall now show that every asymmetric binary relation on a 
finite X coincides with some strict simple majority relation PD for 
an appropriate choice of D. 

MCGARVEY'S THEOREM 

Let P be any asymmetric binary relation on a finite set X. Then 
there is some η for which an η-tuple D of strict partial orders on X 
gives P = PD, for if P 7½ 0 it will suffice to assign an >, to each 
(x,y) G P such that χ > ty and a b whenever {a,b} ^ {x,y}· The 
following theorem, due to McGarvey (1953), shows that the conclusion 
of P = PD holds even when each >, is required to be a linear order. 

THEOREM 8.3. Suppose that P is an asymmetric binary relation on a 
finite set X. Then for some η > 0 there is an η-tuple D of linear orders 
o n  X  s u c h  t h a i  P D  = P -
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Proof. Let If let D consist of the 
two linear orders and Then Sup-
pose then that For each assign linear orders 

and where 
{x,y}. For these two orders, x beats y, but every other pair is tied 
under simple majority. With let D be a 2&-tuple of linear 
orders constructed in this way, with two orders for each (x,y) 
Then 

As McGarvey points out, it is not always necessary to have , 
2 linear orders in order to make For example, if P is 
a linear order then in the theorem will do. For a somewhat 
more complicated example, one can show that, when 

the smallest n that will suffice in the theorem is If then 
this P equals no PD obtained from a D composed of n linear orders. 

Stearns (1959) shows that, when is odd, some will 
serve in Theorem 8.3, and that some will do when is 
even. In the preceding example with we required or 

which agrees with Stearns' theorem. 

8 . 3 " B E S T " SIMPLE M A J O R I T Y A L T E R N A T I V E S 

Having seen that simple majority can give rise to any asymmetric 
PD for sufficiently large n compared to we shall now begin our 
examination of conditions that lead to the existence of an alternative 
that has a simple majority over each other alternative. A first step 
along these lines can be made within the setting of the theory of sec-
tion 7.3. To preface this discussion we shall first consider combina-
tions of the binary relations of (7.12) and the simple majority relations 
PD, ID, and RD• Once again we shall point out some differences between 
transitive and intransitive individual indifference. Our first lemma is 
concerned with transitive indifference. 

L E M M A 8 . 1 . If every in is a weak order on X 
then, for all 

but it is not necessarily true that & 
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Proof. For the final assertion, suppose that D consists of the two 
linear orders xyz and zxy. Then and y/sz, but xPDz is false 
since XIDZ- Conclusion (a) is immediate from transitive indifference 
since for all for 
all Given & yRDz as in (b), we have for 
all i, and whence, since 
and by weak orders, 

The first and last terms give xRDz, the conclusion of (b). Part (c) is 
proved similarly with > in the middle of the foregoing chain of in-
equalities, and (d) is a direct consequence of (b) and the fact that 

& WRDV. 
The weak order lemma compares with the following lemma which 

allows individual indifference to be intransitive. 

LEMMA 8.2. If every in is a strict partial 
order on X then, for all 

and 
and \ 

but each of (a) through (d) in Lemma 8.1 may be false. 

The proofs of (e) and (f) are similar to the preceding proofs of (b) 
and (c). With and the single strict partial order 

shows that (a), (b), and (d) can fail, and 
shows that (c) can fail. 

BEST SIMPLE MAJORITY SUBSETS 

Using PD and RD, we now define functions P and R on as 
follows: 

(8.7) 

(8.8) 

For a given (Y,D), P(Y,D) is the set of all alternatives in Y that have 
a strict simple majority over every other alternative in Y on the basis 
of D, and R(Y,D) is the set of alternatives in Y that have a simple 
majority over each other alternative in Y. 

For a given (Y,D ) it should be clear that P(Y,D) is either empty 
or contains a single alternative, that and that 

In addition, if n is odd and if each in D is 
linear then ties between distinct elements cannot arise and therefore 
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Henceforth we shall be principally interested in those cases for 
which 

According to Theorem 7.2, for all finite nonempty 
and a fixed if and only if PD on X is a suborder. 

In this connection it may be of some interest to note that (xPDy & 
for all implies that PD is a suborder (obvi-

ous, since then PD is a strict partial order), but that 
XRDZ) for all does not imply that PD is a suborder, even 
when each in D is linear. To prove the latter statement, take 
with the following linear orders on 

(8.9) 

The four orders are obtained by the cyclic permutations of xyzw: each 
is obtained from its predecessor by moving the final term in the order 
to the head of the order. PD, as shown in (8.9), satisfies the condition 
UPDV & but PD is clearly not a suborder. 

When F agrees with simple majority, (7.17) follows immediately 
from Lemma 8.1(c) under weak orders, and (7.16) follows from Lemma 
8.2(f). These lemmas and Theorems 7.3 and 7.4 give rise to the follow-
ing corollary. 

T H E O R E M 8 . 4 . Suppose that is finite. Then, if each in D 
is a weak order, if the restriction of PD on 

and xfor no is a suborder. And, if each >, in 
D is a strict partial order, then if the restriction of PD on 

and x for no is a suborder. 

A somewhat different and, in a sense, more general result for 
is suggested by Lemma 6 in Sen and Pattanaik (1969). 

A slight generalization of their lemma is Theorem 8.5. 

T H E O R E M 8 . 5 . Suppose that is finite. Then, if each >, in D 
is a weak order, . And, if each >, in D is a 
strict partial order then and it may be true that 

By the definitions, and we can surely have 
when all > ,• are weak orders. Nevertheless, Theo-

rem 8.5 implies that when each > , in 
D is a weak order, since every weak order is also a strict partial order. 
On the other hand, the final statement in the theorem says that it is 
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possible to have R ( Y ( > D ) , D )  5½ R (Y(Y> D ) ,D)  when strict partial 
orders apply. To prove this, let η = 3 and X = \x,y,z} with >1 the 
linear order xyz and > 2 = > 3 = I (z,x)}. Then 

X(>D) = {x} and R (XOD ), D) = {x} 
*(»1,) = X and R(X(»d) ,D)  =  0. 

Since Y ( >  n )  £ Y(»x>), it should be clear in general that /?( Y(»D),D) 
C R(Y(> D ) ,D) ,  fo r  i f  Χ R N Y  f o r  e v e r y  y  G  Y (»D)  t hen  su re ly  XRDJ 
fo r  eve ry  y  G Y(>D) ·  

Proof  of  Theorem 8.5. Suppose first that each >, in D is a weak 
order. If Χ G R(Y(>D),D) then the proof of Theorem 7.3 shows 
that Χ G R(Y,D). Conversely, if Χ G R(Y,D) then yPDx for no 
y G Y, so that y >D Χ for no y G Y, and hence Χ G Y(>D)· Then, 
s ince  Y(>D)  Q  Υ ,  Χ  G  R ( Y ( > D ) , D ) .  T h e  p r o o f  t h a t  R ( Y , D )  — 
R(Y(^>D),D) under strict partial orders is similar. The preceding 
example proves the final assertion. + 

PROPORTIONS WITH R(X ,D)  =  & 

Given that η is an odd positive integer, that #X = m, and that 
2D is  the set of all (m!)n η-tuples of linear orders on X, let p(n,m) be 
the fraction of 3D on which P(X,D) = R(X7D) = 0. That is, 

p(n,m) = #{D:D G © & R(X,D) = 0} /(m!)\ 

A number of investigators have computed p(n,m) for various values 
of η and m, either precisely or by computer simulation. Exact (though 
complex) analytical expressions for p(n,m) under the given conditions 
have been obtained by DeMeyer and Plott (1970), Niemi and Weis-
berg (1968) and Garman and Kamien (1968). Some interesting related 
material is presented by May (1971). 

Figure 8.2 presents p(n,m) for a number of values of η and m. The 
entries with asterisks are estimates obtained by computer simulation 
by Campbell and Tullock (1965). The other entries are accurate to 
the number of places shown and are from Garman and Kamien (1968) 
with the exception of the exact 1.000 limits from May (1971). The 
limits for supjp(n,m):n = 3,5,7, . . .) are given by Garman and 
Kamien and by Niemi and Weisberg (1968). 

Although it may be tempting to view p(n,m) as the probability that 
R(X,D) = 0 given fX = m, η odd, and linear orders, this viewpoint 
requires special assumptions whose warrantability is questionable in 
many situations. Apart from things such as persuasion, agreements, 
and coalitions, there are many situations in which there is reason to 
believe that R(Y,D) will almost surely not be empty for the D that 
will actually obtain. The prime motivator for such a belief is the case 
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η 

3 5 7 9 11 limit 

3 .056 .069 .075 .078 .080 .088 

4 .111 .139 .150 .156 . 160 .176 

5 .160 .200 .215 .230* .251* .251 

6 .202 .255* .258* .284* .294* .315 

7 .239* .299* .305* .342* .343* .369 

.mit 1.000 1.000 1.000 1.000 1.000 1.000 

FIGURE 8.2. p(n,m). Entries marked * are estimates 

of single-peaked preferences, which will be examined in detail in the 
next chapter. 

8.4 SEQUENTIAL VOTING AND VOTER STRATEGY 

Before getting deeper into our study of conditions that ensure 
R(YtD) τ* 0, we shall comment on why one might be concerned about 
the existence of an alternative that has a simple majority over each 
other alternative. 

One reason for concern arises from the position that χ is a satis
factory social alternative only if χ £ R(YtD). When R(Y,D) = 0, this 
position holds that every alternative is socially unsatisfactory, and that 
the group is therefore forced to select an unsatisfactory alternative. 

A related reason is that, whereas there may be widespread agree
ment that F(YtD) be a subset of R(YtD) when R(Y,D) ^ 0, there 
may nevertheless be widespread disagreement about how to choose a 
feasible alternative when R(YtD) is empty. A rather large number of 
procedures have been proposed for this case, but none of these, as far 
as we are aware, is generally felt to be completely satisfactory. 

Perhaps the main pragmatic reason for concern about whether 
R(YtD) is empty arises from voting procedures that make a choice 
solely on the basis of simple-majority votes regardless of whether 
R(YtD) is empty. We are thinking here of procedures that are widely 
used because of their efficiency, especially when voters are assembled 
together, and which take votes on the alternatives in Y in a definite 
order. This order may be prescribed before the voting begins, or it 
may be determined progressively as the voting proceeds. We shall com-
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ment on two such procedures, the first of which is more efficient (may 
require fewer ballots) than the second, but perhaps less satisfactory 
in other ways. 

TWO SEQUENTIAL VOTING PROCEDURES 

Given that the m alternatives in Y will be voted on in the order 
X I X I  · • •  x m ,  t h e  f i r s t  p r o c e d u r e  t a k e s  a  s i m p l e - m a j o r i t y  v o t e  o n  X 1 .  
If the votes for x\ exceed (or perhaps equal) those against X\, then 
Xi is elected without further balloting. Otherwise, x\ is discarded, and 
a similar vote is taken on x2. If none of Xi, x%, . . . , xm-2 carries a 
majority, then xm-i or xm is elected on the final vote. 

Suppose that individuals vote according to their preferences in the 
following way. When a vote is taken on x,, individual i votes for x;j if 
and only if x, >, xk for all k > j. Then, even if P(Y,D) Ti 0, the 
elected alternative might not be the one in P(Y,D). Suppose, for ex
ample, that η = 3 and Y = {x,y,z} with the following linear orders: 

1. ζ χ y 
2. χ ζ y xPDzPDy & xPoy• (8.10) 
3. y χ ζ 

Then P D  is a linear order with P (Y,D) = {x}. However, if χ  is voted 
on first, then, under the foregoing supposition, it will not be elected 
since individuals 1 and 3 vote against χ and only 2 votes for x. For 
either xyz or xzy as the order of voting, ζ will win. 

The second procedure attempts to correct this apparent defect. In 
it, the first simple-majority vote is between X\ and Z2. The winner of 
this vote then goes against X3 in a second simple-majority vote. The 
winner of the second vote is then put against Z4 in a third vote, and 
so on up to the final alternative, xm. 

Suppose that individuals vote their preferences in the second proce
dure, so that i votes for X1 over xk if and only if XJ > t xk. If P(Y,D) ^ 0 
then, regardless of the order in which the alternatives are voted on, the 
element in P(Y,D) will be elected: for this alternative will win the 
first vote in which it appears and will then win each succeeding vote. 
In addition, if PD is a weak order (or, equivalently, if RD is transitive) 
then, regardless of how simple-majority ties are resolved and regardless 
of the voting order, an χ £ R(Y,D) will be elected. If the procedure is 
modified slightly to explore ties further (among later alternatives) then 
an χ G R(Y,D) will be elected when R(Y,D) Ti 0. 

However, if R(Y,D) is empty, then strange things can happen under 
the second procedure. Consider, for example, the situation of (8.5). 
If the voting order is xyzw, then w will be elected. However, every 



8 . 4  V O T E R  S T R A T E G Y  

voter prefers χ to w and therefore unanimity, as in (7.14), is violated. 
Other voting orders for (8.5) will of course select other alternatives: 
of the 24 orders, χ wins under 6, y wins under 10, ζ wins under 6 and 
w wins under 2. 

Thus, for those cases where R ( Y , D )  = 0, this procedure may be 
quite unsatisfactory, and it suggests the need for an alternate proce
dure that may be less efficient but which takes greater cognizance of 
the full complexities of D. On the other hand, an awareness of struc
tures for D that assure R(Y,D) ^ 0, and an awareness of the types of 
situations in which these structures are likely to obtain, may be useful 
information either for individual voting situations or for the design of 
"efficient" voting procedures that do not lead to obviously undesirable 
social choices. 

VOTER STRATEGY 

Although we have generally spoken of individual votes as if they 
agree with preferences, both throughout Part I and in the preceding 
paragraphs, this should be regarded as an aid to discourse that is not 
literally true in many situations. Indeed, voters may have very good 
reasons for voting contrary to some of their "actual preferences." For 
example, an individual's voting behavior may depend not only on his 
own preferences but also on things such as: 1. the particular voting 
procedure that is used, 2. his beliefs about other voters' preferences 
and their voting strategies, and 3. the opportunity to make intervoter 
deals before and/or during the course of the balloting. A small sample 
of the sizable literature on these subjects is the books by Buchanan 
and Tullock (1962) and Farquharson (1969), and the articles by 
Harsanyi (1966) and Wilson (1969). 

Although voter strategy is not a main subject of this book, the 
preceding discussion of sequential voting seems inadequate without 
at least a few words on strategy. We therefore conclude this section 
with some brief remarks on aspects 1 and 2 in the preceding paragraph. 

Let us suppose first that, as before, voters vote their preferences, 
but that they have some influence on the order of voting. Consider 
(8.10) under the first sequential procedure and assume that each voter 
knows the preferences of the others. The only real question at stake 
here is which alternative will be voted on first: if χ is first then ζ will 
win; if either y or ζ is first then χ will win. Hence voter 1 would like to 
have χ first, and voter 2 would like to have ζ first. Since y can win 
under no order, voter 3 would like to have either y or ζ first. If a simple 
plurality vote is used to determine which alternative is voted on first, 
then voters 2 and 3 can force ζ to be first, in which case χ will be elected. 

It is sometimes suggested that an individual will do best under the 
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second sequential procedure if his favorite alternatives come late in 
the voting order, since then they (or it) will have to beat fewer other 
alternatives in order to win. Although this may be a reasonable sug
gestion, it is not in general an optimal individual strategy. Consider, 
for example, the voting order zwyx for (8.5), and recall that χ > ι w > ι 
ζ > ι y, for voter 1. Under the given voting order, which has the most 
preferred alternative for voter 1 last, voting according to preferences 
will elect y, which is voter l's least preferred alternative. Or suppose 
that voter 1 can specify the voting order in another situation where 
his preference order is χ 1X2X3X1- Would he do best to make XiX3X2Xi 
the voting order? Surely not, if he has good reason to believe that 
j(xi,xg),(x2,xi),(x2,x3),(xs,x4),(x4,x2) I Q Pο, for then the voting order 

XiXzXiXi would make X2 the winner, whereas the order XiX2XiXi would 
make Xi the winner. 

Consider now a fixed voting order and suppose no longer that the 
voters vote according to their preferences. With the order xyz for 
(8.10) under the first procedure, voter 3 can do best by voting for χ 
on the first ballot, for then his second choice (x) will be elected. Voter 
2 will also vote for χ on the first ballot, since he has nothing to gain 
by voting otherwise, since if χ does not win on the first ballot then his 
second choice (2) will surely win on the second ballot between y and 2. 

Suppose next that the voting order xyz is used in (8.10) under the 
second sequential procedure. As in the preceding paragraph, voter 2 
has nothing to gain by voting contrary to his preferences. However, if 
voter 1 votes for y instead of his preferred χ on the first ballot, and if 
voters 2 and 3 vote "straight," then y will win the first ballot and 2 

will then beat y on the second ballot, thus giving voter 1 his first 
choice (2) instead of his second choice (x) when all voters vote straight. 
However, voter 3 can foil voter l's strategy by voting for χ instead of y 
on the first ballot. In fact, if voter 3 knows the preferences of the 
other two voters, then he should vote for χ on the first ballot. This 
will insure the election of χ on the first ballot, and thus the election of 
χ  o v e r  ζ  o n  t h e  s e c o n d  b a l l o t ,  s o  t h a t  h e  g e t s  h i s  s e c o n d  c h o i c e  ( x )  
regardless of how voter 1 votes. 

This example shows that, even when Pd  is a linear order, a con
sideration of voting strategies in the second procedure is not an idle 
exercise. 

For our final example, suppose each voter knows the other voters' 
preferences in the following situation: 

1. χ y ζ 

2. 2 χ  y xPDyPDzPi) X .  

3. y ζ χ 
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Suppose also that the second procedure is used. If the voting order is 
(xy)z, then ζ wins the second vote if χ wins the first, and y wins the 
second if y wins the first. Therefore, either y or ζ wins. Hence, on the 
f i r s t  b a l l o t ,  1  w i l l  v o t e  f o r  y ,  2  w i l l  v o t e  f o r  x ,  a n d  3  w i l l  v o t e  f o r  y ,  

so that y wins. Similarly, if the voting order (xz)y is used, then χ will 
win; and if (yz)x is used, ζ will win. Hence, in this situation, no voter 
will want his most preferred alternative to be last in the voting order, 
for if voter l's favorite (x) is last then his least preferred alternative 
(z) will win; if voter 2's favorite (z) is last then his least preferred (v) 
will win; and if voter 3's favorite Cyj is last then his least preferred 
(x) will win. 
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Single-Peaked Preferences 

THIS CHAPTER begins a study of specific types of structures for D that 
assure a nonempty R(YTD) for finite Y, where R(Y,D) is the subset of 
Y in which each alternative has a simple majority over every other 
alternative in Y. We shall concentrate here on the widespread case of 
single-peaked preferences. 

Our general definition for single-peaked preferences permits intran
sitive individual indifference and does not require X to be finite. A 
characterization of single-peaked preferences is then given for the case 
where X is finite. It says, approximately, that the alternatives in X 
can be ordered along a line so that, as we go from left to right on the 
line, an individual's preference increases up to an indifference plateau 
or peak, and then decreases after we pass the plateau. 

It is then proved that the strict simple majority relation P D  is tran
sitive when (X,D) is single peaked. When X is finite, we show that 
there is a simple method, based on the end points of the individuals' 
i n d i f f e r e n c e  p l a t e a u s ,  f o r  d e t e r m i n i n g  R ( X , D ) .  

9.1 SINGLE-PEAKED PREFERENCES 

Suppose that every individual in a group has the same preference 
order on X. Then PD must be the same order. Since the common order 
is presumed to be a strict partial order, it follows from Theorem 7.2 
and (8.8) that R(Y,D) ^ 0 for every finite Y C X, and this is true 
regardless of the size of the group. 

For another example, suppose that each individual's preference 
order on X is a weak order and that, for all x,y £ X, if any individual 
prefers χ to y then no other individual prefers y to x, although others 
may be indifferent between χ and y. Then, as can readily be shown, 
PD i s  the weak order  on X defined by xP D Y > Ι J '  for  some i .  

Here again R(Y,D) ^ 0 for every finite Y C X, and this is true re
gardless of the size of the group. 

Although these examples are simple, they illustrate the approach 
that will be used in the next few chapters. Our general concern will be 
to identify subsets of individual preference orders on X, each of which 
has the following property: 

if each individual in the group has one of the orders in the 
subset then, regardless of the size of the group or the number (9.1) 
of individuals that have each order in the subset, R(Y,D) ^ 0 
f o r  e v e r y  f i n i t e  Y  C  X .  
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As in the foregoing examples, we shall be concerned with conditions 
on individual preference orders which imply (9.1) for each subset of 
orders that satisfies the conditions. 

This chapter is devoted to what may be the most common of the 
types of situations that give rise to subsets of orders that satisfy (9.1). 
It is the case of single-peaked preferences. In approximate terms, this 
means that the alternatives can be ordered along a line in such a way 
that, as we pass from left to right along the line, each individual's 
preference increases up to a peak or to an indifference plateau, and 
then decreases thereafter. Figure 9.1 illustrates this for three indi-

direction of 
increasing 
preference 

ordered alternatives 

FIGURE 9.1. Single-peaked preferences 

viduals. Individual 1 has a unique peak point, individual 2 exhibits 
an indifference plateau that contains more than one alternative, and 
individual 3's preferences continue to increase indefinitely or until the 
right-most of the ordered alternatives is reached. A natural situation 
for single-peaked preferences is given in Figure 7.4, for the question of 
allowable years of service as an untenured assistant professor. Other 
situations in which single-peaked preferences would be likely to obtain 
can easily be conceived. 

A GENERAL DEFINITION 

We shall now examine a general definition of single-peaked 
preferences. 
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DEFINITION 9 . 1 . Let be an n-tuple of strict 
partial orders on a nonempty set X. Then (X,D) is single peaked if 
and only if there is a linear order on X such that, for each 

there are disjoint subsets A„ Bi and Ct (one or two 
of which can be empty) of X such that 

Although this looks complicated, it is easy to interpret. In terms of 
(2) says that A, is to the left of Bt and C„ and C, is to the right 

of At and B,. If B, is not empty, then (when B, is as large as possible) 
it is the indifference plateau of individual i: (3b) says that all alterna-
tives in Bt are indifferent to each other, and (4) says that no alterna-
tive to the left or right of Bt is preferred to an alternative in B,. 
Condition (3a) requires the restriction of on Ai to be a linear 
order, with preference strictly increasing left to right along A t ; con-
dition (3c) requires the restriction of on C; to be a linear order, 
with preference strictly decreasing left to right along 

Condition (5) is clearly redundant if each is a weak order. For 
the general case, (5) requires transitive indifference when the middle 
member y of the transitivity hypothesis is between the 
other two elements in the order, as or 

Given intransitive indifferences can arise in several 
ways. For example, and can occur with 

x and y in A„ z in 
x in A„ y and z in 

If and then (5) requires x to be indifferent 
to each element in Bt to the right of z. 

If X is infinite, it may be necessary to have when neither 
Ai nor Ci is empty. This is illustrated on Figure 9.2, where 

consisting of all except for 

WHEN X IS FINITE 

On the other hand, if X is finite and if preferences are single peaked, 
then it is always possible to have Bt nonempty for each i. In terms of 
the following theorem, we can take where 

if and only if or 
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FIGURE 9 . 2 . Single-peaked with no plateau 

T H E O R E M 9 . 1 . Let be an n-tuple of strict partial 
orders on a nonempty finite set X. Then (X,D) is single peaked if and 
only if there is a linear order on X such that, for each 
there are unique with such that 

and 

and 
and and 

Although we have kept (b) and (d) separate for ease in interpreta-
tion, they could be combined under the following condition: 
and Condition (a) says that preference in-
creases up to a„ and (c) says that it decreases after bt. This does not 
prevent some from being indifferent to some y such that 

Proof of Theorem 9.1. Suppose first that (a) through (e) hold for 
each i. Define . and 

Then the conditions of Definition 9.1 hold, and therefore 
(X,D) is single peaked. 

Conversely, suppose that X is finite and is single peaked 
as in Definition 9.1. Given AI, BT, and C„ if then take the 
last element from A, and add it to B, if and only if it is indifferent 
to the first element in BT, and take the first element in C, and add it 
to BI if and only if it is indifferent to the last element in B„ Then 
(a) through (e) hold for the modified A„ B„ C, with a, the first ele-
ment in this BT and 6t the last element in BT. Suppose next that B„ 
as given, is empty. If also, take first element in 

; and if also, take last element in 
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Then (a) through (e) hold. Finally, with suppose that neither 
A, nor C, is empty. Let z be the last element in A„ and let w be the 
first element in C,. Then (1) if take (2) if 
take and (3) if take and Again, 
(a) through (e) hold. Thus, at,6, exist for all t and, in view of (a) 
through (e), they are unique. 

Under weak orders and finite X, the characterization of Theorem 
9.1 is the same as the definition of single-peaked preferences in Chap-
ter Y of Black (1958). 

9 . 2 TRANSITIVITY OF STRICT MAJORITY 

Suppose that (X,D) is single peaked with an appropriate linear 
order on X. Suppose further that Then precisely 10 of 
the 19 possible individual preference orders on {x,y,zj are admissible 
under these conditions. One of these is on 

The other nine admissible orders are shown in Figure 
9.3. It is easily verified that each of these can arise when 
The final two cases, 8 and 9, are the only ones with intransitive 
indifference. 

FIGURE 9.3. Admissible preferences on {x,y,z\ 
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The nine orders of Figure 9.3 are shown on the left of Table 9.1. The 
nine orders that are not allowed under single-peaked preferences are 
numbered 10 through 18. Under you should verify that none 
of these can arise when (X,D ) is single peaked. We shall use the right 
part of the table later in this section, after we prove the following 
theorem and discuss a generalizing corollary. 

T A B L E 9 .1 

ADMISSIBLE INADMISSIBLE FRE-
ORDERS ORDERS ORDERS QUENCIES CYCLE 

1. 2 > y > x 10. x > z > y ( 1 ,3 ,10 ) [1 .1,1] xzyx 
2. x > y > z 11. z > x > y ( 2 ,4 ,11 ) [1 ,1,1] xyzx 
3. y > x > z 12. z > (x ~ y) ( 2 ,4 ,12 ) [2 ,1,2] xyzx 
4. y > z> x 13. (x ~ z) > y ( 2 ,4 ,13 ) [1 ,2 ,2] xyzx 
5. (y ~ z) > x 14. x > (y ~ z) (1 ,3 ,14 ) [2 ,1,2] xzyx 
6. (x~y) > z 15. z ~ x > y ~ ' z (4 ,15 ) [1,2] xyzx 
7. y > (x ~ z) 16. y ~ x >- z ~ •y (1 ,16 ) [1,2] xzyx 
8. z ~ y > x ~ z 17. y ~ z > x ^ •y (2 ,17 ) [1,2] xyzx 
9. x ~ y > z ~ x 18. x ~ z > y ~ ' X (3 ,18 ) [1,2] xzyx 

T H E O R E M 9 . 2 . Suppose that each in is a 
strict partial order and that (X,D) is single peaked. Then: 

(1) PD on X is a strict partial order; 
(2) if each >, is a weak order, if n is odd, and if and 

never holds when then PD is a weak order; 
(3) if each > , is a linear order and if n is odd then PD is a linear order. 

An obvious corollary of Theorem 9.2 is: 

C O R O L L A R Y 9 . 1 . If (X,D) is single peaked then for every 
finite 

Proof of the theorem. If then the theorem is obvious. Hence-
forth assume that X has more than two elements. Let {x,y,zj be an 
arbitrary triple in X and suppose for definiteness that 
Under the initial hypotheses of the theorem let nk be the number of 
individuals whose preference order on {x,y,z} is order k of Table 9.1, 
for If some individuals are indifferent on \x,y,z} then 

Otherwise 
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From Table 9.1 it is easily seen that 

(9.2) 
(9.3) 
(9.4) 

from which it is clear that (using duals where indicated) 

and therefore 
and therefore 
and therefore 
and therefore 

The other two hypotheses for transitivity lead to contradictions, for by 
adding inequalities we get xPDz & 
and Since {x,y,z} is an arbi-
trary triple in X, this proves that PD is transitive and the proof of 
Theorem 9.2 (1) is complete. 

Under the hypotheses of (2) it will suffice to prove that ID is transi-
tive, for this and (1) imply that PD is a weak order. Since each 
is assumed to be a weak order, " Moreover, since each 
indifference plateau has no more than two points, 

Suppose first that xIDy and y/cz. Then equality in (9.2) 
and (9.3) implies so that and 
therefore But this requires n to be even, thus con-
tradicting the n-odd hypothesis of (2). Therefore, when 
xlny & yIDz is false under (2). Suppose next that y/^z & ZIDX. Then 
equality in (9.3) and (9.4) implies that so that 

and hence that so that 
which again is even. Hence yIDz & ZIDX is false. Similarly, ylox & xIDz 
is false under (2) when and the proof of (2) is complete. 

Theorem 9.2 (3) follows immediately from (1) since the hypotheses in 
(3) imply that PD is weakly connected. 

The proof of the transitivity of PD used here requires only an exami-
nation of an arbitrary triple in X, for if PD is transitive on each triple 
then it is transitive. In the next chapter we shall use the triples ap-
proach to uncover other preference sets that ensure a transitive PD-
For the present we shall note only the following fact along this line. 

COROLLARY 9.2. If ({x,y,z},D) is single peaked for each 
then PD on X is a strict partial order. 

This corollary is in fact a more general result than Theorem 9.2 (1), 
for if (X,D) is single peaked then each is necessarily single 
peaked. However, if each is single peaked, then it may be 
false that (X,D) is single peaked. To prove this, let and 
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let each > in D be the weak order x(yzw), or χ > (y ~ ζ ~ w). Then 
(X,D) is not single peaked, for any linear order <0 on I will require 
at least two indifferent elements to be on one side of the "peak" x. 
However, each triple is single peaked: y <ax <0 ζ shows this for 
{x,y,z},y <<>x < ο w serves for {x,y,wJ, ζ < 0  x < ο w serves for {x,z,w}, 
and any linear order will do for {y,z,w}. 

INADMISSIBLE ORDERS 

Another question of interest in connection with this analysis is 
whether any of the inadmissible orders in Table 9.1 can be joined to 
the collection of admissible orders without damaging the conclusion 
that PD on the triple is transitive. If this were true then we might be 
able to relax the definition of single peakedness (for example, by allow
ing indifference between distinct alternatives in A1) without losing the 
desired conclusion of the transitivity of PD. The following lemma 
shows that, generally speaking, we cannot do this. 

LEMMA 9.1. Suppose that η > 5 and that > on \x,y,z) is any one of the 
inadmissible orders in Table 9.1. Then there is an η-tuple D of strict 
partial orders on X such that the only inadmissible order in D is > and 
such that Pd on {x,y,z} is not a suborder. 

Proof. To the right of each inadmissible order in Table 9.1, in the 
"orders" column, we have listed a trio or a pair of orders on {x,y,z}. 
The only inadmissible order in this trio or pair is the order to its 
immediate left: the other orders are from the first column. The "fre
quencies" column states the number of individuals in our construction 
of D who have the corresponding order in the "orders" column. Thus, 
for inadmissible order 14, the frequencies [2,1,2] for (1,3,14) mean that 
two individuals have order 1, one individual has order 3, and two indi
viduals have order 14. All other individuals are given the admissible 
empty order 0 on {x,y,z\. The final column of Table 9.1 shows the 
PD cycle for the constructed D. In the case of [2,1,2] for (1,3,14) we 
get xPozPoyPox, or xzyx for short. Each of the other cases gives the 
indicated PD cycle, φ 

9.3 A LOCATION THEOREM 

One of the nicest aspects of single-peaked preferences is the ease 
with which we can locate R(X,D) when X is finite. If we have a satis
factory <o on X and know α„ 6, of Theorem 9.1 for each i, then the 
set of all alternatives that have a simple majority over each other 
alternative is located by the simple method described in the following 
theorem. 
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THEOREM 9 . 3 . Suppose that X is finite and that (X, D) is single peaked, 
with <o and the ai and as displayed in Theorem 9.1. 
Let be a rearrangement of the sequence 

in such a way that Then 

R(X,D) (9.5) 

Proof. Suppose first that with y to the immediate 
right of x under That is, for no With 

let and 
For each of the indifferent individuals, we must have and 

for suppose for example that Then, since y is imme-
diately to the right of and would contradict 
(a) of Theorem 9.1. Similarly, if then and and 
if then and Therefore, of the terms in 

are and of these terms are to 
the right of x. Now since and since 

it must be true that or that which 
means that yPDx. By the transitivity of PD, as in Theorem 9.2 (1), 
it follows that And by a similar proof with 

and x, y adjacent in , it follows that 
If then clearly Henceforth, 

assume that and suppose that Again let 
and Since 

no a, or 6, is between x and y. It then follows that 
and b, for the indifferent individuals, that for the 

individuals (s), and that for the x individuals 
(t). Therefore, of the a„ bt are and of the a„ 6, are 
to the right of x. Since 
this requires or so that xh>y. 

Now suppose that and xPt>y. Then, since C„PDX 
by the first paragraph of this proof, the transitivity of PD implies cnPDy, 
which contradicts cnIDy as just derived. Hence yRox. Similarly, yRox 
if In summary, we have 

if 
if 
i f a n d 
if and 

Therefore 
If Y is a proper subset of X, then of course we will have to re-

compute ai and 6, as appropriate to Y before we can specify R(Y,D) 
in the manner of the theorem. 

108 



9 . 4  V O T I N G  O N  V O T I N G  R U L E S  

Theorem 9.3 gives rise to several corollaries when additional restric
tions are placed on the >,·. The following result, obtained by Black 
(1948), is an example. 

COROLLARY 9.3. Suppose that X is finite and (XtD) is single peaked 
with a, = b, for each i, so that each indifference plateau contains a single 
point. Let the a, be arranged so that αϊ < ο a2 < ο · · · <o«»· Then 

R ( X t D )  = P ( X t D )  = {a(„+1)/2} if η is odd, 
R ( X t D )  =  (x:a„/2 <oi <οθι+»/2) if η is even. 

When η is odd in the corollary, the median peak, a(n+u/2, has a 
strict simple majority over each other alternative. A similar result 
holds for even η if a„/2 = ai+„;2, but if a„/2 <0 Oii ni2 then a range of 
"best" simple-majority alternatives is obtained. 

9.4 VOTING ON VOTING RULES 

An interesting use of the notion of single-peaked preferences with 
simple majorities arises in some contexts where a group must decide 
on the voting rule that they will use in certain situations. Suppose, 
for the sake of illustration, that the group is writing a constitution. 
One of the factors they must specify is the size of a vote for a consti
tutional amendment that is required before the amendment becomes 
law. Let us suppose that they agree to use an absolute special majority 
social choice function, as specified in Definition 6.3, for this purpose. 
To complete the specification of this rule, they need to decide the 
number k of votes (1 < k < n) that an amendment must obtain be
fore it becomes law. 

Different individuals may prefer different k values, but in any event 
it seems reasonable to suppose that, with j < 0 k <=> j < k, the prefer
ence orders on X = {1, . . . ,n} for the individuals will be single 
peaked. For example, for η = 9, the preference order for one person 
might be the order shown in Figure 7.4. 

Our analysis of single-peaked preferences shows that at least one of 
the k values will have a simple majority over every other k value. 
And if η is odd and each person has a unique favorite (peak), then, by 
Corollary 9.3, there will be a k* £ {1, . . . tn] that has a strict simple 
majority over every other k. In such a case, it does not seem unreason
able to take k* as the value that is written into the constitution. 

A value of k* chosen in this way might differ significantly from n/2. 
For example, if about half the voters favor a k > 2rc/3 and the other 
half favor a k < 2rc/3 then the chosen rule will be close to a two-thirds 
absolute special majority rule. 
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Suppose in fact that a k* in the vicinity of 2n/3 is approved. Then, 
although this was determined by simple majority, it can no longer be 
changed by a strict simple majority. For, according to the k* rule, if a 
member of the group makes a motion to amend the constitution by 
changing k from k* to k', then k! requires the approval of two-thirds 
of the group. Indeed, as time passes, more than half the group may 
come to prefer k' to k*, but if less than two-thirds of the members 
have this preference then k* will remain in effect. 
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Guarantees and Triples 

IN THE PRECEDING CHAPTER we saw that PD is transitive when (X,D) 
is single peaked, regardless of the size of D or the particular mix of 
single-peaked preference orders that appear in D. In this chapter we 
shall continue our investigation of sets of preference orders that guar
antee a certain result, such as transitivity of strict simple majority. A 
set 5 of preference orders guarantees a certain result when every D 
whose orders are all in S yields this result. 

The first section discusses the general guarantee concept and shows 
that, except for one case, conditions that guarantee a specified property 
can be stated in terms of preferences on three-element subsets of X. The 
exception is for conditions that guarantee that PD is a suborder when 
orders in 5 are allowed to exhibit intransitive indifference. For reasons 
explained in section 10.1, we shall not characterize all S that guarantee 
a suborder. 

However, sections 10.2 and 10.3 develop and verify a characteriza
tion of all sets of strict partial orders on a triple \x,y,z) that guarantee 
a suborder on the triple. In doing this we shall illustrate a general 
method that can be used to uncover conditions that guarantee a certain 
result. The results for suborders on a triple will be used in Chapter 11, 
which presents conditions for transitive strict simple majority and 
transitive simple majority. 

10.1 UNIVERSAL GUARANTEES 

In pursuing conditions on individual preference orders that yield 
results like (9.1), we shall first set forth some general definitions. As 
shown later in this section, notable simplifications arise when all pref
erence orders are weak orders. 

DEFINITION 10.1. Let S be a nonempty set of strict partial orders on X. 
Then S guarantees 

(1) a suborder 
(2) transitivity (or a strict partial order) 
(3) a weak order 
(4) a linear order 
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if and only if, for every η > O and every D G Sn, 

(1) Pd on X is a suborder 
(2) Pd on X is transitive 
(3) Pd on X is a weak order 
(4) Pd on X is a linear order. 

This is obviously a four-part definition. Because our primary interest 
is in nonempty R(YtD) for finite YCi X, part (1) is of primary concern. 
Part (2) also will be used extensively, and (3) will receive some attention. 
Part (4) is included mainly to show how restrictive the notion of 
"guarantee" can be, for S guarantees a linear order if and only if 5 
contains only one element, which is itself a linear order. For example, 
to guarantee a linear order, S cannot contain any nonlinear order, for 
then a nonlinear Pd would be obtained under η = 1. And if -S contains 
more than one linear order, then there must be x,y G X such that 
χ > y for one order and y > χ for another, and with η = 2 we can get 
xIDy. 

As in Definition 7.4, the concepts in Definition 10.1 have been 
arranged in a hierarchical order. Clearly (S guarantees a linear order) 
=>• (S guarantees a weak order) => (S guarantees a strict partial order) 
=> (S guarantees a suborder). Although the reverse implications are 
generally false, we shall observe later in this section that, when every 
order in θ is a weak order, (5 guarantees a suborder) => (S guarantees 
transitivity). 

The emphasis of Definition 10.1 is the universality of the guarantee 
notion which requires every Pd for all D (E S xU Si VJ S3 W · · · to 
have certain properties. For example, to show that S does not guarantee 
transitivity, it is sufficient to identify one D composed of orders in S 
for which xPDyPDzPDx for some x,y,z G X-

The effect on different η is nicely shown with X = {x,y,z} and the 
familiar set S = \xyz,zxy,yzx} of three linear orders on X. For part (1) 
of the definition we note that, 

for η = 2, D G S i  => Pd is a suborder 
for η = 3, Pd  is not a suborder for D = (xyz,zxy,yzx) 
for η = 4, D G Si => Pd is a suborder 
for η > 5, Pd  is not a suborder for some D G Sn. 

The result for η = 4 may seem surprising in view of η = 3. The main 
reason that Pd is a suborder when D G S4 is that the indifferent order 
0 is not in S, so that D must have one of the orders in in more than 
one position. This 5 does not of course guarantee a suborder. But when 
S does guarantee a suborder, it is immaterial whether 0 is in S unless 
S= {0}, for if 0 G 5 then S guarantees a suborder if and only if 
SU {0} guarantees a suborder. 
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OTHER CONDITIONS 

It should be noted that there are various conditions on individual 
preferences that imply a suborder (or transitivity, etc.) that cannot be 
included under our guarantee definition because of restrictions that 
they impose on the size of the group or on the numbers of orders that 
can appear in various combinations in an "allowable" D. We illustrate 
this with two examples. 

Let < ο be a linear order on X and let S be the set of all linear orders 
on X that satisfy the single-peaked conditions of Definition 9.1. Then 
5 guarantees transitivity, as in Theorem 9.2 (1). And, as we noted in 
Theorem 9.2 (3), Pd must be a linear order if η is odd. However, if 
#X > 1, then S does not guarantee a linear order, for η = 2 will give a 
satisfactory violation of the general linearity of PD-

For the second example let X = {x ,y , z }  and let 5 be the set of strict 
partial orders on X for which 

χ  >  y  and (χ  > ζ  or ζ  >  y) .  (S)  

There are exactly five orders that satisfy this condition, namely xyz ,  
x(yz), xzy, (xz)y and zxy, and it is easily verified that S guarantees 
t rans i t i v i ty .  S  does  not  guarantee  a  weak  order  in  v iew of  D = 
(xyz,zxy). Now suppose we generalize the foregoing condition by 
letting T be the set of strict partial orders on X for which 

χ  >  y  and (x  >  y  or χ  > ζ  or ζ  >  y) .  (T) 

In addition to the five orders in S,  this allows five more orders, namely 
(xy)z, z(xy), z~£>y~z, y~£>z~y, and χ ~ ζ > y ~ x, the 
last three of which exhibit intransitive indifference. As we shall note 
later (see VI in Table 10.1), T guarantees a suborder. However, it does 
not  guarantee  t rans i t i v i ty ,  s ince  P D  i s  not  t rans i t i ve  for  D = (y  ~  χ >  
ζ ~ y,x ~ ζ > y ~ x), which gives xPDz, zPDy and XIDV-

On the other hand, consider the set of all D such that (a)  D  E L T KJ 
TiKJ T3 KJ • · · and (b) χ > y for at least one order in D. It can be 
shown that Pb is transitive for every such D, and therefore it might be 
said that (a) and (b) guarantee transitivity. However, conditions (a) 
and (b) cannot be stated in a manner appropriate for Definition 10.1 
since (b) requires that some order in a proper subset of T must appear 
in  each  "acceptab le"  D.  

TRIPLES 

Since case (4) of Definition 10.1 is trivial, we shall not comment 
further on it. In each of the other cases, with one exception, guarantee
ing conditions on 5 can be stated in terms of individual preferences on 
t r ip les .  A  t r ip le ,  in  the  sense  used  he re ,  i s  a  th ree -e lement  subse t  o f  X.  
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The lone exception to our triples rule is for 5 guaranteeing a suborder 
when S is allowed to contain strict partial orders that are not weak 
orders. 

To develop these ideas further, we shall use the following definition. 

DEFINITION 10 .2 . Let Y be any nonempty subset of X and let 
suborder, a strict partial order, a weak order). Then S guarantees Q on Y 
if and only if, for every and every the restriction of PD 
on Y is Q. 

Since any <S guarantees Q when , and since the defining prop-
erties for strict partial orders and weak orders deal with subsets of X 
with no more than three elements, the following lemma is obvious. 

LEMMA 10 .1 . S guarantees transitivity (rsp., a weak order) if and only 
if S guarantees transitivity (rsp., a weak order) on each triple in X. 

If S guarantees a suborder, then it must guarantee a suborder on 
each triple. However, the converse is false when For example, 
let with 

consisting of two strict partial orders, each of which exhibits intransi-
tive indifference. It is easily seen that 5 guarantees a suborder on each 
triple. However, with on X 
is not a suborder since xPoyPozPowPox. 

As shown by the following lemma, this negative result depends 
crucially on intransitive indifference. 

LEMMA 1 0 . 2 . If every S is a weak order and if S guarantees a sub-
order on a triple, then S guarantees transitivity on the triple. 

Proof. To the contrary, suppose that each S is a weak order, 
that 5 guarantees a suborder on {x,y,z}, and that 5 does not guarantee 
transitivity on {x,y,z}. Then there is an n and . such that, for 
example, xPDy & yPr>z & xIDz. If for every _ then, by the 
weak order hypothesis, and for every 

But then which contradicts the assumed 
xPny & yPpZ. Therefore, since for some Let 
be such an order, and form as follows: 

Clearly, xPD<yPD<zPD'X, which contradicts the hypothesis that S 
guarantees a suborder on 
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We hasten to add that if S guarantees transitivity on a triple then S 
does not necessarily guarantee a weak order on the triple, even when 
all > G S are linear. This is shown with -S = {xzy,yxz}. If D has xzy 
in r positions and yxz in s positions then r > s => PD· = xzy, s > r => 
PD = YXZ, and r = s => VIBXPDZI AY, in which case PD is not a weak 
order. 

The following theorem follows immediately from Lemma 10.2 and 
other preceding observations. 

THEOREM 10.1. If every > (E S is a weak order, then S guarantees a 
suborder if and only if S guarantees transitivity on each triple in X. 

This theorem greatly simplifies the development of a general set of 
conditions that characterize all S for which S guarantees a suborder 
when it is presumed that all individual preference orders are weak 
orders. Such a set of conditions, stated in terms of preference orders on 
triples, have been given by Sen and Pattanaik (1969, Theorem V). A 
similar characterization, for guaranteeing transitivity when intransi
tive indifference is allowed, is given by Inada (1970) and Fishburn 
(1970b). These conditions, along with results of Inada (1969) and 
others for guaranteeing weak orders, will be presented in the next 
chapter. 

The rest of this chapter develops a set of conditions that characterize 
all sets of strict partial orders on a triple {x,y,zJ that guarantee a sub
order on the triple. Some of the results in the next chapter will then 
follow from this characterization with very little additional effort. 

As we have seen, the conditions that describe all sets of strict 
partial orders on a triple that guarantee a suborder on a triple can
not characterize all S that guarantee a suborder when fX > 3. In
d e e d ,  s u p p o s e  t h a t  X  =  { x u  .  .  .  , x m \  a n d  S  =  { { [ χ ι , χ ϊ ) } , { ( χ ι , χ » ) } ,  
. . . , {(xm-i,Xm) j, {(xm,xi)}}, consisting of m strict partial orders. Then 
S guarantees a suborder on every proper subset of X, but >S does not 
guarantee a suborder on X. Hence conditions for a finite X that char
acterize all S that guarantee suborders must explicitly consider all 
elements in X simultaneously. Because such a characterization, if it 
could be obtained, would almost surely be incomprehensibly complex, 
we shall not pursue it further. 

10.2 SUBORDERS ON TRIPLES 

Throughout the rest of this chapter we shall work with a triple 
j x,y,z}. Our goal is to characterize or describe, in some reasonable way, 
all nonempty sets of strict partial orders on \x,y,z} that guarantee a 
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suborder on {x,y,z\. Since there are 19 different strict partial orders on 
{x,y,z}, as described in section 9.2, there are 219 — 1 nonempty subsets 
S of strict partial orders. Since it would be impractical to list all of 
these that guarantee a suborder, we shall need to find a more efficient 
way of doing things. To aid in this, the following special definitions 
will be used. 

DEFINITION 10.3. A SET is any nonempty subset of strict partial orders 
on {x,y,zj. A SET S is: 

good «=> S guarantees a suborder 
bad <=> S does not guarantee a suborder 

GOOD ¢=½ S is a good SET that is not properly included in another 
good SET (that is, a GOOD SET is a maximal good SET) 

BAD <=> S is a bad SET that does not properly include another bad SET 
(that is, a BAD SET is a minimal bad SET). 

One way of characterizing all good SETS is as follows: 

S is good if and only if there is no BAD SET included in 5. 

Later we shall list all BAD SETS, noting that there are exactly 100 of 
these and that none of them contains more than three orders. How
ever, by itself this would be a rather dry exercise since it would not 
tell us very much about the nature of good SETS. 

The opposite approach is to seek out the GOOD SETS, noting that 

S is good if and only if S is included in some GOOD SET. 

There are exactly 28 GOOD SETS (each of which contains the empty 
order 0 on {x,y,z}). The smallest GOOD SET has five orders, and the 
largest contains 11 of the 19 possible orders. 

Although we shall proceed with the GOOD-SETS approach, again it 
would not be very revealing to simply list the 28 GOOD SETS. The 
approach we shall use is to systematically search for GOOD SETS by a 
method to be described shortly. The method reveals that the 28 GOOD 
SETS fall into seven natural categories. Each of the seven categories is 
easily described by a set of conditions on the nonempty orders that 
are permitted under the category. One example of such a set of con
ditions is given by expression (T) in the preceding section. This (T), 
which describes one of the GOOD SETS that contains 11 orders, is a 
member of category VI. Another category, which is category VII be
low, includes the GOOD SETS that are single peaked. Since it can be 
observed that no GOOD SET is included in some other GOOD SET (by 
Definition 10.3), the seven categories are independent in the sense 
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that a G O O D SET can fall under exactly one category, and this is true 
for each category. 

T H E S E V E N I N D E P E N D E N T C A T E G O R I E S 

For the purposes of this section we have listed the 18 nonempty 
strict partial orders on jx,y,z] at the top of Table 10.1 according to 
the number of indifferent pairs in the order. Intransitive indifference 
arises in the final six orders, numbered 13 through 18. Because of the 
change in purpose, the numbering in Table 10.1 is not the same as 
that in Table 9.1. 

T A B L E 1 0 . 1 

NONEMPTY ORDERS AND SEVEN CATEGORIES 

T H E 18 NONEMPTY ORDERS ON {x,y,z} 

No indifference Single indifference Double indifference 
1. x > y > z 7. (x ~ y) > z 13. z ~ x > y ~ z 
2. x> z> y 8. z > (x ~ y) 14. z ~ y > x ~ z 
3. y > x > z 9. (x ~ z) > y 15. y ~ x > z ~ y 
4. y > z > x 10. y > (x ~ z) 16. y ~ z > x ~ y 
5. z > x > y 11. (y ~ z) > x 17. x ~ y > z ~ x 
6. z > y > x 12. x > (y ~ z) 18. x ~ z > y ~ x 

T H E SEVEN CATEGORIES 

GOOD SETS: 
Representative Nonempty orders Characterization 

I. a = b 7, 8, 15, 16, 17, 18 x 
II . a + c = b + d 2, 3, 4, 5, 9, 10, 15, 16 (y > x & y > z) or 

(x > y & z > y) or 
(a; ~ y & y ~ z) 

III. a + c + e = 
b + d+f 7, 8, 9, 10, 11, 12 exactly one ~ 

IV. a + e = d+f& 1, 6, 9, 10 x> y> z or (x ~ z) > y 
c + e = b+f or their duals 

V. a > b & d > c 2, 5, 8, 9, 12, 13, 15, 16, 18 a: > y & z > y 
VI. a > b &f > c 1,2, 5, 7, 8 ,9 ,12 ,13 ,15 ,18 a; > y & (a; > y or 

& d > e af > z or z > y) 
VII. c > / > a & 1, 3, 4, 6, 7, 10, 11, 14, 17 y > K or y > z 

b > e > d 
y > K or y > z 

To understand our procedure observe first that S is good if and 
only if both XPDJPDZPDX and xPi>zPDyPDx are false for every 

and that >S is bad if and only if there is a 
such that xPDyPDzPDx or xPDzPDyPDx. 
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Now let D denote a generic η-tuple of strict partial orders on \ x,y,z\ 
and let a, b, c, d, e and / be, respectively, the number of components 
in D for which χ > y, y > x, y > ζ, ζ > y, ζ > x, and χ > ζ. Then 
PD is not a suborder if and only if 

( a > b & c > d & e > f ) or (6 > a & d > c & f > e), (10.1) 

where these represent xPDyPDzPDX and xPDzPDyPDx, respectively. 
Clearly, S is good if and only if (10.1) is false for every D (E. VJ Sn. 

Because of this we shall look for general expressions in a, b, .  .  . , / 
that violate (10.1). Specifically, we shall identify seven categories of 
expressions, such that any statement within a category violates (10.1). 
In doing this it should be noted that we are dealing only with the 
algebraic inequalities of (10.1). Nothing is being said at this point 
about orders on {x,y,z}. 

The seven categories divide into four based on equality relations and 
three based on inequalities. We consider the equality categories first. 

Category I. This category contains the following three expressions: 

a = b, c = d, e = /. 

It is obvious that each of these causes both expressions in (10.1) to be 
false. Note that, for (10.1) to fail, we must negate both expressions: 
not [(. . .) or (. . .)] <=> not (...)& not (. . .). 

Category II. The second category also contains three expressions: 

a + c — b + d, a + e = b + f, c + e = rf + /. 

Any one of these violates (10.1). 

Category III. This category contains the single expression: 

α + 6 + c = d + e + f. 

Category IV. This is the most complex of the equality categories. 
Like I and II it has three expressions: 

a + e = d +  /  &  c  +  e  =  6 + / ,  
a + c = d + f & c + e = b + d, 
a + c = b + / & a + e = b + d. 

To show that the first of these violates (10.1), simply add its two parts 
to get a + c + 2e = b + d + 2/. 
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Category V. Each of the inequality categories has six expressions. 
Three of these six are the duals of the other three. For each case we list 
the dual pairs <3n the same line. For the simplest inequality category, 
we have: 

a  >  b  &  d  >  c  b  >  a  &  c  >  d  
a  >  b  & f  >  e  b  >  a  &  e  >  f  
c > d & f > e  d > c & e > f .  

Each of these six expressions clearly violates (10.1). 

Category YI. The six expressions of this category are: 

a > b & f > c & d > e  b > a & c > f & e > d  
c > d & f > a & , b > e  d > c & a > f & e > b  
e > f & d > a & b > c  f > e & a > d & c > b .  

Consider the first of these, a  >  b  contradicts the second part of (10.1). 
Then / > c & d > e, along with c > d implies / > e, so that the first 
part of (10.1) cannot hold. 

Category VII. Our final category is composed of: 

c > f > a & b > e > d  a > f > c & , d > e > b  
a > d > e & f > c > b  e > d > a & b > c > f  
c > b > e & f > a > d  e > b > c & d > a > f .  

Again, take the first of these. If a  >  b  then/ > e ,  so that the first part 
of (10.1) fails. If d > c then e > f, so that the second part fails also. 

It will be noted that the seven categories contain a total of 28 expres
sions. Each of these 28 expressions corresponds to one of the 28 GOOD 
SETS. A representative expression from each category and its corre
sponding GOOD SET of orders is shown in the lower part of Table 10.1. 
(Only nonempty orders are shown: the empty order is a member of 
every GOOD SET.) The expressions listed above that are not in the table 
are obtainable from the representatives in the table by obvious substi
tutions of letters in {a,b, . . . ,/} and by taking duals in the inequality 
categories. 

THE IDENTIFICATION OF GOOD SETS 

To remove the element of mystery from the foregoing description, 
we now show how a GOOD SET is obtained from an expression in any 
category. 
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For a generic D, let RIK be the number of components in D that con-
tain order k as given on the top of Table 10.1. Then, 

(10.2) 

We have seen that any one of our categorical expressions guarantees 
the failure of (10.1). For any one of these expressions we now determine 
the minimal set of nk such that, when each of these is set equal to zero, 
the given expression must be true regardless of the (nonnegative) 
values of the other nk. The orders for the nk that must be set equal to 
zero to guarantee the expression are precisely those that are inadmis-
sible for the expression. Those that remain, along with the empty 
order, constitute the GOOD SET that corresponds to the categorical 
expression. We shall illustrate this with the representatives of cate-
gories I, IV, and VII in Table 10.1. 

For category I we have Substitution from (10.2) gives 
To guar-

antee a = b we must therefore set all of these nk equal to zero. This 
leaves the nonempty orders 7, 8, 15, 16, 17, and 18, as shown on Table 
10.1 alongside The nk for these six k can have any values without 
affecting the expression. 

Our representative expression for category IV is 
For (10.2) requires 

after cancellation of nk that appear on both sides of the equality with 
equal coefficients. Similarly, gives 

To guarantee the given ex-
pression, every nk in these two equalities is set equal to zero. This leaves 
us with the four nonempty orders 1, 6, 9, and 10 as shown in the table. 

For category VII we have Taking 
first, substitution from (10.2) gives 
after cancellation. Thus assures Taking 

and d in like manner, we are left with orders 1, 3, 4, 
6, 7, 10, 11, 14, and 17 whose nk do not have to be set equal to zero to 
guarantee the categorical expression. 
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CHARACTERIZATIONS 

To complete the description of Table 10.1, we shall now characterize 
each of the representatives and their corresponding orders (GOOD SETS) 

in terms of conditions on preferences. This is done by identifying the 
properties that are common to all nonempty orders in the GOOD SET 
and which hold for no nonempty order that is not in the GOOD SET. 

For example, χ ~ y for each of orders 7, 8, 15, 16, 17, and 18 for the 
category I representative a = b, and χ ~ y holds for no other non
empty order. We could have determined this from a = b alone, since 
this is the same as ΧIDJ' to guarantee ΧIDJ we admit only those 
orders for which χ ~ y. However, other categories are not as obvious 
as category I in this sense, with the exception of category V: a > b & 
d > c corresponds to xRDy & zRDy, which is guaranteed by χ > y & 
ζ > y for all orders. 

For another instance, consider category VI. By looking back through 
the upper part of Table 10.1 we find that χ > y & (x > y or χ > ζ or 
ζ > y) for each of the nonempty orders listed for the representative of 
this category. None of the other orders satisfies this description. 

The only one of the categories whose characterization is not simpler 
than what amounts to a listing of the orders in a GOOD SET is category 
IV. This is the smallest GOOD SET, and there appears to be no simple 
property that summarizes its four nonempty orders while excluding 
all others. 

We shall now discuss the characterizations more fully, and simul
taneously define terms that will be used in the main theorem that 
results from our analysis. The first sentence in each of the next seven 
paragraphs is to be regarded as a definition. 

S is in category I if and only if there are two elements in {x,y,z\, say 
χ and y, such that χ ~ y for all > £ S. The other two cases, with 
χ ~ z, and with y ~ z, correspond to the categorical expressions c = d 
and e = f. An in category I is sometimes described by the phrase 
"limited agreement," since every individual in such a case is indiffer
ent between the same two alternatives. 

S is in category II if and only if there is an alternative in \x,y,z\, 
say y, such that (y > χ & y > ζ) or (χ > y & ζ > y) or (χ ~ y & y ~ ζ) 
for each > G S. In the given case the "chosen" alternative y is either 
preferred to the other two, or less preferred than the other two, or 
indifferent to the other two alternatives for each > £S. The other 
two specific cases for S in category II are (ζ > χ & ζ > y) or (χ > ζ & 
y > ζ) or (χ ζ & ζ ~ y), and (χ > y & χ > ζ) or (y > χ & ζ > χ) 
or (y ~ χ & χ ~ ζ), which correspond to the "choice" of ζ and χ 
respectively. 
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S is in category III if and only if each nonempty > G S has exactly 
one indifference pair. This has been referred to as a condition of "single 
indifference." 

S is in category IV if and only if the three elements in {x,y,z] can be 
placed in an order, say xyz, such that every nonempty > G S is in 
\xyz,zyx,(xz)y,y(xz)}, where as usual (xz)y means (χ ~ z) > y. Because 
the displayed set contains two orders and their duals, this case is 
sometimes referred to as "antagonistic preferences." Because of the 
duals aspect, the other five orders on {x,y,z} give rise to only two 
more GOOD SETS. 

S is in category Y if and only if there is an alternative in (x,y,z\, 
say y, such that either (x > y & ζ > y) for all > in S or else (y > χ & 
y > ζ) for all > G S. Because this requires one alternative to be at 
least as preferred as each of the other two in each order (or, dually, 
not preferred to either of the other two in each order) it is another 
case of "limited agreement." 

S is in category YI if and only if the three elements in {x,y,z} can be 
placed in an order, say xyz, such that χ ^ y & (x > y or χ > ζ or ζ > y) 
for each nonempty > G S. Here the six different orders do give rise to 
six different GOOD SETS. This is also a case of "limited agreement." 

S is in category VII if and only if there is an alternative in {x,y,z\, 
say y, such that either (y > χ or y > z) for every nonempty > G S or 
else (x > y or ζ > y) for every nonempty > G 5. The first of these, 
(y > χ or y >- z), is a case of single-peaked preferences under the order 
χ <0y <o z. The second, (x > y or ζ > y), is the dual of the first, 
and is referred to as "single-caved" or "single-troughed" preferences. 
A general picture of single-troughed preferences can be obtained by 
looking at Figure 9.1 or 9.2 or 9.3 upside down. 

The categories can be summarized in several ways. One of these 
follows. 

SUMMARY DEFINITION. S is in one of categories I through VII if and 
only if there is an alternative in {x,y,z}, say y, such that every nonempty 
> G S satisfies one and the same of the following ten expressions: 

I. χ ~ ζ 
II. (y > χ and y > z) or (x > y and ζ > y) or (χ ~ y and y ~ z) 

III. (χ ~ y) > ζ or ζ > (χ ~ y) or (χ ~ z) > y or y > (χ ~ z) or 
(y ζ) > χ or χ > (y ~ ζ) 

IV. χ > y > ζ or ζ > y > χ or (χ ~ ζ) > y or y > (χ ~ ζ) 
V. y > χ and y > ζ 
V. χ > y and ζ > y 

VI. χ > ζ and (χ > ζ or χ > y or y > ζ) 
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VI. ζ > χ and (ζ > χ or ζ > y or y > x) 
VII. y > χ or y > ζ 
VII. χ > y or ζ > y. 

It must be remarked that some of our categories seem rather arti
ficial in terms of actual situations that might give rise to such SETS. 
The most natural cases appear to be the single-peaked half of cate
gory VII. An exercise of some interest is to think of a situation that is 
naturally single troughed. Some of the limited-agreement cases (I, V, 
VI) could arise under certain natural circumstances. A category II 
case might obtain when one of the alternatives, say y, is the kind of 
candidate that will either be violently liked or violently disliked by 
each voter, or when y is quite dissimilar from χ and ζ with these two 
the same except for minor details. 

THE THEOREM 

The foregoing definitions and analysis suggest the following theorem. 

THEOREM 10.2. A set S of strict partial orders on {x,y,z} guarantees a 
suborder on {x,y,z} if and only if S is in at least one of categories I 
through VII. 

We have already proved the "if" part of this theorem, for our cate
gories were developed in such a way that any 5 in any category is a 
good SET. 

In the next section we shall outline the proof of the "only if" part of 
the theorem by showing that if S is in none of the seven categories 
then S must include a BAD SET and must therefore be bad. Among other 
things, this will show that the 28 SETS developed for our 28 cate
gorical expressions are indeed GOOD SETS and are the only GOOD SETS. 
This means that there are no other categorical expressions that give a 
violation of (10.1) and are independent (in terms of good SETS) of the 
28 given above. 

10.3 BAD SETS 

As stated before, there are 100 minimal SETS (i.e. BAD SETS) that do 
not guarantee a suborder on {x,y,z}. These are listed in Table 10.2, 
from {1,4,5}, {1,4,8}, . . . , to {13,16,17} and {14,15,18}. All but 
six of the BAD SETS are three-order SETS. The six two-order BAD SETS are 

{1,16}, {2,14}, {3,18}, {4,13}, {5,17}, {6,15} (10.3) 
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TABLE 10.2 
ALL BAD SETS 

VIOLATION OF 
SUB

1 TRANS. ORDER 2 3 4 5 6 

4, 5 [1,1,1] [1,1,1] 3, 6 6, 9 5, 7 7, 10 7, 9 
4, 8 [1,1,1] [2,1,2] 3, 8 6, 12 5, 12 7, 11 7, 12 
4, 9 [1,1,1] [1,2,2] 3, 11 8, 9 7, 9 7, 16 7, 18 
5, 10 [1,1,1] [1,2,2] 6, 7 8, 12 7, 18 10, 12 9, 17 
5, 11 [1,1,1] [2,1,2] 6, 10 8, 15 8, 12 10, 13 10, 12 
8, 10 [2,2,1] [3,4,2] 7, 11 9, 11 8, 15 11, 15 10, 13 
8, 11 [2,1,1] [3,2,2] 7, 16 9, 14 9, 12 12, 14 12, 14 
8, 17 [1,2,1] [1,2,2] 8, 10 11, 13 9, 17 14, 15 13, 17 
9, 11 [2,1,2] [2,3,4] 8, 17 12, 16 12, 16 17 15 
9, 14 [0,1,2] [1,2,4] 10, 11 13, 16 15, 18 

10, 18 [0,1,2] [1,2,4] 10, 18 18 13 
11, 13 [0,1,2] [1,2,2] 11, 15 
14, 18 [0,1,1] [1,2,2] 16, 17 
16 [1,1] [1,2] 14 

7 8 9 10 11 12 

9, 14 [0,1,2] [1,2,3] 9, 17 11, 15 11, 13 13, 17 14, 18 
9, 16 [1,0,2] [2,1,3] 10, 13 11, 17 12, 16 15, 18 16, 17 

10, 18 [0,1,2] [1,1,3] 10, 15 12, 14 12, 18 
11, 13 [0,1,2] [1,2,3] 11, 15 14, 15 13, 16 
11, 18 [1,0,2] [2,1,3] 12, 14 16, 17 15, 18 
12, 16 [0,1,2] [1,1,3] 12, 17 
13, 16 [0,1,1] [1,1,2] 13, 17 
14, 18 [0,1,1] [1,1,2] 14, 15 

13 14 

16, 17 [1,1,0] [1,1,1] 15, 18 

which are obtainable from each other by permutations on {x,y,z}. It is 
easily seen that there are no other two-order BAD SETS so that, if each 
of the three-order SETS in the table is bad, then it is BAD. To verify 
that each of these is bad it will suffice to show a violation of a suborder 
for each of the SETS that contain 1, or 7, or 13 as the order with smallest 
identifying number. The reason for this is that all other SETS in Table 
10.2 can be obtained from these (in the first column of the table) by 
p e r m u t a t i o n s  o n  { x , y , z } .  
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The second and third columns of the table show, respectively, fre
quencies of the corresponding orders that will give a violation of 
transitivity and of a suborder. For example, for the SET {1,4,8}, let 
D = (1,4,8). Then yPoz, ZPDX and xloy, so that PD is not transi
tive. And with D = (1,1,4,8,8), corresponding to [2,1,2], we get 
XPDJPDZPDX, SO that PD is not a suborder for this D. 

As a consequence of this analysis, which has little to do with Theo
rem 10.2 except to verify that each SET in Table 10.2 is BAD, we have 
the following lemma. 

LEMMA 10.3. If S does not guarantee a suborder on {x,y,z} then there is a 
D G Sn for some η < 9 for which Pd on {x,y,z} is not a suborder, and 9 
is the smallest number that will serve this purpose. 

Proof. The necessity proof given later in this section will show that 
all BAD SETS are indeed listed in Table 10.2. The "Violation of sub
order" column shows that an η < 9 will always suffice to obtain a 
D G Sn for which PD is not a suborder when S is bad. 

Consider the BAD SET {1,8,10}, or \xyz,z{xy),y(xz)}, each order in 
which happens to be a weak order. With rc1; ns and nio the number of 
times these orders are in D, we need 

ni + Mio > ns  > ni > n i0  for yPDzPDxPDy, 

and the smallest values of ni, n8 and Mi0 that can produce this are 3, 4, 
and 2, respectively. {vPDXPDZPOY is impossible to obtain with the three 
orders.) Hence the smallest η that will do is η = 9. • 

NECESSITY PROOF OF THEOREM 10.2 

Henceforth in this section a BET is any SET that violates (is in none of) 
categories I through VII. Our task is to show that every BET is bad. We 
shall show that every BET includes a SET in Table 10.2, which will 
verify that Table 10.2 includes all BAD SETS. 

To violate category III (single indifference) a BET must contain at 
least one of orders 1 through 6 (no indifference) or at least one of 
orders 13 through 18 (double indifference). For this reason, we shall 
divide all BETS into three disjoint classes. Class A BETS contain none 
of orders 13 through 18. Class B BETS contain none of 1-6. Class C 
BETS contain at least one order from 1-6 and at least one order from 
13-18. Without loss in generality we shall always assume that order 1 
is in a class A BET and in a class C BET, and that order 13 is in a class B 
BET. All other BETS arise from these under the five nonidentify permu
tations on {x,y,z}. 
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To be as explicit as possible in this proof, all alleged GOOD SETS (ob
tained as in the bottom of Table 10.1) that contain order 1 or order 13 
are listed for future reference. The empty set is omitted from each. 

I. {9,10,13,14,17,18}, {11,12,13,14,15,16). 
II. {1,3,5,6,7,8,13,14}, {1,2,4,6,11,12,17,18}. 
IV. {1,6,9,10}. 
V. {2,5,8,9,12,13,15,16,18}, {1,2,7,9,12,13,15,17,18}, 

{5,6,8,9,11,13,14,16,18}, {1,3,7,10,12,13,14,15,17}. 
VI. {1,2,5,7,8,9,12,13,15,18}, {1,2,3,7,9,10,12,13,15,17}, 

{1,3,4,7,10,11,12,14,15,17}, {2,5,6,8,9,11,12,13,16,18}. 
VII. {1,3,4,6,7,10,11,14,17}, {1,2,5,6,8,9,12,13,18}, 

{1,2,3,5,7,9,12,13,15}, {1,2,3,4,7,10,12,15,17}. 

CLASS A BETS 

These contain 1 and none of 13-18. To violate all categories, a class 
A BET must contain an order in {2,3, . . . ,12} that is not in each of 
the above listed SETS that includes order 1. There are twelve such SETS. 
Taking complements of these, a class A BET must contain at least one 
order from each of the following lines: 

Li. 2, 4, 9, 10, 11, 12 from II 
L2. 3, 5, 7, 8, 9, 10 II 
L3. 2, 3, 4, 5, 7, 8, 11, 12 IV 
L4. 3, 4, 5, 6, 8, 10, 11 V 
L5. 2, 4, 5, 6, 8, 9, 11 V 
L6. 3, 4, 6, 10, 11 VI 
L7. 4, 5, 6, 8, 11 VI 
L8. 2, 5, 6, 8, 9 VI 
L9. 2, 5, 8, 9, 12 VII 

L10. 3, 4, 7, 10, 11 VII 
Lll. 4, 6, 8, 10, 11 VII 
L12. 5, 6, 8, 9, 11 VII. 

Suppose first that the BET contains 4 or 11. Then, by the first column 
of Table 10.2, if {5,8,9} Π BET 0, the BET is bad. Henceforth in this 
paragraph assume that {5,8,9} Π BET = 0. Then, by L2, 

the BET must contain 3 or 7 or 10. 

Suppose now that IlG BET. Then, by L8 and L9, the BET must con
tain 2 or 6 and 2 or 12. Since {2,3,11}, {2,7,11}, {2,10,11}, {3,6,12}, 
{6,7,12}, and {6,10,12} are in Table 10.2, every BET that contains 11 is 
bad. Dispense with 11 and assume that 4 G BET. Then L12 requires 
6 G BET, and L9 requires 2 or 12 in the BET. Since {2,3,6}, {2,6,7}, 



10.3 BAD SETS 

{2,6,10}, {3,6,12), {6,7,12}, and {6,10,12} are in Table 10.2, each BET 
that contains 4 is bad. We can therefore dispense with both 4 and 11 
in the rest of the proof for class A BETS. 

Suppose next that the BET contains 5 or 8. If it contains 10 also 
then it is bad, so assume henceforth in this paragraph that 10 ^ BET. 
Then, by Li, 

the BET must contain 2 or 9 or 12. 

Suppose now that 8 G BET. Then, by L6 and L10, the BET must con
tain 3 or 6 and 3 or 7. Since {2,3,8}, {3,8,9}, {3,8,12}, {2,6,7}, {6,7,9}, 
and {6,7,12} are in Table 10.2, each BET that contains 8 is bad. Dis
pense with 8 and assume that 5 G BET. Then Lll requires 6 G BET 
and LlO requires 3 or 7 in the BET. Since Table 10.2 includes {2,3,6}, 
{3,6,9}, {3,6,12}, {2,6,7}, {6,7,9}, and {6,7,12}, all BETS that contain 
5 are bad. 

Dispensing with 5 and 8 along with 4 and 11, and observing that, 
by L7, the BET must then include 6, we assume henceforth that 
6 G BET. This leaves the following reductions of our lines: 

Li. 2, 9, 10, 12 
L2. 3, 7, 9, 10 
L3. 2, 3, 7, 12 
L9. 2, 9, 12 

L10. 3, 7, 10. 

First, take 7 G BET. If either 9 or 12 is in the BET then it is bad by 
Table 10.2. If neither 9 nor 12 is in the BET then it must contain 2, 
by L9, and is therefore bad since {2,6,7} is in Table 10.2. Henceforth 
assume that 7 BET. Take 2 G BET. Then if 10 G BET also, the BET 
is bad since {2,6,10} is in Table 10.2, and if 10 BET then 3 G BET 
by LlO and {2,3,6} is in Table 10.2. Henceforth assume that 2 BET. 
If 3 G BET, then, by L9, 9 or 12 must be in the BET, and since {3,6,9} 
and {3,6,12} are in Table 10.2 the BET is bad. Deleting 3, L3 and LlO 
require 12 and 10 to be in the BET, and since {6,10,12} is in Table 
10.2, the BET is bad. 

CLASS B BETS 

Class B BETS contain 13 and none of 1-6. Using the same procedure 
that was used for class A BETS, each class B BET must contain an 
order from each of the following lines: 

Li. 7, 8, 11, 12, 15, 16 
L2. 7, 8, 9, 10, 17, 18 
L3. 9, 10, 11, 12, 15, 16, 17, 18 
L4. 7, 10, 11, 14, 17 

from I 
I 

II 
y 



G U A R A N T E E S  A N D  T R I P L E S  

L5. 8, 10, 11, 14, 16 V 
L6. 7, 10, 12, 15, 17 V 
L7. 8, 9, 11, 16, 18 V 
L8. 10, 11, 14, 16, 17 YI 
L9. 8, 11, 14, 16, 18 VI 

L10. 7, 10, 14, 15, 17 VI 
Lll. 7, 10, 11, 14, 15, 16, 17 VII 
L12. 8, 10, 11, 14, 16, 17, 18 VII. 

Suppose first that {10,17} ΓΛ BET ^ 0. By Table 10.2, any such BET 
that contains 8, 11 or 16 is bad. Henceforth in this paragraph, assume 
that {8,11,16} Π BET = 0. By Li, 

the BET must contain 7 or 12 or 15. 

Take 10 G BET. Since L7 and L9 require 9 or 18 and 14 or 18, respec
tively, and since {7,10,18}, {10,12,18}, {10,15,18}, {7,9,14}, {9,12,14}, 
and {9,14,15} are in Table 10.2, every BET with 10 is bad. Henceforth 
assume that 10 BET. Then take 17 G BET. This requires 14 G BET 
by L5, and either 9 or 18 in the BET by L7. Since {7,9,14}, {9,12,14}, 
{9,14,15}, {7,14,18}, {12,14,18} and {14,15,18} are in Table 10.2, 
each class B BET that contains 17 is bad. Henceforth assume that 
17 BET. 

Suppose next that {11,16} Γ\ BET ^ 0. If 7 G BET then the BET is 
bad. Henceforth in this paragraph, assume that 7 BET. Then, by L2, 

the BET must contain 8 or 9 or 18. 

Take 11 G BET. Then L6 and L10 require 12 or 15 and 14 or 15. Since 
{8,12,14}, {9,12,14}, {12,14,18}, {8,11,15}, {9,11,15} and {11,15,18} 
are in Table 10.2, each BET with 11 is bad. Henceforth assume that 
11 (j2 BET. Then take 16 G BET. This requires 14 G BET by L4, and 
either 12 or 15 by L6. Since {8,12,14}, {9,12,14}, {12,14,18}, {8,14,15}, 
{9,14,15}, and {14,15,18} are in Table 10.2, all class B BETS with 16 
are bad. 

Thus all class B BETS with 10 or 11 or 16 or 17 are bad. Deleting 
these and observing by L8 that a BET must then contain 14, our lines 
reduce to 

Li. 7, 8, 12, 15 
L2. 7, 8, 9, 18 
L3. 9, 12, 15, 18 
L6. 7, 12, 15 
L7. 8, 9, 18. 
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First, take 12 G BET. If either 8, 9, or 18 is in the BET then it is 
bad since {8,12,14}, {9,12,14}, and {12,14,18} are in Table 10.2. If 
{8,9,18} ΓΛ BET = 0 then L 7 is contradicted. Hence any BET with 12 
is bad. Henceforth assume that 12 BET. Take 18 G BET. L6 requires 
7 or 15, and {7,14,18} and {14,15,18} are in Table 10.2. Hence all BETS 
with 18 are bad. Henceforth assume that 18 ^ BET. If 9 G BET then, 
since L6 requires 7 or 15, and {7,9,14} and {9,14,15} are in Table 10.2, 
the BET is bad. Henceforth assume that 9 G BET. Then L3 and L7 
require 15 and 8 to be in the BET, and since {8,14,15} is in Table 10.2, 
all class B BETS that contain 14 are bad. 

CLASS c BETS 

These BETS contain order 1 and one of 13 through 18. Since {1,16} 
is in Table 10.2, assume henceforth that 16 BET. Proceeding as 
before, we first pair up 1 and 13 and show that any BET that contains 
both is bad. Order 13 is then deleted from further consideration. The 
process is repeated with 1 and 14, with 1 and 18, with 1 and 15, and 
finally with 1 and 17. 

We shall detail only the proof for 1 and 13. Since {4,13} is in Table 
10.2, 4 as well as 16 is deleted from further consideration. Taking com
plements of sets displayed earlier in this section that contain both 1 
and 13, we require an order from each of the following lines to be in 
any BET that contains 1 and 13, and neither 4 nor 16. 

Li. 2, 9, 10, 11, 12, 15, 17, 18 from II 
L2. 3, 5, 6, 8, 10, 11, 14 Y 
L3. 2, 5, 6, 8, 9, 11, 18 Y 
L4. 3, 6, 10, 11, 14, 17 VI 
L5. 5, 6, 8, 11, 14, 18 VI 
L6. 3, 7, 10, 11, 14, 15, 17 VII 
L7. 6, 8, 10, 11, 14, 17, 18 VII. 

Since {1,11,13} is in Table 10.2, 11 is deleted from further considera
tion. Suppose next that 6 G BET. Only Ll and L6 do not have 6. Since 
{6,15}, {6,10,13}, and {6,13,17} are BAD SETS, we dispense with 15, 10, 
and 17 and consider the reductions of Ll and L6: 

{2,9,12,18} and {3,7,14}. 

If 2 G BET then the BET is bad since {2,3,6}, {2,6,7}, and {2,14} are 
in Table 10.2. If 9 G BET, then it is bad since {3,6,9}, {6,7,9}, and 
{1,9,14} are in Table 10.2. Likewise for 12 and for 18. Hence every 
class C BET that contains 6 as well as 1 and 13 is bad. 

Henceforth assume that 6 BET. Take 10 G BET. Since {1,5,10}, 
{1,8,10}, and {1,10,18} are in Table 10.2, we dispense with 5, 8 and 18. 
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Then L5 requires 14 G BET and L3 requires 2 or 9. Since {2,14} and 
{1,9,14} are in Table 10.2, such a BET is bad. 

Henceforth assume that 10 BET. Take 14 G BET. Since {2,14}, 
{1,9,14}, and {1,14,18} are in Table 10.2, we dispense with 2, 9, and 18. 
From L3 and Ll we require one order from each of 

{5,8} and {12,15,17}. 

Since {5,12,14}, {5,14,15}, {5,17}, {8,12,14}, {8,14,15} and {8,13,17} 
are in Table 10.2, each BET with 14 is bad. 

Deleting 14, the reductions we have made in our lines leave the 
following: 

Li. 2, 9, 12, 15, 17, 18 
L2. 3, 5, 8 
L3. 2, 5, 8, 9, 18 
L4. 3, 17 
L5. 5, 8, 18 
L6. 3, 7, 15, 17 
L7. 8, 17, 18. 

Suppose 17 G BET. Since {5,17} and {1,8,17} are in Table 10.2, we 
dispense with 5 and 8. This leaves 3 from L2 and 18 from L5. Since 
{3,18} is in Table 10.2, all BETS with 17 are bad. 

Deleting 17, L4 requires 3 G BET, and L7 requires one of 8 and 18. 
We can dispense with 18 since {3,18} is in Table 10.2. Thus 8 G BET. 
WithLlwethen have {2,3,8}, {3,8,9}, {3,8,12}, {3,8,15}, and {3,18} 
in Table 10.2. Hence every BET with 3 is bad. This exhausts L4, and 
we have completed our proof that every BET that includes {1,13} 
is bad. 
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Transitive Majorities 

THIS CHAPTER concludes our present discussion of conditions on triples 
that guarantee a specified result. We shall first identify all conditions 
that guarantee transitivity of strict simple majority. Section 11.2 then 
shows what happens to these conditions when all individual preference 
orders are presumed to be weak orders, and it goes on to specify all 
conditions that guarantee a weak order. 

Two specializations of the guarantee notion are examined in the third 
section. The first involves "oddly guarantees," which look only at pro
files D that haye an odd number of nonempty components. The second 
involves "odd-guarantees," which look only at profiles that have an 
odd number of nonempty weak order components. 

The main theorems are summarized in Table 11.1 in the final sec
tion, and it may prove helpful to examine this table before reading 
further. Category representatives are listed at the bottom of the table, 
which includes four new categories that are developed in the chapter. 

As far as we are aware, Theorem 11.1 was first proved by Inada 
(1970); Corollary 11.2 was first proved by Sen and Pattanaik (1969); 
and Theorems 11.2 and 11.4 were first established by Inada (1969). 

11.1 CONDITIONS THAT GUARANTEE TRANSITIVITY 

In examining sets of orders that guarantee transitivity it will suffice, 
a s  n o t e d  i n  L e m m a  1 0 . 1 ,  t o  c o n s i d e r  a n  a r b i t r a r y  t r i p l e  { x , y , z }  C  X .  
In this section we shall characterize all sets of strict partial orders on a 
triple that guarantee transitivity. Recall that, by Definition 10.1, we 
are here talking about the transitivity of strict simple majority. The 
transitivity of simple majority (R) will be examined in sections 11.2'and 
11.3. 

As in section 10.2 we shall let a,  b,  c ,  d ,  e ,  and / denote the num
ber  of  orders  in  a  generic  D for  which χ > y,  y  > χ,  y  > ζ,  ζ  >  γ,  
ζ > χ, and χ > ζ, respectively. Then S does not guarantee transitivity 
on {x,y,z} if and only if one of the following six expressions holds for 
some D G ̂ JS n :  

( a > b & c > d & e > f )  ( b > a & d > c & f > e )  
(a >b&c>d&e>f) (b>a&d>c&f>e) (11.1) 
(a>b&c>d&e>f)  (b >  a & d > c & f  >  e).  
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In other words, S guarantees transitivity if and only if all six ex
pressions in (11.1) are violated for every D £ ^JSn. An examination 
of the seven categories of section 10.2 shows that the categorical ex
pressions for categories II, III, IV, and VII guarantee a violation of 
all of (11.1). The representatives of these categories from Table 10.1 
are: 

II. a + c = b + d 
III. a - \ - c ~ \ - e  =  b ~ \ - d - \ - f  
IV. a  +  e  =  d  + / and c  +  e  =  b  +  /  

VII. c  >  f  >  a  and b  >  e  >  d .  

Hence, the sets of orders in these categories guarantee transitivity. 
C l e a r l y ,  n e i t h e r  c a t e g o r y  I  ( a  =  b )  n o r  c a t e g o r y  V  ( a  >  b  a n d  d  >  c )  
guarantees a complete violation of (11.1). This leaves only category 
VI with representative 

a > b  & / > c & d  >  e .  (11.2) 

This violates all expressions in (11.1) except for (6 > a  &  d  >  c  &  
f  >  e ) ,  w h i c h  h o l d s  a n d  d o e s  n o t  c o n t r a d i c t  ( 1 1 . 2 )  o n l y  w h e n  a  =  b ,  
d > c, and / > e. Thus, if we replace the categorical expression (11.2) 
for VI by 

VI'. f > c & d > e  &  ( a  >  b  or ( a  = 6& not ( d  >  c  &  f  >  e ) )  

then all expressions in (11.1) are violated. Referring to Table 10.1, 
the nonempty orders allowed for VI are 1, 2, 5, 7, 8, 9, 12, 13, 15, 
and 18. Any subset of these guarantees f>c&d>e&a>b, so we 
need only worry about the possibility of a = b& d>c&f>e. The 
only way to ensure a = b is when all orders with χ > y are absent, 
which leaves only orders 7, 8, 15, and 18. Given only these four, both 
d > c and / > e hold if and only if ηΊ + tiu > and n8 + η is > n7. 
Hence, to guarantee not (d > c & / > e) in this case we set nis = 
Tii 8 = 0, for then we cannot have both n7 > n8 and M8 > n7. Deleting 
orders 15 and 18 from the list for VI, we are left with the following 
orders which guarantee VI': 

VI'. 1, 2, 5, 7, 8, 9, 12, 13. 

Checking the top of Table 10.1 for the common properties of these 
orders which no other nonempty orders possess, we see that the repre
sentative for VI' is characterized by 

VI'. χ  > y  for each order, and χ  >  y  if ~ is not transitive. 

Thus we shall say that a set 5 of orders on { x , y , z }  i s  i n  c a t e g o r y  

VI' if and only if the elements in {x,y,z} can be placed in an order, 
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say xyz, such that χ > y for each > £ S, and χ > y for each > £ S 
for which ~ on {x,y,z} is not transitive. 

THEOREM 11.1. A set S of strict partial orders on a triple \x,y,z] 
guarantees transitivity on the triple if and only if S is in at least one 
of categories II, III, IV, YI', and VII. 

Proof. Since we already know that any «$ in any one of the categories 
guarantees transitivity, it is only necessary to verify that <S does not 
guarantee transitivity when it violates all of categories II, III, IV, 
VI', and VII. Now if 5 violates all seven of our original categories, 
then 5 does not guarantee a suborder, and hence it does not guarantee 
transitivity. (See Theorem 10.2.) Thus we need only consider the case 
where S violates all of II, III, IV, VI', and VII, and where S is in 
at least one of categories I, V, and VI. For future reference we note 
here some two-element SETS that guarantee a suborder but do not 
guarantee transitivity: 

{8,15}, {12,16}, {13,16}, {15,18}, {7,18}. (11.3) 

Suppose first that 5 is in category V, and suppose for definiteness 
that χ > y and ζ > y for all orders in 5. To violate VII (x > y or 
ζ > y) we need order 15 or 16; to violate VII (ζ > χ or ζ > y) we need 
12 or 13 or 15; and to violate VII (x > y or χ > ζ) we need 8 or 16 
or 18 in 5. The only way to have an element from each of {15,16}, 
{12,13,15}, and {8,16,18} in S and not to have one of the SETS in 
(11.3) included in S is to have both 15 and 16 in 5. But to violate 
c a t e g o r y  I I  ( y > x & y > z  o r  a ; > y & z > y  o r  x ~ y & y ~ z )  w e  
need one of 8, 12, 13, and 18 in S, and each of these adjoined to {15,16} 
gives a SET in Table 10.2. Hence, if 5 is in category V but not in 
category II or VII, then S cannot guarantee transitivity. 

Suppose next that S is in category I with χ ~ y for all orders in S, 
and that S is not in category V. Then S must contain an order for 
each of the following four cases: 

ζ > y (> must be 8 or 18) 
y > ζ (> must be 7 or 17) 
χ > ζ (> must be 7 or 15) 
ζ > χ (> must be 8 or 16). 

Moreover, to violate III (single indifference), S must contain one of 
15, 16, 17, and 18. (Recall that none of 1-6 and 13 and 14 have χ ~ y.) 
If order 15 is in S, then since 8 or 18 is in S by ζ > y above, and since 
{8,15} and {15,18} are in (11.3), S does not guarantee transitivity. 
Orders 16, 17, and 18 are handled in similar fashion. 
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Finally, suppose that S is in category VI with χ > y and (x > y or 
χ > ζ or ζ > y) for each nonempty order in S. Since VI' is presumed 
to be violated by S, S must contain 15 or 18. Also, violation of VII 
(x > y or ζ > y) requires 7 or 15, and violation of VII (x > y or 
χ > z) requires 8 or 18. Since each combination of an order from each 
of {15,18}, {7,15}, and {8,18} gives a pair in (11.3), S does not guar
antee transitivity. • 

Theorem 11.1 and Lemma 10.1 have the following immediate 
corollary. 

COROLLARY 11.1. 5 guarantees transitivity if and only if, for each 
triple {x,y,z\ Q X, the set of restrictions on the triple of the orders in S 
is in at least one of categories II, III, IV, VI', and VII. 

This clearly does not require the restrictions of the orders in S 
on different triples to be in the same category. For example, with 
X = {x,y,z,w,t\ and 

S = {w(xt)yz, (zt)yxw,(xz)(ty)w,w(ty)(xz)}, 

{y,z,w} is in categories II, IV, and VII; \z,w,t] is in categories II and 
VII; and each of the other eight triples is in one category: \x,y,w], 
\x,z,w}, and {x,w,t} are in II; {x,z,t} is in III; {x,y,z} is in IV; 
{y,z,t\, and {y,w,t\ are in VI'. According to the corollary, PD is tran
sitive for every D G 5 W S2 S3 W · · · . 

Using the "Violation of trans." column of Table 10.2 and the obser
va t ion  tha t  the  se t s  in  (11 .3)  do  not  requi re  an  η >  3  to  obta in  a  PD 
that is not transitive, we have the following correspondent of Lemma 
10.3 in section 10.3. 

LEMMA 11.1. If S does not guarantee transitivity on X then there is a 
D G Sn  for some Η < 5 for which PD on X is not transitive, and 5 is the 
smallest number that will serve this purpose. 

The simple proof of this is left to the reader. 

11.2 INDIVIDUAL WEAK ORDERS 

In this section we shall first note the effect on Theorems 10.2 and 11.1 
when all orders in >S are presumed to be weak orders, in which case S 
guarantees a suborder on X if and only if 5 guarantees transitivity on X 
according to Theorem 10.1. We shall then characterize all S that 
guarantee a weak order, as defined by Definition 10.1. 
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INDIVIDUAL WEAK ORDERS AND TRANSITIVE STRICT MAJORITY 

Suppose that every order in S is a weak order. Then categories YI 
(x > y & (x > y or χ > ζ or ζ > y)) and VI' (χ > y, and χ > y if ~ 
is not transitive on jx,y,z}) reduce to the same thing, namely χ > y, 
which includes category I (χ ~ y), and category V (a: > y & ζ > y) is 
included in category VII (x > y or ζ > y for every nonempty order on 
\x,y,z}). Thus the categories of Theorems 10.2 and 11.1 reduce to those 
specified in the following corollary. 

COROLLARY 11.2. A set S of weak orders on a triple {x,y,z} guarantees 
a suborder (or, equivalently, transitivity) on the triple if and only if S is in 
at least one of categories II, III, IV, VI', and VII. 

WEAK ORDERS THAT GUARANTEE A WEAK ORDER 

Definition 10.1 stated that S guarantees a weak order if and only if 
Po is a weak order for every D G ^JSn. Clearly, S can guarantee a 
weak order only if all > G <S are weak orders. Hence, we need only 
consider orders 1 through 12 of Table 10.1 for this case. 

Similar to (11.1), S guarantees a weak order on the triple \x,y,z} 
if and only if every one of the following six expressions is violated for 
every D G U Sn: 

( a > b & c > d & e > f )  ( b  >  a  &  d  >  c  & /  >  e )  
(a>6&c>rf&e>/) (b > a&d > c &/ > e) (11.4) 
(a>b&c>d&e>f) (6 > a & d > c &f > e). 

Each of these constitutes a violation of the transitivity of simple major
ity. For example, the first says that χRny &yRDz & zPpx, so that RD 
is not transitive. If all expressions in (11.4) fail for a given D then RD is 
transitive and therefore PD is a weak order. 

Of the categorical expressions used before, both those in III (a + c + 
e = b + d + f) and IV(a + e = tf+/&c + e = 6+/) guarantee a 
violation of all of (11.4). Although it is not immediately obvious, I and 
V also guarantee violations of (11.4) under weak orders. For example, 
consider a = b in category I. To ensure this, we must have χ ~ y for 
all orders in S, or a = b = 0. Now under weak orders and χ ~ y, 
xPDz <=> yPDz, and zPDx <=> zPi>y, which can be stated as c > d <=>f > e, 
and d > c <=> e > /, which are seen to violate all expressions in (11.4) 
when a = b. Of course, category I in this case is subsumed under 
category III (single indifference), so that I does not have to be listed 
explicitly. 
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Consider V, with representative a > b & d > c, which is character
ized by χ > y & ζ > y, requiring b = c = 0. If both a > 0 and d > 0 
then a > b and d > c, so that all expressions in (11.4) are violated. If 
a = 0 and d > 0 then, since each order in S is presumed to be a weak 
order, e > f = 0, which is the same as saying that (χ ~ y for all > 
and ζ > y for all > and ζ > y for some >) => (ζ > χ for all >- and 
ζ > χ for some >). It is easily seen that (a = b = 0, d > c = 0, 
e > f = 0) violates all expressions in (11.4). Similarly, if a > 0 and 
d = 0 then (11.4) is violated, and if a = 0 and d = 0 then e — f = 0 so 
that V reduces to the case where each order in S is empty. 

Under weak orders, a typical representative in category V, namely 
a > b & d > c, admits the following nonempty weak orders from 
Table 10.1: 

V. 2, 5, 8, 9, 12. (x > y & ζ > y). 

Although none of the other categories (II, VI, VII) guarantees a 
violation of (11.4), a modification of VI under weak orders does violate 
(11.4). A typical representative of this modification is 

VI*. a  >  b ,  and d + f > c  +  e i i a > b .  

The only expressions in (11.4) that might hold for this are ( b  >  a  &  
d > c &/ > e) and (b > a & d > c &/ > e). However, to guarantee 
a > b we need to have 6 = 0 (or χ > y for all orders) and hence 
a  =  6  =  0 i f 6 > a .  T h e n  u n d e r  a  =  6  =  0  a n d  w e a k  o r d e r s ,  c  >  d  
/ > e, and d > c ̂  e > f as before, so that the two remaining possi
bilities from (11.4) are contradicted. As can easily be verified, the weak 
orders admitted under the above representative of VI* and their 
characterization are 

VI*. 2, 7, 8, 9, 12. ( x  >  y ,  and χ  >  ζ > y  if > is linear). 

This differs from the display for V above only in the second order listed 
(5 or 7). 

We shall say that a set of orders on {x,y,zj is in category VI* if 
and only if there is a distinct pair u,v G {x,y,z} such that u > ν for all 
orders in the set and, with w the other element in {x,y,z}, u > w > ν for 
every order that is linear on jx,y,zj. 

THEOREM 11.2. A set S of weak orders on a triple |x,y,z] guarantees 
a weak order on the triple if and only if S is in at least one of categories 
III, IV, V, and VI*. 

Proof. It remains only to show that each SET of weak orders on 
Ix,y,z} that is in none of categories III, IV, V, and VI* does not guar
antee a weak order on the triple. For future reference we list all minimal 
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SETS of weak orders that do not guarantee a weak order. All these can 
b e  o b t a i n e d  f r o m  t h e  f o u r  f o r  o r d e r  1  b y  p e r m u t a t i o n s  o n  \ x , y , z } .  

11,4} (2,3} {3,6} {4,5} {5,7} {6,7} 
{1,5} {2,6} {3,8} {4,9} {5,10} {6,12} 
{1,8} {2,10} {3,9} {4,12} 
{1,11} {2,11} 

(11.5) 

Since one of orders 1 through 6 must be in the SET to violate III 
(single indifference), we assume for definiteness that order 1 is in the 
SET. Taking complements of allowable orders for the cases of the other 
categories whose allowable orders include 1, we see that a violating SET 

with order 1 must include an order from each of the following lines. 

Li. 2, 3, 4, 5, 7, 8, 11, 12 IV (x y z  or (x z ) y  or duals) 
L2. 2, 4, 5, 6, 8, 9, 11 V (χ > ζ & y > ζ) 
L3. 3, 4, 5, 6, 8, 10, 11 V ( χ  > y  &  χ  >  ζ) 
L4. 2, 3, 4, 5, 6, 8, 11 VI* ( x ^ z & x > y > z  if linear). 

If either 4, 5, 8, or 11 is in the SET then the first column of (11.5) 
applies to show that the SET does not guarantee a weak order. Hence
forth delete 4, 5, 8, and 11. If 2 G SET then L3 requires 3, 6, or 10, and 
{2,3}, {2,6}, and {2,10} are in (11.5). Delete 2. If 3 G SET then L2 
requires 6 or 9, and {3,6} and {3,9} are in (11.5). Delete 3. If 6 G SET 
then Ll requires 7 or 12, and {6,7} and {6,12} are in (11.5). Since the 
deletion of 6 exhausts L4, the proof is complete, φ 

It is easily seen that when D  =  ( j , k )  for any set \ j , k ]  in (11.5), then 
PD is not a weak order. Hence we have the following correspondent of 
Lemmas 10.3 and 11.1. 

LEMMA 11.2. If S does not guarantee a weak order on X then there is a 
D G Sn for some Η < 2 for which PD on X is not a weak order, and 2 is 
the smallest number that will serve this purpose. 

11.3 ODD NUMBERS OF VOTERS 

The notion of guarantees has been specialized in two ways that 
involve odd numbers of voters. The first of these specializations is 
identified by the following definition. 

DEFINITION 11.1. Let S be a nonempty set of strict partial orders on 
a triple \x,y,z}. Then S oddly guarantees 

(1) a suborder 
(2) transitivity 
(3) a weak order 
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if and only if, for every η > 0 and every D G Sn for which the number of 
nonempty components in D is odd, 

(1) PD on [x,y,z] is a suborder 
(2) PB on \x,y,z] is transitive 
(3) PD on {x,y,z\ is a weak order. 

The second specialization involves an odd number of voters with 
nonempty weak orders but, like Definition 11.1, it permits strict partial 
orders in S that are not also weak orders. 

DEFINITION 11.2. Let S be a nonempty set of strict partial orders on 
{x,y,z} that contains a nonempty weak order. Then S odd-guarantees 

(1) a suborder 
(2) transitivity 
(3) a weak order 

if and only if, for every η > 0 and D G Sn for which the number of non
empty weak order components is odd, 

(1) PD on {x,y,z} is a suborder 
(2) PD on {x,y,z} is transitive 
(3) PD on {x,y,z) is a weak order. 

Note that odd-guarantee is defined only for the case where S contains 
a nonempty weak order in accord with the last part of the definition. 
If all orders in S are weak orders then, except for the case where S 
contains only the empty weak order, Definitions 11.1 and 11.2 are 
equivalent. 

ODDLY GUARANTEES 

We note first that the oddly guarantees notion does not affect the 
suborder or transitivity cases. 

THEOREM 11.3. Suppose that S is a nonempty set of strict partial orders 
on {x,y,z\. Then S oddly guarantees a suborder if and only if S guarantees 
a suborder; and S oddly guarantees transitivity if and only if S guarantees 
transitivity. 

Proof. The "if" assertions follow from the definitions. For the sub
order "only if" part, suppose that S does not guarantee a suborder, 
with D G Sn and XPOYPDZPOX- Let DT = (D,D, >) where > ^ 0 and 
> G »S. Then D' has an odd number of nonempty components and PD-
is not a suborder. For the transitivity "only if" part, suppose that 
S does not guarantee transitivity, with D G Sn and XPOYPOZROX- If 
ZPDX then the preceding proof applies. Assume henceforth that zlDX-
Then, if χ ~ ζ for all orders in S, PD· is not transitive when D' is 
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defined as before; and if is false for some order in S then we 
can define D' as before with and either or 
in which case PD< is not transitive. 

Naturally, the conclusion of Theorem 11.3 holds if all orders in S are 
required to be weak orders. 

In contrast to Theorem 11.3, the weak order guarantee case is 
affected by the odd condition of Definition 11.1, as is seen by comparing 
the categories in the following theorem to those (III, IV, V, VI*) of 
Theorem 11.2. 

THEOREM 11 .4 . A set S of weak orders on a triple {x,y,z} oddly guaran-
tees a weak order if and only if S is in at least one of categories II, III, IV, 
VI', and VII. 

Proof. Suppose first that S is in none of categories II, III, IV, VI', 
and VII. Since these are the categories used in Corollary 11.2, 5 does 
not guarantee a suborder. Then, by Theorem 11.3, S does not oddly 
guarantee a suborder and hence cannot oddly guarantee a weak order. 

In view of Corollary 11.2, the proof is complete if we can show that, 
if 5 does not oddly guarantee a weak order, then S does not guarantee 
transitivity. Hence suppose that S does not oddly guarantee a weak 
order, with such that each component of D is nonempty, n is 
odd, and, to violate negative transitivity, xPoy, ZRDX, and yRoz. If 
either RD is PD then S does not guarantee transitivity. Henceforth 
suppose XPDV, ZIDX, and yloz. If S contains an order for which 

then shows that does not 
guarantee transitivity. If there is no such order in <S then, for each 
component of and and therefore 

Now, since n is odd, ZIDX requires for at least 
one component in D, with the number of components with equal 
to the number with But then the number with exceeds 
the number with and hence, in view of we must 
have zPoy, contrary to V/DZ. Hence when xPDy, ZIDX and y /oz hold, 

for some order in S. 

ODD-GUARANTEES 

Two new specializations of categories V and VI, characterized by: 

and is transitive), 
or is transitive), 

are needed for our main result for odd-guarantees. We shall say that 
a set S of orders on \x,y,z} is in category if and only if there is an 
alternative in {x,y,z}, say y, such that either 

if is transitive) for all nonempty in S, or else 
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& if is transitive) for all nonempty in S. A set S 
of orders on {x,y,z} is in category VI0 if and only if there is a distinct 
pair such that for all in S and, with 

or or & (a > v if is tran-
sitive) for every nonempty order in S. 

THEOREM 11.5. Suppose that S is a set of strict partial orders on 
fx,y,z) and S contains a nonempty weak order. Then: 

a. S odd-guarantees a suborder if and only if S guarantees a suborder; 
b. S odd-guarantees transitivity if and only if S odd-guarantees a weak 

order, and S odd-guarantees a weak order if and only if S is in at 
least one of categories II, III, IV, V°, VI°, VI', and VII. 

Proof. We assume throughout that S contains a nonempty weak 
order. Part (a) follows from the fact that if 5 does not guarantee a 
suborder then a D' with components in S can be constructed to show 
that S does not odd-guarantee a suborder. 

To prove part (b) we note first that each of the categories in part 
(b) odd-guarantees a weak order when S contains a nonempty weak 
order. This is immediate from Theorem 11.2 for categories III and IV, 
since these categories permit no strict partial orders that are not also 
weak orders. The other five categories are examined in the next five 
paragraphs. Since each of II, VI', and VII guarantees transitivity 
(Theorem 11.1), it is only necessary to show that ID is transitive for 
each of these when D has an odd number of nonempty weak order 
components. 

Category II. Using the representative for category II in Table 10.1, 
we have admissible orders 2, 3, 4, 5, 9, 10, 15, 16 with 

Hence if either of these holds then D must have an even number of 
nonempty weak order components, violating the odd hypothesis. It 
follows that ID must be transitive (trivially) when the odd hypothesis 
holds. 

Category VI'. Using the representative of category VI' that pre-
cedes Theorem 11.1, orders 1, 2, 5, 7, 8, 9, 12, and 13 are allowed with 

Each of the transitivity hypotheses UIDV & VIDW, with 
implies that the number of nonempty weak order compo-

nents in D is even. 
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Category VII. The representative for category VII in Table 10.1 
allows the orders 1, 3, 4, 6, 7, 10, 11, 14, and 17 with 

Once again each of the transitivity hypotheses violates the odd con-
dition for the number of nonempty weak order components. 

Category V°. The representative and 
if is transitive) for category V° allows the nonempty orders 2, 5, 9, 
13, 15, 16, and 18 from Table 10.1. Since one of 2, 5, and 9 must be in 
D for the odd hypothesis, both xPDy and zPDy hold, from which it 
follows that PD and ID are transitive. 

Category VP. The representative & or or 
& if is transitive) for category VI° allows the nonempty 
orders 1, 2, 5, 9, 12, 13, 15, and 18 in S. The odd hypothesis requires 
at least one of 1, 2, 5, 9, and 12 in D, and therefore ocPDy. Transitivity 
of PD is then violated if and only if (yPoz & not xP/jz) or (ZPDX & not 
zPDy). With 

either of the ways to violate transitivity of PD gives 
which is impossible. The only way to violate transi-

tivity of ID is to have XIDZ & Z/DV, in which case 
or But then yIDz re-

quires which gives an even number of nonempty weak order 
components in D. 

Thus if 5 is in at least one of categories II, III, IV, V", VP, VI', 
and VII, then 5 odd-guarantees a weak order. It follows from this and 
from Theorem 11.1 that 

S guarantees transitivity or S is in category V° or odd-
guarantees a weak order odd-guarantees transitivity. 

To complete the proof of Theorem 11.5(b), we shall prove that if -S 
does not guarantee transitivity and is not in category V° or VI° then 
S does not odd-guarantee transitivity. 

Begin by assuming that S does not guarantee transitivity. For defi-
niteness, suppose there is a such that 

XPDZ, zPDy and yRox. (11-6) 

If for some order in S then shows that S does not 
guarantee a suborder and hence, by Theorem 11.5(a), that S does not 
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odd-guarantee a suborder, so that S does not odd-guarantee transi
tivity. Hence, given (11.6), S does not odd-guarantee transitivity when 
y > χ for  some > in S.  

Thus, we need only consider further the case where (11.6) holds and 
χ > y for all > in S, which gives 

χ >  y  for all > in S, xP D z,  ZPDJ and χ I DJ-

Suppose χ y for some nonempty weak order in S.  Then D' = 
(D,D,>) shows that S does not odd-guarantee transitivity. Hence 
we need only consider further the case where 

χ >  y  for all > in S, χ >  y  every nonempty weak order in S, 
XPDZ, zPDy and Χ ID}' ·  

These conditions allow the following ten nonempty orders. 

1. xyz  13. ζ ~ χ >  y  ~  ζ 
2. xzy 15. y χ >  ζ ~  y 
5.  zxy 16.  y ζ > χ ~  y 
9.  (xz)y  17.  χ y  > ζ ~  χ 

12. x{yz)  18. χ ~ ζ > y ~  x.  

Now suppose that S is in neither of categories V0 and VI0. Then S must 
contain 16 or 17 to violate YI°, it must contain 1 or 12 or 17 to violate 
Y0 in the form [x > y & ζ > y and (x > y & ζ > y if ~ is transitive)], 
and i t  must  contain 5  or  9  or  16 to violate  V 0  in  the form [x  >  y  & 
x>z & (x > y & χ > ζ if ~ is transitive)]. 

Suppose first that both 16 and 17 are in S.  Then, since one of 1, 2, 5, 
9, and 12 must be in S (a nonempty weak order), D = (one of 1, 2, 5, 9 
and 12; 16, 16, 17, 17) gives xPy, yPz, and zPx, so that S does not odd-
guarantee transitivity. 

Suppose next that 16 is in S.  Then, for V0 to fail, one of 1 and 12 
must be in S if 17 is not. But D = (1,16,16) and D = (12,16,16) give 
xPy & yPz & zPx and xPy & ylz & zPx, respectively, and in neither 
case is P transitive. Similar results obtain if 17 is in S and either 5 or 9 
is  in  S.  

Hence if <S does not guarantee transitivity and is in neither category 
V0 nor VI0, then S does not odd-guarantee transitivity. 4 

WEAK ORDERS 

Our final theorem summarizes the odd-guarantee aspects when every 
order in «S is a weak order. 



11.4 SUMMARY 

THEOREM 11.6. Suppose that S is a set of weak orders on {x,y,z} and S 
contains a nonempty order. Then the following four statements are 
equivalent: 

a. S guarantees a suborder, 
b. S odd-guarantees a suborder, 
c. 5 odd-guarantees transitivity, 
d. <S odd-guarantees a weak order. 

Proof. Immediate from Definitions 11.1, 11.2, and Theorems 11.3 

and 11.4.4 

11.4 SUMMARY 

The main theorems for guarantees on a triple { x , y , z }  are summarized 
in Table 11.1. In all the cases considered, only four distinctly different 
sets of categories have been used. The appropriate theorem (T) or 
corollary (C) from the text is noted in the "Text" column. 

TABLE 11.1 
A SET or ORDERS GIVES THE RESULT IF AND ONLY IF THE SET IS IN ONE OF 

THE CATEGORIES. FOR THE ODD-GUARANTEE CASES THE SET IS 
PRESUMED TO CONTAIN A NONEMPTY WEAK ORDER 

RESULT ON A TRIPLE {x ,y , z J TEXT CATEGORIES 

Guarantees a Suborder 
Oddly Guarantees a Suborder 
Odd-Guarantees a Suborder 

T 10 2 
T 11 3 
T 11 5 

I, II, III, IV, V, VI, VII 

Guarantees Transitivity 
Oddly Guarantees Transitivity 
When all orders are weak orders: 

Guarantees a Suborder 
Guarantees Transitivity 
Oddly Guarantees a Suborder 
Oddly Guarantees Transitivity 
Oddly Guarantees a Weak Order 
Odd-Guarantees a Suborder 
Odd-Guarantees Transitivity 
Odd-Guarantees a Weak Order 

T 11.1 
T 11.3 

C 11.2 
C 11.2 
T 11 3 
T 11 3 
T 11 4 
T 11.6 
T l l  6  
T 11 6 

II, III, IV, VI', VII 

Guarantees a Weak Order (with all 
orders weak orders) T 11 2 III, IV, V, VI* 

Odd-Guarantees Transitivity 
Odd-Guarantees a Weak Order T 11.5 II, III, IV, V0, VI°, VI', VII 



Representatives of the categories are given in the lower part of the 
table. All other characterizations for the categories can be obtained by 
permutations on \x,y,z} and, in the cases of V through VII, by taking 
the duals of the displayed expressions. Thus for all orders) falls 
in category I, and for each nonempty order) is in 
category VII. 
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is transitive^ 

is transitive 
is not transitive 

is linear 
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Condorcet Conditions 

THUS FAR in Part II we have concentrated on conditions for D which 
imply that some alternative in finite Y has a simple majority over 
every other alternative in Y. In this chapter we shall maintain the 
focus on nonempty R(Y,D) as defined by (8.8), but instead of worrying 
about D that give R(Y,D) ^ 0 we shall examine the position that says 
that an element in R(Y,D) should be the social choice when this subset 
of Y is not empty. We shall not argue that this is an untenable position, 
nor shall we conclude that it is the only sensible position. Our purpose 
rather is to point out some of the aspects of the case that show why the 
question of whether an χ G R(Y,D) should be the social choice when 
R(Y,D) is not empty is by no means an idle question. 

The next chapter, which concludes Part II, is a natural continuation 
of the present chapter. In it we shall examine a number of social choice 
functions that agree with simple majority (Definition 8.1), including 
some that give F(Y,D) = P(Y,D) when P(Y,D) ^ 0 and some that 
do not. 

The material in both chapters foreshadows a number of topics that 
will be covered in more general form in Part III. 

12.1 THE CONDORCET CONDITIONS 

In the preceding chapters we have seen that if X is finite and if SD is 
restricted in certain ways then a social choice function F: 9C X SD —> 9C 
can be fully defined by F(Y,D) = R(Y,D) for all (Y,D) £ 9C X SD. We 
shall now examine the more general situation in which there may be D 
for which R(Y,D) = 0. Unless stated otherwise, we shall assume that 
η > 2, that X is finite and has more than two alternatives, and that SD is 
the set of all η-tuples of strict partial orders on X. 

A major fascination of some social choice theorists has been the ques
tion of how F(Y,D) ought to be defined when R(Y,D) = 0. Although 
we shall not propose a definitive answer this interesting and perhaps 
perplexing question, it will be examined at length in the next chapter. 

First, however, we shall begin with a more basic question: If one of 
the feasible alternatives has a simple majority (perhaps strict) over 
each of the others, should such an alternative be the social choice? An 
even more basic question relates to the appropriateness of simple 
majority when only two feasible alternatives are involved, but this 
will not be at issue here. Our frame of reference in the succeeding 
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discussion will be the types of situations in which simple majority 
seems reasonable for binary social choices. 

THREE CONDORCET CONDITIONS 

Because Condorcet (1785) was a strong proponent of the position 
that an alternative with a strict simple majority over each other 
alternative should be the social choice, his name is frequently linked 
with this position. Our purpose in this section will be to examine three 
versions of the "Condorcet criterion." 

DEFINITION 12.1. A social choice function F:X X Ώ —> 2C satisfies the 

(1) weak Condorcet condition 
(2) Condorcet condition 
(3) strong Condorcet condition 

if and only if, for all (YtD) S 9C X 2D, 

(1) F(Y 1 D)  =  P(Y t D)  whenever  P (Y t D)  ^  0 
(2) F(Y t D)  C R(Y t D)  whenever  R (Y ,D)  ^  0 
(3) F(Y ,D)  =  R(Y ,D)  whenever  R (Y y D)  ^  0 .  

Thus, F is weakly Condorcet when it specifies the social choice as the 
unique alternative that has a strict simple majority over the other feas
ible alternatives whenever such an alternative exists. IiP(YtD) = 0 
and R(YtD) Ti 0, then a weak Condorcet function does not necessarily 
include any χ £ R(Y,D) in F(YtD)t but this is required if F satisfies 
the Condorcet condition (2). Moreover, when there is an alternative 
that has a simple majority over each other feasible alternative then 
(2) does not permit F(YtD) to contain an alternative that is defeated 
under simple majority by another feasible alternative. The strong 
Condorcet condition requires F(YtD) to contain all alternatives in 
R(YtD) and no others when R(YtD) is not empty. In keeping with our 
previous usage of "weak" and "strong," a strong Condorcet function 
is a Condorcet function, and a Condorcet function is a weak Condorcet 
function. 

In passing, we note another condition that is similar to those in the 
definition. It is: F(YtD) Γ\ R(YtD) 0 whenever R(YtD) ^ 0. This 
is implied by (2) and (3), but it neither implies nor is implied by (1). 

THE WEAK CONDORCET CONDITION 

To illustrate some aspects of the weak Condorcet condition, and 
t h e r e f o r e  o f  ( 2 )  a n d  ( 3 )  a s  w e l l ,  c o n s i d e r  t h e  c a s e  w h e r e  X  =  { x , y , a , b , c }  
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and η = 5 and each individual preference order is linear. We imagine 
two situations as follows: 

Situation 1: D obtains and P D  is a linear order with xPojPoaPob 

P D C .  

Situation 2: D' obtains and, in D', χ has two first-place votes, one 
second-place vote, one fourth, and one fifth; y has two 
first-place votes, two second-place votes, and one third. 

Given only the simple-majority information about D in situation 1, it 
seems quite reasonable to take F(X,D) = {x}. And given only the 
positional information of situation 2, it seems reasonable to take 
F(X,D') = {yj. (In situation 2, the best positional array for a third 
alternative would be one first-place vote, two seconds, and two thirds. 
Compare this to the positional array for y.) 

The interesting fact about situations 1 and 2 is that they may be one 
and the same situation with D = D' as follows: 

L i y o i c  
2. y a c b χ 
3. c χ y a b 
4. χ y b c a 
5. y b a χ c. 

(12.1) 

Although this might raise a question in some minds about the universal 
acceptability of the weak Condorcet condition, Condorcet used a sim
ilar example, reproduced by Black (1958, pp. 176-177), to argue against 
a positional approach. Specifically, Condorcet wished to demonstrate 
a deficiency in the "method of marks," set forth several years earlier 
by Borda (1781) in a paper that has been translated and commented 
on by de Grazia (1953). Under linear orders for the individuals, Borda 
essentially proposed that, with m alternatives, the highest-ranked 
(most preferred) alternative in each order be assigned a mark of τη — 1, 
the next highest a mark of m — 2, and so on down to the least preferred, 
which is assigned a mark of 0. The marks obtained by each alternative 
are then added over the voters, and the alternative with the largest 
total is declared the winner. 

In (12.1), the total marks for x, y, a, b, c, are 12, 16, 8, 7, 7, respec
tively, so that y wins under this method. Furthermore, as Condorcet 
o b s e r v e d  f o r  h i s  e x a m p l e ,  i f  i n s t e a d  o f m  —  l > m  —  2  ·  ·  ·  > 1 > 0  
for the marks from best to worst we use numbers ai, . . . , am that 
satisfy αϊ > α2 > · · · > am, then y will still beat χ under a simple 
summation procedure. For y's total score will then be 2αι + 2a2 + as, 
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and x's total score will be 2αι + a2 + a4 + as, and 2αι + 2a2 + a3 > 
2ai + a2 + a4 + a5 when a\ > a2 > a3 > a4 > a5. 

Because Condorcet took simple majority as the norm (when it ap
plies), he "proved" by his example that Borda's procedure, or any 
simple modification of it as indicated in the preceding paragraph, can 
lead to a "wrong" result. 

The point at issue here, as suggested by the descriptions of situations 
1 and 2 above, is the kind of information in D that is to be taken into 
account in determining the social choice. The weak Condorcet condi
tion is essentially based on binary comparisons within each order. If 
in the comparison between χ and y, χ > y in some order, then only this 
fact and not the number of other feasible alternatives that are ranked 
between χ and y is taken into account. In a positional procedure, on 
the other hand, the crucial information is the positions of χ and y in 
each order, not just whether χ > y or y > x. 

A REDUCTION CONDITION AND INDEPENDENCE 

To further illustrate a difference between these two viewpoints, we 
state a condition that is somewhat weaker than one suggested by Con-
dorcet. Arrow (1963, p. 27) also mentions the following condition 
informally. It is not used in his analysis. 

DEFINITION 12.2. A social choice function F: 9C X SD —> 9C satisfies the 
reduction condition if and only if, for all (Y,D) G JC X B, 

F(Y,D) = F(Y — \y\,D) whenever y G Y and χ y 
for some χ G Y-

Suppose that x,y G Y and χ »x> y, so that χ >, y for all i. Then the 
reduction condition says that y is not in F(Y,D). However, this is not 
new since unanimity (Definition 7.2) already covers it. The reduction 
condition goes beyond unanimity by requiring the choice set from Y 
under D to be precisely the same as the choice set from Y — {y j under D. 

The force of the reduction condition comes into play when it is used 
along with the condition of independence from infeasible alternatives, 
which we have discussed in Chapter 1 and section 7.1. For present and 
future reference we shall give a formal definition of this condition. 

DEFINITION 12.3. A social choice function F: 9C X D —> SC satisfies the 
condition of independence from infeasible alternatives if and only if, 
for all (Y,D) G 9C X 2D, 

F(Y,D) = F(Y,D') whenever the restriction of >, on Y 
equals the restriction of >' on Y 
for each i G {1, · · · ,"}· 
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This is Arrow's Condition 3 (1963, p. 27), which he refers to as "the 
independence of irrelevant alternatives." As noted before, this says 
that the social choice shall in no way depend on preferences that in
volve infeasible or unavailable alternatives. 

Now under the condition of independence from infeasible alterna
tives ,  the  reduc t ion  condi t ion  says  tha t  we  must  comple te ly  ignore  y  
and the individual preferences that involve y when making a choice 
from Y, provided that χ »d y for some χ G Y. Thus, when both con
ditions are used, a feasible but dominated (»D) alternative receives 
the same treatment as infeasible or unavailable alternatives. 

Since P(Y,D)  =  P(Y — {y} ,D)  whenever y  G Y and x^>oy  for 
some χ G Y, the reduction condition is wholly compatible with the 
weak Condorcet condition. This does not say that every F that satisfies 
the weak Condorcet condition also satisfies the reduction condition, 
for the weak Condorcet condition says nothing about the behavior of 
F when P(Y,D)  = 0.  I t  does  say,  however ,  that ,  for  any  X and n,  
there are F's that satisfy both conditions. For example, any F that 
sat i s f ies  unanimity ,  the  weak  Condorcet  condi t ion,  and  has  F(Y,D)  
as a unit subset of Y for all cases, also satisfies the reduction condition. 

On the other hand, the Borda method of marks does not satisfy the 
reduct ion  condi t ion.  For  (12.1) ,  th i s  method g ives  F({x,y ,a,b ,c} ,D)  =  
{y}. However, y a and y »d b in (12.1) and therefore, under the 
reduction condition we get F({x,y,a,b,c},D) = F({x,y,c},D). But if 
only x, y and c are treated as feasible, then (12.1) reduces to 

1.  χ  y  c  
2. y  c  χ  
3 .  c  χ  y  
4 .  χ  y  c  
5 .  y  χ  c  

in which case the method of marks gives F({x,y ,c} ,D)  = |x,y }. In this 
reduced case each of χ and y has two first-place votes, two seconds, 
and one third. 

In order not to convey a wrong impression here, it should also be 
pointed out that the Pareto dominance in (12.1) is not essential for 
the kind of oddity expressed by situations 1 and 2. For example, if the 
third individual order is changed from cxyab to cxaby then strict sim
ple majority is still linear (xyabc), no alternative is dominated (»d) 
by another, and 

χ has two first-place votes, one 2nd, one 4th, one 5th; 
y  has two first-place votes, two 2nd's and one 5th. 
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AN EXAMPLE BY DODGSON 

A further illustration of the Condorcet versus positional approach is 
provided by an example used by C. L. Dodgson (Lewis Carroll), which 
is made available by Black (1958) in his reprintings of several of 
Dodgson's pamphlets on election procedures. This example is inter
esting in that it brings out a position of a serious student of election 
procedures who later changed his mind. The example, which is on 
page 216 in Black's book, has fX = 4 and η = 11 with D as follows: 

3 voters: b  a  c  d  6  have b  first and 
3 voters: b a d e  5 have b  last; 
3 voters: a  c  d  b  5 have a  first and 
2 voters: a  d  c  b .  6  have a  second. 

Dodgson used this to argue against the single-vote plurality method 
when one candidate (b here) has an absolute majority (since 6 of 11 
have b first). Noting the positions of a and b in the orders, Dodgson 
concludes that "There seems to be no doubt that a ought to be elected; 
and yet, by the above Method, b would win." He did not explicitly 
mention that a 5>>D C and a »B d, which of course brings the reduction 
condition into play, but this dominance is somewhat beside the point 
as far as his position is concerned. 

In later writings [see pp. 222-234 in Black (1958)] Dodgson rejects 
his former position and becomes an advocate of the weak Condorcet 
condition which, in the above example, would make b the winner. 

A STRONG INDEPENDENCE CONDITION 

In concluding this section we present a theorem suggested by Bengt 
Hansson and Peter Gardenfors which shows that the weak Condorcet 
condition is incompatible with another condition that we shall call the 
strong independence condition. 

DEFINITION 12.4. A social choice function F: 9C X 30 —> 9C satisfies the 
strong independence condition if and only if, for all (Y,D) G SC X 2D, 

χ G F(Y,D) F(Y,D') whenever χ > t y <=> χ >[y 
and y >\x for 
all y G Y — {z}· 

This condition implies the condition of independence from infeasible 
alternatives, for if the restriction of D on Y equals the restriction of 
D' on Y then the "whenever" conditional of strong independence holds 
f o r  a l l  o c  G  F a n d t h e r e f o r e F ( F 1 Z ) )  Q F ( Y i D t )  a n d F ( Y , D ' )  C  F ( Y t D ) .  
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To illustrate the incompatibility of strong independence with 
Borda's method and to simultaneously point out a potential weak
ness in the strong independence condition, I have chosen the following 
example with ft = 4 and X = {x,y,z,w}: 

Suppose Borda's method is used with any set of marks ai > a2 > a3 > 
di for the most preferred through least preferred alternative for each 
voter. Then F(X,D) = {x\ and F(X,D') = {z}. This violates strong 
independence since, in going from D to D', no change has been made in 
the preferences of χ relative to each other alternative, and χ G F(X tD) 
but χ ^ F(X,D'). The example has been structured so that the reduc
tion condition plays no part (u ?>>z> ti or « ν never holds). More
over, the unique choices made by any Borda method (αϊ > α2 > α3 > eu) 
seem rather reasonable in view of the structures of D and D'. 

That strong independence is incompatible also with the weak Con-
dorcet condition is brought out by the following theorem of Hansson 
and Gardenfors. 

THEOREM 12.1. Suppose that η > 3, fX > 3 and S) includes all 
η-tuples of weak orders on X. Then there is no social choice function 
F:9C X SD —> SC that satisfies both the weak Condorcet condition and the 
strong independence condition. 

Proof. Contrary to the theorem, suppose that η > 3, §X > 3, and 
both the weak Condorcet condition and the strong independence con
dition hold. Since the latter implies independence from infeasible 
alternatives, it will suffice to work with an arbitrary triple Y = {x,y,z\ 
in X. In addition, we shall work with three voters since if η > 3, all 
but three voters can be assigned the empty preference order throughout 
the proof. 

We begin with the familiar cyclic majority profile D = (xyz,zxy,yzx). 
Suppose first that χ G F{Y,D). Then, with D' = (xyz,zxy,zyx), strong 
independence requires χ G F(Y,D'). But this conflicts with weak Con-
dorcet, which requires F(Y,D') = {ζ}. Therefore χ ξ? F(Y,D). By 
the symmetry of D, a similar result obtains if we suppose either 
y G F(YtD) or ζ G F(Y,D). HenceF(F1Z)) = 0, which contradicts the 
definition of a social choice function, φ 

D D' 

1. ζ y w χ 
2. y ζ χ w 
3. χ w ζ y 
4. χ w y ζ 

1. ζ y w χ 
2. ζ y χ w 
3. χ ζ w y 
4. χ w y ζ 
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A variation of this proof shows that if F satisfies the reduction condi
tion and strong independence then with (η = 3, jjX > 3) it cannot agree 
with simple majority. For with D = (xyz,zxy,yzx), χ G F(Y,D) and the 
strong independence condition imply that χ G F(Y,(xzy,zxy,zyx)). The 
r e d u c t i o n  c o n d i t i o n  a n d  i n d e p e n d e n c e  t h e n  g i v e  χ  G F (  { χ ,  ζ } ,  ( x z ,  z x ,  z x ) ) ,  
which does not agree with simple majority. A similar conclusion holds 
i f  w e  b e g i n  w i t h  y  G F ( Y , D )  o r  ζ  G F ( Y , D ) .  

Several other versions of the independence condition are discussed 
by Hansson (1972) and Blau (1971). 

12.2 THE STRONG CONDORCET CONDITION 

With y(»D) = { x : x  G Fand y ̂ >D χ for no y G Y } ,  we know from 
Theorem 8.5 that R(Y,D) = R(Y(^>D),D). Therefore the reduction 
condition of the preceding section is compatible with the Condorcet 
and strong Condorcet conditions as well as with the weak Condorcet 
condition. However, there are other conditions that are compatible with 
the weak Condorcet condition but incompatible with the strong con
dition. We shall comment on several of these in the rest of this chapter, 
both for the purpose of illustrating some differences between the weak 
and strong conditions, and to indicate that there may be reasons for 
rejecting the strong condition even when the weak condition is judged 
to be acceptable. 

One simple condition that is compatible with the weak Condorcet 
condition but not the Condorcet or strong Condorcet condition is (with 
x  > D  y  < = >  x  > » y  f o r  a l l  i ) :  

if x  >D y, x  G Y  and y  G F ( Y , D ) ,  then χ  G F ( Y , D ) .  (12.2) 

If P { Y , D )  =  \ y \  then χ  > o y  for no χ  ^ y ,  a n d  t h e r e f o r e  t h i s  c o n d i 
t i on  i s  cons i s t en t  w i th  weak  Condorce t .  However ,  w i th  X = \ x , y , z )  
and D = ({(z,x) j, {(y,z)}), we get χ >Dy and R(Y,D) = {y}, which 
shows that (12.2) is incompatible with the Condorcet condition. As in 
some of our earlier examples, intransitive indifference is vital to this 
c o n c l u s i o n .  I f  w e  r e s t r i c t  S D  t o  b e  a  s e t  o f  η - t u p l e s  o f  w e a k  o r d e r s  o n  X ,  
it then follows from Lemma 8.1 that (12.2) is compatible with the 
strong Condorcet condition. 

PAIRED DOMINANCE 

We shall now consider a condition that can fail only when F ( Y , D )  
contains more than one alternative for some (Y,D), and which there
fore is easily seen to be compatible with the Condorcet condition as 
well as the weak Condorcet and reduction conditions. This new condi
tion is designed along the lines of (12.2), but it does not use >D or >D 
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directly. Instead, it uses a kind of paired dominance relation that 
is a binary relation on X X X: 

and are all different and, for each 
in D, either 
or 
or 

Thus if and only if all four alternatives are different 
and each individual prefers one of to one of and does not 
prefer the other one of to the other one of 

The condition that we shall use with is: 

if if Y and if . „ „. 
then x or is in F(Y,D). { ' 

This condition prohibits the possibility that neither x nor is in the 
choice set when both y and are in the choice set and 

and it may thus seem like a fairly reasonable condition. 
If is confined to n-tuples of weak orders then (12.3) is compatible 

with strong Condorcet since or or 
or , so that we cannot have both y and in R(Y,D) 

when i and 
Therefore, as with (12.2), an example which shows the incompati-

bility of (12.3) and strong Condorcet requires a D that exhibits in-
transitive indifference. One such D with and 
is given by the following four strict partial orders on X : 

1 . a n d 
2 . a n d 
3 . a n d 
4. and 

Alternatives y and tie or beat each other alternative on the basis of 
simple majority, and each of , and z is beaten byanother alterna-
tive. Therefore Moreover, There-
fore, if the strong Condorcet condition holds then (12.3) must fail. 

An interesting aspect of this example is that, although 
, it is true also that Therefore is not asym-

metric for the given X. This raises several questions that we leave as 
exercises for the reader: 1. Is asymmetric when is a set of 
n-tuples of weak orders? 2. Is it possible to construct an example in 
which and neither x nor 

is in R(Y,D), and it is false that 
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PAIRED DOMINANCE WITH WEAK ORDERS 

In concluding this section we shall show that a strong version of 
(12.3) conflicts with the strong Condorcet condition when 2D is assumed 
to be the set of all n-tuples of weak orders on X. Let 

and are all different 
and, for each > in D, either 

Our strong version of (12.3) is: 

if and if then 
a; or is in F(Y,D). (12.4) 

Under weak orders, implies that when 
and that when „ It follows that 
XRDV or or or when every in D 

is a weak order. Moreover, if there is a strict relation in any of 
the individual statements that yield then XPDJ or 

1 or or Therefore, to obtain an example where 
and neither x nor is in R(Y,D), 

we require or for each weak 
order in D. With and the following case 
satisfies this requirement. 

1. 
2. 
3. 
4. 

Recall that the notation here means that is a weak order with 
An examination of the given D shows 

that and that Therefore (12.4) 
must fail if the strong Condorcet condition holds. 

We shall go one step further in this case and prove that this example 
is the smallest example that shows the incompatibility of (12.4) and 
strong Condorcet under weak orders. 

THEOREM 12.2 . Let be the set of all n-tuples of weak orders on X. 
There is a social choice function that satisfies both the 
strong Condorcet condition and ( 1 2 . 4 ) if and only if either or 

Proof. With both and the preceding example shows 
that we can construct a D with weak orders such that there is no social 
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choice function that satisfies both (12.4) and the strong Condorcet 
condition. We now show that such an example exists only if both 
i 6 and n 4. 

To contradict the combination of (12.4) and the strong Condorcet 
condition we require distinct : such that R(X,D), 
i , and , , = 0. We have already noted 
that this requires for each 
weak order in D. Suppose one of y,y* has a strict simple majority 
over one of say It follows easily then that _ . con-
trary to y* £ R(X,D). Hence we must have alob when a 
and b £ {y,y*}- Now partition the n weak orders in D according to 
the following five exclusive and exhaustive cases: 

of n have 
of n have 
of n have 
of n have 
of n have (all four indifferent). 

The alob analysis shows that nx = n2 = n3 = n4. If m = 0 then 
lis = n and thus i, contrary to what 
we need. Hence rii > 0 and therefore n > 4. Moreover, XIDX*. 

To have we require at least one more alter-
native, say z. Suppose ZPDX and ZPDX*, which with X = 5 is the 
only way to get Using the five cases of the 
preceding paragraph, it is obvious that, wherever z is ranked, it will be 
preferred to the same number of elements in {x,x*} as in , and 
less preferred than the same number of elements in 
It follows that either ZPOY or ZPDV*, which contradicts y,y* £ R(X,D). 
Therefore jfX = 5 will not do, and we need §X > 6 to obtain the de-
sired example. 

An explicit example of an F that satisfies both (12.4) and the strong 
Condorcet condition when < 6 or n < 4 is the strong Condorcet 
function that has F(Y,D) = Y(>D) whenever R(Y,D) = 

1 2 . 3 STRONG MONOTONICITY 

To note another aspect of the strong Condorcet condition we now 
introduce the "strong" part of a generalized version of strong monoto-
nicity as defined for two-alternative situations in Definition 2.3. Our 
new condition says that if x,y £ F(Y,D) and if D' is like D in all re-
spects except that, for some i, x increases in preference with respect to 
some other alternative in Y, then x £ F(Y,D) and y F(Y,D). 
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Suppose that x,y £ Y and that D = D' except that, for 
some on X — {x} e q u a l s , x > % z => 
x >[z and : for all z £ X — , and there (12.5) 
is a z £ Y for which either 

Then and — -
and 

Because this prevents a large number of social-choice ties and therefore 
pushes F in the direction of decisiveness, it might be looked on favor-
ably. However, because it allows y to be deleted from the choice set 
when there is only a minimal change in individual preferences that 
may not alter the preferences between x and y, some people will regard 
it as too strong. 

One example which shows the incompatibility of (12.5) and strong 
Condorcet is given by = n = 4 and 

1. x y z w 
2 . y x w z 
3 . z x y w 
4. w y z x. 

R{X,D) = {x,y}. If order 3 is changed to xzyw in D', then R(X,D') = 
{x,y}. Hence both (12.5) and strong Condorcet can not hold, for 
F(X,D) = {x,y} and (12.5) imply that F(X,D') = {x}. 

REDUCTION AND SIMPLE-MAJORITY AGREEMENT 

A simpler example for incompatibility is 

with n = 2 
and : = 3. 

The strong Condorcet condition requires R(X,D) = R(X,D') = {x,y\, 
but if F(X,D) = {x,y} and (12.5) holds then F(X,D') = fx}. 

This example exhibits dominance since y and If the 
reduction condition is used we obtain 

Furthermore, if we assume only that F agrees with simple majority 
(Definition 8.1) and do not necessarily subscribe to the entire strong 
Condorcet condition, then 

Since this conflicts with (12.5), we observe the following result. 
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THEOREM 12.3. Let 3D be the set of all  η-tuples of weak orders on X. 
Then if §X > 3 and η > 2 there is no social choice function F: 9C X SD —> 
9C that satisfies (12.5), the reduction condition and also agrees with simple 
majority. 

Proof. If ifX- > 3 let w represent all alternatives other than x, y, z. 
D = (xyzw, yzxw, (xy)(zw) for each i > 2) and D' = (xyzw, yxzw, 
(xy)(zw) for each i > 2). Then reduction and simple majority agree
ment give F(XtD) = F(XtDt) = {x,y\, but F{X,D) = {x,y} and 
(12.5) require F(X,D') = {*}.• 

12.4 DUALITY 

According to Definition 3.1, binary duality holds with X = {x,y\ if 
and only if, when D* is the dual of D, 

F(\x,y\,D) Γ\ F({x,y},D*) E {0,{x,y}}. (12.7) 

Clearly, this says that F({x,y\,D) = {x} «=>F({x,y},D*) = jy}, and 
that F({x,y},D) = {x,y} <=>F({x,;y},D*) = \x,y). 

There are several ways to generalize this condition to situations 
where §X > 3. One of these generalizations, based on permutations on 
X, is called neutrality. Neutrality says in effect that the social choice 
function shall not have a built-in bias or favoritism for one or more 
alternatives. We shall consider it further in section 13.1. 

Another generalization of binary duality, which we shall simply 
refer to as duality, is defined in the manner of (12.7) as follows. 

DEFINITION 12.5. A social choice function F: SC X £) —> 9C is dual if 
and only if, for all Y G 9C and D E. D, if D* is the dual of D (i.e., > * 
is the dual of > ,for each i), then 

F(Y,D) ΓΛ F(Y,D*) E {0,1"}. (12.8) 

In a very rough sense, duality says that if we turn all individual 
orders in D upside down, then F(YtD) will be turned upside down. 
More precisely, if we view the choice set F(Y,D) as dividing Y into 
satisfactory alternatives (those in F(Y,D)) and unsatisfactory alterna
tives (those in Y but not in F(Y,D)), and if F(Y,D) is a proper subset 
of Y, then the operation of duality on D will make each satisfactory 
alternative unsatisfactory and it will make at least one originally 
unsatisfactory alternative satisfactory. The exception to this is when 
F(Y,D) = Y, in which case no change is caused in the choice set by 
taking duals. 

In the direct terms of (12.8), duality says that the choice sets F(Y tD) 
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and F(Y,D*) can contain an alternative in common only when each 
set contains all alternatives in Y. 

Since Po> is the dual of PD ,  it is clear that duality and the weak 
Condorcet condition are compatible, for if χ beats every other alterna
t ive in  Y under  D, then χ wil l  be  beaten by every other  a l ternative  in  Y 
under D*. However, duality is incompatible with both the Condorcet 
and the strong Condorcet conditions. 

To show this, it is only necessary to take X = {x,y,z, iv) with a D 
that  has  XIDJ ,  XID Z ,  XID W ,  and the str ict  majori ty  cycle  yPozPowP^y 
on {y,z,w}. Then R(X,D) = {a?} = R(X,D*), which clearly violates 
(12.8) if the social choice function agrees with the Condorcet condition. 
An example of such a D is obtained with η = 3 and the weak orders 

This analysis might well be considered as an indictment against 
duality rather than against the Condorcet condition, since in the 
example just given it may seem reasonable to many people to take χ 
as the social choice in both the initial situation and its dual. 

1.  y(xz)w 
2. w(xy)z  
3. z(xw)y 

1.*  w(xz)y  
2.* z(xy)w 
3.* y(xw)z.  

(12.9) 
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From Borda to Dodgson 

WHEN THEHE ARE more than two alternatives in X, it is possible to 
define a number of different social choice functions that agree with 
simple majority. The purpose of this chapter is to examine some of 
these. 

All the functions that we shall present here share a number of prop
erties. They are all unanimous, independent of infeasible alternatives, 
and agree with simple majority. Moreover, they satisfy natural gen
eralizations of the binary conditions of monotonicity, duality (the 
neutrality generalization), and anonymity. 

Section 13.2 discusses functions that do not satisfy the weak Con-
dorcet condition, with special emphasis on Borda's function. Section 
13.3 goes on to discuss three functions that satisfy the weak Condorcet 
condition. Two of these are based on positional information when 
P(Y,D) — 0. The other one determines F(Y,D) using only the infor
mation given by PD. 

As in the preceding chapter, we shall assume that X is finite and 
that 2D is the set of all η-tuples of strict partial orders on X, unless 
specified otherwise in context. 9C is the set of all nonempty subsets of X. 

13.1 CONDITIONS FOR SOCIAL CHOICE FUNCTIONS 

All explicit social choice functions discussed in later sections of this 
chapter agree with simple majority. That is, when x,y £ X and χ y, 
F({x,y},D) = {cc} if and only if χ has a strict simple majority over y, 
or xPoy- If XIDV then F({x,y\,D) = {x,y\. 

The functions that we shall examine divide into two exclusive 
classes, according to whether they satisfy the weak Condorcet con
dition of Definition 12.1. We shall refer to those that satisfy this con
dition as Condorcet social choice functions, even though they might not 
satisfy the strong Condorcet condition or the Condorcet condition (2) 
of Definition 12.1. Functions that do not satisfy the weak Condorcet 
condition will be referred to as non-Condorcet social choice functions. 
The functions in this class that we shall present are based on a po
sitional approach and will be discussed in the next section. The Con-
dorcet functions are in section 13.3. 

Whether Condorcet or not, all social choice functions defined later 
have a number of properties in common in addition to their agree-
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ment with simple majority. These conditions are all generalizations 
of the binary conditions for simple majority employed in section 5.3. 
Two of these have already been defined in Part II, namely unanimity 
(Definition 7.2) and independence from infeasible alternatives (Defi-
nition 12.3). The latter was not used explicitly in Part I since we dealt 
there with only two-alternative situations. For such situations the 
independence condition is implicit in the definition of a social choice 
function. 

The purpose of this section is to set forth the other properties that 
are shared by the functions considered later. These are generalizations 
of monotonicity, duality, and anonymity. 

MONOTONICITY 

Following the lead of Definition 2.1, monotonicity for the general 
case says that if and if D' is like D ex-
cept perhaps that x increases [x decreases] in one or more of the indi-
vidual preference orders in going from D to D', then x £ F( Y,D') 
[x £ F(Y,D')]. 

DEFINITION 13.1. A social choice function F: 9C . 'is mono-

tonic if and only if, for all F 6 3 C and D,D' and for any i 
if for all j i, if >i on X — {x} equals >[ on 

X — {a:}, and if: 
(1) x > i z x >'t z and z for all z X — {x}, and 

if x <=F(Y,D), then ; 
and ' for all z X — {x}, and 

ifxg F(Y,D), then x $ F(Y,D'). 
Under independence, X — \x\ in the definition reduces to Y — {x}, 

and > j — >'j reduces to > j — >' j on Y. 
There are several forms of strong monotonicity that add things to 

monotonicity. One of these, which holds for no function considered 
later since it is incompatible with the conditions of independence from 
infeasible alternatives and simple majority agreement, says that if the 
hypotheses of monotonicity (1) hold and if ( or 

for some z £ X, and if y _ F(Y,D) and y x, 
then x £ F{Y,D') and y £ F(Y,D').k weaker form of strong monoton-
icity, that holds for some later functions but not for others, is stated 
as (12.5). A still weaker form is obtained from (12.5) by requiring an 
actual inversion of preference between x and y before y must be deleted 
from the choice set. NEUTRALITY 

Binary duality was written one way in (12.7). A different way of 
expressing this is as follows: 
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if o- is a permutation on {x,y) and if, for each i, a; > , y » 
and then <=> 

and 

Since there are only two permutations on {x,y}, namely the identity 
permutation and the permutation 
t this is easily seen to be equivalent to (12.7). 

For any permutation a on X we take for any 
nonempty Z X. The neutrality generalization of binary duality is 
defined as follows. 

DEFINITION 13.2. A social choice function F: 9C X —> 9C is neutral 
if and only if, for all Y £ 9C and D20, and any permutation a on X, 
if. I for all x,y X and all i , then 

(13.1) 

This preserves the interpretation of binary duality stated after Defi-
nition 3.1, since it prohibits the social choice function from having a 
built-in bias for one or more alternatives. Under neutrality, the only 
change caused is a uniform "re-labeling" of the alternatives. For ex-
ample, if x,y Y and F(Y,D) = {x}, and if D' is obtained from D 
by interchanging x and y in every individual order, then neutrality 
requires F(Y,D') = {y}. 

For a second example, suppose that D = (xyz,yzx) and 

Then, with and y) and 
<jF({x,y,z},D) = {y,z}. Neutrality requires that F({x,y,z\,D") = {y,z}. 

Suppose that , , 
and let <r(x) = y, <r(y) = z, <r(z) = x and <r(w) = w. Then D" = 
(yzxw,ywzx,wxzy). If F({x,y,w},D) = ja;} then neutrality implies that 

Since and therefore crR(Y,D) neu-
trality is compatible with the strong Condorcet condition of Definition 
12.1 (3). 

ANONYMITY 

The binary anonymity condition of Definition 5.3 generalizes im-
mediately to the following. 

DEFINITION 1 3 . 3 . A social choice function F: SC X © —> SC is anony-
mous if and only if, for all Y 9C and D and any permutation a-
on 

(13.2) 
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As in the binary case, this is designed to treat voters equally. It 
plays the same role for voters that neutrality (but not duality as in 
Definition 12.5) plays for alternatives. 

In the ensuing sections, all social choice functions that we shall con
sider are unanimous, independent of infeasible alternatives, monotonic, 
neutral, anonymous, and they all agree with simple majority. 

13.2 NON-CONDORCET FUNCTIONS 

We shall begin with the plurality social choice function because it is 
a good example of a commonly used function that is widely felt by 
social choice theorists to be generally unsatisfactory, despite the often-
accepted conditions that it satisfies that were stated in the preceding 
paragraph. These conditions do not of course give a complete charac
terization of plurality or of any other function considered here. With 

p(x,Y,D) = §{i:y >, χ for no y G Y),  

the plural i ty  social  choice funct ion is defined by 

F(Y i D) — {x\x G Y and p(x,Y,D) > p(y,Y,D) for all y G ^) .  

When every > in D is linear, p(x,Y,D) for χ G Y is the number of 
first-place votes for χ within Y, and F(YtD) contains the alternatives 
in Y with the most first-place votes within Y. 

It is easily checked that the conditions in the final paragraph of sec
tion 13.1 hold for plurality, and that it satisfies the reduction condition 
of Definition 12.2. In general, plurality is neither weakly Condorcet 
nor dual (Definition 12.5), as is shown by the following linear-orders 
example for five voters and fX = 4. 

1.  χ y  w ζ 
2.  χ  y  ζ  w 
3.  y  w ζ χ  
4. ζ  y  w χ 
5.  w y ζ x.  

Here yPot  for all t  T i  y,  but plurality takes F(X t D) = [ χ j since χ has 
more first-place votes than any other alternative. Duality is violated 
since F(XtD) = F(X,D*) = {χ}. 

Arguments against plurality are usually based on its failure to satisfy 
the weak Condorcet condition or on a positional viewpoint. Both apply 
to the foregoing example. For the positional viewpoint we note that y has 
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one first-place vote and four second-place votes, whereas χ has two 
first-place votes but three fourth-place votes. 

A second example where both arguments apply is obtained with 
X = \x,y,z\ and the following D for a 100-member group: 

34 voters have xyz 
33 voters have yzx 
33 voters have zyx.  

Plurality selects x.  Weak Condorcet selects y,  which has a 67 to 33 ma
jority over ζ and a 66 to 34 majority over x. The positional argument 
notes that χ has 34 first-place votes and 66 third-place votes, whereas 
y has 33 first-place votes, 67 second-place votes, and no third-place 
votes. A typical positional argument would also favor ζ over χ in this 
case. 

THE BORDA FUNCTION 

A positional summation procedure, applicable when individual 
orders are linear, was described after (12.1). A generalization of this 
procedure of Borda (1781) that can deal with weak orders is mentioned 
by Black (1958, p. 62) and Luce and Raiffa (1957, p. 358). Their gen
eralization will be referred to as the Borda social choice function. To 
define it we first define 

r,(x,Y,D) = §{y:y G Y and χ >,-y} - §{y:y G Y and y > {x},  

so that r t(x,Y,D) is the number of alternatives in Y that individual i  
has less preferred than x, minus the number of alternatives in Y that 
individual  i  prefers  to x.  The total  number of binary comparisons in D 
that involve χ and an element in Y and in which χ is preferred, minus 
the total binary comparisons that involve χ and an element in Y and 
in which χ is less preferred, is therefore 

r(x,Y,D) = Σ"=1Γί(χ,7,Ζ>). 

The Borda social  choice funct ion is then defined by 

F(Y t D) = {x:x G Yand r(x,Y,D) > r(y,Y,D) for all y G Y\. (13.3) 

Before looking at various conditions for the Borda social choice func
tion, we shall first note some aspects of the individual numerical rep
resentations T1 as defined above. In doing this we shall presume that 
we are working with a fixed Y, and we consider only the alternatives 
in Y. 

Suppose first that each >, on Y is linear. If # Y = m and >, is the 
l inear order X i X 2  ·  ·  • xm  on Y then the r,  values for  X \ ,  x2 ,  .  .  .  ,  xm  
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are, respectively, m — 1, m — 3, m — 5, . . . , — m + 3, and — πι + 1. 
For example, with m = 5 the ranking values are 4, 2, 0, — 2, —4. Since 
these are equally spaced, we can just as well use ranking values of 
4, 3, 2, 1, 0 for m = 5, or of m — 1, m — 2, . . . , 1, 0 for the general 
case, and this will cause no change in (13.3). To be more specific, the 
c h a n g e  f r o m  m  —  1 ,  m  —  3 ,  .  .  .  ,  —  m  +  1  t o  m  -  1 ,  m  —  2 ,  .  .  .  , 0  
causes a change from r(x,Y,D) to %r(x,Y,D) + constant, in taking 
sums over i. Hence, under linear orders, (13.3) is equivalent to the 
procedure described after (12.1). 

Suppose next that each > t on Y is a weak order, and consider the 
following Borda-type procedure. Assign preliminary values of m — 1, 
m — 2, . . . , 0 to the m alternatives in Y for a given order so that 
these values agree with the linear Borda assignment for some linear 
order that includes the weak order. The final ranking value for an 
alternative χ for the given weak order equals the average of the pre
liminary values for the alternatives in that order that are indifferent 
to x. Thus a, b, c, d, e for the weak order (ab)c(de) would get final 
ranking values of 3.5, 3.5, 2, 0.5, 0.5. Sums of these values are then 
used to determine F(Y,D). Now it is easily seen that if s t(x,Y,D) 
is the final ranking value for alternative χ and the order >„ then 
sx(x,Y,D) — }^rt(x,Y,D) + constant for each χ £ Y- It follows that 
this procedure is equivalent (under weak orders) to (13.3). 

Continuing with weak orders, suppose that Y = {a,b,c,d,e}. The 
following three weak orders, the first of which is linear, have the 
r t  values shown for a, b, c,  d, e.  

1. abcde 4, 2, 0, —2, —4 
2. (ab)c(de) 3, 3, 0, —3, —3 
3. a(bcde) 4, —1, —1, —1, —1. 

It is clear from this that r, does not maintain equal differences between 
adjacent indifference sets over the several orders. These differences for 
the three orders are respectively 2, 3, and 5. A modification of the 
Borda procedure requires these differences to be equal, in which case 
the following ranking values could apply: 

1. abcde 4, 2, 0, —2, —4 
2. (ab)c(de) 2, 2, 0, -2, -2 
3. a(bcde) 2, 0, 0, 0, 0. 

Ranking values of 4, 3, 2, 1, 0 and 2, 2, 1, 0, 0 and 1, 0, 0, 0, 0 would 
lead to the same result under the modified procedure. 

A curiosity of this modified equal-spacing procedure that makes it 
somewhat suspect is noted by two related seven-voter examples with 
X = {x,y,z,w}. 
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I II 

4 voters. (xyz)w 4 voters. x(yzw) 
1 voter. wxyz 1 voter. yzwx 
1 voter. wxzy 1 voter. ywzx 
1 voter, wyzx 1 voter. zwyx 

In each case the individual orders are weak orders and PD is a linear 
order with xPDyPDzPDW, so that a Condorcet function picks x in each. 
The Borda function also selects x in each case, as one can easily verify. 
However, in case I, the modified Borda selects w, which is not only 
the lowest alternative in the PD order but also has the smallest regular 
Borda total. And, in case II, the alternative with the smallest modified 
Borda total is x, which has the largest regular Borda total and is at 
the top of the PD order. 

The rl for the Borda procedure need not give equal adjacent inter-
vals within the same weak order either, as is shown by (ab)(cd)e with 
ranks 3, 3, —1, —1, —4, where the intervals from 3 to —1 and from 
— 1 to — 4 are not of equal length. 

With weak orders, it should be clear that for all Y, 
, ~ so that rt faithfully preserves the 
preference order on Y. However, as we noted in connection with 
Theorem 7.1, it is not possible to have an numerical representa-
tion for > i when > , is a strict partial order for which is not 
transitive. As described in Theorem 7.1 (2), the "best" general nu-
merical representation that can be obtained for strict partial orders 
is given by a real-valued function u, that satisfies 

where x ~, y if and only if for all z Y). (Since 
we are taking Y as fixed, and defining « t with respect to Y, ~ , may 
change as Y changes. For example, we could have x,y Y Y', with 
x ~, y for Y but not x ~ t y for Y'.) With respect to Y, it is easily 
seen that for a strict partial order > , on Y, 

The first of these follows from transitivity (if; then , and 
if then and the second follows from (7.5), which says 
that and whenever x «< y. 

With , the strict partial order has 

1 6 5 1 6 5 
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r, values of 1, I1 —1, —1 for x,  y ,  z ,  w.  This shows that we can have 
n(x,Y,D) = rt(y,Y,D) when it is not true that χ kj. However, this 
possibility might not cause any grave concern since, at least in the ex
ample given,  i t  seems reasonable to assign the same "rank" to χ and y.  

CONDITIONS FOR THE BORDA FUNCTION 

It is easily seen that the Borda function (13.3) satisfies the con
ditions in the final paragraph of section 13.1. Moreover, it satisfies 
the version of strong monotonicity in (12.5), and it is dual (Definition 
12.5). Duality would fail for the Borda function if and only if for 
some χ G Y, x G F(YtD) and χ G F(Y,D*) and F(Y,D) Ti Y. Since 
r(x,Y,D) = —r(x,Y,D*), and since 2rr(y,Y,D) = Ο, χ G F(Y,D) Λ 
F(Y,D*) would require r(y,Y,D) = r(y,Y,Dt) = O for all y G Y, in 
which case F(Y,D) = F(Y,D*) = Y.  

As we have noted in section 12.1, the Borda function is not weakly 
Condorcet and it does not satisfy the reduction condition of Definition 
12.2. There is of course a modification of the Borda method that does 
satisfy the reduction condition. It is obtained by first deleting all alter
natives from Y that are dominated (55>d) by some other alternative in 
Y, and then applying the Borda procedure given above to F(»fl) 
instead of to Y. As we noted in section 12.1, by changing order 3 in 
(12.1) to cxaby, this modification of the Borda procedure still does not 
satisfy the weak Condorcet condition. 

The analysis of section 12.1 suggests a positional condition that holds 
for the Borda function, but which is not generally satisfied by Con-
dorcet social choice functions. I will refer to this as the condition of 
permuted dominance. It will be defined only for situations where each 
>,on Y is a linear order. It is based on the following relation. 

x(Y,D)y <=» x ,y  G Y, each >, on Y is linear, and there is a permu
tat ion σ on {1,2,  .  .  .  ,n} such that  r t (x,Y,D) > 
r. M (y,Y,D) for  i=l, . . . ,  n, and r t (x,Y,D) > 
r °<,i)(yiY>D) for  at  least  one i  G {1. ·  ·  ·  ,n\ .  

Thus, under positions within the lifiear orders >, on Y, x(Y,D)y if and 
only if 

(1) the number of first-place votes for χ is as great as the number 
of  f irst-place votes  for  y,  

(2) the number of first and second-place votes for χ is as great as the 
number of  f irst  and second-place votes  for  y,  

(3) the number of first and second and third-place votes for χ is as 
great as the number of first and second and third-place votes 
for  y,  
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and so forth, with "as great as" replaced by "greater than" in at least 
o n e  o f  ( 1 ) ,  ( 2 ) ,  ( 3 ) ,  . . . .  

A specific example of this was stated before (12.1) by situation 2, 
where y(Y,D')x. 

DEFINITION 13.4. A social choice function F: 9C X !D —> SC satisfies the 
condition of permuted dominance if and only if, for all Y G SC and 
D G 33» if the restriction of every >, on Y is linear and 

if x{Y,D)y, then y F(Y tD). 

If every >, on Y is linear and if x(Y,D)y, then it is clear from the 
definition of x(Y,D)y that r(x,Y,D) > r(y,Y,D). Hence the Borda 
social choice function satisfies the condition of permuted dominance. 
Example (12.1) shows that this condition does not generally hold for 
Condorcet social choice functions. 

REDUCTION AND PERMUTED DOMINANCE 

The reduction condition is based on the usual dominance »x>, 
whereas permuted dominance is based on interindividual positional 
information. An interesting incompatibility between these conditions 
is brought out by the following lemma, which says nothing directly 
about Condorcet and Borda functions, but which indicates in a more 
general way the conflicting philosophies of the two positions. 

LEMMA 13.1. Suppose that F:X X 3D —> 9C is a social choice function, 
that 3D contains all η-tuples of linear orders on X but need not contain any 
other η-tuple of strict partial orders on X, and that η > 4 and jfX > 4. 

Then F does not satisfy both the reduction condition and the condition of 
permuted dominance. 

Proof. Let the hypotheses of the lemma hold. If fX > 4, let w denote 
all but four alternatives (x,y,a,b), arranged in a linear order. Consider 
η = 4 first, with D as follows: 

1. χ a y b w 
2. χ a y b w 
3. y b χ a w 
4. y χ a b w. 

Take Y = {x,y,a,b], and suppose that both the reduction and per
muted dominance conditions hold. Since χ »κ α and y »b b, the reduc
tion condition implies that neither a nor b is in F( Y,D), and that F( Y,D) 
= F(Y - \a},D) = F(Y - \b},D) = F(Y - {a,b\,D) = F({x,y\,D). 



F R O M  B O R D A  T O  D O D G S O N  

Since x(Y,D)y,  permuted dominance says that y  F(Y,D).  Moreover, 
since y(Y — {a},D)x, as is seen by deleting a to give 

1.  χ  y  b  
2. χ  y  b  
3. y  b  χ  
4. y  χ  b,  

χ  F(Y — \a\ ,D)  and therefore χ  ξ? F{Y,D).  But then no one of a,  
b, y, and χ is in F(Y,D), contradicting the definition of a social choice 
function. . 

If η is even and greater than four, we simply add the orders 
xyabw and yxabw in equal proportions to the original list of four 
orders. 

Suppose next that η = 5. Taking w at the bottom of every linear 
order, let the rest of D be 

1.  χ  a  y  b  
2. χ  a  y  b  
3 .  y  b  χ  a  
4 .  y  b  χ  a  
5. 6 χ  y  a .  

Then x(Y,D)y,  x(Y,D)b and x^> D  a so that, if both reduction and 
permuted dominance hold,  then F(Y,D) = {x}  and F{Y,D) = 
F(Y — {a},D). But y(Y — {a),D)x, so that x(£F(Y,D). Hence 
F(Y,D) = 0, a contradiction. 

If η is odd and greater than five, add the orders xyabw and yxabw 
in equal proportions to the preceding list. This will not affect the 
conclusion. • 

QUESTIONS ABOUT SUMS 

Several questions naturally arise when one suggests that a choice 
set be determined by summing individual rankings or utilities as in 
(13.3). One question asks whether any such procedure is applicable. 
Another asks how the individual utilities ought to be specified or 
determined, given that some summation procedure might be applicable. 

As could be expected, there are many opinions on these questions. A 
number of these lie outside the present situational context in which we 
presume that simple majority is felt to be appropriate for the binary 
choices  in  F.  

Within this situational context, persons who like the Condorcet 
position will be likely to reject a summation procedure, at least when 
it is suggested that the choice set be based solely on utility sums. Those 
who favor a summation or positional approach may feel that some-



13.3  CONDORCET FUNCTIONS 

thing like the Borda function should be used, especially if they agree 
to conditions such as anonymity and neutrality. But "something like 
a Borda function" leaves open a huge number of specific possibilities, 
some of which were mentioned earlier in this section and in section 12.1, 
and it is quite possible that different ones of these might seem appropri
ate for different types of situations. 

The Condorcet position also leads to a wide variety of specific choice 
functions since the weak Condorcet condition does not say anything 
about the choice set when P(YtD) is empty. We now consider some of 
these. 

13.3 CONDORCET FUNCTIONS 

The Condorcet social choice functions divide rather naturally into 
those that base F(YtD) solely on PD, and those that do not. We shall 
consider one function in the former category and two in the latter. 
Other Condorcet functions may occur to you as you read this section. 

Our first function, which is suggested by Black (1958, p. 66), takes 
F(YtD) = P(YtD) if P(YtD) ^ 0, and if P(YtD) = 0 then F(YtD) is 
determined by the Borda function of (13.3). I shall refer to this mixed 
Condorcet-positional function as Black's function. There are obviously 
many modifications of this procedure, and we shall not discuss these 
here. 

To illustrate Black's function, suppose first that η  = 5, X = 
{xty,ztw} and D is given by the linear orders 

1.  χ  y  ζ  w  
2. w χ y  ζ  
3 .  w  χ  y  ζ  
4. y  ζ  χ  w  
5. y  ζ  χ  w .  

Then P D  is linear with xPoyPozPow,  so that every F(Y t D) for Black's 
function is determined by the weak Condorcet condition. 

Now let D'  be obtained from D by changing order 2 (wxyz)  to wzxy.  
Then PD' is given by the directed graph of Figure 13.1. This shows that 
Black ' s  funct ion  i s  determined by  P(Y t D r )  except  for  X and \x ,y ,z} t  

f o r  w h i c h  t h e  B o r d a  f u n c t i o n  g i v e s  F ( X t D r )  =  F ( { x , y t z \ , D r )  =  { y j .  
Although the change in order 2 did not change the order or adjacency 
o f  χ  a n d  y ,  B l a c k ' s  f u n c t i o n  g i v e s  F ( X t D )  =  { x \  a n d  F ( X t D r )  =  j y  ( .  

One can readily verify that Black's function is strongly monotonic 
in the sense of (12.5), and dual (Definition 12.5). It does not satisfy 
the reduction condition, although an obvious modification does. 
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FIGURE 13.1 

COPELAND'S FUNCTION 

The second Condorcet social choice function that we shall examine 
bases F(Y,D) solely on PD. Since it has been suggested by Copeland 
(1950) [or see Goodman (1954)] as a "reasonable" method of determin-
ing social choices, we shall refer to it as Copeland's function. Let 

Yand ' and 

so that s(x,Y,D) is the number of alternatives in Y that x has a strict 
simple majority over, minus the number of alternatives in Y that have 
strict simple majorities over x. Copeland's function then takes 

for all y (13.4) 

When n is odd and all n-tuples in 2D are n-tuples of linear orders, there 
is an equivalent way of looking at Copeland's function. If 
take and if for 
some x E Y, take F(Y,D) = (Y — If this union is 
empty, take I D(Y — D) unless this new union 
is empty, and continue in the obvious way until a nonempty union 
is obtained. Under linear orders and odd n, this F is identical to Cope-
land's function. 

Although Copeland's function obviously satisfies the weak Con-
dorcet condition, it does not satisfy the Condorcet condition, as is 
shown by the following D on Y = with n = 4: 

1. x y a b c 
2. x y b a c 
3. c b a x y 
4. y a c b x. 

For this example, R(Y,D) = {x}. However, the s values of x, y, a, b, c 
are 1, 2, 0, —1, —2 respectively, so that the Copeland function selects 
y. The Borda and Black functions also select y. 

170 
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An interesting comparison between the Copeland and Borda func
tions is given by the following nine-voter D : 

4 voters. y χ a c b 
3 voters. b c y a χ (13.5) 
2 voters. χ a b c y. 

P ( Y Y D )  = 0, with P D  as shown in Figure 13.2. The s value at each 
point in the figure is obtained by subtracting the number of lines 

- 2  

y χ 

FIGURE 13.2 

directed into the point from the number of lines directed away from 
the point. Since χ has the largest s value, Copeland's function selects x. 
O n  t h e  o t h e r  h a n d ,  t h e  B o r d a  f u n c t i o n  c h o o s e s  y .  T h u s  t h e  w i n n e r  ( x )  
based solely on simple majority comparisons loses by a 7 to 2 majority 
to the winner (y) determined by a positional approach. 

A COMPUTER COMPARISON 

Although our examples are designed to "bring out the worst" in 
various methods and to highlight the differences between methods, 
there may be some question about how really different several func
tions might be. For example, we may suspect that the Borda and 
Copeland functions will yield the same choice set in a large percentage 
of possible cases. 

To examine this suspicion, a computer was programmed to com
pare the Borda and Copeland functions. For each (n,m) pair with 
M = FX, the computer generated, by uniformly distributed random 
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numbers, 1000 η-tuples of linear orders on X ,  and determined F ( X 1 D )  
for each rc-tuple according to the two functions. Table 13.1 shows the 

TABLE 13.1 

NUMBER OF CASES OUT OF 1000 CASES (FOR EACH n,m) WHERE 
THE BORDA AND COPELAND FUNCTIONS HAD A COMMON ALTER

NATIVE IN THEIR CHOICE SETS 

m — §X 
3 4 5 6 7 8 9 

3 1000 979 945 940 918 920 892 
5 991 964 944 926 898 880 865 
7 983 952 933 909 894 876 865 
9 974 947 915 914 862 886 861 

η 11 962 941 915 905 884 855 857 
13 962 941 910 902 889 879 842 
15 964 931 914 890 890 867 850 
17 942 924 898 868 867 856 838 
19 950 922 894 876 883 863 844 
21 946 914 888 865 865 866 840 

number of cases for each (n,m) pair for which the choice sets for the two 
functions had an element in common. Generally speaking, the number 
of cases with a nonempty intersection for the two choice sets decreases 
as either η or m increases. The smallest percentage agreement ob
tained was 83.8 percent for (n,m) = (17,9). 

For m  = 3, about 85 percent of the cases enumerated in column 1 
of the table had identical choice sets for the two functions. At the 
other extreme, for τη = 9, about 70 percent of the cases enumerated 
in the final column had identical choice sets. Moreover, these per
centages did not vary significantly for changes in n. For example, of 
the 892 agreeing cases for (η,πι) = (3,9), 648, or about 73 percent, 
had identical choice sets. For (n,m) = (21,9), 584, or about 70 percent 
of the 840 agreeing cases, had identical choice sets. 

DODGSON'S INVERSION METHOD 

To simplify the discussion of our final function we shall assume 
henceforth that 2D is the set of all η-tuples of linear orders on X. 

Our final function is based on C. L. Dodgson's idea of taking inver
sions in the orders in D, and will therefore be referred to as Dodgson's 
function. Let Li and L2 be two linear orders on X. In going from 
L1 to L2 an inversion occurs whenever, for any x,y G X, xLtf and 
yh%x. The total number of inversions equals the number of ordered 
pairs (x,y) G X2 for which xLiy and yL2x. For example, if Li is abcxy 
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and L2 is axbcy,  then two inversions are involved: from bx to xb and 
from cx to  xc.  

Given (Y t D) let t (x,Y,D) be the fewest number of inversions re
quired in the linear restrictions of the >,· on Y so that we obtain a 
D' for which P(Y,D') = {x}. Then Dodgson's function is defined by 

F(Y tD) = {x:x  G Υ and t (x,Y,D) < t(y,Y,D) for all y E Y\.  

If P(Y,D) 0  then t(P(Y,D),Y,D) = Oand F(Y,D) = P(Y t D).  There
fore Dodgson's function is a Condorcet social choice function. 

For (13.5), the least number of inversions that will cause χ to have 
a strict simple majority over each other alternative is three. These 
three inversions interchange y and χ in three of the first four orders in 
(13.5). Hence t(x,Y,D) = 3. Similarly, t(y,Y,D) = 2 (change one of 
the bcyax orders  to  ybcax).  Since the invers ions  required for  each of  a,  
b and c exceed two, Dodgson's function selects y in (13.5). This is 
also the Borda and Black selection, but it differs from the Copeland 
result  (x).  

Because Dodgson's function does not rely solely on P D  for its com
putation, it joins Black's function in the category of Condorcet social 
choice functions that are not based solely on PD. However, since 
Dodgson's function is based on strict simple majorities under inver
sion, it appears to be intermediate between the Black and Copeland 
functions. 

Our final example shows that each of the three functions defined in 
this section can give a different result in the same situation. Let 
η = 3, jfX = 9, with D as follows: 

1  . a z c y x b f e d  
2 .  x d b a e f y  z c  
3. y z b x c a e d f .  

We might suppose that a three-man board of commissioners, com
posed of a Democrat, a Republican, and an Independent, is charged 
with selecting one of nine land-use plans for a certain area within 
their domain. Alternative χ represents the parkland proposal, y stands 
for the airport plan, ζ is a residential development scheme, and the 
other six alternatives refer to other proposals. The overall preferences 
of the commissioners are given by D. As one can easily verify, Black's 
function selects the parkland proposal, Copeland's function selects the 
airport plan, and Dodgson's function picks the residential develop
ment scheme. 
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Conditions for Social Choice 

ALTHOUGH OUR FOCUS thus far has been on special types of situations, 
it should be clear that most of the conditions for social choice functions 
that we have used apply, either as stated or in modified form, to a 
general study of social choice functions. To impart a degree of organi
zation to our general study we shall begin Part III by sorting the many 
conditions into a few easily recognized classes. It is hoped that this 
classification will help the reader to better understand and interrelate 
the various topical divisions of this book and related studies. 

It has long been recognized that the isolation of specific conditions 
facilitates a deeper analysis of social choice procedures. This analytic 
approach is complemented by the synthetic approach, which considers 
various combinations of conditions. In some cases a combination of 
conditions will serve to characterize a certain set of social choice func
tions, and such a combination may imply other conditions. In other 
cases, the conditions in a certain combination will be mutually incom
patible, thus giving rise to an "impossibility theorem." Theorems of 
this sort are useful in illustrating conflicting philosophies about "rea
sonable" choice procedures. An example is Lemma 13.1. Others are 
noted in Chapter 16. 

Both the analytic and synthetic approaches have been used exten
sively in Parts I and II, and they will continue to play an important 
role in the rest of the book. Our first general synthetic investigation of 
Part III comes in sections 14.3 and 14.4, where we shall generalize the 
analysis of single-peaked and triple conditions of Chapters 9 through 11 
along the lines developed by Murakami (1968, pp. 124-129), Sen and 
Pattanaik (1969), and Pattanaik (1970). 

14.1 A CLASSIFICATION OF CONDITIONS 

To provide an initial overview and summary, the classification that 
will be used here is set forth in Table 14.1. As can be seen, the condi
tions have been divided into three major classes. The third class, which 
is the most extensive, has been divided into two main subclasses, each 
of which is further divided into two parts. We shall return to these in 
the next section. 
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STRUCTURAL CONDITIONS 

The first class, here referred to as the class of structural conditions, 
deals with the structure of the sets on which F is defined. These con
ditions provide the prerequisites for a proper definition of a social 
choice function, serving to identify the domain on which F is to be 
defined. 

TABLE 14.1 

A CLASSIFICATION OF CONDITIONS 

A. Structural. Nature of sets on which F is defined. 
Examples. X is finite and §X > 3; 9C is the set of all nonempty subsets 
of Χ; η is an integer and η > 2; 3) is the set of all η-tuples of strict partial 
orders on X. 

B. Existential. Conditions on F that use existential qualifiers. 
Examples. Condition of decisive majority coalitions (Def. 4.2); Non-
dictatorship conditions; Every voter is essential. 

C. Universal. Conditions on F that don't use existential qualifiers. They are 
to apply for all applicable structural configurations. 
1. Intraprofile. Consider one D at a time. 

la. Active. Involve specific conditions on contents of D. Examples. 
Unanimity (Def. 7.2); Reduction (Def. 12.2), Permuted Domin
ance (Def. 13.4); Decisiveness (Def. 6.1). 

lb. Passive. Don't say anything about contents of D. Examples. 
FD is transitive; F(Y,D) (ι:ι£ Y and y FD Χ for no y G Y\ 
when {a:: . . .} Pi 0. 

2. Interprofile. Consider more than one D at a time. 
2a. Two-profile. Monotonicity (Def. 13.1); Duality (Def. 12.4); 

Neutrality (Def. 13.2); Anonymity (Def. 13.3); Independence 
(Def. 12.3). 

2b. Multiprofile. Representative system condition (Def. 4.3); 
Strong duality (Def. 5.2); Condition B of section 6.3. 

As we have noted before, three sets need to be specified for the defi
nition of F: the set 9C of potentially feasible sets of social alternatives; 
the set of voters or individuals; and SD, the set of admissible data 
points that describe potential preference profiles. With X the universal 
set of alternatives, we require at the minimum that X be nonempty. 
In specific cases we may wish to further restrict X, by conditions such 
as finiteness or §X > 3. 

Likewise, a minimum restriction for 9C is that it contain only non
empty subsets of X and not be empty. Some other conditions for 9C 
are: 9C contains every finite subset of X\ for every i£X there is a 
Y G 9C such that χ G Y; if Y,Z G 9C then Y Z ξΕ X; SC U {0} is a 
Boolean algebra with unit X. The last of these means that X G 9C and 
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that 9C W j 0} is closed under complementations (if Y G 9C then 
X — Y G 9C yj {0}) and finite unions (if Y,Z G 9C then FUZG 9C). 

In almost all cases we assume for obvious reasons that the number 
of individuals is a positive integer. To have an explicitly social situa
tion we can specify that η > 2. On occasion one might indulge in the 
fantasy of supposing that the number of voters is infinite, in which case 
D G SD can be viewed in a general way as a function that assigns a 
preference order to each individual in the infinite set. 

Throughout Part III we shall continue to suppose that D is a non
empty set of η-tuples of strict partial orders on X. (The general view 
of D just mentioned can be used regardless of the size of the set of 
voters; it is equivalent to the «-tuple specification in the finite case.) 

Some conditions for SD place restrictions on individual orders that do 
not limit acceptable mixes of orders in any further way. An example of 
such a condition is: each component of every D G SD is a weak order on 
X. Other conditions for SD are interindividual conditions which gener
ally prohibit SD from being written as a Cartesian product of η sets of 
orders. An example is: D is the set of all n-tuples of strict partial orders 
on X for which (X,D) is single peaked. 

When we deal with expected utilities in the final chapter, additional 
conditions will be specified for the individual preference orders. 

SOCIAL CHOICE FUNCTIONS 

For our general definition, let <P(X) be the power set of X, or the set 
of all subsets of X. 

DEFINITION 14.1. F: 9C X 2D —> (P(A') is a social choice function if and 
only if SC is a nonempty set of nonempty subsets of a nonempty set 0C, 
SD is a nonempty set, and F(Y,D) is a nonempty subset of Y for each 
(Y,D) G 9C X SD. 

Throughout Part II we used 9C in place of (P(A) since we assumed 
that 9C contained all nonempty subsets of X. However, if 9C is restricted 
in some way, we leave open the possibility that a choice set may not 
itself be a feasible set in 9C although it must be a subset of a feasible set. 
The many conditions for social choice functions that were presented in 
Part II modify in an obvious way under the general definition. 

The general definition of a social choice function obviously imposes 
certain minimal conditions on the behavior of F, namely 0 T i  F(Y tD)C 
Y. Some writers omit the nonempty feature of F(Y,D) from the defini
tion and use a separate condition (sometimes referred to as "decisive
ness," which should not be confused with decisiveness as defined in 
Definition 6.1) to specify that F(Y,D) must not be empty. 
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EXISTENTIAL CONDITIONS 

All conditions in the existential and universal classes restrict the 
allowable behavior of F in some way. The existential conditions are 
based primarily on existential qualifiers ("there exists . . although 
they may also use universal qualifiers ("for all . . The universal 
conditions either do not use existential qualifiers in any way, or else 
they use such qualifiers in a secondary manner. Although this allows 
some question about the appropriate classification of a few conditions, 
the examples that we shall use should clarify the general intention of 
the two classes. 

Most existential conditions definitely assert the existence of certain 
elements in the sets used to structure the definition of F and may them
selves impose structural conditions. A case in point is the following 
nonimposition condition: 

there is a Y G SC and D,D' G 35 such that F(Y,D) ^  F(Y,D').  

This requires some Y in SC to contain at least two alternatives, and it 
implies that SD has more than one element. A related condition, which 
also has no universal qualifiers, is an essentiality condition: 

there is an i  G {1, . . . ,n}, a Y G 9C and D,D' G 3D such that 
D j  = W1  for all j  * i and F(Y,D) ^ F(Y tD t).  

This clearly implies the preceding nonimposition condition, and it 
requires the presence of a pair of elements in SD that differ in only one 
component. 

Many of the conditions here referred to as existential can be viewed 
as negations of simple universal conditions. For example, if F is 
constant means that F(Y,D) — F(Y,D') for all (Y,D), (Y,D') G 9C X £>, 
then the nonimposition condition given above says that F is not con
stant. The condition of constancy is a universal interprofile condition: 
its negation is an existential condition since it requires the presence of 
certain elements with specified properties. 

An existential condition with a universal qualifier is the following 
nondictatorship condition: 

for every i  G {1, · . · ,n] there are XiJi G X and D i  G 3) such 
that X i  > 1  y  and y l  G F ( I x iJi) iD i).  

This can also be stated in the familiar form: "if i  G {1, · · · >«} then 
there exist Xi

iJi G X • · • ·" 
The final condition that we shall use as an example of an existential 

condition does not definitely assert the existence of certain elements 
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because its first universal would never apply if there were no essential 
voter. It is the condition of decisive majority coalitions given by 
D e f i n i t i o n  4 . 2  w i t h  X =  { x , y } :  

for every nonempty JC {1, . . . ,n} that contains an essential i  
and for every integer m for which jfJ/2 < m < §J, there exists 
a n  I  C  J  s u c h  t h a t  J f I  =  m  a n d  I  i s  d e c i s i v e  f o r  χ  o v e r  y  w i t h i n  J .  

The existential conditions are somewhat less plentiful than the uni
versal conditions that we shall now examine. 

14.2 UNIVERSAL CONDITIONS 

Universal conditions are usually written in either the form "if such-
and-such hold, then F has such-and-such properties" or "for all things 
that satisfy such-and-such, F has such-and-such properties." Our sub
divisions of this class depend on the number of elements in SD that are 
involved in each F statement and, in one case, on whether any
thing specific is supposed about the element in SD that appears in the 
condition. 

The main division of universal conditions depends on whether more 
than one D is actively involved in the statement of the condition. 
Those with only one D are called intraprofile conditions; the others 
are interprofile conditions. Both subclasses are very important. 

INTRAPROFILE CONDITIONS 

The intraprofile conditions further divide in a natural way into con
ditions which assume certain specific properties for the components 
of D, and those that do not. We refer to the former as active intra
profile conditions; the latter are passive intraprofile conditions since 
t he y  s ay  no th ing  abou t  t he  con t en t s  o f  D.  

Three active intraprofile conditions are decisiveness (Definition 6.1), 
unanimity, and reduction: 

if D T i  (0,0, . . . ,0) then F(D)  ^  0; 
if x , y  G Y ,  if Y G SC, if D G and if χ  y , > D  y ,  then y  ̂  F ( Y , D ) ;  
i f  x , y  G  Y ,  i f  Y  G  9 C  a n d  Y  —  { y }  G  9 C ,  i f  D  G  £ > ,  a n d  i f  Χ  > D  y ,  
t h e n  F ( Y t D )  =  F ( Y  -  { y } , D ) .  

Another active intraprofile condition is the condition of permuted dom
inance in Definition 13.4. In the next section we shall discuss some 
other active intraprofile conditions that are closely related to inde
pendence, neutrality, and some of the other interprofile conditions. 
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Within the two-alternative context of Part I, the strong decisiveness 
condition (if D G 2D then F(D) ^ 0) is a passive intraprofile condition 
although its decisive counterpart as noted above is active. Like strong 
decisiveness, the other passive conditions make categorical assertions 
about  F for  a  gener ic  D G SD, regardless  o f  the  speci f ic  nature  of  D.  
Assuming that 9C contains all two-element subsets of 9C so that FD as 
in (7.9) is conceptually well defined, the following are samples of 
passive intraprofile conditions: 

if D G 3), then F D  is a suborder; 
if D G 2D, then FD is a weak order; 
if D  G ® and Y  G EC and if (Ϊ : Χ  G 7and y F D x  for noy G Y }  is 
a unit subset of Y ,  then F ( Y , D )  equals this unit subset. 

Another passive condition that we have not explicitly considered thus 
far is: 

if D G 25, if Y,Z G 9C and if Y C Z and Y ΓΛ F(Z,D)  ^ 0 then 
Y H F ( Z t D )  C F ( Y , D ) .  

This says that, if Y is a subset of Z and if the choice set from Z under 
D contains at least one element in Y, then each such element must be 
in the choice set from Y under D. We shall examine this and related 
passive intraprofile conditions in the next chapter. 

INTERPROFILE CONDITIONS 

Because interprofile conditions relate choice sets for different pref
erence profiles that might obtain, they occupy a very central position 
in social choice theory. A typical study of choice functions might con
centrate on a function from 9C into (P(X). Social choice functions are 
essentially systems of choice functions, since F: 9C X £)—> (P(X) can 
be viewed as a set of choice functions F(-,D), one for each D in an 
index set 2D. The thing that distinguishes the study of social choice 
functions from other systems of choice functions that are defined on 
the same set 9C is the nature of the index set D, and it is this nature 
that gives rise to the particular interprofile conditions that are used in 
the theory. 

For interprofile conditions we do not make a distinction between 
active and passive conditions since all the interprofile conditions that 
we shall consider are essentially active. That is, the two or more D's 
that appear in the statement of an interprofile condition will be re
lated in a specific way. 

Most of the common interprofile conditions use just two profiles at 
a time. This subclass includes the various monotonicity conditions, 
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along with the following conditions of duality, neutrality, anonymity, 
and independence from infeasible alternatives: 

if Y G 9C and if D and its dual D* are in 3) then 
F(YtD) ΓΛ F(YtD*) G {0,^}; 

if σ is a permutation on X T  if D  and D "  (obtained from D t  

componentwise, by σ) are in SD, and if Y and σΥ are in 9C, 
then F ( a Y t D ° )  =  aF(Y ,D) ;  (14.1) 

if σ  is a permutation on {1, . . . , n ] ,  if D  — (> l t  .  .  .  ,>„)  
and D t  = (>„(i), . . . ,>*(»)) are in 2D, and if Y G SC, then 
F(YtDr)=F(YtD)-, (14.2) 

if Y G 9C, if D t D t  G 2D, and if the restriction of D on Y 
equals the restriction of D' on Yt then F(YtDt) = F(YtD). (14.3) 

The final subclass, the multiprofile conditions, contains several con
ditions used in Part I, but explicit multiprofile conditions were not 
used in Part II. The three conditions from Part I that use more than 
two Z)'s in certain cases are noted at the bottom of Table 14.1. It is 
of some interest to recall that each of these three was used in con
nection with the Theorem of The Alternative, Theorem 3.2, in an 
analysis involving the existence of a solution for a set of linear in
equalities. In the case of the special condition for representative sys
tems (Definition 4.3), the Theorem of The Alternative was not applied 
directly to condition RS. 

Multiprofile conditions and the Theorem of The Alternative will be 
used again in Chapter 17. 

14.3 SPECIAL ACTIVE INTKAPBOFILE CONDITIONS 

In the preceding section we noted that interprofile conditions serve 
to interrelate different choice functions F(-tD) :9C —> (P(A^) for the 
various D G 2D. These conditions have some interesting and powerful 
implications, provided that 9C and SD are sufficiently rich. However, if 
fairly strong restrictions are placed on our basic sets, many of these 
implications cannot be derived due to a lack of structure. 

A natural course to take in such restricted contexts is to modify 
the interprofile conditions such as neutrality and anonymity so that 
the modified versions will serve the intended purposes within the given 
structure. In other cases, such as when our primary interest is in a 
study of the binary relations FD , it will suffice to introduce active 
intraprofile conditions that preserve much of the spirit of certain 
interprofile conditions. 
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To illustrate the latter course and to prepare for an analysis related 
to that in Chapters 9 through 11 that is given in the next section, we 
shall consider several specialized active intraprofile conditions. 

FIVE ACTIVE INTRAPROFILE CONDITIONS 

Of the five active intraprofile conditions that we shall present, three 
are based on previously introduced concepts. These are 
for all for all for some i), and xRDy 
(x ties or beats y by simple majority). One new relation is needed: 

(for each 

Thus, (x,y) >D (z,w) if every person who prefers z to w also prefers 
x to y, and if every person who likes z as much as w, also likes x as 
much as y. From > f l we define = D as follows: 

and 

The proof of the following is left to the reader. 

LEMMA 1 4 . 1 . (for each , and 

We recall that The five condi-
tions are summarized in the following list. Condition Ak holds if and 
only if the given statement holds for all 
and all D 

All of these hold if F agrees with simple majority, and all but A5 agree 
with any fixed representative system. Collectively, they do not imply 
that F agrees with simple majority. Each has a fairly straightforward 
interpretation that should be evident from its statement. The following 
lemma shows that they are not independent of one another. 

LEMMA 1 4 . 2 . 

Proof. If then and by 
definition, and and (w,z) r Lemma 14.1. It 
then follows that A3 => A2. If x =D y then so that A2 
and the asymmetry of FD imply Al . Since x 
Since _ The proof that A3 A4 
is left to the reader. 
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DERIVATION FROM INTERPROFILE CONDITIONS 

We shall now observe that sufficiently rich structural conditions and 
several two-profile conditions imply the active intraprofile conditions 
A 1 - A 5 . The interprofile conditions that we shall use are independence 
( 1 4 . 3 ) , neutrality ( 1 4 . 1 ) , monotonicity (Definition 1 3 . 1 ) , and anonym-
i t y ( 1 4 . 2 ) . 

T H E O R E M 1 4 . 1 . Suppose that 2D contains all n-tuples of strict partial 
orders on X and that F: 9C X 33 —> (P(9C) is a social choice function. Then 

F is independent and neutral => Al , A2; 
F is independent, neutral and monotonic => A3, A4; 
F is independent, neutral, monotonic and anonymous A5. 

Proof. Al . Assume that F is independent and neutral andthat i = » y 
and k ,„ , Contrary to A l suppose that 
= x and <j(t) = t otherwise. Then, by neutrality, yFD«x. But by inde-
pendence (since x =DJ), a contradiction. 
Hence, jiot xFDy. Similarly, not ytnx. Therefore f(\x,y\,D) = 

A2. Assume that F is independent and neutral and that 
[z,w] G 9C and (x,y) = D (z,w). Suppose first that xFDy. Then 
and by Al , for some i. Therefore z > , w or 
for some i so that 
and <r(t) = t otherwise. Then zFjfw by neutrality. By independence, 
zFdW since the restriction of D on {z,w} equals the restriction of D" 
on {z,w\ according to A and (x,y) Hence xFDy ==> ZFDW. 

The other implications in the conclusion of A2 are proved similarly. 
A3. Assume that F is independent, neutral, and monotonic and 

that (z,w) and ZFDW. If (x,y) = D (Z,W) 

then the conclusion xFoy follows from A2. Henceforth assume not 
(x,y) = D (z,w), so that either and w >, z for some i or i >; y 
and w >, z for some i. Let D' be obtained from D by moving x "down" 
in each such order so that (x,y) = D ' (z,w), and let D" be obtained from 
D by moving y "up" in each such order so that (x,y) = D" (z,w). By 
independence, zFD'W and ZFD"W. Then, by A2, xFD.y and xFwy-
In going back from D' to D, x is moved "up" in certain orders and 
therefore, by monotonicity, In 
going back from D" to D, y is moved "down" in certain orders and 
therefore, by the other part of monotonicity, y 

. Therefore xFoy. 
A4. This follows from the preceding proof since A3 =>• A4. 
A5. Assume that F is independent, neutral, monotonic, and 

anonymous and that E 9C and xRDy. If xIDy, let D' = D. If 
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X P D J ,  get D '  from D  by moving χ  "down" in just enough orders with 
χ >, y to give χ ~t· y and XId'J· Then, by independence, neutrality, 
anonymity, and Lemma 5.1 (iii), χ G F({x,y},D'). Monotonicity then 
g i v e s  χ  E  F ( { x , y ) , D ) ,  s o  t h a t  n o t  y F D x . •  

14.4 RESTRICTIONS ON TRIPLES 

In this section we observe that certain structural and active intra-
profile conditions imply part or all of certain passive intraprofile 
conditions. The development is based on notions used in Chapters 9 
through 11. A sample corollary of the main theorem to be proved is: 

if 3C contains all two-element 
subsets of X, if (X1D) is single 
peaked for all D G D 

and if F: 9C X 2D —» (P(X) is 
a social choice function that 
satisfies A3 
then FD is transitive for every 
D e a. 

structural 

active 
intraprofile 

passive 
intraprofile 

To complete our preparations for Theorem 14.2, it is first necessary 
to recall the characterizations of the seven independent categories of 
section 10.2. These are summarized in Table 10.1 and in Table 11.1, 
but will be repeated here for our convenience. 

A slight change will be made in the definitions of section 10.2. We 
shall say that Dona triple {x,y,z\ is in category K if and only if every 
> in D that is not empty on {x,y,z j satisfies statement K in the follow
ing list (or satisfies a similar statement obtained by a permutation on 
{x,y,z} and/or by taking duals): 

I .  χ  ~  y  
II. ( y  >  χ  &  y  >  z )  or ( x  >  y  &  ζ  >  y )  or ( χ  ~ y & y  ~  z )  

III. ( x y ) z  o r  z ( x y )  or ( x z ) y  or y ( x z )  or ( y z ) x  or x ( y z )  
IV. x y z  or z y x  or ( x z ) y  or y ( x z )  

V. χ > y & ζ > y 
YI. x>y & ( x  >  y  o r  χ  >  ζ  o r  ζ  >  y )  

VII. y  >  χ  or y > ζ .  

Seven theorems, one for each category, are included in the following. 

THEOREM 14.2. Suppose that 9C contains every two-element subset of X, 
that D is a set of η-tuples of strict partial orders on X, that \x,y,z\ is a 
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triple in X  and that F :  9C X © —> V ( X )  is a social choice function. If, 
in addition, 

D on {x,y,z\ is in and F  satisfies then F D  on {x,y,z\ is 

category I Al a suborder 
category II A2 transitive 
category III A5 a suborder 
category IV A5 a suborder 
category V A4 a suborder 
category VI A3 a suborder 
category VII A3 transitive. 

The corollary stated earlier in this section follows from Theorem 
14.2 VII, since category VII covers the single-peaked as well as the 
single-troughed cases. The only other category that invariably gives 
a transitive FD when conditions on F that do not go beyond Al 
through A5 are used is category II. In the terms used by Sen and 
Pattanaik, these two categories comprise the triple condition of "value 
restriction." 

No essential change occurs in the conclusions of Theorem 14.2 when 
all > in every D are assumed to be weak orders. In particular, Lemma 
10.2 and Theorem 10.1 do not apply in the present context since the 
p r o o f  o f  L e m m a  1 0 . 2  d e p e n d s  e x p l i c i t l y  o n  t h e  a s s u m p t i o n  t h a t  F  
agrees with simple majority. 

However, even without assuming weak orders, the special limited 
agreement category VI' of section 11.1, characterized by 

VI'. χ > y, and χ > y if ~ on {x,y,z} is not transitive, 

gives rise to a transitive F D  on {x,y,z\ provided that one more active 
intraprofile condition is used. This condition is strong binary una
nimity, written here as 

A6. I > B Y = >  xFDy, 

whenever \x,y) £ 9C and Dga 

THEOREM 14.3. Suppose that the initial hypotheses of Theorem 14.2 
hold, that D on {x,y,z} is in category VI' and that F satisfies A3 and A6. 
Then Fd on {x,y,z] is transitive. 

Proofs: 
Let the initial hypotheses of Theorem 14.2 hold. We shall use the 

displayed characterization of each category in proving the assertion 
for that category. The stated conditions for F are assumed to hold in 
each case. 
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I. A1 implies not xFDy and not yFDx. Therefore neither 

i nor (14.4) 

and FD on {x,y,z} is a suborder. 
II. under the characterization of category II. Hence, 

by A2, yFDx yFDz and Hence xFDy & yFDz and yFDx 
& zFoy are impossible, and each of the other four hypotheses for 
transitivity clearly imply the transitivity conclusion. 

III. The nonempty orders on {x,y,z} allowed under category III 
are orders 7 through 12 on Table 10.1 (single indifference). We have 

, and xPDz 
Because of the symmetry of this category, 

it will suffice to suppose that FD is not a suborder with the first 
expression of (14.4) holding. Then, by A5, xFDy => xPDy and yFDz 
=> yPnz, so that addition and cancellation give 
which implies XPDZ. But, by A5, XPDZ => not ZFDX, SO that the first 
expression of (14.4) is contradicted. 

IV. The nonempty orders allowed under the characterization of 
category IV are 1, 6, 9, and 10, or xyz, zyx, (xz)y, and y(xz).Suppose 
first that the first expression of (14.4) holds. Then 
and under A5, so that, with 
and t9, addition and cancellation give Hi > n6, 
which implies XPDZ and hence not ZFDX by A5. Hence A5 implies that 
the first expression of (14.4) is false. By a similar proof, A5 implies 
that the second expression in (14.4) is false. Hence FD on {x,y,z} is a 
suborder. 

V. Given 1 for each order, A4 implies not yFox and 
not yFoz. Hence neither expression in (14.4) can hold. 

VI. Given for each nonempty 
order on {x,y,z}, A4 (implied by A3) implies not yFDx. Therefore, 
FD on {x,y,z} is not a suborder only if xFDy &yFDz & zFDx. As is easily 
checked, the characterization used here implies that ) and 

Hence, by A3, zFDx => zFDy and There-
fore c is false. 

VII. Given y > x or y > z for each nonempty order on \x,y,z], it 
follows from A3 that 

For example, for the only admissible orders with 
are (xy)z, xyz and some with and and for 
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each of these; and the only nonempty admissible orders with 
are and and , and for each 
of these. The six hypotheses for transitivity are 

then by (1). 
inconsistent by (1). 
t h e n b y (3). 
t h e n b y (2). 
then by (4). 
inconsistent by (2). 

VI'. (Theorem 14.3: A3, A6.) Given x y, and x y if is not 
transitive on {x,y,z\, we get ZFDX zFDy and yFoz xFDz under 
A3, as in VI above. Together, A l (implied by A3) and A6 imply 
not yFDx. These results cover all but the last of the preceding six 
hypotheses for transitivity: the first two carry through and the next 
three are inconsistent. Transitivity fails for the sixth case (zFDy & 
xFDz) only if not xFDy. Since x y for all orders, we can get not 
xFoy under A6 only if y for all orders. But the only two non-
empty orders under VI' that have are z(xy) and (xy')z, and A3 
on these implies that zFDy ZFDX, contradicting the hypotheses of 
the sixth case. 
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C H A P T E R  1 5  

Choice Functions and Passive 

Intraprofile Conditions 

A CHOICE FUNCTION is a function from a nonempty set 9C of nonempty 
subsets of a set X into the power set (P(X) of X, whose image for each 
Y G SC is a nonempty subset of Y. A social choice function can be viewed 
as a collection {F(-,D):D G SD} of choice functions. Although a dis
tinguishing feature of social choice theory is the interrelations among 
the F(-,D), a subsidiary part of the theory concerns the study of 
choice functions. 

Most of the sizable literature on choice functions has been developed 
apart from social choice theory, and it is impossible at this time to say 
how much of the general theory of choice functions will find its way 
into social choice studies. It is clear, however, that certain aspects of 
choice functions are relevant in social choice theory. The purpose of 
this chapter is to review some of these aspects. 

The study of a singular choice function is a natural setting in which 
to discuss certain intraprofile conditions. In particular, we shall exam
ine critically several passive intraprofile conditions. In this connection 
it should be said that much of the material on choice functions that 
we shall consider was developed in other contexts, such as revealed 
preference theory in consumer economics, and that our criticisms of 
various conditions from the social-choice viewpoint should not be 
taken as criticisms of these conditions in other contexts. 

15.1 ORDER CONDITIONS FOR CHOICE FUNCTIONS 

DEFINITION 15.1./:9C—> 9  ( X )  i s  a  choice function if and only if 9C 
is a nonempty set of nonempty subsets of X, and 0 9* f (Y) C Yfor every 
F E 9C. 

We shall be concerned with two types of conditions for a choice func
tion /: structural conditions on 9C, and conditions on / (referred to as 
/-conditions) that take the structure of 9C as given. A third type of con
dition, related to our existential class of section 14.1, is the existential 
/-condition, an example of which is if (Y) G 9C for all Y G 9C. 

In mathematics, a common/-condition i s i f ( Y )  is a unit subset of Y  
for every Y G 9C. In social choice this relates to strong decisiveness. 
Mirksy and Perfect (1966) review some of the literature on choice 
functions of this type. 
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A familiar structural condition is: SC contains every two-element 
subset of X. 

DEFINITION 15.2. A choice function/:9C —> (P(X) is binary if and only 
if 9C contains every two-element subset of X. 

In this section we shall focus on binary choice functions. This will 
enable us to make an immediate tie-in to intraprofile conditions that 
use the binary relation FD, where xFDy if and only if χ ^ y and 
F({x,y},D) = {x}. Sections 15.2 and 15.3 consider more general 
structures. 

PASSIVE INTRAPROFILE CONDITIONS AND /-CONDITIONS 

Given a binary choice function /: 9C —> (P(X), let/' be the binary 
relation on X defined by 

x f ' y  T i  y  and/({a:,y}) = { x } .  

Four obvious candidates for/-conditions coincide with the four order 
relations of section 7.2: 

1. f is a suborder 
2. f is a strict partial order 
3. f is a weak order 
4. f is a linear order. 

If any one of these holds and if Y G 9C is finite, then \  x : x  G Y  and 
yf'x for no y G Y\ is not empty. As in the case of the Condorcet 
conditions of Chapter 12, we can consider /-conditions like 

5. If Y  G 9C then f ( Y )  Q  { x : x  Ε :  Y  and y f ' x  for no y  G Y"} 
whenever {x: • • ·} ^ 0, 

regardless of whether any of the preceding /-conditions are adopted. 
Each /-condition has a corresponding passive intraprofile condition 

in the social-choice context. Conversely, every passive intraprofile 
condition has a corresponding/-condition. Thus there is a one-to-one 
correspondence between /-conditions and passive intraprofile condi
tions. Some of the/-conditions, such as 1 through 4 above, deal only 
with binary choices. Others, like 5, involve choices from larger sets. 

The corresponding passive intraprofile condition for condition 1 is: 
FD is a suborder for each D G 2D. For the passive condition 

for all triples [ x , y , z ]  C X  and D  G 3D, if a: G F { { x , y ) , D )  and 
y  G  F ( { y , z } , D )  t h e n  χ  G  F ( { x , z \ , D ) ,  

which is the same thing as saying that FD is a weak order for every 
Z) G 2D, the corresponding/-condition is condition 3 above. 
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The purpose of the rest of this section is to examine critically the 
binary/-conditions in the context of social choice theory. We shall deal 
mainly with the first of these (/' is a suborder) since it is the most gen
eral of the order conditions that are sometimes suggested as reasonable 
conditions for a social choice function. Our criticisms, many of which 
have been anticipated in Part II, will involve active intraprofile con
ditions for D G £>. In most cases the D that we shall use fall outside 
of the restricted categories used in section 14.4. 

CRITICISMS OF SOCIAL ORDER CONDITIONS 

Our first criticism of condition 1 above, or of its categorical corre
spondent "FD is a suborder for every D G SD," involves example 
(7.13) where individual indifference is not transitive. The active 
intraprofile condition involved in this case is strong binary unanimity: 

X  > D y  = > x F D y .  

This says that if {x , y} is the feasible set and if nobody prefers y  to χ  
and at least one person prefers χ to y then χ will be the social choice 
from {x,y}. As noted before, if η > 3 and fX > 3 then there are 
η-tuples D of strict partial orders on X such that FD is not a suborder 
when F satisfies strong binary unanimity. 

So as not to further "bias" our case with the use of intransitive 
individual indifference, we shall assume henceforth in this section that 
every individual preference order on X is a weak order. We maintain 
the assumption that every two-element subset of X is in 9C. 

Perhaps the oldest argument against a passive intraprofile condition 
such as "FD is a suborder (or weak order, etc.) for every D G 33" is 
the argument for simple majority. One version of this goes as follows. 
Suppose that there are situations in which you feel that the following 
apply: 

(i) X contains more than two alternatives, 
(ii) there are at least three voters, 

(iii) any η-tuple of weak orders on X might obtain, 
(iv) if in fact only two candidates turn out to be feasible, then the 

choice between, these two should be determined by simple 
majority. 

Then FD  cannot be a suborder for some D that qualifies under (iii). 
Put differently, if one feels that FD should always be a suborder, then 
one must categorically reject the unrestricted use of simple majority 
for binary decisions as in (iv) in all situations that satisfy (i), (ii), 
and (iii). 

Instead of simple majority, our third argument uses the weaker con-
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dition that x must be elected in a contest between x and y whenever 
x receives a sufficiently large proportion (such as 99 percent) of all 
available votes. With an the proportion that guarantees a winner in a 
two-alternative contest, we stop short of unanimity by requiring that 
a be less than unity. 

LEMMA 1 5 . 1 . Let Suppose that, for all 
whenever an. Then there is an X, n 

and n-tuple D of linear orders on X such that FD on X is not a suborder. 

Proof. The proof is a simple extension of the cyclic case where 
n = 3, fX = 3 and D = (xyz,zxy,yzx). Let n be the smallest integer 
that exceeds 1/(1 — a), let X = n with X = {xh . . . ,xn}, and take 

Then, according to the binary choice rule for F, since n — 1 > an, 

A slight modification of this method of proof yields the following 
companion of the preceding lemma. 

LEMMA 15 .2 . Let Suppose that, for all for 
which x y, xFDy w h e n e v e r n (i.e., binary unanimity) 
and that not yFox whenever an. Then there is an X, n 
and n-tuple D of linear orders on X such that FD on X is not a weak order. 

Proof. Theprototype example for this proof is ( 8 . 5 ) , which will serve 
when In general, let n equal the smallest integer that 
exceeds 1/(1 — a), let = n + 1 with and 
take D as follows: 

1. 
2. 
3. 

By unanimity, By the other rule for FD in the lemma, not 
, not . . . , not If FD were a weak order then 

the application of negative transitivity (section 7.1) to this string of 
negations would give not contradicting Hence FD is 
not a weak order. 

Another argument against FD being a weak order for all D 2D that 
appeals to some people is provided by Arrow's impossibility theorem 
(1963). This says that if F satisfies unanimity, independence from in-
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feasible alternatives, a nondictatorship condition and several inoffen
sive structural conditions, then FD cannot be a weak order for every D. 
(Weak orders for individuals are used in the theorem.) Because Arrow's 
theorem has played such an important part in the recent history of 
social choice theory, it will be presented in the next chapter along with 
a number of related impossibility theorems. 

15.2 INCLUSION CONDITIONS FOR CHOICE SETS 

In this section we shall examine /-conditions that do not directly 
rely on a binary relation and which presuppose no specific structure 
for 9C. As we shall see, these conditions have a close relationship to 
the /-conditions discussed in the preceding section. 

Our new conditions are all concerned with the relationship between 
/(F) and Y Γ\ f (Z) when F Q Z and Y,Z G SC. Their statements an
swer questions such as: Should an alternative y that is in the choice set 
from Z also be in the choice set from every subset of Z that contains y? 
Put more crudely: Should a "best" alternative in Z remain "best" if 
other alternatives are deleted from ZP 

We shall consider three conditions. The first two are discussed at 
length by Arrow (1959). The second and third are mentioned in Sen 
and Pattanaik (1969). They apply to all Y,Z G 9C. 

Bi. Y Q Z  a n d  Y  Γ Λ  f ( Z )  ̂  0 =>/(F) =  Y  Γ \  f ( Z ) .  
B2. Y  Q  Z = *  Υ Γ \ / ( Ζ )  Q f ( Y ) .  

B3. Y Q Z  a n d  f ( Y )  Π f ( Z )  *  0 =»/(F) Q  f ( Z ) .  

Let Y be a subset of Z with Y,Z G 9C. Then Bl says that if some ele
ment in the choice set from Z is in Y also, then the choice set from Y 
shall consist of all such elements. Condition B2 weakens this by only 
requiring that all alternatives in Y ΓΛ f (Z), if any, be in /(F). If 
F ΓΛ f (Z) 9½ 0, B2 permits/(F) to contain alternatives in F that are 
not "best" in Z. Condition B3 says that if some F choice is a Z choice 
then every F choice shall be a Z choice. 

There are other ways to state these conditions. Two of these for B2 
are 

B2'. Y Q Z=* Y- f(Y) QZ- f(Z). 
B2". F C Z  = >  f ( Z )  Λ (F - /(F)) = 0. 

The equivalence of these to B2 is left as an exercise. In the form of 
B2' or B2", B2 asserts that any alternative in F that is not "best" in 
F shall not be "best" in the superset Z of F. An equivalent expression 
for B3 is 

B3\ Y Q Z a n d  x , y  £ f ( Y ) = > [ x  G f ( Z )  « y G  f ( Z ) ] ,  
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which says that if two elements are in the choice set from Y then 
either both or neither shall be in the choice set from Z. 

As indicated in the preceding section, each of Bi, B2, and B3 has a 
corresponding passive intraprofile condition in social choice theory, ob
tained by replacing f(W) by F(W,D) throughout the given/-condition. 

THEOREMS 

The following theorem shows how the three conditions relate to one 
another. It does not presuppose any specific structure for 9C. The proof 
is very easy and is left to the reader. 

THEOREM 15.1. Bl <=* B2 & B3. 

The next theorem shows that Bl gives rise to conditions based on 
the binary relation f of the preceding section. 

THEOREM 15.2. Suppose that f: 9C —> ( P ( X )  is a binary choice function. 
Then Bl implies that 

f ( Y )  =  { x \ x  G Y and yf'x for no y G Y\ for all Y G SC. (15.1) 

I f ,  i n  a d d i t i o n ,  SC contains every triple in X ,  then f  on X  is a weak order 
if Bl holds. Finally, if f is a binary choice function and if (15.1) holds 
and f is a weak order then Bl holds. 

It should be observed that (15.1) applies regardless of whether Y is 
finite or infinite. For example, if Y = {χχ,χι, . . .} is denumerable 
then Bl and binary / forbid the following linear order on Y when 
Y G SC'• Xjf Xk whenever j > k. If the order held for f on Y then 
{x:x G Y and yf'x for no y G Y\ would be empty. 

We shall prove the final assertion of Theorem 15.2 first, by proving 
the following lemma. 

LEMMA 15.3. Suppose that f: 9C —» ( P ( X )  is a choice function and that 
there is a weak order f* on X such that 

f ( Y )  =  { x ' . x  G Y  a n d y f * x  f o r  n o  y  G Y} for all FGK- (15.2) 

Then Bl holds. 

Proof of the lemma. Let Y,Z G SC with YQZ and Y Γλ f(Z) ,½ 0. 
If t G Y ΓΛ f(Z) then not zf*t for all ζ G Z by (15.2), and therefore 
zf*t for no ζ G Y- Hence I G f(Y) so that Y ΓΛ f(Z) Qf(Y). Now 
take ί G f(Z) and suppose that y (Ef (Y). Then not tf*y, so 
t h a t  n o t  z f * y  f o r  a l l  ζ  G  Z  b y  n e g a t i v e  t r a n s i t i v i t y .  H e n c e  y  G  f ( Z )  
b y  ( 1 5 . 2 ) ,  a n d  t h e r e f o r e  f ( Y )  Q  Y  Γ Λ  f ( Z ) .  φ  

Proof of the theorem. For the first part of Theorem 15.2 let Bl hold 
for binary /. To verify (15.1) take Y G SC. Suppose first that yf'x with 
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for otherwise a contradiction of B1 Then x 
and is obtained. Therefore, with defined bv 

and for no y 

This requires since we have proved that 
by definition. Suppose next that 

Then, for any y 
which contradicts Therefore and hence 

by B l so that 
but that 

For the second part of the theorem let be an arbitrary 
To verify negative transitivity and suppose triple in 

we need Since then 
so that 

Theorem 15.2 looks somewhat fragmented. The following obvious 
corollary puts the matter in a simpler form. 

Suppose that COROLLARY is a choice function and 
, Then BL holds if and 

on X is a weak order and (15.1) holds only if 
that Y whenever 

For condition B2 we have the following companion of Theorem 15.2. 

THEOREM is a binary choice function then 
implies B2, and B2 implies that 

Y and for no 

If 9C contains every nonempty finite subset of 
choice function, and if B2 holds, then t on X is a suborder. 

Remark. Unlike the final assertion of Theorem 15.2, if / 
is a choice function, it 9C contains every nonempty finite subset oi 
and if f on X is a weak order and (15.3) holds, then it is not neces-
sarily true that B2 holds. To prove this, suppose that 

lor every two-Then and 
element subset of But for every larger subset, can be defined 

will not be violated. and however we wish 
In particular, we can take 
violate B2. 

and which 

Proof of the theorem. Let / be a binary choice function. Suppose first 
Then not 

Thus B2 holds. 
Then, and Suppose next that B2 holds and that 

holds and that. 

Therefore holds. and 
and that Assume that EC contains every nonempty finite subset o 

by 

1 9 6 

for all 

if 

by 
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/ is a choice function which satisfies B2. Suppose that 
If then i by B2, con-

tradicting xj-if 'x,. Hence, with for 
j = 1, . . . , m, which contradicts the definition of a choice function. 
Therefore is false, and / ' is a suborder. • 

DISCUSSION 

When viewed in the perspective of social choice theory, B l and B2 
have a certain intuitive appeal and indeed seem reasonable for some 
profiles D E 2D. However, since they imply conditions such as 1 and 3 
in the preceding section, they are liable to the criticisms given there. 
That is, there are some n-tuples of individual preference orders under 
which Bl and B2 may seem rather unreasonable. 

Although B3 supplements B2 to produce Bl , by itself it does not 
imply the types of conclusions stated in Theorems 15.2 and 15.3. In 
fact, B3 is trivially satisfied if / ( F ) is always a unit subset of X (in 
which case B2 is equivalent to Bl ) . Hence any criticism of B3 must 
use an f(Y) that is not a singleton. 

One example with B3 takes for every s in D. 
Given {x,y\ and {x,y,zJ in EC, it may seem reasonable to have 

| and 

which violate B3 since {x,y\ is not a subset of {x}. 
An example with linear orders that may cause some skepticism about 

B3 is obtained with and the following linear 
orders for D: 

1. x a y b c 
2. x c y a b 
3. x b y c a 
4. y a b c x 
5. y c a b x 
6. y b c a x. 

If X E 9C, a "popular" choice would be F(X,D) = {y}. However, if 
only x and y were feasible, then . may seem most 
appropriate since three individuals prefer x to y, and the other three 
prefer y to x. This would violate B3. 

1 5 . 3 STRUCTURES AND EXTENSIONS 

In Corollary 15.1 we observed that B l implies that / ' is a weak 
order that satisfies (15.1) provided that 9C contains all two-element 
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and three-element subsets of X .  What can be said about these things 
when 9C does not contain all such subsets? 

Consider first the following definition of /', which is consistent with 
our usage in the preceding section: 

x f ' y ^ x ^ y ,  {x,y} G 9C and f ( { x , y } )  =  {x}. 

If { x , y }  ξΖ 9C then not x f ' y  and not y j ' x ,  and clearly Bl need not imply 
that/' is a weak order or that (15.1) holds. However, it may be possi
ble to define another binary relation /* on X that agrees with /' in the 
sense that 

{ x , y }  E sc => (xf'y <=> xf*y), (15.4) 

and which is in fact a weak order on X .  Moreover, (15.2) might be 
true for /*, where (15.2) is 

f ( Y )  =  { x : x  G Y  and y f * x  for no y G for all 7 ζ 9C. (15.2) 

In this section we shall present two theorems that deal with the 
existence of such an /*. The second, which was proved by Richter 
(1966) and independently by Hansson (1968), gives an/-condition that 
is necessary and sufficient for the existence of a weak order /* on X 
that satisfies (15.2) regardless of the structure of 9C. Such an /* must 
of course agree with f as in (15.4) and is therefore an extension of /'. 

The new /-condition used in the second theorem will be referred to 
as B4: Richter (1966) calls it the Congruence Axiom. Since B4 implies 
a weak order /* that satisfies (15.2), we know by Lemma 15.3 that 
B4 implies Bi. Therefore B4 is a stronger condition than each of Bi, 
B2 and B3. On the other hand, if 9C contains every two-element and 
three-element subset of X, then, by Theorem 15.2, it follows that Bl 
implies B4 so that the two are equivalent under this structure for 0C. 

Before discussing B4 further we shall present a theorem, due to 
Hansson (1968), that focuses on the weaker condition Bi. In the con
t e x t  o f  B i ,  H a n s s o n ' s  t h e o r e m  s h o w s  w h a t  i s  r e q u i r e d  o f / : 9 C  — >  ( P ( X )  
to be able to define a weak order extension/* of/' that satisfies (15.2). 

EXTENSIONS 

Since the theorems of this section involve extensions of binary rela
tions and choice functions, several preliminaries are in order. The fol
lowing lemma concerns the extension of certain binary relations. 

LEMMA 15.4. If > on X is a strict partial order then there is a linear 
order >' on X such that > Q If > on X is reflexive and transitive 
(i.e. a "quasi-order" or "preorder") then there is a connected and tran
sitive binary relation >' on X such that > C >' and (x > y & not 
y > x) => not y >' x, for all x,y G X· 
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The first statement of the lemma is due to Szpilrajn (1930), as noted 
in section 7.2. A proof is given also in Fishburn (1970, Theorem 2.4). 
Recall from Chapter 7 that means that , for 
all x,y G X. 

The second part of the lemma is a variation of Szpilrajn's theorem. 
An explicit proof is given by Hansson (1968, Lemma 3). Since we have 
been dealing mainly with asymmetric and therefore irreflexive orders, 
it will be instructive to see how the second part of the lemma follows 
from the first part. 

Suppose then that > on X is reflexive and transitive. Reversing the 
process of definition used earlier, define ~ and > from > thus: 

As one can easily show, ~ is transitive and is therefore an equivalence 
on X, and and so that > is transitive 
and or 

With > ' as in the conclusion of the lemma, we claim that 
x y and x > y x >' y. If not x > y & not y > x, which can 
occur if > is not connected, then the extension > ' must have either 

With ~ an equivalence on X, let x, v, . . . denote equivalence 
classes in X/Define > i on by 

for some (and hence for all) x x and y 

It follows from above that _ on . ' is a strict partial order. There-
fore, by Szpilrajn's theorem, there is a linear order on . that 
includes > i. Let > ' on X be the weak order defined from by 

when and 
s 

so that, with <=> not not y >' x as in the Chapter 7 
presentation, ' ' in same class in Taking 

it follows that > ' is transitive and connected and it is 
easily seen to satisfy the conclusions of the second part of Lemma 15.4. 

In addition to Lemma 15.4 we shall use a definition that applies to 
extensions of choice functions. 

DEFINITION 1 5 . 3 . Letf: X —> <P(X) be a choice function. Then g: 9C' —> 
Ct'(X) is an extension of f \ 9C —> (P(X) if and only if g : is a 
choice function, every element in EC' is a subset o f a n d 
g(Y) = f(Y) for all Y sc. 
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HANSSON'S THEOREM 

With this definition, we are now ready to state the first of the two 
theorems. 

is a choice function. Then 
the following three statements are equivalent: 

THEOREM 1 5 . 4 . Suppose that 

There is a weak order on X that satisfies 
There is an extension 

holds for q and 
There is an extension h 

such that 

such that 
Bl holds for h and 9C° contains every nonempty finite subset of 

Assume that holds. Let be the closure of 
under nonempty finite unions 

for each j. Since 

Proof. 
with each 

is a weak order, it follows that, for 
let 

for no yi. Since not yf*y, for every 
it follows from negative transitivity that not 
Therefore g on 9C' defined by for every 

and for no for all 

is a well-defined choice function that is an extension o f / . Bl for g is 
assured bv Lemma 15.3. 

Assume that holds with 
therein. Define i?i on 

as specified 

and such that there is a 

To show that R i is transitive, assume that and Then 
such that 

Then, bv Bl aeain. 

We show next that 

so that 
bv Bl . so that 

by B l for g, and hence 

suppose that 
and 
and 

for all 

Then, for every 
for all 

consider 
Suppose first that 

so that, again by 
vhich contradicts and hence 

and take 
In particular, this is true for 

! in Y, there is a 
trarv 

and for all 

there are uy 
and 

Con-
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Suppose then that v Y. Then Y g(Y T(x)) = g(Y) 

by B l so that xg(Y . T{x)). Since x T{x) it follows from Bl 
that T(x) g(Y T{x)) = g(T(x)) and hence that / g(Y T(x)) 
and then that t g(Y) which again contradicts i g(Y). Therefore 
Bi and the proof of (15.6) is complete. 

Next, define R2 on X by 

Then (15.6) holds for R2 in place of Ri, and R2 is transitive and re-
flexive. It follows from the second part of Lemma 15.4 that there is a 
transitive and connected R?, on X such that and not 

not Moreover, 

since xR2y for all for all y Y, and since if I Y — 
g(Y) then not tR2y for some y £ g(Y), since R2 is transitive, and hence 

not so that not tR3y. 
Finally, let 9C° equal 9C' plus all nonempty finite subsets of X and 

define h: by 
h(Y) = {x:x Y and xR3y for all y for all Y 

Then h(Y) = g(Y) for all Y EC', and for each 

by finiteness. If we define the binary relation h* on > not 
xRty, or not then is a weak order, Y 
and yh*x for no y E Yj, and hence Bl holds for h by Lemma 15.3. 

(c) (a). This is immediate from Corollary 15.1 A NECESSARY AND SUFFICIENT CONDITION 
During the course of the preceding (b) => (c) proof we have identi-

fied the binary relation that forms the basis of Richter's Congruence 
Axiom. As in (15.5), we define i?i on X for an arbitrary choice function 
/ : 9C-XP(X) by 

there is a Y EC such that and (15.7) 

In a sense this says that "x is directly revealed to be as good as y" 
if and only if xRiy. 

Richter's axiom uses the transitive closure R[ of Ri in the following 
way. The condition applies to all Y SC. 

The expression yR[x can be interpreted to mean that "y is indirectly 
revealed to be as good as x." Thus B4 says that if x,y _ Y, if x is in 

201 
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the choice set / (F) and if "y is indirectly revealed to be as good as x," 
then y is in the choice set also. 

THEOREM 1 5 . 5 . Suppose that / : SC —^ ) is a choice function. Then 
there is a weak order j on Xfor which ( 1 5 . 2 ) holds if and only if B 4 holds. 

Proof. Suppose first that ( 1 5 . 2 ) holds with / * a weak order. With 
; not this is equivalent to 

and xR0y for all for all Y 3C, (15.8) 

with R0 transitive and connected. For B4, suppose that x f(Y), 
y Y and yR[x. Then yi?iZi/?i • • • RizmR\x so that, by (15.7) and 
(15.8), • • • RazmRoX and hence yRoX by transitivity. Since 
XRQV for all v Y, yR0v for all v Y by transitivity, and therefore 
y f(Y) by (15.8). Thus B4 holds. 

Suppose next that B4 holds. For convenience let W = R\, so that 
B4 reads (for all F SC) 

m. x f(Y), y Y and yWx => y f(Y), 

and let .. v _ , , _ and xWy for all y F } . W is transitive by 
definition. Since B4 implies W(Y) / ( F ) . Take x f(Y). 
Then xRiy for all y Y by (15.7) so that xWy for all y Y, and 
hence / ( F ) c W(Y). Thus 

Define is reflexive and transitive, 
and By the latter part of Lemma 15.4, letR 0 be a 
connected and transitive binary relation on X such that and 
(xWiy & not yWix) => not yRoX. As in the (b) => (c) proof of Theorem 
15.4, it follows easily that (15.8) holds. • OTHER CONTRIBUTIONS 

Additional theorems along the lines presented here are discussed in 
the aforementioned papers of Arrow (1959) and Hansson (1968), and 
in Wilson (1970) and Richter (1971). The last two of these summarize 
many of the earlier developments in this area and present several new 
theorems. 
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Arrow's Impossibility Theorem 

THE CONDITIONS in a set of conditions for a social choice function are 
incompatible, inconsistent or "impossible" if there is no social choice 
function that can simultaneously satisfy all conditions in the set. A 
number of such sets have been identified in preceding chapters. In 
Chapter 6 we noted that duality and strong decisiveness are incom
patible. In Part II, each of Lemmas 7.2, 7.3, 8.2, 13.1 and Theorems 
12.1, 12.2, and 12.3 can be viewed as an impossibility theorem. 

In this chapter we shall examine Arrow's famous impossibility theo
rem and a number of its close relatives. The original theorem by Arrow 
(1950) differs in several respects from the version developed by Arrow 
and by Blau (1957) that appears in Arrow (1963, Theorem 2, p. 97) 
and which is stated here as Theorem 16.1. This theorem uses the pas
sive intraprofile condition that FD on X is a weak order for all I) G SD. 
If individual strict partial orders are allowed, then, as we have seen in 
sections 7.3 and 15.1, we would have little to say since strong binary 
unanimity is inconsistent with this passive condition. But Arrow's 
theorem restricts D by requiring that all individual preference orders 
be weak orders, and under this restriction the matter becomes more 
complex and much more interesting. 

In general, it is assumed throughout the chapter that all individual 
preference orders are weak orders. Arrow's theorem is proved in the 
next section. Section 16.2 presents a modification of Arrow's theorem 
that retains all of his structural conditions but weakens weak order 
for FD to transitivity for FD and strengthens his nondictatorship con
dition to a no-vetoer condition. Section 16.3 notes a version of the im
possibility theorem that was developed by Hansson (1972) and which 
uses a nonconstancy condition plus a condition of nonsuppression. The 
theorems in the first three sections assume that jf-X > 3 and that 9C 
c o n t a i n s  a l l  t w o - e l e m e n t  s u b s e t s  o f  X .  

The final section discusses an impossibility theorem from Hansson 
(1969) which requires almost no structure for 9C. This theorem effec
tively assumes for SC-structure that 9C includes at least one subset of X 
with more than two elements, and it does not require 9C to contain 
a n y  t w o - e l e m e n t  s u b s e t  o f  X .  

16.1 A BASIC IMPOSSIBILITY THEOREM 

In this section we shall first state Arrow's impossibility theorem and 
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then discuss the conditions used in the theorem in more detail. The 
section concludes with two proofs of the theorem. 

Working within the context of individual weak orders, we shall say 
that a triple {x,y,z} C X is free in SD if and only if for every n-tuple 
of weak orders on {x,y,z} there is a Z) G 3} whose restriction on [χ, ν,ζ j 
is the given η-tuple. Because one of the structural conditions in the 
theorem says that every two-element subset of X is in 9C, FD as in 
(7.9) is well defined. This fact is used in later conditions. 

THEOREM 16.1 (Arrow's Theorem). Suppose that F:9C X 2D —> <9 (X) 
is a social choice function such that 

Cl. η is a positive integer, 
C2. f f X  > 3 and 9C contains every two-element subset of X, 
C3. D is a set of η-tuples of weak orders on X and every triple in X is 

free in SD. 

Then at least one of the following conditions must be false: 

C4. Fd on X is a weak order for every D G SD, 
C5. If x,y £ I, fl £ SD and χ ^>d y then xFoy, 
C6. If x,y G X, x y, D,D' G £> and if D on {x,y} equals D' on 

{ x , y }  t h e n  F D  o n  { x , y }  e q u a l s  F R »  o n  { x , y } ,  
C7. There is no i G {1 ft} such that (x,y G X, D G SD, 

ζ > ί y) =* %FDy. 

The seven conditions used in the theorem have the following classi
fication according to Table 14.1: 

Structural: Cl, C2, C3 
Passive Intraprofile: C4 
Active Intraprofile: C5 
Interprofile: C6 
Existential: C7 

Hence every class or subclass in Table 14.1 with the exception of the 
multiprofile class is represented in the theorem. 

One should have no difficulty interpreting the conditions. C4 was 
discussed at length in section 15.1, C5 is binary unanimity, C6 is the 
binary version of independence from infeasible alternatives, and C7 is 
a binary nondictatorship condition. 

The only condition that might appear to be redundant is Cl. How
ever, recall that the general definition of social choice function in 
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Definition 14.1 says nothing about 3j other than it is a nonempty set. 
With minor changes in terminology in C3 and C7, one might wish to 
assume that the set of voters is nonempty, and use this instead of Cl. 
However, as shown in Fishburn (1970c), the theorem will then be 
false, since an infinite set of voters is consistent with conditions C2 
through C7. Thus the stipulation that the set of voters is finite is 
crucial to the theorem. 

Perhaps the greatest benefit of Arrow's theorem is the subsequent 
discussion and research it has generated. One direction that this re
search has taken appears in Chapters 9 through 11 and in section 14.4, 
which can be viewed as attempts to tighten C3 to such an extent that 
the remaining conditions (or modifications thereof) are compatible. 

Arrow's theorem has led also to deeper examinations of conditions 
like C4 through C7 under the supposition that C1-C3 are acceptable 
in some situations. Some writers, who feel that each of C4 through C7 
is acceptable, conclude that Arrow's theorem shows that there does 
not exist any reasonable or "rational" social choice procedure for some 
situations involving more than two alternatives. Others conclude that 
one or more of C4 through C7 is untenable as a general desideratum 
of social choice. 

Most of the latter discussion has involved the condition of a social 
ordering (C4) and the condition of independence from infeasible alter
natives (C6). For example, the arguments of section 15.1 suggest that 
C4 may be untenable, and some people feel that this viewpoint is 
further supported by Arrow's theorem. Others take issue with the 
independence condition, feeling that it causes the suppression of in
formation about preferences that should be taken into account in 
determining the social choice. Closely allied to this is a potential dis
agreement with C3, which permits only certain types of information 
about voters to enter into the social choice function. For further com
ments on this point the reader is referred to the discussion of Chapter 1 
and the references cited there. 

PBOOF PRELIMINARIES 

We shall now consider two proofs of Theorem 16.1 that go at the 
matter from different directions. The first proof, which is used by 
Arrow (1963), shows that Cl through C6 imply the contradictory of 
C7. That is, Cl through C6 imply that some individual is a dictator. 
The second proof begins by assuming that no individual is a dictator 
and shows that C2 through C7 imply the contradictory of Cl. 

Several special definitions are used in the proofs. If I is a nonempty 
subset of voters then I is decisive for χ over y if xFn~y whenever χ >, 
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for all and for all This is similar to the definition 
of section 4.1. For the first proof we shall write 

w h e n e v e r a n d f o r all 
whenever 

xiy says that is decisive for x over y; and if for a fixed i and 
all for which then i is a dictator. The second proof 
used the "dual" of x i y and another relation as follows: 

(xFDy whenever and for all 
(xFDy whenever D is such that m voters have and 
all others have 

says that is decisive for x 
over y. If any subset that contains all but one of the voters is decisive 
for any alternative over any other alternative, then x 1 y whenever 

and 

In both proofs n designates the set of all voters. 

ARROW'S PROOF 

Let CI through C6 hold. We show first that a i b for some i and some 
with Using C5, n is decisive for x over y whenever 
and It follows from Cl and C6 that there are 

and such that I is decisive for a over b and there is no 
smaller subset of n that is decisive for one alternative over another. 
Fix take by C2, and use C3 to obtain a D for which 

for all a otherwise. 

By construction, aFpb. If then not aFnx, for otherwise 
would be decisive for a over x, using C6; but then xFob by 

C4 and hence x i b, contrary to Hence 
Given a i b, we now show that i is a dictator. First, take 

by C2 and use C3 to obtain D with 

and for all 

Then by a i b, and xFDa by C2 and C5, so that xFDb by C2 
and C4. Since C3 allows any relationship between x and b for i it 
follows from C6 that A similar argument with and 

gives Note that and 
Beginning with x,b in place of a,b, the preceding argument gives 

alb and xla. Beginning with a,x in place of a,b, the argument gives 
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for which includes blx. Finally, b,x in place of a,b 
yields bia. This accounts for all distinct pairs in X, and hence i is a 
dictator, contradicting 

AN ALTERNATIVE PROOF 

Let C2 through C7 hold. Suppose and take any C2, 
C3, and C7 imply that and not aFDb for some D and some 

Take by C2 and let D' agree with D on {a,b] with 

and for all (16.1) 

Then not aFo'b by C6, aFn>x by C5, and hence by C4, and 
by C6. A similar proof gives x i* a. With let D1 agree 

with D' on {x,b\ and have and for 
Since and by by transitivity, and by 
C6. This includes By a similar proof, Finally, take D2 

with and a for Then by 
by C5, and hence by C4, and a by C6. A similar 

proof gives 
Since was arbitrary, x 1 y whenever and 
Suppose Then is required by C5 and C7. Suppose 

and that x k y for all and all with 
With and take D with 

for a l l o t h e r w i s e . 
(16.2) 

Then and x m so that by C4. This 
contradicts C5 if Hence Moreover, since 
i, x, and y are arbitrary, for It follows either 
that or that for all positive integers m, thus contra-
dicting Cl. 

1 6 . 2 VETOERS AND OLIGARCHIES 

During the years since Arrow's original theorem appeared, there 
have been many variations on his impossibility theorem theme. Some 
of the more important variants of his theorem appear as numbered 
theorems in this and later sections. A few others will be noted in the 
text. 

One type of modification weakens condition C4, that FD be a weak 
order for each The following theorem, mentioned by Murakami 
(1968) and Schick (1969), replaces C4 by a transitivity condition and 
strengthens the nondictatorship condition C7 to a no-vetoer condition. 
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T HEOREM 16.2. Suppose that F : 9 C  X  ' D  — >  ( P ( A Q  is a social choice 
function for which Cl, C2, and C3 hold. Then at least one of the follow
ing conditions must be false: 

C4'. FD on X is transitive for every D G Ώ, 
C5. (Binary unanimity), 
C6. (Binary independence from infeasible alternatives), 
CT. For each i G {1, · · · ,«} there are x,y G X and D G SD such 

that χ >, y and yFox. 

Condition C7' says that no individual has unlimited veto power: 
that is, there is no i such that not yFDx whenever χ >, y, for all 
x,y G X for which χ y. C7' is therefore referred to as a no-vetoer 
condition. It is stronger than the nondictatorship condition (C7' => 
C7, but not conversely) since a dictator is a vetoer, but not conversely. 

Proof. In the second proof of the preceding section, negative transi
tivity for FD was required only in the sentence after (16.1). All other 
uses of C4 involved only the transitivity of FD. By using C7' instead 
of C7 we obtain a > ,b and bFo'a for use with (16.1): this and OFD'X 
then give bFo'X by C4'. Since C4' serves elsewhere in the proof and 
since C7' => C7, the proof of Theorem 16.2 is complete. • 

SOME OTHER MODIFICATIONS 

Each of Theorems 16.1 and 16.2 can be modified by weakening C3 
by requiring only one triple in X to be free in SD. This weakening 
then requires a strengthening in C7 [or C7'] to the effect that no indi
vidual is a dictator (or vetoer) with respect to the three alternatives 
in some free triple. The foregoing proofs for Theorems 16.1 and 16.2 
apply directly to a free triple with this property. 

Another modification changes C3 by assuming only the presence of 
linear individual preference orders, with free triples in this context. 
Since individual indifference is not actually used in the proofs, the 
theorems remain valid under this slight weakening of C3. 

A more interesting possibility is to weaken C4 or C4' to "FD is a 
suborder for each D G SD," but we know of no simple modification of 
Theorem 16.2 for this case that gives an impossibility theorem of quite 
the same caliber as the preceding theorems. This does not say that 
there are no impossibility theorems for the suborder case. Indeed, with 
sufficiently strong conditions (approaching those used for simple ma
jority agreement) such a theorem is readily obtained. 

A somewhat different modification of Arrow's theorem has been de
veloped by Blau (1971). His basic idea is to replace the binary version 
of independence, C6, by a weaker independence condition that applies 
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to m-element subsets of X where 2 < m < jfX. For example, ternary 
independence says that if {x,y,z} is a triple in X and if D on {x,y,z\ 
equals D' on {x,y,z} then FD on {x,y,z\ equalsFD' on {x,y,z\. Strength
ening C3 to admit all η-tuples of weak orders in SD, Blau shows that 
the preliminary conditions of Theorem 16.1 along with C4 and m-ary 
independence, for any fixed m with 2 < m < #X, imply binary inde
pendence (C6). Additional remarks on types of independence are found 
in Hansson (1972). 

OLIGARCHIES 

In general, when one of the conditions in Theorem 16.1 [Theorem 
16.2] is omitted, the remaining conditions are compatible and any F 
that satisfies them must satisfy also the contradictory of the omitted 
condition. For example, if F satisfies all of Cl through C7 except for 
C5, then there must be x,y G X and D G SD such that χ »z> y and 
not xFDy· Or if F satisfies Cl, C2, C3, C5, C6, and C7', then Fd is 
not transitive for some D. 

As several authors have shown, sets of compatible conditions some
times give rise to other properties for a social choice function that 
may seem unusual or surprising. A good example of this is provided 
by a theorem attributed to A. Gibbard by Sen (1970b). Given Cl, C2, 
C3, C5, and C6, we have noted that C4 and C7 are incompatible and 
that C4' and C7' are incompatible. However, simple examples show 
that C4' (transitivity) and C7 (nondictatorship) are compatible. How
ever, as Gibbard has shown, there must then be an oligarchy. This is a 
nonempty subset of voters which is decisive for χ over y whenever 
χ Ti y, with each voter in the subset having veto power. 

DEFINITION 16.1. In the context of a social choice function F:XX 
3D —> (P(X) for which 9C contains every two-element subset of X and η = 
{1, . . . ,rt\, I is an oligarchy if and only if 0 C I Q η and, for all 
distinct χ and y in X and D£3), 

( i )  χ  > ,  y  f o r  a l l  i  G  I  = >  x F D y ,  
(ii) χ > iy for any i G I => not yFDx. 

If η itself is an oligarchy then not XFDJ and not YFOX whenever 
someone prefers χ to y and somebody else prefers y to x. If some pair 
in X is free in SD, then it is easily seen that there can be at most one 
oligarchy. 

THEOREM 16.3. Suppose that F:SC X SD-> (P(X) is a social choice 
function that satisfies Cl, C2, C3, C4', C5, C6, and C7. Then η in
cludes an oligarchy. 
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Proof. Let the conditions of the theorem hold for F. Suppose that 
KQn is decisive for some a over b. Then, by an argument like that 
following (16.1), it is easily seen that K is decisive for χ over y, for 
all distinct χ and y in X. 

By Theorem 16.2, C7' must be false. Therefore, there is at least 
one i G η who is a vetoer: for all distinct χ and y in X and fl £ S1 

χ >, y =>• not yFr>x. Let I be the set of all such i. Then Definition 16.1 
(ii) holds for I, with 0 C I Q n. 

By C5, η is decisive for χ over y whenever ι ̂  y. Let K be a smallest 
subset of η that is decisive for some alternative over another. Clearly 
I  C  K .  C o n t r a r y  t o  I = K  s u p p o s e  t h a t  k  G  K  —  I .  S i n c e  k  G  I ,  
there are distinct a and b in Xand O £ 5D such that a >tb and bFDa. 
The proof following (16.1) (replace not aFD>b by bFo'd in the sen
tence after (16.1) and use C4') shows that χ k* y (xFny whenever 
y >k χ and χ > j y for all j ^ k) for all distinct χ and y in X. For 
definiteness let K be decisive for c over d, and use C2 and C3 to 
obtain a D G SD that has 

c > k d > k x, x > % c >, d for all t" G K — {k}, d >, χ >, c 
otherwise. 

Then cFod by decisiveness, and x Fd c  by χ  k* c, so that xFnd by C4'. 
But then K= {k} is decisive for χ over d, contrary to our smallest 
a s s u m p t i o n  f o r  t h e  f o r m a t i o n  o f  K .  T h e r e f o r e  K  —  I  =  0  a n d  K = I ,  
which with the initial paragraph of this proof gives Definition 16.1 (i). 
Hence I is an oligarchy. • 

16.3 SUPPRESSED INDIVIDUALS 

In concluding our discussion of impossibility theorems that use the 
structure of Arrow's theorem, we shall prove a theorem of Hansson 
(1972) that drops the unanimity condition and adds conditions of non-
constancy and nonsuppression. 

Within the context of Cl, C2, and C3 we shall say that F is strongly 
nonconstant if, for each pair x,y G X with ι ̂  y, there are D and D' in 
£) (which can depend on χ and y) such that F{{x,y},D) 9^ F([x,y},D'). 
This condition is closely related to Arrow's condition of citizens' sover
eignty, which says that for each ordered pair (x,y) (Ε X X X there is a 
D G 3D such that F({x,y\,D) = {xj. Citizens' sovereignty implies 
strong nonconstancy, but F can be strongly nonconstant and not 
satisfy citizens' sovereignty. Hence strong nonconstancy is the weaker 
of the two conditions. 

Strong nonconstancy and citizens' sovereignty are generally felt to 
be desirable properties for a social choice function. In contrast to these 
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we note three undesirable properties that are suggested by Hansson's 
developments. We shall say that F is 

(1) flat 
(2) perverse 
(3) suppressive 

if and only if, for all x,y £ X with χ ^ y and for all D (E '£>, 

(1) not xFDy and not yFDx 
(2) χ »sy =^yFDx 
(3) there is an i such that χ > ,· y => yFDx. 

A flat social choice function yields a tie between χ and y regardless of 
the individuals' preferences between χ and y. Flatness is ruled out by 
strong nonconstancy and by citizens' sovereignty. 

A perverse social choice function selects y over χ when everyone 
prefers χ to y, in sharp contrast to unanimity. A suppressive social 
choice function selects y over χ whenever a given (suppressed) indi
vidual prefers χ to y, regardless of the other individuals' preferences. 
In a manner of speaking, a suppressed individual is a dictator turned 
upside down. 

A suppressive function is perverse, but a perverse function need not 
be suppressive. Hence the desirable condition of nonsuppression is 
weaker than the condition of nonperversion. 

THEOREM 16.4. Suppose that F:9C X 2D—> ( P ( X )  is a social choice 
function for which Cl, C2, and C3 hold. Then at least one of the follow
ing conditions must be false: 

C4. F d is a weak order for every D £ SD, 
C6. (Binary independence from infeasible alternatives), 
C7. (Nondictatorship), 
C8. F is strongly nonconstant, 
C9. F is not suppressive. 

This shows that if Cl, C2, and C3 hold and if we insist on weak 
orders for the FD along with independence, then either there is a dic
tator, or a suppressed individual, or else strong nonconstancy (and 
hence citizens' sovereignty) is violated. 

Proof. We assume that all conditions except C9 hold and show that 
there must be a suppressed individual. Define three binary relations 
A, B, C on X as follows: 

χ Ay φ φ  (x y,>D y => xFDy) 

ι ii y « (ι »i y ^ not xFDy & not yFi>x) 
χ C y «=> (x y =*· yFDx). 
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If then, under C6, exactly one of and holds. 
Given we note that 

(16.3) 
(16.4) 

First, for every fhis is trivial if 
Otherwise, suppose and not x A z, and consider a generic profile 

in which the preferences between y and z are arbitrary, and 
and Then and not 

not so that by C4 (negative transitivity). Since 
the preferences between y and z are arbitrary, this violates C8 in light 
of C6. Hence A similar proof shows that 
for every Then (16.3) follows, and (16.4) is proved in a similar 
manner. 

By Arrow's theorem, C5 must be false. In view of (16.3) this says 
that not or Suppose 
for no distinct x and y. Then x B y for all pairs. A generic profile D 
where x and y are arbitrarily distributed and and then 
gives not not not not so that not 

not which in view of C6 implies that F is flat. 
which violates C8. Hence x C y for some distinct x and y, and x C y 
for all x,y by Therefore F is perverse. Thus, if is de-
fined as the dual of FD then CI, C2, C3, C4, C5. 
and C6 hold for the F'D and therefore, by Arrow's theorem, there is a 
dictator for this dual case. By the definitions, this "dual dictator" is 
a suppressed individual with respect to F. • 

1 6 . 4 M I N I M A L SC STRUCTURE: ANOTHER HANSSON THEOREM 

The impossibility theorems of the preceding sections presume that 
9C contains every two-element subset of X. The first major deviation 
from this pattern was made by Hansson ( 1 9 6 9 ) for an impossibility 
theorem that does not assume that any two-element subset of X is in 
9C, but requires only that 9C contain some subset of X that has more 
than two elements. This subset may be finite or infinite. To avoid un-
necessary notation and with no real loss in generality, we shall suppose 
that X itself is in 9C. 

In his proof of the following theorem, Hansson shows that if F satis-
fies the conditions of the theorem then it is possible to define another 
social choice function that satisfies the conditions of Arrow's theo-
rem. Since the latter are inconsistent, Hansson's conditions must be 
inconsistent. 
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THEOREM 1 6 . 5 . Suppose that is a social choice 
function such that 

Dl . n is a positive integer, 
D2. 3 and 

D3. is the set of all n-tuples of weak orders on X. 

Then at least one of the following conditions must be false: 

D4. If x,y and y then 
D5. If and if D equals D' on Y then either 

or else one of these two intersec-
tions must be empty, 

D6. There is no such that 

Condition D l is CI, and D2 and D3 relate to C2 and C3 in an 
obvious way. The last three conditions make demands only on F(X,D): 
if 9C contains proper subsets of X, the behavior of F on such subsets is 
immaterial. 

Condition D4 is a unanimity condition, comparable to C5, and D6 is 
a nondictatorship condition, comparable to C7. If X is infinite then 
D4 must be violated, since along with D3 it implies a D for which 

The remaining condition, D5, is an interprofile condition that has 
no immediately obvious counterpart in the preceding system. It says 
that if individual preferences on Y are the same in D and D' and if 
some alternative in Y is "best" in X under D, and some alternative in 
Y is "best" in X under D', then every "best" Y alternative in X un-
der D will be a "best" alternative in X under D', and every "best" Y 
alternative in X under D' will be a "best" alternative in X under D. 
If one of and is empty and the other is 
not, D5 is not violated. This might be the case with 

and D,D' as follows: 

and seem reasonable, in which case 

and 
Condition D5 suggests the flavor of both the condition of inde-

pendence from infeasible alternatives and a passive intraprofile con-
dition such as Bl in the preceding chapter. As in the case of some of 213 
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the passive intraprofile conditions, there are arguments (one of which 
may be Theorem 16.5 itself) that might cause some reservations about 
the general desirability of D5. For example, suppose and 
D' is obtained from D by lowering y as much as possible in each indi-
vidual order where and by raising x as much as possible in 
each order without changing the order between x and y. Then in some 
cases it may seem reasonable to have and 

A specific example that is partially built on this theme takes X = 
and D,D' as follows: 

It seems to us rather reasonable to have and 
and to have and Since 
these selections would violate D5. 

Proof of Theorem 16.5. The theorem is true if it is true when 
so assume that X is the only element in 9C. Contrary to the 

theorem, we suppose that is a social choice func-
tion which satisfies D1 through D6. Let We shall 
construct a social choice function that satisfies CI 
through C7. But this is impossible by Theorem 16.1, and the desired 
contradiction is obtained. 

Given and define so that on 
Y and, for all and for every i. Define G by 

for all (16.5) 

Since and since by D4, 
and G is a social choice function. We show next that G 

satisfies 

Bl . and 

for each Under the hypotheses of B l we have 

where the penultimate equality follows from D5 since 
and 
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Hence, by Corollary 15.1, GD on X is a weak order for each 
This verifies C4 for G. CI, C2, and C3 obviously hold. 

To verify C5, C6, and C7, let with 
C5. Suppose Then by D4 and hence 

G{Y,D) by (16.5). Thus xGDy. 
C6. Take on Y. Then on {x,yJ. 

Hence, using D5, 

C7. For i, let x,y be as guaranteed by D6 with and 
F(X,D). Using 
and therefore 

A CONSTANT FUNCTION 

Hansson (1969, 1969b) presents several other interesting theorems. 
One of these produces a flatness conclusion by modifying the unanimity 
condition D4 in the following way: 

then 

THEOREM 16 .6 . Suppose that is a social choice 
function that satisfies DL, D2, D3, D4', D5, and D6. Then 
for every 

Clearly, satisfies the conditions. To show that this is the only 
F, we assume that the cited conditions hold along with 
for some and show that this implies D4, thus giving a con-
tradiction by Theorem 16.5. D6 is not used in this proof. Hence (Dl, 
D2, D3, D4', D5) => D4 when for some D. 

Proof. Let be a social choice function that satis-
fies Dl , D2, D3, D4', and D5. Suppose further that there are 
and such that and Let 
using the definition of DY in the preceding proof. By D4', F{X,E) con-
tains a or h. Hence, by and It follows 
from D4' that. 

Take any and let with for every 
and all i. By _ Take on 
If then, by D5, 

F{X,E) and hence contradicting 
This shows that, for any there is a such that 

F(X,D) a n d 
To establish D4 take By the preceding result let be 

such that and for some Suppose first 

215 



A R R O W ' S I M P O S S I B I L I T Y THEOREM 

that By the initial analysis in this proof, 
Since equals D o n {x,y}, D5 requires Suppose next 
that is the only element not in F(X,E). Take Then 

and . Let on with 
for all and all i. Then by D4'. Since on 
{y,t}, D5 requires for otherwise y would be in F{X,E). 
Since on \x,y], D5 requires for otherwise y 
would be in F(X,D'). Hence, in any event, and this 
establishes D4. 
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Summation Social Choice Functions 

A SOCIAL CHOICE function is a summation social choice function if, for 
each (YtD) G SC X SD, numerical values can be assigned to the alter
natives for each individual so as to preserve the individual preference 
orders in D and to make F(Y,D) equal to the subset of alternatives in 
Y that have the largest value sum over the individuals. A precise 
definition and a unanimity-like necessary and sufficient condition are 
presented in section 17.1. 

Section 17.2 then discusses a hierarchy of summation social choice 
functions. One branch in this hierarchy considers individual functions 
that do not depend on the particular feasible set Y under consider
ation. It follows from the preceding chapter that social choice func
tions of this sort violate either the condition of independence from 
infeasible alternatives or the nondictatorship condition. These func
tions are examined briefly in section 17.5. 

The intervening sections concentrate on summation social choice 
functions that, generally speaking, depend on the feasible set under 
consideration. Section 17.3 considers the case where the individual 
function for voter i depends on Y and on > ; but not on other voters' 
preference orders. The effects of anonymity and neutrality within the 
voter independence context are noted in section 17.4. The Borda func
tion of section 13.2 is a special case of this type. 

Throughout the chapter it is assumed that X is finite. For generality 
otherwise, we shall work with individual strict partial orders and will 
not assume that independence from infeasible alternatives holds. The 
effects of independence and of more specialized individual assump
tions, such as weak orders, are generally left to the reader as exercises. 

17.1 SUMMATION SOCIAL CHOICE FUNCTIONS 

Our general definition of summation social choice function will, for 
simplicity, presuppose that X is finite and that SD is a set of n-tuples 
of strict partial orders on X. 

DEFINITION 17.1. F : 9C X A)—» ( P ( X )  i s  a  summation social choice 
function if and only if it is a social choice function and, for each i £ 
{1, . . . ,n], there is a real-valued function UiOn X X 9C X SD such that, 
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for all 

(17.1) 
(17.2) 

and 

F(Y,D) 
(17.3) 

We have already discussed a special summation social choice func-
tion in detail, namely the Borda function of section 13.2, which the 
reader may wish to review before he continues with the present chap-
ter. As we shall note later, Black's function, of section 13.3, is also a 
summation social choice function. 

A main purpose of this section is to give an active intraprofile con-
dition that is related to conditions (12.3) and (12.4) and is necessary 
and sufficient for F to be a summation social choice function. Before 
doing this we shall examine some of the aspects of Definition 17.1. 

NUMERICAL REPRESENTATIONS AND INDEPENDENCE 

Perhaps the main feature of the definition is its generality. Since 
each u, is defined on the three-fold product X X 9C X , it is easily 
seen that the definition does not presuppose or imply the condition 
of independence from infeasible alternatives. Moreover, it allows the 
u, values for a given i to change when Y is held fixed and individual t's 
preferences remain fixed but changes occur in some other individual's 
preference order. This is because the third argument in u, is the en-
tire preference profile D and not just the ith order , from D. 

Given strict partial orders for individuals, (17.1) and (17.2) require 
that ul preserve t and i as indicated. Although we could require 

as used in Theorem 7.1(2), the dis-
cussion of section 13.2 indicates that the part of is somewhat 
"forced," and we shall not require it. Recall that under strict partial 
orders, each on X is an equivalence and if a and b are distinct 
equivalence classes in then either (1) for all and all 

or (2) for all and all or (3) and not 
for all and all If > ^ is a weak order, then is 

identical to and (17.1) and (17.2) require when 
Apart from the obvious summation form, we note for (17.3) that 

the Ui(x,Y,D) values for play no part in the specification of 
F(Y,D). However, there is a way in which preferences for elements 
not in Y can affect F(Y,D) within the context of the general form. 
This arises when , is a strict partial order that is not also a weak 
order, and it comes from the fact that the definition of for (17.2) 
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depends on all of X for all and 
not just on Y. For example, if and then 
within the context of Y, but, if there is a such that 
and then is false. 

This analysis shows that an equivalent definition of a summation 
social choice function is obtained by only defining u, for 

for which and by modifying (17.1) and (17.2) to 
apply only to all , On the other hand, an alternative definition 
that defines u,• in the restricted sense and modifies (17.1) as indicated 
but changes (17.2) by requiring that whenever 

and for all is not equivalent to 
Definition 17.1. However, it is easily seen that this alternative defi-
nition becomes equivalent to the original if F is assumed to satisfy 
the condition of independence from infeasible alternatives and if 2D is 
sufficiently rich. Under these conditions, if within Y but not 
within X, we could consider a that agrees with D on Y but 
has for every w _ and for all i. Then, although 

is false, we have and, by independence, can let the 
u, values for the I with serve also as the m values 
for the (w,Y,D) with THE CONDORCET CONDITIONS 

A specific illustration of the generality of Definition 17.1 is obtained 
by noting that it is wholly compatible with the weak Condorcet con-
dition of Definition 12.1. For suppose that so that x 
has a strict simple majority over every other alternative in Y when 
D obtains. Then upvalues can be assigned in the (Y,D ) context so as 
to satisfy (17.1) and (17.2) along with the following: 

for all y, all i 
for all i 

when for all i and y. 

Since and for 
every (17.3) gives 

This shows that Black's function of section 13.3, which is a Con-
dorcet social choice function, is a summation social choice function. 
I fP (F ,D) define the ul as above; if P(Y,D) define the u, by 
the Borda method which is consistent with (17.1), (17.2), 
and (17.3). 

Although the weak Condorcet condition is consistent with the no-
tion of a summation social choice function, the strong Condorcet con-
dition is not. One can verify this with the example that precedes 
Theorem 12.2. 
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A NECESSARY AND SUFFICIENT CONDITION 

The condition that we shall use for a summation social choice 
function is a generalization of a unanimity condition. Letting 

so that 

(17.4) 

the unanimity condition is: for all and all 

( 1 ) f o r all i, and 
(2) for all i and for some 

Part (2) is a form of strong unanimity [but it is not the same as 
and (1) is a form of unanimity agreement. 

It says that, as far as the < on X are concerned, if all individuals 
regard x and y as equally desirable then either both x and y will be in 
the choice set F(Y,D) or else neither will be in the choice set. 

This simple unanimity condition is obviously necessary for a sum-
mation social choice function. It is also sufficient for a given (Y,D) 
provided that F(Y,D) is a singleton. For suppose that 
{ccj, and consider the equivalence classes in for each i. Set 

for all alternatives in the equivalence class that con-
tains x; take Ui(y,Y,D) 1 for all y; and for all alternatives in each 
class that is different from the class that contains x and does not have 
an alternative preferred to x, make u, less than — n. This can be done 
so as to satisfy (17.1) and (17.2) for the given (Y,D). If the foregoing 
unanimity condition holds then, for every that is in Y there will 
be some i with ul(y, Y,D) and hence 

The generalization of the unanimity condition that we shall use is 
designed to handle the cases for which F(Y,D) contains more than 
one alternative. 

DEFINITION 17 .2 . A social choice function satisfies 
the summation condition if and only if the following holds for every 

If K is a positive integer, if 
and if, for each i, al is a permutation on for which 

for then 

(1) for all i and k, and 
for all for all k; 

(2) for some i and 
for some k. 

When we have for all i and this part of the con-
dition reduces to the foregoing unanimity condition. When 
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alternatives in or in may be replicated, but 
we could require that without 
affecting the condition. For if the condition is violated, a violation 
can be obtained when by reducing the original vio-
lation to this form. For example, if then, with the inverse 
of with in the con-
clusion if in either hypothesis. The two original statements are 
then collapsed into one for each i, with a corresponding deletion of 

and 
As noted earlier, the summation condition bears a resemblance to 

( 1 2 . 3 ) and ( 1 2 . 4 ) . It is an active intraprofile condition. Its necessity 
for a summation social choice function follows easily from the assump-
tion that ( 1 7 . 1 ) through ( 1 7 . 3 ) hold. Then the hypotheses of ( 1 ) re-
quire if for every k 
then we cannot have for any k and hence 
must have for every k. The hypotheses of 
(2) give which requires 
for some k, so that by ( 1 7 . 3 ) . 

It thus remains to prove sufficiency for the following theorem. 

THEOREM 1 7 . 1 . Suppose that is a social choice 
function. Then it is a summation social choice function if and only if it 
satisfies the summation condition. 

Proof. Assume that the summation condition holds, and let (Y,D ) 
be a generic pair in As noted earlier, we need only consider 
ufa Y,D) for Then ( 1 7 . 1 ) through ( 1 7 . 3 ) will hold for the given 
(Y,D ) if and only if there are numbers u,(x,Y,D) for 
and such that 

when 
when 
when 
when 

With and n voters there are mn values to consider 
for the given (Y,D). Let with each p, corresponding to one 
of the Ui(x,Y,D). Transposing terms in the foregoing display after 
selecting one order (xy or yx) for each pair of involved in an 
equality statement, the preceding system can be written as 

for the cases, 
for the cases, 
for the statements, 
for the statements, 
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where t runs through the integers Each is 
a vector of zeros, ones, and minus ones, with 1 

Suppose that there is no p solution for this system. Then, by Theo-
rem 3.3, there are integers such that 

for (17.5) 

with when a* corresponds to statement, and at least one 
of these If for an a' involved in an statement, in-
version of the chosen order for the x,y pair replaces a1 with and a 
corresponding replacement of leaves things as they were. 
So all Tt may be taken as nonnegative integers. Using replicates of 
alternatives for the it follows from (17.5) and the original 
Ui statements that, for each i, there are two sequences 

such that the second is a rearrangement of the first with 

Since for at least one of the statements in the system, either 
i for some i. 

We now reduce the sequences as follows without changing their char-
acteristics. If then delete and and replace the 

pairs by the pair which has and 
F(Y,D). A similar replacement is made if or if 
After all such reductions are made we obtain, after the appropriate 
changes in subscripting and reduction of b, 

Since the value of a is unchanged 
by this process, if a initially then this continues in effect. 

These reductions on the first parts of the sequences hold uniformly 
for all t. Similar reductions, permitted by the transitivity of and by 

can be made in the and for each i, 
with a, > 0 after the reduction if before the reduction and with 

after the reductions. Since the reductions 
delete identical elements in the two sequences, it follows that, for each 
i, we obtain two sequences of the form 
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where is a rearrangement of and where 
with 

and each i, 

with either for some k (for formerly) or else 
for some k and i (for formerly). If for some i 

and k then part (2) of the summation condition is contradicted. And 
if for all i and k, we then require for some k 
so that part (1) of the summation condition is contradicted. 

Hence this use of the Theorem of The Alternative shows that the 
summation condition implies the existence of a p solution for the sys-
tem. Thus there are values that satisfy (17.1) through 
(17.3) for the given (Y,D). Since this is true for every 
the theorem is proved. 

1 7 . 2 CLASSES OF SUMMATION FUNCTIONS 

Definition 17.1 accommodates a large variety of specialized types of 
social choice functions. In this section we shall comment briefly on 
several classes of summation social choice functions that will be exam-
ined in later sections. 

A partial characterization of classes of summation social choice 
functions is given in Figure 17.1. The original ut form of Definition 17.1 
is shown in the upper right. An arrow from one class to another means 

FIGURE 17.1. Some summation social choice functions 
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that the latter is a subclass of the former. The special classes in the 
right part of the figure retain dependence of Ui on the feasible set Y 
and are generally compatible with the condition of independence from 
infeasible alternatives. The classes on the left omit Y as an argument 
of the function and are usually incompatible with the independence 
condition. We shall return to these momentarily. 

VOTER INDEPENDENCE AND OTHER SPECIALIZATIONS 

In retaining the dependence of U 1  on Y, the first obvious specializa
t i o n  o f  t h e  g e n e r a l  s u m m a t i o n  f o r m  a r i s e s  b y  r e q u i r i n g  t h a t  u { ( x ,  Y , D )  
= Ul(XiYrDf) whenever i has the same preference order on X under 
b o t h  D  a n d  D ' ,  o r  w h e n e v e r  > , · = > • ' .  T h i s  i n d i c a t e s  t h a t  e a c h  u ,  
depends only on the preferences of voter i and not on the preferences 
of other voters, and it thus seems reasonable to refer to it as a form of 
"voter independence." When voter independence applies, each Ui is 
defined on 1 X SC X SDi, where SD1 is the set of strict partial orders for 
voter i that obtain in one or more D G SD. 

Black's function of section 13.3, which is a summation social choice 
function as noted in the preceding section, does not satisfy voter inde
pendence since the definition of U1 depends on whether P(Y,D) = 0, 
which clearly depends on the preference orders of other voters. 

The voter independence case is considered in the next section. Sec
tion 17.4 then examines the effects of the conditions of anonymity and 
neutrality. When anonymity applies in the context of voter indepen
dence, all Ui functions can be taken to be identical. Neutrality then 
allows the same set of values within individual orders obtained from 
o n e  a n o t h e r  b y  p e r m u t a t i o n s  o n  X .  

Although the classes of functions in the next two sections are com
patible with independence from infeasible alternatives, this condition 
will not be used. Except for a comment at the end of section 17.4, 
modifications under independence are left as exercises. 

DEPENDENCE ON INFEASIBLE ALTERNATIVES 

Because the functions on the left of Figure 17.1 take no account of 
the specific set Y of alternatives that are feasible in a particular realiza
tion of a situation, they might be said to be "dependent on infeasible 
alternatives." The most general subclass of such functions defines U1 

o n  X  X  3 D  f o r  e a c h  i .  D e f i n i n g  x f D y  < = >  2 , u , ( « , £ ) )  >  X t u t ( y , D ) , f D  o n  X  
is a weak order for every D G £>, and 

F ( Y t D )  =  { x : x  G Y  and y f D x  for no y G 7) for all ( Y , D )  G 9C X SD 

according to (17.3). It follows from Lemma 15.3 that condition Bl (or 
its social choice counterpart) holds for such functions. If 9C contains 
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every two-element subset of X then and we know from Ar-
row's theorem (see also Theorem 16.5) that, under appropriate struc-
tural conditions, there will either be a dictator or the independence 
condition will fail. Generally speaking, the failure of independence 
seems the lesser of "evils" in this case. 

Additional conditions generate the further specializations of summa-
tion functions that are "dependent on infeasible alternatives" as 
shown on the left of Figure 17.1. We shall return to these in the final 
section of this chapter. 

17 .3 INDEPENDENCE AMONG VOTERS 

To obtain a summation social choice function for which 
u%(x,Y,D') when it should be clear that some interprofile 
condition is required. The special condition that we shall use for this 
case is a multiprofile condition according to Table 14.1. Since the 
summation form under consideration retains dependence on Y, we can 
state the condition for each Y without taking account of other poten-
tial feasible sets. 

For simplicity, the condition that follows is called the condition of 
voter independence. It is obviously a complicated version of the sum-
mation condition and thus asserts more than just a form of indepen-
dence among voters. 

DEFINITION 1 7 . 3 . A social choice function satisfies 
the condition of voter independence if and only if the following holds for 
every If K is a positive integer, if 

and and if, for each i, at is a permutation on 
for which and for 

K, then 

(1) for all i and k, and for all 
for all k\ 

(2) for some i and for some k. 

To make sense of this we note first that the case is the same 
as the case of the summation condition, and that the summation 
condition results in general if we take To 
illustrate the more general structure of the voter independence condi-
tion, take and with 
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For permutations on take 
(3,2,1), and . Consider voter 1 first. Since 

he satisfies for k = 1, 2, 3. 
In addition, since 2 and 

we have for , with at least once. Similar 
analyses with voters 2 and 3 show that they satisfy the hypotheses of 
the condition. I t then follows from part (2) of the voter independence 
condition that either In 
contrast to this, the summation condition allows and 

T H E O R E M 1 7 . 2 . Suppose thatF: is a social choice func-
tion, and lei is the ith component of some , for 
i = l , . . . , n. Then the condition of voter independence holds if and 
only i f , for each _ , there is a real-valued function on 

, such that, for all i and 

and 

F(Y,D) 
1 

Proof. The necessity proof is left to the reader. To prove the suffi-
ciency of the condition, we consider a generic and assume tha t 
the voter independence condition holds. As in the proof of Theorem 
17.1, we shall use the Theorem of The Alternative on a linear system. 
For the given Y we take the following as an appropriate system, where 
(unlike the previous proof) D varies over 5D: 

Apart from the changeability of D, the first four lines are the same as 
the fo rmer system. The last line asserts tha t each depends only on 

and not on (Y,D). This system is solvable if and only if (17.6) 
through (17.8) hold for the given Y. 

Let and let Since we are concerned about 
for all all and all i the appropriate 
p vector is in with a one-one correspondence between the com-
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ponents of p and the mnp The above system then converts 
into and statements, say for T. If 
there is no p solution then, by Theorem 3.3, there are nonnegative 
(using inversion for equality statements if necessary) integers 
rT with for one of the p • a1 > 0 statements such that 

Similar to the analysis following (17.5), this implies that, for each i, 
there are sequences 

such that the second is a rearrangement of the first with 

where is the ith component of E. Moreover, since for one 
of the > 0 statements, either F(Y,D) for some a or, for some 
i and Without altering the permutation aspect or the 
other characteristics of the sequences, reductions can be made in the 
pairs of sequences so that 

and In addition, sup-
pose that 
Then , and and have the same 
ith components, so tha t the pairs 

can be replaced by the single pair 

A similar reduction can be made if Since only 
identical pairs are deleted from the two sequences for individual i, 
these reductions imply that , for each i, there are sequences 
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where is a rearrangement of 

, and where K > 0 with 

with either for some k or else for some k and i. 
But this clearly contradicts the condition of voter independence. 
Hence, according to Theorem 3.3, there is in fact a p solution for the 
system. 

1 7 . 4 ANONYMITY AND NEUTRALITY 

We shall now examine the effects of anonymity (Definition 13.3) 
and neutrality (Definition 13.2) on the voter-independence represen-
tation ( 1 7 . 6 ) through ( 1 7 . 8 ) in Theorem 1 7 . 2 . To do this in a reason-
ably efficient way we shall assume certain structure in addition to our 
continuing assumption that X is finite. For anonymity it is assumed 
tha t is an n-fold product of a set of strict partial orders on X. The 
structure for neutrality is noted later. Theorems that are similar to 
those in this section but which use fewer structural assumptions are 
proved in Fishburn ( 1 9 7 2 ) . 

ANONYMITY 

Let ( 1 7 . 6 ) through ( 1 7 . 8 ) hold and, for each strict partial order > 
on X define 

( 1 7 . 9 ) 

I t then follows that and that 

, Suppose 
tha t Then, by anonymity, 
. . . , n. Likewise, if then for 
. . . , n. I t follows immediately from ( 1 7 . 8 ) a n d ( 1 7 . 9 ) tha t 

i for all This proves 
the following theorem. 

T H E O R E M 1 7 . 3 . Suppose that i is a social choice 
function that satisfies the conditions of voter independence and anonym-
ity, and that where S is a set of strict partial orders on X. Then 
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there is a real-valued function u on X X 9C X such that, for all i 

and 

NEUTRALITY WITHOUT ANONYMITY 

Departing slightly from the hierarchy on the right of Figure 17.1, 
we shall first consider neutrality without also assuming anonymity. 

Structurally, we shall w o r k w i t h the set A of all permutations a 
on X. Recall tha t for any nonempty subset 

and any I t will be assumed that 
and that With equals 

where, for each i and all 
. In this setting neutrality says that , for all 

(17.13) 

Since anonymity is not being assumed, we shall work separately 
with each ut in Theorem 17.2. To show the effect tha t neutrality will 
have on u, suppose for simplicity tha t The 19 strict 
partial orders on X are put into five groups as follows: 

, and the other four strict partial 
orders on X tha t are not weak orders. 

All orders in a given group can be obtained from one another by per-
mutations that preserve order, and no order in one group can 
be obtained from an order in another group in this way. The effect of 
neutrality is to make the values for a given order in a group essen-
tially the same as the values for any other order in its group, under 
the appropriate permutation. For example, if for xyz in group 1, we 
have and then for 
the order zxy in group 1 we will have 
and Or if 
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for the order in group 3, then the order (xz)y in group 3 will 
have 

The same sort of thing applies when except for the obvious 
fact tha t Y itself gets transformed to aY under , In the general 
case, the effect of neutrality is to permit ut to be defined in the context 
of Theorem 17.2 so tha t 

T H E O R E M 1 7 . 4 . Suppose that . is a social choice 
function that satisfies the conditions of voter independence and neutrality, 
and that and for all Then 
there are real-valued functions u, on that satisfy the repre-
sentation of Theorem 1 7 . 2 and also satisfy ( 1 7 . 1 4 ) for all ( 

for each i. 

Proof. Let the u, satisfy (17.6) through (17.8) and define 

(17.15) 

for all The structural assumptions assure 
that when Since i is 
obtained from by applying the inverse of to the latter, 
it follows that (17.14) holds for vt. Moreover, (17.6) and (17.7) hold for 

in view of the fact tha t 
I t remains to verify (17.8) for the and this follows easily from 

(17.8) for the (17.13) and (17.15). 

ANONYMITY AND NEUTRALITY 

Combining these two conditions, we obtain the following theorem. 
Its proof is obtained easily from Theorem 17.3 by defining 

, similar to (17.15). 

T H E O R E M 1 7 . 5 . Suppose that is a social choice 
function that is anonymous, neutral and satisfies the condition of voter 
independence. Suppose further that and 

for all and that where S is a set of strict partial 
orders on X. Then there is a real-valued function u on that 
satisfies the representation of Theorem 17.3 and also satisfies 

for all 

When independence from infeasible alternatives also holds and the 
structure is sufficiently rich, the u values for a given order on Y can be 
taken to be the same as the u values for any order on Y' provided tha t 
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there is a one-one correspondence between Y and Y' tha t preserves 
order. For example, if and and if 
and then u for Theorem 17.5 can be made to satisfy 

and 
This may not be possible if independence from infeasible 

alternatives does not hold. For example, if there is no permutation <J on 
X such that and then we cannot 
reach the same conclusion with only the hypotheses of Theorem 17.5. 

1 7 . 5 D E P E N D E N C E ON I N F E A S I B L E ALTERNATIVES 

We now return briefly to the special summation functions on the left 
of Figure 17.1. Introductory remarks for these are given at the end of 
section 17.2. 

The first case has the same representation as ( 1 7 . 1 ) through ( 1 7 . 3 ) , 

except that Y is deleted from the ut functions. This gives on 
for each i such that, for every D, 

The appropriate necessary and sufficient condition for this case con-
siders each D separately and lets Y vary over 9C. I t is, for each 

If K is a positive integer, if for 
and if, for each is a permutation on such tha t 

then 

(1) for all i and and for all 
for all k; 

(2) for some i and for some k. 

This is easily seen to be necessary for the representation given above. 
The sufficiency proof is similar to the proof of Theorem 17.2 and is left 
to the reader. 

If EC contains every binary subset of X, so that is well defined for 
each then the conditions simplify slightly. For this special case 
we require FD to be a weak order for each D, with F( Y,D) 
and yFDx for no for all along with the 
following for each 

If K is a positive integer, if and if, 
for each is a permutation on {1, . . . ,K\ such that 
for k = 1, . . . , K, then 
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(1) for all i and either 
for all k, or XkFoyk for some k; 

(2) for some i and for some k. 

VOTER I N D E P E N D E N C E 

The next step indicated on Figure 17.1 is to remove the dependence 
of on other individuals' preference orders, so that is replaced 
by We shall consider only the simplest structural setting for 
this case, assuming that and that S) is the set of all 
n-tuples of strict partial orders on X. 

As in the case just considered, is taken to be a weak order for each 
and , for no for all 

Two more conditions suffice for the repre-
sentation. They are the unanimity condition stated immediately after 
(17.4) and the following special voter independence condition: 

If K is a positive integer, if and 
and if, for each is a permutation on 

for which 

then for some for some 

The main difference between this multiprofile condition and the voter 
independence condition of Definition 17.3 is that the new condition 
takes whereas the other has (and uniformly, 
or for some i, k) in its hypotheses. Thus the new condition avoids 
the inclusion of a unanimity-type extension such as the summation 
condition. As we shall see momentarily, the simple unanimity condition 
after (17.4) is all tha t is needed in the present context. 

The special voter independence condition also bears a strong resem-
blance to the condition of strong duality (Definition 5.2) used in Par t I 
to obtain a weighted majority social choice function. Indeed, if X = 

then the conditions used here along with duality imply tha t F 
is a weighted majority social choice function. 

The proof tha t the representation follows from the conditions 
given above proceeds as follows. Using Theorem 3.3 on the FD state-
ments obtained from F, it follows from the special voter independence 
condition and from a weak order for each tha t there are 
real-valued functions on . is a strict partial order on 
for i = l , . . . , n such that , for all x and y in X and all 

(17.16) 
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The wt functions do not necessarily satisfy 
To obtain this, we use 

the unanimity condition following (17.4). Fix and define 5, on X 
for each i by 

When the unanimity condition requires not 
and not aFDx, so that 

(17.17) 

by (17.16). We then define Ui for each i by 

According to (17.16) and (17.17), 

(17.18) 
To verify 

(17.19) 
(17.20) 

for , Suppose first tha t Then, by 
(17.18) and unanimity, 

But for all and therefore 
. On the other hand, if , then we get > in the foregoing 

display and hence Since a similar proof holds 
for each i, this establishes the representation of (17.18) through (17.20). ANONYMITY AND NEUTRALITY 

Continuing in the context of (17.18) through (17.20) with finite 
and the set of all rc-tuples of strict partial orders 

on X, suppose that F is anonymous. Then, by a proof like that for 
Theorem 17.3, it follows tha t we can obtain 
giving the representation 

along with , and for all 
by previous assumption. If neutrality holds also then, by a 

proof similar to that for Theorem 17.4, u can be made to satisfy 
for all and all permutations on X. 
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Lotteries o n Social Alternatives 

A LOTTERY on social alternatives can be thought of as a process that 
selects a social alternative "a t random" according to specified proba-
bilities for the alternatives. If a wife and husband want to watch 
different programs on the TV at 10 p.m. one evening and agree to 
settle the matter with the toss of a coin, then they are using a lottery. 

In abstract form, a lottery can be viewed as a simple probability 
distribution on the basic alternatives. Section 18.1 shows tha t our 
previous definition of social choice function applies in a straightfor-
ward way to lotteries. For F(Y,D), Y is a set of probability distribu-
tions on basic alternatives, D is an rc-tuple of strict partial orders on 
probability distributions, and F(Y,D) is a nonempty subset of Y. 

The second section discusses axioms on individual preference tha t 
arise in the probabilistic context. These are then used in section 18.3, 
which examines the structure of the set of admissible (undominated) 
probability distributions for a given (Y,D ) when Y is the set of distri-
butions on a finite subset of basic alternatives. 

The role of simple majority in the lottery context is briefly considered 
in the final section along with a few remarks on summation procedures. 

1 8 . 1 L O T T E R I E S ON SOCIAL ALTERNATIVES 

If a choice set in a specific situation contains several alternatives, 
then some form of tie-breaking procedure must be used to make a "final" 
selection. One such procedure tha t might be considered fair is to choose 
an alternative from the choice set by a chance process. For example, if 
{a,b,c} is the choice set, then "a , " "6," and "c" could be put into a hat, 
from which one of the three will be drawn at random. The alternative 
whose name is drawn will then be implemented. 

This chance process introduces a "new" alternative into the choice 
process. This "new" alternative is not one of the basic alternatives; 
instead, it is a lottery on the basic alternatives. In the preceding ex-
ample, it is a lottery x in which each of a, b, and c has equal prob-
ability, namely of being the "winning ticket." We can express this 
by the functional correspondence In these 
terms, a basic alternative can also be thought of as a lottery; thus, 
alternative b corresponds to the lottery z that has 

Since individuals have preferences between lotteries, it is clear tha t 
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we can expand our basic feasible set, say B, to include lotteries such 
as x. We might ask, for example, what the choice set from 
would be if the procedure used to obtain the choice set \a,b,c) from B 
were applied to For the sake of illustration, suppose tha t 
{b,x} is the choice set from If the random process were then 
applied to this new choice set (put "6" and "x" into a hat and draw 
one at random; if "x" is drawn, then lottery x is activated), a second 
lottery, say y, results. Lottery y is a compound lottery since one of its 
initial "prizes" is the lottery x. However, y corresponds to a simple 
lottery with probabilities and 

which are the total probabilities for a, b, and c 
under lottery y. 

ANOTHER EXAMPLE 

Pursuing the spirit but not the particulars of this example, it might 
seem reasonable to admit all lotteries on feasible alternatives into the 
choice process from the beginning. Since each lottery and each basic 
alternative corresponds to a simple probability distribution on the set 
B of basic feasible alternatives, this suggests that the choice set for B 
be some nonempty subset of the set of simple probability distributions 
on B. 

I t is precisely this suggestion that we shall pursue in this chapter. 
Although a random tie-breaking procedure was used to introduce lot-
teries, it should be emphasized that other reasons may suggest the use 
of probability distributions. 

To illustrate, suppose tha t a three-member committee is responsible 
for selecting a new man for a certain position in their company. Their 
search has turned up four satisfactory candidates, Messrs. a, b, c, and 
d. The feelings of the committee members are as follows: 

1. Mr. a is terrific; Mr. d is all right and is slightly better than 
Messrs. b and c, who are satisfactory. 

2. Mr. b is terrific; Mr. d is all right and is slightly better than 
Messrs. a and c, who are satisfactory. 

3. Mr. c is terrific; Mr. d is all right and is slightly better than 
Messrs. a and b, who are satisfactory. 

Now each member swears by the weak Condorcet condition of section 
12.1 for choice procedures tha t do not use lotteries. In such a proce-
dure, is the choice set since d has a strict simple majority over 
each of a, b, and c. 

However, the committee knows that they might use a lottery to 
make the choice, and none of the members has a moral aversion to 
such a procedure. Indeed, with x the even-chance lottery on 
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so tha t and it turns out tha t each 
member prefers x to d. Hence x is unanimously preferred to d, and the 
committee agrees to use x to make the final selection. 

This conclusion may seem strange, since any candidate that x might 
"choose" would lose to of on a simple-majority comparison. However, 
the inescapable fact is tha t each committee member would rather gam-
ble with x on the chance that his "terrific" candidate will win than 
accept the compromise candidate d. 

DEFINITIONS AND NOTATION 

Throughout this chapter, A will denote the set of basic alternatives. 
A typical feasible subset of basic alternatives is 

To keep matters fairly simple, we shall work only with simple prob-
ability distributions on A. For our purposes it will suffice to define such 
a distribution as a function Re such that 

We shall not make any notational distinction between a basic alterna-
tive and the distribution that assigns probability 1 to this alternative. 
Thus, b may denote either a basic alternative or the simple probability 
distribution tha t assigns probability 1 to b. 

We shall let X be the set of all simple probability distributions on A. 
is the function from 

A to Re for which 

Under the stated conditions a convex linear combi-
nation of the functions x and y, is a simple probability distribution 
on A since 

To illustrate such a combination let with 

Then, with 

More generally, if and if are non-
negative numbers tha t sum to 1, then a convex linear com-
bination of Xi through is the function from A to Re whose values 
are defined by 

for all 
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Under the stated conditions, and therefore X is closed 
under convex linear combinations. 

When B is the basic feasible set, the corresponding feasible set of 
probability distributions in X is 

Y(B) simply denotes the dependence of Y on B. The set of all poten-
tially feasible subsets of X will, as before, be written as 9C. In the 
present context, 

is a potentially feasible basic subset of 

Also as before, D is an rc-tuple of strict partial orders on X, and 3D 
is a nonempty set of such n-tuples. As in Definition 14.1, a social choice 
function is a function . for all 

Independence from infeasible alternatives reads the same as before: 
when the restriction of D on Y equals the restric-

tion of D' on Y. Under independence, the distributions in are 
ignored and D can be viewed in abbreviated form as an n-tuple of 
strict partial orders on the distributions in Y. 

1 8 . 2 AXIOMS FOR INDIVIDUALS 

As usual, we define other binary relations on X from a preference 
order on X as follows: 

If independence is assumed, one may wish to replace X in the defi-
nition of when B is taken as the feasible set of basic 
alternatives. 

INTRANSITIVE I N D I F F E R E N C E 

We shall assume in general that each individual preference order 
on X is a strict partial order. To show one way that the use of proba-
bilities can lead to intransitive indifference , suppose that an indi-
vidual is involved in a decision to allocate a certain amount of money 
to a specific activity. Four elements in A are $10,000, $14,000, $14,200, 
and $20,000. Our individual's preference increases as the amount 
increases, so tha t $14,200 > $14,000 for example. Let x be an even-
chance lottery on . Then it is quite possible that he 
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will not have a definite preference between $14,000 and x, or between 
x and $14,200, in which case is not transitive. 

SURE-THING AXIOMS 

Suppose that and and consider the 
combinations and . Although these are 
simple probability distributions, they can be viewed as two-stage 
lotteries in the following way. For a random device 
selects x with probability X and 2 with probability If x is 
selected in the first stage then a final winner in A is determined accord-
ing to the probabilities given by x; likewise for z. The overall probabil-
ity for under this two-stage procedure is precisely 

The other combination, 
can be viewed in a similar fashion. Since it seems 

reasonable in view of the two-stage interpretation that 
However, it might be argued tha t if is sufficiently 

near to zero then the two combinations will be so overwhelmed by the 
dilution term that the individual will be indifferent between 
them. This seems to me to be a valid psychological point. However, 
from a normative point of view, it might be argued that , even though 
the combinations may be almost indistinguishable, the individual will 
wish to take when he prefers x to y. 

Although one later result (Theorem 18.1) could be derived from an 
axiom tha t is not as strong as the sure-thing (or independence, mono-
tonicity, etc.) axiom tha t requires 
when and we shall use it in the sequel. Likewise, we 
shall use the companion axiom based on the equivalence 
and then Since here we 
are diluting two distributions that are virtually identical in preference 
to begin with, the dilution would not seem to change this state of 
affairs. 

The following definition sets forth the things that will generally be 
assumed about individual preference on X as characterized in this 
chapter. 

D E F I N I T I O N 1 8 . 1 . A preference order on X satisfies the weak indi-
vidual axiom if and only i f , for all x,y,z and 

is a strict partial order, 

The following lemma shows how the two parts of par t 2 of the defini-
tion combine with part 1 to extend themselves to similar finite combi-
nations. The lemma will be used in the next section. 
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LEMMA 1 8 . 1 . Suppose that on Xsatisfies the weakindividual axiom, 
that and and for and that 

Then 

Proof. Suppose first tha t for all k. We proceed by induction 
on m. For m = 2, part 2 of the weak individual axiom gives 

Since is transitive when is a 
strict partial order, . . . . 
the conclusion is immediate.) Now suppose that (1) is true for 

. For the case of 1, by resubscript-
ing if necessary. Then by the induction hypothesis, 

and by the result just proved for m = 2, 

which is the same as 
For (2) assume for definiteness that and (If 

, the conclusion is obvious.) Then, with the weak indi-
vidual axiom gives . Proceeding by induction 
as before, , follows in the obvious manner when 

THE STRONG INDIVIDUAL AXIOM 

Most studies based on a formulation tha t uses lotteries employ some-
what stronger assumptions for individual preference than those in 
Definition 18.1. A typical set of stronger axioms, which are essentially 
the ones proposed by von Neumann and Morgenstern (1947) in their 
study of game theory, is identified in the following definition. 

D E F I N I T I O N 1 8 . 2 . A preference order on X satisfies the strong indi-
vidual axiom if and only i f , for all 

is a weak order, 

Par t 3 is a so-called Archimedean axiom and has the effect of pre-
venting any basic alternative from being "infinitely desirable" or "in-
finitely undesirable." To note a contrived example where it might fail, 
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suppose tha t an individual is convinced t h a t a new penny is a "fair 
coin." The penny is to be flipped N times. He is asked to consider a 
choice between 

(i) receive regardless of the outcome of the N flips; 
(ii) be executed if every flip results in a head, and receive $2 

otherwise. 

Presuming tha t execution, our individual would violate 
par t 3 of the strong individual axiom if he chose (i) over (ii) regard-
less of the size of N. 

Although the par t of the weak individual axiom is not s tated in 
the strong individual axiom, it can be shown to follow from the latter. 
This is proved by Jensen ( 1 9 6 7 ) , who gives a proof of Lemma 1 8 . 2 

also. Similar proofs are contained in Chapter 8 of Fishburn ( 1 9 7 0 ) . 

The attractiveness of the strong individual axiom arises partly f rom 
the convenient numerical representation expressed in the following 
lemma. 

L E M M A 1 8 . 2 . Suppose that on X satisfies the strong individual 
axiom. Then there is a function u: A —> Re such that, for all 

(18.1) 

Moreover, a function Re satisfies this in place of u if and only if 
there are real numbers r > 0 and s such that for all 

The function u of ( 1 8 . 1 ) is a "util i ty funct ion," and ! is 
the "expected ut i l i ty" of the probability distribution x. In these terms, 
( 1 8 . 1 ) says tha t one distribution is preferred to another if and only if 
the first has the larger expected utility. Clearly, u reflects both the 
individual 's preferences between basic alternatives and his a t t i tudes 
about taking chances. I t shows tha t , under the strong individual 
axiom, there is a way to assign numerical values to the basic alter-
natives so tha t preferences between distributions are preserved by 
linear combinations or expectations of the basic alternatives' utilities. 

The final par t of the lemma states t ha t the utility function in (18.1) 
is unique up to origin and positive scale transformation. Thus, the 
origin of a can be changed by adding a constant to all u(a) values, 
and ( 1 8 . 1 ) will remain valid. The same thing is t rue if every u(a) 
value is multiplied by the same positive constant . If u satisfies ( 1 8 . 1 ) , 

then any Re t ha t does not satisfy (for all a) 
for some constants r > 0 and s, cannot satisfy ( 1 8 . 1 ) . 

Because only a simple preference relation > is used in the lemma, 
many authors have warned against interpreting u in (18.1) as a rela-
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tive measure of preference intensity or strength-of-preference over the 
basic alternatives in A. I t obviously measures something (as described 
above), but it is by no means evident that it has any direct connection 
to what most people would intuitively think of as a relative measure 
of preference intensity. 

A MODERATE INDIVIDUAL AXIOM 

In addition to the strong and weak individual axioms, there are 
several intermediate forms. One of these, which will be used later, is 
identified in the following definition. 

D E F I N I T I O N 1 8 . 3 . A preference order on X satisfies the moderate 
individual axiom if and only i f , for all 

on X is a strict partial order, 

This adds two antidilution statements to the weak individual 
axiom, namely 

The first of these seems less lia-
ble to objection than its converse since it says tha t if one distribution 
is preferred to another and if both have a "common" part then the 
preference must be a result of their different parts. On the other hand, 
the second seems more vulnerable than its converse, since a small 
might give because of dilution when 

is false. Lemma 18.2 shows tha t the moderate individual axiom 
is implied by the strong individual axiom. 

The usefulness of our new axiom in comparison with the weak indi-
vidual axiom lies in the following addition to the results of Lemma 18.1. 

LEMMA 1 8 . 3 . Suppose that on X satisfies the moderate individual 
axiom, and that I, 
and let and the 

sense from along _ is the same as the sense from x to y. If 
then 

Proof. Given is the "line segment" in X tha t contains 
x and y. (Recall tha t x and y are simple distributions, so tha t in-
volves only a finite number of basic al ternat ives.)Let and be 
the extreme points in so that 
with and 

Suppose tha t is the same as 
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so tha t by the moderate individual axiom. 
Again by this axiom, Now suppose that 

Then by the weak individual axiom, and if 
q > 0 then 

oi , this result has al-
ready been established. 

The proof for is similar. 
The moderate individual axiom does not give rise to a unidimen-

sional expected-utility result along the lines of Lemma 18.2 since it 
omits an essential Archimedian axiom. For further discussion on this 
point, the reader should consult Hausner ( 1 9 5 4 ) , Aumann ( 1 9 6 2 - 1 9 6 4 ) , 

Kannai ( 1 9 6 3 ) , and Fishburn ( 1 9 7 0 , Chapter 9 ) . 

1 8 . 3 ADMISSIBLE D I S T R I B U T I O N S 

We shall now use the individual axioms to investigate the important 
concept of admissible distributions. Throughout this section we shall 
work with a generic where Y is based on the subset 
B of basic alternatives, so tha t . Moreover, the condition 
of independence from infeasible alternatives will be assumed to hold 
so that D can be viewed as an n-tuple of strict partial orders on Y. 
The relation for each i is defined with respect to Y rather than X. 

Employing a notion used widely in the preceding chapter, we define 

for all i and for some i, (18.2) 

with the understanding that is said to dominate y precisely 
when 

D E F I N I T I O N 18.4. The distribution is admissible with respect 
to (Y,D) if and only if for no 

This obviously relates to the version of unanimity which says tha t 
and . For this condition to be consistent 

with the definition of F, it must be true tha t some is admissible. 
Since Y is infinite if 1, strict partial orders do not guarantee an 
admissible y even when B is finite. However, if certain conditions are 
assumed for individuals, then some y is admissible when B is finite. In 
fact, some b B is admissible in this case. 
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T H E O R E M 18.1. Suppose that B is finite and that each individual order 
in D satisfiesthe weak individual axiom with respect to Y = Y(B). Then 
there is a b B such that b is admissible with respect to (Y,D). 

The proof is based on two lemmas, the first of which is 

LEMMA 1 8 . 4 . Suppose that and and for 
and that each > < satisfies the weak 

individual axiom. Then 

Proof. Since for all for all i and k and therefore 
for all i by Lemma 18.1. For some there is an i 

such tha t Hence for this i, by Lemma 18.1(2). 
Hence by (18.2) 

The second lemma can be easily proved using Theorem 3.2 as modi-
fied in the sentence that precedes its statement. Another proof is given 
by Rosenblatt (1962, pp. 44-52). In the theory of Markov processes, 
this lemma guarantees the existence of a stationary distribution p in the 
finite context. 

LEMMA 1 8 . 5 . Suppose are probability distributions on 
Then there is a probability distribution p on C such 

that 

Proof of Theorem 18.1. Let the hypotheses of the theorem hold with 
Contrary to the conclusion, suppose that every bj 

is dominated, with 
be as guaranteed by Lemma 18.5 so tha t 

Then by Lemma 18.4. But 
this contradicts the irreflexivity of some and hence it must be true 
that some is admissible THE SPACE OF ADMISSIRLE DISTRIRUTIONS 

Throughout this subsection, the hypotheses of Theorem 18.1 will be 
assumed to hold. Our main purpose will be to examine the structure 
of the admissible distributions in Y. Let 

By definition, and Theorem 18.1 says 
that and in fact b for some 

A convenient way of developing the structure of Yi is to look first at 
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Fo, the space of inadmissible distributions. A set of distributions in 
Kis convex if and only if Y' is closed under convex linear combinations; 
that is, and 

LEMMA 1 8 . 6 . ( 1 ) is convex. 

Par t (2) says tha t if the basic alternative b B is inadmissible, then 
every distribution in Y with positive probability for b is inadmissible. 
Thus, for the example of section 18.1 where Mr. d had a strict simple 
majori ty over each of Messrs. a, b and c, but was dominated by x with 

every distribution that gives Mr. d any 
chance of winning is dominated by some other distribution.Looking 
at this result from the standpoint of Yu it says that if then 
x(b) = 0 for every inadmissible b. Par t (3), which is stronger than 
part (2), says that , if x is dominated and if , then 

is dominated, regardless of whether y is admissible. 

Proof of the lemma. Par t (1) is a corollary of part (3), and (2) fol-
lows from (3) by observing that if then 

, where i and for all 
in B. For (3), suppose that and . Then, by the proof 
method for Lemma 18.4, 

Although is convex, Yl need not be convex. We shall illustrate this 
and more with two simple examples that take and 
for convenience we will assume tha t the strong individual axiom holds 
for each of the two orders on Y = Y(B). In each case the following 
matrices give the individual utility functions on B tha t satisfy (18.1) 
for Y. From the viewpoint of the nonprobabilistic approach of previous 
chapters, these two matrices would be equivalent. In the present con-

text, b is dominated by in I, but b is not dominated in II. 
Situations I and I I are shown geometrically on Figure 18.1, where Y 

is the plane simplex in shown at the top of the figure. Thepoin ts in 
Yi in each case are enclosed by the dashed lines. For 
for II, In each case is the convex set 
tha t is left when Yi is taken out of Y. Although Yx is convex in I, Yi is 
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FIGURE 18 .1 

not convex in II. For example, in I I since 
I for !, so tha t ; is not in although 

a and c are. 
Since b is dominated in I, Lemma 18.6(2) says tha t for 

this case. In view of the fact tha t and for I, 
Since _ _ in II, Lemma 18.6(3) shows that 

. That is, the points on any line through 
tha t are in Y must be dominated, except perhaps for the extreme 
boundary points(where in the lemma). Lemma 18.6(3) implies 
also that if is admissible then every point on the line seg-
ment from a to b, tha t is is admissible. (This includes the end 
points a and 6. Why ?) One can easily verify tha t is admis-
sible in II . The same clearly holds for by symmetry. 

This reasoning leads to a corollary of Lemma 18.6 that we include 
in a theorem. As before, with 

The relative interior (or interior) of Y(C) is the set of all for 
which x(b) is positive for all symbolically, 

The relative boundary (or boundary) of Y(C) is If C is a unit 
subset of B, say then and the boundary 
of is empty. 
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T H E O R E M 1 8 . 2 . Suppose that the hypotheses of Theorem 1 8 . 1 hold. Then 

there is a nonempty subset (Bi of nonempty subsets of B such that 

Moreover, if then there is a nonempty subset of nonempty 
subsets of B such that 

This theorem includes all aspects of Theorem 18.1 and Lemma 18.6. 
For examole. (1) and (2) require tha t for some Because 

when ®i contains only the maximal subsets of 
B whose Y(C) are in There is no similar expression for since 

even if However, (4) states a 
noninclusion property between and I t simply reflects the fact 
that Par t (3) of the theorem follows easily from Lemma 
18.6(3), for if x is in the interior of Y(C) and is inadmissible, and if 

and y is in the interior of then is inadmissible 
and in the interior of The line segments from t to the 
boundary points of show by Lemma 18.6(3) tha t every point in 

is inadmissible. 
A simple implication of Theorem 18.2(3,5) is tha t if then 

every point in the interior of Y is in 

T H E MODERATE INDIVIDUAL AXIOM 

One natural property of admissibility tha t has not yet been men-
tioned in our probabilistic setting is the dominance of each inadmis-
sible distribution by an admissible distribution. We show first tha t this 
can be false under the weak individual axiom. 

Let and let be the distribution tha t has prob-
ability x for b and 1 — x for a. Taking n = 1, let > satisfy x > y > 1 
whenever and for all I t is easily seen 
that the weak individual axiom holds. Since 0 is the only point tha t is 
not dominated, But for no , and therefore 
there is no point in Y\ tha t dominates a point in 

The moderate individual axiom of Definition 18.3 rectifies this 
anomaly. 

T H E O R E M 1 8 . 3 . Suppose that B is finite and each individual order in D 
satisfies the moderate individual axiom. Then 
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Proof. Let the hypotheses hold and, contrary to the conclusion, sup-
pose tha t and no admissible distribution dominates We 
shall obtain a contradiction to this by constructing a sequence 

of points in Y such tha t , The transit iv-
ity of gives for every so t h a t > by our 
supposition. We let be such t h a t (See Theorem 
18.2.) 

Given y u determine as follows. If there is an such t h a t 
take as the point on the line t h a t 

is far thest from y1 on the x side of yi and is still in Y. I t follows from 
Lemma 18.3 tha t and, by construction with 

[That is, is on the boundary of and hence will be in 
the interior of for some On the other hand, if 
for no 2 be any point in t ha t dominates yi. Since 

is convex, C2 will not be a subset of Ci in this case. 
Given precisely the same procedure is used to obtain 

The construction proceeds in the same way for each 
transitive, , whenever Moreover, since is irreflexive, 

whenever 
Suppose we are at ySince B is finite, and since 

f o r s o m e af ter a finite number of steps we must reach a 
such t h a t for no And since : for 

m > k this means tha t | for all m I t follows t h a t there 
is an infinite sequence with such tha t , for 
each r for all But this implies t ha t 
no two are identical and hence tha t their number is infinite. We 
have thus reached the desired contradiction since B has only a finite 
number of subsets. 

A NONTHEOREM 

As we have shown, need not be convex. However, the first par t 
of Theorem 18.2 states t ha t F j can be writ ten as the union of several 
maximal convex sets, namely the I t might then be 
asked whether, under any of the individual axioms, each two subsets 
of B t h a t are in ®i contain a common basic alternative. For example, 
this would be t rue for case I I of Figure 18.1 where 
for the two subsets of B in ®i both contain b. 

Simple examples show tha t this can be false when only the weak 
individual axiom is used, provided t h a t Moreover, as we shall 
now show, it can be false even when the strong individual axiom is used, 
provided tha t 

Let and suppose the following ut functions on 
B satisfy (18.1). Then, as one can easily verify, each of a, b, c, and d 
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. In fact, can be shown to equal this union, so tha t 
with 

This result is shown for the simplex of Figure 18.2. Since 

Y is effectively 3-dimensional in this case, it can be viewed as a regular 
tetrahedron with c lying above the plane tha t contains a, b and d. (The 
tetrahedron represents par t of the hyperplane 

in 4-dimensional space.) As before, the points in along 
three edges of the tetrahedron, are enclosed by dashed lines. 

SHOULD F(Y,D) BE CONVEX? 

Assume tha t the unanimity condition is im-
posed so t h a t , . Should F(Y,D) be required to be convex 
also? If so, then F(Y,D) must be a subset of one of the Y(C) for 

This follows from Theorem 18.2 under the weak individual 
axiom. 

Besides the purely esthetic at traction of a convex choice set, con-
sideration of tie-breaking may support an argument in favor of con-
vexity. Suppose for example tha t and Then the 
distributions x and y both appear "fa i r" for "implementation," de-
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spite the obvious fact tha t some individuals may prefer x to y while 
others prefer y to x. Hence with 1 might also 
seem "fair ," since when viewed as a two-stage lottery it results in 
either x or y at the first stage. 

Of course, even when F(Y,D) is convex, it does not fully resolve the 
issue if it contains more than one distribution. There is one qualifica-
tion on this. If for every i and all 
then it should make no difference to any individual which distribution 
in F(Y,D) is actually used. In such a case it seems reasonable to say 
tha t F(Y,D) fully resolves the issue at hand. 

1 8 . 4 O T H E R CONSIDERATIONS 

Clearly, considerations besides admissibility will usually play a role 
when lotteries are allowed in a social choice procedure. For example, 
if a group has 100 individuals and if the situation of Figure 18.1 (II) 
has one individual with utility function ui and 99 with utility func-
tion then the social choice would probably not be the same as 
when 99 have ui and one has despite the fact tha t the admissible 
set in Y is the same in both cases. 

Corresponding to preceding investigations, several routes in the lot-
teries context might be pursued. These include an examination of con-
ditions like those in Chapters 14 through 16, consideration of simple 
majority, and the determination of F by summation as in the preceding 
chapter. In concluding our study, we shall comment on three things: 

1. Conditions under which a basic alternative tha t has a strict sim-
ple majority over each other basic alternative is admissible; 

2. The existence of a distribution _ tha t has a strict simple 

majority over every other distribution in Y\ 
3. Determination of F(Y,D) by maximum utility sums. 

The second of these has been studied by Zeckhauser (1969) and Shepsle 
(1970), and the third by Harsanyi (1955), Pattanaik (1968b), and Sen 
(1970c), among others. Two other papers of general interest which use 
expected utility in a social choice analysis are Coleman (1966) and 
Riker and Ordeshook (1968). 

BASIC MAJORITY ADMISSIBILITY 

As in the preceding section, we shall work with a generic 
with The other conditions in the first paragraph 

of the preceding section are assumed here also. 
As shown in section 18.1, a basic alternative (Mr. d) that has a strict 

simple majority over each other basic alternative may be inadmissible. 
A quick check will show tha t preferences on a, b, c, d are not single-
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peaked in tha t example. When preferences on basic alternatives are 
single peaked, it will often be true that a "best" basic alternative by 
the weak Condorcet condition will be admissible. The combination of 
the weak Condorcet condition on B and admissibility could reflect the 
following partial selection procedure. I t is first determined whether one 
basic alternative has a strict simple majority over each other basic 
alternative. If there is a weak Condorcet "winner," say b, then b will 
be implemented unless someone can propose a lottery tha t is "unani-
mously preferred" to b. In other words, each voter has veto power 
over any lottery tha t is put against b. 

We shall consider two theorems that combine the weak Condorcet 
viewpoint on basic alternatives with admissibility. Both are based on 
single-peaked preferences on the basic alternatives in B. The notation 
of Chapter 9 will be used where appropriate. 

T H E O R E M 18.4. Suppose that each individual order in D satisfies the 
weak individual axiom with respect to , that (B,D) is single 
peaked under the linear order on B and that for each i there is an 

such that b for all . Then, if there is a basic 
alternative that has a strict simple majority over every other basic alter-
native, it is admissible. 

Proof. Let the hypotheses hold and assume that 6Pua for all a 
Suppose first tha t b — a, for some i, so tha t for all 

i To show tha t b is not dominated, let x with 
If then, by Lemma 18.1, or 
If then with . Hence 

and therefore 
Hence for all so tha t 6 cannot 

be dominated. 
Suppose next tha t for no i. Let a be the alternative in 

{ai, . . . ,a„} tha t satisfies and for no at], and let c 
be the alternative in {ax an} that satisfies c and 
for no a,]. Since bPDat for all i, both a and c exist. Letm 
and Then and 

, a contradiction. Hence the case supposed in this para-
graph cannot arise. 

I t should be noted tha t Theorem 18.4 says nothing about the size of 
B. In particular, it allows B to be infinite, as does our next theorem. 
In this theorem the restriction on the nature of the peaks (unit sub-
sets of B) is removed, but the individual assumptions are strengthened. 

T H E O R E M 18.5. Suppose that each individual order in D is a weak 
order that satisfies the moderate individual axiom with respect to Y = 
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peaked in tha t example. When preferences on basic alternatives are 
single peaked, it will often be true that a "best" basic alternative by 
the weak Condorcet condition will be admissible. The combination of 
the weak Condorcet condition on B and admissibility could reflect the 
following partial selection procedure. I t is first determined whether one 
basic alternative has a strict simple majority over each other basic 
alternative. If there is a weak Condorcet "winner," say b, then b will 
be implemented unless someone can propose a lottery tha t is "unani-
mously preferred" to b. In other words, each voter has veto power 
over any lottery tha t is put against b. 

We shall consider two theorems that combine the weak Condorcet 
viewpoint on basic alternatives with admissibility. Both are based on 
single-peaked preferences on the basic alternatives in B. The notation 
of Chapter 9 will be used where appropriate. 

T H E O R E M 1 8 . 4 . Suppose that each individual order in D satisfies the 
weak individual axiom with respect to Y = Y(B), that (B,D) is single 
peaked under the linear order , on B and that for each i there is an 

B such that , b for all b . Then, if there is a basic 
alternative that has a strict simple majority over every other basic alter-
native, it is admissible. 

Proof. Let the hypotheses hold and assume that for all a 
Suppose first tha t b = a, for some i, so tha t , a for all 

To show tha t b is not dominated, let with 
If then, by Lemma 18.1, 
If then Hence 

and therefore 
Hence for all so tha t b cannot 

be dominated. 
Suppose next tha t for no i. Let a be the alternative in 

tha t satisfies and for no at], and let c 
be the alternative in that satisfies cand 
for no a,]. Since bPDat for all i, both a and c exist, 
and 

a contradiction. Jtience the case supposed in this para-
graph cannot arise, 

I t should be noted tha t Theorem 18.4 says nothing about the size of 
B. In particular, it allows B to be infinite, as does our next theorem. 
In this theorem the restriction on the nature of the peaks (unit sub-
sets of B) is removed, but the individual assumptions are strengthened. 

T H E O R E M 1 8 . 5 . Suppose that each individual order in D is a weak 
order that satisfies the moderate individual axiom with respect to Y = 
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To the contrary, suppose tha t 1. Because x is in the interior of 
Y(C), we can choose a y sufficiently close to but different than 
x so that there are t and v in j such that 

with and small enough so that the results to be described 
will hold. In particular, will be a satisfactory value. This is 
shown on Figure 18.3, where An appropriate con-

FIGURE 18.3 

vex combination will give and for this a we take 
As shown on the figure, is between x and y. 

Another combination will give , and for this we 
take , with to the right of y. 

Now suppose tha t Then, by the weak individual axiom, 
so that , Conversely, sup-

pose tha t Then with the combinations as described above, the 
weak individual axiom gives then so tha t by 
transitivity. Since y is a convex combination of x and r3, the weak 
individual axiom gives Hence Reversing 
in each step here gives Therefore 
Hence, if #C > 1, then x cannot have a strict simple majority over 
every other distribution. 

In comparison with Theorems 18.4 and 18.5, it is easily seen tha t 
when (B,D) is single peaked and so tha t b has a strict 
simple majority over every other basic alternative, there may be a 
distribution in Y tha t has a strict simple majority over b. For example, 
if and for (18.1) are as follows, then (B,D) satis-
fies the conditions of Theorem 18.4, and {&} = P(B,D) with b admis-

sible. However, is preferred to b by individuals 1 and 2, so 
tha t Zeckhauser (1969) and Shepsle (1970) investigate 
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the three-alternative situation under the strong individual axiom in 
some detail, and the reader is referred to their papers for further 
information. 

UTILITY SUMS 

To simplify our discussion of summation in the lottery context, we 
shall assume that B is finite and tha t the strong individual axiom holds 
for each order in D. Given u t for i tha t satisfies (18.1) on Y = Y(B), 
normalized so tha t max and min 
whenever is not constant on B, let 

for all A typical procedure for determin-
ing F( Y,D) by summation in this setting is to specify a positive number 
pt for each i and take 

) 
As you can easily verify, for some 

If one accepts such a procedure in principle, the question remains as 
to how the p» are to be specified. Various suggestions have been made 
on this point (see, for example, the papers cited early in this section), 
but there does not appear to be widespread agreement on any of these. 
We shall not go into them here. 

There are other summation procedures besides those specified by 
(18.4) that qualify in the present context as summation social choice 
functions. For example, given (Y,D) as supposed above, let 
agree monotonically with so that if and only 
if i Then for all and all i. 
If it is t rue tha t 

(18.5) 

is not empty, then F(Y,D) could be taken to equal this subset of Y. 
Simple examples that involve discontinuities show tha t (18.5) can be 

empty. Other examples show that when (18.5) is not empty, it need not 
contain any For instance, let with 
resenting the distribution that assigns probabilities a; to a and 1 — x 
to b. Suppose that Two functions 
tha t preserve the orders on [0,1] are 

The sum of these two functions is maximized by so that (18.5) 
contains only the even-chance distribution on {a,b}. 
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