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and transitive, but individual indifference relations are not necessarily
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when it is used.

The first chapter outlines the plan of the study and acknowledges
some of its limitations. The text is divided into three parts: social
choice between two alternatives, which examines a variety of majority-
like functions; simple majority social choice, which focuses on social
choice among many alternatives when two-element feasible subset
choices are based on simple majority; and a general study of aspects
and types of social choice functions for many alternatives. I have
tried to provide in-depth coverage of the topics included in the 1 ook
without attempting a broad survey of the subject.
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a useful prerequisite.
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typed the manuscript, to Professor Bengt Hansson, who kindly shared
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ful analysis of the entire work was extremely valuable.
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CHAPTER 1

Introduction

DuMocrATIC THEORY is based on the premise that the resolution of a
matter of social policy, group choice or collective action should be
based on the desires or preferences of the individuals in the society,
group or collective. Following a tradition established by Arrow (1963),
Black (1958), Murakami (1966), Sen (1970), and others, this book is
primarily motivated by this premise of democracy. In brief, our study
will be concerned with relationships between individuals’ preferences
and social choices.

The medium through which the investigation will proceed is pro-
vided by the notion of a social choice function. The purpose of the
present chapter is to define this notion in a precise manner and to
provide a suitable orientation for the chapters that follow. In doing
this we shall also mention some topics that are not dealt with in detail
in the present volume.

1.1 SociaL Cuoice Funcrions

In general, we shall let n denoie the number of individuals in the
group or society under consideration, with n a positive integer. The
types of groups that might be considered seem almost endless. The
group might be a husband and wife (n = 2), the United States Su-
preme Court (n = 9), a faculty senate, the eligible voters in a political
district, a corporation’s common stockholders, a labor council or labor
union, a religious congregation, a farmers’ cooperative, a board of
directors, a jury, the General Assembly or Security Council of the
United Nations, and so forth. In some cases the group may have well-
recognized subgroups or be built up in a hierarchy of levels.

The generic situation for our study is characterized by a group of
n individuals who must select one alternative from a set X of social
alternatives. It is presumed that the alternatives are so structured
that the choice of any one of them implies the rejection of every other
alternative. Moreover, by inclusion of alternatives such as ‘‘delay the
decision to a later time” or ‘“‘maintain the status quo,” we can assure
that some alternative in X must be selected.

To provide a general framework for the analysis, two aspects of the
generic situation will be open to variation. First, in any specific real-
ization of the situation, it will be presumed that each individual or
“voter”’ prefers some social alternatives to others. However, we shall
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INTRODUCTION

not presume to fix these preferences in advance. That is, we want to
be able to deal with any set of individual preference orders that
might arise.

Second, in any specific realization of the situation it need not be
true that every alternative in X is feasible or available for implemen-
tation. For example, in an election of some kind, the only feasible
candidates may be those who have qualified to have their names
placed on the ballot. As in the case of individuals’ preferences, we
shall not presume to fix the feasible alternatives in advance. That is,
we want to be able to deal with any set of feasible alternatives that
might arise.

Suppose in fact that Y turns out to be the feasible subset of X
and that D specifies the individual preference data in a specific real-
ization of the generic situation. Based on the pair (Y,D), a nonempty
subset F(Y,D) of Y is specified as the “‘choice set” for this specific case.
In a manner of speaking, F(Y,D) might be viewed as the “socially
best’ alternatives in the feasible set ¥ when the preference data speci-
fied by D obtain. If F(Y,D) is a unit subset of Y, containing only one
social alternative, the social choice is unambiguous in the case at hand.
However, when F(Y,D) contains more than one alternative in Y, the
issue before the group may not be fully resolved and some form of tie-
breaking procedure might be required. Although we have specified
that X is structured so that exactly one social alternative will be
implemented, we shall permit F(Y,D) to contain more than one alter-
native in order to allow a degree of generality in the analysis. Our
basic approach might thus be characterized as an examination of
group decision, excepting tie-breaking procedures. We shall say more
about this at later points in the study, especially in Chapters 6 and 18.

SOCIAL CHOICE FUNCTIONS

For different possibilities of feasible sets and individual preference
data we will have different choice sets. The choice set for the possi-
bility (¥,D) will be F(Y,D), as before. The collection of all possibili-
ties in conjunction with their respective choice sets constitutes a social
choice function.

In abstract terms a social choice function is a function F: & X D —
®(X) where X is a nonempty set of nonempty subsets of a nonempty
set X, D is a nonempty set, ®(X) is the set of all subsets of X and,
for each (Y,D) € x X ©, F(Y,D) € ®(X) is a nonempty subset of Y.
In terms of the preceding interpretations, & is the set of all subsets of
X that might turn out to be feasible subsets of X, D is the set of all
configurations or profiles of individual preference data that might arise,
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1.2 INDIVIDUAL PREFERENCES

and F(Y,D) € ®(X) with § C F(Y,D) € Y is the choice set when
(Y,D) obtains.

An example might help to make the idea of a social choice function
somewhat clearer. Suppose that X contains two social alternatives and
that only X itself is considered as a feasible possibility so that X = { X}.
Suppose further that there are three individuals or voters, each of
whom either prefers one alternative to the other or is indifferent be-
tween them. Let D specify the preferences (or indifferences) of the
three voters. Since each individual has three options, the set D of all
possible D has 3 X 3 X 3 = 27 elements. For each of the 27D, F(X,D)
can take one of three values: it can specify exactly one of the two
alternatives, or it can specify both (a tie). Thus there are 327 different
social choice functions that can be defined on & X ©. Hence, even in
this simple case there are more than 7 trillion (7 X 10!?) possible
social choice functions. Naturally, a great many of these will violate
one or more conditions that are felt to reflect the basic premise of
democracy.

1.2 INpDIviDuaL PREFERENCES

Until fairly recently, most studies of individual or group decision
theory that are based on individual preference have assumed that an
individual’s preference order on a set of alternatives is a weak order.
This means that if > denotes preference on X, with z > y meaning
that x is preferred to y, then > is assumed to be asymmetric (if x > y
then not y > ) and transitive (z > y &y > z =z > z); moreover,
with indifference ~ defined as the absence of preference, so that

r~yenotze > y&noty > z,

it is assumed that indifference is transitive.

In this book we shall retain the assumption that each individual
preference relation > is asymmetric and transitive (i.e. a strict partial
order), but individual indifference will not generally be assumed to be
transitive. Those cases where ~ is taken to be transitive will be clearly
identified in context. Although the question of transitive indifference
does not arise when X has only two alternatives, and hence will have
no affect on Part 1 of the book, it will be very much in evidence in
Parts II and III, which consider social choices from larger sets of
alternatives. Additional background on order relations is presented in
the initial chapter of Part II.

As pointed out by Armstrong (1939, 1948, 1951), Luce (1956), and
many others, it is rather unrealistic to suppose in general that indi-
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INTRODUCTION

vidual indifference is transitive. Luce’s coffee example, where an indi-
vidual will be indifferent between z and x -+ 1 grains of sugar in his
coffee for a reasonable range of x but will not be indifferent between
x and x + m for sufficiently large m, is a case of intransitive or non-
transitive indifference.

For another example, suppose that Mr. Jones is a member of a group
that must decide how much money to allocate to a certain project.
Mr. Jones favors an amount in the vicinity of $1000. He likes each of
$900, $1060 and $1070 less than $1000, and he prefers $1060 to $1070.
However, he is indifferent between $900 and $1060 and also indifferent
between $900 and $1070, so that his indifference relation is not
transitive.

For a third example, suppose that the Browns are going to bhuy a
new car and have agreed to buy either a certain model of Ford or a
certain model of Chevrolet. Mrs. Brown prefers (Ford, at $2800) to
(Ford, at $2830), but is indifferent between (Ford, at $2800) and
(Chevrolet, at $2900), and also indifferent between (Chevrolet, at
$2900) and (Ford, at $2830).

Additional material on intransitive individual indifference is pre-
sented in the surveys by Roberts (1970) and Fishburn (1970d), and in
Fishburn (1970).

SOCIAL CHOICE AND INDEPENDENCE FROM
INFEASIBLE ALTERNATIVES

The general characterizati: a of D in the foregoing section leaves
open the question of just what types of individual preference data
are to be included in the domain of the social choice function. In
this book it will generally be assumed that each D & D is an n-tuple
of strict partial orders on X, one order for each individual in the
group or society. Thus, if >, is the preference relation on X for the
ith individual in a possible realization of the situation then D =
(>1,>2 . .. ,>x) for this possible realization. Section 1.4 notes some
other things that might be included in the elements of $ but which will
not be considered in detail in later chapters.

It should be observed that, by taking each >, on all of X and not
just on the particular subset Y of X that happens to be feasible, we
are leaving open the possibility that individual preferences that
involve infeasible alternatives may influence the social choice. My
present feeling, which is shared by some but certainly not all social
choice theorists, is that such preferences ought not to affect the social
choice from the feasible set. In terms of the social choice function, this
feeling can be expressed by the condition that F(Y,D) = F(Y,D’)
whenever D = (>, . .. ,>,) and D' = (>}, . .. ,>.) are identi-
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1.2 INDIVIDUAL PREFERENCES

cal on Y, although they may differ on X. This says that, when Y is the
feasible set in each of two possible realizations and when each indi-
vidual has the same preference order on Y in each of the two possible
realizations (the restriction of >, on Y equals the restriction of > on
Y, for each i), then the choice sets should be identical in the two possi-
ble realizations. We shall call this condition the condilion of indepen-
dence from infeasible alternatives. It is proposed in the same spirit as
Arrow’s condition of the independence of irrelevant alternatives (1963,
p- 27).

This condition will be used, either implicitly or explicitly, in much
of the book. The most notable exception arises in Chapter 17, which
presents some general theory for social choice functions that are based
on sums of individual utilities.

Because independence from infeasible alternatives plays a signifi-
cant role throughout this study, a word on its possible merits is in
order. First of all, when Y is recognized as the relevant feasible set,
there may be serious question about the significance or meaning of
individual preferences that involve infeasible elements in X — Y.
When independence applies, the question of preferences that involve
infeasible alternatives becomes academic, and individuals need only
specify preferences within the feasible subset.

If in fact the social choice can depend on infeasibles, which infea-
sibles should be used? For with one set of infeasibles, feasible x might
be the social choice, whereas feasible y ¥ z might be the social choice
if some other infeasible set were adjoined to Y. Hence, the idea of
allowing infeasible alternatives to influence the social choice introduces
a potential ambiguity into the choice process that can at least be
alleviated if not removed by insisting on the independence condition.

This obviously ties into the choice of the universal set X of alter-
natives in a particular situation. If independence is adopted, then the
contents of X are not especially important as long as they include,
at least conceptually, anything that might qualify as a feasible can-
didate or alternative. If independence is not adopted, the ambiguity
noted in the preceding paragraph may cause significant problems in
attempting to specify just what should and should not be included
in X.

The question of just what is or is not a feasible alternative may also
present problems in a group decision process, but the independence
condition says nothing about this as such. Related to this, we may
consider a maneuver in which an alternative is legally placed in nomi-
nation not because its sponsors think it has any chance of being elected
but because they feel that its introduction will increase the chance of
the election of their favored alternative. This is more a question of the
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INTRODUCTION

process of identifying feasible alternatives than it is of the indepen-
dence condition, which deals only with the feasible set that arises.
It is also a question of the design of the choice procedure, and other
conditions might play a part in its analysis. It is also clearly con-
nected with individual and coalition strategies in social choice pro-
cesses. This book will not go into the fascinating subject of voter
strategy in any detail, although a few comments on the topic are
presented in the final section of Chapter 8.

It should also be pointed out that our use of the independence con-
dition is not, in itself, an argument against the inclusion of individual
intensities of preference. For example, if individual intensities of pref-
erence were taken to be relevant along with the basic preference orders,
then we would have to change our viewpoint about the contents of .
If each D included data on intensities as well as basic preferences,
then the intention of the independence condition would be preserved
if the form of the condition were not changed. In this case the con-
dition would say that F(Y,D) = F(Y,D’) whenever the data in D and
D’ are the same (including any data on intensities) within Y. We
shall say more about the matter of intensity and the related subject
of interpersonal comparisons in the final section of this chapter.

1.3 PRrEVIEW

With the foregoing introductory material at hand, a brief sketch of
the contents of later chapters will indicate the scope of the present
study. The text is presented in three parts, as follows:

Part 1. Social Choice with Two Alternatives.
Part 1II. Simple Majority Social Choice.
Part III. Social Choice Functions.

Parts IT and III are generally concerned with the case where X con-
tains more than two social alternatives.

The initial emphasis in Part I is on the structure of individual pref-
erence profiles D & D and social choice functions when X contains
only two alternatives. In the spirit of the independence condition, only
preferences that involve the two alternatives will be considered as rele-
vant. Potential conditions for social choice functions, such as mono-
tonicity, unanimity, duality, and anonymity, are introduced, and their
effects on social choice functions are analyzed. Various types of ma-
jority functions, including simple, weak, weighted, and representative
majorities, are characterized in terms of such conditions. Each of these
types of majorities satisfies the duality condition, which requires equal
treatment for the two alternatives.

8



14 PREFERENCE INTENSITY

The final chapter of Part I discusses several forms of special ma-
jority which do not generally treat the two alternatives equally—the
“status quo” usually has a built-in advantage.

Part II focuses on social choice functions for larger X whose binary
parts agree with simple majority. This says that, for any feasible subset
Y = {,y} that contains just two elements from X, F({z,v},D) = {x}
if more individuals prefer x to y than prefer y to x, and F({z,y},D) =
{y} if more ¢ prefer y to x than prefer z to y. It is generally assumed in
Part II that & is the set of all nonempty subsets of X.

Following some comments on the well-known fact that simple ma-
jorities may be intransitive when X contains more than two alter-
natives, the central segment of Part II examines structural features
of situations that give rise to transitive majorities or, short of that,
to one alternative having a simple majority over every other alter-
native. This analysis begins with the case of single-peaked preferences,
which dates at least to Galton (1907) and was studied extensively
some years later by Black (1948, 1958).

The penultimate chapter of Part Il examines the contention of
Condorcet (1785) that an alternative that has a simple majority over
every other alternative should be the social choice, assuming that the
simple-majority rule is sanctioned in any case where the feasible set
contains just two alternatives. The final chapter of Part II looks at
several explicit social choice functions that agree with simple majority.

Part III begins with a general classification of conditions for social
choice functions. The categories of this classification are then related
to several topics, including the transitivity of binary (but not neces-
sarily simple-majority) choices, an analysis of structural conditions in
conjunction with order-related conditions, and Arrow’s impossibility
theorem (1963) and some of its close relatives.

As noted earlier, Chapter 17 presents a general theory of summation
social choice functions. The final chapter discusses the use of lotteries
to make social choices. If a group decides to use a lottery, an alterna-
tive is then chosen randomly according to the probabilities specified by
the lottery. As in preceding chapters, individual preference orders will
be assumed to be strict partial orders, on lotteries in this case. Other
assumptions for individual preferences in the lottery context will gen-
erally be weaker than the typical von Neumann-Morgenstern (1947)
axioms for expected utility.

1.4 PREFERENCE INTENSITY

Because the present study concentrates on social choice functions in
which the elements of D are n-tuples of preference orders on social

9



INTRODUCTION

alternatives, data on intensities of preferences will not be included in .
This is not to say that such data ought not to be used in determining
social choices, and it by no means implies that the author regards the
intensity topic as sterile or unimportant. Rather it points out one of
the self-imposed limitations on the present volume.

As we have mentioned intensities, a few words about what is being
excluded in later chapters seem appropriate. There are at least two
distinct senses in which the phrase “preference intensity” is used. The
first is an intrapersonal sense and the second is an interpersonal sense.

Intrapersonal preference intensity (degree of preference, strength of
preference) applies solely to a particular individual. If, for example, you
prefer x to y and y to z, it asks whether your “degree of preference’”
for x over y exceeds, equals, or is less than your ‘‘degree of preference’”
for v over z. If you preferred Nixon to Humphrey to Wallace in the
1968 United States Presidential election, was the intensity of your
preference for Nixon over Humphrey greater than, equal to, or less
than the intensity of your preference for Humphrey over Wallace?

Theories of intrapersonal preference intensity go back at least to
Pareto (1927) and Frisch (1926). Later contributors include Lange
(1934), Alt (1936), Armstrong (1939), Weldon (1950), and Suppes and
Winet (1955). The inclusion of vagueness in preference-difference com-
parisons, which is related to the phenomenon of intransitive indiffer-
ence, is discussed by Fishburn (1970e; 1970, Chapter 6).

A simple example will illustrate one way in which intrapersonal
intensity might be taken into account in social choice theory. Suppose
that Y = {x,y,z}, n = 2, the first person prefers x to y to z, and the
second prefers z to y to z. If the first person feels that y is closer to
than to z in terms of his relative preference differences, and the second
feels that y is closer to z than to x in his own view, then it might seem
appropriate to “‘elect”” y as the social choice. On the other hand, if the
reverse holds and y is nearer to the worst rather than the best alterna-
tive for each person, then y might be excluded from the choice set.

INTERPERSONAL PREFERENCE COMPARISONS

As the name suggests, interpersonal preference comparisons purport
to compare preference differences of different individuals. For example:
Mr. Smith’s intensity of preference for Nixon over Humphrey exceeds
Mr. Jones’ intensity of preference for Humphrey over Nixon. Another
example: the husband would rather stay home than go to a movie, but
he really doesn’t feel strongly about this; on the other hand, his wife
is ““dying to get out of the house’” and has a very ‘“‘strong” preference
for “movie” over “‘stay home.” A third example concerns the intense
and passionate minority versus the apathetic majority.

10



1.4 PREFERENCE INTENSITY

Needless to say, the idea of accounting for interpersonal preference
comparisons has received a great deal of attention in the literature of
social choice theory. Rather than attempting to survey this, we shall
simply indicate several resources that present various points of view on
the topic. The following list is by no means complete, but will lead the
interested student to additional references: Dahl (1956), Buchanan
and Tullock (1962), Kendall and Carey (1968); Harsanyi (1955), Roth-
enberg (1961), Arrow (1963, pp. 108-118), Sen (1970), Luce and Raiffa
(1957, Chapter 14); Churchman (1966).

At several places in the present study it might appear that questions
of interpersonal comparisons are very much at issue. Some cases in
point are the theory of weighted majority in Chapter 5 and the theory
of summation social choice functions in Chapter 17. Indeed, it has
been suggested by several authors that any specific social choice
function or social choice procedure incorporates some notion of inter-
personal comparisons, whether or not this is explicitly recognized by
its sponsor. Regardless of how one feels about this, it should be remem-
bered that this study is based on n-tuples of individual preference
orders, and does not, at any point, explicitly include intensity data
(either intrapersonal or interpersonal) in the elements of D.
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CHAPTER 2

Social Choice Functions for

Two Alternatives

Tuis cHAPTER has three purposes. The first is to set forth some nota-
tions and conventions that will be used throughout Part I. The second
purpose is to examine structures of preferences and social choice func-
tions for two alternatives. Thirdly, we shall investigate the conditions
of monotonicity and unanimity for social choice functions. These con-
ditions are used throughout the succeeding chapters of Part I.

2.1 NOTATIONS AND STRUCTURES

For any set S let #£S be the number of elements in S, and let S be the
n-fold Cartesian product of S with itself so that S* = {(sy, . . . ,8.):
s; & S for each i}. We write f:S— T to denote a function f with
domain S and codomain 7. S" can be viewed as the set of all functions
[, ... .np— 8

In mathematical terms, Part I will deal with the set of all functions
F:8"— S when #S = 3 and n is a positive integer. The symbols used
for the three elements in S can be anything we want them to be. How-
ever, for mathematical and interpretive purposes it is very efficient to
take S = {1,0,—1}.

Our interpretation of this structure in terms of choice between the
two alternatives in the set X = {x,y} is the following. First, n is the
number of individuals in the group or society, and i =1, ..., n
indexes these individuals. Let D; be a variable whose values represent
the possible preferences of individual ¢ on X. It is assumed that indi-
vidual preference is asymmetric, so that D, has three possible values,
identified as follows:

D;= 1o iprefersxtoy

D. = 0« 1is indifferent between xz and y

D; = —1 & 1 prefers y to .
The set D = {1,0,—1}" is the set of all individual preference profiles,
of the form D = (D,, . .. ,D,), that might obtain in a particular
situation. In terms of voting we can think of D; = 1 as a vote for z,
D; = —1 as a vote for y, and D; = 0 as an abstention.

15



TWO ALTERNATIVE SOCIAL CHOICE

The function F:DH — {1,0,—1} assigns a social choice F(D) &
{1,0,—1} to each preference profile D & D. To maintain consistency
with the foregoing 1, 0, —1 interpretation for individual preference,
we interpret

F(D) = 1 & zis the social choice under D
F(D) = 0<¢ zxand y are tied under D
F(D) = —1 & y is the social choice under D.

Because the situation that arises when only one of z and y is avail-
able is of no real interest, F as here defined is to be viewed as the choice
function when both x and y are feasible alternatives. In terms of the
notation of Chapter 1, F(D) = F({x,y},D). Since our definition of
social choice function requires F({z},D) = {z} and F({y},D) = {y}
for all D € D, we dispense with these trivial cases and simply refer to
F:D— {1,0,—1} as a social choice function.

GEOMETRIC INTERPRETATION

Since © = {1,0,— 1}, #D = 3~ Figure 2.1 illustrates the 27 points
in D when n = 3. The central point is the origin 0 = (0,0,0) of a

| AT T

Ficure 2.1

three-dimensional Euclidean space. The point labeled + is (1,1,1) and
the point labeled — is (—1,—1,—1). Each point labeled “a” has
Dl + Dz + Ds = 0.

A particular social choice function F for n = 3 can be identified on
the figure by labeling each point D with its corresponding F(D) value
from {1,0,—1}. This will partition the set of 27 points into three sub-
sets (one or two of which may be empty) according to the three values.

16



2.1 NOTATIONS AND STRUCTURES

More generally, for any F:{1,0,—1}* — {1,0,—1} let
F*(k) = {D:D & {1,0,—1}" and F(D) = k} (2.1)

for k = 1,0, —1. F*(k) is thus the tnverse image of k. Any social choice
function F is completely described by the triple (F*(1}, F*(0), F*(—1)).
Correspondingly, any triple (D!,D%5H™1) of disjoint subsets of D whose
union equals © determines a social choice function ¥ in the obvious
way.

Our intuitions about “‘acceptable” social choice functions suggest
that the elements in a given F*(k) should be bunched together, or that
the sets in the triple (F*(1),F*(0),F*(—1)) should form clusters that
are simply described in a figure such as Figure 2.1. For example, we
may feel that it is reasonable to prescribe F(+) = F(1,1,1) = 1, so
that x is the social choice when everyone prefers x to y, and that other
D & F*(1) should be in the vicinity of -+. Similarly, F(—) = —1,
with other D & F*(—1) in the vicinity of —, may seem reasonable. As
we shall see, the conditions for social choice functions that we investi-
gate tend to separate the F*(k) into more or less cohesive groupings.

VECTOR OPERATIONS AND HYPERPLANES

The usual operations on vectors in n-dimensional Euclidean space
Re” will be used extensively in Part 1.

For any A& Re and a = (a1, . . . ,a,) and b = (b, . . . ,b,) in
Rer, va = (ay, ..., \a,) and a+ b = (a1 + by, . . . ,a, + bn).
Also, —a = (—1)a. The inner product a - b of a and b is

a-b=ab+ - + a.b, = Z.ab. (2.2)

Equality and inequality between vectors a,b € Re* will be denoted
in the following way:

a=bea =0, for each ¢
a>besa > b, for each ¢, and a. > b, for some ¢
a>bea=0 ora > b.

Naturally, a < b= b>a,anda < b=b > a.
Consider the set

{a:a € Rerand p - a = )} (2.3)

where p is a fixed vector in Re” and A € Re. This set is a hyperplane
in Re", It is a hyperplane through the origin if X = 0. If p = 0 then
{a:p-a = A} equals § or Re* according to whether A = 0 or A = 0.
If p # 0, then the hyperplane is neither # nor Re™.
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TWO ALTERNATIVE SOCIAL CHOICE

Every hyperplane of the form (2.3) partitions Re® into three dis-
joint subsets (some of which can be empty) according to whether
a'p>Na-p=M\ ora-p <N\ Thus, we see that a host of social
choice functions can be characterized by using hyperplanes. In par-
ticular, p and \ determine a social choice function F as follows:

FD)= 1op-D>\ F*1) = {D:p-D >
FD)= O0ep-D=\ F*0) ={D:p-D =2} (2.4)
F(D) = —1ep-D<x F*—=1) = {D:p-D < A}

The following are some examples.

(i) F = 0, the completely indecisive social choice function (z ties y
regardless of D), is described by p = 0 and A = 0.

(i) F = 1, the imposed function which prescribes z as the social

choice regardless of D, is described by p = 0 and A = —1.

(ili) F = —1, the imposed function which prescribes y as the social
choice regardless of D, is described by p = 0 and A = 1.

(iv) The simple majority social choice function has p = (1, . . . ,1)

and A = 0 so that z beats y whenever more individuals prefer z to y
than prefer y to z (i.e. =D, > 0), and y beats x whenever the converse
holds. The hyperplane that defines simple majority for Figure 2.1 is
the plane that contains the origin and the “‘a” points. Each “a” point
has F(a) = 0, each D on the + side of the plane has F(D) = 1, and
each D on the — side has F(D) = —1.

(v) Simple majority with a tie-breaking chairman, individual 1,
can be described by p = (3,2,2, . . . ,2) and A = 0. A tie can arise in
this case only if the chairman does not vote. The greater weight for
the chairman makes a difference as compared to simple majority only
when there is a simple majority tie.

(vi) The case where x wins if the number of votes for x exceeds the
number for y by at least a positive integer r, and y wins otherwise,
is described by p = (1, . . . ,1) and A = r — 4. Since p - D must be
an integer in this case, ties cannot arise.

(vil)) We shall call F a weighled majorily social choice function if
and only if it can be described as in (2.4) with p > 0 and A = 0. Of
the foregoing examples, only (iv) and (v) are weighted majorities. In
terms of Figure 2.1, the weighted majorities are described by planes
through the origin with p a nonzero vector or point in the nonnegative
octant (4 octant) of the space.

2.2 Sien Funcrions

Many interesting social choice functions cannot be expressed in the
linear way as in (2.4). To deal with some of the nonlinearities that
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2.2 SIGN FUNCTIONS

will arise, we shall use the sign function s: Re — {1,0,—1} defined by

s(M= 1er>0
s(r)= 0er=0 (2.5)
s(r) = —1ler <0.

A hint of the usefulness of s comes from observing that the social
choice function F defined by (2.4) is specified by

F(D) =s(p-D — \) for all D e .

We shall let s operate on vectors @ = (a1, . . . ,a.) in Re* in the
following way:

s(a) = s(a, . . . ,a,) = s(Za,). (2.6)

It should be noted here that s(ay, . . . ,a,) is a number in {1,0,—1}

and not an n-tuple in Re*. An alternative way of writing (2.6) is
s(a) = s(1 - a), where 1 & Re” has 1 for every component.

Thus s(eiDy, . . . puDsy—N) = s{p- D — )\), simple majority is
described by F(D) = s(D), and any weighted majority social choice
function is given by F(D) = s(p1Dy, . . . ,p.D.) with p, > 0 for all ¢

and p, > 0 for some 1.

OPERATIONS ON FUNCTIONS

The real usefulness of s requires its extension to operations on
social choice functions.

Let & be the set of social choice functions F: D — {1,0,—1}. Then

with Fh, . . ., Fx ©F, s(F1, . . . ,Fg) is defined to be the function

on D specified by

s(Fy, . . . Fg)(D) = s(F\(D), ... ,Fg(D)) for all D& 9.
2.7)

It is clear from this definition that s(Fy, . . . ,Fx)(D) € {1,0,—1}, so

that we may designate {1,0,—1} as the codomain of the function.
Hence we see that

Fi, ... Fr&EF = S(Fl, e ,FK) & 9. (28)

A standard interpretation of F = s(Fy, . . . ,Fx) goes as follows.
The society uses F to specify its decision. The society has K councils
or legislatures. These councils may have overlapping memberships or
they may be disjoint. F; is the social choice function for the kth
council. To determine the social choice, a ‘“‘vote” is taken in each
council with outcomes specified by the Fi. The overall outcome is then
determined by F, which operates by simple majority on the outcomes
of the votes of the councils.
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TWO ALTERNATIVE SOCIAL CHOICE

Readers familiar with group theory will note that, with F & G =
s(F,G) for all F,G & g, the algebraic system (F,®,F°) with F* = 0 has
all the properties of an idempotent abelian group, except for associa-
tivity. For example, for all F,G & ¢,

FoG =GoF (commutative, or abelian)
FOF =F¢@F=F (identity)

F® —F=-FeklF=F° (inverse)

FoF =F (idempotent).

However, associativity fails since (F @& G) & H = s(s(F,G),H) is not
necessarily the same function as F @ (G & H) = s(F,s(G,H)). For
nonassociativity it suffices to observe that s(s(—1,1),1) = 1, whereas
s(—1,s(1,1)) = 0.

In the preceding paragraph we have suggested that it makes sense to
put one s function inside of another. Indeed, we can structure any
finite hierarchy in this way, such as

s(F1,F2,F2,8(F3,F 4),s(F1,F ,8(F5,Fs))), (2.9)

and the resultant expression still defines a social choice function in §.
For (2.9), s(F5,Fs) is a social choice function. Call it F7. Then s(Fs,F4)
and s(Fy,F4,F7) are social choice functions. Call them G and H. Then
(2.9) has the form s(F,F.,F,,G,H), which, as we observed above, is a
social choice function in &.

Hierarchies of the form of (2.9) will be referred to as represenlalive
systems when it is possible to write the F; as simple majority social
choice functions that apply to subsets of individuals. If for (2.9), each
F, except F; is such a simple majority, and Fi(D) = s(Dy,D1,D.,D,),
then we can write this as F\(D) = s(Fu(D),F11(D),F12(D),F14(D))
where each F1,(D) = s(D,) is a simple majority for the subset {i{} that
contains only the individual i. Replacing F;yin (2.9) by s(F11,F11,F12,F14),
we see that (2.9) can in fact be written in the manner required to make
it a representative system.

Representative systems, which were first studied extensively by
Murakami (1966, 1968), will form the basis of our analysis in the next
three chapters.

2.3 Monoronic Sociar CHoice Funcrions

Henceforth, Part I will concentrate on specific conditions for social
choice functions. We shall examine structural characteristics and func-
tional forms of social choice functions that satisfy these conditions.
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2.3 MONOTONIC SOCIAL CHOICE FUNCTIONS

All social choice functions of further interest in Part I will be
monotonic.

Derinition 2.1. F:D— {1,0,—1} is monotonic if and only if
D > D' = F(D) > F(D), for all D,D’ & D.

Imagine two possible realizations of individual preferences in a
given situation, say D and D’. With regard to preferences between the
two alternatives z and y, D > D’ means that any change in preference
from D’ to D favors z. F(D) > F(D') then requires that

1. if z is chosen under D’, then z is chosen under D,
2. if z and y tie under D', then either x is chosen under D or x and y
tie under D.

Conversely, if y is chosen under D then y must be the group choice
under 2, and if z and y tie under D then x cannot be the unique choice
under D',

Another way to look at this is with a ““lost votes” example. Suppose
a_society uses a monotonic F, and a secret ballot is taken. Each person
votes for x or for ¥ or abstains. Before the ballots can be processed, a
fire breaks out and consumes the ballot box. A second ballot is taken.
Suppose that every voter who voted for x the first time votes for z
again and that each voter who abstained the first time either abstains
or votes for x the second time. Monotonicity says that if x would have
won with the first ballot then z must win with the second ballot, and
that if ¢ and y would have tied on the first ballot then they either tie
or x wins on the second ballot.

On Figure 2.1 consider any path from — to -+ that proceeds only in
positive directions. Monotonicity says that F must not decrease as we
proceed along the path from — to +.

Monotonicity can also be defined in terms of a change by a single
voter thus: F(D) > F(D') whenever D, = D, for all but one i, say j,
for which D, > D,. This is easily seen to be equivalent to Definition
2.1 since D > D’ implies that we can go from D’ to D by a succession
of single changes.

We can easily verify that monotonicity holds for each of the seven
examples following (2.4), and that every representative system is
monotonic.

BASIC THEOREMS AND UNANIMITY

The “inverse” or dual of F is —F, where (—F)(D) = —F(D) for
every D. F is conslant < F(D) = F(D') for every D,D' € . The
three constant functions in & were specified in examples following (2.4).
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TWO ALTERNATIVE SOCIAL CHOICE

THEOREM 2.1. Let G be the set of all monotonic social choice functions
F:9— {1,0,—1}. Then

F, ... ,FKES-:#S(Fl, e ,FK)EQ,

and there are exactly three functions in G whose duals are in G, namely
the three constant functions.

Proof. If Fh, . . . , Fxk € Gand D > D', then Fi(D) > F,(D') for
each k. Therefore, s(Fi(D), . . . ,Fx(D)) > s(Fy(D"), . . . ,Fxg(D").
For the latter part of the theorem, suppose that F,—F € ¢. Then
D > D' = F(DD) 2 F(D') and —F(D) 2 —F(D’), and therefore,
F(D) = F(D'). Since 1 > D > —1 for every D &€ D, only constant
functions in G can have duals in g. Each constant function is clearly
monotonic. ¢

We shall now consider the inverse sets F*(k) defined by (2.1). To
avoid the uninteresting possibility that #*(1) = @ or F*(—1) = @ we
shall introduce the unanimity condition at this point.

DeriniTiON 2.2, F:D — {1,0,~1} s unanimous if and only if
F)=1and F(—1) = —1.

This simply prescribes that x wins when everyone prefers z to y,
and that y wins when everyone prefers y to z. Although hindsight
may suggest cases where the unanimous choice was judged to be a
bad choice, temporal considerations prevent inclusion of this in the
social decision. (This is not to say that experience and foresight should
not affect the decision.)

Instead of using unanimity directly, it would suffice to use a weaker
condition of nonimposition which says simply that F*(1) > @ and
F*(—1) # 0. Then this and monotonicity imply unanimity.

The effect of unanimity on Theorem 2.1 is obvious.

THEOREM 2.2. Let 3¢ be the set of all monotonic and unanimous social
choice funclions F: D — {1,0,—1}. Then

Fy, ..., FrEX=sF, ... Fr) €,
and no F € 3C is constant.
For F & 3¢ the boundary of F*(1) is
BF*(1) = {D:D € F*(1) and D > D’ for no D/ € F*(1)},
and the boundary of F*(—1) is
BF*(—1) = {D:D € F*(—1) and D < D’ for no I &€ F*(—1)}.
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2.3 MONOTONIC SOCIAL CHOICE FUNCTIONS

According to these definitions, BF* (k) supports F*(k) in the sense that

F*(1) = {D:D > D’ for some D' & BF*(1)}
F*(—=1) = {D:D < D' for some D' & BF*(—1)}.

Figure 2.2 shows two F € 3C for n = 2. In each case the points in
BF*(1) and BF*(—1) are circled and squared respectively. Given
D € BF*(—1), Figure (a) shows that there may be no D’ & BF*(1)
with D’ > D. Figure (b) shows that D & F*(0) may have no D' €
BF*(1) for which D’ > D.

1 1 1 1 1 1
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o

FiGcure 2.2

Given F € jc, the boundaries are unique and determine F by
the preceding ‘“‘support” equalities, with F*(0) the complement of
F*(1) U F*(—1) in ©. In general, any two ‘“boundaries” determine a
unique F € 3¢ in the sense of the following theorem.

THEOREM 2.3. Let A and B be nonemply subsels of © such thal, for
all D,D' & D:

(i) D,D' € Aor D,D' & B=not (D > D').
(i) & Aand D € B=not (D > D).

Then there is a unique F € 3 such that BF*(1) = A and BF*(—1) = B.
Proof. Given the hypotheses, define ¥ by

F(D) = 1o D>D forsomeD € A
F(D) = —1& D < D' forsome D' € B
F(D) = 0  otherwise.

Suppose there are D' & A and D” & B such that D > D’ and
D < D”. Then D" > D’, which contradicts hypothesis (ii). Hence
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TWO ALTERNATIVE SOCIAL CHOICE

F & %, and by (i), A = BF*(1) and B = BF*(—1). Since A and B
are not empty, ¥ must be unanimous. To verify monotonicity suppose
that D > D'. If F(D’) = 1 then, since D’ > D* for some D* & A,
D > D* and therefore F(D) = 1. If F(D') = 0, then D* > D’ for
no D* € B; consequently, D* > D for no D* &€ B, and therefore
F(D) # —1. Therefore F(D) > F(D’). Uniqueness follows from the
paragraph that precedes the theorem. ¢

The following theorem states that common support points carry
through s.

TueEoREM 2.4. Suppose thal Fy, ..., Fx € 3¢ and F = s(Fy, ... ,Fg).
Then
MLy BFE(j) S BF*(j)  for eachj € {—1,1}.

Proof. For j = 1, suppose that D € BF{ (1) for each k. Since
F(D) =1, D& BF*(1) = D > D’ for some D’ & BF*(1), which re-
quires Fy(D’) = 1 for some k. But then D & BF}(1) for any such &,
a contradiction. Hence D € BF*(1). Thej = —1 proof is similar. ¢

STRONG MONOTONICITY

Monotonicity allows F(D) = 0 when F(I)') = 0 and D > D’. This
says that if z ties y under D', and if one or more individual preferences
change in favor of z but none changes in favor of y in going from D’ to
D, then z and y may still tie under D. Strong monotonicity prevents
this.

DerintrioN 2.3. F:© — {1,0,—1} is strongly monotonic if and only
if it is monotonic and, for all D,.D' € D,

FD) =10 and D>D=FUD)=1
F(D) =10 and D>D=FD)= -1

This condition has a very practical appeal. Compared to monoton-
icity, it tends to limit the region F*(0) of ambiguity or ties. It says that
any abstainer under a tie vote can break the tie so long as others do
not change their votes or abstentions. If in fact ties are prohibited by
F, so that F*(0) = @, then monotonicity and strong monotonicity are
equivalent.

One argument against strong monotonicity that is not also an argu-
ment against monotonicity concerns the ability of a ‘““change” by any
person to resolve a tie. For example, there may be situations where an
individual may be “‘ineligible,” or may not be able (or allowed) to
influence the social choice by his vote. Short of this, there may be
cases where the power to break a tie is allowed only to certain indi-
viduals in certain cases.
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2.3 MONOTONIC SOCIAL CHOICE FUNCTIONS

A simple example where monotonicity holds but strong monotonicity
fails is the bicameral representative system F defined by

F(D) = S(S(Dl,Dz,Dg),S(D4,D5,DG))-

This function decides the social choice by simple majority on the out-
comes of two three-member simple majority councils. Observe that
F(1,1,0,—1,—1,0) = s(s(L,1,0),s(—1,—1,0)) = s(1,—1) = 0, but nei-
ther individual 3 nor individual 6 (nor both together) can change the
F = 0 outcome by changing D; or Ds.

Structurally speaking, the important aspect of sfrong monotonicity
is given by the following obvious implication:

D,D’ € F*(0) and D#D =D, >D for some

e {1, ... ,n}.
This can fail under monotonicity, when D’ > D and D,D’ & F*(0).
STRONG UNANIMITY

DeriNviTiON 2.4, F: D — {1,0,—1} is strongly unanimous if D >
0=FD)=1and D <0=FD) = —1,forall D € D.

This says that only Pareto optimal alternatives can be chosen.
I leave it to the reader to check the following simple implications:

F(0) = 0 and strong monotonicity = strong unanimity,
F not constant and strong monotonicity = unanimity.
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CHAPTER 3

Duality and Representative Systems

IN THIS cHAPTER we shall first examine the condition of duality for
social choice functions in conjunction with monotonicity and unanim-
ity. Representative systems are then defined recursively and discussed
in some detail. The chapter centers on the Fundamental Theorem for
Representative Systems, which is stated and proved in section 3.4.
The Theorem of The Alternative, which concerns the existence of a
solution for a set of linear inequalities, is used in the proof. Two ver-
gions of the Theorem of The Alternative are presented in section 3.3.
These will be used also in later chapters of Part I.

Several corollaries of the fundamental theorem are proved in sec-
tions 3.4 and 3.5. The main corollary is Corollary 3.2. Other corollaries
state the following: F is a representative system if it is strongly mono-
tonic and dual; ' is a representative system if it is monotonic, dual, and
F*(0) = {0}; if F is monotonic, strongly unanimous and dual then it
can be written as the product of an odd number of representative
systems Fy, . . . , Fx for which F*(1) C Fy(1) for each k. The chapter
concludes with the weak majority social choice function, which is
monotonic, unanimous, and dual, but which is not strongly unanimous
and cannot be written as a product of representative systems as just
noted.

Necessary and sufficient conditions for representative systems are
given in the next chapter.

3.1 Duavnrry
For D = (Dy, . .. ,D,) &€ D, the dual of D is
~D=(-Dy, ... ,—D,).

In terms of z and y, the dual of a preference profile is obtained by
reversing each individual preference. The condition of duality for a
social function F says that if z and y tie under D then they tie under
—D, that z wins under D if and only if y wins under — D, and that
y wins under D if and only if  wins under — D.

DerintTION 3.1. F: D — {1,0,—1} s dual if and only if F(—D) =
—F(D), forall D & D.

Such a function F is also called “self-dual” and “odd.” Duality is
also referred to as ‘‘neutrality” and “neutrality of alternatives.”
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3.2 REPRESENTATIVE SYSTEMS

The essential feature of duality is that it treats the two alternatives
equally, apart from the actual preferences of the individuals in the
society. In other words, duality prohibits the social choice function
from having a built-in bias or favoritism for one of the two alternatives.
The prime examples of social choice functions that are rnot dual are the
special-majority functions in which one alternative (the “challenger”)
requires a two-thirds or three-quarters majority to defeat the other
alternative (the ‘“‘status quo”). Nondual social choice functions are
discussed in Chapter 6.

If & is a subset of ®, —& = {—~D:D & &}. We shall refer to —§
as the dual of &. Clearly, ® is the dual of D, and if F is dual then
—F*(0) = F*(0) and —F*(1) = F*(—1). Obviously, duality requires
F(0) = 0, and it and strong monotonicity imply strong unanimity.
Some other basic facts are summarized in the following theorem.

TaEOREM 3.1. Lel I be the set of all monotonic, unanimous, and dual
social choice funciions F: D — {1,0,—1}. Then

Fl, e .. ,FKE m=>S(F1, . e ,FK) E m,
and — BF*(1) = BF*(—1) for every F & 9.

The last part of the theorem states that the dual of the boundary of
F*(1) is the boundary of F*(—1), which is easily seen to follow from
—F*(1) = F*(—1) and the definitions of section 2.3. Closure in 91
under s follows from Theorem 2.2 and

s(Fy, . . . Fx)(=D) = s(Fy(=D), . . . Fx(—D))
= s(=F(D), . . . ,~Fx(D)) = —s(Fs, . . . ,Fx)(D).

3.2 REPRESENTATIVE SYSTEMS

We now define an important subfamily of 9%, namely the set & of all
representative systems.

For each i € {1, ... ,n} let S.:®— {1,0,—1} be defined by
SAD) = D,forall D € D. If F = §, then individual ¢ completely dic-
tates the social choice.

Let ®o = {S1,S,, . . . ,S.} and, proceeding recursively, for each
m > 0 let &, be the set of all functions s(F,, . . . ,Fx):D — {1,0,—1}
with K any positive integer and F, & ®,_, for each k. Finally, let ®}
be the union of the ®, sothat F € ® & F € ®,, for some m > 0.

DeFinITION 3.2. F:© — {1,0,—1} is a representative system if and
only if F € @&.
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DUALITY AND REPRESENTATIVE SYSTEMS

Several remarks about this definition are in order. First, it differs
from Murakami’s definition, which requires that F be nondictatorial
in the sense that there is no i such that F(D) = D, whenever D, # 0,
Because this nondictatorship condition is not essential to the rest of
our analysis, it will be deferred until later.

Second, the definition does not require F to be given in the terms of an
s hierarchy in order for it to be a representative system. However, Fis a
representative system only if it is possible, in principle, to write it in
terms of an s hierarchy. To illustrate this point, let n = 4 and let F
be defined by simple majority except that F(D) = D; when two D,
equal 1 and the other two D, equal —1. This F is not given in terms
of an s hierarchy, but it is a representative system, as will be noted
below.

Thirdly, since s(F) = F for any social choice function F, R, & ®; C
Ry © -+ - . Since #7 is finite (= 3%"), #& is finite and therefore there
is an m such that ® = ®.

From the definition of ® and our preceding observations it is obvious
that

F1, PP ,FKE (R=>S(F1, [P ,FK) E®R

and that ® € 9. Thus, every representative system is monotonic,
unanimous, and dual. In fact, ® = 97 only when n = 1. For n = 2,
one can show that F defined by F(1,1) = 1, F(—1,—1) = —1 and
F(D) = 0 otherwise is in 9T but not in ®.

Since ® = ®, for some m, it is clear that a given F' & ® can be
written in many different ways as an s hierarchy. Indeed, note that
F = s(F) = s(s(F)) = s(s(s(F))) = - - - and that F =s(FF) =
s(F,F,F) = - - - . A nontrivial example of equal representations will
be stated shortly.

ADDITIONAL NOTATION

An evaluational form for ¥ & ® is obtained by replacing each
S. by D.. For example, if F = s(8,,5(81,81,8:,83)), then F(D) =
s(Dq,s(Dy1,D1,D;,D3)) for every D € D. For any given D & D, this is
obviously evaluated from the inside outward. Thus F(1,—1,1) =
s(—1,5(L,1,—1,1)) = s(=1,1) = 0, and F(1,—1,—1) = s(—1,s(1,1,
-1,-1)) = s(—1,0) = —1.

Identical and contiguous expressions in a string of this form will
often be pre-added to shorten the string, as in s(D.,D1,Ds,D;) =
s(2D1,D,,D;). Another example is

S(S(Dl,Dz’),S(Dl,Dz),S(Da,Ds,Ds,S(Dz,Ds),S(DbD?»),S(Dl,Dz)))
= S(ZS(DI,Dz),S(3D3,S(Dz,D3),S(Dl,Ds),S(Dth)))-
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An even simpler notation results when the s are omitted, with the
understanding that s is applied immedialely before each left parenthesis.
Under this convention, the preceding string is (2(Dy,D.), (3D3,(D2,D3),
(Dl’Di‘I),(Dl’D?)))'

Consider again the case where n = 4 and F is defined by simple
majority except that F(D) = D, when two D, = 1 and the other two
D, = —1. One evaluative form for this F is

F(D) = ((2D1,D2,D3,D4),(D1,2D2,2D3),(D1,2D2,2D4),(D1,2D3,2D4)).

It is a useful exercise to show that this agrees with the given definition
of F. Although the above string presents (D) in a two-level hierarchi-
cal form, it can be written in other ways. One of these is the following
three-level form:

F(D) = (((3D1,2D2,2D5,2D,),(D, D)),
((3D1,2D2,2D;,2D.,), (D, D)),
((3D1,2D2,2D3,2D.),(Ds, D)),

(D2, D3, Dy)).

Using duality and the natural symmetry in D,, D; and Dy, it is not too
hard to show that this also agrees with the given F.

INTERPRETATION

Asin the interpretation following (2.8), we can think of a representa-
tive system as a hierarchy of voting councils, although, as we have just
seen, there may be a number of different hierarchical structures that
have identical social choice functions. The outcomes of the votes of
lower councils act as votes in higher councils. This continues up
through the hierarchy until a final aggregation is made at the highest
level. The interest in representative systems obviously stems from the
large number of social choice procedures that operate (more or less)
in this fashion.

As Murakami notes, the definition of a representative system pro-
hibits fixed ballots, or votes from outside the system, from influencing
the social choice. For example, F defined by F(D) = (Dy,D;,1) is not a
representative system. The definition also prohibits the choice process
from reversing an individual’s vote. For example, F defined by F(D) =
(D1, — D) is not a representative system. In this regard, it would ap-
pear from the definition that if a person votes in a certain way in one of
the councils of which he is a member, then he must vote the same way
in every other council to which he belongs. Although this is true in a
sense, it may be relaxed by treating one person as different individuals
in different councils. This can be effected by assigning more than one
subscript ¢ to the same person for his voting in different councils.
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To illustrate a case where an individual might vote differently in
different councils, suppose a society is partitioned into two disjoint
groups of approximately equal size. The chairman of the society is in
one of these groups. A simple-majority vote is taken in each group.
If the simple-majority aggregation of the outcomes of the two groups,
as given by s(s(group 1), s(group 2)), yields a tie between z and y,
then the chairman can break the tie by another vote. With D, for
the chairman in his tie-breaking capacity, the process can be repre-
sented as s(D1,2s(s(Dy, . . . ,Dwn),8(Dmy1, - - . ,Dy))), or simply as
(D1,2((Ds, . . . \Dn);(Dmsr, - - . ,Dn))). Suppose that the chairman,
in his role as a member of a group, votes for z, which he personally
prefers to y. Suppose further that z beats y by a slim margin in group 1,
and that y overwhelms z in group 2. Then the chairman, in his role as
tie-breaker, might very well vote for y. The temporal aspects of this
example suggest a complex formulation that incorporates certain in-
formational variables, but we shall not pursue this here.

The effects of monotonicity, unanimity, and duality relate to the
foregoing aspects of representative systems. Monotonicity and una-
nimity tend to require a social choice function to be faithful to the
preferences of the individuals, and duality tends to prevent the inter-
vention of fixed votes or outside interests from affecting the decision.
(Needless to say, pressures from outside the voting group can influ-
ence the votes of individuals in the group.)

3.3 THE THEOREM OF THE ALTERNATIVE

Before presenting the fundamental theorem for representative sys-
tems, we shall state a theorem that will be used in its proof and in
later chapters.

Let A = {a!, . .. ,a%} and B = {a¥*!, . . . ,a¥} be finite sets of
vectors in Re”, with 1 < K < M so that A = @. Our first form of the
Theorem of The Alternative concerns the possibility of passing a
hyperplane {a:p - a = 0} through the origin 0 of Re" so that all points
in A lie completely on one side of the hyperplane, and all points (if
any) in B lie in, or on the other side of, the hyperplane. The theorem
states explicitly what must happen when it is not possible to separate
A and B by such a hyperplane.

Figure 3.1 pictures three situations in Re?, where hyperplanes
through the origin are straight lines. In figure (a), A has four points
and B has three points, and there are many lines that separate A and
B. This separation depends on precisely the fact that the convex
closure A of A does not intersect the convex cone with origin, B’,
that is generated by B. (If B = @, then B’ = {0}.) In figure (b), B is
empty but A contains the origin, and no line through the origin can
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A

JAN
4

4,

(b) (c)

Ficure 3.1

have the three points in A on only one side. In figure (c), 0 & A but
B’ and A have a nonempty intersection.

A vector a € Re" is rational if each component a; is a rational num-
ber, and infegral if each a; is an integer. The following theorem re-
mains valid when ‘“‘rational” and “integral” are deleted and “integers”
is replaced by ‘‘numbers.”

TueoreMm 3.2, (THeorEM orF THE ALTeErNATIVE). Suppose that
al, ..., aX, ..., aM are rational veclors in Re* with 1 < K < M.,
Then EITHER there is an inlegral p & Re™ such that

p-a*>0  for k=1,...,K 3.1)
p-ak <o for k=K+1,..., M 3.2)
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OR there are nonnegative integers ri, . . . , rx at least one of which is
positive, and nonposilive infegers rg.1, . . . , ry such that
M orat =0 for i=1...,n (3.3)

Although theorems on the existence of solutions for systems of linear
inequalities such as (3.1) and (3.2) date at least from early in this cen-
tury, alternative forms such as Theorem 3.2 appeared more recently.
For example, apart from the rational-integral aspects of Theorem 3.2,
that theorem is equivalent to Theorem 2 in Goldman (1956).

The following theorem can be seen as a corollary of Theorem 3.2
by replacing each p - a* = 0 equality in (3.4) with the pair (p - a* < 0,
p-(—a*) <0), to be used as in (3.2).

Tueorem 3.3. Suppose that a*, . . . , a%, . . ., a¥ are rational vec-
tors in Re* with 1 < K < M. Then EITHER lhere is an inlegral vector
p € Re" such that

praF>0 for k=1, ...,K
p-at=0  for k=K+1,..., M (3.4)
OR there are nonnegalive inlegers ry, . . . , rx al least one of which is
positive, and integers rgyy, . . . , rar such that
=M ornat =0 for i=1...,n.

This version of the Theorem of The Alternative is similar to the
form used by Aumann (1964).
3.4 Tue FunpAMENTAL THEOREM

One more definition is needed before we can state the Fundamental
Theorem for Representative Systems.

DEFINITION 3.3. With respect to a social choice function F, individual

i is essential if and only if F(Dy, ... ,D._,1,D. 01, . .. ,D,) =
F(Dl, P ,Dl—1,07D1,+1’ “ s ,Dn) = F(Dl, .. ,D1_1,_'1,DH_1, P ,Dn)
ts false for some (Dy, . . . ,D;_1,D. 1, . . . ,D,) & {1,0,—1}"L,

If i is not essential, then F is completely insensitive to his preference.
Unanimity and duality require some i to be essential, for if no ¢ were
essential then (1) = F(0,1, . . . ,1) = F(0,0,1, . .. ,1) = - - - =
F(0). If F is a representative system and i is not essential, then no
s hierarchy for F can contain S, (or D,).

Many succeeding results in this and the next chapter will be based on
the following theorem.
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34 THE FUNDAMENTAL THEOREM

THEOREM 3.4. (FUNDAMENTAL THEOREM FOR REPRESENTATIVE Sys-
TEMS). Suppose thal F:D — {1,0,—1} s monotonic, unanimous and
dual, so that F & 9. Suppose further that & (possibly empty) is a subset
of F*(0) such thal

D,D' € §= D, > —D; for an essential i € {1, . . . ,n}. (3.5)

Then there is a representative system G & ® such that i is essential for G
only if t is essential for F, and

GWD) =1  forall D e F*Q) Ve, (3.6)
One immediate corollary of this is

CoROLLARY 3.1. If I is monotonic and dual and F*(0) = {0} then F is
a representative system.

Expression (3.5) has no effect on the corollary: any & that satisfies
(3.5) cannot contain 0. More generally, if § satisfies (3.5) then & N
(—8) = @ since D, > —(—D,) is false for all ;. A second corollary of
Theorem 3.4 involves (3.5) and will serve as the basis of further results
to be deduced using the fundamental theorem,

CoroLLARY 3.2. Suppose that the hypotheses of Theorem 3.4 hold, and
suppose further that (3.5) holds when & therein is replaced by —&. Then
there is an H & & such that t is essential for H only if i is essential for
F, and

HD) =1 for all D & F*(Q1)
H(D) =0 Sfor all D& g\JU(—¢
H(D) = —1 Jor all D & F*(—1).

Proof. Under the hypotheses of the corollary, let G satisfy (3.6). Since

(3.5) is assumed to hold for —§&, Theorem 3.4 implies also that there
is a G’ &€ @& such that i is essential for G’ only if i is essential for F, and

GD)y=1 for all D € F*(1) \J (—¢g).

Let H = s(G,G"). Then D &€ F*(1) = H(D) = s(G(D),G'(D)) = s(1,1)
= 1. Since H is dual, H(D) = —1 when D & F*(—1). Finally, if
D & g then H(D) = s(G(D),’(D)) =s(1,—-1) =0, andif D € —§
then H(D) = s(—1,1) = 0. ¢

Other corollaries are given in the next section. The rest of this section
proves Theorem 3.4.

PROOF OF THE FUNDAMENTAL THEOREM

Throughout this proof, F and § are as specified in the hypotheses of
the theorem. Before applying the Theorem of The Alternative, we shall
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DUALITY AND REPRESENTATIVE SYSTEMS

prove two lemmas. The conclusion of the second lemma will be pivotal
in the later use of Theorem 3.2.

Lemma 3.1. D,D' € F*(1) \JU &= D; > — D! for an essential i.

Proof. If D,D’ € g, (3.5) gives the conclusion. Henceforth assume
that D € F*(1). Then, by duality, F(—D) = —1. If D! < —D, for
every essential { then, by monotonicity and Definition 3.3, F(D') =
—1. This contradicts D’ & F*(1) \U &. Therefore D > —D, for an
essential ¢. This is the same as D, > —D. for an essential i. ¢

Since nonessential ¢ have no effect on F, all i to be used henceforth will
be assumed to be essential. Without any loss in generality, {1, . . . ,n}
will be the set of essential i.

LemMma 3.2. Suppose that m is a positive inleger and that D*, . . . , D™
are all in F*(1) \J &. Then

S H(DRY >0 for some HeE @ 3.7

Remark. The various D* in D!, . . . , D™ need not all be distinct.
For example, with m = 5, we could have D' = D? and D? = D* = D5,

Proof. We shall prove the lemma by constructing an H that sat-
isfies (3.7). The proof is accomplished by induction on even m in
{2,4,6, . . .}]. This proof serves also for odd m, for if m is odd then
the number of terms in the sequence D!, . . ., D~ D!\, ... K Dmis
even, and (3.7) holds < 2z H(D*) > 0.

Given D', ..., D™ with each D* & F*(1)\JU & and m even,
{1, . . . ,m} has m(m — 1)/2 two-element subsets. For each subset
{/,k} withj # k, Lemma 3.1 implies that thereisan i & {1, . . . ,n}
for which D} > —Di (and hence D! > — D* also). Let i{j,k} be such
an i for {j,k}. i{j,k} = i{k,j}.

Clearly, (D!;..Dl, ) € {(1,0),(0,1),(1,1)} for each {jk} pair.
With j fixed, suppose that #{k:k # j and (Di;;;,D5; ) = (1,00} >
m/2. If this were true for each j € {1, . . . ,m}, then there would be
at least m(m/2) distinct {j,k} pairs with k 5 j. Since there are in fact
only {(m — 1)(m/2) such pairs, it follows that there is a j, which for
definiteness we shall suppose is j = 1, such that

(Dl14,Dii i) € {(0,1),(1,1)}  foratleast m/2k > 1.

Re-indexing these k as required, we obtain the array of components
shown in Figure 3.2. Only the components that we shall use (except
for m = 4) are shown. Some of the columns may represent the same
i1 & {1, . .. ,n} since it is possible to have i{1,k} = i{1,k'} when
k # k. Apart from this, the blank spaces could be filled in any way
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34 THE FUNDAMENTAL THEOREM

from {1,0,~1} and the end result would not vary. The last column (i’)
in the figure must be used when all entries in the first row preceding
the last column are zeros: Lemma 3.1 ensures that D} = 1 for some i.

The number of D* in Figure 3.2 exceeds m/2. To satisfy (3.7) we shall
construct an H € ® such that H(D*) = 1fork =1, ... ,1 +m/2.

For m = 2, H(D) = s(2Di1,2,Dv) gives H(D') = H(D?* = 1. For
m = 4, we have the situation shown in Figure 3.3, where an additional

1{1,2} 1{1,3} 1{1,4} C. 1{1,12‘1} 1{1,%+ 1} i
Dl Qorl Oorl Oor 1l Qorl Oorl 1
p? 1
D 1
p* 1
Dm/2 1
1

Freure 3.2. Matrix of Di

11,2} #1,3) | 1" | (2,3}
ot 0/1 0/1 1
p? 1 0
D3 1 1
Ficure 3.3

column has been added for i{2,3}. [The (0,1) in this column can be re-

placed by (1,0) or (1,1) and the same end result can be obtained.] With
H(D) = ((2Du1,2,Dr),(2Dy1,3, D), (Dit1,2),2Dig2, )

we obtain H(D*) = 1for k = 1, 2, 3.

Continuing by induction on even m’, suppose that the result just
established for m’ = 2 and m’ = 4 holds for each even m’ less than
m 2> 6. Let Figure 3.2 apply to m. By ignoring the last row and next-to-
last column of Figure 3.2, we have precisely the Figure 3.2 situation
for m’ = m — 2. The induction hypothesis then gives a representative
system H; with

H((D¥) =1 for all k<14 m/2 except k=14 m/2.
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Similarly, by ignoring the next-to-last row and second-from-last col-
umn of Figure 3.2, the induction hypothesis gives H, € & with

Hy(D*) =1 for all E<14+m/2 except k=m/2.

Finally, deletion of the second-from-last row and third-from-last col-
umn gives an H; & & for which

Hy(Dr) =1 for all E<1+m/2 except k=m/2 — 1.

It follows that H = s(H,H,,H;) has H(D*) = 1forallk <1+ m/2. ¢

We shall now use the Theorem of The Alternative. Let ® =
{Fi,Fs, . . . ,Fr} with #®& = T. We note first that (3.6) holds if and
only if there are positive integers p1, . . . , pr such that

s(piFy, . .. orFr)(D) =1 forall DeEF*1)Uée (3.8)

If this is true, then G = s(piFy, . . . ,prFr) satisfies (3.6), where
oF: denotes F; repeated p, times. Conversely, suppose that G & &
satisfies (3.6). Then G is one of the F,. For definiteness let G = F,.
Then G' = s(TF,Fs, . . . ,Fr) also satisfies (3.6).

We shall use only the (3.1) part of Theorem 3.2. The theorem is
applied to Re”, with K = #(F*(1) \J &) 4+ T. The K vectors a* for
(3.1) are the vectors (Fi(D), . .. ,Fr(D)) for each D € F*¥(1) U &
and the vectors (0, . . . ,0,1,0, . .. ,0) for each { & {1, ... ,T}.
Theorem 3.2 states that either there is an integral vector p & ReT
such that

p- (F(D), ... ,Fr(D)) >0 for each D &€ F*¥(1) U s,
ee=p"0,...,01,0,...,00 >0 for each te {1, ...,T},
in which case (3.8) holds, since s(p1Fy, . . . ,prFr)(D) = s(p - (F1(D),

... Fr(D))) = 1 for each D & F*(1) \U &; or the stated alternative
holds.

Suppose that the alternative holds. Then, with A = #F*(1)U g
and {DY, ... ,D4} = F*(1)\U¢g, there are nonnegative integers
Piy . 3 T4y S1, - - . , ST, at least one of which is positive such that

EkA=1rkFt(Dk) + S = 0 fOI‘ t - ]., e ey T. (3.9)

If some s, > 0 then at least one r, > 0. Consequently, at least one r
is positive. Let m = Zr, and let EY, . .., E™ be a sequence of
D € F*(1) U ¢ that contains D* r; times for £ = 1, . . . , A. Then,
according to (3.9), since s, > 0 for each {,

E;cnsl t(Ek) S 0 for { = 1, [P T.
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Hence, since ® = {Fy, . .. ,Fr}, there is no H&E ® such that
» JH(E*) > 0. But this contradicts Lemma 3.2. Hence the alter-
native is false and (3.8) holds for positive integers p1, . . . , pr. @

3.5 Two THEOREMS

We shall now use Corollary 3.2 of the fundamental theorem to
establish theorems that use strong monotonicity (Definition 2.3) and
strong unanimity (Definition 2.4). These theorems add new results to
Corollary 3.1, whose conditions imply that F is both strongly mono-
tonic and strongly unanimous. The conditions of the following theorem
also imply strong unanimity, but they permit F*(0) to contain ele-
ments in D other than 0.

Tueorewm 3.5. If F is strongly monotonic and dual then it is a repre-
sentative system.

Proof. Let ° equal F*(0) minus 0. If ©° = @ then Corollary 3.1
implies that F & ®. Henceforth suppose that ©° = §. Since the dual
of D is DY, we can partition D’ into & and its dual —&. Each of & and
—§& satisfies (3.5). To show this for &, suppose that (3.5) fails with
D, D' € & and D, > — D, for no essential i. Then D, < — D! for every
essential i. Since the hypotheses of the theorem imply that every ¢ is
essential, D < —D’. Now —D' & —§, and since §MN\ (—8&) = §§ we
must have D < —D’. But this contradicts strong monotonicity since
both D and — D’ are in F*(0). Therefore D, > — D, must hold for
some i. The proof of (3.5) for —& is similar. Corollary 3.2 then com-
pletes the proof. ¢

THaEOREM 3.6. Suppose that F is monotonic, dual and strongly unani-
mous. Then there are represeniative systems Fy, . . . , Fx with K odd
such that

F*(1) C F¥(1) for k=1, ...,K, (3.10)
F(D) = Fi(D)Fy(D) - - - Fx(D) for every Deo. (3.11)

Proof. As in the preceding proof let D9, if it is not empty, be par-
titioned into & and —&. Let D be any preference profile in & Then
D, > —D, for some i, for otherwise we get D, < 0 for every i, and
hence D <0, and hence D < 0 (since D # 0), which contradicts
strong unanimity since F(D) = 0. Hence (3.5) holds for the singleton
subset {D}, and by a similar proof (3.5) holds also for {—D}. Cor-
ollary 3.2 then gives the representative systems Fj, one for each
D & g, that satisfy the conclusions of the theorem. If #& is even (and
positive) then one of these F; can be repeated in the product to ensure
that /1(D) - - - Fx(D) = —1 when D € F*(—1).¢

37



DUALITY AND REPRESENTATIVE SYSTEMS

A somewhat naive interpretation of the representation in Theorem
3.6 suggests itself if we view the F; as K parallel councils. Each council
actively involves all voters and is a representative system. For every
D & F*(0) there will be at least one council that gives F,(D) = 0.
Because of the product form this will negate the votes of other councils
and require an overall tie between = and y. Alternative x is the group
choice when it is the choice of every council, and similarly for y.

WEAK MAJORITY

We conclude this chapter with a social choice function which shows
that the conclusions of Theorem 3.6 can be false when “‘strongly unani-
mous”’ is replaced by ‘“‘unanimous’ in the hypotheses.

The social choice function that we shall use for this purpose is the
so-called nonminority or weak majority social choice function, defined by

FD) =1 4#{i:D, =1} > n/2
FD) = -1 #{i:D, = —1} > n/2.

Thus, z is the unique winner only if more than half of the voters vote
for z, and similarly for y. A tie results when neither candidate receives
a clear majority. If at least half the voters abstain then, regardless of
how the others vote, a tie will result.

The weak majority social choice function is neither strongly unani-
mous nor strongly monotonic. However, it is monotonic, unanimous,
and dual, so that F & 9.

To show the effect of this F' on the conclusions of Theorem 3.6, let
n = 3, and let G be any representative system that satisfies (3.10).
That is, F*(1) C G*(1) and G & ®. Any evaluative form for G must
contain all of Dy, D, and D;. For example, if G were a function of D,
only, say G(D) = D,, then we have G(—1,1,1) = —1, contrary to
F*(1) C G*(1). Or suppose that only D, and D, appear in G(D). Then,
since we require G(1,~-1,1) = 1 and G(-—-1,1,1) = 1 and since duality
would require G(—1,1,*) = —G(1,—1,*) if only D; and D; were essen-
tial with respect to G, we see that this supposition is false. Thus all
of Dy, D,, and D; must be essential with respect to G & ®. But then
every such G has G(1,0,0) = G(0,1,0) = G(0,0,1) = 1 and the product
of any number of G’s that satisfy (3.10) will yield 1 for each D &
{(1,0,0),(0,1,0),(0,0,1)}. However, F(D) = 0 for each of these three
D’s by (3.12), and therefore (3.11) must be false.

In the latter part of Chapter 5 we shall note conditions on F which
are necessary and sufficient for weak majority and compare these with
the necessary and sufficient conditions for simple majority which are
given in Chapter 5 also.

(3.12)
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CHAPTER 14

Decisive Coalitions and Representative

Systems

Tuis cHaPTER concludes our study of general representative systems by
establishing a set of necessary and sufficient conditions for them. The
next chapter examines some specialized representative systems.

We have already seen that every representative system is monotonic,
unanimous, and dual. A fourth condition, which we shall call condition
RS, completes the set of necessary and sufficient conditions. Condition
RS, which shares some of the aspects of strong unanimity, will be
introduced in section 4.2. The theorems that make use of it are in
section 4.3.

Condition RS is somewhat difficult to interpret as a reasonable pre-
scription for a social choice function. Because of this we shall begin the
chapter with another condition which is also necessary for representa-
tive systems and which has a rather easy interpretation. This other
condition asserts the possibility of simple majority winning coalitions
and contains much of the essence of condition RS. However, it is not
sufficient for the existence of a representative system in the presence
of the three basic conditions of monotonicity, unanimity, and duality.
It must of course be implied by the four necessary and sufficient
conditions: we shall note in section 4.2 that it is implied by mono-
tonicity and RS.

4.1 Dezcisiveé COALITIONS

Let F be a social choice function in an n-voter context and let J be a
subset of {1, . . . ,n}. With respect to F, J is decisive for x over y if «
wins under F when all i & J vote for x and all i & J vote for y. That
is, J is decisive for z over y if F(D) = 1 when D; = 1forall; & Jand
D; = —1 for all i & J. The decisiveness of J for y over z is defined
similarly. If F is dual, then J is decisive for z over y if and only if J is
decisive for y over z. Hence, when F is dual, we simply say that J
is decisive when J is decisive for x over y.

If F is imposed with F = 1 then every J, including 4, is decisive
for x over y, and no J is decisive for y over z. If F is unanimous then
{1, . . . ,n} is decisive (both ways). If F is monotonic and if J is
decisive for # over y, then F(D) = 1 when D; =1 for all i & J,
regardless of the values of the D; for ¢ & J. If the group contains a
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dictator j in the sense that F(D) = D, whenever D, > 0, then J is
decisive if and only if j & J. Under both simple majority and weak
majority (3.12), J is decisive if and only if #J > n/2.

Suppose that F' is monotonic and dual, and let NV be an integer that
exceeds n/2 but not n. Thus, if #J = IV, then J contains more than
half of the individuals. Now some coalitions of size /N might not be
decisive. However, in view of the facts that a tie vote does not resolve
an issue and that “majority will” in some form or other plays a part
in most social choice procedures, it would seem somewhat strange if
no J with #J = N were decisive. The condition that we shall develop
in this section asserts the existence of at least one decisive coalition J
of size IV for each IV for which n/2 < N < n. For example, if there are
nine voters in the group then there is some subset of five voters who
can ensure the election of # by voting for z. Depending on F, other
subsets of five voters may or may not be able to ensure the election
of z.

There might also be decisive coalitions that contain less than half of
the voters, but we shall not focus on these here.

DECISIVE COALITIONS WITHIN SUBSETS

We shall now extend the notion of decisive coalitions to account for
cases where some voters abstain or are indifferent.

DerFinitioN 4.1. Let F:{1,0,—1}*— {1,0,—1}, let J be a nonempty
subset of {1, . . . ,n}, and let I be a subset of J. Then, with respect to F,
I is decisive for z over y within J if and only tf F(D) = 1 when D, = 1
foralli€ I, D, = —1forallic J— I, and D, = 0 for all i & J.

That is, I is decisive for x over y within J if z is elected when all
t & I vote for z, all 7 in J but not I vote for y, and all other voters
abstain. A similar definition holds for I decisive for y over z within J.

Suppose that #J = N > 0. Then, under simple majority, every
I C J for which V/2 < #I < N is decisive within J. However, under
weak majority, I can be decisive within J only if #I > n/2. Thus, if
#J < n/2thenno I C Jis decisive within J when F is the weak major-
ity social choice function.

The foregoing condition for J decisive within {1, . . . ,n} extends
in an obvious way to I decisive within J. This extension seems reason-
able provided that we adopt the viewpoint that abstentions (indiffer-
ences) can be disregarded in determining the social choice. This point
of view is shared by all representative systems, including simple and
weighted majority, but it is not shared by weak majority. In Chapter 6
we shall distinguish between special majority social choice functions
according to the effect of abstentions on the outcome of the vote.
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4.1 DECISIVE COALITIONS

We now state our general condition for the possibility of decisive
majority coalitions. The condition will not presuppose that ¥ is dual,
and it takes account of the possibility of nonessential voters (Definition
3.3). The dual of the condition (interchange = and y) is implied by
duality and the condition.

DeriniTiON 4.2. F salisfies the condition of decisive majority coali-
tions if and only if for every nonempty J C {1, . . . ,n} thal contains
an essenlial T and every integer m for which #J/2 < m < #J, there exists
an I © J such that #I = m and I is decisive for x over y within J.

The essential facts about the relationship of this condition to repre-
sentative systems are summarized in the following theorem.

TueoreM 4.1. Every representative system salisfies the condition of
decistve majority coalitions. There are soctal choice funclions that are
monolonic, unanimous, dual and satisfy the condilion of decisive majorily
coalitions, but which are not represeniative systems.

Because it is efficient to use condition RS of the next section in
proving the first part of this theorem, we defer its proof to the next
section. However, we can prepare for the proof and the introduction of
RS with an example.

EXAMPLE

Let n = 5 and consider the five potential preference profiles dis-
played in Figure 4.1. There is an obvious pattern to these profiles,

Dl 1 -1 1 -1 1
02 {1 1 -1 1 -1
D3 -1 1 1 -1 1
{1 a1 1 1 -1
P> | -1 1 a1 1 1

Ficure 4.1

Each has three x votes and two y votes, and each voter “votes’” for
x three times and for y twice in the five situations under consideration.

A key feature of the patterns in Figure 4.1 that may not be immedi-
ately obvious is that, for each column or voter, Df¥ > — D! for
k=1,2, 3,4,and D’ > — D! This follows from the fact that the —1’s
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DECISIVE COALITIONS

are not adjacent (or at the beginning and end) in any column. In fact,
we have

D'> —-D, D*> —D} D> —D* D*> —~D5, D* > —-D'.. (4.1

Another way to write thisis D' > —D? < D* > —D* < D* > — D1,
which imparts a cyclic pattern to the figure.

Expression (4.1) makes a connection through > between D! and
its dual — D!, or between any D* and its dual for that matter. For
the moment, call D and D’ adjacent if either D > D’ or D’ > D,
and call them connected within a subset ©' of © if they are both
in D’ and there is a finite sequence D, E', . . . , Er, D’ of elements
in ©' such that each two contiguous elements in the sequence are
adjacent. Then (4.1) shows that D' and — D' are connected within
{D,— D2 D% — D4 D5, — D).

The point of this example for representative systems is that when
(4.1) holds, when at least one of the t in Figure 4.1 is essential, and
when F is a representative system, then it must be true that F(D¥) = 1
for at least one of the five D*. In other words, we cannot have F(D*) < 0
for all five k.

Stated another way, if F is a representative system, then at least one
of the five three-voter subsets of {1,2,3,4,5} that arise from the figure—
namely {1,3,5}, {1,2,4}, {2,3,5}, {1,3,4}, and {2,4,5}—must be de-
cisive. These five subsets, determined by the x votes in each D*, are not
the only three-voter subsets since there are 10 such subsets. The reason
that the condition of decisive majority coalitions is not sufficient for
representative majority (along with monotonicity, unanimity, duality)
follows directly from this observation. This condition requires at least
one of the 10 three-voter subsets to be decisive, but it does not require
one of the noted five to be decisive.

To elaborate on this, let F be defined on {1,0,—1}5 by simple
majority, except that F(D*) = F(—D*) = 0 for the five D* of Figure
4.1 and their duals. This F is clearly monotonic, unanimous, and dual.
Moreover, since F(1,1,1,—1,—1) = 1, it follows easily that it satisfies
the condition of decisive majority coalitions. However, according to the
claim made above, F is not a representative system.

Thus, except for proving that one of the F(D*) = 1 when F is a
representative system, we have just proved the Iatter half of Theorem
4.1.

4.2 A ConpitioN rorR REPRESENTATIVE SYSTEMS

Enough has been said in the preceding section to permit us to state
the special condition for representative systems without further delay.
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4.2 REPRESENTATIVE SYSTEMS® CONDITION

DeFiniTION 4.3. F: D — {1,0,—1} salisfies condition RS if and only
if F(D¥) =1 for some k € {1, . . . ,m} whenever m is an odd positive
inleger, D' > —D?, D* > —D3 . .., D"t > —Dn Dm > —D' and
=7..D¥ > 0 for some essential i.

Because this condition and monotonicity imply the condition of
decisive majority coalitions (see the end of this section), the intuitive
aspects of the coalitions condition apply also to condition RS. The
essential way that RS goes beyond the coalitions condition has already
been brought out in the preceding example. Not only does it require
decisive majority coalitions in the same subsets as specified in the
coalitions condition, but it requires decisiveness in certain ‘‘cyclic”
subsets of D that are not covered under the former condition.

There are, as one might expect, other ways to phrase condition RS.
One of these, which hinges on the notion of connectedness within
F*(0), is developed further in the next section.

Before we prove the necessity of RS and the first part of Theorem 4.1,
we shall comment on some of the structural aspects of the condition.

SOME FEATURES OF RS

For m = 1, condition RS implies that if D > 0 (so that D > —D)
and if D, > 0 for some essential { then F(D) = 1. Thus, if every i is
essential, then the m = 1 part of RS along with duality implies that
F is strongly unanimous. Even when some i are not essential, a slight
variation of Theorem 3.6 shows that the conclusions of that theorem
hold (the product of representative systems) when F is monotonic,
unanimous, dual, and satisfies the m = 1 part of condition RS. The
effect on the product form (3.11) for F in Theorem 3.6 that results
from allowing larger values of m under condition RS is a reduction in
the number of representative systems whose product equals F. For
sufficiently large m we can reduce the product until it has only one
function. In other words, the conditions of monotonicity, unanimity,
duality, and RS imply that F is a representative system. This is proved
in the next section.

The hypothesis (D' > —D2,D*> —D8, . .. ,D»> —D') of RS
requires that DF! = D¥' = 1 when D* = —1, and that D*"' > 0
and D*' > 0 when Df = 0. (Here 0— m and m + 1— 1 for the
superscripts.) An example of an acceptable (D!, . . . ,DI") withm = 7
is (0,1,1,—1,1,0,0).

Note also that (D' > —D%,D* > —D3, ... ,D™ > —D') implies

that = ,D* > 0, so that =, D* > 0 for all { and Z,Df > 0 for some i.
The reason that condition RS states explicitly that Z,Df > 0 for some
essential i arises from the possibility that D¥ = 0 for all k£ and every
essential i. In this case duality requires F(D*) = 0 for every k. For
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example, suppose that n = 2 with i = 1 essential and { = 2 not essen-
tial. With m = 1 and D! = (0,1), all hypotheses of condition RS hold
except for the final essentiality condition. Duality requires F(D') = 0.

The other major structural feature of condition RS is that m be
odd. The obvious reason for this is that the condition is not neces-
sary when m is allowed to be even. Thus, suppose that n = 3 and
F(D) = (Dy,(2Dy,Ds,D3)). Take m = 2 with D* = (1,—1,1) and D? =
(=1,1,0). Then Dt > —D?, D* > —D! and D; + D; > 0 so that all
hypotheses except for m odd are satisfied. The given representa-
tive system F yields F(D') = F(D?) = 0, so that F(D*) = 1 for no
ke (L, ... m}.

The difference between m even and odd can be illustrated graphi-
cally, as in Figure 4.2. A line from a higher point D to a lower point D’

o o 0 o o o°
-0¢ - o> -t -0
m even m odd
Ficure 4.2

shows that D > D’. In the even case we see that D' > —D?, . . . |
D™ > — D' does not imply that D! and its dual — D! are connected,
as this term was defined following (4.1). But when m is odd, D! and
— D' are connected, as is evident from the diagram on the right.

The critical use of odd m in the following theorem occurs in the
chain of implications which leads to #,(D¥) = 0 under the supposition
of the proof.

THE NECESSITY oF RS
THEOREM 4.2. Every representalive system satisfies condition RS.

Proof. Let F be a representative system. In accord with Definition
3.2 we can write F as

F = S(F;,Fg, R ,FR) (42)
where each F, is also a representative system.

44



4.2 REPRESENTATIVE SYSTEMS’ CONDITION

Assume that the hypotheses of condition RS hold, but suppose that
its conclusion fails so that

F(D¥) <0 for E=1,...,m (4.3)

We shall use (4.2) to show that this is impossible.
For each k from 1 to m let

k+ = #{r:F,(D*) = 1in (4.2)}
k= = #{r:F.(D*") = —1in (4.2)}.

By (4.2) and (4.3), kt < k= for each k. Moreover, if F,(D*) = —1
then (with m 4+ 1 — 1) monotonicity, duality and D* > — D¥1imply
that F,(D¥1) = 1. Therefore 1" <17 <2+ <2 < - - - < m+t <
m~ < 17 so that, in fact,

IH=1"=2t*=2"= -+ =mt=m".
Hence F(D¥) = 0 for all k.
Suppose that F.(D*) = —1. Then monotonicity, duality and
D¥=1 > — D* imply that F,.(D*') = 1. Therefore
F.(DY) = —-1=F.(D?* =1 (by preceding paragraph)
= F.(D% = —1 (this paragraph and 2+ = 37)
= F.(DY =1 (by preceding paragraph)

= F.(D™) = —1 (since m is odd)
= F.DY) =1 (preceding paragraph),

which yields a contradiction. Hence F,(D!) > 0 for all r, and therefore
1= = 0. Consequently,

kRt =k =0 for k=1,...,m,

and F.(D¥) = 0 for all r and &.

Now each F, can be treated in precisely the same way that we
treated F. That is, F, can be written as F, = s(F,1, . . . ,F,r) with
each F,, a representative system. F,.(D*¥) = 0 for all k takes the place of
(4.3) and, by the analysis just completed, we conclude that F,.(D*) = 0
for all { and k.

For definiteness let ¢ = 1 be essential with =D} > 0 by the hypothe-
ses of RS. Since F is built up in a finite number of steps from the pro-
jections S, for which S,(D) = D,, we eventually arrive at the conclu-
sion that S;(D*) = 0 for all k. (Since 1 is essential, S; must be used in
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the recursive construction of F.) But since =D* > 0 we must have
S1(D*) = 1 for some k, and we have thus arrived at the desired contra-
diction of (4.3). ¢

We conclude this section by noting that monotonicity and RS imply
the condition of decisive majority coalitions. This conclusion then
serves to prove the first part of Theorem 4.1 by the following implica-
tions: F & ® = F is monotonic and satisfies condition RS (just
proved) = F satisfies the condition of decisive majority coalitions.

TaeOREM 4.3. If F is monolonic and salisfies condition RS then F
satisfies the condition of decisive majority coalilions.

Proof. It will suffice to prove that condition RS implies that there
is an I € J that is decisive for x over y within J when #J is odd and
contains an essential i and when m = (#J + 1)/2 so that #I = m. The
rest of the coalitions condition then follows easily from monotonicity.

Given an odd positive integer #J = N < n, construct D!, D?, . . .,
D¥ in the manner of Figure 4.1, assuming without loss of generality
that some voter in {1, . . . ,/V} is essential. The leading diagonal of
this matrix and the diagonal immediately below the leading diagonal
are filled in with 1’s. The other diagonals alternate sign, as in Figure
4.1. D = 0 for i > N. It follows that D!, . . . , DV satisfy the hy-
potheses of condition RS with Z,Df = 1 for each i < N. Hence, by
condition RS, F(D*) =1 for some k & {1, . . . ,IV}. Regardless of
which k this might be, its D* has one more 1 than —1, and I =
{i:zie {1, ... ,N} and Df = 1} with #I = (N + 1)/2 is decisive
for z over y within J. ¢

4.3 NEcessaRY AND SurriciENT CONDITIONS

Section 3.4 shows that a monotonic, unanimous, and dual social
choice function F &€ 9 fails to be a representative system only when
F*(0) lacks an appropriate structure. The clue to the structure required
for F*(0) has already appeared in the Fundamental Theorem for Repre-
sentative Systems and in Corollary 3.2. We proceed to explore this clue.

First, a word about nonessential voters is in order. If i is not essential
then he has no effect on F. We shall therefore ignore all D, for non-
essential { and, for definiteness, assume that each i € {1, . . . ,n}
is essential. Unanimity and duality assure us that n > 1. D will be
taken to be {1,0,—1}". A representative system for D can of course be
extended in the obvious way to be a representative system defined on
all preference profiles (including nonessential i). The properties for ¥
hold also on the restricted domain D for essential voters, as can be seen
by fixing each D, for nonessential j > n at D, = 0 throughout.
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Under this convention let
D= {D:D& DFD) =0 and D = 0}.

If D9 = @ then F € I is a representative system according to Corol-
lary 3.1. Henceforth assume that ©°  @. Then, according to Corollary
3.2, F € 9 is a representative system if D° can be partitioned into
dual subsets & and —& such that

DD € §=D,> —D; for some e {1, ... ,n} (4.4)
DD e —g=D,>—-D, forsome i€ {1,...,n}. (4.5)

These expressions are the same as (3.5), and constitute the clue referred
to above.

Suppose that D1,D? € D%and D' > D2 Suppose further that D! € &
and D € —8&. Then — D' & —&. Nowwith D = D?*and D' = — D!,
(4.5) requires that D? > —(—D!) = D} for some i € {1, . .. ,n}.
But this is false since D' > D? by hypothesis. Therefore, in order to
satisfy (4.4) and (4.5) it is necessary to have both D and D’ in either §
or —§ when D > D'.

Conversely, suppose that D > D' and D,.D' &€ ©°= D,D’' € & or
D, D’ € —¢&. Let D' and D? be any elements in &. Then it is false that
D' < —D?, for this would require —D? € &, contrary to & /M (—8) = @
since —D? is already in —&. Moreover, D! = —D? is false since
&M (—8&) = @. Therefore D! > — D? for some i, and we have proved

Lemma 4.1. With F € 9% and D° 5 @, there is a parlition of D° info
dual subsels & and —§& that salisfy (4.4) and (4.5) if and only if there is a
partition of D into dual subsels & and —§& such that

D>D and DD & =DD < & or D,D' & —&.
(4.6)

The ability to partition D° in either of the equivalent ways indicated
by this lemma could be stated as an ‘‘acceptable’ alternative to condi-
tion RS. Before using RS we shall establish yet another way of view-
ing (4.6). This is done in the graph-theoretic terms used in the para-
graph that follows (4.1).

Call D,D’ € D° adjacen! if and only if either D > D' or D’ > D. We
shall say that D and D’ are connecled if and only if there is a sequence
D, EY, . .., Er, D of elements in D° such that each two contiguous
elements in the sequence are adjacent. Such a sequence is a path from
Dto D'

Suppose that (4.6) holds with 6 \U (—§&) = ©° and 8 N (—8§) = 0.
Then if D € & and D' & —g, there is no path from D to D', since
such a path would require D! > D2 or D? > D! for some D' € & and
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D? & —§g, contrary to (4.6). Hence, (4.6) implies that no pair of dual
elements in D° is connected.

Conversely, suppose that D and D’ are not connected when D =
—D'. Let Ty, . . ., Tk be the connected components of D, That is,
{Ty, . .. ,Tx} partitions D° with D, D’ in the same T} if and only if
they are connected. By duality and the fact that D > D’ if and only if
-D'>-D,Te({T, ..., Tx)g}=-T¢c {T, ...,Tk}. Wecan
therefore group half the T in one group and their duals in another
group and let & be the union of the T in the first group and let —& be
the union of the T} in the second group. Then (4.6) will hold. Thus we
have proved Lemma 4.2,

LemMa 4.2, Expression (4.6) holds for some dual partition {§,—&} of
DO if and only if

D € ©°= D and —D are not connected. (4.7)

Expression (4.7) is of course another possible alternative for con-
dition RS since (4.7) and / & 9N imply that F is a representative
system. We shall now show that ' & 917 and condition RS imply (4.7).
In view of Corollary 3.2, Lemmas 4.1 and 4.2, and Theorem 4.2, this
will complete the proof of Theorem 4.4.

THEOREM 4.4. F:D — {1,0,—1} is a representative system if and only
if it ts monotonic, unanimous, dual, and salisfies condilion RS.

Proof. Under the conventions and definitions of this section we are
to prove that F & 9 and RS = (4.7). To the contrary, suppose that
the hypotheses hold and that D' & D and D! and — D! are connected.
Consider a shortest path from D! to — D!, Such a path will exhibit no
transitivities under > and it will yield the form

D'>DD¥> D D¥>D4D>DY ..., D> DDt > D

(4.8)
or else (D> DLD?> DD*> D¢ ... ,D*> D~\Dr > DY),
which is essentially the same as (4.8) since it is (—D! > —D?
—D¥> —D?, ... ,—Dt> —Dr), with r even and either —D! =

Dror — D' = D', (In the latter case disregard D".)
Suppose first that — D! = D" in (4.8). We then get
D> D —D*> —D3, D3> D4 ...,
_Dr—2 > _Dr—l, Dr—l > _Dl
which contains an odd number r — 1 of D* and satisfies the other

hypotheses of condition RS with DY, D?, . . . , D™ there replaced by
Dy, —D2 D8 —D4 ..., —D? D1in the present case. Condition
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RS and duality then imply that F(D*) = 0 for one of the D* in (4.8).
But this contradicts the supposition that the elements in (4.8) are all
from D° and it therefore contradicts the initial supposition that D!
and — D! are connected.
Suppose then that —D! = D! in (4.8). Then, since D' > D? and
D' > D% imply — D2 > D? (4.8) reduces to

~D=2> D) -D*> —-D¥ D*> D4 ...,D?%> D?

which again has an odd number r — 3 of D* and which, as before,
leads to a contradiction. ¢

THE NONDICTATORSHIP CONDITION

As we have seen, the nondictatorship condition stated after Defi-
nition 3.2 (there is no i such that F(D) = D, whenever D, # 0) has
had no bearing on our analysis. Except for small values of n (espe-
cially n = 1), it appears to be a quite reasonable condition. In practice,
of course, many groups are dominated by de facto dictators regardless
of the particular voting procedures that are used by these groups, but
this is not the place to go on about group dynamics.

To incorporate the nondictatorship condition back into Murakami’s
notion of representative system, F may be called a proper represenia-
tive system if and only if F is not dictatorial and is a representative
system. When n = 1, there is clearly no proper representative sys-
tem. When n = 2, there is exactly one proper representative system,
namely the simple majority social choice function. In general, F is a
proper representative system if and only if it is monotonic, unani-
mous, dual, nondictatorial, and satisfies condition RS. This is obvious
from Theorem 4.4.
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CHAPTER 5

Weighted Voting and Anonymous
Choice Functions

WEIGHTED MAJORITY social choice functions are an important subclass
of representative systems. They have the form F = s(p1S1, . . . ,0.85)
where S;(D) = D; and p > 0, and are characterized by monotonicity,
unanimity, and an extension of duality called strong duality. We shall
comment on the fact that the p; weights may not accurately reflect
the voting power of the individuals in the group.

The anonymity condition characterizes the one-man one-vote doc-
trine. Following a general characterization of monotonic, dual, and
anonymous social choice functions, we shall give necessary and suf-
ficient conditions for two special members of this class, simple and
weak majority social choice functions.

May’s theorem (1952) says that F is a simple majority social choice
function if and only if it is strongly monotonic, dual, and anonymous.
A second set of conditions for simple majority replaces anonymity by
weak nonreversibility, which says that if # would win in one situation
and if a second situation is like the first except that one z-voter ab-
stains, then y will not be the unique winner in the second situation.

A stronger condition of nonreversibility is used in the theorem for
weak majority.

5.1 WEIGHTED MaJoORITY

At the end of section 2.1 we defined weighted majority social choice
functions in terms of hyperplanes through the origin 0 of Re”. We
shall make this our general definition.

DeriviTiON 5.1, F: D — {1,0,—1} is a weighted majority social
choice function if and only if there is a p > 0 such that

F(D) = s(p- D) = s(paDy, . . . ,p.Dy) for all D&E . (5.1)

Thus, if F is a weighted majority social choice function, then each
voter has a nonnegative ‘“weight’’ that he assigns to x or to y or to
neither. The definition requires that at least one p; be positive, so that
weighted majority social choice functions are unanimous. They are
also monotonic (p > 0) and dual, since s(p - D) = —s(p ' (—D)). Since
p: = 0 is allowed for some i, they are not necessarily strongly mono-
tonic or strongly unanimous. However, they are strongly dual as we
shall define this term shortly.
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According to (5.1) and Definition 3.3, individual i is essential if
and only if p. > 0. In effect, p, = 0 can be used to identify ineligible
voters.

Weighted majority social choice functions appear to arise most often
under proportional representation, where each voter represents a por-
tion of some resource (population, land, common stock, etc.) and has a
vote whose weight is proportional in some way to the proportion of the
resource that he represents. Needless to say, the question of how a
person’s voting weight p, should relate to his proportion of the resource
can be very difficult and controversial. Involved with this question is
the frequently-cited fact that an individual’s power or voting effective-
ness within a group need not be directly proportional to his p, weight.
We shall comment further on this at the end of this section.

A SPECIAL CASE OF REPRESENTATIVE SYSTEMS

Weighted majority social choice functions can also be characterized
in a simple way in terms of the recursive definition used for representa-
tive systems in section 3.2. As before, let S.(D) = D, for each i, and let
®; be the set of all functions s(Fy, . . . ,Fx):® — {1,0,—1} with K
any positive integer and F; € {S,, . . . ,S.} for each k.

Clearly, F € ®; if and only if there are nonnegative integers
p1, P2, . - - , pn at least one of which is positive such that F(D) =
s(mDy, . . . ,0.D») forall D & D. (Just let p, be the number of #, that
equal S, in the foregoing definition for ®,.) This is precisely the same
as (5.1) except for the integer condition. And since the D, values are
rational it is not hard to show that, for any p & Re", there is an
integral o’ & Re®such that s(p - D) = s(p’ - D) forall D &€ 9. (This is
obvious by small changes in the p,, to make them rational, if o - D is
never zero. If p - D = 0 for some D, the elimination method for the
solution of linear equations leads to the result.) Thus we have the
following theorem.

TueoreMm 5.1. F:D — {1,0,—1} is a weighled majority social choice
Sfunction if and only if F € Q..

This shows that ®; could be used as the definition of weighted
majority, and that the weights in a weighted majority function can
always be taken to be nonnegative integers.

STRONG DUALITY

By Definition 3.1, F is dual if and only if F(—D) = —F(D) for all
D & ®. Equivalently, F is dual if and only if, for all D,D) & D,

D+ D =0=[FDD) =1 FD) = —1]. (5.2)
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For example, since D + D' = 0 = D’ = — D, (5.2) shows that F(D) =
1=>F(—D) = —1,that ¥(D) = —1=F(—D) = 1, and that (D) =
0=F(—D) = 0.

The condition of strong duality extends (5.2) by permitting more
than two D* in the sum of (5.2).

DeriniTION 5.2. F:D — {1,0,—1} is strongly dual if and only if,

Jorallm > Yandal DY, ...,D"C D,
e DF=0=[F(DY) =1 for some ke {1, ... ,m}
if and only if F(D) = —1 for some JE {1, ... m}l.
(5.3)
This says that when we consider a sequence D', . . . , D= of possible

situations that might arise in which each ¢ “votes” for z the same num-
ber of times that he *“votes’” for y, so that =D = 0 for each i, then x
will win in at least one situation if and only if y will win in at least one
situation. For a simple example of this suppose that n = 3 with

D' = (1,1,1)

D* = (—1,0,0)

D = (0,—1,0) (5-4)
Dé = (0,0,~1).

Strong duality says that if F(D') = 1, then F(D*) = —1 for some
k & {2,3,4}. Another example, with n = 4, is

D =(1,1,—-1,—-1)

D? = (—1,0,0,1) (5.5)
D3 = (0,—1,1,0).
If F(D*y = —1 then strong duality requires either F(D?) = 1 or

F(D?*) = 1. It also requires F(D') = 0 if both F(D?) and F(D?) equal
Zero.

An example of a representative system that is not strongly dual is
the n = 4 system

((2Dy,D,,D4,D,),(D1,2D5,2D3),(D1,2D,,2Ds),(D1,2D3,2Dy))

of section 3.2. For this system the three D* in (5.5) have F(D?) = 1,
F(D?) = F(D?% = 0. Another example, with n = 3, is
((D1,2D2),(2D1,D3),(D2,2D3)),
since F(1,—-1,0) = F(0,1,—~1) = F(—1,0,1) = —1,
Weak majority illustrates a dual function that is not a representative
system and is not strongly dual. The four D* in (5.4) have F(D!) = 1

and F(D¥) = 0 for £ > 1 when F is the weak majority function of
(3.12).
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NECESSARY AND SUFFICIENT CONDITIONS

Strong duality is necessary for weighted majority, for suppose that F
satisfies (5.1) and Z;D* = 0. Then Z4p - D¥ = 0, so that p - D* > 0 for
some k if and only if p - D* < 0 for another k. The following theorem
notes that strong duality is also sufficient for weighted majority in the
presence of monotonicity and unanimity.

THEOREM 5.2. F: D — {1,0,—1} is a weighled majority social choice
function if and only if it is monolonic, unanimous and strongly dual.

Proof. Assume that F' is monotonic, unanimous and strongly dual.
Let F*(1) = {D:F(D) = 1}. By unanimity, F*(1) = @. Let & consist
of one element from each dual pair {D,—D} on which ¥ = 0, but
exclude 0 from §&.

Suppose there is no integral p & Re® such that p- D > 0 for all
D e F*(1)andp-D = 0forall D &€ &. Then, by Theorem 3.3 (Theo-
rem of The Alternative), there are nonnegative integers r; at least one
of which is positive that correspond to the D¥* & F*(1), and integers r;
that correspond to the D* & & that satisfy ZwriD¥ = 0 for each i. If
r« 1s negative for a D* € & then we can replace r. by —r, and replace
D* € & by its dual — D*. In this way we obtain r, > 0 for all D* &
F*(1) U &. Using the r; to give multiplicities of the D*, Zyr Df = 0
implies that there is a sequence D1, D?, . . . , D™ with m = Zr; such
that Z,D7 = 0. If m = 1, this contradicts duality since it implies that
F(DY) = 1and D' = 0. If m > 1, then strong duality is contradicted
since F(D?) > 0 for all j and F(D) = 1 for at least one j (since ry > 0
for at least one D* in #*(1)). Hence there is an integral p that satisfies
pD >0 for all D € F*(1), and p- D = 0 for all D & &. Duality
shows that F is a weighted majority social choice function provided
that p > 0.

Since F(0) = 0 by duality, monotonicity shows that p, > 0 for
each i. Unanimity clearly requires Zp, > 0. ¢

VOTER EFFECTIVENESS

It should be clear from Definition 5.1 that any weighted majority
social choice function is determined completely by certain equality
and inequality relationships between sums of the p,. The actual values
of the p, that satisfy these relationships are of secondary importance.
For example, forn = 3, py > p2 > p3 > 0 and p; + ps > p1 completely
determine a weighted majority social choice function. Several p vec-
tors that characterize this particular function are (4,3,2), (11,9,3) and
(100,97,96). In terms of Definition 4.1, a weighted majority social
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choice function can be described by identifying all decisive majority
coalitions (minimal coalitions will suffice) within nonempty subsets of
{1, . . . ,n}. For example, the following statements describe p; >
p2 > p3 > 0 and py + ps > p1: {1} is decisive within {1,2}, {2} is
decisive within {2,3}, {3} is decisive within {3}, and {2,3} is decisive
within {1,2,3}. Provided that such statements of decisiveness, when
translated into p, inequalities (and equalities, in the case where neither
I nor J — I is decisive within J), have a solution p > 0 that is un-
ambiguous concerning the relationship between any “disjoint’” pair in
o1}, - - < s {onb {or F 02}, - - - s {pr o2+ - - -+ pa}, 0}, they
do indeed characterize a weighted majority social choice function.

From this it is clear that the p, values do not necessarily reflect the
relative effectiveness of voters in the group. Such an effectiveness or
“power’”’ for each voter should depend, of course, at least on the ability
of the voter to affect an outcome of the social decision by his vote, or
on the decisive coalitions of which he is a member. Here we will define
one measure of relative effectiveness based directly on an individual’s
ability to affect an outcome by his vote, and then comment on this
definition and its implications for some weighted majority functions.
The definition used is similar to one given by Banzhaf (1965).

Let D¢ denote all preference profiles of all voters except for voter i.
Thatis, ®* = {(Dy, . . . ,Di_y,Digy, . . . ,D,): D, € {1,0,—1} for all
J #i}. For DF € D let (D%1) denote the D that has D- for voters
other than i, and D, = 1. Similarly (D% —1) is the D given by
(Dy, . . .,Diy,—1,Diq, . .. ,D,). Given D'E D, voter i can
affect the outcome in this situation if and only if #(D+1) = F(D+,—1).
(This will be true for any monotonic F.) The unnormalized effective-
ness W, of voter ¢ is then defined as the number of D¢ that voter i can
affect:

W, = #{D*:D* € ©¢ and F(D"1) # F(D*,—1)}.

The relative effectiveness of voter i can then be taken as w, =
W./Z.W., so that w, > 0 for all ¢ and Zw, = 1.

Several aspects of this definition, which might be viewed as short-
comings, are: 1. it treats all potential D equally, 2. it makes no dis-
tinction between an ability to completely change an outcome (x to y,
or y to x) and an ability to only partially change an outcome (z to
a tie, or conversely), and 3. it takes no account of dynamic variables
such as the ability of an individual to persuade other voters. For
further discussion along these lines the reader is referred to Banzhaf’s
paper and the references in his footnote 31.

Finally, we note the effect of our definition of voter effectiveness
on all weighted majority social choice functions for n = 3. By con-
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TABLE 5.1
“PowgR’’ DISTRIBUTIONS FOR n = 3 AND p; > ps > ps3

CHARACTERIZATION OF Vorer 1 VOTER 2 Vorer 3

Wtp. MajoriTy 100 w, 100 w, 100 w;
p1>ps=p3 =10 100 0 0
p1>p2>p3=0 75 25 0
pL > p2 > p3s > 0, p1 > p2+ ps 69 23 8
p1>p2=p3>0,p1>p2+p3 60 20 20
p1>p2>p3>0,p1=pz+p3 53 29 18
pL=p2 > p3 = 50 50 0
p1>pz=p3>0,p1=p2+p3 47 26 26
p1>pe>p3 > 0,p10 < p2+ ps 47 33 20
p1=p?>p3>0 41 41 18
p1>pr=p3s> 0,01 <p2+ p3 41 29 29
p1=p2=p3>0 33 33 33

vention we take p; > p» > p; and list the eleven possible cases in
descending order of the “power” of voter 1. The figures are accurate
for the number of places shown.

For a sample calculation, consider the fifth row where p; > p» >
ps > 0 and p; = p; + ps. Each D7 has 32 = 9 elements. Since voter 1
can offset any combination of votes by 2 and 3 (at least up to a tie
since p; = ps + p3), W1 = 9. When voter 1 abstains, voter 2 can
affect anything that voter 3 does (3 cases of D?), and voter 2 can
also affec?® the outcome when voters 1 and 3 oppose each other (2
cases). Hence W, = 5. Finally, voter 3 is influential when both 1 and
2 abstain and when 1 and 2 oppose each other. Therefore, W; = 3.
In summary, w; = 947, ws = 3{7, and w; = 3{7.

5.2 ANONYMITY

For a given n, the simple majority social choice function F(D) =
s(Dy, . . . ,D,) is the one weighted majority social choice function
that gives equal “power’ to each voter. The new condition that we
shall use in characterizing simple majority is a direct reflection of the
equal power or one-man one-vote doctrine. The two most common
names for this condition are “‘equality’”’ and ‘“‘anonymity.” It is also
referred to as the egalitarian principle. We shall use “anonymity.”

DerintTION 5.3. F: D — {1,0,—1} is anonymous if and only if, for
all DEe o, F(Dy, . .. ,D,) = F(Dyqry, . . . ,Dymy) whenever o is a
permulation on {1, . . . ,n}.
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This is equivalent to: F(D) = F(D') when D, = D, for all but two
voters j and k for which D, = D and D; = D,. A series of such two-
voter interchanges will give a desired permutation.

What matters for any anonymous social choice function is not who
votes for x and y but rather how many voters vote for 2 and y. Unlike
general weighted majorities, which require voters’ “names on the bal-
lots” so that the proper p, weights can be assigned, anonymous func-
tions do not require ‘“‘names on ballots.” Thus, let

1(D) = #{i:D, = 1}
—1(D) = #{i:D, = —1}. (5.6)

Then any anonymous F can be described by a function f: {(j,k):j,k €
{0,1, . . . ,n} and j+k <n}— {1,0,—1} such that F(D) =
f(D),—1(D)) for all D &€ D.

Anonymity is to voters as duality is to alternatives. Duality treats
alternatives equally, whereas anonymity treats individual equally. To-
gether, these conditions give conclusions (ii) and (iii) of the following
lemma.

LemMa 5.1. Suppose that F:D — {1,0,—1} is anonymous. Then, for
all D,D' € D,
@) (L(D),—1(D")) = ((D),—-1(D)) = F(D') = F(D).
If, in addition, F ts dual then, for all D,D’ € D,
(1) (—1(DN,1WD)) = (D), —1(D)) = F(D') = —F(D),
(iii) 1(D) = —1(D)y=F(D) = 0.

Proof. Conclusion (i) is an immediate consequence of anonymity.
Conclusion (ii) is an easy consequence of duality and anonymity.
For (iii), 1(D) = —1(D)=1(D) = —1(D) = 1(—D) = —1(—D).
Then F(D) = F(—D) by (1) and F(D) = —F(—D) by (ii), so that
FD) =0.¢

Lemma 5.1 suggests a simple way of representing any monotonic,
dual, and anonymous social choice function. We now give such a repre-
sentation, recalling that when F' is dual it is completely determined by
F*(1). The largest integer that does not exceed & is [k].

TaEOREM 5.3. If F: D — {1,0,—1} is monotonic, dual and anonymous

then there are inlegers r(0), r(1), . . . , r([n/2]) such that
0<r(0) <Pl < - <r(ln/2) <, (5.7)
F*(1) = {D: —1(D) < n/2 and 1(D) > r(—=1(D))}. (5.8)
For simple majority, (r(0),r(1), . . . ,r([n/2])) = (0,1, . . . ,[n/2]),
and for weak majority the r vector is ([n/2], . . . ,[n/2]).
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Proof. Let F be monotonic, dual, and anonymous. Let r(0) be the
largest integer in {0,1, . . . ,n} for which F(D) = 0 when —1(D) = 0
and 1(D) < r(0). Since F(0) = 0, such a unique r(0) exists. If F(D) = 0
for all D that have —1(D) = 0, then r(0) = n. By monotonicity,

{D:F(D) = 1and —1(D) = 0} = {D:—1(D) = 0 and 1(D) > r(0)}.
(5.9)

This set is empty if and only if 7(0) = n. If r(0) = n, then F(1, . . . ,1)
= 0, so that F*(1) = @ by monotonicity, and in this case we take r(k)
= n for each k. This satisfies (5.7) and (5.8).

To continue, suppose that r(0) < n. In this case we define r(1) as the
largest integer in {1, . . . , n — 1} for which F(D) = 0 when —1(D)
= land 1(D) < r(1). Lemma 5.1 and monotonicity assure that r(1) is
well defined and that

{D:F(D) =1and —1(D) =1} = {D:—=1(D) = 1 and 1(D) > r(1)}.
(5.10)

Contrary to r(1) > r(0) suppose that r(1) < r(0) < n. Then there is a
D with —1(D) =1, (D) =r(1) +1 and F(D) = 1. Let I/ = D
except for the one D, = —1, which we replace by D, = 0. Then
—1(D") = 0, 1{D') < r(0), and F(D’) = 1 by monotonicity, contrary
to (5.9). Hence r(1) < r(0) must be false.

If, when r(0) < n, r(1) = n — 1, then (5.10) is empty and we take
rk) = n— 1for2 <k <{n/2], so that (5.7) holds. In this case (5.8)
holds also, since, by monotonicity, F(D) = 0 whenever 1 < —1(D) <
[n/2].

If r(1) < n — 1 we continue with (2) as in the paragraph of (5.10).
The process continues in the obvious way either until r(k) = n — & for
some k < [n/2], in which case we take r(j) = n — kfor k < j < [n/2],
or until we obtain r([n/2]) = (n — 1)/2 for odd n. ¢

5.3 SiMpPLE MaJoriTY

In the rest of this chapter we concentrate on the two special types
of monotonic, dual, and anonymous social choice functions that we
identified following Theorem 5.3.

The following theorem, due to May (1952), follows directly from
Lemma 5.1 (iii) and strong monotonicity. The conditions in the theo-
rem are obviously necessary for simple majority.

THEOREM 5.4. F:D — {1,0,—1} is a simple majorily social choice
Sfunction if and only if it is strongly monotonic, dual, and anonymous.
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AN ALTERNATIVE AXIOMATIZATION

One of the necessary properties of simple majority social choice
functions that was not used in Theorem 5.4 is a nonreversibility
property. Suppose that F is a simple majority social choice function
and that F(D) = 1, so that z wins under D with 1(D) > —1(D). Sup-
pose that D’ is the same as D except that one voter who voted for z in D
abstains in D’. Then 1(D’) = 1(D) — land —1(D') = —1(D), so that
1(D') > —1(D'). This requires that #(D’) > 0. Hence, under simple
majority, the change by one voter from a vote for x to an abstention
cannot change the social choice from x to y although it may change
the social choice from x to a tie between z and y.

DeriNiTION 5.4. F:D — {1,0,—1} is weakly nonreversible if and
only if, for all D € ®, if D' = D excepl that D; = 0 for one i for which
D. = 1, then F(D) = 1= F(D') > 0.

The condition of weak nonreversibility is of at least passing interest
since it allows us to characterize simple majority without making
direct reference to anonymity.

TaHEOREM 5.5. F:D — {1,0,—1} is a simple majorily social choice
Sfunclion if and only if it is sirongly monolonic, dual and weakly
nonreversible.

Proof. Necessity has been demonstrated. For sufficiency, assume
that F is strongly monotonic, dual, and weakly nonreversible. If
1(D) = —1(D) = 0 then D = 0 so that F(D) = 0 by duality. Then,
by strong monotonicity,

F(Dy =1 if 1(D) > —1(D) =0
FD) = -1 if —-1(D) > 1) =0.
Using induction on m, assume for m > 0 that
1. ¥F(D) =0 if 1D) = —=1(D) =m (if 2m < n)
2. FD) =1 if 1D) > -1(D)y =m (if2m +1 < n)
3. F(D) = —1 if —~1(D) > (D) =m Gf 2m + 1 < n).

Suppose that 2(m + 1) < n and that 1(D) = —1(D) = m + 1. Let

D' =D  except for some i where D, =1 and D) =0
D* = D  except for somejwhere D;= —1 and D} =0.

Now F(D*) = 1 by induction hypothesis 2, and F(D’) = —1 by in-
duction hypothesis 3. Weak nonreversibility and F(I)') = —1 prohibit
F(D) = 1. Similarly, the dual of weak nonreversibility and F(D*) = 1
prohibit F(D) = —1. Therefore F(D) = 0. It then follows from strong
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monotonicity that 2 and 3 hold for m + 1 in place of m, so long as
2im+ 1) +1<n.¢

Shortly, in Part II, we will examine simple majority in detail for
situations with many alternatives.

Bengt Hansson has noted (in correspondence) that weak nonre-
versibility is closely related to a condition which expresses the idea
that “‘the effect is not greater than the cause,” which we can write
as follows: if D = D’ except that D, > D; for some i then D, — D! >
F(D) — F(D"). It is easily seen that this condition is necessary for
simple majority, and it implies weak nonreversibility since it requires
F(D') > 0 when D, — D, =1 and F(D) = 1.

5.4 WEAK MAJORITY

If we use (5.6), the weak majority social choice function F of (3.12)
can be defined by
F(D) =1 1(D) > n/2
F(D) = -1 —1(D) > n/2.

Weak and simple majority share a lot in common. Both are monotonic,
unanimous, dual, anonymous, and weakly nonreversible. The parting
of the ways between these two functions arises because: 1. simple
majority is strongly monotonic whereas weak majority is not, and
2. weak majority is strongly nonreversible whereas simple majority
is not.

DEerFINITION 5.5. F: D - {1,0,—1} is strongly nonreversible if and
only if, for all D € D, if D' = D except that D, = 0 for one i for which
D, =1, then F(D) > 0= F(D') > 0.

The only difference between this definition and Definition 5.4 is
that F(D) = 1 in 5.4 has been replaced by F(D) > 0. Thus, strong
nonreversibility says that if  and y tie under D, and if one z voter in
D changes to abstention in D’, then x and y will still tie under D/
(assuming monotonicity). Strong nonreversibility, which is clearly
necessary for weak majority, is felt by some to be the most vulnerable
aspect of weak majority.

Related to this, weak majority is often felt to be inferior to simple
majority because of its greater propensity for ties. In practice, a
special majority function, which is closely related to weak majority
but does not permit ties, is sometimes used when a challenger z is
put against the status quo y for a vote. This special majority takes
F(D) =1 1(D) > n/2, and F(D) = —1 otherwise. Thus, the chal-
lenger wins if and only if it obtains more than half of the possible
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votes. Otherwise the status quo stays in effect. This example of “non-
minority rule” will be examined further in the next chapter.

In order to characterize weak majority we need one more condition
that holds also for simple majority. This condition is part of strong
monotonicity. It says that if there are no abstentions in D, and if D’ is
obtained from D by one voter changing his vote from y to z, then x
will be the choice under I’ il z beats or ties y under D. A slightly
different form of this condition is stated in the following theorem.

THEOREM 5.6, F:D — {1,0,—1} is a weak majority social choice
Junction if and only if it is monolonic, dual, anonymous, sirongly non-
reversible, and if F(D') = 1 whenever F(D) > 0, D’ > D and D,D. # 0
for each 1.

Proof. The conditions are easily seen to be necessary for weak
majority. Assume henceforth that they hold.

By Lemma 5.1 (iii), 1(D) = —1(D) = F(D) = 0. Monotonicity and
strong nonreversibility then imply that —1(D) < n/2 = F(D) > 0.
Lemma 5.1 (ii) then says that 1(D) < n/2 = F(D) < 0.

If niseven let 1(D°) = —1(D°) = n/2 with F(D°) = 0. Anonymity
and the final condition of the theorem then imply

FD) =1 if 1(D) > n/2 and D, # 0 for each 1.

From this and monotonicity, 1(D) > n/2 = F(D) = 1. Duality then
yields F(D) = —1 whenever —1(D) > n/2.

For n odd let 1(D°) = —1(D°®) 4+ 1 with all D; = 0, and let
D’ = D° except that D, = —1 for one { for which D = 1. Then
1(D’) +1 = —1(D’). The second paragraph of this proof gives
F(D°) >0 and F(D') < 0. If in fact F(D') = 0 then F(D°) =1
by anonymity and the final condition of the theorem. But F(D°) =
1= F({D') = —1 by Lemma 5.1 (ii), which contradicts F(D') = 0.
Therefore, F(D') = —1, and F(D°) = 1 by Lemma 5.1 (ii). Mono-
tonicity and anonymity then imply that #(D) = 1 whenever 1(D) >
n/2. Duality yields F(D) = —1 whenever —1(D) > n/2. ¢
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CHAPTER 6

Strong Decisiveness and Special Majorities

THus FAR the special social choice functions that we have discussed
satisfy the condition of duality. In this chapter we shall consider
strongly decisive functions, which never permit a tie between « and y.
Since these cannot be dual (which requires F(0) = 0), this chapter is
also concerned with nondual social choice functions.

The first section discusses the conditions of decisiveness and then
characterizes social choice functions that are monotonic, strongly de-
cisive, and anonymous. This characterization is similar to that of
Theorem 5.3 for monotonic, dual, and anonymous functions. A weak
duality condition, which is compatible with strong decisiveness, is
shown to lead to a social choice function that agrees with simple
majority when the latter does not yield a tie.

The second half of the chapter focuses on two types of strongly
decisive special majority social choice functions. These are: 1. the
absolute special majority, in which an abstention counts as a vote
for the status quo, and 2. the relative special majority, under which the
challenger wins if and only if it receives a certain percentage of the
votes that are actually cast.

6.1 SrrongLY DEecisive Socrarn CHoicE FuUNCTIONS

A possible virtue of some social choice functions is their avoidance of
ties. Indeed, as we have remarked before, it is obvious that a tie result
does not resolve the issue before the group. When ties are permitted
by a social choice function, the practical procedure for breaking the
deadlock—whether by coin flip, chairman’s duty, a new ballot (which
may well differ from the first since the voters have additional informa-
tion to act on), or by some other means—is not part of the function.
In some cases, however, it may be possible to alter the function to
reflect the tie-breaking procedure. ,

A simple example will illustrate this. Let n = 3 and suppose that the
group uses simple majority, written as F = s(8,,8.,S;). If a tie occurs,
then voter 1 breaks the tie by his vote, provided that D; = 0. If
voter 1 abstains, then voter 2 breaks the tie, provided that D, # 0.
If both 1 and 2 abstain, then a tie occurs if and only if 3 abstains.
This tie-breaking procedure, when combined with F, can be written
as F' = s(3F,28,,S;). It can also be written in the weighted form
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F' = s(48,,38,,28;) whose voter “powers’ w, are approximately .47,
.33, and .20, by Table 5.1, for the three voters respectively.

But even F’ does not resolve the issue when all three voters abstain
or are indifferent. If they are in fact indifferent then it should not
matter to any of them which of x and y is implemented. Therefore,
from the viewpoint of the vofers, it would not matter if x were de-
signated as the choice when D = 0. This can be incorporated into
the choice function by taking F'’ = s(2F’,1) or, equivalently, by writ-
ing F"' = s(8851,65,,45;1).

In this example the weighted majority function F’ is weakly decisive
and F'’ is strongly decisive. F*(0) = {D:F(D) = 0}.

DerintTION 6.1. F: D — {1,0,—1} is decisive if and only if D = 0 =
F(D) # 0. It is weakly decisive if F*(0) = {0}, and strongly decisive
if F*(0) = 0.

Thus, a decisive social choice function is either weakly decisive or
strongly decisive, and not both. In logic, weak decisiveness and strong
decisiveness are contrary conditions. They are not contradictories,
since a social choice function need not be either weakly or strongly
decisive.

Similarly, since duality implies F(0) = 0, duality and strong decisive-
ness are contrary conditions: if F' is dual then it is not strongly decisive;
if F' is strongly decisive then it is not dual; and /' may be neither dual
nor strongly decisive.

We have already seen in Corollary 3.1 that every weakly decisive
social choice function that is monotonic and dual is a representative
system. This is implied also by Theorem 3.5, since every monotonic
and decisive function is strongly monotonic.

Clearly, since strong decisiveness and duality are contrary condi-
tions, F cannot be a representative system when it is strongly decisive,.
Since the remainder of this chapter concentrates on strongly decisive
functions, duality will play no role except in comparisons and in a
modified form called “weak duality’” that is compatible with strong
decisiveness.

STRONG DECISIVENESS AND ANONYMITY

Continuing along the lines developed in the latter part of the preced-
ing chapter, this chapter will maintain the emphasis on anonymity.
When this condition is joined by monotonicity and strong decisive-
ness, the following correspondent of Theorem 5.3 results.

62



6.1 STRONGLY DECISIVE FUNCTIONS

THeoreM 6.1, If F: D — {1,0,—1} is monolonie, strongly decisive and

anonymous then there are integers s(0), s(1), . . . , s(n) such that
0<s(0)<s) < - <s(n) <n+1, (6.1)
F*(1) = {D:1(D) = s(—1(D))}. (6.2)

We will recall that 1(D) = #{i:D; = 1} and —UD) = #{i: D,
= —1}, and that F*(1) completely determines F' when F is strongly
decisive since F*(—1) is then the complement of F*(1) in ®. Unanimity
has not been used in the theorem. If unanimity does not hold, then
either F*(1) = ©, in which case we take s(k) = 0 for each &, or
F*(1) = @, in which case s(k) = n + 1 for each k.

The comparison between Theorems 5.3 and 6.1 can be illustrated
visually by F arrays for the two cases. Since F(D) depends only on
1(D) and —1(D) when F is anonymous, it will suffice to identify F
for each (1(D),—1(D)) for which —1(D) + 1(D) < n. Figure 6.1

(D)
0 1 2 3 4 5 6 7 s(k)
0 -1 1 1 1 1 1 1 1 1
1 -1 -1 -1 1 1 1 1 3
2 -1 -1 -1 1 1 1 3
-1(D) 3 -1 -1 -1 1 1 3
4 -1 -1 -1 1 3
5 -1 -1 -1 3
6 -1 -1 3
7 -1 3

FiGguRe 6.1. Monotonic, dual, anonymous

shows an F for Theorem 5.3, and Figure 6.2 shows an F for Theorem 6.1.
Since F is monotonic in each case, the entries must not decrease from
left to right across any row, and must not increase from top to bottom
down any column. In both figures, n = 7.

Duality for Figure 6.1 requires zeros in the main diagonal, and the
array must satisfy a, + ax, = 0 for each j, 2 with j + & < n. No
—1's can appear above the main diagonal, and no 1’s can appear
below the main diagonal. Since only half of the displayed array is
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1(D)
0 1 2 3 4 5 6 7 r(k)

0 0 0 0 1 1 1 1 1 2

1 0 0 0 0 1 1 1 3

2 0 0 0 0 1 1 3
-1(D) 3 -1 0 ] 0 0 4

4 -1 -1 -1 0

5 -1 -1 -1

6 -1 -1

7 -1

Ficure 6.2. Monotonic, strongly decisive, anonymous

needed to specify the dual F, it is completely determined by the r(k)
fork =0,1, .. .,[n/2] as described in Theorem 5.3.

Appropriate s(k) for an F satisfying the conditions of Theorem 6.1
are shown on Figure 6.2. The first five s(k) must be as shown. The
last three can be any numbers that satisfy 3 < s(5) < s(6) < s(7) < 8.
If there is a linrow k (k = 0,1, . . .) of the F array then, according to
(6.2), s(k) must be the column number (0,1, . . .) for the first column
that has a 1 in the row. If a row has no 1 then s(k) must exceed n — k
so that {D:—1(D) = k and 1(D) > k} = @ for (6.2). Monotonicity
guarantees that s(k) can be chosen in this way so as to satisfy (6.1).

WEAK DUALITY

Strong duality, Definition 5.2, extends duality. That is, it implies
duality, but not conversely. We now define a condition that is implied
by duality but does not imply duality.

DeriNITION 6.2. F: D — {1,0,—1} is weakly dual if and only if, for
all D € D, 1(D) = —1(D) = F(—D) = —F(D).

For an anonymous function that is representable in the manner of
Figure 6.1 or 6.2, weak duality says that duality applies to all sym-
metric pairs that are not on the main diagonal. If F is strongly decisive
as well as weakly dual then, in such an array, a,x = —ai, # 0 for all
J # k with j + kB < n. Finally, if F is monotonic also, then F(D) =1
for all D above the main diagonal and F(D) = —1 for all D below the
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main diagonal. In this case the elements along the main diagonal can
have any sequence of values in {1,—1}. These facts are summarized
in Theorem 6.2.

THEOREM 6.2. Suppose thal F:® — {1,0,—1} is monofonic, strongly
decisive, anonymous, and weakly dual. Then F(D) = s(Dy,D,, . . . ,D,)
for all D for which 1(D) £ —1(D), and, for eachk & {0,1, . . . ,[n/2]},
all D with 1(D) = —1(D) = k have the same F(D) value, which can be
either 1 or —1.

This says that every F that satisfies the conditions of the theorem
agrees with simple majority except when 1(D) = —1(D). With { =
[n/2] + 1, there are exactly 2¢ such functions (for the given n) accord-
ing to the 2¢ ways that 1’s and —1’s can be placed along the main di-
agonal in a figure like Figure 6.2. When only 1’s are placed on the main
diagonal, the function is representable as F = s(2s(Dy,Ds, . . . ,D,),1).

6.2 SpECIAL MAJORITIES

A very important class of social choice functions that are strongly
decisive and are not generally weakly dual is the class of special
majority functions. These arise most often in practice when a chal-
lenger, whom we shall suppose is , requires something more than a
simple majority to displace the status quo y.

Special majorities occur in many forms. A famous example involves
changing the Constitution of the United States of America. An amend-
ment to the Constitution requires ratification by 34 of the state legis-
latures (38 of 50) before it becomes law, assuming of course that the
amendment has been passed by Congress. This can be expressed by
F(D) =1 if and only if 1(D) > (34)n, and F(D) = —1 otherwise,
where n = 50 and D, represents the vote of state i. This function
treats states (the “individuals” in this case) equally, despite differ-
ences in population. Since nine of the 50 states have more than half
the population, a constitutional amendment could be ratified by states
which contain less than half of the population, unlikely as this may be.
Any amendment to change this or some other Constitution decision
rule would of course require a 34 majority of the states for ratification.

For another example, suppose that a government has a bicameral
legislature, that the executive head of the government has the power
of veto over the legislature, and that a 24 majority is required in each
house to override a veto. Given a veto, the social choice function from
that point on can be represented by s(F,F,,—1), where F; and F, are
24 special majority social choice functions for the two houses.
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TWO TYPES OF SPECIAL MAJORITY FUNCTIONS

Besides differing in the percentage vote required to unseat the status
quo, elementary special majority social choice functions differ in their
interpretation of percentage, or in their treatment of abstentions. For
example, “the challenger requires a two-thirds majority to win”” might
be interpreted in any of the following ways:

1. at least 24 of all eligible voters must vote for z;

2. more than 24 of all eligible voters must vote for z;

3. at least 24 of all nonabstaining voters must vote for z;

4. at least 24 of all nonabstainers within an assembled quorum of
voters must vote for z;

5. more than 24 of all assembled voters must vote for .

In the rest of this chapter we shall deal only with two simple types
of special majorities, namely absolute and relative. An absolute special
24 majority requires 24 (or more than 24) of all voters to vote for z,
as in cases 1 and 2 above. A relative special 24 majority requires 24
(or more than 2%) of all voters who actually vote (do not abstain) to
vote for z, as in case 3 above.

DerFINITION 6.3. F: D — {1,0,—1} is an absolute special majority
social choice function if and only if there is an o« € (0,1) such that

F(D) = 1e1(D)> an (6.3)
F(D) = —1 = 1(D) < an. (6.4)

F is a relative special majority social choice function if and only if
there is a number 8 > 0 such that

FD) = 1e1D) > p(—1D)) (6.5)
FD) = -1 o 1(D) < B(—1(D)). (6.6)

Abstentions count as votes for the status quo under absolute special
majorities. In the relative case, abstentions affect the outcome only
so far as they change the ratio between z votes and y votes. Thus, if
B8 = 2 (that is, z needs more than two-thirds of the votes cast to win),
ifn=29,1(D) =6and —1(D) = 3, then F(D) = —1 by (6.6). But if
one of the z voters and one of the y voters abstain, so that 1(D) = 5
and —1(D) = 2, then F(D) = 1 by (6.5).

“Non-minority rule” is identified by « = 4. If x needs at least two-
thirds of all potential votes to win, then « is slightly less than 24 (or
equal to 24 if n is not divisible by 3). If z needs all votes to win then
a > (n — 1)/n. If z needs all votes cast to win then 8 > n — 1.

Our two forms of special majority have simple representations in the
terms of Theorem 6.1. For an absolute special majority function we can
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take s(0) = s(1) = - - - = s(n). For a relative special majority,
s(k) = B’k, with g slightly less than 8, will suffice (until 8’k exceeds
n + 1).

According to the definitions, each type of special majority social
choice function is monotonic, unanimous, anonymous and strongly
decisive. Two additional conditions will distinguish between the types.

6.3 SpeciaL CONDITIONS

The new condition for absolute special majority says that a vote
for the status quo is equivalent to an abstention.

ConortioN A. If D = D’ except for one i where D, = 0 and D, = —1
then F(D) = F(D').

THEOREM 6.3. F:D — {1,0,—~1} is an absolute special majorily social
choice function if and only if it is monotonic, unanimous, anonymous,
strongly decisive and salisfies condition A.

Proof. Anonymity and condition A imply that F(D) is a function of
1(D). Unanimity requires F(D) = 1 when 1(D) = n, and unanimity
and condition A imply F(D) = —1 when (D) = 0. Monotonicity and
strong decisiveness then show that there is a number an between 0
and n that satisfies (6.3) and (6.4). ¢

The special condition that we shall use for relative special majority
combines an aspect of anonymity and the notion that what is sig-
nificant for F(D) is the ratio of 1(D) to —1(D).

ConprrioNn B. If DY, . . ., D™ and E', . . ., E are sequences of
elements from D withm > landr > 1, if

ZiL W(EY) =z, 1(DY) (6.7)
Z — WE) = 20, — (D), (6.8)

and if F(D*) > 0 for k=1, ..., m, then F(E’) > 0 for some j €
{1, ....,r}

This says that if * would beat or tie y in each of the potential D*
situations, and if the totality of z (y) votes in all E7 situations listed
equals the totality of « (y) votes in all D* situations, then z must beat
or tie y in at least one of the E7 situations. Since there is no restric-
tion on m and r other than that they be positive integers, the via-
bility of condition B depends critically on the notion that the ratio
of z to y votes is significant. For example, if n = 9 and if F is strongly
decisive with £(1,1,1,1,1,1,—1,—1,—1) = 1, then at least one of
F(1,1,0,0,0,0,—1,0,0), F(0,0,1,1,0,0,0,~1,0) and F(0,0,0,0,1,1,0,0,—1)
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must equal 1. In fact, the hypotheses of the preceding sentence along
with condition B require that F(D) = 1 whenever 1(D) = 2 and
—1(D) = 1, since with D' = (1,1,1,1,1,1,—1,—1,—-1), m = 1, E' =
E* = E* = D, and r = 3, F(D') = 1 requires F(D) = 1.

Condition B holds for simple majority but does not generally hold for
representative systems or for absolute special majorities. To prove that
the condition is necessary for relative special majority, suppose that F
satisfies (6.5) and (6.6) for some 8 > 0, and suppose that the hypothe-
ses of condition B hold for some D* and E’. Then F(D*) = 1 for each
D* so that Z,1(D*) > 8=, — 1(D*). Expressions (6.7) and (6.8) then
give Z;1(EY) > BZ; — 1(E?), so that 1(E?) > B(—1(E”)) for some j, or
F(E?) = 1 by (6.5).

THEOREM 6.4. F:D — {1,0,—1} is a relative special majorily social
choice function if and only if it is unanimous, strongly decisive and salis-
fies F(0) = —1 and condition B.

Proof. Let the specified conditions hold. According to unanimity and
strong decisiveness, O can be partitioned into two nonempty subsets
F*(1) and F*(—1). The system that corresponds to (6.5) and (6.6) with
B = —p2/p1is

p1(D) + po(~1(D)) >0  forall D E F*(1) (6.9)
pl(D) + po(—=1(D)) <0  forall D EF*(—1). (6.10)

If this system has no integral p solution then, by Theorem 3.2, there
are nonnegative integers ry, at least one of which is positive, and non-
negative integers s, such that

zrnd(D¥) = Zs;1(EY)
Zr(—L(D¥)) = Zs;(—1(E%))

where F*(1) = {D,D?, . . .} and F*(—1) = {ELE? .. .}.Ifs, > 0
for some j then condition B is contradicted. If s, = 0 for all j then
D¥ = 0 for all k with r, > 0 and, since there is at least one such ri, we
get F(0) = 1, a contradiction to F(0) = —1 as stated in the theorem.
Hence there is a p solution. Unanimity then gives p; > 0 by (6.9) and
p2 < 0 by (6.10), so that 8 = —p2/p1 > 0.4
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CHAPTER 7

Binary Relations and Binary Choices

BecAuse THE REST of our study deals with social choice from more than
two alternatives, we shall require mathematical concepts that were
not used in Part I. The first purpose of this chiapter is to set forth the
most basic of these concepts, namely binary relations. After discussing
some general properties, such as asymmetry and transitivity, we shall
examine four order relations that are used extensively in the sequel.
Readers who are familiar with the theory of binary relations may wish
to take note only of the terminology that will be used.

The specific introduction to Part Il begins in section 7.3 with a
brief look at interrelations among binary choices. We shall comment
on the case where, given D, every nonempty finite subset of X con-
tains an alternative that beats or ties every other alternative in the
subset on the basis of binary choice comparisons under F. Some differ-
ences between transitive individual indifference (weak orders) and in-
transitive individual indifference (strict partial orders) are illustrated
with the use of Pareto dominance conditions.

The next chapter begins our detailed examination of the particulars
of simple majority social choice.

7.1 BiNary RELATIONS

Because binary relations play a fundamental role in this and suc-
ceeding chapters of the book, we shall set forth at this time many of
the definitions that will be used.

A binary relation R on a set X is a subset of X X X. Thus R can
range anywhere from the empty relation @ to the universal relation
X X X. When an ordered pair (z,y) is in R, or (z,y) & R, we shall
often write xRy and say that x stands in the relation R to y. When
(z,y) &€ R, so that 2 does not stand in the relation R to y, we shall
write not zRy. That is, not xRy means that it is false that xRy. Clearly,
for any binary relation R on X, it is true for any (z,y) € X X X that
either xRy or not xRy, and not both.

In section 2.1 we defined binary relations =, >, and > on Re".
Each of these relations has certain properties. For example, all are
transitive, since xRy and yRz = zRz in each case. A number of other
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potential properties are presented in the following list. A binary rela-
tion R on X is

reflexive < zRx for allz € X
irreflexive < not xRz, for allx € X
symmetric < xRy = yRuz, for all 2,y € X
asymmelric < By = not yRz, for all z,y € X
antisymmelric & xRy and yRx =z = y, forall z,y € X
connecled < xRy or yRx, for all 2,y € X
weakly connecled < z # y = zRy or yRx, for all 2,y € X
transitive < xRy and yRz = zRz, for all z,y,z € X
negalively iransitive < not xRy and not yRz = not zRz,
for all z,y,z € X.

We shall look first at the four groupings suggested by the terms used.
The use of =, >, and > in the examples is for Re”, as defined after
(2.2).

First, both = and > are reflexive, and > is irreflexive. Reflexivity
and irreflexivity are contrary properties, but they are not contradic-
tories since R may be neither reflexive nor irreflexive when #X > 1.
If R is a relation of “respects” on a set of people, and if some people
respect themselves but others do not respect themselves, then R is
neither reflexive nor irreflexive.

Second, = is symmetric, > is asymmetric, and > is antisymmetric
since x > y and y > z=>xz = y. In this particular case, it turns out
that = is also antisymmetric (z = yandy = = ¢ = y), and so is >
since we can never have both 2 > y and y > z. In fact, every asym-
metric R is trivially antisymmetric. There are of course antisymmetric
relations that are not asymmetric, an example of which is >. Sym-
metry and asymmetry are contrary properties so long as R # §. If
R = ¢ then R is symmetric, asymmetric, and antisymmetric. Note
also that every asymmetric relation is irreflexive.

Consistent with our use of ‘“weak’ and ‘‘strong” in Part I, every
connected binary relation is weakly connected, but not conversely.
(Sometimes ‘“‘strongly connected’”” and ‘“‘connected” are used instead
of “connected” and ‘“‘weakly connected,” respectively. Connected
relations are also referred to as ‘“‘complete.”) If n > 1, then no one
of =, >, and > is weakly connected. However, if n = 1, then > is
weakly connected and > is connected, since a > b or b > a for any
two real numbers a and b. R is connected if and only if it is weakly
connected and reflexive.

We have already noted that each of =, >, and > is transitive.
However, none of these is negatively transitive if n > 1. For example,
not (1,3) > (0,5) and not (0,5) > (1,2), but (1,3) > (1,2). On the
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other hand, if n = 1, then both > and > are negatively transitive.
This is easily seen by the above definition or by observing that nega-
tive transitivity is the same as

xRz = xRy or yRz, for all x,y,2 & X. (1.1

(Proof: The original definition says that not (not zRz) = not (not Ry
and not vRz), which is just 2Rz = xRy or yRz. The original definition
then follows from (7.1) by contradictories.)

The following lemma states three simple interconnections among
some of the foregoing properties. It is proved in detail only to illustrate
some proof methods to readers who are not used to working with
binary relations.

Lemma 7.1. The following implications hold for any binary relation on a
sef:
a. (fransilivily & irreflexivily) = asymmelry
b. (negative lransilivily & asymmetry) = transitivity
c. (lransttivily & irreflexivily & weak connecledness) = negalive
transitivity.

Proof:

a. Suppose that zRy. If yRz also, then xRz by transitivity. But this
contradicts irreflexive. Hence not yRz.

b. Suppose that zRy and yRz. By (7.1), (zRz or zRy), and not zRy
by asymmetry. Therefore zRz.

c. Suppose that not xRy and not yRz. If either x = y or y = z, then
not xRz. If x # y and y # z, then yRx and zRy by weak connectedness,
and hence zRx by transitivity. Asymmetry, by part (a), then implies
not zRz. ¢

RESTRICTIONS, DUALS, AND COMPOSITIONS

If R is a binary relation on X and if Y € X then RN (Y X Y) =
{(z,y):xRy and x,y € Y} is the restriction of R on Y. An example of the
use of restrictions in social choice arises in the condition of indepen-
dence from infeasible alternatives. As we noted in Chapter 1, this says
that the social choice shall not depend on preference data involving
infeasible or unavailable alternatives. When each D consists of an

n-tuple of preference orders on X, so that D = (>,, . . . ,>,), this
condition is: F(Y,D) = F(Y,D’) whenever the restriction of >, on Y
equals the restriction of >/ on Y, for each i € {1, . . . ,n}.

The dual or converse of a binary relation Ron Xis R* = {(z,y):(v,x)
€ R}. Thatis, zR*y < yRz. Thus the duals of =, >, and > are =, <,
and <, respectively. R is symmetric if and only if R = R*, and asym-
metric if and only if R/ R* = . In addition, R is connected if and
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only if R\U R* = X X X, the universal relation. The dual of an
n-tuple (Ry, . . . ,R,) of binary relations is the n-tuple (R}, . . . ,R})
of duals. This is consistent with our usage of calling — D the dual of D
in Part 1.

The composition of binary relations R and S on X, written here as
(R)(S), is defined by

(R)(S) = {(x,2):xRy & ySz for some y & X}.

That is, £(R)(S)z if and only if there is a ¥ such that xRyS:z. Clearly,
with X = Re", (>)(>) = (>) and (=)(=) = (=). It is not quite
as obvious that, for any n, (<)(>) = (Re™?®. That is, for every
a,b € Ren, there is a ¢ € Re™ such that a < ¢ and ¢ > b. Any ¢ larger
than both a and b will do.

Transitivity is expressed in terms of composition by (R)(R) € R.
With R = {(z,y):(z,y) EX X X and (z,y) & R} = X X X — R,
the complement of R in X X X, negative transitivity is given by
(R°)(R°) € Re. Composition is associative, so that ((R)(S))(T) =
(R)Y((S)(T)). The m-fold composition of R with itself will be written
as (R)™. An important property of duals and complements is that the
dual of the complement is the complement of the dual: Re* = R*e,
Also, the dual of a composition is the composition of the duals in
reverse order, thus: ((R)(S))* = (S*)(R*).

TRANSITIVE CLOSURE

The transitive closure Rt of a binary relation R on X is Rt = R\U
(R)2\U (R)*\U - - -, so that zR'y & zRy or xRx;Rx:R - -+ - Rx.Ry
for some z1, 23, . . . , 2» € X. The transitive closure of R is always
transitive, since x(R)™y and y(R)*z = x(R)™**z. R itself is transitive
if and only if R = R:.

If R is reflexive, then R C (R)2 C (R)* C - - -, so that Rt = (R)~
for some m if X is finite. If R is irreflexive, then R! need not be irreflex-
ive, for we might have zRyRx (if R is not asymmetric or antisym-
metric) or zRyRzRz. In general, R¢ is irreflexive if and only if R is
irreflexive and there is no R cycle z;Rx.Rz3R - - - RrnRaxy.

7.2 Orper RELATIONS

Many of the binary relations that we will use arise in connection with
individual preferences and binary social choices. Four of the order
relations that will be used in this connection are listed in order of
decreasing generality in the following definition. Each of these is
asymmetric.
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DeriniTION 7.1. A binary relation R on X is a

1. suborder & R! is irreflexive,

2. strict partial order < R is irreflexive and transitive,

3. weak order < R is asymmetric and negatively transitive,

4. linear order < R is irreflexive, transitive and weakly connected.

One should have no difficulty in showing that (R is a linear order) =
(R is a weak order) = (R is a strict partial order) = (R is a suborder).
Although the converse implications do not hold in general, each of the
first three relations in the definition is included in some relation in each
successor class. That is, if R is a suborder, then there is a strict partial
order S (S = R* will suffice) such that R C § (that is, xRy = xSy for
all z,y € X); if R is a strict partial order then there is a weak order S
such that R C S; if R is a weak order then there is a linear order S
such that R € S. The second of these implications follows from
Szpilrajn’s theorem (1930), which says that every strict partial order
is included in some linear order, and from the fact that a linear order is
a weak order. The final implication also follows from this reasoning:
a weak order is a strict partial order; a strict partial order is included
in a linear order; therefore a weak order is included in a linear order.

EQUIVALENCE RELATIONS AND INDIFFERENCE

Some of the differences among the four orders of Definition 7.1 can
be brought out with the use of equivalence relations, compositions,
and several derived relations.

An equivalence (or “‘equivalgnce relation’) is a reflexive, symmetric,
and transitive binary relation. The most comrmon equivalence is the
identity relation = on a set. Another equivalence E is obtained by
taking zEy < z,y € X, in which case E = X X X, the universal
relation.

An equivalence E on X partitions X into a set of equivalence classes
such that zEy if and only if z and y are in the same equivalence class.
Conversely, any partition of X determines an equivalence £ on X by
taking zEy if and only if z and y are in the same element of the par-
tition. The set of equivalence classes of X under E is usually written
as X/E, which is often called a quotient set. When E is the identity
relation, X/E = {{z}:x € X}. When E is the universal relation,
X/E = { X}, the set whose only element is X.

Let > be a binary relation on X. Using this relation we define
several new relations as follows: for all z,y € X,

r~yesnotr >y & not y > z, (1.2)
Ty >y or T~Yy, (7.3)
r=yes(r~zoy~z forall z & X). (7.4)
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Using duals and complements, (7.2) is the same as ~ = (> U > *)c =
>eM >%, (7.3)1s » = > U ~. When > is viewed as a preference
relation, with z > y interpreted as ‘‘z is preferred to y,”’ ~ is referred
to as an indifference relation, and » is a preference-or-indifference
relation.

We shall now state a number of theorems that involve the relations
of Definition 7.1 and those defined in the preceding paragraph. Like
other assertions in this and the preceding section that are not proved
here, the proofs are left to the reader as exercises. Many of these
proofs are contained in Fishburn (1970, Chapter 2).

When we write a relation in a ‘“‘strict’”’ notation, such as >, >, >,
or >, it will always be assumed, if it is not otherwise evident, that
the relation is asymmetric. Given that > is asymmetric, exactly one
of x >y, ¥y > x and z ~ y holds for each (z,y) € X X X, so that
» is connected. Moreover, ~ is reflexive (x ~ z) and symmetric
(x ~y =y~ x),and = is reflexive, symmetric, and transitive, and is
therefore an equivalence.

A difference between suborders and strict partial orders arises from
the fact that if > is a strict partial order then

(=)(>) C > and (>)(=) C >. (7.5)

Thatis, (z =y &y > z) or (x > y &y = z)) = ¢ > z. This can be
false when > is a suborder, for with X = {z,y,z} and 2 > v, y > z
andx ~z wegetz = z,z > yand y > zin violation of (=)(>) C >.

A familiar example of a strict partial order that is not a weak order
is the strict inclusion relation C on the set of subsets of a set with
more than three elements. Another example is > on Re?

When > is a strict partial order, ~ is not necessary transitive. In
fact, a strict partial order > is a weak order if and only if ~ is tran-
sitive. Thus, if > is a weak order then ~ is transitive and is therefore
an equivalence. The quotient set X/~ is referred to as the set of in-
difference classes when > is a preference weak order. The following
correspondent of (7.5) holds for all weak orders but not for all strict
partial orders:

(~(>)E > and  (>)(~) S >. (7.6)

Moreover, when > is a weak order, > is connected and transitive.
Such a » is also referred to as a ‘“‘weak order” or as a “‘complete
preorder.”

A weak order is a linear order if and only if t ~y < ¢ = y. The
prime example of a linear order is > on Re. Suppose that X is a set
of people and 2 > y means that z is heavier than y, with weight being
reckoned to the nearest whole pound. Then > is a linear order if no
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7.2 ORDER RELATIONS

two people in X weigh the same. Otherwise > is a weak order, but
not a linear order.

If > on Xisa weak order then >’, definedon X/~bya>"bsz >y
for some (and hence for all) x € a and y € b, is a linear order.

The dual of any binary relation has the same properties as the
original relation. Thus, the dual of a suborder is a suborder, the dual
of a linear order is a linear order, and so forth.

NUMERICAL REPRESENTATIONS

Another way to express the differences among the four orders of
Definition 7.1 is through numerical representations. The following
theorem summarizes this for countable sets (either finite or denumer-
ably infinite).

Tueorem 7.1. Suppose that X ts countable, and that > on X is a
binary relation. Then, for each case lisled below, there is a real-valued
Junction u on X that satisfies the displayed properiies for all z,y & X:

1. > is a suborder = [z > y = u(x) > u(y)],

2. > is a strict partial order = [x > y = u(z) > u(y), andz = y <
u(z) = u(y)l,

3. > 1s a weak order = [z > y & u(zx) > uy)],

4. > is a linear order = [x > y < u(z) > uly), and u(z) = uly) =
x =yl

The numerical representation for each of the last three cases is not
generally valid for each of its predecessors. In the first two cases,
u(z) > u(y) does not indicate that x > y, although it does signify that
z » y, for if y > x then we must have u(y) > u(z). In all cases,
u(x) > u(y) =z » y. In the weak order case, the definition of ~
insures that ¢ ~ y < u(x) = u(y), so that the indifference classes are
identified by their different u values. In the linear order case, no two
distinct elements have the same u value, and (as in the weak order
case also) > is completely determined by the u values.

It should be evident that the u values can be changed in drastic
ways without affecting the validity of the representation. For example,
if £ >y > z > w, then u values of 105 15.375, —1 and —1.0001 for
z, ¥, z, w, respectively, are just as appropriate as u values of 4, 3, 2,
and 1. The latter are certainly easier to view.

The proofs that ensure the existence of u functions as specified in
Theorem 7.1 are not too difficult. First, with X enumerated as x;, x»,
Zg . .., u®) = Z{2™:2 > x,} shows the existence of u for case 4.
The suborder representation then follows from the fact that a sub-
order can be embedded in a linear order (R C S, as after Definition
7.1). Case 2 follows from the fact that >’ on X/= (defined in the
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natural way) is a strict partial order when > on X is a strict partial
order, and case 3 follows from the fact that >’ on X/~ is a linear
order when > on X is a weak order.

DISPLAYS OF ORDERS

As noted above, suborders and strict partial orders are not generally
uniquely determined by numerical representations as in Theorem 7.1.
For suborders that are not also strict partial orders, it may be neces-
sary to explicitly identify all pairs in >. One such suborder, on
X = {a,b,c,d,e,f}, is

> = {(a,b),(b,c),(c,d),(a,d), (bie), (e,d),(fre),(f,d) }.

This can be displayed as in Figure 7.1, where z > y if and only if there
is a line from z fo y. In graph-theoretic terms, a suborder on X (usually

a

d
Ficure 7.1. A suborder

taken to be finite) is a directed graph (i.e. irreflexive binary relation)
with no cycles (ie. 1 > @2 > * > @m > 2y for no xy, . . .,
zm & X).

A suborder can also be displayed by a 0-1 matrix, as in Figure 7.2,
where there is a 1 in the cell for row z and column y if and only if z > y,
and a zero otherwise.

Needless to say, any irreflexive binary relation can be displayed
either in the form of Figure 7.1 (with no loops, but perhaps with
cycles) or Figure 7.2 (with zeros on the main diagonal), at least when
X is finite.

Strict partial orders can be displayed more easily since they are
transitive. Let > be a strict partial order and call >, a generator of >
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if and only if >% = >. Then, if X is finite, > has a unique minimal
generalor >, defined by

>o= {(zy):z >yand z >z > yfornoz € X}.

It should be clear that >, generates > and that every other generator
of > must include >, To identify a strict partial order it is only
necessary to specify its minimal generator. The minimal generator can
be displayed in the manner of Figure 7.1, or we can omit the arrows
and agree that x > y if and only if = is above y in the figure and there
is a path of lines from z to y that always goes downward. For example,
Figure 7.3 represents the strict partial order whose minimal generator

e ¢ ¢ ¢ 1 0o o

£ o 0 0 1 1 o

F1GURE 7.2. A 0-1 matrix for Figure 7.1

is {{(a,b),(b,c),(c,d),(b,h),(e,q),(f.9),(g,d)}. The other elements in > are
(a,¢), (a,d), (a,h), (b,d), (e,d), and (f,d).

:

d

Ficure 7.3. A strict partial order
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In the sense of Figure 7.3, a linear order can be represented by points
on a vertical line segment, with no two elements represented by the
same point. A weak order can be displayed in a similar way with each
point representing an indifference class. Of course, a horizontal line is
also used to show this, with z > v if and only if z is to the right of y
on the line. In some of our displays we shall use the reverse orientation,
as when we write

Voteri:x y zwr st 1.7)
to mean that the preference order >, for the ith individual is linear
withz >,y >, - - - >.s >. 1 A weak order in this notation may be
written as

Voteri:x (y z) w (r s t), (1.8)

where the elements within parentheses are indifferent. That is, the
foregoing display means that 2 >,y ~,z >, w >;r ~, 5 ~. {. These
may also be represented by appropriate u values for the representations
of Theorem 7.1, as follows:

(7.7 (1.8)

-~ % % & uw 8
N W e TN =]
= = DN WO W

Another way to picture a weak order or linear order is by a Cartesian
display of an appropriate numerical representation. Suppose that a
university is considering changing its policy for the length of time an
assistant professor can remain as an assistant professor. It is consider-
ing nine proposals, represented by £ = 1,2, . . . , 9 in the following:
“An individual hired as an assistant professor or promoted to the rank
of assistant professor can remain in that category for k years, and if
at the end of k years in that category he has not been promoted then
his services with the university shall be terminated.” A member of the
faculty council decides to rank his preferences for the nine values of k
and eventually arrives at the order 5 >4 >3 > 6 > 7 > 8 > 2 >
9 > 1, as displayed on Figure 7.4. This sort of unimodal or single-
peaked preference pattern seems to arise in many situations where
the alternatives correspond to a natural order of points on a line or
continuum. We shall see later that such patterns play an important
role in simple majority social choice.
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/ »
¢
Y Y O N R S IO B
1 2 3 4 5 6 7 8 9

k

Ficure 7.4. Single-peaked preferences

7.3 Binary CHOICES

As noted in Chapter 1, a social choice function is a function F from
the Cartesian product & X D of a nonempty set & of nonempty sub-
gets of X and a nonempty set D of profiles of individuals’ preference
data on X, to the nonempty subsets of X, such that F(Y,D) C Y for
each (Y,D) € X X D.

In this part of the book we shall generally assume thal X is the sel of
all nonemptly subsels of X. There are other cases of interest that we shall
not look at here, for example when = {Y:zo € Yand Y € X} with
xo the status quo, and when X is the set of all finite subsets of X in
cases where X is not finite.

We shall also assume throughout Part I1 that © is a set of n-tuples
D = (>, ... ,>a) of strict partial orders on X. The binary relation
>, i3 a preference relation for the ith individual. The indifference and
preference-indifference relations defined from >. by (7.2) and (7.3)
will be denoted by ~; and }., respectively. Some situations in which
~, might not be transitive were mentioned in Chapter 1. In general,
it is felt that intransitive individual indifference arises in situations
where a series of indifferences, each of which seems reasonable, adds
up to a sufficiently large difference to yield a definite preference
between the first and last items in the series.
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BINARY CHOICES

Binary social choices arise from the two-element subsets of X. In
writing F({z,y},D) one should keep in mind that this represents a situa-
tion where x and y are the only available or feasible alternatives in X.

For a given D, the binary part of F is the restriction of F to subsets
of X with no more than two elements. From this restriction we can
define an asymmetric binary relation Fp on X as follows:

zFpy o x =y and F({z,y},D) = {z}. (1.9)

Thus zFpy if and only if z > y and z is the unique social choice from
{x,y} when D obtains. If z # y and F({z,y},D) = {x,y}, which indi-
cates a tie, then not xFpy and not yFpz.

The binary relation Fp may or may not be transitive or have an
irreflexive transitive closure. This will depend on the particular D
and the way that the binary social choices are determined by F under
D. For example, if binary choices are made by simple majority, then
Fp will be transitive for some D and intransitive for other D when
n > 1and #X > 2.

Suppose that there is a z € Y that is never defeated in a binary
comparison with any other y &€ Y. That is, suppose that z beats or
ties each other y € Y, given D and F:

z € {z:x € Y and yFpz fornoy € Y}.

It may then seem reasonable to have z € F(Y,D) for each such z and
only such z, so that

F(Y,D) = {z:x € Y and yFpz fornoy € Y}. (7.10)

The following theorem specifies precisely when F(Y,D) can be defined
on the basis of binary social choices in the manner of (7.10), at least
for finite Y.

THEOREM 7.2. Fp on X is a suborder if and only if, for every nonempty
finite Y C X,

{x:x & Y and yFpx fornoy € Y} # 0. (7.11)

Proof. If Y is finite and (7.11) fails, so that for every x & Y there is an
2’ € Y such that 'Fpzx, then there must be 2 /Fpx:Fp - - © FpxnFpx1
with z;, . . . , 2, € Y, and hence Fp is not a suborder. Conversely, if
Fp is not a suborder, then z:Fpz:Fp © * © Fpr.Fpx, for some z;, z,,
v+« Zn € X, and (7.11) then fails with ¥ = {x1,25, . . . ,2u}. @
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PARETO DOMINANCE AND UNANIMITY

We now develop some notions which highlight the difference between
transitive and intransitive individual indifference.

For given D & D, we define binary relations of Pareto dominance
and indifference as follows:

TDpyeST >y for all >.in D,
T>pySzT >,y for some >.in D and y >, z for no
>.in D, (7.12)
=py&S T~y for all >;in D,
rZ2pyexT>pYy or =pYy.

If each >.is a strict partial order then >> is transitive and is therefore
a strict partial order. But none of > p, =p, and > p need be transitive.
For example, if n = 3, X = {2,y,z}, and D = (>1,>,,>3) is given by

1= {(ac,y)}, >y = {(y,z)}, >3 = {(Z,.’E)}, (713)

each of which is a strict partial order, then z >py >pz >px, so
that >p is not even a suborder. On the other hand, if each >, is
a weak order, then every relation in (7.12) is transitive, and = is an
equivalence.

Strong unanimity and unanimity are defined for a general social
choice function in a manner similar to the definitions for binary
choices in section 2.3.

DEerFiNITION 7.2. A social choice funclion F: X X D — X s unanimous
if and only if, forallz,y € Y, Y& X and D € D,

*>py and ry € Y=y &F(,D), (7.14)
and is strongly unanimous if and only if, for all cases,

x*>py and vy € Y=y & F(Y,D). (7.15)

The following lemma states the observations of the preceding para-
graph in a slightly different way.

LEmMMA 7.2. Assume that X is finite. If every D &€ D is an n-tuple of
weak orders on X then there are social choice funclions F: X D — X
that are strongly unanimous. If D is the set of all n-tuples of strict partial
orders on X then there are social choice functions F: X X D — X that are
unanimous, but if n > 3 and #X > 3 then no social choice function can
be strongly unanimous.
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The final assertion follows from (7.13), where strong unanimity
requires y & F({z,y,z},D) and similarly for z and z, so that #({z,y,z},D)
= {. But this contradicts the definition of a social choice function.

ANOTHER PAIR OF CONDITIONS

To further illustrate the difference between weak orders and strict
partial orders, we may consider the following binary conditions for F:

T>py and yFpz = 2Fpz (7.16)
x>py and yFpz = xFpz. (7.17)

Condition (7.16) is the same as (>>p)(Fp) C Fp, and it has the natural
companion (Fp)(>>p) € Fp. Likewise, (7.17) is (> p)(Fp) C Fp.

Both conditions seem like monotonicity conditions. The first says
that if everyone prefers = to y and if y beats z in their binary choice
comparison, then x beats z in their binary comparison. When every >,
in D is a strict partial order, the hypotheses of the condition say that
x >,zwheny >,z,and z >,z wheny ~, z. When every >, is a weak
order, the hypotheses of (7.16) give ¢ >,z whenever y >, z. In any
event, (7.16) seems like a rather reasonable condition.

On the other hand, although (7.17) seems fine when weak orders
apply, it is generally unacceptable under strict partial orders. To argue
this, let binary unanimity mean that (7.14) holds for all Y with #Y = 2:
that is, x >>p y = zFpy.

Lemma 7.3. Suppose that (n > 2, #X > 5)or (n > 3, #X > 4), D is
the set of all n-tuples of strict partial orders on X, and F is a social choice
Sfunction that satisfies (1.17). Then F cannot salisfy binary unanimity.

It will suffice to verify the lemma for (n = 2, X = {x,y,z,r,s}) and
for (n = 3, X = {a,y,z,r}). For the n = 2 case let the minimal gener-
ators of >, and >, be (x >1y,y >12,r >18) and (& >2 ¥, 8 >,
z >9r). Then e >py,y >pz, 2 >pr,r >psand s >p x, which give
yFpy if both (7.17) and binary unanimity hold. But yFpy contradicts
(7.9). For the n = 3 case let the minimal generators for D be (x >y,
y>12), (x >2y,z>2r) and (x >3y, 7 >3x). Thenxz>>py, ¥y >p
z >prand r >pz, which again give yFpy if both (7.17) and binary
unanimity hold.

We shall conclude this chapter with two theorems suggested by a
theorem of Pattanaik (1968). Our theorems will use conditions (7.16)
and (7.17) in the appropriate contexts along with the “Pareto optimal
sets”

YCop) = {z:x& Yandy >paxfornoy € Y}
Y(>p) ={z:a&E Yandy >pzxfornoy & Y}.
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The theorems show that, if we are interested in a particular ¥ C X,
then Fp does not have to be a suborder on all of Y for there to be an
alternative in Y that beats or ties every other alternative in Y under
binary comparisons. In each case it may be noted that condition (7.16)
or (7.17) holds if binary choices are made according to some one repre-
sentative system, or if weak majority is used for the binary choices.
First, the weak-order theorem.

TuEOREM 7.3. Suppose that Y C X is finile, that each >, in D is a
weak order, that the resiriction of Fp on Y(>p) is a suborder, and that
(7.17) holds on Y. Then there ts an allernative in Y(>p) that is in
{x:x € Y and yFpx fornoy € Y}.

Proof. Assume that the conditions of the theorem hold. Then the
weak-order assumption (which implies that >p is transitive) and
finiteness imply that Y(>p) = #. Then, by Theorem 7.2, there is a
z € Y(>p) such that yFpz fornoy € Y(>p) — {z}. That is, z beats
or ties each other alternative in Y(>p) on the basis of binary choice
comparisons.

Suppose that x € ¥ — Y(>p). Then, by the transitivity of > p,
finiteness and the definition of Y(>p), there is a y € Y(>p) such
that ¥y >p x. Then not xFpz by (7.17), and therefore not zFpz for
everyx E Y. ¢

The following theorem modifies Theorem 7.3 in an obvious way,
and its proof is similar to the proof just given.

THEOREM 7.4. Suppose that Y C X s finile, that each >, in D is a
strict partial order, that the resiriction of Fp on Y(>>p) is a suborder,
and that (7.16) holds on Y. Then there is an allernative in Y(>>p) that is
in {x:x € Y and yFpx for noy € Y.
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CHAPTER 8

Simple Majority Social Choice

Tuis cHAPTER begins our specific consideration of general social choice
functions whose binary choices F({x,y},D) agree with simple majority.
Conditions sufficient for F to agree with simple majority in this way
are presented in the first section.

We then go on to examine the binary relations Pp, Rp, and Ip of
strict simple majority, simple majority, and simple-majority ties,
noting that any asymmetric binary relation on a finite set X is equal
to some Pp on X for an appropriate choice of D and n.

Asin section 7.3, the binary simple-majority relations are considered
in compositions with Pareto dominance relations, both for individual
weak orders (transitive indifference) and strict partial orders (intran-
sitive indifference). General conditions for the existence of an alterna-
tive that has a simple majority over each other alternative are noted.

The final section discusses why one might be concerned about the
existence of a “‘best” simple-majority alternative. In this setting, we
shall examine two simple-majority voting procedures in which the
alternatives are voted on in a definite order. The chapter concludes
with a brief look at voter strategies in the two sequential voting
procedures.

8.1 AGREEMENT WITH SiMPLE MAJORITY

The rest of Part II concentrates on social choice functions whose
binary choices coincide with the simple majority decision rule. The
binary part of a social choice function F:% X D — X is fully deter-
mined by the indexed family {Fp:D € D} of binary relations Fp on X
as defined by (7.9). We recall that zFpy if and only if  # y and
F({z,y},D) = {z}.

Correspondingly, for the simple majority decision rule for binary
choices we define, for all z,y & X,

ePpy @ #{i:x >y} > #{i:y > ). (8.1)

For a given D = (>, . . . ,>4), Pp is the asymmetric binary rela-
tion of sirict simple majority.

DeriniTION 8.1. A social choice funclion F: X X © — X agrees with
simple majority if and only if Fp = Pp for every D € D.
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One aspect of this definition that deserves special emphasis is that,
when F agrees with simple majority, the definition says absolutely
nothing about the behavior of F for subsets ¥ © X that contain more
than two alternatives. Although we shall be concerned with relation-
ships between F(Y,D) when #Y > 3 and the restriction of Pp on Y,
Definition 8.1 avoids any mention of such relationships.

CONDITIONS FOR AGREEMENT

Another significant aspect of the definition is that, by assumption,
X is the set of all nonempty subsets of X. If 2 = y and {x,y} were
not in &, then F({x,y},D) would not be defined, in which case neither
zFpy nor yFpix, regardless of the nature of D. Hence no such F could
agree with simple majority by our definition unless #{i:x >.,y} =
#i:y >, z} for every D € D.

As specified in section 7.3, 9 is presumed to be a nonempty subset of
n-tuples of strict partial orders on X. Although agreement with simple
majority does not place any restriction on ® when {x,y} € % for all
z,y € X, we shall generally suppose that every pair {z,y} is free in D,
by which we mean the following:

zye X,z #yandea, € {{(z,y)},{(y,x)},0} fori=1, ...,
n =3 thereisaD = (>, . . . ,>,) In ©such that the restric- (8.2)
tion of >, on {z,y} equals a,fori =1, ... ,n.

Thus a given z,y € X with x s y is free in D if and only if each pos-
sible n-tuple of individuals’ preferences on {x,y} appears in some
D € 9. Later cases in which D is restricted in some manner will
always satisfy the condition that each pair of alternatives is free in D.

The notion of free pairs enters directly into the following theorem
for agreement with simple majority.

THEOREM 8.1. Suppose that F:X X D — X is a social choice func-
tion and that, for all x,y E X and oll D = (>1, . . . ,>5), D' =
(>5H .., in®D, andeach i € {1, . . . ,n}:

1) z = y= {x,y} is free in D,

(2) F({z,y},D) = {a,y} if @ ~:y for every i,

(3) if z ~,y and x >y, and if the restriction of > on {z,y} equals
the restriction of > ; on {x,v} for each j # i, then xFpy < not yFp-x.

Then F agrees with simple majority.

Proof. In view of condition (1), the proof of Theorem 5.5 shows that
F agrees with simple majority if (in terms of Part I) for any z,y &€ X
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with z # y, strong monotonicity, weak nonreversibility and its dual,
and the part of duality given by F(0) = 0 hold. The F(0) = 0 condi-
tion is condition (2) of Theorem 8.1. Since z and y are not fixed in
condition (3), but may not vary over X, the = implication in the
conclusion of condition (3) verifies weak nonreversibility and its dual
(interchange z and y).

To verify strong monotonicity we need to show that if > on {z,y}
equals >, on {x,y} for all j # i, then

(not yFpx,and (y >.2&z p,;y)or (x ~. y &z >,y)) = zFpy. (8.3)

The general form of strong monotonicity on {z,y} then follows from
sequences of single-component changes under condition (1). We shall
consider cases for i in (8.3).

a. £ ~;y &z >,y. Then zFpy by condition (3).

b. y > 2 &z ~; y. If not Fpy then yFp.x by condition (3), and this
contradicts not yFp-x in the hypotheses of (8.3).

c. y >,z &z >,y. Let D® be like D and D’ on {z,y} for j # i, and
take y ~! z. Condition (1) implies the existence of such a D°. By
case (b), zFpy, so that not yFpex. Then, by condition (3) for D
and D°, xFpy. ¢

As is frequently the case in theorems such as Thecrem 8.1 that con-
tain fairly weak structural conditions, it is possible to simultaneously
strengthen a structural condition and weaken some other condition
without affecting the conclusion of the theorem. The following variant
of Theorem 8.1 illustrates this principle. Condition (1) has been
strengthened (more structure is assumed for D), and (3) has been
weakened. The proof of the theorem is left as an exercise.

THEOREM 8.2. Suppose that F: % X D — X is a social choice function
and that, for all x,y € X and D,D’ € D and each i € {1, . . . ,n}:

V) D=A, XAy X - - - X A,, where each A; is a sel of strict
partial orders on X (which can differ for different i) such that each dis-
tinct pair of alternatives is free in A,,

(2') F({z,y},D) = {x,y} if x ~.y for every i,

3 if x~iy and z >.y, and if >, = >; for each j # 1, then
xFpy < not yFpix.

Then F agrees with simple majority.

It should be noted that (3’) requires >; = >, on all of X, and not
just on {z,y}. However, as in condition (3) of Theorem 8.1, condition
(3’) does not require any specific relationships between >, and >,
outside of {z,y}.
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8.2 SimpLE MajoriTy RELATIONS

Along with the binary dominance relations of (7.12) and the strict
simple majority relation Pp of (8.1), we shall use the following:

elpy & #{i:x >y} = #{ity >, x}
zRpy & #lite >y} 2 #i:y >z,
so that zIpy if and only if z and y tie under simple majority, and zRpy

if and only if x beats or ties y under simple majority. Clearly, I and Rp
can be defined from Pp in the way that we defined ~ and » from >:

(8.4)

zIpy < not xPpy and not yPpx
zRpy © xPpy or xlpy.

We shall say that x has a sirict simple majority over y if and only if
zPpy, and that = has a simple majority over y if and only if xRpy. In
particular, it should be noted that y can have a simple majority over
when z has a simple majority over y, in which case zIy.

To illustrate the relation Pp with simple examples, suppose that
there are three voters and four alternatives x, y, z, w with each voter
having a linear preference order on X as follows:

L xwzy x y
2. yxwz (8.5)
3. zyxw -

w Pp z

For example, z >, w >,z >,y for voter 1. The directed graph
for strict simple majority is as indicated. Pp is not a suborder be-
cause it contains cycles such as zPpzPpyPpx, wPpzPpyPpw, and
2PpwPpzPpyPpz. Harary, Norman, and Cartwright (1965, pp. 313-
314) provide an interesting context for this situation, in which a
faculty committee of three is to decide whether to spend an alumnus’
gift of $100,000 on athletic scholarships (x), a botanical garden (y), a
faculty club (z), or a parking structure (w).

In (8.5) there is no alternative that has a simple majority over each
other alternative. In contrast to this, the following situation with n = 4
and X = {x,y,z,w,v} has a linear Pp in the order z y z w ».

l.zyzow
2.z zwoy
S,zywovz
4d.yzwo ez

(8.6)

Our third example comes from an actual situation. Two neighbor-
hood church congregations decided to join together to form a new
congregation. Robert Elwood, who was kind enough to share his data
with me, chaired a committee that was responsible for guiding the
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selection of a name for the new congregation. After long deliberation,
his committee submitted five names (here denoted A, B, C, D, E) to
the combined membership. Ballots were distributed, and each mem-
ber who wished to vote was instructed to rank the five names from
most preferred to least preferred (ties prohibited). One hundred and
seventy-five members responded. Of the 120 possible linear prefer-
ence orders, 56 appeared on the ballots. The most frequent of these
(ACBDE) appeared on 30 ballots. The next most frequent (BDCAE)
was on 11 ballots. The analysis of simple majority comparisons is
shown in Figure 8.1, where the ordered pair in row z and column y

B [ D E
A (99,76) (118,57) (118,57) (138,37)
B} —-=-=--- (88,87) (134,41) (147,28)
Cl --=-=-==-====-- (106,69) (139,36)
D] -~ s e e e o oo (133,42)

Ficure 8.1. Simple majority with n = 175

gives the number of voters who preferred z to y and then the num-
ber who preferred y to z. It is clear from the figure that Pp is linear
(ABCDE) and that A4 had a significant strict simple majority over
each of the other names. The only close comparison was B versus C,
where a change by one voter could have caused Pp to be ACBDE
(still linear). Despite the fact that A had a significant majority in each
comparison, less than half the voters had A listed first. The number of
first-place votes for (A,B,C,D,E) was (76,60,15,13,11).

We shall now show that every asymmetric binary relation on a
finite X coincides with some strict simple majority relation Pp for
an appropriate choice of D.

McGARVEY'S THEOREM

Let P be any asymmetric binary relation on a finite set X. Then
there is some n for which an n-tuple D of strict partial orders on X
gives P = Pp, for if P # @ it will suffice to assign an >, to each
(z,y) &€ P such that ¢ >,y and a ~; b whenever {a,b} # {z,v}. The
following theorem, due to McGarvey (1953), shows that the conclusion
of P = Pp holds even when each >, is required to be a linear order.

THEOREM 8.3. Suppose that P is an asymmelric binary relalion on a
finite set X. Then for some n > 0 there is an n-tuple D of linear orders
on X such thal Pp = P.
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Proof. Let X = {z1, . .. ,zu}. If P =@, let D consist of the
two linear orders z1%: © © © #wm and 2m * * * zs2:. Then Pp = §. Sup-
pose then that P # §. For each (x,y) & P, assign linear orders
Tya: * ¢ Gmez 80d @m_e * - amxy, where {ai, . . . ,@n2} = X —

{z,y}. For these two orders, = beats y, but every other pair is tied
under simple majority. With #P = k, let D be a 2k-tuple of linear
orders constructed in this way, with two orders for each (x,y) & P.
Then Pp = P. ¢

As McGarvey points out, it is not always necessary to have n =
2(#P) linear orders in order to make Pp = P. For example, if P is
a linear order then n = 1 in the theorem will do. For a somewhat
more complicated example, one can show that, when

P = {(z,y),(y,l),(%w),(w,y) }’

the smallest n that will suffice in the theorem is n = 6. If n < 6 then
this P equals no Pp obtained from a D composed of n linear orders.

Stearns (1959) shows that, when #X is odd, some n < #X 4+ 1 will
serve in Theorem 8.3, and that some n < #X + 2 will do when #X is
even. In the preceding example with #X = 4 we required n = 6, or
n = #X + 2, which agrees with Stearns’ theorem.

8.3 “Brst”’ SiMPLE MAJORITY ALTERNATIVES

Having seen that simple majority can give rise to any asymmetric
Py, for sufficiently large n compared to #X, we shall now begin our
examination of conditions that lead to the existence of an alternative
that has a simple majority over each other alternative. A first step
along these lines can be made within the setting of the theory of sec-
tion 7.3. To preface this discussion we shall first consider combina-
tions of the binary relations of (7.12) and the simple majority relations
Pp, Ip, and Rp. Once again we shall point out some differences between
transitive and intransitive individual indifference. Our first lemma is
concerned with transitive indifference.

Lemma 8.1. If every >.in D = (>, . . . ,>,) is a weak order on X
then, for all x,y,z € X:

a r=py&y=pz=x=p2

b. £ >py & yRpz = zRpz, and (Rp)(>1p) & Rp also,
c. ¢ >py & yPpz = zPpz, and (Pp)(>p) T Pp also,
d. 2 =py & ylpz = zlpz, and (Ip)(=p) C Ip also,

but it is not necessarily irue that t >py & yIpz = xzPp:.
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Proof. For the final assertion, suppose that D consists of the two
linear orders xyz and zxy. Then z >>p y and yIpz, but zPpz is false
since zIpz. Conclusion (a) is immediate from transitive indifference
since t =py & y =pze @~y & y~;z for all i) = (zx ~, z for
all i) &z =pz. Given 2 2py & yRpz as in (b), we have z >,y for
all ¢, and #{t:y >.z} > #{i:z >,y}, whence, since y >, 2=z >.z
and z >,z =2z >,y by weak orders,

#icx >0z} 2 #Hiy >0z} 2 #licz >y} > #{i:z >z},

The first and last terms give xRpz, the conclusion of (b). Part (c) is
proved similarly with > in the middle of the foregoing chain of in-
equalities, and (d) is a direct consequence of (b) and the fact that
vIpw & vRpw & wRpv. &

The weak order lemma compares with the following lemma which
allows individual indifference to be intransitive.

Lemma 8.2. If every >, in D = (>4, . . . ,>.) is a sirict partial
order on X then, for all z,y,z € X:

e. >>py & yRpz = zRpz, and (Rp)(>>p) € Rp also,
f. 2>>py & yPpz = zPpz, and (Pp)(>>p) C Pp also,

but each of (a) through (d) in Lemma 8.1 may be false.

The proofs of (e) and (f) are similar to the preceding proofs of (b)
and {c¢). With n = 1 and X = {,y,z}, the single strict partial order
> = {(z,x)} shows that (a), (b), and (d) can fail, and > = {(y,2)}
shows that (c¢) can fail.

BEST SIMPLE MAJORITY SUBSETS

Using Pp and Rp, we now define functions P and R on & X D as
follows:

P(Y,D) = {z:x € Yand zPpy forally € Y — {z}} (8.7)

R(Y,D) = {z:x € Y and zRpy for all y & Y} (8.8)

= {x:2 € Y and yPpz for no y € Y}. )

For a given (Y,D), P(Y,D) is the set of all alternatives in Y that have
a strict simple majority over every other alternative in Y on the basis
of D, and R(Y,D) is the set of alternatives in Y that have a simple
majority over each other alternative in Y.

For a given (Y,D) it should be clear that P(Y,D) is either empty
or contains a single alternative, that P(Y,D) C R(Y,D), and that
z,y € R(Y,D) = zlpy. In addition, if n is odd and if each >, in D is
linear then ties between distinct elements cannot arise and therefore

P(Y,D) = R(Y.D).
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Henceforth we shall be principally interested in those cases for
which R(Y,D) = 0.

According to Theorem 7.2, R(Y,D) = @ for all finite nonempty
Y € X and a fixed D € © if and only if Pp on X is a suborder.
In this connection it may be of some interest to note that (zPpy &
yPpz = zPpz) for all z,y,z € X implies that Pp is a suborder {obvi-
ous, since then Pp is a strict partial order), but that (#Ppy & yPpz =
zRpz) for all z,y,2 € X does not imply that Pp is a suborder, even
when each > ;in D is linear. To prove the latter statement, take n = 4
with the following linear orders on X = {z,y,z,w}:

1l xyzw X y
2. wxyz
Po (8.9)
3. zwxy
4. yzwx W z

The four orders are obtained by the cyclic permutations of zyzw: each
is obtained from its predecessor by moving the final term in the order
to the head of the order. Pp, as shown in (8.9), satisfies the condition
uPpv & vPpt = uRpt, but Pp is clearly not a suborder.

When F agrees with simple majority, (7.17) follows immediately
from Lemma 8.1(c) under weak orders, and (7.16) follows from Lemma
8.2(f). These lemmas and Theorems 7.3 and 7.4 give rise to the follow-
ing corollary.

THEOREM 8.4. Suppose that Y C X is finile. Then, if each >, in D
is a weak order, R(Y,D) = @ if the restriction of Pp on Y(>p) =
{x:x € Yandy >pxfornoy & Y} is a suborder. And, if each >, in
D is a sirict partial order, then R(Y,D) = @ if the restriction of Pp on
YCp) = {xr:x & Yand y >p x for noy & Y} is a suborder.

A somewhat different and, in a sense, more general result for
R(Y,D) # § is suggested by Lemma 6 in Sen and Pattanaik (1969).
A slight generalization of their lemma is Theorem 8.5.

THEOREM 8.5. Suppose that Y C X is finile. Then, if each >, in D
is a weak order, R(Y,D) = R(Y(>p),D). And, if each >, in D is a
strict partial order then R(Y,D) = R(Y(>>p),D), and it may be true that
R(Y,D) # R(Y(>p),D).

By the definitions, Y(>p) € Y(>>p) and we can surely have
Y(>p) C Y(>p) when all >, are weak orders. Nevertheless, Theo-
rem 8.5 implies that R(Y(>p),D) = R(Y(>>p),D) when each >, in
D is a weak order, since every weak order is also a strict partial order.
On the other hand, the final statement in the theorem says that it is
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possible to have R(Y(>p),D) # R(Y(>>p),D) when strict partial
orders apply. To prove this, let n = 3 and X = {x,y,z} with >, the
linear order xyz and >, = >; = {(z,2)}. Then

X(>p) = {z} and R(X(>p),D) = {x}
X»p) =X and R(X(>p),D) = 6.

Since Y(>p) € Y(>>p), it should be clear in general that R(Y(>>p),D)
C R(Y(>p),D), for if zRpy for every y & Y(>>p) then surely xRpy
for every y € Y(>p).

Proof of Theorem 8.5. Suppose first that each >, in D is a weak
order. If x & R(Y(>p),D) then the proof of Theorem 7.3 shows
that =z € R(Y,D). Conversely, if z € R(Y,D) then yPpx for no
y & Y, sothat y >pz for no y € Y, and hence x & Y(>p). Then,
since Y(>p) S Y, 2 & R(Y(>p),D). The proof that R(Y,D) =
R(Y(>>p),D) under strict partial orders is similar. The preceding
example proves the final assertion. ¢

PROPORTIONS WITH R(X,D) = ¢

Given that n is an odd positive integer, that #X = m, and that
D is the set of all (m!)” n-tuples of linear orders on X, let p(n,m) be
the fraction of © on which P(X,D) = R(X,D) = @. That is,

p(n,m) = #{D:D € D & R(X,D) = 8}/(m!)~.

A number of investigators have computed p(n,m) for various values
of n and m, either precisely or by computer simulation. Exact (though
complex) analytical expressions for p(n,m) under the given conditions
have been obtained by DeMeyer and Plott (1970), Niemi and Weis-
berg (1968) and Garman and Kamien (1968). Some interesting related
material is presented by May (1971).

Figure 8.2 presents p(n,m) for a number of values of n and m. The
entries with asterisks are estimates obtained by computer simulation
by Campbell and Tullock (1965). The other entries are accurate to
the number of places shown and are from Garman and Kamien (1968)
with the exception of the exact 1.000 limits from May (1971). The
limits for sup{p(n,m):n = 3,5,7, . . .} are given by Garman and
Kamien and by Niemi and Weisberg (1968).

Although it may be tempting to view p(n,m) as the probability that
R(X,D) = @ given #X = m, n odd, and linear orders, this viewpoint
requires special assumptions whose warrantability is questionable in
many situations. Apart from things such as persuasion, agreements,
and coalitions, there are many situations in which there is reason to
believe that R(Y,D) will almost surely not be empty for the D that
will actually obtain. The prime motivator for such a belief is the case
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n

3 5 7 9 11 ces limit

3 .056 .069 .075 .078 .080 es .088

4 .111 .139 .150 .156 .160 .176

m = #X 5 .160 .200 .215 .230% .251% ces .251
6 .202 .255% .258% .284% L294% ., .315

7 .239% .299% .305% . 342% L343 L., .369

limit 1.000 1.000 1.000 1.000 1.000 1.000

Ficure 8.2. p(n,m). Entries marked * are estimates

of single-peaked preferences, which will be examined in detail in the
next chapter.

8.4 SEQUENTIAL VOTING AND VOTER STRATEGY

Before getting deeper into our study of conditions that ensure
R(Y,D) = @, we shall comment on why one might be concerned about
the existence of an alternative that has a simple majority over each
other alternative.

One reason for concern arises from the position that z is a satis-
factory social alternative only if x € R(Y,D). When R(Y,D) = @, this
position holds that every alternative is socially unsatisfactory, and that
the group is therefore forced to select an unsatisfactory alternative.

A related reason is that, whereas there may be widespread agree-
ment that F(Y,D) be a subset of R(Y,D) when R(Y,D) # 0, there
may nevertheless be widespread disagreement about how to choose a
feasible alternative when R(Y,D) is empty. A rather large number of
procedures have been proposed for this case, but none of these, as far
as we are aware, is generally felt to be completely satisfactory.

Perhaps the main pragmatic reason for concern about whether
R(Y,D) is empty arises from voting procedures that make a choice
solely on the basis of simple-majority votes regardless of whether
R(Y,D) is empty. We are thinking here of procedures that are widely
used because of their efficiency, especially when voters are assembled
together, and which take votes on the alternatives in Y in a definite
order. This order may be prescribed before the voting begins, or it
may be determined progressively as the voting proceeds. We shall com-
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ment on two such procedures, the first of which is more efficient (may
require fewer ballots) than the second, but perhaps less satisfactory
in other ways.

TWO SEQUENTIAL VOTING PROCEDURES

Given that the m alternatives in Y will be voted on in the order
X1k * * ' Tm, the first procedure takes a simple-majority vote on z;.
If the votes for x; exceed (or perhaps equal) those against x;, then
zy 1s elected without further balloting. Otherwise, z; is discarded, and
a similar vote is taken on x,. If none of 1, 2o, . . . , Zn_s carries a
majority, then z,_1 or ., is elected on the final vote.

Suppose that individuals vote according to their preferences in the
following way. When a vote is taken on x;, individual ¢ votes for z; if
and only if z, »,z; for all 2 > j. Then, even if P(Y,D) = @, the
elected alternative might not be the one in P(Y,D). Suppose, for ex-
ample, that n = 3 and Y = {x,y,z} with the following linear orders:

l.zzy
2.z zy *PpzPpy & xPpy. (8.10)
. yx 2

Then Py is a linear order with P(Y,D) = {x}. However, if z is voted
on first, then, under the foregoing supposition, it will not be elected
since individuals 1 and 3 vote against # and only 2 votes for z. For
either zyz or xzzy as the order of voting, z will win.

The second progedure attempts to correct this apparent defect. In
it, the first simple-majority vote is between x: and z,. The winner of
this vote then goes against z; in a second simple-majority vote. The
winner of the second vote is then put against z, in a third vote, and
so on up to the final alternative, .

Suppose that individuals vote their preferences in the second proce-
dure, so that i votes for x, over x; if and only if 2; >, xe. f P(Y,D) #= @
then, regardless of the order in which the allernatives are voted on, the
element in P(Y,D) will be elected: for this alternative will win the
first vote in which it appears and will then win each succeeding vote.
In addition, if Pp is a weak order (or, equivalently, if Rp is transitive)
then, regardless of how simple-majority ties are resolved and regardless
of the voting order, an « © R(Y,D) will be elected. If the procedure is
modified slightly to explore ties further (among later alternatives) then
an z € R(Y,D) will be elected when R(Y,D) # @.

However, if R(Y,D) is empty, then strange things can happen under
the second procedure. Consider, for example, the situation of (8.5).
If the voting order is xyzw, then w will be elected. However, every
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voter prefers  to w and therefore unanimity, as in (7.14), is violated.
Other voting orders for (8.5) will of course select other alternatives:
of the 24 orders, x wins under 6, y wins under 10, z wins under 6 and
w wins under 2.

Thus, for those cases where R(Y,D) = @, this procedure may be
quite unsatisfactory, and it suggests the need for an alternate proce-
dure that may be less efficient but which takes greater cognizance of
the full complexities of D. On the other hand, an awareness of struc-
tures for D that assure R(Y,D) = @, and an awareness of the types of
situations in which these structures are likely to obtain, may be useful
information either for individual voting situations or for the design of
“efficient” voting procedures that do not lead to obviously undesirable
social choices.

VOTER STRATEGY

Although we have generally spoken of individual votes as if they
agree with preferences, both throughout Part I and in the preceding
paragraphs, this should be regarded as an aid to discourse that is not
literally true in many situations. Indeed, voters may have very good
reasons for voting contrary to some of their “actual preferences.” For
example, an individual’s voting behavior may depend not only on his
own preferences but also on things such as: 1. the particular voting
procedure that is used, 2. his beliefs about other voters’ preferences
and their voting strategies, and 3. the opportunity to make intervoter
deals before and/or during the course of the balloting. A small sample
of the sizable literature on these subjects is the books by Buchanan
and Tullock (1962) and Farquharson (1969), and the articles by
Harsanyi (1966) and Wilson (1969).

Although voter strategy is not a main subject of this book, the
preceding discussion of sequential voting seems inadequate without
at least a few words on strategy. We therefore conclude this section
with some brief remarks on aspects 1 and 2 in the preceding paragraph.

Let us suppose first that, as before, voters vote their preferences,
but that they have some influence on the order of voting. Consider
(8.10) under the first sequential procedure and assume that each voter
knows the preferences of the others. The only real question at stake
here is which alternative will be voted on first: if z is first then z will
win; if either y or z is first then z will win. Hence voter 1 would like to
have « first, and voter 2 would like to have z first. Since y can win
under no order, voter 3 would like to have either y or z first. If a simple
plurality vote is used to determine which alternative is voted on first,
then voters 2 and 3 can force z to be first, in which case = will be elected.

It is sometimes suggested that an individual will do best under the
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second sequential procedure if his favorite alternatives come late in
the voting order, since then they (or it) will have to beat fewer other
alternatives in order to win. Although this may be a reasonable sug-
gestion, it is not in general an optimal individual strategy. Consider,
for example, the voting order zwyz for (8.5), and recall that z >, w >,
z >1, for voter 1. Under the given voting order, which has the most
preferred alternative for voter 1 last, voting according to preferences
will elect y, which is voter 1’s least preferred alternative. Or suppose
that voter 1 can specify the voting order in another situation where
his preference order is z;zsxsx.. Would he do best to make x.rsxary
the voting order? Surely not, if he has good reason to believe that
{{x1,23), (@2, 1), (T2,23), (T3,24), (4,22) | © Pp, for then the voting order
x4x3222; would make x; the winner, whereas the order z,x.x5x1 would
make z; the winner.

Consider now a fixed voting order and suppose no longer that the
voters vote according to their preferences. With the order zyz for
(8.10) under the first procedure, voter 3 can do best by voting for «
on the first ballot, for then his second choice (z) will be elected. Voter
2 will also vote for z on the first ballot, since he has nothing to gain
by voting otherwise, since if z does not win on the first ballot then his
second choice (z) will surely win on the second ballot between y and z.

Suppose next that the voting order zyz is used in (8.10) under the
second sequential procedure. As in the preceding paragraph, voter 2
has nothing to gain by voting contrary to his preferences. However, if
voter 1 votes for y instead of his preferred z on the first ballot, and if
voters 2 and 3 vote “straight,” then y will win the first ballot and :
will then beat y on the second ballot, thus giving voter 1 his first
choice (z) instead of his second choice (z) when all voters vote straight.
However, voter 3 can foil voter 1’s strategy by voting for x instead of y
on the first ballot. In fact, if voter 3 knows the preferences of the
other two voters, then he should vote for xz on the first ballot. This
will insure the election of z on the first ballot, and thus the election of
x over z on the second ballot, so that he gets his second choice (z)
regardless of how voter 1 votes.

This example shows that, even when Py is a linear order, a con-
sideration of voting strategies in the second procedure is not an idle
exercise.

For our final example, suppose each voter knows the other voters’
preferences in the following situation:

2PpyPpzPpzx.

w o
< wn gy

Y
x
z

8 <KX n
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Suppose also that the second procedure is used. If the voting order is
(zy)z, then z wins the second vote if x wins the first, and y wins the
second if y wins the first. Therefore, either y or z wins. Hence, on the
first ballot, 1 will vote for y, 2 will vote for x, and 3 will vote for y,
so that y wins. Similarly, if the voting order (z2)y is used, then z will
win; and if (yz)z is used, z will win. Hence, in this situation, no voter
will want his most preferred alternative to be last in the voting order,
for if voter 1's favorite (x) is last then his least preferred alternative
(z) will win; if voter 2’s favorite (z) is last then his least preferred (y)
will win; and if voter 3’s favorite (y) is last then his least preferred
() will win.
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CHAPTER 9

Single-Peaked Preferences

THis cHAPTER begins a study of specific types of structures for D that
assure a nonempty R(Y,D) for finite Y, where R(Y,D) is the subset of
Y in which each alternative has a simple majority over every other
alternative in Y. We shall concentrate here on the widespread case of
single-peaked preferences.

Our general definition for single-peaked preferences permits intran-
sitive individual indifference and does not require X to be finite. A
characterization of single-peaked preferences is then given for the case
where X is finite. It says, approximately, that the alternatives in X
can be ordered along a line so that, as we go from left to right on the
line, an individual’s preference increases up to an indifference plateau
or peak, and then decreases after we pass the plateau.

It is then proved that the strict simple majority relation Py is tran-
sitive when (X,D) is single peaked. When X is finite, we show that
there is a simple method, based on the end points of the individuals’
indifference plateaus, for determining R(X,D).

9.1 SiNGLE-PEAKED PREFERENCES

Suppose that every individual in a group has the same preference
order on X. Then Pp must be the same order. Since the common order
is presumed to be a strict partial order, it follows from Theorem 7.2
and (8.8) that R(Y,D) = @ for every finite ¥ C X, and this is true
regardless of the size of the group.

For another example, suppose that each individual’'s preference
order on X is a weak order and that, for all z,y & X, if any individual
prefers z to y then no other individual prefers y to x, although others
may be indifferent between z and y. Then, as can readily be shown,
Py is the weak order on X defined by xPpy © z >y for some 1.
Here again R(Y,D) # 0 for every finite ¥ C X, and this is true re-
gardless of the size of the group.

Although these examples are simple, they illustrate the approach
that will be used in the next few chapters. Our general concern will be
to identify subsets of individual preference orders on X, each of which
has the following property:

if each individual in the group has one of the orders in the
subset then, regardless of the size of the group or the number (9.1)
of individuals that have each order in the subset, R(Y,D) = @

for every finite Y C X.
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9.1 SINGLE-PEAKED PREFERENCES

As in the foregoing examples, we shall be concerned with conditions
on individual preference orders which imply (9.1) for each subset of
orders that satisfies the conditions.

This chapter is devoted to what may be the most common of the
types of situations that give rise to subsets of orders that satisfy (9.1).
It is the case of single-peaked preferences. In approximate terms, this
means that the alternatives can be ordered along a line in such a way
that, as we pass from left to right along the line, each individual’s
preference increases up to a peak or to an indifference plateau, and
then decreases thereafter. Figure 9.1 illustrates this for three indi-

direction of 1
increasing
preference

ordered alternatives

Ficure 9.1. Single-peaked preferences

viduals. Individual 1 has a unique peak point, individual 2 exhibits
an indifference plateau that contains more than one alternative, and
individual 3’s preferences continue to increase indefinitely or until the
right-most of the ordered alternatives is reached. A natural situation
for single-peaked preferences is given in Figure 7.4, for the question of
allowable years of service as an untenured assistant professor. Other
situations in which single-peaked preferences would be likely to obtain
can easily be conceived.

A GENERAL DEFINITION

We shall now examine a general definition of single-peaked
preferences.
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DerinitioNn 9.1. Let D = (>y, . . . ,>,) be an n-tuple of sirict
partial orders on a nonempty set X. Then (X,D) is single peaked if
and only if there is a linear order <, on X such that, for each
i € {1, ... ,n}, there are disjoint subseis A,, B; and C, (one or two
of which can be empty) of X such that

1) A,UB,UC, =X

@ €A, XB,UB;XCUA, XC, =<,y
Ba) x,y EA,andx <oy=y >.2

3b) sy EB,. =z ~.y

Be) zyECoandy <gz=y >,z

4) (@y) € (A.VC)XB.=y».z

5) z <oy <pzandz~,yandy ~,z1=x~,1

Although this looks complicated, it is easy to interpret. In terms of
<, (2) says that A, is to the left of B, and C,, and C, is to the right
of A, and B,. If B, is not empty, then (when B, is as large as possible)
it is the indifference plaleau of individual i: (3b) says that all alterna-
tives in B, are indifferent to each other, and (4) says that no alterna-
tive to the left or right of B, is preferred to an alternative in B..
Condition (3a) requires the restriction of >, on A, to be a linear
order, with preference strictly increasing left to right along A,; con-
dition (3c) requires the restriction of >, on C; to be a linear order,
with preference strictly decreasing left to right along C..

Condition (5) is clearly redundant if each >, is a weak order. For
the general case, (5) requires transitive indifference when the middle
member y of the transitivity hypothesis z ~,y ~, z is between the
other two elements in the <, order, as ¢ <oy <ozorz <,y <oz.

Given x <,y <,2, intransitive indifferences can arise in several
ways. For example, x ~, z ~;y and ¥ >, z can occur with

zand yin 4,, zin B;\U Cy;
rzinAd, yand zin B, C..

If x € A, 2& B, and z ~,z, then (5) requires z to be indifferent
to each element in B, to the right of z.

If X is infinite, it may be necessary to have B, = # when neither
A; nor C; is empty. This is illustrated on Figure 9.2, where X =
[0,1) U (1,2], consisting of all 0 < 2 < 2 except for z = 1.

WHEN X IS FINITE

On the other hand, if X is finite and if preferences are single peaked,
then it is always possible to have B, nonempty for each i. In terms of
the following theorem, we can take B, = {x:a, <oz <, b,}, where
x Zoyifandonlyifz <,yorxz =y.
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0 2
Ficure 9.2. Single-peaked with no plateau
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Tuegorem 9.1. Let D = (>4, . . . ,>.) be an n-tuple of strict partial
orders on a nonemply finite set X. Then (X,D) is single peaked if and
only if there is a linear order <, on X such that, foreachi{ & {1, . . . ,n},
there are unique a.,b; © X with a, <, b, such that

(@) z <oy <oa.=y >z

(b) a. <oz Sobianda; <oy <obo=ax~ Yy

() b, <oy <vz=y >,z

(d) (x <oa,orb; <oz)and a, <oy <ob=>y .2

() t <oy <pzandz~,yandy ~,z=x ~, 1.

Although we have kept (b) and (d) separate for ease in interpreta-
tion, they could be combined under the following condition: z & X
and a, <oy <o b, =y ».z. Condition (a) says that preference in-
creases up to a;, and (c) says that it decreases after b,. This does not
prevent some z <, a; from being indifferent to some y such that
a, <p y So bl.

Proof of Theorem 9.1. Suppose first that (a) through (e) hold for
each i. Define 4, = {z:x <o a.}, B. = {z:a; o2 <o b} and C, =
{z:b; <o x}. Then the conditions of Definition 9.1 hold, and therefore
(X, D) is single peaked.

Conversely, suppose that X is finite and (X,D) is single peaked
as in Definition 9.1. Given A;, B, and C,, if B, @ then take the
last element from A, and add it to B, if and only if it is indifferent
to the first element in B,, and take the first element in C, and add it
to B, if and only if it is indifferent to the last element in B,. Then
(a) through (e) hold for the modified A,, B,, C, with a, the first ele-
ment in this B, and b, the last element in B,. Suppose next that B,
as given, is empty. If A, = @ also, take a, = b; = first element in
(X,<o); and if C, = @ also, take a, = b; = last element in (X, <,).
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Then (a) through (e) hold. Finally, with B, = #, suppose that neither
A, nor C, is empty. Let z be the last element in A4,, and let w be the
first element in C,. Then (1) if z >, w takea, = b, = z, (2) if w >,z
take @, = b, = w, and (3) if z ~, w take a, = z and b; = w. Again,
(a) through (e) hold. Thus, a,b; exist for all { and, in view of (a)
through (e), they are unique. ¢

Under weak orders and finite X, the characterization of Theorem
9.1 is the same as the definition of single-peaked preferences in Chap-
ter V of Black (1958).

9.2 TRANSITIVITY OF STRICT MAJORITY

Suppose that (X,D) is single peaked with <, an appropriate linear
order on X. Suppose further that 2 <p¥ <y z. Then precisely 10 of
the 19 possible individual preference orders on {x,y,z} are admissible
under these conditions. One of these is > = @ on {x,y,z}, or {x ~y,
y ~z, € ~ z}. The other nine admissible orders are shown in Figure
9.3. It is easily verified that each of these can arise when z <,y <, 2.
The final two cases, 8 and 9, are the only ones with intransitive
indifference.

< P

4

,<_
® <
N
|-
0 <k

i
Y4

Ficure 9.3. Admissible preferences on {z,y,z}
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The nine orders of Figure 9.3 are shown on the left of Table 9.1. The
nine orders that are not allowed under single-peaked preferences are
numbered 10 through 18. Under ¢ <,y <, zyoushould verify that none
of these can arise when (X, D) is single peaked. We shall use the right
part of the table later in this section, after we prove the following
theorem and discuss a generalizing corollary.

TABLE 9.1
<oy <oz
ADMISSIBLE INADMISSIBLE Fre-

ORDERS ORDERS OrpERs QUENCIES CYCLE
lL.z2>y>x 10 c>2>y (1,3,10) 1,1,1} x1yT
2.x >y >z 1. z> 2>y (2,4,11) [1,1,1] Tyz
.y>zxz>z 12. 2> (x~y) (2,4,12) [2,1,2] YT
d.y>z>z¢ 13. (x~2) >y 2,4,13) [1,2,2] xyIx
5. (y~z2) >z 14. 2 > (y ~2z2) (1,3,14) [2,1,2] r2y%
6. x~y) >z 15. z~z>y~z2 (4,15) [1,2] xyzz
T.y> (x~7z) 16. y~z>z~y (1,16) [1,2] xzye
8. z~y>rur~z 7. y~z>z~y 2,17) [1,2] xyzx
Q. x~y >~z 1. z~z>y~z (3,18) [1,2] zzy%

TureorEM 9.2. Suppose that each >;in D = (>, ... ,>.) s a

strict partial order and that (X,D) is single peaked. Then:

(1) Pp on X is a sirict partial order;

(2) if each >, is a weak order, if nis odd, and if (x ~.yandy ~.2)
never holds when x <,y <, z, then Pp is a weak order;

(3) if each >, is a linear order and if n is odd then Py is a linear order.

An obvious corollary of Theorem 9.2 is:

Corovrrary 9.1. If (X,D) is single peaked then R(Y,D) # # for every
finite Y C X.

Proof of the theorem. If #X < 2 then the theorem is obvious. Hence-
forth assume that X has more than two elements. Let {x,y,z} be an
arbitrary triple in X and suppose for definiteness that £ <,y <o z.
Under the initial hypotheses of the theorem let n; be the number of
individuals whose preference order on {x,y,z} is order k of Table 9.1,
fork =1, ... ,9. If some individuals are indifferent on {z,y,z} then
ni+ -+ + ng <n. Otherwisen; + -+ - + ny = n.
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From Table 9.1 it is easily seen that

2Ppy =& ny; > ny +ng+ny+ ng + ny + ng 9.2)
yPDz¢:¢n2+n3+n4+n6+n7+n9>n1 (93)
xPDZ<—_—>n2+n3+nﬁ> n1+n4+n5, (9.4)

from which it is clear that (using duals where indicated)

xPpy = xPpz, and therefore 2Ppy & yPpz = xzPpz;
2Ppz = yPpz, and therefore yPpx & xPpz = yPpz;
zPpx = yPpz, and therefore yPpz & :Ppr = yPpx;
zPpy = zPpux, and therefore zPpy & yPpx = zPpx.

The other two hypotheses for transitivity lead to contradictions, for by
adding inequalities we get xPpz & zPpy = 0 > 2n4 + n; 4 ny + n,,
and zPpzx & zPpy = 0 > 2n; + ng -+ ny + ng. Since {z,y,z} is an arbi-
trary triple in X, this proves that Pp is transitive and the proof of
Theorem 9.2 (1) is complete.

Under the hypotheses of (2) it will suffice to prove that Ip is transi-
tive, for this and (1) imply that Pp is a weak order. Since each >,
is assumed to be a weak order, ng = ny = 0. Moreover, since each
indifference plateau has no more than two points, n = n; + n, +
-+ + 4+ ns. Suppose first that x/py and ylpz. Then equality in (9.2)
and (9.3) implies ny = ny = n; = ng = ny; = 0, so that n, = n, and
therefore n = n; + n, = 2n,. But this requires n to be even, thus con-
tradicting the n-odd hypothesis of (2). Therefore, when ¢ <,y <, z,
xlpy & yIpz is false under (2). Suppose next that yIpz & zIpz. Then
equality in (9.3) and (9.4) implies that 2n, 4 n; + n; = 0 so that
ns = ns = ny = 0, and hence that n; = n; + n; + ng, sothatn = 2n,,
which again is even. Hence yIpz & zIpx is false. Similarly, yIpr & zlpz
is false under (2) when z <,y <, 2z, and the proof of (2) is complete.

Theorem 9.2 (3) follows immediately from (1) since the hypotheses in
(3) imply that Py is weakly connected. ¢

The proof of the transitivity of Pp used here requires only an exami-
nation of an arbitrary triple in X, for if Pp is transitive on each triple
then it is transitive. In the next chapter we shall use the triples ap-
proach to uncover other preference sets that ensure a transitive Pp.
For the present we shall note only the following fact along this line.

CoroLrary 9.2. If ({z,y,2},D) is single peaked for each {z,y,z} © X
then Pp on X is a strict partial order.

This corollary is in fact a more general result than Theorem 9.2 (1),
for if (X,D) is single peaked then each ({x,y,z},D) is necessarily single
peaked. However, if each ({z,y,z},D) is single peaked, then it may be
false that (X,D) is single peaked. To prove this, let X = {«,y,z,w} and
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let each > in D be the weak order xz(yzw), or x > (y ~ z ~ w). Then
(X,D) is not single peaked, for any linear order <, on X will require
at least two indifferent elements to be on one side of the “peak” z.
However, each triple is single peaked: y <,x <,z shows this for
{z,y,2}, ¥y <ox <owserves for {z,y,w}, z <oz <o w serves for {z,z,w},
and any linear order will do for {y,z,w}.

INADMISSIBLE ORDERS

Another question of interest in connection with this analysis is
whether any of the inadmissible orders in Table 9.1 can be joined to
the collection of admissible orders without damaging the conclusion
that Pp on the triple is transitive. If this were true then we might be
able to relax the definition of single peakedness (for example, by allow-
ing indifference between distinct alternatives in A,) without losing the
desired conclusion of the transitivity of Pp. The following lemma
shows that, generally speaking, we cannot do this.

LeEmma 9.1. Suppose that n > 5 and that > on {x,y,z} is any one of the
inadmissible orders in Table 9.1. Then there is an n-ltuple D of strict
partial orders on X such that the only inadmissible order in D is > and
such that Pp on {x,y,z} is not a suborder.

Proof. To the right of each inadmissible order in Table 9.1, in the
“orders” column, we have listed a trio or a pair of orders on {x,y,z}.
The only inadmissible order in this trio or pair is the order to its
immediate left: the other orders are from the first column. The “fre-
quencies”’ column states the number of individuals in our construction
of D who have the corresponding order in the “orders” column. Thus,
for inadmissible order 14, the frequencies [2,1,2] for (1,3,14) mean that
two individuals have order 1, one individual has order 3, and two indi-
viduals have order 14. All other individuals are given the admissible
empty order @ on {z,y,z}. The final column of Table 9.1 shows the
Py cycle for the constructed D. In the case of [2,1,2] for (1,3,14) we
get xPpzPpyPpx, or xzyx for short. Each of the other cases gives the
indicated Pp cycle. ¢

9.3 A LocarioN THEOREM

One of the nicest aspects of single-peaked preferences is the ease
with which we can locate R(X,D) when X is finite. If we have a satis-
factory <, on X and know a,, b; of Theorem 9.1 for each i, then the
set of all alternatives that have a simple majority over each other
alternative is located by the simple method described in the following
theorem.
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TuaeoreM 9.3. Suppose that X s finite and that (X, D) is single peaked,

with <o andthe a;andb, (1 = 1, . . . , n) as displayed in Theorem 9.1.

Let ¢1, ¢2, . . ., C2. be a rearrangement of the sequence a,, . . . , an,

bi, . - ., by in such a way that ¢y <oc2 <o * * + <pCsn. Then
R(X,D) = {z:cn <o <o Caya}. (9.5)

Proof. Suppose first that z <,y <y¢,, with ¥y to the immediate
right of z under <, That is, * <,z <,y for no z & X. With r +
s+ t=mnletr = #{iix ~.y},s = #{i:x >, y},and t = #{i:y >, z}.
For each of the indifferent individuals, we must have a; <,z and
y <o b, for suppose for example that x <, a;. Then, since y is imme-
diately to the right of z, z <oy <y a, and = ~, y would contradict
(a) of Theorem 9.1. Similarly, if ¢ >,y then a, <,z and b, <, z; and
if y >,z then y <pa; and y <, b,. Therefore, r 4+ 2s of the terms in
A, « -« , Qn by, . . ., byare <oz, and r + 2¢ of these terms are to
the right of . Now since ¢; <o * * © <6, <o * + - <y ¢z and since
z <y s it must be true that r + 2s < r 4+ 2¢, or that s < ¢, which
means that yPpz. By the transitivity of Pp, as in Theorem 9.2 (1),
it follows that # <g ¢. = ¢.Ppx. And by a similar proof with ¢,y <o
y <oz and z, y adjacent in (X, <,), it follows that ¢,41 <.z = ¢.+1Pp2.

If ¢, = €441, then clearly R(X,D) = P(X,D) = {e¢,}. Henceforth,
assume thate, <y ¢nq1, and supposethate, <oz <oy <o €aq1. Againlet
r=4#tx~,y},s=#{i:x >.y},andt =#{i:y >.2}. Sincec, <oz <,
vy < €aq1, DO a, or b, is between x and y. It then follows that a, <,z
and y <, b, for the indifferent individuals, that a, <, b, <,z for the
z >,y individuals (s), and that y <, a, < b, for the y >, x individuals
(t). Therefore, r + 2s of the a,, b, are <, z, and r + 2{ of the a,, b, are
to the right of 2. Since ¢; <o * + * <oer S0 <oCnt1 Ko 7 7+ Lo Cony
this requires r + 2s = r + 2{, or s = {, so that zIpy.

Now suppose that z <o ¢, <oy <o ¢np1 and zPpy. Then, since ¢,Ppx
by the first paragraph of this proof, the transitivity of Pp implies ¢.Ppy,
which contradicts ¢,Ipy as just derived. Hence yRpz. Similarly, yRpx
if ¢, <oy <o Cnp1 <o . In summary, we have

C,,PD.'ZJ if x <gCn
Cn+1PD.’t if Cop1 <o &
zlpy f e Loz Locap and  ¢n ZoY SoCapa
yRpz if ¢ 0¥ <o Cny1 and ( <o€n OF Cay1 <oZ).

Therefore R(X,D) = {z:¢ch <o2 <o Cnr1}. @

If Y is a proper subset of X, then of course we will have to re-
compute a; and b, as appropriate to ¥ before we can specify R(Y,D)
in the manner of the theorem.

108



94 VOTING ON VOTING RULES

Theorem 9.3 gives rise to several corollaries when additional restric-
tions are placed on the >, The following result, obtained by Black
(1948), is an example.

CoRroLLARY 9.3. Suppose that X is finite and (X,D) is single peaked
with a, = b, for each 1, so thal each indifference plateau contains a single
point. Let the a, be arranged so that a; <oas <o -+ + <o @n. Then

R(X,D) = P(X,D) = {awin} i n is odd,
RX,D) = {2:an;2 <02 L0 Q1pny2} if n is even.

When n is odd in the corollary, the median peak, @12, bas a
strict simple majority over each other alternative. A similar result
holds for even n if a,;2 = @iyqj2, but if a2 <o @14, then a range of
“best”’ simple-majority alternatives is obtained.

9.4 Voting oN Vorine RULES

An interesting use of the notion of single-peaked preferences with
simple majorities arises in some contexts where a group must decide
on the voting rule that they will use in certain situations. Suppose,
for the sake of illustration, that the group is writing a constitution.
One of the factors they must specify is the size of a vote for a consti-
tutional amendment that is required before the amendment becomes
law. Let us suppose that they agree to use an absolute special majority
social choice function, as specified in Definition 6.3, for this purpose.
To complete the specification of this rule, they need to decide the
number % of votes (1 < k < n) that an amendment must obtain be-
fore it becomes law.

Different individuals may prefer different k& values, but in any event
it seems reasonable to suppose that, with j <,k < j < k, the prefer-
ence orders on X = {1, . . . ,n} for the individuals will be single
peaked. For example, for n = 9, the preference order for one person
might be the order shown in Figure 7.4.

Our analysis of single-peaked preferences shows that at least one of
the k values will have a simple majority over every other k value.
And if n is odd and each person has a unique favorite (peak), then, by
Corollary 9.3, there will be a k* € {1, . . . ,n} that has a strict simple
majority over every other k. In such a case, it does not, seem unreason-
able to take k* as the value that is written into the constitution.

A value of k* chosen in this way might differ significantly from n/2.
For example, if about half the voters favor a & > 2n/3 and the other
half favor a & < 2n/3 then the chosen rule will be close to a two-thirds
absolute special majority rule.
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Suppose in fact that a £* in the vicinity of 2n/3 is approved. Then,
although this was determined by simple majority, it can no longer be
changed by a strict simple majority. For, according to the &* rule, if a
member of the group makes a motion to amend the constitution by
changing % from k* to k/, then %' requires the approval of two-thirds
of the group. Indeed, as time passes, more than half the group may
come to prefer k' to k*, but if less than two-thirds of the members
have this preference then k* will remain in effect.
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CHAPTER 10

Guarantees and Triples

IN THE PRECEDING CHAPTER we saw that Pp is transitive when (X, D)
is single peaked, regardless of the size of D or the particular mix of
single-peaked preference orders that appear in D. In this chapter we
shall continue our investigation of sets of preference orders that guar-
antee a certain result, such as transitivity of strict simple majority. A
set S of preference orders guarantees a certain result when every D
whose orders are all in S yields this result.

The first section discusses the general guarantee concept and shows
that, except for one case, conditions that guarantee a specified property
can be stated in terms of preferences on three-element subsets of X. The
exception is for conditions that guarantee that Pp is a suborder when
orders in S are allowed to exhibit intransitive indifference. For reasons
explained in section 10.1, we shall not characterize all S that guarantee
a suborder.

However, sections 10.2 and 10.3 develop and verify a characteriza-
tion of all sets of strict partial orders on a triple {z,y,z} that guarantee
a suborder on the triple. In doing this we shall illustrate a general
method that can be used to uncover conditions that guarantee a certain
result. The results for suborders on a triple will be used in Chapter 11,
which presents conditions for transitive strict simple majority and
transitive simple majority.

10.1 UNIVERSAL GUARANTEES

In pursuing conditions on individual preference orders that yield
results like (9.1), we shall first set forth some general definitions. As
shown later in this section, notable simplifications arise when all pref-
erence orders are weak orders.

DEeriniTION 10.1. Let S be a nonempty set of siricl partial orders on X.
Then S guaraniees

(1) a suborder

(2) transitivity (or a strict partial order)
(3) a weak order

(4) a linear order
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if and only if, for every n > 0 and every D & S~,

(1) Pp on X is a suborder

(2) Pp on X is transitive

(3) Pp on X is a weak order
(4) Pp on X is a linear order.

This is obviously a four-part definition. Because our primary interest
is in nonempty R(Y,D) for finite YC X, part (1) is of primary concern.
Part (2) also will be used extensively, and (3) will receive some attention.
Part (4) is included mainly to show how restrictive the notion of
“guarantee” can be, for S guarantees a linear order if and only if S
contains only one element, which is itself a linear order. For example,
to guarantee a linear order, S cannot contain any nonlinear order, for
then a nonlinear Pp would be obtained under n = 1. And if S contains
more than one linear order, then there must be z,y & X such that
x > y for one order and y > z for another, and with n = 2 we can get
zlpy.

As in Definition 7.4, the concepts in Definition 10.1 have been
arranged in a hierarchical order. Clearly (S guarantees a linear order)
= (S guarantees a weak order) = (S guarantees a strict partial order)
= (S guarantees a suborder). Although the reverse implications are
generally false, we shall observe later in this section that, when every
order in S is a weak order, (S guarantees a suborder) = (S guarantees

transitivity).
The emphasis of Definition 10.1 is the universality of the guarantee
notion which requires every Pp for all D € S\ S2\U S\ - - - to

have certain properties. For example, to show that S does not guarantee
transitivity, it is sufficient to identify one D composed of orders in S
for which xPpyPpzPpx for some z,y,z & X.

The effect on different n is nicely shown with X = {z,y,z} and the
familiar set S = {zyz,zzy,yzz} of three linear orders on X. For part (1)
of the definition we note that,

forn = 2, D € §? = Pjp is a suborder

for n = 3, Pp is not a suborder for D = (xyz,zxy,yzx)
forn = 4, D € S*= Pp is a suborder

for n > 5, Pp is not a suborder for some D & S~,

The result for n = 4 may seem surprising in view of n = 3. The main
reason that Py is a suborder when D & S*is that the indifferent order
@ is not in S, so that D must have one of the orders in S in more than
one position. This S does not of course guarantee a suborder. But when
S does guarantee a suborder, it is immaterial whether # is in S unless
S = {B}, for if § & S then S guarantees a suborder if and only if
S U {#} guarantees a suborder.
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OTHER CONDITIONS

It should be noted that there are various conditions on individual
preferences that imply a suborder (or transitivity, etc.) that cannot be
included under our guarantee definition because of restrictions that
they impose on the size of the group or on the numbers of orders that
can appear in various combinations in an “allowable” D. We illustrate
this with two examples.

Let <, be a linear order on X and let S be the set of all linear orders
on X that satisfy the single-peaked conditions of Definition 9.1. Then
S guarantees transitivity, as in Theorem 9.2 (1). And, as we noted in
Theorem 9.2 (3), Pp must be a linear order if n is odd. However, if
#X > 1, then S does not guarantee a linear order, for n = 2 will give a
satisfactory violation of the general linearity of Pp.

For the second example let X = {x,y,z} and let .S be the set of strict
partial orders on X for which

x>y and (x> zorz>y). (S)

There are exactly five orders that satisfy this condition, namely xyz,
x(yz), xzy, (xz)y and zzy, and it is easily verified that S guarantees
transitivity. S does not guarantee a weak order in view of D =
(zyz,zzy). Now suppose we generalize the foregoing condition by
letting T be the set of strict partial orders on X for which

Y and (x>yorxz >zorz>y). (T)

In addition to the five orders in S, this allows five more orders, namely
(xy)z, 2(xy), z2~ax > y~z,y~x >z~y,and x ~z > y ~x, the
last three of which exhibit intransitive indifference. As we shall note
later (see VI in Table 10.1), T guarantees a suborder. However, it does
not guarantee transitivity, since Pp is not transitivefor D = (y ~ ¢ >
z~yx~z >y~ z), which gives Ppz, zPpy and zIpy.

On the other hand, consider the set of all D such that (a) D & T U
T*\J T*\J - - - and (b) z > y for at least one order in D. It can be
shown that P is transitive for every such D, and therefore it might be
said that (a) and (b) guarantee transitivity. However, conditions (a)
and (b) cannot be stated in a manner appropriate for Definition 10.1
since (b) requires that some order in a proper subset of T must appear
in each “‘acceptable” D.

TRIPLES

Since case (4) of Definition 10.1 is trivial, we shall not comment
further on it. In each of the other cases, with one exception, guarantee-
ing conditions on § can be stated in terms of individual preferences on
triples. A friple, in the sense used here, is a three-element subset of X.
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The lone exception to our triples rule is for S guaranteeing a suborder
when S is allowed to contain strict partial orders that are not weak
orders.

To develop these ideas furiher, we shall use the following definition.

DeriniTIiON 10.2. Let Y be any nonempty subset of X and let Q & {a
suborder, a sitrict partial order, a weak order}. Then S guarantees Qon Y
i and only if, for every n > 0 and every I) € S, the resiriction of Pp
on Y is Q.

Since any S guarantees Q when #X < 3, and since the defining prop-
erties for strict partial orders and weak orders deal with subsets of X
with no more than three elements, the following lemma is obvious.

Lemma 10.1. S guarantees transitivily (rsp., a weak order) if and only
if S guaraniees transitivity (rsp., a weak order) on each iriple in X.

If S guarantees a suborder, then it must guarantee a suborder on
each triple. However, the converse is false when #X > 3. For example,
let {z,y,z,w} C X with

S = {{(m,y),(z,w)},{(y,z),(w,z)} }7

consisting of two strict partial orders, each of which exhibits intransi-
tive indifference. It is easily seen that S guarantees a suborder on each
triple. However, with D = ({(z,y),(z,w)},{(v,2),(w,2)}) € S, Ppon X
is not a suborder since xPpyPpzPprwPpx.

As shown by the following lemma, this negative result depends
crucially on intransitive indifference.

LemMma 10.2. If every > & S is a weak order and if S guarantees a sub-
order on a lriple, then S guaraniees transitivity on the triple.

Proof. To the contrary, suppose that each > & S is a weak order,
that § guarantees a suborder on {z,y,z}, and that S does not guarantee
transitivity on {x,y,z}. Then there is an n and D &€ S" such that, for
example, 2Ppy & yPpz & xIpz. If  ~ z for every > & S then, by the
weak order hypothesis, z > y <z > yand y > ¢ <y > z for every
> & 8. But then zPpy < zPpy, which contradicts the assumed
zPpy & yPpz. Therefore, since xlpz, z > z for some > & S, Let >’
be such an order, and form D’ & S2»+1 ag follows:

D' = (D,D,>").

Clearly, zPpyPp:zPpax, which contradicts the hypothesis that S
guarantees a suborder on {z,y,z}. ¢
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We hasten to add that if S guarantees transitivity on a triple then S
does not necessarily guarantee a weak order on the triple, even when
all > & S are linear. This is shown with S = {xzzy,yzz}. If D has xzy
in r positions and yzz in s positions then r > s = Pp = zzy, s > r =
Pp = yxz, and r = s => yIpxPpzIpy, in which case Pp is not a weak
order.

The following theorem follows immediately from Lemma 10.2 and
other preceding observations.

TueoreM 10.1. If every > € S is a weak order, then S guarantees a
suborder if and only if S guarantees transitivily on each triple in X.

This theorem greatly simplifies the development of a general set of
conditions that characterize all S for which S guarantees a suborder
when it is presumed that all individual preference orders are weak
orders. Such a set of conditions, stated in terms of preference orders on
triples, have been given by Sen and Pattanaik (1969, Theorem V). A
similar characterization, for guaranteeing transitivity when intransi-
tive indifference is allowed, is given by Inada (1970) and Fishburn
(1970b). These conditions, along with results of Inada (1969) and
others for guaranteeing weak orders, will be presented in the next
chapter.

The rest of this chapter develops a set of conditions that characterize
all sets of strict partial orders on a triple {z,y,z} that guarantee a sub-
order on the triple. Some of the results in the next chapter will then
follow from this characterization with very little additional effort.

As we have seen, the conditions that describe all sets of strict
partial orders on a triple that guarantee a suborder on a triple can-
not characterize all S that guarantee a suborder when #X > 3. In-
deed, suppose that X = {x;, . . . ,x.} and S = {{(z1,22)},{(z1,25)},
e o @me1,Zm) }, { (®m,x1) } }, consisting of m strict partial orders. Then
S guarantees a suborder on every proper subset of X, but .S does not
guarantee a suborder on X. Hence conditions for a finite X that char-
acterize all § that guarantee suborders must explicitly consider all
elements in X simultaneously. Because such a characterization, if it
could be obtained, would almost surely be incomprehensibly complex,
we shall not pursue it further.

10.2 SuBorDERS ON TRIPLES

Throughout the rest of this chapter we shall work with a triple
{x,y,2}. Our goal is to characterize or describe, in some reasonable way,
all nonempty sets of strict partial orders on {z,y,z} that guarantee a
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suborder on {z,y,z}. Since there are 19 different strict partial orders on
{x,y,2}, as described in section 9.2, there are 2!° — 1 nonempty subsets
S of strict partial orders. Since it would be impractical to list all of
these that guarantee a suborder, we shall need to find a more efficient
way of doing things. To aid in this, the following special definitions
will be used.

DeriNiTION 10.3. A SET is any nonempty subset of strict partial orders
on {x,y,z}. A seT S is:

good < § guaraniees a suborder
bad < S does not guarantee a suborder
cooD < S is a good SET that is not properly included in another
good sET (that is, a Goop SET is a maximal good SET)
BAD < S is a bad SET that does not properly include another bad SET
(that is, a BAD SET is a minimal bad sgT).

One way of characterizing all good sEts is as follows:

S is good if and only if there is no BaDp SET included in S.

Later we shall list all BAD sETS, noting that there are exactly 100 of
these and that none of them contains more than three orders. How-
ever, by itself this would be a rather dry exercise since it would not
tell us very much about the nature of good sETs.

The opposite approach is to seek out the Goop seTs, noting that

S is good if and only if S is included in some GooD SET.

There are exactly 28 coop seErs (each of which contains the empty
order # on {z,y,z}). The smallest coop seT has five orders, and the
largest contains 11 of the 19 possible orders.

Although we shall proceed with the coop-sets approach, again it
would not be very revealing to simply list the 28 coop sErs. The
approach we shall use is to systematically search for coop SETs by a
method to be described shortly. The method reveals that the 28 coop
seTs fall into seven natural categories. Each of the seven categories is
easily described by a set of conditions on the nonempty orders that
are permitted under the category. One example of such a set of con-
ditions is given by expression (T) in the preceding section. This (T),
which describes one of the coop sEts that contains 11 orders, is a
member of category VI. Another category, which is category VII be-
low, includes the coop sETs that are single peaked. Since it can be
observed that no coop sgr is included in some other coop ser (by
Definition 10.3), the seven categories are independent in the sense
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that a coop set can fall under exactly one category, and this is true
for each category.

THE SEVEN INDEPENDENT CATEGORIES

For the purposes of this section we have listed the 18 nonempty
strict partial orders on {z,y,z} at the top of Table 10.1 according to
the number of indifferent pairs in the order. Intransitive indifference
arises in the final six orders, numbered 13 through 18. Because of the
change in purpose, the numbering in Table 10.1 is not the same as
that in Table 9.1.

TABLE 10.1
NonEMPTY ORDERS AND SEVEN CATEGORIES

THE 18 NonEMpTY ORDERS ON {z,y,z}

No indifference Single indifference Double indifference
l.z>y>:z 7. (x~y) > 2 13. 2~z >y~z
2Z.a>z>y 8. z> (x~y) 4. 2~y >~z
.y>a>z 9. x~2) >y 5. y~g>z~y
doy>z>2 10. y > (x~7z2) l6.y~z>z~y
S.z>x>y 1. (y~2) > = 17 2~y >z~z
6. 2>y > =z 12. 2> (y ~2) 1. s~z>y~zx

THE SEVEN CATEGORIES

GOOD SETS:
Representative Nonempty orders Characterization
ILLa=b 7, 8,15, 16, 17, 18 T~y

II.La+c=b+d 2,3,4,5,9,10, 15, 16 (y>ax&y>z)or
(x>y&z>y)or
(~y&y~7z)

1I1.

at+c+e=

b+d+f 7,8,9, 10,11, 12 exactly one ~
IV.ate=d+f& 1,6,9,10 x>y>zor{z~z)>y

ct+e=b+f or their duals
V.a>b&d>c¢ 2,5,8,9,12,13,15,16,18 z> y &z > vy
VI.a>b&f>c¢ 1,2,57,8,9,12,13,15,18 2> y& (x> yor

&d>e x> zorz>y)
VIL¢c>f>a& 1,3,4,6,7,10,11,14,17 y > zory > z

b>e>d

To understand our procedure observe first that S is good if and
only if both xPDyPDzPDx and xPpzPpyPpx are false for every D &
SUS2US*U - - -, and that S is bad if and only if there is a
D & \U § such that «PpyPpzPpx or 2PpzPpyPpe.
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Now let D denote a generic n-tuple of strict partial orders on {z,y,z}
and let a, b, ¢, d, ¢ and f be, respectively, the number of components
in D for whichz >y, y >,y >z, 2>y, 2>z, and ¢ > z. Then
Pp is not a suborder if and only if

a>b&c>d&e>f) or b>a&d>c&f>e), (10.1)

where these represent xPpyPp:Ppx and xPpzPpyPpz, respectively.
Clearly, S is good if and only if (10.1) ts false for every D & \J S~

Because of this we shall look for general expressionsina, b, . . . , f
that violate (10.1). Specifically, we shall identify seven categories of
expressions, such that any statement within a category violates (10.1).
In doing this it should be noted that we are dealing only with the
algebraic inequalities of (10.1). Nothing is being said at this point
about orders on {z,y,z}.

The seven categories divide into four based on equality relations and
three based on inequalities. We consider the equality categories first.

Category I. This category contains the following three expressions:
a=b, ¢c=d, e =f.

It is obvious that each of these causes both expressions in (10.1) to be
false. Note that, for (10.1) to fail, we must negate both expressions:
not{(. . .Jor(...)Jenot( ..)&not( ..).

Category II. The second category also contains three expressions:
a+c=>b+4+4d, a+e=5b+/, ct+e=d+ 1.
Any one of these violates (10.1).
Category III. This category contains the single expression:
a+b+c=d+e+ /.

Category 1V. This is the most complex of the equality categories.
Like I and II it has three expressions:

ate=d+f & c+e=b+4+1
a+c=d+f & c+e=b+d,
atc=b+f & a+e=0b+4d

To show that the first of these violates (10.1), simply add its two parts
togeta+c+ 2 =b+ d+ 2f.
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Category V. Each of the inequality categories has six expressions.
Three of these six are the duals of the other three. For each case we list
the dual pairs dn the same line. For the simplest inequality category,
we have:

a>b&d>c¢ b>a&ec>d

a>b&f>e b>a&e>f

c>d&f>e d>c&e > f.

Each of these six expressions clearly violates (10.1).

Category VI. The six expressions of this category are:

a>b&f>c&d>e b>a&c> f&e>d
c>d&f>a&b>e d>c&a>f&e>b
e>f&d>a&b>c f>2e&a>d&c>b.

Consider the first of these. a > b contradicts the second part of (10.1).
Then f > ¢ & d > e, along with ¢ > d implies f > e, so that the first
part of (10.1) cannot hold.

Category VIIL. Our final category is composed of:

c>f2a&b2>e>d a>f>c&d>e>b
a>d>e&f>2c>b e>d>a&b>c>f
c>2b>e&f>2a>d e>b>c&d>a>f

Again, take the first of these. If @ > b then f > e, so that the first part
of (10.1) fails. If d > ¢ then e > f, so that the second part fails also.

It will be noted that the seven categories contain a total of 28 expres-
sions. Each of these 28 expressions corresponds to one of the 28 coop
SETS. A representative expression from each category and its corre-
sponding Goob SET of orders is shown in the lower part of Table 10.1.
(Only nonempty orders are shown: the empty order is a member of
every GooD SET.) The expressions listed above that are not in the table
are obtainable from the representatives in the table by obvious substi-
tutions of letters in {a,b, . . . ,f} and by taking duals in the inequality
categories.

THE IDENTIFICATION OF GOOD SETS

To remove the element of mystery from the foregoing description,
we now show how a Goop skt is obtained from an expression in any
category.
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For a generic D, let n; be the number of components in D that con-
tain order k as given on the top of Table 10.1. Then,

(x> y) a=n;+ ny+ns+ ng + N2+ Ny
¥y > x) b=ns+ ns+ ns + no + nu + nua
> >2 ¢c=m + n3+ ng+ n7+ ny + ny (10.2)
(z>y d=n;+ ns+ ne+ nsg + no + nys )
(z > =) e=n4+ns+ ng+ ng+ nu + nge
(x> 2) f=rn+n+n+n+ne+ ns

We have seen that any one of our categorical expressions guarantees
the failure of (10.1). For any one of these expressions we now determine
the minimal set of ni such that, when each of these is set equal to zero,
the given expression must be true regardiess of the (nonnegative)
values of the other n;. The orders for the n; that must be set equal to
zero to guarantee the expression are precisely those that are inadmis-
sible for the expression. Those that remain, along with the empty
order, constitute the coop SET that corresponds to the categorical
expression. We shall illustrate this with the representatives of cate-
gories I, IV, and VII in Table 10.1.

For category T we have a = b. Substitution from (10.2) gives n, + n,
+ ns + ny + nis + nyz = ng + ng + neg + Ny + N+ Naa To guar-
antee ¢ = b we must therefore set all of these n. equal to zero. This
leaves the nonempty orders 7, 8, 15, 16, 17, and 18, as shown on Table
10.1 alongside @ = b. The n, for these six k can have any values without
affecting the a = b expression.

Our representative expression for category IVisa+e=d+f&
c+e=b+f Fora+e=d+f, (10.2) requires

Ny + ns + nu + Nz -+ N = ne 4 N + Ny + s + N,

after cancellation of n; that appear on both sides of the equality with
equal coefficients. Similarly, ¢ + e = b 4 f gives ns 4+ ns + ng +
nye + nyy = ny + nz + nyy + nys + nys. To guarantee the given ex-
pression, every n; in these two equalities is set equal to zero. This leaves
us with the four nonempty orders 1, 6, 9, and 10 as shown in the table.

For category VII we have ¢ > f > a &b > e > d. Taking ¢ > f
first, substitution from (10.2) gives ns 4 nw + niy 2> ne + ns + nas
after cancellation. Thus ns = n; = nys = 0 assures ¢ > f. Taking
f>a,b>e ande > din like manner, we are left with orders 1, 3, 4,
6, 7, 10, 11, 14, and 17 whose n; do not have to be set equal to zero to
guarantee the categorical expression.
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CHARACTERIZATIONS

To complete the description of Table 10.1, we shall now characterize
each of the representatives and their corresponding orders (coop SETS)
in terms of conditions on preferences. This is done by identifying the
properties that are common to all nonempty orders in the coop sgT
and which hold for no nonempty order that is not in the coop sEgr.

For example, x ~ y for each of orders 7, 8, 15, 16, 17, and 18 for the
category I representative a = b, and z ~ y holds for no other non-
empty order. We could have determined this from a = b alone, since
this is the same as zIpy: to guarantee xIpy we admit only those
orders for which z ~ y. However, other categories are not as obvious
as category I in this sense, with the exception of category V: a > b &
d > ¢ corresponds to xRpy & zRpy, which is guaranteed by z » y &
z » y for all orders.

For another instance, consider category VI. By looking back through
the upper part of Table 10.1 we find thatz » y & (z > yorz > zor
z > y) for each of the nonempty orders listed for the representative of
this category. None of the other orders satisfies this description.

The only one of the categories whose characterization is not simpler
than what amounts to a listing of the orders in a Goop SET is category
IV. This is the smallest coop sir, and there appears to be no simple
property that summarizes its four nonempty orders while excluding
all others.

We shall now discuss the characterizations more fully, and simul-
taneously define terms that will be used in the main theorem that
results from our analysis. The first sentence in each of the next seven
paragraphs is to be regarded as a definition.

S ts tn category 1 if and only if there are two elements in {z,y,z}, say
z and y, such that x ~y for all > & S. The other two cases, with
x ~ z, and with y ~ z, correspond to the categorical expressions ¢ = d
and e = f. An S in category I is sometimes described by the phrase
“limited agreement,” since every individual in such a case is indiffer-
ent between the same two alternatives.

S is in category 11 if and only if there is an alternative in {z,y,z},
sayy,suchthal (y > x &y > 2)or(z > y&z > y)or{x ~y &y ~2)
for each > & S. In the given case the ‘““chosen’ alternative y is either
preferred to the other two, or less preferred than the other two, or
indifferent to the other two alternatives for each > & S. The other
two specific cases for S in category ITare z > &z > y)or (z > z &
y>2)or (a~z&z~y), and (z >y &z >z2) or (y »x &z > x)
or (y ~x &z~ z), which correspond to the ‘‘choice” of z and =z
respectively.
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S is in category II1 if and only if each nonempty > & S has exactly
one indifference pair. This has been referred to as a condition of “single
indifference.”

S is in calegory IV if and only if the three elements in {x,y,z} can be
placed in an order, say xyz, such that every nonemply > & S is in
{xyz,zyx, (x2)y,y(2xz)}, where as usual (xz)y means (z ~ z) > y. Because
the displayed set contains two orders and their duals, this case is
sometimes referred to as “‘antagonistic preferences.” Because of the
duals aspect, the other five orders on {z,y,z} give rise to only two
more GOOD SETS.

S ts in calegory V if and only if there is an allernalive in {z,y,z},
say y, such that either (x > y&z » y) forall > in Sorelse (v » 2 &
y » 2) for all > & S. Because this requires one alternative to be at
least as preferred as each of the other two in each order (or, dually,
not, preferred to either of the other two in each order) it is another
case of “limited agreement.”

S is in calegory VI if and only if the three elements in {x,y,z} can be
placed in an order, say xyz, suchthalz > y & (x > yorx > zorz > ¥)
for each nonempty > & S. Here the six different orders do give rise to
six different coop sErs. This is also a case of “limited agreement.”

S is in category VII if and only if there is an allernalive in {z,y,z},
say v, such that either (y > x or y > z) for every nonemply > € S or
else (x > y or z > y) for every nonemply > & S. The first of these,
(y > zory > z), is a case of single-peaked preferences under the order
x <oy <o2 The second, (x > y or z > y), is the dual of the first,
and is referred to as “‘single-caved” or “‘single-troughed” preferences.
A general picture of single-troughed preferences can be obtained by
looking at Figure 9.1 or 9.2 or 9.3 upside down.

The categories can be summarized in several ways. One of these
follows.

SumMary DEFINITION. S is in one of categories I through VII if and
only if there ts an allernative in {,y,z}, say y, such that every nonempty
> & S salisfies one and the same of the following ten expressions:

LLx~z
II. (y »zandy > ) or (x > yandz > y)or (x ~yandy ~ 1)
III. (x~y) >zorz> (x~y)or (xg~z)>yory > (x~2z)or
(y~z2)y >2zore > (y~2)
IWV.ze>y>zorz>y>xor(x~z) >yory > (x ~ 1)
V.yszandy > 2
Vizypyandz » y
VIi.zpzand (x > zorz > yory > 2)
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VI.zzand(z>xzorz>yory > x)
VII. y > zory > z
VIIL. ¢ > yorz > y.

It must be remarked that some of our categories seem rather arti-
ficial in terms of actual situations that might give rise to such sets.
The most natural cases appear to be the single-peaked half of cate-
gory VII. An exercise of some interest is to think of a situation that is
naturally single troughed. Some of the limited-agreement cases (I, V,
VI) could arise under certain natural circumstances. A category II
case might obtain when one of the alternatives, say y, is the kind of
candidate that will either be violently liked or violently disliked by
each voter, or when y is quite dissimilar from « and z with these two
the same except for minor details.

THE THEOREM

The foregoing definitions and analysis suggest the following theorem.

THEOREM 10.2. A sel S of sirict partial orders on {x,y,z} guarantees a
suborder on {x,y,z} if and only if S is in al least one of calegories 1
through VII.

We have already proved the “if”’ part of this theorem, for our cate-
gories were developed in such a way that any S in any category is a
good SET.

In the next section we shall outline the proof of the “only if’”’ part of
the theorem by showing that if S is in none of the seven categories
then S must include a BAD SET and must therefore be bad. Among other
things, this will show that the 28 sErs developed for our 28 cate-
gorical expressions are indeed coop SETS and are the only Goop sgrs.
This means that there are no other categorical expressions that give a
violation of (10.1) and are independent (in terms of good seTs) of the
28 given above.

10.3 Bap Sets

As stated before, there are 100 minimal seTs (i.e. BAD sETS) that do
not guarantee a suborder on {z,y,z}. These are listed in Table 10.2,
from {1,4,5}, {1,4,8}, . . ., to {13,16,17} and {14,15,18}. All but
six of the BAD SETS are three-order seTs. The six two-order BAD SETS are

(1,16}, {2,14}, {3,18}, {4,13}, {517}, {6,15} (10.3)
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TABLE 10.2
ALL BAD SETsS

VIOLATION OF

SUB-

1 TRANS. ORDER 2 3 4 5 6
4,5 {1,1,1] [1,1,1} 3,6 6,9 57 7,10 7,9
4, 8 [1,1,1] [2,1,2] 3,8 6,12 5,12 7,11 7,12
4,9 [1,1,1] [1,2,2] 3,11 8,9 7,9 7,16 7,18
5, 10 [1,1,1] [1,2,2] 6,7 8,12 7,18 10, 12 9, 17
5, 11 [1,1,1] [2,1,2] 6, 10 8,15 8,12 10, 13 10, 12
8, 10 [2,2,1] [3,4,2] 7,11 9,11 8,15 11,15 10, 13
8,11 (2,1,1] [3,2,2] 7,16 9, 14 9,12 12, 14 12, 14
8, 17 {1,2,1] [1,2,2] 8, 10 11, 13 9, 17 14, 15 13, 17
9,11 [2,1,2] (2,3,4] 8, 17 12, 16 12, 16 17 15
9, 14 [0,1,2] (1,2,4] | 10, 11 13, 16 15,18

10, 18 [0,1,2] [1,2,4] | 10, 18 18 13
11, 13 [0,1,2] [1,2,2] | 11, 15

14, 18 10,1,1] [1,2,2] | 16, 17

16 1] 1,2] | 14

7 8 9 10 11 12
9,14 [0,1,2] [123]| 917 11,15 11,13 13,17 14,18
9, 16 [1,0,2] (2,1,3] | 10,13 11,17 12,16 15,18 16, 17

10,18  [0,1,2) [1,1,3] |10,15 12,14 12,18
11, 13 [0,1,2] {1,2,3] | 11, 15 14, 15 13,16
11, 18 [1,0,2] [2,1,3] | 12, 14 16, 17 15, 18
12,16 [0,1,2) [L1,3] | 12,17

13,16 {0,1,1] [1,1,2] | 13,17

14, 18 [0,1,1] [1,1,2] | 14,15

13 14

16, 17 [1,1,0] [1,1,1] | 15,18

which are obtainable from each other by permutations on {x,y,z}. It is
easily seen that there are no other two-order BaDp SETs so that, if each
of the three-order sgts in the table is bad, then it is Bap. To verify
that each of these is bad it will suffice to show a violation of a suborder
for each of the sETs that contain 1, or 7, or 13 as the order with smallest
identifying number. The reason for this is that all other sETs in Table
10.2 can be obtained from these (in the first column of the table) by
permutations on {z,y,z}.
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The second and third columns of the table show, respectively, fre-
quencies of the corresponding orders that will give a violation of
transitivity and of a suborder. For example, for the seT {1,4,8}, let
D = (1,4,8). Then yPpz, zPpx and zIpy, so that Pp is not transi-
tive. And with D = (1,1,4,8,8), corresponding to [2,1,2], we get
zPpyPpzPpi, so that Pp is not a suborder for this D.

As a consequence of this analysis, which has little to do with Theo-
rem 10.2 except to verify that each st in Table 10.2 is BAD, we have
the following lemma.

Lemma 10.3. If S does not guarantee a suborder on {x,y,z} then there is a
D & 8" for some n < 9 for which Pp on {x,y,z} is not a suborder, and 9
is the smallest number thatl will serve this purpose.

Proof. The necessity proof given later in this section will show that
all BAD SETS are indeed listed in Table 10.2. The ‘“Violation of sub-
order”” column shows that an n < 9 will always suffice to obtain a
D < 8» for which Py is not a suborder when S is bad.

Consider the Bap sET {1,8,10}, or {xyz,z(xy),y(xz)}, each order in
which happens to be a weak order. With n,, ng and n, the number of
times these orders are in D, we need

ny+ ni > Ng > Ny > Nae for yPpzPpzPpy,

and the smallest values of n;, ng and n,, that can produce this are 3, 4,
and 2, respectively. (yPpxPpzPpy is impossible to obtain with the three
orders.) Hence the smallest n that willdoisn = 9. ¢

NECESSITY PROOF OF THEOREM 10.2

Henceforth in this section a BET is any SET thal violales (is in none of)
categories 1 through VII. Our task is to show that every BET is bad. We
shall show that every BET includes a st in Table 10.2, which will
verify that Table 10.2 includes all BAD SETS.

To violate category III (single indifference) a BET must contain at
least one of orders 1 through 6 (no indifference) or at least one of
orders 13 through 18 (double indifference). For this reason, we shall
divide all BETS into three disjoint classes. Class A BETs contain none
of orders 13 through 18. Class B BETS contain none of 1-6. Class C
BETS contain at least one order from 1-6 and at least one order from
13-18. Without loss in generality we shall always assume that order 1
isin a class A BET and in a class C BET, and that order 13 is in a class B
BET. All other BETs arise from these under the five nonidentify permu-
tations on {z,y,z}.
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To be as explicit as possible in this proof, all alleged coop sETs (ob-
tained as in the bottom of Table 10.1) that contain order 1 or order 13
are listed for future reference. The empty set is omitted from each.

I {9,10,13,14,17,18}, {11,12,13,14,15,16}.
II. {1,3,5,6,7,8,13,14}, {1,2,4,6,11,12,17,18}.
IV. {1,6,9,10}.
V. {2,5,8,9,12,13,15,16,18}, {1,2,7,9,12,13,15,17,18},
{5,6,8,9,11,13,14,16,18}, {1,3,7,10,12,13,14,15,17}.
VL. {1,2,5,7,8,9,12,13,15.18}, {1,2,3,7,9,10,12,13,15,17},
{1,3,4,7,10,11,12,14,15,17}, {2,5,6,8,9,11,12,13,16,18}.
VIL. {1,3,4,6,7,10,11,14,17}, {1,2,5,6,8,9,12,13,18},
{

1,2,3,5,7,9,12,13,15}, {1,2,3,4,7,10,12,15,17}.

CLASS A BETS

These contain 1 and none of 13-18. To violate all categories, a class
A BET must contain an order in {2,3, . . . ,12} that is nof in each of
the above listed sETs that includes order 1. There are twelve such sgts.
Taking complements of these, a class A BET must contain at least one
order from each of the following lines:

Ll. 2, 4,9, 10, 11, 12 from II
L2. 3,5,17, 8,09, 10 II
L3. 2,3,4,5, 7 8,11, 12 v
L4. 3, 4,5, 6, 8, 10, 11 %
L5. 2, 4,5, 6,89, 11 \%
L6. 3, 4, 6, 10, 11 VI
L7. 4,5, 6, 8, 11 VI
L8. 2,5,6,8,9 VI
L9. 2,5,8,9,12 VII
L10. 3, 4, 7, 10, 11 VII
L11. 4, 6, 8, 10, 11 VII
L12. 5, 6, 8, 9, 11 VIL

Suppose first that the BET contains 4 or 11. Then, by the first column
of Table 10.2, if {5,8,9} M BET £ @, the BET is bad. Henceforth in this
paragraph assume that {5,8,9} M BeT = @. Then, by L2,

the BET must contain 3 or 7 or 10.

Suppose now that 11 € Ber. Then, by L8 and L9, the BET must con-
tain 2 or 6 and 2 or 12. Since {2,3,11}, {2,7,11}, {2,10,11}, {3,6,12},
{6,7,12}, and {6,10,12} are in Table 10.2, every BET that contains 11 is
bad. Dispense with 11 and assume that 4 & Ber. Then L12 requires
6 & BET, and L9 requires 2 or 12 in the BET. Since {2,3,6}, {2,6,7},
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{2,6,10}, {3,6,12}, {6,7,12}, and {6,10,12} are in Table 10.2, each BET
that contains 4 is bad. We can therefore dispense with both 4 and 11
in the rest of the proof for class A BETS.

Suppose next that the BeT contains 5 or 8. If it contains 10 also
then it is bad, so assume henceforth in this paragraph that 10 & BET.
Then, by L1,

the BET must contain 2 or 9 or 12.

Suppose now that 8 & BET. Then, by L6 and L10, the BET mnust con-
tain 3 or 6 and 3 or 7. Since {2,3,8}, {3,8,9}, {3,8,12}, {2,6,7}, {6,7,91,
and {6,7,12} are in Table 10.2, each BeT that contains 8 is bad. Dis-
pense with 8 and assume that 5 € Ber. Then L11 requires 6 & BET
and L10 requires 3 or 7 in the BeT. Since Table 10.2 includes {2,3,6},
{3,6,9}, {3,6,12}, {2,6,7}, {6,7,9}, and {6,7,12}, all BETs that contain
5 are bad.

Dispensing with 5 and 8 along with 4 and 11, and observing that,
by L7, the BET must then include 6, we assume henceforth that
6 & BET. This leaves the following reductions of our lines:

L1. 2,9,10, 12
L2. 3,79, 10
L3. 2,3,7,12
L9. 2,9, 12
L10. 3, 7, 10.

First, take 7 € BET. If either 9 or 12 is in the BET then it is bad by
Table 10.2. If neither 9 nor 12 is in the BET then it must contain 2,
by L9, and is therefore bad since {2,6,7} is in Table 10.2. Henceforth
assume that 7 & BeT. Take 2 &€ BeT. Then if 10 & BET also, the BET
is bad since {2,6,10} is in Table 10.2, and if 10 & BET then 3 € BET
by L10 and {2,3,6} is in Table 10.2. Henceforth assume that 2 & BET.
If 3 € BET, then, by L9, 9 or 12 must be in the BET, and since {3,6,9}
and {3,6,12} are in Table 10.2 the BET is bad. Deleting 3, L3 and L10
require 12 and 10 to be in the BET, and since {6,10,12} is in Table
10.2, the BET is bad.

CLASS B BETS

Class B BETs contain 13 and none of 1-6. Using the same procedure
that was used for class A BETS, each class B BET must contain an
order from each of the following lines:

L1l. 7, 8, 11, 12, 15, 16 from I
L2. 78,9 10,17, 18 I
L3. 9, 10, 11, 12, 15, 16, 17, 18 11
L4. 7, 10, 11, 14, 17 Vv
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L5. 8,10, 11, 14, 16 Vv
Le. 7, 10, 12, 15, 17 v
L7. 8,9, 11, 16, 18 v
L8. 10, 11, 14, 16, 17 VI
L9. 8, 11, 14, 16, 18 Vi
L10. 7, 10, 14, 15, 17 VI
L11. 7, 10, 11, 14, 15, 16, 17 VII
Li12. 8, 10, 11, 14, 16, 17, 18 VII.

Suppose first that {10,17} M BET # @. By Table 10.2, any such BET
that contains 8, 11 or 16 is bad. Henceforth in this paragraph, assume
that {8,11,16} N BET = @. By L1,

the BET must contain 7 or 12 or 15.

Take 10 & BET. Since L7 and L9 require 9 or 18 and 14 or 18, respec-
tively, and since {7,10,18}, {10,12,18}, {10,15,18}, {7,9,14}, {9,12,14},
and {9,14,15} are in Table 10.2, every BET with 10 is bad. Henceforth
assume that 10 & BET. Then take 17 &€ BET. This requires 14 & BET
by L5, and either 9 or 18 in the Ber by L7. Since {7,9,14}, {9,12,14},
{9,14,15}, {7,14,18}), {12,14,18) and {14,15,18} are in Table 10.2,
each class B Ber that contains 17 is bad. Henceforth assume that
17 & BET.

Suppose next that {11,16} N BT # @. If 7 & BET then the BET is
bad. Henceforth in this paragraph, assume that 7 & Betr. Then, by L2,

the BET must contain 8 or 9 or 18.

Take 11 € BET. Then L6 and 1.10 require 12 or 15 and 14 or 15. Since
(8,12,14}, {9,12,14}, {12,14,18}, {8,11,15}, {9,11,15} and {11,15,18}
are in Table 10.2, each Ber with 11 is bad. Henceforth assume that
11 & BET. Then take 16 & BeT. This requires 14 & BeT by L4, and
either 12 or 15 by L6. Since {8,12,14}, {9,12,14}, {12,14,18}, {8,14,15},
{9,14,15}, and {14,15,18} are in Table 10.2, all class B BeTs with 16
are bad.

Thus all class B Bets with 10 or 11 or 16 or 17 are bad. Deleting
these and observing by L8 that a BET must then contain 14, our lines
reduce to

L1. 7, 8,12, 15
L2. 7,89 18
13. 9,12, 15,18
Le. 7,12, 15
L7. 8,9, 18.
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First, take 12 € BEeT. If either 8, 9, or 18 is in the BET then it is
bad since {8,12,14}, {9,12,14}, and {12,14,18} are in Table 10.2. If
{8,9,18} N BET = @ then L7 is contradicted. Hence any BeT with 12
is bad. Henceforth assume that 12 & BEr. Take 18 & BET. L6 requires
7 or 15, and {7,14,18} and {14,15,18} are in Table 10.2. Hence all BETS
with 18 are bad. Henceforth assume that 18 & BET. If 9 € BET then,
since L6 requires 7 or 15, and {7,9,14} and {9,14,15} are in Table 10.2,
the BeT is bad. Henceforth assume that 9 & Ber. Then L3 and L7
require 15 and 8 to be in the BET, and since {8,14,15} is in Table 10.2,
all class B BETs that contain 14 are bad.

CLASS C BETS

These BETS contain order 1 and one of 13 through 18. Since {1,16}
is in Table 10.2, assume henceforth that 16 & BET. Proceeding as
before, we first pair up 1 and 13 and show that any BET that contains
both is bad. Order 13 is then deleted from further consideration. The
process is repeated with 1 and 14, with 1 and 18, with 1 and 15, and
finally with 1 and 17.

We shall detail only the proof for 1 and 13. Since {4,13} is in Table
10.2, 4 as well as 16 is deleted from further consideration. Taking com-
plements of sets displayed earlier in this section that contain both 1
and 13, we require an order from each of the following lines to be in
any BET that contains 1 and 13, and neither 4 nor 16.

L1. 2,9, 10, 11, 12, 15, 17, 18 from I1
L2. 3,5, 6, 8, 10, 11, 14 Vv
L3. 2,5,6,8,9,11, 18 A%
L4. 3, 6, 10, 11, 14, 17 VI
L5. 5,6, 8, 11, 14, 18 VI
L6. 3, 7, 10, 11, 14, 15, 17 v
L7. 6, 8, 10, 11, 14, 17, 18 VIIL.

Since {1,11,13} is in Table 10.2, 11 is deleted from further considera-
tion. Suppose next that 6 € srr. Only L1 and L6 do not have 6. Since
{6,15}, {6,10,13}, and {6,13,17} are BAD sETs, we dispense with 15, 10,
and 17 and consider the reductions of L1 and L6:

{2,9,12,18} and  {3,7,14}.

If 2 & BET then the BET is bad since {2,3,6}, {2,6,7}, and {2,14} are
in Table 10.2. If 9 € BET, then it is bad since {3,6,9}, {6,7,9}, and
{1,9,14} are in Table 10.2. Likewise for 12 and for 18. Hence every
class C BET that contains 6 as well as 1 and 13 is bad.

Henceforth assume that 6 & Ber. Take 10 € BET. Since {1,5,10},
{1,8,10}, and {1,10,18} are in Table 10.2, we dispense with 5, 8 and 18.
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Then L5 requires 14 &€ et and L3 requires 2 or 9. Since {2,14} and
{1,9,14} are in Table 10.2, such a BET is bad.

Henceforth assume that 10 & Ber. Take 14 € BET. Since {2,14},
{1,9,14}, and {1,14,18} are in Table 10.2, we dispense with 2, 9, and 18.
From L3 and L1 we require one order from each of

{5,8} and {12,15,17}.

Since {5,12,14}, {5,14,15}, {5,17}, {8,12,14}, {8,14,15} and {8,13,17}
are in Table 10.2, each BT with 14 is bad.

Deleting 14, the reductions we have made in our lines leave the
following:

L1. 2,9, 12,15, 17, 18
12. 3,5 8

L3. 2,5,8,9,18

L4 3,17

L5. 5, 8,18

Le. 3, 7, 15, 17

L7. 8,17, 18.

Suppose 17 € BeT. Since {5,17} and {1,8,17} are in Table 10.2, we
dispense with 5 and 8. This leaves 3 from L2 and 18 from L5. Since
{3,18} is in Table 10.2, all BETs with 17 are bad.

Deleting 17, L4 requires 3 & BET, and L7 requires one of 8 and 18.
We can dispense with 18 since {3,18} is in Table 10.2. Thus 8 & BET.
With L1 we then have {2,3,8}, {3,8,9}, {3,8,12}, {3,8,15}, and {3,18}
in Table 10.2, Hence every BT with 3 is bad. This exhausts L4, and
we have completed our proof that every BET that includes {1,13}
is bad.
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CHAPTER 11

Transitive Majorities

THis cHAPTER concludes our present discussion of conditions on triples
that guarantee a specified result. We shall first identify all conditions
that guarantee transitivity of strict simple majority. Section 11.2 then
shows what happens to these conditions when all individual preference
orders are presumed to be weak orders, and it goes on to specify all
conditions that guarantee a weak order.

Two specializations of the guarantee notion are examined in the third
section. The first involves “‘oddly guarantees,” which look only at pro-
files D that haye an odd number of nonempty components. The second
involves “‘odd-guarantees,” which look only at profiles that have an
odd number of nonempty weak order components.

The main theorems are summarized in Table 11.1 in the final sec-
tion, and it may prove helpful to examine this table before reading
further. Category representatives are listed at the bottom of the table,
which includes four new categories that are developed in the chapter.

As far as we are aware, Theorem 11.1 was first proved by Inada
(1970); Corollary 11.2 was first proved by Sen and Pattanaik (1969);
and Theorems 11.2 and 11.4 were first established by Inada (1969).

11.1 Conprtions THAT GUARANTEE TRANSITIVITY

In examining sets of orders that guarantee transitivity it will suffice,
as noted in Lemma 10.1, to consider an arbitrary triple {z,y,z} € X.
In this section we shall characterize all sets of strict partial orders on a
triple that guarantee transitivity. Recall that, by Definition 10.1, we
are here talking about the transitivity of strict simple majority. The
transitivity of simple majority (R) will be examined in sections 11.2'and
11.3.

As in section 10.2 we shall let a, b, ¢, d, e, and f denote the num-
ber of orders in a generic D for which ¢ >y, y >z, ¥y > z, z > ¥,
z > z, and x > z, respectively. Then S does not guarantee transitivity
on {z,y,z} if and only if one of the following six expressions holds for
some D & \US~":

(@a2b&e>d&e>f) bZ2a&d>c&f>e)
(@a>b&ec2>2d&e>f) b>a&d>c&f>e (1L1)
@a>b&c>d&e > f) b>a&d>c&f>e).
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In other words, S guarantees transitivity if and only if all six ex-
pressions in (11.1) are violated for every D &€ \US” An examination
of the seven categories of section 10.2 shows that the categorical ex-
pressions for categories II, ITI, IV, and VII guarantee a violation of
all of (11.1). The representatives of these categories from Table 10.1
are:

Ha+c=b+d

IIl. a+c+e=b+d+ f
IV.a+e=d+ fandc+e=b+f
VI. c > f>2aand b >e > d.

Hence, the sets of orders in these categories guarantee transitivity.
Clearly, neither category I (¢ = b) nor category V (a > band d > ¢)
guarantees a complete violation of (11.1). This leaves only category
VI with representative

a>b & f>c & d > e. (11.2)

This violates all expressions in (11.1) except for (b > a & d > ¢ &
f > e), which holds and does not contradict (11.2) only when a = b,
d > ¢, and f > e. Thus, if we replace the categorical expression (11.2)
for VI by

VILf>c&d>e&(@a>bor(a=b&mnot (d>c&f>e))

then all expressions in (11.1) are violated. Referring to Table 10.1,
the nonempty orders allowed for VI are 1, 2, 5, 7, 8, 9, 12, 13, 15,
and 18. Any subset of these guarantees f > c & d > e & a > b, so we
need only worry about the possibility of a = b & d > ¢ & f > e. The
only way to ensure ¢ = b is when all orders with x > y are absent,
which leaves only orders 7, 8, 15, and 18. Given only these four, both
d > c and f > e hold if and only if n; 4+ nys > ns and ng + nys > no.
Hence, to guarantee not (d > ¢ & f > e) in this case we set n;; =
nis = 0, for then we cannot have both n; > ng and ns > n;. Deleting
orders 15 and 18 from the list for VI, we are left with the following
orders which guarantee VI':

VI'. 1, 2,5, 7, 8,9, 12, 13.

Checking the top of Table 10.1 for the common properties of these
orders which no other nonempty orders possess, we see that the repre-
sentative for VI’ is characterized by

VI'. ¢ » y for each order, and z > y if ~ is not transitive.

Thus we shall say that a set S of orders on {x,v,z} is in calegory
VI’ if and only if the elemenls in {x,y,z} can be placed in an order,
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say zyz, such thal = > y for each > & S, and z > y for each > € S
for which ~ on {x,y,z} is not lransitive.

TaeoreEM 11.1. A set S of sirict partial orders on a triple {z,y,z}
guaraniees transilivily on the triple if and only if S is in al least one

of calegories 11, 111, 1V, VI’, and VII.

Proof. Since we already know that any S in any one of the categories
guarantees transitivity, it is only necessary to verify that S does not
guarantee transitivity when it violates all of categories II, III, TV,
VI, and VII. Now if S violates all seven of our original categories,
then S does not guarantee a suborder, and hence it does not guarantee
transitivity. (See Theorem 10.2.) Thus we need only consider the case
where S violates all of I, III, IV, VI’, and VII, and where S is in
at least one of categories I, V, and VI. For future reference we note
here some two-element sers that guarantee a suborder but do not
guarantee transitivity:

(8,15}, {12,16}, {13,16}, {15,18}, {7,18}. (11.3)

Suppose first that .S is in category V, and suppose for definiteness
that z > vy and z » y for all orders in S. To violate VII (x > y or
z > y) we need order 15 or 16; to violate VII (z > z or z > y) we need
12 or 13 or 15; and to violate VII (z > y or ¢ > z) we need 8 or 16
or 18 in S. The only way to have an element from each of {15,16},
{12,13,15}, and {8,16,18} in S and not to have one of the seTs in
(11.3) included in S is to have both 15 and 16 in S. But to violate
category I (y >z &y >zorz >y &z >yorz~y &y ~12) we
need one of 8, 12, 13, and 18 in .S, and each of these adjoined to {15,16}
gives a sET in Table 10.2. Hence, if S is in category V but not in
category II or VII, then S cannot guarantee transitivity.

Suppose next that S is in category I with & ~ y for all orders in S,
and that S is not in category V. Then S must contain an order for
each of the following four cases:

>y (> must be 8 or 18)
y >z (> must be 7 or 17)
x>z (> must be 7 or 15)
z>z (> must be 8 or 16).

Moreover, to violate III (single indifference), .S must contain one of
15, 16, 17, and 18. (Recall that none of 1-6 and 13 and 14 have z ~ y.)
If order 15 is in S, then since 8 or 18 is in S by z > y above, and since
{8,15} and {15,18} are in (11.3), S does not guarantee transitivity.
Orders 16, 17, and 18 are handled in similar fashion.
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Finally, suppose that S is in category VI with z » y and (z > y or
¢ > z or z > y) for each nonempty order in S. Since VI’ is presumed
to be violated by S, .S must contain 15 or 18. Also, violation of VII
(x > y or z > y) requires 7 or 15, and violation of VII (z > y or
z > z) requires 8 or 18. Since each combination of an order from each
of {15,18}, {7,15}, and {8,18} gives a pair in (11.3), .S does not guar-
antee transitivity. ¢

Theorem 11.1 and Lemma 10.1 have the following immediate
corollary.

CoroLraRY 11.1. S guaraniees transitivity if and only if, for each
iriple {z,y,z} C X, the sel of restrictions on the triple of the orders in S
is in at least one of categories 11, 111, IV, VI', and VIL.

This clearly does not require the restrictions of the orders in S
on different triples to be in the same category. For example, with
X = {x,y,2,w,t} and

S = {w(xd)yz, (e)yzw, (x2) (ty)w,w(ly)(z2)},

{y,z,w} is in categories II, I'V, and VII; {z,w,{} is in categories II and
VII; and each of the other eight triples is in one category: {z,y,w},
{x,z,w}, and {x,w,t} are in II; {x,z,t} isin III; {x,y,2} is in IV; {z,y,t},
{y,2,t}, and {y,w,l} are in VI'. According to the corollary, Pp is tran-
sitive for every D & S\ 82U S§3 - - -,

Using the “Violation of trans.” column of Table 10.2 and the obser-
vation that the sets in (11.3) do not require an n > 3 to obtain a Pp
that is not transitive, we have the following correspondent of Lemma
10.3 in section 10.3.

Lemma 11.1. If S does not guaraniee transilivily on X then there is a
D & 8= for some n < 5 for which Pp on X is not transitive, and 5 is the
smallest number that will serve this purpose.

The simple proof of this is left to the reader.

11.2 Inpivipuar WEak ORDERS

In this section we shall first note the effect on Theorems 10.2 and 11.1
when all orders in S are presumed to be weak orders, in which case S
guarantees a suborder on X if and only if S guarantees transitivity on X
according to Theorem 10.1. We shall then characterize all S that
guarantee a weak order, as defined by Definition 10.1.
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11.2 INDIVIDUAL WEAK ORDERS

INDIVIDUAL WEAK ORDERS AND TRANSITIVE STRICT MAJORITY

Suppose that every order in S is a weak order. Then categories V1
ry&x>yorx>zorz>y)and VI' (z » y,and z > yif ~
is not transitive on {x,y,z}) reduce to the same thing, namely z > 7y,
which includes category I (z ~ y), and category V (z > y &z > y) is
included in category VII (z > y or z > y for every nonempty order on
{x,y,z}). Thus the categories of Theorems 10.2 and 11.1 reduce to those
specified in the following corollary.

CoroLLARY 11.2. A sel S of weak orders on a iriple {x,y,z} guaraniees
a suborder (or, equivalently, lransitivily) on the iriple if and only if S is in
al least one of calegories I1, 111, IV, VI', and VIL.

WEAK ORDERS THAT GUARANTEE A WEAK ORDER

Definition 10.1 stated that .S guarantees a weak order if and only if
Pp is a weak order for every D & \US~. Clearly, S can guarantee a
weak order only if all > & S are weak orders. Hence, we need only
consider orders 1 through 12 of Table 10.1 for this case.

Similar to (11.1), S guarantees a weak order on the triple {z,y,z}
if and only if every one of the following six expressions is violated for
every D € \US™:

(a>b&ec2>d&e>)) b>a&d>c&f>e)
(a>b&ec>d&e > ) b>a&d>c&f>e) (11.4)
(a>b&c>d&e>)f) b>a&d>2c&f >e).

Each of these constitutes a violation of the transitivity of simple major-
ity. For example, the first says that zRpy & yRpz & zPpz, so that Rp
is not transitive. If all expressions in (11.4) fail for a given D then Rp is
transitive and therefore Pp is a weak order.

Of the categorical expressions used before, both those in 111 (a 4 ¢ +
e=bt+d+flandIViea+e=d+ f&c+ e =>b-+ f)guarantee a
violation of all of (11.4). Although it is not immediately obvious, I and
V also guarantee violations of (11.4) under weak orders. For example,
consider a = b in category 1. To ensure this, we must have ¢ ~ y for
all orders in S, or a = b = 0. Now under weak orders and z ~ y,
2Ppz © yPpz, and zPpx < zPpy, which can be statedas¢ > d = f > e,
and d > ¢ < e > f, which are seen to violate all expressions in (11.4)
when a = b. Of course, category I in this case is subsumed under
category lII (single indifference), so that I does not have to be listed
explicitly.
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Consider V, with representative a > b & d > ¢, which is character-
izedbyx > y&z » y, requiring b = ¢ = 0. If botha > 0and d > 0
then a > b and d > ¢, so that all expressions in (11.4) are violated. If
a = 0 and d > 0 then, since each order in S is presumed to be a weak
order, e > f = 0, which is the same as saying that (z ~ y for all >
and z > y for all > and z > y for some >) = (z » z for all > and
z > x for some >). It is easily seen that (a =b=0, d>c¢c =0,
e > f = 0) violates all expressions in (11.4). Similarly, if ¢ > 0 and
d = 0 then (11.4) is violated, and if a = 0 and d = 0 thene = f = 0 s0
that V reduces to the case where each order in S is empty.

Under weak orders, a typical representative in category V, namely
a>b & d > ¢, admits the following nonempty weak orders from
Table 10.1:

V. 2,5 8,9, 12. >y&z 3 y).

Although none of the other categories (II, VI, VII) guarantees a
violation of (11.4), a modification of VI under weak orders does violate
(11.4). A typical representative of this modification is

Vi*. a>b,andd+f>c+eifa > b.

The only expressions in (11.4) that might hold for this are (b > a &
d>c&f>¢e) and (b>a&d>c&f>e). However, to guarantee
a>b we need to have b = 0 (or z » y for all orders) and hence
a=0b=0if b > a. Then under a = b = 0 and weak orders, ¢ > d &
f>e and d > ¢ < e > f as before, so that the two remaining possi-
bilities from (11.4) are contradicted. As can easily be verified, the weak
orders admitted under the above representative of VI* and their
characterization are

VI* 2,7,8,9,12. (x » y,and x > z > y if > is linear).

This differs from the display for V above only in the second order listed
(5or 7).

We shall say that a set of orders on {x,y,z} is in calegory VI* if
and only if there is a distinct pair u,v € {z,y,z} such that u » v for all
orders in the sel and, with w the other element in {z,y,z}, u > w > v for
every order that is linear on {z,y,z}.

TaeoREM 11.2. A sel S of weak orders on a iriple {x,y,z} guaraniees

a weak order on the triple if and only if S is in af least one of categories
IIL, 1V, V, and VI*.

Proof. It remains only to show that each sEr of weak orders on
{z,y,2} that is in none of categories I1I, IV, V, and VI* does not guar-
antee a weak order on the triple. For future reference we list all minimal
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seTs of weak orders that do not guarantee a weak order. All these can
be obtained from the four for order 1 by permutations on {z,y,z}.

) (2,3} (3,6} {45} (5,7} 16,7}
} {2,6} {3.8) {49} {5,10}  {6,12}
} {210} {39} {412}

1} {211}

(11.5)

Since one of orders 1 through 6 must be in the sgT to violate III
(single indifference), we assume for definiteness that order 1 is in the
seT. Taking complements of allowable orders for the cases of the other
categories whose allowable orders include 1, we see that a violating sgT
with order 1 must include an order from each of the following lines.

L1. 2,3,4,5,7, 8,11, 12 IV (zyz or (xz)y or duals)

L2. 2, 4,5, 689,11 Vy:&y » 2)

L3. 3,4, 5,6, 8, 10, 11 Vi zy&e »2)

L4. 2,3,4,5,6, 8,11 VI* (x » z & x > y > zif linear).
If either 4, 5, 8, or 11 is in the sEr then the first column of (11.5)

applies to show that the st does not guarantee a weak order. Hence-
forth delete 4, 5, 8, and 11. If 2 & sEr then L3 requires 3, 6, or 10, and
{2,3}, 12,6}, and {2,10} are in (11.5). Delete 2. If 3 & sEr then L2
requires 6 or 9, and {3,6} and {3,9} are in (11.5). Delete 3. If 6 & st
then L1 requires 7 or 12, and {6,7} and {6,12} are in (11.5). Since the
deletion of 6 exhausts L4, the proof is complete. ¢

It is easily seen that when D = (j,k) for any set {j,k} in (11.5), then
Pp is not a weak order. Hence we have the following correspondent of
Lemmas 10.3 and 11.1.

Lemma 11.2. If S does nol guaraniee a weak order on X then there is a
D & S~ for some n < 2 for which Pp on X is not a weak order, and 2 is
the smallest number that will serve this purpose.

11.3 Opbp NUMBERS OF VOTERS

The notion of guarantees has been specialized in two ways that
involve odd numbers of voters. The first of these specializations is
identified by the following definition.

DerintTioN 11.1. Let S be a nonemply set of sirict partial orders on
a triple {x,y,z}. Then S oddly guarantees

(1) a suborder
(2) transitivity
(3) a weak order
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if and only if, for every n > 0 and every D & S™ for which lhe number of
nonemply components in D is odd,

(1) Pp on {x,y,z} is a suborder
(2) Pp on {x,y,z} is transitive
(3) Pp on {a,y,z} ts a weak order.

The second specialization involves an odd number of voters with
nonempty weak orders but, like Definition 11.1, it permits strict partial
orders in S that are not also weak orders.

DeriniTION 11.2. Let S be a nonempty set of sirict partial orders on
{x,y,2} thal contains a nonemply weak order. Then S odd-guarantees

(1) a suborder
(2) transitivity
(3) a weak order

if and only tf, for every n > 0 and D & S for which the number of non-
empty weak order components is odd,

(1) Pp on {x,y,z} is a suborder
(2) Pp on {z,y,z} is transitive
(3) Pp on {x,y,z} is a weak order.

Note that odd-guarantee is defined only for the case where S contains
a nonempty weak order in accord with the last part of the definition.
If all orders in S are weak orders then, except for the case where S
contains only the empty weak order, Definitions 11.1 and 11.2 are
equivalent.

ODDLY GUARANTEES

We note first that the oddly guarantees notion does not affect the
suborder or transitivity cases.

TueoreM 11.3. Suppose that S is a nonemply sel of sirict partial orders
on {z,y,z2}. Then S oddly guaraniees a suborder if and only if S guaranlees
a suborder; and S oddly guaraniees transitivity if and only if S guarantees
transitivity.

Proof. The ““if”” assertions follow from the definitions. For the sub-
order ‘“‘only if”’ part, suppose that S does not guarantee a suborder,
with D & S~ and zPpyPpzPpx. Let D' = (D,D,>) where > ¢ and
> & 8. Then D’ has an odd number of nonempty components and Pp.
is not a suborder. For the tranmsitivity “‘only if” part, suppose that
S does not guarantee transitivity, with D € S» and 2PpyPpzRpx. If
zPpx then the preceding proof applies. Assume henceforth that zIpz.
Then, if £ ~ z for all orders in S, Pp/ is not transitive when D’ is
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defined as before; and if z ~ z is false for some order in S then we
can define D’ as before with > = @, > & Sandeitherz ~ zorz > 2,
in which case Pp- is not transitive. ¢

Naturally, the conclusion of Theorem 11.3 holds if all orders in S are
required to be weak orders.

In contrast to Theorem 11.3, the weak order guarantee case is
affected by the odd condition of Definition 11.1, as is seen by comparing
the categories in the following theorem to those (III, IV, V, VI*) of
Theorem 11.2.

TueoreM 11.4. A sel S of weak orders on a triple {x,y,z} oddly guaran-
tees a weak order if and only if S is in at least one of categories 11, 111, IV,
VI, and VIIL.

Proof. Suppose first that S is in none of categories 1I, III, 1V, VI,
and VII. Since these are the categories used in Corollary 11.2, S does
not guarantee a suborder. Then, by Theorem 11.3, S does not oddly
guarantee a suborder and hence cannot oddly guarantee a weak order.

In view of Corollary 11.2, the proof is complete if we can show that,
if S does not oddly guarantee a weak order, then S does not guarantee
transitivity. Hence suppose that § does not oddly guarantee a weak
order, with D & S” such that each component of D is nonempty, n is
odd, and, to violate negative transitivity, *Ppy, zRpx, and yRpz. If
either Rp is Pp then S does not guarantee transitivity. Henceforth
suppose zPpy, zIpx, and yIpz. If S contains an order for which z > z &
y»zory>z2&z 3z, then D' = (D,D,>) shows that S does not
guarantee transitivity. If there is no such order in S then, for each
component of D, z > =2z >y and y > z=1a > z, and therefore
z » =z > y. Now, since n is odd, zIpz requires z ~ z for at least
one component in D, with the number of components with # > z equal
to the number with z > z. But then the number with z » z exceeds
the number with > z and hence, in view of z > =z > y, we must
have zPpy, contrary to yIpz. Hence when zPpy, zIpz and yIpz hold,
z>x&y » zory > &z » z for some order in S. ¢

ODD-GUARANTEES
Two new specializations of categories V and VI, characterized by:

Vo.z2p»y&z >y and (x >y &z > yif ~ is transitive),
VI 2 > y&(x > yorz > zorz > y) & (x > yif ~ is transitive),

are needed for our main result for odd-guarantees. We shall say that
a set S of orders on {x,y,z} is in calegory V° if and only if there is an
alternative in {x,y,z}, say y, such that either x > y & z > y & (x > y &
z > y if ~ is transitive) for all nonempty > in S, orelsey » 2 &y » z
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& (v > x &y > z if ~ is lransitive) for all nonemply > in S. A set S
of orders on {x,v,z} is in category VI° tf and only if there is a distinct
pair u,p € {x,y,z} such that u » v for all > in S and, with w =
{z,y,2} — {up}, (@>voru>worw>v)&{{u>vif ~ is lran-
sttive) for every nonempty order in S.

TueoreM 11.5. Suppose that S is a set of strict partial orders on
{2,v,2} and S conlains a nonemply weak order. Then:

a. S odd-guarantees a suborder if and only if S guaraniees a suborder,

b. 8 odd-guarantees transitivity if and only if S odd-guaraniees a weak
order, and S odd-guaraniees a weak order if and only if S is in al
least one of categories 11, 111, 1V, V°, VI°, VI, and VII.

Proof. We assume throughout that S contains a nonempty weak
order. Part (a) follows from the fact that if S does not guarantee a
suborder then a I’ with components in S can be constructed to show
that S does not odd-guarantee a suborder.

To prove part (b) we note first that each of the categories in part
(b) odd-guarantees a weak order when S contains a nonempty weak
order. This is immediate from Theorem 11.2 for categories I1I and IV,
since these categories permit no strict partial orders that are not also
weak orders. The other five categories are examined in the next five
paragraphs. Since each of II, VI’, and VII guarantees transitivity
(Theorem 11.1), it is only necessary to show that [, is transitive for
each of these when D has an odd number of nonempty weak order
components.

Category II. Using the representative for category II in Table 10.1,
we have admissible orders 2, 3, 4, 5, 9, 10, 15, 16 with

zIpy @ ns + ns + ny = n3 + ng + nao
yIpz ® ns + ny + nype = ne + 05 + ns.

Hence if either of these holds then D must have an even number of
nonempty weak order components, violating the odd hypothesis. It
follows that Ip must be transitive (trivially) when the odd hypothesis
holds.

Category VI'. Using the representative of category VI’ that pre-
cedes Theorem 11.1, orders 1, 2, 5, 7, 8, 9, 12, and 13 are allowed with

zlpy i+ ne+ns+neg+ nie + iy =0
yIDz®n1+n7=n2+n5+ns+n9
zlpz © ns + ng = ny + ny + n7 + nae.

Each of the transitivity hypotheses ulpv & vlpw, with {u,p,w} =
{x,y,2}, implies that the number of nonempty weak order compo-
nents in D is even.
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Category VII. The representative for category VII in Table 10.1
allows the orders 1, 3, 4, 6, 7, 10, 11, 14, and 17 with

zlpy & ni = ng + ny + ne + nwo + nu + Ny
yIlpz e n, + ns + ny+ ny + nwo + nur = ne
zlpz & ny 4+ ne + ny = ny + ng 4+ na.

Once again each of the transitivity hypotheses violates the odd con-
dition for the number of nonempty weak order components.
Category V°. The representativez »> vy &z » yand (z > y &z > y
if ~ is transitive) for category V° allows the nonempty orders 2, 5, 9,
13, 15, 16, and 18 from Table 10.1. Since one of 2, 5, and 9 must be in
D for the odd hypothesis, both zPpy and zPpy hold, from which it
follows that Pp and Ip are transitive. '
Category VI°. The representativez » y & (x > yorz > zorz > v)
& (x > y if ~ is transitive) for category VI° allows the nonempty
orders 1, 2, 5, 9, 12, 13, 15, and 18 in S. The odd hypothesis requires
at least one of 1, 2, 5, 9, and 12 in D, and therefore zPpy. Transitivity
of Pp is then violated if and only if (yPpz & not zPpz) or (zPpx & not
zPpy). With
YPpz = ny > ne 4+ ns + ng + nas
zPpx & ns > ny + ng + nia + mas,

either of the ways to violate transitivity of Pp gives 0 > 2n, + ny +
ni2 + ni; + nis, which is impossible. The only way to violate transi-
tivity of Ip is to have zIpz & zIpy, in which case 0 = 2n, + ny +
N1z + Nis + Nag, OF Nz = Ng = Nyy = M5 = Nig = 0. But then yIpz re-
quires n; = n;, which gives an even number of nonempty weak order
components in D.

Thus if S is in at least one of categories II, III, IV, V°, VI°, VI,
and VII, then S odd-guarantees a weak order. 1t follows from this and
from Theorem 11.1 that

S guarantees transitivity or S is in category V° or VI° = S odd-
guarantees a weak order = S odd-guarantees transitivity.

To complete the proof of Theorem 11.5(b), we shall prove that if S
does not guarantee transitivity and is not in category V° or VI° then
S does not odd-guarantee transitivity.

Begin by assuming that S does not guarantee transitivity. For defi-
niteness, suppose there is a D &€ S such that

zPpz, zPpy and yRpx. (11.6)
If y > x for some order in S then D' = (D,D, >) shows that S does not

guarantee a suborder and hence, by Theorem 11.5(a), that S does not
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odd-guarantee a suborder, so that S does not odd-guarantee transi-
tivity. Hence, given (11.6), S does not odd-guarantee transitivity when
y > « for some > in S.

Thus, we need only consider further the case where (11.6) holds and
z » y for all > in S, which gives

x » yforall > in S, 2Ppz, zPpy and xIpy.
Suppose z ~ y for some nonempty weak order in S. Then D' =
(D,D, >) shows that S does not odd-guarantee transitivity. Hence

we need only consider further the case where

xz » y for all > in S, > y every nonempty weak order in S,
xPpz, zPpy and zIpy.

These conditions allow the following ten nonempty orders.

1. zyz 13. z~z >y~z:
2. xzy 15. y~z2>2~y
5. zzy 16. y~z >~y
9. (z2)y e~y >z~zx
12. z(yz) 1. t~z >y ~u=x.

Now suppose that S is in neither of categories V° and VI°, Then S must
contain 16 or 17 to violate VI°, it must contain 1 or 12 or 17 to violate
Veintheform [z »> y &z » yand (x > y & z > y if ~ is transitive)],
and it must contain 5 or 9 or 16 to violate V° in the form [z > y &
zy & (@ > y&zx > zif ~ is transitive)].

Suppose first that both 16 and 17 are in S. Then, since one of 1, 2, 5,
9, and 12 must be in S (a nonempty weak order), D = (oneof 1, 2, 5, 9
and 12; 16, 16, 17, 17) gives 2Py, yPz, and zPz, so that S does not odd-
guarantee transitivity.

Suppose next that 16 is in S. Then, for V° to fail, one of 1 and 12
must be in S if 17 is not. But D = (1,16,16) and D = (12,16,16) give
zPy & yPz & zPx and zPy & yIz & zPx, respectively, and in neither
case is P transitive. Similar results obtain if 17 is in S and either 5 or 9
is in S.

Hence if S does not guarantee transitivity and is in neither category
Ve nor VI°, then S does not odd-guarantee transitivity. ¢

WEAK ORDERS

Our final theorem summarizes the odd-guarantee aspects when every
order in S is a weak order.
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THEOREM 11.6. Suppose that S is a set of weak orders on {z,y,z} and S
contains a nonempty order. Then the following four stafements are
equivalent:

. S guarantees a suborder,

. S odd-guarantees a suborder,

. S odd-guaraniees transitivity,

. S odd-guarantees a weak order.

a0 T

Proof. Immediate from Definitions 11.1, 11.2, and Theorems 11.3
and 11.4. ¢

11.4 SuMMARY

The main theorems for guarantees on a triple {z,y,z} are summarized
in Table 11.1. In all the cases considered, only four distinctly different
sets of categories have been used. The appropriate theorem (T) or
corollary (C) from the text is noted in the “Text” column.

TABLE 11.1

A sEr oF ORDERS GIVES THE RESULT IF AND ONLY IF THE SET IS IN ONE OF
THE CATEGORIES. FOor THE OpD-GUARANTEE CASES THE SET IS
PresuMED To CoNTAIN A NONEMPTY WEAK ORDER

RESULT ON A TRIPLE {2,y,z} TexT CATEGORIES

Guarantees a Suborder T10 2
Oddly Guarantees a Suborder T11 3| I 11, IIT, IV, V, VI, VII
Odd-Guarantees a Suborder T11 5
Guarantees Transitivity TI11.1
Oddly Guarantees Transitivity T11.3
When all orders are weak orders:

Guarantees a Suborder Cl11.2

Guarantees Transitivity C11.2

Oddly Guarantees a Suborder T11 3 | I1, II1, IV, VI, VII

Oddly Guarantees Transitivity T113

Oddly Guarantees a Weak Order | T 11 4

Odd-Guarantees a Suborder Ti1l.6

Odd-Guarantees Transitivity TI11 6

0Odd-Guarantees a Weak Order T11 6
Guarantees a Weak Order (with all

orders weak orders) T11 2 IIL IV, V, VI*
Odd-Guarantees Transitivity
Odd-Guarantees a Weak Order T11.5 | IY, 01, IV, Ve, VI°, VI, VII
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ILa~y
IL (y >z&y >2or(x >y&z>y)or (za~y&y~1z)
III. (g ~y) >zorz > (x~y)or(x~z) >yory > (x~z)or(y~z >
zorx > (y~1z)
IV.2 >y >zorz >y >zor(x~z) >yory > (x~12)

V.arpy&z >y
Vo.z»>y&z > yand (x > y &z > y if ~ is transitive)
V. z >y&(@ >yora >zorz >y)
VI ¢ > y& (@ > yora >zorz > y) & (x > yif ~ is transitive)
VI'. z > y & (x > y if ~ is not transitive)
VI*. 2 > y& (z > z > y if > is linear)
VIL. y > zory >z

Representatives of the categories are given in the lower part of the
table. All other characterizations for the categories can be obtained by
permutations on {z,y,z} and, in the cases of V through VII, by taking
the duals of the displayed expressions. Thus (z ~ z for all orders) falls
in category I, and (z > z or y > z for each nonempty order) is in
category VII.
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CHAPTER 12

Condorcet Conditions

TruUs FAR in Part II we have concentrated on conditions for D which
imply that some alternative in finite Y has a simple majority over
every other alternative in Y. In this chapter we shall maintain the
focus on nonempty R(Y,D) as defined by (8.8), but instead of worrying
about D that give R(Y,D) # (} we shall examine the position that says
that an element in R(Y,D) should be the social choice when this subset
of Y is not empty. We shall not argue that this is an untenable position,
nor shall we conclude that it is the only sensible position. Our purpose
rather is to point out some of the aspects of the case that show why the
question of whether an z € R(Y,D) should be the social choice when
R(Y,D) is not empty is by no means an idle question.

The next chapter, which concludes Part 11, is a natural continuation
of the present chapter. In it we shall examine a number of social choice
functions that agree with simple majority (Definition 8.1), including
some that give F(Y,D) = P(Y,D) when P(Y,D) # @ and some that
do not.

The material in both chapters foreshadows a number of topics that
will be covered in more general form in Part ITI.

12.1 Tuae Conporcer CONDITIONS

In the preceding chapters we have seen that if X is finite and if D is
restricted in certain ways then a social choice function F: X © — &
can be fully defined by ¥(Y,D) = R(Y,D) for all (Y,D) € £ X D. We
shall now examine the more general situation in which there may be D
for which R(Y,D) = @. Unless staled otherwise, we shall assume thal
n > 2, that X is finile and has more than two allernatives, and that D is
the set of all n-tuples of sirict partial orders on X,

A major fascination of some social choice theorists has been the ques-
tion of how F(Y,D) ought to be defined when R(Y,D) = @. Although
we shall not propose a definitive answer this interesting and perhaps
perplexing question, it will be examined at length in the next chapter.

First, however, we shall begin with a more basic question: If one of
the feasible alternatives has a simple majority (perhaps strict) over
each of the others, should such an alternative be the social choice? An
even more basic question relates to the appropriateness of simple
majority when only two feasible alternatives are involved, but this
will not be at issue here. Our frame of reference in the succeeding
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discussion will be the types of situations in which simple majority
seems reasonable for binary social choices.

THREE CONDORCET CONDITIONS

Because Condorcet (1785) was a strong proponent of the position
that an alternative with a strict simple majority over each other
alternative should be the social choice, his name is frequently linked
with this position. Our purpose in this section will be to examine three
versions of the “‘Condorcet criterion.”

DeriniTioN 12.1. A social choice function F: X X D — X salisfies the

(1) weak Condorcet condition
(2) Condorcet condition
(3) strong Condorcet condition

if and only if, for all (Y,D) € X X D,

(1) F(Y,D) = P(Y,D) whenever P(Y,D) 5 §
(2) F(Y,D) € R(Y,D) whenever R(Y,D) = ¢
3) F(Y,D) = R(Y,D) whenever R(Y,D) == §.

Thus, F is weakly Condorcet when it specifies the social choice as the
unique alternative that has a strict simple majority over the other feas-
ible alternatives whenever such an alternative exists. If P(Y,D) = 0
and R(Y,D) # @, then a weak Condorcet function does not necessarily
include any x € R(Y,D) in F(Y,D), but this is required if F satisfies
the Condorcet condition (2). Moreover, when there is an alternative
that has a simple majority over each other feasible alternative then
(2) does not permit F(Y,D) to contain an alternative that is defeated
under simple majority by another feasible alternative. The strong
Condorcet condition requires F(Y,D) to contain all alternatives in
R(Y,D) and no others when R(Y,D) is not empty. In keeping with our
previous usage of “weak’ and ‘“‘strong,” a strong Condorcet function
is a Condorcet function, and a Condorcet function is a weak Condorcet
function.

In passing, we note another condition that is similar to those in the
definition. It is: F(Y,D) N R(Y,D) # @ whenever R(Y,D) # @. This
is implied by (2) and (3), but it neither implies nor is implied by (1).

THE WEAK CONDORCET CONDITION

To illustrate some aspects of the weak Condorcet condition, and
therefore of (2) and (3) as well, consider the case where X = {x,y,a,b,c}
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and n = 5 and each individual preference order is linear. We imagine
two situations as follows:

Situation 1: D obtains and Pjp is a linear order with zPpyPpaPpb
PDC.

Situation 2: D’ obtains and, in D',  has two first-place votes, one
second-place vote, one fourth, and one fifth; y has two
first-place votes, two second-place votes, and one third.

Given only the simple-majority information about D in situation 1, it
seems quite reasonable to take F(X,D) = {x}. And given only the
positional information of situation 2, it seems reasonable to take
F(X,D") = {y}. (In situation 2, the best positional array for a third
alternative would be one first-place vote, two seconds, and two thirds.
Compare this to the positional array for y.)

The interesting fact about situations 1 and 2 is that they may be one
and the same situation with D = D’ as follows:

ryabe
.yacbz
crxzyab (12.1)
rybca
.ybazxe

S w10

Although this might raise a question in some minds about the universal
acceptability of the weak Condorcet condition, Condorcet used a sim-
ilar example, reproduced by Black (1958, pp. 176-177), to argue against
a positional approach. Specifically, Condorcet wished to demonstrate
a deficiency in the “method of marks,”” set forth several years earlier
by Borda (1781) in a paper that has been translated and commented
on by de Grazia (1953). Under linear orders for the individuals, Borda
essentially proposed that, with m alternatives, the highest-ranked
(most preferred) alternative in each order be assigned a mark of m — 1,
the next highest a mark of m — 2, and so on down to the least preferred,
which is assigned a mark of 0. The marks obtained by each alternative
are then added over the voters, and the alternative with the largest
total is declared the winner.

In (12.1), the total marks for z, v, a, b, ¢, are 12, 16, 8, 7, 7, respec-
tively, so that y wins under this method. Furthermore, as Condorcet

observed for his example, if insteadof m —1>m —2 - - - >1>0
for the marks from best to worst we use numbers a;, . . . , a» that
satisfy a; > a; > - -+ > an, then y will still beat x under a simple

summation procedure. For y’s total score will then be 2a, + 2a: + as,
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and z’s total score will be 2a;, + a; + as + as, and 2a; + 2a. + a; >
2a1 + as + a4 + as when a; > a» > az > a4 > as.

Because Condorcet took simple majority as the norm (when it ap-
plies), he “proved” by his example that Borda’s procedure, or any
simple modification of it as indicated in the preceding paragraph, can
lead to a “wrong’’ result.

The point at issue here, as suggested by the descriptions of situations
1 and 2 above, is the kind of information in D that is to be taken into
account in determining the social choice. The weak Condorcet condi-
tion is essentially based on binary comparisons within each order. If
in the comparison between x and y, x > y in some order, then only this
fact and not the number of other feasible alternatives that are ranked
between x and y is taken into account. In a positional procedure, on
the other hand, the crucial information is the positions of r and y in
each order, not just whether x > yory > x.

A REDUCTION CONDITION AND INDEPENDENCE

To further illustrate a difference between these two viewpoints, we
state a condition that is somewhat weaker than one suggested by Con-
dorcet. Arrow (1963, p. 27) also mentions the following condition
informally. It is not used in his analysis.

DeriNiTION 12.2. A social choice function F: X X D — X satisfies the
reduction condition if and only if, for all (Y,D) € X X D,

F(Y,D) = F(Y — {y},D) whenever y € Y and x >p y
for somex € Y.

Suppose that z,y € Y and x >>p y, so that ¢ >, y for all i. Then the
reduction condition says that y is not in ¥ (Y,D). However, this is not
new since unanimity (Definition 7.2) already covers it. The reduction
condition goes beyond unanimity by requiring the choice set from Y
under D to be precisely the same as the choice set from ¥ — {y} under D.

The force of the reduction condition comes into play when it is used
along with the condition of independence from infeasible alternatives,
which we have discussed in Chapter 1 and section 7.1. For present and
future reference we shall give a formal definition of this condition.

DEeriniTION 12.3. A social choice function F:X X D — X salisfies the
condition of independence from infeasible alternatives if and only if,
forall (Y, D) € X X D,

F(Y,D) = F(Y,D') whenever the restriction of >,on Y
equals the restriction of >, on Y

foreachi € {1, . .. ,n}.
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This is Arrow’s Condition 3 (1963, p. 27), which he refers to as ‘“the
independence of irrelevant alternatives.” As noted before, this says
that the social choice shall in no way depend on preferences that in-
volve infeasible or unavailable alternatives,

Now under the condition of independence from infeasible alterna-
tives, the reduction condition says that we must completely ignore y
and the individual preferences that involve y when making a choice
from Y, provided that z >>p y for some ¢ € Y. Thus, when both con-
ditions are used, a feasible but dominated (>>p) alternative receives
the same treatment as infeasible or unavailable alternatives.

Since P(Y,D) = P(Y — {y},D) whenever y & Y and z>>py for
some z € Y, the reduction condition is wholly compatible with the
weak Condorcet condition. This does not say that every F that satisfies
the weak Condorcet condition also satisfies the reduction condition,
for the weak Condorcet condition says nothing about the behavior of
F when P(Y,D) = @. It does say, however, that, for any X and n,
there are F’s that satisfy both conditions. For example, any F that
satisfies unanimity, the weak Condorcet condition, and has F(Y,D)
as a unit subset of Y for all cases, also satisfies the reduction condition.

On the other hand, the Borda method of marks does not satisfy the
reduction condition. For (12.1), this method gives F({x,y,a,b,c},D) =
{y}. However, y >>p a and y >>p b in (12.1) and therefore, under the
reduction condition we get F({z,y,a,b,c},D) = F({z,y,c},D). But if
only z, y and ¢ are treated as feasible, then (12.1) reduces to

rTye
ycuwx
.cxy
xTyec
.¥yzxec

AR

in which case the method of marks gives F({z,y,c},D) = {z,y}. In this
reduced case each of z and y has two first-place votes, two seconds,
and one third.

In order not to convey a wrong impression here, it should also be
pointed out that the Pareto dominance in (12.1) is not essential for
the kind of oddity expressed by situations 1 and 2. For example, if the
third individual order is changed from cxyab to cxaby then strict sim-
ple majority is still linear (zyabc), no alternative is dominated (>>p)
by another, and

z has two first-place votes, one 2nd, one 4th, one 5th;
y has two first-place votes, two 2nd’s and one 5th.
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AN EXAMPLE BY DODGSON

A further illustration of the Condorcet versus positional approach is
provided by an example used by C. L. Dodgson (Lewis Carroll), which
is made available by Black (1958) in his reprintings of several of
Dodgson’s pamphlets on election procedures. This example is inter-
esting in that it brings out a position of a serious student of election
procedures who later changed his mind. The example, which is on
page 216 in Black’s book, has #X = 4 and n = 11 with D as follows:

3 voters: bacd 6 have b first and

3voters: bade 5 have b last;
3voters: acdbd 5 have ¢ first and
2 voters: a d ¢ b. 6 have a second.

Dodgson used this to argue against the single-vote plurality method
when one candidate (b here) has an absolute majority (since 6 of 11
have b first). Noting the positions of a and b in the orders, Dodgson
concludes that “There seems to be no doubt that a ought to be elected;
and vet, by the above Method,  would win.” He did not explicitly
mention that a >>p ¢ and a >>p d, which of course brings the reduction
condition into play, but this dominance is somewhat beside the point
as far as his position is concerned.

In later writings [see pp. 222-234 in Black (1958)] Dodgson rejects
his former position and becomes an advocate of the weak Condorcet
condition which, in the above example, would make b the winner.

A STRONG INDEPENDENCE CONDITION

In concluding this section we present a theorem suggested by Bengt
Hansson and Peter Gardenfors which shows that the weak Condorcet
condition is incompatible with another condition that we shall call the
strong independence condition.

DeriniTion 12.4. A soctal choice function F: X X D — X salisfies the
strong independence condition if and only if, for all (Y,D) € x X D,

x e F(Y,D)=x & F(Y,D) whenever x >,y <z >y
andy >,z <y >,z for
ally € Y — {z}.

This condition implies the condition of independence from infeasible
alternatives, for if the restriction of D on Y equals the restriction of
D’ on Y then the “‘whenever” conditional of strong independence holds
for all z € Y and therefore F(Y,D) C F(Y,D’) and F(Y,D’) € F(Y,D).
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To illustrate the incompatibility of strong independence with
Borda’s method and to simultaneously point out a potential weak-
ness in the strong independence condition, I have chosen the following
example with n = 4 and X = {a,y,z,w}:

D D’
l.zywz l.zywze
2.yzaxw 2.zyzw
.xwzy 3.xzwy
4. x wy z 4.z wyz

Suppose Borda’s method is used with any set of marks a; > a; > a;z >
a4 for the most preferred through least preferred alternative for each
voter. Then F(X,D) = {z} and F(X,D’) = {z}. This violates strong
independence since, in going from D to D', no change has been made in
the preferences of z relative to each other alternative, and x € F(X,D)
but x & F(X,D’). The example has been structured so that the reduc-
tion condition plays no part (u>>p v or u>>ps v never holds). More-
over, the unique choices made by any Borda method (a; > a: > a; > a4)
seem rather reasonable in view of the structures of D and D’.

That strong independence is incompatible also with the weak Con-
dorcet condition is brought out by the following theorem of Hansson
and Girdenfors.

THEOREM 12.1. Suppose that n > 3, #X > 3 and D includes all
n-tuples of weak orders on X. Then there is no social choice funcition
F:3 X D — X that salisfies both the weak Condorcel condition and the
strong independence condition.

Proof. Contrary to the theorem, suppose that n > 3, #X > 3, and
both the weak Condorcet condition and the strong independence con-
dition hold. Since the latter implies independence from infeasible
alternatives, it will suffice to work with an arbitrary triple ¥ = {z,y,z}
in X. In addition, we shall work with three voters since if n > 3, all
but three voters can be assigned the empty preference order throughout
the proof.

We begin with the familiar cyclic majority profile D = (xyz,zxy,yzz).
Suppose first that z € F(Y,D). Then, with D’ = (zyz,zxy,zyz), strong
independence requires x € F(Y,D’). But this conflicts with weak Con-
dorcet, which requires F(Y,D’) = {z}. Therefore z & F(Y,D). By
the symmetry of D, a similar result obtains if we suppose either
y € F(Y,D) or z € F(Y,D). Hence F(Y,D) = @, which contradicts the
definition of a social choice function. ¢
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A variation of this proof shows that if F satisfies the reduction condi-
tion and strong independence then with (n = 3, #£X > 3) it cannot agree
with simple majority. For with D = (xyz,zxy,yzx), x € F(Y,D) and the
strong independence condition imply that x € F(Y,(zzy,2zy,zyx)). The
reduction condition and independence then give ¢ € F({x,z},(xz,zx,22)),
which does not agree with simple majority. A similar conclusion holds
if we begin with y € F(Y,D) or z € F(Y,D).

Several other versions of the independence condition are discussed
by Hansson (1972) and Blau (1971).

12.2 TaE StRONG CONDORCET CONDITION

With Y(>»p) = {z:x2 € Yandy >p zfornoy € Y}, we know from
Theorem 8.5 that R(Y,D) = R(Y(>p),D). Therefore the reduction
condition of the preceding section is compatible with the Condorcet
and strong Condorcet conditions as well as with the weak Condorcet
condition. However, there are other conditions that are compatible with
the weak Condorcet condition but incompatible with the strong con-
dition. We shall comment on several of these in the rest of this chapter,
both for the purpose of illustrating some differences between the weak
and strong conditions, and to indicate that there may be reasons for
rejecting the strong condition even when the weak condition is judged
to be acceptable.

One simple condition that is compatible with the weak Condorcet
condition but not the Condorcet or strong Condorcet condition is (with
z>pyex »,yforalli):

if2>py, € Y and y € F(Y,D), then ¢ € F(Y,D). (12.2)

If P(Y,D) = {y} then x >p y for no z # y, and therefore this condi-
tion is consistent with weak Condorcet. However, with X = {z,y,z}
and D = ({(z,2)},{(7,2)}), we get x >p y and R(Y,D) = {y}, which
shows that (12.2) is incompatible with the Condorcet condition. As in
some of our earlier examples, intransitive indifference is vital to this
conclusion. If we restrict  to be a set of n-tuples of weak orders on X,
it then follows from Lemma 8.1 that (12.2) is compatible with the
strong Condorcet condition.

PAIRED DOMINANCE

We shall now consider a condition that can fail only when F(Y,D)
contains more than one alternative for some (Y,D), and which there-
fore is easily seen to be compatible with the Condorcet condition as
well as the weak Condorcet and reduction conditions. This new condi-
tion is designed along the lines of (12.2), but it does not use >p or >p
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directly. Instead, it uses a kind of paired dominance relation > p that
is a binary relation on X X X:

(z,2*) > p (y,y*) © x, x*, y and y* are all different and, for each >
in D, either (z > y & z* » y*)
or{zyv&a*>y"or(x>y*&a* >y
or (z » y*&z* > y).

Thus (z,2*) >p (y,y*) if and only if all four alternatives are different
and each individual prefers one of x,x* to one of y,y*, and does not
prefer the other one of y,y* to the other one of z,z*.

The condition that we shall use with > p is:

if (z,z*) >p (y,y%), if z,2* € Y and if (12.3)
v,y* &€ F(Y,D), then x or «* is in F(Y,D). )
This condition prohibits the possibility that neither z nor z* is in the
choice set when both y and y* are in the choice set and (z,2*) >»p
(y,¥*), and it may thus seem like a fairly reasonable condition.

If D is confined to n-tuples of weak orders then (12.3) is compatible
with strong Condorcet since (z,z*) >p (v,y*) = «Ppy or zPpy* or
2*Ppy or x*Ppy*, so that we cannot have both y and y* in R(Y,D)
when (2,2*) >p (y,y*) and z,2* € Y.

Therefore, as with (12.2), an example which shows the incompati-
bility of (12.3) and strong Condorcet requires a D that exhibits in-
transitive indifference. One such D with X = {z,2*y,y*z} and n = 4
is given by the following four strict partial orders on X:

l.y*>xz >y and z > x*
2. y* > zx* >y and y* >z
3.y >ax > y* and y >z
4.y > z* > y* and z >

Alternatives y and y* tie or beat each other alternative on the basis of
simple majority, and each of z, *, and z is beaten by another alterna-
tive. Therefore R(X,D) = {y,y*}. Moreover, (z,2*) > p (y,y*). There-
fore, if the strong Condorcet condition holds then (12.3) must fail.

An interesting aspect of this example is that, although (z,2*) >»p
(v,¥*), it is true also that (y,y*) > p (z,2*). Therefore > p is not asym-
metric for the given X. This raises several questions that we leave as
exercises for the reader: 1. Is >p asymmetric when © is a set of
n-tuples of weak orders? 2. Is it possible to construct an example in
which (2,2*) >p (y,¥*), v,y* € R(Y,D), z,z* & Y and neither = nor
z* is in R(Y,D), and it is false that (y,y*) >p (z,2*)?
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PAIRED DOMINANCE WITH WEAK ORDERS

In concluding this section we shall show that a strong version of
(12.3) contflicts with the strong Condorcet condition when D is assumed
to be the set of all n-tuples of weak orders on X. Let

(z,2*%) »p (v,¥*) &z, ¢*, y and y* are all different
and, for each > in D, either
@ey&z* zyor(z »y*&z* »y).

Our strong version of (12.3) is:

if (z,2*) »p (v,¥*), if 2,2* € Y and if y,y* € F(Y,D), then
zorz*isin F(Y,D). (12.4)

Under weak orders, (x » y & z* » y*) implies that «* > y when
y* >z and that z > y* when y > «*. It follows that (z,2*) »»p
(v,y*) = zRpy or xRpy* or z*Rpy or x*Rpy* when every > in D
is a weak order. Moreover, if there is a strict relation > in any of
the individual statements that yield (z,2*) > p (y,y*), then xPpy or
zPpy* or z*Ppy or x*Ppy*. Therefore, to obtain an example where
(x,z*) ¥ b (v,¥%), v,¥* € R(Y,D) and neither z nor «* is in R(Y,D),
we require (x ~y & z* ~y*) or (x ~y* & z* ~y) for each weak
order in D. With X = {z,2*y,y*,z,w} and n = 4, the following case
satisfies this requirement.

L. (zy)z(z*y*w)
2. (x*yz)w(xy*)
3. (zy*w)z(z*y)
4. (z*y*)w(xyz).

Recall that the notation here means that >, is a weak order with
T~ Y >12 >1 2% ~1¥* ~;w. An examination of the given D shows
that R(X,D) = {y,y*} and that (z,2*) > p (y,y*). Therefore (12.4)
must fail if the strong Condorcet condition holds.

We shall go one step further in this case and prove that this example
is the smallest example that shows the incompatibility of (12.4) and
strong Condorcet under weak orders.

THEOREM 12.2. Let D be the sel of all n-tuples of weak orders on X.
There is a social choice function F:X X D — X that salisfies both the
strong Condorcet condition and (12.4) if and only if either #X < 6 or
n < 4.

Proof. With both #X > 6 and n > 4, the preceding example shows
that we can construct a D with weak orders such that there is no social
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choice function that satisfies both (12.4) and the strong Condorcet
condition. We now show that such an example exists only if both
#X > 6and n > 4.

To contradict the combination of (12.4) and the strong Condorcet
condition we require distinct z,2*,y,y* such that yy* € R(X,D),
(x,2*) »p (v,¥*), and {z,2*} N R(X,D) = #. We have already noted
that this requires (z ~y & z* ~ y*) or (x ~ y* & z* ~ y) for each
weak order in D. Suppose one of y,y* has a strict simple majority
over one of z,z*; say yPpz. It follows easily then that z*Ppy*, con-
trary to y* € R(X,D). Hence we must have alpb when a € {z,z*}
and b € {y,y*}. Now partition the n weak orders in D according to
the following five exclusive and exhaustive cases:

nyof n have (zy)(z*y*)
n, of n have (x*y*) (xy)
nzof n have (xy*)(x*y)
nsof n have (x*y) (xy™*)
nsof n have (xx*yy*) (all four indifferent).

The alpb analysis shows that n; = ny = n3 = n,. If ny = 0 then
ns = n and thus z,2* & R(X,D) if y,y* & R(X,D), contrary to what
we need. Hence n, > 0 and therefore n > 4. Moreover, zfpz*.

To have {z,2*} N R(X,D) = @ we require at least one more alter-
native, say z. Suppose zPpz and zPpz*, which with #X = 5 is the
only way to get {x,x*} N\ R(X,D) = . Using the five cases of the
preceding paragraph, it is obvious that, wherever z is ranked, it will be
preferred to the same number of elements in {x,z*} as in {y,y*}, and
less preferred than the same number of elements in {x,z*} as in {y,y*}.
It follows that either zPpy or zPpy*, which contradicts y,y* € R(X,D).
Therefore #X = 5 will not do, and we need #X > 6 to obtain the de-
sired example. ¢

An explicit example of an F that satisfies both (12.4) and the strong
Condorcet condition when #X < 6 or n < 4 is the strong Condorcet
function that has F(Y,D) = Y(>p5) whenever R(Y,D) = §.

12.3 StroNG MONOTONICITY

To note another aspect of the strong Condorcet condition we now
introduce the *“strong” part of a generalized version of strong monoto-
nicity as defined for two-alternative situations in Definition 2.3. Qur
new condition says that if x,y € F(Y,D) and if D’ is like D in all re-
spects except that, for some i, z increases in preference with respect to
some other alternative in Y, then x € F(Y,D) and y & F(Y,D).
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Suppose that 2,y € Y and that D = D’ except that, for

some i, >, on X — {z} equals >, on X — {z}, z >,z=
z>.zand x ~,z=z »,zforall z € X — {x}, and there (12.5)
is a z € Y for which either (x ~,z &z >.z) or (z >,z &

x »:z). Thenz € F(Y,D’) andy & F(Y,D’) if z,y € F(Y,D)

and z # y.

Because this prevents a large number of social-choice ties and therefore
pushes F in the direction of decisiveness, it might be looked on favor-
ably. However, because it allows y to be deleted from the choice set
when there is only a minimal change in individual preferences that
may not alter the preferences between z and y, some people will regard
it as too strong.

One example which shows the incompatibility of (12.5) and strong
Condorcet is given by #X = n = 4 and

l.zyzw
2.y x wz
J.zxyw
4. w y z x.

(12.6)

R(X,D) = {x,y}. If order 3 is changed to zzyw in D', then R(X,D’) =
{z,y}. Hence both (12.5) and strong Condorcet can not hold, for
F(X,D) = {x,y} and (12.5) imply that F(X,D’) = {z}.
REDUCTION AND SIMPLE-MAJORITY AGREEMENT

A simpler example for incompatibility is

D = (xyz,yzx) with n = 2
D’ = (xyz,yrz) and #X = 3.

The strong Condorcet condition requires R(X,D) = R(X,D’) = {z,y},
but if F(X,D) = {z,y} and (12.5) holds then F(X,D’) = {z}.

This example exhibits dominance since y >>p z and y >>p- z. If the
reduction condition is used we obtain

F(X’D) = F({x,y}’D)
F(X,D") = F({z,y},D’).

Furthermore, if we assume only that F agrees with simple majority
(Definition 8.1) and do not necessarily subscribe to the entire strong
Condorcet condition, then

F(X,D) = F(X,D") = {ax,y}.

Since this conflicts with (12.5), we observe the following result.
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TueoreM 12.3. Let D be the set of all n-tuples of weak orders on X.
Then if #X > 3 and n > 2 there is no soctal choice function F: ¢ X D —
X that salisfies (12.5), the reduction condilion and also agrees with simple
majorily.

Proof. If #X > 3 let w represent all alternatives other than z, y, z.
D = (zyzw, yzzw, (zy)(zw) for each i > 2) and D' = (xyzw, yzzw,
(zy)(zw) for each ¢ > 2). Then reduction and simple majority agree-
ment give F(X,D) = F(X,D) = {z,y}, but F(X,D) = {z,y} and
(12.5) require F(X,D’) = {z}. &

12.4 DuaAvrity

According to Definition 3.1, binary duality holds with X = {z,y} if
and only if, when D* is the dual of D,

F({z,y},D) N\ F({z,y},D*) € {#,{zy}}. (12.7)

Clearly, this says that F({z,y},D) = {z} < F({x,y},D*) = {y}, and
that F({z,y},D) = {z,y} e F({z,y},D*) = {z,y}.

There are several ways to generalize this condition to situations
where #X > 3. One of these generalizations, based on permutations on
X, is called neutrality. Neutrality says in effect that the social choice
function shall not have a built-in bias or favoritism for one or more
alternatives. We shall consider it further in section 13.1.

Another generalization of binary duality, which we shall simply
refer to as duality, is defined in the manner of (12.7) as follows.

DeriniTION 12.5. A social choice funclion F: ¢ X © — & is dual if
and only if, for all Y & X and D € D, if D* is the dual of D (i.e., >}
is the dual of >, for each 1), then

F(Y,D) N\ F(Y,D¥) € {§,Y]}. (12.8)

In a very rough sense, duality says that if we turn all individual
orders in D upside down, then F(Y,D) will be turned upside down.
More precisely, if we view the choice set F(Y,D) as dividing Y into
satisfactory alternatives (those in F(Y,D)) and unsatisfactory alterna-
tives (those in Y but not in F(Y,D)), and if F(Y,D) is a proper subset
of Y, then the operation of duality on D will make each satisfactory
alternative unsatisfactory and it will make at least one originally
unsatisfactory alternative satisfactory. The exception to this is when
F(Y,D) = Y, in which case no change is caused in the choice set by
taking duals.

In the direct terms of (12.8), duality says that the choice sets F(Y,D)
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and F(Y,D*) can contain an alternative in common only when each
set contains all alternatives in Y.

Since Pp» is the dual of Pp, it is clear that duality and the weak
Condorcet condition are compatible, for if z beats every other alterna-
tive in Y under D, then z will be beaten by every other alternativein ¥V
under D*. However, duality is incompatible with both the Condorcet
and the strong Condorcet conditions.

To show this, it is only necessary to take X = {z,y,z,w} with a D
that has zIpy, xIpz, xIpw, and the strict majority cycle yPpzPpwPpy
on {y,z,w}. Then R(X,D) = {z} = R(X,D*), which clearly violates
(12.8) if the social choice function agrees with the Condorcet condition.
An example of such a D is obtained with n = 3 and the weak orders

1. y(zz)w 1.* w(x2)y
2. w(xy)z 2.* z(xy)w (12.9)
3. z(zw)y 3.* y(xw)z.

This analysis might well be considered as an indictment against
duality rather than against the Condorcet condition, since in the
example just given it may seem reasonable to many people to take x
as the social choice in both the initial situation and its dual.
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CHAPTER 13

From Borda to Dodgson

WHEN THERE ARE more than two alternatives in X, it is possible to
define a number of different social choice functions that agree with
simple majority. The purpose of this chapter is to examine some of
these.

All the functions that we shall present here share a number of prop-
erties. They are all unanimous, independent of infeasible alternatives,
and agree with simple majority. Moreover, they satisfy natural gen-
eralizations of the binary conditions of monotonicity, duality (the
neutrality generalization), and anonymity.

Section 13.2 discusses functions that do not satisfy the weak Con-
dorcet condition, with special emphasis on Borda’s function. Section
13.3 goes on to discuss three functions that satisfy the weak Condorcet
condition. Two of these are based on positional information when
P(Y,D) = @. The other one determines F(Y,D) using only the infor-
mation given by Pp.

As in the preceding chapter, we shall assume that X is finite and
that D is the set of all n-tuples of strict partial orders on X, unless
specified otherwise in context. & is the set of all nonempty subsets of X.

13.1 ConpiTions FOR SociaL CHOICE FUNCTIONS

All explicit social choice functions discussed in later sections of this
chapter agree with simple majority. That is, when 2,y € X and & # y,
F({x,y},D) = {«} if and only if z has a strict simple majority over y,
or xPpy. If zIpy then F({z,y},D) = {x,y}.

The functions that we shall examine divide into two exclusive
classes, according to whether they satisfly the weak Condorcet con-
dition of Definition 12.1. We shall refer to those that satisfy this con-
dition as Condorcel social choice funclions, even though they might not
satisfy the strong Condorcet condition or the Condorcet condition (2)
of Definition 12.1. Functions that do not satisfy the weak Condorcet
condition will be referred to as non-Condorcet soctal choice functions.
The functions in this class that we shall present are based on a po-
sitional approach and will be discussed in the next section. The Con-~
dorcet functions are in section 13.3.

Whether Condorcet or not, all social choice functions defined later
have a number of properties in common in addition to their agree-
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ment with simple majority. These conditions are all generalizations
of the binary conditions for simple majority employed in section 5.3.
Two of these have already been defined in Part II, namely unanimity
(Definition 7.2) and independence from infeasible alternatives (Defi-
nition 12.3). The latter was not used explicitly in Part I since we dealt
there with only two-alternative situations. For such situations the
independence condition is implicit in the definition of a social choice
function.

The purpose of this section is to set forth the other properties that
are shared by the functions considered later. These are generalizations
of monotonicity, duality, and anonymity.

MONOTONICITY

Following the lead of Definition 2.1, monotonicity for the general
case says that if « € F(Y,D) [¢ & F(Y,D)] and if D’ is like D ex-
cept perhaps that z increases [x decreases] in one or more of the indi-
vidual preference orders in going from D to D’, then z &€ F(Y,D’)
[x & F(Y,D")].

DeriniTION 13.1. A social choice function F:X X D — & is mono-
tonic if and only tf, for all Y € X and D,D € ®, and for any i &
{1, . ...n}, if ;= > forallj =i, if >;,on X — {z} equals >. on
X — {a}, and if:

D z>iz=z>zandez~;z2=2 pizforall 2z E X — (&}, and
if x € F(Y,D), then x € F(Y,D’);

@2 z>.zx=z>lcandz~z=z » .z forall 2 E X — {x}, and
if e & F(Y,D), then x & F(Y,D'").

Under independence, X — {z} in the definition reduces to ¥ — {x},
and >; = >;reducesto >, = >;on Y.

There are several forms of strong monotonicity that add things to
monotonicity. One of these, which holds for no function considered
later since it is incompatible with the conditions of independence from
infeasible alternatives and simple majority agreement, says that if the
hypotheses of monotonicity (1) hold and if (x ~.z& z >.z) or
(z>.2&2x »;z) for some z € X, and if y € F(Y,D) and y # =,
thenx € F(Y,D’) and y & F(Y,D’). A weaker form of strong monoton-
icity, that holds for some later functions but not for others, is stated
as (12.5). A still weaker form is obtained from (12.5) by requiring an
actual inversion of preference between x and y before y must be deleted
from the choice set.

NEUTRALITY

Binary duality was written one way in (12.7). A different way of
expressing this is as follows:
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if ¢ is a permutation on {z,y} and if, for each i, z >,y &
o(z) >7o(y) and y >z & o(y) >%0(x), then x € F({x,y},D) &
o(z) € F({z,y},D"), and y € F({z,y},D) = o(y) € F({z,y},D°).

Since there are only two permutations on {z,y}, namely the identity
permutation {o(x) = z, o(y) = y} and the permutation {s(z) =y,
o(y) = z}, this is easily seen to be equivalent to (12.7).

For any permutation ¢ on X we take ¢Z = {o(z):2 € Z} for any
nonempty Z C X. The neutrality generalization of binary duality is
defined as follows.

DeriniTioN 13.2. A social choice funciion F: % X © — X is neutral
if and only if, for all Y € x and D € D, and any permulation ¢ on X,
fe>.yoa@) >Iay) forallz,y € Xandalli € {1, . . . ,n},then

F(aY,D%) = oF(Y,D). (13.1)

This preserves the interpretation of binary duality stated after Defi-
nition 3.1, since it prohibits the social choice function from having a
built-in bias for one or more alternatives. Under neutrality, the only
change caused is a uniform ‘“re-labeling” of the alternatives. For ex-
ample, if 2,y € Y and F(Y,D) = {z}, and if D’ is obtained from D
by interchanging x and y in every individual order, then neutrality
requires F(Y,D’") = {y}.

For a second example, suppose that D = (zyz,yzx) and

F({x,y,z},D) = {x,y}.
Then, with o(z) =y, o(y) = z and o(z) = 2, D° = (yzz,zxy) and
oF({2,y,2},D) = {y,z}. Neutrality requires that F({x,v,z},D°) = {y,z}.

Suppose that X = {z,y,z,w}, Y = {x,y,w}, D = (zyzw,zwyz,wzyz),
and let o(z) =y, o(y) =z o(z) =z and ¢(w) = w. Then D’ =
(yzaw,ywzz,wezy). If F({z,y,w},D) = |z} then neutrality implies that

F(a{x,y,w},D") = F({yvz9w},D”) = UF({x,y’w}’D)
= ofz} = {y}.

Since zPpy < o(x)Ppea(y), and therefore csR(Y,D) = R(¢Y,D?), neu-
trality is compatible with the strong Condorcet condition of Definition
12.1 (3).

ANONYMITY

The binary anonymity condition of Definition 5.3 generalizes im-
mediately to the following.

Drrinition 13.3. A social choice function F: 9 X D — X is anony-
mous if and only if, for all Y € X and D € D, and any permutation ¢
on {1, ... ,n},

F(Y7(>11 I 1>n)) = F(Y’(>v(l), R ,>v(n)))' (132)
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As in the binary case, this is designed to treat voters equally. It
plays the same role for voters that neutrality (but nof duality as in
Definition 12.5) plays for alternatives.

In the ensuing sections, all social choice functions that we shall con-
sider are unanimous, independent of infeasible alternatives, monotonic,
neutral, anonymous, and they all agree with simple majority.

13.2 Non-Conporcer Funcrions

We shall begin with the plurality social choice function because it is
a good example of a commonly used function that is widely felt by
social choice theorists to be generally unsatisfactory, despite the often-
accepted conditions that it satisfies that were stated in the preceding
paragraph. These conditions do not of course give a complete charac-
terization of plurality or of any other function considered here. With

p(x,Y,D) = #{i:y >, zfornoy € Y},
the plurality social choice function is defined by
F(Y,D) = {z:2 € Y and p(x,Y,D) > p(y,Y,D) for all y € Y}.

When every > in D is linear, p(x,Y,D) for x € Y is the number of
first-place votes for z within Y, and F(Y,D) contains the alternatives
in Y with the most first-place votes within Y.

It is easily checked that the conditions in the final paragraph of sec-
tion 13.1 hold for plurality, and that it satisfies the reduction condition
of Definition 12.2. In general, plurality is neither weakly Condorcet
nor dual (Definition 12.5), as is shown by the following linear-orders
example for five voters and #X = 4.

Ty wz
Ty zw
.ywzzx
Zywa
wy z2a.

AN

Here yPpt for all { > y, but plurality takes F(X,D) = {z} since z has
more first-place votes than any other alternative. Duality is violated
since F(X,D) = F(X,D*) = {x}.

Arguments against plurality are usually based on its failure to satisfy
the weak Condorcet condition or on a positional viewpoint. Both apply
to the foregoing example. For the positional viewpoint we note that y has
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one first-place vote and four second-place votes, whereas x has two
first-place votes but three fourth-place votes.

A second example where both arguments apply is obtained with
X = {z,y,z} and the following D for a 100-member group:

34 voters have xyz
33 voters have yzz
33 voters have zyx.

Plurality selects . Weak Condorcet selects y, which has a 67 to 33 ma-
jority over z and a 66 to 34 majority over x. The positional argument
notes that z has 34 first-place votes and 66 third-place votes, whereas
v has 33 first-place votes, 67 second-place votes, and no third-place
votes. A typical positional argument would also favor z over z in this
case.

THE BORDA FUNCTION

A positional summation procedure, applicable when individual
orders are linear, was described after (12.1). A generalization of this
procedure of Borda (1781) that can deal with weak orders is mentioned
by Black (1958, p. 62) and Luce and Raiffa (1957, p. 358). Their gen-
eralization will be referred to as the Borda social choice function. To
define it we first define

r(z,Y,D) = #{y:y € Yand ¢ >;y} — #{y:y € Yand y >z},

so that r,(x,Y,D) is the number of alternatives in Y that individual i
has less preferred than z, minus the number of alternatives in Y that
individual i prefers to x. The total number of binary comparisons in D
that involve z and an element in Y and in which z is preferred, minus
the total binary comparisons that involve z and an element in Y and
in which z is less preferred, is therefore

r(x,Y,D) = E%r.(x,Y,D).
The Borda social choice function is then defined by
F(Y,Dy = {z:z € Yand r(z,Y,D) > r(y,Y,D)forally & Y}. (13.3)

Before looking at various conditions for the Borda social choice func-
tion, we shall first note some aspects of the individual numerical rep-
resentations r, as defined above. In doing this we shall presume that
we are working with a fixed Y, and we consider only the alternatives
in Y,

Suppose first that each >, on Y is linear. If #Y = m and >, is the
linear order z;z, - + - z» on Y then the r, values for z;, 3, . . . , &m
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are, respectively, m —1,m —3,m —5, . . . , —m + 3,and —m + 1.
For example, with m = 5 the ranking values are 4, 2, 0, —2, —4. Since
these are equally spaced, we can just as well use ranking values of

4,3,2,1,0form =5, 0orof m —1,m — 2, . . ., 1,0 for the general
case, and this will cause no change in (13.3). To be more specific, the
change fromm —1,m -3, .. ., —m+1ltom—-1,m—-2,...,0

causes a change from r(z,Y,D) to Y4r(x,Y,D) + constant, in taking
sums over i. Hence, under linear orders, (13.3) is equivalent to the
procedure described after (12.1).

Suppose next that each >, on Y is a weak order, and consider the
following Borda-type procedure. Assign preliminary values of m — 1,
m—2,...,0 to the m alternatives in Y for a given order so that
these values agree with the linear Borda assignment for some linear
order that includes the weak order. The final ranking value for an
alternative x for the given weak order equals the average of the pre-
liminary values for the alternatives in that order that are indifferent
to 2. Thus a, b, ¢, d, e for the weak order (ab)c(de) would get final
ranking values of 3.5, 3.5, 2, 0.5, 0.5. Sums of these values are then
used to determine F(Y,D). Now it is easily seen that if s,(x,Y,D)
is the final ranking value for alternative z and the order >, then
s(z,Y,D) = Yr,(z,Y,D) + constant for each z € Y. It follows that
this procedure is equivalent (under weak orders) to (13.3).

Continuing with weak orders, suppose that Y = {a,b,c,de}. The
following three weak orders, the first of which is linear, have the
r. values shown for a, b, ¢, d, e.

1. abcde 4,20 —2, —4
2. (ab)e(de) 3,30 -3, -3
3. a(bede) 4, -1, -1, -1, —1.

It is clear from this that r, does not maintain equal differences between
adjacent indifference sets over the several orders. These differences for
the three orders are respectively 2, 3, and 5. A modification of the
Borda procedure requires these differences to be equal, in which case
the following ranking values could apply:

1. abede 4,2,0, —2, —4
2. (ab)e(de) 2,2,0, -2, -2
3. a(bcde) 2,0,0,0,0.

Ranking values of 4, 3,2,1,0and 2,2, 1, 0, 0 and 1, 0, 0, 0, 0 would
lead to the same result under the modified procedure.

A curiosity of this modified equal-spacing procedure that makes it
somewhat suspect is noted by two related seven-voter examples with
X = {z,y,z,w}.
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I I1
4 voters. (xyz)w 4 voters. x(yzw)
1 voter. wzy:z 1 voter. yzwzx
1 voter. wzzy 1 voter. ywzzx
1 voter. wyzz 1 voter. zwyx

In each case the individual orders are weak orders and Pp is a linear
order with xPpyPpzPpw, so that a Condorcet function picks z in each.
The Borda function also selects z in each case, as one can easily verify.
However, in case I, the modified Borda selects w, which is not only
the lowest alternative in the Pp order but also has the smallest regular
Borda total. And, in case I, the alternative with the smallest modified
Borda total is z, which has the largest regular Borda total and is at
the top of the Py order.

The r, for the Borda procedure need not give equal adjacent inter-
vals within the same weak order either, as is shown by (ab)(cd)e with
ranks 3, 3, —1, —1, —4, where the intervals from 3 to —1 and from
—1 to —4 are not of equal length.

With weak orders, it should be clear that for all z,y €Y,
r.(x,Y,D) > r.(y,Y,D) &z >,y, so that r, faithfully preserves the
preference order on Y. However, as we noted in connection with
Theorem 7.1, it is not possible to have an < numerical representa-
tion for >, when >, is a strict partial order for which ~; is not
transitive. As described in Theorem 7.1 (2), the “best” general nu-
merical representation that can be obtained for strict partial orders
is given by a real-valued function u, that satisfies

z >,y =ulz) > uly)
T =,yS ul(x) = ut(y)

where z =,y if and only if (x ~, 2z y ~,z for all z € Y). (Since
we are taking Y as fixed, and defining ~, with respect to Y, =, may
change as Y changes. For example, we could havez,y € Y /M Y’, with
x =,y for Y but not x ~,y for Y'.) With respect to Y, it is easily
seen that for a strict partial order >; on Y,

X >1y=>f‘i(l',Y,D) > rl(y,Y,D)
z =, y=r(xY,D) =r(yY,D).

The first of these follows from transitivity (if y >,z then 2 >, z, and
if z >,z then z >,y), and the second follows from (7.5), which says
thaty >,z 2 >,zand z >,z < z >,y whenever z =, y.

With Y = {z,y,z,w}, the strict partial order >, = {(z,2),(y,w)} has
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r; values of 1, 1, —1, —1 for z, ¥, z, w. This shows that we can have
ri(x, Y,D) = r.(y,Y,D) when it is not true that z ~,y. However, this
possibility might not cause any grave concern since, at least in the ex-
ample given, it seems reasonable to assign the same “rank” to x and y.

CONDITIONS FOR THE BORDA FUNCTION

It is easily seen that the Borda function (13.3) satisfies the con-
ditions in the final paragraph of section 13.1. Moreover, it satisfies
the version of strong monotonicity in (12.5), and it is dual (Definition
12.5). Duality would fail for the Borda function if and only if for
some ¢ & Y, z € F(Y,D) and z & F(Y,D*) and F(Y,D) s Y. Since
r(z,Y,D) = —r(x,Y,D*), and since Zyr(y,Y,D) = 0, x € F(Y,D) N
F(Y,D*) would require r(y,Y,D) = r(y,Y,D¥) = 0 forall y € Y, in
which case F(Y,D) = F(Y,D*) =Y.

As we have noted in section 12.1, the Borda function is not weakly
Condorcet and it does not satisfy the reduction condition of Definition
12.2. There is of course a modification of the Borda method that does
satisfy the reduction condition. It is obtained by first deleting all alter-
natives from Y that are dominated (3>p) by some other alternative in
Y, and then applying the Borda procedure given above to Y(>>p)
instead of to Y. As we noted in section 12.1, by changing order 3 in
(12.1) to cxaby, this modification of the Borda procedure still does not
satisfy the weak Condorcet condition.

The analysis of section 12.1 suggests a positional condition that holds
for the Borda function, but which is not generally satisfied by Con-
dorcet social choice functions. I will refer to this as the condition of
permuted dominance. It will be defined only for situations where each
>.on Y is a linear order. It is based on the following relation.

z(Y,D)y & x,y € Y, each >, on Y is linear, and there is a permu-

tation ¢ on {1,2, . .. ,n} such that r.(z,Y,D) >
reyY,D) for i =1,..., n, and r(z,Y,D) >
repy(y, Y,D) for at least one ¢ € {1, . . . ,n}.

Thus, under positions within the lihear orders >, on Y, z(Y,D)y if and
only if

(1) the number of first-place votes for z is as great as the number
of first-place votes for y,

(2) the number of first and second-place votes for z is as great as the
number of first and second-place votes for y,

(3) the number of first and second and third-place votes for z is as
great as the number of first and second and third-place votes
for y,
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and so forth, with “‘as great as’ replaced by “greater than’ in at least
one of (1), (2), 3), . . ..

A specific example of this was stated before (12.1) by situation 2,
where y(Y,D")z.

DeriniTioN 13.4. A soctal choice function F: ¢ X D — X salisfies the
condition of permuted dominance if and only if, for all Y € X and
D & D, if the restriction of every >, on Y is linear and

if  z(Y,D)y, then y& F(Y,D).

If every >, on Y is linear and if z(Y,D)y, then it is clear from the
definition of z(Y,D)y that r(x,Y,D) > r(y,Y,D). Hence the Borda
social choice function satisfies the condition of permuted dominance.
Example (12.1) shows that this condition does not generally hold for
Condorcet social choice functions.

REDUCTION AND PERMUTED DOMINANCE

The reduction condition is based on the usual dominance >>p,
whereas permuted dominance is based on interindividual positional
information. An interesting incompatibility between these conditions
is brought out by the following lemma, which says nothing directly
about Condorcet and Borda functions, but which indicates in a more
general way the conflicting philosophies of the two positions.

Lemma 13.1. Suppose that F: X X D — X is a social choice function,
that D contains all n-tuples of linear orders on X but need not contain any
other n-tuple of strict partial orders on X, and that n > 4 and #X > 4.
Then F does not satisfy both the reduction condilion and the condition of
permutled dominance.

Proof. Let the hypotheses of the lemma hold. If #X > 4, let w denote
all but four alternatives (x,y,a,b), arranged in a linear order. Consider
n = 4 first, with D as follows:

zaybw
zaybw
ybzraw
4. yz a b w.

w o=

Take Y = {z,y,a,b}, and suppose that both the reduction and per-
muted dominance conditions hold. Since z > a and ¥ >>p b, the reduc-
tion condition implies that neither a nor bis in F(Y,D), and that F(Y,D)
= F(Y — {a},D) = F(Y — {b},D) = F(Y — {a,b},D) = F({z,y},D).
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Since z(Y,D)y, permuted dominance says that y & F(Y,D). Moreover,
since y(Y — {a},D)z, as is seen by deleting a to give

l.Lxybd
2.cyb
3.ybz
4. y ¢ b,

¢ & F(Y — {a},D) and therefore x & F(Y,D). But then no one of q,
b, v, and z is in F(Y,D), contradicting the definition of a social choice
function. .

If n is even and greater than four, we simply add the orders
zyabw and yzabw in equal proportions to the original list of four
orders.

Suppose next that n = 5. Taking w at the bottom of every linear
order, let the rest of D be

l.xaybd
2.zayhb
.ybza
4, y bz a
5. bz ya

Then z(Y,D)y, x(Y,D)b and x >>p a so that, if both reduction and
permuted dominance hold, then F(Y,D) = {¢} and F(Y,D) =
F(Y — {a},D). But y(Y — {a},D)z, so that x & F(Y,D). Hence
F(Y,D) = §, a contradiction.

If n is odd and greater than five, add the orders zyabw and yzabw
in equal proportions to the preceding list. This will not affect the
conclusion. ¢

QUESTIONS ABOUT SUMS

Several questions naturally arise when one suggests that a choice
set be determined by summing individual rankings or utilities as in
(13.3). One question asks whether any such procedure is applicable.
Another asks how the individual utilities ought to be specified or
determined, given that some summation procedure might be applicable.

As could be expected, there are many opinions on these questions. A
number of these lie outside the present situational context in which we
presume that simaple majority is felt to be appropriate for the binary
choices in F.

Within this situational context, persons who like the Condorcet
position will be likely to reject a summation procedure, at least when
it is suggested that the choice set be based solely on utility sums. Those
who favor a summation or positional approach may feel that some-
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thing like the Borda function should be used, especially if they agree
to conditions such as anonymity and neutrality. But ‘“‘something like
a Borda function” leaves open a huge number of specific possibilities,
some of which were mentioned earlier in this section and in section 12.1,
and it is quite possible that different ones of these might seem appropri-
ate for different types of situations.

The Condorcet position also leads to a wide variety of specific choice
functions since the weak Condorcet condition does not say anything
about the choice set when P(Y,D) is empty. We now consider some of
these.

13.3 ConporcEr FuncTiONS

The Condorcet social choice functions divide rather naturally into
those that base F(Y,D) solely on Pp, and those that do not. We shall
consider one function in the former category and two in the latter.
Other Condorcet functions may occur to you as you read this section.

Our first function, which is suggested by Black (1958, p. 66), takes
F(Y,D) = P(Y,D) if P(Y,D) = @, and if P(Y,D) = @ then F(Y,D) is
determined by the Borda function of (13.3). I shall refer to this mixed
Condorcet-positional function as Black’s function. There are obviously
many modifications of this procedure, and we shall not discuss these
here.

To illustrate Black’s function, suppose first that n =5, X =
{x,y,2,w} and D is given by the linear orders

Ty zw
wryz
weyz
yzzrw
.y zxow.

i

Then Pp is linear with xPpyPpzPpw, so that every F(Y,D) for Black’s
function is determined by the weak Condorcet condition.

Now let D" be obtained from D by changing order 2 (wzyz) to wzzy.
Then Pp. is given by the directed graph of Figure 13.1. This shows that
Black’s function is determined by P(Y,D’) except for X and {z,y,z},
for which the Borda function gives F(X,D’) = F({z,y,z},D") = {y}.
Although the change in order 2 did not change the order or adjacency
of z and y, Black’s function gives F(X,D) = {z} and F(X,D") = {y}.

One can readily verify that Black’s function is strongly monotonic
in the sense of (12.5), and dual (Definition 12.5). It does not satisfy
the reduction condition, although an obvious modification does.
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Ficure 13.1

COPELAND’S FUNCTION

The second Condorcet social choice function that we shall examine
bases F(Y,D) solely on Pp. Since it has been suggested by Copeland
(1950) [or see Goodman (1954)] as a “‘reasonable”” method of determin-
ing social choices, we shall refer to it as Copeland’s function. Let

s(z,Y,D) = #ly:y € Y and zPpy} — #{y:y € Y and yPpz},

so that s(x,Y,D) is the number of alternatives in Y that x has a strict
simple majority over, minus the number of alternatives in Y that have
strict simple majorities over z. Copeland’s function then takes

F(Y,D) = {z:2 € Yand s(z,Y,D) > s(y,Y,D) forally € Y}. (13.4)

When n is odd and all n-tuples in D are n-tuples of linear orders, there
is an equivalent way of looking at Copeland’s function. If P(Y,D) == §,
take F(Y,D) = P(Y,D). If P(Y,D) = ¢ and if P(Y — {z},D) = ¢ for
some z € Y, take F(Y,D) = \U,eyP(Y — {z},D). If this union is
empty, take F(Y,D) = \U, ,cyP(Y — {z,y},D) unless this new union
is empty, and continue in the obvious way until a nonempty union
is obtained. Under linear orders and odd n, this F is identical to Cope-
land’s function.,

Although Copeland’s function obviously satisfies the weak Con-
dorcet condition, it does not satisfy the Condorcet condition, as is
shown by the following D on Y = {z,y,a,b,c} with n = 4:

lL.xyabe
2.zybac
3.cbazxy
4. yacbdzx

For this example, R(Y,D) = {z}. However, the s valuesof 2, y, @, b, ¢
are 1, 2, 0, —1, —2 respectively, so that the Copeland function selects
y. The Borda and Black functions also select y.
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An interesting comparison between the Copeland and Borda func-
tions is given by the following nine-voter D:

4 voters. yxach
3 voters. becyaz (13.5)
2 voters. zabcy.

P(Y,D) = @, with Pp as shown in Figure 13.2. The s value at each
point in the figure is obtained by subtracting the number of lines

ob

Ficure 13.2

directed into the point from the number of lines directed away from
the point. Since z has the largest s value, Copeland’s function selects z.
On the other hand, the Borda function chooses y. Thus the winner (x)
based solely on simple majority comparisons loses by a 7 to 2 majority
to the winner (y) determined by a positional approach.

A COMPUTER COMPARISON

Although our examples are designed to “bring out the worst” in
various methods and to highlight the differences between methods,
there may be some question about how really different several func-
tions might be. For example, we may suspect that the Borda and
Copeland functions will yield the same choice set in a large percentage
of possible cases.

To examine this suspicion, a computer was programmed to com-
pare the Borda and Copeland functions. For each (n,m) pair with
m = #X, the computer generated, by uniformly distributed random
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numbers, 1000 n-tuples of linear orders on X, and determined F(X,D)
for each n-tuple according to the two functions. Table 13.1 shows the

TABLE 13.1

NumBeR OF CAsSEs ouT OF 1000 CASES (FOR EACH n,m) WHERE
THE BorpA aAND CoprELanD Funcrions HAD A CoMMON ALTER-
NATIVE IN THEIR CHOICE SETS

m = #X
5

3 4 6 7 8 9

3 1000 979 945 940 918 920 892
5 991 964 944 926 898 880 865
7 983 952 933 909 894 876 865
9 974 947 915 914 862 886 861

n 11 962 941 915 905 884 855 857
13 962 941 910 902 889 879 842

15 964 931 914 890 890 867 850

17 942 924 898 868 867 856 838

19 950 922 894 876 883 863 844

21 946 914 888 865 865 866 840

number of cases for each (n,m) pair for which the choice sets for the two
functions had an element in common. Generally speaking, the number
of cases with a nonempty intersection for the two choice sets decreases
as either n or m increases. The smallest percentage agreement ob-
tained was 83.8 percent for (n,m) = (17,9).

For m = 3, about 85 percent of the cases enumerated in column 1
of the table had identical choice sets for the two functions. At the
other extreme, for m = 9, about 70 percent of the cases enumerated
in the final column had identical choice sets. Moreover, these per-
centages did not vary significantly for changes in n. For example, of
the 892 agreeing cases for (n,m) = (3,9), 648, or about 73 percent,
had identical choice sets. For (n,m) = (21,9), 584, or about 70 percent
of the 840 agreeing cases, had identical choice sets.

DODGSON’S INVERSION METHOD

To simplify the discussion of our final function we shall assume
henceforth that D is the set of all n-tuples of linear orders on X.

Our final function is based on C. L. Dodgson’s idea of taking inver-
sions in the orders in D, and will therefore be referred to as Dodgson’s
function. Let L, and L, be two linear orders on X. In going from
Ly to L, an inversion occurs whenever, for any z,y € X, zL,y and
yLyz. The total number of inversions equals the number of ordered
pairs (x,y) € X? for which zL,y and yLjx. For example, if L, is abezy
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and L, is axbcy, then two inversions are involved: from bz to xzb and
from cx to zc.

Given (Y,D) let {(x,Y,D) be the fewest number of inversions re-
quired in the linear restrictions of the >; on Y so that we obtain a
D’ for which P(Y,D’) = {z}. Then Dodgson’s function is defined by

F(Y,D) = {z:2 &€ Yand {(z,Y,D) < {(y,Y,D) for ally € Y}.

If P(Y,D) = @ then {(P(Y,D),Y,D) = 0 and F(Y,D) = P(Y,D). There-
fore Dodgson’s function is a Condorcet social choice function.

For (13.5), the least number of inversions that will cause x to have
a strict simple majority over each other alternative is three. These
three inversions interchange y and x in three of the first four orders in
(13.5). Hence {(z,Y,D) = 3. Similarly, {(y,Y,D) = 2 (change one of
the beyax orders to ybcax). Since the inversions required for each of a,
b and ¢ exceed two, Dodgson’s function selects y in (13.5). This is
also the Borda and Black selection, but it differs from the Copeland
result (z).

Because Dodgson’s function does not rely solely on Pp for its com-
putation, it joins Black’s function in the category of Condorcet social
choice functions that are not based solely on Pp. However, since
Dodgson’s function is based on strict simple majorities under inver-
sion, it appears to be intermediate between the Black and Copeland
functions.

Our final example shows that each of the three functions defined in
this section can give a different result in the same situation. Let
n =3, #X = 9, with D as follows:

l.azeyzxzbfed
2.zdbaefyze
3.yzbzxcaedf

We might suppose that a three-man board of commissioners, com-
posed of a Democrat, a Republican, and an Independent, is charged
with selecting one of nine land-use plans for a certain area within
their domain. Alternative z represents the parkland proposal, ¥ stands
for the airport plan, z is a residential development scheme, and the
other six alternatives refer to other proposals. The overall preferences
of the commissioners are given by D. As one can easily verify, Black’s
function selects the parkland proposal, Copeland’s function selects the
airport plan, and Dodgson’s function picks the residential develop-
ment scheme.
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CHAPTER 14

Conditions for Social Choice

ALTHOUGH OUR FocUs thus far has been on special types of situations,
it should be clear that most of the conditions for social choice functions
that we have used apply, either as stated or in modified form, to a
general study of social choice functions. To impart a degree of organi-
zation to our general study we shall begin Part II1 by sorting the many
conditions into a few easily recognized classes. It is hoped that this
classification will help the reader to better understand and interrelate
the various topical divisions of this book and related studies.

It has long been recognized that the isolation of specific conditions
facilitates a deeper analysis of social choice procedures. This analytic
approach is complemented by the synthetic approach, which considers
various combinations of conditions. In some cases a combination of
conditions will serve to characterize a certain set of social choice func-
tions, and such a combination may imply other conditions. In other
cases, the conditions in a certain combination will be mutually incom-
patible, thus giving rise to an “impossibility theorem.” Theorems of
this sort are useful in illustrating conflicting philosophies about ‘‘rea-
sonable” choice procedures. An example is Lemma 13.1. Others are
noted in Chapter 16.

Both the analytic and synthetic approaches have been used exten-
sively in Parts I and II, and they will continue to play an important
role in the rest of the book. Our first general synthetic investigation of
Part III comes in sections 14.3 and 14.4, where we shall generalize the
analysis of single-peaked and triple conditions of Chapters 9 through 11
along the lines developed by Murakami (1968, pp. 124-129), Sen and
Pattanaik (1969), and Pattanaik (1970).

14.1 A CrassiFicaTION oF CONDITIONS

To provide an initial overview and summary, the classification that
will be used here is set forth in Table 14.1. As can be seen, the condi-
tions have been divided into three major classes. The third class, which
is the most extensive, has been divided into two main subclasses, each
of which is further divided into two parts. We shall return to these in
the next section.
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STRUCTURAL CONDITIONS

The first class, here referred to as the class of structural conditions,
deals with the structure of the sets on which F is defined. These con-
ditions provide the prerequisites for a proper definition of a social
choice function, serving to identify the domain on which F is to be
defined.

TABLE 14.1
A CurassiFicaTioN oF CONDITIONS

A. Structural. Nature of sets on which F is defined.
Examples. X is finite and #X > 3; & is the set of all nonempty subsets
of X;nisaninteger and n > 2; D is the set of all n-tuples of strict partial
orders on X.
B. Ezistential. Conditions on F that use existential qualifiers.
Examples. Condition of decisive majority coalitions (Def. 4.2); Non-
dictatorship conditions; Every voter is essential.
C. Universal. Conditions on F that don’t use existential qualifiers. They are
to apply for all applicable structural configurations.
1. Intraprofile. Consider one D at a time.
la. Active. Involve specific conditions on contents of D. Examples.
Unanimity (Def. 7.2); Reduction (Def. 12.2), Permuted Domin-
ance (Def. 13.4); Decisiveness (Def. 6.1).
1b. Passive. Don’t say anything about contents of D. Examples.
Fpis transitive; F(Y,D) C {x:2 & YandyFpafornoy € Y}
when {z: ...} #= 0.
2. Interprofile. Consider more than one D at a time.
2a. Two-profile. Monotonicity (Def. 13.1); Duality (Def. 12.4);
Neutrality (Def. 13.2); Anonymity (Def. 13.3); Independence
(Def. 12.3).
2b. Multiprofile. Representative system condition (Def. 4.3);
Strong duality (Def. 5.2); Condition B of section 6.3.

As we have noted before, three sets need to be specified for the defi-
nition of F: the set I of potentially feasible sets of social alternatives;
the set of voters or individuals; and D, the set of admissible data
points that describe potential preference profiles. With X the universal
set of alternatives, we require at the minimum that X be nonempty.
In specific cases we may wish to further restrict X, by conditions such
as finiteness or #X > 3.

Likewise, a minimum restriction for X is that it contain only non-
empty subsets of X and not be empty. Some other conditions for
are: X contains every finite subset of X; for every x &€ X there is a
YExsuchthat z € Y;if YV, ZExthen YUZE x;x\U {@}isa
Boolean algebra with unit X. The last of these means that X € X and
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that x\U {#} is closed under complementations (if Y & & then
X —Ye&xVU {#}) and finite unions (if Y,Z € < then YU Z € x).

In almost all cases we assume for obvious reasons that the number
of individuals is a positive integer. To have an explicitly social situa-
tion we can specify that n > 2. On occasion one might indulge in the
fantasy of supposing that the number of voters is infinite, in which case
D & D can be viewed in a general way as a function that assigns a
preference order to each individual in the infinite set.

Throughout Part III we shall continue to suppose that  is a non-
empty set of n-tuples of strict partial orders on X. (The general view
of D just mentioned can be used regardless of the size of the set of
voters; it is equivalent to the n-tuple specification in the finite case.)

Some conditions for D place restrictions on individual orders that do
not limit acceptable mixes of orders in any further way. An example of
such a condition is: each component of every D € 9 is a weak order on
X. Other conditions for D are interindividual conditions which gener-
ally prohibit © from being written as a Cartesian product of n sets of
orders. An example is: D is the set of all n-tuples of strict partial orders
on X for which (X,D) is single peaked.

When we deal with expected utilities in the final chapter, additional
conditions will be specified for the individual preference orders.

SOCIAL CHOICE FUNCTIONS

For our general definition, let ®(X) be the power set of X, or the set
of all subsets of X.

DeriniTION 14.1. F: ¢ X D — ®(X) is a social choice function if and
only if X is a nonempty sel of nonemply subsels of a nonemply set X,
D is a nonemply sel, and F(Y,D) is a nonempty subset of Y for each
(Y,D) € x X D.

Throughout Part IT we used & in place of ®(X) since we assumed
that & contained all nonempty subsets of X. However, if & is restricted
in some way, we leave open the possibility that a choice set may not
itself be a feasible set in & although it must be a subset of a feasible set.
The many conditions for social choice functions that were presented in
Part II modify in an obvious way under the general definition.

The general definition of a social choice function obviously imposes
certain minimal conditions on the behavior of F, namely @ = F(Y,D)C
Y. Some writers omit the nonempty feature of F(Y,D) from the defini-
tion and use a separate condition (sometimes referred to as ‘‘decisive-
ness,” which should not be confused with decisiveness as defined in
Definition 6.1) to specify that F(Y,D) must not be empty.
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EXISTENTIAL CONDITIONS

All conditions in the existential and universal classes restrict the
allowable behavior of F in some way. The existential conditions are
based primarily on existential qualifiers (“‘there exists . . .”), although
they may also use universal qualifiers (“for all . . .””). The universal
conditions either do not use existential qualifiers in any way, or else
they use such qualifiers in a secondary manner. Although this allows
some question about the appropriate classification of a few conditions,
the examples that we shall use should clarify the general intention of
the two classes.

Most existential conditions definitely assert the existence of certain
elements in the sets used to structure the definition of F and may them-
selves impose structural conditions. A case in point is the following
nonimposition condition:

there is a Y &€ & and D,D’ € © such that F(Y,D) = F(Y,D").

This requires some Y in X to contain at least two alternatives, and it
implies that © has more than one element. A related condition, which
also has no universal qualifiers, is an essentiality condition:

there isan 1 & {1, . . . ,n}, a Y € X and D,D’ € D such that
D; = Dj for all j = ¢ and F(Y,D) = F(Y,D’).

This clearly implies the preceding nonimposition condition, and it
requires the presence of a pair of elements in O that differ in only one
component.

Many of the conditions here referred to as existential can be viewed
as negations of simple universal conditions. For example, if F is
constant means that F(Y,D) = F(Y,D’) for all (Y,D), (Y, D) € X X D,
then the nonimposition condition given above says that F is not con-
stant. The condition of constancy is a universal interprofile condition:
its negation is an existential condition since it requires the presence of
certain elements with specified properties.

An existential condition with a universal qualifier is the following
nondictatorship condition:

for every ¢ € {1, . . . ,n} there are #%,y* € X and D’ € D such
that ¢ >*y* and y* € F({z%y*},D?).

This can also be stated in the familiar form: “if € {1, . . . ,n} then
there exist zt,y' & X . . . .”

The final condition that we shall use as an example of an existential
condition does not definitely assert the existence of certain elements
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because its first universal would never apply if there were no essential
voter. It is the condition of decisive majority coalitions given by
Definition 4.2 with X = {z,y}:

for every nonempty J C {1, . . . ,n} that contains an essential ¢
and for every integer m for which #J,/2 < m < #J, there exists
an I C J such that #I = m and [ is decisive for z over y within J.

The existential conditions are somewhat less plentiful than the uni-
versal conditions that we shall now examine.

14.2 UnivErsaL CONDITIONS

Universal conditions are usually written in either the form “if such-
and-such hold, then F has such-and-such properties” or ““for all things
that satisfy such-and-such, F has such-and-such properties.” Our sub-
divisions of this class depend on the number of elements in O that are
involved in each F statement and, in one case, on whether any-
thing specific is supposed about the element in D that appears in the
condition.

The main division of universal conditions depends on whether more
than one D is actively involved in the statement of the condition.
Those with only one D are called intraprofile conditions; the others
are interprofile conditions. Both subclasses are very important.

INTRAPROFILE CONDITIONS

The intraprofile conditions further divide in a natural way into con-
ditions which assume certain specific properties for the components
of D, and those that do not. We refer to the former as active intra-
profile conditions; the latter are passive intraprofile conditions since
they say nothing about the contents of D.

Three active intraprofile conditions are decisiveness (Definition 6.1),
unanimity, and reduction:

if D = (0,0, . . . ,0) then F(D) = 0;

fzyec Y, f YEx, If DE D, and if  >py, then y & F(Y,D);
fzycY,fYExandY — {y} €x,if DED,and if x >p y,
then F(Y,D) = F(Y — {y},D).

Another active intraprofile condition is the condition of permuted dom-
inance in Definition 13.4. In the next section we shall discuss some
other active intraprofile conditions that are closely related to inde-
pendence, neutrality, and some of the other interprofile conditions.
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Within the two-alternative context of Part I, the strong decisiveness
condition (if D € o then F(D) # 0) is a passive intraprofile condition
although its decisive counterpart as noted above is active. Like strong
decisiveness, the other passive conditions make categorical assertions
about F for a generic D € D, regardless of the specific nature of D.
Assuming that & contains all two-element subsets of % so that Fp as
in (7.9) is conceptually well defined, the following are samples of
passive intraprofile conditions:

if D € D, then Fp is a suborder;

if D € D, then Fp is a weak order;

fDE Dand Y € Xandif {z:2 € YandyFprfornoy &€ Y} is
a unit subset of Y, then F(Y,D) equals this unit subset.

Another passive condition that we have not explicitly considered thus
far is:

HDeED Y, ZEXxand if Y C Z and Y N F(Z,D) = @ then
YN F(Z,D) C F(Y,D).

This says that, if ¥ is a subset of Z and if the choice set from Z under
D contains at least one element in Y, then each such element must be
in the choice set from Y under D. We shall examine this and related
passive intraprofile conditions in the next chapter.

INTERPROFILE CONDITIONS

Because interprofile conditions relate choice sets for different pref-
erence profiles that might obtain, they occupy a very central position
in soctal choice theory. A typical study of choice functions might con-
centrate on a function from X into ®(X). Social choice functions are
essentially systems of choice functions, since F:X X D — ®(X) can
be viewed as a set of choice functions F(-,D), one for each D in an
index set D. The thing that distinguishes the study of social choice
functions from other systems of choice functions that are defined on
the same set % is the nature of the index set D, and it is this nature
that gives rise to the particular interprofile conditions that are used in
the theory.

For interprofile conditions we do not make a distinction between
active and passive conditions since all the interprofile conditions that
we shall consider are essentially active. That is, the two or more D’s
that appear in the statement of an interprofile condition will be re-
lated in a specific way.

Most of the common interprofile conditions use just two profiles at
a time. This subclass includes the various monotonicity conditions,
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along with the following conditions of duality, neutrality, anonymity,
and independence from infeasible alternatives:

if YEo and if D and its dual D* are in D then
F(Y,D) ZNF(Y,D*) € {8,Y};

if ¢ is a permutation on X, if D and D’ (obtained from D,
componentwise, by ¢) are in O, and if ¥ and Y are in X,

then F(cY,D°) = oF(Y,D); (14.1)
if 5 is a permutationon {1, . . . ,n},if D = (>, ..., ,>.)
and D' = (>.1, -+« « > o) are in O, and if ¥ € &, then
F(Y,D") = F(Y,D); (14.2)

if Yeux, if D,D' € D, and if the restriction of D on Y
equals the restriction of D’ on Y, then F(Y,D’) = F(Y,D). (14.3)

The final subclass, the multiprofile conditions, contains several con-
ditions used in Part I, but explicit multiprofile conditions were not
used in Part II. The three conditions from Part I that use more than
two D’s in certain cases are noted at the bottom of Table 14.1. It is
of some interest to recall that each of these three was used in con-
nection with the Theorem of The Alternative, Theorem 3.2, in an
analysis involving the existence of a solution for a set of linear in-
equalities. In the case of the special condition for representative sys-
tems (Definition 4.3), the Theorem of The Alternative was not applied
directly to condition RS.

Multiprofile conditions and the Theorem of The Alternative will be
used again in Chapter 17.

14.3 SpeciAL AcTIVE INTRAPROFILE CONDITIONS

In the preceding section we noted that interprofile conditions serve
to interrelate different choice functions F(:,D):X — ®(X) for the
various D € D. These conditions have some interesting and powerful
implications, provided that & and D are sufficiently rich. However, if
fairly strong restrictions are placed on our basic sets, many of these
implications cannot be derived due to a lack of structure.

A natural course to take in such restricted contexts is to modify
the interprofile conditions such as neutrality and anonymity so that
the modified versions will serve the intended purposes within the given
structure. In other cases, such as when our primary interest is in a
study of the binary relations Fp, it will suffice to introduce active
intraprofile conditions that preserve much of the spirit of certain
interprofile conditions.
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To illustrate the latter course and to prepare for an analysis related
to that in Chapters 9 through 11 that is given in the next section, we
shall consider several specialized active intraprofile conditions.

FIVE ACTIVE INTRAPROFILE CONDITIONS

Of the five active intraprofile conditions that we shall present, three
are based on previously introduced concepts. These are z =py (x ~; y
for all i),  >py (x »:y for all i, ¢ >,y for some i), and zRpy
(z ties or beats y by simple majority). One new relation is needed:

(z.y) 2P (zw) & (foreach i, z >, w=z >.y &z~ w=2z ».y).

Thus, (x,y) 22 (z,w) if every person who prefers z to w also prefers
x to y, and if every person who likes z as much as w, also likes z as
much as y. From >? we define =2 as follows:

(@y) =P (zw) & (@y) 2P (zw) and  (zw) 2P (z,y).
The proof of the following is left to the reader.

Lemma 14.1. (z,y) =2 (z,w) & (for each i, z >;y =z >, w, and
y>rizew >;1).

We recall that «Fpy = ¢ = y & F({z,y},D) = {z}. The five condi-
tions are summarized in the following list. Condition Ak holds if and
only if the given statement holds for all {x,y} € X (or {z,y},{z,w} € X)
and all D & D.

Al. =py=F({z,y},D) = {z.y}.

A2, (z,y) =? (z,w) = (2Fpy < zFpw, and yFpxr & wFpz).
A3. (z,y) 2P (z,w) and :Fpw = zFpy.

A4. » >py= nol yFpz.

A5. zRpy = not yFpz.

All of these hold if F agrees with simple majority, and all but A5 agree
with any fixed representative system. Collectively, they do not imply
that ¥ agrees with simple majority. Each has a fairly straightforward
interpretation that should be evident from its statement. The following
lemma shows that they are not independent of one another.

LemMma 14.2. A3 = A2 = Al. A5 = A4 = Al. A3 = A4.

Proof. If (z,y) =P (z,w) then (x,y) =2 (z,w) and (z,w) >? (z,y) by
definition, and (y,z) >? (w,z) and (w,z) >? (y,z) by Lemma 14.1. It
then follows that A3 = A2. If x =p y then (z,y) =2 (y,z), so that A2
and the asymmetry of Fp imply Al. Since z >p y = zRpy, A5 = A4,
Sincez =py=x >py &y >px, A4 = Al. The proof that A3 = A4
is left to the reader. ¢

184



14.3 ACTIVE INTRAPROFILE CONDITIONS

DERIVATION FROM INTERPROFILE CONDITIONS

We shall now observe that sufficiently rich structural conditions and
several two-profile conditions imply the active intraprofile conditions
A1-AS5. The interprofile conditions that we shall use are independence
(14.3), neutrality (14.1), monotonicity (Definition 13.1), and anonym-
ity (14.2).

THEOREM 14.1. Suppose that D contains all n-tuples of strict partial
orders on X and that F: X X © — ®(X) is a social choice function. Then

F is independent and neutral = A1, A2;
F is independent, neulral and monolonic = A3, A4;
F is independent, neutral, monotonic and anonymous = A5.

Proof. Al. Assume that F is independent and neutral and thatz =p y
and {z,y} € %. Contrary to Al suppose that zFpy. Let o(z) = vy, a(y)
= ¢ and ¢({) = { otherwise. Then, by neutrality, yFpsz. But by inde-
pendence (since z =py), F({x,y},D) = F({z,y},D"), a contradiction.
Hence, not zFpy. Similarly, not yFpz. Therefore F({z,y},D) = {x,y}.

A2, Assume that F is independent and neutral and that f{z,y},
{z,w} € X and (2,y) =2 (z,w). Suppose first that zFpy. Then z = vy,
and by Al, = >.y or y >, x for some i. Therefore z >, w or w >,z
for some i so that z # w., Let o(x) = 2, 0(2) = 2, o(y) = w, o{w) =y
and o(f) = { otherwise. Then zFp°w by neutrality. By independence,
zFpw since the restriction of D on {z,w} equals the restriction of D°
on {z,w} according to ¢ and (z,y) =2 (z,w). Hence zFpy = zFpw.
The other implications in the conclusion of A2 are proved similarly.

A3. Assume that F is independent, neutral, and monotonic and
that {x,y}, {z,u} € K, (x,y) 2P (z,w) and zFpw. If (z,y) =2 (z,w)
then the conclusion zFpy follows from A2. Henceforth assume not
(z,y) =2 (z,w), so that either x ~,y and w >,z for some t or x >,y
and w 3>, z for some i. Let D’ be obtained from D by moving z “down”
in each such order so that (z,y) =2’ (z,w), and let D”” be obtained from
D by moving y “up” in each such order so that (z,y) =2 (z,w). By
independence, zFpw and zFp-w. Then, by A2, 2Fpy and xFpy.
In going back from D’ to D, x is moved “‘up” in certain orders and
therefore, by monotonicity, = € F({x,y},D’) = ¢ € F({z,y},D). In
going back from D" to D, y is moved “down” in certain orders and
therefore, by the other part of monotonicity, y & F({z,y},D") =y &
F({x,y},D). Therefore zFpy.

A4. This follows from the preceding proof since A3 = A4.

A5. Assume that F is independent, neutral, monotonic, and
anonymous and that {z,y} € X and zRpy. If zIpy, let D' = D. If
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zPpy, get D' from D by moving ¢ “down” in just enough orders with
z >.y to give x ~.y and zIpy. Then, by independence, neutrality,
anonymity, and Lemma 5.1 (iii), ¢ &€ F({z,y},D’). Monotonicity then
gives ¢ € F({x,y},D), so that not yFpr. ¢

14.4 RestRICcTIONS ON TRIPLES

In this section we observe that certain structural and active intra-
profile conditions imply part or all of certain passive intraprofile
conditions. The development is based on notions used in Chapters 9
through 11. A sample corollary of the main theorem to be proved is:

[if o contains all two-element

subsets of X, if (X,D) is single| structural
| peaked for all D € D

[and if F:¢ X D — ®(X) is
a social choice function that
| satisfies A3

[ then Fp is transitive for every] passive

| D & D. intraprofile

active
intraprofile

To complete our preparations for Theorem 14.2, it is first necessary
to recall the characterizations of the seven independent categories of
section 10.2. These are summarized in Table 10.1 and in Table 11.1,
but will be repeated here for our convenience.

A slight change will be made in the definitions of section 10.2. We
shall say that D on a triple {x,y,z} is in category K if and only if every
> in D that is not empty on {z,y,z} satisfies statement K in the follow-
ing list (or satisfies a similar statement obtained by a permutation on
{z,¥,2z} and/or by taking duals):

L~y
II. y >»2&y >2)or (x> y&z>y)or (za~y&y~2)
III. (xy)z or z(xy) or (x2)y or y(zz) or (yz)x or x(yz)
IV. xyz or zyz or (xz)y or y(xz)
V.zypy&zry
VI 2 > y&(x>yorxz > zorz>y)
VI. y > zory > z

Seven theorems, one for each category, are included in the following.

THEOREM 14.2. Suppose that X confains every two-element subset of X,
that  ts a set of n-tuples of strict partial orders on X, that {z,y,z} is a
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144 RESTRICTIONS ON TRIPLES

triple in X and thal F:X X D — ®(X) is a soctal choice function. If,
in addition,

D on {z,y,z} is in and F satisfies then Fp on {z,y,z} is
calegory 1 Al a suborder
category 11 A2 {ransitive
category 111 A5 a suborder
category IV A5 a suborder
category V A4 a suborder
category VI A3 a suborder
category VII A3 {ransitive.

The corollary stated earlier in this section follows from Theorem
14.2 VII, since category VII covers the single-peaked as well as the
single-troughed cases. The only other category that invariably gives
a transitive Fp when conditions on F that do not go beyond Al
through A5 are used is category II. In the terms used by Sen and
Pattanaik, these two categories comprise the triple condition of ‘‘value
restriction.”

No essential change occurs in the conclusions of Theorem 14.2 when
all > in every D are assumed to be weak orders. In particular, Lemma
10.2 and Theorem 10.1 do not apply in the present context since the
proof of Lemma 10.2 depends explicitly on the assumption that F
agrees with simple majority.

However, even without assuming weak orders, the special limited
agreement category VI’ of section 11.1, characterized by

VI'. 2 > y,and z > y if ~ on {z,y,z} is not transitive,

gives rise to a transitive Fp on {z,y,z} provided that one more active
intraprofile condition is used. This condition is strong binary una-
nimity, written here as

A6. z >py = xFpy,
whenever {z,y} € X and D € D.

THEOREM 14.3. Suppose that the initial hypotheses of Theorem 14.2
hold, that D on {z,y,z} is in category VI’ and thal F satisfies A3 and A6.
Then Fp on {x,y,z} is transilive.

Proofs:

Let the initial hypotheses of Theorem 14.2 hold. We shall use the
displayed characterization of each category in proving the assertion

for that category. The stated conditions for ¥ are assumed to hold in
each case.
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CONDITIONS FOR SOCIAL CHOICE

I. Al implies not zFpy and not yFpz. Therefore neither
(xFpy & yFpz & 2Fpz) nor (xFpz & 2Fpy & yFpx), (14.4)

and Fp on {x,y,z} is a suborder.

II. (y,x) =P (y,z) under the characterization of category II. Hence,
by A2, yFpx & yFpz and zFpy < zFpy. Hence xFpy & yFpz and yFpx
& zFpy are impossible, and each of the other four hypotheses for
transitivity clearly imply the transitivity conclusion.

III. The nonempty orders on {z,y,z} allowed under category III
are orders 7 through 12 on Table 10.1 (single indifference). We have
xPpy & nyg 4+ nis > nie + nu, ¥Ppz & ny + nye > ng + ny, and zPpz
& ny + nie > ng + ny. Because of the symmetry of this category,
it will suffice to suppose that Fp is not a suborder with the first
expression of (14.4) holding. Then, by A5, xFpy = xPpy and yFp:z
= yPpz, so that addition and cancellation give n; + nis > ng + nyy,
which implies zPpz. But, by A5, zPpz = not zFpz, so that the first
expression of (14.4) is contradicted.

IV. The nonempty orders allowed under the characterization of
category IV are 1, 6, 9, and 10, or zyz, zyz, (zz)y, and y(zz). Suppose
first that the first expression of (14.4) holds. Then xFpy = xPpy
and yFpz = yPpz under A5, so that, with zPpy © ni + ng > ng + ny
and yPpz < n; + nye > ns + ny, addition and cancellation give ny > ng,
which implies Ppz and hence not zFpz by A5. Hence A5 implies that
the first expression of (14.4) is false. By a similar proof, A5 implies
that the second expression in (14.4) is false. Hence Fp on {x,y,z} is a
suborder.

V. Given z » y & z » y for each order, A4 implies not yFpz and
not yFpz. Hence neither expression in (14.4) can hold.

VI. Given ¢ > y & (x > y or £ > z or z > y) for each nonempty
order on {x,y,z}, A4 (impled by A3) implies not yFpz. Therefore,
Fp on {a,y,z} is not a suborder only if zFpy & yFpz & zFpx. As is easily
checked, the characterization used here implies that (z,y) >? (z,z) and
(x,2) 22 (v,2). Hence, by A3, zFpx = 2zFpy and yFpz => xFpz. There-
fore xFpy & yFpz & zFpzr is false.

VII. Given y > x or y > z for each nonempty order on {z,y,z}, it
follows from A3 that

(1) xFpy = xFpz and yFpz
(2) zFpy = zFpx and yFpx
3) zFpz = yFpz
(4) zFpx = yFpz.

For example, for zFpz = yFpz, the only admissible orders with
x > z are (xy)z, ryz and some with y > z and ¥ > z, and y > z for
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144 RESTRICTIONS ON TRIPLES

each of these; and the only nonempty admissible orders with z ~ z
arez~y >ax~zand x ~y >z~ x and y(zz), and y » z for each
of these. The six hypotheses for transitivity are

zFpy & yFpz:
zFpy & zFpz:
yFpx & xFpz:
yFpz & zFpy:
yFpz & 2Fpx:
zFDy & zFpz:

then «Fpz by (1).
incousistent by (1).
then yFpz by (3).
then zFpz by (2).
then yFpx by (4).
inconsistent by (2).

VI'. (Theorem 14.3: A3, A6.) Given z » vy, and z > y if ~ is not
transitive on {z,y,z}, we get zFpx = zFpy and yFpz = zFpz under
A3, as in VI above. Together, Al (implied by A3) and A6 imply
not yFpx. These results cover all but the last of the preceding six
hypotheses for transitivity: the first two carry through and the next
three are inconsistent. Transitivity fails for the sixth case (zFpy &
zFpz) only if not zFpy. Since x » y for all orders, we can get not
zFpy under A6 only if ¢ ~ y for all orders. But the only two non-
empty orders under VI’ that have  ~ y are z(xy) and (xy)z, and A3
on these implies that zFpy => zFpx, contradicting the hypotheses of

the sixth case. ¢
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CHAPTER 15

Choice Functions and Passive
Intraprofile Conditions

A CHOICE FUNCTION is a function from a nonempty set & of nonempty
subsets of a set X into the power set ®(X) of X, whose image for each
Y € & is a nonempty subset of Y. A social choice function can be viewed
as a collection {F(-,D):D & D} of choice functions. Although a dis-
tinguishing feature of social choice theory is the interrelations among
the F(-,D), a subsidiary part of the theory concerns the study of
choice functions.

Most of the sizable literature on choice functions has been developed
apart from social choice theory, and it is impossible at this time to say
how much of the general theory of choice functions will find its way
into social choice studies. It is clear, however, that certain aspects of
choice functions are relevant in social choice theory. The purpose of
this chapter is to review some of these aspects.

The study of a singular choice function is a natural setting in which
to discuss certain intraprofile conditions. In particular, we shall exam-
ine critically several passive intraprofile conditions. In this connection
it should be said that much of the material on choice functions that
we shall consider was developed in other contexts, such as revealed
preference theory in consumer economics, and that our criticisms of
various conditions from the social-choice viewpoint should not be
taken as criticisms of these conditions in other contexts.

15.1 Orper ConpitioNs FOR CHoOiCcE FuNcTIONS

DeriniTION 15.1. f: ¢ — ®(X) is a choice function if and only if X
is a nonempty set of nonempty subsets of X, and @ = f(Y) C Y for every
Y e«

We shall be concerned with two types of conditions for a choice func-
tion f:structural conditions on %, and conditions on f (referred to as
f-conditions) that take the structure of X as given. A third type of con-
dition, related to our existential class of section 14.1, is the existential
f-condition, an example of which is: f(Y) € X for all ¥ € «.

In mathematics, a common f-condition is: f(Y') is a unit subset of YV
for every Y € . In social choice this relates to strong decisiveness.
Mirksy and Perfect (1966) review some of the literature on choice
functions of this type.
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151 ORDER CONDITIONS

A familiar structural condition is: & contains every two-element
subset of X.

DEerintTION 15.2. A choice funclion f: ¢ — ®(X) is binary if and only
if X contains every two-element subset of X.

In this section we shall focus on binary choice functions. This will
enable us to make an immediate tie-in to intraprofile conditions that
use the binary relation Fp, where zFpy if and only if 2 # y and
F({z,y},D) = {z}. Sections 15.2 and 15.3 consider more general
structures.

PASSIVE INTRAPROFILE CONDITIONS AND f-CONDITIONS

Given a binary choice function f: — ®(X), let f' be the binary
relation on X defined by

zf’y < x # y and f({z,y}) = {z}.

Four obvious candidates for f-conditions coincide with the four order
relations of section 7.2:

1. f’ is a suborder

2. f’ is a strict partial order
3. f’ is a weak order

4. f' is a linear order,

If any one of these holds and if ¥ € & is finite, then {z:2 € Y and
yf'z for no y € Y} is not empty. As in the case of the Condorcet
conditions of Chapter 12, we can consider f-conditions like

5. If YE X then f(Y) C {z:2 €Y and yf'z for no y € Y}
whenever {z: - - -} # 0,

regardless of whether any of the preceding f-conditions are adopted.

Each f-condition has a corresponding passive intraprofile condition
in the social-choice context. Conversely, every passive intraprofile
condition has a corresponding f-condition. Thus there is a one-to-one
correspondence between f-conditions and passive intraprofile condi-
tions. Some of the f-conditions, such as 1 through 4 above, deal only
with binary choices. Others, like 5, involve choices from larger sets.

The corresponding passive intraprofile condition for condition 1 is:
Fp is a suborder for each D € 9. For the passive condition

for all triples {z,v,2} € X and D € ®, if 2 € F({x,y},D) and
y € F({y,z},D) then z &€ F({z,z},D),

which is the same thing as saying that Fp is a weak order for every
D & D, the corresponding f-condition is condition 3 above.
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PASSIVE INTRAPROFILE CONDITIONS

The purpose of the rest of this section is to examine critically the
binary f-conditions in the context of social choice theory. We shall deal
mainly with the first of these (f’ is a suborder) since it is the most gen-
eral of the order conditions that are sometimes suggested as reasonable
conditions for a social choice function. Qur criticisms, many of which
have been anticipated in Part 1I, will involve active intraprofile con-
ditions for D € D. In most cases the D that we shall use fall outside
of the restricted categories used in section 14.4.

CRITICISMS OF SOCIAL ORDER CONDITIONS

Our first criticism of condition 1 above, or of its categorical corre-
spondent “Fp is a suborder for every D € D,” involves example
(7.13) where individual indifference is not transitive. The active
intraprofile condition involved in this case is strong binary unanimity:

x >py=2Fpy.

This says that if {x,y} is the feasible set and if nobody prefers y to x
and at least one person prefers z to y then z will be the social choice
from {x,y}. As noted before, if n > 3 and #X > 3 then there are
n-tuples D of strict partial orders on X such that Fp is not a suborder
when F satisfies strong binary unanimity.

So as not to further ‘‘bias” our case with the use of intransitive
individual indifference, we shall assume henceforth in this section that
every individual preference order on X is a weak order. We maintain
the assumption that every two-element subset of X is in .

Perhaps the oldest argument against a passive intraprofile condition
such as “Fp is a suborder (or weak order, etc.) for every D & D" is
the argument for simple majority. One version of this goes as follows.
Suppose that there are situations in which you feel that the following
apply:

(i) X contains more than two alternatives,
(ii) there are at least three voters,
(iti) any n-tuple of weak orders on X might obtain,
(iv) if in fact only two candidates turn out to be feasible, then the
choice between these two should be determined by simple
majority.

Then Fp cannot be a suborder for some D that qualifies under (iii).
Put differently, if one feels that Fp should always be a suborder, then
one must categorically reject the unrestricted use of simple majority
for binary decisions as in (iv) in all situations that satisfy (i), (ii),
and (iii).

Instead of simple majority, our third argument uses the weaker con-
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15.1 ORDER CONDITIONS

dition that x must be elected in a contest between z and y whenever
x receives a sufficiently large proportion (such as 99 percent) of all
available votes. With an the proportion that guarantees a winner in a
two-alternative contest, we stop short of unanimity by requiring that
a be less than unity.

Lemma 15.1. Let 14 < a < 1. Suppose thal, for all {z,y} € X,
F({x,y},D) = {z} whenever #{i:x >,y} > an. Then there is an X, n
and n-tuple D of linear orders on X such that Fp on X is not a suborder.

Progf. The proof is a simple extension of the cyclic case where
n=3,#X = 3 and D = (zyz,2zy,yzx). Let n be the smallest integer
that exceeds 1/(1 — a), let #X = nwith X = {x,, . . . ,z.}, and take
D = ($1IE2 Tt By Tyt c  Tally, Taa C C C Laka, 0ty Tl Xaey)
Then, according to the binary choice rule for F, since n — 1 > an,
:llepngDacaFD ot FD$nFD(L‘1. ‘

A slight modification of this method of proof yields the following
companion of the preceding lemma.

Lemma 15.2. Let 34 < a < 1. Suppose that, for all {z,y} € X for
which x # y, Fpy whenever #{i:x >;y} = n (i.e., binary unanimity)
and that not yFpx whenever #{i:x >;y} > an. Then there is an X, n
and n-tuple D of linear orders on X such that Fp on X is nol a weak order.

Proof. The prototype example for this proof is (8.5), which will serve
when 14 < a < 24. In general, let n equal the smallest integer that
exceeds 1/(1 — a), let #X = n + 1 with X = {xoz1, . . . ,2.} and
take D as follows:

1. 2o - - ¢ Zalto

2. Taklz * ' * TpZoXy

3. 23wy 0 TT1T2

N, TpZokli ° ° * Tn—2lpn—1.

By unanimity, z,Fpx,. By the other rule for Fp in the lemma, not
#1Fpxo, not zoFpxy, . . . , not x,Fpx,1. If Fp were a weak order then
the application of negative transitivity (section 7.1) to this string of
negations would give not z,Fpzs, contradicting z,Fpx,. Hence Fp is
not a weak order. ¢

Another argument against Fp being a weak order for all D &€ D that
appeals to some people is provided by Arrow’s impossibility theorem
(1963). This says that if F satisfies unanimity, independence from in-
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PASSIVE INTRAPROFILE CONDITIONS

feasible alternatives, a nondictatorship condition and several inoffen-
sive structural conditions, then Fp cannot be a weak order for every D.
(Weak orders for individuals are used in the theorem.) Because Arrow’s
theorem has played such an important part in the recent history of
social choice theory, it will be presented in the next chapter along with
a number of related impossibility theorems.

15.2 IncrusioN ConpiTiONs FOR CHOICE SETS

In this section we shall examine f-conditions that do not directly
rely on a binary relation and which presuppose no specific structure
for . As we shall see, these conditions have a close relationship to
the f-conditions discussed in the preceding section.

Our new conditions are all concerned with the relationship between
f(Y)and YN f(Z) when Y C Z and Y,Z & %. Their statements an-
swer questions such as: Should an alternative y that is in the choice set
from Z also be in the choice set from every subset of Z that contains y?
Put more crudely: Should a “best” alternative in Z remain ‘‘best” if
other alternatives are deleted from Z?

We shall consider three conditions. The first two are discussed at
length by Arrow (1959). The second and third are mentioned in Sen
and Pattanaik (1969). They apply to all Y,Z € <.

BlL. YC Zand YN f(Z) % §=f(Y) = YN f(Z).
B2. YC Z= YN f(Z) C f(Y).
B3. Y C Zand f(Y) N F(Z) = = f(Y) C f(Z).

Let Y be a subset of Z with Y,Z € . Then Bl says that if some ele-
ment in the choice set from Z is in Y also, then the choice set from Y
shall consist of all such elements. Condition B2 weakens this by only
requiring that all alternatives n Y M f(Z), if any, be in f(Y). If
YN f(Z) = 0, B2 permits f(Y) to contain alternatives in Y that are
not “best” in Z. Condition B3 says that if some Y choice is a Z choice
then every Y choice shall be a Z choice.

There are other ways to state these conditions. Two of these for B2
are

B2. YCZ=Y - f(Y)C Z — f(Z).
B2'. YC Z=f(Z) N\ (Y — f(Y)) = 6.

The equivalence of these to B2 is left as an exercise. In the form of
B2’ or B2, B2 asserts that any alternative in } that is not “‘best” in

Y shall not be “best” in the superset Z of Y. An equivalent expression
for B3 is

BY. Y& Zandzy € f(Y)=[z € f(2) oy € f(D)]
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15.2 INCLUSION CONDITIONS

which says that if two elements are in the choice set from Y then
either both or neither shall be in the choice set from Z.

As indicated in the preceding section, each of B1, B2, and B3 has a
corresponding passive intraprofile condition in social choice theory, ob-
tained by replacing f(W) by F(W,D) throughout the given f-condition.

THEOREMS

The following theorem shows how the three conditions relate to one
another. It does not presuppose any specific structure for . The proof
is very easy and is left to the reader.

TueoreMm 15.1. Bl & B2 & B3.

The next theorem shows that B1 gives rise to conditions based on
the binary relation f’ of the preceding section.

THEOREM 15.2. Suppose that f:X — ®@(X) is a binary choice function.
Then Bl implies that

fY)={z:eEYandyfx fornoy & Y} forall Y & x. (15.1)

If, in addition, X contains every triple in X, then f’ on X is a weak order
if B1 holds. Finally, if f is a binary choice funclion and if (15.1) holds
and [' is a weak order then B1 holds.

It should be observed that (15.1) applies regardless of whether Y is
finite or infinite. For example, if ¥ = {z1,x;, . . .} is denumerable
then Bl and binary f forbid the following linear order on Y when
Y € x:z,f'2;, whenever j > k. If the order held for f' on Y then
{x:z € Y and yf'z for no y € Y} would be empty.

We shall prove the final assertion of Theorem 15.2 first, by proving
the following lemma.

LEmMA 15.3. Suppose that f: % — ®@(X) is a choice funclion and that
there is a weak order f* on X such thal

f(Y) ={z:x € Yandyf*z fornoy € Y} forall Y € x. (15.2)
Then B1 holds.

Proof of the lemma. Let Y,Z € & with Y C Z and Y M f(Z) = .
If t € YN f(Z) then not zf*{ for all z & Z by (15.2), and therefore
zf*t for no z € Y. Hence { € f(Y) so that Y N f(Z) C f(Y). Now
take t € YN f(Z) and suppose that y € f(Y). Then not {f*y, so
that not zf*y for all z € Z by negative transitivity. Hence y € f(Z)
by (15.2), and therefore f(Y) C YN f(Z). ¢

Proof of the theorem. For the first part of Theorem 15.2 let B1 hold
for binary f. To verify (15.1) take ¥ & %. Suppose first that yf'z with
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z,y € Y. Thenz & f(Y), for otherwise a contradiction of Bl (z &€ f(Y)
and z & f{z,y}) is obtained. Therefore, with f'(Y) defined by

f(Y) = {z:2 € Y and yf'z for noy € Y},

we have proved that f(Y) C f’(Y). This requires f'(Y) = @ since
f(Y) # @ by definition. Suppose next that z & f/(Y) but that = &
f(Y). Then, for any y # z in f(Y), f({z,y}) = {y} by Bl so that
yf'x, which contradicts x € f’(Y). Therefore f/(Y) C f(Y) and hence
f(Y) = f'(Y), which is (15.1).

For the second part of the theorem let Z = {x,y,z} be an arbitrary
triple in X if #X > 3 and suppose zf’y. To verify negative transitivity
we need zf’z or zf’y. Since zf’y, Bl =y & f(Z). If z € f(Z) then zf’y
by Bl. If z & f(Z) then f(Z) = {z}, so that zf’z. ¢

Theorem 15.2 looks somewhat fragmented. The following obvious
corollary puts the matter in a simpler form.

CoroLLARY 15.1. Suppose that f: ¢ — ®(X) is a choice function and
that Y & & whenever #Y & (2,3} and Y C X. Then Bl holds if and
only if f' on X ts a weak order and (15.1) holds.

For condition B2 we have the following companion of Theorem 15.2.

THEOREM 15.3. If f: ¢ — ®(X) is a binary choice function then (15.1)
implies B2, and B2 implies that

fNCi{ziz & Yandyf'zr fornoyc Y} forall Y € x. (15.3)

If x contains every nonemply finite subset of X, if f:%¢— ®(X) is a
choice function, and if B2 holds, then f' on X is a suborder.

Remark. Unlike the final assertion of Theorem 15.2, if f: o — ®(X)
is a choice function, if & contains every nonempty finite subset of X,
and if f' on X is a weak order and (15.3) holds, then it is not neces-
sarily true that B2 holds. To prove this, suppose that X = {z,y,z,t},
X = ®(X) — {6}, and f’ = @. Then f({u,v}) = {u,} for every two-
element subset of X. But for every larger subset, f(Y) can be defined
however we wish (§ = f(Y) C Y) and (15.3) will not be violated.
In particular, we can take f({x,y,z}) = {z} and f(X) = {y}, which
violate B2.

Proof of the theorem. Let f be a binary choice function. Suppose first
that (15.1) holds and Y,Z € &, Y C Z and x € Y M f(Z). Then not
zf'z for every z &€ Z and hence z & f(Y) by (15.1). Thus B2 holds.
Suppose next that B2 holds and that z,y € Y, Y € & and yf’z. Then,
by B2, {z,y} N f(Y) C {y}. Therefore z & f(Y), and (15.3) holds.

Assume that % contains every nonempty finite subset of X and that
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f 18 a choice function which satisfies B2. Suppose that z,f'z.f" - - -
faenfx If o; € f({xy, . . . ,za}) then x, € f({z, 1,x,}) by B2, con-
tradicting x;_.f'z,, Hence, with 2o = «m, z; & f({x1, . . . ,2n}) for
J =1, ..., m, which contradicts the definition of a choice function.
Therefore xif'zsf’ © + -+ f'@mf ®: is false, and f’ is a suborder. ¢

DISCUSSION

When viewed in the perspective of social choice theory, Bl and B2
have a certain intuitive appeal and indeed seem reasonable for some
profiles D € . However, since they imply conditions such as 1 and 3
in the preceding section, they are liable to the criticisms given there.
That is, there are some n-tuples of individual preference orders under
which Bl and B2 may seem rather unreasonable.

Although B3 supplements B2 to produce B1, by itself it does not
imply the types of conclusions stated in Theorems 15.2 and 15.3. In
fact, B3 is trivially satisfied if f(Y) is always a unit subset of X (in
which case B2 is equivalent to B1). Hence any criticism of B3 must
use an f(Y) that is not a singleton.

One example with B3 takes y ~,z >,z ~;y for every >, in D.
Given {z,y} and {z,y,z} in &, it may seem reasonable to have

F({z,y},D) = {zy}  and  F({zy,},D) = {z},

which violate B3 since {z,y} is not a subset of {xz}.

An example with linear orders that may cause some skepticism about
B3 is obtained with X = {z,y,a,b,¢}, n = 6, and the following linear
orders for D:

l.zaybe
2.xcyab
3.zbyca
4. yabcex
5. ycabrzx
6.y beaax

If X € %, a “popular” choice would be F(X,D) = {y}. However, if
only z and y were feasible, then F({x,y},D) = {z,y} may seem most
appropriate since three individuals prefer « to ¥, and the other three
prefer y to z. This would violate B3.

15.3 STRUCTURES AND EXTENSIONS

In Corollary 15.1 we observed that Bl implies that f’ is a weak
order that satisfies (15.1) provided that X contains all two-element
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and three-element subsets of X. What can be said about these things
when X does not contain all such subsets?

Consider first the following definition of f’, which is consistent with
our usage in the preceding section:

wf'y sz #y, {zy) € X and f({z,y}) = {x}.

If {x,y} & X then not zf’y and not yf'z, and clearly Bl need not imply
that f’ is a weak order or that (15.1) holds. However, it may be possi-
ble to define another binary relation f* on X that agrees with f’ in the
sense that

{r,y} € £ = (zfy & af*y), (15.4)

and which is in fact a weak order on X. Moreover, (15.2) might be
true for f*, where (15.2) is

J(Y) ={x:e & Yand yf*afornoy € Y} foral Y € x. (15.2)

In this section we shall present two theorems that deal with the
existence of such an f*. The second, which was proved by Richter
(1966) and independently by Hansson (1968), gives an f-condition that
is necessary and sufficient for the existence of a weak order f* on X
that satisfies (15.2) regardless of the structure of %. Such an f* must
of course agree with f’ as in (15.4) and is therefore an extension of f'.

The new f-condition used in the second theorem will be referred to
as B4: Richter (1966) calls it the Congruence Axiom. Since B4 implies
a weak order f* that satisfies (15.2), we know by Lemma 15.3 that
B4 implies B1. Therefore B4 is a stronger condition than each of Bl,
B2 and B3. On the other hand, if % contains every two-element and
three-element subset of X, then, by Theorem 15.2, it follows that Bl
implies B4 so that the two are equivalent under this structure for .

Before discussing B4 further we shall present a theorem, due to
Hansson (1968), that focuses on the weaker condition Bl. In the con-
text of B1, Hansson’s theorem shows what is required of f: ¢ — ®(X)
to be able to define a weak order extension f* of f* that satisfies (15.2).

EXTENSIONS

Since the theorems of this section involve extensions of binary rela-
tions and choice functions, several preliminaries are in order. The fol-
lowing lemma concerns the extension of certain binary relations.

Lemma 15.4. If > on X is a strict partial order then there is a linear
order >’ on X such that > € >'. If » on X is reflexive and transitive
(i.e. a “quasi-order” or ‘“‘preorder”) then there is a connecled and tran-
sitive binary relation »' on X such that » C »' and (2 » y & nol
y»>z)=noty »'z foralz,y € X.
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The first statement of the lemma is due to Szpilrajn (1930), as noted
in section 7.2, A proof is given also in Fishburn (1970, Theorem 2.4).
Recall from Chapter 7 that > C >’ means that z > y =2z >y, for
all z,y € X.

The second part of the lemma is a variation of Szpilrajn’s theorem.
An explicit proof is given by Hansson (1968, Lemma 3). Since we have
been dealing mainly with asymmetric and therefore irreflexive orders,
it will be instructive to see how the second part of the lemma follows
from the first part.

Suppose then that » on X is reflexive and transitive. Reversing the
process of definition used earlier, define ~ and > from }» thus:

r~y @rry&y >z
z>yexypy&noty >

As one can easily show, ~ is transitive and is therefore an equivalence
on X, and (>)(>) € > and (>)(3») € >, so that > is transitive
and [ ~y &y >2or (x >y &y~2)]=2z > 2

With 3’ as in the conclusion of the lemma, we claim that x ~y =
z~yand z >y=z >"y. f not 2 »> y & not ¥ » z, which can
occur if > is not connected, then the extension 3>’ must have either
xp'yory >’z

With ~ an equivalence on X, let &, 7, . . . denote equivalence
classes in X/~. Define > on X/~ by

£ >19 < z > y for some (and hence for all) x € £ and y € #.

It follows from above that >; on X/~ is a strict partial order. There-
fore, by Szpilrajn’s theorem, there is a linear order >, on X/~ that
includes >;. Let >’ on X be the weak order defined from >, by

>y L >y when x E & and y €7,

\
so that, with z ~'y < not z >’y & not y >’ « as in the Chapter 7
presentation, x ~' y < x ~y (z, vy in same class in X/~). Taking
>’ = >'"\U~/, it follows that 3>’ is transitive and connected and it is
easily seen to satisfy the conclusions of the second part of Lemma 15.4.
In addition to Lemma 15.4 we shall use a definition that applies to
extensions of choice functions.

DEerinITION 15.3. Let f:9¢ — ®(X) be a choice funclion. Then g: X' —
®(X) ts an extension of f:% — ®(X) if and only if g: X' > ®(X) isa
choice funclion, every element in X' is a subsel of X, X C X’ and

g(Y) = f(Y) forall Y € x.
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HANSSON'S THEOREM

With this definition, we are now ready to state the first of the two
theorems.

THEOREM 15.4. Suppose that f:9¢ — ®(X) is a choice function. Then
the following three statements are equivalent:

(a) There is a weak order f* on X that satisfies (15.2);

(b) There is an extension ¢:X' — ®(X) of f:X — ®(X) such thal
Bl holds forgand Y, Z E X' =Y\ U Z € &';

(¢c) There is an exlension h:X®— ®(X) of f:% — ®(X) such thal
B1 holds for h and X° conlains every nonempty finite subset of X.

Proof. (a) = (b). Assume that (a) holds. Let &’ be the closure of X
under nonempty finite unions. If ¥ = U2, Y, with each Y, € &, let
¥, € f(Y,) for each j. Since f* is a weak order, it follows that, for
some k€ {1, . .. ,m}, y,f*yx for no y; Since not yf*y, for every
y € Y by (15.2), it follows from negative transitivity that not yf*y,

for every y € Y. Therefore g on &’ defined by
9(Y) ={z:x € Yand yf*x fornoy & Y} for all ¥ & x’

is a well-defined choice function that is an extension of f. B1 for g is
assured by Lemma 15.3.

(b) = (c). Assume that (b) holds with g:%’ — ®(X) as specified
therein. Define R, on X by

zRyy &> thereisa Y € X' such that s € g(Y)andy € Y. (15.5)

To show that R; is transitive, assume that xR,y and yR.z. Then,
by (15.5), there are Y,Z € &’ such that 2,y € Y, v,z € Z, 2z € ¢(Y)
and y€g(Z). By (b), YUZcX'. Take t€g(Y\U 2Z). If
{ € Y then z € g(Y\U Z) by Bl for g, and hence xR,z by (15.5).
If t& Z then ZN g(Y\U Z) = g(Z) by Bl, so that y & g(Y U Z).
Then, by Bl again, YN g(Y\J Z) = g(Y) sothat x € g(Y U Z) and
lel.
We show next that

g(Y) = {z:2 € Yand zRyyforally € Y} forall Y € . (15.6)

By (15.5), g(Y) € Ri(Y) = {z:x € Y and xR,y for all y & Y}. Con-
trary to (15.6), suppose that { € R(Y) and ¢ & g(Y). Then, for every
y # tin Y, there is a T(y) € %’ such that {,y € T(y) and t € g(T(y)).
In particular, this is true for z € g(Y). So with z € g(Y) consider
YU T(x) € ', and take v € g(Y \J T(z)). Suppose first that
v € T(z). Then, by Bl, t € g(Y U T(z)) so that, again by BI,
YNg(YVVU T(z)) = g(Y) and hence ¢ & g(Y), which contradicts
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t & g(Y). Suppose then that v € Y. Then YN g(Y U T(x)) = g(Y)
by Bl so that z & g(Y \U T(x)). Since x € T(z) it follows from B1
that T(x) M g(Y'\J T(z)) = g(T(x)) and hence that { € g(Y \J T(x))
and then that { & g(Y) which again contradicts { & g(Y). Therefore
Ry(Y) € g(Y) and the proof of (15.6) is complete.

Next, define R, on X by

2Ry & xRy or x = y.

Then (15.6) holds for R, in place of R,, and R, is transitive and re-
flexive. It follows from the second part of Lemma 15.4 that there is a
transitive and connected R; on X such that R, C R; and (zR,y & not
yRax) = not yR;z. Moreover,

g(Y)={r:x €E Yand zRsy forally € Y} forall Y & «’,

since zR,y for ally € Y= zRyy for ally € Y, and since if { € ¥ —
g(Y) then not tRyy for some y € g(Y), since R, is transitive, and hence
yR.t & not {R;y, so that not {R3y.

Finally, let a® equal ' plus all nonempty finite subsets of X and
define h: x° — ®(X) by

hY) = {z:x € Y and zRyy for ally € Y} for all ¥ € «x°.

Thenh(Y) = g(Y)forall Y € «’,and h(Y) = @foreach Y &€ a0 — «’

by finiteness. If we define the binary relation 2* on X by yh*z < not

zR3y, or not yh*x < zR;y, then h* is a weak order, A(Y) = {z:2 € Y

and yh*z for no y € Y}, and hence B1 holds for 4 by Lemma 15.3.
(¢} = (a). This is immediate from Corollary 15.1. ¢

A NECESSARY AND SUFFICIENT CONDITION

During the course of the preceding (b) = (c) proof we have identi-
fied the binary relation that forms the basis of Richter’s Congruence
Axiom. As in (15.5), we define R, on X for an arbitrary choice function
f:¢— ®(X) by

zRyy < thereisa Y € X such thatz € f(Y)andy € Y. (15.7)

In a sense this says that “r is directly revealed to be as good as y”
if and only if xR.y.

Richter’s axiom uses the transitive closure R} of BR; in the following
way. The condition applies to all ¥ & <.

B4 z € f(Y),y € Y and yRiz =y € f(Y).

The expression yRiz can be interpreted to mean that “‘y is indirectly
revealed to be as good as z.”” Thus B4 says that if x,y € Y, if z is In
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the choice set f(Y) and if “y is indirectly revealed to be as good as z,”
then y is in the choice set also.

THEOREM 15.5. Suppose that f: ¢ — ®(X) is a choice function. Then
there is a weak order f* on X for which (15.2) holds if and only if B4 holds.

Proof. Suppose first that (15.2) holds with f* a weak order. With
zRsy < not yf*z, this is equivalent to

f(Y)={z:xa € Yand zRoy forally € Y} forall Y € &, (15.8)

with R, transitive and connected. For B4, suppose that x € f(Y),
y € Y and yRiz. Then yRiz;R, - - - Riz,Riz so that, by (15.7) and
(15.8), yRoz1Ry -+ - - RozwBRox and hence yR.x by transitivity. Since
xR for all v € Y, yRw for all v € Y by transitivity, and therefore
y € f(Y) by (15.8). Thus B4 holds.

Suppose next that B4 holds. For convenience let W = R!, so that
B4 reads (for all ¥ € X)

B4. r € f(Y),y € Yand yWr =y & f(Y),

and let W(Y) = {x:2 € Yand aWy for ally € Y}. W is transitive by
definition. Since f(Y) = #, B4 implies W(Y) C f(Y). Take z € f(Y).
Then xRy for all y € Y by (15.7) so that tWy for all y € Y, and
hence f(Y) € W(Y). Thus f(Y) = W(Y).

Define W, by xW,y & zWy or z = y. W, is reflexive and transitive,
and f(Y) = W,(Y). By the latter part of Lemma 15.4, let R, be a
connected and transitive binary relation on X such that W; C R, and
(xWyy & not yWyx) = not yRox. As in the (b) = (¢) proof of Theorem
15.4, it follows easily that (15.8) holds. ¢

OTHER CONTRIBUTIONS

Additional theorems along the lines presented here are discussed in
the aforementioned papers of Arrow (1959) and Hansson (1968), and
in Wilson (1970) and Richter (1971). The last two of these summarize
many of the earlier developments in this area and present several new
theorems.
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CHAPTER 16

Arrow’s Impossibility Theorem

TaE CoNbpITIONS in a set of conditions for a social choice function are
incompatible, inconsistent or “impossible” if there is no social choice
function that can simultaneously satisfy all conditions in the set. A
number of such sets have been identified in preceding chapters. In
Chapter 6 we noted that duality and strong decisiveness are incom-
patible. In Part II, each of Lemmas 7.2, 7.3, 8.2, 13.1 and Theorems
12.1, 12.2, and 12.3 can be viewed as an impossibility theorem.

In this chapter we shall examine Arrow’s famous impossibility theo-
rem and a number of its close relatives. The original theorem by Arrow
(1950) differs in several respects from the version developed by Arrow
and by Blau (1957) that appears in Arrow (1963, Theorem 2, p. 97)
and which is stated here as Theorem 16.1. This theorem uses the pas-
sive intraprofile condition that Fp on X is a weak order for all D € D.
If individual strict partial orders are allowed, then, as we have seen in
sections 7.3 and 15.1, we would have little to say since strong binary
unanimity is inconsistent with this passive condition. But Arrow’s
theorem restricts © by requiring that all individual preference orders
be weak orders, and under this restriction the matter becomes more
complex and much more interesting.

In general, it is assumed throughout the chapter that all individual
preference orders are weak orders. Arrow’s theorem is proved in the
next section. Section 16.2 presents a modification of Arrow’s theorem
that retains all of his structural conditions but weakens weak order
for Fp to transitivity for F and strengthens his nondictatorship con-
dition to a no-vetoer condition. Section 16.3 notes a version of the im-
possibility theorem that was developed by Hansson (1972) and which
uses a nonconstancy condition plus a condition of nonsuppression. The
theorems in the first three sections assume that #X > 3 and that &
contains all two-element subsets of X.

The final section discusses an impossibility theorem from Hansson
(1969) which requires almost no structure for 9. This theorem effec-
tively assumes for X-structure that & includes at least one subset of X
with more than two elements, and it does not require X to contain
any two-element subset of X.

16.1 A Basic IMmpossiBILITY THEOREM

In this section we shall first state Arrow’s impossibility theorem and
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then discuss the conditions used in the theorem in more detail. The
section concludes with two proofs of the theorem.

Working within the context of individual weak orders, we shall say
that a triple {z,y,z} & X is free in D if and only if for every n-tuple
of weak orders on {z,y,z} thereis a D & © whose restriction on {x,y,z}
is the given n-tuple. Because one of the structural conditions in the
theorem says that every two-element subset of X is in &, Fp as in
(7.9) is well defined. This fact is used in later conditions.

TrHeEOREM 16.1 (Arrow’s Theorem). Suppose that F: % X © — ®(X)
is a social choice function such that

Cl. n is a posilive infeger,

C2. #X > 3 and X conlains every two-element subsel of X,

C3. D is a set of n-tuples of weak orders on X and every triple in X is
free in .

Then at least one of the following conditions must be false:

C4. Fp on X is a weak order for every D € D,

Cs5. If z,y € X, D € D and x >p y then zFpy,

Cé. If eye X,z #y, DD €D and if D on {x,y} equals D' on
{x,y} then Fp on {x,v} equals Fp: on {z,y},

C7. There is no i < {1, ... ,n} such that (x,y € X, D € D,
x >;y) = xFpy.

The seven conditions used in the theorem have the following classi-
fication according to Table 14.1:

Structural: C1, C2, C3
Passive Intraprofile: C4
Active Intraprofile: C5
Interprofile: C6
Existential: C7

Hence every class or subclass in Table 14.1 with the exception of the
multiprofile class is represented in the theorem.

One should have no difficulty interpreting the conditions. C4 was
discussed at length in section 15.1, C5 is binary unanimity, C6 is the
binary version of independence from infeasible alternatives, and C7 is
a binary nondictatorship condition.

The only condition that might appear to be redundant is C1. How-
ever, recall that the general definition of social choice function in
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Definition 14.1 says nothing about D other than it is a nonempty set.
With minor changes in terminology in C3 and C7, one might wish to
assume that the set of voters is nonempty, and use this instead of C1.
However, as shown in Fishburn (1970c), the theorem will then be
false, since an infinite set of voters is consistent with conditions C2
through C7. Thus the stipulation that the set of voters is finite is
crucial to the theorem.

Perhaps the greatest benefit of Arrow’s theorem is the subsequent
discussion and research it has generated. One direction that this re-
search has taken appears in Chapters 9 through 11 and in section 14.4,
which can be viewed as attempts to tighten C3 to such an extent that
the remaining conditions (or modifications thereof) are compatible.

Arrow’s theorem has led also to deeper examinations of conditions
like C4 through C7 under the suppaosition that C1-C3 are acceptable
in some situations. Some writers, who feel that each of C4 through C7
is acceptable, conclude that Arrow’s theorem shows that there does
not exist any reasonable or ‘‘rational’ social choice procedure for some
situations involving more than two alternatives. Others eonclude that
one or more of C4 through C7 is untenable as a general desideratum
of social choice.

Most of the latter discussion has involved the condition of a social
ordering (C4) and the condition of independence from infeasible alter-
natives (C6). For example, the arguments of section 15.1 suggest that
C4 may be untenable, and some people feel that this viewpoint is
further supported by Arrow’s theorem. Others take issue with the
independence condition, feeling that it causes the suppression of in-
formation about preferences that should be taken into account in
determining the social choice. Closely allied to this is a potential dis-
agreement with C3, which permits only certain types of information
about voters to enter into the social choice function. For further com-
ments on this point the reader is referred to the discussion of Chapter 1
and the references cited there.

PROOF PRELIMINARIES

We shall now consider two proofs of Theorem 16.1 that go at the
matter from different directions. The first proof, which is used by
Arrow (1963), shows that C1 through Cé imply the contradictory of
C7. That is, C1 through C6 imply that some individual is a dictator.
The second proof begins by assuming that no individual is a dictator
and shows that C2 through C7 imply the contradictory of Cl1.

Several special definitions are used in the proofs. If [ is a nonempty
subset of voters then I is decisive for x over y if zFpy whenever z >,y
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forall i € I and y >,z for all i & I. This is similar to the definition
of section 4.1. For the first proof we shall write

iy < (x Fpy whenever ¢ >,y and y >;« for all j # i),
1y < (z Fpy whenever x >, v).

x 1y says that {i} is decisive for z over y; and if x 7 y for a fixed ¢ and
all z,y € X for which z # y, then ¢ is a dictator. The second proof
used the ““dual” of x ¢ y and another relation as follows:

z i* y & (zFpy whenever y >,z and z >; y for all j = i),
z.m y < (xFpy whenever D is such that m voters have y >,z and
all others have z >, ).

zi*y says that {1, ... ,71—1,i+1,...,n} is decisive for z
over y. If any subset that contains all but one of the voters is decisive
for any alternative over any other alternative, then z 1y whenever
z,y € X and x # y.

In both proofs n designates the set of all voters.

ARROW’S PROOF

Let C1 through Cé6 hold. We show first that a ¢ b for some ¢ and some
a,b € X with a & b. Using C5, n is decisive for z over y whenever
z,y € X and z # y. It follows from C1 and C6 that there are a # b
and @ C I € n such that [ is decisive for a over b and there is no
smaller subset of n that is decisive for one alternative over another.
Fix i € I, take « & {a,b} by C2, and use C3 to obtain a D for which

z>:a>.ba>;b>,zforall j &I — {i},b >,z >;aotherwise.

By construction, aFpb. If {i} C I then not aFpz, for otherwise
I — {i} would be decisive for a over x, using C6; but then «Fpb by
C4 and hence z i b, contrary to {i} C I. Hence I = {i}.

Given a i b, we now show that ¢ is a dictator. First, take ¢ & {a,b}
by C2 and use C3 to obtain D with

x>;a>;b and z>;a,b>,a for all J#E L

Then aFpb by aib, and zFpa by C2 and C5, so that zFpb by C2
and C4. Since C3 allows any relationship between x and b for j > i it
follows from C6 that 27 b. A similar argument with ¢ >.b >,z and
b>;x,b>,agvesalz. Notethatzib=ztbandaicz=aiz.
Beginning with x,b in place of a,b, the preceding argument gives
a7 b and z 7 a. Beginning with a,z in place of a,b, the argument gives
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yiz for y & {a,x}, which includes b7 z. Finally, b,z in place of a,b
yields b 7 a. This accounts for all distinct pairs in X, and hence i is a
dictator, contradicting C7. ¢

AN ALTERNATIVE PROOF

Let C2 through C7 hold. Suppose n > @ and take any : &€ n. C2,
C3, and C7 imply that a >, b and not aFpb for some D and some
a,b € X. Take z & {a,b} by C2 and let D’ agree with D on {a,b} with

a>lz>:b and a>,x,b>,xz forall j=i (16.1)

Then not aFpb by C6, aFpx by C5, and hence bFp.x by C4, and
bi* z by C6. A similar proof gives « i* a. With y & {x,b} let D! agree
with D’ on {z,b} and have 2 >!y >'band y > b >z for j = i.
Since bFpwx, and yFpib by C5, yFpuz by transitivity, and y i* 2 by
C6. This includes a t* z. By a similar proof, z i* b. Finally, take D?
with @ >2b >2z and b >z >2a for j > i. Then zFpa by z i* g,
bFpxx by C5, and hence bFp:a by C4, and bi* a by C6. A similar
proof gives a i* b.

Since { & n was arbitrary, x 1 y whenever z,y € X and = # y.

Suppose n # §. Then #n > 1 is required by C5 and C7. Suppose
#n > m > 1,andthatz kyforallk < mandallz,y € X with x > y.
With i € n, t & I and #I = m take D with

y>. x>, aa>;y>,xforal j& I,z >,a >,y otherwise.
(16.2)

Then aly = aFpy and x m a = zFpa, so that zFpy by C4. This
contradicts C5 if #n = m + 1. Hence #n > m + 1. Moreover, since
i, z, and y are arbitrary, z(mn + 1)y for ¢ # y in X. It follows either
that n = @ or that #n > m for all positive integers m, thus contra-
dicting Cl1. ¢

16.2 VETOERS AND OLIGARCHIES

During the years since Arrow’s original theorem appeared, there
have been many variations on his impossibility theorem theme. Some
of the more important variants of his theorem appear as numbered
theorems in this and later sections. A few others will be noted in the
text.

One type of modification weakens condition C4, that Fp be a weak
order for each D € D. The following theorem, mentioned by Murakami
(1968) and Schick (1969), replaces C4 by a transitivity condition and
strengthens the nondictatorship condition C7 to a no-vetoer condition.
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THEOREM 16.2. Suppose that F: X X D — ®(X) is a social choice
SJunction for which C1, C2, and C3 hold. Then at least one of the follow-
ing conditions must be false:

C4’. Fp on X is transitive for every D € D,

C5. (Binary unanimity),

C6. (Binary independence from infeasible allernatives),

C7'. For each 1 € {1, . . . ,n} there are z,y € X and D € D such
that z >,y and yFpz.

Condition C7’ says that no individual has unlimited veto power:
that is, there is no ¢ such that not y¥pxz whenever z >, y, for all
z,y & X for which z = y. C7’ is therefore referred to as a no-vetoer
condition. It is stronger than the nondictatorship condition (C7’ =
C7, but not conversely) since a dictator is a vetoer, but not conversely.

Proof. In the second proof of the preceding section, negative transi-
tivity for Fp was required only in the sentence after (16.1). All other
uses of C4 involved only the transitivity of Fp. By using C7’ instead
of C7 we obtain a >, b and bFp.a for use with (16.1): this and aFp.x
then give bFpx by C4’. Since C4’ serves elsewhere in the proof and
since C7' = C7, the proof of Theorem 16.2 is complete. ¢

SOME OTHER MODIFICATIONS

Each of Theorems 16.1 and 16.2 can be modified by weakening C3
by requiring only one triple in X to be free in ©. This weakening
then requires a strengthening in C7 [or C7’] to the effect that no indi-
vidual is a dictator (or vetoer) with respect to the three alternatives
in some free triple. The foregoing proofs for Theorems 16.1 and 16.2
apply directly to a free triple with this property.

Another modification changes C3 by assuming only the presence of
linear individual preference orders, with free triples in this context.
Since individual indifference is not actually used in the proofs, the
theorems remain valid under this slight weakening of C3.

A more interesting possibility is to weaken C4 or C4’ to “Fp is a
suborder for each D & D,” but we know of no simple modification of
Theorem 16.2 for this case that gives an impossibility theorem of quite
the same caliber as the preceding theorems. This does not say that
there are no impossibility theorems for the suborder case. Indeed, with
sufficiently strong conditions (approaching those used for simple ma-
jority agreement) such a theorem is readily obtained.

A somewhat different modification of Arrow’s theorem has been de-
veloped by Blau (1971). His basic idea is to replace the binary version
of independence, C6, by a weaker independence condition that applies
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to m-element subsets of X where 2 < m < #X. For example, ternary
independence says that if {z,y,z} is a triple in X and if D on {z,y,z}
equals D’ on {z,y,z} then Fp on {z,y,2} equals Fpr on {z,y,z}. Strength-
ening C3 to admit all n-tuples of weak orders in D, Blau shows that
the preliminary conditions of Theorem 16.1 along with C4 and m-ary
independence, for any fixed m with 2 < m < #X, imply binary inde-
pendence (C6). Additional remarks on types of independence are found
in Hansson (1972).

OLIGARCHIES

In general, when one of the conditions in Theorem 16.1 [Theorem
16.2] is omitted, the remaining conditions are compatible and any F
that satisfies them must satisfy also the contradictory of the omitted
condition. For example, if F satisfies all of C1 through C7 except for
C5, then there must be z,y € X and D € D such that z >>py and
not zFpy. Or if F satisfies C1, C2, C3, C5, C6, and C7’, then Fp is
not transitive for some D.

As several authors have shown, sets of compatible conditions some-
times give rise to other properties for a social choice function that
may seem unusual or surprising. A good example of this is provided
by a theorem attributed to A. Gibbard by Sen (1970b). Given C1, C2,
C3, C5, and C6, we have noted that C4 and C7 are incompatible and
that C4’ and C7’ are incompatible. However, simple examples show
that C4’ (transitivity) and C7 (nondictatorship) are compatible. How-
ever, as Gibbard has shown, there must then be an oligarchy. This is a
nonempty subset of voters which is decisive for x over y whenever
x # y, with each voter in the subset having veto power.

DeriniTION 16.1. In the context of a social choice function F:X X
D — ®(X) for which X contains every two-element subset of X and n =
{1, . . . ,n}, I is an oligarchy if and only if 8 C I C n and, for all
distinct x and y in X and D € ®,

) z >,y foralli € I = xFpy,
(ii) z >,y for any i € I = not yFpux.

If n itself is an oligarchy then not xFpy and not yFpx whenever
someone prefers z to y and somebody else prefers y to x. If some pair
in X is free in D, then it is easily seen that there can be at most one
oligarchy.

THEOREM 16.3. Suppose that F:X X D— ®(X) is a social choice
Sfunction that satisfies C1, C2, C3, C4’, C5, C6, and C7. Then n in-
cludes an oligarchy.
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Proof. Let the conditions of the theorem hold for F. Suppose that
K C n is decisive for some a over b. Then, by an argument like that
following (16.1), it is easily seen that K is decisive for z over y, for
all distinct z and y in X.

By Theorem 16.2, C7' must be false. Therefore, there is at least
one { € n who is a vetoer: for all distinct z and y in X and D & D,
z >,y =not yFpz. Let I be the set of all such i. Then Definition 16.1
(i) holds for I, with @ C I C n.

By C5, nis decisive for z over y whenever z > y. Let K be a smallest
subset of n that is decisive for some alternative over another. Clearly
I € K. Contrary to I = K suppose that k € K — I. Since k & I,
there are distinct ¢ and bin X and D € D such that a >, b and bFpa.
The proof following (16.1) (replace not aFp:b by bFp-a in the sen-
tence after (16.1) and use C4’) shows that z k*y (zFpy whenever
y >rz and ¢ >;y for all j > k) for all distinct z and y in X. For
definiteness let K be decisive for ¢ over d, and use C2 and C3 to
obtain a D & D that has

¢c>rd>r2,x >;c>.dforall i € K — {k},d >,z >ic
otherwise.

Then cFpd by decisiveness, and zFpc by z k* ¢, so that 2Fpd by C4’.
But then K = {k} is decisive for z over d, contrary to our smallest
assumption for the formation of K. Therefore K — I = §and K = I,
which with the initial paragraph of this proof gives Definition 16.1 (i).
Hence I is an oligarchy. ¢

16.3 SuUPPRESSED INDIVIDUALS

In concluding our discussion of impossibility theorems that use the
structure of Arrow’s theorem, we shall prove a theorem of Hansson
(1972) that drops the unanimity condition and adds conditions of non-
constancy and nonsuppression.

Within the context of C1, C2, and C3 we shall say that F is sirongly
nonconstant if, for each pair x,y € X with ¢ # y, there are D and D’ in
D (which can depend on z and y) such that F({z,y},D) = F({x,y},D’).
This condition is closely related to Arrow’s condition of citizens’ sover-
eignty, which says that for each ordered pair (z,y) € X X X thereis a
D &€ © such that F({z,y},D) = {z}. Citizens’ sovereignty implies
strong nonconstancy, but F can be strongly nonconstant and not
satisfy citizens’ sovereignty. Hence strong nonconstancy is the weaker
of the two conditions.

Strong nonconstancy and citizens’ sovereignty are generally felt to
be desirable properties for a social choice function. In contrast to these
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we note three undesirable properties that are suggested by Hansson’s
developments. We shall say that F is

(1) flat
(2) perverse
(3) suppressive

if and only if, for all z,y € X with % y and for all D & D,

(1) not xFpy and not yFpx
(2) >»py=yFpzx
(3) there is an i such that = >,y = yFpuz.

A flat social choice function yields a tie between x and y regardless of
the individuals’ preferences between x and y. Flatness is ruled out by
strong nonconstancy and by citizens’ sovereignty.

A perverse social choice function selects y over x when everyone
prefers x to y, in sharp contrast to unanimity. A suppressive social
choice function selects y over z whenever a given (suppressed) indi-
vidual prefers z to y, regardless of the other individuals’ preferences.
In a manner of speaking, a suppressed individual is a dictator turned
upside down.

A suppressive function is perverse, but a perverse function need not
be suppressive. Hence the desirable condition of nonsuppression is
weaker than the condition of nonperversion.

TueoreM 16.4. Suppose that F: X X D — ®(X) is a social choice
Sfunetion for which C1, C2, and C3 hold. Then at least one of the follow-
ing conditions must be false:

C4. Fp is a weak order for every D € D,

C6. (Binary independence from infeasible allernalives),
C7. (Nondictatorship),

C8. F is strongly nonconstant,

C9. F is not suppressive.

This shows that if C1, C2, and C3 hold and if we insist on weak
orders for the Fp along with independence, then either there is a dic-
tator, or a suppressed individual, or else strong nonconstancy (and
hence citizens’ sovereignty) is violated.

Proof. We assume that all conditions except C9 hold and show that
there must be a suppressed individual. Define three binary relations
A, B, C on X as follows:

tAye (x>py= 2Fpy)
z By (z>py = not xFpy & not yFpx)
zCy& (x>py=>yFpx).
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If z # y then, under C6, exactly one of x A y, z By and z C y holds.
Given z # y we note that

TAy=zAw for all zzwe X (16.3)
2 Cy=:Cuw for all 2w € X. (16.4)

First, t Ay= 12 Az for every z &€ X. This is trivial if z € {x,y}.
Otherwise, suppose z 4 y and not z A z, and consider a generic profile
D &€ D in which the preferences between y and z are arbitrary, and
z>py and x 3>pz. Then t Ay = zFpy, and not r Az (z Bz or
z € z) = not xFpz, so that zFpy by C4 (negative transitivity). Since
the preferences between y and z are arbitrary, this violates C8 in light
of C6. Hence + A y = x A z. A similar proof showsthatz Ay =z A4 y
for every z & X. Then (16.3) follows, and (16.4) is proved in a similar
manner.

By Arrow’s theorem, C5 must be false, In view of (16.3) this says
that x #y=notx Ay, or 2 #y= (x By or x Cy). Suppose z Cy
for no distinct = and y. Then z B y for all pairs. A generic profile D
where z and y are arbitrarily distributed and z >, z and y >>p z then
gives not zFpz & not zFpr & not yFpz & not zFpy, so that not
zFpy & not yFpz by C4, which in view of C6 implies that F is flat,
which violates C8. Hence z C'y for some distinct z and y, and z Cy
for all z,y € X by (16.4). Therefore F is perverse. Thus, if F, is de-
fined as the dual of Fp (zFpy < yFpx), then Cl, C2, C3, C4, C5,
and C6 hold for the F}, and therefore, by Arrow’s theorem, there is a
dictator for this dual case. By the definitions, this ‘‘dual dictator” is
a suppressed individual with respect to F. ¢

16.4 Minmmar & STRUCTURE: ANOTHER HanssoN THEOREM

The impossibility theorems of the preceding sections presume that
% contains every two-element subset of X. The first major deviation
from this pattern was made by Hansson (1969) for an impossibility
theorem that does not assume that any two-element subset of X is in
%, but requires only that % contain some subset of X that has more
than two elements. This subset may be finite or infinite. To avoid un-
necessary notation and with no real loss in generality, we shall suppose
that X itself is in .

In his proof of the following theorem, Hansson shows that if F satis-
fies the conditions of the theorem then it is possible to define another
social choice function that satisfies the conditions of Arrow’s theo-
rem. Since the latter are inconsistent, Hansson’s conditions must be
inconsistent.
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THEOREM 16.5. Suppose that F: X X D — ®(X) is a social choice
Sfunction such that

D1. n is a positive integer,
D2. #X > 3 and X € «,
D3. D is the sel of all n-luples of weak orders on X,

Then at least one of the following conditions must be false:

D4. If ey € X, D €D and 2 >p y then y & F(X,D),

D5. If DD €D, 0 C Y C X and if D equals D' on Y then either
YNF(X,D) = YN F(X,D') or else one of these two intersec-
lions must be empty,

D6. There ts no i &€ {1, ... ,n} such that (x,y & X, D € D,
x >.y) =y & F(X,D).

Condition D1 is C1, and D2 and D3 relate to C2 and C3 in an
obvious way. The last three conditions make demands only on F(X,D):
if & contains proper subsets of X, the behavior of F on such subsets is
immaterial.

Condition D4 is a unanimity condition, comparable to C5, and D6 is
a nondictatorship condition, comparable to C7. If X is infinite then
D4 must be violated, since along with D3 it implies a D for which
F(X,D) = @.

The remaining condition, D3, is an interprofile condition that has
no immediately obvious counterpart in the preceding system. It says
that if individual preferences on Y are the same in D and D’ and if
some alternative in Y is “best” in X under D, and some alternative in
Y is “best” in X under D', then every “‘best” Y alternative in X un-
der D will be a “best” alternative in X under D', and every “‘best” Y
alternative in X under D’ will be a “best” alternative in X under D.
If one of YN F(X,D) and Y N F(X,D’) is empty and the other is
not, D5 is not violated. This might be the case with X = {z,y,z},
Y = {z,y}, n = 3 and D,D’ as follows:

D D’
l.zy 2 l.zz2y
2.2y z 2.z 2y
S.zyz J.yzzx

F(X,D) = {z} and F(X,D’) = {z} seem reasonable, in which case
YN F(X,Dy = {z} and YN F(X,D") = §.

Condition D5 suggests the flavor of both the condition of inde-
pendence from infeasible alternatives and a passive intraprofile con-
dition such as Bl in the preceding chapter. As in the case of some of
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the passive intraprofile conditions, there are arguments (one of which
may be Theorem 16.5 itself) that might cause some reservations about
the general desirability of D5. For example, suppose y € F(X,D) and
D’ is obtained from D by lowering y as much as possible in each indi-
vidual order where z >,y, and by raising # as much as possible in
each order without changing the order between x and y. Then in some
cases it may seem reasonable to have * & F(X,D’) and y & F(X,D’).

A specific example that is partially built on this theme takes X =
{x,y,a,b,c}, n = 5 and D,D’ as follows:

D D’
l.zyabe zabey
2.yacbz yzxabe
3.cabuzy czaby
4.z yabec zbcay
5. ybaccx yzxbac

It seems to us rather reasonable to have y € F(X,D) and « & F(X,D),
and to have x € F(X,D’) and y & F(X,D’). Since D = D’ on {z,y},
these selections would violate D5,

Proof of Theorem 16.5. The theorem is true if it is true when X =
{ X}, so assume that X is the only element in 9. Contrary to the
theorem, we suppose that F: { X} X D — ®(X) is a social choice func-
tion which satisfies D1 through D6. Let ¥’ = ®(X) — {#}. We shall
construct a social choice function G: X’ X H — ®(X) that satisfies C1
through C7. But this is impossible by Theorem 16.1, and the desired

contradiction is obtained.
Given DE Dand 8 C Y C X, define DY & D so that DY = D on
Yand, forally € Yandz € X — Y, y >Y z for every i. Define G by

G(Y,D) = YN F(X,DY) forall (Y,D) Ex’ XD. (16.5)

Since F(X,DY) s« § and since ¢ € X — Y =z & F(X,DY) by D4,
G(Y,D) = ¢ and G is a social choice function. We show next that G
satisfies

Bl. YC Zand YN G(Z,D) # 8= G(Y,D) = YN G(Z,D)
for each D € ©. Under the hypotheses of Bl we have

0= YNGZD)y=YNZNF(X,D? =YNFX,D?)
= YN F(X,D¥) = G(Y,D),

where the penultimate equality follows from D5 since G(Y,D) = ¢
and DY = DZon Y.
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Hence, by Corollary 15.1, Gp on X is a weak order for each D € D.
This verifies C4 for G. C1, C2, and C3 obviously hold.

To verify C5, C6, and C7, let Y = {a,y} with = # y.

C5. Suppose z >>py. Then y & F(X,D¥) by D4 and hence y &
G(Y,D) by (16.5). Thus zGpy.

C6. Take D =D on Y. Then DY =D =D = D'Y on {xy}.
Hence, using D5,

§#GY,D)=YNFX,DY) = YNFX, DY) = G(Y,D') # 0.

C7. For i, let x,y be as guaranteed by D6 with « >,y and y &
F(X,D). Using D5,8 = YN\ F(X,D) = YN F(X,DY) = G(Y,D) = ¢
and therefore y € G(Y,D). ¢

A CONSTANT FUNCTION

Hansson (1969, 1969b) presents several other interesting theorems.
One of these produces a flatness conclusion by modifying the unanimity
condition D4 in the following way:

DV. If z;y€ X, DED, 2>py and if y € F(X,D) then
x & F(X,D).

THEOREM 16.6. Suppose that F: { X} X D — ®(X) is a social choice
function that salisfies D1, D2, D3, D4/, D5, and D6. Then F(X,D) = X
Jor every D € D.

Clearly, F = X satisfies the conditions. To show that this is the only
F, we assume that the cited conditions hold along with F(X,D) = X
for some D & D, and show that this implies D4, thus giving a con-
tradiction by Theorem 16.5. D6 is not used in this proof. Hence (D1,
D2, D3, D4/, D5) = D4 when F(X,D) ¢ X for some D.

Proof. Let F: { X} X D — ®(X) be a social choice function that satis-
fies D1, D2, D3, D4/, and D5. Suppose further that there are a,b © X
and D € ® such that « € F(X,D) and b & F(X,D). Let E = D'=¥,
using the definition of DY in the preceding proof. By D4', F(X,E) con-
tains a or b. Hence, by D5, a € F(X,E) and b & F(X,E). It follows
from D4’ that F(X,E) = {a}.

Take any = # a and let D’ = E on X — {z} with x > y for every
y # z and all i. By D4, 2 € F(X,D'). Take u & {z,a}. E= D" on
{u,a}. If uw € F(X,D') then, by D5, {u,a} N\ F(X,D') = {u,a} N
F(X,E) and hence u & F(X,E), contradicting F(X,E) = {a}.

This shows that, for any z € X there is a D € D such that z &
F(X,D) and X = F(X,D).

To establish D4 take x >>p y. By the preceding result let £ & D be
such that x € F(X,E) and u & F(X,E) for some u € X, Suppose first

215



ARROW’S IMPOSSIBILITY THEOREM

that u = y. By the initial analysis in this proof, F(X,E'=%) = {z}.
Since E'=% equals D on {z,y}, D5 requires y & F(X,D). Suppose next
that y = u is the only element not in F(X,E). Take t & {z,y}. Then
2t EF(X,E)and y & F(X,E). Let D' = Eon X — {z} withz >/a
for all @ # z and all i. Then ¢ € F(X,D’) by D4’. Since D' = E on
{y,t}, D5 requires y & F(X,D’), for otherwise ¥ would be in F(X,E).
Since D = D' on {z,y}, D5 requires y & F(X,D), for otherwise y
would be in F(X,D’). Hence, in any event, y & F(X,D), and this
establishes D4. ¢
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CHAPTER 17

Summation Social Choice Functions

A sociAL cHOICE function is a summation social choice function if, for
each (Y,D) € x X D, numerical values can be assigned to the alter-
natives for each individual so as to preserve the individual preference
orders in D and to make F(Y,D) equal to the subset of alternatives in
Y that have the largest value sum over the individuals. A precise
definition and a unanimity-like necessary and sufficient condition are
presented in section 17.1.

Section 17.2 then discusses a hierarchy of summation social choice
functions. One branch in this hierarchy considers individual functions
that do not depend on the particular feasible set Y under consider-
ation. It follows from the preceding chapter that social choice func-
tions of this sort violate either the condition of independence from
infeasible alternatives or the nondictatorship condition. These func-
tions are examined briefly in section 17.5.

The intervening sections concentrate on summation social choice
functions that, generally speaking, depend on the feasible set under
consideration. Section 17.3 considers the case where the individual
function for voter { depends on Y and on > ; but not on other voters’
preference orders. The effects of anonymity and neutrality within the
voter independence context are noted in section 17.4. The Borda func-
tion of section 13.2 is a special case of this type.

Throughout the chapler it is assumed that X is finite. For generality
otherwise, we shall work with individual strict partial orders and will
not assume that independence from infeasible alternatives holds. The
effects of independence and of more specialized individual assump-
tions, such as weak orders, are generally left to the reader as exercises.

17.1 SummatioN Sociar CHoicE FuNcTioNs

Our general definition of summation social choice function will, for
simplicity, presuppose that X is finile and that D is a sel of n-tuples
of strict partial orders on X.

Derintrion 17.1. F: ¢ X D — ®(X) is a summation social choice
function if and only if it is a social choice function and, for each i &
{1, . . . ,n}, there is a real-valued function u; on X X X X D such that,
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forallie {1, ... njandz,y € Xand (Y,D) €Ex X D,

z >y =ulz,Y,D) > u(y,Y,D) (17.1)
T ~;y = u,Y,D) = uly,Y,D) (17.2)

and

F(Y,D) = {z:x € Y and Z}_u.(z,Y,D) > 2 ,u.(y,Y,D)

=

forally € Y}. (17.3)

We have already discussed a special summation social choice func-
tion in detail, namely the Borda function of section 13.2, which the
reader may wish to review before he continues with the present chap-
ter. As we shall note later, Black’s function, of section 13.3, is also a
summation social choice function.

A main purpose of this section is to give an active intraprofile con-
dition that is related to conditions (12.3) and (12.4) and is necessary
and sufficient for F' to be a summation social choice function. Before
doing this we shall examine some of the aspects of Definition 17.1.

NUMERICAL REPRESENTATIONS AND INDEPENDENCE

Perhaps the main feature of the definition is its generality. Since
each u, is defined on the three-fold product X X & X D, it is easily
seen that the definition does not presuppose or imply the condition
of independence from infeasible alternatives. Moreover, it allows the
u, values for a given i to change when Y is held fixed and individual ’s
preferences remain fixed but changes occur in some other individual’s
preference order. This is because the third argument in u; is the en-
tire preference profile D and not just the ith order >, from D.

Given strict partial orders for individuals, (17.1) and (17.2) require
that u, preserve >, and =, as indicated. Although we could require
z =,y < uz,Y,D) = u(y,Y,D), as used in Theorem 7.1(2), the dis-
cussion of section 13.2 indicates that the < part of < is somewhat
“forced,” and we shall not require it. Recall that under strict partial
orders, each =; on X is an equivalence and if ¢ and b are distinct
equivalence classes in X/ ~, then either (1) 2 >, y for allz € a and all
yEbor(2)y >.zforallz Eaandally € b, or (3) x ~,y and not
z=;yforallz ©Eaqandally € b If >, is a weak order, then =, is
identical to ~; and (17.1) and (17.2) require z ~, ¥y when u(x) = u(y).

Apart from the obvious summation form, we note for (17.3) that
the u:(z,Y,D) values for x & Y play no part in the specification of
F(Y,D). However, there is a way in which preferences for elements
not in Y can affect F(Y,D) within the context of the general form.
This arises when >, is a strict partial order that is not also a weak
order, and it comes from the fact that the definition of =, for (17.2)
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depends on all of X (z =,y [z~ 2 y~,zfor all z & X)) and
not just on Y. For example, if ¥ = {£,y} and z ~,y, then x =,y
within the confext of Y, but, if there isa z & X — Y such that z ~, z
and z > .y, then z =,y is false.

This analysis shows that an equivalent definition of a summation
social choice function is obtained by only defining u, for (z,Y,D) &€
X X 2 X D for which z € Y, and by modifying (17.1) and (17.2) to
apply only to all z,y &€ Y. On the other hand, an alternative definition
that defines u; in the restricted sense and modifies (17.1) as indicated
but changes (17.2) by requiring that u,(x,Y,D) = u,(y,Y,D) whenever
t,y EY and (¢ ~, 2y ~,z for all z &€ Y), is not equivalent to
Definition 17.1. However, it is easily seen that this alternative defi-
nition becomes equivalent to the original if F is assumed to satisfy
the condition of independence from infeasible alternatives and if D is
sufficiently rich. Under these conditions, if x =,y within Y but not
within X, we could consider a D’ € D that agrees with D on Y but
hasw >,z for every w € Y, z € X — Y and for all i. Then, although
x =;y is false, we have ¢ ~,y and, by independence, can let the
u, values for the (w,Y,D’) with w € Y serve also as the u, values
for the (w,Y,D) withw € Y.

THE CONDORCET CONDITIONS

A specific illustration of the generality of Definition 17.1 is obtained
by noting that it is wholly compatible with the weak Condorcet con-
dition of Definition 12.1. For suppose that P(Y,D) = {z} so that z
has a strict simple majority over every other alternative in Y when
D obtains. Then u;,values can be assigned in the (Y,D) context so as
to satisfy (17.1) and (17.2) along with the following:

1> uy,Y,D) for all y, all {
0 = u(z,Y,D) for all ¢
—n > u,(y,Y,D) when z >y, for all ; and y.

Since Z.u.(z,Y,D) = 0 and Z,u.(3,Y, D) < —n+ (n — 1) = =1 for
every y € Y — {x}, (17.3) gives F(Y,D) = {x}.

This shows that Black’s function of section 13.3, which is a Con-
dorcet social choice function, is a summation social choice function.
If P(Y,D) = #, define the u, as above; if P(Y,D) = @, define the u, by
the Borda method (u, = r.), which is consistent with (17.1), (17.2),
and (17.3).

Although the weak Condorcet condition is consistent with the no-
tion of a summation social choice function, the strong Condorcet con-
dition is not. One can verify this with the example that precedes
Theorem 12.2.
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A NECESSARY AND SUFFICIENT CONDITION

The condition that we shall use for a summation social choice
function is a generalization of a unanimity condition. Letting >, =
> U =~ SO that

T Ziyer>y or T =Y, (17.4)
the unanimity condition is: for all (Y,D) € X X D and all z,y &€ Y,

(1) y ~.x for all i, and = € F(Y,D) = y € F(Y,D);
2) y 2.z foralliandy >,z for some i = ¢ & F(Y,D).

Part (2) is a form of strong unanimity [but it is nof the same as
y>pr=>x &F(Y,D)], and (1) is a form of unanimity agreement.
It says that, as far as the >, on X are concerned, if all individuals
regard ¢ and y as equally desirable then either both x and y will be in
the choice set F(Y,D) or else neither will be in the choice set.

This simple unanimity condition is obviously necessary for a sum-
mation social choice function. It is also sufficient for a given (Y,D)
provided that F(Y,D) is a singleton. For suppose that F(Y,D) =
{x}, and consider the equivalence classes in X/ =, for each i. Set
u.(z',Y,D) = 0 for all alternatives in the equivalence class that con-
tains z; take u;(y,Y,D) < 1 for all y; and for all alternatives in each
class that is different from the class that contains z and does not have
an alternative preferred to z, make u; less than —n. This can be done
so as to satisfy (17.1) and (17.2) for the given (Y,D). If the foregoing
unanimity condition holds then, for every y = z that is in Y there will
be some { with u.(y,Y,D) < -—n and hence Z.u,(z,Y,D) > Z.u.(y,Y,D).

The generalization of the unanimity condition that we shall use is
designed to handle the cases for which F(Y,D) contains more than
one alternative.

DeriNtTION 17.2. A social choice funetion F: ¢ X D — ®(X) satisfies
the summation condition if and only if the following holds for every

(Y,D) € x X ®. If K is a positive integer, if €1, « . « s Tky Y1, + + « »
yx € Y and if, for each i, o, is a permutation on {1, . . . ,K} for which
Yoy Zexe fork =1, . .., K, then

(1) Yoy =.x for all i and k, and x, € F(Y,D)
for all k =y, € F(Y,D) for all k;

(2) Yo,y > i xx for some i and k =z, & F(Y,D)
for some k.

When K = 1, we have ¢,(1) = 1 for all 7 and this part of the con-
dition reduces to the foregoing unanimity condition. When K > 1,
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171 SUMMATION SOCIAL CHOICE FUNCTIONS

alternativesin 2y, . . . ,2gorinyy, . . ., ¥x may be replicated, but
we could require that {1, . .. ,zx} M {y1, . . . ,yx} = # without
affecting the condition. For if the condition is violated, a violation
can be obtained when {xx} N {y:} = @ by reducing the original vio-
lation to this form. For example, if z, = y. then, with ¢* the inverse
of Giy Yo, 21 &i & T, 2o Tork) = Ya.) 21 Lok, with >, in the con-
clusion if >; in either hypothesis. The two original statements are
then collapsed into one for each i, with a corresponding deletion of
z; and yy.

As noted earlier, the summation condition bears a resemblance to
(12.3) and (12.4). It is an active intraprofile condition. Its necessity
for a summation social choice function follows easily from the assump-
tion that (17.1) through (17.3) hold. Then the hypotheses of (1) re-
quire Zi2.u.(yr, Y,D) = ZZ.u:(x, Y, D): if o, &€ F(Y,D) for every k
then we cannot have Z,u,(ys, Y,D) > Z.u:(x, Y,D) for any k and hence
must have Z,u,(yx, Y,D) = Z.u.(a Y,D) for every k. The hypotheses of
(2) give Zi2.(y) > ZxZ:(z), which requires Z,u,(y:, Y,D) > Z.u,(x, Y,D)
for some k, so that z;, & F(Y,D) by (17.3).

It thus remains to prove sufficiency for the following theorem.

TaEOREM 17.1. Suppose that F:X X D — ®(X) is a social choice
function. Then it is a summalion social choice function if and only if it
salisfies the summation condition.

Proof. Assume that the summation condition holds, and let (Y,D)
be a generic pair in % X D. As noted earlier, we need only consider
u;(z,Y,D) for x € Y. Then (17.1) through (17.3) will hold for the given
(Y,D) if and only if there are numbers u,(z,Y,D) for i € {1, . . . ,n}
and z & Y such that

Saulz,Y,D) > Z.u.(y,Y,D) when z& F(Y,D),y&EY — F(Y,D),

Z.u.(z,Y,D) = Zu(y,Y,D) when xy& F(Y,D) and z #y,
u.(z,Y,D) > uiy,Y,D) when zy&Y and =z >:y,
u.(z,Y,D) = u.(y,Y,D) when zy& Y,z #y and 2z =,y.

With #Y = m and n voters there are mn values u.(z,Y,D) to consider
for the given (Y,D). Let p & Re™ with each p; corresponding to one
of the u;(z,Y,D). Transposing terms in the foregoing display after
selecting one order (zy or yx) for each pair of z  y involved in an
equality statement, the preceding system can be written as

cat> 0 for the x € F(Y,D), y € Y — F(Y,D) cases,
‘at =0 for the x,y &€ F(Y,D), xz # y cases,

cat> 0 for the x > ; y statements,

cat =90 for the x =, y, z = y statements,

T~ T - T -
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where { runs through the integers { = 1, . . . , T. Each a! & Re™ is
a vector of zeros, ones, and minus ones, with 1 - at = (.

Suppose that there is no p solution for this system. Then, by Theo-
rem 3.3, there are integers ry, . . . , rr such that

=Lral =0 for j=1,2,...,mn, (17.5)

with r, > 0 when a' corresponds to a > 0 statement, and at least one
of these r; > 0. If r, < 0 for an at involved in an = 0 statement, in-
version of the chosen order for the z,y pair replaces a* with —a?, and a
corresponding replacement of r, by —r; leaves things as they were.
So all r, may be taken as nonnegative integers. Using replicates of
alternatives for the r, > 1, it follows from (17.5) and the original
u; statements that, for each i, there are two sequences

Tl o o o s Tay Y1y « « o 3 ¥oy Zals ¢« o 5 Zaayy Wity o ¢« o 3 Wb,
’ ’ ’ ro 7 ’ ’ ’
Ty o o e 3Ty Y1 o o« 3 Yor Zags + » + zia,a Wegy =« oy wib,

such that the second is a rearrangement of the first with

z, E F(Y,D), z, € Y — F(Y,D) a=1...,a
yoys € F(Y,D) and ys # yp B=1,...,b
Zia > i Zia a=1...,a
w.s ~; W,g and w.g # Wi B=1...,b.

Since r, > 0 for at least one of the >0 statements in the system, either
a > 0 or a, > 0 for some i.

We now reduce the sequences as follows without changing their char-
acteristics. If x, = y; then delete z, and ys and replace the (z.,z.),
(vs,ys) pairs by the pair (ysa.) which has ys € F(Y,D) and =z, &
F(Y,D). A similar replacement is made if z; = ys or if yz = ¥,.
After all such reductions are made we obtain, after the appropriate
changes in subscripting and reduction of b, {x1, . . . ,Za,¥1, . - . ,¥8}
N {zhy . . .20y, - - . s} = 0. Since the value of a is unchanged
by this process, if a > 0 initially then this continues in effect.

These reductions on the first parts of the sequences hold uniformly
for all i. Similar reductions, permitted by the transitivity of ~, and by
(>)(=) U (=)(>:) C > can be made in the z, and w; for each i,
with a, > 0 after the reduction if @, > 0 before the reduction and with
{ZiwWag} M {zi0swig} = B after the reductions. Since the reductions
delete identical elements in the two sequences, it follows that, for each
I, we obtain two sequences of the form

L1y o o o 3 TRy Yily + ¢« « 3 YK
Y1, « o ¢« yYEs X1y ¢« ¢« o 3 TK
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where y,1, . . ., ¥.x is a rearrangement of y;, . . . , yx, and where
K > 0 with

e € F(Y,D) k=1 ...,K

Yie 21 Lk k=1,..., Kand each i,

with either yx & F(Y,D) for some k (for a > 0 formerly) or else
¥ > . 2% for some k and i (for a; > 0 formerly). If y.. >, x for some i
and k then part (2) of the summation condition is contradicted. And
if yu =, 2; for all { and k, we then require y, & F(Y,D) for some k
so that part (1) of the summation condition is contradicted.

Hence this use of the Theorem of The Alternative shows that the
summation condition implies the existence of a p solution for the sys-
tem. Thus there are u,(x,Y,D) values that satisfy (17.1) through
(17.3) for the given (Y,D). Since this is true for every (Y,D) € & X D,
the theorem is proved. ¢

17.2 Crasses oF SumMmaTION FUNCTIONS

Definition 17.1 accommodates a large variety of specialized types of
social choice functions. In this section we shall comment briefly on
several classes of summation social choice functions that will be exam-
ined in later sections.

A partial characterization of classes of summation social choice
functions is given in Figure 17.1. The original u, form of Definition 17.1
is shown in the upper right. An arrow from one class to another means

u;(x, Y, D) i

u(x,D) 7.5 voter independence
| voter independence Y, >)
u;lx, >) anonymity

u(x,Y, >)

anonymity 7a
u(x, >) / neutrality

ulx,Y, ») = u{o(x), oY, >°)

l neutrality
7.4

u(x, ) = u{o(x), >°)

l special spacing
Borda function 3.2

Ficure 17.1. Some summation social choice functions
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that the latter is a subclass of the former. The special classes in the
right part of the figure retain dependence of u; on the feasible set Y
and are generally compatible with the condition of independence from
infeasible alternatives. The classes on the left omit Y as an argument
of the function and are usually incompatible with the independence
condition. We shall return to these momentarily.

VOTER INDEPENDENCE AND OTHER SPECIALIZATIONS

In retaining the dependence of u, on Y, the first obvious specializa-
tion of the general summation form arises by requiring that u.(z,Y,D)
= u,(z,Y,D’) whenever i has the same preference order on X under
both D and D', or whenever >; = >.. This indicates that each u,
depends only on the preferences of voter i and not on the preferences
of other voters, and it thus seems reasonable to refer to it as a form of
“voter independence.” When voter independence applies, each u; is
defined on X X & X D;, where D, is the set of strict partial orders for
voter { that obtain In one or more D € 9.

Black’s function of section 13.3, which is a summation social choice
function as noted in the preceding section, does not satisfy voter inde-
pendence since the definition of u, depends on whether P(Y,D) = @,
which clearly depends on the preference orders of other voters.

The voter independence case is considered in the next section. Sec-
tion 17.4 then examines the effects of the conditions of anonymity and
neutrality. When anonymity applies in the context of voter indepen-
dence, all u; functions can be taken to be identical. Neutrality then
allows the same set of values within individual orders obtained from
one another by permutations on X.

Although the classes of functions in the next two sections are com-
patible with independence from infeasible alternatives, this condition
will not be used. Except for a comment at the end of section 17.4,
modifications under independence are left as exercises.

DEPENDENCE ON INFEASIBLE ALTERNATIVES

Because the functions on the left of Figure 17.1 take no account of
the specific set Y of alternatives that are feasible in a particular realiza-
tion of a situation, they might be said to be ‘‘dependent on infeasible
alternatives.” The most general subclass of such functions defines u,
on X X D for each i. Defining zfpy < Z.u.(x,D) > Z.u.(y,D), fp on X
is a weak order for every D € ©, and

F(Y,D) = {x:x € Y and yfpx for no y € Y} forall (Y,D) EX X D
according to (17.3). It follows from Lemma 15.3 that condition Bl (or

its social choice counterpart) holds for such functions. If X contains
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every two-element subset of X then fp = Fp and we know from Ar-
row’s theorem (see also Theorem 16.5) that, under appropriate struc-
tural conditions, there will either be a dictator or the independence
condition will fail. Generally speaking, the failure of independence
seems the lesser of “‘evils’ in this case.

Additional conditions generate the further specializations of summa-
tion functions that are “dependent on infeasible alternatives” as
shown on the left of Figure 17.1. We shall return to these in the final
section of this chapter.

17.3 INDEPENDENCE AMONG VOTERS

To obtain a summation social choice function for which u,(z,Y,D) =
u.(z,Y,D’) when >, = ., it should be clear that some interprofile
condition is required. The special condition that we shall use for this
case is a multiprofile condition according to Table 14.1. Since the
summation form under consideration retains dependence on Y, we can
state the condition for each Y without taking account of other poten-
tial feasible sets.

For simplicity, the condition that follows is called the condition of
voter independence. It is obviously a complicated version of the sum-
mation condition and thus asserts more than just a form of indepen-
dence among voters.

DerinitioN 17.3. A social choice funclion F:X X D — ®(X) salisfies
the condition of voter independence if and only if the following holds for

every Y & X. If K is a positive tnteger, tf 1, . . ., g, Y1, « - - ,
vy € Yand DY, . . . , DX & D and if, for each i, o, is a permutation on
{1, . . . K} for which >7® = >V and yo.0y 2facfor k=1, ...,
K, then

(1) Yoy =¥ i for all i and k, and x, € F(Y,D*) for all k =y, €
F(Y,D¥) for all k;
(2) Yo.ay > F an for some i and k = z & F(Y,D¥) for some k.

To make sense of this we note first that the K = 1 case is the same
as the K = 1 case of the summation condition, and that the summation
condition results in general if we take D1 = D2 = - - - = DX To
illustrate the more general structure of the voter independence condi-
tion, take Y = X = {z,y,z} and K = n = 3 with

(x1,y1) = (z,y) D! = (zzy,yzx,yxz)
(T2y2) = (¥,2) D* = (zxy,zyz,xyz)
(x3,y3) = (z,x) D? = (xzy,yze,xyz).

225



SUMMATION SOCIAL CHOICE FUNCTIONS

For permutations on {1,2,3} take ¢1(1,2,3) = (2,1,3), 02(1,2,3) =
(3,2,1), and ¢3(1,2,3) = (1,3,2). Consider voter 1 first. Since >3 =
>1,>1= >%and >3 = >3 hesatisfies >7'® = >{fork =1, 2, 3.
In addition, since y, = z >1x =2, y1 =y =iy =zsand y; = = >}
z=uz3 wehave y, ) z%aifork =1, 2,3, with >1at least once. Similar
analyses with voters 2 and 3 show that they satisfy the hypotheses of
the condition. It then follows from part (2) of the voter independence
condition that either x & F(X,DY) ory & F(X,D? or z & F(X,D%. In
contrast to this, the summation condition allows z &€ F(X,D') and
y € F(X,D? and z € F(X,D3.

THeEOREM 17.2. Suppose that F: X X D — @(X) is a soctal choice func-
tion, and let ©; = {>:> is the ith component of some D € D}, for
i=1,..., n Then the condition of voler independence holds if and
only if, for each i € {1, . . . ,n}, there is a real-valued function u; on
X X X X D, such that, foralli € {1, . . . ,n}, >, € D, 2,y € Xand
(YD) cx XD,

x>y =ur,Y,>) > u,Y,>) (17.6)
=~y =ux,Y,>) = u(,Y,>,) (17.7)
and

F(Y,D) = {z:z € Y and Z_ju.(z,Y,>.) 2 = u(y,Y,>.)

1=

forally € Y}. (17.8)

Proof. The necessity proof is left to the reader. To prove the suffi-
ciency of the condition, we consider a generic ¥ € & and assume that
the voter independence condition holds. As in the proof of Theorem
17.1, we shall use the Theorem of The Alternative on a linear system.
For the given Y we take the following as an appropriate system, where
(unlike the previous proof) D varies over D:

Za(x,Y,D) > Zu(y,Y,D) when z€& F(Y,D),yEY —F(Y,D),

Za(z,Y,D) = Zu(y,Y,D) when zy€&€ F(Y,D)andzx #y,
u,(x,Y,D) > wi(y,Y,D) when zy& Yandzx >:y,
uw(z,Y,D) = u,(y,Y,D) when zy€ Y, z#yandz =,y,
u,(z,Y,D) = uy(z,Y,D’) when z€Y, DD and >; = >.

Apart from the changeability of D, the first four lines are the same as
the former system. The last line asserts that each u. depends only on
(Y,>.) and not on (Y,D). This system is solvable if and only if (17.6)
through (17.8) hold for the given Y.

Let #Y = mand let #D = p. Since we are concerned about u.(z,Y,D)
forallz € Y, all D& ® and all { € {1, . . . ,n}, the appropriate
p vector is in Re™», with a one-one correspondence between the com-
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17.3 INDEPENDENCE AMONG VOTERS

ponents of p and the mnp u.(z,Y,D). The above system then converts
into p-a* > 0 and p - a* = 0 statements, say for { =1, ..., T. If
there is no p solution then, by Theorem 3.3, there are nonnegative
(using inversion for equality statements if necessary) integersry, . . . ,
rr with r, > 0 for one of the p - a* > 0 statements such that

zLra; =0 for Jj=12 ..., mnp

Similar to the analysis following (17.5), this implies that, for each ¢,
there are sequences

DY, . . ., (D%, @, DY), . . ., (2a,D), (Wi, EY), . . .,
(W, E®)

@,DY, . .., @D, @D, . . ., (D), (wa, %), . . .,
(wa,, E**)

such that the second is a rearrangement of the first with

T. SFY,D%), 2. €Y, z., # 2, a=1,...,a
Zia 2% 2oy Zia 7 Zig a=1...,a
Eie = Eiox, Fw 5 Fiax =1, ...,b

where E; is the ith component of E. Moreover, since r, > 0 for one
of the > 0 statements, either z, & F(Y,D) for some « or, for some
i and a, zi, >'*z;,. Without altering the permutation aspect or the
other characteristics of the sequences, reductions can be made in the
pairs of sequences so that {(z.,D*)} N {(z.,D*)} = @, {(zieyD*)} N
{¢lwD™)} = §and {(W.e, )} N {(Wia, E®*)} = B. In addition, sup-
pose that
(Zia’Dia) = (wlﬁaEm*)'
Then w,s > 2., with >**if z,, > z},, and D and E* have the same
ith components, so that the pairs
(Zime) (wIB’EIﬂ)
(Ziar D) (w5, E%*)
can be replaced by the single pair
(wiﬁaE|ﬂ)
(2D™)  wi > 2l EF = >0

A similar reduction can be made if (z,,D*) = (w,,E*). Since only
identical pairs are deleted from the two sequences for individual i,
these reductions imply that, for each ¢, there are sequences

(thl)’ LI ] (wK’DK)’ (ytl,D“)y e ey (le,D’K)
uDY), . .., (yx,D%), (x,DY), . . . , (2x,D%)
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where (v,1,D"), . . ., (v.x,DX) is a rearrangement of (y;,D!), .
(yx,DX), and where K > 0 with

« oy

0 EFY, DY k=1,...,K
Yo 2k k=1, ...,Kandeachi
>k =k E=1,...,Kand each i,

with either y, € F(Y,DF) for some k or else y,, >* x; for some k and 1.
But this clearly contradicts the condition of voter independence.
Hence, according to Theorem 3.3, there is in fact a p solution for the
system. ¢

17.4 AnonYMITY AND NEUTRALITY

We shall now examine the effects of anonymity (Definition 13.3)
and neutrality (Definition 13.2) on the voter-independence represen-
tation (17.6) through (17.8) in Theorem 17.2. To do this in a reason-
ably efficient way we shall assume certain structure in addition to our
continuing assumption that X is finite. For anonymity it is assumed
that © is an n-fold product of a set of strict partial orders on X. The
structure for neutrality is noted later. Theorems that are similar to
those in this section but which use fewer structural assumptions are
proved in Fishburn (1972).

ANONYMITY

Let (17.6) through (17.8) hold and, for each strict partial order >
on X define
u(z,Y,>) = Zrau(e, Y, >). (17.9)

It then follows that z >,y = u(z,Y,>.) > u(y,Y,>,), and that
x ~=;y=ulxY,>.) = uly,Y,>.).

Forany D' = (>4, . .. ,>) let D = (>, . . . , >4 >1), D3 =
(>3 « « e s>m>1,>2), « o .y DP=(>n>1, . . . ,>n1). Suppose
that z € F(Y,D'). Then, by anonymity, ¢ € F(Y,D¥) for k = 2,

. ., n. Likewise, if y & F(Y,D') then y & F(Y,D¥) for k = 2,

. ., n. It follows immediately from (17.8) and (17.9) that =z &
F(Y,DY) & Z.u(x,Y,>.) > Zau(y,Y,>:) for all y € Y. This proves
the following theorem.

THEOREM 17.3. Suppose that F:X X D — ®(X) is a social choice
function that satisfies the conditions of voter independence and anonym-
ity, and that D = 8™ where S is a set of strict partial orders on X. Then
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there is a real-valued function u on X X X X S such that, for all 1 €

{1, ....,n}, >: €8, z,y € Xand (Y,D) €EXx X D,
z>iy=u(@Y,>.) > u@Y,>.) (17.10)
T = y=uY,>.) =uyY,>.) (17.11)
and

F(Y,D) = {z:z € Y and Z_ju(z,Y,>.) > Z_u(y,Y,>)
forally € Y}. (17.12)

NEUTRALITY WITHOUT ANONYMITY

Departing slightly from the hierarchy on the right of Figure 17.1,
we shall first consider neutrality without also assuming anonymity.
Structurally, we shall work with the set A of all permutations o
on X. Recall that oY = {o¢(x):2 € Y} for any nonempty subset
Y C X and any ¢ € A. It will be assumed that Y E x=cY E X
and that DED=D" & D. With D = (>4, ... ,>,), D’ equals
(>% - .. ,>7) where, for each { and all 2,y E X, ¢ >,y &
a(x) >7o(y). In this setting neutrality says that, for all (Y,D) &€
X X f,D,
r € F(Y,D) @ e(x) € F(eY,D). (17.13)

Since anonymity is not being assumed, we shall work separately
with each u, in Theorem 17.2. To show the effect that neutrality will
have on u, suppose for simplicity that ¥ = X = {a,y,z}. The 19 strict
partial orders on X are put into five groups as follows:

zyz, xzy, ¥z, y22, 2y, zyx (linear)

(zyz) = 0 (weak)

(xy)z, (22)y, (y2)z (weak)

z(yz), y(zz), z(zy) (weak)

x~y>z~zx x~7>y~z, and the other four strict partial
orders on X that are not weak orders.

MR

All orders in a given group can be obtained from one another by per-
mutations ¢ € A that preserve order, and no order in one group can
be obtained from an order in another group in this way. The effect of
neutrality is to make the u, values for a given order in a group essen-
tially the same as the u, values for any other order in its group, under
the appropriate permutation. For example, if for zyz in group 1, we
have u.(z,X,zyz) = 3, u.(y,X,zyz) = 1, and u,(z,X,zyz) = 0, then for
the order zxy in group 1 we will have u.(z,X,zzy) = 3, ui(x, X,z2y) = 1,
and u.(y,X,zzy) = 0. Or if

ufz, ...)=uy,...)=5andu(, ...)=0
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for the order (zy)z in group 3, then the order (xz)y in group 3 will
have u.(z, . . .) = u.z, . . .) = 5and u,(y, . ..) = 0.

The same sort of thing applies when Y C X, except for the obvious
fact that Y itself gets transformed to ¢Y under ¢ € A. In the general
case, the effect of neutrality is to permit u, to be defined in the context
of Theorem 17.2 so that

u.(z,Y,>.) = uie(x),0Y,>?). (17.14)

THEOREM 17.4. Suppose that F:X X D — ®(X) is a social choice
function that salisfies the conditions of voler independence and neutrality,
andthat Y EX =Y EXand D E D= D" & D foralled & A. Then
there are real-valued functions u; on X X € X D; that satisfy the repre-
senlation of Theorem 17.2 and also satisfy (17.14) for all (x,Y, > ,,0) €
X X X XD, XA, for each 1.

Proof. Let the u, satisfy (17.6) through (17.8) and define
'lh(:l?, Y’ > 1‘) = EveAuz(U(w),O'Y, > :) (1715)

for all (z,Y,>:) € X X X X D;. The structural assumptions assure
that (¢Y,>?%) € £ X D, when (¥,>,) € X X D,. Since (z,Y,>.) is
obtained from (¢(x),sY,>7) by applying the inverse of ¢ to the latter,
it follows that (17.14) holds for »,. Moreover, (17.6) and (17.7) hold for
v, in view of the fact that z >,y © o(z) >’ o(y).

It remains to verify (17.8) for the v, and this follows easily from
(17.8) for the u,, (17.13) and (17.15). ¢

ANONYMITY AND NEUTRALITY

Combining these two conditions, we obtain the following theorem.
Its proof is obtained easily from Theorem 17.3 by defining »(x,Y, >) =
Saulo(x),0Y, >7), similar to (17.15).

TueoreM 17.5. Suppose that F:X X D — ®(X) is a social choice
function that is anonymous, neutral and salisfies the condition of voter
independence. Suppose further that Y @ X =¢Y E X and D € D =
D7 € D for all o € A, and that D = S™ where S is a set of strict partial
orders on X. Then there is a real-valued function u on X X & X S that
satisfies the representation of Theorem 17.3 and also satisfies

u(z,Y,>) = ule(x),0Y,>")
forall (z,Y,>0) € X XX XS XA,

When independence from infeasible alternatives also holds and the
structure is sufficiently rich, the u values for a given order on Y can be
taken to be the same as the u values for any order on Y’ provided that
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there is a one-one correspondence between Y and Y’ that preserves
order. For example, if Y = {z,y,z} andz >,y >,z andif Y’ = {a,b,c}
and a >, b >, ¢, then u for Theorem 17.5 can be made to satisfy
u(x,Y, >) = ula,Y',>), uly,Y,>:) = u(b,Y’,>,) and u(z,Y,>,) =
u(e,Y’,>,). This may not be possible if independence from infeasible
alternatives does not hold. For example, if there is no permutation ¢ on
X such that o(x,y,z) = (a,b,c) and >{ = >; on X, then we cannot
reach the same conclusion with only the hypotheses of Theorem 17.5.

17.5 DEPENDENCE ON INFEASIBLE ALTERNATIVES

We now return briefly to the special summation functions on the left
of Figure 17.1. Introductory remarks for these are given at the end of
section 17.2.

The first case has the same representation as (17.1) through (17.3),
except that Y is deleted from the u, functions. This gives z; on X X D
for each ¢ such that, for every D,

z >y =ul(x,D) > uy,D) forall i, z, ¥
r =~;y= u(x,D) = u.(y,D) forall i, z, y
F(Y,D) = {z:2 € Y and Z,ui(z,D) > Z.u.(y,D)
for every y &€ Y} for all Y € «.

The appropriate necessary and sufficient condition for this case con-
siders each D separately and lets Y vary over «. It is, for each D € D:

If K is a positive integer, if 7o,y €E Vi E X fork =1, ..., K
and if, for each i, ¢, is a permutation on {1, . . . ,K} such that
Yoy i fork =1, ..., K, then

(1) Yo,y =, xx for all { and %, and x, € F(Y* D) for all k= y, €
F(Y* D) for all k;
(2) Yoy >+ i for some i and k = x, & F(Y* D) for some k.

This is easily seen to be necessary for the representation given above.
The sufficiency proof is similar to the proof of Theorem 17.2 and is left
to the reader.

If & contains every binary subset of X, so that Fip is well defined for
each D & D, then the conditions simplify slightly. For this special case
we require Fpp to be a weak order for each D, with F(Y,D) = {z:2 € Y
and yFpr for no y € Y} for all (Y,D) € ¥ X ©, along with the
following for each D € D:

If K is a positive integer, if x;,y, € Xfork =1, . . . , K, and if,
for each i, o, is a permutationon {1, . . . ,K} such that y, 4 >. 2
fork=1, ..., K, then
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(1) yo. =, 2 for all 1 and k= either (not z:Fpy: & not y,Fpxi)
for all &, or z,Fpy; for some k;
(2) Yoy > . xi for some i and k = y,Fpx; for some k.

VOTER INDEPENDENCE

The next step indicated on Figure 17.1 is to remove the dependence
of u, on other individuals’ preference orders, so that u.(x,D) is replaced
by u,(x,>.). We shall consider only the simplest structural setting for
this case, assuming that € = ®(X) — {#} and that D is the set of all
n-tuples of strict partial orders on X.

Asin the case just considered, Fp is taken to be a weak order for each
D & o, with F(Y,D) = {z:x € Y and yFpz for no y € Y} for all
(Y,D) € X X ©. Two more conditions suffice for the u.(z,>.) repre-
sentation. They are the unanimity condition stated immediately after
(17.4) and the following special voter independence condition:

If K is a positive integer, if 21, . . . , Zx, ¥1, . . . , Yk € X and
Dy ..., DEc D and if, for each i, o, is a permutation on
{1, . . . ,K} for which

(yﬂa(k)’>:'(k)) = (xk,>ic) k = 11 L ) Ky
then xxFpey, for some k< {1, ... ,K} © y,Fpzx, for some
JE (L, ... Kl

The main difference between this multiprofile condition and the voter
independence condition of Definition 17.3 is that the new condition
takes y, 1) = ¥, whereas the other has y, & =¥ z; (and =~! uniformly,
or > ¥ for some i, k) in its hypotheses. Thus the new condition avoids
the inclusion of a unanimity-type extension such as the summation
condition. As we shall see momentarily, the simple unanimity condition
after (17.4) is all that is needed in the present context.

The special voter independence condition also bears a strong resem-
blance to the condition of strong duality (Definition 5.2) used in Part I
to obtain a weighted majority social choice function. Indeed, if X =
{x,y}, then the conditions used here along with duality imply that F
is a weighted majority social choice function.

The proof that the u.(x, > .) representation follows from the conditions
given above proceeds as follows. Using Theorem 3.3 on the Fp state-
ments obtained from F, it follows from the special voter independence
condition and from Fp a weak order for each D & D that there are
real-valued functions w; on X X {>:> is a strict partial order on X}
fori =1, ..., nsuchthat, for all z and y in X and all D € D,

tFpy & ZF wi(z, > ) > ZLw.(y, >.). (17.16)
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The w, functions do not necessarily satisfy z >,y = w;(z,>.) >
w.(y,>:) and z =;y = w.(z, >,) = w.(y, >.). To obtain this, we use
the unanimity condition following (17.4). Fix a & X and define §, on X
for each 1 by

8.(x) = w.(a,9) — w.(z,0) for all € X.

When D = (@, . . . ,8), the unanimity condition requires not zFpa
and not aFpz, so that

Zr,6.(x) = Zw.(a,9) — Zw.(2,0) =0 (17.17)
by (17.16). We then define u; for each i by
w.{x, > ;) = 8,(x) + w.(x,>.).
According to (17.16) and (17.17),

eFpy & Z0u.(x, >.) > Zrau(y, > o). (17.18)
To verify
T >y = uwe,>) > uly,>.) (17.19)
=y =u(z,>.) = u(y,>) (17.20)
fori = 1let D = (>4,0, . . . ,8). Suppose first that =, y. Then, by

(17.18) and unanimity,
ul(x’>l) + 21":2111(%,‘5) = u1(y, >1) + 21"=2u1(yaﬂ)*

But u,(x,0) = w.(a,0) = u.(y,8) foralli > 1, and therefore u;(x, >1) =
u1(y, >1). On the other hand, if x >, y, then we get > in the foregoing
display and hence u;(z,>1) > ui(y, >1). Since a similar proof holds
for each i, this establishes the representation of (17.18) through (17.20).

ANONYMITY AND NEUTRALITY

Continuing in the context of (17.18) through (17.20) with finite
X = @(X) — {#} and D the set of all n-tuples of strict partial orders
on X, suppose that F is anonymous. Then, by a proof like that for
Theorem 17.3, it follows that we can obtain u; = us, = * - - = u,,
giving the representation

zFpy 2 ulz, >;) > Zuly,>.)
z >,y =ulx,>.) > uly,>)
r=,y=u>.) = uly,>.)

along with F(Y,D) = {z:x € Y and Z.u(z,>.) = Z.u(y,>.) for all
y € Y} by previous assumption. If neutrality holds also then, by a
proof similar to that for Theorem 17.4, u can be made to satisfy u(x, >)
= u(a(x),>°) for all z, > and all permutations ¢ on X.
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CHAPTER 138

Lotteries on Social Alternatives

A LOTTERY on social alternatives can be thought of as a process that
selects a social alternative “‘at random” according to specified proba-
bilities for the alternatives. If a wife and husband want to watch
different programs on the TV at 10 p.m. one evening and agree to
settle the matter with the toss of a coin, then they are using a lottery.

In abstract form, a lottery can be viewed as a simple probability
distribution on the basic alternatives. Section 18.1 shows that our
previous definition of social choice function applies in a straightfor-
ward way to lotteries. For F(Y,D), Y is a set of probability distribu-
tions on basic alternatives, D is an n-tuple of strict partial orders on
probability distributions, and F(Y,D) is a nonempty subset of Y.

The second section discusses axioms on individual preference that
arise in the probabilistic context. These are then used in section 18.3,
which examines the structure of the set of admissible (undominated)
probability distributions for a given (Y,D) when Y is the set of distri-
butions on a finite subset of basic alternatives.

The role of simple majority in the lottery context is briefly considered
in the final section along with a few remarks on summation procedures.

18.1 LoTTERIES ON SOCIAL ALTERNATIVES

If a choice set in a specific situation contains several alternatives,
then some form of tie-breaking procedure must be used tomakea ““final”
selection. One such procedure that might be considered fair is to choose
an alternative from the choice set by a chance process. For example, if
{a,b,c} is the choice set, then “‘a,” ““b,”” and “‘¢”’ could be put into a hat,
from which one of the three will be drawn at random. The alternative
whose name is drawn will then be implemented.

This chance process introduces a ‘‘new’” alternative into the choice
process. This “‘new” alternative is not one of the basic alternatives;
instead, it is a lottery on the basic alternatives. In the preceding ex-
ample, it is a lottery z in which each of @, b, and ¢ has equal prob-
ability, namely 14, of being the ‘“winning ticket.” We can express this
by the functional correspondence z(a) = z(b) = z(c) = 14. In these
terms, a basic alternative can also be thought of as a lottery; thus,
alternative b corresponds to the lottery z that has z(b) = 1.

Since individuals have preferences between lotteries, it is clear that
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18.1 LOTTERIES ON SOCIAL ALTERNATIVES

we can expand our basic feasible set, say B, to include lotteries such
as . We might ask, for example, what the choice set from B\J {z}
would be if the procedure used to obtain the choice set {a,b,c} from B
were applied to B\U {z}. For the sake of illustration, suppose that
{b,x} is the choice set from B \U {z}. If the random process were then
applied to this new choice set (put ‘b and “z”’ into a hat and draw
one at random; if ““z” is drawn, then lottery x is activated), a second
lottery, say y, results. Lottery y is a compound lottery since one of its
initial “prizes” is the lottery z. However, y corresponds to a simple
lottery with probabilities y(a) = y(c) = (34)(}4) = 14 and y(b) =
s + (14)(14) = 24, which are the total probabilities for a, b, and ¢
under lottery y.

ANOTHER EXAMPLE

Pursuing the spirit but not the particulars of this example, it might
seem reasonable to admit all lotteries on feasible alternatives into the
choice process from the beginning. Since each lottery and each basic
alternative corresponds to a simple probability distribution on the set
B of basic feasible alternatives, this suggests that the choice set for B
be some nonempty subset of the set of simple probability distributions
on B.

It is precisely this suggestion that we shall pursue in this chapter.
Although a random tie-breaking procedure was used to introduce lot-
teries, it should be emphasized that other reasons may suggest the use
of probability distributions.

To illustrate, suppose that a three-member committee is responsible
for selecting a new man for a certain position in their company. Their
search has turned up four satisfactory candidates, Messrs. a, b, ¢, and
d. The feelings of the committee members are as follows:

1. Mr. q is terrific; Mr. d is all right and is slightly better than
Messrs. b and ¢, who are satisfactory.

2. Mr. b is terrific; Mr. d is all right and is slightly better than
Messrs. a and ¢, who are satisfactory.

3. Mr. ¢ is terrific; Mr. d is all right and is slightly better than
Messrs. a and b, who are satisfactory.

Now each member swears by the weak Condorcet condition of section
12.1 for choice procedures that do not use lotteries. In such a proce-
dure, {d} is the choice set since d has a strict simple majority over
each of a, b, and ¢.

However, the committee knows that they might use a lottery to
make the choice, and none of the members has a moral aversion to
such a procedure. Indeed, with x the even-chance lottery on {a,b,c},
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so that z(a) = z(b) = z(¢) = 14 and 2(d) = 0, it turns out that each
member prefers x to d. Hence z is unanimously preferred to d, and the
committee agrees to use x to make the final selection.

This conclusion may seem strange, since any candidate that  might
“‘choose”” would lose to d on a simple-majority comparison. However,
the inescapable fact is that each committee member would rather gam-
ble with z on the chance that his “terrific’’ candidate will win than
accept the compromise candidate d.

DEFINITIONS AND NOTATION

Throughout this chapter, A will denote the set of basic alternatives.
A typical feasible subset of basic alternatives is B C A.

To keep matters fairly simple, we shall work only with simple prob-
ability distributions on A. For our purposes it will suffice to define such
a distribution as a function x: A — Re such that

z(a) > 0 forallac A
z(a) = 0 for all but a finite number of ¢ € A
Saz(a) = 1.

We shall not make any notational distinction between a basic alterna-
tive and the distribution that assigns probability 1 to this alternative.
Thus, b may denote either a basic alternative or the simple probability
distribution that assigns probability 1 to b.

We shall let X be the set of all simple probability distributions on A.
If zy € X and 0 < X <1 then Az 4 (1 — N)y is the function from
A to Re for which

Nz + (1 — Ny)a) = z(@) + 1 — Ny(a) for all a € A.
Under the stated conditions Az + (1 — M)y, a convex linear combi-
nation of the functions z and y, is a simple probability distribution
on A since Zi x(a) + (1 — Ny(a)] = A2ax(a) + (1 — N)Zay(a) =
A+ (1 — A) = 1. To illustrate such a combination let A = .4 with

z(a) = .3, 2(b) = 7, 2(d) = 0 for all dEe A — {a,b}.
y(a) = .5, ¥(e) = .5, y(d) =0 for all de A — {a,cl.
Then, with z = Az + (1 — Ny = 4z + .6y,
z(a) = .42, 2(b) = .28, z(c) = .30.

More generally, if ,, . . ., 2, € X and if A, . . . , A» are non-
negative numbers that sum to 1, then Zj_ Ak, a convex linear com-
bination of z, through x., is the function from A to Re whose values
are defined by

Gz (@) = 27 \xe(a) for all a € A.
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Under the stated conditions, =, Max € X, and therefore X is closed
under convex linear combinations.

When B is the basic feasible set, the corresponding feasible set of
probability distributions in X is

Y =Y(B) = {z:2z € X and Zpz(a) = 1}.

Y(B) simply denotes the dependence of Y on B. The set of all poten-
tially feasible subsets of X will, as before, be written as 9. In the
present context,

x = {Y(B):B is a potentially feasible basic subset of A}.

Also as before, D is an n-tuple of strict partial orders on X, and D
is a nonempty set of such n-tuples. As in Definition 14.1, a social choice
function is a function F: X X ® — ®(z) with § C F(Y,D) C Y for all
(Y,D) € x X D.

Independence from infeasible alternatives reads the same as before:
F(Y,D) = F(Y,D’) when the restriction of D on Y equals the restric-
tion of D’ on Y. Under independence, the distributions in X — Y are
ignored and D can be viewed in abbreviated form as an n-tuple of
strict partial orders on the distributions in Y.

18.2 AxioMs FOR INDIVIDUALS

As usual, we define other binary relations on X from a preference
order > on X as follows:

r~yenote >y&noty >z
Ty >yorr~y

r=ye @~z y~zforallz € X)
TryeSx>yorr=y.

If independence is assumed, one may wish to replace X in the defi-

nition of =~ by Y = Y(B) when B is taken as the feasible set of basic
alternatives.

INTRANSITIVE INDIFFERENCE

We shall assume in general that each individual preference order >
on X is a strict partial order. To show one way that the use of proba-
bilities can lead to intransitive indifference (~), suppose that an indi-
vidual is involved in a decision to allocate a certain amount of money
to a specific activity. Four elements in A are $10,000, $14,000, $14,200,
and $20,000. Our individual’s preference increases as the amount
increases, so that $14,200 > $14,000 for example. Let z be an even-
chance lottery on {$10,000, $20,000}. Then it is quite possible that he
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will not have a definite preference between $14,000 and x, or between
x and $14,200, in which case ~ is not transitive.

SURE-THING AXIOMS

Suppose that ¢ > y. Let z & X and 0 < A < 1, and consider the
combinations Az + (1 — A)z and Ay + (1 — A)z. Although these are
simple probability distributions, they can be viewed as two-stage
lotteries in the following way. For Az 4 (1 — )z, a random device
selects « with probability A and z with probability 1 — N\, If x is
selected in the first stage then a final winner in A is determined accord-
ing to the probabilities given by z; likewise for z. The overall probabil-
ity for a € A under this two-stage procedure is precisely \x(a) +
(1 — MNz(@) = \x + (1 — N)z)(a). The other combination, Ay +
(1 — A\)z, can be viewed in a similar fashion. Since = > y, it seems
reasonable in view of the two-stage interpretation that Ax + (1 — A)z
> Ay + (1 — \)z. However, it might be argued that if X is sufficiently
near to zero then the two combinations will be so overwhelmed by the
dilution term (1 — \)z that the individual will be indifferent between
them. This seems to me to be a valid psychological point. However,
from a normative point of view, it might be argued that, even though
the combinations may be almost indistinguishable, the individual will
wish to take Az + (1 — M)z > Ay + (1 — \)z when he prefers z to y.

Although one later result (Theorem 18.1) could be derived from an
axiom that is not as strong as the sure-thing (or independence, mono-
tonicity, etc.) axiom that requires Az + (1 — Nz > Ay + (1 — A)z
when A € (0,1) and = > y, we shall use it in the sequel. Likewise, we
shall use the companion axiom based on the equivalence =: If x = y
and 0 < A <1 then Mz + (I — A)z = Ay + (1 — \)z. Since here we
are diluting two distributions that are virtually identical in preference
to begin with, the dilution would not seem to change this state of
affairs,

The following definition sets forth the things that will generally be
assumed about individual preference on X as characterized in this
chapter.

DEerINITION 18.1. A preference order > on X salisfies the weak indi-
vidual axiom if and only if, for all z,y,z € X and N € (0,1),

1. > on X is a strict partial order,
2.z>y=2x+ A —=Nz>xy+ (1 — Nz, and
z=y=a+ (1 —-Nz=xy+ (1 — Nz
The following lemma shows how the two parts of part 2 of the defini-

tion combine with part 1 to extend themselves to similar finite combi-
nations. The lemma will be used in the next section.
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Lemma 18.1. Suppose that > on X salisfies the weak individual axiom,
that zx, yo € X and 2 > yrand N, > 0 for k =1, . . . , m, and that
i = 1. Then

(1) zx = yi for all k= 27 Nar = Z7 Myes
(2) z > vx for some k for which \c > 0= Zi_\xr > Zi MYre

Proof. Suppose first that z; = vy, for all k. We proceed by induction
on m. For m = 2, part 2 of the weak individual axiom gives \ix; +
N2 = My1 + AaTa = Ary1 + Agys. Since = is transitive when > is a
strict partial order, Ay + Noxz = Ay1 + Neya. (If Ay =1 or Ny = 1,
the conclusion is immediate.) Now suppose that (1) is true for m = 2,

., K — 1. For the case of m = K take 0 < Mg < 1, by resubscript-
ing if necessary. Then by the induction hypothesis,

(1 - )\K)"E,f‘_;f)\kxk =~ (]. - )\K) 12k=1 NeYks

and by the result just proved for m = 2,

(1 — )\K)[(]- — )\K)‘lz,{‘;f)\kzk] + gk
~ (1 — M) = ) =5 Nyi] + Ay,

which is the same as ZX N = 2K \ys.

For (2) assume for definiteness that x, > y. and 0 < X\, < 1. (If
A» = 1, the conclusion is obvious.) Then, with m = 2, the weak indi-
vidual axiom gives \ix1 + A2z > Ay1 + Aqgya. Proceeding by induction
as before, X M, > ZE Ay follows in the obvious manner when

=K>2¢

THE STRONG INDIVIDUAL AXIOM

Most studies based on a formulation that uses lotteries employ some-
what stronger assumptions for individual preference than those in
Definition 18.1. A typical set of stronger axioms, which are essentially
the ones proposed by von Neumann and Morgenstern (1947) in their
study of game theory, is identified in the following definition.

DEeFINITION 18.2. A preference order > on X salisfies the strong indi-
vidual axiom if and only if, for all z, y, z € X and » € (0,1).

1. > on X is a weak order,

2Z.z>y=x+ 1 —-Nz> N+ (1 — Nz

.2z>y&y>z=ar+ 1 ~a)z>yandy > Bz + (1 — 8)z2
for some a, B &€ (0,1).

Part 3 is a so-called Archimedean axiom and has the effect of pre-
venting any basic alternative from being “infinitely desirable” or “‘in-
finitely undesirable.”” To note a contrived example where it might fail,
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suppose that an individual is convinced that a new penny is a “fair
coin.” The penny is to be flipped /V times. He is asked to consider a
choice between

(i) receive $1 regardless of the outcome of the /V flips;
(ii)) be executed if every flip results in a head, and receive $2
otherwise.

Presuming that $2 > $1 > execution, our individual would violate
part 3 of the strong individual axiom if he chose (i) over (ii) regard-
less of the size of V.

Although the =~ part of the weak individual axiom is not stated in
the strong individual axiom, it can be shown to follow from the latter.
This is proved by Jensen (1967), who gives a proof of Lemma 18.2
also. Similar proofs are contained in Chapter 8 of Fishburn (1970).
The attractiveness of the strong individual axiom arises partly from
the convenient numerical representation expressed in the following
lemma.

Lemma 18.2. Suppose that > on X salisfies the sirong individual
aziom. Then there is a function u: A — Re such that, for all z,y & X,

x >y e Zax(a)ula) > Zayla)ula). (18.1)

Moreover, a function v: A — Re salisfies this in place of u if and only if
there are real numbers r > 0 and s such that v(a) = ru(a) + s for all
a € A.

The function u of (18.1) is a “‘utility function,” and Z,z(a)u(a) is
the “‘expected utility” of the probability distribution z. In these terms,
(18.1) says that one distribution is preferred to another if and only if
the first has the larger expected utility. Clearly, u reflects both the
individual’s preferences between basic alternatives and his attitudes
about taking chances. It shows that, under the strong individual
axiom, there is a way to assign numerical values to the basic alter-
natives so that preferences between distributions are preserved by
linear combinations or expectations of the basic alternatives’ utilities.

The final part of the lemma states that the utility function in (18.1)
is unique up to origin and positive scale transformation. Thus, the
origin of u can be changed by adding a constant to all u(a) values,
and (18.1) will remain valid. The same thing is true if every u(a)
value is multiplied by the same positive constant. If u satisfies (18.1),
then any v: A — Re that does not satisfy v(a) = ru(a) 4+ s (for all a)
for some constants r > 0 and s, cannot satisfy (18.1).

Because only a simple preference relation > is used in the lemma,
many authors have warned against interpreting u in (18.1) as a rela-

’
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tive measure of preference intensity or strength-of-preference over the
basic alternatives in A. It obviously measures something (as described
above), but it is by no means evident that it has any direct connection
to what most people would intuitively think of as a relative measure
of preference intensity.

A MODERATE INDIVIDUAL AXIOM

In addition to the strong and weak individual axioms, there are
several intermediate forms. One of these, which will be used later, is
identified in the following definition.

DeriNiTION 18.3. A preference order > on X salisfies the moderate
individual axiom if and only tf, for all x,y,2 € X and \ € (0,1),

1. > on X is a strict partial order,
2.ze>yexe+ 1 —=Nz>xzxy+ 0 — Nz and
zr=ye+ 0 -—Nz=xy+ (1 — Nz

This adds two antidilution statements to the weak individual
axiom, namely Az + (1 — Nz > x4+ (1 — Nz==x > ¥, and Az +
(L —=Nz= M+ (1 —Nz=z = y. The first of these seems less lia-
ble to objection than its converse since it says that if one distribution
is preferred to another and if both have a ‘“common” part then the
preference must be a result of their different parts. On the other hand,
the second seems more vulnerable than its converse, since a small A
might give Az + (1 — M)z = Ay + (1 — \)z because of dilution when
x =~ y is false. Lemma 18.2 shows that the moderate individual axiom
is implied by the strong individual axiom.

The usefulness of our new axiom in comparison with the weak indi-
vidual axiom lies in the following addition to the results of Lemma 18.1.

Lemma 18.3. Suppose that > on X satisfies the moderate individual
axtom, and that z,y € Xandx # y. Let L = {Xx + (1 — N)y:\ & Re},
andlet ' = LN\ X. If x > v then ©’ > y’ whenever x’,y’ € L’ and the
sense from x' to y' along L’ is the same as the sense from x toy. If x = y
then ' = v forall x',y’ € L'.

Proof. Given z # y, L’ is the “line segment” in X that contains
z and y. (Recall that z and y are simple distributions, so that L’ in-
volves only a finite number of basic alternatives.) Let «* and y* be
the extreme points in L’ so that L’ = {Xxz* + (1 — N)y*:0 < x < 1},
witha > Band z = ax* + (1 — a)y*, y = Bz* + (1 — B)y*.

Suppose that z > y. With a« > 8, x > y is the same as

a—p
1-8

1._
Bz* + (1 —ﬁ)[ $*+i—_—‘;y*:| > Bz + (1 — B)y*
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so that Az* 4+ (1 — A)y* > y* by the moderate individual axiom.
Again by this axiom, z* > y*. Now suppose that

 =pe*+ (1 —py*and y =gz*4+ (1 — q)y*with1 > p > ¢ > 0.

Then pz* 4+ (1 — p)y* > y* by the weak individual axiom, and if
¢ > 0 then

(¢/p)lpx* + (1 — p)y*1 + (1 — ¢/p)[pz* + (1 — p)y*]
> (¢/p)pz* + (1 — p)y*] + (1 — ¢/p)y*,

or pe* 4 (1 — p)y* > qz* 4+ (1 — @)y*. If ¢ = 0, this result has al-
ready been established.

The proof for = is similar. ¢

The moderate individual axiom does not give rise to a unidimen-
sional expected-utility result along the lines of Lemma 18.2 since it
omits an essential Archimedian axiom. For further discussion on this
point, the reader should consult Hausner (1954), Aumann (1962-1964),
Kannai (1963), and Fishburn (1970, Chapter 9).

18.3 ApMmIssIBLE DISTRIBUTIONS

We shall now use the individual axioms to investigate the important
concept of admissible distributions. Throughout this section we shall
work with a generic (Y,D) € £ X D where Y is based on the subset
B of basic alternatives, so that Y = Y(B). Moreover, the condition
of independence from infeasible alternatives will be assumed to hold
so that D can be viewed as an n-tuple of strict partial orders on Y.
The relation =, for each i is defined with respect to Y rather than X.

Employing a notion used widely in the preceding chapter, we define

z->pyex x;yforall i and z >;y for some i, (18.2)

with the understanding that z,y € Y. z is said to dominale y precisely
when z ->p y.

DEerINITION 18.4. The distribution y & Y is admissible with respect
to (Y,D) tf and only tf x ->py for nox €Y.

This obviously relates to the version of unanimity which says that
z,y € Yandx ->py=y & F(Y,D). For this condition to be consistent
with the definition of F, it must be true that some y € Y is admissible.
Since Y is infinite if #B > 1, strict partial orders do not guarantee an
admissible ¥ even when B is finite. However, if certain conditions are
assumed for individuals, then some y is admissible when B is finite. In
fact, some b & B is admissible in this case.
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THEOREM 18.1. Suppose that B is finite and that each individual order
in D salisfies the weak individual axiom with respect to Y = Y(B). Then
there is a b & B such that b is admissible with respect to (Y,D).

The proof is based on two lemmas, the first of which is

Lemma 18.4. Suppose that zi,vx € Y and i ->p yir and N, > 0 for
k=1,...,m, with Z2 N =1, and that each > ; salisfies the weak
individual axiom. Then Zp_ Mai ->p ZheiAeYe-

Proof. Since xi, - > p y, for all &, 2 .y« for all i and k and therefore
Mk 2. Zhiyr for all { by Lemma 18.1. For some A, > 0 there is an {
such that zi >, yi. Hence Z\e >, ZAcys for this i, by Lemma 18.1(2).
Hence =Nz ->p Zhy: by (18.2). ¢

The second lemma can be easily proved using Theorem 3.2 as modi-
fied in the sentence that precedes its statement. Another proof is given
by Rosenblatt (1962, pp. 44-52). In the theory of Markov processes,
this lemma guarantees the existence of a stationary distribution p in the
finite context.

Lemma 18.5. Suppose z1, . . . , . are probability distributions on
C = {1, ... ,m}. Then there is a probabilily distribution p on C such
that

pk) = ZL,p(lz;(k)  for  k=1,...,m
Proof of Theorem 18.1. Let the hypotheses of the theorem hold with
B = {by, . .. ,b,}. Contrary to the conclusion, suppose that every b;
is dominated, withz, € Yandz, ->p b,forj=1, ... ,m. LetpE Y
be as guaranteed by Lemma 18.5 so that

p(b) = 22, p(b,)z,(by) for k=1,...,m.

Then p = Zp(b,)b, = Zp(b,)x,, so that p ->p p by Lemma 18.4. But
this contradicts the irreflexivity of some >, and hence it must be true
that some b; is admissible. ¢

THE SPACE OF ADMISSIBLE DISTRIBUTIONS

Throughout this subsection, the hypotheses of Theorem 18.1 will be
assumed to hold. Our main purpose will be to examine the structure
of the admissible distributions in Y. Let

Yo = {x:2 € Y and z is not admissible w.r.t. (Y,D)}
Y, = {2:2 € Y and z is admissible w.r.t. (Y,D)}.

By definition, Yo"\ Y, =@ and Y = Y, U Y;. Theorem 18.1 says
that Y; ## @, and in fact b € Y, for some b & B.
A convenient way of developing the structure of Y, is to look first at
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Y, the space of inadmissible distributions. A set Y’ of distributions in
Y'is convex if and only if Y is closed under convex linear combinations;
thatis, z, yE YVand 0 < x<l1l=x+ 1 —-Nyc Y.

LeMma 18.6. (1) Y is conver.
2)be Yoandz(b) > 0=z €Y,
B)zE Yoand 0 <A <1l=x+ 1 - Ny €E Y.

Part (2) says that if the basic alternative b & B is inadmissible, then
every distribution in Y with positive probability for b is inadmissible.
Thus, for the example of section 18.1 where Mr. d had a strict simple
majority over each of Messrs. a, b and ¢, but was dominated by z with
z(a) = z(b) = x(c) = 13, every distribution that gives Mr. d any
chance of winning is dominated by some other distribution. Looking
at this result from the standpoint of Y3, it says that if £ € Y, then
x(b) = 0 for every inadmissible b. Part (3), which is stronger than
part (2), says that, if z is dominated and if 0 < A < 1, then \x +
(1 — M)y is dominated, regardless of whether y is admissible.

Proof of the lemma. Part (1) is a corollary of part (3), and (2) fol-
lows from (3) by observing that if 0 < x(b) < 1 then z = z(b)b +
[1 — z(b)]z’, where z'(b) = 0 and z'(a) = z(a)/[1 — z(b)]for all a ¢ b
in B. For (3), suppose that z->p 2z and 0 < A\ < 1. Then, by the proof
method for Lemma 18.4, Xz + (1 — Ny ->p Az + (1 — N)y. ¢

Although Y, is convex, Y, need not be convex. We shall illustrate this
and more with two simple examples that take B = {a,b,c}, n = 2 and
for convenience we will assume that the strong individual axiom holds
for each of the two orders on Y = Y(B). In each case the following
matrices give the individual utility functions on B that satisfy (18.1)
for Y. From the viewpoint of the nonprobabilistic approach of previous
chapters, these two matrices would be equivalent. In the present con-

Uy Usq Ui U
al 3 0 a|l 3 0
bl 1 1 bl 2 2
c| 0 3 c| 0 3
I 11

text, b is dominated by l4a + 14¢ in I, but b is not dominated in II.

Situations I and II are shown geometrically on Figure 18.1, where V'
is the plane simplex in Re® shown at the top of the figure. The points in
Y1 in each case are enclosed by the dashed lines. For I, Y; = Y({a,c});
for I, Y = Y({a,b}) U Y({b,c}). In each case Y, is the convex set
that is left when Y is taken out of Y. Although Y, is convexin I, Y; is
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c=(0,0,))

Ficure 18.1

not convex in II. For example, b->p Y4a + Y4¢ in II since u.(b) >
Lsui(a) + L4u.(c) for i = 1, 2, so that Lga + L4¢ is not in Y; although
a and ¢ are.

Since b is dominated in I, Lemma 18.6(2) says that Y; C Y({a,c}) for
this case. In view of the fact thata >,candc¢ >,aforl, Y; = Y({a,c}).

Since b->p Y5a + Y4¢ in II, Lemma 18.6(3) shows that Y, C
Y({a,b}) \J Y({b,c}). That is, the points on any line through 14a + 14¢
that are in Y must be dominated, except perhaps for the extreme
boundary points (where A = 0 in the lemma). Lemma 18.6(3) implies
also that if 14a 4+ 14b is admissible then every point on the line seg-
ment from a to b, that is Y({a,b}), is admissible. (This includes the end
points a and b. Why?) One can easily verify that l4a + 14b is admis-
sible in II. The same clearly holds for 14b + l5¢ by symmetry.

This reasoning leads to a corollary of Lemma 18.6 that we include
in a theorem. As before, with C C B,

Y(C) = {x:2 € Y and Zcz(b) = 1}.

The relative interior (or interior) of Y(C) is the set of all x € Y(C) for
which z(b) is positive for all b & C: symbolically,

Y[C] = {z:x € Y(C) and z(b) > 0 for all b & C}.

The relative boundary (or boundary) of Y{(C)is ¥ — Y[C]. If Cis a unit
subset of B, say C = {a}, then Y(C) = Y[C] = {a} and the boundary
of {a} is empty.

245



LOTTERIES ON SOCIAL ALTERNATIVES

THEOREM 18.2. Suppose that the hypotheses of Theorem 18.1 hold. Then
there is a nonempty subset ®, of nonempty subsets of B such thal

M) CCE®BandC #C =not CCC' &not C' C C,
(2) Y1 = UgY(0).

Moreover, if Yo 5% @ then there is a nonempty subset ®, of nonemply
subsels of B such thal

B) CERand CC C'C B=C € G,
(4) Co e ®o and Cl e ®1 = not Co g Cl,
(5) Yo = Ug, YI[C], and Y, is convez.

This theorem includes all aspects of Theorem 18.1 and Lemma 18.6.
For example, (1) and (2) require that b € Y, for some b & B. Because
Y(C) € Y(C') when C C (C’, ®, contains only the maximal subsets of
B whose Y(C) are in Y,. There is no similar expression for ®, since
YI[CINY[Cl =@ if C # C, even if C C C'. However, (4) states a
noninclusion property between ®o and ®;. It simply reflects the fact
that YoM Y, = @. Part (3) of the theorem follows easily from Lemma
18.6(3), for if z is in the interior of Y(C) and is inadmissible, and if
C C (' and v is in the interior of Y(C'), then 14z + 14v is inadmissible
and in the interior of Y(C’). The line segments from 15z + 14y to the
boundary points of Y(C’) show by Lemma 18.6(3) that every point in
Y[C’] is inadmissible.

A simple implication of Theorem 18.2(3,5) is that if ¥, = # then
every point in the interior of Y is in Y.

THE MODERATE INDIVIDUAL AXIOM

One natural property of admissibility that has not yet been men-
tioned in our probabilistic setting is the dominance of each inadmis-
sible distribution by an admissible distribution. We show first that this
can be false under the weak individual axiom.

Let B = {a,b} and let x & [0,1] be the distribution that has prob-
ability z for band 1 — z for a. Taking n = 1, let > satisfyz >y > 1
whenever 0 < z <y < 1,and 0 ~ z for all z & (0,1]. It is easily seen
that the weak individual axiom holds. Since 0 is the only point that is
not dominated, Y, = {a}. But a ->p z for no r € (0,1], and therefore
there is no point in Y; that dominates a point in Y, = (0,1].

The moderate individual axiom of Definition 18.3 rectifies this
anomaly.

THEOREM 18.3. Suppose that B is finite and each individual order in D
satisfies the moderate individual axiom. Then

y& Yo=z ->pyforsomez c Yy
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Proof. Let the hypotheses hold and, contrary to the conclusion, sup-
pose that y; € Y, and no admissible distribution dominates y;. We
shall obtain a contradiction to this by constructing a sequence y,, ys,
¥s . . . of pointsin Y such that . . . y;->p y2 ->p y1. The transitiv-
ity of ->p gives yx ->p y: for every k > 1, so that y, € Y, by our
supposition. We let C; € B be such that y, € Y[Ci]. (See Theorem
18.2.)

Given y;, determine y, as follows. If there is an x € Y[C,] such that
x ->p 1, take y, as the point on the line {Axz + (1 — N)y1:N € Re} that
is farthest from y, on the z side of ¥, and is still in Y. It follows from
Lemma 18.3 that y.->p y: and, by construction with y, & Y[Cq],
C; C Cy. [That is, y2 is on the boundary of Y(C,) and hence will be in
the interior of Y(C;) for some C; C C,]. On the other hand, if x - > p y,
for no z & Y[Cy], let ¥, be any point in Y, that dominates y;. Since
Y, is convex, C, will not be a subset of C; in this case.

Given y., precisely the same procedure is used to obtain y; -> p ya.
The construction proceeds in the same way for each yi. Since ->p is
transitive, y; - > p ¥, whenever k > j. Moreover, since - > p is irreflexive,
vi # y, whenever k 5 j.

Suppose we are at y;. Since B is finite, and since Cy.i C Crif 2> p yi
for some x & Y[Cy], after a finite number of steps we must reach a
k > j such that z ->p yx for no z & Y[Ci]. And since y. ->p ¥y for
m > k this means that y. & Y[C;] for all m > k. It follows that there
is an infinite sequence ky, ks, . . . with k&, < ky < . . . such that, for
eachr € {1,2, . . .}, y» & Y[C.] for all m > k,. But this implies that
no two C;, are identical and hence that their number is infinite. We
have thus reached the desired contradiction since B has only a finite
number of subsets. ¢

A NONTHEOREM

As we have shown, Y; need not be convex. However, the first part
of Theorem 18.2 states that Y, can be written as the union of several
maximal convex sets, namely the Y(C) for C € ®,. It might then be
asked whether, under any of the individual axioms, each two subsets
of B that are in ®, contain a common basic alternative. For example,
this would be true for case II of Figure 18.1 where ®; = {{a,b},{b,c}},
for the two subsets of B in ®; both contain b.

Simple examples show that this can be false when only the weak
individual axiom is used, provided that #B > 1. Moreover, as we shall
now show, it can be false even when the strong individual axiom is used,
provided that #B > 3.

Let B = {a,b,c,d}, n = 2, and suppose the following u, functions on
B satisfy (18.1). Then, as one can easily verify, each of a, b, ¢, and d
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is in Y;. Moreover, ¢ ->p Y5a + 14b, d ->p Lga + Ygcand ¢ ->p 14b
+ 34d. By Theorem 18.2, this gives Y; C Y({a,d}) U Y({c,d}) U

Ui U
a 5 0
b 0 5
c 3 3
d 4 2

Y({b,c}). In fact, Y1 can be shown to equal this union, so that ®, =
{{a,d},{c,d},{b,c}} with {a,d} M {b,c] = @.
This result is shown for the simplex ¥ = Y(B) of Figure 18.2. Since

Ficure 18.2. Regular tetrahedron

Y is effectively 3-dimensional in this case, it can be viewed as a regular
tetrahedron with ¢ lying above the plane that contains a, b and d. (The
tetrahedron represents part of the hyperplane z(a) + z(b) + z(c) +
z(d) = 1 in 4-dimensional space.) As before, the points in Y7, along
three edges of the tetrahedron, are enclosed by dashed lines.

sHouLDb F(Y,D) BE CONVEX?

Assume that the unanimity condition z->p y =y & F(Y,D) is im-
posed so that F(Y,D) € Y:. Should F(Y,D) be required to be convex
also? If so, then F(Y,D) must be a subset of one of the Y(C) for
C & ®,. This follows from Theorem 18.2 under the weak individual
axiom.

Besides the purely esthetic attraction of a convex choice set, con-
sideration of tie-breaking may support an argument in favor of con-
vexity. Suppose for example that z,y &€ F(Y,D) and z # y. Then the
distributions z and y both appear “fair” for “‘implementation,” de-
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spite the obvious fact that some individuals may prefer z to y while
others prefer y to x. Hence Ax + (1 — \)y with 0 < A < 1 might also
seem ‘‘fair,” since when viewed as a two-stage lottery it results in
either z or y at the first stage.

Of course, even when F(Y,D) is convex, it does not fully resolve the
issue if it contains more than one distribution. There is one qualifica-
tion on this. If ¢ ~, yforevery: &€ {1, . . . ,n} andallz,y & F(Y,D),
then it should make no difference to any individual which distribution
in F(Y,D) is actually used. In such a case it seems reasonable to say
that F(Y,D) fully resolves the issue at hand.

18.4 OtHER CONSIDERATIONS

Clearly, considerations besides admissibility will usually play a role
when lotteries are allowed in a social choice procedure. For example,
if a group has 100 individuals and if the situation of Figure 18.1 (I1I)
has one individual with utility function u; and 99 with utility func-
tion u,, then the social choice would probably not be the same as
when 99 have u; and one has u,, despite the fact that the admissible
set in Y is the same in both cases.

Corresponding to preceding investigations, several routes in the lot-
teries context might be pursued. These include an examination of con-
ditions like those in Chapters 14 through 16, consideration of simple
majority, and the determination of F by summation as in the preceding
chapter. In concluding our study, we shall comment on three things:

1. Conditions under which a basic alternative that has a strict sim-
ple majority over each other basic alternative is admissible;

2. The existence of a distribution z € Y that has a strict simple
majority over every other distribution in Y;

3. Determination of F(Y,D) by maximum utility sums.

The second of these has been studied by Zeckhauser (1969) and Shepsle
(1970), and the third by Harsanyi (1955), Pattanaik (1968b), and Sen
(1970c), among others. Two other papers of general interest which use
expected utility in a social choice analysis are Coleman (1966) and
Riker and Ordeshook (1968).

BASIC MAJORITY ADMISSIBILITY

As in the preceding section, we shall work with a generic (Y,D) €
X X © with ¥ = Y(B). The other conditions in the first paragraph
of the preceding section are assumed here also.

As shown in section 18.1, a basic alternative (Mr. d) that has a strict
simple majority over each other basic alternative may be inadmissible.
A quick check will show that preferences on a, b, ¢, d are not single-
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peaked in that example. When preferences on basic alternatives are
gingle peaked, it will often be true that a “‘best” basic alternative by
the weak Condorcet condition will be admissible. The combination of
the weak Condorcet condition on B and admissibility could reflect the
following partial selection procedure. It is first determined whether one
basic alternative has a strict simple majority over each other basic
alternative. If there is a weak Condorcet ‘““‘winner,” say b, then b will
be implemented unless someone can propose a lottery that is ‘“‘unani-
mously preferred” to b. In other words, each voter has veto power
over any lottery that is put against b.

We shall consider two theorems that combine the weak Condorcet
viewpoint on basic alternatives with admissibility. Both are based on
single-peaked preferences on the basic alternatives in B. The notation
of Chapter 9 will be used where appropriate.

TrHEOREM 18.4. Suppose that each individual order in D satisfies the
weak individual axiom with respect to Y = Y(B), that (B,D) is single
peaked under the linear order <, on B and that for each i there is an
a; € B such that a, >, b for all b & B — {a.}. Then, if there is a basic
alternative that has a stricl simple majorily over every other basic aller-
native, it is admussible.

Proof. Let the hypotheses hold and assume that bPpa for all a €
B — {b}. Suppose first that b = a; for some i, so that b >, a for all
a € B — {b}. To show that b is not dominated, let x € Y with ¢ = b.
If 2(b) = 0 then, by Lemma 18.1, Z,cp2(a)b >, Zucpz(a)a, or b >, z.
If 0 < z(b) < 1 then z = z(b)b + [1 — x(b)]x’ with 2’(b) = 0. Hence
b >;2 and therefore b = [1 — z(b)]b + z(b)b >;[1 — x(b)]’ +
z(b)b = z, or b >, x. Hence b >, z for all z > b, so that b cannot
be dominated.

Suppose next that b = a, for no i. Let a be the alternative in
{ai, . . . ,a,} thatsatisfies [a <obanda <,a, <, bfornoa,],and let¢
be thealternativein {a;, . . . ,a,} thatsatisfies[b <ocandb <,a, <oc¢
for no a,). Since bPpa, for all i, both a and ¢ exist. Letm = #{i:a, <, b}
and n — m = #{i:b <¢a;}. Then bPpa=m > n — m, and bPpc =
n — m > m, a contradiction. Hence the case supposed in this para-
graph cannot arise. ¢

It should be noted that Theorem 18.4 says nothing about the size of
B. In particular, it allows B to be infinite, as does our next theorem.
In this theorem the restriction on the nature of the peaks (unit sub-
sets of B) is removed, but the individual assumptions are strengthened.

TueoreM 18.5. Suppose that each individual order in D is a weak
order that satisfies the moderate individual axiom with respect to ¥ =
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peaked in that example. When preferences on basic alternatives are
single peaked, it will often be true that a “best” basic alternative by
the weak Condorcet condition will be admissible. The combination of
the weak Condorcet condition on B and admissibility could reflect the
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alternative. If there is a weak Condorcet ‘“‘winner,” say b, then b will
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mously preferred” to b. In other words, each voter has veto power
over any lottery that is put against b.

We shall consider two theorems that combine the weak Condorcet
viewpoint on basic alternatives with admissibility. Both are based on
single-peaked preferences on the basic alternatives in B. The notation
of Chapter 9 will be used where appropriate.

TrHEOREM 18.4. Suppose that each individual order in D satisfies the
weak individual axiom with respect to Y = Y(B), that (B,D) is single
peaked under the linear order <, on B and that for each i there is an
a; € B such that a, >, b for all b & B — {a.}. Then, if there is a basic
alternative that has a stricl simple majorily over every other basic aller-
native, it is admussible.

Proof. Let the hypotheses hold and assume that bPpa for all a €
B — {b}. Suppose first that b = a; for some i, so that b >, a for all
a € B — {b}. To show that b is not dominated, let + € Y with ¢ = b.
If 2(b) = 0 then, by Lemma 18.1, Z,cp2(a)b >, Zucpz(a)a, or b >, z.
If 0 < z(b) < 1 then z = z(b)b + [1 — x(b)]z’ with z'(b) = 0. Hence
b >;x and therefore b = [1 — z(b)]b + z(b)b >;[1 — x(b)]x’ +
z(b)b = z, or b >, x. Hence b >, z for all z > b, so that b cannot
be dominated.

Suppose next that b = a, for no i. Let a be the alternative in
{ai, . . . ,a,} that satisfies [a <obanda <,a, <, bfornoa,],and letc
be thealternativein {a;, . . . ,a,} thatsatisfies[b <ocandb <,a, <oc¢
for no a,). Since bPpa, for all i, both a and ¢ exist. Letm = #{i:a, <, b}
and n — m = #{i:b <o a;}. Then bPpa=m > n — m, and bPpc =
n — m > m, a contradiction. Hence the case supposed in this para-
graph cannot arise. ¢

It should be noted that Theorem 18.4 says nothing about the size of
B. In particular, it allows B to be infinite, as does our next theorem.
In this theorem the restriction on the nature of the peaks (unit sub-
sets of B) is removed, but the individual assumptions are strengthened.

TueoreM 18.5. Suppose that each individual order in D is a weak
order that satisfies the moderate individual axiom with respect to ¥ =
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To the contrary, suppose that #C > 1. Because z is in the interior of
Y(C), we can choose ay € Y[C] sufficiently close to but different than
z so that there are { and v in Y[C] such that

=N+ 10~ Ny
y=M-+ (11— Nz

with A € (0,1) and small enough so that the results to be described
will hold. In particular, A = .2 will be a satisfactory value. This is
shown on Figure 18.3, where ry = A + (1 — A)z. An appropriate con-

.2t + .8x 2t + 8y
V. 'y [l 1 ( 1 'l -
L } } o *—0—0-0 ¢ } $ >
t n X rpyry v
Ficure 18.3

vex combination will give ar; + (1 — @)v = z, and for this o we take
rs = ax + (1 — a)v. As shown on the figure, r, is between x and y.
Another combination will give 8z + (1 — 8)v = ry, and for this we
take ry = 8ry + (1 — B)v, with r; to the right of y.

Now suppose that z > ;y. Then, by the weak individual axiom, r; =
M4 (1 — Nz >iM+ (1 — Ny =z, sothat ry >, x. Conversely, sup-
pose that ry >, x. Then with the combinations as described above, the
weak individual axiom gives £ >, ry, then ro >, rs, so that x >, r; by
transitivity. Since y is a convex combination of z and r; the weak
individual axiom gives ¢ >,y. Hence x >,y < ri >, x. Reversing >,
in each step here gives ¥ >,z < ¢ >,ri. Therefore zPpy & r\Ppz.
Hence, if #C > 1, then x cannot have a strict simple majority over
every other distribution. ¢

In comparison with Theorems 18.4 and 18.5, it is easily seen that
when (B,D) is single peaked and P(B,D) = {b}, so that b has a strict
simple majority over every other basic alternative, there may be a
distribution in Y that has a strict simple majority over b. For example,
if B = {a,b,c}, n = 3 and u, for (18.1) are as follows, then (B,D) satis-
fies the conditions of Theorem 18.4, and {b} = P(B,D) with b admis-

Uy Us Us
al3 0 0
b1 1 1
c| 0 3 0

sible. However, L5a + l4c is preferred to b by individuals 1 and 2, so
that 1sa + 14¢ Pp b. Zeckhauser (1969) and Shepsle (1970) investigate
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the three-alternative situation under the strong individual axiom in
some detail, and the reader is referred to their papers for further
information.

UTILITY SUMS

To simplify our discussion of summation in the lottery context, we
shall assume that B is finite and that the strong individual axiom holds
for each order in D. Given u, for ¢ that satisfies (18.1) on ¥ = Y(B),
normalized so that max {u;(b):b € B} = 1 and min {u,(b):b E B} =0
whenever u, is not constant on B, let

Ex = Zgx(b)u.(d)

forallz € Yand i € {1, . . . ,n}. A typical procedure for determin-
ing F(Y,D) by summation in this setting is to specify a positive number
p. for each i and take

F(Y,D) = {x:z2 € Yand Zp.Ex > Zp.Ey forally € Y}. (18.4)

As you can easily verify, b € F(Y,D) for some b & B.

If one accepts such a procedure in principle, the question remains as
to how the p, are to be specified. Various suggestions have been made
on this point (see, for example, the papers cited early in this section),
but there does not appear to be widespread agreement on any of these.
We shall not go into them here.

There are other summation procedures besides those specified by
(18.4) that qualify in the present context as summation social choice
functions. For example, given (Y,D) as supposed above, let v,: Y — Re
agree monotonically with E,: Y — Re, so that v,(x) > v.(y) if and only
if Exx > Ey. Then v(z) > v.(y) ®x >,y for all z,y € Y and all 1.
If it is true that

{z:x & Yand Zw.(z) > Zoy) forally € Y} (18.5)

is not empty, then F(Y,D) could be taken to equal this subset of Y.

Simple examples that involve discontinuities show that (18.5) can be
empty. Other examples show that when (18.5) is not empty, it need not
contain any b & B. For instance, let B = {a,b} with z & [0,1] rep-
resenting the distribution that assigns probabilities z to ¢ and 1 — =
to b. Suppose that n = 2 with @ >, b and b >;a. Two v; functions
that preserve the > ; orders on [0,1] are

The sum of these two functions is maximized by z = 14, so that (18.5)
contains only the even-chance distribution on {a,b}.
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