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F O R E W O R D

o-L /o:--:
The central objective of the research program of the Harvard Business School 

is the search for and development of findings which will enable business adminis
trators to make wiser decisions in some phase of their activities. The broad field 
of business administration involves so many facets or dimensions that the nature 
of research findings varies widely in character. Nearly every field of study and 
investigation by scholars has something to contribute to business management. 
In recent years the School has been making special efforts to bring to bear on 
business management problems the skills and approaches of men trained and 
knowledgeable in some of the more significantly relevant disciplines which underlie 
business administration. One such special effort is the application of mathematics 
and statistics to business problems of decision under conditions of uncertainty. 
The general nature of this approach is set forth in Professor Schlaifer’s Probability 
and Statistics for Business Decisions published by the McGraw-Hill Book Company 
in 1959, and it is expected that work in such problems will be a continuing part of 
the research effort of the School.

It is seldom possible, however, to take findings, analytical techniques, or 
conceptual frameworks from a basic discipline and apply them directly to a con
crete business problem. Often the findings of another field must be refined and 
adapted specifically to the particular problem at hand. At times it is discovered 
that substantial new work is required of a fundamental character before an ap
proach to a particular class of applied business problems is possible. This volume 
reports the results of research of the latter type. In the field of statistical decision 
theory Professors Raiffa and Schlaifer have sought to develop new analytical tech
niques by which the modern theory of utility and subjective probability can actu
ally be applied to the economic analysis of typical sampling problems.

This book, the first in a group entitled Studies in Managerial Economics, is 
addressed to persons who are interested in using statistics as a tool in practical 
problems of decision making under conditions of uncertainty and who also have 
the necessary training in mathematics and statistics to employ these analytical 
techniques. I t is not written for the general businessman, in contrast to most of 
the publications of the Division of Research in the past. It is the first of a new 
class of publications of the Division of Research that will report the results of 
research in the basic disciplines that underlie the field of business administration. 
These results, however, are expected to be widely usable in later studies dealing 
with actual business problems.

Financial support for this study came from an allocation by the School of a 
portion of a generous grant of the Ford Foundation to provide general support 
for the School's basic and exploratory research program. The School is indebted 
to the Ford Foundation for the support of this type of research endeavor.

Soldiers Field 
Boston, Massachusetts 
November 1960

B e r t r a n d  F o x  
Director of Research





P R E F A C E  A N D  I N T R O D U C T I O N

This book is an introduction to the mathematical analysis of decision making 
when the state of the world is uncertain but further information about it can be 
obtained by experimentation. For our present purpose we take as given that the 
objective of such analysis is to identify a course of action (which may or may not 
include experimentation) that is logically consistent with the decision maker's 
own preferences for consequences, as expressed by numerical utilities, and with 
the weights he attaches to the possible states of the world, as expressed by numeri
cal probabilities. The logical and philosophical justification for this statement of 
the problem has been fully developed by Savage in his Foundations of Statistics; t  
the purpose of the present book is not to discuss these basic principles but to con
tribute to the body of analytical techniques and numerical results that are needed 
if practical decision problems are to be solved in accordance with them.

We should like at the outset to call the reader's attention to the fact that 
the so-called “Bayesian" principles underlying the methods of analysis presented 
in this book are in no sense in conflict with the principles underlying the traditional 
decision theory of Neyman and Pearson. Statisticians of the school of Neyman 
and Pearson agree with us— although they use different words— that the decision 
maker who must choose a particular decision rule from within a suitable family 
of rules should both carefully appraise the possible consequences of the acts to 
which the rules may lead and carefully consider the relative importance to him of 
having a rule which behaves well in certain states of nature versus a rule which 
behaves well in other states. The only real novelty in the Bayesian approach 
lies in the fact that it provides a formal mechanism for taking account of these 
preferences and weights instead of leaving it to the decision maker's unaided 
intuition to determine their implications. We believe, however, that without this 
formalization decisions under uncertainty have been and will remain essentially 
arbitrary, as evidenced by the fact that, in most statistical practice, consequences 
and performance characteristics receive mere lip service while decisions are actually 
made by treating the numbers .05 and .95 with the same superstitious awe that 
is usually reserved for the number 13. Even further, we believe that formalization 
of utilities and weights leads to decisions which are not only less arbitrary but 
actually more objective. In most applied decision problems, both the preferences 
of a responsible decision maker and his judgments about the weights to be attached 
to the various possible states of nature are based on very substantial objective 
evidence; and quantification of his preferences and judgments enables him to 
arrive at a decision which is consistent with this objective evidence.

We should also like to point out that we are in complete agreement with those 
who assert that it is rarely if ever possible to find the best of all possible courses

t L. J. Savage, The Foundations of Statistics, New York, Wiley, 1954.
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Preface and Introduction

of action and who argue that reasonable men “satisfice” much more than they 
“optimize” . We most emphatically do not believe that the objective of an optim
izing analysis is to find the best of all possible courses of action; such a task is 
hopeless. As we see it, the first step in the analysis of any decision problem is 
necessarily a purely intuitive selection by the decision maker of those courses of 
action which seem to him worthy of further consideration. Only after a set of 
“reasonable contenders” has thus been defined does it become possible to apply 
formal procedures for choice among them, but even at this stage it will often be 
preferable to eliminate some of the original contenders by informal rather than 
formal analysis. In other words, it is our view that formal methods of optimiza
tion such as those described in this book should be used in those parts and only 
those parts of a complete analysis in which the decision maker believes that it 
will pay him to use them.f “Satisficing” is as good a word as any to denote 
both the preliminary choice of contenders and the intuitive elimination of some 
of them; and we are quite ready to admit that in many situations informal analysis 
will quite properly reduce the field to a single contender and leave no scope for 
formal analysis at all.

When we started to write this book our intention was merely to produce a 
short research report in which some of our as yet nebulous ideas would be sub
mitted to the scrutiny of other specialists. Stimulated by each other's enthusiasm, 
however, we gradually expanded our objective in the direction of a self-contained 
introduction to what we believe to be a coherent and important group of analytical 
methods. As the book now stands, Part I (Chapters 1-3) describes the general 
structure of this group of methods and indicates in principle how they can be 
applied to a very wide variety of decision problems. Part II (Chapters 4-6) gives 
specific analytical results for two specialized classes of problems which are of central 
importance in applied statistics: (1) problems involving choice among two or more 
processes when utility is linear in the mean of the chosen process, and (2) problems 
of point estimation when utility depends on the difference between the estimate 
and the true value of the quantity being estimated. Finally, Part III (Chapters 
7-13) is a systematic compendium of the distribution theory required in Parts 
I and II, containing definitions of distributions, references to published tables, 
and formulas for moments and other useful integrals. Because of its self-contained 
nature, we believe that the book should be accessible as well as of interest to a 
quite heterogeneous audience. We hope that statisticians interested in practical 
applications will find our techniques of practical use, but at the same time we 
hope that the way in which we have formulated some of the standard statistical 
problems will contribute to the unification of statistical theory with managerial 
economics and the techniques usually categorized under the heading of “operations 
research” .

Anyone who has the equivalent of a good preliminary course in mathematical 
probability and statistics, is familiar with the advanced calculus and with the 
rudiments of matrix theory, and has read a little of the contemporary literature 
on the foundations of statistics will have no difficulty in reading any part of the 

t For a slightly more explicit statement of this principle, see Section 1.4.
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Preface and Introduction

book; and much of it can easily be read with considerably less background. The 
required matrix theory is modest and is essentially confined to Chapter 5B and 
those chapters in Part III which deal with multivariate distributions. Advanced 
calculus is scarcely used except in the proofs of the distribution-theoretic results 
catalogued in Part III. The required knowledge of the theories of utility and 
subjective probability can easily be obtained by a very little reading: a brief 
axiomatic treatment of both utility and subjective probability can be found in 
Luce and Raiffa’s Games and Decisions, |  a brief informal discussion in Schlaifer’s 
Probability and Statistics for Business Decisions.t  For the reader who is already 
familiar with utility but not with subjective probability, we have given in Section 
1.5 a very informal proof of the proposition that self-consistent choice among risk 
functions implies the existence of numerical weights or probabilities. For a com
plete discussion of the foundations, the reader should of course consult the book 
by Savage which we have already cited.

As far as we know, parts of this book are original, although as regards any 
particular formula or concept we would give better than even money that it has 
already appeared somewhere in print. Since we unfortunately do not have even 
the vaguest idea where most of these formulas and concepts appeared for the very 
first time, we leave it to historians to distribute detailed credits where they are 
due; but we would be inexcusably remiss if we did not acknowledge those who 
have most contributed to the main currents of our thinking. Anyone who reads 
this book will recognize our great debt to Neyman, Pearson, Jeffreys, Yon Neumann, 
Wald, Blackwell, Girshick, and Savage. We should also like to record our grati
tude for the innumerable corrections and helpful suggestions which we have re
ceived from John Bishop, Marshall Freimer, Andrew Kahr, and I. R. Savage, all 
of whom have given most generously of their time. Finally, we would like to 
express our appreciation to the Division of Research of the Harvard Graduate 
School of Business Administration for the very generous financial support which 
has made this publication possible.

* * * * *

A somewhat more detailed description of the topics covered in individual 
chapters may be of use to the reader who wishes to organize his study of the 
complete book or who wishes to see what we have to say on certain subjects with
out reading the complete book. We hope that by providing such an outline to
gether with a rather detailed table of contents we may earn the forgiveness of 
those who are displeased by the lack of an index—a lack that is due purely and 
simply to our inability to discover how a book of this sort can be usefully indexed.

In Chapter 1 we start by defining the basic data of any decision problem in 
which experimentation is possible. These are: a listing of the potential terminal 
acts {a} which the decision maker wishes to compare, a listing of the states of 
nature {0} which he believes possible, a listing of the potential experiments {e}

t R. D. Luce and H. Raiffa, Games and Decisions, New York, Wiley, 1957; Chapters 2 and 13.
t  R. Schlaifer, Probability and Statistics for Business Decisions, New York, McGraw-Hill, 

1959; Chapters 1 and 2.
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Preface and Introduction

which he wishes to consider, a listing of the outcomes {,z} of these experiments 
which he believes possible, a utility function which evaluates his preferences for all 
(e, z, a, 0) combinations, and listing of the weights or 'probabilities which he assigns 
to all {2 , 0} for each potential e. We then describe two basic modes of analysis 
of these data; in the language of game theory, they are (1) the normal form} in 
which a choice is made among strategies each of which specifies a particular experi
ment and assigns a terminal act to every possible outcome of that experiment, 
and (2) the extensive formf in which the optimal strategy is “built up” by taking 
all possible experimental outcomes one at a time, determining for each one sepa
rately what terminal act would be optimal, and then using these results to select 
an optimal experiment.

After proving that the two modes of analysis must ultimately lead to exactly 
the same course of action, we argue that even though the extensive form has been 
very little used in statistical analysis, it often possesses great advantages both 
conceptual and technical; and we use the extensive form exclusively in the remain
der of the book. In particular it permits a clear distinction between two com
pletely different statistical problems: choice of a terminal act after an experiment 
has already been performed, which we call terminal analysis, and choice of the 
experiment which is to be performed, which we call preposterior analysis. In ter
minal analysis one simply computes the expected utilities of all possible acts with 
respect to the posterior distribution resulting from a particular experimental out
come z0 and chooses the act whose expected utility is greatest; in the normal form, 
on the contrary, a person who has already observed z0 cannot choose a terminal 
act until he has determined what terminal act he would have chosen given every 
conceivable 2 which might have occurred. In the extensive form it is only when 
one is evaluating potential experiments before they are actually performed that 
one needs to consider outcomes which might occur. In this case the utility of 
any one potential experiment is evaluated by first using terminal analysis to de
termine the utility of the terminal act which will be optimal given each possible 
experimental outcome; the “preposterior” expected utility of the experiment is 
then computed by taking the expectation of these posterior expected utilities with 
respect to the unconditional prior measure over the experimental outcomes.

I t is perhaps worth remarking in passing that although the data of most 
statistical problems occur in such a form that Bayes* theorem is required when 
they are analyzed in extensive form but not when they are analyzed in normal 
form, this relation is by no means necessary. As we point out in Sections 1.1.2 
and 1.4.3, problems do occur in which the data are such that analysis in extensive 
form does not require the use of Bayes* theorem whereas the performance charac
teristics which play a central role in the usual normal-form analysis can only be 
computed by use of Bayes* theorem. For this reason we believe that it is essen
tially misleading to characterize as “Bayesian** the approach to decision theory 
which is represented by this book, even though we are occasionally driven into 
using the term faute de mieux.

In Chapter 2 we define a sufficient statistic as one which leads to the same 
posterior distribution that would be obtained by use of a “complete** description
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Preface and Introduction

of the experimental outcome. Although we show that this definition implies and 
is implied by the classical definition of sufficiency in terms of factorability of the 
joint likelihood of the sample observations, we prefer our definition because it 
leads naturally to the concept of a statistic which is “marginally sufficient” for 
those unknown parameters which affect utility even though it is not sufficient 
for any nuisance parameters which may be present (Section 2.2). We then use 
this concept of marginal sufficiency as a basis for discussion of the problems sug
gested by the words “optional stopping” and show that after an experiment has 
already been conducted the experimental data can usually be “sufficiently” de
scribed without reference to the way in which the “size” of the experiment was 
determined (Section 2.3). It is usually sufficient, for example, to know simply 
the number r of successes and the number (n — r) of failures which were observed 
in an experiment on a Bernoulli process; we have no need to know whether the 
experimenter decided to observe a predetermined number n of trials and count 
the number r of success, or to count the number n of trials required to produce a 
predetermined number r of successes, or simply to experiment until he ran out of 
time or money. For this reason we uniformly refer to r and n as the sufficient 
statistics of such an experiment, in contrast to the classical practice of reserving 
the term “statistic” to denote those aspects of the experimental outcome which 
were not determined in advance.

For essentially the same reason it seems to us impossible to distinguish usefully 
between “fixed” and “sequential” experiments. As for terminal analysis, we have 
already said that the decision maker usually does not care why the experimenter 
started or stopped experimenting; and although in preposterior analysis he is of 
course concerned with various ways of determining when experimentation should 
cease, even here we believe that the only useful distinction is between fixed and 
sequential modes of analysis rather than fixed and sequential experiments as such. 
By the fixed mode of analysis we mean analysis in which the entire experiment is 
evaluated by use of the distribution of those sufficient statistics whose values are 
not determined in advance, and this mode of analysis can be used just as well 
when a Bernoulli process is to be observed until the occurrence of the rth success 
as it can wrhen the process is to be observed until the completion of the nth trial. 
In the sequential mode of analysis, on the contrary, an experiment is regarded as 
consisting of a potential sequence of subexperiments each of which is analyzed as 
a separate entity: the analysis does not deal directly with the statistics which will 
describe the ultimate outcome of the complete experiment but asks whether sub
experiment e2 should or should not be performed if subexperiment e\ results in 
outcome zi, and so forth. Any experiment can be analyzed in the fixed mode if 
the sufficient statistics are appropriately defined and the necessary distribution 
theory is worked out, but for many experiments the sequential mode of analysis 
is much more convenient. In this book we deal only with experiments for which 
the fixed mode of analysis is the more convenient.

In Chapter 3 wa take up the problem of assessing prior distributions in a 
form which will express the essentials of the decision makers judgments about 
the possible states of nature and which at the same time will be mathematically
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tractable. We show that whenever (1) any possible experimental outcome can 
be described by a sufficient statistic of fixed dimensionality (i.e., an s-tuple 
(yit 2/2, ,  y») where s does not depend on the “size” of the experiment), and 
(2) the likelihood of every outcome is given by a reasonably simple formula with 
2/i, 2/2, • • •, 2/« as its arguments, we can obtain a very tractable family of “conjugate” 
prior distributions by simply interchanging the roles of variables and parameters 
in the algebraic expression for the sample likelihood, and the posterior distribution 
will be a member of the same family as the prior. This procedure leads, for ex
ample, to the beta family of distributions in. situations where the state is described 
by the parameter p of a Bernoulli process, to the Normal family of distributions 
when the state is the mean ^ of a Normal population, and so forth; a conspectus 
of conjugate distributions for some of the likelihood functions most commonly 
met in practice is given in Section 3.2.5. In Section 3.3 we show that these 
conjugate families are often rich enough to allow the decision maker to express 
the most essential features of his basic judgments about the possible states and 
to do so with only a reasonable amount of introspection, and we then conclude 
the chapter by showing in Section 3.4 how the use of conjugate prior distributions 
facilitates preposterior analysis—i.e., extensive-form evaluation of potential experi
ments. Briefly, the first step in the analysis is to express the posterior expected 
utility of optimal terminal action as a function of the parameters of the posterior 
distribution of the state. Any particular experiment e can then be evaluated by 
first obtaining the prior distribution of the parameters of the posterior distribution 
which may result from that experiment and then using this distribution to calculate 
the prior expectation of the posterior expected utility.

A word about notation is in order at this point. We admit that we should 
have furnished a magnifying glass with each copy to aid the reader in deciphering 
such symbols as S*; for such typographical hieroglyphics we apologize to the 
reader—and more especially, to the compositor. Statistical theory has however 
always been beset with notational problems—those of keeping parameters distinct 
from statistics, random variables from values assumed by random variables, and 
so forth. In Bayesian decision theory these minor annoyances develop into serious 
headaches. The same state variable which appears as a parameter in the condi
tional distribution of a statistic appears as a random variable in its own right 
when expected utility is being computed and the distribution of this state variable 
has parameters of its own. Sample evidence takes us from a prior distribution to 
a posterior distribution of the state variable, and we must distinguish between 
the parameters of these two distributions. When an experiment is being con
sidered but has not yet been performed, the parameters of the posterior distribu
tion which will result from the experiment are as yet unknown; accordingly they 
are random variables and have distributions which in turn have still other param
eters.

I t is only too obvious that on the one hand we must distinguish notationally 
between random variables and values of random variables while on the other hand 
we cannot permit ourselves the luxury of reserving capital letters for random 
variables and small letters for values. I t is equally obvious that the notation
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must have enough mnemonic value to enable the reader to keep track of the logical 
progression from prior parameters through sample statistics to posterior param
eters to the parameters of the prior distribution of the posterior parameters. 
Briefly, our solution of this problem is the following. A tilde distinguishes a 
random variable from its generic value; thus if the state is the parameter p of a 
Bernoulli process, the state considered as an unknown and therefore a random 
variable is denoted by p. If the sufficient statistics of a sample from this process 
are r and n, the parameters of the conjugate prior distribution of p will be called 
r' and n' and the parameters of the posterior distribution will be called r" and n". 
If we are considering an experiment in which n trials are to be made, the statistic r 
will be a random variable and so will the parameter f " of the posterior distribution. 
In some situations we shall be more directly interested in the mean of the distri
bution of p than in its parameters; in such situations the mean of the prior dis
tribution of p will be denoted by p', that of the posterior by p", and p" is a ran
dom variable until the sample outcome is known. Despite our apologies for typog
raphy, we are proud of this notation and believe that it works for us rather than 
against us; no system of notation can eliminate complexities which are inherent 
in the problem being treated.

In Part II of the book (Chapters 4-6), we specialize to the extremely common 
class of problems in which the utility of an entire (e, z, a, 6) combination can be 
decomposed into two additive parts: a “ terminal utility” which depends only on 
the terminal act a and the true state 0, and a “sampling utility” (the negative of 
the “cost” of sampling) which depends only on the experiment e and (possibly) 
its outcome z.

In Chapter 4 we point out that this assumption of additivity by no means 
restricts us to problems in which all consequences are monetary. Problems in 
wrhich consequences are purely monetary and the utility of money is linear over a 
suitable wide range do of course constitute a very important subclass of problems 
in which sampling and terminal utilities are additive, but additive utilities are 
frequently encountered when consequences are partially or even wholly of a non
monetary nature. In general, sampling and terminal utilities will be additive 
whenever consequences can be measured or scaled in terms of any common 
numeraire the utility of which is linear over a suitably wide range; and we point 
out that number of patients cured or number of hours spent on research may well 
serve as such a numeraire in problems where money plays no role at all.

In situations where terminal and sampling utilities are additive, it is usually 
possible also to decompose terminal utility itself into a sum or difference of eco
nomically meaningful parts; and since we believe that the expert as well as the 
novice has much to gain from the economic heuristics which such decompositions 
make possible, we conclude Chapter 4 by defining and interrelating a number of 
new economic concepts. Opportunity loss (or regret) is introduced in Section 4.4 
and it is shown that minimization of expected opportunity loss is equivalent to 
maximization of expected utility; all of Chapter 6 will be based on this result. 
The value of perfect information, the value of sample information, and the net 
gain of sampling (the difference between the value and the cost of sample informa-
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tion) arc introduced in Section 4.5 and it is shown that maximization of the net 
gain of sampling is equivalent to maximization of expected utility; all of Chapter 5 
will be based on this result. The chapter closes with a conspectus of the definitions 
of all of the economic concepts used in the entire book and of the relations among 
them.

In Chapters 5A and 5B we further specialize by assuming that the terminal 
utility of every possible act is linear in the state 0 or some transformation thereof. 
This assumption greatly simplifies analysis, and despite its apparently very restric
tive character we are convinced that it is satisfied either exactly or as a good 
working approximation in a very great number of decision problems both within 
and without the field of business. Given linearity, terminal analysis becomes 
completely trivial because the expected utility of any act depends only on the 
mean of the distribution of the state variable; and even preposterior analysis 
becomes very easy when the mean of the posterior distribution is treated as a 
random variable. Some general theorems concerning this prior distribution of 
the posterior mean or “preposterous distribution” are proved in Section 5.4.

Aside from these general theorems about preposterous distributions, Chapter 
5A is primarily concerned with problems in which the posterior mean is scalar 
and the act space contains only a finite number of acts. In Section 5.3 we show 
that under these conditions the expected net gain of many types of experiments 
can be very easily expressed in terms of what we call a “linear-loss” integral with 
respect to the preposterous distribution. The preposterous distributions corre
sponding to a variety of common statistical experiments are indexed in Table 5.2 
(page 110); among other things the table gives references to formulas for the linear- 
loss integral with respect to each distribution indexed.

The remainder of Chapter 5A specializes still further to the case where there 
are only two possible terminal acts and examines the problem of using the results 
previously obtained for the net gain of a sample of arbitrary “size” to find the 
optimal sample size. For the case where sampling is Normal with known vari
ance, we give complete results including charts from which optimal sample size 
and the expected net gain of an optimal sample can be read directly, t  For the 
case where sampling is binomial, we describe the behavior of the net gain of sam
pling as the sample size n increases, discuss the problem of finding the optimum 
by the use of high-speed computers, and show that surprisingly good approximate 
results can often be obtained with only trivial computations by treating the beta 
prior and binomial sampling distributions as if they were Normal.

In Chapter 5B we take up the problem of selecting the best of r “processes” 
when terminal utility is linear in the mean of the chosen process and sample ob
servations can be taken independently on any or all of the means. Terminal 
analysis—choice of a process on the basis of whatever information already exists— 
again turns out to be trivial; the chapter is concerned primarily with preposterior 
analysis, i.e. the problem of deciding how many observations to make on each

f Similar results for the case where the sampling variance is unknown have been obtained 
by A. Schleifer, Jr., and the requisite tables are given in J. Bracken and A. Schleifer, Jr., Tables 
for Normal Sampling with Unknown Variance, Boston, Division of Research, Harvard Business 
School, 1964.
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process before any terminal decision is reached. The only case discussed in detail 
is that in which the sample observations on each process are Normally distributed 
and the variances of these sampling distributions are known up to a constant of 
proportionality. Expressions are given for the net gain of any set of samples 
{nh n2, . . . , nT) in terms of multivariate Normal or Student integrals, and we 
show that these integrals can be easily evaluated with the aid of tables when 
r = 2 or 3 while for r >  3 we discuss methods of evaluation by use of high-speed 
computers. As regards the problem of finding the optimal (ni, n2, . . . , nr), we 
show that when r = 2 the problem can be completely solved by the use of the 
univariate results of Chapter 5A; for higher values of r we suggest that the surface 
representing the net gain of sampling as a function of the r variables (nh n2, . . . ,  nr) 
might be explored by application of standard techniques for the analysis of re
sponse surfaces.

In Chapter 6 we turn to another special class of problems, of which by far 
the most important representative is the problem of point estimation. The basic 
ideas are introduced by examining a problem which is not usually thought of as 
involving “estimation” : viz., the problem of deciding what quantity q of some 
commodity should be stocked when the demand d is unknown and an opportunity 
loss will be incurred if d is not equal to q. We then define the problem of point 
estimation as the problem which arises when the decision maker wishes to use 
some number 6 as if  it were the true value 0 of some unknown quantity, and we 
argue that this problem is formally identical to the inventory problem because 
here too the decision maker will suffer an opportunity loss if 6 0. The inven
tory problem itself can in fact be expressed as one of finding the optimal “estimate” 
d of the demand d on the understanding that the decision maker will treat this 
estimate as if it were the true d—i.e., that he will stock q = d.

Generalizing, we prove that whenever terminal utility depends on an unknown 
quantity w, the utility-maximizing terminal act can be found indirectly by (1) 
determining for all (&, o>) pairs the opportunity loss which will result if a terminal 
act is chosen by treating w as if it were (2) finding the & which minimizes the 
expectation of these losses, and finally (3) choosing a terminal act as if this op
timal estimate of o> were the true value of w. This indirect procedure for allowing 
for uncertainty about co will rarely if ever be of practical use as it stands, since it 
will usually be just as difficult to determine the “estimation losses” attached to 
all (&, o>) pairs as it would be to make a direct computation of the expected utilities 
of the various terminal acts under the distribution of «; but we believe that when 
it is not possible to take full analytical account of uncertainty about w, then a 
very good way of proceeding will be'to make a judgmental evaluation of the losses 
which will result from misestimation, to select the estimate which minimizes the 
expected value of these losses, and to choose the terminal act which would be 
optimal if w were in fact equal to this estimate. This procedure will be still more 
useful in situations where it is possible to obtain additional information about w 
and the decision maker must decide how much information it is economically 
worth while to collect. In Sections G.3 through 6.6 we consider two types of 
functions which might be used to represent a judgmental assessment of the losses 
which may result from misestimation—losses linear in (& — w) and losses quad-
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ratio in (& — a>)—and for each type we give formulas for the optimal estimate, 
the expected loss of the optimal estimate, and the optimal amount of information 
to collect in one or two types of experiment.

Part III of the book, comprising Chapters 7 to 13, contains the analytical 
distribution theory required for application to specific problems of the general 
methods of analysis described in Parts I and II. The heart of Part III is in the 
last five Chapters (9 through 13) each of which considers a different “process” 
generating independent, identically distributed random variables and gives the 
distribution-theoretic results most likely to be required in a Bayesian analysis of 
any decision problem in which information about the state of the world can be 
obtained by observing the process in question. The two preceding chapters of 
Part III (Chapters 7 and 8) are simply a catalog of definitions of various mass 
and density functions together with formulas for their moments and references to 
published tables; this material was collected into one place, ahead of the analyses 
of the various data generating processes, simply because most of the functions in 
question appear a great many times in the process analyses rather than just once.

In Chapter 7A we take up successively a number of what we call “natural” 
univariate mass and density functions, belonging to the binomial, beta, Poisson, 
gamma, and Normal families. In this chapter the same “basic” distribution often 
appears in many alternative forms derived by a simple change of variable or even 
by mere reparametrization, but we believe that this apparent duplication will 
actually lighten the reader's and the user's task. The alternate parametrizations 
are introduced in order to keep as clear as possible the relations between sample 
statistics on the one hand and the parameters of prior and posterior conjugate 
distributions on the other, while new functions are derived by a change of variable 
whenever Bayesian analysis requires the distribution of the variable in question. 
The case for thus multiplying the number of distributions is the same as the case 
for having both a beta and an F or both a gamma and a chi-square distribution 
in classical statistics, and we know by bitter experience that without such a syste
matic catalog of transformed distributions the statistician can waste hours trying 
to look up a probability in a table and then come out with the wrong answer.

In Chapter 7B we turn to what we consider to be “compound” univariate 
mass and density functions, obtained by integrating out a parameter of one of 
the “natural” functions. Among these compound functions the negative-binomial, 
obtained by taking a gamma mixture of Poisson distributions, will be already 
familiar to most readers. The beta-binomial and beta-Pascal functions are simi
lar, being obtained by taking a beta mixture of binomial or Pascal functions; in 
Section 7.11.1 we bring out an interesting rel&tion between these two compound 
distributions and the well known hypergeometric distribution. Finally, it is inter
esting to observe that in Bayesian analysis the Student distribution appears as a 
gamma mixture of Normal densities and not as the distribution of the ratio of 
two random variables.

In Chapter 8 we complete our catalog with the multivariate distributions we 
require. There are only three in number: the multivariate Normal, concerning 
which we have nothing new to say; the multivariate Student, a compound distri
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bution obtained as a gamma mixture of multivariate Normals, and the “inverted 
Student,” obtained from the Student by a change of variable.

Throughout Chapters 7 and 8 the reader may feel that there is an over
abundance of proofs and he may well be right in so feeling. We do, however, 
have two things to say in self-defense. First, many of the formulas we give are 
hard or impossible to find in other books, and being only moderately sure of our 
own algebra and calculus we wanted to make it as easy as possible for the reader 
to verify our results; corrections will be greatly appreciated. Second, as regards 
the results which are perfectly well known, our desire to produce an introduction 
to Bayesian analysis which would be accessible even to readers who were not 
professionally trained in classical statistics seemed to us to imply that we should 
at least give references to proofs; but when we tried to do so, we quickly came 
to the conclusion that differences both in notation and in point of view (e.g., as 
regards compound distributions) would make such references virtually incompre
hensible except to those readers who had no need of proofs anyway.

Chapters 9-13 constitute, as we have already said, the essentially Bayesian 
portion of Part III, in which we give the results required for Bayesian analysis of 
decision problems where information about the state of nature can be obtained 
by observing a “data-generating process.” The five processes studied in these 
five chapters are defined in Sections 3.2.5 by the densities of the independent 
random variables which they generate; they are: the binomial, the Poisson, the (uni
variate) Normal, the Multivariate Normal, and the Normal Regression processes.

The pattern of the analysis is identical in the case of the two single-parameter 
processes, the Bernoulli and Poisson (Chapters 9 and 10). The steps in the anal
ysis are the following. 1 2 3 4 5 6 7

1. Define and characterize the process and interpret its parameter.
2. Exhibit the likelihood of a sample consisting of several observations on the 

process and give the sufficient statistic.
3. Exhibit the family of conjugate prior distributions for the process parameter 

and give the algebraic mechanism for obtaining the posterior parameter from the 
prior parameter and the sample statistic.

3'. Repeat the previous step for an alternative parametrization of the process 
(in terms of p = 1/p in the Bernoulli case, in terms of an analogous substitution 
in the Poisson case).

4. For a given type of experiment—e.g., fix the number of trials n and leave 
the number of successes f to chance—derive the conditional distribution of the 
nonpredetermined part of the sufficient statistic for a given value of the process 
parameter.

5. Derive the unconditional sampling distribution by integrating out the 
parameter with respect to its prior distribution.

6. Derive the prior distribution of the posterior mean for both parametriza- 
tions of the process.

7. Obtain formulas for certain integrals with respect to the distributions ob
tained in the previous step.
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8. Investigate convenient approximations to the results obtained in the two 
previous steps.

4'-8'. Repeat steps (4) through (8) for an alternate experimental design— 
e.g., fix r and leave n to chance.

Preface and Introduction

The analysis of the univariate Normal process in Chapter 11 follows essen
tially this same pattern except that (1) we consider only one kind of experiment, 
that in which the number n of observations is predetermined, and (2) we must 
allow for uncertainty about the process mean ^ and/or the process precision 
h = 1 /a 2. We therefore analyze three cases separately: in case A, m is known; 
in case B, h is known; in case C, neither parameter is known. In case A, the 
conjugate distribution of R is gamma; in case B, the conjugate distribution of p is 
Normal; in both these cases the pattern of the analysis is virtually identical to the 
pattern in Chapters 9 and 10.

In case C, where both parameters are unknown, the conjugate family is what 
we call Normal-gamma, with a density which can be regarded as either (1) the 
product of a marginal gamma density of R times a conditional Normal density of 
p given h, or (2) the product of a marginal Student density of p times a conditional 
gamma density of R given p. The number of degrees of freedom in the marginal 
posterior distribution of p depends on the marginal prior distribution of R} so that 
Bayesian analysis allows the decision maker a way through the classical dilemma 
between asserting that he knows nothing and asserting that he knows everything 
about h. We must point out, however, that although the Normal-gamma distri
bution has four free parameters and is amply flexible enough to represent the 
decision makers judgments when his opinions about m and h are both “loose” or 
both “tight” or when his opinions about n are loose while his opinions about h 
are tight, it cannot give a good representation of tight opinions about m in the 
face of loose opinions about h. In this case we really need to assign independent 
distributions to p and R, but Jeffreys has already pointed out the distribution- 
theoretic difficulties which arise if we do.|

As long as we can use a Normal-gamma prior, however, even preposterior 
analysis is easy. The treatment of preposterior analysis in Chapter 11C follows 
basically the same pattern that is followed in earlier chapters, except that all the 
distributions (conditional and unconditional sampling distributions and the distri
bution of the posterior parameters) involve two random variables; we give in 
each case the joint distribution of the pair of variables and both the conditional 
and the marginal distributions of the individual variables.

In Chapter 12 the results of the scalar Normal and Student theory of Chap
ter 11 are generalized to the multivariate Normal and Student cases. We first 
assume that sampling results in independent identically distributed, random vectors 
x (1),jc(2), . . . where each x has a multivariate Normal distribution with a mean 
vector §i and a precision matrix (inverse of the covariance matrix) h. In part A 
of the chapter we assume h is known. In part B we write h = h tj where |t|| = 1

t H. Jeffreys, Theory of Probability, 2nd edition, Oxford, Clarendon Press, 1948; pages 
123-124.
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and assume r\ is known but h is not. In part C we specialize to the case where 
T| is diagonal. Our interest in this special case is due primarily to the fact that 
it depicts situations in which we wish to compare the means of a number of dis
tinct univariate Normal processes each of which can be sampled independently, 
and for this reason we give separate analyses for the case where all the univariate 
processes are to be sampled and the case where only some of them are to be sam
pled. As regards terminal analysis, the two cases are essentially the same; but 
in preposterior analysis the second case gives rise to degenerate or singular prior 
distributions of the posterior parameters.

The Normal regression process, considered in Chapter 13, is defined as a 
process generating scalar random variables yif . . . each of which is a linear 
combination of known xs with unknown 0 weights plus random error; the errors 
are assumed to be independent and to have identical Normal distributions with 
precision h. The state variables (which are also the parameters of the conditional 
sampling distributions) are ft, . . . , 0r and h\ the only experimental designs we 
consider are those which prescribe a fixed coefficient matrix X, but we carry out 
the analysis both for the case where X is of full rank and for the case where it is 
not. The chapter is divided into three parts. In parts A and B we discuss 
terminal analysis for any X and preposterior analysis for X of full rank; part A 
deals with the case where h is known and the conjugate distribution of $ is Normal, 
part B with the case where h is unknown and the conjugate distribution of 0 and fi 
is Normal-gamma. Part C gives the preposterior analysis for h known or unknown 
when X is not of full rank.

The distribution-theoretic results obtained in Chapters 12 and 13 are by no 
means fully exploited in the applications discussed in Part II of the book; the 
only real use made there of these last two chapters is in the analysis in Chapter 5B 
of the problem of choice among a number of univariate Normal processes. We 
should therefore like to call the readers attention to a few problems of great prac
tical importance in which we hope that the contents of Chapters 12 and 13 may 
prove useful.

All the analyses in Part II were based on simple random sampling, but the 
results of Chapter 12 should make it fairly easy to analyze the same economic 
applications when the sampling is stratified. If utility depends on the mean n of 
an entire population and if we denote by m the mean of the ith stratum of this 
population, then p = 2 c ,/*,. Bayesian terminal analysis would proceed by put
ting a multivariate prior on flL = (fii. . . /Ir), revising this prior in accordance with 
sample information, and then finding the corresponding distribution of fi = 2 c, j2t. 
Preposterior analysis might for example first obtain the joint prior distribution of 
the posterior means £'/ and from this the preposterior distribution of $!' = 2 c, p[.

The results on the Regression process obtained in Chapter 13 promise to be 
useful in two quite different respects. First, we would guess that the best way 
of obtaining “prior” distributions for many economic variables such as demand 
will often be to start from a regression of demand on economic predictors. The 
unconditional distribution of the “next” y obtained from the Regression model 
can then serve as a prior distribution in situations where additional information
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bearing directly on y can be obtained by sampling the population which creates 
the demand.

Second, and probably much more important, the regression model will clearly 
be required for Bayesian analysis of experiments in which blocking and similar 
devices are used. The great obstacle yet to be overcome in the analysis of such 
problems is the problem of setting prior distributions, but the game is well worth 
the candle. Only Bayesian analysis can free the statistician from having to assert 
either that he is sure that there is no row (or interaction, or what have you) effect, 
or else that he knows nothing whatever about this effect except what he has learned 
from one particular sample. We at one time thought of including at least a first 
attack on some or all of these problems in the present book, but after all one must 
stop somewhere.

Preface and Introduction
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C H A P T E R  1

The Problem and the Two Basic Modes of Analysis

1.1. Description of the Decision Problem

In this monograph we shall be concerned with the logical analysis of choice 
among courses of action when (a) the consequence of any course of action will de
pend upon the “state of the world” , (b) the true state is as yet unknown, but (c) it 
is possible at a cost to obtain additional information about the state. We assume 
that the person responsible for the decision has already eliminated a great many 
possible courses of action as being unworthy of further consideration and thus 
has reduced his problem to choice within a well-defined set of contenders; and we 
assume further that he wishes to choose among these contenders in a way which 
will be logically consistent with (a) his basic preferences concerning consequences, 
and (b) his basic judgments concerning the true state of the world.

1.1.1. The Basic Data
Formally, we assume that the decision maker can specify the following basic 

data defining his decision problem.
1. Space of terminal acts: A = {a} . .

The decision maker wishes to select a single act a from some domain A of potential 
acts.

2. State space: 0 = {0} .
The decision maker believes that the consequence of adopting terminal act a 
depends on some “state of the world” which he cannot predict with certainty. 
Each potential state will be labelled by a 6 with domain 0.

3. Family of experiments: E  = {e} .
To obtain further information on the importance which he should attach to each 6 
in 0, the decision maker may select a single experiment e from a family E  of poten
tial experiments.

4. Sample space: Z = {z} .
Each potential outcome of a potential experiment e will be labelled by a 2 with 
domain Z. We use the nonstandard convention that Z is rich enough to encom
pass any outcome of any e in E, and for this reason the description of 2 will in part 
repeat the description of e; the usefulness of this redundancy will appear in the 
sequel.

5. Utility Evaluation: u(-, •, *, •) on E  X Z X A X 0 .
The decision maker assigns a utility u(ey 2 , a, 0) to performing a particular e,
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observing a particular z, taking a particular action a, and then finding that a partic
ular 6 obtains. The evaluation u takes account of the costs (monetary and other) 
of experimentation as well as the consequences (monetary and other) of the termi
nal act; and the notation leaves open the possibility that the cost of experimenta
tion may depend on the particular experimental outcome z as well as on the mode 
of experimentation e.

6. Probability Assessment: P*t*{-, -\e} on 0 X Z .
For every e in E  the decision maker directly or indirectly assigns a joint probability 
measure -|e} or more briefly P*,,|e to the Cartesian product space 0 X Z ,
which will be called the possibility space. This joint measure determines four 
other probability measures:

a. The marginal measure Pi{*} or Pi on the state space 0. We assume that 
Pi does not depend on e.

b. The conditional measure P*{-|e, 0} or P * | o n  the sample space Z for given 
e and 0.

c. The marginal measure P,{-|e} or P,|e on the sample space Z for given e 
but unspecified 6.

d. The conditional measure Pi'{-|z} or Pi|* on the state space 0 for given 
e and z; the condition e is suppressed because the relevant aspects of e will be 
expressed as part of z.

The prime on the measure Pi defined in (a) indicates that it is the measure 
which the decision maker assigns or would assign to 0 prior to knowing the out
come z of the experiment e. The double prime on the measure Pij* defined in (d) 
indicates that it is the measure on 0 which he assigns or would assign posterior 
to knowing the outcome z of the experiment e. Strictly speaking the primes are 
redundant, but they will be of help when used to distinguish between prior and 
posterior values of the parameters of families of probability distributions.

Random Variables and Expectations. In many situations the states {0} and 
the sample outcomes {z} will be described by real numbers or n-tuples of real 
numbers. In such cases we shall define the random variables 6 and z by

6(0, z) = 0 , z(0, z) = z ,
using the tilde to distinguish the random variable or function from a particular 
value of the function.

In taking expectations of random variables, the measure with respect to  
which the expectation is taken will be indicated either (1) by subscripts appended 
to the expectation operator E, or (2) by naming the random variable and the 
conditions in parentheses following the operator. Thus

e ; or E'(6) is taken with respect to p i
Eil, or E"{S\z) is taken with respect to pi,.

or E(2|e, 6) is taken with respect to p*i«.#
E,|a or m e ) is taken with respect to p.i.

When no condition is shown, the condition e is to be understood and the expecta
tion is with respect to the entire joint measure for that e:

E =  E*,,|a .
4



Definition of the Problem 1.1.2

1.1.2. Assessment of Probability Measures
For any given e, there are three “basic” methods for assigning the complete 

set of measures just defined. (1) We have already said that if a joint measure is 
assigned to 0 X Z directly, the marginal and conditional measures on 0 and Z 
separately can be computed from it. (2) If a marginal measure is assigned to 0 
and a conditional measure is assigned to Z for every B in 0, the joint measure on 
0 X 2  can be computed from these, after which the marginal measure on Z and 
the conditional measures on 0 can be computed from the joint measure. (3) The 
second procedure can be reversed: if a marginal measure is assigned to Z and condi
tional measures to 0, the joint measure on 0 X Z can be computed and from it 
the marginal measure on 0 and the conditional measures on Z.

All three methods of determining the required measures are of practical importance. 
The decision maker will wish to assess the required measures in whatever way 
allows him to make the most effective use of his previous experience—including 
but not restricted to his knowledge of historical relative frequencies in 0 X Z— 
and therefore he will want to make direct assessments of those measures on which 
his experience bears most directly and deduce the other measures from these.

In some situations the decision maker will have had extensive experience on 
which to base a direct assessment of the joint measure itself; the experience may 
actually consist of so long a record of joint relative frequencies produced under 
“constant” conditions that a directly assessed joint measure will be “objective” 
in the sense that given this same evidence any two “reasonable” men would assign 
virtually the same joint measure to 0 X Z.

More commonly, the decision maker will be able to make the most effective 
use of his experience by making direct assessments of the marginal measure on 0 
and the conditional measures on Z, the reason being that very often the latter 
and not infrequently the former of these two measures can be based on very ex
tensive historical frequencies. In many situations the assessments of the condi
tional measures will be made via theoretical models of the behavior of z 
which rest on an enormous amount of relevant experience with relative frequencies; 
thus a particular sampling process may be virtually known with certainty to behave 
according to the Bernoulli model even though it has never actually been applied 
in the exact circumstances of the particular problem at hand. In some situations, 
moreover—e.g., in some acceptance sampling problems—the measure on 0 (e.g., 
lot quality) may be virtually as “objective” as the measures on Z given 6.

Finally, situations are not at all infrequent in which the marginal measure 
on Z and the conditional measures on 0 have the most extensive foundation in 
experience. An example of such a situation is discussed in Section 1.4.3 below.

In  addition to these “basic” methods of assigning a measure to the possibility 
space 0  X Z, there are of course a variety of special methods which can be used 
to assess the parameters of a measure once the structure of the measure has been 
specified. While it would be impossible to list all such methods, we can give one 
im portant example.t If the spaces 0 and Z are each the set of real numbers and

t  We owe this example to Professor Arthur Schleifer, Jr.
5



1.1.2 Part I: General Theory

if the joint measure on the product space is bivariate Normal, then provided that 
0 and z are not completely independent the joint measure can be uniquely deter
mined by assigning to the same space Z both a marginal measure and a measure 
conditional on each 0 in 0.

1.1.3. Example
Let A = {ai, a2} where a\ stands for “accept the lot of 1000 items” and 

a2 for “reject the lot of 1000 items”. Let 0 = {0O, 0i, • • • , 0iooo} where 0j is the 
state in which l items are defective. Let E  = {e0, ei, • • • , eiooo} where ei is the 
experiment in which i items are drawn from the lot and inspected. Let Z = 
{(j, i ) : 0 <  j  < i < 1000} where (j, i) represents the outcome that j  defectives 
were found in a sample of i observations. [Notice that if e6, say, is performed, 
then the outcomes are constrained to lie in the set {(0, 5)(1, 5), • • • (5, 5)}.] Then

O', i), a*, 6i] is the utility which the decision maker attaches to drawing a 
sample of i items, observing that j  of these i items are defective, and adopting a* 
(“accept” if k = 1, “reject” if k = 2) when l items in the lot are in fact defective. 
[Notice that if the inspection is destructive, the cost of sampling includes the 
manufacturing cost of the i — j  good items destroyed in sampling and that the 
utility assigned to {e„ (j, i), a*, 0/} should reflect this.]

In a problem of this sort the required probability measure on the possibility 
space 0 X Z will ordinarily be assessed via (1) a family of conditional measures 
on Z, a typical one being P*{-|e„ 0/}, which assign conditional probabilities to the 
various possible outcomes (j, i) given that i items are inspected and given that 
there are actually l defectives in the lot, and (2) a marginal measure Pi which 
assigns probabilities to the various possible numbers l of defectives in the lot 
before observing the outcome of any experiment.

1.1.4• The General Decision Problem as a Game
The general decision problem is: Given E, Z, A, 0, u, and P*f,|«, how should 

the decision maker choose an e and then, having observed z, choose an a, in such a way 
as to maximize his expected utilityt This problem can usefully be represented as 
a game between the decision maker and a fictitious character we shall call “chance”. 
The game has four moves: the decision maker chooses e, chance chooses z, the 
decision maker chooses a, and finally chance chooses 0. The play is then com
pleted and the decision maker gets the “payoff” w(e, z, a, 0).

Although the decision maker has full control over his choice of e and a, he 
has neither control over, nor perfect foreknowledge of, the choices of z and 0 which 
will be made by chance. We have assumed, however, that he is able in one way 
or another to assign probability measures over these choices, and the moves in 
the game proceed in accordance with these measures as follows:

Move 1: The decision maker selects an e in E.
Move 2: Chance selects a z in Z according to the measure P,|e.
Move 3: The decision maker selects an a in A.
Move 4: Chance selects a 0 in 0 according to the measure P&.
Payoff: The decision maker receives u(e} z, a, 0).
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Definition of the Problem 1.1.4

The Decision Tree. When the spaces E, Z, A> and 0 are all finite, the flow 
of the game can in principle be represented by a tree diagram; and although a 
complete diagram can actually be drawn only if the number of elements involved 
in E } Z, Ay and 0 is very small, even an incomplete representation of the tree can 
aid our intuition considerably.

A partial tree of this sort is shown in Figure 1.1, where D denotes the decision 
maker and C denotes chance. At move 1, D chooses some branch e of the tree;

Move no.: 

Move by :

Choices : 

Measure :

1 2  3 4

D C D C u[e,z,a,9)

Figure 1.1
One Possible Play of a Game

at move 2, C chooses a branch z; at move 3, D chooses a; at move 4, C chooses 6; 
and finally, D receives the “payoff” u(ef z\ a, 8). In two examples to follow shortly 
we shall depict the tree completely and present an analysis of the problem in terms 
of this representation.

1.2. Analysis in Extensive Form

Once we have at hand all the data of a decision problem as specified in Sec
tion 1.1.1, there are two basic modes of analysis which we can use to find the 
course of action which will maximize the decision makers expected utility: the 
extensive form of analysis and the normal form. Although the two forms are 
mathematically equivalent and lead to identical results, both will be expounded 
in this chapter because each has something to contribute to our insight into the 
decision problem and each has technical advantages in certain situations.

1.2.1. Backwards Induction
The extensive form of analysis proceeds by working backwards from the end 

of the decision tree (the right side of Figure 1.1) to the initial starting point: in
stead of starting by asking which experiment e the decision maker should choose 
at move 1 when he knows neither of the moves which will subsequently be made 
by chance, we start by asking which terminal act he should choose at move 3 i f  
he has already performed a particular experiment e and observed a particular 
outcome z. Even at this point, with a known history (e, z), the utilities of the 
various possible terminal acts are uncertain because the 8 which will be chosen 
by chance at move 4 is still unknown; but this difficulty is easily resolved by treat-
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1 .2 .1 Part I: General Theory

ing the utility of any a for given (e, z) as a random variable u(e, z, a, 6) and apply
ing the operator E'^ which takes the expected value of u(e, 2 , a, 0) with respect 
to the conditional measure PJ'*. Symbolically, we can compute for any given 
history (e, z) and any terminal act a

u*(e, z, a) = Ei', u(e, z, a, 6) ; (1-1)
this is the utility of being at the juncture (e, 2 , a) looking forward, before chance 
has made a choice of 0.

Now since the decision maker's objective is to maximize his expected utility, 
he will, if faced with a given history (e, 2), wish to choose the a (or one of the as, 
if more than one exist) for which u*(e, 2 , a) is greatest ;f and since he is free to 
make this choice as he pleases, we may say that the utility of being at move 3 
with history (e, 2) and the choice of a still to make is

u*(e, z) =  maxa u*{e, 2 , a) . (1-2)
After we have computed u*(e, 2) in this way for all possible histories (e, 2 ), 

we are ready to attack the problem of the initial choice of an experiment. At 
this point, move 1, the utilities of the various possible experiments are uncertain 
only because the 2 which will be chosen by chance at move 2 is still unknown, and 
this difficulty is resolved in exactly the same way that the difficulty in choosing a 
given (e, 2) was resolved: by putting a probability measure over chance's moves 
and taking expected values. In other words, u*(e, 2) is a random variable at 
move 1 because 2 is a random variable, and we therefore define for any e

u*(e) = E,|« u*(e, 2) (1-3)

where Ez\e expects with respect to the marginal measure P,|«.
Now again, the decision maker will wish to choose the e for which u*(e) is 

greatest; and therefore we may say that the utility of being at move 1 with the 
choice of e still to make is

u* = max* u*(e) = max, E,|e maxa EJj, u(e, 2, a, 0) . (1-4)

This procedure of working back from the outermost branches of the decision 
tree to the base of the trunk is often called “backwards induction." More descrip
tively it could be called a process of “averaging out and folding back."

1.2.2. Example
Should a certain component be hand-adjusted at extra expense before it is 

installed in a complicated electronic system? Should the only available test, 
which is expensive and not infallible, be made on the component before a final 
decision is reached? The possible choices by the decision maker and chance are 
listed in Table 1.1; all the possible sequences of choices (e, 2 , a, 0) and the utility

f In some problems with infinite A it may be impossible to find an a whose utility is equal 
to the least upper bound of the utilities of all the as. These problems can be handled by con
sidering suprema rather than maxima, but some proofs which are obvious when the maximum 
exists become complex when the supremum is not attainable and we do not feel that the slight 
added generality is worth the cost for applications of the sort we are considering in this book.

8



w(ef 2 , a, 0) which the decision maker assigns to each are shown on the decision 
tree, Figure 1.2.

Analysis in Extensive Form 1.2.2

Table 1.1 
Possible Choices

Space Elements Interpretation

.4 fa, do not adjust
[a* adjust

0 l 01 component does not need adjustment
\*» component needs adjustment

E Je o do not experiment
\e. experiment

f20 outcome of eo (a dummy)
Z outcome of e, which is more favorable to 0,

(z, outcome of e, which is more favorable to 02

The marginal probability measure Pz\e which is shown below each z in Figure 
1.2 and the conditional measures PJ', which are shown below each 0 are derived 
from the following measures which we assume to have been directly assigned by 
the decision maker: (1) the conditional measures P*|e,e shown for all possible (e, 0) 
pairs in Table 1.2, and (2) the marginal measure PJ shown in Table 1.3. From

Table 1.2 Table 1.3
Conditional Measures on Z Marginal Measure on 0

eo

0,

E

9t

e,

0. 02 0 p ;

20 1.0 1.0 .0 .0 0i .7
Z\ .0 .0 .7 .2 02 .3
z2 .0 .0 .3 .8 —

— — — — 1.0
1.0 1.0 1.0 1.0

these we first compute the joint measure P*,,  ̂for each of the experiments eo and e\, 
the results for e\ are shown in Table 1.4. From this joint measure we then com
pute the marginal measure Pg\e for each e, the results for e\ being shown in Table 1.4, 
and the conditional measures P*j2 for every zf the results being shown in Table 1.5. 
(We remind the reader that, as we pointed out in Section 1.1.1 above, the descrip
tion of z includes everything about e which is relevant to the determination of the 
conditional measure on 0.)

9



1.2.2 Part I: General Theory

P, H*} P;{-U)
Figure 1.2

Analysis of an “Imperfect Tester”

We are now ready to begin our analysis of the tree Figure 1.2, and our first 
step is to start from the end (the extreme right) and use the data we find there to 
evaluate u*(e, z, a) for all (e, z, a). As a single example of the computations,

u*{ei, zi, at) = u(ei, Zi, ai, 0i) P'»'{0i|zi} +  u(ei, zh ai, fl2) P« {6t\zi}
= 94(.891) +  7(.109) = 85 

10
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Table 1.4
Measures Associated with ex

Joint Measure 
on 0  X Z Marginal Measure 

on Z
z 0i 02

zo .00 .00 .00
Zl .49 .06 .55
22 .21 .24 .45

Marginal Measure on 0 .70 .30 1.00

as shown on the tree. Having computed u*(e, 2 , a) for all (e, 2 , a) combinations, 
we are ready to compute u*(e, z) for all (e} 2). As an example,

u*(eh 21) = max {u*(eh zh ax)f u*{eh zh a2)}
= max {85, 68} = 85

as shown on the tree. [Notice from the tree that if ex is performed, then it is
Table 1.5

Conditional Measures on 9

Z 01 02 Sum

Zo .700 .300 1.000
Zi .891 .109 1.000
z2 .466 .534 1.000

better to take ax if zx occurs but to take a2 if 22 occurs.] Next we compute u*(e) 
for all e, i.e., for e = eo and ex. For example,

u*(e 1) = u*(e 1, 21) P,{2 i|ei} +  u*(eh z2) Pafoki}
= 85(.55) +  65(.45) = 76 

as shown on the tree. Finally, we compute
u* = max {u*(eo), u*(e 1)}

= max {82, 76} = 82 .
The optimal course of action is thus to use eo and then a%—i.e., to hand-adjust 

the component before installing it without bothering to test it first. I t  is better 
not to use the imperfect tester even though if used it would be powerful enough to 
determine the decision maker’s preferred action.

1.3. Analysis in Normal Form
The final product of the extensive form of analysis studied in the previous 

section can be thought of as the description of an optimal strategy consisting of 
two parts:

11



1.3 Part I: General Theory

1. A prescription of the experiment e which should be performed,
2. A decision rule prescribing the optimal terminal act a for every possible 

outcome z of the chosen e.
The whole decision rule for the optimal e can be simply “read off” from the results 
of that part of the analysis which determined the optimal a for every z in Z ; and 
we may remark incidentally that these same results also enable us to read off the 
optimal decision rule to accompany any other e in E y even though the e in question 
is not itself optimal.

The normal form of analysis, which we are now about to examine, also has 
as its end product the description of an optimal strategy, and it arrives at the same 
optimal strategy as the extensive form of analysis, but it arrives there by a different 
route. Instead of first determining the optimal act a for every possible outcome z, 
and thus implicitly defining the optimal decision rule for any e, the normal form of 
analysis starts by explicitly considering every possible decision rule for a given e 
and then choosing the optimal rule for that e. After this has been done for all e in E , 
the optimal e is selected exactly as in the extensive form of analysis.

1.3.1. Decision Rules
Mathematically, a decision rule d for a given experiment e is a mapping which 

carries z in Z into d(z) in A . In other words, d is a function which assigns a “value” 
a to each z in Z. Given a particular strategy (c, d) and a particular pair of values 
(z, 0), the decision makers act as prescribed by the rule will be a = d(z) and his 
utility will be u(e} z, d(z), 0); but before the experiment has been conducted and 
its outcome observed, u(e, 2, d(2), 6) is a random variable because z and 6 are random 
variables.

The decision makers objective is therefore to choose the strategy (e} d) which 
maximizes his expected utility

w*(e, d) =  *i(e, z, d(2), 8) .
This double expectation will actually be accomplished by iterated expectation, 
and the iterated expectation can be carried out in either order: we can first expect 
over 6 holding z fixed and then over z, using the same measures PJk and Pz\e which 
were used in the extensive form of analysis; or we can first expect over z holding 0 
fixed and then over 5, using the measures Pg\ete and Pi. It is traditional and usually 
more practical to use the measures P,|e,* and Pi and we shall therefore proceed 
here in this manner, reserving for Section 1.4.3 an example of a situation in which 
the alternative procedure is preferable.

If e and d are given and 6 is held fixed, then by taking the expectation of 
u[ef 2, d(2), 0] with respect to the conditional measure Pz\e,e we obtain

w*(e, d, 0) =  Et\e,e u[e, 2, d(2), 0] , (1-5)
which will be called the conditional utility of (e, d) for a given state 0. Next expect
ing over 6 with respect to the unconditional measure Pi, we obtain

u+(e, d) = Ei u*(e, d, 6) , (1-0)
which will be called the unconditional utility of (e,d).

12
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Now given any particular experiment e, the decision maker is free to choose 
the decision rule d whose expected utility is greatest ; and therefore we may say 
that the utility of any experiment e is

u+(e) = maxd u+(e, d) . (1-7)
After computing the utility of every e in E , the decision maker is free to choose 
the experiment with the greatest utility, so that we may write finally

u+ =  max* u+(e) = maxe maxd Ej E, .̂* u[e, 2 , d(2), 6] . (1-8)

1.3.2. Performance, Error, and Utility Characteristics
For any given strategy (e, d) and state 0 , we can compute the probability 

that the rule d will lead to any specified act a. Formally, we define for any (meas
urable) subset .4* C -1

Pa{A„\e, d, 0} = P,{z: d(z) t A„\e, 0 } = Pz{d-I( ^ 0)k, 0} ,
and we say that the measure P2|gf® on Z  induces the measure P«|€|0 on A. Although 
such measures can be defined for any act space A , they are of particular interest 
when the act space contains only two acts, A = {ah a2}. In this case Pa{ai|e, d, •} 
and Pa{a2|e, d, •}, treated as functions of 0, are called performance characteristics 
of d for e. (When the act ai can be identified as "acceptance” and a2 as "rejection”, 
it is customary to call Pa{ai|e, d, •} an "operating characteristic” and Pa{a2|e, d, •} 
a "power function” .)

If the utility measure u(e, z, a, 0) is sufficiently specified to make it possible 
to partition 0  into three subsets

Go =  {0 : a\ and a2 are indifferent} ,
0 ! =  (0  : ai is preferred to a2} ,
0 2 =  {0 : a2 is preferred to ai} ,

we can define another function on 0  which we shall call the error characteristic 
of d ; this is the probability that the chosen act will be the one which is not preferred 
for the given 0 and is therefore equal to

Pa{a,|e, d , 0}  ̂ r0 i
0  l if 0 c s 0 O
Pa {ai|e, d, 0} J 102 .

If the utility measure u(e, 2 , a, 0) is completely specified, it will be possible 
to compute u*(e, d, 0) for all (e, d, 0 ), so that for any given (e, d) we can consider 
u*(e, d, •), as another function defined on 0 . This function will be called the 
utility characteristicf of (e, d).

v -  Notice that to define the performance characteristics of d all that is required 
is knowledge of A, 0 , Z, and Pg\e,$; neither PJ nor u enters the picture. In order 
to define the error characteristic of d, we require enough information about u to 
partition 0  into {0 O, 0 i, 0 2}, and in order to define the utility characteristic we

t  The negative of what we have called the utility characteristic is sometimes called the 
“loss” function of (e, d), but because “loss” is also sometimes used to denote the different concept 
“regret” we prefer to avoid the word altogether for the time being.
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need a complete specification of u, but even in these two cases P# does not enter 
the picture.

1.3.3. Example
As an example for the analysis in normal form we take the same problem which 

was analyzed in extensive form in Section 1.2.2. We consider four potential 
strategies:

1: Use eo and doi where d0i(zo) = a\.
(Do not experiment and do not adjust.)

2: Use e0 and d02 where do2(zo) = <*2.
(Do not experiment but adjust.)

3: Use e\ and dn where dn(zi) = a\ and dn(z2) = a2.
(Adjust if and only if the experimental outcome is z2.)

4: Use e\ and dn where dn(zi) = a2 and di2(z2) = ai.
(Adjust if and only if the experimental outcome is Z \ . ) \

The performance characteristic Pa{a2|e, d, •} and the error and utility character
istics of these four possible strategies are shown in Table 1.6; the last column of

Table 1.6

Strategy P{aj|e, d, 0}
Error

Characteristic
Utility

Characteristic u*(e, d)

Oi 9* Ox 0, 0i 0>

1 0 0 0 1.0 100 36 81
2 1.0 1.0 1.0 0 82 82 82
3 .3 .8 .3 .2 85 53 76
4 .7 .2 .7 .8 75 14 57

the table shows the values of u+(e, d) obtained by applying the prior measure Pi 
to the values in the two preceding columns.

As an example of the computations underlying this table, consider Strategy 3, 
which calls for e\ followed by a\ if z\ is observed, a2 if z2 is observed.

1. From Table 1.2 we find that the probabilities of z2 and thus of a2 are .3 
if 0i is true and .8 if 02 is true.

2. By Table 1.1, ai is preferred if 0i is true, a2 if 02 is true; therefore the .3 
probability of a2 if 0i is true is the probability of error if 0i is true, while the .8 
probability of a% if 02 is true is the complement of the probability of error if 02 is true.

3. By Figure 1.2, the utility of (ci, z 1, ai, 0i) is 94 and the utility of (ei, z2, os, 
0i) is 65, so that

t  Two more strategies could be defined, viz.
5. Experiment but do not adjust regardless of outcome.
6. Experiment but adjust regardless of outcome.

We omit these two strategies from the formal analysis because (5) is obviously inferior to (1) 
and (6) is obviously inferior to (2).
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u*(*i,dU90i) = (.7)94 +  (.3)05 = 85 ;

1.3.3

and similarly
u ^ e i, dn, e2) = (.2)7 +  (.8)65 = 53 .

4. Finally, by Table 1.3, Pi(0i) = .7 and Pi(02) = .3, so that 
u+{eh dn) = (.7)85 +  (.3)53 = 76 .

The last column of Table 1.6 shows that the optimal strategy is number 2 
(adjust without experimentation) and that its utility is u* = 82. The reader 
will observe that these results obtained by the normal form of analysis are identical 
to the results obtained by the extensive form of analysis and shown on the decision 
tree Figure 1.2. We next proceed to establish that the two forms of analysis are 
equivalent in complete generality.

1.3.4. Equivalence of the Extensive and Normal Form
The extensive and normal forms of analysis will be equivalent if and only if 

they assign the same utility to every potential e in E , i.e., if the formula
u+(e) = max* Ei E,M u[e, 2, d(2), 6] (1-9)

derived as (1-7) by the normal form of analysis agrees for all e with the formula
u*(e) = E,|* max0 Ei{, u(e, I, a, 6) (1-10)

derived as (1-3) by the extensive form. We have already pointed out that the 
operation EJ E, ,̂* in (1-9) is equivalent to expectation over the entire possibility 
space 0 X Z  and is therefore equivalent to E,|« EJ[,. I t follows that the normal- 
form result (1-9) can be written

u*(e) = maxd E,|, EiJ, u[e, 2, d(2), 6] ,

and i t  is then obvious that the best d will be the one which for every z maximizes

Ee\iu[e,z,d(z)f 6] .

This, however, is exactly the same thing as selecting for every z an a, which satisfies 

Ee\g u(e, z, a„ 6) = maxa Ei', u(e, z, a, 6)

as called for by (1-2) in the extensive form of analysis. Letting d*(z) denote the 
optimal decision rule selected by the normal form, we have thus proved that

d*(z) = a,

and th a t formulas (1-9) for u+(e) and (1-10) for u*(e) are equivalent.
Thus we see that if we wish to choose the best e and must therefore evaluate 

u*(e) for all e in 2?, the extensive and normal forms of analysis require exactly 
the same inputs of information and yield exactly the same results even though the 
intermediate steps in the analysis are different. If, however, e is fixed and one 
wishes merely to choose an optimal terminal act a, the extensive form has the merit 
th a t one has only to choose an appropriate act for the particular z which actually 
materializes; there is no need to find the decision rule which selects the best act 
for every z which might have occurred but in fact did not occur,
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1.3.5. Bayesian Decision Theory as a Completion of Classical Theory

In the classical theory of decision based in part on the evidence of a sample, 
the choice of one among all possible (e, d) pairs is to be made by comparison of 
their performance characteristics as defined in Section 1.3.2. Such comparisons 
are inherently extremely difficult because (1) except in two-action problems it will 
not be obvious which of two (e, d) strategies is superior even for given 0, and
(2) even if the comparison is easy for any given 0, there will usually be a very great 
number of (e, d) pairs such that each pair is optimal for some 0 in 0 but no pair is 
optimal for all 0 in 0.

Difficult as this problem of comparing incomparables may be, however, the 
decision maker must act and therefore he must choose. The normal-form analysis 
expounded in Section 1.3.1 and illustrated in Section 1.3.3 above amounts to solving 
the problem of choice by (1) evaluating the utility of every (e, 2 , a, 0), (2) using 
this evaluation to translate the performance characteristic of each strategy (e, d) 
into a utility characteristic, and then (3) computing a weighted average of this 
utility characteristic with the measure PJ used as the weighting factor. I t is thus 
possible to think of the measure Pi, not as a measure of “prior probability”, but 
as a mere weighting device required to arrive at a reasoned choice between two 
utility characteristics one of which is better for some 0 in 0 while the other is better 
for others. I t  can be shown, moreover, that a few basic principles of logically 
consistent behavior—principles which are eminently reasonable in our opinion— 
compel one to choose among utility characteristics as i f  one used such a weighting 
function; a proof is given in Section 1.5 at the end of this chapter.

I t  is therefore our belief that the Bayesian analysis of decision problems is in 
no sense in conflict with the classical theory of statistical analysis. The classical 
theory leaves to the decision maker's unaided judgment the task of choosing 
amongst performance characteristics; Bayesian analysis in the normal form merely 
formalizes this use of judgment by expressing it in terms of explicitly stated util
ities and weights and can thus be thought of as a formal completion of the classical 
theory. From this point of view, the introduction of the weights at the beginning 
of the analysis, as is done in the extensive form of analysis, is justified by the proved 
equivalence of the two forms; all that is needed to justify the name “probability 
measure” which we have given to the weighting measure is the fact that any 
normalized system of nonnegative weights obeys the axioms of probability theory.

In this same vein, we view a decision theory which formalizes utilities but not 
prior probabilities as a partial completion of the classical theory, and in some very 
simple situations this partial completion may be all that is required for reasoned 
practical action.

1.3.6. Informal Choice of a Decision Rule

If there are only two possible terminal acts and if e is given, the decision maker 
may be able to select a “reasonable” d by an informal, direct comparison of per
formance characteristics. In making such a comparison he must of course have
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in mind some appraisal of u and P$, but it may not be necessary to formalize these 
appraisals and express them precisely.

If the utility measure u is completely specified, the decision maker who wishes 
to choose his d without formal specification of PJ will obviously do better to apply 
his judgment to comparison of the utility characteristics d, •) of the various 
ds under consideration, since in this way he has only his appraisal of Pi to keep 
in mind informally. This procedure may have special appeal in some group deci
sion problems where there is general consensus on all the data of the problem except 
Pi, since it may turn out that the same (e, d) is optimal or near-optimal for all 
the Pis held by the individual members of the group even though these measures 
are themselves widely divergent.

When e is not given and the decision maker must choose an e as well as choosing 
a d for that e, both these informal methods of choice obviously become much more 
difficult to apply.

1.4. Combination of Formal and Informal Analysis

1 .l+.t. Unknown Costs; Cutting the Decision Tree
The general decision model stated in Section 1.1 is often criticized on the 

grounds that utilities cannot be rationally assigned to the various possible (e, 2 , a, 0) 
combinations because the costs, profits, or in general the consequences of these 
combinations would not be certain even if 8 were known. In principle, such criti
cisms represent nothing but an incomplete definition of the state space 0. If, for 
example, the decision maker is ignorant not only of the number of defectives but 
also of the cost per defective, the state space can obviously be made rich enough 
to include all possible pairs of values of both unknowns. The decision maker’s 
uncertainties about these values can then be evaluated together with his other 
uncertainties in the probability measure which he assigns to 0, and the analysis 
of the decision problem can then proceed essentially as before.

Formally, let the state 8 be expressible as a doublet (0(1), 0(2)) so that the state 
space is of the form ‘0 = 0 (1) X 0 (2). Thus 0(1) might be the parameter of a 
Bernoulli process while 0(2) might be the cost of accepting a defective item, but 
observe that the notation does not imply that 0(2) is necessarily a single real number: 
0(2) can be a vector quantity representing any number of unknown values.

In terms of our original decision tree Figure 1.1, a play was a 4-tuple (e, 2 , a, 0) 
and utilities were assigned directly to each (c, 2 , a, 0). If 0 is split into (0(1), 0(2)), 
a play is a 5-tuple (e, 2 , a, 0(l), 0(2)) as shown in Figure 1.3; utilities are assigned 
directly to each (e, 2 , a, 0(1), 0(2>) and the utility of any (e, 2 , a, 0(l)) is the expected 
value of the random variable u(e, 2 , a, 0(1), 0(2)), the expectation being taken with 
respect to the conditional measure on 0 (2) given the history (e, 2 , a, 0(l)).

Use of a Certainty Equivalent for 0(2). When 0 = (0(1), 0(2)) and 0(2) stands say 
for a state (value) of a cost, the probability measure on 0 (2) will often be independent 
of 0(1) and 2 . This will be the case when, for example, 0(1) is a fraction defective 
while 0(2) is the cost of a defective. If in addition u(e, 2 , a, 0(l), •) is a linear 
function of 0(2), it is easy to see that
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*,1) $l2)

u(e, 2, a, 0(l>) = E u(e, z, a, 0(1), 0(2)) = u(e, z, a, 0(1), 0(2))
where

0(2> = E(0(2))
is the unconditional expected value of 0(2). I t is therefore legitimate in this case 
to replace 0(2) by its expected value 0(2), i.e., to use 0<2) as a certainty equivalent 
of 0(2).

I t is perhaps worth calling attention to one specific type of problem in which 
application of this principle would, as others have already pointed out, very greatly 
simplify some of the analyses to be found in the literature. In discussing the eco
nomics of acceptance sampling, it is customary to treat each sample as taken from 
a finite lot, so that the sampling distribution is hypergeometric; and it has several 
times been proposed to fit the prior distribution of the lot quality by a “mixed 
binomial”, i.e., by the compound distribution created by the assumption that each 
lot is generated by a Bernoulli process whose parameter p is fixed during the 
production of any one lot but has a probability distribution from lot to lot. On 
this assumption we may partition the lot fraction defective 0 into two components 
(0U), 0(2)) where 0(1) is the process fraction defective p while 0(2> is the difference e be
tween the process fraction and the lot fraction defective; but if utility is linear in 
lot fraction defective, as is usually assumed in problems of this sort, then since 
the expected value of i is 0 for any p and z,

E«|P(,u(e, z, o, p, i) = u(e, z, a, p, 0)

for all p and z. In other words, there is simply no need to look at lot fraction 
defective if utility is linear in this variable: we can assign utilities directly to the 
various possible values of p} assign a prior distribution to p} and treat the sampling 
as being directly from the process and therefore binomial rather than from the lot 
and therefore hypergeometric. f

Suppression of 0(2). When the conditional measure of z given 0 = (0(1), 0(2)) 
actually depends only on 0(l), one can formally suppress 0(2) entirely by assigning 
utilities directly to the various possible (e, z, a, 0(l)) instead of assigning utilities 
to all possible (c, z, a, 0(1), 0(2)) and then expecting out S{2). We remind the reader 
that the utilities assigned to (e, z, a, 0(1)) are merely expressions of the decision maker’s

t  Cf. Probability and Statistics for Business Decisions, pages 377-381.
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preferences and that in deciding on his preferences he is free to use any level of analysis 
he likes. While he may wish to assign a formal measure to 8{2) and then average 
over it in order to decide whether or not he prefers a' to a" when 6(0l) is true, he 
may prefer to give a direct, intuitive answer to this question keeping his uncer
tainties about 0(2) informally in mind.

Actually, of course, a decision tree extending only to 0(l) is never really com
plete. Life goes on after (e, z, a, 0(1)), and to evaluate u(e, 2 , a, 0(1)) one could 
always look ahead by adding a 0(2) component, 0(2) now standing for “future life” , 
assigning a utility to every (e, 2 , a, 0(1), 0(2)), and then expecting out 8{2). In prac
tice, however, it will not always be worth the effort of formally looking very far 
ahead.

1.J+.2. Incomplete Analysis of the Decision Tree
Besides cutting the decision tree before it is logically complete, the decision 

maker may rationally decide not to make a complete formal analysis of even the 
truncated tree which he has constructed. Thus if E  consists of two experiments 
e\ and e2, he may work out u*(e 1), say, by formally evaluating

n*{e 1) = E,kl maxo EJ', u{e 1, 2 , a, 8) ;
but after this formal analysis of e\ is completed he may conclude without any formal 
analysis at all that e2 is not so good as e\ and adopt e\ without further ado.

That such behavior can be perfectly consistent with the principles of choice 
expounded earlier in this chapter is easy to see. Before making a formal analysis 
of 62, the decision maker can think of the unknown quantity u*(e2) as a random 
variable v. If now he were to be told the number u which would result from formal 
analysis and if this number were greater than the known number w*(ei), he would 
adopt e2 instead of e\ and we could say that the value of the information that 
D = v is measured by the difference v — u*(ei) in the decision maker's utility which 
results from this change of choice, f If on the contrary v were less than u*(e 1), 
the decision maker would adhere to his original choice of e\ and we could say that 
the information had been worthless.

In other words, we can meaningfully define the random variable
max {0, v — u*(ei)} = value of information regarding e2 ,

and before “buying" such information at the cost of making a formal analysis of e2 
the decision maker may prefer to compute its expected value by assigning a prob
ability measure to v and then expecting with respect to this measure; the geometry 
of the computation is shown in Figure 1.4. If the expected value is less than the 
cost, he will quite rationally decide to use e\ without formally evaluating v = u*(e2). 
Operationally one usually does not formally compute either the value or the cost 
of information on e2: these are subjectively assessed. The computations could be 
formalized, of course, but ultimately direct subjective assessments must be used if 
the decision maker is to avoid an infinite regress. In the last analysis we must cut 
the tree somewhere.

t For a more careful discussion of the conditions under which arguments based on utility 
differences are justified, see Sections 4.4 and 4.5 below.
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Figure 1.4
Value of Further Analysis of e%

Before leaving the subject of incomplete analysis we should perhaps remark 
that completely formal analysis and completely intuitive analysis are not the only 
possible methods of determining a utility such as u*(ei). In many situations it 
will also be possible to make a partial analysis in order to gain some insight but at 
a less prohibitive cost than a full analysis entails. This operation is very much 
akin to taking a sample in order to learn more about the state space; and whether 
or not a sample should be taken and if so of what kind is the main subject of the 
remainder of this book. Even though we formally take leave of these philosophical 
considerations at this point, we shall continue to be concerned with close relatives.

1.4.3. Example
An oil wildcatter must choose between drilling a well and selling his rights in a 

given location. (In a real problem there would of course be many more acts, 
such as selling partial rights, sharing risks, farmouts, etc.) The desirability of 
drilling depends on the amount of oil which will be found; we simplify by consider
ing just two states, “oil” and “no oil” . Before making his decision the wildcatter 
can if he wishes obtain more geological and geophysical evidence by means of very

Table 1.7 
Possible Choices

Space Elements Interpretations

^ 1
\ai drill, do not sell location
[02 do not drill, sell location

9 1
Ox no oil

oil

E \
feo do not take seismic readings
[e, take seismic readings
Zo dummy outcome of 60

7  tZ\ e\ reveals no structureLi \Zi e\ reveals open structure
KZ% ei reveals closed structure.

2 0
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p a m  p ; m
Figure 1.5

Analysis of a Drilling Decision

expensive experiments; we simplify again by allowing for only one form of experi
ment, seismographic recordings, and by assuming that these recordings, if made, 
will give completely reliable information that one of three conditions prevails:
(1) there is no subsurface structure, (2) there is an open subsurface structure, or
(3) there is a closed subsurface structure. The descriptions of the four spaces,
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Ay 0, E, and Z, are summarized in Table 1.7, and the possible sequences of choices 
by the decision maker and chance are shown on the decision tree Figure 1.5. Notice 
that the three possible “conditions” of the subsurface structure are not the states 
{0} of the problem but correspond to the experimental outcomes {z}.

Assignment of Utilities. The psychological stimulus associated in this problem 
with an (e, z, a, 6) 4-tuple is highly complicated. Different wells entail different 
drilling costs, and different strikes produce different quantities and qualities of oil 
which can be recovered over different periods of time and sold at different prices. 
Furthermore, each potential consequence of the present drilling venture interacts 
with future potential drilling ventures. For example, geological information gained 
in one deal may be crucial for the next, and capital expenditures made in one deal 
may prohibit the acceptance of the next one however favorable it may then appear.

In other words, there are uncertainties surrounding any particular (e, z, a, 6) 
complex which must be kept in mind either formally or informally when these 
complexes are compared. We assume nevertheless that, no matter how intricate 
these considerations are, the decision maker is psychologically able to act and there
fore can not only rank complex stimuli of this sort but assign to them utility num
bers which reflect his preferences among lotteries having such stimuli as prizes. 
The kind of problem we are here discussing is simply one specific illustration of 
the need to cut the decision tree which was discussed in Section 1.4.1; hypothetical 
utilities are shown at the end of the decision tree Figure 1.5.

Assignment of Probabilities. As regards the assignment of a probability meas
ure to the possibility space 0 X Z, this problem typifies a class of problems which 
occur rather frequently in practice but have rarely if ever been recognized in the 
literature: the available historical evidence bears much more directly on the 
conditional (or “posterior”) measure Ve\z and the marginal measure P*|« than on 
the complementary measures Pt\e9 and Pj. Specifically, previous experience with 
the amounts of oil found in the three possible types of geologic structure (zi = no 
structure, z2 = open structure, z3 = closed structure) may make it possible to 
assign a nearly if not quite “objective” measure Pij* to the amount of oil which 
will be found given any particular experimental result, whereas it would be much 
less clear what measure Pj should be assigned to the amount of oil in the absence 
of knowledge of the structure. At the same time it will in general be much more 
meaningful to a geologist to assign a marginal measure P,|e to the various structures 
and thus to the sample space Z than it would be to assign conditional measures 
Pz\e,e to Z depending on the amount of oil which will be found. Hypothetical 
measures P'^ and P,|< are shown on those branches of the decision tree Figure 1.5 
which emanate from ei; the “prior” probabilities P£{0i} = .80 and P*{02} = .20 
shown on the branches emanating from eo were computed from them by use of the 
formula

P#{0<} = Pi{0i\zi} P.fal*} +  ?$'{0i\zt} Pz{z2|ci} +  Pi'{0,|z3} P.{*|ei} .

Analysis. Since all data required for analysis in extensive form appear on 
the decision tree Figure 1.5, the reader can easily verify that the optimal decision 
is to pay for seismographic recordings (e0 and then drill (take act ai) if and only
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if the recordings reveal open (z2) or closed (z3) structure. I t  pays to buy the record
ings because the expected utility of this decision is 15.25 whereas the expected 
utility of the optimal act without seismic information is 0.

Observe that in this problem none of the probabilities required for analysis 
in extensive form has to be computed by the use of Bayes’ theorem, but that if 
the problem is to be analyzed in normal form and if this analysis is to be carried 
out via a performance characteristic, it will be necessary to use Bayes’ theorem. 
Thus, for example, the probability given the state 0i (no oil) that the decision rule 
*'‘drill if and only if z3 occurs” will lead to drilling can be found only by computing

P.falei, 0i} py{0ilft) P.falei) 
P i w  ’

where P«{0i} is to be computed from the last previous formula.
I t  was pointed out in Section 1.3.6 above that when all the elements of a deci

sion problem except PJ can be evaluated “objectively” , the normal form of analysis 
has a real advantage in that it permits all the data other than PJ to be summarized 
in the form of a utility characteristic u*(e, d, •) defined on 0 for each of the strat
egies (e, d) under consideration. These characteristics can then be compared 
with the judgmental or “subjective” element P£ held informally in mind. In 
problems of the kind typified by our present example, on the contrary, a utility 
characteristic d, •) on 0 would be “subjective” because one of the elements 
involved in its computation is the conditional measure on the sample space and, 
as we have just seen, this measure has to be derived from the “subjective” marginal 
measure assigned to the sample space by the geologist.

We have already said, however, that the normal form of analysis does not 
require the use of PM\e,e and Pj; and when the posterior measure P*{2 is “objective” 
as it is here we can postpone the judgmental calculation to the end by using P^2 
to construct a new kind of utility characteristic to which P,|« is then applied as the 
last step in the analysis. If utilities have been assigned to all (e, z, a, 0), then for 
any given strategy (e, d) we can use the measure P*'2 to compute

u*[e, z, d(z)] 23 Eiu u[e, z, d(z), 6]
for all z; and we can then make our final evaluation of the (e, d) pair by averaging 
with respect to P2(e:

t**(e, d) = E,j, u*[e, 2, d(!)] = E2|e Ej'2 u[e, I , d(2), 0] .

Considered as a function on Z, the quantity u*[e, •, d( )] defined by the former 
of these two formulas is the new kind of utility characteristic we set out to obtain; 
and in simple problems the averaging over this characteristic involved in the 
formula for u*(6, d) can be intuitive rather than formal.

1.5. Prior Weights and Consistent Behavior

In Section 1.3.5 we remarked that when one is forced to compare utility char
acteristics because one is forced to act, a few basic principles of logically consistent 
behavior necessarily lead to the introduction of a weighting function over 0. We
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then remarked that if this weighting function is normalized it has all the properties 
of a probability measure on 0 and that it can be brought in at the beginning of the 
analysis just as well as at the end or in the middle. In this section we shall investi
gate these basic principles very informally; complete formal treatments can be 
found in Blackwell and Girshick, Luce and Raiffa, and Savage, t

We here assume that every conditional measure Pt\e,e on the sample space Z 
(the “sampling distribution” of the experimental outcome) is “objective” in the 
sense that it corresponds to a known long-run relative frequency; and we take as 
given the basic proposition proved by von Neumann and Morgenstern that in situa
tions where all probabilities correspond to known long-run frequencies it is possible 
to assign utilities to consequences in such a way that choices are logically consistent 
only if they are such as to maximize expected utility. We shall therefore assume 
that any strategy (e, d) can be described by a utility characteristic u+(e} d, •) on 
the state (parameter) space 0. Readers who do not accept the utility principle 
even in situations where all probabilities are objective but who believe that within 
certain limits it is reasonable to maximize objective monetary expectations can 
substitute “income” for “utility” throughout our argument and find that it applies 
just as well.

We start by sacrificing a little generality in order to simplify the discussion.
(1) We assume that 0 is finite, consisting of elements {0i, 02, • ■ • , 0r}. The util
ity characteristic of any strategy (e, d) can then be represented as an r-tuple 
[u*(e, d, 0i), u+(e, d, 02), • • • , u+(e, d, 0r)], and comparison of any two strategies is 
equivalent to a comparison of r-tuples within a certain interval R in r-space, the 
boundaries of the region corresponding to the bounds on the utility function 
u t (e, d, •)—or to the limits within which the decision maker wishes to maximize 
expected monetary value if he refuses the utility principle. (2) We assume that 
our task is to find a conceptual principle for ranking all r-tuples in R, whether or 
not they are all actually achievable in any particular situation. Given these two 
simplifying assumptions, the argument can be visualized in 2-space and wre shall 
give diagrams to aid the reader in this visualization.

We now proceed to make three basic assumptions concerning logically consistent 
behavior. The first of these is the so-called sure-thing or dominance principle:

Assumption 1. Let u = (ui, • • • , Ur) be the utility characteristic of strategy 
(eh di) and let v = (vh • • • , tv) be the utility characteristic of strategy (e2, d2). 
If Ui > Vi for all i and if Ui > Vi for some i, then (eif di) is preferred to (e2, d2). 
In order to express the second basic assumption informally, we shall make use 

of the notion of indifference surfaces familiar in classical economic theory. In 
terms of these surfaces we can express what might be called an assumption of 
continuous substitutability as follows:

Assumption 2. Indifference surfaces extend smoothly from boundary to 
boundary of the region R in the sense that, if u is a point on any indifference

t D. Blackwell and M. A. Girshick, Theory of Games and Statistical Decisions, New’ York, 
Wiley, 1954, Chapter 4; R. D. Luce and H. Raiffa, Games and Decisions, New York, Wiley, 1957, 
Chapter 13; L. J. Savage, The Foundations of Statistics, New York, Wiley, 1954, Chapters 1-5.
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surface and if small changes are made in any r — 1 coordinates of u, then by 
making a small compensating change in the remaining coordinate we can 
obtain a new point on the same indifference surface as u.

The meaning of “smooth” can be made more precise by saying that the compensat
ing change in the rth coordinate is a continuous function of the changes in the 
r — 1 coordinates; or we can say that if preferences for utility characteristics u are 
indexed by a Marshallian index function, this function is continuous on R. 

Finally, we make what might be called the assumption that pigs is pigs. 
Assumption 8. Let (ei, di), (e2, d2) and (e3, dz) be three strategies such that 
(ei, di) and (e2, d2) are indifferent. Then given any p such that 0 < p < 1, 
a mixed strategy which selects (ci, di) with “objective” probability p and 
(e3, dz) with probability 1 — p is indifferent to a mixed strategy which selects 
(e2, d2) with probability p and (e3, dz) with probability 1 — p.
Before actually following out the implications of these three basic assumptions, 

we make two observations. (1) I f  the decision maker compares twro r-tuples 
u = (t/i, • • • , ur) and v = (vh • • • , tv) by means of the indices

pi Ui and 2*=i piVi

where (pi, • • • , pT) are preassigned positive weights, then clearly the indifference 
surfaces must constitute a family of parallel hyperplanes whose common normal 
is the vector p  = (pi, • • • , pr). (2) Conversely, if  the indifference surfaces are 
parallel hyperplanes with a normal going into the interior of the first orthant, 
then it is not difficult to see that there exist positive weights (pi, • • • , pr) such that 
r-tuples can be ranked on the basis of an index which associates to each r-tuple 
the weighted average of its r components and that by our first basic assumption 
an r-tuple with a greater index must be preferred to an r-tuple with a lesser index.

We shall now prove that, given our three basic assumptions about logically con
sistent behavior, the decision makers indifference surfaces must be parallel hyper
planes with a common normal going into the interior of the first orthant, from which 
it follows that all utility characteristics u = (wi, • • • , ur) in R can in fact be ranked 
by an index which applies a predetermined set of weights p = (pi, • • • , pr) to their 
r components.

We first show that the third basic assumption implies that the indifference 
surfaces which exist by the second basic assumption must be hyperplanes. To do so 
we assume the contrary and prove a contradiction; the geometry for r =2 is shown 
in Figure 1.6, where an underscored letter denotes a vector and corresponds to 
boldface in the text. If an indifference surface is curved, we can always find two 
points u and v on the surface such that w = %u + %v is not on the surface. Now 
choose (ei, di) and (e2, d2) so that they have utility characteristics u and v respec
tively. Then by the utility theory we take as given—or by ordinary principles 
of expected monetary value—the mixed strategy which chooses (ei, di) with “objec
tive” probability \  and (the same) (eh d\) with probability \  has the evaluation u 
while the mixed strategy which chooses (ci, di) with probability \  and (c2, d2) with 
probability \  has the evaluation (£u +  \v) = w. But by the third basic assump-
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tion these two mixed strategies are indifferent, and therefore w must lie on the 
same indifference surface as u. This establishes the linearity of the indifference 
surfaces.

We next show that the indifference hyperplanes must be parallel. If the 
region in r-space in which the comparisons are being made is all of r-space, the 
proof is obvious: indifference surfaces cannot intersect, and the hyperplanes will 
intersect unless they are parallel. If, however, R is not all of r-space, an additional 
argument must be added because hyperplanes which are not parallel need not inter
sect in a finite region. We shall supply this argument by showing that all indiffer
ence hyperplanes must have the same normal; the geometry for r = 2 is shown in 
Figure 1.7.
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Assuming without loss of generality that the origin 0 = (0, 0, • • • , 0) belongs 
to the interior of R, let H 0 be the indifference hyperplane containing 0 and let 
P — (pi, • • * , pr) be the normalized normal to H0 (i.e. the normal with 2 p, = 1), 
so that H0 consists of all points w = (tt?i, it?2, • • • , wr) such that

2J«i Pi Wi = 0 . (1-11)
Let u' be a point in R on H let u" be a point in R on the prolongation of the ray 
from 0 through u', and define X (where 0 < X <  1) by

u' = x u" +  (1 -  X) 0 = X u" .
Now 0 is indifferent to any w in R which lies on H 0, and therefore by the third 
basic assumption and the ordinary rules of utility or expected monetary value 
the mixed strategy which selects u" with “objective” probability X and 0 with 
probability 1 — X is indifferent to the mixed strategy which selects u" with prob
ability X and w with probability (1 — X), so that the points

X u” +  (1 — X) 0 = u' and X u” +  (1 — X) w = u' +  (1 — X) tv
lie on the same hyperplane H '. Now if p ' = (p{, pi, • • * , Pr) is the normalized 
normal to H f, the projections onto this normal of any two points of Hf must be 
the same. Consequently

2 i- i  Pi = 2 i - i  p[[ui +  (1 — X) it?,]
and therefore

2 U i Pt Wi = 0 . (1-12)
Since (1-11) and (1-12) hold for all w in H 0, both p and p f are orthogonal to H0\ 
and since in addition both p  and p' are normalized by definition, p' = p as was to 
be shown. That all components of p are positive follows from assumptions 1 and 2.
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C H A P T E R  2

Sufficient Statistics and Noninformative Stopping

2.1. Introduction

Of the various methods of assigning a probability measure to the possibility 
space 0 X Z  which were discussed in Section 1.1.2, the most frequently useful is 
the method which starts by assigning a marginal measure P* to 0 and a conditional 
measure ¥ t\e,o to Z  for every e in E  and every 6 in 0. If the decision maker does 
proceed in this way, then the measures required for analysis in extensive form— 
the marginal measure P,|« on Z and the conditional measure P*'* on 0—must be 
computed from the measures directly assigned by the decision maker. In this 
chapter and the next we shall deal with two important technical problems involved 
in this procedure: (1) the selection of a prior measure Pi which will both express 
the decision makers best judgment about 0 and at the same time be mathematically 
tractable, and (2) the use of sufficient statistics as an aid in the computation of Pi^. 
These two problems will actually be discussed in inverse order for reasons which 
will be amply clear in due course.

2.1 J .  Simplifying Assumptions
Since it is not our purpose in this monograph to seek generality for its own 

sake, our subsequent discussion will make use of some assumptions which greatly 
simplify the analysis without any loss of practical applicability.

1. State Space 0. We assume that the state 6 can be described by an r-tuple 
of real numbers (0i, • • • , 6r) and that the state space 0 can be represented as either 
a discrete set or an interval set in Euclidean r-space.f

2. Prior Measure on 0. We assume that the prior measure PJ on the state 
space 0 possesses either a mass function or a density function (or possibly both). 
In other words, we assume that if 0 O is any measurable subset of 0, then either 
there exists a function D' on 0 (the prime denoting prior) such that

= D e .D 'W  or pj{0o} = J^T>\e)de

or else there exist two functions D( and D£ such that

P»{e„} = C, d ;w  +  c* DJM de .

t  The reader must be careful to distinguish between the r-tuple (0i, • • • , 0r) here defined, 
in which 0* is the ith component of one particular vector state 0, and the set {0i, • • • , 0r ) of 
Section 1.5, in which 0% was the ith possible state in the state space 9. In the remainder of 
this monograph, subscripts on 0 or z will always distinguish components rather than members 
of a set.

28



Sufficient Statistics 2.1.1

Since the three cases behave virtually identically in virtually all respects, we shall 
usually discuss only the case where Pe has a density function, leaving it to the 
reader to.match our results for this case with the corresponding results for the two 
others.

3. Sample Space Z. We assume that if the sample space Z = {2} is tempo
rarily restricted for the purpose of some argument to the potential outcomes of a 
particular experiment e, then the outcomes {2} can be represented as a subset of a 
Euclidean space.

4 . Measures on Z. If is the conditional measure on Z for given (e, 0) and 
F'e is the prior measure on 0, the marginal measure on Z for the given e is

P „ .«  P.He} = E iP ,{ -M }
where E* is taken with respect to PJ. We assume that either (a) Fz\e,d is discrete 
for every 6 in 0 and P,|« is discrete, so that both measures possess mass functions, 
or else (b) P ,^  possesses a density function for every 0. in 0 and P,|« possesses a 
density function. [This assumption would not be satisfied if, for example, Pi 
were continuous while Fx\e,d conditionally put a mass of 1 on 2 = 0.]

If the conditional measure has a mass function, we shall denote by C(z\8) the 
probability given 0 that e results in 2 ; because our discussions of such probabilities 
will in general be restricted to some particular experiment e, we suppress the condi
tion e in our notation. If the conditional measure has a density function, we shall 
denote by t{z\B) the value of this density function at 2 for given 6 (and e). In 
either case, we shall use the word likelihood to denote the value taken on by 
the mass or density function for given 2 and 6 (and e) ; and we assume that, for any 
fixed 2 in Z, t(z\ •) as a function on 0 is continuous except for at most a finite number 
of discontinuities (which may depend on 2 ).

We define the marginal likelihood of the experimental outcome 2 given a partic
ular prior density D' by

<*(*:D') =  / q ({z\6) D'(0) dd , (2-1)

and we shall say that 2 lies in the spectrum of D' if /*(2 |D') > 0.

2,1,2, Bayes ’  Theorem; Kernels
If the prior distribution of the random variable 6 has a density function D' 

and if the experimental outcome 2 is in the spectrum of D', then it follows from 
Bayes, theorem that the posterior distribution of 0 has a density function D" whose 
value at 6 for the given 2 is

D " ( 0|2) = D '(0) l(z\B) N(z) (2-2a)
where N(z) is simply the normalizing constant defined by the condition

D"(6\z) dd = N(z) f Q D'(<?) l{z\6) dO = 1 . (2-2b)

► To prove (2-2) when -16) is discrete, let 0 O be any measurable subset of 0 . Then by
Bayes, theorem
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2.1.2 Part I: General Theory

(1)
Defining N (z) by

p "  fr\ I I  _  P » - t{ Q o >  Ae} P, {0.1 z} -  Pj{z|e} •

[AT(Z)]-‘ = P,{z|e)
and recalling that

p^{0.,«w  =

we may substitute in (1) to obtain

M

(2) Pi' {9.1*} = / 0< D'(0) t(z\6) N{z) d8 ,

and the integrand is by definition the posterior density of 6.
To prove (2-2) when • |0) is continuous, we must show that, for any interval (z, z +  dz), 

which we label Z0(dz) to show the dependence on dz,

D'(0) /(z|0) dO 

D'(0) t(z\6) dd
By Bayes* theorem
(4) P i'te jz .) -  •

Because both P* and Pz\e o have densities,

P»,{0.,Z.|e} = / e. / z. D'W < m  dide ;

and by the mean-value theorem this may be written

(5) P»,{0., Z.|e} = [ D'(6) t(z'e\6) |<fe| dB
J 6*

where z* is some z in Z„(<fe) and |dz| is the volume of Z<,(dz). Similarly

(6) P.(Z„|e) = D'(fl) t({\8) d$dd = D'(0) t(z'i\8) |dz| dd

where z'i t Z0(dz). Substituting (5) and (6) in (4), taking the limit as dz —► 0, and notic
ing that as dz —► 0 both z'g and z'i go to z, we obtain (3), which was to be proved. ^

(3) lim Pi'{0.|Z.(dz)}
dt—* 0

A

If the density function of 6 is D, where D denotes either a prior or a posterior 
density, and if K is another function on 0 such that

D(0) = . KW , (2-3)
/ e K (8)d8

i.e., if the ratio K(0)/D(0) is a constant as regards 0, we shall write
D(0) oc K(0) (2-4)

and say that K is a (not “the”) kernel of the density of 0.

If the likelihood of z given 0 is l{z\6), and if p and k are functions on Z such 
that for all z and 0

((z\8) =  k(z\8) p(z) 
30

(2-5)



Sufficient Statistics 2.1.2

i.e., if the ratio k(z\6)/ l(z\Q) is a constant as regards 0, we shall say that k(z\0) is 
a (not “the”) kernel of the likelihood of z given 0 and that p(z) is a residue of this 
likelihood.

Letting K' denote a kernel of the prior density of $, it follows from the defi
nitions of K and l  and of the symbol oc that the Bayes formula (2-2) can be written

D"(0|z) = D'(0) /(z|0) N{z)

= K'(fl) [ / e K'(0) de]~l k(z\6) p(z) N(z)

a  K'(0) k(z\6) . (2-6)
The value of the constant of proportionality for the given z,

p{z)N(z) [Je K'(6)de]~l ,

can always be determined by the condition

f QD"(6\z)de=  1 .

Example. Let the state 0 be the intensity X of a Poisson process and let the 
sample outcome z be the fact that r successes were observed in time t, so that the 
likelihood of z = (r, t) for given 0 = X is given by the Poisson mass function:

t r n  = ; (2-7)

and let the prior density of X be gamma with parameters r' and t \  the primes denot
ing prior,

D'(X) = ^  f  • (2-8)
Then we may take as kernels

k(z\6) = e"x*Xr ,
K'(0) = e-x// Xr'-1 ;

and by (2-6) the posterior density of 0 given the observed z = (r, t) is
D"(X|z) cc e-x«'+o \r '+ r-i s  e-x<" Xr" - 1  (2 . 9 )

where r” and t" are implicitly defined, the double primes denoting “posterior” . 
The normalizing constant for D” is the reciprocal of

j  e - x‘"Xr" - 1dX = (r" -  l)!/*'"" ;

it can be found more easily by merely observing that the kernel (2-9) of the pos
terior density is of the same form as the kernel of the prior density (2-8), from which 
it follows that the normalizing constant for (2-9) must be of the same form as the 
normalizing constant in (2-8).

2.2. Sufficiency
There will in general be more than one way of describing the outcome of an 

experiment, and therefore the definition of the set Z = {z} of all possible outcomes
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2.2 Part I: General Theory

depends on the decision maker’s judgment concerning the features of the outcome 
which may be relevant to his decision problem. Once he has formalized his deci
sion problem, it is always possible to define a very extensive set {z} which is cer
tainly rich enough to include all relevant information, but the question will then 
arise whether there exists a set of descriptions which is simpler and therefore easier 
to manipulate and yet contains all the information which is actually relevant to 
the decision problem. Thus given a particular model of some production process 
generating good pieces (g) and defectives (d) it may be obvious that a sample of 
five pieces from this process can be adequately described by a 5-tuple such as 
ggdgd which records the “values” of the five pieces in the order in which they were 
produced, but at the same time it may seem possible that all the relevant informa
tion can be conveyed by a 2-tuple such as (3, 5) recording that 3 of the 5 pieces 
produced were good. Letting y denote a possible abridged description of a partic
ular outcome, the question is whether y is a sufficient description of this outcome.
2.2A. Bayesian Definition of Sufficiency

We shall assume that any abridged description y consists of an r-tuple of real 
numbers and can therefore be represented as a point in a Euclidean space F, and 
we shall denote by y the mapping (or random variable) which sends Z into Y. 
The event that the random variable y assumes the value y will be abbreviated 
y = y\ this event is thus equivalent to the event comprising the set of all z such 
thaty(z) = y , i.e., the set

{z:y(z) = y) = y~'(,y) . (2-10)
The conditional measure on Z determines the conditional measure on Y 
given (e, 0), so that given any prior density or mass function D' on 0 and any 
particular value y of y the posterior density or mass function can be obtained by 
the use of Bayes’ theorem. The posterior density or mass function so calculated 
will be denoted D"(-1y = y).

Clearly the coarser information y about a particular experimental outcome 
will lead to exactly the same conclusions as the more refined information z if 
D"(*|t7 = y) is identical to D“ (-|2 = z) for all z in y~l(y). We are then entitled 
to say that y is a “sufficient” description of the experimental outcome; and if any 
y in the range Y  of y is sufficient, we are entitled to say that the mapping y itself 
is sufficient. Formally, we give the following

Definition: The mapping y from Z into Y  is sufficient if for any prior density 
or mass function D' and any z in the spectrum of D'

D"( \y = y) = D"( |z = z) where y = y(z) . (2-11)
Where no confusion can result, we shall also use the expression sufficient statistic 
to denote either (1) a random variable y which satisfies this definition or (2) a 
particular value y of such a random variable, i.e., a sufficient description of a 
particular experimental outcome.
2 .2.2. Identification of Sufficient Statistics

The definition of sufficiency which we have just given does not in itself enable 
us to find sufficient sets {y} of abridged descriptions of the experimental outcome
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Sufficient Statistics 2.2.2

(or sufficient mappings y of Z into Y) \ this is accomplished by examination of the 
kernel of the likelihood of the “complete” descriptions {2}. We saw in (2-6) that 
if k(z\6) is a kernel of the likelihood l{z\Q)} then the posterior distribution of S 
given z can be determined by consideration of the kernel k { z \ B )  just as well as by 
consideration of the complete likelihood t(z\0). In other words, we learn abso
lutely nothing useful by distinguishing among 2s whose kernels are equal; and it 
follows that a mapping y from Z into Y  is sufficient if, given any y in K, all 2 in 
y~l(y) have the same kernel. Such mappings can be found by use of the following

Theorem. Let y map Z into Y. If the likelihood function l  on Z X 0 can be 
factored as the product of a kernel function k on Y  X 0 and a residue func
tion p on Z,

= k[$(2)|0] P(2) , (2-12)
then y is sufficient in the sense of (2-11).

► For any measurable sets 0„ and ZQ the posterior probability of 0O given ZQ is
p;'{0 o|zo} = e * p ;'{0 o|2} ,

where E* denotes expectation with respect to the measure on Z conditional on ZQ but 
unconditional as regards 6. Now take Z0 = y~l(y), so that the left-hand side of this equa
tion becomes {B0\y = y) while by (2-6) and (2-12) we have for the quantity following 
the operator E* on the right-hand side

p» {e.|*} « |e< D'(0) k[g(z)\e] de .
Since this quantity is obviously the same for all z « y~l(y), i.e., for all 2 such that y(z) = y, 
we may suppress the E* and write

P* {e.ls = y) = p;'{e.|*} ,
showing that g satisfies the definition (2-11) of sufficiency. ^

Example. Let the “complete” description of an experimental outcome be 
2 = (zi, • • • , xn) where the zs are the observed values of n independent random 
variables with identical densities

(2ir)-i ;
then the likelihood of z given 6 = ju is

t(z\$) = n?„i [(27r)~i Jfo-M)*] = (2x ) -J » e -»*<*-*>■ .
If we define the (vector) function y = (yh y2) = (m, h) by

n = number of random variables observed ,
Um = - Z  Xi , n

the likelihood can be written
l[z\Q) =  e -hn(m-v)t . (27r)“ in g - | z ( x . — m)* ^
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2.2.2 Part I: General Theory

The first factor is the kernel k[y(z)\6] = k(m, n|p); the remaining factors consti
tute the residue p(z) because they do not contain 0 = p.

Observe that we do not need to know the actual likelihood of y given 0 in order to 
find D"(-1y = y) ; all that we need to know is the kernel k(i/|0) obtained by factor
ing the likelihood of z, since by (2-11) and (2-12) we may put the Bayes formula 
(2-6) in the form

D"[0|y(z)] = D"{6\z) cc D'(0) *(z|0) = D'(0) k[y(z)|0] . (2-13)
Thus in the example just discussed: if D' is the prior density of /I, then the posterior 
density is

D"(p|m, n) oc D '(m) k(m, n|p) = D'(p) .
I t  is true, of course, that the actual likelihood of y given 0 will be of the form

k(i/|0) r (y) ,
but after e is fixed the residue r is irrelevant. We shall see later that r is not ir
relevant when the problem is to choose the e which is to be performed.

2.2.3. Equivalence of the Bayesian and Classical Definitions of Sufficiency
Classically, sufficiency is usually defined in terms of the factorability condition 

(2-12). We prefer the definition (2-11) because it is more easily extended to cover 
the important concept of partial or marginal sufficiency which we shall define and 
discuss in a moment, but before going on to this new subject we remark for the 
sake of completeness that the two definitions of “ordinary” sufficiency are com
pletely equivalent. That classical sufficiency implies Bayesian sufficiency is shown 
by the theorem containing (2-12); that Bayesian sufficiency implies classical suf
ficiency is shown by the following

Theorem: If y is sufficient in the sense of (2-11), then there exist a function k 
on 7 X 0  and a function p on Z such that the sample likelihood can be fac
tored as in (2-12):

i(z\e) = k[$(2)|<?] P(z) .

► We prove this theorem by (1) showing that if y is sufficient, it is possible to find a kernel 
function such that k* ( z |0) has the same value for all z in any one and then (2 ) defin
ing k[g(z)\e] = K.(z\d).

Consider a prior density Di such that D*(0) > 0 for all 0 € 0. Given the assumptions 
in Section 2.1.1 above, we lose no generality if we restrict Z to all z such that

(*(z\d :) m j  Di(e) t{z\6) dd > 0 .

In accordance with the general definition (2-5) of kernels define the particular kernel and 
the corresponding residue

a ) *.(*|0) -  = **c*id:) .

We now have by Bayes’ theorem
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(2) D"(»|«) d :w  i m  = t r n
J v ' M t m d e

observe that with this kernel we have equality rather than proportionality between the two 
sides.

Next consider any zx and z2 such that ff(zi) = #(z2). Since $ is sufficient, we have by 
the definition (2-11) of sufficiency

D"(%) = D"(01*0 = D"(0M •
By (2) above this implies that

DiW K*(zi\0) = Dj(0) *,(z2|0) ; 
and since D*(0) > 0 for all 0, this in turn implies that
(3) = «*(z2\d) , all 0.
Finally, define k by choosing some one z e y~l(y) for every y eY  and setting
(4) k(t/|0) -  K*(z|0) .
By (3), equation (4) will be true for every zeZ \ and we may therefore substitute (4) in (1) 
to obtain

as was to be proved.
l{z\B) = k[0(z)|0) **(z|Dj) = k[fl(z)|0] p(z)

◄

2.2.4- Nuisance Parameters and Marginal Sufficiency
In the previous section we defined the conditions under which a description y 

would be a sufficient summarization of the experimental evidence concerning the 
complete state parameter 0. In many situations, however, some of the components 
of 0 are nuisance parameters in the sense that they are irrelevant to the utility 
u(e, z, a, 0) for any (e, z, a, 0) and enter the problem only as parameters of the 
conditional probability measure If in such a situation we partition 0 into
(0i, 02) where 02 represents the nuisance parameters, it is clear that after the experi
ment has been conducted and both e and z are fixed the choice of a terminal act a 
will depend, not on the complete posterior distribution of 6 = (0i, 82), but only on 
the marginal posterior distribution of 6i) and we are therefore interested in con
densed descriptions {y} of the possible experimental outcomes that summarize 
all the experimental evidence which is relevant to 0i. Formally, we define “partial” 
or “marginal” sufficiency as follows:

Definition. Let 0 be expressible as a doublet (0i, 02), so that 0 = 0i X 02 
and let C be a class of prior distributions on 0. Then y is marginally sufficient 
for 6X relative to C if for any prior distribution in C and any z in the spectrum 
of that distribution the marginal posterior distribution of 6i is the same given 
y as given z.
In the applications the most important class C is that in which and S2 are 

independent, so that the prior density can be written
D'(0!, 02) = DK0O djwo .

35
(2-14)



2.2.4 Part I: General Theory

Relative to this class of prior distributions, y is marginally sufficient for Si if the 
likelihood of z given 0 can be factored

/(z|0i, 02) = k[*/(*)|0i] p(z|02) . (2-15)
For letting y(z) = y , we have by (2-2)

D"(0!, 02|z) = D((0O D'2(e2) k(t/|0!) p(z|02) N(z) , (2-16)
and integrating out 02 we get

D"(0i|z) oc Di(0O k(y|0i) .
I t  is perhaps worth emphasizing that even though the likelihood can be fac

tored as in (2-15), y will not in general be marginally sufficient for Si unless the prior 
density can also be factored as in (2-14). The factor p(z|02) in (2-16) will alter the 
prior distribution of S2\ and if Si is dependent on S2, this effect will be transmitted 
to the distribution of Si.

2.3. Noninformative Stopping

2.3.1. Data-Generating Processes and Stopping Processes
In many situations the complete description of an experiment can usefully 

be decomposed into two parts. The experiment consists of observing random 
variables £i, • •• , £,*, • • • successively generated by some data-generating process, 
and the description of this process constitutes the first part of the description of 
the experiment. The number of random variables observed depends on some 
criterion which may or may not be of a probabilistic nature; we shall say that the 
end of the experiment is caused by a stopping process which generates this criterion, 
and the description of this stopping process constitutes the second part of the 
description of the experiment. The stopping process will be deterministic if, for 
example, it is definitely known before the experiment is begun that neither more 
nor less than the first n random variables will be observed; it will be probabilistic 
if, for example, the experiment is to be continued until the experimenters budget 
of time or money is exhausted and the cost of any observation is itself a random 
variable. We shall see, however, that in many situations there is more than one 
way of defining the “random variables” generated by the data-generating process 
and that a stopping process which is “probabilistic” on one definition of these 
random variables may be “deterministic” on another, equally valid definition.

2.3.2. Likelihood of a Sample
Consider a data-generating process which generates a discrete-time sequence of 

random variables £%, • • • , £,, • • • not necessarily independent and not necessarily 
discrete-valued. With a slight loss of generality we shall assume that a probability 
measure is assigned to the £s via conditional likelihood (mass or density) functions. 
Letting 0i denote the (scalar or vector) state parameter which characterizes this 
process, the conditional likelihood of x, given the previous observations xi, • • • x,_i 
and the parameter 0i can then be written

f(xi\xh ■■■ ,Xi-i;6i) ,
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and the likelihood that the first n elements of any sequence of n or more elements 
generated by this process will be z — (xi, • •• , x n) is

h(z\di) = /(xi|0i) /(x2|xr, di) • • • • • • , Xn_r, di) . (2-18)
Next consider a stopping process such that, given a particular value of the 

parameter 0i which characterizes the data-generating process and a particular 
value of another (scalar or vector) state parameter 02, the probability that a first 
observation Xi will be made is

<Kl|0i, 02) , (2-19a)
while given these same two parameters and a particular set (xi, • • , xk) of observa
tions already made, the probability that at least one more observation will be made 
before the experiment terminates is

<t>(k +  l|xi, • • • , xk) 0i, 02) . (2-19b)
The likelihood that an experiment involving these two processes will result 

in the sequence of exactly n elements z = (xi, • • • , x„) is obviously
t(z\6h 02) = </>( 1 |01, 02) /(xi|0i) • <f>(2\xi] 01, 02) /(x2|xi; 0i)

• <#>(3|xi, x2; 0i, 02) • • • /(x„|xi, • • , x„_i; 0i)
• [1 -  <t>(n +  l|xi, • • • , xn; 0i, 02)] ,

so that if we define h(z\6i) as in (2-18) and
s(n\z; 0i, 02) = </>(l|0i, 02) • • • 0(n|xi, • • • , xn_i; 0i, 02)

we may write
• [1 -  <f>(n +  l|xi, • • • , xn; 0i, 02)]

t(z\6h 02) = h(z\di) s(n\z; 0i, 02) .

(2-20)

(2-21)

The likelihood of the sample depends both on the data-generating process through 
h(z\$i) and on the stopping process through s{n\z; 0i, 02).

2.3.3. Noninformative Stopping Processes
In most situations where an experiment can be decomposed in the way just 

described, 02 is a nuisance parameter in the sense of Section 2.2.4: the utility of 
(e, z, a, 0i, 02) depends on the state parameter 0i which characterizes the data- 
generating process but does not depend on the state parameter 02 which partially 
characterizes the stopping process. If this is true, then after the experiment has 
been conducted and both e and z are fixed the rational choice of an act a will depend 
only on the marginal posterior distribution of 8i and not on the complete posterior 
distribution of (8h 82).

We therefore now inquire into the conditions under which the factor s(n\z)6h 02) 
in the sample likelihood (2-21) can be disregarded in determining the marginal 
posterior distribution of 6i—i.e., into the conditions under which the nature of 
the stopping process is totally irrelevant to 8\. In the light of the discussion of 
marginal sufficiency in Section 2.2.4, one set of sufficient conditions is virtually 
self-evident. If

1. s{n\z; 0i, 02) does not actually depend on 0i,
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2. #i and 02 are independent a priori,
then the factor s(n\z; 0i, 02) in the likelihood (2-21) will have no effect on the dis
tribution of 0i. When this is true, the factor h(z\6i), which depends only on the 
data-generating process, can be taken as a kernel of the likelihood for Si, and the 
stopping process will be said to be noninformative for Si.

► To prove that the two conditions just cited permit us to determine the marginal posterior 
distribution of Si by use of h(z\6i) alone, we observe that they permit us to write

f(z\Bi, 02) = h(z\6i) s(n|z; Oi, d2) = h(z\9i) s(n\z; d2) ,

D'(0i, e2) = D'i($i) D£(02) .

By (2-2) we then have for the joint posterior density of (Si, S2)

D"(0i, OJiz) oc D[(di) D'2(d2) h(z\di) s(n\z; $2) , 

and integrating out 6% we obtain

D"(0i|z) oc D((0i) h(z\6i)
as was to be proved. <4

Quite obviously, if h(z\6i) is a kernel for Sx of l(z\6i, 02) and if h(z\di) can be 
factored

/l(2 |0 l) = k(z\6i) p(z) ,

then k(z|0i) is also a kernel for Si of l{z\(h, Oi). If furthermore there exists a func
tion y on Z such that, for any z in Z,

h(z\$i) = k(jf(z)|0i) p(z) ,

then y can be said to be marginally sufficient for §1.
Stopping in Continuous Time. So far we have considered the problem of 

stopping only in the case where the data generating process is a discrete stochastic 
process generating {£», i = 1,2, •••}. Since for all practical purposes it is in
tuitively clear that the essence of our results for this case can be extended to the 
case where the stochastic process is defined in terms of a continuous (time) pa
rameter, generating {2t, t > 0} rather than {£i, i > 1}, we shall not give a formal 
statement or proof of the extension.

Example 1. Let the data-generating process be a Bernoulli process generating 
independent random variables £i, • • • , £i, • • • with identical mass functions

/(* |0i) = e\(\ -  0!)i-* , x = 0 , 1 ;

and consider the following stopping processes (ways of determining the number 
of observations n ):

1. The experimenter by an act of free will decides before the experiment 
begins that he will observe exactly n trials. The stopping probabilities 
(2-19) are thus
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*(fc +  1 |*„ = ff J f ” ’

and by (2-20)
s(n\z;6h ft) = 1 .

2. The experimenter decides to observe the process until r Ts have occurred 
(or has $r to spend and each observation costs $1 which is refunded if 
t  = 0). The stopping probabilities are

</>(& +  i |xi, • • • ,  xk\ 0i> h) = {!. if, 5 r iXi <  r '
tO if 2,*-i Xi = r ,

and
s(n|z;ft, ft) = 1 .

Because s(n\z; ft, ft) is simply a constant, these two stopping processes are neces
sarily noninformative and

fc(*|ft) = n?.i [*f(l -  ft)1- - ]  = «f"(l -  ft)"”2'* (2-22)
is a kernel for Si of the outcome z = On, • • • , xn).

In this example the first of the two stopping processes is “deterministic” while 
the second is “probabilistic” . Notice, however, that instead of regarding the 
Bernoulli data-generating process as consisting of a sequence of trials each of which 
may be either a success (£, = 1) or a failure (£, = 0), we can regard it as consist
ing of a sequence of intervals each of which is measured by the number of trials 
n»=  1, 2, • • • , oo required to obtain one success. If we do so regard it, then it is 
the second stopping process described above which is “deterministic” , since the 
number r of intervals which will be observed is fixed in advance, while the first 
stopping process is “probabilistic”.

Example 2. Consider the same data-generating process as before but assume 
that the stopping process is the following. The person operating the data-generat
ing process knows the true value of Si and says that if Si < \  he will stop the process 
after the 10th x has been generated but that if Sx >  £ he will generate 20 xs; the 
experimenter observes the process until it stops. The likelihood of z = (xi, • • • , x„) 
is then

t(z\0iy ft) = h(z\0i) s(n|z; ft) 
where fc(z|ft) is defined by (2-22) and

rl if n = 10, ft <  % , 
s(n\z\ ft) =5 < 1 if n = 20, ft >  \  , 

lo otherwise .
The stopping process is necessarily informative.

Example 8. Consider the same data-generating process as before but assume 
that a coin is tossed before each trial is observed and that the experiment is stopped 
as soon as tails occurs. Letting ft denote the probability of tails we have for the 
stopping probabilities

4>(k +  i|*i, • •• ,**;  ft, ft) = l -  ft ;
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the likelihood of (xi, • • • , x„) is
t{z\eh St) = h(z\d\) 02(i -  e2y  .

The factor h(z\6i) can be taken as a kernel for 61 provided that 61 and S2 are inde
pendent a priori; on this condition, the stopping process is noninformative for 6lm 

Example 4- A production process generates items which may have either or 
both of two possible defects d\ and d2. For i  = 1, 2, • • • and j  = 1, 2, let

r1 does
Xij = < if the ith item possess defect dj .

LO does not
The process thus generates vector-valued random variables (£n, £u), • • • (Hu, £i2),
• • • ; we assume that it behaves as a double Bernoulli process with parameter 
0 = (0i, d2) and that given 0 the components (£,i, £,2) are conditionally independent 
for all i . An experiment is conducted by observing the process until the r2th 
defect of type d2 is observed; this turns out to occur on the nth trial and the n trials 
turn out to contain n  defects of type d\. The likelihood of this outcome is

l(z\di, 62) = h(z\6i) s(n\z; 0i, 02)
where

h(z\6i) = 0f(l -  0i)n_ri, 2 =  ( i l l ,  • • *, Xnl)

«(n|*i ft, «■) -  -  « —  ■

Suppose now that a decision problem turns only on 6\ in the sense that an act a 
must be chosen and u(e, z, a, 0i, 02) does not actually depend on 02 for any a in A. 
Then 7i(z|0i) is a kernel for 6i of l(z\Oh 02) and (ri, n) is marginally sufficient for 6i 
provided that 6i and 02 are independent a priori; with this proviso, the stopping process 
is noninformative for 6\. If on the contrary &i is not independent of 02, then 
s(n|z;0i, 02) must also be taken into account in determining the marginal pos
terior distribution of 6\\ the stopping process is indirectly informative for &i even 
though it does not depend on 0i.

2.3.4• Contrast Between the Bayesian and Classical Treatments 
of Stopping

The essence of our discussion of noninformative stopping can be summed up 
informally as follows. In Bayesian analysis, the decision maker asks what action 
is reasonable to take in the light of the available evidence about the state 0 of 
the world. If this evidence happens to include knowledge of the outcome z0 of 
some experiment, this knowledge is incorporated with the decision maker’s other 
information by looking at the likelihood of z0 given each of the possible states 0 
which may prevail; the process does not involve looking at the implications of any 
zs which were not observed. Since moreover the description zQ of the experimental 
outcome includes all information required to compute the likelihood of that out
come given every possible 0, there is no need to know anything further about the 
experiment e which produced the outcome—such information would bear only on 
the likelihoods of the zs which were not observed.
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Thus suppose that a sample from a Bernoulli process consists of 10 trials the 
third and last of which were successes while the remainder were failures. Unless 
the decision maker sees some specific logical connection between the value of the 
process parameter p and the fact that the experiment terminated after 10 trials 
and 2 successes had been observed, his posterior distribution of p will be the same 
whatever the reason for termination may have been, and that part of the complete 
description of e which states this reason is therefore totally irrelevant.

In classical analysis, on the contrary, it is meaningless to ask what action is 
reasonable given only the particular information actually available concerning the 
state of the world. The choice of action to be taken after a particular zQ has been 
observed can be evaluated only in relation to requirements placed on a complete 
decision rule which stipulates what action should be taken for every z which might 
have been observed; and for this reason classical analysis usually depends critically 
on a complete description of the experiment which did produce zQ because this 
same e might have produced some other z.

Thus suppose that the decision maker wants to make a minimum-variance 
unbiassed estimate of the process parameter p on the basis of the sample described 
just above. If he knows that the person who actually conducted the experiment 
decided in advance to observe 10 trials, he must estimate

* r 2 
Pl = n = TO ’

whereas if he knows that the experimenter decided in advance to observe 2 suc
cesses, he must estimate

P2 =
r -  1 
n — 1

1
9 ;

and this is true even if the decision maker is absolutely convinced (a) that the true 
value.of the process parameter p cannot possibly have had any effect on the deci
sion made by the experimenter, and (b) that the decision made by the experimenter 
cannot possibly have had any effect on the true value of the process parameter p.

Again, if the decision maker wishes to test the null hypothesis that p > \  
against the alternative hypothesis that p < then if he knows that n = 10 was 
predetermined by the experimenter, he must compute the binomial probability

P{f < 2|p = i  n = 10} = .0547

and conclude that the experimental evidence against the null hypothesis is not 
significant at level .05; whereas if he knows that it was r = 2 on which the experi
menter decided in advance, he must calculate

P{n > 10|p = r = 2} = P{f < 2|p = *, n = 9} = .0195

and conclude that the evidence is significant at level .05.
If the stopping process is not well defined—and this is more common than not 

in situations where the experimental budget is fixed but the cost in time or money 
of each observation is uncertain—then it is impossible in classical theory to make 
unbiassed estimates. Hypotheses are usually tested under such circumstances by
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means of conditional tests, but it should be observed that when the stopping process 
is not well defined the choice of the condition is completely arbitrary and therefore 
the result of the test is completely arbitrary. If a sample from a Bernoulli process 
consists of 10 observations only the third and last of which are good, we may think 
of the process as generating random variables h , • • • , £* , • • •  where x = 0, 1 and 
apply a test conditional on the fact that 10 observations were taken, thus obtaining 
the level of significance .0547. We may however equally well think of the process 
as generating random variables hi where n = 1, 2, 3, - is the number of trials re
quired to obtain a success; in this case the sample consists of two observations 
n\ = 3, = 7, and a test conditional on the fact that 2 observations were taken
leads to the level of significance .0195.

2.3.5. Summary
To summarize the discussion in Section 2.3, suppose that a Bernoulli process 

has yielded a sample consisting of r successes and (n — r) failures. (1) As far as 
the implications of this particular sample are concerned, it will usually be quite 
immaterial in the further analysis of the problem whether r was predetermined 
and n left to chance, or n was predetermined and f left to chance, or neither r 
nor n was predetermined and the experiment was terminated in some quite other 
way. Even though the actual likelihood of this particular sample may well de
pend on the stopping process, the likelihoods for all noninformative stopping proc
esses have a common kernel and therefore all lead to the same posterior distribu
tion. (2) On the other hand, we shall also be concerned with the problems of 
experimental design as they look before any sample has actually been taken, and 
then we shall want to ask what can be expected to happen if  we predetermine r 
rather than n, and so forth. The reader must keep in mind throughout the re
mainder of this monograph that the extent to which the complete description of e 
enters a Bayesian analysis depends on the exact nature of the problem being 
analyzed.
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Conjugate Prior Distributions

3.1. Introduction; Assumptions and Definitions

Unless the state space 0 contains a very limited number of possible states {0}, 
it will usually be simply impossible for the decision maker to assign a prior prob
ability to each 0 individually and then verify the consistency of these assignments 
and make adjustments where necessary. In most applied problems the number 
of possible states will be extremely large if not infinite—think of the number of 
possible levels of demand for a given product or of the number of possible yields 
with a given fertilizer—and the decision maker will be forced to assign the required 
probabilities by specifying a limited number of summary measures of the distri
bution of 8 and then filling in the details by some kind of “reasonable” short-cut 
procedure. Thus the decision maker may feel that his “best estimate” of demand 
is 6 =  2500 and may feel sure enough of this estimate to be willing to bet even 
money that 8 is between 2000 and 3000, but at the same time he may feel that 
further refinement is not worth the trouble and may be willing to act consistently 
with the implications of any “reasonably” smooth and symmetric distribution of 8 
which has a mode at 6 = 2500 and which assigns probability i  to the interval 
2000 <  0 < 3000.

An obvious way of finding a specific distribution to meet specifications of this 
kind is to start by selecting some family of distributions defined by a mathematical 
formula containing a certain number of adjustable parameters and then to select 
the specific member of this family which meets the decision makers quantitative 
specifications by giving the proper numerical values to these parameters. Thus 
in the example just cited, a Normal distribution with mean 2500 and standard 
deviation 746 may fully satisfy the decision makers requirements; or in a situation 
where 8 represents a process fraction defective and is therefore certain to have a 
value in the interval [0, 1] the decision maker’s requirements may be fully satisfied 
by some member of the beta family, all members of which have the convenient 
property of restricting the domain of 8 to the interval in question.

8.1.1. Desiderata for a Family of Prior Distributions
The fact that the decision maker cannot specify every detail of his prior dis

tribution by direct assessment means that there will usually be considerable lati
tude in the choice of the family of distributions to be used in the way just described 
even though the selection of a particular member within the chosen family will

43



3.1.1 Part I: General Theory

usually be wholly determined by the decision maker's expressed beliefs or betting 
odds. Our objective in the present chapter is to aid the useful exploitation of this 
latitude by showing how it is possible in certain commonly occurring situations to 
find a family F of distributions which at least comes very close to satisfying the 
following desiderata.

1. F should be analytically tractable in three respects: (a) it should be reason
ably easy to determine the posterior distribution resulting from a given 
prior distribution and a given sample; (b) it should be possible to express 
in convenient form the expectations of some simple utility functions with 
respect to any member of F ; (c) F should be closed in the sense that if the 
prior is a member of F, the posterior will also be a member of F.

2. F should be rich, so that there will exist a member of F capable of expressing 
the decision maker's prior information and beliefs.

3. F should be parametrizable in a manner which can be readily interpretedf 
so that it will be easy to verify that the chosen member of the family is 
really in close agreement with the decision maker's prior judgments about 0 
and not a mere artifact agreeing with one or two quantitative summariza- 
tions of these judgments.

To help guide the reader through the discussion that follows we shall outline 
very briefly the general procedure which we shall use in generating families of 
prior distributions that satisfy these desiderata in the special but very important 
case where the sample observations are independent (conditional, of course, on 
knowing the state parameters) and admit of a sufficient statistic of fixed dimen
sionality. Denoting this sufficient statistic by y and its range by Y, we shall 
show that it is possible to construct a family F of prior distributions for 6 where 
each member of F is indexed by an element of Y. In addition, we shall show that 
if we choose for $ a particular member of F indexed by y ', say, and if a sample then 
yields a sufficient statistic y, the posterior distribution will also belong to F and 
will be indexed by some element of F, say y" . The binary operation of combining 
y ' and y to compute y" = y' *y  will be examined in great detail for several data- 
generating processes, and the family F indexed by Y will be shown in many cases 
to be tractable, rich, and interpretable.

3.1.2. Sufficient Statistics of Fixed Dimensionality
We consider only data-generating processes which generate independent, 

identically distributed random variables £h • • • , • • • such that, for any n and any
(xi, • • • , x„), there exists a sufficient statistic

2/n(xi, * • • , xn) = y = (2/i, * • • , Vh * • • , y>)
where yj is a (possibly restricted) real number and the dimensionality s of y does 
not depend on n. More formally, we assume throughout the remainder of this 
chapter that

1. If the likelihood of a sample (xi, • • • , x„) is A»(xj, • • • , x„|0), then the joint 
likelihood of any two samples (xh • • • , xp) and (Xp+i, • • • , xn) is

(xi, * * ■ , Xp|$) • Ai—p(xp+1, * * ■ , xn|0) .
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2. Given any n and any sample (xi, • • • , xH) there exists a function k and an 
8-tuple of real numbers §„(xi, • • • , x n) = y =* (ylt • • • , */,), where s does not 
depend on n, such that

tn(x 1, • • * , Xn\B) OC k(l/|^) . (3-2)
The families of prior distributions which we shall discuss in this chapter exploit 
the second of these assumptions directly and also exploit the following easily proved 
theorem which rests on the two assumptions together.

Theorem. Let y(1) = yp(xi, • • • , xp) and let y(2) = yn- P(xP+i, • • • , x„). Then 
it is possible to find a binary operation * such that

2/(l> * y (2) = y* = (y*, • • • , y*) (3-3a)
has the properties

ln(xh • • • , xn\6) cc k(y*\6) , (3-3b)
k(y*\6) cc k (y<»\6) • k(y™\6) . (3-3c)

The point lies of course in the fact that y* can be computed from y(1) and y{2) 
alone, without knowledge of (xi, • • • , xn).

Proof. Given y(1) and y{2) we can always find some p-tuple (x(, • • • , xp) 
and some (n — p)-tuple (xp+i, • • • , x'n) such that yp(x 1, • • • , xp) = y(l) and
yn- p(xp+1, • • • , x'n) = y{2). Having found these fictitious experimental outcomes
we may define the operation * by

y(i) * y{2) =  yn(x'h • • • , x'p, xp+u • • • , xi) (3-4)
because, by assumptions (3-1) and (3-2),
(a) fn(xi, * * * , Xn|̂ ) = t p(Xif * ‘ * , Xp|0) * A»—p(*Ep+l, * * * , xn|0)

cc k(y™\6) • k(y™\6) ,
(b) /„(x(, • • • , x£|0) = tp(x[y • • • , x;|^) • <n-p(x;+1, • • • , x£|0)

cc k{yW\e) • k(i/<2>|0) ,
(c) U x ’u • • • , xi|®) cc k(t/*|0) .
The theorem follows immediately from these results.

The usefulness of the theorem will depend largely on the fact that when y is of 
fixed dimensionality we can usually find a very simple * and show that it is equiva
lent to * as defined by (3-4). It can be shown that if (and only if) the common 
density of the individual observations £ is of the exponential formf and meets 
certain regularity conditions, then it is possible to find sufficient statistics of fixed 
dimensionality for which the * operation consists of simple component-by-com
ponent addition, i.e., for which the tth component of y il) * y{2) is simply

y* = ytl) +  y*2) , i = l, • • • ,« •
We shall make no use of this fact, however, partly because we do not wish to restrict 
our discussion to the exponential class but principally because even within the

f Cf. B. O. Koopman, “On Distributions Admitting a Sufficient Statistic,” Tram. Amer. 
Math. Society 39 (1936) 399-409.
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exponential class we shall often find it more convenient to work with nonadditive 
sufficient statistics.

Example 1. Consider a Bernoulli process with parameter 0 = p generat
ing independent random variables £i, • • • , £», • • • with identical mass functions 
pz(l — p)l-z where x = 0, 1. If we define

n = number of random variables observed ,
r = 2 Xi ,

then the likelihood of a sample (xi, • • • , xn) is obviously

the statistic
tnix 1, • • • ,2*10) = pZxi  1 - p)"“ 2jr' = pr(l -  p)n~r :

V = (2/i, 2/2) = (r, n)
is sufficient and is of dimensionality s = 2 independent of n. Furthermore, given 
that two samples described by (ri, ni) and (r2, n2) have been observed, we can 
verify that

y* = 2/(l) * 2/(2) = (n, ^1) * (r2, fh) = (ri +  r2, ni +  r^) (3-5)
has the properties (3-3b) and (3-3c) either (1) by arguing that if we “pool” any 
two samples described by (n, ni) and (r2, r^) the pooled sample will contain ni + 
values ri +  r2 of which are equal to 1, or (2) by multiplying

— p)n, — r* • 2^(1 — p)n,“r* = pri"̂r*(l — pjm+nj-ri-rj >

In this example, the operation * consists of simple component-by-component 
addition.

Example 2. Consider an Independent Normal process with parameter 
0 = (pf h) generating independent random variables £1, • • • , • • • with identical
densities

(2tt) " I  , — 00 < x  < 0 0  ;

and define
n = number of random variables observed ,

m = -  2x* n y

v = ^ 3 3  2  -  »)*
. 0

if n >  1 , 

if n = 1 .
I t is shown in Section 11.5.1 that the likelihood of a sample (xi, • • • , xn) from this 
process is

U x  1, ••• , xn|0) = ( 2 x ) - i " e - J ^ “ M)»fci"

the statistic
oc #»)*+(«-i)»] hin :

y = (yi, yt, y*) = (m, v, n)
is sufficient and of dimensionality 8 = 3 independent of n. The reader can verify 
that

yu) * yW =  (mi) Vl) n,) * (m2) n,) = (m*, v*, n*) (3-6a)
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where

n* = n i +  n2 m* = — (nimi +  n2m2) , w

V* = n* -  1 {[(ni — l)v\ +  niTM?] +  [(n2 — l)t;2 +  n2ra2] — n*m*2}

(3-6b)

In this example the * operation is simple addition for only one component; but if 
we had chosen the sufficient statistic

y = (yi> 2/2,2/3) =  (2 Xi, 2  x i, n)
the * operation would have been simple addition for all three components.

Example 3. As an example of a process which is not of the exponential class, 
consider a process generating independent random variables Xx, • • • , Xi, • • • each of 
which has a uniform distribution over the interval [0, 6] where 6 >  0, and define

n = number of random variables observed ,
M = max {x,} .

I t is easy to see that the likelihood of a sample (xi, ■ • • , x„) can be written

tn(x 1, • • • , x„|0) = 6(6 — M) where

the statistic
y = (2/1,2/2) = (A/, ri)

0 if a <  0 ,
1 if a > 0 ;

is sufficient and of dimensionality 8 = 2 independent of n. I t is also easy to verify 
that

y{\) * y{2) = ni) * n2) = (max Mi}, nx +  r^) :

the * operation on the component Af is not addition and it is impossible to find a 
sufficient statistic such that * does consist of component-by-component addition.

3.2. Conjugate Prior Distributions

3.2.1. Use of the Sample Kernel as a Prior Kernel
Instead of considering the kernel function k defined by (2-12) as a function 

k(-l0) with parameter 6 on the reduced sample space Y, we can consider it as a 
function k(y \ •) with parameter y on the state space 0. We shall now examine the 
conditions under which a density function f(-\y) with parameter y on the state 
space 0 can be derived by defining

/(% ) = N{y) k(j/|0) (3-7)

where A is a function of y still to be determined. Such a density /(• \y) on 0 will 
be called a natural conjugate with parameter y of the kernel function k.

All that is required for a function f(-\y) defined on 0 to be a proper density 
function is (1) that it be everywhere nonnegative and (2) that its integral over 
0 be 1. Since k(-|0) is a kernel function on Y for all 6 in 0, k(y|0) is necessarily 
nonnegative for all (y, 6) in Y  X 0; and f(6\y) as defined by (3-7) therefore satisfies
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the first requirement automatically if y is restricted to Y  and N(y) is positive. I t  
follows that i f  the integral of k(t/| •) over 0 exists, we can define N(y) by

[N(y)]~'= f e k(y\0)d» (3-8)

an d /( |z/) as defined by (3-7) will be a proper density function on 0.
Example 1. I t is shown in Section 11.3.1 that the likelihood of observations 

(.xi, • • • , x„) on an Independent Normal process with known precision h > 0 and 
unknown mean 8 = £ can be expressed in terms of the sufficient statistic

y = (m, n) = ( - 2  x», n \n
by the kernel

k(y\d) = 6-lAn(m —m)’ .

Since the integral of k(y\ •) over 0 = ( — <*>, +oo) for fixed y in Y  is

j *  e-\hn(m-»)* dp = (2 ir)l , — oo <  m <  oo , 
n = 1,2, ••• ,

we may take the f u n c t i o n hn) of y with parameter (m, n) defined by

fs(y\m y hn) = (2ir) 1 (hn)i e lhn(m <*)* 

as a density function for /Z.

— oo < m < oo , 
n = 1,2, ••• ,

Example 2. To see that we may not simply assume that the integral of k(y\ •) 
over the state space 0 will converge for any parameter y in the range Y  of the statis
tic y , consider the rectangular process discussed in Example 3 of Section 3.1.2, 
where it was shown that the likelihood of observations (xi, • • • , xn) can be ex
pressed in terms of the sufficient statistic

by the kernel
y = (A/, n) = (max {x<}, n) 

k(y\6) = d~n 8(6 — M) , 0 > 0 .
Although n = 1 is in the range of the statistic y, the integral of k(y\-) over 0 = 
(0, oo) for fixed y = (A/, n),

converges only if n is greater than 1.

S.£.£. The Posterior Distribution When the Prior Distribution 
Is N  atural-C on jugate

We have seen in Section 2.2.2 that if the prior density of 6 is D '(-), if y = y(z) 
is a sufficient statistic, and if k(y\d) is a kernel of the likelihood of z given 6, then 
the posterior density of 8 given y is D"(-|t/) as defined by

D"(0|y) oc D'(0) k(y\0) .
We have also seen, in Section 3.1.2, that if y is of fixed dimensionality we can always 
find an operation * such that
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k(t/(1)|0) • k(?/(2)|0) oc k * y™\0) .
It follows immediately that if D' is a natural conjugate of k with parameter yf 
in the range Y  of the statistic y , i.e., if

D'(0) cc k(y'\d) , y’ e Y , 
and if a sample yields a sufficient statistic y , then

D"(*|y) oc k (yf\6) k(y\e) oc k(</' * y\0) ; (3-9)
the kernel of the prior density combines with the sample kernel in exactly the same way 
that two sample kernels combine.

Example. We return to the first example in Section 3.2.1, an Independent 
Normal process with known precision h and unknown mean § = j2, and recall that 
in terms of the sufficient statistic

y = (m, n) = ( - 2  x», n \n
the likelihood of (xi, • • • , x„) is proportional to

k(y|0) = e- §*»(.»-#.)» .

The reader can readily verify that if we have two statistics y ' = (m', n') and 
y = (ra, n), then by the definition (3-4) of the * operation

y = y * y  = i  ~r+ n  > n +  n 1 =  (m n ) . (3-10)

By (3-9) we may therefore infer that if the prior density of 8 = j2 is 
D'(0) = M/xlm', An') oc

and the parameter (m', n') is in the range of the statistic (m, n), then the density 
posterior to observing a sample with sufficient statistic (m, n) will be

D"(»\y) = / at(m|w", An") oc *-**»"(«"-,.)* . (3-11)

This result obtained via the * operation can of course be verified by using Bayes’ 
theorem (2-13) to write

D = D"(/i|m, n) OC hn'im'-tf e-\hn{m-*)* =

and completing the square in the exponent.

3.2.3. Extension of the Domain of the Parameter
The result (3-9) indicates immediately that families of natural-conjugate 

priors with parameter y in the range Y  of the statistic y are very likely to have 
the properties of traxtability which we listed as desirable at the beginning of this 
chapter. The family will be closed: a Normal prior yields a Normal posterior, 
and so forth. The posterior for given prior and sample will be easy to find if the 
operation * is simple; we have already seen that it is simple for samples from 
Bernoulli, Normal, and rectangular processes, and we know that it can be simple 
for any process of the exponential class. Finally, the fact that the likelihood 
functions from which these priors are derived have been well studied and tabulated
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means that it will often be possible to evaluate expectations of utility functions 
in terms of tabled functions.

On the other hand, the richness of families of natural-conjugate densities can 
obviously be very greatly increased by extending the domain of the parameter y 
to include all values for which (1) k(y|0) is nonnegative, all 0, and (2) the integral 
of k over 0 converges. We are clearly not obliged to restrict the parameter y to 
the range Y  of the statistic y if these two conditions are met by all ys in some larger 
domain; and we shall now show by examples that an extended family of densities 
obtained in this way is often just as tractable as the original family.

Example 1. Consider again the Independent Normal process with known 
precision h and unknown mean 6 = ft which was considered in the first example in 
Section 3.2.1 and again in the example in Section 3.2.2. Since the integral

Jq k(y\6) dd = f ”"

converges for all real n >  0 and not just for the values n = 1, 2, • • • in the range of 
the statistic n, we may take the entire half line n > 0 as the domain of the param
eter n. The natural-conjugate family in which n had the domain {1, 2, • • •} was 
convenient because, as we saw in (3-11), a prior density

fN(y\mf, hn') oc e- i
yielded a posterior density of the same form with parameter

(m", n") = (m', n') * (m, n)
given by the simple * operation defined by (3-10). I t is easy to verify by applica
tion of Bayes1 theorem that the same operation holds when the domain of n is 
extended to n > 0, even though proof by the interpretation (3-4) is no longer 
possible.

Example 2. Consider again the Bernoulli process with parameter 0 = p dis
cussed in the first example of Section 3.1.2, where the likelihood of the sample 
outcome y = (r, n) was shown to have the kernel

k(y|0) = pr( 1 -  p)n~r .
I t  is well known that the integral of k(y \ •) over 0 = [0, 1] converges for all real 
r >  — 1 and n > r — 1 to the complete beta function,

JQl pr( 1 -  p)n~r dp = B(r +  1, n -  r +  1) ,

and we can therefore obtain a richer family of densities by allowing the parameter 
y = (r, n) to have any value in the domain thus defined instead of restricting it 
to the range of the statistic (f, n), which includes only the integers such that 
r >  0 and n > max {1, r} .

Purely for notational convenience we shall actually make this extension, not 
by allowing the parameter (r, n) to take on negative values, but by writing the 
density in the form

M v\r, n) = ^  1 -  p)"-r- ‘ , n >  r >  0 . (3-12)

3.2.3 Part I: General Theory
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Placing primes on the parameters r and n of this density to indicate a prior density 
and letting (r, n) denote the actual sample outcome it is easy to verify by applica
tion of Bayes* theorem that the posterior density will be of the same form as the 
prior with parameter

(r", n") = (r', n') * (r, n) = (r' +  r, n' +  n) ;

the extended family remains closed and the * operation is the same as it was when 
applied in (3-5) to two statistics (rh ni) and (r2, n2).

8.2.4. Extension by Introduction of a New Parameter
The results of the last section can be summarized by saying that a natural- 

conjugate family can often be enriched without loss of tractability by extending 
the domain of the parameter y beyond the range of the statistic y\ the essential 
reason why the enrichment is “free” is that existing tables serve as well or virtually 
as well for the extended as for the original family. We shall now examine another 
way of enriching a conjugate family without loss of tractability. As before, we 
do so by examining the natural conjugate density to see whether additional flex
ibility can be introduced without any change in the essential mathematical prop
erties of the function; but this time what we look for is an opportunity to introduce 
an additional parameter rather than an opportunity to extend the domain of an 
existing parameter. We shall first try to make the general idea clear by an artificial 
example, and we shall then go on to exploit the idea by applying it to the Independ
ent Normal process with both mean and precision unknown.

As an artificial example, suppose that instead of considering the Bernoulli 
process in its general form we had considered a Bernoulli process constrained to 
stop as soon as but not before the tenth trial is produced. For such a process the 
single statistic r = number of successes is sufficient, the likelihood of a sample is 
proportional (actually equal) to

pr(l _  p ) i o - r  ? r > 0 ,

and the natural conjugate density would have this same expression as its kernel. 
Consideration of this kernel as a function of p would however immediately reveal 
that, in the notation of (3-12),

pr(i _  p)>o—'a : fr{p\r +  1, 12) ;

and since we know that the general (two-parameter) beta function is just as tract
able as this special case, we would realize at once that the family could be enriched 
at no cost by (a) introducing another parameter, n, and (b) redefining the param
eter r, so that the conjugate family becomes

//j(p|r, n) cc p ^ l  — p)n_r_1 , n > r > 0 .

We now turn to the really important application of this idea, to the Inde
pendent Normal process with both mean £ and precision h unknown. As we re
marked in the second example of Section 3.1.2, it is shown in Section 11.5.1 that 
the statistics
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n = number of random variables observed , 
l vm *  - Z  Xi , n

f—^r2(x*' — m)2 if n >  1 ,v = 4 n — 1
l 0 if n = 1 ,

are sufficient for a sample from such a process and the sample likelihood is propor
tional to

e-\hn(yn-ti)* . g-jA(n-l)® ^ J (n - l)  ^

Considering this expression as defining a function of m and h we observe that when 
n > 1 and u > 0 it is the product of (1) a Normal conditional density of p given h 
and (2) a gamma marginal density of ft. Both these distributions are well known 
and tractable, and further investigation reveals (as shown in Section 11.5.5) that 
the marginal density of ju is the tractable Student density.

Now this natural-conjugate joint density has only three free parameters, 
m, v, and ft, and this gives us very little flexibility in assigning a prior distribution 
to two unknown quantities, p and h. We immediately observe, however, that if 
we replace the expression ft — 1 in the two places in which it occurs by a new, 
fourth parameter v} the mathematical forms of the two factors in the joint density 
will be unchanged; and from this it follows that the form of the marginal density 
of p will also be unchanged. In other words, no tractability would be lost if we 
took

e- l . e-\hn  ̂ „ , v >  0 ,

as the kernel of the conjugate density.
We now observe, however, that the complete integral of this kernel with 

respect to (/i, h) exists not only for v > 0, v >  0 but also for 0 >  v > — 1, v < 0, 
so that the family can be still further enriched by extending the domain of the 
parameters v and v beyond the range of the statistics v and v. For convenience 
of notation, however, we accomplish this same end by redefining the parameters 
v and v and writing the “Normal-gamma’̂’ conjugate density in the form

— oo < /X <  00 ,
/ vtCm, h\m, v, ft, v) cc ft} . e-\hw hh*-i y h > 0  ,

— oo <  m < oo , 
v, ft, v >  0  .

I t is shown in Section 11.5.3 that the * operation for obtaining the posterior param
eters from the prior parameters and the sample statistics remains simple: instead 
of the original operation (3-6) we have

ft"  =  ft' +  ft , m "  =  -77 (ft'm ' +  nm) , v" =  v +  v +  1 ,f t

v" = 4 ; [(rV +  n'm"1) +  (w +  nm*) -  n"m"*] .

Part I: General Theory
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3 .2 .5 . Conspectus of Natural-Conjugate Densities
To summarize the results obtained thus far we now give a conspectus of the 

natural-conjugate families for all the data-generating processes examined in this 
monograph. Full discussion of all but one of these processes will be found in 
Part III of this monograph.

Bernoulli Process

Defined as generator of either £s with mass function
X =  0 , 1 ,px(l _  py -r  t

or ns with mass function

(i -  p) " - 1 p ,

Sufficient Statistics: 
r = 2Xi ,
n = number of observed or

0 <  p <  1 ,

n = 1 ,2 , • - -
0 <  p <  1 .

j r = number of ns observed ,

Likelihood of sample: proportional to

pr( 1 -  p)n~r .
Conjugate prior density (beta):

M p W, n') oc p r' - ! (  1 -  p ) " ' - ' ' - 1 ,

Posterior density:

fe(p\r", n") where { r„ -  r ," t T ’IX = n + n .

Graphs of typical members of this family will be found ifl Section 7.3.2.

0 <  p <  1 , 
n' >  r' >  0 .

Poisson Process

Defined as generator of Xs with density

e-Xx X ,

Sufficient statistics:

r = number of Us observed , 

Likelihood of sample: proportional to

e-X( X” .

Conjugate prior density (gamma-1):

fyiih\r',t’)cz e - x‘'V '-> ,
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Posterior density :

/ 7 i(X|r", l") where ^  ̂ ’

Graphs of typical members of this family will be found in Section 7.6.2.

Rectangular Process

Defined as generator of £s with density
1 0 <  x <  6 ,
O' 6 > 0 .

Sufficient statistics:
n = number of £s observed , M  = max {xt} .

Likelihood of sample: proportional to

d~n 8(0 -  M) where 8(a) = ^  if a >  0 ’

Conjugate prior density (hyperbolic; not discussed in Part III):

Sh{0\M\ n')cc 0-*’ 6(0 

Posterior density:

n")

M ’) ,
e > o ,

A/' >  0 , n’ >  1 .

where M " = max {A/', M} , 
n" = n' +  n .

Independent Normal Process

Defined as generator of £s with density
— 00 <  X  <  00 ,

— 00 <  pi <  00 , h > 0

n Known, h Unknown
Sufficient statistics:

v — number of £s observed , 

Likelihood of sample: proportional to

Conjugate prior density (gamma-2 ) :
f y2(h\v', v')oc /**,'-! f

Posterior density:

w = -S (x i -  m) 2 . v

h >  0  ,
i/, */ >  0 .

fv" = /  +  V ,
/ t2(/i|v", v") where \ „ 1 , , , , .

1 7 \v = ^77 (vV +  vw) .

Graphs of typical members of the implied inverted-gamma- 2  density of 
will be found in Section 7.7.2.

54



h Known, n Unknown

Conjugate Distributions 3.2.5

Sufficient statistics:

n = number of Us observed , 

Likelihood of sample: proportional to
e -

m = -  2  Xi . n

Conjugate prior density (Normal):

fx(n |m', hn') cc -*»')* ,

Posterior density:

fx{y\m", hn") where

— oo < y, <  oo , h >  0  ,
— oo <  m' < oo , n' > 0  .

• n" = n' +  n ,

m" = “77 (n'm' +  nm) .

Sufficient statistics:
Both n and h Unknown

n : number of Us observed ,

m = -  S Xi , n
v = n — 1 (redundant) f ,

 ̂ _  f- S(x< — m) 2 if v >  0 ,

lo if p = 0 .
Likelihood of sample: proportional to

e- jAn(m-M)* #

Conjugate prior density (Normal-gamma):

/ v 7(m , ^ |m ', t/, n ',  v ')  oc h$ e ~ ^ v' h ^ ~ l ,

Posterior density:
f.vy(n, h\m", v", n", v")

where

n" = n' +  ft , m" = ^77 (n'm' +  nm) , 

v" = ^77 [(j/t/ +  n'm '2) +  (w +  nm2) — n"m "2]

— 00 <  n < 00 ,
fc >  0 ,

— 00 <  m ' <  00 ,
t/, n', /  >  0 .

= , ' +  „ +  1 ,

Marginal densities (prior or posterior):
t  By redundant statistics we mean statistics whose values are wholly determined by the 

values of the nonredundant sufficient statistics and which are introduced purely for mathematical 
convenience.
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fs(n\m}n/v,v) oc[v +  (M — m) 2 n/y]“ i (v+1) (Student),
f y2(h\vy v) oc e~^h¥Vh^v~x (gamma-2 ) .

Graphs of typical members of the implied inverted-gamma- 2  marginal density of 
<7 = h~i will be found in Section 7.7.2.

Independent Multinormal Process

Defined as generator of r X 1 vector xs with density
— 00 <  x < 00 ,

(27r)“ i r g - !*(*-#•)' ** (* - m> /l l r } - o o  < M < o o  ,
A > o , hi = 1 ,

where ft is an r X  1 vector and r| is an r X  r positive-definite symmetric matrix.

Sufficient statistics:
t| and h Known, p Unknown 

n : number of its observed ,

m = -  S x (i) . n
n =  n (redundant) 

Likelihood of sample: proportional to
n (m-fO

Conjugate prior density (Normal):

f%\p\m', /in') CC ?
°o <  M < 00 ,

/i >  0 ,
oo < m' < oo

where n' is an r X r positive-definite symmetric matrix. 
Posterior density:

/P M m ", /in") where n" = n' +  n ,
m" = n"_1(n'm' +  n m) .

Known, p and h Unknown
Sufficient statistics:
n: number of xs observed, n = nr\ (redundant), v = n — r (redundant) ,

m = - 2  x<» ,n

f - 2 (x(/) — m )t(x(i) — m)

lo
if v > 0  , 

if v = 0  .
Likelihood of sample: proportional to

c- (m-»i) foi' . h^" .
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Conjugate prior density (Normal-gamma):
h\m\ v', n', v) oc /jjr . 1

where
— <  m <  00 , fc > 0  , — oo < m' < oo , t/, /  > 0  ,

and n' is an r X r positive-definite symmetric matrix.
Posterior density :

where
n" = n' +  n , m" = n"_1(n'm' +  n m) , v" = /  +  v +  r , 

i/' = ^77 [(j'V +  m '1 n'm') +  (m +  m ' n m )  -  m "1 n"m"] .

Marginal densities (prior or posterior):

/ijr)G&|m, n/v, ?) °c [> +  (m — m^n/vXi* — m )]_ i ('+ r) (Student) ,

f y2(h\v, v) cc e~lh” h^¥~l (gamma-2 ) .

Normal Regression Process

Defined as generator of independent random variables yi} • • • , • • • such that for
any i  the density of y% is

-<*> < yi < «  ,
(2 ir)“ i exp [ - \h (y i  -  x,•,•&)*] /ii , - «  < 0 , <  »  , all j  ,

A >  0  ,
where the xs are known numbers.

Letting n denote the number of ys observed, we simplify notation by defining 
the vectors 0 and y  and the matrix X by

POL,II

<
Q

. y  =  [ y i  •

“ X n  • • • X u  X l r ~

x  = X i i  • • • X i j  * * * X i r

_ X n l X n j  * * * X nr _

Sufficient statistics: 

and any b satisfying

h Known, 0  Unknown

n = X‘ X

X*Xb = X‘y .

Likelihood of sample: proportional to

Conjugate prior density (Normal):
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—  00 <  <  00 f
fW(P\V, hn') <x e - i w - w n '<*-*•> , - « < & ' <  »  ,

h > 0  ,
where n' is an r X  r positive-definite symmetric matrix.
Posterior density:

/v(0l&", /m") where =  n//-i(n#jj/ 4. n {,) .

Both and h Unknown
Sufficient statistics:

n = X1 X , p = rank n (redundant) , v = n — p (redundant) , 
any b satisfying

X l X b  = X ly ,
and

V =  i  (y  -  X b)‘(y -  X b) .

Likelihood of sample: proportional to

Conjugate prior density (Normal-gamma):
fsy{^, h\b', v \ n', v') cc h\r . e-J* ,v b h '- i

where
- o o < / 3 < o o ) h > 0 ,
— 00 <  6' <  00 , » /,  t /  >  0 ,

and n ' is an r X r positive-definite symmetric matrix.
Posterior density :

fsylfi, h\b", v", n", ,")
where

n" = n' +  n , b" = n"_,(n'b' +  n b) , / '  = /  v +  p ,

v" = [(„V +  b" n'b') +  (w +  b' n b) -  b"‘ n"b"] .

Marginal densities (prior or posterior):

f f l f i \b,  n/v, r) <x [„ +  ( 0  -  b)‘(n/i> )(0  -  b )]-*<'+'> (Student) , 

/T2(b|a, v) oc 1 (gamma-2 ) .

3.3. Choice and Interpretation of a Prior Distribution

3.3.1. Distributions Fitted, to Historical Relative Frequencies
In some applications there will exist a substantial amount of “objective” 

evidence on which to base a prior distribution of the state 8; specifically, extensive
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experience may have made available a “solid” frequency distribution of values 
taken on by 6 in the past, it may be clear that 6 is itself generated by a fairly stable 
random process, and therefore most reasonable men might agree that the prob
ability distribution to be assigned to S on the present occasion should closely match 
the frequency distribution of actual historical values. In such cases it is easy to 
select a close-fitting member of the family of natural conjugates and the only im
portant question remaining for subjective decision is whether or not this distribu
tion fits the “true” distribution closely enough to warrant its use as a convenient 
approximation. I t is possible, of course, to raise questions about the best method 
of fitting the conjugate distribution, and it is virtually impossible to give conclu
sive theoretical answers to these questions; but what experience we have had with 
concrete examples convinces us that in the great majority of applications the 
method of fitting will have absolutely no material effect on the results of the final 
analysis of the decision problem at hand. Examples of the remarkable insensitiv
ity of results to even substantial changes in the prior distribution are given in 
Section 5.6.4 below.

3.3.2. Distributions Fitted to Subjective Betting Odds
The problem of assessing a prior distribution is much more difficult and 

interesting in those situations where no solid “objective” basis for the assessment 
exists. In such situations the prior distribution represents simply and directly 
the betting odds with which the responsible person wishes his final decision to be 
consistent; and, as we have already pointed out, the psychological difficulty of 
assigning such odds is so great that it will rarely if ever be possible for the decision 
maker to specify his “ true” distribution in more detail than by a few summary 
measures such as the mean, the mean deviation, or a few fractiles. Provided 
that these specifications are met by some member of the family of natural conju
gates, the decision maker will usually be as willing to act consistently with the 
implications of this distribution as with the implications of any other distribu
tion meeting the same specifications; but it is of course a responsibility of the statis
tical consultant who is about to base an analysis on this distribution to point out 
to the decision maker any extreme implications of the fitted distribution, and it is 
also his responsibility to suggest to the decision maker those summary measures 
which are easiest to assess subjectively for a given family of distributions.

To illustrate the choice of a prior distribution in this manner, suppose first 
that a decision problem turns on the true mean effect 6 = fi of a proposed change 
in package design on sales per customer or on the true effect fi of a proposed change 
in teaching method on the mean score obtained by students on a particular test; 
and suppose in either case that sales to individual customers or scores obtained 
by individual students can be treated as Normally distributed with known pre
cision h (known variance l//i), so that the natural-conjugate distribution of fi is 
Normal. I t is then natural to ask the decision maker first (a) what is his “best 
guess” A at the true value of fi and (b) whether his subjective distribution of fi is 
reasonably symmetric about this value. If the answer to (b) is “yes”, then a 
natural way to obtain the dispersion of the distribution is to ask the decision
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maker (c) to specify a symmetric interval about A such that he would be willing 
to bet at the same odds for or against the proposition that the true p lies within 
this interval. The statistician can then determine the Normal distribution which 
meets these specifications and can verify its suitability by calculating the prob
abilities P{A >  m} for a few values of p or by calculating the values p such that 
P{A >  m} = ol for a few values of a and asking the decision maker whether he 
accepts these implied odds.

As a second example, suppose that someone wishes to assign a distribution 
to the random variable 6 = p describing the Democratic vote in the next election 
as a fraction of the total vote. I t  may be very difficult for this person to assign 
a subjective expected value to p> but he may be quite able to express his judgment 
of the political situation by assigning probability $ (say) to the proposition that 
the fraction p will be greater than 50% and probability £ to the proposition that 
it will be greater than 53%. If this prior opinion is later to be combined with 
evidence obtained from a straw ballot, then (abstracting for our present purposes 
from practical difficulties of sampling and response bias) the sample observations 
will be almost exactly binomially distributed and the conjugate family is the beta 
family with density

Mp\r', n') cc p’-'-Hl -  p )" '-r' - 1 .
With a little trial-and-error calculation the statistician can determine that the 
member of this family with parameter (r' = 62.9, n' = 118.5) agrees quite closely 
with the specified odds; and he can then verify the suitability of the distribution 
by computing a few additional implied probabilities in one or the other of the ways 
suggested in our previous example.

Finally, suppose that a decision problem turns on the precision 6 = R of an 
Independent Normal process generating £s with common density

Sn {x Im , fc)o c  e - W x - M ) «  h i

Few people are used to thinking in terms of the precision R and it may therefore 
be very difficult to elicit any kind of direct opinion about R) but it may be quite 
possible to obtain betting odds on the process standard deviation 9 = firi and 
these odds can then be used to find the appropriate member of the conjugate 
gamma-2 family with density

f y2(h\v't i/ )c c  .

If the decision maker assigns probability \  (say) to the proposition that 9 >  5 
and probability J to the proposition that 9 >  10, then as shown in Section 11.1.4 
it is very easy with the aid of Figure 7.5 to determine that the member of this family 
with parameter (iv' = 12, v' = 1) agrees closely with the stated odds.

3.3.3. Comparison of the Weights of Prior and Sample Evidence
Even when the decision maker is well satisfied a priori with a distribution 

fitted to his subjective expectations or betting odds, he may become thoroughly 
dissatisfied with the implications of this distribution when he sees them reflected 
in the posterior distribution calculated after a sample has actually been taken.
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Suppose, for example, that after the bettor discussed in the previous section has 
assigned the distribution /p(p|62.9, 118.5) to the fraction voting Democratic in the 
next election, a simple random sample of 100 voters yields reliable information 
that only 45 of them will vote Democratic. The posterior distribution of p will 
have density fo(p\62.9 +  45, 118.5 +  100) = fo(p\ 107.9, 218.5), and this implies that 
the odds in favor of the Democrats are now 6 to 4, i.e., that P {p > .5} = .6. I t 
is quite conceivable, however, that a person who was originally willing to bet 3 to 1 
on the Democrats will still be willing to bet at nearly if not quite these same odds 
rather than at 6 to 4, arguing that in his opinion so small a sample carries very 
little weight in comparison with the analysis of the general political situation on 
which the original 3-to-l odds were based. I t is also quite conceivable that he 
will react in the opposite way, arguing that abstract political reasoning does not 
convince him nearly so well as solid evidence on the actual intentions of 100 voters, 
and accordingly he may now much prefer giving 3-to-l odds against the Democrats 
to giving 6-to-4 odds in their favor.

In either case, what has happened is simply that the person in question has 
made two different, mutually contradictory evaluations of the “weight” of the 
prior evidence; and in either case it is his next responsibility to reconcile these 
two evaluations in whatever way seems best to him. If he finally decides that 
his prior odds accurately represent his reasoned evaluation of the general political 
situation, then he should still be willing to give odds of 6 to 4 on the Democrats. 
If on the contrary he finally decides that he is now willing actually to give odds of 
3 to 1 against the Democrats, then he has implicitly reevaluated the weight which 
should be assigned to the prior evidence relative to the sample.

The possibility that posterior subjective feelings may not agree with calcu
lated posterior probabilities suggests that without waiting for an actual sample to 
give rise to difficulty it will usually be well to check subjective prior betting odds 
against hypothetical sample outcomes before beginning the actual analysis of the 
decision problem; and this in turn suggests that in some situations it may actually 
be better to reverse the procedure, making the initial fit of the prior distribution 
agree with attitudes posterior to some hypothetical sample or samples and then 
checking by looking at the implied betting odds. Thus if our bettor on elections 
had said (a) that without any sample evidence he would bet 3 to 1 on the Demo
crats, but (b) that the presence of only 45 Democratic votes in a sample of 100 
would lead him to reverse these odds, then from the implied right-tail cumulative 
probabilities

G*(.5|r', n') = f , G*(.5|r' +  45, n' +  100) = \  ,

the statistician could calculate r' = 9.4, n' = 16 to be the appropriate prior param
eters, implying a prior standard deviation of .12 where the distribution /a(p|62.9, 
118.5) implied a standard deviation less than .05.

I t is sometimes argued that a procedure which selects the prior distribution 
to agree with the desired posterior distribution violates the basic logic of Bayes, 
theorem, but in our opinion this argument rests on nothing but an excessively 
literal interpretation of the words “prior” and “posterior” . As we pointed out in
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Section 1.1.2, the decision maker's real task is to assign a measure to the entire 
possibility space 0 X Z in whatever way enables him to make the most effective use 
of his experience and knowledge; and in Section 1.4.3 we examined a situation where 
it was reasonable to start by actually assigning a complete set of “posterior” 
probabilities to 0 and then to compute the “prior” from the “posterior” probabil
ities. We go even further than merely rejecting the argument that prior prob
abilities must be assigned without consideration of posterior probabilities; we 
maintain that it is irresponsible to hold to an original prior distribution if after a 
real sample has been taken the resulting posterior distribution disagrees with the 
decision maker's best judgment. Since it is usually difficult to intuit directly 
concerning the relative weights to be given to prior and sample evidence, it may 
be that the decision maker will usually do well to place his primary reliance on 
prior expectations and betting odds; but even when this is true, calculation of the 
distribution posterior to a hypothetical sample will provide a useful check.

3.3.4- “ Quantity of Information”  and “ Vague” Opinions
In some situations the decision maker will feel that the information available 

prior to obtaining actual sample evidence is virtually non-existent. There has 
been a great deal of discussion concerning the representation of this state of mind 
by an appropriate prior distribution, and we shall now briefly review some of the 
principal arguments which have been advanced. Because the logic is slippery 
we shall proceed by first discussing an example which makes as good a case as can 
be made for the existence of distributions which express the absence of any definite 
prior convictions and then discussing further examples which bring out the diffi
culties involved.

Normal Prior Distributions. As we have already seen repeatedly, a sample 
from an Independent Normal process with unknown mean j2 but known precision h 
can be summarized by the sufficient statistic

y = (m, n) = ^  2 ,  (3-13a)

the natural-conjugate prior density is
M m ' ,  h ri)  oc , - *  <  m ' <  oo , (3_i3b)

n ^ u ,

and the parameters of the posterior density are

(m" ,  n") =  (m n ' )  * (m, n) =  ^  n ' +  n

The fact that the component n of the sample statistic (m, n) corresponds to 
the number of observations on the process makes it natural to think of this com
ponent as a measure of the “size” of the sample or of the “weight” of the sample 
evidence or of the “quantity of information” in the sample, and the measure thus 
defined has the obviously desirable property of being additive from sample to 
sample. Once we have made this observation, it is very tempting to interpret 
the parameters n' and n” of the prior and posterior distributions of p as measuring
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the quantity of information about p contained in those distributions; the posterior 
information n" will then be the sum of the prior and sample informations.

If the component n of the sample statistic (m, n) is to be interpreted as meas
uring the quantity of information in the sample, then it seems natural to interpret 
the component m as summarizing the import of this information; or since the ex
pected value of m given p is equal to p, we naturally tend to think of m as an 
“estimate” of p based on n units of information. I t  then becomes natural to think 
of the prior parameter m' as an estimate of p based on n' units of prior information, 
especially since the prior expected value of p is m', as can easily be shown. The 
whole approach seems to hang together logically when we observe that by (3-13c) 
the posterior parameter or “estimate” m" can be interpreted as a weighted average 
of the prior and sample estimates, the weights being the respective “quantities of 
information” n' and n.

Our inclination to interpret the prior and posterior distributions in this way 
becomes even stronger when we examine the behavior of the prior distribution of p 
as the parameter n' approaches the lower bound of its domain (0, oo). I t  is well 
known that the variance of the distribution (3-13b) is 1/fcn', so that as n' approaches 
0 the variance of p increases without bound; and it is also easy to show that as n' 
approaches 0 the distribution of p approaches uniformity in the sense that the 
ratio of the probabilities of any two intervals of equal length approaches unity, t  
An interpretation of n' as a measure of the quantity of information underlying 
or summarized by the decision maker’s prior “estimate” m! thus accords very 
well with two instinctive feelings: (1) that large variance is equivalent to great 
uncertainty and that great uncertainty is equivalent to little information, and
(2) that when one knows very little about the value of some quantity, it is not 
unreasonable to assign roughly the same probability to every possible value of this 
quantity (strictly speaking, equal probabilities to equal intervals).

Finally, we observe that as n' approaches 0 the parameters m" and n” of the 
posterior distribution as given by (3-13c) approach the values of the sample statis
tics m and n respectively; and it is very tempting to interpret this limiting posterior 
distribution as being a distribution of p which is wholly determined by the sample evi
dence and completely independent of the decision maker’s vague prior opinions. 
Notice that the posterior distribution with parameter n” = v! +  n exists even for 
n! = 0 despite the fact that no limiting prior distribution exists.

Beta Prior Distributions. Unfortunately the interpretation of the prior dis
tribution in terms of an “estimate” summarizing a certain “quantity of informa
tion” becomes much less clear-cut as soon as we look closely at examples other 
than the Normal; all the important difficulties can be illustrated by considering 
as simple a distribution as the beta. We have already seen that the beta distribu
tion is the natural conjugate for a Bernoulli process with unknown parameter p ; 
we remind the reader that for this process a sufficient statistic is

y = (r, n) = (2x<, n) , (3-14a)
f Alternatively, let Mi be the interval On, Ma) and let M* be the interval On +  k, m* +  k). 

Then as n ' —> 0 the conditional probabilities PjAfi|A/i U Ms) and P{Ms|Mi U M%\ approach 
equality for all mi, Ma, and k.
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that the beta prior density can be written
n') cc pr’- l(\ — p jn '-r'-i f n' >  r' >  0 , (3-14b)

and that the parameters of the posterior density are
(r", n") = (r', n') * (r, n) = (r' +  r, »' +  n) . (3-14c)

At first glance it may seem as natural in this case as in the Normal to regard 
the number of trials n as measuring the “size” of or “quantity of information” in a 
sample. I t  has already been pointed out, however (in Section 2.3.4), that instead 
of thinking of a Bernoulli process in terms of random variables £, = 0, 1 which indi
cate whether the ith trial was a success or a failure, we can just as well think of it 
in terms of random variables Hi = 1,2, • • • which indicate the number of trials re
quired to secure the ith success; and we have seen that if we do look at the process 
in this way, then it is the number of successes r which is the “natural” measure 
of the sample size rather than the number of trials n. Clearly, then, we can not 
think of either component of the statistic (r, n) as the measure of the information 
in a sample from a Bernoulli process, and it follows at once that it would make no 
sense to think of either component of the parameter (r', n') as the measure of the 
information underlying a prior distribution.

It next occurs to us to try to remedy this situation by arguing that the choice 
of statistic (r, n) to summarize the sample and of the parameter (r', n') to describe 
the prior distribution is arbitrary even though convenient for practical computa
tions and that interpretations will be easier if some other choice is made. Not 
only is neither component of (r, n) an apparently clear measure of information 
like n in the Normal case; neither component is a natural estimate of the process 
parameter like m in the Normal case. I t would seem, however, that if we sum
marize the sample by the number of trials n and the sample mean m, defined exactly 
as in the Normal case by

1 _  r
m =  -  2  Xi — “  n n

then we may recover all the simplicity of interpretation that we seemed to have 
in the Normal case. The expected value of m given p is p, so that m as here de
fined is just as natural an “estimate” of p as m is of m in the Normal case; and since 
for given m an increase in n implies an increase in r, the sample size or quantity 
of information would seem to be unambiguously measured by the component n of 
the statistic (m, n).

If we now wish to interpret the prior and posterior distributions in an analogous 
manner, we will substitute m V  for r ' in the formula (3-14b) for the prior density, 
thus obtaining

T)'(p) CC pn'm'“ l(l — p)*'( 1-m')- 0  <  m! < 1 , 
n' > 0  ,

and we will think of m' as a prior “estimate” of p summarizing n' units of prior 
information. The implications are analogous to the Normal case and seem reason
able in several respects. (1) Since the expected value of p is m', m' is a “ natural” 
estimate of p. (2) Since the posterior parameters are given by
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n" = n' +  n , m n'm! +  nm 
n' +  n

we can interpret the posterior “estimate” m" as a weighted average of the prior 
and sample “estimates” , the weights being the “quantities of information” sum
marized by these estimates. (3) As the prior information n' approaches 0 , the 
posterior parameter (m", n") approaches the sample statistic (m, n), so that we 
are again tempted to think of the limiting posterior distribution as one which is 
wholly determined by the sample information and independent of any individual's 
vague prior opinions.

Closer examination reveals serious difficulties with these apparently simple 
interpretations, however. As n' approaches 0 with the “estimate” m! held fixed, 
we find that the beta distribution (unlike the Normal) does approach a proper 
limiting distribution: namely (as shown in Section 9.1.3) a two-point distribution 
with a mass of m! on p = 1 and a mass of (1 — m') on p = 0. Now this limiting 
distribution cannot in any sense be considered “vague” . On the contrary it is 
completely prejudicial in the sense that no amount of sample information can 
alter it to place any probability whatever on the entire open interval (0, 1 ). A sin
gle sample success will annihilate the mass at p = 0 , and a single failure will 
annihilate the mass at p = 1 ; but a sample containing both successes and failures 
will give the meaningless result 0 / 0  as the posterior density at all p in (0 , 1 ) and 
also at the extreme values 0  and 1 themselves.

Even if we stop short of the actual limiting two-point distribution and con
sider the implications of a beta distribution with a very small but nonzero n', 
we find that we cannot say that such a distribution represents “very little informa
tion” or expresses opinions which are in any sense “vague” . As n' approaches 0, 
the distribution assigns a probability approaching 0  to any interval [*i, 1 — e2] 
where €i and t2 are arbitrarily small positive constants; and it requires a very great 
deal of information in the ordinary sense of the word to persuade a reasonable 
man to act in accordance with such a distribution even if the probability assigned 
to the interval is not strictly 0. Long experience with a particular production 
process or with very similar processes may persuade such a man to bet at long odds 
that the fraction defective on the next run will be very close to 0  or very close to 1 , 
but he is not likely to be willing to place such bets if he is completely unfamiliar 
with the process.

The Arbitrariness of Parametrization. Actually, the difference between Normal 
and beta conjugate families which we have just emphasized is apparent rather 
than real, since what we have said applies to only one among an infinity of possible 
parametrizations of the families in question. A Bernoulli process can be character
ized by 7r =  log [p /(l — p)] just as well as by p itself. If it is so characterized, 
then the conjugate prior density becomes

D'(7t) CC e1*'
(1 +  e')n' ’

— 00 < 7r < O0 ,
n' > r' > 0 ;

and as n' and r' < n' approach 0  in any manner whatever, this density behaves 
exactly like the Normal density discussed above: it becomes more and more uni-
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form over the entire real line but does not approach any proper density as a limit. 
And vice versa: as the Normal distribution of ft approaches uniformity over the 
real line, the implied distribution of rj =  1//2 approaches a mass of 1 at the point 
v  =  0 .

Thus in general: if the distribution of one particular set of parameters 6 has 
very great variance, the distributions of other, equally legitimate sets of parameters 
will have very little variance; so that if we choose one particular set of parameters 
and assign to it a very broad prior distribution, it must be because we have reason 
to assign such a distribution to these particular parameters and not to others. 
The notion that a broad distribution is an expression of vague opinions is simply 
untenable. There is no justification for saying that a man who is willing to bet at 
odds of a million to one that 1//2 = 0 zfc .0001 holds an opinion which is either 
more or less vague or diffuse than that of a man who is willing to bet at the same 
odds that ft = 0 =t .0001. There is no justification for saying that a man is either 
“definite” or “vague” if he assigns the distribution fo(p\ 1,100) with standard devia
tion .01 to the mean number p of successes per Bernoulli trial and thereby assigns 
an infinite standard deviation to the mean number 1 /p  of trials per success.

Notice, however, that although we cannot distinguish meaningfully between 
“vague” and “definite” prior distributions, we can distinguish meaningfully be
tween prior distributions which can be substantially modified by a small number of 
sample observations from a particular datargenerating process and those which 
cannot. Thus consider an Independent Normal process with known precision 
h = 1 and unknown mean j2, so that if a Normal prior distribution with parameter 
(m', n') is assigned to fi the posterior distribution will be Normal with parameter

mn n!m! +  nm 
n! +  n ’ n" = nf +  n .

Given that the prior distribution of /Z is to be of the Normal form, willingness to 
bet at odds of a million to one that j2 = 0 ±  .0001 implies m! = 0, n' = 2.4 X 109, 
so that almost no conceivable amount of sample information could make the pos
terior parameters differ noticeably from the prior, whereas willingness to bet at 
odds of a million to one that 1//2 = 0 ±  .0001 implies m' = 0, n! = 1.6 X 10-20, 
so that a single sample observation will almost wholly determine the parameters 
of the posterior distribution.

3.3.5. Sensitivity Analysis
Our last example suggests that in some decision problems prior opinions and 

prior betting odds may have little or no effect on the decision actually chosen. 
Thus for example, we often find situations in which, after a sample has once been 
taken, the posterior expected utility of every a in A is practically the same for 
every prior distribution that the decision maker is willing to consider. The ques
tion is sometimes delicate, however, and to avoid giving the impression that it is 
simpler than it really is, we shall illustrate with an example involving the beta 
rather than the excessively well-behaved Normal distribution.

Suppose that utility depends on the parameter p of a Bernoulli process; con-
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sider three extremely different prior distributions: (1) the rectangular distribution 
/fl(p |l,2 ), (2 ) the extremely U-shaped distribution/^(p|.01, .0 2 ), and (3) another 
extremely U-shaped distribution which places a mass of .49 on p = 0, a mass of .49 
on p = 1 , and distributes the remaining probability .0 2  uniformly over the interval 
(0 , 1 ); suppose that, after one of these distributions has been chosen, a fairly large 
number n of observations are made on the process; and let r denote the number 
of successes in this sample.

1 . Assume first that 0  <  r < n. Then the posterior distributions correspond
ing to the first and third priors will be identical, having density fa(p\r +  1 , n +  2 ) 
and mean (r +  l) /(n  +  2 ), while the posterior corresponding to the second prior 
will have density fe(p\r +  .01, n +  .0 2 ) and mean (r +  .01)/(n +  .0 2 ). In this 
case the first and third priors are absolutely equivalent for any action problem; 
and in the very common type of problem where the utility of any a in A depends 
only on the mean of the distribution of p (cf. Chapter 5A) the second prior will 
usually be practically equivalent to the other two if both r and (n — r) are at all 
large compared to 1 .

2 . Assume next that r = 0. Then the first two priors yield posterior densities 
/*(p|l, n +  2 ) a n d /0(p|.Ol, n +  .0 2 ) respectively while the third yields a posterior 
distribution which places a mass (n +  l) /(n  +  1.04) on the point p = 0 and distrib
utes the remaining probability over(0,1) with density [.04/(n +  1.04)]/$(p| 1, n +  2). 
In many action problems each of these three posteriors would have implications to
tally different from each of the others; in particular, the means of the three posterior 
distributions are respectively l /(n  +  2), .01/(n +  .02), and .04/(n2 +  3.04n +  2.08), 
the first of which may be many times as large as the second.

Thus even when the sample n is large the criticality of the choice of a prior 
distribution depends crucially on the value of the sample r. When 0 <  r <  n in 
our example, a decision maker who feels sure that his prior information should 
lead to some distribution “between” the rectangular and an extreme U simply 
does not need to worry further: he can select the terminal act which is optimal 
under the posterior distribution corresponding to any prior in the range he is con
sidering and be sure that for all practical purposes he has maximized his expected 
utility with respect to any prior he might have chosen. He can in fact simplify his 
problem still further by observing that all possible posteriors are practically equiv
alent to the posterior density//j(p|r, n) corresponding to the improper prior/^(p|0 , 0 ) 
and spare himself the trouble of interpolating for fractional r and n in tables of 
the beta distribution. When on the contrary r = 0 , the decision maker may be 
forced to make a definite choice of the prior distribution with which he wishes his 
act to be consistent, no matter how vague or confused his initial psychological 
state may be. In short, sensible men will always observe the principle of de 
minimis, but what are minima depends on circumstances.

One particular point is so often overlooked that it requires explicit mention. 
In a great many applications of great practical importance, the question is not 
one of deciding what to do after a sample has already been taken; it is one of decid
ing whether or not any sample should be taken at all and if so how large the sample 
should be. We cannot emphasize too strongly that, in situations where it is pos-
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sible to take at most one sample or where each successive sample involves a sub
stantial “stage cost” independent of the sample size, answers to questions of this 
kind must always depend critically on the prior distribution. In such situations 
it is therefore a vital and unavoidable responsibility of the decision maker to adopt 
a prior distribution which represents his best judgment as accurately as possible, 
however much he may wish that this judgment could be based on more evidence 
than is actually available.

3.3.6. Scientific Reporting

Finally, let us look briefly at the implications of the discussion above for the 
vexed question of the proper way in which to report a “scientific” experiment, by 
which we presume is meant an experiment carried out with no immediate action 
problem in mind. An obvious “solution” to this problem is simply to report the 
data or—provided that there is no substantial doubt about the nature of the 
data-generating process—to report the sufficient statistics; but it has long been 
urged that the reporter should add some indication of the “reliability” of the data 
or the sufficient statistics, and if the proper measure of reliability is to be given 
we must ask what purpose the measure will serve.

It seems to us that the answer to this question is not hard to find. I t is true, 
of course, that the ultimate use to which a measure of reliability will be put depends 
upon the user. If the reported values of certain physical constants are uncertain, 
a physicist may want a measure of uncertainty because he wants to decide whether 
or not to invest effort in improvement of the basic data before putting the data 
to any use whatever, whereas an engineer examining the same values may want a 
measure of uncertainty in order to allow a suitable margin of safety in the equip
ment he is designing. In either case, however, the user is not interested in un
certainty out of idle curiosity or because he wants to verbalize about it; he is inter
ested because he has a decision problem to solve, to solve it he must take account of 
his uncertainty about some quantity 0, and therefore he must, implicitly if not explicitly, 
assign a probability distribution to 6. We are, of course, using the word “decision” 
in its broadest interpretation, but we believe that it is very clearly a decision 
problem to choose between alternatives such as (1) consider some scientific theory 
as having been substantiated to the extent that the expenditure of further effort 
on research would be unwarranted, and (2) reserve judgment about the validity 
of the theory, thereby implying that further research should be done before the 
theory is accepted or rejected.

Because the distribution which the user of any report will ultimately assign 
to 6 must depend in part on evidence external to the data being reported, the re
porter cannot in general supply the user with the distribution he requires; but what 
he can do is to report in such a way that the user has ready access to those aspects 
of the data which will enter into his own assignment of a distribution to 6. What 
is completely intolerable is to report in such a way that the sufficient statistics 
cannot be recovered by the user; and while it is probably unnecessary to point out 
that it is inexcusable to report a level of significance or a confidence interval with-
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out also reporting sample size, it does seem necessary to point out that even if 
sample size is reported the user cannot in general recover the information he needs 
from a statement that the data was or was not significant at some predetermined 
level or from an asymmetric or randomized confidence interval. And even if a 
report is full enough to make it possible to recover the sufficient statistics, the user 
is not well served if he is forced to calculate these numbers which might have been 
given to him directly.

Although the only way in which the user of a scientific report can obtain a 
really adequate analysis of his decision problem, whatever it may be, is to take 
the sufficient statistics and then make the calculations required by his particular 
problem, it is true that in many situations the reporter can foresee (a) that many 
users will want to know whether or not an unknown scalar 6 is above or below some 
“standard” value B0 and (b) that many users would if pressed assign to 6 a prior 
distribution with very substantial variance. In such cases the reporter may be 
able to spare some users some arithmetic- by adding to his report of the sufficient 
statistics a statement of the posterior probability P{0 < Of) based on a rectangular 
prior distribution, warning the user at the same time that this probability is inap
propriate unless the user’s own prior distribution of this particular parameter is 
at least roughly rectangular. If no clear-cut “standard” B0 exists, the entire 
cumulative posterior distribution based on a rectangular prior can be reported 
either graphically or by listing quartiles, deciles, or other fractiles.f

In  the very common case where the sufficient statistics are the sample size 
and the value of an unbiassed, approximately Normally distributed “estimator” , 
a statement of the value and the sampling variance of the estimator can of course 
be directly interpreted as the mean and variance of the posterior distribution of 
the estimated parameter given a rectangular prior distribution. Unsophisticated 
users of statistical reports usually do interpret probability statements about statis
tics as if they were probability statements about parameters because their intui
tion tells them that probability statements about parameters are directly relevant 
to their problem while probability statements about statistics are not. What we 
are suggesting is that the sophisticated reporter should make clear to such users 
the conditions under which their relevant interpretations are valid, rather than 
insist on valid interpretations which are not directly relevant to the users’ problems.

Finally, let us remark that if the reporter believes that he has substantial 
information outside the evidence of the particular experiment which he is reporting, 
no reasonable canon of scientific reporting should force him to suppress this in
formation or any conclusions he believes can be based on it. If he feels that the 
evidence obtained from this one experiment does not completely overwhelm his 
own personal prior distribution, and if he believes that his prior judgments are 
well enough founded to be of interest to the reader of the report, then he can— 
and we believe he should—add to his report a posterior distribution based on his 
own explicitly stated and defended prior distribution.

t It is perhaps worth remarking that the posterior probability of “extreme” propositions of 
the type 6 = Bo exactly are necessarily so sensitive to the prior distribution that it is completely 
impossible to make a useful general-purpose statement of posterior probability.
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3.4. Analysis in Extensive Form When the Prior Distribution and 
Sample Likelihood are Conjugate

The basic principle of the extensive form of analysis as set forth in Section 1.2.1 
is to evaluate every e in E  by computing

u*(e) = E«|e maxa E*', u(e, 2, a, 8) (3-15)
and then to select an e which maximizes u*. The application of the analysis was 
illustrated in Sections 1.2.2 and 1.4.3 by simple examples in which these computa
tions could be carried out numerically, but in the majority of practical applica
tions numerical analysis would be extremely difficult if not impossible because 0 
and Z are extremely large if not infinite. We shall now show, however, that an
alytical computation is often very easy when:

1. The experimental outcome z admits of a sufficient statistic y of fixed dimen
sionality;

2. The prior measure PJ on 0 is conjugate to the conditional measures Py\e,e 
on the reduced sample space Y.

In the present section we shall indicate in a brief and general way how the cat
alogue of distributions and integrals which constitutes Part III of this monograph 
can be used to evaluate u* when y is generated by one of the data-generating 
processes listed in Section 3.2.5 above and the prior distribution is conjugate to 
the likelihood of y. We shall then go on in Part II to develop still simpler methods 
of analysis for cases where the utility function u (- , •, •, •) meets certain conditions 
which are often met in practice.

3,4.1. Definitions of Terminal and Preposterior Analysis
Given the existence of a sufficient statistic y, the definition (3-15) of u*(e) 

can be rewritten in the form
u*(e) = Ey|e maxa EJf„ u(e} y, a, 8) . (3-16)

Our discussion of the evaluation of (3-16) for any given e will be divided into two 
parts:

1. Evaluation for a particular y of
u*(e, y) =  max. Ejf, u(e, y, a, 8) . (3-17)

2. Repetition of this procedure for all y in Y  followed by computation of

u*(e) =  Ey|#w*(e,jf) . (3-18)

Evaluation of (3-17) will be called terminal analysis because it deals with the eval
uation of and choice among terminal acts after the experiment has (actually or 
hypothetically) already been conducted and the outcome y observed; it includes 
as a special case the evaluation of and choice among terminal acts when the experiment 
and outcome are the dummies eo and yo which consist of no experiment and no observa
tion at all. Evaluation of (3-18) will be called preposterior analysis because it 
involves looking at the decision problem as it appears before the experiment has 
been conducted and taking the prior expected value of all possible posterior ex-
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pected utilities u*(e,y). In terms of the game trees discussed in Section 1.2, 
terminal analysis is concerned with the two outer levels of branches (the last two 
moves in the game) while preposterior analysis is concerned with the two inner 
levels (the first two moves in the game) and can take place only after the two outer 
levels have been averaged out and folded back.

Each step in the analysis will be illustrated by application to the following 
example. A choice must be made between two agricultural processes, one of 
which will yield a known profit K\ while the profit of the other depends on an un
known quantity ^ in a linear manner, K 2 +  k2y. I t is possible to take observa
tions £ on n which are Normally distributed with known precision; the density of 
any £ is

h(x\ii9h) = (27r)“ i hi . (3-19)
If n observations (xi, • • • , xn) are made and the process with profit K\ is chosen 
(act <zi), the decision maker's utility will be

u[e, (xi, • • • , x»), ai, m] = -e x p  (k9n -  Ki) ; (3-20a)
if the same experiment is conducted but the process with unknown profit is chosen 
(act a2), his utility will be

u[ef (xi, • • • , xn), a2, m] = -e x p  (k.n -  K 2 -  k2y) . (3-20b)
(One interpretation of these utilities would be that the cost of sampling is 

proportional to n and that utility to the decision maker of v' units of money can 
be approximated over a suitable range by a function of the form

u'(v') = ci(l -  , (3-2la)
which can be reduced without loss of generality to the form

u(v) = — e”f (3-2 lb)

by linear transformations of the scales on which money and utility are measured. 
We use this function here simply as a mathematical illustration; its applicability 
to a real problem involves acceptance by the decision maker of the very restrictive 
implication that addition of a constant amount to every prize in a lottery increases 
the value of the lottery by that same amount.)

S.4-2- Terminal Analysis
1. Computation of the Posterior Distribution of 6. The first step in terminal 

analysis as defined by (3-17) is to use the prior measure Pi and the conditional 
measure Pv\e,e to determine the posterior measure Pi(„ for the particular y which has 
(actually or hypothetically) been observed. We have already seen in Section 3.2.5 
that the conjugate prior distribution for any data-generating process considered 
in this monograph possesses a density function, that the posterior distribution 
possesses a density of the same mathematical form as the prior, and that it is 
possible to compute the parameter of the posterior distribution from the prior 
parameter and the sample statistic by a simple algebraic * operation; no analysis 
is required.

The conspectus in Section 3.2.5 gives the * operation as well as definitions
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of the sufficient statistics and conjugate densities for all the data-generating proc
esses there listed. In our example, if the decision maker assigns to p a Normal 
prior distribution with parameter y' = (m', n'),

D'GO = fa(p\m', hn') oc e-|A»'<M-m')» f

and if he then observes a statistic y = (m, n)—i.e., if the mean of n experimental 
observations turns out to be m—his posterior distribution will be Normal with 
density

D "(M|m) = fa(p\m", hn") oc (3-22a)
where

(m", n") = (m', n') * (m, n) = ( m ^  ^ n, n' +  n )  . (3-22b)

2. Computation of the Posterior Utility of an Act. The next step in terminal 
analysis as defined by (3-17) is the use of the posterior distribution to compute 
the expected utility of each a in A. Here the feasibility of the analysis will obvi
ously depend on the choice of mathematical function used to approximate the 
decision makers “true” utility, but with a little ingenuity it will often be possible 
to find a tractable function which gives a good approximation over the range of 
consequences which have any substantial probability of occurrence in the particular 
decision problem at hand.

In our example, we make use of the fact (easily verified by completion of 
squares) that for any z\ and z2 >  Z\

f *  ea+6*/v(2 |m, H) dz = exp +  bm +  J *  fa (z\m + H ^ dz (3-23)

to evaluate the expectations of the utilities given by (3-20):

u*[e, (m, n), a{\ = —exp (k,n — Ki) fa(n\m", hn") dp

= —exp (ktn — Ki) , (3-24a)

u*[e, (m, n), a2] = / * —exp (k8n — K 2 — k2p) fa(p\m", hn") dp
J "°° (3-24b)

= -e x p  (k 8n -  K2 — k2m" +  ^2^ .

Because of the great variety of possible utility functions we have made no attempt 
to give a complete catalogue of integrals of this sort in Part III, but we do call the 
reader’s attention to the fact that the expectations of linear and quadratic utilities 
can be evaluated by use of the moment formulas given in Chapters 7 and 8 for 
every distribution occurring in the analysis of the data-generating processes listed 
in Section 3.2.5 above.

3. Choice of an Optimal Act. The last step in terminal analysis as defined by 
(3-17) is to select an a which maximizes u*(e, y} •)> and this will ordinarily be rela
tively easy if explicit formulas have been found for all u*(e, y , a).

In our example we can compare the utilities (3-24) of a\ and a2 by writing
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u*[e, (ro, n), ai] 
u*[f, (m, n), a2] exp (  —tfi + K 2 +  hm " 1

2hn" )
and observing that this ratio will be equal to or less than 1 if

" " s  £ ( * ■ - * *  + a s *  # ) •  (3' 25)
Since the utilities of both acts are negative for all m", this implies that a\ is an 
optimal act if m" satisfies (3-25); if m" is greater than or equal to the right-hand 
side of (3-25), a2 is an optimal act.

3.4-3. Preposterior Analysis
1. Repetition of Terminal Analysis for all y. The first step in preposterior 

analysis as defined by (3-18) is the repetition of terminal analysis as described in 
the previous section for every y in Y, and it is here that the use of conjugate prior 
distributions makes its greatest contribution to the feasibility of the analysis. A 
single terminal analysis can be carried out in almost any problem, but if the mathe
matical form of Pe\v depends on y , the task of repeating this analysis for every y in 
Y will be prohibitive unless Y  is extremely small. If, however, the prior dis
tribution is conjugate to the likelihood of y , so that the mathematical form of 
Pev is the same for all y and the only effect of a particular y is on the parameter 
y" = y' * y, then formulas which give u*(e, y) for any y (and y") give it for all y 
(and y") which may result from the e in question or from any other e whatever.

Thus in our example, formulas (3-24) for u*(e, y, ai) and u*(e, ?/, a2) and condi
tion (3-25) for determination of the optimal act hold unchanged for every possible 
y” = (m", n") and thus for every possible y = (m, n).

2. Computation of the Marginal Distribution of y. The next step in prepos
terior analysis is the determination of the measure with respect to which the 
expectation called for by (3-18) is to be carried out. We again call attention to 
the fact that it is only at this point in analysis in extensive form that it becomes 
necessary to know anything about the distribution of y , since terminal analysis 
requires knowledge of only the kernel of the likelihood of y and (as we pointed out 
in Section 2.2.2) this kernel can be found without actually finding the distribution 
of y or even knowing anything whatever about the e which produces y.

The marginal distribution of y given e which is called for by (3-18) is usually 
most easily found by first determining the conditional distribution of y given e 
and 6 from the nature of the experiment c, the nature of the data-generating process 
with which we are dealing, and the definition of y in terms of the random variables 
generated by the process. Then letting Dc(-|e, 0) denote the mass or density 
function of this conditional distribution of y and letting D' denote the prior density 
of §, we can obtain the marginal mass or density function D m of y for the given 6,

Dm(y\e) = / e Dc(y\e, 6) D'(0) dB .

In Part III we have derived both the conditional and marginal distributions 
of y for one or more kinds of experiments on each of the data-generating processes 
listed in Section 3.2.5 above; thus for the Bernoulli process the functions are given

73
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both for the case where the number of trials n is predetermined, the number of 
successes f being left to chance, and for the case where r is predetermined and n 
is left to chance. These results are catalogued in Table 3.1 (page 75). The first 
and second columns name the data-generating process and the conjugate prior 
distribution as defined in Section 3.2.5. The third column shows the nature of 
the experiment by listing the components of the sufficient statistic with a tilde over 
those which are random variables, the others being predetermined by the experi
mental design. The next two columns give respectively the conditional and mar
ginal distributions of the random components of y with references to the sections 
in Part III where these distributions are discussed; the first reference in each case 
is to the section where the distribution is derived while the second is to the section 
where its properties are described and tables of the distribution are cited. The 
last column of the table will be explained in a moment.

If in our example the experiment consists of taking a predetermined number n 
of observations on the Normal process defined by (3-19), then as shown in Sec
tion 11.4.1 the conditional distribution, given 6 = py of the random component m 
of the sufficient statistic y = (m, n) has the density

Dc(m|n, p) = / v(wi|m, hn) oc e- \ .

The unconditional density of (m, n) is then, as shown in Section 11.4.2,

Dm(m|n) = J " mf v(w |m, An)/yOx|m', hn') dp = //sr(m|m', hnu) (3-26a)
where

-  = (3-26b)
nu n n

3. Computation of the Expected Utility of an Experiment. The third step in 
preposterior analysis as defined by (3-18) is the use of the marginal distribution 
of y to compute

u*(e) = Ey|e u*(e, y) where u*(eyy) = maxa u*(ey y, a) .
When explicit formulas for all u*(ey yy a) have been found in terminal analysis, it 
will sometimes be possible to find a single explicit formula for u*(e, y); in other 
cases it will be necessary to express u*(e, y) by a whole set of formulas for u*(e, y, a), 
each of which gives u*(ey y) for those y for which the a in question is optimal. 
Thus in our example u*(e, y) is given by (3-24a) for all y = (m, n) such that 
condition (3-25) for the optimality of a\ is met; it is given by (3-24b) for all other y.

4. The Distribution of y " . Because u*(e, y) is obtained by expectation with 
respect to the posterior distribution of 6,

u*(e, y) = max0 E u(e, y, a, S) ,
a formula <t> for u*(e, y) obtained by carrying out this expectation analytically will 
in general have as an argument the posterior parameter y" = y' * y as well as the 
statistic y itself,

u*(e, y) = <t>[y, y"(y)] ;
and in many cases (of which our example is one) the formula will involve only y " .
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Table 3.1
Distributions of Statistics and Posterior Parameters

3.4.3

Distribution of Statistic Distribution
Prior Experi- ---------------------------------------  of Posterior

Process Distribution ment Conditional Marginal Parameter

Bernoulli

Poisson

beta - 

gamma-1 <

rr|n

n|r

>i<

?|r

binomial 
(9.2.2; 7.1)

Pascal 
(9.3.2; 7.2)

Poisson 
(10.3.2; 7.5)

gamma-1 
(10.2.2; 7.6.2)

beta-binomial 
(9.2.3; 7.11)

beta-Pascal 
(9.3.3; 7.11)

negative-binomial 
(10.3.3; 7.10)

inverted-beta-2 
(10.2.3; 7.4.2)

—

rh known; 
ju Normal

m\n Normal 
(11.4.1; 7.8.2)

Normal 
(11.4.2; 7.8.2)

Normal 
(11.4.3; 7.8.2)

Normal - /x known;
Ji gamma-2

w\v gamma-2 
(11.2.1; 7.6.4)

inverted-beta-2 
(11.2.2; 7.4.2)

inverted-beta-1 
(11.2.3; 7.4.1)

Normal-
,gamma

m, t̂ |n, v See 11.6.1 11.6.2, 11.6.3 11.7.1, 11.7.2

rh known; fh\n Normal Normal Normal
Multi- fiL Normal (12.2.1; 8.2) (12.2.2; 8.2) (12.3.1; 8.2)
normal Normal-

gamma
m, D|n, v See 12.5.1 12.5.2, 12.5.3 12.6.1, 12.6.2

Regression <

h known, 
Normal

&|n Normal 
(13.3.1; 8.2)

Normal 
(13.3.2; 8.2)

Normal 
(13.4.1; 8.2)

Normal-
gamma

b, 5|n, v See 13.6.2 13.6.3 13.7.1, 13.7.2

In order to compute
u*(e) = E v\9u*(e,y)

we can of course substitute y' * y for y" in the formula <t>[y, y"(y)] as originally 
derived and then sum or integrate over y,

<Ky> yf * y) Dm(i/I«) or /  4>(y, y' * y) Dm(y|c) dy ;

but when the original <£ does not even contain y explicitly, it will be easier to proceed 
by first deriving the distribution of the random variable y” = yf *y  and then 
summing or integrating over y",

«*(«) = £  *(»") D(y"|e) or /  4>{y") D(j/"|e) dy" .

Thus in our example we can derive the distribution of y" = (m", n") by first 
solving (3-22b) to obtain
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m = (nf +  n) m" — n'm' 
n

and substituting this result in the formula for the unconditional density (3-26) of 
y = (m, n) to obtain

D(m"|n) = / iv(m"|ra', /in*) _  1_ l
71* 7l' n"

Then letting m" denote the “critical value” of m" which corresponds to exact 
equality in the optimality condition (3-25) we have by (3-24) for the experiment 
en which consists of taking n observations

u*(en) = —exp (ktn — Ki) /y(m ',|ra', /in*) dm"

+  Jn" -e x p  ^k,n — Ki -  k2m" +  ^ 7 7  hn*) dm" .

By use of (3-23) the integrals can easily be evaluated explicitly in terms of the 
tabulated cumulative unit-Normal function.

In Part III we have derived the distributions of y" for most of the experiments 
listed in Table 3.1 (page 75); the last column of the table names the distribution 
and gives references, first to the derivation and then to the discussion of properties. 
The experiments for which no distribution of y" is given are those where the * 
operation is simple addition, i.e. where y" = y' +  y, and it is therefore a trivial 
matter to reexpress a formula <f>(y, y") for n*(e, y) in terms of y alone.
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C H A P T E R  4

Additive Utility, Opportunity Loss, and the Value of Information: 
Introduction to Part II

4.1. Basic Assumptions
In  the first chapter of this monograph we described the extensive form of 

analysis and explained how it can be applied numerically in problems where the 
spaces E , Zf A , and 0 are all discrete and reasonably small. In Chapter 3 we 
showed how even when these spaces are very large or infinite the extensive form 
can often be applied analytically provided that two conditions are met:

1. The experimental outcome z can be described by a sufficient statistic y of 
fixed dimensionality;

2. The prior measure P* on 0 is conjugate to the conditional measures P«|«,* 
on the sample space Z.

In Part II of this monograph we devote our attention to the development of special 
versions of the extensive form which greatly simplify the analysis of certain prob
lems in which both the above conditions are met and in addition

3. The utility function u(-, •, •, •) on E X Z X A X 0  can be expressed as 
the sum of a function w,(*, •) on E  X Z and a function •) on A X 0:

u(e, z , a, 0) = ut(e, z) +  u t(a, 0) , all e, z, a, 0 ; (4-1)

the reader can observe that our analysis will hold with only trivial modifications 
if the function us(-, •) on E  X Z is generalized to a function on E  X Z X 0. In 
the present chapter, which is merely an introduction to Chapters 5 and 6, we ex
amine certain implications of this new assumption concerning the utility function 
without reference to assumptions (1) and (2) concerning the probability measures 
on 0 X 2 .

4.2. Applicability of Additive Utilities
The assumption that utility can be decomposed according to (4-1) will be 

valid at least as a very good approximation in a wide variety of practical decision 
problems; we shall first explain its rationale in problems in which all consequences 
are purely monetary, but we shall then show that the assumption will hold in a 
great many problems where the consequences are only partially measurable in 
money or not measurable in money at all.
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In the great majority of decision problems in which the consequence of every 
possible (e, z, a, 6) can be described completely enough for practical purposes by 
the net amount of money which the decision maker will receive or pay out, this 
net amount will be expressible as the algebraic sum of (1) the cash flow due to per
forming an experiment e which results in the outcome z, and (2) the cash flow due 
to taking action a when the prevailing state is 0. If in addition the utility of money 
to the decision maker is linear over the whole range of cash flows which are possible 
in the decision problem at hand, we can set the utility of any cash flow numerically 
equal to the cash flow itself. The terminal utility u t(a, 0) in (4-1) will then be 
either the profit or the negative of the cost of the terminal act while the sampling 
utility u,(e, z) will be the negative of the cost of sampling.

As we have already said, measurability in money is by no means a necessary 
condition for utility to be decomposable according to (4-1). The decomposition 
will be possible whenever (1) the consequence of (e, z) and the consequence of (a, 0) 
are measurable in some common unit or numeraire such that th e “total77 consequence 
of (e, z, a, 0) is the sum of the two “partial” consequences and (2) the utility of 
this numeraire to the decision maker is linear over the whole range of consequences 
involved in the problem at hand. Thus the director of a clinic who must ulti
mately decide whether or not to adopt a new drug in place of an old one may well 
feel that the consequence of either terminal act is measured almost entirely by the 
number of patients cured as a result; and if so, then he will probably also feel that 
at least the most important part of the “cost77 of further experimentation with the 
new drug is measured by its effect on the number cured among the patients involved 
in the experiment. If “number cured77 does thus constitute a common numeraire, 
it may well be that the utility of this numeraire to the decision maker is at least 
close to linear over a fairly wide range.

Even when the possible consequences of an act are complex and cannot be 
completely described in terms of any single numeraire, monetary or other, the most 
effective way of assigning utilities may nevertheless be to start by scaling the actual 
consequences in terms of a single numeraire; utilities can then be assigned to the 
consequences indirectly, via a utility function assigned directly to the numeraire. 
Thus in an industrial setting, an act may under certain circumstances result not 
only in a certain cash payment but also in a serious administrative annoyance which 
has no “objective77 monetary equivalent; but if the decision maker feels that he 
would be willing to pay about D dollars cash to avoid this annoyance, he can sub
tract D from the purely monetary consequence of the act under each state 0 under 
which the annoyance will result and then assigh utilities to the “adjusted77 monetary 
consequences via his utility function for money. Evaluation of the utilities by 
this indirect procedure will probably be much easier than evaluation by direct 
consideration of a large number of hypothetical gambles all involving mixed mon
etary and nonmonetary consequences.

Similarly in our drug example, the new drug may differ from the old not only 
as regards the numeraire “patients cured77 but also as regards certain unpleasant 
or dangerous side effects. The most effective way of handling this complication, 
however, may well be to start by scaling these side effects in terms of the cure rate,
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Letting 0O denote the known fraction cured by the old drug and 6 the unknown 
fraction cured by the new drug, the director can ask himself what choice he would 
make if he did know the true value of 8. If he decides that because of its side 
effects he would not adopt the new drug unless 6 — 0o > c, say, and if N  is the 
expected number of patients affected by the decision, the consequence of accepting 
the new drug is measured by (6 — c) N, the consequence of continuing to use the 
old drug is measured by 0oN  as before, and the “adjustment” of the consequence 
of adopting the new drug should leave the directors utility as linear as it was 
before.

In many cases it will be possible to find a common numeraire even though the 
natural descriptions of the consequences of (e, z) have nothing at all in common 
with the natural descriptions of the consequences of (a, 6). Thus a scientist who 
wishes to estimate some physical constant 0 may feel that whatever the error (a — 0) 
in his estimate a may be, he would be willing to make lOfc more observations if he 
could be sure that by so doing he would reduce (a — 0)2 by A: units. If so, the 
consequence of any (c, z, a, 0) can be measured by the sum of the actual number 
of observations plus 10(a — 0)2; and if given any A: >  0 the scientist would also 
be willing to make 10A; more observations in order to reduce the expected value of 
(a — 8)2 by k units, then the utility of (e, z, a, 0) can be expressed as u,(e, z) +  
ut(a, 0) where u,(e, z) is the negative of the number of actual observations and 
w<(a, 0) is the negative of 10(a — 0)2.

4.3. Computation of Expected Utility
When the utility of any (e, z, a, 0) can be expressed as the sum of a sampling 

utility u,(e, z) and a terminal utility w<(a, 0), the expected utility of an experiment e 
can be expressed as the sum of the expected utility of sampling and the expected 
terminal utility. For by (1-3) and (4-1)

«*(e) =  Ef|, maxa E&[u,($, 2) +  Wi(a, 0)]
= Ezle[ut(e, z) +  max0 E'e\g u t(a, 0)] , 

and we may therefore write
u*(e) = u!(e) +  uf(e) .

where
u*s{e) =  Ez]eu9{e, 2) , 

u*t(e) =  Ez\e max0 E'0\e u t(a, 8) .

This decomposition very materially simplifies the computation of u*(e).
Computation of the expected sampling utility ut(e) is usually very easy, since 

u,(e, 2) is usually either a known number independent of 2 or a very simple func
tion of 2 whose expected value is easy to compute once the (marginal) distribution 
of 2 has been determined; the required distributions are given in Part III and in
dexed in Table 3.1 (page 75) for the data-generating processes and conjugate prior 
distributions listed in Section 3.2.5.

Computation of the expected terminal utility uf(e) will of course require the
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successive steps of terminal and preposterior analysis defined in Section 3.4.1, but 
even so the work is much easier when we have a function of only a and 6 to deal 
with rather than a function which depends on e and l  as well. First, the posterior 
expected terminal utility for given (e, z),

max0 EJ', ui(a, 6) ,

will depend on (e, z) only through the measure Pi', and not through the utility 
function itself; and if we also assume that the mathematical form of Pi(, is fixed 
because Pi is conjugate to the likelihood of a sufficient statistic y(z), the expected 
terminal utility will depend on (e, z) only through the parameter y" = y' * y. 
Since the expected utility of terminal action without experimentation will be merely 
the special case y" = y \  we can omit all reference to (e, z) in terminal analysis as 
defined by (3-17) and discuss simply the evaluation of maxa E* u*(a, 6) without 
specifying whether the expectation is with respect to a “prior” or “posterior” 
measure. Second, we shall see in Chapters 5 and 6 that when we have a function 
of only a and 6 to deal with we can often devise special methods which greatly 
reduce the burden of preposterior analysis as defined by (3-18).

Before taking up these special methods, however, we shall digress briefly in 
the remainder of this chapter to define and discuss the concepts of opportunity loss 
and value of informationf both of which are useful and instructive in any problem 
where the utilities of terminal action and of sampling are separable and additive. 
Specifically, we shall show that when terminal and sampling utilities are additive
(1) it is often much easier for the decision maker to assess the opportunity loss of 
every a in A given every d in 0 than it is to assess the corresponding utilities, and
(2) computation of expected opportunity loss often enables the statistician to find 
upper bounds on optimal sample size which greatly reduce the labor required to 
find the optimum. We shall then go on to isolate and examine the value of a 
particular piece of information concerning 0, a concept whose usefulness as an 
analytical tool will become fully apparent in Chapter 5.

Because these concepts of opportunity loss and value of information involve 
nothing more abstruse than decomposition of conditional and expected utility into 
sums of economically meaningful parts, we suggest that in a first reading of Sec
tions 4.4 and 4.5 attention be paid primarily to the economic sense of these de
compositions rather than to their formal derivations; a summary of definitions 
and results will be found in Section 4.5.3.

4.4. Opportunity Loss

Dropping all special assumptions for the moment, we shall first give a definition 
of opportunity loss which applies in any decision problem and show how any 
decision problem can be analyzed in terms of opportunity loss rather than utility. 
We shall then show how this new concept is useful when terminal and sampling 
utilities are additive.
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4-4-1. Definition of Opportunity Loss
Let e0 denote the “null” experiment corresponding to immediate choice of a 

terminal act, let zo be the dummy outcome of e0, and define a% by
ix(e0, Zo, a*, 0) > u(eo, Zo, a, 0) , all a € A . (4-4)

In other words: i f  0 is known and i f  a terminal act is to be chosen immediately, 
then the decision maker’s utility will be maximized by the choice of a«. If now 
instead of choosing a* without experimentation the decision maker performs e, 
observes z, chooses a, and thereby enjoys u(e, z, a, 0), we shall say that he has 
“lost the opportunity” of enjoying u(e0, z0, a«, 0) and has thereby suffered an oppor
tunity loss amounting to

lie, z, a, 0) =  u(e0y z0, a9} 0) -  u(e, z, a, 0) . (4-5)
In most decision problems u(e0j z0, a*, 0) is at least as great as any possible u(ey z, a, 0) 
and our use of the word “loss” to denote the quantity defined by (4-5) reflects 
this fact, but the use which we shall make of opportunity loss does not depend on 
this inequality and situations do occur in which it is possible and even natural to 
define the spaces E  and A and the spaces Z and 0 in such a way that (4-5) is negative 
for some (e, z, a, 0).

4-4-%- Extensive-Form Analysis Using Opportunity Loss Instead of Utility 
Writing (4-5) in the form

u(ey z, a, 0) = u(eo, z0, a«, 0) — Z(e, z, a, 0) (4-6)
and observing that u(eo, z<>, a*, 0) is a function of 0 alone and not of the decision 
variables e and a, we see that maximization of expected utility is equivalent to min
imization of expected opportunity loss. Instead of labelling the end branches of the 
decision tree with their utilities u(ey z, a, 0) and then making choices of a and e 
which maximize expected utility as we work back down the tree (cf. Section 1.2.1), 
we can label the end branches with their opportunity losses l(ey z, a, 0) and work 
back making choices of a and e which minimize expected opportunity loss. Thus 
after e has been performed and z observed, the expected opportunity loss of any a 
in A is .

**"(«, z. o) = E»{, l(e, z, a, 6) ;
since the decision maker is free to choose an a which minimizes this quantity, 
“the” opportunity loss of being at the “position” (e, z) is

l*(e, z) = min* Z*(e, z, a) = min« EJf, Z(e, z, a, 6) ;

before z is known the expected value of this opportunity loss is
l*(e) = E,|e I*(e, z) = Et\e min« E& Z(c, l, a, 6) ; (4-7)

and since the decision maker is free to choose an e which minimizes this quantity, 
his expected opportunity loss is

l* = mine l*(e) = mine E*|e mina EJ[* l(e, 2, a, 6) . (4-8)
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To see the relationship between expected opportunity loss and expected utility, 
we first define the quantity

U =  EJ w(e0, z0, 6) (4-9)
and observe that this is equivalent to

U = E,|e E'e'\t u(e0, z0, a%, 6)
because Et\e E'e\g =  E*^ and E**|e is equivalent to EJ when the function being 
expected does not depend on 2. Then by (1-3), (4-6), and (4-7),

u*(e) =  Et\e maxa E'e\g u(e, 2, a, 6) = E,k maxa EJ',[w(e0, zo, a*, 0) -  l(e, 2, a, 5)]
= E,k E ^  u(c0, z0, a9y 6) — Eg\e min* E9lg Z(e, 2y a, 0)
= U -  l*(e) . (4-10)

The expected utility of any experiment is simply a constant less its expected oppor
tunity loss.

4-4-3. Opportunity Loss When Terminal and Sampling Utilities Are Additive 
We next show that when u{ey z, a, 6) is the sum of a part ut(af 6) due to terminal 

action and a part u,(e, z) due to sampling, opportunity loss can be similarly de
composed; but to facilitate the interpretation of our result we first define the cost 
of sampling to be the negative of the utility of sampling,

c$(ey z) =  - u B(e} z) , (4-11)
so that (4-1) can be written in the form

u(ef z, a, 6) = u t(af 6) — ct(et z) ; (4-12)
and we specify that utility shall be measured on a scale such that

c,(eo, z0) = 0 , so that u(e0y z0, a, 6) = w<(a, 6) . (4-13)
Now substituting (4-12) and (4-13) in the definition (4-5) of opportunity loss we 
obtain

Z(e, z, a, 0) = u t(aey 0) -  w<(a, 0) +  c,(e, z) ; 
and if we also define the terminal opportunity loss1[

Zt(a, 0) s= ut(a9y 0) — u t(a, 0) , (4-14)
we can write

Z(e, z, a, 0) = Z,(a, 0) +  c.(e, z) . (4-15)
In other words, we can regard the opportunity loss of (e, z, a, 0) as the sum of two 
parts: (1) the cost of experimenting instead of making an immediate terminal 
choice, and (2) the opportunity loss due to making a “wrong” terminal choice 
after the experiment has been conducted. Observe that substitution of (4-13) in 
(4-4) yields

ut(a9y 0) > w<(a, 0) , all a e A , (4-16)
so that terminal opportunity loss as defined by (4-14) is necessarily nonnegative.

t The quantity l t(a, 6) is called by some writers the decision maker’s “regret” at having 
chosen a rather than o#. The word “loss” is used by some writers to denote the negative of the 
terminal utility ut(at 9), by others to denote /i(a, 9)t i.e. what we call terminal opportunity loss.
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Whenever the opportunity loss of (e, z, a, 8) can be expressed as the sum of 
terminal opportunity loss and sampling cost, the expected opportunity loss of an 
experiment e can be expressed as the sum of the expected values of these quantities. 
For if we define the expected terminal opportunity lossf of e by

l*(e) = Eg\e mina Ee\z U(ay 6) (4-17)
and the expected cost of sampling by

c*s(e) = EZ\ec,(cyz) , (4-18)
then substituting (4-15) in (4-7) we have

l*(e) ss E,|, mia, E$\g l(e, 2, a, 6) = E,k mina E'9\z[lt(ay 8) +  c,(c, 2)]
= E,|e mina E9\z L(a, 6) +  Ez\e c,{ey 2) (4-19)
=  lt(e) +  cl(e) .

We have seen in (4-3) that the expected utility of e can be similarly decomposed, 
u*(e) = ut(e) +  ut(e) = ut(e) -  c*s(e) , (4-20)

and as we might suspect there is a simple direct relation between ut(e) and l*(e). 
Substituting the right-hand sides of (4-19) and (4-20) in (4-10) we have

. ut(e) = U -  lt(e) (4-21)
where by (4-9) and (4-13)

U = E; ii,(ai,0) . (4-22)
An economic interpretation will be attached to U in Section 4.5.1 below.

4-4-4- Direct Assessment of Terminal Opportunity Losses 
The calculations required to minimize the expected value of

Z(e, 2, a, 6) = lt(ay 6) +  c.(e, 2) (4-23)
are in general neither more nor less difficult than the calculations required to max
imize the expected value of

u(ey 2, a, 6) = u t(ay 6) — c,{ef 2) , (4-24)

but in many situations analysis in terms of opportunity loss will have a very real 
advantage because the decision maker will find it much easier to assess lt(ay 8) 
than to assess u t(ay 6) for all (a, 6) in A X 0. Thus in a problem of inventory con
trol where the utility of money is linear, it may be very difficult to evaluate the net 
profit and hence the utility of stocking a units when there is a demand for 8 units 
because the net profit depends inter alia on the costs of purchasing, receiving, 
processing accounts payable, and so forth, and it is usually very hard to trace the 
share of these costs which is really attributable to any particular order; but it may 
well be clear that these costs are virtually independent of the quantity ordered, 
and if so it will be relatively easy to compute for any 8 the difference lt(ay 8) between 
the net profit with an arbitrary stock a and the profit with the optimal stock 
a« = 8.

t Called the Bayes or average “risk” by some writers.
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Observe that assessment of Z(e, z, a, 6) will not be easier than assessment of 
u(e, z, a, 0) in any situation where these quantities cannot be decomposed as in 
(4-23) and (4-24).

4-4-5• Upper Bounds on Optimal Sample Size
Provided that utility and therefore opportunity loss can be decomposed as in 

(4-23) and (4-24), analysis in terms of expected opportunity loss will sometimes 
greatly facilitate the selection of an optimal e whether or not it is easier to assess 
the conditional opportunity losses Z*(a, 0) than to assess the corresponding utilities 
u t(a,8). The problems in which this may be true are those in which the experi
ments in E  can be ordered in a sequence {e„} such that u*(en) and c*(en) are both 
increasing functions of n; and such problems are very common in the applications.

Our objective in such a problem will of course be to find the value n° of n 
which maximizes

u*(en) = ui(en) -  d(en)
or equivalently minimizes

l*(en) = lt(en) +  d ( 0  .
In a very few problems of this kind n° will be defined by an equation which can be 
solved either explicitly or by a simple iterative procedure—examples will be given 
later in this monograph—but more often n° can be found only by actually comput
ing u*(en) or Z*(en) for a number of values of n and thus tracing the behavior of 
u*(en) or Z*(e„) as a function of n. In such a situation, suppose that

Z*(e»0 = J?(€nO +  <*(enO
has been computed for some value n' of n. We know by (4-10) that the increase 
in utility which will result from using any n larger than n' is

u*(en) -  u*(enO = !*(e»0 -  l*(en)
= [Zf(«»0 -  lKen)] -  [cj(e„) -  cj(<v)] ;

and since Z*(a, 6) is necessarily nonnegative by (4-16) and therefore l*(en) is neces
sarily nonnegative for all n, we may write

u*(en) — u*(en>) < Zf(ev) — [cj(«n) — cj(en')] •

The left-hand side of this expression will certainly be negative if the right-hand 
side is negative, and therefore n cannot possibly be optimal unless it satisfies

ti(en) -  c,*(<v) < Vt(en.) . (4-25)

In other words: given any arbitrarily chosen nf with its associated sampling cost and 
terminal opportunity lossy it will never pay to increase the expenditure on sampling 
by more than the terminal opportunity loss of en>. The largest n which satisfies 
(4-25) is an upper bound on the values of n for which we need to evaluate u*(en) 
or Z*(e„).

In practice, the best procedure will usually be to start the analysis of a decision 
problem by determining the upper bound corresponding to the terminal oppor
tunity loss of the “null” experiment eo. Since c*(eo) = 0 we obtain the constraint
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ct(en) < lt(eo) (4-26)
on possibly optimal n without having to compute the term c*t(en>) which appears 
in (4-25); and since the distribution of 9 “posterior” to e0 is simply the “prior” 
distribution of 9, the definition (4-17) of l*(e) gives us

I*(e0) = min« EJ Zt(o, 9) , 
which is in general much easier to compute than

f?(en') = min0 E i lt{a, 9) , n' >  0 .
Once an initial upper bound has been found by use of (4-26), the fact that 

even a very small experiment en> often has a terminal opportunity loss Zf (e„') which 
is very much smaller than l*(eo) implies that we can often obtain a much smaller 
upper bound by next evaluating (4-25) for some n' which is much closer to 0 than 
to the upper bound given by (4-26). Thus if we seek to locate n° by tracing the 
function Z?(en), each computation not only serves to establish a point on the curve 
but may also bring a new reduction in the domain over which it has to be traced; 
and the computations are no more difficult than those required to trace the func
tion uf(en) without any hope of discovering reduced upper bounds on n°. We 
remind the reader that if the decision maker originally assigns terminal utilities 
rather than terminal opportunity losses to the various possible (a, 8), we are not 
obliged to determine ae for every 8 and then to compute Z<(a, 8) = u t(ae, 8) — ut(ay 8) 
for every possible (a, 0) in order to compute lj(e). For by (4-21),

lt(e) = U -  Ut(e) ;
and by (4-22) U =  EJ Ut(d$, 9) is a constant which need be computed only once 
in the analysis of any decision problem.

4.5. The Value of Information

In  the extensive form of analysis as we have used it hitherto, an experiment e 
has always been evaluated by computing the “absolute” utility u*(e, z) for every 
possible z and then taking a weighted average of these absolute utilities. When 
sampling and terminal utilities are additive an alternative procedure is available 
and we shall see in Chapter 5 that under certain circumstances this alternative 
procedure is very advantageous. For each z we can compute, not the absolute 
utility u*(e, z), but the increase in utility which would result if the decision maker 
learned that z = z and therefore altered his prior choice of an act a; and we can 
then take a weighted average of these utility increases. The increase in utility 
which results or would result from learning that l  = z will be called the value of 
the information z.

4.5.1. The Value of Perfect Information
Given the additivity assumption, we may regard equation (4-16),

ut(a9, 8) > u t(a, 8) , all a c A ,

as the definition of a$: a$ is an act, which, if chosen, would maximize the decision
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maker’s realized terminal utility. Let us similarly define a! to be an act which 
maximizes the decision maker’s expected utility under his prior distribution of 6, 
satisfying

EJ u t(a', 6) > EJ u t(a, 6) , all a « A . (4-27)
Now let us imagine an ideal experiment e« with a known cost ctiej) which 

is capable of yielding exact or perfect information concerning the true state B, and 
let us suppose that the decision maker wishes to choose between and the “null” 
experiment eo (i.e., immediate choice of a terminal act.) If he purchases the perfect 
information on 6, he will choose a* and his net utility will be

u(e0o, z0o, a9, B) = u t(a9i B) -  d(e<*) ,
whereas if he acts without this information he will choose a' and his net utility 
will be

u(eo, zo, a', B) = ut(a', B) — 0 .
The former of these two quantities will be greater than the latter if £?(£«) is less than 

vt(eoe, B) = lt(a'f 0) = u,(a«, 6) -  ut(a', 0) , (4-28)
and therefore we may regard ^(e*, 6) = Z<(a', 0) as the conditional value of perfect 
information given a particular B. We shall henceforth refer to this quantity as the 
CVPI of B and regard it as defined by (4-28).

The idea of CVPI can be visualized by reference to Figure 4.1, where it is 
assumed that A = {ai, a2, a3}. Assuming that a2 is optimal under the decision 
maker’s prior distribution, af = a2, perfect information that B = 0* would lead 
the decision maker to choose a\ rather than a ' and thereby increase his utility 
by the amount Jt(a2, B+) shown on the graph. Perfect information that B = B* 
would leave the decision maker’s original choice of a2 unchanged, and the value 
of the information would therefore be 0 = Z*(a2, B*).

The CVPI as defined by (4-28) can be evaluated only conditionally or after 
the fact; but before the fact we can compute its expected value, which we shall call 
the expected value of perfect information or EV PI: remembering that e0 will lead to a' 
we have

v;(e„) =  E'$ vt{em S) = E f9 U(a\ S) =  Z ? ( e o )  ^  E fe[ut(a,f 6) -  uf(a', 6)] . (4-29)

Observe that since the terminal utilities of action without information and of action 
with perfect information are respectively

Ut(e0) =  maxa EJ u t(a} 6) = EJ ut(a\ 6) (4-30)
and

*̂(̂ oo) =  EJ maxa u t(a, 6) = EJ w,(a*, 6) , (4-31)
we may write

ttf (0  s  l;(eo) = w?(c.) -  ui(eo) . (4-32)

The quantity W/*(0, which was given the designation U in (4-22), may be called 
the prior expectation of the utility of terminal action posterior to receipt of perfect 
information.

Graphically, the prior expected utility of any terminal act a„ i = 1, 2, 3, can
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be interpreted as the weighted-average height of the corresponding utility curve 
in Figure 4.1, the weights being given by the prior measure PJ; the quantity u*(e*) 
can be interpreted as the weighted-average height of the upper envelope of these 
lines; the prior expected opportunity loss of any a< is given by either the difference

Figure 4.1 
CVPI When a' = a2

between the average height of the envelope and the average height of the ith curve 
or by the weighted average of the local differences in height; and a' is an act which 
minimizes this difference of averages or average difference.

4-5.2. The Value of Sample Information and the Net Gain of Sampling 
We now go on to show that we can regard the value of the information to be 

obtained from a real experiment e in a way which is closely analogous to the way 
in which we have just looked at the value of perfect information obtained from 
the ideal experiment e«.

In (4-27) we defined a' to be an act which is optimal under the decision maker’s 
prior distribution,

EJ ut(a', 6) = maxa E0 u*(a, 6) , all a c A ;
we now define a, to be an act which is optimal under the posterior distribution 
determined by the outcome z of some real experiment e,

EJ{, ut(aZ) 0) = max0 E'0\z ut(a, 6) , all a e A . (4-33)
Now if instead of choosing a' without experimentation the decision maker per
forms e, observes z, and then chooses aX} he increases his terminal utility as eval
uated after the fact by

vt(e, z) s  E0[z ut(aiy 6) -  E& ut(af, 6) ; (4-34)
we shall call this the conditional value of the sample information z or CVSI of z. 

The conditional value of sample information can be given a graphical repre-
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sentation nearly identical to the representation of the value of perfect information 
in Figure 4.1. In Figure 4.2 we show for each act in A = {aif at, a3} the •posterior 
expected terminal utility ut(a, 6) as a function of the experimental outcome z.
If the optimal act under the prior distribution would be a' = a> but if instead of

choosing a' immediately the decision maker performs e, observes z*, and chooses 
a3, he has increased his terminal utility by the amount vt(e, z+) shown on the 
graph. If the experimental outcome were z*, his Qriginal choice of a% would be 
left unchanged and the value of the information would have been 0.

The CVSI as defined by (4-34) can be evaluated only conditionally on z or 
after z is known; but before z is known the decision maker can compute the ex
pected value of sample information or EVSI of any given e,

vt(e) =  Ef|, vt(e, I) . (4-35)
The economic significance of this quantity is due to the fact that the expected 
terminal utility of any experiment is the expected utility of immediate terminal action 
augmented by the expected value of the sample information:

u*(e) = w?(e0) +  vf(e) . (4-36)
Graphically, u*(e) can be interpreted as the weighted-average height of the upper 
envelope of the curves of posterior expected utility in Figure 4.2, the weights 
being given by the marginal measure P,|«; the expected terminal utility u?(eo) of 
terminal action without experimentation is the weighted-average height of the 
curve corresponding to a '; and the expected value of sample information is the 
difference between these two averages or the weighted average of the local differ
ences between the heights of the two curves. Formally, we have by (4-3c), (4-33), 
(4-34), (4-29), (4-30), and (4-35)
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Ut (e) — E*|e maxfl E^* u t(ay $) — Ef|e E$|* ut(a„ $)
= E,|e[E^ Ut(a', 6) +  Vt(e, I)] = u?(e0) +  t>?(e) , 

as asserted by (4-36).
Similarly it is apparent and can easily be proved that the expected terminal 

opportunity loss of any experiment e is the expected opportunity loss of immediate 
terminal action diminished by the expected valve of the sample information:

l*t{e) = lt(e0) -  vt(e) = vfiej) -  vf(e) . (4-37)
The expected net gain of sampling or ENGS of a particular experiment e is 

now naturally defined to be the expected value of the sample information less the 
expected cost of obtaining it,

v*(e) =  vt(e) -  cj(e) . (4-38)
I t follows by (4-36) that the net utility of a decision to perform any experiment is 

u*(e) = u*(e) — cj(e) = uf(e0) +  v*(e) = u*(eo) +  v*(e) (4-39)
and thus that the general decision problem may be viewed as maximization of net gain 
rather than maximization of utility or minimization of opportunity loss.

4.5.3. Summary of Relations Among Utilities, Opportunity Losses, 
and Value of Information

With No Special Assumptions
Def. u(ey z, a, 0): utility of performing ef observing z, and choosing a, when 0 is true. 
Def. u*(e) : expected utility of experiment e;

u*(e) =  E,|e max0 E*'* u(e, 2, a, 6) .
Def. eo:

Def. z0: 
Def. a*:

null experiment, i.e. a terminal act is chosen without experi
mentation.

dummy outcome of eo. 
an optimal act given 6;

u(eo, z0, a*, 6) > u(eoy z0, a, B) , all a c A .
Def. l(ey z, a, B) :

Def. l*(e):

Def. U: 
Result:

opportunity loss of (e, z, a, B) ;
l(e, z, a, 0) =  u(eoy z0, a*, 0) — u(e, z, a, 0) . 

expected opportunity loss of e;
l*(e) =  E,|f min* ES{« i(«, 2, a, 5) .

(7 =  EJ w(e0, z0,’a*, 0) . 
i4*(e) = U -  l*(e) .

When Terminal and Sampling Utilities are Additive 
u(e, z, a, 0) = Wi(a, 0) — ct(ey z) ; c,(c0, z0) = 0 .

Def. lt(ay 0): terminal opportunity loss of (a, 0);

U{ay 0) =  Ui(a*, 0) -  u t(ay 0) .
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Result:
Def. 17(e):

Def. ct(e):

Result:
Def. ew:

Def. «? (e«) 
Result:
Def. c„»: 
Result:
Def. a':

Def. vt(eK, 0):

Result:
Def. v7(ex) :

Def. v,(e, z):

Def. v7(e):

Result:

Def. v*(e):

Result:

4.5.3 Part II: Additive Utilities 

l(e, z, a, 0) = l,(a, 0) +  c.(e, z) .
prior expectation of terminal opportunity loss posterior to e ;

17(e) = E,|, min. EJ[, l,(a, 8) . 
expected cost of experiment e;

c*,(e) = E.|, c,(e, 2) . 
l*(e) =  17(e) +  c7(e) .
ideal experiment which would result in exact knowledge of 

the true state 0.
u7(ej) = E» max. ut(a, 6) = EJ 6) = U .
u7(e) = u7(ej) -  17(e) .
optimal experiment.
c?(e„o) — c7(en) < iT(e») , all n .
optimal act under prior distribution;

E» 8) > E« ut(a, 8) , all a t A . 
conditional value of perfect information (CVPI) given 0: 

v,(eKt 0) = ut(at, 0) — u,(a\ 0) .
0) = lt(a', 0) .

expected value of perfect information (EV PI);
v7(e») = E» lt(a', 8) =  l7(e0) . 

conditional value of sample information (CVSI) given z;
v,(e, z) = max. Ei« ut(a, 8) — Ei|t u,(a', 8) . 

expected value of sample information (EVSI) given e; 
v7(e) =  E,|, vt(e, 2) . 
u7(e) = u7(e0) +  v7(e) ,
17(e) =  I7(eo) -  v7(e) .

expected net gain of sampling (ENGS) of e; 
v*(e) = v7(e) — cj(e) . 
u*(e) = u?(e0) +  v*(e) , 
l*(e) = I7(e„) -  v*(e) .
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Linear Terminal Analysis

6.1. Introduction

In many situations where the utility of (e, z, a, 0) can be expressed as the sum 
of a utility due to (e, z) plus a utility due to (a, 0), it will also be true that u t(ay •) 
considered as a function of 0 will be linear in $ for every a in A. Thus if a choice 
must be made between acceptance (ai) and rejection (a2) of a lot of purchased 
parts, the utility of a\ may be of the form K\ — kid where 0 is the unknown fraction 
defective while the utility of a2 may be some fixed amount K 2 independent of 0. 
Or if a choice must be made between continuing to use an old drug with known 
cure rate 0o and adopting a new drug with unknown cure rate 0 and undesirable 
side effects, the utilities of the two acts may, as we saw in Section 4.2, be respec
tively N0o and N(6 — c).

In other situations u t may be a linear function, not of the parameter 0 in 
terms of which it is customary to describe the state, but of some function of 0. 
Thus suppose that a choice must be made between an old production process 
which generates a known fraction defective B0 and a new production process which 
generates an unknown fraction 0, and suppose further that defectives are scrapped 
at a total loss. If the cost of manufacturing one piece is fc, if N  good pieces must 
be manufactured, and if the utility of money is linear, the utilities of the old and

—  ̂ -  1 and f — ~ _  A  and the latter is not

linear in 0; but if we characterize the two processes, not by the ratio 0 of defectives 

to total pieces, but by the ratio p = —- of total pieces to good pieces, then the1 — u
utilities of both acts are obviously linear in p.

5.1.1. The Transformed State Description co
In this chapter we shall derive special methods of analysis for problems of the 

kind illustrated by these examples, i.e., problems where the terminal utility of 
every a in A can be expressed as a linear function of either the customary state 
description 0 or some simple function W  of 0. Formally, we shall consider problems 
in which

There exists a mapping W  from the state space 0 into a new space ft, carrying
0 into <a) = 1 F(0), such that

ut(at 0) = Ka +  ka co , all a c .4 , all 0 c 0 . (5-1)
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In general, ka and co are respectively a 1 X q matrix and a q X 1 vector, although 
some special analytical results will be given in this chapter for the case where ka 
and co are scalar. Ka is of course always scalar.

Nuisance Parameters. We have seen in Section 2.2.4 that when the state 0 
is vector valued, 0 = (0i, • • • , 0r), some of the components of 0 may be nuisance 
parameters in the sense that they are irrelevant to the utility of any (e, z, a, 0) and 
enter the problem only as parameters of the conditional probability measures 
PiM- Given the assumption of additive utilities, a nuisance parameter is a com
ponent of 0 which is irrelevant to ut(a, 0) and enters the problem only as a param
eter of

The presence of nuisance parameters does not really create any special problem 
as regards the linearity of terminal utility, since if u t(a, 0) is linear in a component 
0i and independent of 02 it is obviously linear in 0. We can however simplify nota
tion and comprehension by always defining the transformed state description co 
as free of nuisance components. Thus if utility is linear in the unknown mean 
0i ** n of an Independent Normal process but independent of its unknown pre
cision 02 = h = 1/a2, we shall define co = p just as we would define co = p2 if 
utility were linear in p2 but independent of h.

5.1.2. Terminal Analysis
When 0 is mapped onto ft, any measure P* on 0—prior or posterior—induces 

a corresponding measure P« on ft. Using the same symbol ut to denote the termi
nal utility function on A X ft that we used to denote the corresponding function 
on A X 0, we have for the expected terminal utility of any act

Ew Ut(a, d>) = u t(a, a>) = K a +  kao) (5~2)
where

w =  Ew(a>) . (5-3)
When terminal utility is linear in co, the mean of the distribution of co is sufficient for 
evaluation of and choice among terminal acts. In Figure 5.1 we give a geometric 
interpretation of this result for the case where ft is the real line and A = {ai, a2, az}.

Figure 5.1
Expectation of Linear Terminal Utilities 
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Terminal analysis under the assumptions of this chapter is thus completely 
trivial once the appropriate distribution of co—prior or posterior—has been ob
tained, and in many practical applications the required distribution is very easy 
to obtain. Very often co will be the “natural” process parameter 6 itself or the 
nonnuisance component of 0; and even when the distribution of co has to be derived 
from the distribution of 6y the derivation is often very easy. Two examples of 
such derived distributions have been worked out by way of example in Part III 
of this monograph:

1. If a beta distribution is assigned to the parameter 6 = p which describes 
the mean number of successes per trial generated by a Bernoulli process, then 
co = l /p  or co = 1/(1 — p) has a very tractable inverted-beta-1 distribution (Sec
tions 9.1.4 and 7.4.1).

2. If a gamma distribution is assigned to the parameter $ = % which measures 
the mean number of events per unit of time generated by a Poisson process, then 
co = 1/X has a very tractable inverted-gamma-1 distribution (Sections 10.1.4 and 
7.7.1).

When 03 is not identical to 0 there is of course no real advantage in finding 
the distribution of co if all that we want to do is choose among terminal acts—it 
would usually be just as easy to expect the formula for the terminal utility in terms 
of 0 over the distribution of S itself. The advantage of the linearization lies in the 
simplification it makes in the computation of the EVPI and in preposterior analysis, 
as we shall now see.

5.2. Expected Value of Perfect Information When co is Scalar
When a decision problem is to be analyzed in terms of the random variable «,

let a w denote an act which is optimal for given co, satisfying
u t(auy 03) > u t(a, co) , all a «A ; (5-4)

define the terminal opportunity loss of any a to be
lt(ay 03) =  u t(auy co) — ut{a, co) ; (5-5)

define af to be an act which is optimal under the prior distribution of o3y satisfying 
E i ut(a'y co) > E^ ut(a, 03) , all a e A ; (5-6)

define the conditional value of perfect information or CVPI to be
vt(eoo, co) =  lt(a\ co) = u<(aw, co) — ut(a'y co) ; (5-7)

and define the expected value of perfect information or EVPI to be
vXe«) = lt(e0) = E:Z*(o',«) . (5-8)

For a discussion of the in terpreta tion  of these quantities, see Sections 4.4 and 4.5 
above; we now turn our attention to their evaluation  in the case where the terminal 
utility of every a in A  is linear in a scalar  co.

5.2 . 1. Two-A ction Problems
Assume that A = {a iy a2} and that ft is the real line, write

Ut{aiy co) =  K i  +  ki03 , i  =  1, 2 ,
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and assume that the acts have been labelled so that fci <  kt. (We exclude the 
trivial case k\ — fc2 in which at least one of the two acts is optimal for a ll«.) The 
two utility functions are graphed in Figure 5.2, and it is apparent that in any

Terminal Utilities and Opportunity Losses: A = {au a2}

problem of this sort there will exist a breakeven value satisfying
Kl +  fci C06 = K2 +  2̂ (5-10)

and that the optimal acts for given o> are
_  fa  1 if a) <  cjt 1

a<* \ a 2 if w > a)b .
Recalling that the linearity of (5-9) implies that

Ew u t(aif w) = ui(ai, w) = Ki + ki w ,
we see that the optimal act under the prior distribution of d> is

, _  fa \ if a>' <  a>6 >
a ”  \ a 2 if d/ > .

The conditional value of perfect information is therefore

CVPI f/i(ai, w) = |fc2 — fci| max {w — <*>6, 0} 
\fi(a2, w) = |fc2 — ki\ max {o>6 — o>, 0}

if
if

d/ ^  W6 , 
d/ >  0)6 ;

a /S  = <7,

Figure 5.3
Conditional Value of Perfect Information: A = {au a2}
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the CVPI function is graphed in Figure 5.3. I t  is immediately apparent that 
the expected value of perfect information or EVPI is

y? ( 0  = lt(e o) = -
E« h(ai, o)) — |/c2 — fci| / (o) — 0)b) D'(cd) do) J if 0)' < 0)b ,

(5-11)
E£ ltia.2, o)) = |fc2 — ki\ («» -  to) D'(to) dw if 0) > 0)b .

If now we define the left- and right-hand linear-loss integrals under the distribu
tion of any random variable £, discrete or continuous, by

L®(a) s  [* (a — x) dPz ,
t5-12)

V?{a) = {x -  a) dPx ,

we can write for the EVPI in our present problem

= lt(e o) \h  -  h\ U r>(«6) 
\k2 -  fcil L ?(«*)

if
if

0)' 0)b ,
a/ >  . (5-13)

Notice that formulas (5-13) give the expected terminal opportunity losses of 
acts ai and a2 whether or not the acts in question are optimal under uncertainty.

5.2.2. Finite-Action Problems
Assume as before that Q is the real line and that u t(at, a>) = K* +  ktw but 

assume now that A = {ah a2, • • • , a,} where s may be any finite number, and 
assume that the acts have been labelled so that fci <  fc2 <  • • • <  k,. We may 
also assume without loss of generality that every a in A is optimal for some w, 
since the fact that E«ut(a, a>) = u t(a} w) implies that an act like an in Figure 5.4

Figure 5.4 
An Inadmissible Act

which is not optimal for any « is not optimal for any Pw, prior or posterior, and 
would therefore never be chosen in any case.t I t  follows that the utilities of the 
acts in A will appear as in Figure 5.5 and that there will exist s — 1 “breakeven 
values” a>i, 0)2, • • • , such that a\ is optimal for w in the interval (—°°, coi],

t  Notice also that if three or more lines meet in a point, all but two of the corresponding 
acts are inadmissible.
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0  ̂ is optimal for <o in [an, «*], * • • , a, is optimal for w in [a>,-iT *). If we define 
o>o t> — x and w, = * , we may say more briefly that ap is optimal for u? if and only 
if < w < o>p; and the linearity of ut then implies that aq is optimal under 
uncertainty (prior or posterior) if and only if ojq-i < u < wq.

Figure 5.5
Terminal Utilities and Opportunity Losses: A = {ab a2, aif a4}

On these assumptions, the prior expected terminal opportunity loss of any 
act ap—the EVPI if ap is optimal under the prior distribution of w—can easily be 
shown to be

E : l,(a„ &) = E r : ;  l*<+i -  W ( « 0  +  Z '- P  |**i -  ki\L?(t*i) , (5-14) 

L(/) and L(r) being defined by (5-12).

► Since the basic idea of the proof is extremely simple but the proof is hard to present 
formally because of notational complexities, we shall merely show that (5-14) is valid for a* 
in the problem illustrated by Figure 5.5. It is clear from the geometry of Figure 5.5 that 
in this case the conditional terminal opportunity loss of a* (the CVPI if a* is optimal under 
the prior distribution of w) is

1|fc« “  *i|(<*>i -  o>) if

I fa -  *J(« -  <*) |f
\kt — kt\((i) — on) +  \ki — fc*|(a> — o>i) if

Expecting these conditional values we obtain the expected terminal opportunity loss of at 
(the EVPI if as is optimal under the prior distribution of w):
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E 'J tic k ,  6 )  =  J m  |k 2 — ki\(o )i —  c*>) D '( w )  do)

"h f \k t  — &2|( q} — o>t) D '(w )  do) 4" f \k i  — k %|(co — o)%) D / (co) do) ;

and comparing the definitions (5-12) of the linear loss integrals we see that this result can 
be written

E :  l t(02, « ) « ! * , -  * i|  L ® ( « i )  +  |fc  -  fc| L Z \ oh) +  \k< -  h \  u r)(O),) 

in agreement with (5-14) for s = 4, p = 2. ^

5.^.3. Evaluation of Linear-Loss Integrals
The linear-loss integrals which occur in formulas (5-13) and (5-14) for the 

EVPI can often be evaluated in terms of well tabulated functions when w is a 
simple function of 6 and 6 has one of the conjugate distributions listed in Section
3.2.5. In Table 5.1 we index the cases which have been worked out in Part III 
of this monograph.

Table 5.1
Linear-Loss Integrals

“Natural”
Parameter Distribution Loss Integrals Reference

Process e of S 0) in Terms of Section

Bernoulli V beta U / p )
cumulative beta or 
binomial function

f 9.1.3 
\9.1.4

Poisson X gamma-1 {m =X i/ x}
cumulative gamma 
or Poisson function

110.1.3 
\ 10.1.4

rh known, 1 
p. Normal /

tabulated 
function L 11.3.2

Normal n, h •
Normal- \ Student density and 11.5.5ĝamma J M cumulative functions

Multinormal Mi h — same as univariate 8.2.3, 8.3.2
Regression P,h — same as Multinormal 8.2.3, 8.3.2

5.2.4- Examples
There follow four examples intended to illustrate the calculation of EVPI in 

concrete situations. Because problems of quality control present the essential 
features of decision problems with a minimum of extraneous complexities, three of 
the four examples are from that area; one example from outside this area is given 
to remind the reader that identically the same features will often be present in 
totally different functional applications.

Example 1. Pieces are produced in lots of size AT by a machine which be
haves as a Bernoulli process, the parameter p being the fraction defective. After 
a lot is produced, it can either be accepted (ai), meaning that all pieces are sent
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directly to the assembly department, or screened 1 0 0 % (a2), meaning that all 
defectives are removed and replaced by good pieces from an inspected stock. I t  
costs S  to screen the lot plus an amount c, for each defective replaced; it costs 
ca( > c,) to remove and replace a defective which reaches assembly. The utility 
of money is linear, and therefore we may adopt a scale such that the terminal 
utilities are

u t{ah p) = —caNp  , u t(a2, p) = -c ,N p  -  S  .
The breakeven value defined by (5-10), which we shall call t for typographical 
convenience, is

T *  Vi = (c. -  e.)N ;
a\ is optimal if p < t , a2 if p > t ; and we define

k =  |A*2 — fci| =  |ca — cg\.\r .

If a beta prior distribution of type (9-9) with parameter (r', n') and therefore with 
mean p ' = r'/n ' is assigned to p , the expected value of perfect information or 
expected opportunity loss of immediate terminal action is, by (5-13),

VtieJ = lf(e o)
.kLSTM

if p' > 7T ,
if p' < 7T .

The linear-loss integrals in these formulas are given by (9-12) and (7-23) as 
L f{ tt) = tr / , ( r ',  n' -  r') -  p 7 ,(r ' +  1, n' -  r') ,
L (pt)(t) = p7i_r(n' -  r', r ' +  1) -  t h - r(nf -  r', r') ,

where I is the “incomplete beta function” tabulated by Pearson (cf. Section 7.3.1).
Example la. Same as Example 1 except that a tumbling operation costing T 

per lot can be expected to eliminate one fifth of the defectives. There are thus 
four possible acts:

a\ \ accept as is, 
aP: tumble and then accept, 
a2: screen as is, 
az\ tumble and then screen;

the reason for the peculiar numbering will appear in a moment. Assuming that

N  = 1 0 0 0  , S  = 2 0  , T = 1 0  , ca = 1 .0  , c, = .4 ,

we have for the terminal utilities

u t(a\,p) = —caNp = —1000 p , 
u t{aP, p) = —T — CaN(.Sp) = —10 — 800 p , 
u t(a2, p) = —S — c,Np = —20 — 400 p , 
u t(az, p) = —T — S  — ctN(.Sp) = —30 — 320 p .

These utilities are graphed in Figure 5.6, where it is apparent that aa can be im
mediately rejected because there is no p for which it is optimal; cf. Section 5.2.2 
and Figure 5.4. The breakeven values for the three “admissible” acts are
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Figure 5.6
Terminal Utilities in Example la

-  S  20 
Pl (Co -  c,).V 600 ' ’

and
[kt -  *i| = \- c .N  +  caN\ = 000 ,

By (5-14) we have for the EVPI

T  1 0

** .2c,N 80 .125 ;

|/i*3 -  A-s| = l - . 8 c.-V +  C.N| = 80 .

v!(ex) = lt(e0) = •
600 Lp)(.033) +  80L<%125) 
600 ^ ( .0 3 3 )  +  80L<,r)(.125) 
600 L{?(.033) +  80Lj?(.125)

if
if
if

0  < p' < .033 , 
.033 <  p' < .125 , 
.125 <  p' < 1 ;

the linear-loss integrals L f  and L {p  are given in terms of Pearson’s beta function 
by the formulas at the end of Example 1 .

Example 2. A drug which has been in use for a long time is known to cure 
a fraction t  of patients treated; very limited experience with a new drug leads the 
director of the only clinic investigating the drug to assign to its cure rate p a beta 
distribution of type (9-9) with parameter (r', n'); its mean p' = r'/n ' is less than ir 
and the director is therefore thinking of stopping further use of the new drug im
mediately, but if he does he will be unable to obtain any further information con
cerning its true effectiveness. Perfect information concerning the new drug could 
reveal that p > * and lead the director to adopt it in place of the old drug. Letting
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ai denote a terminal decision in favor of the old drug and a2 a terminal decision in 
favor of the new drug, assume that for the reasons discussed in Section 4.2 the 
director assigns utilities

ut(ah v) = N t , ut(a2, p) = Np ,
where N  is the expected number of patients who would be affected by an immediate 
terminal decision. Because p' < t , the optimal act under the prior distribution 
of p is a\ and the EVPI is given by the first formula in (5-13):

vl(e„) = lt(eo) = N L ? ( t) = N ^ ' I ^ n '  -  r', r' +  1 ) -  * h - { r i  -  r 'f r')] .
In other words: if in fact p > ir, discarding the new drug at this point can be ex
pected to reduce the number of cures by N(p — tt) ; this loss is of course conditional 
on the unknown p, but in the director’s best judgment the unconditional expected 
value of the potential loss is /?(e0) as given by the formula just above.

Example 3. The standard method of producing a certain part behaves as a 
Bernoulli process with known fraction defective p0. Some experiments with a 
proposed new method lead to the assignment of a beta prior distribution of type 
(9-9) with parameter (r;, n') to its unknown fraction defective p. Manufacture 
of one piece, good or defective, costs Ci with the old process, c2 with the new process; 
N  good pieces must be manufactured by one process or the other; and the utility 
of money is linear. If we define p = 1/(1 — p), the terminal utilities of the acts 
“retain old process” (ai) and “adopt new process” (a2) can be written

u t{ah p) = —C\N/ (1 -  p0) = - CiNpo , 
u t(a2, p) = - c2N /{  1 -  p) = —c2Np ; 

the breakeven value is
pb = Cip0/c2 ;

ai is optimal if p > p&, a2 if p < p&; and we define
k =  \ — c2N  — 0| = c%N .

The EVPI or expected opportunity loss of immediate terminal action is

v f(e j =  lf(e0) =
j k  L f  (/%) if 
l  kLZXn) if

? '> »  
t '  < P»

where as shown in Section 9.1.4
, n' -  1 

P r' -  1 ‘
If we define

t = 1 /pb ,
then by (9-16), (7-18), and (7-19) the linear-loss integrals can be evaluated in 
terms of Pearson’s incomplete beta function I :

Lp\pb) = f i l l i n '  -  r 'f r#) -  ?7x_,(n' -  r', r' -  1) ,
L ? W  = ?7 ,(r ' -  1 , n' -  r') -  *  7i_,(r', n' -  r') .

Example 4• One batch of raw material yields a variable amount x of a certain
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chemical and the product sells for an amount sx. The standard method of produc
tion has a mean yield n0 per batch. It is believed that this yield can be increased 
by preliminary beneficiation of the raw material; the required equipment costs B 
and operation costs b per batch processed. The exact degree to which beneficiation 
will increase the yield is uncertain, however; the responsible manager assigns to 
the mean yield fi of the beneficiated batches a Normal prior distribution with 
mean /z' and variance fJ. He wishes to choose between ah immediate purchase 
of the equipment, and a2, postponement of a terminal decision for one year, after 
which he is sure that accurate information on the effect of beneficiation will be 
available. The number of batches to be processed during this year is N  and the 
utility of money is linear, so that the terminal utilities can be written

u t(ai, n) = Nsn — Nb — B , u t(a2, m) = Nsp0 .
The breakeven value is

, Nb + B
»  = +  ’

ai is optimal if n > Hb, a2 i( n < w>] and we define
k = |fc2 -  fci| = |0 -  Ns\ = Ns .

The risk involved in an immediate choice of a terminal act is measured by the 
EVPI, which is given by (5-13) as

‘{ x) -  ‘{ a) \ k  L«(w) if t  < w .
In order to evaluate the linear-loss integrals by use of (11-25), we first write the 
decision maker's prior distribution of j2 in the notation of (1 1-2 1 ):

D'GO = / at(m|™', hn') cc 6-
where in the present context h is simply an arbitrary positive constant and

„ / __/m =  n ,
We then have by (11-25)

/ _ _1_ 
hf! ‘

v?(«oo) =  l*(e0) = k Lx*(u)/Vhn' , u = |m& — m'\y/hn' ;
the function La* is tabulated in Table II at the end of this monograph.

6.3. Preposterior Analysis
Our assumption that sampling and terminal utilities are additive implies, as 

we saw in (4-3), that the expected utility of an experiment can also be broken down 
into a sum of the expected utility of sampling and the expected terminal utility,

u*(e) = u*,(e) + ut(e) 
where (in terms now of u rather than 6)

uf(e) = Eg\e max0 E'^g u t(a, w) . (5-15)
We now turn our attention to evaluation of u*(e) when ut(a} •) is linear in o>.
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5.3.1. The Posterior Mean as a Random Variable
The assumption that ut(a, •) is linear in (either a scalar or vector-valued) a> 

implies that the posterior expected terminal utility of any act depends only on the 
mean of the posterior distribution,

E^? Ut(a, d>) = Ut(a, £>") where d>” =  , (5-16)
so that “the” expected terminal utility after observing z is max0 w*(a, w") and is 
thus a function of d>" alone. We shall call this function \f/, defining

(̂d>") s= maxa ut(a, w") = maxa (K a +  ka d>") . (5-17)
To perform the preposterior analysis of any e as defined by (5-15) we must 

evaluate
ni(e) = E,le+(&'') . (5-18)

Now formula (5-17) for \f/ is in terms of u"  rather than z and would have to be 
reexpressed in terms of z before we could evaluate (5-18) by direct use of the meas
ure P,|e. I t is often much simpler to turn the problem around and proceed much 
as we did in paragraph 4 of Section 3.4.3 when we had to find the expectation of 
<t>[y"(y)] with respect to Py\e: we can treat the posterior mean explicitly as a random 
variable &'/, obtain its distribution P*"\e from the distribution Pz\e of 2, and then 
compute

ul(e) = E,„*(& ') = E*«,.*(«") , (5-19)
where we drop the subscript from &" in the last member because 2 plays no role 
once P*"|« has been determined.

The distribution P*"^ will be called the prior distribution of the posterior mean; 
it is also called the preposterous distribution. The theory of this distribution 
will be discussed in Section 5.4, after we have completed our discussion of the basic 
economics of problems with linear terminal utility in Section 5.3.2.

5.3.2. The Expected Value of Sample Information
1 . General Theory. In Section 4.5 we defined a! to be an act which is optimal 

under the prior distribution of 6, satisfying
E£ u t(a\ 6) = maxa EJ u t(a, 6) ,

and we defined at to be an act which is optimal under the posterior distribution 
corresponding to a particular experimental outcome z, satisfying

Ee[z ut(a,} 6) = maxa E ^  u t(a, 6) .

We then defined the CVSI or value of the sample information z by 

Vi(cf z) = Ee\z ut(aK, 6) — E ^ ut(a\ 6) ,

defined the EVSI or expected value of sample information to be obtained from e by

vf(e) = Ef|« vt(e, 2) ,

and showed that the terminal utility of e is the utility of immediate terminal action 
augmented by the EVSI of e:
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u?(e) = uf(e0) +  vf(e) .
This way of looking at ut(e) is particularly instructive when the utility func

tion u t(a, •) on Q is linear in co = W (0). Remembering that this linearity implies 
that E* Ut(a, w) = i*t(a, <o), we see that a ' can now be defined by

ut{a\ co') = max0 u t(a, a / )  ; ( 5 - 2 0 )

and remembering that z uniquely determines co” we can see that az can be denoted 
by a*" and defined by

u t(a ^} <o” ) = max0 Mt(a, w") . (5-21)
The CVSI or value of the “sample information” co” is accordingly

vt(e, co” ) = Ut(ac,", <o”) — Wi(a', a/') = maxa u t(a, co” ) — wt(a', co” ) , (5-22)
where we use the same symbol v% for the CVSI function on A X ft that we use for 
the CVSI function on A X Z because the meaning will always be clear from the 
context. Comparing the definition (5-7) of the CVPI function, we see that

f,(c, «”) = /t(a', £>") : (5-23)
when terminal utility is linear in co, the CVSI function is formally identical to the 
CVPI function. I t follows immediately that the expected value of sample informa
tion is given by

vf(e) = Ew v fa B ? ')  = E«",eU(a', &") , (5-24)
where the substitution of Ê >\e for Ez\e is explained in Section 5.3.1.

2. Scalar co, Finite A . The formal analogy between EVSI as given by (5-24) 
and EVPI as given by (5-8) implies at once that EVSI for the case where d> is 
scalar and A is finite is given by the same formula (5-14) which gives EVPI for 
this case,

»?(«) = IX ,1 -  k,\L2^<) +  E ’Zp -  W ’M  > ap = a' , (5-25)
the only difference being that in this case the linear-loss integrals are to be evalu
ated with respect to the distribution of &" rather than the distribution of co. When 
the number s of acts in A is 2, this formula reduces to (5-13):

-  Jlfc* ~  if « '< « * ,
<w \\k t -  k i \L $ M  if «' >co6 . (5-26)

For a geometrical interpretation of these results, return to the problem 
with s = 4 illustrated in Figure 5.5. The figure graphs the conditional terminal 
utilities u<(a, •) as functions of co, but because E 'J\z u t(a, w) = u<(a, a/'), we may 
relabel the horizontal axis co”  instead of co and interpret the “curves” as graphs of 
E«', ui(a, w); observe that this does not change the “breakeven values” coi, co2, and 
C03, which depend only on the constants K h • • • , K 4, fci, • • • , kA. We have already 
seen that if no experiment is performed, the decision maker will choose the terminal 
act for which the prior expected utility E^ w<(a, co) = u*(a, co') is greatest; suppose 
that <01 < co' < co2 and that this act is therefore a2. If an experiment is performed, 
then after observing z the decision maker will compute co'' and choose the terminal 
act for which the posterior expected utility E^, w*(a, w) = u t(a, co” ) is greatest ;
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suppose that w" = w* and that as indicated by the figure the decision maker 
therefore chooses ai. Then as evaluated after the fact, the decision maker’s utility 
is u t(ah w*) rather than u t(a2, w*) and we may say that the value of the sample 
information has been

Ut(a\, w*) — ut(a2, w*) = Zi(a2, a>*) ;
just as Z<(o2, w*) is the value of “perfect” information that w = w* if before receiv
ing this information the decision maker would have chosen 02. Generalizing, we 
see that the CVSI for any w" is Zi(a', a/'), and it follows at once that the EVSI for 
any e is E*"|« Z«(a', &").

5.4. The Prior Distribution of the Posterior Mean ffi" for Given e

We now turn our attention to the actual distribution of the random variable 5", 
but before beginning our formal treatment we shall try to guide the reader by some 
heuristic observations. (1) If no sample is taken at all, the “posterior” distribu
tion of u) will be identical to the “prior” distribution and therefore the posterior 
mean will be equal to the prior mean a/; the “distribution” of &" consists of a 
mass of 1 at the point a/. (2 ) Under appropriate conditions an infinitely large
sample would yield exact knowledge of the true o>; and therefore before such a 
sample is taken, the distribution of &" is identical to the prior distribution of w itself.
(3) I t seems reasonable to infer that as the “sample size” increases from 0 to «> the 
distribution of &" will in most cases spread out from a single mass point at a/ 
toward the prior distribution of co as a limit. In other words, the effect of sample 
size on the distribution of &" should be (loosely speaking) the opposite of its effect on 
the sampling distribution of the sample mean for given 03.

5.4-1. Mean and Variance of &"
We now turn to formal treatment of the theory of the distribution of &" and 

give some general results which apply in all cases where the mean and variance of 
the prior distribution of w exist. We begin with two theorems which will prove 
very useful in the applications:

Theorem 1. For any e, the expected value of &" is the mean of the prior dis
tribution of w:

E(fi") = E'(o>) . (5-27)

Theorem 2. For any e, the variance of &" is the variance of the prior dis
tribution of a> less the expected variance of the posterior distribution of w 
given z :

V(fi") = V'(A) -  V^(«) . (5-28)

In general, w is an r X 1 vector, the expected values of (5-27) are r X 1 vectors, 
and the “variances” of (5-28) are r X r matrices of (actual or expected) variances 
and covariances; we use the word “variance” rather than “covariance” for the 
entire matrix to avoid having to use special terminology for the case r = 1 .
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► The proof of (5-27) is trivial. Recalling that for any given prior distribution w" is 
uniquely determined by z and that EZ|* E")2 = E^ie,

E(&'') = EfItE^(«) = E-lfk(«) = Ei(«) = «' .
To prove (5-28) we first prove the following lemma: Let £ and ij be jointly distributed 

and define
Xy — EX|y(.f) , X — E(^) = Ey Ejr|y(i) )

then
V(*) =EyV ,|y(2 )+VyE„y(*) .

For
V(i) = E(£ -  X)2 = Ey EX,y(2 -  5y +  5y -  X)'2

= Ey Ez]y(£ — 5y)a +  Ey($y “  X)2 +  2Ey(fy — i) Ej|y(i — 5y)
= Ey VZ\v(£) +  Vy EX|y(X)

as asserted. The result can be interpreted as saying that the variance of £ is the sum of 
(1) the mean conditional variance of £ about the regression surface of £ on #, plus (2 ) the 
variance of the regression surface about its mean E(2 ).

The theorem (5-28) is now proved by rewriting the lemma in the form
VyEx|y (« )= V W -E y V z|y(«

and substituting 03 for x and z for y to obtain
V .I .E M  -  Vzk(&") -  V(fi") = V'(co) -  E2lev:;2(di) . 4

5.4.2. Limiting Behavior of the Distribution
Now consider a sequence of experiments {en} = e0, eh e2, • • • where n is in some 

sense a measure of the “sample size” or of the “amount of information” to be ob
tained from en. The marginal distribution P2|« of the experimental outcome l  
depends of course on n, and since 6 ” is a function of z its distribution P«"{*|en} 
also depends on n. We now wish to investigate the behavior of the distribution 
of &" as n increases, and we shall therefore display the dependence by writing &'nf 
for the random variable. We shall consider only sequences {e„} for which the 
corresponding sequence {Si'}, considered as a sequence of “estimators” in the 
classical sense, is consistent in squared error in the sense of the following

Definition. The sequence {6 « } is consistent in squared error over the subset 
C  ft if for all w in Q0

(a) lim E(fi;'|«) = co , (5-29a)n—
(b) lim V(fi"|«) = 0 . (5-29b)

► When w and therefore &'n' is an r X 1 vector, the second part of the definition requires 
all elements of the r X r variance matrix V(fii') to vanish in the limit, but it suffices to 
verify this for the diagonal elements (the marginal variances of the scalar components of &'n') 
because by the Schwarz inequality
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\ E { t - m - y ) \  <[V(f)-V(</)]* .
for any two scalar random variables t  and y. ^

We have already seen in (5-27) that the mean of the distribution of fi» is «' 
regardless of the value of n; the effect of n on the variance of fin is given by the 
following

Theorem 3. Let {fin} be consistent in squared error over the spectrum of the 
prior distribution of w. Then as n —> <x> the variance of fi» approaches the 
prior variance of fi:

lim V(fi") = V'(«) . (5-30)n—

► By the lemma in the proof of (5-28),
V(fi») = E:V(fii'|«) +  V:E(fi"|co) .

Taking the limit as n —> » and then interchanging the order of the operations lim and E 
in the first term on the right and of the operations lim and V in the second term we have

lim V(fi") = El lim V(fi"|«) +  lim E(fi'n'|fi) .n—*• n—♦» n—*«
The theorem then follows by (5-29). <4

A much more basic result is contained in
Theorem 4- Let (fin} be consistent in squared error over the spectrum of the 
prior distribution of o>. Then the sequence converges in distribution to fi; i.e.,

lim P{fi« < c} = P'{fi < c} (5-31)
n—»oo

for any c which is a continuity point of the prior cumulative distribution 
function of d>.

► Given any r X 1 vector w in the spectrum of P ,̂ the sequence of r X 1 vectors {fi»} 
converges to o) in mean square by hypothesis, and it follows by Chebysheff’s inequality 
that {fin } converges to co in probability, i.e., that for any r X 1 vector € > 0 however small

lim P{co -  e < fin <*w +  e|w} = 1 .n—
From this it follows that, for any r X 1 vector c whatever,

lim P{fii' < c if < d ,
if o)i > Ci ,

all t, 
any i.

Now writing
lim P{fi'n' < c} = lim E:P{fi'n' < c|fi} = E: lim P{fi'n' < c|«}

and using our previous result for the limit on the right we have
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P'{a> < c) < lim P {&'n < c} < P'{<5 < c} ,
n—*«

and (5-31) follows because the left- and right-hand members of this expression are equal 
when c is a continuity point of P̂ ,.

We could have taken an alternate route to Theorems 3 and 4 by first proving that &'nf 
converges unconditionally to a> in mean square and then using theorems in probability 
theory relating different modes of convergence. 4 |

5.4-3. L im iting Behavior of Integrals When cv is Scalar
We now specialize to the case where Q is the real line and give two results 

concerning the limiting behavior of the integral of a linear function of with 
respect to the distribution of ©«'. We first define the incomplete first moment or 
partial expectation over ( — 0 0 , c] of any scalar random variable u with measure P u 
to be

E l . (5) = f C_ x u d P . . (5-32)
We then have

Theorem 5. If d> is scalar, then for any real c
lim Ec_.(S'*') = Ec_co(*) . (5-33)
n—

Corollary. If w is scalar, then for any real c
lira L£,(c) = L«>(c) ; lim L«(c) = U r)(c) (5-34)

where the L functions are defined by (5-12).

► The proof of Theorem 5 follows from the Helly-Bray theorem which can be found in 
M. Lo£ve, Probability Theory, Van Nostrand, 1955, pages 180-183. Then if we write the 
definitions (5-12) of the L functions in the form

L»(c) = /* „ (< :-« )  dPu = cP.{S < c} -  E l.(« ) ,

L(J\c) = I *  (u -  c) dPu = E(«) -  E l.(u ) -  c P„{« > c} , 

the corollary follows at once from (5-31), (5-33), and (5-27). <4

5.4-4- Exact Distributions of S"
The distribution of has been worked out in Part III of this monograph for 

the processes and ws listed in Table 5.1 (page 99) and for all the experiments listed 
in Table 3.1 (page 75); since &" is a function of the sample outcome l  and the 
distribution Pt\e depends on e, the distribution of &" will obviously be of one type 
if, say, the number of trials is predetermined in sampling from a Bernoulli process, 
of another if the number of successes is predetermined. The results are summarized 
in Table 5.2, where references are to formulas rather than to sections. The column
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Table 5.2 
Distribution of 6 "

Distribution of 5"
Prior -----— --------------------------------  Approximation

Process Distribution Experiment « P V E, L Parameters
'

> (9-20) n (9-2 lb) (9-23)
f\n < hypergeometric n + n ' (9-22)

i / p (9-25) (9-29) (9-27 b) (9-30)
hypergeometric (9-28)

Bernoulli beta
p (9-34) (9-38) (9-36b) (9-39)

nlr - hypergeometric (9-37)

i/p (9-41) r (9-43b) (9-45)
w hypergeometric r +  r' -  l (9-44)

(10-36) t (l0-37b) (10-39)
fl* binomial t +  tf (10-38)

i/x (10-42) (10-45) (l0-43b) (10-46)
binomial (10-44)

Poisson gamma <
X (10-2 1 ) r (l0 -2 2 b) (10-24)

l\r beta r +  r' +  l (10-23)

l/X (10-27) r (l0-28c) (10-30)
< beta r +  r' -  l (10-29)

h known, jx Normal m\n p (ll-32) n (ll-24b) —

Normal
Normal n +  n' ( ll-25)

Normal-gamma m, 0\n, v fi (ll-67) n (ll-49c) —
Student n +  n' (ll-50)

Multinormal — — 2  c</2< same as univariate
Regression — — 2  cipi same as univariate



headed P cites the formula for the distribution of 5" and names the most familiar 
function in terms of which cumulative probabilities can be evaluated. Except for 
the Bernoulli process, the function cited has been well tabulated; computation 
and approximation in the Bernoulli case is discussed in Section 7.11.2. The col
umn headed V gives the ratio V(fi")/V'(o>) of the variance of &" to the prior vari
ance of w. The column headed E, L  cites (1) the formula for the partial expecta
tion of &" as defined by (5-32) and (2) formulas for the linear-loss integrals L£» 
and as defined by (5-12). In the case of the Bernoulli and Poisson processes, 
these formulas involve cumulative probabilities of the type listed in the column 
headed P; in the other cases, the formulas involve one Normal or Student density 
and one Normal or Student cumulative probability.
5.4.5. Approximations to the Distribution of &"

If we let rj denote the predetermined component of the sufficient statistic in 
Table 5.2, the sequence is consistent in squared error in every case in the 
table and therefore (a) the distribution of &'? approaches the prior distribution 
of q) as rj increases, and (b) the first two moments, the partial expectation, and the 
loss integrals under the distribution of approach the corresponding quantities 
under the prior distribution of w. This implies that when rj is “large” we will ob
tain accurate results if we approximate the exact distribution of &" by an appropri
ately chosen distribution belonging to the same conjugate family as the prior distribu
tion of w. Notice that we can not expect good results from a Normal approxima
tion unless the prior distribution of « is Normal. The last column of Table 5.2 
cites formulas for the parameters of a distribution of the conjugate family which 
will have the same first two moments as the exact distribution of

5.4.6. Examples
To illustrate the use of the information indexed in Table 5.2 we shall compute 

the value of the information which could be obtained by sampling before reaching 
a terminal decision in some of the situations for which we computed the expected 
value of perfect information (or expected opportunity loss of an immediate termi
nal decision) in Section 5.2.4. In each case we shall assume a prior distribution 
of the same type that we assumed in Section 5.2.4.

Example 1. In the situation of Example 1 of Section 5.2.4, assume that p! is 
below the breakeven value pb, so that the optimal immediate terminal act would 
be acceptance. The expected value of the information which could be obtained 
by sampling the lot before making a terminal decision is then given by (5-26) as

vj(e) = k L<iKpb) .
The value of the loss integral L in this expression depends on the distribution of 
and this depends in turn on the experimental design; we shall consider two possible 
designs.

la. Binomial Sampling. If a predetermined number n of pieces is to be 
drawn from the lot, the number of defectives f  being left to chance, then p" has the 
distribution (9-20) and by (9-22b) and (7-82)

LfiQpb) = p' Gh(re\n, r i , re +  r') — ph Gh(rc\n, n' -  1 , rc +  r' -  1) (5-35a)
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where re is defined by
r' +  r

+  n (5-35b)

and Gh(s[S, F, v) is the hypergeometric probability of obtaining s or more successes 
in v drawings without replacement from a finite population containing S  successes 
and F failures.

Exact evaluation of the first of the two cumulative probabilities in this formula 
involves computing and summing no more than r ' +  1 individual hypergeometric 
terms, the second no more than r ' terms; but even this usually moderate labor is 
unnecessary if p' and pb are small, since condition (7-86) will then be met and we 
can use the approximation

LfiiPb) = P' Gb (re |n ” n,< rc +  r ')  -  p» Gb ( r e |w re + r' -  1 )  (5-36)

where Gb(r\v9 v) is the binomial probability of r or more successes in v Bernoulli 
trials when the probability of a success on any trial is t .

lb . Pascal Sampling. If the sample is to be taken by drawing pieces from 
the lot until a predetermined number r of defectives has been found, the number n 
of drawings being left to chance, then p" has the distribution (9-34) rather than 
(9-20), and by (9-37b) and (7-82)

W ’(Pb) = P' Gk(r\nef n', r +  r') -  pb Gh(r\net ri -  1 , r +  r ' -  1 )
where ne is defined by

rf +  r 
n* +  7ic = Pb .

Exact evaluation of the first cumulative hypergeometric probability involves 
computing and summing no more than r ' +  1 terms, the second no more than r ' ; 
if p' and p& are both small, we may use the binomial approximation

W l* >  -  f  c .  ( r  r +  / )  -  p , G. ( r | n > + ^ , _ 1, r +  r' -  l )  .

Example 2. In the situation of Example 2  of Section 5.2.4, suppose that the 
director of the clinic proposes to try the new drug on n more patients before making 
up his mind definitely whether or not to return to exclusive use of the old drug. 
Recalling that we have already assumed that p' is less than the known cure rate 
tt — pb of the old drug, we have by the same reasoning as in Example 1 above

vf(e) = NLF'(pb)
where N  is the expected number of patients affected by the terminal decision and 
the value of the loss integral is given in terms of hypergeometric cumulative prob
abilities by (5-35) above.

Suppose now that
tt = pb = .500 , r ' = 23 , n' = 51 , p' = r '/n ' = .451 .

(These values of r ' and n' describe the distribution which the director would now 
assign to p if, starting from an original rectangular distribution of p, he had already
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tried the new drug on 49 patients and found that 2 2  were cured.) Suppose further 
that the proposed new test is to involve

n = 50
patients. Under these assumptions, condition (7-86) for the use of the binomial 
approximation (5-36) to the hypergeometric probabilities in (5-35) is definitely 
not met; but on the other hand the fact that the sample size n is large means that 
we are probably justified in using a direct beta approximation to the distribution 
of p" itself. By (9-23) a beta distribution with parameters

* n + n' , , , , 50 +  51 rr> in* = -------  (n +  1) — 1 = — ——  52 — 1 = 104 ,n 50

r* = r' = 7 ^  23 = 47 ,n 51
will have the same mean and variance as the exact distribution of p", and we may 
then use (9-12b) and (7-23) to evaluate

LP'iir) = T h-rin*  -  r*> r* +  1) — p' / ^ ( n *  -  r*, r*)

= .5 7.6(57, 48) -  .455 /.,(57, 47) .

The required values of I  are beyond the range of Pearson’s tables, but they can 
be expressed in terms of binomial probabilities by use of (7-20) and doing so we 
obtain

Lj0(x) = .5G6(57|.5, 104) -  .455 G6(57|.5, 103)

= (.5 X .1888) -  (.455 X .1622) = .0206 .

The expected value of the sample information is thus the equivalent of .0206AT 
patients cured. As we pointed out in Section 4.2, the “cost” of this information 
to a person with the utilities assumed in this example lies in the fact that, given 
his present information about the new drug, he can expect only 50 p' = 50 X .455 = 
22.7 of the experimentally treated patients to be cured whereas he could expect 
507r = 50 X .5 = 25 of them to be cured if they were treated with the old drug. 
The cost of the proposed experiment is thus 2.3 patients cured, and the net gain 
to be expected from it is therefore (.0206iV — 2.3) patients cured.

Example 3. In the situation of Example 4 of Section 5.2.4, assume that the 
decision maker can have raw material beneficiated by an outside contractor. The 
contractor charges more than it would cost the decision maker to do the work 
himself if he bought the necessary equipment, but the decision maker is thinking 
of having a small number n of lots treated by the contractor so that he can meas
ure their yields x before deciding whether or not to invest in the equipment. As
sume that the lot-to-lot variance of the yields .£ of individual untreated batches is

V(s |m) = 1 /h
where h is a known number, and assume that it is virtually certain that the treat
ment will have no appreciable effect on this variance even though it does affect 
the mean p = E(£). Letting /z' and p' denote the mean and variance of the decision
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maker’s prior distribution of p and defining the parameters m! and n' of this dis
tribution by

m! = /z' n = hfi '
we have by (5-26), (11-32), and (11-25)

where
vt(e) = k(hn*)-l L n.{u)

= 1 _ _  _ 1 __
n* nr n! +  n u = |/i6 — m'\Vhn* ;

the function Ls* is tabulated in Table II at the end of this monograph.

5.5. Optimal Sample Size in Two-Action Problems When the Sample 
Observations are Normal and Their Variance is Known

I t is usually fairly easy to compute the expected cost cl(e„) of performing an 
experiment of size n, and when we also have a convenient formula for the expected 
value vt(en) of the information to be obtained from the experiment, we can always 
find the value n° of n which maximizes the expected net gain

V*(en) = Vt(cn) -  c»(en)
by actually tracing the behavior of t>*(e„) as a function of n; cf. Section 4.5.2. 
In one very important case, however, we can write an equation for the optimal 
sample size which can be solved either by a reasonably simple iterative procedure 
or still more easily by reference to published charts. This case, which we shall 
now examine in detail, is that of two-action problems where terminal utility is 
linear in the mean of an Independent Normal process whose precision h (or vari
ance l/h )  is known and where the cost of sampling is linear in the sample size.

5.5.1. Definitions and Notation
Let m denote the mean of an Independent Normal process with known pre

cision, i.e., a process generating independent random variables £i, • • • , • • • with
identical densities

D(x|m, h) = fN(x\n, h) oc (5-37a)
where h is known; and let the prior density of p be

D'(m) = /jvMm', hn') oc o* . (5-37b)
Let A = {ai, a2}, let

t/i(a», m) = Ki +  kifM , i = 1, 2 , (5-37c)
and define the breakeven value & and the terminal loss constant kt by

*  =  Kkl Z  ** ’ kt s  |fcs -  • (5_37d)

Assume temporarily that the known or expected cost of sampling is proportional 
to the number of observations n,

(̂ n) — k$n , 
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we shall generalize later to include a fixed element in sampling cost, i.e., to the 
case where c*(en) = K. +  k,n. Then by (4-38) and (5-26) in conjunction with 
(11-32) and (11-25) the expected net gain of an experiment e„ which consists of 
observing (xi, • • • , x„) is

where
v*(en) = v*(en) -  c',(en) = kt(hn*)~i Lv(D *) -  k.n (5-38a)

-L =  1  _  i ,
n* ~~ n' n' +  n D* = |/X6 — m'\(hn*)l (5-38b)

The really essential features of the problem are best brought out by putting 
the net gain v*(en) into a dimensionless form and by looking at certain ratios in
volving the sample size n and the prior parameter n' rather than at n itself; and 
the interpretation of these ratios will be easier if we first define the sampling and 
prior standard deviations

a, =  h~% , al = (hn')~l .
We then define the ratios

_  n_ __ a'? 
p ~~ n' cT*/n 1

D ' =  |/i* — m'|(/m')l = ^ >

\  = k t(n'*h)~l k r l = y 1 ;

to facilitate typography we define the supplementary symbol

(5-39)

(5-40a)

(5-40b)

(5-40c)

6 =
J2

_ , 2 
In__

n

(5-40d)

and we then consider the dimensionless net gain of e„

g(p\ Df, X) ^  ^  = X 0 L n.{D'/0) -  P . (5-41)

The first term on the right is the dimensionless EVSI; the second is the dimension
less cost of sampling or sample size.

5.5.2. Behavior of Net Gain as a Function of Sample Size
Concerning the function g(p;Dft X) defined by (5-41) we shall prove the fol

lowing results, treating p as if  it were a continuous variable.
If D' = 0, then for any given X the net gain behaves with increasing p in the 

way shown in Figure 5.7. Because the prior distribution is totally indecisive, the 
value of additional information at first rises much more rapidly than the cost of 
obtaining it. The EVSI cannot exceed the EVPI, however, and as it approaches 
this bound it increases more and more slowly, while the cost of sampling increases 
steadily in proportion to the sample size. The net gain accordingly reaches a
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maximum and then declines more and more rapidly; the optimal “sample size” p° 
is the value of p corresponding to this maximum. The true optimal value of n 
may of course be 0  if p° corresponds to n <  1 .

If D' >  0, the prior distribution definitely favors one of thp two terminal 
acts, so that it is very improbable that a very small sample could reverse this deci
sion, and the EVSI accordingly at first increases very slowly with n. The rate of 
increase of the EVSI becomes greater as the sample becomes large enough to have 
an appreciable chance of reversing the decision, but then slows down again as 
the EVSI approaches the EVPI. Meanwhile the cost of sampling increases stead
ily; and the net result is that the net gain may behave in any of the ways shown 
in Figures 5.8 and 5.9, depending on the value of (Z)', X). For any given D*, 
there is some value \ c of X such that if X >  Xc the net gain has a local maximum

Figure 5.8 
116



Optimal Normal Sampling 5.5.2

which is a true maximum as in Figure 5.8 and the optimal sample size p° is the 
value of p which produces this maximum. If X < Xc, then as shown in Figure 5.9 
the net gain has either a negative local maximum or no local maximum at all and 
the optimal sample size is 0. The critical value Xc increases with D' as shown 
by the graph Figure 5.10 of Zc =  X<J.

5.5.3. Optimal Sample Size
When D' = 0, the optimal “sample size” p° is the unique root of

iXp-l(p +  1)-!(2tt) - 1 = 1 ; (5-42a)
when D’ > 0  and the optimal sample size is not 0 , p° is the larger of the two roots of

*Xp-i(p +  = 1 (5-42b)

where 6 = Vp/(p +  1 ). The quantity

V° s  P°/Z* = p°x-1 = = n

is graphed as a function of

£)« = ! ) ' ,  D* = 0(.1).2(.2)3.4, and Z =  Xl ,

hi
(kt/k ,)l 

.7 < Z < 80

(5-43a)

(5-43b)

in Chart I at the end of this monograph. A nomogram showing N  =  p° as a func
tion of X and |X| =  Dr for 70 < X < 4000 and 0 < |X| < 2 .6  is given on page 37 
of the Journal of the Royal Statistical Societyy Series B, Volume 18, Number 1 
(1956).

For some purposes all that we require is the net gain of an optimal sample for 
given (D' , X), the actual size of this sample being irrelevant. Chart II at the end of
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this monograph, the data for which were computed at the expense of the Interna
tional Business Machines Corporation under the direction of Arthur Schleifer, Jr., 
shows the quantity

7o =  y*(en«) 
“  (iW t.) i g(p°t D \ X) n' hi

(*«/*.)*
(5-43c)

as a function of the parameters defined by (5-43b).

► The results presented in Sections 5 .5 .2  and 5.5.3 were first published by Grundy, 
Healy, and Rees (JRSS 18 [1956] pp. 32-48), who derived the equivalent of formula (5-41) 
for the net gain by using the fiducial distribution resulting from an initial sample as a prior 
distribution and then applying the normal form of analysis to the problem of determining 
the optimal size of a second and final sample. The size nv of the first sample in their analysis 
plays the role of the prior parameter n' in ours; their n2 is our n. For completeness we shall 
reprove the results here by a line of argument which differs from theirs in a few details.

We start from the dimensionless net gain as given by (5-41),
( 1 )  0 (p ; D ' ,  X ) =  X  0 L n . ( D ' / $ )  -  p

where

and differentiate twice with respect to p, thus obtaining
(3) g \ p ; D', X) = *X p ~ \( p  +  \)~\ JN.{D>/e) -  1 ,
(4) g"(p- D\ X) = JX[p(p +  l)]-i/*.(D'/0) {Z>'» +  -  l)p -  4p»} .
For D' = 0, we see that g\p) decreases steadily from + »  at p = 0 to — 1 at p = » , so 
that g(p; D', X) must behave as shown in Figure 5.7. For D' > 0 , we see that g\p) = — 1 
at p = 0  and at p = « while p"(p) is positive for all p below the unique positive root of the 
quadratic in curly brackets and negative for all greater p; it follows that p(p; D', X) may 
vary with p in any of the ways shown in Figures 5.8 and 5.9.

The first-order condition for a local maximum of p(p; D', X) is obtained by setting (3) 
equal to 0 ,
(5) iXp-l(p +  l)~i f N.(D'/0) - 1 = 0 .
Denoting by p° the root of this equation which corresponds to a local maximum of p(p; D', X) 
if one exists, we observe that by Figures 5.7, 5.8, and 5.9:

If D' = 0, a local maximum always exists and p° is the unique root of (5).
If D* > 0, a local maximum may or may not exist. If one does exist, the maximizer p° 
is the larger root of (5), but p(p°; D\ X) may or may not be greater than g{0; D', X) = 0.

We can partition all (£>', X) pairs into those for g(p°\ D', X) > 0 and those for which 
g(p°; D', X) < 0 by first finding the pairs (D'c, Xe) for which p(p°; D', X) = 0 exactly. The 
computation of \  as a function of u c is best carried out by treating both Xc and D’e as func
tions of the ratio where d*c is the optimal 0 = Vp/(p +  1) for the given (D'C) X«). 
Substituting (2 ) in (3) and setting the result equal to 0 we obtain the optimality condition

2d
(i -  e*yfN.(D'/e) 

119

X .(6)



5.5.3 Part I I:  Additive Utilities

Substituting (2 ) in (1) we obtain the condition for zero net gain

(7) e
a  -  e*) LN.{D'/e) = x .

These two equations taken together define the locus of (0°Cf D'c, Xe) as a curve in 3-spacc. 
Eliminating X between them, substituting

Ln*(u) s  /,v.(m) -  u Gn.(u) ,
and defining the function <f> by

(8)

we obtain

4>(u) = u Gn*(u)

(9) <t>(D'/0°c) = 1(1 +  *c°2) .
Computation of Xc as a function of D'e can be carried out by inserting values of DfJ09c 
into the left side of (9) and for each such value: (a) solving (9) for and then computing 

= d9e(Dc/d9e) ; (b) inserting 0\ and Dfc/69c into (6 ) or (7) to determine 
Since 0 < 0\ < 1 by the definition of 6, the right-hand side of (9) is restricted to the 

interval [§, 1], and therefore the permissible values of D'c/09c for this computing procedure 
are those for which 1 < <t>(D'e/09c) < 1. To delimit these permissible values, we first observe 
that

d , ,  N (w2 +  1) Gn.(u) -  u f N*(u)  ̂ „
3“ 0 (u; = ------------ -—7—------------ > U

for all u < oo, as is proved by the fact that
(u2 +  1) Gn*(u) -  u f N*(u) 

is 0  at u = oo and that its derivative

~  [(w2 +  1) Gn.(u) “  u f N*(u)] =  - 2 L n . ( u )  < 0

for all u < oo. Then since </>(.612) =  \  and </>(oo) =  1, we conclude that the permissible 
values of Dfc/09e are those in the interval [.612, oo): as D'c/09e runs from .612 to oo the right- 
hand side of (9) runs from 1 to 1 and 0\ itself runs from 0  to 1 . We remark incidentally 
that the fact that D'J0\ increases with 0\ implies directly that Drc increases with 09e and 
implies via (6 ) that Xcjncreases with 09ej from which it follows that Xe increases with Dfc. 
The quantity Zc = \Z\e is graphed as a function of D' in Figure 5.10.

Our next task is to lay out a systematic procedure for computation of the optimal 0° 
for those (£)', X) for which net gain is positive, and as a preliminary step we prove the two 
following propositions.

(10) For any fixed Df and any p > 0, net gain increases with X.

(11) For any fixed D', the optimal p° and therefore the optimal 0° increase with X.

Proposition (10) is obvious on inspection of formula (1). To prove proposition (11), we 
observe that the optimality condition in the form (5) implicitly defines p° as a function of X 
with parameter /)'. Differentiating this constraining equation totally with respect to X for 
fixed Df we obtain, with the aid of (4),

*P-*(P +  l)-S/jv.(DV0)[l +  \ \p ~ \p  +  I)”1 {•} jjj] = 0
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where {•} stands for the expression in curly brackets in (4); and since {■} must be negative 
at a local maximum, dp°/d \ > 0 as was to be proved.

Proposition (10) implies tha t g(p°; D \ X) >  <7(0; D', X) for given Df if and only if X 
is greater than the critical value Xc for the D' in question; and proposition (11) then implies 
that ^(p°;D ', X) >  g(0;D '} X) for given D' if and only if 6° > 6°c for tha t D’. Optimal 
sample size may therefore be computed as a function of X for given D' by taking a series of 
values of 6° such tha t 6° > 6°e and using (6) to find the X corresponding to each 0°. The 
value 0° = 1 corresponds, of course, to p° = « .

Finally, the net gain of an optimal sample g(p°; D', X) can be computed as a function 
of D' and X by inserting the values p° and 0° which are optimal for each (D', X) into for
mula (1). <4

5.5.4• Asymptotic Behavior of Optimal Sample Size
For any values of the parameters Df and X an upper bound for the optimal 

sample size p° is given by
P° <  / * » ( £ ' )  . (5-44)

As X increases with D' fixed the ratio between the two sides of this inequality ap
proaches unity, so that for large X we can approximate the value of p° by

p° =  V iX/.v.(Z)') ; (5-45a)
for fixed X the relative error in the approximation increases with D'.

Expressed in natural rather than dimensionless units, formula (5-45a) becomes
n° = [h(kt<r(/k 8)(a(/ a i y f N.(Df)]h . (5-45b)

If we take as the unit of measurement for p, optimal sample size increases with 
the seriousness of a wrong decision as measured by ktaf, decreases with the “decisive
ness” of the prior distribution as measured by D and decreases with the standard 
deviation of the prior distribution as measured by <r£/<r«. The last relation is of 
particular interest: while it is suggestive in some situations to think of the recip
rocal of the prior variance as a measure of “quantity of information,” the contrary 
is true when we are making a decision concerning sample size. In this case a large 
prior variance—strictly, a large ratio <rl2/<r2—represents a great deal of relevant 
information, since it amounts to an assertion that p is almost certainly so far from 
the breakeven value p* in one direction or the other that a very small sample can 
show with near certainty on which side of pe, the true p actually lies, f In problems 
of point estimation, on the other hand, optimal sample size naturally increases 
with (7>, as we shall see in Chapter 6 .

► To prove (5-44) and (5-45) we substitute V p /(p  +  1) for 0 in the optimality condition 
(5-42b), thus obtaining

pJ(p +  i ) i  =  }X(27r)-i exp D '^j =  JX[(2ir)~l e ~ ^ ']

t Observe, however, that when we make these statements about the effect of variation in aj, 
we are assuming that D' is held fixed. If £' is held fixed instead of D', then D' ® |p<> — 
will vary with and the effect of the variation will be different.
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and hence

(i) p2 [(^yeiD,,/p]= •

Since the larger root p° of this equation increases with X for fixed D', as shown in proposition 
(11) of the previous proof, and since as p increases the factor in square brackets in (1) 
approaches 1 from above, we see at once that the inequality (5-44) holds for all p° and that 
as p° increases the ratio of p° to the right-hand side of (5-44) approaches 1. ^

5.5.5. Asymptotic Behavior of Opportunity Loss
We have seen in (4-37) that the prior expectation of the expected terminal 

opportunity loss to be incurred after performing en (often called the Bayes risk) 
is the EVPI diminished by the EVSI of en,

li(fin) = i*(co) -  vj(en) .
Using (5-13) and (5-26) to obtain the values of these quantities when u<(a, •) is 
linear in <o and using (11-32), (11-25), and (5-40) to evaluate the loss integrals 
under a Normal distribution we have

H(en) = kt(hn')-l [.Ln*(D') -  d Lx .(D'/6)] , (5-46)
and in dimensionless form this becomes

t ( p ; D \ X) rn ^  = X[L.v.(Z)') -  e LMD'/6)] . (5-47)

An upper bound on the expected terminal opportunity loss of en is given by

t ( p ; D', X) < h\fN*(D') -  , P > 1 . (5-48a)
P

As p increases with Dr and X fixed, the ratio between the two sides of this inequality 
approaches unity, so that for large p

r(p;Z)',X) = *X/ * . ( £ > ' ) 1  • (5-48b)
P

► To prove (5-48a) we first observe that

—  ^ • ( u )  =  — G n * ( u )  

is an increasing function of u, so that
( 1 ) L n * ( u  +  c) >  — c G n * ( u )  .

D'Substituting (1) in (5-47) with u = Df and c = ——  D' we obtaind

(2) i  r(p; D', X) = LN.(D') -  0 LN.{D'/6)

LN. m  -  D,L ^ G „ .( D ') ]  

22

< Ln.(D') -  e



= (1 -  0)[Lk.(D') +  D'Gn.(D')]
= (1 -  B)Sn.{D') .

The inequality (5-48a) follows from the fact that for p > 1

(3) 1 -  0 = 1 -  ( l  +  = i(l/p) -  l(l/p)» +  • • •

< id /p ) ;
and we prove the asymptotic approximation (5-48b) by observing (a) that as p —* oo the 
ratio of the two sides of (3) approaches unity and (b) that as 6 approaches 1 and therefore

« = Df ^--0— ̂  approaches 0 the ratio of the two sides of (1) approaches unity.

It is perhaps worth remarking that reasoning very like that which led to (2 ) gives a 
lower bound

ir(p;D ',X ) > (1 -d)f„.(D '/6) . 4
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The approximation (5-48b) is valid for any (I)', X) when p is large, whether 
or not p is optimal for the given (Z)', X); but because p° increases with X for fixed 
Z)', we may approximate the terminal opportunity loss of an optimal sample when 
X is large by substituting in (5-48b) the approximation (5-45a) to p°. We thus 
obtain

r(p°; Z)', X) = [iX/**(Z)')]* = p° . (5-49a)

When X and therefore p° are large, the cost of an optimal sample is equal to its expected 
terminal opportunity loss. (The same result can be obtained by adding the dimen
sionless sampling cost p to (5-48b), thus obtaining an approximation to the total 
expected opportunity loss when p is large, and then minimizing this total with 
respect to p.)

Expressed in natural rather than dimensionless units, formula (5-49a) becomes

I! =  c* =  [h(kteX )(< r./c l)M D ')]i . (5-49b)

Both the terminal opportunity loss and the sampling cost of an optimal sample 
increase with the seriousness of a wrong decision as measured by ktet and with the 
cost k, of a sample observation; with el fixed, they decrease with the “decisiveness” 
of the prior distribution as measured by Df; and with Z)' fixed, they decrease with 
the probability that p is far from p& as measured by e j e t.

5.5.6. Fixed Element in Sampling Cost
All of the above discussion has rested on the assumption (5-37e) that the 

expected sampling cost is strictly proportional to the sample size, c*(en) = ktn. 
We now generalize to the case where sampling cost also includes a fixed element 
which is incurred if any sample is taken at all but which is independent of the size 
of the sample,

Cs(en) = K 9 +  k$n .
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The effect of K t—or rather, of the dimensionless fixed cost K t/(k $n')—on the 
curves of net gain in Figures 5.7, 5.8 and 5.9 is obvious: every point except the 
point at p = 0 will be depressed by the amount K ,/(k tn'). If a local maximum 
exists when K t = 0, one will exist when K, > 0 and it will correspond to the same 
value of p in both cases; but a local maximum which gives positive net gain when 
K» = 0 may give negative net gain when K t > 0. Obviously, therefore: if for 
given (Z)', X) it does not pay to sample when K $ = 0, then a fortiori it does not pay 
when K $ >  0; if it does pay to sample when Kt = 0, then when K, > 0 the optimal 
size can be found by finding the size which would be optimal if K t = 0 and com
puting the net gain of this sample to see whether it is greater or less than the 0  net 
gain of taking no sample at all.

5.6. Optimal Sample Size in Two-Action Problems 
When the Sample Observations are Binomial

Convenient exact solutions of the problem of optimal sample size in two- 
action problems with linear terminal utilities have unfortunately not been found 
for any data-generating process other than the Independent Normal process with 
known precision. We shall therefore consider only one other problem of this sort: 
that of sampling from a Bernoulli process when terminal utility is linear in p, when 
the number of trials is to be predetermined, and when the cost of sampling is 
linear in n. This one example will suffice to illustrate both the difficulty of finding 
an exact solution to nonnormal problems and the possibility of finding an approx
imate solution by use of the results of our analysis of the Normal problem.

5.6.1. Definitions and Notation
Let p denote the mean of a Bernoulli process, i.e., a process generating inde

pendent random variables £i, • • • , • • • with identical densities

D(z|p) = fb{x\p, 1) = p*{ 1 -  p)'~z , x = 0 , 1 ; (5-50a)

and let the prior density of p be

D'(p) = fo(p\r'f nf) cc pr'_1(l — p)n' - r'~ l . (5-50b)

Let A = {ai, a2}, let

w<(a„ p) = K i + k ip  , i = 1 , 2 ;  (5-50c)

define the breakeven value p& and the terminal loss constant fc< by

p& = ^  ’ kt = lfc2 -  fci| ; (5-50d)
and assume that

0 <  pb < I . (5-50e)

(If this last condition is not met, one of the two acts is optimal for all possible p.)
On these assumptions the EVSI or expected value of the information to be 

gained from n observations on the process is, by (5-26),
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 ̂ if P' < P b  ,
‘ \ k t Lp(pb) if p' > Pb ,

and the values of the functions L U) and L (r) are given in terms of the cumulative 
beta-binomial function by the very similar formulas (9-22a) and (9-22b). All 
essential features of the problem can be brought out by considering only the case 
where

P' = £  >  P» , (5-50f)

implying that the optimal act under the prior distribution is a2. The dim ensionless  
EVSI can then be defined to be

h(n) =  ^  v t(en) =  Lf.{Pb)

= Pb Feb(pn\r', n', n) — p' F»(pB|r' +  1, n’ +  1, n) (5-51a)
where F&, is the left tail of the beta-binomial function defined by (7-76) and p is 
the integer-valued  function of n defined by

pn = [pb(n' +  n) -  r'] , (5-51 b)
[.x] denoting the greatest integer in x. For any sample size n, pn is the greatest 
value of the sample statistic r which will lead to p" < pb and thus to the conclu
sion that the act a x is optimal; recall that a2 is optimal under the prior distribution 
by the hypothesis (5-50f). For n small enough, the definition (5-5lb) may lead 
to a negative value of p, implying that no possible outcome of the sample can 
reverse the prior choice; if so, then (5-5 la) gives / i ( n ) = 0  — 0 = 0 in  accordance 
with common sense.

5.6.2. Behavior of the E V S I  as a Function of n
In order to understand the behavior of the EVSI as a function of the sample 

size n, we first observe that as n increases from 0  through integral values the func
tion p defined by (5-5lb) at first retains some constant value, then increases by 1 
and retains this value for a time, then increases by 1 again, and so forth. The 
effect on the dimensionless EVSI defined by (5-51) of a unit increase in n is given 
in terms of the beta-Pascal function (7-78) by

^  i “  P»]/np«(n +  Ik ', n', Pn +  1 )

if pn+1 = pn , (5-52a)

M(n) = [ V + i  ~  X]  [ Pb ~  n’ V n t  l ] /w>o(n +  1|r' ’ n>’ Pn + l)
if Pn+1 =  Pn +  1 , (5-52b)

where
A /i(n) s  h(n  +  1) — h(n) .

The first differences given by (5-52a) are always positive and those given by (5-52b) 
are always nonnegative, corresponding to the fact that one would never refuse to
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accept free information. As long as p remains constant, each successive first differ
ence is smaller than the previous one,

Ah(n) < Ah(n — 1) if p„+1 = pn = P n -i ; (5-53a)
if pb «  each increase in p is either accompanied or followed by an increase in the 
first difference:

Ah(n) > Ah(n -  2) if ( pn+1 = Pn ’ , (5-53b)

It follows that for pb«  \  the dimensionless EVSI behaves in the way shown by 
the solid curve in Figure 5.11; the dotted curves will be explained in a moment.

Figure S .ll
Behavior of EVSI with n: Binomial Sampling

► To prove (5-52a) we start from formula (5-51) for h(n) and obtain, writing p„ for pn+1,

(1) M (n )  =  Pb[Fpb(p»\r', n', n +  1) -  F ^ ip Y ,  n', n)]

---- ; [Fpb(pn\T' +  1, n' +  1, n +  1) — Fpb(pn\r' +  1, n' +  1, n)]n
We then use (7-80) to express F$& in terms of GpPa and (7-78) to obtain a recursion relation
for ffiPa-

(2) Ah(n) *  pb[G(iPa(n +  2|r', n', pn +  1) — GpPa{n +  l |r ', n', pn +  1)]

— “7  [GV<*(n +  2|r' +  1 , n ' +  1, pn +  1) — GflPa(n +  l |r ' +  1, n ' +  1, pn +  1)] n

=  - Vbf$Pa(n +  l |r ', n', pn +  1) +  ^7 ffiPa(n +  l |r ' +  1, n ' +  1, p„ +  1)n

= +  Ik'. Pn+1)  •

This quantity is necessarily positive by the definition (5-51b) of p„+i = p„.
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To prove (5-52b) we start again from (5-51) but this time write pn +  1 for p*+h thus 
obtaining

(3) AA(n) =  F$b(pn +  1|r't n ', n +  1) — —t Fpbipn +  l |r ' +  1, nf +  1, n +  1) J

-  ^P» n', n) -  f>6(p„|r' +  1, n ' +  1, n) J

= Ai +  As
where

(4) Ai =  Ffib(pn\rf, n', n +  1) — ~  F$b{pi\r' +  1, n ' +  1, n +  1) J

-  £pt /'V(P»I>'', n '( n) -  ^Fp»(p„|r' +  1, n ' +  1, n) J  ,

(5) A2 =  PbffibiPn +  l |r ',  w', n +  1 ) ----- jfpbipn +  l |r ' +  1, n ' +  1, n +  1) .
n

Now (4) is identical to (1) and therefore by (2)

(6) A, =  - £ p »  -  ^  |  +  l |r ',  ri, p . +  1) .

To evaluate Ai we use (7-76) and (7-78) to obtain the relations

f$b(pn +  l |r ' +  1, n ' +  1, n +  1) =  +  l | r '> *'» n  +  1) >r (n +  1)

fffbipn +  l |r ',  n', n  +  1) = . f$Pa(n +  l |r ',  n \  pn +  1) ,Pn +  1
and substitute in (5) to obtain

(7) A n  +  1  r  r ' - f p n + l l  , , 1 /  , ,

^  = ^ n L P‘ " n '  +  n + l J / ^ ( n + 1 | r -n - p» +1)  '
Substituting (6) and (7) in (3) we obtain (5-52b), which is nonnegative by the definition 
(5-5lb) of pn+i =  pn +  1.

To prove (5-53a) we observe th a t if pB+i =  pn =  Pn-i, then by (2)

(8) Am  -  AA(n -  1) =  h U n  +  l |r ',  » ', p„ +  ! ) [ ;;■* * * |  -  P»]

-  /p/>.(n|r', n', p , +  ~  P»] •

By a recursion formula in (7-83)

fppa(n\r'} n \  pn +  1) =  /  "J" jT /#><»(* 4- l |r ',  n ', p* +  1) ,
n(n 4" ft — r — pn — 1;

and substituting this result in (8) and writing

r'n =  r ' 4- Pn , n"  =  n ' 4- n ,
we obtain 9

(9) “  Pb)  "  n(n" — r / -  1) “  P » ) ] w n +  1lr'> n'- *  +  *> •
127



5.6.2 Part II:  Additive Utilities

This expression will be negative if the factor in square brackets is negative, and the factor 
in square brackets is negative because, first,

( 10) .. //
+  1

n" +  1
>  P b

the first inequality being obvious and the second following from the definition (5-51 b) of 
p.+i = p», and second,

( 11)

as we shall now prove.

n"(n -  p„) 
n(n" -  r” -  1) >

Writing the inequality in the form
n -P n  n" -  (r" +  1) 

^  n
we see that it is equivalent to

Pn rn' +  1
n n"

and will hold a fortiori if

( 12)

But we know by (5-5lb) that

Pn rj[_
„ — // n n

r'„’ _ r' + pn 
n" = n' +  n <  P b 1

and since r'/n ' > pi by the hypothesis (5-50f), (12) follows immediately. 
To prove (5-53b) we first rewrite it in the form

&h{n)
Ah(n -  2) *

We next substitute (5-52a) for the numerator and the same expression with n — 2 in place 
of n and pn — 1 in place of pn for the denominator, thus putting the assertion (5-53b) in 
the form

(13)
( n ' ^  |  “  Pb)fer*(n + Ik', n’, p„ +  1)

( ~ f r pn-, ~  Pi-V^a(n -  1 lr' - ^\n  +  n — 1 F )
Now using (7-78) to obtain the relation

f$pa(n + l|r', n', p, +  1) r'n'(n” -  r” -  1) «(« -  1) 
n”(n" — 1) p„(n -  p„) fpra(n -  l|r', n\ pn)

and substituting in the numerator of (13) we see that (5-53b) will be true if

, u v , . r'; +  1 -  (w" +  1) Pt n " - l  -  r” -  1) n(» -  1)
( ’ r" -  (»" -  1) Vb ' n" +  l ‘ n"(n" -  1) p„(n -  p.)

= (rn -  P b n " )  +  (1 — P b )  r'„'(n" -  r'„') n 2 w"(n" -  -  l)(n -  1)
( r n  -  P b r i ' )  +  P b  ‘ n "2 p „(n  -  p „) ' (n" +  l ) ( n "  -  r ” ) n  '

The first factor on the right will be greater than 1 for pb < \ if its denominator is positive, 
and the denominator is positive because the fact that pn-i = p„ — 1 implies that
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r" r' + pn t’ +  Pn—1 +  1
n" -  1 n '+ n  -  1 n' +  n -  1 l>b '

The second factor on the right is never less than 1 when pb < \ because by (5-5lb) and an 
argument in the proof of (12) above

n * $ * » < * -
The third factor is less than 1, but it will be very dose to 1 when n is large and n will be 
large when pn > 0 and pb is small. Since the first factor will be much greater than 1 when 
pb is small, the entire expression will clearly be greater than 1 when pb is small. (How small 
is small could be answered precisely, but since the condition is tantamount to requiring 
that the product of the first and third factors on the right-hand side of (14) be greater than 1 
we shall omit this cumbersome nicety.) ^

Some additional insight into the behavior of the EVSI graphed in Figure 5.11 
can be obtained by looking at the problem for a moment in terms of normal-form 
rather than extensive-form analysis. I t can easily be shown that if the decision 
maker takes a sample of size n and then applies a decision rule calling for act d\ 
if and only if r is less than or equal to an arbitrary “critical value” or “acceptance 
number” c, his expected terminal utility will exceed the expected terminal utility 
of an immediate choice of a2 by the amount

kt[pb F ^ ( c |r ' ,  n ',  n) -  pf F ^ r '  +  1, n ' +  1, n )]  . (5 -54)

Comparing (5-51), we see that if c is the optimal critical value for the given n, 
i.e., if c = pn as defined by (5-51b), then (5-54) is the EVSI as we have defined the 
EVSI in Section 4.5. If on the contrary c is not optimal for the given n, i.e., if 
c t* pn, then the value of the decision rule as given by (5-54) is less than the EVSI. 
If we were to plot the value of (5-54) for fixed c as a function of n, it would coincide 
with the solid curve in Figure 5.11 for those n for which p„ = c but for n outside 
this range the curve would behave as shown by the dotted curve in Figure 5.11; 
in particular, it would turn down as soon as n exceeded the largest value for which 
c is optimal. If the “acceptance number” c is fixed arbitrarily, too large a sample 
actually decreases terminal utility; the cost of taking the excessive observations is 
worse than wasted.

► To derive (5-54), we first observe that the same reasoning used to derive (5-26) shows 
that when utility is linear in a; the expected increase in utility obtained by using a decision 
rule of the type discussed in the text instead of simply choosing the terminal act which is 
optimal under the prior distribution is

if « ' > « » ,

and this becomes (5-54) when evaluated by the aid of (9-20) and (9-2lb).
To prove that the value of (5-54) actually decreases with n as soon as n exceeds the 

highest value for which p„ = c, we need only observe that by (5-52a) the first difference 
of (5-54) with respect to n is a positive number multiplied by
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If now n is such tha t

r ' +  c +  1 „ r ; +  c +  1
n ' +  n +  1 ^ b n f +  n ’

r' +  (c +  1) 
n ' +  n <  Pb

i.e., if pn >  c +  1, then obviously A <  0, as was to be proved. ◄

5.6.3. Behavior of the Net Gain of Sampling; Optimal Sample Size
Let us now assume that the cost of sampling (or the prior expectation of this 

cost) is proportional to the sample size n:
ci(en) = fc.n ; (5-55)

generalization to the case where c*(en) = K 9 +  ktn is trivial as we saw in Section
5.5.6. We can then define the dimensionless net gain to be expected from taking 
a sample of size n to be

gin) =  [t>f (e„) -  cj(e„)] = h(n) -  m  (5-56a)

where
k =  k9/k t . (5-56b)

A local maximum of g will occur a t any value n° of n such that
Ah(n° -  1) >  jc >  Afc(n°) , (5-57)

where Ah is given by (5-52); but it is apparent from (5-53) or Figure 5.11 that 
there may be more than one local maximum, and the only way to determine 
(a) which of these local maxima is the greatest and (b) whether this greatest local 
maximum is greater than 0 net gain of n = 0 is actually to evaluate g(n°) a t each 
n° by use of (5-56) and (5-51).

With a high-speed computer this method of determining optimal sample size 
is quite feasible. The best method is probably to start from g(0) = 0 and then 
to sum the first differences of g, each difference being obtained from the previous 
one by recursion. Thus for the case p' > pb, for which the first differences are 
given by (5-52), it is not hard to show that g(n) can be computed by starting from 
the base

0(0) = o , *(0) = vL^ - .

r '
po =  - 1  , m  =  ", ™  j -  Pb ,

and then recursively computing in the following order
r
0 if g(n) = - m ,  tf>(n) > 0 ,

g(n +  1) = g(n) — k +  • (p» -  n) iK«) 4>(n) if

1? 
__'
s*.1Al < 0 ,

(Pn +  1) iK71) ^(n) if g(n) > - m ,  f(n ) > o ,
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<t>(n +  1 )

(n' + n -  r' — pn)(n +  1) 
(n — pn +  l)(n' +  n +  1) <t>(n)

( r '  +  Pn +  l)(w  +  1)
.(pn +  2  )(n' +  n +  1 ) ^(n)

P«+i
Pn

Pn +  1

iKn +  1) rf +  Pn+1 4- 1
n' +  n +  2 -  P& •

if >p{n) > 0

if ^(n) < 0

if t(n )  > 0
if \f/(n) < 0

If on the contrary the computations are to be carried out by hand, evaluation 
of g(n) for all n up to and beyond the optimal n° will scarcely be feasible unless n° 
is extremely small. In most cases, it will be much less laborious to start from an 
approximation to n° obtained by the rough and ready but surprisingly accurate 
method which we shall describe in the next section. The exact net gain at the 
approximate optimum can then be computed by using one of the methods dis
cussed in Section 7.11.2 to evaluate the cumulative beta-binomial functions in 
(5-51), after which recursion formulas can be used to trace the net gain in a limited 
neighborhood of the approximate optimum.

5.6.4- A Normal Approximation to Optimal Sample Size

Because no really convenient way of determining optimal sample size has 
been found except in the case where the sample observations are Normally dis
tributed with known precision and the prior distribution of the process mean is 
Normal, it is natural to inquire whether the results obtained for this special case 
in Section 5.5 above can be used to find an approximation to optimal sample size 
in other cases, since if it can, then the true optimum can be found by computation 
of the true net gain for a few values of n in the neighborhood of the approximate 
optimum. We have made no systematic investigation of this question, but ex
perience with a number of numerical examples seems to show empirically that 
an approximation of this kind will very often be astonishingly close to the true 
optimum, particularly if we remember that the comparison should be made, not 
between the approximate and true optimal sample sizes, but between the expected net 
gains of the two sample sizes.

We shall illustrate one method of approximation and test its accuracy by 
applying it to the three examples of economically determined optimal sample 
size discussed by J. Sittig in “The economic choice of a sampling system in accept
ance sampling^ Bulletin of the International Statistical Institute Vol. 33 (Interna
tional Statistical Conferences 1951, India) Part 5 pp. 51-84. All three involvie 
acceptance sampling from finite lots but are treated by Sittig as if (1) the number 
of pieces affected by the terminal act were independent of the sample size and
(2) sampling were binomial rather than hypergeometric; we shall follow Sittig in
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both respects, since our purpose is merely to compare approximate with exact 
analysis of a given set of assumptions, t

Sampling Variance. Letting p denote the unknown fraction defective, we see 
at once that the conditional variance of a single observation £ is a random variable 
p(l — p) in contradiction to the assumption of Section 5.5.1 that the variance l/h  
of a single observation is a known number. To apply the theory of Section 5.5 
we shall set

l  = V(f|jj = p') = p'(l -  p')

where p ' is the mean of the prior distribution of p ; our justification for this way of 
handling the difficulty is (a) that it works and (b) that we do not know how to 
choose among various more “precise” approximations such as \/h  = E[p(l — p)] 
and y / l/h  = E Vp( 1 — p).

Prior Distribution. In all examples to be discussed Sittig assigns to p a beta 
prior distribution of the form

/ , ( p | l , . ) o c  ( 1  ,

which by (7-22) has mean and variance

We shall “approximate” this by a Normal distribution with the same mean and 
variance,

/v(p |7n ', /in ') oc
where

m' = E'(p) = p' = 1 1 _/N V  —  1
£ = 7 > ( 1 - P )  = — n = 1

hV'(P)
= p +  1

Example 1. An acceptance lot contains 500 brush spindles for floor polishers. 
Acceptance of a defective ultimately leads to loss of the part to which it is welded; 
this part costs 3.90 guilders. A rejected lot is screened at a cost of .079 guilders 
per piece; sampling inspection costs this same amount per piece. The sampling 
cost is

Cs(en) = k.,n , k$ = .079 ;

the terminal costs (treated as if they were incurred on the whole lot rather than 
on only the uninspected portion) are

cost of acceptance = K\ + kxp = 3.90 X 500p = 1950p ,

cost of rejection = K 2 +  k*p = .079 X 500 = 39.5 ;

and from these we can compute

t The first of Sittig's two simplifications is indeed a simplification, but treatment of sampling 
as binomial rather than hypergeometric amounts to treating the sample as taken from the process 
which produced the lot and is exact on the assumption that the process average remains constant 
during the production of any one lot. Cf. Section 1.4.1 above.
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QQ
kt = |fcf -  kx| = |0 -  1950| = 1950 , pb = ^ 5  = .020256 .

The beta prior distribution of p has mean

V' = . 0 2 2  implying v = = 4 5  4 5  5

the Normal approximation therefore has parameters

m' = .022 , ri = 46.45 , \  = .022 X .978 = .02152 .n
Both the “true” prior density and its Normal “approximation” are graphed in 
Figure 5.12.

Terminal Opportunity Losses and Prior Distribution, Example 1

To find the optimal sample size under the Normal approximation to the real 
problem we first compute the sampling and prior standard deviations defined 
by (5-39 J,

a. = hr i = V.02152 = .1467 ,

= (An')-l = V.02152/46.45 = .02152 ,
we then compute the parameters D' and Z defined by (5-40bc) and (5-43b)

, _  | pt -  m'\ _  1.020256 -  .0220001 _
.02152 ’

Z = ^  </k«x,/k. = 1950 X .1467/.079 = .1467 X 15.36 = 2.25 ,<r« .1467
and find from Chart I at the end of this monograph that

---- ------ = 169 so that n° = .169(15.36)2 = 39 .

In Figure 5.13 we graph as functions of n the exact net gain as given by (5-56) and 
(5-51) and the net gain as given by the Normal approximation (5-41). The true
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optimal sample size is n° = 32 with a true net gain of 5.80 guilders; the true net 
gain of the sample n = 39 obtained by use of the Normal approximation is 5.66 
guilders or 97.6% of the maximum.

Example 2. An acceptance lot contains 500 radio potentiometers. Rejected 
lots are screened, while acceptance of a defective part ultimately leads to partial

Figure 5.13
Net Gain as a Function of Sample Size, Example 1

disassembly and reassembly of the radio set at a cost 10.8 times as great as the 
cost of inspecting one part. The prior distribution has density /^(p|l, 40); its 
mean is p! = 1/40 = .025 and its standard deviation is <rp = .0244. The “true” 
prior distribution and the Normal approximation are graphed in Figure 5.14.

After we have computed p& = .0926, kt = 5400 in units of the cost of inspect
ing one part, <rt = .156, D ' = 2.77, and Z = 1.48, we find from Figure 5.10 above 
that no sample should be taken. Exact calculations show that there in fact exists 
no sample with a positive net gain; they are easy to carry out because the EVPI
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or expected value of perfect information concerning the true value of p can be 
shown to be only 2.72 times the cost of a single sample observation and therefore 
the largest sample which need be considered is n = 2. Since the prior mean

P' = i  = 40 = 025 <  0926 = Vb ’

Terminal Opportunity Losses and Prior Distribution, Example 2

the optimal immediate terminal act is acceptance without screening; if both pieces 
in a sample of 2 were defective, the posterior mean would be

f  -  £  -  s r + i  - 0 7 1 4  < 0 9 2 6 ■

so that the optimal act would still be acceptance without screening. Since the 
largest sample worth consideration cannot lead to a reversal of the initial decision, 
the EVSI of all samples worth consideration is 0; and therefore all samples have a 
negative net gain.

Example 3. An acceptance lot contains 200 sheets of toughened glass to be 
used in busses. Testing is destructive; the cost of testing one sheet is essentially 
the cost of manufacturing the sheet, since the labor involved in the testing is 
negligible in comparison. The “cost” of passing a defective sheet consists in the 
resulting danger to drivers and passengers and is evaluated at 10 times the cost 
of manufacturing one sheet, while rejection of a lot leads to reannealing and re
toughening of the glass at a cost equal to half the total manufacturing cost. The 
prior distribution has density /^(p|l, 20); its mean is p' = .05 and its standard 
deviation is <rp = .0475. The “true” prior distribution and its Normal “approx
imation” are graphed in Figure 5.15.

After we have calculated pb = h/10 = .05, kt = 10 X 200 = 2000 in units of 
the cost of manufacturing one sheet, a, = .218, D' = 0, and Z = 1.65, we find 
from Chart I at the end of this monograph that

n° = .124(2000 X .218/1)* = 7 .
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In Figure 5.16 we graph as a function of n both the exact net gain of en and the 
net gain as calculated on the basis of the Normal approximation. The true optimal 
sample size is n° = 8 with a net gain of 11.10 times the cost of one sheet of glass; 
the net gain of the sample n = 7 obtained by use of the Normal approximation 
is 11.00 times the cost of one sheet or 99.1% of the maximum.

Terminal Opportunity Losses and Prior Distribution, Example 3

Why the Approximation Works. In Figures 5.12, 5.14, and 5.15 above we 
have shown not only the “true” and “approximate” prior distributions for the 
three examples but also the terminal-opportunity-loss functions i*(a, p) for both 
possible acts, accept and reject. The CVPI or conditional value of perfect informa
tion is lt(a', p) where o' is the better act under the prior distribution; it is given by 
the left-hand loss line in Figure 5.12, by the right-hand loss line in Figure 5.14, 
and by either of the two loss lines in Figure 5.15.

Since the CVSI or conditional value of sample information is given by the 
same function as the conditional value of perfect information when terminal utility 
is linear (cf. Section 5.3.2), the EVSI or expected value of sample information can 
be regarded as the integral of the CVPI function weighted by the prior distribution 
of the posterior mean p"; and since the distribution of p" tends to be of the same 
general shape as the prior distribution of p (cf. Section 5.4.2), it seems astonishing 
at first sight that the Normal approximation should lead to anything remotely
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resembling the true optimal sample size in the example illustrated by Figure 5.12. 
The mystery can be partially explained, however, by a moment’s reflection on the 
implications of Figure 5.15, where since p' = pb either act is optimal under the 
prior distribution and therefore either of the two U functions can be taken as 
representing the CVPI function. I t seems reasonable in this case that the exact

and the approximate integral of the right-hand U function should be of roughly 
the same magnitude for given n and behave in roughly the same way as n increases; 
and if the behavior of the approximate integral with n is roughly correct, the 
value n° of n at which it attains its maximum will be roughly correct.

Returning now to the case of Figure 5.12, it again seems plausible that the 
integral of the right-hand lt function weighted by the Normal approximation to the 
distribution of p" should be roughly equal to the integral of this same function 
weighted by the exact distribution of p". The approximate and exact EVSI’s are 
of course given by the integrals of the left-hand lt functions in this case, and these
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integrals are not equal to the corresponding right-hand integrals; but the differ
ence between either left-hand integral and the corresponding right-hand integral 
is a constant independent of sample size as proved below. Consequently the 
rate of change with n of either left-hand integral is equal to the rate of change of 
the corresponding right-hand integral, and then since the magnitude of the right- 
hand approximate integral is roughly correct in the neighborhood of the optimal n , 
it is not too surprising that the rate of change of the /e//-hand approximate integral 
should be roughly correct and therefore that the approximation to optimal n 
should be roughly correct.

► Letting a\ denote the act which is optimal for low values of p, the left- and right-hand 
integrals under the prior distribution of the posterior mean are respectively

h  = E lt(a2, p") = E[max {u,(ai, p"), ut(a2) p")} -  ut(a2f p")]
I t = E lt(ai, p") = E[max {u,(ai, p"), ut(a2) p")} -  ut(ah p")]

and therefore
11 — I r = E ut(ah p") — E ut(a2, p") = u<(ai, p') — ut(a2, p') = constant 

as was to be proved. ^
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Selection of the Best of Several Processes

6.7. Introduction; Basic Assumptions

One of the classical problems of statistics is that of choosing the “best” of 
several “treatments”—e.g., the best of several different fertilizers or the best 
amount to use of a given fertilizer, the best of several package designs for a com
mercial product, the best of several educational methods, and so forth. Fre
quently additional information concerning the “quality” of any one of the treat
ments can be obtained by sampling, so that the decision maker must decide (1) how 
large a sample (if any) to take on each of the various treatments, and then (2) which 
of the treatments to choose after the various sample outcomes are known, f

In the present chapter we shall analyze this problem on the assumptions
(1) that the utilities of terminal action and experimentation are additive, and
(2) that the terminal utility of adopting any particular treatment is linear in the 
quality of that particular treatment and independent of the qualities of the re
jected treatments. Formally, we assume that

u(e, z, a,-, 6) = u,(ai9 6) -  c,(e, z) , i = 1, 2, • • • , r , (5-58)
and that

There exists a mapping W from the state space 0 to a new space ft, sending 0 
into W(6) = o) = («i, w2, • • • , cor), such that

u t(aif 6) = Ki +  fcjWi , i = 1, 2, • • • r . (5-59)

The quantity may represent the mean yield of the ith fertilizer, the mean score 
on a certain test of students taught by the ith  method, and so forth. Specific 
analytical results will be obtained only for the still further restricted case where 
sample observations on the ith process are independently Normally distributed 
with mean oi,.

5.8. Analysis in Terms of Differential Utility

Analysis of the class of problems to which this chapter is devoted is greatly 
facilitated by formulating the problems in terms of utility differences or differential 
utilities, but because this approach may be useful in other classes of problems as

t  For an historical account of the literature, as well as for some very interesting contributions 
to this problem and its variants, see C. W. Dunnett, “On selecting the largest of k normal popu
lation means”, Journal of the Royal Statistical Society (Series B), 1960.
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well we shall first define the concepts and notation without any reference to our 
linearity assumption (5-59). We do assume, however, that terminal and sampling 
utilities are additive and that A = {ai, • • • , ar) is finite.
5.8.1. Notation: the Random Variables v and l

When the state 6 is a random variable, the terminal utility of an act a t is a 
random variable which we shall now denote by {/,, defining

Oi =  u t(a„ 6) , i = 1, 2, • • • , r . (5-60a)
We also define the vector of the vs describing all the as in A }

v =  (Di, • • • , ur) . (5-60b)
The measure PJ assigned by the decision maker induces a measure Pi on v 

with respect to which we can evaluate
E ' ( u )  =  u '  =  ( D J ,  • • • , « ) ,

and we shall find it convenient to adopt the convention of numbering the acts 
in A in such a way that

v'r > Vi , i = 1, 2, • • • , r ; (5-61)
in other words, we assume without loss of generality that the rth or last act is optimal 
under the prior distribution.

Finally, we denote by 8, the difference between the terminal utility of a, and 
the terminal utility of ar, defining

h  s  di — vr =  ut(a„ 6) — u t{an 6) , i ^  r ; (5-62a)
and we also define the vector of all the 6s,

6 s  (Jlf ••• ,6r_0 . (5-62b)

5.8.2. Analysis in Terms of v and 6
Terminal Analysis. We have already remarked that the prior measure Pi 

will induce a prior measure Pi with respect to which we can evaluate
E ' ( u )  -  0 '  =  ( D J ,  • • • , v'r)

and thus select an act which is optimal under the prior distribution; and obviously 
an experiment e with outcome z which substitutes for Pi the posterior measure Pi'* 
will induce a posterior measure Pi'* which permits us to evaluate

EUv) s  D" = (£>r, .. • , « ')
and thus select an act which is optimal under the posterior distribution. In this 
notation, terminal analysis reduces to the problem of finding the mean of v as 
determined by the distribution of 6 and the definition (5-60) of v.

Expected Value of Perfect Information. By our convention (5-61) the prior 
expected terminal utility vr of ar is at least as great as the prior expected terminal 
utility of any other a in A, but its actual terminal utility may be exceeded by that 
of one or more other as in A. If the decision maker were to be given perfect 
information on $ and thus on v} he would choose an act a* such that

ut(a*f 6) = max {ui, • • • , i>r}
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rather than the act ar which was optimal under the prior distribution. The value 
of this information is obviously

Vt{eoe, Q) = lt(ar, e) = max {vl} • • • , ur} -  vr 
= max {(ui — Ur), • • • , (ur -  Ur)} , 

and by the definition (5-62) of 5 this can be written
vt(eao, Q) ss Z,(or, 0) = max {5i, • • • , 5r-i, 0} . (5-63)

Before the perfect information is received, this quantity is a random variable; 
but by using the measure Pj induced by the measure P£ via Pi the decision maker 
can compute the expected value of perfect information

vt(eoo) = l*(eo) = E'a max {Si, • • • , Sr_x, 0} . (5-64)
The geometry of this computation is shown in Figure 5.17 for the case where r = 3 
and S has a density; the straight lines are “loss contours^ along which the CVPI 
or conditional opportunity loss, max {6i, 62, 0}, is constant, while the curved lines 
are “probability contours1 J along which the density of S = (Si, S2) is constant.

Differential Utility 5.8.2

Terminal Opportunity Losses and Distribution of 6
Preposterior Analysis; Expected Value of Sample Information. We have al

ready remarked that if the outcome z of some experiment e results in replacement 
of P'w by P t" , the decision maker will select an act such that his expected utility is

max {v", • • • , v/)
rather than the act ar which was optimal under Pi. The resulting increase in utility 
or value of the information z is obviously

vt(e, z) = max • • • , D'/} — u'r' = max {(O'/ — 0'/), • • • , (0/ — 0/)} , 
and by the definition (5-62) of S this can be written

vt(ef z) = max {S/, • • • , S'/_i, 0} . (5-65)
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When e is being considered but has not been performed, l  is a random variable 
and therefore for any i ^  r

li -  Vi -  v/ = E l u t(aitd) -  E 'lu ,(a r,6)
is a random variable with a measure P&"\e induced by the marginal measure P,|«. 
By expecting (5-65) with respect to this measure the decision maker can compute 
for any e the expected value of sample information

v*t (e) = Ej"kinax {J", . . .  ,8"_if0} . (5-66)
Expression (5-66) for the expected value of sample information is formally 

identical to expression (5-64) for the expected value of perfect information and 
therefore the geometry of (5-66) is also given by Figure 5.17; the only changes are 
in the labelling of the axes (5" instead of 5) and the shape of the probability (but 
not the loss) contours.

Net Gain of Sampling. Denoting by c*(e) the (prior expected) cost (in utiles) 
of performing the experiment e, we saw in (4-38) and (4-39) that the decision 
maker’s utility will be maximized if he selects an e which maximizes the net gain 
of sampling

t>*(e) ss v*(e) -  c*s(e) . (5-67)
By repeating the evaluation of (5-66) for every e in E  and also computing c*(e) 
for each e the decision maker can find an optimal e.

6 .8.8. The Usefulness of Differential Utility
The theory developed in Section 5.8.2 amounts really to nothing more than a 

demonstration that maximization of the expected difference between the utility 
of e and the utility of the optimal immediate terminal act is equivalent to max
imization of the utility of e, and the reader may well wonder why we have taken 
the trouble to reformulate the problem in this way. The answer is given by Fig
ure 5.17: the introduction of the differential utility 6 permits us to reduce the an
alysis of any decision problem to (1) a series of systematic transformations of prob
ability distributions, from P* to P„ to Pi and from Pz\e to Pj"i*, and (2) expectation 
with respect to Pa or Pj"|e of the fairly “clean” function max {$i, • • • , 5r_i, 0}. As 
we have already said, the method is applicable whenever we can obtain the dis
tributions Pa and Pj"|„ either analytically or in a numerical form which permits a 
Monte-Carlo evaluation of the expectation. In the remainder of this chapter we 
shall consider these problems in detail for the most important special case.

5.9. Distribution of 6 and 8" When the Processes are Independent 
Normal and ot is Linear in

5.9.1. Basic Assumptions; Notation
We now return to the basic assumption that

Vi = u t{cLi, 6) = Ki +  fc, w, where a> = W(d)

and develop general analytical results for the case where «i, • • • , wr are the means 
Mi, • * * , Mr of r Independent Normal data-generating processes. We assume, in
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other words, that the ith process (i = 1, • • • , r) generates independent scalar ran
dom variables £{1}, • • • , £tJ), • • • with identical densities

hi) cc 6 - hi i (5-C8)
and that the terminal utility of the ith act is

vt = Ki +  kiM . (5-69)
As regards the process precisions hi, • • • , hr we shall consider two cases: (1) all h, 
are known, and (2) the hi are unknown but the ratios hi/h} are all known. In 
the present Section 5.9 we shall derive the distributions of the random variable $ 
defined by (5-62) and of its posterior mean in the remainder of the chapter 
we shall discuss the problem of using these distributions to evaluate the EVPI as 
given by (5-64) and the EVSI as given by (5-66).

We now adopt the vector and matrix notation described in Section 8.0.1 below, 
using boldface roman or vertical Greek letters (either upper or lower case) for 
matrices, boldface italic or Porson Greek letters (either upper or lower case) for 
column vectors, and denoting transposition by a superscript t.

5.9.2. Conjugate Distributions of fi
1. Likelihood of a Sample. The distribution of 6 is determined by the dis

tribution of € and this in turn by the distribution of /&; and since we wish to use 
a distribution of fL which is conjugate to the likelihood of the experimental outcome, 
our first task is to examine this likelihood. Before doing so we simplify notation 
by defining the mean precision of the r processes

h si {hi • h2 - - h r ) llT . (5-70)
Now consider an experiment with a noninformative stopping process (cf. 

Section 2.3 above) resulting in n,- observations (xjl), • • • , x\ni)) on the ith  process, 
i = 1, • • • , r. Define for each univariate process

ni{ s  ni(hi/h)

mi  =  <
if n , >  0

.0 if 3 •*. II o

Jfn , -  1 

10
if n,- >  0

* ■ 1 if n , =  0

Vi =  <
if Vi >  0

.0 if II O

and define the multivariate statistics

rin

n =

rind
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m =  [mi mrV ,
V  =3  *v-i ^  >

1 vr hi

(5-72)

p =  rank(n) = number of processes for which n, >  0 .
It is shown in Sections 12.8 and 12.9 of Part III that the kernel of the joint likeli
hood of the combined samples is

(2 i r ) - i {P+y) • e-\Hm-rVn{m-p.) h\p . e~\h*v # ( 5 - 7 3 )

2. Conjugate Distribution of fi When h is Known. If A is known, the kernel 
of (5-73)—the only factor which varies with an unknown parameter—is

e-\h(m-tA)'n{m-fi) • (5-74)

and accordingly the conjugate family for p is multivariate Normal as defined by 
(8-17),

An) oc ? (5-75)
where A is the mean precision of the processes as defined by (5-70) and n is an r X r 
positive-definite symmetric matrix. By (12-13) the mean and variance of this 
distribution are

V i -  E ( fi)  =  m  , Pl s  V ( p )  =  ( A n ) " 1 . ( 5 - 7 6 )

A prior distribution of fi with parameter (m', n') would in general be assessed 
by assigning a mean vector p ' and a positive-definite symmetric matrix (L' of vari
ances and covariances; m! and n' would then be computed from the relations (5-76). 
As for the posterior distribution, it is shown in Sections 12.8 and 12.9 that if the 
prior distribution is Normal with parameter (m', n') and a sample then yields a 
statistic (m, n), the posterior distribution is again Normal with parameters

n" = n' +  n , m" = n '^ ^ n 'm ' +  nm) . (5-77)
3. Conjugate Distribution of fi When A is Unknown. If A is unknown, the 

kernel of (5-73) is
P . e~\hrv ; (5 .7 3 )

and accordingly the conjugate family for the joint distribution of (p, A) is Normal- 
gamma as defined by (12-27),

fWyQ*, h\m, v, n, v) =  fW(p\m, hn)fyt(h\v, v)
OC e-ih(*-m)'n(»-m) rfr  . e- \h„ h\ , - i   ̂ {*>-!§)

where n is an r X r positive-definite symmetric matrix and v, v > 0; because n is 
positive-definite and therefore of rank r, the statistic p of (5-78) is replaced by the 
parameter r in (5-79). I t  is shown in Sections 12.8 and 12.9 that if the prior dis
tribution of (p, fi) is Normal-gamma with parameter (m', vr, n', v‘) and a sample 
then yields a statistic (m, v, n, v) where n is of rank p, the posterior distribution of 
(p, K) is again Normal-gamma with parameter (m", t/', n", v") where m" and n" 
are given by (5-77) above and
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v n  =  V* +  V  +  p  ,

»" = ^ 7  [(rV +  m" n'm') +  (yo + m ‘ n m) -  m "‘ n" m"] . (5-80)

The two factors in (5-79) display the marginal distribution of E and the condi
tional distribution of ft given h, but in the applications studied in this chapter 
what we require is the marginal distribution of fit. I t is shown in Section 12.4.5 
that this distribution is Student as defined by (8-28),

n/v, v) oc [> +  (M -  m)' (n/v) (/* -  m)]-i<r+-> , (5-81)
where the parameters will be primed if the density is prior, double primed if it is 
posterior. By (8-29) the mean and variance of this distribution are

P s  E (ft) = m , P- =  V(p) = »n~
V  -  2

(5-82)

5.9.3. Distribution of &
In the notation we are now using the basic assumption (5-59) or (5-69) con

cerning the utility function can be written
C s  K  +  k ft. (5-83a)

where
0 =  [Di

k s

5r]‘ , K  B [K, KrV
■fcl

0

0 

krJ
and the definition (5-62) of 6 can be written

6 = BO
where

(5-83b)

(5-84a)

- 1 0 0 . . .  0 - r
0 1 0 . . .  0 - 1

B = 0 0 1 . . .  0 - 1

_ 0 0 0 . . .  1 -1 _

is (r -  1) X r . (5-84b)

Substituting (5-83a) in (5-84a) we have
6 = BJS:-t -Bk/a ,  (5-85)

and we can now proceed to obtain the distribution of 6 from the distribution (5-75) 
or (5-81) of ft..

1. I f  h is  known and ft has the Normal density (5-75) with parameter (m, n), 
where m and n may be either primed or double-primed, then by (8-26) the distribu
tion of 6 is Normal with density

f$ ~ ')(6\i,hnt) (5-86)

2 = B £  +  B k m ,  n r 1 = (B k) n - ‘(B k)‘ . (5-87)
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2. I f  h is unknown and fk has the Student density (5-81) with parameter 
(m, n/vy v)y where m, n, r, and v may be either primed or double-primed, then by 
(8-32) the distribution of 6 is Student with density

/ r 1,(«|*,n4/i;>i0 (5-88)
where 5 and n* are given by (5-87).

5.9.4. Distribution of 8" When All Processes are to be Sampled
By formula (5-85) for 6 in terms of /Z, the posterior mean of 6 treated as a 

random variable before the sample outcome is known is given by
8" = B K  +  B k fL" , (5-89)

and we can now proceed to obtain the distribution of 8" from the results obtained 
in Part III of this monograph for the distribution of /ft". We assume that the 
design of e is such that the value of the statistic n defined by (5-71) and (5-7^) is 
predetermined; and for the moment we also assume that n is of full rank, i.e., that 
at least one observation is to be taken on each of the r processes.

1. I f  h is known and the prior distribution of fk is Normal with parameter 
(m', n'), then by Section 12.8 and formulas (12-22) and (8-26) the distribution 
of 8" is Normal with density

//J“1)(S"|8/, hni) (5-90)
where

S' = B tf  +  B k m '  , n j-1 = (Bk) n*_1(B k )‘ ,
(5-91)

n* = n" n -1 n' = n' n~l n" , n*"1 = n'~l -  n"“ l .
2. I f  h is unknown and the prior distribution of fk is Student with parameter 

(m', n'/v', v'), then by Section 12.8 and formulas (12-46) and (8-32) the distribu
tion of 8" is Student with density

/ ^ - 1> (« " |S ',n jy ,, ')  (5-92)
where 8' and n$ are given by (5-91).

5.9.5. Distribution of S" When Some Processes are not to be Sampled
If observations are to be taken on only p < r of the r jointly distributed means 

/Zi, • * • , pry then (as shown in Section 12.9) the distribution of /ft" is degenerate or 
singular in the sense that it is confined to a p-dimensional subspace within the 
r-space on which p" is defined. For this reason the distribution of

8" = B tf  +  B k / r

cannot in general be obtained by the method used in Section 5.9.4 just above, but 
it is still determined by the distribution of /ft" and the distribution of /ft" can be 
obtained by making use of the fact that (1) the distribution of those components 
of /ft" corresponding to the processes actually sampled is perfectly well behaved, 
and (2) the values of these components of /ft" determine the values of the remaining 
components.

Distribution of fL" When the rth Process is not to be Sampled. If the process 
which is optimal under the prior distribution and which is therefore identified by

146



Distribution of 6 and 6" 5.9.5

the subscript r is not to be sampled, we are free to number the other r — 1 processes 
in such a way that it is the first p processes which are to be sampled. The statistic n 
will then be of the form

n = [ o 11 o ]  where (5-93)nn is p X p , 
n is r X r ,

and we partition the random variable p and the parameters m and n (primed or 
double primed) correspondingly

„ . M ,  m - M ,
LfliJ L ^ 2J L»21 II22J

If now we define
-1 _= (n'-On , * * -1  ==  n i  1 -  (ni, +  nn) " 1

(5-94)

(5-95a)
then as shown in Section 12.9.6 the distribution of fit" is nondegenerate with density

T\(n "\ _  I nil, AnJ») if h is known , 
if h is unknown (5-95b)

C<1> = T whereL— n 22 II21J
(5-96a)

U S W Im ,', n i/f ', -')
and if we also define

I is p X p,
C(1> is r X p ,

then it follows from (12-73) that the distribution (5-95) of fL "  determines the dis
tribution of the complete vector fL " through the relation

fL "  = &  +  C<»08" -  Pi) • (5-96b)
Distribution of fL "  When the rth Process is to be Sampled. If the process which 

is optimal under the prior distribution and which therefore bears the subscript r is 
to be sampled, we are free to number the other r — 1 processes in such a way that 
it is the last p processes which are to be sampled. The statistic n will then be of 
the form

_ r° 0111 LO 1122 J ’ (5-97)

and the reader can readily modify the results of the previous paragraph to show 
that if we define

i ' - i  == (n'"1)* == n« 1 -  (n» +  1122)"1 (5-98a)
then the distribution of (L2 is nondegenerate with density

if A is known ,
if h is unknown

C(2) =  £ n“j  ni2J where

(5-98b)

(5-99a)

U[P2) "  u r n ' i m i m / i / ,  O
and if we define

I is p X p 
C(2) is r X p

then the distribution (5-98) of (L2 determines the distribution of the complete 
vector fL" through the relation

fL" = p' +  C<2>(Pi' -  pi) . (5-99b)
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l"  =  B(JC +  k  JO  +  B k  C ' W  -  n't)
= 5'  +  b  k  c ( i , o a ; '  -  n ' t )  ( 5 - 1 0 0 )

where i = 1 if it is the first p processes which are to be sampled, i = 2 if it is the last 
p processes which are to be sampled. Concerning the distribution of 8" as deter
mined by this relation or the equivalent relation (5-89) we have in all cases

E(8") = S' ;

Distribution of 8". Substituting (5-96b) or (5-99b) in (5-89) we obtain

VY2»"’1 — I  1 if h is known ,
t(nj,/y')_1«''/(/ — 2) if h is unknown ,

nr* = (B kC (i))(nm-1 -  n " -')(B k C “>)'

(5-101a)

where
(5-101b)

= (Bk)(n'-‘ -  n"-')(Bk)' . (5-101c)

► The formula for the mean follows from (5-27) applied directly to the distribution of 8". 
The formula for the variance with nj given by (5-101b) follows from (8-8c) in conjunction 
with (5-100) and (5-28) applied to the distribution of fill'. The formula for the variance 
with n$-1 given by (5-101c) follows from (8-8c) in conjunction with (5-89) and (5-28) 
applied to the distribution of ft". <4

As regards the details of the distribution of 8", however, we must distinguish 
two cases.

1. I f  only one process is not to be sampled, i.e. if p = r — 1, then the (r — 1) X 
(r — 1) matrix B k C(l) in (5-100) is of rank (r — 1), so that by (8-26) or (8-32) 
the distribution of 8" is nondegenerate with density

J7.v_1)(8"|8', hni 
1 ; l / l r ^ ^ 'l ^ n S .V , , ')

if h is known , 
if h is unknown , (5-102)

nj being defined by (5-101b) or (5-10lc).
2. I f  there are two or more processes which are not to be sampled, i.e. if p <  r — 1, 

then the fact that by (5-100) the (r — 1) X 1 vector 8" is a function of the p X 1 
vector fit implies that the distribution of 8" is degenerate. In this case it is more 
convenient to treat 8" explicitly as a function of fit" than to try to work with an 
analytical expression for the density of 8" itself.

6.10. Value of Information and Optimal Sample Size
When There are Two Independent Normal Processes

With the theory of Sections 5.8 and 5.9 as background we are now ready to 
attack the problem of actually evaluating the expected value of perfect information 
or EVPI and the expected value of sample information or EVSI and the further 
problem of using our results concerning the EVSI to select the optimal e in E. 
We remind the reader that by (5-64) and (5-66) the EVPI and EVSI are respec
tively given by
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Vi(eK) = Ej max {Si, • • • , Sr_i, 0} = l’!(e0) , (5-103a)
t>,*(«) = Ej"|e max {?{', • • • , VrLi, 0} , (5-103b)

and that an optimal e is one which maximizes the net gain of sampling
v*(e) = v*{e) — c*(e) . (5-104)

In the present section we shall consider these problems for the special case r = 2, 
so that 6 is actually a scalar l  and we have by (5-83), (5-84), and (5-72)

B k  = [Jfc! -Jfc,] ,
5' = (Ki +  km'i) -  {Kt -I- kttni) , (5-105)
n = r»i(fci/A) 0 1

L 0 nt(kt/h) J  '

5.10.1. E V P I
1. I f  h is known and the prior distribution of fi is Normal with parameter 

(m', n'), we have by (5-103a), (5-86), and (ll-25b) that

vl(ex) = t!(e0) = max {5, 0} fN(5|j', hn't) <15

= f0~ IS', hn'6) d5 = (Ani)-1 L.v.{\5'\Vhn',) (5-106)

where by (5-87)

n'i~l = (Bk) n'_1(Bk)* , B k = [k, - k 2] , (5-107)

and Ly* is tabulated in Table II at the end of this monograph.
2. I f  h is unknown and the prior distribution of fiL is Student with parameter 

(m', n '/t/, v')f we have by (5-103a), (5-88), and (ll-50b) that

vt(e„) = l!(eo) = (n{/V)-i L.s.(t6'| / )  (5-108)

where n'a is defined by (5-107) and L& is defined in terms of tabulated univariate 
Student ordinates and tail areas by

Ls*(t\v) =  |  — t Gs*(t\v) (5-109)

5.10.2. E V S I
Whether both or only one of the two processes are to be sampled, we have by 

(5-91) and (5-101c)

n j - 1 = (Bk){n/_l -  (n' +  n )- l}(B k)f , B k  = [ki - k 2] ; (5-110)

in the case where the ith process is to be sampled but the jth  is not, this formula 
reduces by (5-101b) to

n v 1 = [ ki +  A 4 T  {«;-■ -  (n'n +  »«)“ •} , rC* = (n '-‘),,- . (5-111)
L  njj J

In either case the EVSI is given by
149



5.10.2 Part I I :  Additive Utilities

(*»«"* L N.(\i'\Vhnr)
(r ii/t/y l  L s.(|j '|V ni/v'\v')

if h is known , 
if h is unknown

(5-112)

When fii is Normal (h known), the result follows from (5-103b), (5-90) or (5-102), 
and (ll-25b). When fi is Student (h unknown), the result follows from (5-103b), 
(5-92) or (5-102), and (ll-50b).

5.10.8. Optimal Allocation of a Fixed Experimental Budget
In analyzing the problem of optimal experimentation we shall consider only 

experiments which have a predetermined “sample size”

- - [ 7  »°j - [”,(r  x j  ■ e"3)
ni and n2 being the actual numbers of observations; and we shall assume throughout 
that the (prior expected) cost of sampling is of the form

Cs(e) =  Cini +  c2n2 , (5-114)
leaving to the reader the easy generalization to the case where fixed costs inde
pendent of sample size may be incurred (a) if any observations at all are taken, 
and/or (b) if any observations are taken on and/or (c) if any observations are 
taken on fi2- In the present section we show that, whether or not h is known, it is 
always possible to obtain an explicit solution of the “allocation problem” of op
timizing ni and n2 subject to the condition that some predetermined amount A 
is to be spent on ni and n2 together; formally, we shall optimize nx and n% subject 
to the budgetary constraint

cxnx +  c2n2 = A . (5-115)
In  the following sections we shall then show how when h is known we can easily 
determine the unconstrained optima for nx and n2.

Whether h is known or not, we have by (5-112) that the only effect of either 
nx or n2 on the EVSI is through the quantity nj; and since both factors in both 
formulas decrease as ni increases, our present objective is to minimize nj subject 
to the constraint (5-115). This is equivalent to maximizing n j" 1 and thus by 
(5-110) to minimizing

n i'~ l = (Bk)(n' +  n)-KBk)‘ , 
Substituting herein

n' +  n

B k  = [kx - k 2] .

0 - | = rnj( nj2l  
Ln2i n22j

and recalling that n' is symmetric we obtain as the quantity to be minimized

u -\ k\n22 "I" 2 fcifc2^i2 H- k2n\i
3 ~ '2 n\\n22 — nX2

(5-116)

where n',J = n't, +  n,, and n,i = n,h,/h for i = 1,2.
The problem of choosing nn and n22 and thus ni and n2 so as to minimize 

(5-116) subject to the constraints
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/in >  0  , n*2 > 0  ,
(cih/hi) nn +  (Cih/h2) nn = A (5-117)

is a special case of a more general convex programming problem analyzed by 
Ericson,f whose results we shall present without proof.

In a plane with nu and nn axes let R ’ denote the positive orthant as shown in 
Figure 5.17*; define

C i j
V  Cj/hj 

k j
h i  = 1 , 2  ; (5-118a)

and let and l~ be the two lines defined by
(n(i +  nn) Cn +  n^Cit = ± [(n 22 +  nn) Cn +  ^ 12 2̂1] , (5-118b)

1+ corresponding to the use of +  on the right-hand side and t~ to the use of —. 
Since c,; > 0 for all i, j, the line t+ must intersect R the line t~ may or may not 
intersect R', but it can be proved that the intersection of / + and l~ can never lie 
in R'. We thus have altogether four cases to distinguish: the two shown in Figure 
5.17*, and two more obtained by interchanging the labels nn and 7122 in that figure.

Figure 5.17*
Optimal Sampling Path

In what follows we shall refer explicitly to only the first two of these four cases, 
leaving it to the reader to make the easy translation to the other two.

The principal result proved by Ericson is that as the sampling budget A of 
(5-117) increases from 0, the sample-size pairs or “vector sample sizes” (nn, nn) 
which minimize (5-116) for given A follow a path like one or the other of the two 
indicated by the heavy lines and arrows in Figure 5.17*. In case (1), where l~ 
does not intersect R '} there exists a number Ai such that if the budget A < A ly 
then the entire budget should be spent on sampling from process 1, whereas if 
A > A h both processes should be sampled with sample sizes given by/+. In case

t William Ericson, Optimum Stratified Sampling Using Prior Information, unpublished 
doctoral dissertation, Harvard University, 1963.
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(2), where does intersect R', there exist numbers A\ < A 2 < A 3 such that if the 
budget A < A h then only process 2 should be sampled; if Ai < A < A 2, then both 
processes should be sampled with sample sizes given by l~\ if A 2 < A < A 3, then 
only process 2 should be sampled; and finally if A > A h then both processes should 
be sampled with sample sizes given by (+.

► The proof of these results as given by Ericson {l.c. supra) employs the theory of convex 
nonlinear programming and makes use of the Kuhn-Tucker saddle-point theorem. We 
merely remark here that if one ignores the nonnegativity constraints on nn and n2i and sets 
up the problem in Lagrangian terms, a quadratic equation results whose two roots corre
spond to the two critical finest and£“ defined by (5-118b). ^

5.10.4• Optimal Sample Size When h is Known and Only One 
Process is to be Sampled

Having seen that optimal allocation of any given sampling budget will yield a 
vector sample size {nUt n22) lying somewhere on a path like one of the two shown in 
Figure 5.17*, we next address ourselves to the problem of determining the optimal 
sampling budget, or alternatively, the optimal sample point on the optimal sampling 
path. We shall attack this problem as follows. (1) In the present section, we 
shall show how to determine a local maximum of the net gain of sampling when 
the sample is constrained to lie on one of the axes in Figure 5.17*—i.e., when only 
one of the two processes is to be sampled. (2) In the next section, we shall show 
how to determine a local maximum of the net gain of sampling when the sample 
is constrained to lie on one of the lines i+ or in Figure 5.17*. (3) In Section
5.10.6 we shall then show how to use these results to determine the sample which 
yields a global maximum of the net gain.

When only the tth process is to be sampled, we have by (5-112) and (5-114) 
that the net gain of a sample of size n, is

v*(e) = v*(e) — c*(e) = (hn*8)~l Lat*(|6'| V/mJ) — ctUi (5-119a)

where by (5-111)
n j_1 = A[n'n 1 — (ni +  n^)"1] , (5-119b)

A = ["kx +  » n’m 1 = (n/_1),» .L njj j
Defining

n£ = n'm/A  , vb = na/A  = nt{hi/h)/A , = d A /(h i/h )  , (5-120)
we can put (5-119) in the form

v*(e) = (AnJ)-l Z,A-*(|«'| V*nj) -  k* v, (5-121a)
where

n r 1 = n l"1 -  (nl +  p6) ~ 1 . (5-121b)
Our choice of the symbol ni is due to the fact, apparent from (5-121b), that nj 
has the value n% when the sample size n, and therefore the “adjusted sample 
size” v6 are infinite.
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Now regarded as a function of the parameter n i and the variable vs, the net 
gain of sampling as given by (5-121) is formally identical to the net gain in the 
univariate problem described by (5-38),

v*(e) = kt(hn*)~i Lx*(\fib — m'|V/m*) — k,n
where

n*~l = n'~l — (n' +  n)~l ,
and therefore we can apply the analysis of Section 5.5 to our present problem.

Comparing (5-38) as repeated above with (5 -1 2 1 ), we see that the constant kt 
of the earlier problem has the value 1 in our present problem (essentially because 
the random variable 5 is measured in utiles), so that the parameters Df and X 
defined by (5-40) become

D' = \5'\Vimi = Z)„ , X = (ni3 h)~ 1 1 , (5-122a)
where n£ and k* are defined by (5-120). Once these quantities have been computed, 
the optimal value v\ of vh can be found by entering Chart I at the end of this 
monograph with and Z  = X̂ and reading

p°/z> = v°5(hK?)i , (5 -1 2 2 b)
after which the optimal sample size nn can be found from (5-120).

If nji as thus determined lies on the segment of the nn axis in Figure 5.17* 
which belongs to the optimal-allocation path, it is a candidate for the role of global 
optimizer. If it lies outside the segment of the n tl axis that is on the optimal- 
allocation path, we know at once that it is not the global optimizer since the cost of 
nti can be spent more profitably on some sample that does lie on the path.

5.10.5. Optimal Sample Size When h is Known and Both Processes 
are to be Sampled According to or (r  

We now turn to the problem of locating the vector sample sizes (/in, n^) that 
correspond to local maxima of the net gain of sampling when (nn, nw) is constrained 
to lie on one of the two lines P  and l~ in Figure 5.17*; and to do so we first define 
or repeat the definition of

n't~l = (B k) n ,-1(B k)‘ , n^ '" 1 = (B k)(n' +  k)‘ . (5-123)
We next define the “scalar sample size”

n, s  ns -  ni , (5-124)
calling the reader’s attention to the fact that the definition of n6 is not analogous
to the definitions of n'6 and n’h\  and proceed to show that if  the vector sample size
(nn, n22) lies on one of the lines P  or l~ in Figure 5.17*, then the cost of a S&mple e
of size na is linear in nh—more specifically that \ *

c*{e) = K* +  Hi n, (5-125a)
where

k* = i h(ki V ci/Ai +  kt VCj/hiY if (nn, n22) t t + , (5 . 2 2 5 5 )
' \h{ki V  a/hi -  kt V c2/A2) 2 if (nU) nn) 1 ,
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and is a constant (different for i + and l~) whose value need not be determined 
for the purpose of our present argument.

► To prove (5-125) for£+, we first write the constraint (5-118b), using the +  sign on the 
right, in the form

(1 )
,, k2Vci/h 

n22 =
ci/hi ,, , [\^cx/hx fci~| ,

ktV  Cl/hi

substitute the right-hand side for n'2'2 in the formula

(2) n> "  Z-2.
•*** '2 nnri22 ~~ ^12

k\ri22 -b 2tk\k27i\2 -b k^ îii 
derived from (5-116), and solve for n[[ in terms of n*', obtaining, after considerable algebra,

k\
(3) n[[ = ,-----(k\\/c\/h\ +  kWCi/hi) nt —71(2 •

vciAi y/ci/hi
Each unit of increase in n* = n*' — thus implies that n[{ increases by the amount

(4) —7 =  (kiVci/hi +  ktVa/ht) ; 
VC./A,

and by the constraint (1) this in turn implies that n/n increases by the amount

(5) ~ =  (kiVCl/hi +  kiVa/hi)
Vci/ht

By (5-114) and (5-113) the costs of unit increases in n(( and 1122 are respectively Cih/hi and 
Cih/hi, so that as long as the constraint is satisfied while n\ and n2 are increasing we have

(6) &j(e)
dns = h(kiVci/hi +  ki^Ci/hi)* ;

and from this result, (5-125) for£+ follows immediately.
To prove (5-125) forl~, we follow exactly the same procedure except that we use the 

— sign in (5-118b). ^

By (5-112) and (5-125) we now have that the net gain of a sample e of “scalar 
size” n* lying on or l~ in Figure 5.17* is

t>*(e) = (/mj)-i Lv*(i5'| V7m?) — K \ — k* (5-126a)
where by (5-110) and (5-123)

nj = n ' f 1 — (nj +  na)“ l . (5-126b)
Regarded as a function of the parameter nj and the variable nif the net gain as 
given by this expression is formally identical to the net gain in the univariate 
problem described by (5-38), and therefore we can apply the analysis of Section 
5.5 to our present problem just as we applied it in Section 5.10.4 to the problem of 
sampling from just one of the two processes.
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Comparing (5-38) and (5-126), we see that the constant kt in the former prob
lem again has the value 1 in our present problem, so that the parameters Df and X 
defined by (5-40) become

D' = \S'\ , A = (ni3h)~t AS"1 , (5-127a)
where by (5-123) and (5-105)

n 'r 1 = [fcj -A*] n '- 1 [A* (5-127b)
and k* is defined by (5-125b).

Once these quantities have been computed, the optimal value n°s of ns can be 
found by entering Chart I at the end of this monograph with = D' and Z  = X* 
and reading

n° =  p%Z* = nl(hkf)i . (5-128)
After the optimal scalar sample size n\ has been computed from (5-128), the cor
responding vector size (nJi, nj2) can be obtained as follows. I f  the sample is 
constrained to lie on /+, then

where

fti°< = <S+(na +  n°t) + yfcj/hj t ,
v ^ h l n v - n" (5-129a)

S+ = ki V c jh !  + kt V c jh t  ; (5-129b)

i f  the sample is constrained to lie on / “, then

rht = ( - 1)<+* S - M  +  n\) -  n[j -  n'lt (5-130a)

where
S -  = ifc, V cjhx -  kt V c jh t  . (5-130b)

If both nil and n°22 as determined by (5-129) or (5-130) are nonnegative, they 
correspond to a local optimum on 1+ or if either one is negative, there is no local 
optimum on the line in question.

► Formulas (5-129) follow from (3) and (1) in the proof of (5-125); formulas (5-130) are 
similarly derived. ^

5.10.6. The General Problem of Optimal Sample Size When h is Known
We are now ready to describe a general procedure for determination of the 

optimal vector sample size (nn, nl2) which in turn determines the optimal values 
for the two actual sample sizes nx and n2 via (5-113).

1. Draw /+ and /-  and determine the optimal allocation path as in Figure 5.17*.
2. For each segment determine whether a local optimum exists on that seg

ment, using the results of Section 5.10.4 or 5.10.5 as appropriate.
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3. If more than one local optimum exists, evaluate the net gain of each via 
(5-112) and (5-110) and select the largest; if no local optimum exists, the optimal 
sample size is zero.

6.11. Value of Information When There are Three 
Independent-Normal Processes

5A 1.1. The Basic Integral in  the Nondegenerate Case
When a choice is to be made among three Independent-Normal processes, 

r = 3, formula (5-64) for the EVPI becomes

v f (0  = l*(e0) = J""  max {6i, 52, 0) D'(6) db\ dfa ,
where by (5-86) and (5-88)

Ty,ex hn'6) if h is known ,
nj/p', v) if h is unknown ,

n ^ 1 = (B k) n'-!(B k)‘ ;
and provided that at least two of the three processes are to be sampled, 
formula (5-66) for the EVSI

(5-13 la)

(5-131b)

(5-131c) 
we have by

vf(e) = J “k J2 m max {&[', 0} D(«") dl[' di'2'

whereby (5-90), (5-92), and (5-102)

TVX'^ -  / /* ( * "  I*'* hn*) h is known ,
V ; l / f ( S " | 5 ' ,  nS/V, *') if h is unknown ,
nr1 = (B k)[n'~l -  (n' + n ) - l] (B k )4 .

(5-132a)

(5-132b) 

(5-132c)
The problems of evaluating the integrals (5-131) and (5-132) are clearly iden

tical when both densities are of the same type, Normal or Student, and we may 
therefore take as our task the evaluation of what we shall call the expected value 
of information without specifying whether the information is perfect or comes 
from a sample:

EVI =  j_ J_ max {5i, b2, 0} D(6) db\ db2 (5-133a)

where 6 is now simply a dummy variable,

^n °) h is known
\/s 2)(6|S', n t/v ', v) if h is unknown (5-133b)

and n? represents either n'4 or nj. Since moreover many of the problems involved 
in evaluating this integral are the same whether the density is Normal or Student, 
we shall sometimes avoid repetition by replacing the symbol for the actual density 
by a symbol which can stand for either density, writing

f,ait, _ ox = hnD) if h is known ,
^  ’ * l / s 2)(6|8', n°/V, v) if h is unknown (5-134)

In the same spirit we define for notational convenience what we shall call the 
scale parameter
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<r?i =  if h is known ,
a°i — ((n°/V)-1 if h is unknown . ^

(When h is known, <r is the variance of 6, but when h is unknown, <r is (v — 2)/v 
times the variance.)

The geometry of the general problem is depicted in Figure 5.18A, which shows 
the contours on which the conditional value of information,

CVI =  max {<5i, 52, 0} , (5-136)
is constant and the contours on which some particular density function D(6) =  
/(6|8', n°) is constant.

A B

Conditional Value of Information and Distributions 
of Original and Transformed Variables

5.11.2. Transformation to a Unit-Spherical Distribution
The first step towards evaluating the EVI, i.e., towards finding the expecta

tion of the CVI with respect to D(5), is to transform Figure 5.18A into Figure 5.18B 
by a linear transformation

u = A(5 -  S') (5-137)
such that

1. u has mean 0 and scale parameter I;
2. the line A A ' in Figure 5.18A is carried into a line ui = u*.

This transformation puts the CVI into the special form

CVI max {0, k(ui — [a2 +  b2Wi]} 
max {0, k(u2 — [aj +  6iUi]}

if Ui < ui , 
if Ui > ti* , (5-138)

where the constants can be found by computing
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P — <̂r?l<T22 ““ 0’?22 j
Mi =  (62 -  i 'l) /a  ,

CI2 — —8 2/ k  ,

62 = (o-°2 — V12) /P .

a = V̂ aPi — 2(712 "f" <722 } 
k  =  0 / a  , 

ai = -5J/A: ,
6 l = — (<7°i — 0 °2)/P ,

The integral (5-133) then becomes

E V I =  k f " '„ \ _ f “+biui («* — [«2 +  62ui] ) / * ( w2) d u » ]/* (« i)  dui

+  k  / ; [ / ; +tiui (u2 -  [ai +  6im, ] ) /* ( m2) du2J /* (« ,)  du

where

/*(«) 7*-.(«) if A is known , 
if h is unknown .

(5-139)

(5-140a)

(5-140b)

► The transformation which takes us from Figure 5.18A to Figure 5.18B can be written 
(dropping the superscript from <rD)

u = A(S — S’) A - ± r  0 - 0 1 -exp |_<722 — (712 <7n — <712J

I t is obvious from the nature of the transformation tha t E (u) = 0, and it is a m atter of 
straightforward algebra to verify tha t the transformed scale parameter A <r A' = I, thus 
proving tha t the transformed densities are as specified by (5-140b).

To verify the transformed CVI function, we first observe tha t the transformation 
carries the point (8h 82) into the point

K» = -  [(«. -  5!) -  (fc -  si)] ,a

Ui — Q [(022 “  012) (5l “  8\) +  (011 012) (̂ 2 — ^2)] •
<*P

I t  is then again a m atter of straightforward algebra to verify tha t

• - » ■ * -  ? ] ■
and therefore

I ^
51 = -f ~ (011 -  012) Ui +  -  u2 =  k[u2 — (ai +  biUi)] ,a a

j ^
52 = 82 — ~ (022 — 012) Ui +  -  u2 = k[u2 — (02 +  &2Ui)] .a a

Comparing the right-hand sides of these two expressions we can verify tha t the line 8X = S2 

is transformed into the line U\ =  u*; and since

b2 — 61 = ~ (022 — 2012 +  011) >  0

this shows tha t 61 < 82 if and only if ux < u*. Formulas (5-138) and hence (5-140a) then 
follow immediately. <4
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5A 1.3. Evaluation of the E V I  by Numerical Integration
Numerical integration of the double integrals (5-140) is not at all difficult 

under either a Normal or Student distribution because the inner integrals are easily 
evaluated for any given Ui by means of formulas for linear-loss integrals. For 
the Normal distribution we have by (ll-25b) that (5-140) can be written

/ u*
Lx*(a2 +  &2Ui)/;v*(tti) dui

+  k JJ? L,v*(fli +  biUi)fN*(ui) dui (5-141)

and the L#* function is tabulated in Table II at the end of this monograph. For 
the Student distribution we have by (ll-50b) that (5-140) can be written

EVI = k f* [  Ls»(at +  J w i |/ ) /«.(«,

+  k j*. L s*{ai +  dui (5-142a)

where the function L$* is defined in terms of tabulated univariate Student densities 
and tail areas by

Ls.(t\v) m -  t Gs*(t\v) . (5-142b)

The complete double integral can thus be evaluated by choosing a number of 
equally spaced values ui, evaluating the inner integral for each by means of the 
appropriate formula, multiplying each inner integral by the weight /,v*(^i) or 
fs*(ui\v'), summing, and dividing by the sum of the weights. A numerical exam
ple of this procedure is given in Section 5.11.6.
5.11.4. Evaluation of the E V I  by Bivariate Normal Tables 

When h is Known
When the distribution of u is Normal, the integral (5-141) giving the EVI 

can also be directly evaluated in terms of tabled functions, specifically the uni
variate Normal density and cumulative functions and the bivariate Normal inte
gral V(h, k) defined by (8-14); the last named function enters via bivariate “wedge 
probabilities,” written W n *(v, 0), which are defined in Section 8.1.2 and which 
depend on v and 0  only through the auxiliary quantities

c = v cos 0 , s = \v sin 0 | , t = \s/c\
To express the results concisely we first define, redefine, or repeat the definition of:

a = VVft — 2 <t?2 +  ,

<r? = vVE[ , 
fi = —Si/o'P ,

2 _  v 
P ~  ’

O’? = Vffg, ,
= —5a/cr? ,

Vi fi ~  Pf2 12
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u\ = («i -  « 0  /«  , =
Cl = -V i , Si - IM .
C2 = -V 2 , S2 = IM ,

v = VfJ +  ril == +  iff ,

V = -2L +  5L , 
+  <r? ’ <?' = h .  _  i l

/». — P' 0. — r Is'lCz — V p ' 2 +  9 ' 2
03 — \/p ' 2 +  g' 2

We then have

(5-143a)

EVI = afx+(u*) Gs*(u£) +  <r? fN*({i) Fx*(rj2) +  <r? Fx*(v 1)
+  &2Wx*(v, 81) +  &[Wx*(v, 62) — |fi2 — 5{| Wx*(vj 6z) , (5-143b)

where Wx*(v, 0 ,) depends only on c„ s„ and U = |s»/c»| and can be evaluated from 
tables of the bivariate Normal function V(h, k) by use of formulas (8-16).

► Before entering on the main proof of (5-143), we clear the ground with two easily 
verified formulas for integrals. First,

»> /  Gx*(a +  bu) • u fN*(u) du = —GN*(a +  bu) fx*(u) — b j  fx*(u)fN*(a +  bu) du ,

a simple case of integration by parts. Second,

» //».<.+ho /»■<«> * - I n - ( ^ = ) v=  "«• ([■+rrs] '/T+*) ■
as can be shown by completing the square in the exponent on the left and then making the 
substitution

* = [ “ +  r + r * ] v r + yt •
Now substituting the definition (11-26) of LiV* in (5-141) we see that we must integrate 

two expressions of the type

3) J  ss /  [fN*(a +  bu) — (a +  bu) GlV.(a +  bu)]fN»(u) du ,

one over (—*>, u*] and the other over [m*, 00). We start by expressing J  in two parts,
4) J — J\ — aJ2 , 
where

5) J\ = j  [fx*(a +  bu) — bu Gy*(a +  bu)]fx*(u) du ,

6 ) J2 = J Gx*{a 4- bu) f.w(u) du .

The integral Ji is readily evaluated by substituting (1) in (5) to obtain

J\ = bGx*(a +  bu)fx*{u) -b (1 ~b b2) j  fx*(a +  bu)fx*(u) du
160
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and then substituting (2) in (7) to obtain

8) J ,  =  6 G.v.(a +  6u)/* .(« ) +  ( ^ = = )  FN. V F + t 5)  .

Evaluating this integral with coefficients a2 and 62 over ( —» ,  u*] and with coefficients aj 
and 61 over [u*, 00) and adding the two results we obtain

9) 62 Gx*(a2 +  bill*) fx*(u*) +  V l  +  \ ^ ^

— 61 GN*(ai +  61U*) / at*(w 1) +  V l  +  6? f N* ^ N* 1 +  52 J  V̂ 1 +  ^  •

Using (5-139) and (5-143a) to compute

fli +  b\u\ =  a2 +  &2W1 =  u% , 62 — 61 =  a/& ,

V l  +  6? =  ^  <r? =  o f /*  , V l  +  62 =  5  <r? =  af/fc ,
P P

Ui/ V 1 -|- 6? =  f  1 , 02/ V  1 + 6|  =  f 2 ,

[ « t  +  ^ 5]  v 'l  +  bf =  - *  , G,v.(-T,2) =  F y .M  ,

[ u* + r p y j  V i +f>i = v>,

substituting these results in (9), and multiplying the sum by A; as called for by (5-141) we 
obtain the first three terms of (5-143).

We next turn our attention to the two J 2 integrals defined by (6) above:

1 0 ) J ?  =  _1  «  ^2Wl) / v * ( M0  d u i

1 1 )

II f  G N .(a  1 +  b iU i ) f x * ( u i )  d u i

The quantity J is clearly the probability that u lies above the zero loss contour and to 
the left of the line U\ =  u* in Figure 5.18B and thus corresponds to the probability that 6 
lies within the “ wedge” ( — 500.4' in Figure 5.18A; and similarly the quantity J {$ is the 
probability tha t 6 lies within the wedge AO( — 62). Proceeding in the manner described 
in Section 8.2.2, we express each of these two wedges in Figure 5.18A as a sum or difference 
of twTo “canonical” wedges both having one side on the line 8 'OA which passes through the 
mean of the distribution and the common vertex of all the wedges,

(-ft)OA' = (-50O A  -  A'OA , A '0 ( - 5 2) =  A'OA +  A O (-ft) ,

and w'e denote the probabilities of the canonical wedges by

W„.(v, ft) -  P{(-50OA} ,
12) ^P{A 0(-ft)} ,

WN.(v, ft) -  P{A'0A} ,
so tha t

13) J?  = W ^ v , 0.) -  WN.(v, 8,) , JV  = WN.(v, $t) + HV(®, et) .
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By (5-141) and (4) the contribution of the J* integrals to the EVI i: 

k[-a*I$> -  ajjp] = f a ?  + 8[Ar) , 
and substituting (13) herein we obtain

14) 6'2 WN*(v, 00 +  6[ W N.{v, 00 -  (Sa -  6{) WN.(v,

If the point 8 ' in Figure 5.18A had been below the line A A' rather t  
A'OA would have been added to ( —5i)0A and subtracted from i 
have had instead of (14)

15) V2 WN.(v, 00 +  6[ WN.(v, 00 -  (6i -  «i) Ws.(v,
I t  is easily seen, however, tha t the position of 8 're la tiv e  to AA' it 
magnitudes of 6l and 62 in such a way tha t (l 2 — SJ) > 0  in (14) an< 
so th a t we may substitute |S2 — 6l\ for either of these coefficients.
(14) and (15) become identical to the last three terms of (5-143).

T hat the three probabilities W $0 can be evaluated by su 
d  and 8i given by (5-143) in formulas (8-16) follows upon comparis 
formulas (5-143a) with Figure 8.4 and formulas (8-23); the quantil 
(5-143a) are V 2 times the quantities p and q as defined by (8-23) fo

E V I When 6l = 5̂  and an = a22. In some circumstance ^
the current “standard” process is deemed superior to both of two equally little 
known contenders—it may be nearly if not exactly true that 6l = 62 and a?i = 
and in this case formula (5-143b) becomes very easy to evaluate. Defining

5' =  = 62 , a° =  Vcrfi = \^aSt ,

we have (as is easily verified)
EVI = 2[a°fMf) FMv) +  i'WMv, 0)] (5-144b)

where W n*(v> 6) depends only on

c = - V  < 0  , S = f ,  t = • (6-144c)

5.11.5. Bounds on the E V I
Whereas exact evaluation of the EVI is fairly laborious except for the special 

case just mentioned and some other special cases which we shall examine presently, 
upper and lower bounds on the EVI can be found very easily and in some applica
tions these bounds may be such as to eliminate the need for exact evaluation.

If we recall that by definition
EVI = E max {Si, S2, 0}

then it is clear that a lower bound on the EVI is provided by
EVI > max [E max {Si, 0}, E max {S2, 0}] (5-145)

while an upper bound is provided by
EVI < E max {Si, 0} +  E max {S2, 0} .
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Evaluation of either of the two expectations involved in these bounds is a simple 
univariate problem involving only the marginal distribution of 81 or 82 as the case 
may be. I f  h is known and the distribution of 6  is Normal, then by (8 -2 0 ) and 
(5-135)

D (6i) = M 5 l|5U f?"1)
and hence by (ll-25b)

Em ax {§,, 0} = vVg Lx*(Ui) , u* = — 8'</vV8  . (5-147)
I f  h is unknown and the distribution of 6  is Student, then by (8-30) and (5-135)

D($i) = fs(8i\6'it a ? r \ v’)
and hence by (ll-50b)

Em ax {0, 8 ,} = VVgLs*(U\v) , U = — d'l/v'au . (5-148)

5.11.6. Example
A chemical manufacturer wishes to choose one of three possible processes for 

producing a certain product; the criterion of choice is to be expected monetary 
profit. The chosen process will be definitely used for one year, after which time 
the entire question will be reexamined; accordingly the manufacturer wishes any 
investments in fixed assets required by the choice of process to be considered as 
expense in this year. If process A is used, it will be possible to produce 110 batches 
during the year; materials and labor will cost $500 per batch; for process B, the 
corresponding figures are 1 0 0  batches at $600 per batch; for process C, 90 batches 
at $700 per batch. Processes B and C require no equipment other than that 
already available; but if process A is used, it will be necessary to invest $7500 in a 
special mixer. The product sells for $1 per pound. Ten pilot-plant experiments 
have been conducted on each of the three processes in order to determine their 
yields; the means of the indicated yields are 950 lb/batch for process A, 1000 for B, 
and 1150 for C; and management feels that in comparison with this experimental 
evidence all other information concerning the yields is of negligible weight. Fur
ther experiments can be conducted at a cost of $100 each for process A, $110 for B, 
and $120 for C. Letting x denote the yield of a single experimental trial multi
plied by a factor converting it into an estimate of the yield of a batch of full pro
duction size, these experiments have indicated that the standard deviation of £ is 
50 lbs/batch for any one of the three processes; the experiments are considered to 
be unbiassed in the sense that the average of £ over an infinite number of experi
ments on any process would be equal to the full-scale mean yield of that process.

Since management wishes to treat its outside or judgmental information as 
negligible in comparison with the experimental results already obtained, we have 
as the expected yields per batch of the three processes

A: 950 , B: 1000 , C: 1150 .
From these we can compute the expected profits

A: 110($950 -  $500) -  $7500 = $42,000 ,
B: 100($1000 -  $600) = 40,000 ,
C: 90($1150 -  $700) = 40,500 .
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By our convention (5-61) we must assign the subscript 3 to process A, and therefore 
we now define

Hi: yield of process B , 
yield of process C ,

Hz: yield of process A .
We are now ready to formalize the statement of the problem; in so doing we 

shall express all monetary amounts in units of $100. The economic structure is 
described by

v = K  +  k h , 6 = Bu = B X  +  B kj» ,
where

— 100 X 6 “ " -6 0 0 “ "1.0 0 0 “
K  = - 9 0  X 7 = -6 3 0 , k = 0 .9 0

_-110 X 5 -  75_ 625_ _ 0 0 11_

» * - [ ?  °

Regarding the data-generating processes, we may treat as known for all practical 
purposes

hi = h2 = hz = h = 1/502 .
As regards the prior distribution of /&, we have already seen that

m! = m' = [1000 1150 950]* .
Since the manufacturer wishes to treat any judgmental information he may have 
as negligible in comparison with information obtained from the experiments al
ready conducted, the marginal variance of each of the #s is simply 502/10 = 250 
and the covariances are all 0:

V'(/I) = (hn')-1 =
250 0 0
0 250 0
0 0 250

1 0 0“ "10 0 0“
n,_1 = 0 .1 0 , n' = 0 10 0

0 0 .1 0 0 10

and therefore

From these results we can compute
o' = K  +  k p ' = [400 405 420]* 

(a result already obtained), and
V  = B e ' = [ -2 0  -15]* ,

.221 . 121" 

.121 .202

Terminal Analysis. If the manufacturer is to choose one of the three processes 
without further experimentation, he will simply choose process 3 because it max
imizes his expected utility.

164



Choice Among Three Processes 5.11.6

Bounds on the EVP1. To analyze the expected value of perfect information 
we first compute

<r' = (/ini)*1 = 2500 n 'r 1 [552.5 302.5"] 
|_302.5 505.0J ’

Our next step is to find upper and lower bounds for the EVPI by the method of 
Section 5.11.5, and to do so we first compute

Vafi = 23.51 , = 22.47 ,
ux = 20/23.51 = .8507 , ih = 15/22.47 = .6676 , 

find from Table II at the end of this monograph that
L,v*(.8507) = .1099 , LA*(.6676) = .1509 ,

and compute
Emax {jlf0} = 23.51 X .1099 = 2.584 ,
E max {§2, 0} = 22.47 X .1509 = 3.391 ,

FVPT f<  2.584 +  3.391 = 5.975 (=  $597.50)
l>  3.391 (=  $339.10) .

Since a single additional observation on just one of the three processes will 
cost from $100 to $120 depending on the process, it seems obvious that the net 
gain of further experimentation will almost certainly be negative for all possible 
experiments; a t best it can be a negligible positive amount. The common-sense 
conclusion is to choose process 3 without further ado; the calculations in the 
remainder of this analysis are given solely to illustrate computational method.

Before going on to these computational exercises, however, let us pause to 
contrast our results so far with those which would have been obtained by a tradi
tional test of significance. In a situation where the economics are such that the 
process with the lowest yield may be the most profitable, it clearly makes no sense 
to test the null hypothesis that the three yields are equal; and we assume therefore 
that the test called for in this problem is of the null hypothesis that all the profit- 
abilities are equal. The sufficient “estimators” are

01 = -6 0 0  +  1.0xx = 400 ,
02 = —630 +  .9 x2 = 405 ,
03 = -625  +  l . l x 3 = 420 ,

and their sampling distributions can be treated as Normal with means vlf v2f and v3 
and known variances

<j\ =  V(Si|i/i) = 1.02 X 250 = 250.0 ,
<t\ =  V(v2\v2) = .92 X 250 = 202.5 ,
<j\ = V(u3k )  = 1.1* X 250 = 302.5 .

The test statistic will be

z =  2 —2 (0 — 0)2 , 0 =  y 2 2 V t / a t  ,<7< Zd <Ti
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which has a chi-square distribution with 2 degrees of freedom; and since its observed 
value is .8 the experiment is just significant at the level

Pxt{2 > .8|v = 2} = .67 .
This means, of course, that if the three profitabilities are in fact equal, two samples 
out of three would show at least as much (mean-square) inequality as was actually 
observed. Traditionally, the decision maker must now decide by the use of judg
ment whether or not this level of significance is sufficient (numerically small 
enough) to warrant a terminal decision without further experimentation.

Exact EV PI by Numerical Integration. To evaluate the exact value of perfect 
information (or expected opportunity loss of an immediate decision to use process 3) 
by the method of Section 5.11.3, we first compute the constants defined by (5-139):

a = V 552.5 -  2(302.5) +  505.0 = 21.27 , 

/J = V(552.5) (505.0) -  (302.5)2 = 433.0 ,

k = 433.0/21.27 = 20.36 , 

a, = 20/20.36 = .9823 ,
, -(552.5 -  302.5)
b‘ ~  433.0------- " -.5774

*  -
a2 = 15/20.36 = .7367 ,
, 505.0 -  302.5
b t -------- 433X) = 4677 '

Then dividing the interval ( — 3.625 < tq < +3.625) into 29 equal intervals 
centered on —3.50, —3.25, • • , +3.25, +3.50 we can lay out the computations as 
shown in Table 5.3 below; recall that for u\ < u\ = .2351 we compute a +  but 
with coefficients a2 and b2 while for Ui > u* we use a\ and bi. From the totals in 
the table we compute

weighted mean of Ljv*(a +  bu{) .94955
3.9987 .2375 ,

EVPI = .2375 k = .2375 X 20.36 = 4.835 (=  $483.50) .

I t is worth remarking that if we base our computation on only the 7 values U\ = 
— 3.00, —2.00, • • • , +3.00 we get a weighted mean of .2377, virtually identical to 
the .2375 obtained with all 29 values.

Table 5.3
Computation of EVPI

Ui a +  6ui +  bu\) /w(tt.) Ln'In*

-3.50 -.9002 1.0006 .0009 .00090054

0 +  .7367 .1342 .3989 .05353238

+3.50 -1.0386 1.1160 .0009 .00100440

total 3.9987 .94955
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E V P I Using Bivariate Tables. To evaluate the EVPI by the method of 
Section 5.11.4, we first compute the first set of constants defined by (5-143a)

« = V552.5 -  2(302.5) +  505.0 = 21.27 ,

P‘ =
_  (302.5)2

(552.5) (505.0) = .3280 p = .5727 , V l -  p2 = .8198 ,

ffj = V552.5 = 23.51 ,
Ci = 20/23.51 = .8507 ,

.8507 -  (.5727)(.6676)
*  ^  ----------- M 9 8 ------- = 5713

ai = V505.0 = 22.47 ,
ft = 15/22.47 = .6676 ,

= .6676 -  (.5727) (.8507) = 
m .8198 .^01  ,

Ml; -  -  .235! , ,  (22.47K.57.3) +  (23.51X.220!) .  ^  _
21.27

from which we can compute the first three terms of (5-143b)
A =  <x/ a'«(u*) G.y*(u5) +  a[ /.v*(fi) Fn*(vi) +  <rafN»(.h) Fn*(vi)

= (21.27) (.3880) (.1986) +  (23.51)(.2778)(.5871) +  (22.47)(.3192)(.7161) 
=  1.639 +  3.834 +  5.136 = 10.609 .

We then compute the remaining constants called for by (5-143a) and (8-16a) 
ci = -.5713 , si = .6676 , l /h  = .5713/.6676 = .8557 ,
Cj = -.2201 , St = .8507 , 1/t, = .2201/.8507 = .2587 ,

v = V (.8507)* +  (.2201)* = V(.6676)2 +  (.5713)2 = .8787 ,
/ = 5713 .2201

p 23.51 +  22.47 .03409 , .8507 _  .6676
* 22.47 23.51 .00946 ,

C > 0 ,  St — .8787 = .2349 , h = .00946/.03409 = .2775 ,

use (8-16b) to compute
W*.(t), 6i) = $Ga-.(.6676) +  F(oo, .8557 » )  -  F(.6676, .8557 *,)

-  .1261 +  .1125 -  .0265 = .2121 ,

W*.(t;,0,) = *Gjv*(.8507) +  y (« , .2587 • )  -  T(.8507, .2587 «,)
=  .0988 +  .0402 -  .0125 = .1265 ,

W V M ,) = }G„.(.2349) -  V(.2775 0 0 , 0 0) +  F(,2775s,( .2349) 
= .2036 -  .2070 +  .0012 = -.0022 .

The obviously incorrect negative result for WAr»(t>, 0a) is due to the use of linear 
interpolation X-wise in the bivariate tables, and following the indication of this 
result we reduce all the bivariate probabilities to 2 decimal places. We can then 
compute the last three terms of (5-143b)

B ss it  W h,<j>, 0i) +  5'i W tdp, 81) -  |5i -  «;| W*.(t>, 8»)

= —15(.21) -  20(.13) -  5(0) -  -5 .75  ,
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and we then have
EVPI = A  +  B = 10.61 -  5.75 = 4.86 (=  $486) .

The result is in reasonably good agreement with the $483.50 obtained by numerical 
integration, which is the more accurate as well as the less laborious method in the 
general case. (Use of the bivariate tables will, however, be advantageous in the 
special case to which (5-144) applies.)

Expected Valve of Ten Additional Observations on Each Process. To illustrate 
the computation of EVSI, we shall work out the arbitrarily chosen case where 
1 0  observations are to be taken on each process and therefore (since hi/h = 1 

for all i)
n = 1 0  I .

The first step is to compute
n" = n' +  n = 20 I , n" ” 1 = .05 I ,

n'- i _  n"-i = .05 I ,

ni-‘ = (Bk)(n'-‘ -  n"~*)(B k)‘ = .0605*1
. i o i o J  ’

Because all the entries in this matrix are simply half those in n j” 1, <r* for our 
problem will be simply half o' for the EVPI and the various constants required 
for numerical integration of the EVSI can be easily obtained from the constants 
computed above for integration of the EVPI.

21 27a = ^4=- = 15.04
V 2 fi =

433.0 216.5 ,

k = 216.5/15.04 = 14.39 , u\ = 5/15.04 = .3324 ,
ax = 20/14.39 = 1.390 , a% = 15/14.39 = 1.042 ,
bx = -125/216.5 = -.578  , b2 = 101.2/216.5 = .467 .

Using 13 values u\ = —3.0, —2.5, • • • , +3.0, we then obtain by the method of 
Table 5.3

weighted mean of Lx*(a +  bu\) = .141 
EVSI = .141 X 14.39 = 2.03 (=  $203.00) ;

using only the 7 values U\ = —3, —2 , • • • , +3  we obtain $207. I f  observations cost 
on the average something less than $203/30 = $7 each, rather than $100 or more, 
a sample of this size would be worth taking; although of course some other sample 
might have a still larger net gain.

5.11.7. EVI When the Prior Expected Utilities are Equal
When the prior expected utilities of all three acts are equal, S( = v2 = S3, 

the prior expected utility differences 5l and b'2 are both zero and very simple formulas 
can be given for the EVI whether or not h is known. Defining

u = if EVPI is to be evaluated , 
if EVSI is to be evaluated , 
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U l2  =  k ^ U n  —  2ikilC2Ui2  ^ 2^22 

C/ 13 =  y/k\uw — 2kJczUiz “f* k\uzz 

U22 =  y/k\v>22 —  2 & 2 & 3 t i 2 3  “ 1“  k\u$z
(5-149b)

[/ =  ^ = =  (C/12 +  C/ 13 +  Uu) ,

we have
(U h~i

EVI =
u %  ? ? ;vV«>1)!

if h is known , 

if h is unknown
(5-150)

If v is large enough to justify the use of Stirling’s approximation, the last formula 
reduces to

EVI = U if h is unknown 
and v' is large . (5-151)

► First Proof. Formula (5-150) for h known can be obtained as a special case of (5-143), 
after which the formula for h unknown can be obtained by substituting E(h~i) for h~i.

1. We first clear the ground by establishing the relation between the quantity U which 
appears in (5-149b) and the quantities a, of, and of which appear in (5-143a). By (5-135), 
(5-133b), (5-132c), (5-131c), and (5-149) we have

B k . [ J  ° : * ; ]

from which we can readily compute

1)
CL =  y / o f  1 — 2(T|2 4" ^22 =  U 12 h  5 f

of = y/ofi = Uu h~% , of = y/022 = Un . 
2. Substituting 5[ = 62 = 0 in (5-143a) we obtain

0 = fi = = rji = 7/2 = u* = uj = = 62 •
Substituting these values in (5-143b) and recalling that

M O ) = (2r)-i , F.v.(0) = G.v.(0) = * ,
we obtain

2) EVI = - 7 =  (a +  <7? +  <r?) ;
2v 2tt

and substituting (1) herein we obtain (5-150) for h known.
3. If the marginal distribution of h is gamma-2  with parameter (t/, v'), then by (7-58a) 

the distribution of Ji~i is inverted-gamma-2 with parameter (v'i, v') and hence by (7-59a)

* < * ' » > - 8 ^ .
Substitution of this result for h~ 1 in formula (5-150) for the EVI with h known yields the
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corresponding formula for h unknown. The approximate formula (5-151) is then obtained 
by defining

x  -  \ v '  -  1  ,

writing

v p  = ( s - M K s  +  l )*
(§ / -  1)! ' xl

and then using Legendre’s formula and Stirling’s approximation

(2s) hr i
( x - M  = 22x x\ x\ = (2r)lx*+te-*

Alternate Proof. Formulas (5-150) can also be proved by direct integration of formula 
(5-140) for the EVI. Again we proceed by first deriving the result for h known, after 
which the result for h unknown follows by step (3) in our previous proof.

Figure S.19
Conditional Value of Information and Distribution of tr When 8 = 0

When 5[ = 62 = 0, Figure 5.18B assumes the form of Figure 5.19; the constants aj 
and a2 in (5-140) have the value 0. Changing to polar coordinates p and 6 defined by

u\ = p cos 6 , u2 = p sin 6 ,

>d$

the integral (5-140) becomes

EVI = —j=z r r f  p(sin 0 — b\ cos 0) fv(p) p dp (
V 2ir t-Joi Jo

+  J *2 j j  p(sin 0 - b ,  cos 0) f N.(p) pdpdBJ  . 

The integral with respect to p is simply one half the unit variance of /.v., so that

3) EVI = —^ =  T f ’/2 (sin 0 -  6, cos 0) dd + f * (sin 0 -  6* cos 0) dfll 
2v2?r‘--'*1 J*f2

2
[cos 9i — cos 02 — 6i(l — sin 0i) +  fe2(l — sin 02)] .
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By Figure 5.19
cos 01 -  (1 +  &!)-* , cos 02 = - ( 1  +  &i)-i
sin 0 i = &i(l +  &i)-i , sin 02 = —62(1 +  62)“ ̂  ; 

substituting these values in (3) we obtain

EVI = —7=  [6 , -  6 , +  (1 +  6?) 1 +  (1 +  6l)i] ;
2V2ir

and substituting herein the values of 61 and &2 as defined by (5-139) we obtain formula (2) 
of our previous proof. <41

A still more special case occurs when the us or u"s not only have common 
means but are independent and identically distributed; when this is true, the EVI 
can be derived as easily for r processes as for 3 processes. For the moment letting 
v stand for either the vector of actual utilities or the vector of posterior expected 
utilities u", we define the parameter nv by writing

know n,
l/s(u |0  , ln jv  , v ) if h is unknown .

The assumption that v[ = u2 = • • • = u' allows us to write 
EVI = E max {Oj, u2, • • • ur} — v\

= E max {(ui — u(), (t>2 — u'i), • • • , (?r — Vr)} J
and the additional assumption that the us are independent with equal scale param
eters then gives us

EVI
cr(hnv)~i

<
cr(nu/v ')-l (*»' ~  iV- 

(*»' -  1)!
v V

if h is known , (5-153a)

if h is unknown , (5-153b)

where cT is the expected value of the maximum of r independent unit-Normal 
random variables. The value of cr is half the expectation dT of the range of a 
sample of r independent unit-Normal variables, and dr is a well tabulated function, f 

Observe that if the us are independent and have equal means a priori, then 
even though the prior variances are unequal it will be possible to allocate the sample 
observations in such a way that the variances of the u"s are equal. When the rela
tive precisions and the costs of sampling from the various processes are the same, 
such an allocation will be optimal.

► Formula (5-153a) for known h was obtained by Dunnett, Jour. Roy. Stat. Soc. Series B, 
1960, by further specializing some formulas for the case where, in our notation, the prior 
distribution of fit is spherical Normal, the matrix k = k I, and the matrix n = n I. If in 
this case we define

t E.g., Biomelrika Tables for Statisticians, Table 27 (Page 174), giving dn to 5 decimal places 
forn = 2(1)500(10)1000.
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ki = k2 = kz = k ,

fu i i i - j ,
’ \0  if i *  j  ,

then our formula (5-149b) for U reduces to
rr 3 k r
u = 7 7 =^ u •2V r

and (5-150) with this value of U is equivalent to (5-153) for r = 3.

5.11.8. E V S I  When Only One Process is to be Sampled
If only one of the three processes is to be sampled, then as shown in Sec

tion 5.9.5 above the distribution of 8" is degenerate or singular and the EVSI can
not be obtained by any of the methods we have discussed above. I t  can be very 
easily calculated by an appropriate method, however, since the fact that only one 
process is sampled means that the entire problem is univariate. For convenience 
of both notation and computation we shall express the analysis in terms of

u ' s  n '- 1 . (5-154)

If it is the ith process which is to be sampled, then by (5-95) or (5-98) the 
distribution of

* -  fit -  Mi (5-155)
is univariate with density

t v  >1 =  h n n )  if h ls known ,
\/s(x |0, n%/v’, vf) if h is unknown ,

where
n r 1 = u ’n -  (uu~1 +  ntt)_1 , nu = n fa /h )  .

As shown by (5-100), this distribution determines the distribution of 8" 
through two linear relations

(5-156a) 

(5-156b)

= [$(' U Y

= si +  ,
V'l =52 +  i

(5-157)

but because of our convention that the subscript r = 3 is to be assigned to the 
process with the greatest prior expected utility we must distinguish two cases in 
giving formulas for the coefficients bi and b2.

1. If the process whose prior expected utility is greatest is not to be sampled, 
we may assign the subscript 1 to the process which is to be sampled. We then 
have by (5-100) that

hi = /ci — kiUziUii 1 , 62 = (k2U2i — kzthi) w lf1 ; (5-158a)

and the distribution of £ is given by (5-156) with i — 1.
2. If the process whose prior expected utility is greatest and which therefore 

bears the subscript 3 is to be sampled, then by (5-100)
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hi — k\U\iUzz 1 — ki , hi — km-̂ zUzz 1 — k$ ; (5-158b)

and the distribution of £ is given by (5-156) with i = 3.
In this second case bi and b2 will usually (though not necessarily) be negative, 

so that 5" and l2 would behave as functions of x in one or the other of the two

CVSI When One of Three Processes is Sampled

ways depicted in Figure 5.20A and B; and in either of these cases the EVSI is 
easily found by applying the univariate theory of Section 5.3.2. Defining

L( } = / (frnln) - 1 L at«(|x | V hrtm) if h is known ,
t(n!»/t>')“ * £s*(H rim/v'\v') if h is unknown ,

we have by (5-26) and (11-25) or (11-50) for the case of Figure 5.20A

v*(e) = |6*| L(x0)

and by (5-25) and (11-25) or (11-50) for the case of Figure 5.20B

vt(e) = 16/| L(x2) +  |6*| L(Xl) .

(5-159)

(5-160a) 

(5-160b)

The reader can readily convince himself that regardless of which process is 
sampled and regardless of the numerical values of bi and b2 the EVSI will always 
be given by a formula of one or the other of these two types; recall that by the 
definition of 6, both and Ji' must be negative when x = 0.

5.12. Value of Information When There are More Than Three 
Independent-Normal Processes

When r >  3, we know of no general expression in terms of tabulated functions 
for the integrals

EVI = • • • f ”" max {5i, • • • , $r_i, 0} / (r“ l)(6|5', n?) dh • • - d8r-i
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where
/■('•-n/'xiX' _  j7 tf_,)(*|S'> h n?) ^ is known ,j  (o\o , n , ) n o/t)/( v>} if h i8 unknown .

(A formula for one very special case was given as (5-153) above.) The EVI can 
always be evaluated by numerical methods, however, and we shall now suggest 
one method of evaluation.

5.12.1. The Nondegenerate Case
When the distribution of 6 is nondegenerate (as it always is when the EVPI 

is evaluated and as it is when EVSI is evaluated provided that at least r — 1 of 
the r processes are to be sampled), our first step is to find a transformation A 
such that

u =  A(6 — S') (5-161)
is standardized Normal or Student; and this can be accomplished by first diagonaliz
ing the symmetric matrix

_□ _  / ( * “ ? ) ' ’ if A is know n, , ,  , fî
\(n ° / t /) -1 if h is unknown ,

and then reducing the diagonal matrix to the identity matrix. There already exist 
programs for digital computers which employ the method of Jacobi and von Neu
mann for finding all eigenvalues and eigenvectors of a real, symmetric matrix;! 
the expected operating time is approximately 10(2v +  y)nl where n is the order 
of the matrix (=  r — 1 in our application), » is the computer addition time, and 
M is the computer multiplication time. Having found in this way an orthogonal 
matrix C such that C <rD C* is diagonal, it is easy to find a diagonal matrix D such 
that

(D C) a°(D C)‘ = I . (5-163)
The desired transformation can thus be obtained by taking

A = D C ; (5-164a)
and the inverse transformation is then very easy to obtain because

A"1 = C‘ D -1 . (5-164b)
The distribution of u as defined by (5-161) is

n /„x J f {s i l}(M) if h is known ,
'  t / (̂ 1)(Ml>',) if h is unknown

(5-165)

There exist many methods for rapid generation on digital computers of u vectors 
having either of these distributions; and for each u the quantities

6 = S' +  A” 1 u , *(u) = max {«i, «2, ■ • • , «r-i, 0} , (5-166)
can be computed. As the sequence u (l), • • • , u (,\  • • • is generated, the computer 
needs to retain at the mth stage only the summary statistics

t John Greenstadt, “The determination of the characteristic roots of a matrix by the Jacobi 
Method/' in Mathematical Methods for Digital Computers (edited by A. Ralston and H. S. Wilf), 
John Wiley and Sons, 1960.
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m , t =  *(u<«) , S = Y T - i W u<")]1 • (5-167)
The EVI is estimated at any stage by

=  t/m
and the variance of this estimator is estimated by

1
m(m — 1)

When for an m greater than some specified m0 the estimated variance is sufficiently 
small, we take \pm as the approximation to the EVI.
5.12.2. The Degenerate Case

When the EVSI is to be computed for an experiment in which p <  r — 1 
processes are to be sampled, it follows from (5-100) that one can generate 8" 
vectors by first generating p-dimensional Qtt," — vectors. From (5-95b) or 
(5-98b)

D fo" - W W  -  Pi\0, hn'm)
J T W  “  P M  n v')

if h is known , 
if h is unknown (5-168)

We next find a transformation in p-space to reduce
♦ _  / (hn%)~1 if h is known ,

iTm ^(nj,/^)”1 if h is unknown
to the identity matrix. If we let A denote this transformation, then

u = k W  -  p{)

(5-169)

(5-170)
has a standardized Normal or Student distribution; and by generating a sequence 
of u vectors we can compute a sequence of vectors

= A-**
and hence by (5-100) of vectors

8" = 8' +  B k C(* A“ l u . (5-171)
The remainder of the procedure is identical to that suggested for the nondegenerate 
case.
5.12.3. Choice of the Optimal Experiment

The real problem of preposterior analysis is of course not simply to compute 
the EVSI of some given experiment e but to find the optimal experiment. Since 
any e is characterized by an r-tuple {nh • • • , nr), we may display the dependence 
of v*(e) on the n, by writing v*(nh n2, • • • , nr), and we may view our task as that 
of finding the maximum (or an approximation to the maximum) of the v* surface. 
Since a good deal is known or can be learned about the general nature of this 
surface, it would seem not unlikely that the maximization problem can be solved 
by use of search techniques based on those suggested by G. P. Box and others. 
With the collaboration of Marshall Freimer, we are currently investigating dig
ital computer programming techniques for coupling Monte-Carlo evaluations of 
v*(nit n*,. . . ,  rir) with search routines.
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Problems in Which the Act and State Spaces Coincide

6.1. Introduction

In the present chapter we take leave of the class of problems characterized 
by linear terminal utility which we studied in Chapters 5A and 5B and take up 
another special class of problems characterized essentially by the fact that the act 
space coincides with the state space or with some transformation thereof. Thus in a 
problem of inventory control where the act space A consists of all possible numbers 
of units stocked and the state space 0 consists of all possible numbers of units 
demanded, A and 0 may both be the set of all positive integers or may both be 
treated approximately as consisting of the positive half of the real line. Or in a 
more complicated problem of the same sort, the state may be described by an 
r-tuple (0i, • • • , 0r) where each component describes the quantity demanded by a 
particular subgroup of customers, but the act space A may still coincide with a 
transformed state space 12 the generic element of which is co = 0i +  • • • +  0r. 
The problem of point estimation of an unknown parameter usually falls in this 
same class because the space of possible estimates {a} usually coincides with the 
space of possible true values {co}.

6.1.1. Basic A ssumptions
Formally, this chapter will be devoted to the consideration of problems in 

which
There exists a mapping W from the state space 0 into a new space 12, carrying
0 into co = W(d), such that 12 and the act space A coincide, f 

The class of problems considered will be further restricted by two assumptions 
about the utility function w(-, •, •, *)on E X Z X A X 0 . As in Chapters 4 and 5 
we shall assume that terminal and sampling utilities are additive; letting c, denote 
the negative of the sampling utility, this assumption can be written

u{e} z, a, 0) = ut(a, co) — ct(e, z) , co = W(6) . (6-1)
For motivation of this assumption, see Section 4.2. We shall also assume that, 
for any co in 12,

w*(co, co) >  Ut(a, co) , all a e A  =  12 , (6-2)

t Most of the theory developed in this chapter will apply to the even more general class 
of problems in which the possible states {«) are a subset of the possible acts {a}, thus including 
problems in which the act a may fall between two successive possible values of the state «. We 
leave the generalization to the reader.
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so that by the definition (4-14) of terminal opportunity loss,
Zi(g>, w) = 0 . (6-3)

In words rather than symbols: if the true state is w, then the best act is co—the 
best number of units to stock is the number demanded, the best estimate of w 
is w, and so forth.

6.1.2. Example
As an example of a problem where assessment of the terminal opportunity 

losses Zi(a, co) is particularly straightforward, consider an inventory problem of the 
kind suggested above. A retailer stocks a product which spoils if it is not sold by 
the end of the day on which it is stocked; each unit stocked costs the retailer an 
amount k0; a unit is sold by him for ku more than it costs; the utility of money is 
linear. The retailer must decide on the quantity to stock, which we shall denote 
by q = a; and if we let d = o> denote the number of units actually demanded by 
the customers, the terminal opportunity loss of q given d is obviously

It
k0(q -  d)
ku(d q)

if d < q ,
if d > q .

The function lt(q, •) is graphed against d in Figure 6.1 for k0 = 1, ku = 4, and 
q = 10.

Terminal Opportunity Loss of the Act q = 10

6.2. Certainty Equivalents and Point Estimation

In most applied decision problems the number of unknown quantities is so 
great that the decision maker cannot practically take full formal account of all of 
the uncertainties that he would like to introduce into his analysis: he cannot 
assign a proper joint probability distribution to all the unknowns he would like 
to treat as random variables and then compute exact expected utilities under this 
distribution. Even in the simplest problems of quality control, the costs of ac
ceptance and rejection (and often the very number of pieces in a lot) may be sub
ject to uncertainty; but only rarely will it be economically sensible to take full 
formal account of all such uncertainties in selecting a sampling plan.
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6.2.1. Certainty Equivalents
In some cases a “subsidiary” uncertainty can be disregarded in the analysis 

without loss because some summary measure of the marginal distribution of the 
unknown quantity in question is a certainty equivalent in the sense that treatment 
of this summary measure as if  it were the true value of the quantity will lead to 
exactly the same course of action that would be chosen if an analysis were based on 
the complete distribution. In Section 1.4.1 we have already examined one very 
important example: substitution of the expected value of an unknown cost for the 
complete distribution of the cost will have no effect on the results of analysis when
ever (as often happens) the cost enters linearly into the analysis and the distribu
tion of the cost is independent of the other state variables.

We shall now examine the general problem of the finding and use of certainty 
equivalents—i.e., of summary measures (including but not restricted to means) 
which in some particular problem or class of problems can be substituted without 
loss for the complete distribution of some unknown quantity. We begin our 
investigation of this problem with an artificially simple example in which exact 
results can be obtained; after this example has fixed the ideas, we shall develop a 
more pragmatic approach to the general problem.

6.2.2. Example
Returning to the problem of inventory control discussed in Section 6.1.2 

above, assume that the demand S has a probability measure of known form with 
parameter <r, denote the expected terminal opportunity loss of an act (quantity 
stocked) q by

Lt(q\a) = Ed\9lt(q,3) , (6-4)
and denote by q9 an act which minimizes L*(- |cr), i.e., which satisfies

L t(q9\<r) <  Lt(q\<r) > all g . (6-5)
Consider first what will happen if for any reason whatever the retailer, instead 

of stocking an amount q9 which satisfies (6-5), stocks an amount q9 which would 
satisfy (6-5) i f  the parameter a had the value & rather than its actual value <r. 
By (6-4) this means that his expected terminal opportunity loss is L t(q9\<r) rather 
than Lt(q9|<r); the decision to stock q9 instead of q9 has increased his expected 
opportunity loss by the amount

\t(&, a) = L t{qi\<r) — L t(q9\o) . (6-6)

Now suppose that the decision maker does not know the true value of the 
parameter a but believes that it is close to some number & and proposes to act as 
if this were in fact the true value, i.e., to stock the quantity q9. By (6-4) and 
(6-6) his* conditional expected terminal opportunity loss, given any particular 
true a, is

L t(q:\a) -  L t(q9\<r) +  X,(*, <r) . (6-7a)

If he assigns a probability measure to & we can say that his unconditional expected 
terminal opportunity loss is the expectation of (6-7a) with respect to this measure,
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LT(<fc) =  E.Li(ja|*) ; (6-7b)
and if we define

L * =  L t(q*1 &) , (6-8a)
At{&) s  E, X*(£, £) , (6-8b)

this expectation can be written
Lt(q9) = L? +  A,(*) . (6-8c)

The decision maker’s “overall” expected terminal opportunity loss is thus the 
sum of (1) the terminal opportunity loss L* which he would “expect” to suffer if 
he were to be told the true <r (but not the true d) before choosing his terminal act, 
and (2) the additional opportunity loss At(d) which he must expect to suffer be
cause his act will actually be based on the “estimate” & rather than on the true 
value a. Because the first of these two quantities does not depend on any decision 
variable, the problem of finding the terminal act q which will minimize the decision 
maker’s expected terminal opportunity loss as defined by (6-7b) is equivalent to the 
problem of finding the estimate &* which will minimize the expected “estimation 
loss” as defined by (6-8b); and once this optimal estimate &* has been found, it 
will be a certainty equivalent in the terminal action problem of deciding on the 
actual number q of units that should be stocked. Because the set of possible esti
mates {&} coincides with the set of possible true values {<r} and the “imputed” 
loss function \ t defined by (6-6) has the property X<(<r, a) = 0, this problem falls 
in exactly the same formal category as the problem of direct terminal action discussed 
in Section 6.1.2 above.

To obtain a better feeling for the nature of these imputed loss functions \ tl 
let us assume by way of example that the demand 3  is known to be generated by 
an Independent Normal process with known mean ju but unknown standard devia
tion tf. Then as shown by (6-42) and (ll-24b), the expected terminal opportunity 
loss defined for any act q by (6-4) is given by the formula

where
Lt(q\o) = (ku +  k0) c { f^ (u )  +  u[ktFx*(u) -  fclG^*(u)]}

=  2 . Z 1  M kt = ku + k0 ’
K  = ku +  k0

(6-9a)

(6-9b)

and/^*, Fn*> and Gn+ are respectively the unit-Normal density and left and right- 
tail cumulative functions; and as shown by (6-44) the optimal act q9 defined by 
(6-5) must satisfy

= ki (6-10)

From (6-10) it is easy to calculate the stock q9 which will result if any estimate a 
is treated as if it were the true <r, and from (6-9) it is easy to calculate the increase 
in terminal opportunity loss due to stocking q9 rather than q9—i.e., the loss Xt(<f, a) 
to be imputed to use of the estimate & when a is true. In Figure 6.2 we graph the 
function X<(<*, •) for the cost parameters of Section 6.1.2 and the estimate & = 1; 
this graph should be compared with the graph Figure 6.1 of the terminal oppor
tunity loss of the act q itself as a function of the actual demand d.
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Imputed Opportunity Loss of the Estimate & = 1

6.2.3. General Theory of Certainty Equivalents
We now proceed to generalize the theory of certainty equivalents suggested 

by the example we have just discussed.
Terminal Theory. Let the state 9 be expressible as a doublet (9h 62) = (w, f ) ; 

define u[ and l[ by
u't(a, o)j f) = u t{a, 9) ; l't(a, a>, f) =  Z,(a, 9) ; (6-1 la)

L((a, a>) =  Erjw l't(ay w, f) 

all a € A , 

all a 6 A ;

define Ut and L t by
Z7<(a, w) =  E^u'tia , a>, f) ; 

define aw by
Ut(a uy w) > U<(a, «) , 

or equivalently by
Lt{aui oi) <  L*(a, a>) ,

and define the imputed loss of the estimate w to be
X*(&, a>) = Ut(auy w) — Ut(a,wy c*>) — L t{az, w) — Lt(aUJ a>)

Then since E* =  E„ Ef|w
Etf w<(as, 0) = Ew t/<(aw, d>) — Ew X*(<a, d>) 

or
E* Zt(as, 5) = Ew L t(aw, w) +  E*, X<(<̂ , w) .

Provided that the set {aw: w € 12} is coextensive with the set {a} = .4, i.e. that every 
a in A is optimal for some co in 12, it follows immediately that

maxa E* u t(ay 6) = Ew C/«(aw, d>) — mins E« \ t(<d, a>) , (6-15a)
and that

mina E* Z*(a, 0) = Ew L<(d„, w) +  mins E„ X<(&, a>) . (6-15b)
In words rather than symbols, minimization of imputed estimation loss as defined by 
(6-13) followed by treatment of the optimal estimate as i f  it were the true value of the

180

(6-1 lb)

(6-12a)

(6-12b)

(6-13)

(6-14a)

(6-14b)



Point Estimation 6.2.3

quantity estimated is equivalent to maximization of expected utility or minimization 
of expected “overall” opportunity loss.

Preposterior Theory. In general the decision maker is not obliged to proceed 
immediately to make an estimate & on the basis of which he will choose his terminal 
act a but can if he wishes perform an experiment e which will give him additional 
information about 12. Formally, consider a set of experiments E  with potential 
outcomes Z such that the conditional measures P aie on Z depend on 6 = (co, f )  

only through the component co, and let X?(e) denote the prior expected value of 
the estimation loss due to the estimate A which will be made posterior to e:

X*(e) S3 E,|# mins El}, X*(<a, w) . (6-16)
Then by (4-3) and (6- 15a) we have for the expected utility of e 

u*(e) = ut(e) +  uj(e) =  uf(e) -  cj(e)
= Ef|, [Elf* Ut(aUJ w) — mins Elf* X*(&, w)] — c*(e)
= E l U ifa, w) -  [X?(«) +  cS{e)] ; (6-17)

and since the first term on the right is independent of any decision variable, the 
optimal e must minimize

X*(e) s  X,*(c) +  c!(e) . (6-18)
We conclude that

Any decision problem involving an unknown parameter co can be decomposed 
without loss of accuracy into two parts: (1) a first-stage “estimation” problem 
of deciding how much information should be obtained concerning co and what 
estimate & should be chosen in the light of this information; (2) a second-stage 
“terminal-action” problem in which a terminal act a is chosen by treating this 
estimate as if it were the true co.

I t is perhaps worth remarking that this principle extends even to problems in 
which co is the only unknown quantity involved. Our example of Section 6 . 1 . 2 ,  

where the only unknown was the actual demand d, can if we like be treated as a 
problem of “estimating” d or of finding a “certainty equivalent” for d. If we 
assume that an estimate d will be treated as if it were the true demand d, the 
“imputed” losses X*(e?, d) will be simply the “terminal” opportunity losses lt(d, d) :

k9{d -  d) 
ku(d — d)

if d < d ,
if d >  d .

Choice of the Quantity to Estimate. In most discussions of point estimation 
an effort is made to define the properties of a “good”—or even a “best”—estimator 
without reference to the use to which the estimate will ultimately be put; it is 
easy to find statements in the literature than an estimate “should” be unbiassed 
or that the “best” unbiassed estimator of o> is one which minimizes E ( c 5  — co)2 or 
something of the sort. Now it is perfectly obvious from the role of the imputed 
losses X*(<$,«) in the above discussion that it is flatly impossible to find any one 
estimator which is “good”—let alone “best”—for all applications in any absolute 
sense, but this discussion has another implication which is less obvious.

I t  is well known that if & is, say, an unbiassed estimate of the standard de-
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viation <r, then d2 is not an unbiassed estimate of the variance a2; if c5 is an esti
mator which minimizes max* E(c3 — o>)2, then /(£) does not in general minimize 
max* E[/(<3) —/(o>)]2; and in general, many classical estimation procedures are 
dependent on the parametrization of the problem. When we think, however, of the 
way in which a point estimate is actually used, we see that if an estimate G> of w leads 
to the terminal act a*, an estimate CP of oP will lead to this same terminal act a&; and 
it follows at once that if a particular estimate of w minimizes imputed estimation 
loss, then the estimate/(&*) of /(co) will also minimize imputed estimation loss. In 
terms of our example: if d* is the best estimate of the standard deviation of demand 
1 in the circumstances of that particular decision problem, then d*2 is the best estimate 
of the variance of 3, and so forth.

6.2.4- Approximation of X,
Although it is possible in principle to obtain an exact solution of a problem of 

point estimation by application of the theory which we have just developed, this 
procedure will rarely if ever be of much practical use. In order to obtain the exact 
conditional losses X<(&, gj) for the “first-stage” estimation problem, we must first 
make a complete conditional analysis of the “second-stage” terminal problem for 
each possible w; and if we are to carry out this analysis and then take the exact 
expected values of the derived conditional losses we might just as well eliminate 
the decomposition and introduce the uncertainty about w directly into the analysis 
of the terminal problem itself.

The practical value of the theory developed in the last section lies rather in 
the fact that, by giving us a meaningful definition of the estimation problem, it 
guides us in the choice of suitable methods for finding approximate solutions of the 
problem. When it is practically impossible to allow for uncertainty about w in 
the terminal analysis, it may be possible to calculate A<(&, co) for a, few (&, w) pairs, 
fit some convenient function X{( •, •) to these calculated values, and then select the 
estimate which minimizes E* X{(&, w) or to choose the experiment e which minimizes 
Ef|. m in ^E ^  X «).

In choosing the class of functions one member of which will be selected as X,' 
by specification of numerical values for the parameters, the decision maker will 
of course be guided not only by the values of \t(&, o>) which he has actually com
puted but also by a more general intuitive analysis of the “second-stage” decision 
problem in which the estimate & will ultimately be used. Whatever the nature 
of the second-stage problem, he knows that the imputed loss of a correct estimate 
is zero, Xt(w, w) = 0; and i f  the second-stage problem is an infinite-action problem 
(e.g., a problem like the example of Section 6.1.2 above or a problem of optimal 
sample size), then it will usually be reasonable to assume that w) increases in 
some smooth manner with the “error” — w) or (w — G>) in the estimate. When 
this condition is met, an appropriate approximation function will often be found 
within one of two particularly tractable classes analyzed in detail in Sections 6.3 
through 6.5 below: (1) the linear class defined by

X*(&, oj) [k0(C> — w) g(u)) 
Lfcu(c*> — &) g(w)

182

if
if w > (6-19)



Point Estimation 6.2.4

and (2) the quadratic class defined by
Xt(&, o>) = kt{& —•<*>)2 g(u>) (6-20)

where g(w) may be any function which is “compatible” with the prior density of w 
in a sense to be discussed in Section 6.5.

In choosing between and within these two classes of functions, the decision 
maker will probably find it easier to think of & rather than w as the “variable”, 
letting a) play the role of a “parameter” . Thus in the linear class (6-19), k0 repre
sents the loss which will result for each unit by which co is overestimated, while fcu 
is the loss for each unit by which w is underestimated. The addition of g(os) to 
the loss function makes it possible to find a function which will properly allow for 
the fact that the seriousness of a given error (& — a>) may depend on the true value 
of w as well as on the error itself. Thus while

xt(/i, n) = fct(/i — m)2
may often be an appropriate loss function for estimation of the mean m of an Inde
pendent Normal process, the loss due to misestimation of the mean p of a Bernoulli 
process will often be better described by the function

which looks at the relative rather than the absolute error in or by the more 
symmetric function

x < (p , P )
(p -  p)2 .
p(l -  p)

Choice of the Quantity to Estimate. Although it makes no difference whether 
we estimate w or some function of w when we optimize the estimate with respect 
to the exact loss function X*, it does make a considerable difference if we are going 
to optimize with respect to an approximation X{ chosen from a limited class of 
tractable functions: the class may contain a very good approximation to the true 
loss function when the problem is parametrized in one way but may contain no 
even tolerable approximation when the problem is parametrized in another way.

As an example, let us consider once again the problem of estimating the stand
ard deviation of a Normal distribution of demand which was discussed in Sec
tion 6.2.2 above. Substituting formula (6-9) for the terminal opportunity loss 
Lt(q\a) in the definition (6-6) of the imputed estimation loss and defining the 
constant u by

F n *{u ) =  ku

we obtain after a little algebraic reduction

where

1
ku + k{ X«(<*, or) <r4>{*/o) (6-2 la)

4>(*/<r) =*fx*(u&/<r) -  fx*(u) +  (u&/<T)[ktFx*(u*/<r) -  fcl Gx*(u&/<r)] . (6-2lb)
183



6.2.4 Part I I :  Additive Utilities

From this it follows that if we define
a) =  a* (6-22)

where k is any real number, we can write

; ■ V  , r  X*(a>, a>) =  u)xlk 0*(<2/a>) ( 6 - 2 3 )kU
where fa is implicitly defined.

If now we wish to approximate (6-23) by a quadratic of type (6-20), we will 
wish to know whether we will do better to take k = 1 and = a, i.e., to approximate 
the losses by a function of the form {a — a)2 g\(a)} or to take k = 2 and a> = a2 = v 
(say), i.e., to approximate the losses by a function of the form (v — *02 02(0), or 
possibly to work with some still other power of a. The question can be settled

Figure 6.3
Estimation Loss as Function of a /a  or of v /v

by examining the functions fa  graphically, as is done in Figure 6.3 for fc = 1 and 2. 
This figure makes it clear that the approximation

*(*/<0 «  [(*/*) -  i ]2 =

will be much better over a wide range than the approximation 

< h m  oc [(fi/v) -  1? = ;

and we conclude that an approximation of the type
x / .  \ (3 — a)2 , A 1
X/(<7, <x) OC a --------------------  =  (a- — a ) 2 -<T (T

will be much better than one of the type
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X/(v, v) oc V v ^  ~ ^  = (t) — y)2 v~* •

I n  this sense, it is better in this particular example to estimate the standard devia
tion a than to estimate the variance v.

6.2.5. Subjective Evaluation of \ t
In many situations the decision maker may wish to base the imputed oppor

tunity losses Xi(&, w) in an “estimation” problem en tirely  on subjective judgment 
instead of computing exact values X<(&, o>) for selected (&, o>) pairs and then “fitting” 
some function to these computed values. Such a procedure is in perfect accord 
with the general principles of decision under uncertainty which have been advo
cated throughout this monograph. We have already seen in Section 1.4.1 that 
in preparing for the formal analysis of an y  decision problem the decision maker 
is free to cut the decision tree at any level L  that he likes and to assign “subjective” 
utilities to the branch ends thus created, whether or not he could cut the tree and 
assign subjective utilities farther out and then com pute  the utilities at level L. 
Again as we pointed out in Section 1.4.1, a really “complete” decision tree would 
be infinitely complex and therefore totally useless; the proper scope of formal 
analysis in an y  decision problem is a lw ays  a matter of judgment.

Judgmental evaluation of the imputed-loss function X* in an “estimation” 
problem will be particularly reasonable when previous exact analyses of complete 
decision problems of the type in which the estimate is to be used has provided sub
stantial even though indirect evidence on wrhich to base the assessment of Xt; and 
in our opinion it is an important objective of statistical research to make such 
previous experience generally available. To give a single important example of 
the kind of numerical research which would be extremely useful, consider the 
“ultimate” problem of determining optimal sample size for choice between two 
terminal acts whose utilities depend linearly on the unknown mean of a Normal 
population whose standard deviation at is also unknown. Because this “ultimate” 
problem is very laborious to solve as it stands but would be very easy to solve if <rt 
were known (as we have seen in Section 5.5 above), one would like to solve the 
ultimate problem by treating a point estimate cls i f  it were the true value <rt 
itself. Systematic analysis of the loss function X*(<?«, o-«) in problems of this gen
eral class would provide a really sound basis both for making an optimal estimate 
on given information about o t and (in situations where information about <r< can 
be obtained separately from information about m, e.g. by means of uniformity 
trials) for deciding how much information about <r« should be collected before 
proceeding to determine the sample size for the “ultimate” decision about p.

6.2.6. Rough and Ready Estimation
Unfortunately there is often a very great difference between what is conceptu

ally desirable and what is mathematically feasible. We have already referred to 
the difficulty of finding the exact imputed loss function X(; but even if we substi
tute a very well behaved approximation for the exact function it may still be impos-
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sible to find the estimate w* which minimizes the expected value of the loss because 
the posterior distribution theory may not be tractable.

In such situations, the best practical solution may well be to exploit the classical 
methods of point estimation; we give one example to illustrate the point. Sup
pose that the imputed loss function X* is such that the true certainty equivalent is 
some particular fractile of the posterior distribution of a>. Although we may be 
unable to find the posterior distribution of w based on the entire sample or on a 
sufficient statistic—i.e., the posterior distribution which represents all of our 
information about Q—we may know the approximate distribution of the maximum- 
likelihood “estimator”, and if so then from the observed value of this estimator we 
may be able to find the corresponding posterior distribution of w. Our actual 
estimate—i.e., the certainty equivalent on which our choice of a terminal act will 
be based—will then be the appropriate fractile of this posterior distribution, not 
the “maximum-likelihood estimate” itself.

I t  should also be remarked that when the posterior distribution of a> is “ tight” 
(relative to the context of the decision problem), it may not be worth the effort to 
formalize the nature of X* or to worry unduly about approximating it, since it may 
be clear that any reasonable summary measure of the posterior distribution of & 
will lead to the choice of a terminal act whose “true” expected utility differs 
negligibly from the expected utility of the “true” optimal act.

6.2.7. Multipurpose Estimation
All of our discussion hitherto has been based on the assumption that some 

estimate & of « is to be used as a certainty equivalent in a single, well defined 
second-stage action problem. I t  was on the basis of this assumption that it was 
possible to introduce at least conceptually the imputed opportunity losses X«(<S, a>). 
We now turn to the case where a given body of information concerning ft may be 
used in a number of different second-stage action problems.

Terminal Considerations
In some situations it may be true that even though the imputed loss functions 

X< are not identical in the various second-stage action problems, they are neverthe
less similar in the sense that the same estimate & is a certainty equivalent for all the 
problems. We cite two examples.

Consider first a two-action problem involving a Bernoulli p and let u t(a 1, p) = 
kp and wt(a2, p) = K) the quantity p might represent a fraction defective, kp the 
cost of accepting the lot, and K  the cost of rejecting the lot. Now let R be un
known and let it play the role of w; and assume that R and p are independent. 
If our estimate of K  is R, then

\  (it _  /  0 if K  & are on the same side of kp ,
9 ' "  \ \K  — kp\ if K  and R straddle kp ,

and it is easy to see that for any distribution of R, the mean R is an optimal esti
mate R*. Observe that K is a certainty equivalent for any problem in which the
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utilities and therefore the imputed losses are of this form, regardless of the numerical 
values of the coefficient k and the mean p of p. We can think of K  as being a “broad” 
rather than a “restricted” certainty equivalent.

As a second example, consider the well known production-smoothing problem 
which in very restricted form can be presented as follows: at time n, the decision 
maker must choose a production level xn and demand will be 3 „ ; the terminal 
opportunity loss at time n is of the form

dn(xn -  3 n) 2 +  bn(xn — Xn-l)2 .

Given the boundary condition x0 = c and the constants an, bn for n = 1, 2, • • • , N, 
the problem is to choose xi as the first stage of a policy which will minimize the 
expected sum of the terminal opportunity losses in N  periods. It is known f that 
if the problem is modified by replacing the random variables 3i} • • • , 3s  by their 
expected values 3i, • • • , 3,v, then the original and modified problems have the same 
optimal first stage act x*. The means 3if • • • , 3# are certainty equivalents for the 
joint distribution of 3 i, • • • , 3s regardless of the numerical values of the parameters 
c, a i, bij 02, 62, • • • , as, bs.

Usually, however, it will not be true that any single estimate <2 can serve simul
taneously as a certainty equivalent for a number of different second-stage action 
problems. If the posterior distribution of o> is “tight,” a “reasonable” summary 
measure like a mean or mode may serve all purposes reasonably well; but when this 
is not the case, one should refrain from making unnecessary compromises. I t is 
much better—and nearly as easy—to report the posterior distribution of u> and then 
to try to find the best possible estimate for each terminal-action problem individually; 
cf. Section 3.4.6 on scientific reporting.

Preposterior Considerations
Suppose now that our immediate problem is not to make an estimate or set 

of estimates of co for use in a number of terminal-action problems but to choose 
an experiment e which will give us additional information about Q. If this in
formation is ultimately to be used in a number of different second-stage action 
problems, then the immediate result of the experiment will presumably be a pos
terior distribution of w in one guise or another. But how does this help to decide 
on sample size? One possible approach is to define some index of “tightness” of 
the posterior distribution (such as the variance if the distribution is symmetric) 
and then to decide on a substitution rate between the index of tightness and the 
cost of sampling. A second possible approach would be to concoct a composite 
imputed loss structure \ t as if  we were eventually going to choose a single esti
mate G>. A standard preposterior analysis can then indicate a “reasonable” sample 
size, even though after the experiment has been conducted we will actually report 
the posterior distribution of w and then use this as a basis for finding a different 
certainty equivalent for each terminal-action problem that arises.

t  See H. Theil, “A note on certainty equivalence in dynamic planning”, Econometrica 25 
(1957) pages 346-349. In this paper Theil refers to an alternate proof given previously by 
H. Simon.
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6.3. Quadratic Terminal Opportunity Loss
In this section and the next we shall examine some of the analytical problems 

which arise when the conditional terminal opportunity losses Z*(a, co) are quadratic 
or linear in ( a  — co ); the entire discussion will obviously apply without change to 
problems in which the conditional “imputed estimation losses” X*(<d, to) of an esti
mate & are quadratic or linear in (cd — co). In the present section we shall consider 
the quadratic structure

lt(a, co) = k t(a — co)2 (6-24)

where k t is a constant; in Section 6.4 we shall consider the linear structure

lt(a, co)
k0(a — co) 

A*u(co —— a )

if co < a ,
if co >  a ; ( 6 - 2 5 )

and in Section 6.5 we shall see how either of these structures can be made much 
more flexible without loss of tractability through multiplication by suitably chosen 
functions of co.

6.3.1. Terminal Analysis
If the conditional terminal opportunity loss of an act a given the state co is 

of the simple quadratic form (6-24), then the expected opportunity loss of a under 
either a prior or a posterior distribution of co is

E  lt(a, co) = kt E ( a  — co)2 = kt E ( a  — co +  co — <o)2

e  k t[(a -  co)2 +  co] ( 6 - 2 6 )

where
a =  E(co) , co =  V(co) =  E(co -  w)2 . (6-27)

It follows at once that the optimal act is given by

a* = H (6-28)

and that the expected terminal opportunity loss of this optimal act is

E  l t { a * } co) == m in *  E  Zt(u , co) =  k t  co . ( 6 - 2 9 )

In Table 6 . 1  formulas for co and co are given for various co = W(6) associated
with the univariate data-generating processes listed in Section 3.2.5 above and 
discussed in Part III below. In each case it is assumed that the distribution of 
the process parameter § is conjugate to the likelihood of a sample.

► Except in the case of co = a2, all the formulas in the table are derived in Part III; 
references to the formula in Part III are given in the last column of the table. To derive 
the formulas for E(<r2) and V(<j2), we first observe that if h has the gamma-2 density (7-50) 
with parameter (v, v)f then by (7-5la) and (7-55) l/K = 5% has the inverted-gamma-1 
density (7-54) with parameter (ii>, \w). The formulas in the table then follow immediately 
from (7-56). ^
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Table 6.1
Mean and Variance of w

Process Conjugate Distribution Ct) o) =  E(d>) & =  V(«) Reference
r r r(n -  r) 

n 5(n +  1 ) (9-11)P n
Bernoulli: p*(l — p)l~x beta: — p)n~r~l

n -  1 (« -  l)(n  -  r)
(9-15)p — p

r -  1 (r -  l)*(r -  2)
f
X r

t
r
t1 (10-10)

Poisson: e~Xx X gamma-1 : e“x* Xr_1 -<

Uii*
,

t*
(10-15)

t
r -  1 (r -  l)*(r -  2)

r
h known, p  Normal: m J_

hn (11-24)

r 1 1
h

V w (1 1 -10)

Normal: P known, h gamma-2: e~^hvth^v~ l *
•-4W1-<IIb

( ^ - D !  *
— <T*

v - 2
(7-59);

cf. Section 11.1.4
7IIM* 

,
w 2v*v*

see notev - 2 iy -  2)*(r -  4)

V V
(11-49)Normal-gamma:

e- | » i . e- \ hnh \ '~ 1
m n v — 2

W Ji, a, <rJ same as for p known
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6.3.2. Preposterior Analysis
If we now introduce primes and double primes to distinguish between values 

prior and posterior to a sample, we have by (6-28) and (6-29) that if the decision 
maker does not experiment but acts under his prior distribution of «, then the 
optimal act is E'(d>) =  «' and its expected terminal opportunity loss is k t V'(w) =  
k t whereas if he does perform an experiment e and observes z, then the optimal 
act is E^*(w) ss d'r" and its expected terminal opportunity loss is

k< VlWfi) s  kt &'/ . (6-30)
When an experiment e is being considered but has not yet been performed, its 

outcome 2 is a random variable and therefore the posterior terminal opportunity 
loss A:t Z"  is in general a random variable. In order to make a preposterior analysis 
of any e the decision maker must compute the prior expected value of this posterior 
terminal opportunity loss; and since this expectation is

17(e) = E ^(kt SO = kt E„.(2Sn , (6-31)
this problem is equivalent to the problem of computing the prior expectation of the 
posterior variance.

When the prior variance of the posterior mean is known, the prior expectation 
of the posterior variance can be easily obtained by using a result derived in Chap
ter 5 above. Defining

5 " - E , k( s ; ' ) - E , k v : u d , ) , 
f i " s v Ik( f i " )E v tI. E : « « ) ,

we have by (5-28) that for any distributions whatever on Q X Z, provided only 
that the means and variances in question exist,

<3" = a ' -  fi" . (6-33)

In Table 6.2 formulas for &" and w" in terms of d>' are given for one or more kinds 
of experiments which might be conducted in order to obtain information on each 
of the various cos appearing in Table 6.1 (page 189). The nature of the experiment 
is indicated by listing the components of the sufficient statistic with a tilde over 
those which are not predetermined but left to chance. For the parametrization, 
see Table 6.1 or Section 3.2.5 above; for formulas for d>' in terms of the parameters 
of the prior distribution, see Table 6.1. References in parentheses are to formulas 
for 6" in Part III; references in square brackets are to derivations of <5" in the 
notes immediately below.

► Note 1. In this case is independent of the sample outcome; its value and the value 
of m' are given by (ll-24c) and (11-22).

Note 2. By (11-10b) the prior and posterior variances of h are

it _ I In _ 1
ivV2 ' \v" v"2 *
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Table 6.2
Expected Posterior Variance of w

6.3.2

Prior
Process Distribution Experiment a> 6"/a/ w"/w' Reference

Bernoulli

Poisson

N ormal

beta

f|n

rl|r

f\t

gamma-1 <

l\r

A known,
fL Normal m'n

p known, „. 
\ h gamma-2

Normal
. gamma m, tf|n, v

V
n n' (9-21c)n +  n' n +  n'

J=> = 1/P see reference (9-29)

> see reference (9-38)

P = 1/P
r r' -  1 (9-43c)r +  r' -  1 r +  r' -  1

X t
t tf

t'
t + 1' (10-37c)

JL -  1/X see reference (10-45)

X r r' +  1 (10-22c)r +  r' +  1 r +  r' +  1

P = 1/X
r r' -  1 (10-28b)r +  r' -  1 r +  r' -  1

p
n n'

[1]n + n' n +  n'

h V v' +  2
[2]

V  + /  +  2 y +  v' +  2
<r = /i- i see note [3]

II >• V /  -  2
Wv +  /  -  2 v +  /  -  2

n n' (ll-66a)n +  n' n +  n'
A, <T, (T1 same as /or p known —

By (11-15) and (11-61) the density of if" is the same whether or not n is known, and by the 
second formula in the proof of (11-65)

yV T 8 ( K -  l)Kfr' +  D! = V  +  2) 
v" J (\v"  +  1 )!(§ / -  1)! v \v "  +  2V2 *

We thus have for the expected posterior variance of Ji

E(tf"-2) = [

T n  _  _L _ +  2 ) ✓  +  2  jr,
J f"  ’  * ' ( * "  +  2 )t ; '2 ^  +  2

Note 3. By Section 11.1.4 and formulas (7-59) the posterior variance of d is
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&" -  f  1 /w - w y i .

By (11-15) and (11-61) the density of v” is the same whether or not y is known, and by 
(7-27a) or the second formula in the proof of (11-65)

Erg,n _  i W  - 1),,
( 0 hv"W  - 1)

Substituting this result for v" in the previous formula we obtain

s " = r  1 _  ( w  -  t ) !v i  - 1 i vV
[ > " - i  l ( K -  1)7 J k  -  1 *

Note 4. By Table 6.1 (page 189), the prior and posterior variances of d2 are

v'W )
2v'2 v'2 Y ,f(d2) = 2v"2 V”2

(y' -  2) V  “ 4) ’ v" 7 (y" -  2)\v" -  4)
By (11-15), (11-61), and the second formula in the proof of (11-65)

y'2 v'2 (y" -  2){v" -  4)
* _  2)(„'-  4) ’E (t?"2) 2

Substituting this result for v”2 in the formula for Yn(d2) we obtain

EV"(<72) =
2v"2______________________ ( y "  -  2)(v" -  4 )  y '2

( y "  -  2 ) V '  -  4) ’ (✓  -  2 ) ( y '  -  4) y " 2
v'2 = y; — 2 

y" -  2 V'(d2)

6.3.3. Optimal Sample Size
The decision makers objective is to choose e in such a way as to minimize his 

expected opportunity loss, which by (4-19), (6-31) and (6-32) is
l*(e) = U(e) +  cS(e) = k t <5" +  c*,(e) . (6-34)

We are interested particularly in the case where every e in E  is characterized by a 
real number rj (the “sample size”) such that the expected sampling cost is a linear 
function of 17,

c,(e,) = K t +  k.rj .
Since by (6-32) the expected posterior variance 5" is a function of e and there

fore of 17, we add a subscript rj to w” and write (6-34) in the form

Z*(ef) = +  K. +  fc.rj . (6-36)

If now 17 is continuous or can be treated as continuous for practical purposes, and 
if has a derivative with respect to 17 (as it does in all cases listed in Table 6 .2  

on page 191), then the optimal rj is either 0 or a solution of the equation

j -  u>'' = — where k* =  ^  • (6-37)ay v k* kt

For each w for which a formula for <5” was given in Table 6 .2 , we give in Table 6.3 
a formula for the root rj° of this equation which, if it is positive, corresponds 
to the unique local minimum of l*(e,,). If however 170 is negative, then the optimal 
sample size is 0 ; and even if tj° is in fact positive, the optimal sample size may
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be 0: in this case the question must be settled by actually computing i*(e,,o) and 
comparing it with l*(e0) = kt

Table 6.3
Optimal Sample Size

Prior Optimality For
Distri- Experi- Condition: mula

Process bution ment CO s V k * S  = Number

f|n V
r '(n ' -  r') 
n '(n ' +  1 )

n° +  n ' 1

Bernoulli beta <
n|r p =  i /p (»' -  U(»' -  r') r° +  r ' -  1 2

ir’ -  1 ) ^  -  2)

fi< X r'
f

t° +  tf 3

Poisson gamma-1 <

r|I -

r 
n 

■fc 
V

II >—
*

r '( r ' +  1 ) 
t'2

t'2

r° +  r ' +  1 

r° +  r ' -  1

4

5
(rf -  D (r' -  2)

'h known,
m\n

1
6/2 Normal M h

n +  n

M known, w\v <

r
h 2 (v' +  2) 

v’v,% v° +  ✓  +  2 7

N ormal <Ji gamma-2
a* =  l/h 2v'v’t +  yf -  2 8(„' _  2){v' -  4)

r v'v'
n° +  n' 9Normal-

gamma
m, v\nf v <

p

h, <rs

v' -  2

same as for p known 10

► All the formulas for ui" given in Table 6.2 (page 191) are of the form
V +  c w

V +  V* +  c "

where c is a constant. Differentiating twice with respect to ij we obtain

( 1) - * 4 C- ■#
(»? +  >?+ cy

(2) £_
dr)''

2(r>' + c) „
Ol +  if' +  c )* "

Substituting (1) in (6-37) we see that i*(e,) is stationary if tj satisfies

V +  V  +  c =  ± V k * {r i’ +  c)d>' ; 
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and it then follows from (2) that the solution corresponding to a local minimum is the one 
for which the square root is taken positive. The formulas in Table 6.3 are obtained by 
substituting in this result the formulas for d>' given in Table 6.1 (page 189). ĵj

Interpretation of the Formulas for Optimal Sample Size. The role of the factor 
k* = fct/fc, in the sample-size formulas of Table 6.3 is easy to “understand” econom
ically : it says simply that optimal sample size increases as the cost of a discrepancy 
between a and u increases and that optimal sample size decreases as the cost of 
sampling increases. When we seek a similar “explanation” of the factor S> it 
seems a t first sight that a clue is offered by formula 6, for the case where the mean p 
of an Independent Normal process is unknown but the process precision h is known. 
In this case we have by (ll-2b) that the factor S  = l /h  is equal to the sampling 
variance V(£\p) of a single observation £; and it seems reasonable enough that 
optimal sample size should increase with V(H|m) because an increase in V(£\p) 
means a decrease in the amount we can learn about p from each observation in the 
sample.

In the other cases in Table 6.3 the variance of a single observation depends on 
the value of the quantity being estimated, so that the interpretation of the factor S 
must necessarily be more complicated than in the very simple case of formula 6, 
but it naturally occurs to us to inquire whether in these other cases the factor S 
may be related to the expected sampling variance E« V(n|w) of a single observation. 
The factor S  does turn out to be actually equal to E„V(£|w) in several cases, 
specifically in those covered by formulas 1, 2, and 5; and in those covered by formu
las 3 and 8 the factor S  turns out to be equal to the expected variance of the statistic 
f  or tZ) in a sample of size rj = 1.

► In the case covered by formula 1, we have by (9-1), (7-9c), and (7-22ab)

E,V W > -  / ;  p(. -  , ) M r K » 'U p  -  £  -  ,  s

In the case covered by formula 2, we have by (9-2), (7-12b), and (7-21)

Ep V(j/|p) =  Jn' n') dp

{n '  -  l ) ( n '  -  2 )  .  , , . „  . f i n ' -  1

= jo (” _ -i)("  _  2)) fM r ' ~  2>n' - 2)dp ~  j o ' h n . /fl(p|r' 1}dp

= S .

( t > -  l ) ( r '  -  2 )

( n '  -  l ) ( w '  -  2 )  W  ~  1 (n '  -  l ) ( r t '  -  r ' )
(r' -  l)(r' -  2) r' -  1 (r' -  l)(r' -  2)

In the case covered by formula 3, we have by (10-32), (7-33c), and (7-45a)

Ex V(2|*, t = 1) = f j  X/Ti(X|r', O dX = £  = S .

In the case covered by formula 5, we have by (10-1), (7-45c), and (7-43)
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E x  V ( * |X )  =  / Q“ t )  d \  =  j “ — l  -  2 , 0  «/X

= s  .(r' -  1 )(r' -  2)
In the case covered by formula 8, we have by (11-12), (7-52b), and (7-50) 

E» V«b\K, r = 1) = j *  «0 -

_  <•“ - ( W ) *  . / .  » V  , A . .
jo 2 ($./ -  -  2 )^ s V  -  4’ " 4/

2xV*
(*' -  2)(v' -  4) = S .

Unfortunately, however, this line of explanation breaks down totally when we 
examine the two remaining cases in Table 6.3. In the case covered by formula 4, 
the factor S  is equal to the expectation of the reciprocal of the sampling variance 
of a single observation; and in the case covered by formula 7 the factor S  is four 
times the expectation of the reciprocal of the variance of the statistic t2> in a sample 
of size v = 1. We must therefore confess that we have as yet been unable to 
attach any clear economic “meaning” to the factor S.

► In the case covered by formula 4, we have by (10-1), (7-45a), and (7-45b)

E> [ v ® ]  -  / /  *  -  * * 7 ^  -  s  •
In the case covered by formula 7, we have by (11-12), (7-52b), and (7-50)

f . w  + D f / ,  . ,  A  ,,
~  Jo 1 (i„V)1 M  v’ + * v + 4 ) dh

vf 4- 2= h - n r  = i s  .v v x

6.4. Linear Terminal Opportunity Loss

We next consider the linear loss structure

where k0 and ku are positive constants.
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6 .4 .I. Terminal Analysis
If the conditional terminal opportunity loss of an act a  given 03 is of the linear 

form (6-38), then the expected terminal opportunity loss of a under either a prior 
or a posterior distribution of 03 is

E h(a, a>) = ka J*"  (a — w) dPw +  ku j  ̂ (0 3 — a) dPw

=  k0 L®(a) +  ku Lir)(a) . (6-39)
The “linear-loss integrals” L il) and L(r) have already been defined in (5-12), and 
it has already been shown in Table 5.1 (page 99) that they can often be easily 
evaluated in terms of well tabulated functions when 03 is a reasonably simple func
tion of the state 0 and 6 has one of the conjugate distributions listed in Section 3.2.5 
above and discussed in Part III below.

If we let Fu and respectively denote the left and right-tail cumulative 
functions of o>,

Fu(a) =  P{£ < a) , G«(a) =  P{d> > a} , (6-40)
and if we define the “partial expectation” E£ of w by

E2(«) =  Ja0o>dPa , (6-41)

then (6-39) can be written in the alternative form
E U(a, «) = kQ[a Fu(a) -  Ea—(w)] +  Jfe*[Er(«) -  a (?«(a)] . (6-42)

If now 03 possesses a density function Dw and a is continuous or can be treated as 
such for practical purposes, then the act a* which minimizes (6-42) can be found 
by setting the derivative of (6-42) equal to zero: a* must satisfy
0 = k0[a*Du(a*) +  F„(a*) -  a*D„(a*)] +  fcu[-a * D w(a*) +  a*Dw(a*) -  Gw(a*)] 

= k0F„(a*) -  ku G«(a*) . (6-43)
That the stationary value of E lt(a, 03) corresponding to a = a* is in fact a mini
mum follows at once from the fact that the right-hand side of (6-43) is an increasing 
function of a.

To put the optimality condition (6-43) into a more convenient form we sub
stitute Gu(a*) = 1 — Fu(a*)f thus obtaining

Fu(a*) kM
ku 1 k o

(6-44)

Observe that if the loss structure is symmetric, ku = kCy then the optimal act is 
equal to the median of the distribution of 03. Observe also that if <f> is any increas
ing function of 03 and if

1 (n \ -  f fc»[0(a ) — 0 (w)] 0 (“ ) <  0 (a) >
tK ' U) lfcu[0(co) -  0(a)] if 0(a>) >  0(a) , 

so that the optimal act a* is given by

F .M a * ) }  = >
#Vu #V o
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then because
F+&)[<t>(a)] = F«(a)

the optimal act is exactly the same as if the losses were linear in (a — w) itself 
with the same coefficients kQ and ku.

Formulas for the optimal act in terms of standardized, tabulated cumulative 
functions are given for a number of a>s in the fourth column of Table 6.4, where 
Fp* and G$* refer to the beta function (7-15), and Gy* refer to the gamma func
tion (7-34), F a-* refers to the unit-Normal function, and Fs* refers to the standard
ized Student function.

► The optimality condition in row 1 is derived from (9-9), (7-23), and (7-18); row 2 then 
follows from the definition p = 1 /p. The condition in row 3 is derived from (10-8) and 
(10-12); row 4 then follows from the definition p = 1/X. Row 5 is derived from (11-21) 
and (11-23). Row 6 is derived from (11-8) and (11-11); rows 7 and 8 then follow from 
the definitions a = h~i and <r* = 1/h. Row 9 is derived from (11-47) and (11-48). Row 
10 follows from the fact that (11-8) and (11-44) are identical. ^

When the optimality condition (6-43) is substituted in the general formula 
(6-42) for the expected terminal opportunity loss we obtain the expected terminal 
opportunity loss of the optimal act a*:

E Z,(a* a>) = ku ES(«) -  K  E ? ,(« ) . (6-45)
Specific formulas for a number of ws are given in the fifth and sixth columns of 
Table 6.4 just below. The formulas in the fifth column are the more convenient 
for computations, being expressed in terms of the well tabulated binomial (/*) 
and Poisson (fp ) mass functions and unit-Normal (/at*) and Student (fs*) density 
functions. The formulas in the sixth column, on the other hand, show more 
clearly the essential similarity of all the separate cases: with a single exception, 
the expected loss is of the form

EJ,(a* «) = (ku + k0) V(«)/(a*)
where /  is a member of the same family as the conjugate density of w but with the 
parameters possibly augmented or diminished by 1 or 2. A formula of this type 
can in general be obtained when (and only when) w is an integral power of the 
“natural” process parameter 6.

► To derive the formulas for E lt(a*, a>) in Table 6.4 we first observe that by the defini
tion (6-41)

EJ(a>) = E(d>) — E^.(o)) s  oj — E ^ .(oj)
provided that the distribution of a> is continuous as it is in all the cases in Table 6.4. We 
then substitute this formula in (6-45) to obtain for the dimensionless terminal opportunity 
loss of a*

(1)
1

ku +  k{
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Table 6.4
Optimal Act and Expected Terminal Opportunity Loss

Process
Conjugate

Distribution 03

Bernoulli beta

Poisson gamma-1

V

p = i/p  

X

M = 1/X

v©00

Normal

h known, JL Normal n

H known, Ji gamma-2

h

<r = h~i

Optimal Act: 
ku/(ku +  k0) =

El,(a*, to) E l,(o*, &)
ku “l- k0 (*. +  *.) V(») Row

F0*(a*|r, n -  r) /o(a*k +  1 , n +  2 ) 1

G^.(l/o*|r, n -  r) n -  r /  
r — 1 ^  \  _

1 na* -  /itfi(a*|r -  2 , n -  1 , 1) 2

F -y(o*t|r) ^/p(r|o* 0 Ai(a*|r +  1, 0 3

GAt/a*\r) r _  1/ p(r “  1 !</<**) /wi(«*|r -  2 , 0 4

'F rtuV ,

ju* s= (o* — m) Vhn
(Xn)-*/„.(«*) fn{a*\m, hn) 5

* H V +1) 6

<MJw/a** |Jv) see note 7

Normal-gamma

II *—» Gv(Jw/a*|i*>) y _  2 ^ "  “ /.n(«*li»' -  2, Jw) 8

M
< [t* == (a* — m) Vn/v

/o.(a*|m, „ V * - 2)1 9

A, <r, <rl all formulas same as for n known 10
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All the derivations except number 7 then follow the same general pattern. By manipulating 
the expression given in Part III for Ê «o(a>) we find a function 4> such that

* Ea_\o(d>) = Fu(a*) -  0(a*, y)
03

where y denotes the parameters of the conjugate density of w. We then use this result 
and the optimality condition (6-44)

to put (1) in the form
L =  w y) ;

and substituting herein the value of 03 given in Table 6.1 (page 189) we obtain the formula 
in column 5 of Table 6.4. The formula in column 6 of Table 6.4 can then be derived by 
using the formula in Table 6.1 for 03 and the formula in Part III for the conjugate density/«.

Throughout these derivations the definitions (7-8) of the binomial function fa and (7-11) 
of the Pascal function fpa are to be understood as applying to all real positive r, n (not neces
sarily integral), while the corresponding cumulative functions G& and Fpa are to be taken 
as defined in terms of the cumulative beta function by (7-20) and (7-13). The arguments 
originally given to prove these latter formulas now become proofs that the redefined func
tions have the properties typified by

Gb(r\p, n) = FPa(n\p, r) ,
FPa(n +  l|p, r) = Fpa(n\p, r) + fp*(n +  l|p, r) .

Similarly the definition (7-32) of the Poisson function fp is extended to all real positive r, 
the function Gp is taken as defined in terms of the cumulative gamma function by (7-39), 
and what was originally a proof of this latter formula becomes a proof that

Gp(r\m) = GP(r +  l|m) + fp(r\m) .
Rowl. By (9-llb), 2 3 4

(2) z K (P ) = Fff(a*\r +  1, n +  1) -  1 -  ty(a*|r +  1, n +  1) .
V

By (7-24) and (7-13)
(3) Gf(a,*\r +  1, n +  1) = Gb(n -  r|l -  a*, n) = FPo(n|l — a*,n -  r)

= Fp„(n — 1|1 — o* n — r) -(- /p.(n|l — a*, n — r) .
By (7-13) and (7-24) and the optimality condition

(4) Fp„(n ~  1|1 -  a*, n -  r) = Gb(n -  r|l -  a*, n -  1) = Gf (a*\r, n) = 1 -  ^  •

Substituting (4) in (3), the result in (2), and this result in (1), we obtain
L = pfpa(n\l -  a*, n -  r) ; 

and by Table 6.1 and then (7-11) and (7-8)

L = ^/p.(n|l -  a* n -  r) = ^  /»(r|a*, n) .

This is the formula in column 5 of Table 6.4; the formula in column 6 follows by (7-8), 
(7-21), and Table 6.1.

Row 2. By (9-15b), (7-20), and (7-13)
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(5) J E T(f) = Gr ^ ~ |r  -  1, n -  r)  = G> (n  -  r\l -  n -  2^

= Fr„ (n — 2|1 — n —

= E/»0 — 111 ~ ~i’n ~  — U* ~  Ml — n ~  r

By (7-13), (7-20), and the optimality condition

(6) Fpa — 111 — —> n — = Gb — r|l — n — 1^

= Gp(a*\r, n -  r) = ^  •/Vu I* Kq

Substituting (6) in (5) and the result in (1), we obtain

L = ?//■„ (n  -  1|1 -  n -  ;

and by Table 6.1 and then (7-11) and (7-8)

This is the formula in column 5 of Table 6.4; the formula in column 6 follows by (7-8), 
(7-25), and Table 6.1.

Row S. By (10-10b) and (7-39)

(7) £ ES*(X) = ET.(a*<|r +  1) = G,(r +  l|a*i) = GP(r\a*t) -  fr(r\a*t) .

By (7-39) and the optimality condition

(8) G,(r|a*i) = Ma*t |r)  = — •

Substituting (8) in (7) and the result in (1) and then using Table 6.1 we obtain

L = X/i>(r|a*0 = r-Hr\a*t) .

This is the formula in column 5 of Table 6.4; the formula in column 6 follows by (7-32), 
(7-43), and Table 6.1.

Row 4 . By (10-15b) and (7-39)

(9) £ E f ( «  = Gyo(t/a*\r -  1) = 1 -  G,(r -  l|i/a*)

=  1  -  G r ( r \ t /a * )  -  f r { r  -  1 | t / a * )  .

By (7-39) and the optimality condition

(10) 1 -  <?,(r|t/a*) = Gy.(t/a*\r) = •

Substituting (10) in (9) and the result in (1) and then using Table 6.1 we obtain
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L = nfr(,r -  1|t/a*) = ^TjMr  -  1|t/a*) .

This is the formula in column 5 of Table 6.4; the formula in column 6 follows by (7-32), 
(7-54), and Table 6.1.

Row 5. By (ll-24b) and (ll-24a)

(11) ^ = Fn.{u*) -  i  (An)"» M u * )  , u* -  (a* -  m) Vfol .
fA

By the optimality condition

(12) » ( “*> “  F T T  ‘

Substituting (12) in (11) and the result in (1) we obtain
L = (*»)-!/*.(«•) .

This is the formula in column 5 of Table 6.4; the formula in column 6 follows by (7-61), 
(7-63), and Table 6.1.

Row 6. By (11-8), (7-52a), and (7-39)
(13) (1 /h ) Eo(h)  =  Fy.(±wa*\$v +  1 ) =  Gp{$v +  1 |Jwa*)

= GP(iv\$wa*) -  fP{\v|iwa*) .
By (7-39) and the optimality condition

(14) GP{\v\\wa*) = Fy.(\wa*\\v) = -  •

Substituting (14) in (13) and the result in (1) and then using Table 6.1 we obtain

L = hfp(\v\\wa*) = “M Hiwa*) •

This is the formula in column 5 of Table 6.4; the formula in column 6 follows by (7-32), 
(7-50), and Table 6.1.

Row 7. By Section 11.1.4 the distribution of o is inverted-gamma-2 with parameter 
(td, v), and by an obvious modification of the proof of formula (7-59a) for E(tf) we have

E g »  -  * F y .{ \w /a " \\v -  J) .
Substituting this expression in (1) we obtain

x t x E '■«**■«- • [ x r x  -  - » > ]  •

It is impossible to obtain a formula of the same type as those in columns 5 and 6 of Table 6.4 
because we cannot reduce Fy*(z\%v — §) to an expression of the form Fy*(z\\v) +

Row 8. If Ji has a gamma-2 density with parameter (v, v), then by (7-5la) and (7-55) 
52 = 1 /K has an inverted-gamma-1 density with parameter (Jp, \ w). Then since by (10-13) 
the distribution of p. in row 4 of Table 6.4 is inverted-gamma-1 with parameter (r, t), the 
formulas in row 8 of Table 6.4 can be derived from the formulas in row 4 by substituting \v 
for r and %w for t.

Row 9. By (ll-49c) and (ll-49a)

(15) l-  Ea- m(Ji) = Fs. « »  -  J  (n/t;)-* 7 Z T
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where

By the optimality condition 

(16)

t* = (a* — w) Vn/v . 

Fa4* |») = *“—f- ko
Substituting (16) in (15) and the result in (1) we obtain

(17)

This is the formula in column 5 of Table 6.4. To obtain the formula in column 6 we simplify 
notation by defining

z = a* — m , H = n/v ,
and then use the definition (7-66) offs* to put (17) in the form 

L = H- 1 („ +
v ~  1 V t (J V -  1)!

_ q* -  #)k> -  2 ) i > - I *
V^(Jr-2)! Lx*' — 2/ ( +  °  1  v J ( i* - l ) (x- l )

= /* ('I®. ^  “  2) ( ^  7 = 2 )  = /* ( a> >  ^  7  '  “  2)(n

and by Table 6.1 the last factor is V(£).
Row 10. This follows from the fact that (11-8) is identical to (11-44). ^

6.1t.2. Preposterior Analysis
In order to evaluate an e which is being considered but has not yet been per

formed, the decision maker must compute

Zf(tf) = E,|e min* Ej|i Z*(a, w) = Ef|c EZ<(aJ,  w) (6-46)

where at is the optimal act for a given sample outcome z, i.e. for a given posterior 
distribution and EZ<(aJ,  w) is given by formula (6-45) or, for specific ws, 
by Table 6.4 (page 198).

To see the problems involved in the expectation with respect to z, suppose 
for example that d> is the parameter p of a Bernoulli process and that the e which 
is being considered consists in taking a predetermined number n of observations, 
the number f of successes being left to chance. Then by (6-46) and row 1 of 
Table 6.4

Hie) =  (fcu +  k.) E -  f") M n & h  n») J  (6-47a)

where r" = r ' +  f , where a* is the very complex function of f defined by the 
optimality condition

*V(a;|f", »" -  r") =  r ih r  , (6-47b)rvi4 Ivo
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and where the expectation is with respect to the beta-binomial distribution (9-18) 
of f. I t seems difficult if not impossible to obtain an algebraic formula for the 
expectation of fb{f"\d*} n”) alone, let alone the product of this random variable 
and another; and in fact we have not succeeded in finding a formula for l*(e) for 
any case of this type. Even numerical evaluation with the aid of a high-speed 
computer seems difficult; the successive values of the beta-binomial mass function 
of r can be computed by means of simple recursion relations, but determination 
of the value of a* for each r is not easy.

In some cases, however, the problem of evaluating (6-46) is much simpler 
because the factor corresponding to fb(r"\d*T, n") in (6-47a) is a constant independent 
of the experimental outcome 2. Suppose for example that w is the intensity X of 
a Poisson process and that e consists in observing the process until the rth event 
occurs, the amount of “time” l being left to chance. Then by (6-46) and row 3 
of Table 6.4 (page 198)

lt(e) = (K  +  k.) E ^ j 7fp(r"\at *")] (6-48a)

where V  = t' +  ?, where a* is defined as a function of l by the optimality condition

F A W '\r " )  = r - k - r  ’ (6' 48b)rCv o

and where the expectation is with respect to the inverted-beta-2 distribution 
(10-18) of l. Because the value of the 'product a? I" is fixed by (6-48b) and r" is 
known in advance, the value of the factor /p(r” |d? V) in (6-48a) is independent of 
the sample outcome and evaluation of l*(e) requires merely the finding of the ex
pected value of \/l" .  If on the contrary the experiment consisted in observing 
the process for a predetermined amount of “time” t and leaving the number of 
successes f to chance, then

m  = (fcu +  k.) E ^ fp (r" \a U ")~ \  ;

and since r" is a random variable while the value of a* t" is determined by the 
optimality condition, the factor f P(f‘”|d? t") is a random variable and the expecta
tion is very difficult to obtain. We conjecture, however, that the expected terminal 
opportunity loss with fixed t = t0 is very nearly equal to expected terminal oppor
tunity loss with fixed r such that E(0 = t0.

In Table 6.5 we show an algebraic formula for l*(e) for every a> and every e 
for which we have found such a formula; the derivations are given in the following 
notes.

► Note 1. In all four cases with reference to this note we can see by comparing the for
mula for the expected loss in column 5 of Table 6.4 (page 198) with the formula for w in 
Table 6.1 (page 189) that the posterior expected loss is of the form

. ! . E»|'t l,(a*t u) = ah }p{n" +  c|(t*)/C|| Kq
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Table 6.5
Prior Expectation of Posterior Terminal Opportunity Loss

Definition

Prior Experi
ment

of k* : 
ku Me)

Refer
ence

Process Distribution ku +  k0 ku 4" k0 Note

Poisson gamma- 1 l\r «

II

*V(«*|r") J,H r"  |«*)

rh known, 
JL Normal m\n FM**) (>m")-lfN.(K*)

Normal *
H known,
Ji gamma-2

ib\» ■

H"1-s*II
F A W ) J rM K  1**)

see note

<rl = \/h
yf t f 11 ..nv, _ 2» M iv -

Normal-
^amma m, v\n, v <fMA  a, a1

see note
same as for n known

where c is a constant (0  in two of the four cases), 17" is predetermined by e, and k * is fixed 
by the optimality condition given in column 4 of Table 6.4. Since E1)e(&") = w' by (5-27), 
we have at once

i?(e) =  E / |e  fp (? )"  +  c | k * ) ]  =  u ' S p W  +  c \k *) .

Note 2. In this case we have by Table 6.4 that the posterior expected opportunity 
loss is completely independent of the sample outcome; no expectation is required.

Note 3. By the note on row 7 of Table 6.4,

ku +
where k * is determined by the optimality condition

O A W )  - ku +  k9
and by (5-27) and Table 6 .1

E(i"> - -  (17 = m ' / ! ’v -
Note 4 . By Table 6.4

= t t z t  »E(r'i)

where t* is determined by the optimality condition
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F s .{W )  =

By the second formula in the proof of (11-65)
ku + k0 *

_ p y - l*  ( K - D K K - 3 ) !  .
( } L*" J (K  -  *)!(!✓  -  1)! ’

if v1 is large enough to permit use of Stirling’s approximation
x\ = (2T)lxx+Je-* ,

then by a procedure like that used to prove (ll-66b) it can be shown that

E(' " i> * "', [ r ^ 7 ] t •
◄

64-3. Optimal Sample Size
The decision maker’s objective is to minimize

l*(e) = Zf(e) +  cj(e)
where c*(e) is the (expected) cost of performing the experiment e; we are partic
ularly interested in the case where c*(e) is linear in the “sample size” ij and therefore

l*(en) = + K .+  k,rj . (6-49)
Of the cases for which a formula for Z?(e) has been given in Table 6.5 (page 204) 
there is only one for which we can obtain an explicit formula for optimal sam
ple size by differentiating (6-49) with respect to t? and setting the result equal to 
zero. This is the case of the Independent Normal process with known precision hy 
for which n plays the role of i) and (6-49) becomes

l*(en,) = (ku +  k0)(hn")- */*•(**) + K . + k8n
where n" = n' +  n. On differentiating with respect to n and setting the result 
equal to 0 we obtain the condition for a stationary value of l*(en),

nf +  n
[ -

Hku + k0) f^U *)  1?
2k, J (6-50)

and it is easy to show that the unique solution of this equation corresponds to a 
local minimum. If the root is negative, the optimal sample size is 0; if the root 
is positive, it is certainly the optimal sample size if K, = 0 but if K, > 0 a check 
must be made to determine whether Z*(e„) is greater or less than the opportunity 
loss lt(eo) of immediate terminal action.

6.6. Modified Linear and Quadratic Loss Structures
We have already remarked in Section 6.2.4 that in some situations the decision 

maker may feel that for any given o> the function Z<(a, w) is linear or quadratic in 
(a — a>) but that the coefficient or coefficients in this linear or quadratic function 
depend on the value of a>. We shall now see that it is often possible to allow for 
this kind of dependence without any loss of mathematical tractability.
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Let i/(a,.w) denote any “simple” loss function which is analytically tractable, 
consider the family of “modified” loss functions obtained by multiplying this 
simple function by some function g of «,

Zt(a, w) = /{(a, w) g(o>) ,
and let D denote the conjugate density function of & and y  the parameters of this 
density, so that the expected terminal opportunity loss of a is then

E /<(a, w) = J l't(a, w) g(<a) D(w|t/) do) .
If now g is such that

g{«) D(«|y) = D(«|y*) ,
i.e. if multiplication of D by g changes the parameter of D but leaves its algebraic 
form unchanged, then the expected terminal opportunity loss of a can be written

E lt(ay w) = j  l\(ay w) D(o>|2/*) do)

and we see that any analytical results previously obtained for the “simple” loss 
function Vt apply unchanged to the “modified” loss function lt.

As an example, suppose that w is the parameter p of a Bernoulli process, that 
the act a is an estimate p of p, and that the decision maker feels that although for 
any given p the imputed loss of an error (p — p) is quadratic in (p — p), it is 
really the relative rather than the absolute error which counts; his loss function is

UP, v) =  *. =  U p  -  vY p - ’ ,

so that g(p) = p“2. If the density of p is beta with parameter y = (r, n), then 

E lt(p, P) = f  k t(p -  p)s p_ i/n (ph  n) dp

=  /  U P  -  p ) 1 p - ’  ( r  _  ! ) ” ( n  _  ! ) ,  P r - 1 d  ~  P ) B - r ~ 1 dP

= f  kt(v — ~  ~  ^ -------- (n — 3)!------- pr-»(i — n )* -^ l dj>
J ,{p P) (r -  1 )(r -  2) (r -  3)!(» -  r -  1)! P U P) P

= /  I  1) ^ - 2 /  *‘]  (p ~  “  2, n -  2) dp .

The problem is thus identical to a problem with “simple” quadratic loss in which 
the loss constant k t and the parameter (r, n)—but not the algebraic form—of the 
density of p have been suitably modified.

Following this example the reader can easily find the class of functions g 
which is compatible with a density D of a given family. As one illustration, if the 
density of p is beta,

D(p) cc pr-1( 1 — p)n- r~l ,
we may take

g(p) = p“( 1 -  p)» ,
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as another, if the density of fL is Normal,

we may take
D(m) OC g - i h n ( j i - m ) *   ̂

g(n) oc e«O*-0)* , a <  \hn  ;
as a third, if the density of 8 is inverted-gamma-2,

D(<r) oc e ~ i a-»- i  ,
we may take

g(p) oc ea/** a <  ,
P < v  .

In  all these cases, the class g is rich enough to allow the decision maker very con
siderable flexibility in approximating his “true” imputed loss function.
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C H A P T E R  7

Univariate Normalized Mass and Density Functions

7.0. Introduction

7.0. 1. Normalized Mass and Density Functions
A real-valued scalar function/ defined on the real line will be called a normalized 

mass function for the denumerable set X  if it has the properties
. r / ( x ) > 0 ,  x e X  ,
; l / ( x ) = 0 ,  x i X  , (7-la)

b) D /( x )  = 1
where the summation is over all x € X.

A real-valued scalar function /  defined on the real line will be called a normalized 
density function if it has the properties

d) /(z) >  0 , —00 < X < 00 ,

b) j ’j { x ) d x = \  . (7' lb)

In addition to/(x) the symbol D(x) will often be used to denote “the density 
of the random variable £ at the point x”.
7.0. 2. Cumulative Functions

If /  is a normalized mass or density function, the function F defined by

F (°) B £ « * ./(* >  OF L<af{X) dX (7_2a)
will be called the left-tail cumulative function; the function G defined by

G(«) ^  X U „ /(x )  or dx (7-2b)

will be called the right-tail cumulative function. Notice that in the discrete case

F(a)+ G (a) = 1 + /(a )  . (7-2c)

7.0. 3. Moments
The first moment or mean of a normalized mass or density function /  is defined 

to be

Mi =  2 ] x /(x) or /  x /(x) dx (7-3a)
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where the signs £  and /  without indicated limits denote summation or integration 
over the entire domain of /. The incomplete first moment of f  is defined to be

Mioo = X - - z/(2) or J l mzf(z) dz ■ (7*3b)
For k j* 1, the kth moment about the origin is defined to be

M* =  or J xkf(x) dx (7-3c)

while the kth moment about the mean is defined to be

M* «  £  (X -  Mi)‘ /(») or f ( x -  /.,)*/(*) dr • (7-3d)

When the sum or integral defining a moment does not converge, we shall say that 
the moment does not exist.

In computing second moments about the mean we shall often make use of 
the fact that

M2 = M2 — Mi . (7-4)

► This relation is proved in the discrete case by writing

Mt -  X  (x “ *>*/(*) = X) **/(*) -  2mi X  */(*) + Mi X«*>
=  X  * * / ( * )  -  M i X / W  E  M i ~  M i •

The proof in the continuous case is similar. <4

7.0. 4. Expectations and Variances
When a normalized mass or density function /  is interpreted as the mass or 

density function of a random variable £y the first moment as defined by (7-3a) is 
by definition the expectation of the random variable,

E(£) ss x 3  mi ; (7-5a)
and by the same definition of expectation we have for the moments about the 
origin defined by (7-3c)

E(£*) S  Mi . (7-5b)
The partial expectation of £ is defined in terms of the incomplete first moment 
(7-3b) by

Ei.fcC) s m i GO . (7-5c)
The second moment about the mean is by definition the variance of £:

\{£ ) m £ m M2 . (7-5d)

7.0. 5. Integrand Transformations
If /  is a normalized density function defined on X  and if X  is mapped into Y 

by a one-to-one differentiable transformation h,
y = h{x) , x = h~l(y) ,
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the density /* on Y  must have the property

/■"/•(») d , -  d x ,  {« ' -  mi" % x'l' j w }  ■Jyi J y J x ’ (j/2 = max {A(x0,/i(x2)} ;
and for this to be true f*  must be such that

f*(y) = f[h -l(y)] \dx/dy\ . (7-6b)
Thus if

fix)  = e~z , 0 <  x < oo ,
and

y = h(x) = x2 , x = yi ,
the transformed density is

f*(y) = e -^h  • .
Such transformations of normalized density functions will be called integrand 

transformations to remind the reader that substitution of a new variable must be 
accompanied by multiplication by the absolute value of the Jacobian dx/dy; and 
because we shall use Jacobians only in connection with integrand transformations, 
we shall ordinarily take the words “absolute value” as understood and speak 
simply of multiplication by “ the Jacobian” .

7.0.6. Effect of Linear Transformations on Moments
In the applications we shall frequently require the moments of the density 

of a random variable y which is a linear function of another random variable t  
whose moments are known. We give the relations between the two sets of mo
ments in the more flexible random-variable notation of Section 7.0.4 rather than 
in the moment notation of Section 7.0.3. Letting

y = a +  b£ (7-7a)
and letting F denote the left-tail cumulative function of the density of £ we have 

E(y) = y = a + b E(£) = a + bx  ,

• E»_.(y) = a F(x) +  b E i . ( f )  , z = , b >  0

E(y2) = a- +  2ab E(£) +  b- E(£2) ,
V(y) m  $ = 6* V(i) =  .

The proofs are obvious.

(7-7b)

A. Natural Univariate Mass and Density Functions

7.1. Binomial Function
The binomial normalized mass function is defined by

0 < p < 1 ,
n, r = 0, 1,2, 
n >  r .

f b(r\p, n) = r , ŵ _  r ) | Pr(l “  V)"~r . (7-8)
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The first two moments of f b are
Mi = np , m(r) = np Fb(r -  l|p , n -  1) , (7-9a)
M2 = np +  n(n — 1) p2 , (7-9b)
M2 = np(l — p) . (7-9c)

The mass function is tabulated in

Tables of the Binomial Probability Distribution, National Bureau of Standards, 
Applied Mathematics Series 6, U. S. Government Printing Office, Washington, 
1950: Table 1 is a 7-place table of f b(r\p, n) for

n = 1(1)49, p = .01(.01).50, r = l ( l )n .
H. G. Romig, 50-100 Binomial Tables, Wiley, New York, 1953: gives f b(r\p, n) 
to 6 places for

n = 50(5)100 , p = .01 (.01).50 , r = l( l)n  .

Both these tables also give values of the cumulative function, but the following 
tables of the cumulative function are more extensive:

Tables of the Cumulative Binomial Probabilities, Ordnance Corps Pamphlet 
ORDP-1, 1952, distributed by U. S. Dept, of Commerce, Office of Technical 
Services, Washington: a 7-place table of P(c, n, p) = Gb(c\pf n) for

n = 1(1)150, p = .01(.01).50, c = l (l )n .
Tables of the Cumulative Binomial Probability Distribution, Annals of the 
Computation Laboratory XXXV, Harvard U. Press, Cambridge, Mass., 
1955: a 5-place table of £(n, r, p) = G6(r|p, n) for

n = 1(1)50(2)100(10)500(50)1000 , r = l ( l )n , 
p = .01(.01).50 , > tVGiW A  •

Values of the cumulative function can also be obtained from Pearson’s tables of 
the beta function 7,(p, q) discussed in Section 7.3.1 below. The relations

Gb{r\v, n) = I„(r, n -  r +  1) , r >  n ^  1 >

= 1 -  h - p{n -  r +  1, r) , r <  n *  1 > 

lead directly to tabled entries.

r <  50 ,
(7-10)

n — r < 49 ,

► That fb is a proper normalized mass function is proved by observing (a) that it is obvi
ously nonnegative over its entire domain and (6) that its complete sum

n n |
F6(n|p, n) a  ^ / k(r|p, n) = ^  _  , ,Pr( 1 -  p)""r

r - 0  r - 0 r i n̂  T ) '

is an expansion of (p +  [1 — p])n = ln and therefore has the value 1.
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Formulas (7-9a) for the complete and incomplete first moments are proved by starting 
from the definition

PiM = ^i/kO 'IP, n) .
J - 0

Substituting its definition (7-8) for ft and suppressing the term for j  = 0 because its value 
is 0 we may write

Mi(r) = np V  — f ( « - ! ) !

and defining * =  j  — 1 this becomes

— p '-K l -  p)""> ;

r — 1
Pi(r) = n p V  . ^ ! ... P’(l -  p )"-‘- ‘ =  np f»(r -  l|p , n -  1) ,

which becomes np when r = n.
For the second moment about the origin (7-9b), we have by definition

w n
P2 = ^  r!/»(rlP. ») = ^  +  rtr “  ") •

r -0  r-0

Dropping terms of 0 value this can be written

M2 = Mi + 2  r (r -  *) A (rIP. ” )

£ i ( r - 2 ) \ ( n - r ) l pr“ 2( 1 -  p)n“r

and defining j  = r — 2 this becomes
n — 2

M2 = Mi +  n(n -  1) p2 ^  /tCilp, n -  2) = np -f n(n -  l)p 2 . 
j - o

The second central moment (7-9c) then follows from (7-4):

M2 =  M2 -  Mi = np +  n(n -  1) p 2 -  (np)2 = np(l -  p) .

The relation (7-10) with the beta function follows from formulas (7-20), (7-18), and 
(7-19) which are proved in Section 7.3 below. ^

7.2. Pascal Function

The Pascal normalized mass function is defined by

, _  0 < p <  1 ,
fp*(n\p, r) =  _  _Tj Pr( 1 -  p)n_r , n, r = 1, 2, •

n  > r
(r -  l ) ! (n  -  r)\

The first two moments of fpa are

Mi = ^ ’ pi(n) = ^ F Pa(n +  l|p, r +  1) ,

, (7-11)

(7-12a)
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_  r(l -  p) 
P

(7-12b)

The Pascal function is related to the binomial function and to the beta function 
discussed in Section 7.3.1 below by

Fp.(n\p, r) = Gb(r\p, n) = f> (p |r, n -  r +  1) . (7-13)
The Pascal function is essentially identical to the negative-binomial function 

defined by (7-73) below, the relation being
fra(n\p, r) = fa in  -  r] 1 -  p,r) . (7-14)

Notice, however, that the Pascal function is defined only for integral n and r 
whereas the negative-binomial function will be defined also for nonintegral n and r 
(although only for integral n — r).

► The fact that the Pascal function is a proper normalized mass function follows via 
(7-14) from the fact proved in Section 7.10 below that the negative-binomial function is a 
proper normalized mass function.

Formula (7-12a) is proved by defining x = j  + l and writing

Mi(«) -  Y^jfraUlp, r) = ~ Pf'l'1(1 ~ P)’~'frf p f z i  r-(j ~  r)>
»+l

= ~ 53  /p.(*'|p, r +  1) = -  Fpa(n +  l|p, r +  1) .
p . ir+ i p

Formulas (7-12b) and (7-13) follow from the corresponding negative-binomial formulas 
(7-74b) and (7-75) and the relation (7-14) between the negative-binomial and Pascal func
tions. <4

7.3. Beta Functions

7.8.1. Standardized Beta Function
The standardized beta normalized density function is defined by

/> (z |p . tf) =
1 2»-1(l — z)«“ l , 0 <  z <  1 ,

p , q >  o , (7-15)B(p, q)
where £(p, q) is the complete beta function

. (p -  1)!(<7 -  1)! n  , n
B ( p > q ) =  (P + \  L Ty, (7-16)

discussed in books on advanced calculus. The first two moments of fp* are

_  P
v + q

M2 =

M2 =

p(p +  1)
(p +  q)(p +  7 +  1)

_22_
(p +  9)!(p +  ? + l )

P>(2) = ^ ( 2IP +  1. ?) > (7-17a)

(7-17b) 

(7-17c)
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The cumulative function has been tabulated by
K. Pearson, Tables of the Incomplete Beta-Function, Biometrika, London, 1934: 
a 7-place table of

(7-18)i*(p, q) = FA*\p, q) >
p, q = .5(.5) 10(1)50 , P > q ,  x = ,01(.01)1 .

For p <  g, it is necessary to use the relation
GA*\p, q) = h-t(q, p) . (7-19)

When p, g >  1 , values of the cumulative beta function can also be obtained from 
tables of the cumulative binomial function G6(p|r, n) by use of

Fp*(x\pj g) = Gb(p\x, p -f- g 1) >  ̂ >
G>(s|p, q) = Gb(q\1 -  X, P +  g -  1) , x > \

because these relations hold for all p, g for which Gb is defined.

(7-20)

► That fo  is a proper normalized density function follows from the facts (a) that it is 
obviously nonnegative over its entire domain and (6) that the integral

fo zP_1̂  -  s  B(p’ 33 fi(9. P)

converges for all p, g > 0 as proved in books on advanced calculus.
To prove formulas (7-17) for the moments we write

#*>(*) ■ / 0‘ v iA v\v ,  q) dy m  f ‘ y -  yY~x dy

-  J r ,  i ;  »’<i -  »>•■' *  -  J r , F M r + *■ » > ;

* ’  fo «> *  -  (P + X V I + 1) /«',M ” +  2’ ‘  ( p + X  +  . +  l) :

Mi =  Ma ~  Ml =
P(P +  1)

- f c l
_ £ 2_

(P +  9)(P +  9 + 1 )

To prove (7-19), observe that by (7-18) and (7-15)

1

(P +  9)’(P +  9 + 1 )

- f o P ) - / , 1' . ^ ( l  — 2)P-1 ^
£(g, P)

and substitute y for 1 — z and B(p, g) for £(g, p) to obtain

7i-.(9, p) = f *  2/p' ' ( l  -  3/)*-1 dy = ff(y\p, q) dy .

To prove (7-20), write

M . |p , .) -  / > M * «> *  -  / ;  0  - ,)r“  • *

and integrate by parts to obtain (provided that p, 9  > 0 )
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( p  +  q  -  1)!
( p - ! ) ! ( , -  1)1

2*(l -  *)«- • ■—
v +

fxgr
Jo p0

(P +  q  ~ 1)!
(p - ! ) ! ( ? -  2)1

(1 -  z)*~t dz

= ( p!tqq ~ l ) f  lP(1 " 1)1-1 +  / > (‘ lp +  *  •

Provided that q is integral, iteration of the integration by parts yields finally

M ’ M ) jv ? S , ' S ' ?  ;

and provided that p is also integral, this is Gb(p\x, p +  q — 1). ^

7.3.2. Beta Function in  Alternate Notation
In addition to the “standardized” beta density function fp* defined by (7-15) 

it will be convenient to define what we shall call simply “the” beta normalized 
density function:

p
F i g u r e  7 J

B e t a  D e n s i t i e s  pi = .5 
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S M * ,») B(r, n - r )
1 z'-'K 1 z)"_r_1 0 < z < 1 

n > r >  0 (7-21)

Graphs of the function for selected values of the parameters are shown in Fig
ures 7.1 and 7.2.

25

0  .05 .10 .15 .20 .25
P

F i g u r e  7 . 2

B e t a  D e n s i t i e s ,  = . 0 5  
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This function is of course identical in essence to /$•; we have simply redefined 
the parameters. The moments are therefore given directly by (7-17) as

Mi =

, _  r(r +  1)
n(n +  1)

_  r(n — r) t 
w ~ n*(n +  1) ’

M i ( z )  =  ~Ft(z\r  +  1 ,  n  +  1 ) (7-22a)

(7-22b)

(7-22c)

and it follows from (7-18) to (7-20) that values of the cumulative function can be 
obtained from Pearson’s tables of the beta function I x(p, q) by use of

Fe(z\r, n) = / g(r, n — r) , r > \n  , r <  50 ,
Gfi(z\ry n) = — r, r) , r < fn , n -  r < 50 ,

or from tables of the cumulative binomial function Gb(r|p, n) by use of
f*(z|r, n) = Gb(r\z, n — 1) , z < \  ,
G^zjr, n) = Gb(n — r |l  — z, n — 1) , z >  \  .

7.4. Inverted Beta Functions

7.4-1- Inverted-beta-1 Function
The inverted-beta-1 normalized density function is defined by

J ____ (y — b)n~r~l br 0 < b < y < oo
f M r ,  n, b) -  ^  n _  ^  yn n >  r >  0

It is related to the beta functions (7-21) and (7-15) by

The first two moments of fipi are

Mi = b
n — 1 
r -  1 mi (y) = b

n — 1 
r -  1

(7-23)

(7-24)

(7-25)

F«n(ylr, n, b) = G„ r, n )  =  < v (^  r, n -  r )  • (7-26)

(r ~  l )2(r -  2)

Gf(b/y\r -  1, n -  1) , r >  1 , (7-27a)

r >  2 . (7-27b)

► That fifii is a proper normalized density function related to fp by (7-26) follows from 
the fact that it is simply an integrand transformation of fp derived by substituting b/y for z 
in the definition (7-21) and multiplying the result by the Jacobian \dz/dy\ = b/y*.

The formulas (7-27) for the moments are found as follows.

Mi (y) s  f "  zfin(z\r,n,b)dz n — 1 [v (n — 2)! (g — b)"~—16—1
6 r -  1 Jb (r -  2)!(» -  r -  1)! z»-‘ *

-  F ^ r  -  l , n -  1,6)

from which (7-27a) follows by (7-26).
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Mi
(» -  1)(» ~ 2)i = J “ z 'fvM r, n, b) dz = 6’ ^  ^ J “ fw(z\r -  2, n -  2, b) dz .

,  1 -  1  r »  -  2  n  -  1 1  ( » -

Mi = Ml ~ Ml — 6* — l \_— 2 ~  — J  =  b
-  1)(» ~ r)

l)*(r -  2)

7.4.2. Inverted-beta-2 Function
The inverted-beta-2 normalized density function is defined by

1 y”~l bq , 0 <  y < oo ,
B(P, q) (V + b)p+, , p ,q ,b >  0 .My\p, q, b) =

It is related to the standardized beta function (7-15) by

F«i{y\p, q, b) = f >  p, 9 )

The first two moments of /,#  are

M i - ^ n b ,  *(*/) = ^ & * > ( ^ | p  +  1 , 9 -  1)  , 9 > 1

(7-28)

(7-29)

(7-30a)

= p(p +  g ~  1) b, 
W (9 -  1)J(9 -  2) b ’

q > 2 . (7-30b)

The proofs of these formulas are similar to the proofs of the corresponding formulas 
for fipi.

7 .4 S . F Function
The special case of the inverted-beta-2 density with parameters 

P = , q — i yi , b = vi/vi ,
is known as the F density:

fr(y\n, n) =  My\$»i, n/n)  .

7.5. Poisson Function
The Poisson normalized mass function is defined by

r = 0, 1, 2, • • • ,

(7-31)

fp(r\m) s e~mvv
r!

Its first two moments are
Mi — tn ,
Mi =  m(m +  1) , 
Mi — tn .

The function is tabulated in

m > 0 .

Mi(r)  = m  Fp(r -  1 |m)

(7-32)

(7-33a)
(7-33b)
(7-33c)

E. C. Molina, Poisson’s Exponential Binomial Limit, Van Nostrand, New 
York 1942: contains 6-place tables of both fp(x\a) (Table I) and P(c, a) — 
GP(c\a) (Table II) for
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a = .001 (.001).01 (.01).3(. 1)15(1) 100 , 
x, c = 0(1)°° .

Biometrika Tables for Statisticians, I: Table 39 (pages 194-202) gives fp{i\m) 
to 6 places for

m = .1(.1)15.0 
i = 0(l)°o ;

Table 7 (pages 122-129) gives Fp(c — 1|m) to 5 places for
m = .0005(.0005).005(.005).05(.05)1(.1)5(.25)10(.5)20(1)60 , 
c = 1(1)35 .

T. Kitagawa, Tables of Poisson Distribution, Baifukan, Tokyo, 1952: gives 
fp(x\m) for x = 0(1)°° and

m = .001 (.001) 1.000 , 8 places (Table 1) ,
m = 1.01 (.01)5.00 , 8 places (Table 2) ,
m = 5.01 (.01) 10.00 , 7 places (Table 3) .

► That (7-32) is a proper normalized mass function follows from the facts (a) that it is 
obviously everywhere positive and (6) that, as is proved in books on calculus,

Emr
r! ~ em 'r-0

Formulas (7-33) are proved in much the same way as (7-9):

r \e~mm'
= 2 ^  “ 7T~ = m (i _  n . = m b  = m F^ r ~  ^  •>-0 «/• i - i w  A' ’ i-0 **

, / , r , e ” w  , 0 e m rar_2 , „
2 =  2 ^ , ( r  +  r [ r  -  1]) — —  =  /i, +  m 2 ^  / =  m  +  m 2 .

r-0 r* r-2
Mi =  M2 — Mi =  rn +  m2 — m 2 =  m .

M2

◄

7.6. Gamma Functions

7.6.1. Standardized Gamma Function
The standardized gamma normalized density function is defined by

where

f y . ( z \ r )
e~‘ zr~l 

(r -  1 )!
z >  0 , 
r >  0 ,

(r -  1)! -  r(r)

(7-34)

(7-35)
is the complete gamma function or generalized factorial discussed in books on ad
vanced calculus. The first two moments of /-,* are

Mi = r , Ml(z) = r f> (z |r +  1) , (7-36a)
M2 = r(r +  1) , (7-36b)
M2 — r . (7-36c)
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The cumulative function is tabulated in
K. Pearson, Tables of the Incomplete T-Function, Biometrika, London, 1922: 
contains 7-place tables of

I(u, p) s  Fy*(u y/p  +  l|p  +  1) , 
p = — .95(.05)0 (Table II), 0(.1)5(.2)50 (Table I) 
u = 0(.l)oo .

The relation inverse to (7-37) is

(7-37)

FAz\r) = 1 (^ r>  r -  l ) 0 < r <  51 . (7-38)

Values of the cumulative gamma function may also be obtained from tables of 
the cumulative Poisson function by use of the relation

Fy*(z\r) = GP(r\z) (7-39)
which holds for all values of r, z for which Gp is defined. When used in this way, 
the Molina Table II cited in Section 7.5 above is equivalent to a table of

*V(a|c) , a = _001(.001).01(.01).3(. 1)15(1)100 , 

while the Biometrika Table 7 also cited in Section 7.5 is equivalent to a table of

r  (m\A c = it*)15̂ )35 >
1 ; ’ m = .0005(.0005).005(.005).05(.05)1(.1)5(.25)10(.5)20(1)60.

Beyond the range of the available tables, values of the cumulative function may 
be obtained from tables of the standardized Normal function by use of one of three 
approximations which we list in order of increasing accuracy:

Fy*{z\r) =  Fn*(u)'

1 >
 

MII3 direct ,

u = V4z — V4r — 1 , Fisher ,

i------1
f-H1 

^
1 

05
051

1 ____1

COII3 
v

> Wilson-Hilferty

(7-40)

For a discussion of the accuracy of these approximations, see M. G. Kendall and 
A. Stuart, The Advanced Theory of Statistics, Vol. I, London, Griffin, 1958, pages 
371-374.

► That f y• as defined in (7-34) is a proper normalized density function follows from the 
fact proved in books on advanced calculus that the integral

e~* zr~l dz ss T(r) s  (r — 1)!
converges for r > 0.

Formulas (7-36) for the moments are proved in much the same way as (7-17):

Mi(2) = J ’ yfy(y\r) dy = Jq‘ y dy = r Fy.(z\r +  1) .
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Hi =  st f y*(z\r) dz = r(r +  1) j j  f y.(z\r +  2) dz = r(r +  1) .
=  M* — Mi =  r(r +  1) -  r1 =  r .

The proof of (7-38) is obvious.
To prove (7-39) we write

iain (provided that r > 0)
* r « tr~2 e~‘ zr~l C« tr~2
, + L  6 ' ( r -  2)\dt = ( r -  1)! +  /« (r -  2)!* ' dL

(r -  1)1
and integrate by parts to obtain (provided that r > 0)

_ r-* 
f r -  D!

Provided that r is integral, iteration of the integration by parts yields finally

1 -  b\V(*l«0 - E S r "  1 - G"<r|*) .j-0
from which (7-39) follows immediately. ◄

The convolution g of any n density functions/i, • • • denoted by
g = /i * / j * • • • */» , (7-41a)

is defined by
?(*) = JR M xi)ft(x t) ■ • • /«(*,.) d.4 (7-4 lb)

where Rt is the (n — 1 )-dimensional hyperplane
X\ +  Xt +  • • • +  x„ = z . (7-4lc)

In the applications we shall require the following theorem on convolutions of 
gamma densities:

Theorem: The convolution of n standardized gamma densities with parameters 
n, • • • , r„ • • • , rn, is a standardized gamma density with parameter 2 r t :

S A ‘ Vx) */*.(• In) * • • • * f A -k.) = A*(-|S u) . (7-42)

^  We first show that the convolution of two standardized gamma densities,

f y ’ ( x \a )  =
e xa
(a -  1)!

is a standardized gamma density

f A »\b) =
e~* y*~* 
Cb -  1)!

f y.(z\a + b) =
c-t 2a+6-l

(o +  6 -  D!
To show this, let g be the convolution, which since x and y are necessarily positive is

0(z) = J J fA *  ~  x | 6 )/t . ( x |o )  dx = J ’ ~-----------— ~

Substituting herein
( 6 - 1 ) !  (a -  1)! dx

224
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we obtain

g(?) =
e-» z*+b-l (g +  6 -  1)!

( a  +  b  —  1)! J o  ( g -  !)!(&- 1)!U° (1 w)^1 du

= f y.(z\a +  b) Fp.(\\a, b) = fy(z\a +  b) .
The extension of this result to the convolution of n densities is an obvious induction. ◄

7.6.2. Gamma-1 Function
The gamma-1 normalized density function is defined by

__ e~vt(yz)T~l z > 0
f t M r, V) = (r -  1)! y r,y >  0 .

It is related to the standardized gamma function (7-34) by

(7-43)

Fn(z\r, y) = Fy.(yz\r) (7-44a)
and thus to the gamma function tabulated by Pearson and to the cumulative 
Poisson function by

F A z \ r , y ) = l ( ^ - -  > r -  1 

Its first two moments are

j  = Gp(r\yz) . (7-44b)

au(z ) = -  F y*(yz\r +  1) (7-45a)
y

(7-45b)

M2 = ^  ‘ (7-45c)

Graphs of the function are shown in Figure 7.3 for selected values of the parameter 
r, the parameter y being set equal to r so as to make the mean m = 1.

The convolution of n gamma-1 densities with possibly differing parameters r, 
but with the same scale parameter y is a gamma-1 density with parameters 2 r, 
and y:

fA 'V i ,  y)*  ■■■ * /Ti(-k„ y) * • • • * /7i(-|r„, y) = / 7i(-|Z r f) y) . (7-46)

► All results expressed by (7-43) through (7-45) follow immediately from the fact that 
f yi is an obvious integrand transformation of f y• as defined by (7-34). The proof of (7-46) 
is very similar to the proof of (7-42). <4j

7.6.3. Chi-square Function
The special case of the gamma-1 density with parameters r = y = is 

known as the chi-square density:

/x * ( 2 |» )  =  U { z \\y ,  i )
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I t follows from (7-44) that 

and from (7-45) that
Mi = v , M2 = 2v .

)  = GWWM (7-48)

(7-49)

7.6.4. Gamma-2 Function
The gamma-2 normalized density function is defined by

f iM y ,  v) ($v -  1)! \*y »
2 >  0 , 
v,y > 0

It is related to the standardized gamma function (7-34) by

Fyt(z\y, v) = Fy*(\vyz\\v)

(7-50)

(7-5 la)

and thus to the gamma function tabulated by Pearson and to the cumulative 
Poisson function by

Fyi{z\y, v) =  I{yz \ v  -  1 ) =  GpQvWvyz) , 
226
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Its first two moments are

Mi = l  - M.(z) = } F A h w |J» +  1) , (7-52a)y y

*  -  ^  - <7-52t>
The curves in Figure 7.3 can be interpreted as graphs of / 72 for y = 1 and selected 
values of the parameter v = 2r. .

The convolution of n gamma-2 densities with the same parameters y and v 
is a gamma-2 density with parameters y/n  and nv\

f A -  \y, » )* •••  * fA - \y ,») = A j (•  • (7-53)

► All results expressed by (7-50) through (7-52) follow immediately from the fact that 
f yt is an obvious integrand transformation of fy* as defined by (7-34). The proof of (7-53) 
is very similar to the proof of (7-42). <4

7.7. Inverted Gamma Functions

7.7.1. Inverted-gamma- 1  Function
The inverted-gamma-1 normalized density function is defined by

f - M r  r i - C ' M t P 'A  < > 0 >hiA t\r,y) -  ( r _ 1j ! y , r, y >  0 .

I t  is related to the gamma-1 and standardized gamma functions by
Giyi(t\r, y) = FTi(l/<|r, y) = Fy*(y/t\r) .

Its first two moments are

(7-54)

(7-55)

Mi = - Mi(0 = ^ T j G A v M r  -  1) ,

_______ l£_____
W "  (r -  l)*(r -  2) ’

This function is also known as Pearson’s Type V.

r >  1 , (7-56a)

r >  2 . (7-56b)

► That/*7i as defined by (7-54) is a proper normalized density function follows from the 
fact that it is simply an integrand transformation of the gamma density / 7i(z|r, y), derived 
by substituting 1 /t = z in the definition (7-43) of / 7i and multiplying by the Jacobian 
\dz/dt\ = 1 /t*.

To prove formulas (7-56) we write

Mi«) -  / Q‘ V) du = ^  | o‘ X~du = ^  Fiyl(t\r -  1 ,y)
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and then use (7-55).

M2 = J J  Pfiyiitlr, y) dt =

/ 2 
M2 =  M2 -  Ml

y* r - e'H'jy/ty-' i = y*
( r - l ) ( r - 2 )Jo (r — 3)! y (r -  l)(r -  2) 

y* f  1______i_ 1  _ Vi .
r  — 1 |_r — 2 r  — 1 J  ( r -  l ) 2(r -  2) ◄

I

►•*
lm

*

T

7.7.2. Inverted-gamma-2 Function
The inverted-gamma-2 normalized density function is defined by

/n 2<>|s, v) 2 e - W + i W / r t l ’+i 
-  l)!(ivs2)i

<7 > 0  ,
s, V > 0 . (7-57)

It is related to the gamma-2 and standardized gamma functions by
f jiT j(< r |s , »)  =  FT2(l/<rJ|s5, v) = F y . & v #  !  o 'W v ) (7-58a)

and thus to the gamma function (7-37) tabulated by Pearson and to the cumula
tive Poisson function by

G,Yj(ff|s, v )  =  I  -  1 j — Gp{% v\% vs't / a ' t )  . (7-58b)

Its first two moments are

w  -  8 ( I ,  -  !)i ’
v>  \ , (7-59a)

V >  2  . (7-59b)

The mode is at

^  =  8 V ,  +  !
• (7-60)

The function is graphed in Figure 7.4 for 8 =  1  and selected values of the param
eter v . The ratio of each of the quartiles to s  is graphed as a function of v  in Fig
ure 7.5A; certain ratios between quartiles are graphed as a function of v  in
Figure 7.5B.

► That fiyi as defined by (7-57) is a proper normalized density function related to the 
gamma-2 function by (7-58a) follows from the fact that it is simply an integrand trans
formation of v)  as defined by (7-50), obtained by substituting l/<r2 for z in the defi
nition and multiplying by the Jacobian \dz/da\ = 2/<rs.

To prove formulas (7-59) we first make an integrand transformation of fiyt by substitut
ing <r = V\vst/u  in (7-57) and multiplying by the Jacobian \da/du\ = (§w2)i |u~i, thus 
obtaining the standardized gamma density

We then have
/Y.(u|Jv) =

e-u ui>-i
( * -  D! '

J0"° <r fiytW*, v) da = J “ V$vs*/ufy.(u\lv) du
228
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Ma = J0“ v'fiyii*l«, *') da = JJ (ivst/u) fy.(u\lv) du

=  1" *  % v 1 foMuU* - ! ) « * « “  ** *7 ^ 1  - , - 2= s2 *

Formula (7-60) for the mode is obtained by differentiating the right-hand side of (7-57) 
with respect to a and setting the result equal to 0. <4

Inverted-gamma-2 Densities, s = 1

7.8. Normal Functions

7.8.1. Standardized Normal Function
The standardized or unit Normal normalized density function is defined by

fx*(u) = - ^ = e ~ iui , —oo < u < oo . (7-61)

Its first two moments are
Mi = 0 ,  m(u) = — /,v*(w) , (7-62a)
M* = 1 . (7-62b)

The density and cumulative functions are very extensively tabulated in
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Tables of the Normal Probability Functions, National Bureau of Standards 
Applied Mathematics Series 23, U. S. Dept, of Commerce, Washington, 
contain 15-place tables of fs*(x) and 1 — 2Gy*(x) for

x = 0(.0001)1 (.001)7.8 .
For a discussion of approximations to the cumulative function see J. T.
“On Bounds for the Normal Integral,” Biometrika 42 (1955) pages 263-265.
function

Hhn(x) = f ~  Hhn-i(u) du
where

Hho(x) =  V 2 it/ n*(u) du

is tabulated to 10 decimal places in
British Association Mathematical Tables) Vol. I, 3rd edition, Cambridge Uni
versity Press, 1951, Table XV (Pages 60-67) for

n = -7(1)21 , x = —7.0(.1)6.6 .
We shall have occasion to make use of the function

Z/n*(w) =  f^*(u) — u Gx*(u) = (2t)- 1 Hh\(u)

which is also tabulated (to 3 or 4 significant figures) in Table II at the end of this
monograph for

u = 0(.01)4.00 ;
values for negative u can be found by means of the easily verified relation

Ln*(—u) = u +  Ln*(u) .

1953:

Chu,
The

► That (7-61) is a proper normalized density function is proved by (o) observing that it 
is obviously everywhere positive and (6) showing that its complete integral has the value 1. 
The latter step is equivalent to showing that

J d u  =  V 2 x  ,

and this is accomplished by substituting
v  =  i u 2

to obtain

J o  V 2
’ v~  i  dv

d u  =
dv

V 2v

dv

By (7-34), the integral on the right is F7*(» |J) = 1; and it is shown in books on advanced 
calculus that ( — £)! = T(i) = Vir.

Formulas (7-62) for the moments are proved as follows:

Mi(«) = f U z -y = e ~ ^ d z  = - r = e - ^  J — V2t V2t
231
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7.8.1 Part I I I :  Distribution Theory

V 2ir

«• -p = e -* -
V2x

u • ■ /— u du ,
V2t

- p = e - i“*du = 0 + 1  = 1 
V2t

M2 =  M2 “  Ml =  1 “  0 =  1 . ◄

7.S.£. General Normal Function
The general or nonstandardized Normal normalized density function is de

fined by

M z\m , H) = V h  . (7-63)

It is related to the standardized density (7-61) by

FN{z\m, H) = F jv*([z — m] V h ) . (7-64)
The first two complete moments of Jn are

Mi = m, , (7-65a)

«  = Jj • (7-65b)

The incomplete first moment is most usefully expressed as

Mi(z) = m Fn*(u) -  —=fs*{u) , u = (z -  m) V h  . (7-65c)

► That /v as defined by (7-63) is a proper normalized density function follows from the 
obvious fact that it results from the integrand transformation u = (z — m) V/7 of the 
standardized density (7-61).

Formulas (7-65) for the moments of fy  follow trivially from (7-62) and (7-7). <4

B. Compound Univariate Mass and Density Functions

7.9. Student Functions

7.9A. Standardized Student Function
The standardized Student normalized density function is defined as a gamma 

mixture of Normal density functions by

=  f 0‘ m o ,  h )M h \i ,v )d h

(v +  .

—»  < < < « = ,
V > 0 , (7-66)

The first two moments of /s* are
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m.(0 = '  >  1 . (7-67a)

v > 2  . (7-67b)

The density function was tabulated by P. V. Sukhatme in Sankhyd, 1938; this

The cumulative function is tabled in
Biometrika Tables for Statisticians I: Table 9 (pages 132-134) gives P(t, j>) = 
Fs*(J|i>) to 5 places for

For approximations to the cumulative function in terms of the Normal cumulative 
function, see D. L. Wallace, Annals of Mathematical Statistics, 30 (1959) pages 
1124-1127.

► To evaluate the integral (7-66) we substitute for fs  and f y2 their definitions (7-63) and 
(7-50), thus obtaining

on advanced calculus)

the factors preceding this integral may be written as in (7-66).
To show that fs* as defined by (7-66) is a proper normalized density function we first 

observe that it is everywhere positive because fs  and are proper density functions and 
are therefore everywhere positive. That the complete integral exists for v > 0 is proved 
by the fact that (v +  J2)“ !(r+1) is of order t~*~l at infinity; that the integral has the value 1 
can then be shown most conveniently by using the integral definition of fs* and then re
versing the order of integration:

table, which is reproduced as Table I at the end of this monograph, gives fs*(t\n) 
to 6 places for

n = 1(1)10, 12, 15, 20, 24, 30, 60, 00 ; t=  .05(.05)7.25 .

v = 1(1)20 , t = 0(.1)4(.2)8 ; 
v = 20(1)24, 30, 40, 60, 120, 00 , t = 0(.05)2(.1)4, 5 .

Values of the cumulative function can also be obtained from tables of the cumula
tive beta function by use of the relation

Fs. ( - t \ v) = Gs>(t\v) = ( -X 7 i fa  i  ) > 1 > 0 • (7-68)

f s - m  =  / 0" (2T ) - i e - i “ *Ai • e~ ^ \v d h
e-l"‘(hvh)h'~ 1

The integral on the right is ^’*i(<|o|§i' +  i, }[*' +  *’]) = 1 and since (as is proved in books

f M  dt = f " m h)fyt(h\l, y) dh dt

=  / 0 “  [ / _ “„ / » ( « |0 , h) d ijfA h \h  v) dh =  / o“ /n(A|l, v) dh =  1  . 
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To find the complete moments we first observe that the kth moment exists if v > A; 
because tk(v +  t2)~l (r+1) is of order tk~p~l at infinity. Provided that this condition is met, 
it is apparent by symmetry that all complete odd moments about the origin are 0 and hence 
that all complete odd moments about the mean are 0.

Complete even moments about the mean are most conveniently evaluated by using 
the integral definition of f s•, reversing the order of integration, and then using formulas 
(7-65) for the moments of /y. Using m* to denote the fcth moment of /y we thus obtain

M* = (t -  dt = J “" tkfs-(t\v) dt

= J " m t*Mt |0, h) /*(A|1, v) dh dt = i : u : .  tkM t\0, h) d ljfy(h \l,v) dh

-  /„• - )  *  -  /„• » ' dh ■

Substituting on the right

we have finally
u = \vh , du = \v dh ,

* e~u ui”"1
(i*' — 1)!

du /.■ du .

We now apply this result to prove formula (7-67b) for the second moment about the 
mean. By (7-65b) we have

M2 = hr1 = \vu~l ,
and therefore

Ml = f 0 U 'fy(u\\v) du = \v f ' f y W 1) du = v
V  -  2 ‘

Formula (7-67a) for the incomplete first moment is given by

s  / ! .  */**(*w *  = w t m  +  * *
vip (y -|- z?)~ir+i 1 v +  t2 

v -  1f M

provided that v > 1.
The relation (7-68) is proved by writing

- 1
and then substituting

B(h, \v) 

li

(v + u2)~iv~i du , t > 0 , 

I- i v

to obtain

where

(1 -  zY

z~ = v + t2

This integral is \v) by the definition (7-15); and (7-68) then follows by (7-18)
and (7-19). ^
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7.9.2. General Student Function
The general or nonstandardized Student normalized density function is de

fined by

H, v) *  f “ frizlm, ») dh

~  5 ( T w  fr +  " C  -  ^  ■ Z  ^

I t is related to the standardized density (7-66) by

Fs(z\m, H, v) = Fs.([z -  m] V H \v) . (7-70)

The first two complete moments of fs  are

Mi = m , v > 1 , (7-71a)

- > 2 - (7 -7 1 b )

The incomplete first moment for y >  1 is most usefully expressed as

M*) = rn *V(<k) -  fs<t\v) , t = (z — m) y/H  . (7-71c)

The following formula will be required in the applications:

JQ~ fsizlm, hn) f yi(h\v, v) dh = fs(z\m, n/v, v) . (7-72)

► To evaluate the integral (7-69) we substitute for fs  and / y2 their definitions (7-63) and 
(7-50), thus obtaining

fs(z) = Jom (2»)-i Hi •

= -  [~  e- l hm' - mV+,’)hi’+l-'dh .(iv -  1)!(2t )W o

Substituting herein 

we obtain
u = ih(H[z -  m]1 +  r)

Mz) = Hi(h»)Hhv+h -  D!
(2 r)» (Jr- 1)! [U» + H[z -  m]')]-*'-i f ~ e~u ,

(*<- +  * -  D !du

and since the integral is Fy*(<x> \%v +  J) = 1, this expression can be reduced to (7-69).
To prove the relation (7-70) with the standardized function, substitute t = (z — m)VH 

in the right-hand member of (7-69) and multiply by the Jacobian \dz/dt\ = 1/V7/.
Formulas (7-71) follow from formulas (7-67) for the standardized moments via the 

relation (7-70) and (7-7).
To prove (7-72), substitute h = y/v in the definitions of /y and / y2, multiply by the 

Jacobian \dh/dy\ = l/t> to obtain
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7.9.2 Pari I I I :  Distribution Theory

f 0~ Mz\m, hn) /* (%  v) dh = j j  fn(z\m, yn/v) f yi(y\l, v) dy , 
and apply (7-69). ◄

7.10. Negative-Binomial Function
The negative-binomial normalized mass function is defined by 
/»»(r IPi r') = fp(r\pz) / 7i(z|r', 1 -  p) dz

(r +  r ' — 1)1 . _  .
r!(r' -  1)! p K P) ’r!(r' -  1)!

The first two complete moments are

Mi = r' 

M2 = r'

1 -  p

r = 0, 1, 2
r' >  0 ,
0  <  p  <  1

(7-73)

(7-74a)

(7-74b)(i -  v y
The negative-binomial function is related to the beta and binomial functions by 

Gnb(r\p, r ') = f> (p |r, r') = Gb(r\p, r +  r ' -  1) . (7-75)

► That (7-73) is a proper normalized mass function is proved by (a) observing that the 
integrand and therefore the integral is everywhere positive and (6) showing that the com
plete sum of fnb has the value 1. The latter step is accomplished by interchanging summa
tion and integration:

X  MApz)fyi(z\r', 1 -  p) dz = M rIP2) 1 -  p) dz

= f 0" fyM r>> 1 -  p) dz = 1 .

The formula on the right of (7-73) is obtained by substituting formulas (7-32) and (7-43) 
in the integral, factoring,

j .
to e~r‘{pz)r e~,(1~p)(z[l -  p])r'~ 1 

r! (r' -  1)! (1 -  p) dz

(r +  r' — 1)! 
r!(r' -  1)! Pr(l -  P f  f 0*

e-‘zT̂ - x 
(r +  r' — 1)! dz

and observing that the integral on the right is Fy*(oo |r +  r' — 1) = 1.
To prove (7-74a) we again interchange summation and integration and in addition 

make use of formulas (7-33a) for the mean of fp and (7-45a) for the mean of f y\\

p f 0 frY\pz)fy<(z\r', 1 -  p) dz = f *  |^ X  r/p(r|p i)J/Tl(2 |r', 1 -  p) dz

= PzfyM*', 1 -  p) dz = r' .
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The second moment about the origin is similarly obtained by use of (7-33b) and (7-45ab):

r1 JQ“ fp(r\pz) / T,(z|r', 1 -  p) dz = rS/p(rIP2)]/» '(2lr'> 1 ~ P)dz

= J0" ([pz]‘ +  pz)/Ti(z|r', 1 -  p) dz = ^  ^  +  1) +  .

The second moment about the mean is then

Negative-Binomial Function 7.10

pV(r; +  1) pr' _  T pr' ~|» = P .
( l - p ) 1 T i - p  Li - p j  (i - p)1 

To prove (7-75) we use (7-73) and (7-39) and then (7-34) and (7-43) to write

G»k(r\p, r') = Gp(r\pz) f yi(z\r', \ -  p) dz = J “ Fy.(pz\r) f yl(z\r', 1 -  p) dz 

Substituting herein
, v(l -  u) , v , ,t = uv , z = —-------  , at dz = -------ou at; ,1 — p 1 — p

we obtain

<?- (r|p’r') = (r(: ^ (l7 - ! ) ! ( r - [ v +-  l ) ! ^ ] ^ 1 "  u r " ,dw •
The integral with respect to t; is Fy*(co |r +  r ' ) = 1, and therefore

GU(r|p, r') « u-U l -  u)r' -1 du e  Fp.(p\r, r') .

The relation to Gb then follows from (7-20).

7.11. Beta-binomial and Beta-Pascal Functions
The beta-binomial normalized mass function is defined by

f»(r\r', n', n) = f *  f b(r\p, n) ff(p\r', n') dp r = 0 , 1 , 2 , ■■■ ,
(r +  r' — l)!(n +  n' — r — r' — l)!n!(n ' — 1)!

-  r!(r' -  l)!(n -  r)!(n' -  r ' -  l)!(n +  n' -  1)! ’
n = 1,2, ••• , 
n > r , 
n ' >  r ' >  0 .

(7-76)

The first two complete moments are

II (7-77a)

, , ,s r'in' -  r') » - n ( n  + n )  ^  + • (7-77b)

Notice that the function which assigns equal mass to r = 0, 1, ■ • • , n is a special 
case of the beta-binomial function:

/* ( r |l ,2 ,n )  = ^ T 1 •
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7.11 Part I I I :  Distribution Theory

The beta-Pascal normalized mass function is defined by

/«*«(n|r', n', r) =  fpa(n\p, r ) f f (j)\r', n') dp n, r =  1, 2, • • • ,
= (r + r' -  l)!(n + n' -  r -  r' -  l)!(n -  1 )!(n' -  1)! n >  r , (7-78)

(r — l)!(r' — l)!(n — r)!(n' — r' — l)!(n +  n' — 1)! 1 n' > r* > 0 .
The first two complete moments are

n' — 1 /„ ^  vMi = r r, > (7-79a)

. -  _  n  ~  1 )(n' -  r') #M2  ̂ 1-) _2) (7-79b)

The beta-binomial and beta-Pascal cumulative functions are related by
Ffipa{n\r\ n’, r) = G^(r|r', n', n) . (7-80)

► The proofs that (7-76) and (7-78) are proper normalized mass functions are similar 
to the proof that (7-73) is a proper normalized mass function; and the proofs of the moment 
formulas (7-77) and (7-79) are similar to the proofs of (7-74).

The relation (7-80) between the cumulative beta-binomial and beta-Pascal functions 
follows directly from the corresponding relation (7-13) between the binomial and Pascal 
functions:

Ffpa(n\r', n', r) =  FPa(n\p, r) fe(p\r', n') dp

= J* Gh(r\p, n) fe(p\r', n') dp = Gfu,(r\r', n', n) . ◄

7 .1 1 .1 . Relations with the Hypergeometric Function
An interesting and useful relation exists between the beta-binomial and beta- 

Pascal functions and the hypergeometric function defined by
f h(s\S,F ,v) r, S, F, v = 0 ,1 ,2 , •••

___________ yKS + F — »)!,S!F!________ S, v > s (7-81)
_  a!(i> -  a)!(S -  «)!(F -  v + s)\(S + F)\ ' F > v - s .

When the parameters r' and n' of the beta-binomial or beta-Pascal functions are 
integral, these functions are related to the hypergeometric function by

FfiPa{n\r'} n r) = G#,(r|r', n', n) = Gh{r\n} n’ -  1, r +  r ' -  1) . (7-82)

► The relation (7-82) can be proved through an interpretation in terms of probabilities. 
Writing (7-81) in the form

M*\s, F, v)

we see that//»(s|*S, Ff v) gives the probability that there will be exactly s successes in a sample 
of v items drawn in simple sampling without replacement from a finite population contain
ing S successes and F failures, since Cf is the number of ways in which s successes can be
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chosen among S  successes, is the number of ways in which v — s failures can be chosen 
among F failures, and C?*F is the number of ways in which v items can be chosen among 
S  +  F items.

The probability that there will be exactly s successes before the ith failure in this kind 
of sampling will be called a “negative-hypergeometric” probability by analogy with one 
interpretation of the negative-binomial function. This probability is equal to the product 
of (1) the probability of exactly s successes in the first s + f  — 1 drawings, times (2) the 
conditional probability, given the event just described, of a failure on the next draw. Using 
(7-81) we therefore define

M*\S, F,f) =
( * + / -  1) !(jS> +  F -  a - /  +  1)! SI FI 
s \ ( f -  1 )\(S -  s)\(F - f +  1)!(S +  F)\ ’ S +  F -  s - /  +  1

F - f +  1

We next observe that, since there will be at least r successes before the /th failure if 
and only if there are at least r successes in the first r — 1 drawings, the cumulative 
hypergeometric and negative-hypergeometric functions are related by

Gnh(r\S, F, f )  = Gh(r\S, F}r + f  — \) .

Now finally, writing (7-76) in the form
r f \ i  / \ ( r  +  r ' - l ) ! ( n  +  n ' - r - r ' ) ! n ! ( n '  -  1) !
M r |r', n', n) s  - - _ -------------------------------------------------

n — r
r!(r' -  1)!(n -  r)!(n' -  r')l(n +  n' -  1)! n +  n' -  r -  r' 

and comparing this with the definition of f nh given just above, we see that
n', n ) =  f nh(r\n, ri -  1, r')

and therefore that
Gpb(r\r', n', n) = Gnh{r\n} n' -  1 , r') = GA(r|n, n' -  1 , r +  r’ -  1)

as asserted by (7-82). The relation between Gh and FfiPa also asserted by (7-82) then follows 
from (7-80). <4

7.11.2. Computation of the Cumulative Beta-binomial 
and Beta-Pascal Functions

The cumulative functions Gp6, FpPaj and Gppa have not been tabulated.
Any one of the four can be evaluated by term-by-term computation of the values 
of fp> or fppa included in it or—in the light of (7-80)—in any one of the other three.

Term-by-term computations will be simplified by the use of one of the recur
sion relations

M r |r', n', n) (r* — 1 +  r)(n +  1 — r) 
r (n  +  n' — r' — r)

M r  -  l|r ', n \ n)

fsp.(n\r’, n', r)

(1 +  r)(n +  n' — r' — 1 — r) 
(r' +  r)(» -  r)

(to -  l)(w +  ri -  r -  r' -  1) 
(to +  n' — 1)(to — r)

/» (r +  l|r ', to', to) , 

/up.(n -  l |r '( to', r)
(7-83)

/<>p<.(n +  1|r', to', r) .

As a base for the recursion, one term must be evaluated by use of the complete
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formula (7-76) for / or (7-78) for fpPa and this is usually most easily accomplished 
by use of tables of n! or of T(n) = (n — 1)! The most complete tabulation is 
found in

H. T. Davis, Tables of the Higher Mathematical Functions, Principia, Bloom
ington, 1933, vol. I : gives to 10 or more decimal places

T(x): x = 1.0000(.0001)1.1000 (Table 1) ,
1.100(.001)2.000 (Table 2) ;

logio T(x): x = 1.0000(.0001)1.1000 (Table 1) ,
I . 100(.001)2.000 (Table 2) ,
2.00(.01) 11.00 (Table 3) ,
I I. 0(. 1)101.0 (Table 4) .

For many purposes a more convenient table is
J. Brownlee, Tracts for Computers (ed. K. Pearson) no. IX, Cambridge Univer
sity Press, 1923: gives log T(x) to 7 decimal places for

x = 1.00(.01)50.99.
Computation of the beta-binomial function is still more easily accomplished by 
rewriting (7-76) in the form

pr+r'-l fin+n'-r-r'-l
M r \r \  n) = —---------------------- (7-84)

and using tables of log combinatorials—e.g., J. W. Glover, Tables of Applied 
Mathematics, George Wahr, Ann Arbor, 1923. The corresponding simplification 
for the beta-Pascal function is to write (7-78) in the form

ffiPa(n\r', n', r) __________ B(n , nQ__________
(n -  r) B(rf r') B(n -  r, n' -  r') (7-85)

and obtain the values of the complete beta functions from tables—e.g., Pearson’s 
Tables of the Incomplete Beta-Function.

In evaluating F# it is tempting to choose

/m>(0|r', n', n) (n + n' - r '  -  l)!(n' -  1)1 
(»' -  r ' -  l)!(n +  ri -  1)!

as the first term to evaluate because this term contains only 4 factorials whereas 
the general term (7-76) contains 9; and for the same reason it is tempting to start 
with fpb(n) in the case of Gpb or to start with fppa(r) in the case of Fppa. I t  must 
be remembered, however, that such extreme-tail values will usually contribute an 
extremely small fraction of the total value of the cumulative function, so that 
starting in this way makes it necessary to carry a very large number of decimals.

When r' is integral and smaller than either r or n — r, evaluation of the cumula
tive beta-binomial or beta-Pascal function will be simplified by using (7-82), 
since term-by-term computation of Gk involves only r' terms of type (7-81) whereas 
direct evaluation of F$> involves r terms, FfiPa or Gfipa involves n — r terms, and 
GfiPa involves (in principle) an infinite number of terms.

The relation (7-82) also enables us to find beta and binomial approximations 
to the beta-binomial and beta-Pascal cumulative functions and determine the
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conditions under which these approximations will be accurate. Provided that the 
conditions

r «  n , r' « n' , r +  r' «  max {n, n'} (7-86)
are all met, very good accuracy will be obtained from the binomial approximations 

FfiPainy, r i , r) = G ^ r ' ,  n', n)

n < n' — 1= G6 ( r | —- n;------ » r +  r ' -  l )  >\  |n +  n — 1 /

= 1 — Gb ( r' I—t—; * 7  > r +  r' — 1 ̂  » n > n' — 1 \  |n +  n — 1 /  ”

(7-87)

or the equivalent beta approximations 
Fppa(n\r'} n', r) = G^(r|r', n', n)

r > r' +  1 ,

r < r' +  1 .
(7-88)

► The conditions (7-86) for the validity of the binomial and beta approximations derive 
from the fact that the binomial approximation to an individual value of the hypergeometric 
mass function,

fk{»\S,F, ») = ft, (*

will be good if s «  S and v — s «  F. All the values included in Z'\(r) will therefore be 
good if r «  S and v «  F \ all the values included in G*(r) will be good if v «  S and v — r «  F. 
The approximations to both Fh and Gh will be good if these conditions are met for either one. 
It then follows from (7-82) that the binomial or beta approximation to the beta-binomial 
and beta-Pascal cumulative functions will be good if either (1) r « n and r +  r, « n '  — 1 
or (2) r + r' «  n and r ' «  n' — 1. At least one of these two pairs of conditions will be 
satisfied if, and neither will be satisfied unless, r «  n and r' «  n' and r -f r' «  max (n, n'}. <4

s + 7  V
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C H A P T E R  8

Multivariate Normalized Density Functions

8.0. Introduction

8.0. 1. Matrix and Vector Notation
Matrices will be denoted by boldface roman letters, either upper or lower-case, 

or by boldface vertical Greek letters, e.g. a, 0, y, c, {, 0, |i, v, | ,  a. Column vec
tors will be denoted by boldface italic letters, either upper or lower case, or by 
boldface Porson Greek letters, e.g. ft T, «, o. Thus

a =

Transposed matrices and vectors will be denoted by a superscript t ; thus

"an dij . . . a\, ”ai“
an a%i a 2*

» a =
a2

_Url Ur2 . . . _ar-

f lu d 2i . . . d ri

d i2 d 22 Or2

J i u d  2# . . .
a r._

a1 = [ai a2 dr\ .

A matrix or vector whose elements are random variables will be identified by a 
tilde. Thus

a =

d n d l2 • • •

d 2i dtt • • • d t $

_Url drt • • •

a1 =  [&i at «r]

The determinant of the matrix A will be denoted by |A|.

8.0.2. Inverses of Matrices
If a matrix A is partitioned into submatrices A t h e  symbol Aij1 will be used 

to denote the inverse of A0 ; observe that it does not denote the ijth element of 
A -1:

A(Jl =  (At;)-1  ̂ ^
5̂  (A-1),; except by coincidence.

242



Theorems on Matrices 8.0.2

The following easily verified theorems on inverses will be useful in the appli
cations.

1. If both A and B are nonsingular r X r matrices, then
(A +  B)"1 = B-KB-1 +  A"1)"1 A”1 = A-KA-1 +  B-1)-1 B~l 

2. If A is a partitioned matrix of the form

then

(8- 1)

(8-2a)

(8-2b)

3. If A and B are two.conformably partitioned matrices such that 
[An A12l  [Bn B12“l [ I  01
La 21 a mJ  ’ Lb 2i b „ J  Lo i j

and if An and BM are nonsingular, then
An1 = Bn — Bi2 B221 B2i ,

An1 Ai2 = — Bi2 B221 .

(8-3a)

(8-3b)
(8-3c)

► The hypothesis (8-3a) implies directly that

An Bn +  A12B2i = I , An Bi2 +  A^Bm = 0 .

Premultiplying the second equation of this pair by Afi1 and postmultiplying by B221 we get 
(8-3c). Postmultiplying this same second equation by B^1 B2i and subtracting it from the 
first we get

A i i ( B „  — B i 2 B 221 B 2i ) =  I  ;

and premultiplying this result by Afi1 we obtain (8-3b). ^

8.0.3. Positive-definite and Positive-semidefinite Matrices
Let A be an r X r matrix and let x be an r X 1 vector. Then A is said to be 

positive-semidefinite if
x l A x > 0 , all x ; (8-4a)

and A is said to be positive-definite if

x* A x >  0 , all x 7* 0 . (8-4b)

We shall use the abbreviation PDS for 4‘positive-definite and symmetric.”
The following theorems on positive-definite and positive-semidefinite matrices 

will be required in the applications; proofs can be found in the literature.
1. If A is any matrix, then A* A is positive-semidefinite symmetric.
2. If B is positive-semidefinite and nonsingular, then B is positive-definite.
3. If A is an s X r matrix of rank r <  s, then A* A is positive-definite sym

metric.
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4. If C is a positive-definite r X r matrix and if the p X r matrix B is of rank 
p < r, then B C B* is positive-definite.

5. If C is positive-definite, then C-1 is positive-definite.
6. If C is positive-definite and D is formed by deleting any number of columns 

of C together with the corresponding rows, D is positive-definite.
7. If C is positive definite, there exist nonsingular matrices B and U = (B‘)_l 

such that
B C B ‘ = I , U‘ I U  = C .

8. If the r X  r matrix D is positive-definite and the r X r matrix S is positive- 
semidefinite, then there exists a matrix T such that T D T* is the identity matrix 
and T S T 1 is a diagonal matrix with all elements nonnegative and with strictly 
positive elements equal in number to the rank of S.

8.0.4- Projections
If A is an n X r matrix of rank r < n, its columns considered as vectors span 

an r-dimensional subspace in Euclidean n-space. Let v be any vector in this 
n-space. Then the projection of v on the column space of A is

B v where B =  A(A* A)-1 At . (8-5a)
If we define

b = (A1 A)"1 A* v , (8-5b)
the projection can be written <IIPQ (8-5c)
and the r-tuple (6i, • • • , 6r) can be interpreted as the weights in a 
tion of the columns of A.

linear combina-

► Decomposing v into two components
y = B i; +  (y -  B y) ,

we observe that whereas B i; = A b is a linear combination of the columns of A and therefore 
lies wholly within the column space of A, the fact that

k \ v  — By) = A ‘ y - A ' B y  = A, y - A ‘ y = 0

implies that (y — B y) is orthogonal to every column of A and therefore to the column space 
of A. It then follows by definition that B v = A b is the projection of v on the column 
space of A. <4

8.0.5. Notation for Multivariate Densities and Integrals
The definition of a multivariate density function will in general depend on the 

number r of the dimensions of the Euclidean space R {r) on which the density is 
defined, and therefore we shall sometimes denote a density by / (r)(z|0). When no 
confusion can result, we shall simplify printing by suppressing the index (r) and 
writing f(z\6).

Let f(z) be a scalar function of an r X 1 vector z. We define
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/ > * )  dz -  / ;  f brKzu • • • , * )  H <fa, .Ja Jai Ja% J a.
When oo appears as a limit of integration, it is to be understood as the vector 
[oo 00 • • • oo ]*.

In an integrand transformation (cf. Section 7.0.5) of a multivariate density 
which substitutes the vector variable y for the vector variable z we shall use 
\dz/dy\ to denote the absolute value of the Jacobian of the transformation, i.e., 
the absolute value of the determinant whose ijth  element is dzi/dy/.

The integral
j j { z ) f ( 2) dz

where y  is a vector, is to be understood as the vector whose ith element is

Jabyi(z)f(z)d z  ;
and similarly

J by(z) f(z) dz ,

where y is a matrix, stands for a matrix whose ijth. element is

f *  y<Az) f(z) dz .

8.0.6. Moments; Expectations and Variances
The first moment or mean of a multivariate normalized density function / (r> 

is defined to be the r X 1 vector
Mi =  /  z f" ( z )  dz (8-6a)

where the integration is to be carried out over the entire domain of / (r). Sim
ilarly the second moment about the mean of / (r) is defined to be the r X r matrix

\h -  /  (* -  Mi)(* -  M.)7<r>(z) dz . (8-6b)

When the integral defining a moment does not converge, we shall say that the 
moment does not exist.

When a normalized density function / (r) is interpreted as the density function 
of an r X 1 vector random variable 1, the first moment as defined by (8-6a) is also 
by definition the expectation of the random variable,

E(f) = 1 =  in . (8-7a)

Similarly the second moment about the mean as defined by (8-6b) is by definition 
the variance of i : .

V(f) a  z -  . (8-7b)

The moments of the density of a random variable $ which is a linear function 
of a random variable z are easily expressed in terms of the moments of the density 
of z. Letting

y = a +  B 1
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we have
E(y) = y = a + B 1  , (8-8b)
V(y) = f  = B z B ‘ . (8-8c)

► Letting /  denote the density of z and g the density of y we have by (8-6)

V s  j  y g(v) dy = J (a + B z) f(z) dz = a j /(z) dz +  B j  z/(z) dz = a +  BI ;

f  = /  (y -  F)(y -  F)'ff(y) dy = J B(z -  z)(z -  z)‘b </(z) dz = Bf b ‘ . 4

8.1. Unit-Spherical Normal Function

The nondegenerate unit-spherical Normal density function is defined on 
Euclidean r-space R {r) by

f$ (u )  =
= (2 ir)~lr e~ iutlu , -oo < u < oo , (8-9)

where u is an r X 1 vector and I is the r X r identity matrix. The first two 
moments of fx* are

Mi = 0 , (8-10a)
p2 = I . (8-10b)

► That fN* is a proper normalized density function follows from the facts (a) that it is 
obviously everywhere nonnegative and (6) that its integral over its entire domain has the 
value 1. The truth of the latter assertion is obvious if we write the density in the product 
form of (8-9) and observe that each factor in the product is an independent univariate 
Normal density with complete integral equal to 1.

To prove (8-1 Oa) we observe that the tth component of Mi is 

u-(2*)~ir exp ( -  \ 2 uf) n  dm

=  « . ( 2 7 r ) - i e - i “', d u i ••• ( 2 * - ) - eXp  ( ~ i  2 j * i v f )  I l ^ d u ,

=  J " "  w .(2ir) ” i “’* d u ,  ;

and this is 0 by the univariate result (7-62a).
To prove (8-1 Ob) we observe first that the uth component of \l2 can be similarly reduced 

to
«?(2ir)-*e-iUi'dui ,

and this is 1 by the univariate result (7-62b). In the same w7ay the ijth component can be 
reduced to

J U i ( 2 w ) ~ b  e ~ d u i  J ^  U j ( 2 i r ) ~ b  d u *  ;

and the iterated integral is 0 because either of the two single integrals is 0 by (7-62a). ^
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8.1.1. Conditional and Marginal Densities
Suppose that the r components of u are numbered in any order and then 

partitioned into the first l and the remaining r — l components,
u =  [ui • • • Ui: Ut+i • • • UrY ; (8-11)

and define
til s  [tii .. - ui] 1 , u2 = Oz+i • • • ury  > (8-12)

in Euclidean spaces R j0 and respectively. I t  is apparent that (8-9) can be 
factored as

//?•(**0 • . (8-13)
From this it follows immediately that the conditional density on R\ given a partic
ular ti3 in R2 is nondegenerate unit-spherical Normal; and since the integral of 
/v*(iii) over its entire domain in R2 has the value 1, it also follows that the marginal 
density on R\ is nondegenerate unit-spherical Normal.

8 .1.2. Tables
The integral

V(h, k) = / ; / 0W V m  dut dux (8-14)

of the unit-spherical bivariate Normal density is tabulated in
Tables of the Bivariate Normal Distribution Function and Related Functions, 
National Bureau of Standards, Applied Mathematics Series 50, U. S. Govern
ment Printing Office, Washington, 1959. These tables include (among others):

Table III: V(h, Xft) to 7 places for h = 0(.01)4(.02)4.6(.1)5.6, «  ;
X = .1 (.1)1;

Table IV: V(\h, h) to 7 places for h = 0(.01)4(.02)5.6, oo ;
X = .1(.1)1;

Table V : arc sin r to 8 places for r = 0(.01)1.

The functions V(h, \h) and V(\h, h), which are tabulated with arguments X and h 
rather than \h  and ft, give the masses over triangles like those shown in Figure 8.1 A; 
when ft = oo, the triangles are infinite wedges like those shown in Figure 8.1B. 
To obtain values of either function for X >  1, we can make use of the fact obvious 
from the geometry that

V(h,ah) = y ( i f t ,h  \ ; V(ah,h) = V ( h ,^ h  \ ■ (8-15)

The mass W n*{v> 6) over infinite wedges avb with included angle 6 and one 
side extending along an axis from -ft; to +°°, like those shown in Figure 8.2, 
can be found from NBS Table III or IV in conjunction with a table of the right- 
tail univariate function Gn* by computing

8 = |y sin 61 
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A B

Figure 8.1
NBS Tables III and IV

and then applying the appropriate one of the formulas below.
0° <  |0| <  4S°: (c >  0, l <  1)

W AT»(V, 0) = $Gn*(8) — V{t 00 , oo ) -f V(tS,s)

45° <  |0| <  90°: ( c > 0 , t > \ )

wv(t>, e) = ign.(s) -  v (=0, y =0) + V -t

90° <  |0| <  135°: (c <  0, < >  1) (8-16b)

lF .v .( t > , e) =  +  V  ( o o , i  oo )  -  V  ( s ,  y  s )

135° < \e\ <  180°. (c <  0, t <  1)

e) = iGjv.(«) +  V{t oo, oo) -  V(ts, s) .

A &

Figure 8.2
Standardized Bivariate Normal Wedges 
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► Formulas (8-16b) can all be proved by elementary trigonometry; we give the proof 
of the formula for 0° < 6 < 45° as an example. In Figure 8.3 we take axes Oxi and Ox2 
respectively perpendicular and parallel to the side vb of the wedge. The distances 8 and c 
in the figure and their ratio t = s/c clearly correspond to the definitions (8-16a). We then

express the mass over the wedge as the mass over X \ m b  less the mass over X\mm. The mass 
over Ximb is evaluated by observing that it corresponds in terms of probabilities to

P {*1 > s, Z2 > 0} = l(?Ar.(s) .
The mass over X\mva is evaluated by first expressing it as the mass over X\Oa less the mass 
over mOv, observing that by Figure 8.1 this difference is

and then ^because y > 1^ using (8-15) to rewrite this last expression as

V(t 00, oo) -  V(ts,s) . 4

8.2. General Normal Function

The general nondegenerate Normal density function is defined on Euclidean 
r-space by

— 00 <  z <  oo ,
fjp(z\m 9 H) s  (2w)~ir e-i(x-m).H(x-m) |H |J > -oo < m < oo , (8-17)

H is PDS ,
where z and m are r X 1 and H is r X r. The first two moments of the function
are

Mi = m  , (8-18a)
I&2 = H "1 . (8-18b)

^  That/]? is a proper normalized density function follows from the fact that it is simply 
an integrand transformation of the unit-spherical density /$ .  Since H is positive definite, 
there exists by Theorem 7 of Section 8.0.3 a nonsingular matrix U such that
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U‘ IU = H .
The general density can therefore be derived from the unit-spherical density by 
substituting

U(z — m) for u 
in (8-9) and multiplying by the Jacobian

|du/dz| = |U| = |U‘ IU |i = |H|i .
Formulas (8-18) for the moments are derived from the unit-spherical moments (8-10) 

by writing
z = m -f U-1 u

and using (8-8):
lii = m +  U-10 = m ,

=  U - 1 I t U " 1)* =  U " 1 l ( V l) ~ l =  ( U ‘ I U ) - 1 =  H - 1 . 4

8.2 Part I I I :  Distribution Theory

8 .2 .1 . Conditional and Marginal Densities
Consider a nondegenerate Normal density f$(z\m , H) on R {r\  partition the 

space R (r) into subspaces R[9) and R$~9), and partition the vectors z and m and 
the matrices H and V =  H "1 correspondingly:

Z =  [Z\ * * * Zq • Zq+ 1 * * * Zr]1 =  \Z \  Z%\* ,

m  = [mi • • • mq mg+i • • • mr] 1 = [m'i m̂ ]* ,

H = [ h « hm ]  where Hu is q X q , (8-19)

V = where Vn is q X q  .

Then the marginal density on Ri is
/^(xilmi, Vn1) = iJf(*i|mlf Hu -  Hu H2V H2l) (8-20)

while the conditional density on Ri given z2 in R2 is 
-  Hfi1 H u[z2 -  m2], Hu)

= /^(Zilmi +  Vi2 — m2]y [Vn — Vi2 V221 V2i]_1) . (8-21)
I t  will be of interest in the applications to observe that, because of its appear

ance in (8-21), Hn can be interpreted as the precision of our information about 
Zi when we know the value of z2; and because of its appearance in (8-20), Vfi1 = 
H n - H i SH i l H21 can be interpreted as the precision of our information about Zi 
when we do not know the value of z2. Knowledge of z2 contributes Hn H»* H« 
to the precision of our information about Zi.

► To prove (8-20) and (8-21) we first simplify notation by defining

= z — m .

Substituting the partitioned forms of z and H in the density formula (8-17) we obtain a 
constant multiplied by e~is where
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( 1 ) S 3  f i  H n  f i  +  f i  H n  f 2 +  fa  f i  +  H 2i f  i +  f i  H 22 f 2
= (fi +  Hfi1 H12 f 2)‘ Hn(fi +  Hfi1 H12 f 2) +  n (H M -  H2l Hfi1 H12) f 2 .

Since the second of the two terms on the right does not contain fi, the conditional density 
on Ri depends on the first term alone. The matrix Hn in this term is symmetric because H 
is symmetric and it is positive-definite by Theorem 6 in Section 8.0.3; and it then follows 
from the form of the exponent that the conditional density on Ri is Normal with second 
parameter Hn as given by (8-21). The value of the first parameter is obvious as soon as 
we write

fi +  Hu1 Hi2 f 2 = i\ — (mi — Hfi1 H12[z2 — m2]) ;
the alternative form of the parameters given in (8-21) then follows from (8-3c).

Integrating out fi from the right-hand side of (1) we are left with the second term as 
the exponent of the marginal density on R2; and interchanging subscripts 1 and 2 we have 
the exponent of the marginal density on Ri:

fi(Hn — Hi2 Hfi1 H21) fi .
Using (8-3b) we can write this as

(*! -  mO'VfiHii -  mi) .
Vn is PDS for the same reason as Hn; its inverse is therefore PDS by Theorem 5 of Sec
tion 8.0.3; and it follows that the marginal density on Ri is Normal with parameters mi 
andVfi1. <4

8 .2 .2 . Tables.
The cumulative unit-elliptical bivariate function

L{h, k, r) -= f km f km m * \0 ,  H) dz* dzi , H~‘ = [ J  > (8-22)

has been tabled in the National Bureau of Standards publication cited in Section
8.1.2. These tables include (among others)

Table I: L(h , fc, r) to 6 places for hf k = 0(.1)4; r = 0(.05).95(.01)1; 
Table II: L(h, fc, —r) to 7 places for h}k = 0(.1)4; r = 0(.Q5).95(.01)1.

For methods of evaluating cumulative Normal functions of dimensionality greater 
than 2, see P. Ihm, Sankhya 21 (1959) pages 363-366, and S. John, ibid, pages 
367-370, both of whom give references to the earlier literature.

Some of the applications discussed in this monograph require the mass over 
bivariate wredges S1FS2 like the shaded areas in Figure 8.4. When VSi is parallel 
to one coordinate axis and VS2 is parallel to the other, the mass over SiVS* can 
be found most conveniently from NBS Tables I and II cited just above, but 
in all other cases the Tables III and IV discussed in Section 8.1.2 are more con
venient. To solve such problems by the use of these latter tables, we first de
compose the wedge into the sum (Figure 8.4A), difference (Figure 8.4B), or 
complement (Figure 8.4C) of two wedges AFSi and A V S 2 having a common 
side formed by the projection of a ray from the mean M  of the density through 
the vertex V of the original wedge SiVS2- We then make a change of variables
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A B C

General Bivariate Normal Wedges

u = A(z — I) such that the density is rendered unit-spherical and the point V is 
carried into a point (v, 0) on the positive Ui axis.

The wedges AVSi and v4F£2 are thus transformed into wedges of the type 
illustrated in Figure 8.2 and the masses over each of the transformed wedges can 
then be found by application of formulas (8-16). These formulas have as argu
ments the quantities v and 6 which describe the transformed wedge, and to express 
their values in terms of the geometry of the original wedge AFSi or i4FS2 we first 
define

z : coordinates of V in the original variables,
<t>: angle between the directed line VS  and the positive Z\ axis (cf. Figure 8.4), 

I, a: mean and second central moment of the density in the original variables,

ai = V an , a*

Z\ ~  Zl

= Vo-M<722 ,

fl = <71 =

p =

%2 2̂ 
<72

<712

v ;<711 <722

= ft -  pft 
V i  -  P

We can then compute
V =  V f  ? +  1,1

cos <t> , sin 6
V =  i j i -----------1- i)i.-------  ’

<7l <72

_  f t - o r
V l -  p-

y / f t  +  d  ,

9 = ft
sin <f>

<72
-  f t

cos <t>------ )
<7l

(8-23a)

(8-23b)

cos 6 = - - » sin 6 = - - = •
V p 2 +  g2 V p 2 +  q2

In the special case where VS is parallel to one or the other of the original coordinate 
axes, i.e., where either sin <f> or cos <t> vanishes, formulas (8-23b) reduce to

sin 4> = 0  

t; cos 0 = 171 cos 4> , 
v sin 6 = —f2 cos^> ,

cos<fr = 0
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► Consider the change of variables

where
u = A (z — 2)

a = (f ? —2pfifj+ fj)-» r ?,/Vi
L—s*/ î

V 02I  #
f i / 02 J

1. That the transformed density is in fact unit-spherical can be verified by the use of 
Corollary 2.1' in Section 8.2.3 below, which gives for the parameters of the transformed 
density

-A  2 +  A 2 = 0 ,

[A <r A*]-1 *1
P<Ti<Ti - 1 ■

2. To verify that the vertex V = z is transformed into a point on the positive U\ axis 
at a distance from the origin given by the formula for v in (8-23b), let u denote the trans
formation of 2 and compute

u = A (z — 2) = A

3. To verify the formulas for cos 6 and sin 0 in (8-23b), make use of the fact that the 
transformation leaves parallel lines parallel and consider its effect on a line segment joining 
the mean 2 of the original density to the point (Z\ +  cos 0, z% +  sin <f>). The point 2 goes 
into the point 0 while the point (zi +  cos 0, z% +  sin <f>) goes into

A
COS <t>

= scalar X
sin <t>

i?i
cos <f> 

<T\ +  1?2
sin <f> 

<?2 >

-r*
COS <t> 

<Tl +  f l
s i n  <(>

_

from which the formulas for cos 6 and sin 8 follow immediately.
4. Verification of (8-23b') is a matter of simple algebra.

8.2.3. Linear Combinations of Normal Random Variables
In the applications we shall require the following theorems concerning linear 

combinations of random variables whose joint distribution has a density given by 
the (multivariate) Normal function. These theorems will be restated without 
reference to random variables before they are proved.

Theorem 1 . Let Ui, • • • , u, be independent scalar random variables each 
having a unit Normal distribution, so that

D(u) = where u is s X 1 ; (8-24a)
and let 2i, • • • , 2r be r < s linearly independent linear combinations of the its:

z = a +  b u where a is r X 1 ,
b is r X s of rank r < s (8-24b)

Then the joint distribution of the zs is nondegenerate Normal with mean a and 
variance b I b ‘:

D(2 ) =/»>(2 |a , [ b I b ‘]- ')  . 
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Theorem 2 . Let 2i, • • • , 2r be scalar random variables whose joint distribu
tion is nondegenerate Normal, so that

D(z) = /^(zlm , H) where z is r X 1 . (8-25a)
Then it is always possible to express the r 2s as linear combinations of r independent 
its each having a unit Normal distribution; or in other words, an r X r matrix U 
can always be found such that

u = U(z — m) , which is r X 1 , (8-25b)
has the density

D(u) = /$ (u )  . (8-25c)
The most important results of the two preceding theorems are the two follow

ing corollaries.
Corollary 2 .1 . Let 2i, • • • , 2r be scalar random variables whose joint dis

tribution is nondegenerate Normal with mean m and variance H~l, so that
D(z) = J%\z\m} H) where z is r X 1 ; (8-26a)

and let */i, * * • , yq be q < r linearly independent linear combinations of the 2s:

y = c +  d z where c is q X 1 ,
d is q X r of rank q < r (8-26b)

Then the joint distribution of the ys is nondegenerate Normal with mean c +  d m 
and variance d H_1 d*:

D(y) = f$ (y \c  +  d m, [d H "1 d*]-1) . (8-26c)
Corollary 2.2. Let z(1), • • • , z(p), • • • , z(n) be independent r X 1 random vari

ables each of which has a nondegenerate Normal distribution; and let y be an 
r X 1 linear combination of the is,

y = cl +  2 pp z ip) (8-27a)
Then the distribution of y  is nondegenerate Normal with mean and variance

where z(p) =  V(z(p))-

E (y) = <* + 2  ppT p' 
V(y) = 2 02 z(p)

(8-27b)

► We shall now restate and prove these theorems without reference to random variables.
Theorem 1 '. If the mass distributed on R(,) by the density function /Ji$ is mapped 
onto Rir)f r < 8, by

z = a +  b u where 

the density on Rir) is/$(- |a, [b I b1]”1).

a is r X 1
b is r X s of rank r < s ,

Assume first that r = 9. Since b is of full rank, it has an inverse, and therefore we may write

u = b-1(z — a) .

Substituting this result for u in the formula for/$(u) and multiplying by the Jacobian
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\du/dz\ = lb-1!
we obtain

That this result is equivalent to f$(z\a, [b lb*]-1) is clear as soon as we observe that
(b-*[i -  a ]y iQ r l[z -  a]) = (z -  «)‘(b“I), Ib - I(* -  <0 = (z -  a)‘(b Ib l)-'(z -  a) , 

lb-1! = |(b“1), Ib~1|i = K blb1)-1!* .
That (b I b1)-1 is positive definite as required by (8-17) follows from Theorems 4 and 5 of 
Section 8.0.3.

Next consider the case where b is r X s of rank r < s. We can always augment b by 
adding s — r rows which are (a) orthogonal to the original r rows and to each other and (b) of 
unit norm, thus creating an s X 8 matrix b* such that

[bib* 01J j is of rank s .

Then defining
a* = [oi • • • Or: 0 • • • 0]* , z* = a* +  b* u = [zv • • • z,: 4 % • * * zi0)V ,

and proceeding exactly as we did when we assumed b itself to be s X s of rank s, we can show 
that the density on the transformed R{,) is

/*(z|a* [b* I b*1]"1) = (2T)“ i*c_ i u--a*),(b*Ib#,)",(z#” a*) |(b* Ib*1)-1!̂  .
Now partitioning (z* — a*) and b* I b** as shown above, we see that

|b* I b*‘| = |b I b‘| , so that |(b* I b**)"1! = |(b l b ')-1! ,
(z* -  a*)l(b*Ib*,)~1(** -  a*) = (z -  a j^ b lb 1)"1̂  -  a) +  z ^ lz ™  ;

and integrating out z(o) we obtain /^(z|a, [b I b1]-1)*
Theorem 2 '. Any Normal density /$(• |m, H) can be considered as a linear integrand 
transformation

z = m +  U_1 u , U‘IU = H ,
of a unit-spherical Normal density /$ .

This theorem has already been proved in the course of proving that f$  as defined by (8-17) 
is a proper density function.

Corollary 2 .1 f. If the mass distributed on Rir) by the density function fjp (• |m, H) is 
mapped onto R(q),q < r, by

y = c +  d z where c is q X 1,
d is q X r of rank q ,

the density on R{q) is |c +  d m, [d H"1 d1]-1)*
By Theorem 2', can be expressed as a linear integrand transformation

z = m +  U-1!/ , U‘IU = H ,
of /#!; and consequently the mapping in which we are interested can be expressed as a linear 
mapping

y = c +  dz = (c +  dm) +  (dU_1) u
of f&l onto R{q). It then follows by Theorem 1' that the density on R(q) is Normal with 
parameters c -f  dm and

[(dU-1) I(dU_1)*]_1 = [dtU'IU)-1^ ]-1 = [d H“l d*]-1 .
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8.2.3 Part I I I :  Distribution Theory

Corollary 2.2'. Let n nondegeneratc Normal densities with moments \  • • • , /i(in) 
and • • • , be independently defined on subspaces R ^, • • • , R{n ; let the density 
on the product space R{rn) be the product of these densities; and let the density on R(rn) 
be mapped onto Rir) by

r*(in

y = a  +  pB<» • • • BW • • • B(n)] zW f

where a  is r X 1,
B<*> e  I is r X r ,

and at least one $p 0. Then the density on R{r) is with parameters a  +  2 PPp[p) 
and (2/3’ i i^ ) -1.

Since at least one (ip ^  0, the rank of B = [B(1) • • • B(n)] is r, and therefore the Normality 
of the density on R{r) follows immediately from Corollary 2.1'. By (8-18a) the first param
eters of the n original densities are equal to their first moments, and therefore the first 
parameter of the mapped density is given by Corollary 2.1' as

a  +  • • • (|iln))T  = a  +  2 P, m!p) •
Similarly the second parameters of the n original densities are equal by (8-18b) to the in
verses of their second moments. Since the n original densities are independent, the second 
moment or inverse of the second parameter of the density on R(rn) is

rw l>

0

m 2 vP

0

i4n,J
and the second parameter of the mapped density is therefore given by Corollary 2.2' as

[BM2B‘]-> = [2/3*11^]-* ◄

8.3. Student Function
The nondegenerate Student density function is defined on R (r> by

m z \ m ,  H, v) m f * m * \ m ,  K R )M h \l, ") dh

— oo < Z < oo , 
—oo < m < oo , 
V  > 0 ,
H  is PDS ,

vi’dv  +  hr — 1)! 
irir ( — 1)! 0  +  (z -  m ) 1 H(z -  |H|*
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The first two moments are
fXi = m , v >  1 , (8-29a)

|12 = H -1 » V  > 2 . (8-29b)

On the evaluation of the cumulative function when r = 2, see C. W. Dunnett and 
M. Sobel, Biometrika 41 (1954) pages 153-169.

► That fs  as defined by (8-28) is everywhere positive is clear from the fact that both fa 
and f y2 are everywhere positive. That the complete integral of fa has the value 1 can there
fore be proved by reversing the order of integration. Dropping parameters irrelevant to 
the argument we have

/«(*) dz = J~ m f omM t\h )M h) dh dz = 1 “ Mz\h) dz] fyt(h) dh 

-  lo M Q d h -  1 •

It follows that fa is a proper normalized density function.
To evaluate the integral (8-28) we substitute for fa and/y* their definitions (8-17) and 

(7-50) obtaining

fs(t) = J0‘  ( 2 | H| i  \vdh

_     r  “ »>]+.)/. J'+Jr-l dh
(iv -  l)!(2x)W° '

Substituting herein
u = |  /i([z “  mpHfz -  m] +  p) ,

we obtain

(r̂ ± i ~ 1- ! [J(» +  [* -  m]‘H[* -  
(1? “  1)!

/•« g-«uir+i r“1 ,
x J o  (Jr + ir- 1)! dU '

The integral is F7*(oo|§y +  i r) = 1> and the factor preceding the integral can easily be 
reduced to (8-28).

To prove formula (8-29a) for the first moment we first observe that the moment exists 
if v > 1 because

z%[v +  (z-m )'H (z —
is of order ( — r — v +  1) at infinity. We can then obtain its value by using the integral 
definition of fa, reversing the order of integration, and using formula (8-18a) for the first 
moment of fa *

#*i -  *H)/t.(A|l, «0 dh dz

= / ; [ / ; .  2 AH) * ] /* (A |l , V) dh

= J f  v) dh = m .

To prove formula (8-29b) for the second moment we proceed similarly. The moment 
exists for v > 2 because

, (z) _  m w *
MZ) ~ (2t)*
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8.3 Part I I I :  Distribution Theory

(Zi — ra,)(z, — m,)[V + (z — m)‘H(z — m)]“ iF~"ir
is of order ( — r — v  +  2) at infinity; and we can then calculate using (8-18b)

|i2 = Jo“ (2 -  m)(z -  AH) fyi(h\l, v) dh dz

= / Q" [ f " m (z -  m)(z -  m)‘f%\z\m, AH) <fc]/7,(A|l, v) dh

= JomB r'h -'M h \l,v )dh

= H- r * e %¥h(\vh)%* 2 
i » - l J o  (*1/ — 2)! = H- v

V -  2 ’ ◄

S.S.i. Conditional and Marginal Densities
Consider a nondegenerate Student density /sr)(z|m, H, v)  defined on R ir); 

partition the space R {r) into subspaces R\9) and R$~9); and partition the vectors z 
and m and the matrices H and V = H_1 correspondingly as shown in (8-19). 
Then the marginal density on R\ is

V i i 1 , v)  = Hn -  H 12 H 2-21 H21, v)  (8-30)
while the conditional density on Ri given z2 in R2 is 
f^(zi\m i -  H n1 H i2[z2 -  m*], Hn, v)

=  f s \ z i \ m i  +  V 12 V * l [ z t  -  m 2] ,  [ Y u  -  V 12 V 2V  V * ] - 1, v)  . ( 8 - 3 1 )

► By the definition (8-28) of f%\ the marginal density on R ^\ q < r, is

/£>(*!m, AH) /„(A| 1, r) dA dz,

where the integral wdth respect to z2 is evaluated over Reversing the order of integration 
and using (8-20) we obtain

P  m * \m , AH) dza]  A,(All, r) dA = f "  fW(z\mh AVf,1) /„(A| 1, v) dh ;

and by (8-28) the integral on the right is (8-30).
The proof of (8-31) is similar. <4

8.8.2. Linear Combinations of Student Random Variables
In the applications we shall require the following theorems concerning linear 

combinations of random variables whose joint distribution has a density given by 
the (multivariate) Student function.

Theorem 1. Let 2lf • • • , zr be scalar random variables whose joint distribution 
is nondegenerate Student with parameters m, H, and v, so that

D(z) = /kr)(z|m, H, v)  where z is r X 1 ; (8-32a)
and let yh • • • , yq be q < r linearly independent linear combinations of the 2s:
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y = c +  d z where (8-32b)c is q X 1 , 
d is q X r of rank g .

Then the joint distribution of the ys is nondegenerate Student writh density
D (y) = f n y \ c  +  d m, [d H - 1  d1]-*, v) . (8-32c)

Theorem 2. Let z(l), • • • , z(p), • • • , z (n) be r X 1 random variables which con
ditionally on given h have independent Normal densities of the form |2 (p),
hVp *); let K have a gamma- 2  distribution with density / 72(fc|l, v); and let y be an 
r X 1 linear combination of the is,

y = a  +  2  pp z(p) . (8-33a)
Then the distribution of y  is nondegenerate Student with density

D (y) = m y \ a  +  2  V P V » \  [ 2  f i i  V , ] - \  ,) . (8-33b)

► Theorems 1 and 2  follow from Corollaries 2 .1  and 2 .2  of Section 8.2.3 by a line of argu
ment identical to the one used to prove (8-30): first obtain the Normal density conditional 
on h  and then integrate with respect to h .  <4

8.4. Inverted-Student Function
The nondegenerate inverted-Student density function is defined on R (r) by

m A m ,  H, ») .  [ " - ( # -  »•>' H<# -  |H|I (8-34.)
where

— oo < m < oo , i / > 0 , H is  PDS ,
(y — m)* H (y — m) < v . (8-34b)

It is related to the Student function (8-28) by
Fis(y\m, H, v) = Fs(z\m} H, v) (8-35a)

where z is defined by

z — m = y -  m
V l  -  (y -  m)‘(HA)(y -  m)

(8-35b)

► To prove the relation (8-35) and thus to show that /<s as defined by (8-34) is a proper 
normalized density function we shall prove that (8-34) results from substituting new vari
ables y defined by (8-35b) for the variables z in the definition (8-28) of the Student function /$. 
Since we obtain (8-34) immediately upon substitution of (8-35b) in (8-28) and multiplication 
by the Jacobian

\dz/dy\ = [1 — (V — m)'(H/V)(y -  m)]-ir- ‘ ,
all that we really need to prove is that this is in fact the Jacobian of the transformation; 
and to prove this, we break the transformation down into three steps. Observing that 
because H is positive-definite and v is positive there exists by Theorem 7 of Section 8.0.3 
a nonsingular matrix Q such that
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we define

z — m = Q~l u ,

8.4

Q‘ Q = H / ,  ,

Part I I I :  Distribution Theory

u = V = Q(y -  m) ,
V 1 — vl v

so that the Jacobian becomes
\dz/dy\ = |Q_l| \du/dv\ |Q| = \du/dv\ .

The transformation from i; to u maps a sphere of radius p = VV v into a sphere of radius 
p /v l  — p2, and because of the symmetry we can derive the Jacobian by comparing the 
ratio of the volume element II dvi at the particular point v = (0, 0, • • • , 0, p) to the volume 
element II dui at the corresponding point u = (0, 0, • • • , 0, p /V  1 — p2). Both elements 
are rectangular prisms with 1-dimensional altitudes along the rth coordinate axis and 
(r — l)-dimensional bases tangent to the surface of the sphere and perpendicular to the 
rth axis. The volume II dvi is thus

while the volume II dm is
dVv = dp • (dvi eh* • • • dvr~\)

dvi
W i  -

dVr-l ~|
V i -  p5J

= (1 -  p*)-i(l -  = (1 -  v'lO-V
Substituting i; = Q(y — m) in this result we obtain

dVu

dV9

\dz/dy\ = \du/dv\ = ^ 7  = [1 -  (tf -  m)'(H/v)(y -  m) ] - * ' " 1

as was to be proved.
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C H A P T E R  9

Bernoulli Process

9.1. Prior and Posterior Analysis

9.1.1. Definition of a Bernoulli Process

A Bernoulli process can be defined as a process generating independent random 
variables £h • • • , £if • • • with identical binomial mass functions

U(x\P, i) = p*(i -  Py -  , 5  < p <  l . “ (9_1)

As is customary, we shall refer to the observation of a single random variable £ as 
a trial, to the observation of a variable with value 1 as a success, and to the observa
tion of a variable with value 0  as a failure.

Alternatively, a Bernoulli process can be defined as a process generating 
independent random variables §i, ••• ,$(»,•• • with identical Pascal mass functions

fp.(y\v, i) = (i -  p)-* v  , o < p < l . ’ (9*2)
When the process is regarded in this way, it is more naturally characterized by the 
parameter

'  -  J (9-3)
than by p itself because, by (7-12a),

E(y|p) = P ■ (9-4)

In the applications, y is the length of the “interval” between two adjacent suc
cesses, as measured by the number of “ trials” occurring after one success up to 
and including the trial on which the next success occurs. The quantity p = 1 /p  
can be interpreted as the mean number of trials per success.

A unique and very important property of a Bernoulli process is the fact that

P{y >  y + v\y > v} = P {y > y} • (9-5)
If y is interpreted as the number of trials from one success to the next, this says 
that the probability that more than y additional trials will be required to obtain 
the next success is independent of the number 17 of trials that have already been 
made since the last success. This implies in turn that the distribution of the num
ber of trials required to obtain a success starting from any arbitrarily chosen point
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9.1.1 Part I I I :  Distribution Theory

in a sequence of trials is the same as the distribution of the number of trials required 
starting immediately after a success.

► To show that the independence of past history asserted by (9-5) follows from (9-2), 
we write

p /  _l i-y ^ > P { $ > v  + y} Y l i - i  " p)n+v+i lp
P{!? > *> +  !/l$ > *»} -  -  2 %  i ( i _ p),+ i - ,p

(i -  P)" = E r . , o - \v+*-iT

= P {9 >  y} •

To show that this independence of past history is a unique property of the Bernoulli 
process among all processes generating integral-valued random variables 0 > 1, we define

. H(y) «  P {0  > y)
and write (9-5) in the form

H(y +  v) 
H(r>) = H(y) .

Letting q = 1 we get the recursion relation

H(y +  1) = H(y) H( 1) 

H(y) = [H( 1)> . 

H W  =  1 -  V ,

from which we derive 

Now defining p by 

we obtain (9-2) by writing
p{g = y) = H(y -  1) -  H(y) = [H(l)]«n [1 -  H( 1)] = (1 -  p)*~i p . <

9.1.2 . Likelihood of a Sample
The conditional probability, given p, that a Bernoulli process will generate 

r successes and n — r failures in some specific order such as ssfsf • • • is the product 
of the conditional probabilities of the outcomes of the independent trials, which 
by (9-1) is

Il(p Zi[l -  p ] 1 - * * )  = pr( 1 -  p)n~r . (9-6)

I f  in addition the stopping process is noninformative in the sense of Section 2.3, 
the expression (9-6) is the kernel of the likelihood of the sample. I t is clear that 
in this case all the information in the sample is conveyed by the statistic (r, n ) : 
this statistic is sufficient when the stopping process is noninformative.

I t  is worth emphasizing that we get an identical result by computing the 
probability that the process will generate r intervals of lengths 2/1, • • • , yr followed 
by one interval of length greater than yr+\. The probabilities of the r complete 
intervals are given by (9-2); the probability of the incomplete interval is
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Bernoulli Process 9.1.2

P { y  >  y\p} = 2*.r+i(i -  p),_1p = (i -  p)v ; (9-7)
and therefore the joint probability is

n ;.i [(i -  v ) Vi" l v ]{i -  v ) Vt"  = pr(i -  v )Zyi~T, (9-8)
which reduces to (9-6) on substitution of n = Vi-

9.1.3. Conjugate Distribution of p
When the parameter of a Bernoulli process is treated as a random variable p, 

the most convenient distribution of p—the natural conjugate of (9-6)—is the beta 
distribution defined by (7-21):

/fl(p|r, n) oc pr~l(l -  p)n“r_1 . (9-9)

If such a distribution with parameter (r', n') has been assigned to p and if 
then a sample from the process yields a sufficient statistic (r, n), the posterior dis
tribution of p will be beta with parameters

r" = r ' +  r , n" = n' +  n . (9-10)

► By Bayes' theorem in the form (2-6) the posterior density is proportional to the product 
of the kernel (9-9) of the prior density and the kernel (9-6) of the sample likelihood:

D;,(p|r', n ';r, n) oc pr#_1(l “  p)w#n '- r '- l p r(l _  p)n-r =  p r" “ 1( 1 -  p)" -r" -1

Comparing this result with (9-9) we see that the density is beta.

The mean, partial expectation, and variance of the distribution (9-9) of p are, 
by (7-22),

E(/>|r, n) =  p = ^ > (9-1 la)

E?(p|r, n) = p Ffi(jp\r +  1, n + 1) , (9-1 lb)

From (9-1 lb) it follows that the left- and right-hand linear-loss integrals defined 
by (5-12) are

Li(p) = j  * (p -  z)ft(z\r, n)dz  = p F,(p\r, n) -  f  Ff {p\r +  1, n +  1) ; (9-12a)

Lr(p) = JJ  (z -  p) fe(z\r, n)dz = f  Gp(j>\r +  1, n +  1) -  p Gt {p\r, n) . (9-12b)

For tables of the cumulative beta function, see Section 7.3.

Limiting Behavior of the Prior Distribution. As the parameters r and n of 
(9-9) both approach zero in such a way that the ratio r /n  = p remains fixed, a
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fraction p of the total probability becomes more and more concentrated toward 
p = 1, the remainder toward p = 0; the variance approaches p( 1 — p).

► The behavior of the variance is given by (9-1 lc). To show the behavior of the density 
as n, r —> 0 with r/n = p fixed, write the density (9-9) in the form

------------------------------vnP~l(\ -
(np -  l)!(n[l -  p] -  1)!P

= (np)(w[l -  p])  ̂ n\ ' _______1_______
n (np)!(n[l — p])! pl-n*( 1 — p)i-»u-*> ’

As n —> 0, the first factor on the right approaches 0, the second approaches 1, and the third
approaches —------r» so that the entire expression approaches 0 except at p = 0 and 1.p(l p)
The sharing of the total probability between p = 0 and p = 1 is then clear from the fact 
that the mean remains fixed at p. <4

9.1.4. Conjugate Distribution of l / p  = p
In problems where utility is linear in 1/p rather than in p, we shall need the 

same kinds of information concerning the distribution of p = l /p  that we have 
just obtained for the distribution of p . Substituting l/p  for p in the beta density 
(9-9) and multiplying by the Jacobian we find that the induced density of p is 
inverted-beta-1 as defined by (7-25):

fm(p\r, n, 1) «  {p ~  • (9-13)

Cumulative probabilities may be obtained from tables of the standardized beta 
or binomial functions by use of the relations

Giei(p\r, n, 1) = f> ( l /p k , n -  r) = Gb(r\l/p, n -  1) , (9-14)
which follow from (7-26), (7-23), and (7-24). The mean, partial expectation, and 
variance of p are, by (7-27),

E(p|r, n ) m p  = f  . r >  1 , (9-15a)

Ef(p|r, n) = ? Gp(l/p\r -  1, n -  r) , r >  1 , (9-15b)

V(/5|r n) -  (”  ~  !)("  ~  r) _  K f i - S t  ,»!P|r , n) ( r _ 1)2(r_ 2) r _ 2 r >  2 . (9-15c)

It follows from (9-14) and (9-15b) that the linear-loss integrals are

Li(p) =  J '  (p -  z) fitn(z\r, n, 1) dz

= p G>(l/p|r, n - r )  -  p Gp.{\/p\r -  1, » -  r) , (9-16a)

Lr(p) =  (z -  p)/*Ji(z|r, n, 1) dz
= ? Fp*(l/p\r -  1 , n -  r) -  p Fp(l/p\r, n -  r) . (9-16b)
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9.2. Sampling Distributions and Preposterior Analysis:
Binomial Sampling

9.2.1. Definition of Binomial Sampling
If a sample is taken from a Bernoulli process in such a way that the value 

of the statistic n is predetermined, the value of the statistic f being left to chance, 
the sampling will be called binomial. In other words, binomial sampling consists 
in counting the number of successes which occur in a specified number of trials.

We assume throughout Section 9.2 that a binomial sample with fixed n is to 
be taken from a Bernoulli process whose parameter p has a beta distribution with 
parameter (r', ft').

9.2.2. Conditional Distribution of (f|p)
The conditional probability, given p, that a sample of n trials from a Bernoulli 

process will yield r successes in some particular order was shown in (9-6) to be
r> f

pr(l — p)n_r; and it is easy to see that there are orders in which the

r successes and n — r failures can occur. Since the orders are mutually exclusive, 
the conditional probability of r successes in n trials regardless of order is the prod
uct of these two factors, and it follows that the conditional probability of (r|p) 
is given by the binomial mass function defined in (7-8).

P{r|p, n} '=  r ,(wnJ_ ry  pr{l -  p)n~r =  MAp, n) (9-17)

9.2.3. Unconditional Distribution of f
If a sample of size n is drawn by binomial sampling from a Bernoulli process 

whose parameter is a random variable p having the beta density (9-9) with param
eter (r', ft'), then by the definition (7-76) of the beta-binomial mass function the 
unconditional distribution of f is

P{r|r', n';n} = £  Mr\p, n) f 9{p\r', n ') dp = f 9b{r\r', n', n) . (9-18)

9.2.4• Distribution of fS"
If the prior distribution of p is beta with parameter (r', ft') and if a sample 

then yields a sufficient statistic (r, n), formulas (9-1 la) and (9-10) show that the 
mean of the posterior distribution of p will be

p" r!L  = r + r '
ft" “  n +  ft' (9-19)

I t follows that when the value of the f to be obtained by binomial sampling is 
unknown and p" is therefore a random variable, the distribution of p" can be 
obtained from the unconditional distribution (9-18) of r. Solving (9-19) for r 
and substituting in (9-18) we have
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P { r V ,  n ';n} = M n " p "  -  r '|r ', n', n) . (9-20)
The mean, partial expectation, and variance of this distribution of ?"  are

E ( ? ' y , n ' ; n )  =  ^  =  E ( f > | r ' , n ' )  =  P '  ,

Eg(?"|r', n '; n) = p ' F,»(pn" -  r '|r ' +  1, n' +  1, n) ,

V (?"|r', n '; n) = r'(n ' -  r') _ Tt V(P|r', n')

(9-21a)

(9-21b)

(9-2lc)n +  n' n'^n' +  1) n +  n'
It follows a t once from (9-20) and (9-21b) that the linear-loss integrals under this 
distribution of f "  are given by

£«(p) -  £  (p -  *) P { $ "  -  *| r \ n ' ; n }
g< p

= p Fpb(pn” -  r '|r ', n', n) -  p' F^ipn"  -  r '|r ' +  1, n' +  1, n) , (9-22a)

Lr(p) ^  ^  (z -  p) P{?" = 2 |r', n '; n}
* > P

= p' G&bipn" — r '|r ' +  1, n' +  1, n) — p G$t(pn,f — r '|r ', n', n) . (9-22b)

► Formula (9-21a) for the mean of p" follows immediately from (5-27). 
To prove (9-2lb) we write the definition

e §(p") -  y  r  p ip "}
I“ p

and then substitute (9-19) for p" and replace the mass function P{p"} by the mass func
tion (9-18) of f. Using formula (7-76) for this latter mass function we thus obtain

FP/25//N = V  r +  r' ix + r' -  l)!(n -f n' -  r -  r’ -  l)!w!(n/ -  1)!
°{P r4 ? ,n  +  n ' ' r!(r' -  l)!(n  -  r)!(n ' -  r ' -  l)!(n -b n ' -  1 )!

where by (9-19)
rv = pn" — r' .

Defining r* = r' -f 1 and n* = n' +  1, the sum on the right can be written

rL  y  (r +  r* -  l ) ! ( n  +  n *  -  r -  r *  -  1)In! (n* -  1)! =  y  , , 
n ' , 4 ? ,  r!(r* -  l ) ! ( n  -  r ) ! ( n *  -  r* -  l ) ! ( n  +  n *  -  1 ) ! P

n*,n) ,

as was to be shown.
To prove formula (9-2lc) for the variance, observe that, by (9-19),

p" = f/n" +  constant
is a linear function of f, so that

V(P") = 4 -l V (y ,n ';a )  . n *

Formula (9-21c) is obtained by substituting herein the value of V(f) as given by (7-77b):

V(f|r',n';n) = n(n +  n') r'{n' -  r;) 
n '2(n' +  1) ◄
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Approximations. In principle, computation of a cumulative probability such 
as P{p" < p\rf, n '; n} under the distribution defined by (9-20) or evaluation of a 
linear-loss integral as given by (9-22) involves computation of a beta-binomial 
cumulative probability in some one of the ways discussed in Section 7.11.2; and 
when n is small and the distribution of r and therefore of p" is very discrete, this 
is the only method which will give good results. Even in this case, however, 
exact term-by-term computation will rarely be necessary because (as is pointed 
out in Section 7.11.2) a binomial or beta approximation to F&b will give good results 
if r' «  n', r «  n, and r +  r' «  max {n, n'}.

As n increases, the distribution of p" becomes more nearly continuous and 
approaches the beta prior distribution of p, so that a direct beta approximation 
to the distribution of p" itself— not a Normal approximation—will give good results. 
I t  follows from (9-21) and (9-11) that a beta distribution with parameters r*, n* 
defined by

n* +  1 = Vl±J>L (n/ +  !) r* = V l r' (9.2 3 )

will have the same mean and variance as the exact distribution of p". Using 
these parameter values, cumulative probabilities may be obtained by use of for
mula (7-23) or (7-24) and linear-loss integrals may be evaluated by use of for
mulas (9-12).

9.2.5. Distribution of J J "

By (9-15a) and (9-10) the posterior expectation of p will be

Pn n" -  1 
r +  r' -  1 ’ (9-24)

It follows that when f  and therefore J5" are random variables, the distribution of 
P" can be obtained from the unconditional distribution (9-18) of r. Solving (9-24) 
for r and remembering that p" is a decreasing function of r we have

P { r  < p|r'f n '; n} = G ^ r p|r', n', n) (9-25)
where

— 1r? =  ------- - -  (r' -  1) . (9-26)
P

The mean and partial expectation of the distribution of V  defined by (9-25) are 

E ( V y ,  n ';n) = = E(/5|r', n') -  p1 , (9-27a)

ES(jS"|r', n '; n) = Gfib(rf \r' -  1, n' -  1, n) . (9-27b)
It follows immediately from (9-25) and (9-27b) that the linear-loss integrals under 
this distribution of j5" are given by

L,(p) =  £ ( P - 2) p { r  =  z |r ',n ';n}
* < P

= p G/ttfolr', n', n) -  p' G ^r,\r' -  1, n' -  1, n) ; 
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Lr(p )3 ^ ( 2 - p ) P { r  = : | r 'n '; n }
* > P

= p' F»(r„!r' — 1, n' — 1, n) — p F#,{r,\r', n', n) . (9-28b)

► The proof of formulas (9-27) is very similar to the proof of (9-2lab), the main differ
ence being that in determining the region of summation for (9-27b) we must remember that 
/5" is a decreasing function of r :

WO = E "TTT--rf»(r\r>< ») .= E 3--- 1. »' - 1,r >rp r +  r ~  1 r >rp r — 1
i »)

where rp is defined by (9-26). ◄

No closed formula for the variance of jJ" or for its second moment about the 
origin can be found, but the latter quantity is approximated by

S(J) -
in" -  l)(n ' -  l)(n ' -  2) 
(n" -  2)(r' -  l)(r ' -  2)

v  [ \  _  V  ( i -  ! ) ! ( - ! ) ' ( n '~  3) ••• ( n ' -  1 -  j)  1
L h  (» "  -  3) •••  (» "  -  1 - W  -  3) •• •  (r ' -  1 ~ j ) J

(9-29a)

The sequence 5(J) considered as a function of J  does not converge, but as long as 
J  < r' — 1 it gives values which are alternately above and below the true value 
of E(j5"2). The error is therefore less than the last term included, and two or three 
terms will give a very good approximation if pf is reasonably small and n is reason
ably large. If for example n = 10 and if r ' = 12, n' = 15 (implying pf = 1.273, 
VV(0) = .186), the series within the brackets of (9-29a) is 1 — .061+ .008 
— • • • . Notice, however, that a t least two terms must be used, since the first 
term by itself is simply (n,; — 1 )/(n" — 2) times the second moment of p itself 
about the origin. The variance can then be approximated by use of

v o n  = w ' 2) -  [ E ( n p  = w  -  ' (9_29b)

► To show that the quantity S(J) defined by (9-29a) has the properties described in the 
text we shall prove that for any J  such that 1 < /  < r' — 1,

S(J) E (rs[i + _________ ■ / !(- !)• '-_________
(f +  r' -  2) • • • (f +  r' -  1 -  J)])•

since it is immediately apparent that if this is true, then /S(l), <S(2), • • • , S(J) will be al
ternately greater than and less than E(/5"*).

We start by rewriting the definition (9-29a) of S(J) in the form

S(J) = (n" -  1)’ y*  ( f - l ) ! ( - lV -»  (n '~  1) ••• (n' -  1 -  j)
+  ( « " - ! ) • • •  ( » " -  1 — j) ' (r’ - l )  ••• ( r ' -  1 - j )
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We next observe that we are entitled to write

- m  tu" i r V  u  ~  F r (n" ~ x) ••• <»" “  1 - i ) lS W ) - ( n  -  « • § ( , »  _ ' l )  . . .  <„" E U "  -  1) . . .  ( ,» -  1 - J
because

F f  (nr/ - ! ) ■• ■  (n" — 1 -  j ) l  ( n - f n , - l ) - - ( n  +  n, - l - j )  ,  , , , / \
E [ ( f» _  1) . . .  i §  (r +  r ' -  1) ••• (r +  r ' -  1 -  j)  /flk(r|r ’ ” ’n)

(r' -  1) • • • (r' -  1 -  j) J X,U J *’ W)

_  ( » ' - ! ) • • •  (»' ~  1 -  J)
O' -  i) • • • ( « ' -  i - i )

If now we reverse the order of expectation and summation in our previous expression for 
S(J) and then cancel out the factors involving n", we obtain

We can easily verify that the jth  term in the summand is equal to

____ 1 a (j -  i )K —i)y~* ,
f" -  1 (t"  -  1) .  • • (f" -  j)

where A is the first-difference operator defined by A a, = a,+i — a,. Then since
i A a, = ctj+\ — ai ,

we may write

w ,  -  („» -  !)• E

- r / T ^ - H T i i  ^ ( - i y -  i \ .
J \L ? "  — i J  L (<■" -  2) • • • (?" -  j  - 1) J /

The proof is completed by recalling that

? -  f "  _  1 • ◄

Approximations. In principle, computation of a cumulative probability such 
as P{/5" < p|r', n '; n} under the distribution defined by (9-25) or evaluation of a 
linear-loss integral as given by (9-28) involves computation of a beta-binomial 
cumulative probability in some one of the ways discussed in Section 7.11.2, a beta 
or binomial approximation to the beta-binomial giving good results when r' «  n', 
r «  n, and r +  r' «  max {n, n'}.

As n increases, the distribution of becomes more nearly continuous and 
approaches the inverted-beta-1 prior distribution of so that a direct inverted- 
beta-1 approximation to the distribution of J5" itself—not a Normal approximation— 
will give good results. It follows from (9-15) and (9-27a) that an inverted-beta-1 
distribution with parameters
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.. = E ( P [ E ( n  -  1)] , 2 
V(J5") +  ^

-  1) 
V (T)

+  2

n* = (r* -  1) E(j5") +  1 = (r* -  1)?' +  1 , 
b* = 1 ,

(9-30)

would have the same mean and variance as the exact distribution of J$". Once 
(9-30) has been evaluated approximately by use of (9-29), tail probabilities may 
be computed by use of (9-14) and linear-loss integrals may be evaluated by use 
of (9-16).

9.3. Sampling Distributions and Preposterior Analysis:
Pascal Sampling

9.3.1. Definition of Pascal Sampling
If a sample is taken from a Bernoulli process in such a way that the value 

of the statistic r is predetermined, the value of the statistic n being left to chance, 
the sampling will be called Pascal. In other words, Pascal sampling consists in 
counting the number of trials required to obtain a specified number of successes.

We assume throughout Section 9.3 that a Pascal sample with fixed r is to be 
taken from a Bernoulli process whose parameter p has a beta distribution with 
parameter (r', n').

9.3.2. Conditional Distribution of (n\p).
To find the conditional probability, given p, that n trials will be required to 

secure r successes, we start from the fact that the probability that the process 
will generate r successes and n — r failures in any one specified order is pr(l — p)n-r, 
just as in the case of binomial sampling with n fixed rather than r. The number 
of possible orders is different, however: we are specifying that the nth trial is a 
success, and therefore samples with the same n can differ only as regards the ar
rangement of the first r — 1 successes within the first n — 1 trials. Accordingly 
the conditional probability, given r and p, that the rth success will occur on the 
nth trial is given by the Pascal mass function (7-11):

P{n|p, r} = (r J ” )7(ro- r )! P ^ 1 “  'PY~r =  r) . (9-31)

9.3.3. Unconditional Distribution of n
If a sample of size r is drawn by Pascal sampling from a Bernoulli process 

whose parameter is a random variable p having the beta density (9-9) with param
eter (r', n'), the unconditional distribution of n will be beta-Pascal by the defi
nition (7-78) of that distribution:

P{n|r', n '; r} = JJ  f Pa(n\p, r) Mp\r', n') dp = ff>p.(n\r', n', r) . (9-32)

9.3.4- Distribution of f>"
By (9-1 la) and (9-10) the expectation of p posterior to observing the statistic 

(r, n) in Pascal sampling is
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r̂ _ r +  r'
? i" n +  nf (9-33)

just as if the statistic had been obtained in binomial sampling. Before the value 
of n is known, this formula permits us to obtain the distribution of p" from the 
unconditional distribution (9-32) of n. Solving (9-33) for n and remembering 
that p" is a decreasing function of n, we have

where
P{?" <  VV, n', r} = GfiPa(n,\r', n', r)

np = — — n .

The mean and partial expectation of this distribution of p" are 

E (P " |r ',n ';r )  = £  = E(jS|r', »') -  ?' ,
71

(9-34)

(9-35)

(9-36a)

ES(p"!r', n '; r) = p' GfPa(np\r' +  1, n' +  1, r) . (9-36b)
It follows immediately from (9-34) and (9-36b) that the linear-loss integrals under 
this distribution of p" are given by

^ (p )  =  £ ( p - * )  P{?" = z\r\ n';r}
* < P

= p GfPa(np\r', n \  r) -  ?' G9Pa(np\r' +  1, n' +  1, r) , (9-37a)

LAp) -  £ ( * - p )  P{p" = z\r',n'-,r}
* > P

= p' F*p0(np|r' +  1, n' +  1, r) -  p / V a(np|r', n', r) . (9-37b)

► The proof of formulas (9-36) is very similar to the proof of (9-2lab), the main differ
ence being that we must remember that p" is a decreasing function of n:

Eo(p") = 2  ;7~t r) = S  “ 7 /(3Pa(n|r' +  l,n ' +  1, r) ,
n > n p n  - r  n  n > n p n

where np is defined by (9-35). ^

No closed formula for the variance of p" or for its second moment about the 
origin can be found, but the latter quantity can be expressed in terms of an infinite 
series:

E(p"2|r', n '; r) r" r '(r7 +  1) 
r" +  1 n'(n' +  1)

[*+t (j -  l)!(r' +  2) • • • ( / +  j)
} ~2 (r" +  2) ••• ( r " + j ) ( n ' +  2)

The variance can then be found by computing

V(?,,|r \  n';r) = E (? " V , n'; r) -  [E(?"|r', » '; r)]*
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► To show that the series (9-38a) in fact converges to E(p"2), we first give it the non
committal name S and rewrite it in the form

5  = r"j V __ U ~ 1)! • r' ’ ~ ‘ (r' +  ft •
f r r "  ■■■ (r"+ j)  « '• • • ( » '+ »

We next observe that we are entitled to write

because

S  = O' -  m
r” ■■■ (r" +  j)

(/" +  i) I

E (r” + j ) l  _  V  (r + r,) • "  (r  +  r ' + ^
(n" +  j) J ^  (n +  n') • • • (n +  n' +  y) ri, r)

rf
n/

(r '+ j)
(n '+ i) 23  +  J + 1, **' +  3 +  1, r)

n ™r
r' ••• ( r '+ i )  
n' - - -  ( n '+ j )

If now we reverse the order of expectation and summation in our last expression for S and 
then cancel out the factors involving r", we obtain

S = r"2 ( i - 1)! .
••• (n " + i)

We can easily verify that thejth term in the summand is equal to

_1_
f t "

A ( i -  D!
ft!' ••• ( * " + ; - ! )

>

where A is the first-difference operator defined by A o, = a,+i — a,-. Then since
j

23  ^  = a^+>-  a> >
>-i

we may write

S = r"1 E hm (^7 [^7 -  ^  (fi» + / ) ] )  '
This limit will be

r"2 E(l/ff"2) = E(r"2/n"2) = E(p"2) 

as asserted by (9-38a) provided that the limit of

«<j > Z - + J )

is 0 for all possible n". To prove this, we first observe that because the parameters n' and r 
are restricted to n' > 0 and r > 1, and because the variable n is restricted to n > r, there
fore n" £2 n' +  n is restricted to n" > 1. But then
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and therefore

as was to be proved.

Bernoulli Process

R (J) < J\
1-2 ••• J  (1 +  J)

1
1 +  J

lim R(J) = 0

9.3.4

[Note: In the first printing there is a slight error in the proof of the above theorem. We 
hope it is correct this time.]

Approximations. In principle, computation of a cumulative probability such 
as P{p" < p|r', n ';r} under the distribution defined by (9-34) or evaluation of a 
linear-loss integral as given by (9-37) involves computation of a beta-Pascal cumu
lative probability in one of the ways discussed in Section 7.11.2, a beta or binomial 
approximation to the beta-Pascal giving good results when r' «  n', r «  n, and 
r +  r ' «  max {n, n'}.

As r increases, the distribution of p" becomes more nearly continuous and 
approaches the beta prior distribution (9-9) of p, so that a direct beta approxima
tion to the distribution of p" itself—not a Normal approximation—will give good 
results. I t follows from (9-11) and (9-36a) that a beta distribution with parameters

n * = E(p [ l  ~  E ( p ]  _  j = F l l -  PO _  j
V(p") V(0") ’ (9-39)

r* = n* E(p") = n* p' ,
would have the same mean and variance as the exact distribution of p". Once 
(9-39) has been evaluated approximately by use of (9-38), tail probabilities may be 
computed by use of (7-23) or (7-24) and linear-loss integrals may be evaluated 
by use of (9-12).

9.3.5 . Distribution of J5"
If a sample drawn by Pascal sampling from a Bernoulli process yields a statistic 

(r, n), the posterior expectation of P = l /p  will be, by (9-15a) and (9-10),
_  n; +  n — 1 
“  r" -  1 (9-40)

just as if the same statistic had been obtained in binomial sampling with fixed n 
instead of fixed r. The distribution of J5" can be obtained from the unconditional 
distribution (9-32) of n by solving (9-40) for n:

P{j5"|r', n'; r} = ftp.(n,\r', n', r)
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wnprp
n, = p(r" -  1) -  (n' -  1) . (9-42)

The mean, partial expectation, and variance of the distribution of J5" defined by 
(9-41) are

“  1 (9-43a)E(?"|r', »'; r) -  = E(*|r',»') ^  p' ,

E8(J5"|r', » '; r) = ?' / W n , |r '  -  1, »' -  1, r) , (9-43b)

v < r > ' , r )  -  -  r- T 7 ^ i  - ')  ; (9-430

the proofs are very similar to the proofs of (9-21). From (9-41) and (9-43b) it 
follows immediately that the linear-loss integrals under this distribution of are 
given by

L,(p) =  X > - 2) p t f" = 2ir> ' ; r>
«<p

= p fV,,(n,|r', n', r) -  ?  FtPa(np\r' -  1, n' -  1, r) , 

W p) ^  -  P) P t t"  = 2| r > ' ; r }
* > P

= ^ /-.(n .lr' -  1, n ' -  1, r) -  p (?«/*„(n,|r', n', r) .

(9-44a)

(9-44b)
Approximations. In principle, computation of a cumulative probability such 

as P{/5" < p|r', n ';r}  under the distribution (9-41) or evaluation of a linear-loss 
integral as given by (9-44) involves computation of a beta-Pascal cumulative 
probability by one of the methods discussed in Section 7.11.2, a beta or bino
mial approximation to the beta-Pascal giving good results if r ' «  n, r «  n, and 
r + r' «  max {n, n '} .

As r increases, the distribution of becomes more nearly continuous and 
approaches the inverted-beta-1 prior distribution (9-13) of /5, so that a direct 
inverted-beta-1 approximation to the distribution of J5" itself—not a Normal 
approximation—will give good results. I t follows from (9-43) and (9-15) that an 
inverted-beta-1 distribution with parameters r*, n*} b* defined by

r* -  2 = ^ i L ---- 1 (r ' _  2) , n* = £  n' , b* = 1 , (9-45)r r
will have the same mean and variance as the exact distribution of . Using these 
parameter values, cumulative probabilities may be obtained by use of formula 
(9-14) and linear-loss integrals may be evaluated by use of (9-16).
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Poisson Process

10.1. Prior and Posterior Analysis

10.1.1. Definition of a Poisson Process
A Poisson process can be defined as a process generating independent random 

variables t\, • • • , • • • with identical gamma-1 densities

/ Tl(x|l,X) = e-^X , x > 0 < 0 ° ’ (1(M)

The parameter X will be called the intensity of the process.
In the applications, x will measure the extent of an interval between two ad

jacent events which themselves have no extent. Thus, for example, x may be the 
time between two successive instantaneous events or the distance between two 
points. The parameter X can then be interpreted as the mean number of events 
per unit of time or space.

A unique and very important property of a Poisson process is the fact that 
P{2 > £ +  x\£ >  £} = P{£ >  x) . (10-2)

If x is interpreted as the time between two events, this says that the conditional 
probability that more than x additional “minutes” will elapse before the next 
event is independent of the number £ of minutes that have already elapsed since 
the last event. This implies in turn that the distribution of the number of min
utes from any arbitrarily chosen point of time to the next event is the same as the 
distribution of the number of minutes between two adjacent events.

► To show that the independence of past history asserted by (10-2) follows from (10-1), 
we write

f  e~Xu X du _-x((+x)
P{* > i  + x\£ > {} = ***?— -------  = - ^ 7 -  = «-** = P{* > x} .

J e~Xu\d u  * *

To show that this independence of past history is a unique property of the Poisson 
process among all processes generating continuous random variables £ > 0, we let G(x) 
denote an as yet undetermined right-tail cumulative function of which it is required that

G(^ J) = G(*) , 0(0) = 1 , 0(«) = 0 .
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If we define
h(a) = log G(a) ,

these conditions imply that
+  x) = h(x) +  /»({)

for all positive x and f. It then follows from the lemma below that h must be of the form
h(x) = -Xx

for some X > 0. Consequently
G(x) = e-Xl ,

and since G(») = 0, the parameter X > 0. The result (10-1) then follows from the fact 
that the density is

- 4 - G ( x) =  \ e ~ u  . ax
Lemma: Let h be a real-valued function defined on the interval [0, « ) such that

(1) * «  +  » ) - * ( © + * ( * )  , a l l* ,*  ,
(2) h is monotonic nonincreasing in x .
Then h is of the form

h(x) = — \x  for some X > 0 
Proof: Using (1) to write for m integral

h(mx) = h[(m — \)x +  x] = h[(m — l)x] +  h(x)
we get
(3) h(mx) = in h(x) .
Using (3) to write for n integral

hv  = h [ n { i x) ]  = nh ( i x)
we get 
(4)

From (3) and (4) we have for m, n integral

Letting x = 1 and A(l) = —X we get from (5) that for any positive rational y

(6) h(y) = -Xy .

Since h is nonincreasing by hypothesis, X > 0; and since h is monotonic, (6) is true for 
all positive real y. ^

10.1.2. Likelihood of a Sample
The likelihood that the process defined by (10-1) will generate an interval of 

length x is given directly by (10-1) as

e~Xz X .
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The conditional probability, given X, that the process will generate an interval of 
length £ > x is

J e-Xtt Xdu = e_Xx . (10-4)

The joint likelihood that the process will generate r successive intervals of lengths 
X\ , • • • , xr followed by an interval of length £ >  xr+\ is thus

X) e_Xxr+1 = e“ X2i-lx< Xr ; (10-5)
and if the stopping process is noninformative in the sense of Section 2.3, this is the 
kernel of the likelihood of the sample consisting of the r complete and one incomplete 
intervals. If we define

t = Hit\ Xi , (10-6)
the kernel (10-5) can be written

e"x‘ Xr , (10-7)
so that it is clear that the statistic (r, t) is sufficient when the stopping process is 
noninformative.

10A,3. Conjugate Distribution of X
When the parameter of a Poisson process is a random variable X, the most 

convenient distribution of X—the natural conjugate of (10-7)—is the gamma-1 
distribution defined by (7-43):

/ 7i(X|r, t) oc e_x* Xr_1 . (10-8)
If such a distribution with parameter (r', t') has been assigned to X and if then a 
sample from the process yields a sufficient statistic (r, t), the posterior distribution 
of X will be gamma-1 with parameters

r" = r ' +  r , t" = // +  * . (10-9)
The proof is similar to the proof of (9-10).

The mean, partial expectation, and variance of the distribution (10-8) of X 
are, by (7-45),

E(X|r, 0 -  X = \  . (10-10a)

Eo(X|r, t) = X F7»(X/|r +  1) , (10-10b)

V(X|r, 0  = jt • (10-10c)

It follows immediately from (10-10b) that the linear-loss integrals are

L,(A) . fo (X “  z) M zlr> 0 dz = A FA M r) -  A Fy.(\t\r +  1) , (10-lla)

Lr(A) - (* -  A) f yi(z\r, t)dz = A CrT.(A*|r+ 1) — A Gy'(M\r) . (10-11 b)

As shown in (7-44b), cumulative probabilities may be obtained from Pearson’s
tables of the gamma function I{u} p) or from tables of the cumulative Poisson 
function by use of the relation
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Fyi(\\r, t) =  Fy»(\t\r) = /  r -  1^ = GP(r\t\) . (10-12)

Limiting Behavior of the Prior Distribution. As the parameters r and t of 
(10-8) both approach zero in such a way that the ratio r/t = X remains fixed, the 
probability becomes more and more concentrated toward X = 0 but the variance 
becomes infinite. The mean and variance of the limiting distribution—a mass of 
1 at X = 0—are not equal to the limits of the mean and variance.

^  The behavior of the variance follows immediately from (10-10c). To show that the 
distribution approaches a mass of 1 located at X = 0—i.e., to prove that if r/t is held equal 
to X then

lim Fy\(5\r, t) = 1
r,t-*0

for any 5 > 0 however small—, we first substitute r/X for t in the definition (7-43) of f y\ 
and write _

*V({|r, r/X) = I ’'  (rA) d\ .
We then substitute

u = X/X , 5* = «/X ,
and write

fV,(«|r, rA) = /„** rdu = r-  f f  e— r «-* du

rT r t*> e T* I r U -1 du r! Jo
r e - r** 5*r 

r! ’
For any 6* = 5/X > 0, however small, the limit as r —> 0 of each of the four factors in the 
expression on the right is 1, and therefore the limit of the whole expression is 1. Since on 
the other hand Fyi(8) < Fyi(«) = 1 for all r > 0, it follows that as r —► 0 the limit of 
FyiW is 1. 4

10.1.4- Conjugate Distribution of 1 /X  =  p

In problems where the utility is linear in 1/X rather than in X, we shall need 
the same kinds of information about the distribution of JL = 1/X that we have 
just obtained for the distribution of X. Substituting \/n  for X in the gamma-1 
density (10-8) and multiplying by the Jacobian we find that the induced density 
of p is inverted-gamma-1 as defined by (7-54):

f M r t t ) c c e - ^ n - ^  . (10-13)
Cumulative probabilities may be obtained from Pearson’s tables (cf. Section 7.6.1) 
of the gamma function I(u , p) or from tables of the cumulative Poisson function 
by use of the relations

Giyi(p\r, t) = Fy+(t/n\r) = 1 r -  1

which follow immediately from (7-55), (7-38), and (7-39). The mean, partial 
expectation, and variance of p are, by (7-56),
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E{fi\r, 0  -  A -  ^TZ~[ ’ r > 1 > (10*15a)

E«(a|r, 0 = p G A t/n |r -  1) , r >  1 , (10-15b)

V(A|r, 0 = (r 2) ’ r >  2 • 00-15c)

I t follows from (10-14) and (10-15b) that the linear-loss integrals are

£ i(m) =  f *  (m — z )/,t i(z|r, t)dz  = ti Gy>(t/fi\r) — p Gy*(t/n\r ~  1) . (10-16a)

Lrb) -  / /  (z -  M)/ni(z|r, t) dz = p F7.(*/M|r -  1) -  . (10-16b)

10.2. Sampling Distributions and Preposterior Analysis:
Gamma Sampling

10.2.1. Definition of Gamma Sampling
If a sample is taken from a Poisson process in such a way that the value of 

the statistic r is predetermined, the value of the statistic l being left to chance, the 
sampling will be called gamma. In other words, gamma sampling consists in 
observing the process until the rth event occurs and measuring the time, length, 
or other dimension which “elapses” up to this point.

We assume throughout Section 10.2 that a gamma sample with fixed r is to 
be taken from a Poisson process whose intensity X has a gamma-1 distribution 
with parameter (r', t').

10.2.2. Conditional Distribution of (l |X)
The density of the individual random variables t  generated by a Poisson 

process is by definition (10-1) the special case f yi(x|l, X) of the gamma-1 density 
defined by (7-43). The conditional probability, given X, that the sum of r such 
variables will have a total value t is given by the convolution of the r individual 
densities, and we saw in (7-46) that this convolution is a gamma-1 density with 
parameters r and X. We thus have for the conditional density of (l |r, X)

D(J|r, X) = f yi(t\r, X) . (10-17)

10.2.3. Unconditional Distribution of 7
If a sample of size r is drawn by gamma sampling from a Poisson process 

whose intensity is a random variable X having the gamma-1 density (10-8) with 
parameter (r', t')y the unconditional distribution of l is inverted-beta-2 as defined 
by (7-28):

D « |r',< ';r) = / 0‘ / Yi«|r, X)Ai(A|r'f V) d\ = A*(f|r, r', f )  . (10-18)

► To prove (10-18) we replace f yl(t) and / Yi(X) in the integrand by their definitions (7-43) 
and write
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f  ■  e ~ x<(X f)r~ 1 .  e ~ x<,( X Q r' ~ 1

o (r -  1)! * ‘ (r' -  1)! t’ il\

( r - f r ' - l ) !  t'-H"’ f « e- X(<+,,>(X[t +  t,1)r+f,~1
(r -  l)!(r' -  1)! (t +  t'),+r‘ Jo (r +  r' -  1)! (it +  t') dX.

The integral on the right is Fyi(« |r + r', t + t') = 1, while by (7-28) the factors preceding 
the integral sign are /,yjj(<|r, r', t'). ^

10.2.4. Distribution of
If the prior distribution of X is gamma-1 with parameter (r', <') and if a sample 

then yields a sufficient statistic (r, t), formulas (10-10a) and (10-9) show that the 
mean of the posterior distribution of X will be

r "  r  4- r '

-  F  -  7 + 7  ■ (1<M9)

It follows that when the value of the l to be obtained by gamma sampling is still 
unknown and 51" is therefore a random variable, the distribution of 51" can be 
obtained from the unconditional distribution (10-18) of l. Solving (10-19) for t 
and remembering that X" is a decreasing function of t we have

P{K" < X|r', t';r} = Gm  ( y  -  t'\r, r', t ')  • (10-20)

I t  now follows from ( 7 - 2 9 ) ,  ( 7 - 1 9 ) ,  and ( 7 - 2 0 )  that cumulative probabilities 
may be obtained from tables of the standardized beta function or tables of the 
binomial function by use of the relation

P{K" <  X|r', f'; r} = f>(X<7r"|r', r) = Gt(r'\\t'/r”, r" -  1) . (10-21)

The mean, partial expectation, and variance of this distribution of V ' are

E $ " | r ' , r )  = j, -  E(X|r', t') m X' , (10-22a)

Efc(*"|r', t';r) = X' FP{\t'/r"\r' +  1, r) , (10-22b)

V (* 'V , r) = r +  rr, +  1 • £  =  r-  + ~; .  +  1 V(X|r', T) . (1 0 -2 2 C )

I t  follows at once from (10-21) and (10-22b) that the linear-loss integrals under 
this distribution of are given by

L/(X) =  J *  (X -  X") D(X") <fX"

= X F r(\t'/r" \r ', r) -  X' *>(X<7r"|r' +  1, r) , (10-23a)

Lr(X) =  J" (X" -  X) D(X") d\"
= X' Gp*(\t'/r"\r' +  1, r) -  X G ^ X t '/r 'Y ,  r) . (10-23b)
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► Formula (10-22a) for the mean of 51" follows immediately from (5-27). 
To prove formula (10-22b) we write the definition

E j$") s  J*  D(X") dX"

and then substitute (10-19) for X" and replace the density of X" by the density (10-18) of l. 
Using formula (7-28) for this latter density we thus obtain, remembering that X" is a de
creasing function of t,

e&(K") = f ’
r +  r' (r +  r' — 1)! L'~'l"'
t + t' ( r -  1) !(r' -  l)!(f +  f')r+r'

w here by (10-19)

(r-frp !  r - ir* * 1 
( r -  l ) ! r ' !  (t +  t'y+r' + l dt = \ '  Gm (t*\r, r' +  1, 0

t X t  .

Formula (10-22b) then follows by (10-20) and (10-21).
To prove formula (10-22c) for the variance we first find the second moment about the 

origin; and to do so wre again substitute for X" in terms of t :

E(K"*) -  f ” D(X") dX" = f *  J/#.(<|r, r', f)  dt

(r + r')r'(r' +  1) 
(r +  r' +  1)1'* f omM t\r, r’ + 2, t')dt

(r +  r’)r'(r' +  1) 
(r +  r' +  1) V*

We then obtain the variance by use of the usual formula

_  , ,  (r +  r')r'(r' +  1) f r 'l*  r r'
M2 M2 Ml (r +  r' + ! ) * ' !  [j'J  r +  f' + 1 * ' 2 ◄

Approximations. As r increases, the distribution of 51" approaches the 
gamma-1 prior distribution of X, so that when r is large a gamma—not a Normal— 
approximation to the distribution of 51" will give good results. I t follows from 
(10-22) and (10-10) that a gamma-1 distribution writh parameters

r n X- 1 r n 4- 1
r* = — f — r ' ,  t* = r- ^ — t>t (10-24)

will have the same mean and variance as the exact distribution (10-20) of 
Using thes* parameter values, cumulative probabilities may be obtained by use of 
formula (10-12) and linear-loss integrals may be evaluated by use of formulas 
(10-11).

10.2.5. Distribution of (L”
By (10-15a) and (10-9) the posterior expectation of £ will be

p." = t"
r" -  1 = 
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so that when l and therefore fL" are random variables the distribution of fi" can 
be obtained from the unconditional distribution (10-18) of L Solving (10-25) for t 
we have

P{/1" < M|r', t'; r} = F M r , r', tf) (10-26a)
where

t* = M(r" -  1) -  t' . (10-26b)
It follows from (7-29) and (7-20) that cumulative probabilities may be obtained 
from tables of the standardized beta function or the binomial function by use of 
the relations

POT < M|r', r} = J>(irM|r, r') = Gb(r\*„ r +  r ' -  1)
where

,  = - J ^  = i _____ *_____
'  t M +  t  1 M( r " - 1 )

The mean and variance of this distribution of /I" are 

W Y ,  t';r) = = E(/J|r', f )  *  p' ,

(10-27a)

(10-27b)

(10-28a)

V (fl 'Y i t'; r ) = ^ 7 7 ^  2 ) = p r z i  V(A|r% <') . (1 0 -2 8 b)

The partial expectation is

E«(/I"|r', t’; r) = p' r ' -  1) (10-28c)

where *> is defined by (10-27b). I t  follows from (10-27) and (10-28c) that the 
linear-loss integrals are

£«(m) -  (M -  fi") D(A”) dp"
= P FA**\r, r') -  p' FA*?\r> r' -  l) , (10-29a)

1 * 0 0 -  / /  (A" -  m) W ) d p "
= ^  G^(T,|r, r ' -  1) -  M G > W r, O  . (10-29b)

^  Formula (10-28a) follows directly from (5-27).
To prove formula (10-28b) we use the general formula for the effect of a linear trans

formation on moments. Since
p" = — — +  — *A* _// 1 ' _//r" -  1 ’ r" -  1

we have by (7-7)

v(/n = (r»_ i),vfl ;
and formula (10-28b) results when we use (10-18) and (7-30b) to substitute herein

V(ft = Kr +  r' .
W (r' — l)2(r' — 2)
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Formula (10-28c) is most easily derived by writing the definition

ESGI") -  f *  P" D(/l") dp"

and then substituting (10-25) for /z" and replacing the density of fL" by the density (10-18) 
of l :

The result (10-28c) follows by (7-29).

Approximations. As r increases, the distribution of fit” approaches the in
verted-gamma-1 prior distribution of /Z, so that when r is large an inverted-gamma-1 
—not a Normal—approximation to the distribution of /l" will give good results. 
I t  follows from (10-28) and (10-15) that an inverted-gamma-1 distribution with 
parameters r* and t* determined by

will have the same mean and variance as the exact distribution (10-26) of (Ln. 
Using these parameter values, cumulative probabilities may be obtained by use 
of (10-14) and linear-loss integrals may be evaluated by use of (10-16).

10.3. Sampling Distributions and Preposterior Analysis:
Poisson Sampling

10.3.1. Definition of Poisson Sampling
If a sample is taken from a Poisson process in such a way that the value of 

the statistic t is predetermined, the value of f being left to chance, the sampling 
will be called Poisson. In other words, Poisson sampling consists of observing 
the process over a predetermined amount of time, length or other dimension, and 
counting the number of events which occur.

We assume throughout Section 10.3 that a Poisson sample with fixed t is to 
be taken from a Poisson process whose intensity X has a gamma-1 distribution with 
parameter (r', t').

10.3.2. Conditional Distribution of (r|X)
Since there will be r or more “events” in t “minutes” if and only if the number 

of minutes preceding the rth event is t or less, the distribution of (f|J, X) can be 
obtained immediately from the distribution (10-17) of (f|r, X):

r* — 2 = (r' — 2) r +  r' -  1
t* = jT - r y  f  , (10-30)r

P{r >  r|<, X} = P{i <  t\r, X} = P7i(<|r, X) . (10-31)

I t then follows by (7-44b) that the distribution of f  is given by the Poisson mass 
function (7-32):

P{r|<, X} = f P{r\\t) . 
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10.3.3. Unconditional Distribution of f
If a sample of size t is drawn by Poisson sampling from a Poisson process 

whose intensity is a random variable X having the gamma-1 density (10-8) with 
parameter (r', t')} the unconditional distribution of f is negative-binomial as de
fined by (7-73):

P{r|r', t';t}  = fp(r\Xt) f yl{X\r', t') dX =  f nb ( r  r ' )  * (10-33)

► Substituting for/p and/7i in the integral (10-33) their definitions (7-32) and (7-43) we 
obtain

•<* e~XtQd)r e*™Qd'Y~l ,, „ 
“  ( r ' - l ) !  1 dXp «  - 1:

_ (r +  r1 -  1)! t' t'r [«
~ r!(r' -  1)! (i +  <')r+r' Jo (r +  r' -  1)!

= /■* (r 7 + 7 ’ r' )  F?i(°° 'r + r>-1 +  *')

(* +  O dX

and the second factor on the right is 1.

IO.3 .4 . Distribution of X"
If the prior distribution of X is gamma-1 with parameter (r', /') and if a sample 

then yields a sufficient statistic (r, t), formulas (10-10a) and (10-9) show as we 
have already seen that the mean of the posterior distribution of X will be

x" = 7> = 7 T 7  • (10-34>
It follows that when the value of the r to be obtained by Poisson sampling is 

still unknown and X" is therefore a random variable, the distribution of X" can 
be obtained from the unconditional distribution (10-33) of r. Solving (10-34) for 
r and substituting in (10-33) we have

P $ "  = X|r', t')i) = U  ( r x| r ' )  » rx = Xt” -  r' . (10-35)

Then recalling that the argument of /«& is integer-valued although its parameters 
are continuous we have by (7-75) that cumulative probabilities under the distribu
tion of X" may be obtained from tables of the standardized beta function by use 
of the relations

P{*" <  Mr', <';<}= (rx| r ' )  = Gr  ( ^  

P{*" >  X|r', <';<} = Gni (rx| ^  r ')  = Ffi. ( ^

r“ -f 1, r ' )

where
r~ =  greatest integer < XI” — r ' , 
r+ = least integer >  Xt” — r ' . 
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The mean, partial expectation, and variance of this distribution of X" are

E(K "|r',* ';0 = j, = E(X|r', t') =  X' , (10-37a)

E& (*"|r',l';0 - V G r ( t l t, r - +  l , r '  +  l )  . (10-37b)

(10-37c)

It follows at once from (10-36) and (10-37b) that the linear-loss integrals under 
this distribution of X" are given by

L,(X) =  £ ( X - 2) P { * " = z |r '( i';*}
g<\

= \G p  ( ^  r +  1, r ' )  — X' Gp r +  1» r> +  l )  ’ (10-38a)

Lr(\) -  -  X) P{K" = 2|r', f - t )
* > \

- F *  ( r + ?  h  ■ + 1)  - x ( r r ?  K r ' )  • <l °-3 8b>

► Formula (10-37a) follows immediately from (5-27).
To prove formula (10-37b) we write the definition

E5&") -  Y j l " p ^">
A"<A

and then substitute (10-34) for X" and replace the probability of X" by the probability (10-33) 
of r. Using formula (7-73) for this latter probability we thus obtain

r +  r' (r +  r' -  1)! t’ l'T' 
& t  + l’ r!(r' — 1)! (t +  t')r+r’

/  y»  (r +  r')l trtn'+l 
t / g -  r\r'\ (t +  Or+r'+1 X' F,-* |r

U +  »'
• r' +  1

) •

Formula (10-37b) then follows by (10-36).
To prove formula (10-37c) for the variance we make use of the fact that, by (10-34),

is a linear function of f, so that

X" = y, +  constant 

V(K") = .

Formula (10-37c) is obtained by substituting herein from (7-74b)

V(r|r',J';0 , t/(t + 1’) , t/t" rTU
r [<7(« +  O P r (t'/t")1 t’’
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Approximations. As r increases, the distribution of V ' approaches the 
gamma-1 prior distribution of X, so that when r is large a gamma— not a Normal— 
approximation to the distribution of X" will give good results. I t  follows from 
(10-37) and (10-10) that a gamma-1 distribution with parameters

r* = j r ’ , = (10-39)

will have the same mean and variance as the exact distribution (10-35) of 51". 
Using these parameter values, cumulative probabilities may be obtained by use 
of formula (10-12) and linear-loss integrals may be evaluated by use of formulas 
( 10- 11).

10.8.5. Distribution of fl"
If a sample drawn by Poisson sampling with fixed t from a Poisson process 

yields a statistic (r, i), the posterior expectation of JL = 1/X will be, by (10-15a) 
and (10-9),

P" = r +  ? - i  ’ (10-4°)

just as if the same statistic had been obtained in gamma sampling with fixed r 
rather than fixed t. The distribution of ft" can be obtained from the unconditional 
distribution (10-33) of f  by solving (10-40) for r:

POT = n\r', t'-t} = f nb ( r M ^ -  r ' )  > r„ = ^  -  (r' -  1) . (10-41)

Since #" is a decreasing function of r and r is integer-valued, we have by (7-75) that

t i t "  < -  f y ^ r V ' )  •

P { f ' >  «|r', t ';l) -  P-> '■') -  <;r  (,-TfTfl ’• '+ > .  ' j
where

r~ =  greatest integer <  — — (r' — 1) ,

r+ =  least integer >  — — (r' — 1) .

The mean and partial expectation of this distribution of £" are

m y ,  *';<) = 7 3 7  = E ( A i r ' , o - P ' ,

(10-42a)

(10-42b)

(10-43a)

E8(/I"|r', <';<) = m' F r  ( ^ | r +, r ' -  l )  • (10-43b)

I t follows immediately from (10-42) and (10-43) that the linear-loss integrals under 
this distribution of fl" are
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Li GO -  £  0* -  z) P { / I "  =  2}
*<M

= M ( j - p p  r+, r ')  -  p.' Fp r+, r' -  l )  , (10-44a)

Lrin) -  X) (z -  m) P{A" = «}
*>M

= ( r + T ^ -  +  1, r' -  l )  -  M <?*« ( j ^ | ^ +  l , r ' )  • (10-44b)

► Formula (10-43a) follows immediately from (5-27).
To prove formula (10-43b) for the incomplete expectation, we write the definition

E8(r> - x y , p {*"}
*<M

and then substitute (10-40) and (10-41) remembering that j3" is a decreasing function of r:

EW "> ■ , 5 , r + ^ - i M r | r r 7 r' )  '  r-HrTc - ( ' - | r T 7 ' r' - ' )  •
By (10-42) this result is equivalent to (10-43b). ◄

No closed formula for the variance of /I" or for its second moment about the 
origin can be found, but the latter quantity is approximated by

j

m  -  £
>-1

t '» iu  -  D K - i y - 1
*",-i(r / _  !)(r/ _  2) • • • (r# — 1 — j) (10-45a)

The sequence {£(«/)} does not converge, but as long as J  < r* — 1 it gives values 
which are alternately above and below the true value of E(£")2, and the error 
which results from using a finite number of terms is therefore less than the last 
term included. From (10-45a) we can derive an approximation to the variance 
which also gives values alternately above and below the true value:

von

where

r' -  1 F r' -  1 r  ^  -  D K - l ) ’- 1 I
r’ -  S t  + r ' - 3 / ^  -  4) • • • (r' -  1 -  j)  J

(10-45b)

H' S  X(jx\r', n tn
(r' -  l)*(r' -  2) (10-45c)

When r' >  3, a more suggestive form of the series is obtained by recombining 
the first two terms:

von 2 r r' -  i e A  t'>~Hj -  D K - i y - 1 ~i
r' -  S t  +  r ' -  3 t f a  -  4) • • ■ (r' -  1 -  j)  J 1

(10-45d)
287



10.3.5 Part I I I :  Distribution Theory

but it should be observed that if r' < 7 and t < \ t '( l  — r ') /(r ' — 4) the approx
imation using a single term of this series may be below the true value, in which 
case the approximation using two terms would be worse than the approximation 
using a single term.

► To show that the quantity S(J) defined by (10-45a) has the properties described in the 
text we shall prove that for any J  such that 1 < J  < rf — 1,

( 1) S(J) - E  (/!"*[ 1 + (t +  r' -  2) • • • (f + V r r ^ ] ) ;

since it is immediately apparent that if this is true, then S(l), S(2), • • • , S(J) will be al
ternately greater and less than E(/l"2).

We start by rewriting the definition (10-45a) of S(J) in the form

(2)
j/,+i

1 } (r' -  1) ■ • • (r' -  1 -  j )

We next observe that we are entitled to write

(3) S(J)

because

(4)

= r , y ^ - D K - i ) ’- ‘ , E r ________^ ________ 1
£ i  t",+l L(?" - i ) - - -  (f "  -  i -  3) J

F f t"i+1 1 Y> Q +  l’)i+l /  |_f A
L(f" -  1) ••• (f” -  1 - j ) J  r4 *  (r +  r ' ~  1) ••• (r +  r> -  1 -  j)M \ |l + i '  )

t'i+l________/  J _  , . A __________<22!________
• • • ( f ' -  1 t + t' r 1 )  ( r ' - l ) - - - ( r ' - l - j )(r' -  1)

If we now reverse the order of expectation and summation in (3) and then cancel out 
we obtain

(5) w E[g < r  r

We can easily verify that thejth term in the summand is equal to
1 A ( j - ! ) ! ( - ! ) ' -  ,

t " - \  { t " { f - j )
where A is the first-difference operator defined by A o, = a,+i — a,. Then since

2/_ i A a, = aJ+l -  a! ,
we may write

S(J) _ F / _ L _  r - j ____________ 1 \
V "  -  1 I f "  -  1 ( ? " -  1) J  -  1)J /

The proof of (10-4oa) is completed by recalling that
t"

fi" = t" -  1 
288



Poisson Process 10.3.5

To derive (10-45bc) from (10-45a) we shall make use of the relation
(6> v o n  = E o n )  -  [E o n ?  = s ( j ) -  [E o n ?  .
Rewriting the series (10-45a) in the form

S(J) = Si + St(J)
where

(7)

(8)

s  _ ** r ,  ^ i - i
1 (r' -  l)(r' -  2) L t" r' — 3J

St(J) = _____ tVt'r' -  l A  -  1)!( — I)'-1 ]
-  2) l"  L< r' -  3 n-*(r' -  4) • • • (r' -  1 -  j) JIt' -  1 )V

and making use of (10-43a) for E(/?") we can put (6) in the form

o) v a n  = s, -  ^  +  & ( j ) .

Remembering that f" = tf +  t we can compute

( 10) S i -
t'2

(r' -  l)2
t'2 r  _ V  r' -  11

(r' -  l)2(r' -  2) L1 t" r' -  3J
t '2 r r  _  -  1 n  4

(r' -  1 )V  -  2) t" \ j  r' -  3 7J *
The results (10-45bc) are now obtained by substituting (10) and (8) in (9) and then using 
(10-15c). <4

Approximations. As t increases, the distribution of becomes more nearly 
continuous and approaches the inverted-gamma-1 prior distribution of so that 
when t is large an inverted-gamma-1 approximation to the distribution of /I" itself— 
not a Normal approximation—will give good results. I t follows from (10-43a) 
and (10-15) that an inverted-gamma-1 distribution with parameters

r* = j ^  +  2 ,  <*= £ - = 7 * ' ’ (10_46)
would have the same mean and variance as the exact distribution of /l". Once 
(10-46) has been evaluated approximately by use of (10-45), tail probabilities may 
be computed by use of (10-14) and linear-loss integrals may be evaluated by use 
of (10-16).
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A. Independent Normal Process, Mean Known

11.1. Prior and Posterior Analysis

11.1.1. Definition of an Independent Normal Process
An Independent Normal process can be defined as a process generating inde

pendent random variables £i, • • • , • • • with identical densities
—  00 <  X <  00 1

{n[x \)i , h) = (2ir)~i e-i*(*-iOf hi , — 00 < y < 00 , (11-1)
h > 0 .

This is the Normal density as defined in (7-63), and therefore the process mean 
and variance can be obtained from (7-65):

E(£|m, h) = y , (ll-2a)
V(*|m, h) = l/h  . (ll-2b)

The parameter h will be called the precision of the process. We shall use

cr =  VV{£\n, h) = V l /h  (11-3)
to denote the process standard deviation.

11.1.2. Likelihood of a Sample When p Is  Known
The likelihood that an Independent Normal process will generate v successive 

values xi, • • • , x,*, • • • , x, is the product of their individual likelihoods as given 
by (11-1); this product is obviously

. (11-4)
When the process mean /i is known and only the precision h is unknown, the 

statistic

(11-5)

can be computed and will be said to be based on v degrees of freedom. The likeli
hood (11-4) can be written in terms of this statistic as

(2ir)“ *r e - t ^ h l '  . (H-6)

I t is clear from (11-6) that all the information in the sample is conveyed by 
the statistics w and v, which are therefore sufficient when y is known and the stop
ping process is noninformative. Since (2ir)” i r in this expression has the same
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value regardless of the value of the unknown A, it can tell us nothing about A and 
may therefore be disregarded: the kernel of the likelihood is

e r i ^ h i '  . (11-7)

11.1.3. Conjugate Distribution of h
When the mean ^ of an Independent Normal process is known but the pre

cision K is treated as a random variable, the most convenient distribution of R— 
the natural conjugate of (11-7)—is the gamma-2 distribution defined by (7-50):

f y2(h\v, v) oc e~ih¥9 hi' ( 11-8)

If such a distribution with parameter (v', v) is assigned to ft and if a sample then 
yields a sufficient statistic (w, v), the posterior distribution of ft will be gamma-2 
with parameters

v// vv' +  vw---;-------  »
V* + V

v "  =  v ’ +  v (11-9)

► Multiplying the kernel (11-8) of the prior density by the kernel (11-7) of the likelihood 
we have

D"(A) « e - i ^ h i ' - 1 • e ' i ^ h V  = e~iw'*" h V '-x ,
which is of the form (11-8). ◄

The mean and variance of the gamma-2 distribution (11-8) of fi are, by (7-52)

E(*k u) = -v < (ll-10a)

V (^ ,» ') = ^ -  (n -iob )

Cumulative probabilities may be obtained from Pearson’s tables of the gamma 
function I  (u , p) or from tables of the cumulative Poisson function through the 
relation (7-5lb):

FYl(/i|t>, p) = Fy.(hpvh\\r) = KhvVfp, \ v -  1) = GP(iv\hpvh) . (11-11)

Limiting Behavior of the Prior Distribution. As the parameter v of (11-8) 
approaches zero while v remains fixed, the mean of the distribution remains fixed 
at 1 / v, the variance becomes infinite, and the probability becomes more and more 
concentrated toward h = 0.

► The behavior of the mean and variance follow immediately from (11-10). To prove 
that the probability becomes concentrated toward h = 0, i.e., to prove that

lim Fy2(6\v, v) — 1

for any h > 0 however small, we write
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and then substitute 

to obtain

-  D!
>-i

\w  dh

u = vh , 6* = vB , r = \v ,

«o = J ‘
*• e~r“(ru)r~1 rdu .( r -  1)!

That this integral approaches 1 as r —> 0 was proved at the end of Section 10.1.3. ◄

I I . I . 4 . Conjugate Distribution of 9
If we assign a gamma- 2  distribution to the precision R of an Independent 

Normal process, then as shown in the proof of (7-58a) we are implicitly assigning 
an inverted-gamma- 2  distribution with parameters s = V v  and v to the process
standard deviation 9 — ^ \/R. This latter distribution is discussed and graphed 
in Section 7.7.2, but one additional observation is worth making in the present 
context.

The judgment of a decision maker who must assign a prior distribution to 
R will often bear much more directly on 9 than on R, and Figure 7.5 may be of 
service in translating judgments about 9 into values of the parameters s = V v  
and v. Thus if the decision maker feels (1) that there is an “even chance” that 
9 > 5 and (2) that there is “one chance in four” that 9 >  10, he can find the 
corresponding values of the parameters v' and v' as follows. He first determines 
by use of the curve for the ratio of the third to the second quartile in Figure 7.5B 
that the ratio 10/5 = 2  implies v = 1 approximately. He then reads from the 
curve for the second quartile in Figure 7.5A that when v = 1 the second quartile 
is 1.45 times s and computes s = 5/1.45 = 3.45 and v = 3.452 = 12.

Limiting Behavior of the Prior Distribution. As v approaches 0 with s = Vy 
held fixed, the probability that 9 lies within any finite interval approaches 0 but 
the distribution does not become uniform: the ratio of the densities at any two 
points <71 and <j% approaches The mean of the distribution is infinite when
v < 1 and the variance is infinite when v < 2.

► The behavior of the mean and variance are given directly by (7-59), and the limiting 
ratio of the densities is easily obtained from the formula for the density (7-57). That the 
probability of any finite interval approaches 0 follows from the facts (1) that by (7-5Sa)

F i y * ( o \ s : V )  =  1 -  F * ( 1 / ( 7 V ,  » )

and (2 ) that as proved at the end of Section 11.1.3

lim F*(6\8*9 v) = 1
r—*0

for any 5 > 0 however small—i.e., for any <r however large.
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11.2. Sampling Distributions and Preposterior 
Analysis With Fixed v

Throughout Section 11.2 we assume that a sample is to be drawn from an 
Independent Normal process in such a way that the value of the statistic v is 
predetermined, the value of the statistic tZ> being left to chance. We assume further 
that while the mean /x of the process is known its precision R has a gamma-2 dis
tribution with parameter (v'} v').

11.2.1. Conditional Distribution of (w\h)
Given a particular value h of the process precision, the distribution of is 

gamma-2 with density

D(u>|/i, v) = f y2(w\h, v) cc e~lh™ wl*-1 . (11-12)

► In the v-dimensional space of the xs, the random variable t& defined by (11-5) has the 
constant value w on the surface of a hypersphere with center (m, /i, • • • , m) and radius Vtp. 
Since the area of such a surface is proportional to (Vui)'-1 and since an increment dw in w 
produces an increment proportional to dw/Vw in the radius of the sphere, the spherical 
shell within which the value of t& is between w and w +  dw is proportional to udr-1 dw. 
Multiplying the density (11-6) by this result and dropping constants we obtain

(fa) f

which apart from the differential element dw is (11-12). ^

11.2.2. Unconditional Distribution of H)
If the process precision R is treated as a random variable having the gamma-2 

density (11-8) with parameter (t/, v'), the unconditional distribution of the statis
tic tl> has the inverted-beta-2 density (7-28):

D ( w K ,  f ' ;  *0 =  / 0" i ,  * ) f A h W S ) d h  = u ( w \ h » ,  K  ^ )  . ( n - 1 3 )

► Substituting (7-50) for/72(u;) and fyiih) in the integral (11-13) we obtain, apart from 
factors constant as regards w and h,

D(W) “ (w  /o" w  dh ■

Comparison with (7-28) shows that the factor preceding the integral is an inverted-beta-2 
density with the parameters given in (11-13), while comparison with (7-43) shows that the 
integral Is a constant multiplied by Fyi(oo\$v +  \v*, \{yw +  v't;')) = 1 . ^
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11.2.3. Distribution of 0"
The parameter v" of the posterior distribution of R will, by (11-9), have the 

value
_  vrvr +  vw _  y V  +  vw 
~  y ' +  V  “  v" (11-14)

This means that when the sample outcome is still unknown and is therefore a 
random variable, 0" is also a random variable whose distribution can be obtained 
from the unconditional distribution (11-13) of tD. Solving (11-14) for w, sub
stituting in the definition (7-28) of /»/», and comparing the result with the defi
nition (7-25) of foi, we find that the distribution of 0" is inverted-beta-1 with 
density

/ ;  y) = f m  (« /'|K , hv", ^ )  • (11-15)

B. Independent Normal Process, Precision Known

11.3. Prior and Posterior Analysis

11.3.1. Likelihood of a Sample When h Is Known
We have already seen in Section 11.1.2 that if the stopping process is non

informative the likelihood of observations x \, • • • , x„ • • • , xn on an Independent 
Normal process is

( 2 x ) - i " ; (11-16)
the expression is identical to (11-4) except that we are now using n rather than v 
to denote the number of observations. If we define the statistic

m =  -  Zxi , (11-17)n
the likelihood (11-16) can be written

(2ir)“ ln e~ihzlXi~m)t . (11-18)

When the process precision h is known and only the mean y is unknowni the 
only factor in this expression which varies with the unknown parameter is

e_jAn(m_M)l  ̂ (11-19)

and this is therefore the kernel of the likelihood. I t  is clear from (11-19) that 
the statistic (m, n) is sufficient when h is known and the stopping process is non
informative.

11.3.2. Conjugate Distribution of ft
When the precision h of an Independent Normal process is known but the 

mean is a random variable p, the most convenient distribution of p—the natural 
conjugate of (11-19)—is the Normal distribution defined by (7-63):
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11.3.2Normal Process with Known Precision

The quantity H  in this expression can be thought of as measuring the 'precision of 
our information on /i, and it will be more instructive to express this measure in 
units of the process precision h. We therefore define the parameter {not the statis
tic) n by

n = H /h  , (11-20)
i.e., we say that the information H  is equivalent to n observations on the process, 
and we then write the density of JL in the form

hn) oc e-jAnO*-m)« (11-21)

If such a distribution with parameter (m', n') has been assigned to j2 and if a 
sample from the process then yields a sufficient statistic (m, n), the posterior dis
tribution of j2 will be Normal with parameters

mrt n'mf +  nm 
nf +  n n" = n' +  n (11-22)

► Multiplying the kernel (11-21) of the prior density by the kernel (11-19) of the likeli
hood and dropping or inserting constants we obtain

a  £-  \h(\n+n’\t*-2[n’m’+nm]n) a  ^ (n + n ')  .

Apart from constants this is a Normal density like (11-21) but with the parameters specified 
in (11-22). 4

Cumulative probabilities under the distribution (11-21) of j2 can be obtained 
from tables of the unit Normal function Fn+ by use of the relation (7-64):

Fxiplm, hn) = Fn*{[u — m] Vhn) . (11-23)
The mean, partial expectation, and variance of the distribution are, by (7-65), 

E(j2|m, n) =  p = m , (11-24a)
E^»0l|m, n) = mFN*(u) — fN*(u)/Vhn , u = (jjl — m) V hn  , (ll-24b)

V(*|m,n) = ^ -  (ll-24c)

From (11-23) and (ll-24b) it follows that the linear-loss integrals are given by

Li{y) = f* "  (m — z)fN{z\m, hn) dz = Ls*{ — u„)/Vhn , (ll-25a)

L r(p) = j *  {z — n)fN{z\m, hn) dz = LN*{u^)/Vhn , (ll-25b)
where

Up =  (ji — m) V hn  , L n +{u ) =  / at*(w) — u G n +{u ) . (11-26)
For tables of the function LN>, see Section 7.8.1.

Limiting Behavior of the Prior Distribution. As the parameter n of (11-21) 
approaches 0 while m is held constant, the mean of the distribution remains fixed
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a t m but the variance becomes infinite and the probability becomes more and more 
uniformly distributed over the entire interval —»  < /z < oo.

► The behavior of the mean and variance follow immediately from (11-24). That the 
distribution approaches a uniform distribution is proved by observing that the ratio of the 
densities at any two points hi and p2 is, by (11-21),

e-  - m]« - (mi - m]»)

and that as n —> 0 this quantity approaches 1. ^

11.4. Sampling Distributions and Preposterior Analysis 
With Fixed n

Throughout Section 11.4 we assume that a sample is to be taken from an 
Independent Normal process in such a way that the statistic n is predetermined, 
the statistic m being left to chance. We assume further that while the precision h 
of the process is known its mean fl has a Normal distribution of type (11-21) with 
parameter (ra', n').

11.4.1. Conditional Distribution of (m|/x)
Given a particular value n of the process mean, the conditional distribution 

of m is Normal with density
D(m|M; n) = hn) ; (11-27)

the proof will be given in the discussion of (11-38). I t  follows from (7-65) that
E(m|M;n) = n , (ll-28a)

V(m|„;n) = ^ -  (ll-28b)

11.4.2. Unconditional Distribution of m
If the process mean p is treated as a random variable having a Normal distribu

tion with parameter (m n ') ,  the unconditional distribution of the statistic m is 
Normal with density

D(m|m', n '; n) = fN{m\n, hn) hn') dp =  fN(m\m', hnu) (1 l-29a)

where
n'n j 1  = 1  , I

n' +  n n„ n' n
(ll-29b)

By (7-65) the mean and variance of in are

» '; n) = m' = E(j3|m', n') , (ll-30a)

V(m|m', n '; n) =  n') +  V(m|^, n) . (ll-30b)
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► To prove (11-29), substitute for N(m) and / v(m) in the integrand their formulas (7-63) 
to obtain, apart from constants,

Observing that
/ v« . m. n'm' +  nm \2 , nn' .n(w -  m)2 +  n'(M -  m')2 = (n +  n')( M -  — TT---- ) +  7" / (m -  w')2\  n +  n /  n +  n

and using the definitions (11-22) and (ll-29b) of n", m", and nv, we have

The integral is a constant times /^(oo |m", /in") = 1, while apart from constants the factor 
preceding the integral is the right-hand side of (ll-29a). ^

11.4-3. Distribution of m " and /l"
If /i is known, if the prior distribution of p is Normal with parameter (ra', n'), 

and if a sample then yields a sufficient statistic (ra, n), formulas (ll-24a) and 
(11-22) show that the parameter ra" and the mean p," of the posterior distribution 
of j2 will have the value

P" mn n'm! +  nm 
nf + n (11-31)

When the m to be obtained by sampling with fixed n is still unknown and /l" = m" 
is therefore a random variable, the distribution of (L" = m" is determined by the 
unconditional distribution (11-29) of m; the density of fi" is

where
D(/Z"|m', n '; n) = /Ar(jS"|m', hn*)

n* nf +  n 
n n i _  J_

n*

a

n"
Its mean and variance are

(ll-32a)

(ll-32b)

E(/T|m', n '; n) = m! = E(/Z|tm', n') , (ll-33a)

n '; ») = ^  = V ^ m ', »') -  V(p|mMf n") . (ll-33b)

Since this distribution is of the same Normal form as the distribution (11-21) of p 
itself, formulas for cumulative probabilities, partial expectations, and linear-loss 
integrals can be obtained by simply substituting n* for n in (11-23) through (11-26).

► That the distribution of p" = m" is Normal follows from the fact that, by (11-31), 
fi" = m" is a linear function of the Normal random variable m. That the mean of Pn is 
equal to the prior mean m' as asserted by (ll-33a) follows from (5-27); that the variance 
of p" is the prior variance \/hn' less the posterior variance \/hn" as asserted by (ll-33b) 
follows from (5-28); and the parameters of (11-32) are then determined by these values 
of the moments. ^
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C .  I n d e p e n d e n t  N o r m a l  P r o c e s s ,  N e i t h e r  P a r a m e t e r  K n o w n

11.6. Prior and Posterior Analysis

11.6.1. Likelihood of a Sample When Neither Parameter I s  Known
We have already seen in (11-16) that if the stopping process is noninformative 

the likelihood of observations xi, • • • , x„ on an Independent Normal process is
(2t)-1 . (11-34)

If now we define the statistics

m = -  2Xi , (1 l-35a)n

v rn — - 2(*< -  m y  ( = 0 i f n  = l ) ,  (ll-35b)U — 1
the likelihood (11-34) can be written

(2 ir)-i"6 -i^n- 1)r- i An(m- ^ , fein . (11-36)
The kernel—i.e. those factors which vary with the unknown parameters n and h—is

e-lh(n-l)v-lhn(m-ri* h in . (11-37)

I t is clear from (11-37) that the statistic (m, v} n) is sufficient when the stopping 
process is noninformative.

11.5.2. Likelihood of the Incomplete Statistics (m, n) and (v, v)
In many situations a series of observations x may yield useful information on 

the precision of an Independent Normal process without yielding any information 
on its mean, as when evidence on the precision of a measuring instrument is ob
tained by taking a series of measurements of some known standard m* before the 
instrument is used to measure the unknown u which is of interest in the decision 
problem at hand. If such a series of measurements is not long enough to deter
mine h “with certainty”, the information it contains will be summarized sufficiently 
by the statistic (w, v) where v is the number of observations on m* and w is defined 
by (11-5). Evidence concerning the precision h is also frequently obtainable from 
a series of observations on some unknown quantity which is itself irrelevant to 
the decision problem at hand. In this case the sufficient statistic for the observa
tions on m* will be (m, v, n) which we have just defined. Although the evidence m 
on contained in this triplet tells us nothing about the u of the decision problem 
actually at hand, the doublet (v, n) does contain relevant information on h just 
as (w, v) contains relevant information on h if /i* is known. We cannot, however, 
use the kernel (11-37) of the complete statistic (m, v, n) to exploit the information 
contained in the incomplete statistic (i>, n ); what we need is the kernel of the 
marginal likelihood of (v, n), obtained by integrating (11-37) over all sample points 
(xi9 • • • , xn) for which (v, n) has its observed value.

I t is this same marginal likelihood of (v, n) which we would require if the value
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of the component m of the sufficient statistic had been lost; and more for symmetry 
than for any real application we shall also consider the case where the component v 
of (m, vy n) is unknown or for some reason irrelevant, so that to exploit the in
formation in the incomplete statistic (to, n) we would require the marginal like
lihood of (to, n).

The kernel of the marginal likelihood of (to, n) is
e -ihn̂ - ^ h i  , (11-38a)

while the kernel of the marginal likelihood of (v, n) is
e-lM n—DtftjCn—1) . (ll-38b)

► In the n-dimensional space of the xs, construct a radius vector from the origin to 
the point (to, m, • • • , to), at this point construct an (n — 1)-dimensional hyperplane 
perpendicular to the vector, and on this hyperplane construct a hypercircle with cen
ter (to, to, • • • , to) and radius V(n — l)t;. The random variable to = 2 £»/n then has the 
constant value to at all points on the hyperplane, and v = 2(2* — m)2/(n — 1) has the 
constant value v at all points on the hypercircle. The circumference of the hypercircle is 
proportional to (Vv)n~2 and an increment dv in v produces an increment proportional to 
dv/Vv in the radius of the hypercircle, so that the area of the solid annulus within which 
v < v < v +  dv and to < to < to +  dm is proportional to t;i(n-3) dv dm.

Multiplying the density (11-37) by this result we obtain

Apart from the differential elements and constants involving n but not v, to, ht or /*, this ex
pression is

/*(m|ju, hn)fy2(v\h, n -  1) ,
and this is therefore the exact joint likelihood of the statistics v and to.

Since the integral over 0 < v < » of the second factor in the joint likelihood is 1, the 
marginal likelihood of to is fN{m\n, hn)\ and since the integral of the first factor over 
— oo < to < oo is 1, the marginal likelihood of v iafyt(v\h, n — 1). Formulas (11-38) result 
when factors not involving either n or h are dropped from / v(to) and fy2(v). <4

In order to unify our treatment of cases where only (m, n) or only (v, n) is 
known and relevant with cases where the entire sufficient statistic (m, vf n) is 
known and relevant, we would like to express the likelihood of (m, vf n) in such a 
way that it automatically reduces to (ll-38a) when only (m, n) is involved or to 
(ll-38b) when only (vf n) is involved. To do this we define

i/ =  n -  1 , (11-39)
w’hich we shall call the number of degrees of freedom in the statistic vf and

N JO if n = 0 ,i -
, W “ \ l  if n > 0 ' (1‘-40)

which we shall call the number of degrees of freedom in the statistic m. We then 
write in place of (11-37)
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If both m and v are known and relevant, this expression is identical to (11-37). 
If further we adopt the convention that

1. v (but not n) has the value 0 when v is unknown or irrelevant,
2. n (but not v) has the value 0 when m is unknown or irrelevant,

then (11-41) reduces to (ll-38a) in the first case and to (ll-38b) in the second.

11.5.3. Distribution of (/Z, h)
When both parameters of an Independent Normal process are unknown and 

are to be treated as random variables p and K, the most convenient joint distribu
tion of the two variables—the natural conjugate of (11-41)—is what we shall call 
a Normal-gamma distribution, defined by

fNyiv, h\m, v, n, V) = /v(/x|m, hn) / 72(Ah v)
Oc e~ \ . e~\nh ?

—  CO <  n <  0O ,

/ i > 0 ,  ( 1 1 - 4 2 )

v, n, v > 0  ,
where n is defined by (11-20) and b(n) is the delta function defined in (11-40). 
Since n must be greater than 0 if (11-42) is to represent a proper (convergent) 
density, 5(n) is here necessarily equal to 1 and the definition of f s  implied by (11-42) 
is identical to the definition (7-63); the apparently superfluous 5(n) is added so 
that the formulas which we shall obtain for the parameters of the posterior dis
tribution will generalize automatically to the limiting case where the prior param
eter n ' = 0 = 8(n').

If the prior distribution of (py K) is Normal-gamma with parameter (m', n', t/, v) 
and if a sample then yields a sufficient statistic (m, v, n, v), the posterior distribution 
of (fly fi) will be Normal-gamma with parameters

mn n'jn' +  nm 
n' +  n (ll-43a)

n" = n' +  n ,
„ _  [yV +  n V 2] + (w + nm2] — n"mn'1

V -  [v' +  «(»')] +  [p +  «(n)] -  J(»") ’

/ '  = |V +  «(»')] +  [f +  5(n)] -  6(n") .

(ll-43b)

(ll-43c)

(ll-43d)
Observe that when n' = vf = 0, the parameter (m", t/', n", y") is equal to the 
statistic (m, v, n, y).

^  Multiplying the prior density (11-42) by the likelihood (11-41) and dropping constants 
we have

We observe first that the posterior exponent of h will be

W  +  \8{W) -  1 +  Jy +  l«(n) = \[vr +  5(n') +  y +  «(n) -  5 ( 0 ]  +  15(n") -  1 f 

which by (ll-43d) can be written

W '  +  1 5 (n " )  -  1 
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in agreement with the exponent of h in (11-42). We next observe that the posterior ex
ponent of e will be — $hS where

S =  vV +  n'[/x — m']2 +  w +  n[m — n]'1

= v'v’ +  n'm'2 +  w +  nm2 (nV  +  nm)2 
n' +  n +  (n' +  ») n V j f n m l2 # 

n' +  n J
Using (ll-43ab) our last result can be written

S = (vV +  n'm'2 +  w +  mn2 — n"m"2) -1- n"(/x — m")2 ;
and by (ll-43cd) this becomes

v"v" +  n"(/x -  m")2
in agreement with the exponent of e in (11-42). ◄

11.5.4. Marginal Distribution of h
If the joint distribution of the random variable (£, ft) is Normal-gamma as 

defined by (11-42), the marginal distribution of ft is gamma-2 as defined by (7-50):
D(A|m, v, n, v) = fyt(h\v, v) . (11-44)

I t  follows immediately, by (7-51b)1 and (7-52) that

P{ft < h\myv, n, v} = I(hvVYy, -  1) = GpVtvWwh) , (11-45)

E(ft\myv, n, v) = 1— y 
V (ll-46a)

Y(ft\mf v, n, v) = 1 (ll-46b)

Observe that the distribution (11-44) does not depend on either m or n and is in 
fact identical to the distribution (11-8) which applies when the process mean /x
is known. The marginal distribution of a = ^  \/ ft  in our present problem is 
consequently identical to the distribution discussed in Section 11.1.4.

► By definition, the marginal density of ft is obtained by integrating the joint density 
(11-42) over — 00 < /x < « ; and since f yt(v\hy v) does not contain ^ this integral is

/_ »  hn) /**(% v) = fyt(h\v, v) f " "  /y(/x|m, hn) d/x = fyt(h\v, v) . <4

11.5.5. Marginal Distribution of ft
If the joint distribution of (j2, ft) is Normal-gamma as defined by ( 1 1 - 4 2 ) ,  

then as shown by ( 7 - 7 2 )  the marginal distribution of fi is the Student distribution 
defined by ( 7 - 6 9 ) :

D ( /x | m ,  v, n, v) = / s ( /x |m ,  n/v , v) . ( 1 1 - 4 7 )

Notice that, unlike the marginal distribution of ft, the marginal distribution of fl 
depends on all four parameters of the joint distribution of (p, ft).
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Cumulative probabilities under the Student distribution (11-47) are given by 
(7-70):

P{fl < n\m, v, n, v} = Fs*([ji — m]Vn/v\v) . (11-48)
The mean, variance, and partial expectation are given by (7-71):

E(ja|m, v, n, v) = p = m , v >  1 , (ll-49a)

V(jl|m, v,n, v) = V- - ^ Z ~2 > • ' > 2 ,  (ll-49b)

v “4“ /2?* .(pirn, v, nt v) = m Fs*(t\v) -  _  j /s>(<ly) v ti/n  , y >  1 , (ll-49c)

where
t = (m — m) V n /v  . (ll-49d)

From (11-48) and (ll-49cd) it follows that the linear-loss integrals are given by

L*(m) =  f * m (m “  z)fs(z\m, n/v, v) dz = Ls*( — t\v) V v /n  , v > 1 (ll-50a)

Z/r(/x) =  (2 ~  y)fs{z\m, n /v , v) V y/n , v > 1 (ll-50b)

where

Ls,«|,) .  -  1 G^ \ v) ■ (! 1-51)

11.5.6. Limiting Behavior of the Prior Distribution
As n —> 0, both the conditional and the marginal distributions of p, become 

increasingly uniform over — 00 < ^ < 00 and their variances become infinite, 
although their means remain fixed at m. The marginal distribution (11-44) of fi 
is unaffected; the conditional distribution (12-30) of K (derived in Chapter 12 
below) approaches a proper gamma-2 distribution with parameters w/(y +  1) and
O' +  !)•

As v —> 0, the conditional distribution of p is unaffected. The variance of 
the marginal distribution of p becomes infinite, but the distribution does not be
come uniform: the ratio of the densities at any two points m and approaches 
IM2 — m \/\m '— m\. The marginal distribution (11-44) of fi becomes more and 
more concentrated toward h = 0 although its mean remains fixed at l/v  and its 
variance becomes infinite; the conditional distribution (12-30) of fi approaches a 
proper gamma-2 distribution with parameters n(/i — m)2 and 1.

11.5.5 Pari I I I :  Distribution Theory

► The limiting behavior of the marginal distribution of fi, which does not contain n 
as a parameter, has been discussed in Section 11.1.3. The limiting behavior of the Normal 
conditional distribution of p, which does not contain v as a parameter, has been discussed 
in Section 11.3.2. To determine the limiting behavior of the Student marginal distribution 
of p, we observe first that the behavior of the mean and variance follow immediately from 
(11-49). The question of uniformity is solved by using the formula (7-69) for the density 
(11-47) to show that the ratio of the densities at any two points au and ai2 is
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Normal Process with Unknown Mean and Precision 11.5.6

T v +  Qbt2 — m)*n/v~ + i 
Lv +  (Ml -  m)2n/vJ

and observing that this ratio obviously approaches 1 as n —> 0 with v fixed but approaches 
|pi2 — — m\ as v —> 0 with n fixed. ^

11.6. Sampling Distributions With Fixed n

In Section 11.6 we assume throughout that a sample with predetermined 
n >  0 is to be taken from an Independent Normal process whose parameter 
(j2 , fi) has a proper Normal-gamma distribution with parameter (m', v ',ri,v '). The 
fact that the distribution is proper implies that t/, n', v' > 0.

11.6.1. Conditional Joint Distribution oj (myv\tiyh)

For a given value of the process parameter (/x, h), the conditional joint dis
tribution of the statistic (m, 0) is the product of the independent densities of in 
and 0:

D(m,r| fMj h) n , v) =  /y(m|Ai, hn) f y2(v\h, v) . (11-52)
The proof was given in the proof of (11-38).

11.6.2. Unconditional Joint Distribution of (myv)
If the parameter Qx, K) of the process is treated as having a Normal-gamma 

density of type (11-42), the unconditional joint distribution of the statistic (m, 0) 
will have the density
D(m, v n', vr ; n, v)

-  i: /at(wi|/x, h n ) f y t ( v \h ,  v ) f N y ( y ,  h \m ',  v \ r i ,  v ')  d h  d y

where

_________ ( w ) ^ 1_________
(vV +  w  +  nu[m — 7n']2) ir"

v'y n', v' >  0 ,

(ll-53a)

nw n!n
nf +  n ’

J_ _ 1 1
“7  1------nw n n (ll-53b)

v" = v9 +  v +  1 .

► To evaluate the integral (ll-53a) we first replace the functions /*, /yj, and fNy by 
their definitions (7-63), (7-50), and (11-42), thus obtaining (apart from factors constant 
as regards m, v, n, and h)

f ~ m f *  hi ■ e-W ((f y l ’- 'h  • h ¥ ~ l dhdy ,

where we have suppressed the 5(nf) of (11-42) because by assumption n' > 0 and therefore 
$(n') = 1. Using the symbols n" and m" defined in (11-43) and the symbol nM defined 
in (ll-53b) we observe that
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11.6.2

n(m — n)2 +  n'(/x — m')2 = n"(/n — m")2 +  nu(m — m')2 ; 
and substituting this result we can write the integral as

j “ e-§»(^ + «+̂ [m-m'n fc|<HV + l>-l dh . .

The second integral is a constant and can be dropped. Substituting in the first integral 
h = z/A , ^  = l(i/V +  w +  n*[m -  m']2) ,

we obtain
t>i-» i4-J<‘,+' '+1> Jo~ e~‘ zi(r+'/+>)~1 dz .

The integral is a constant which can be dropped, leaving
D(m, e;) « + w + nu[m — ra']2)“ i (,'**v+1) .

Because by assumption $(n') = 5(n) = 6(n") = 1, the final exponent on the right can be 
written — \v" in virtue of (ll-43d). ^

Pari I I I :  Distribution Theory

11.6.3. Unconditional Distributions of rh and i)
From the unconditional joint distribution (11-53) of (m, 0) we can obtain 

two distributions of m, both unconditional as regards the parameter (/i, h). The 
first of these is also unconditional as regards v\ its density is

D(m|m', v9, n', vr; n, v) = /s(m|m', n*/t/, v') . (11-54)
The second is conditional on v even though unconditional as regards Ox, h); its 
density is

D(m|m', t/, n', v’\ n, v; v) = /s(ra|m', n«/F, v9 +  v) (ll-55a)
where

V = vV  +  w . (ll-55b)
v9 +  V

In the same way the joint distribution of (m, 0) implies two distributions of 0. 
Marginally as regards m, the statistic 0 has the inverted-beta-2 density

D(v|m', v9, n \  v';n, v) = f m (v\\v, \v’, v'v'/v) ; (11-56)
while conditional on m, the density of 0 is

D(v|m', v n', v9) n, v; m) = ^ll* ', 1[F +  1], (ll-57a)

where
M  =  ntt(m — m')2 . (ll-57b)

^  The marginal density (11-54) of rft and the conditional density (11-57) of (0|m) are 
obtained by writing the kernel (ll-53a) of the joint density of (rh, 0) in the form
__________1__________ (w)i'-l(y9v9 +  n»[ro — m/]*)l(r"~r)
( F t /  +  n « [ m  -  m '] l ) * (r” ~ ' ) ( w  +  F t /  +  n . [ m  -  m ' ] * ) K

« «./»', v" -  v -  iO " -  •'l,

where M is defined by (ll-67b) and v" = v1 + v +
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Normal Process with Unknown Mean and Precision 11.6.3

The conditional density (11-55) of (m\v) and the marginal density (11-56) of V are 
obtained by writing the kernel (ll-53a) of the joint density in the form

(w )lr~1 ____________ (w  -f v'v')!*"____________
(w +  i/V)l(v//_1) *  (w + v'v' + nu[m — m']2)!*"(w +  vV)i

f a  1 0 "  -  1 -  v], riu/V, v" -  1 )

where V is defined by (ll-55b). ^

11.7. Preposterior Analysis With Fixed n

In this section as in the previous one we assume that a sample with predeter
mined statistic n > 0 is to be drawn from an Independent Normal process 
whose mean fi and mean precision R are random variables having a proper Normal- 
gamma distribution with parameter (m'f v't n', v') where v\ n', v' > 0.

11.7.1. Joint Distribution of (m", v")
By expressing the random variable (m, V) in terms of the random variable 

(m", V") we can obtain the joint density of the latter from the joint density (11 *53) 
of the former: .

D(wt , v \m , v , n , v ; n, v) oc ---------------  ,"y")V'--------  ----  (11-osa)

where
* n + n' ,n* = -------- nn

i_  = 1  _  ±
n* n ' n”

v" = vf +  v +  l ,

and the values of the variables m" and v" are constrained by
^  K C/ , n*(m" — m')2 <  v"v" — v'v'.

(ll-58b)

(ll-58c)

► The proof of (11-58) proceeds in three steps: we first show that

(1) n„(m — m')2 = n*(ra" — m')2 ; 

we next show that

(2) v'v' + w + nu(m -  m')2 = v"v" ;

and we then substitute these results in (11-53).
To prove (1), we first use the definitions (ll-43ab) of m" and n" to write

(m" -  m'y .

From this result and the definitions (ll-53b) of n« and (ll-58b) of n* we have

n„(m — m')2 = —jr ~ r  (m" — m')2 = VlIL. (m" _  m'y  = n*(m" — m')2 . n n2 n
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11.7.1 Part I I I :  Distribution Theory

To prove (2), we first use the definitions (ll-43cd) of v" and v" to write 
v"v" = (kV + w) + (n'm'2 +  nm2 -  n"m"2) .

The result follows when we use the definitions of n", m", and ntt to substitute on the right

n'm' 2 +  nm1 — n"m"% = n'm' 2 +  nm2 — -77 (n'm' +  nm) 2n '

= *' ( i  -  -  2 ^ m 'm  +  n ^ l  -

= ^  (m -  m')J = n«(m -  m')1 . n
Now using (1) and (2) to replace the variables (m, v) of (11-53) by the variables (m", v") 

we obtain
(✓ '*" -  *V -  n*[m"

(3) (v'V')*'"
where »/ is the Jacobian of the transformation.

-  m']2) ir_I F 
I  »

To evaluate J  we write

and then compute

m = n_1(n"m" — n'm') 
t; = — j/V — n*[m" — m']2)

d(m, t;) n-'n” 0
3(m", v") — „-i„"

thus showing that J  is a constant as regards m" and v". The proof of (11-58) is completed 
by observing that it is identical to (3) except for the constant J . ^

11.7.2. Distributions of rh" and iV
From the joint distribution (11-58) of (in", f>") we can derive two distributions 

of in": the distribution of in" conditional on a particular value of 0", and the dis
tribution of in" which is marginal as regards 0". This latter, unconditional dis
tribution of in" has the Student density

D(m"|m', v*, n', 1/ ;  n, v) = /s(m"|m', n*/V> ?') (11-59)
where n* is defined by (ll-58b). The conditional distribution of (in"\v") has the 
inverted-Student density defined by (8-34):

D(m"|ra', t/, n', 1/ ;  n, v; v") = /<s)(m"|m', n*/F , v)

where

V =

(ll-60a)

(ll-60b)

and the variable m" is constrained by

n*(rn" — m')2 < vF . (ll-60c)

In the same way the joint distribution of (in", 0") implies two distributions of 
0". Marginally as regards in", the density of 0" is inverted-beta-1:
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Normal Process with Unknown Mean and Precision 11.7.2

D ( t v>, n', n, ,) = f itl ( « / ' |K  W ,  7 Q  • (11-61)

Conditional on a particular ra", the density is of the same type with different param
eters:

V, ri, v';n, v; m") = /* , ( v " \W  +  1], K ,  ™  % M )  (ll-62a)

where
M  =  n * ( m "  -  m ' y  . ( l l - 6 2 b )

► To obtain the marginal density (11-59) of m" and the conditional density (11-62) of 
(t>"|m") we first simplify notation by using the definition (ll-62b) of M to write the kernel 
(11-58) of the joint density of (m", v”) in the form

( 1 )

r  v’v’ +  m i J r - l [ V t /  4 - M l
1 A 9 > . _ v" _

(vV  +  v"l*"

Since vn — v = v' +  1 and v = vn — ( /  +  1), this is proportional to

n*/v’, v ')fm ^ " | i 0 '  +  1], W ,  ^  ^  ’

To obtain the marginal density (11-61) of v" and the conditional density (11-60) of 
(m"\v") we write the kernel (11-58) of the joint density in the form

(2) {v"v" -  yV)l(-M)-1 (v"v" -  v’v' -  n*[m" -  m']i)l,~1
( k' V ' ) I ' "  X  ( v " v"  -  i » V ) l (' +1> -‘

The first factor is obviously proportional to \v”, v'v'/v") as defined by (7-25);
and if we use the definition (ll-60b) of V to write the second factor in the form

[vV -  w*(m" -  m')*]!-1« 0  -  (n*/V)(m" -

we see that it is proportional to the l-dimensional (r = 1) case of (8-34). ^

11.7.3. Distribution of Jx"
The variance of the posterior distribution of fi will be, by (ll-49c),

Y(jl\m", v", »", v") ^  jl" = n̂" v" -  2 v" >  2 (11-63)

When C "  and therefore 4 "  are random variables, this formula permits us to obtain 
the distribution of 4 " from the (unconditional) distribution (11-61) of 0":

P { 4 "  < 4 " K , t>',»', », -} = Fin ( 4 " n"^v"v>, K ,  7 ? )  • (11-64)

The expected value of the fcth power of 4 "  under this distribution is
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11.7.3 Part I I I :  Distribution Theory

, , , , x r T (i»" -  !)!(*✓  -  1 -  k )\L(m \ m , v , n , r  ,n , v) _  2)J  x _  j j .

= w* r w y  -  2) -|* a y  ~  DU**' -  1 ~ k )\ (
L « '" " ~.................................................-  2)J  (*»" -  1 -  Jfc)!(ii/ -  1)!

Important special cases are

1)!

k < W

E(/5"|m', v’, n', / ; « , * ) - £ ; - /n" /  -  2 n'
_  n' w 
= I77M :

E(V 4"|m '( t/, n', v'; n, v) = fi' exp [ - |  l_  {

(11-65)

(ll-66a)

(ll-66b)

► To derive (11-65) we first obtain the fcth moment about the origin of fipi as defined by 
(7-25):

M* -  j “ ykfi$i(y\r, n, b) dy = 6* J M '  - k , n - k , b )  dy

= bk (n -  l)!(r -  1 -  fc)! k < r(n -  1 -  k)\{r -  1)!

Substituting herein the parameters of the distribution (11-61) of v” we obtain

E f r *) = r ^ T w - m v - i - k v - .
L*-" J (Jv" -  1 -  k)\(\v' -  1)!

The first form of (11-65) follows from the fact that by (11-63)

E« ''‘> -  [ v ^ T 2)Ĵ  ■

and the second form of (11-65) then follows from the fact that by (ll-49b)

M = n V  -  2

The derivation of (ll-66a) from (11-65) with k = 1 is obvious. 
To obtain (ll-66b) with k = \ we first substitute

x9 = \vf -  1 , x" = \v" -  1 ,

and write (11-65) in the form

E(VM ) -  |_M n,v , j  (x„ _  1)!xM

By then using Legendre’s formula and Stirling’s second approximation 

(2x)1r*
( * - » ! - 2u x\ x\ = (2t)1 j i+1 exp

we obtain the result (ll-66b). (If we use Stirling’s first approximation, omitting the term 
1/(12*), we obtain simply vV /l'/n".) 4
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11.7.4. Distribution of jB"
The mean /z" of the posterior distribution of jx will, by (ll-49a), be equal to 

the parameter m" of that distribution, so that the prior distribution of fL" is ob
tained by merely substituting /z" for m" in the formula (11-59) for the (marginal) 
density of ra":

D ( / z " | m ' ,  t / ,  n ' ,  v  ; n ,  v)  =  / s Q z " | m ' ,  n * / V ,  * ' )  ( l l - 6 7 a )

where

n n +  nf 
n

= 1  _  J_
n* n' n" ( l l - 6 7 b )

I t then follows from (7-71) that
E(/l"|m', t / ,  n', v ' ;  n, v )  = m' = E0z|m', t / ,  n', v') ,

V(/I"|m', t/, n', n, y) n*

* '>  1 ,

/  >  2 ( 11-68)

= V(/z|m', t/, n', , ')  -  E[V(/Z|m", 0", n", ✓ ')] .
Since this distribution of fi" is of the same Student form as the distribution 

(11-47) of jZ itself, formulas for cumulative probabilities, partial expectations, and 
linear-loss integrals can be obtained by simply substituting n* for n in (11-48) 
through (11-51).

► The distribution of /I" can also be derived by observing (1) that the density of (Ln for 
given h is/v(/Z"|m', hn*) by (11-32), and (2) that the density of h is/*j(/i|!/, v') by (11-42); 
the result (11-67) then follows by (7-72). 4J

309



C H A P T E R  12

A .  I n d e p e n d e n t  M u l t i n o r m a l  P r o c e s s ,  P r e c i s i o n  K n o w n

12.1. Prior and Posterior Analysis

12.1.1. Definition of the Independent Multinormal Process
An r-dimensional Independent Multinormal process can be defined as a process 

generating independent r X 1 vector random variables x(l), • • • , x (̂ , • • • with 
identical densities

— OO <  X <  00 ,
| M ,h )  s  (27r)_ l r g - $ ( * - # * ) ' |h|i  - o o  <  M  <  oo , (1 2 -1 )

h is PDS .
This is the (multivariate) Normal density defined in (8-17); the process mean 
and variance are given directly by (8-18):

E(*|mi h) = M , (12-2a)
Y(x\p, h) = h "1 . (12-2b)

The parameter h in (12-1) will be called the precision of the process, and we 
shall find it useful to factor this quantity into two parts: a scalar mean precision 
and a matrix relative precision. We do so by defining the mean precision

h s  |h|»" (12-3a)
and the relative precision

T1 ^  h/h  =

hn/h
W fc

hn/h
hii/h

hri/h hrt/h

• hir/hT
• hlrjh f 

’ hrrfh_

N  = 1 • (12-3b)

In this notation the definition (12-1) of the Independent Multinormal process 
becomes

fjp{x\n,hi]) = (2x)_ ir e-lM*-#*)"! (x- m) f (12-4)

while its mean and variance become
hi\) = H , (12-5a)

V(*|M, hrO = (fct|)-‘ • (12-5b)

12.1.2. Likelihood of a Sample When n Is  Known
The likelihood that an Independent Multinormal process will generate 

n values x (l), ■ ■ • , xl,\  • • • , xM in that order is the product of the likelihoods of 
the individual values as given by (12-4):

310



Multinormal Process with Known Precision 12.1.2

( 2 ftirn # (12-6)

If in addition the stopping process in noninformative in the sense of Section 2.3,
this is the likelihood of a sample consisting of the n observations x(1), • • • , x(n).

Provided only that the relative precision t\ is known, we can compute all of 
the following statistics:

m = - 2 x ('1 , (12-7a)n 1
n = ni\ , (12-7b)
v = r(n — 1) , (12-7c)

V = -  2(x<fi -  m)‘ T) -  m) ( =  o if * =  0) . (12-7d)

The statistic n will be called the effective sample size. Dropping the constant 
(2ir)- !™ from the likelihood (12-6) we can now write its kernel in the form

hKr + y) . (12-8)

► Thejth term of the sum in (12-6) can be written
(x(/) -  f i ) ‘ ti (x(» -  f i )  = ([x(y) -  m] +  [m -  /a])1 ti ( 0 (,) -  m] +  [m -  #*])

=  (x (/) — m)* T] (x (j) -  m) +  (m -  /a)* (m — fi)
+  (x (,) — m)1 ti (m -  /*) +  (m — p )1 tj (x (y) — m) .

When summed over j  the first two terms on the right become respectively w and
(m — p)1 n (m — p) while the last two vanish because 2 ( x (y) — m) = nm — nm. ^

12.1.3. Likelihood of a Sample When Both h and tj Are Known
When both the relative precision r\ and the mean precision h are known and 

the only unknown parameter is the process mean p,  the only factor in (12-8) which 
varies with an unknown parameter is

e-  (12-9)

and this is therefore the kernel of the likelihood. The statistic (m, n) is thus 
sufficient when the process precision h = /itj is known and the stopping process is 
noninformative.

12.1.4. Conjugate Distribution of fi
When the precision h = hi\ of an Independent Multinormal process is known 

but the mean fi is a random variable, the most convenient distribution of fi—the 
natural conjugate of (12-9)—is the Normal distribution defined by (8-17):

f N(ji\m, H) cc . (12-10)

The quantity H in this expression can be thought of as measuring the precision 
of our information on p , and it will be more instructive to express this measure
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in units of the process mean precision h. We therefore define the parameter {not 
the statistic) n by

n =  H/A , (12-11)
i.e., we say that the information H is equivalent to an effective number n of actual 
observations on the process, and write the density (12-10) in the form

fs{p\Tny hn) cc . (12-12)
The mean and variance of this distribution are given by (8-18):

EQa|m, n) =  p  = m , (12-13a)
V(/Z|m, n) =  |i = (An)” 1 . (12-13b)

If a Normal distribution with parameter (m', n') is assigned to fit and if a 
sample then yields a sufficient statistic (m, n), the posterior distribution of fL will 
be Normal with parameters

m" = (n' +  +  n m) , (12-14a)
n" = n' +  n . (12-14b)

12.1.4 Part I I I :  Distribution Theory

► Multiplying the kernel (12-12) of the prior density by the kernel (12-9) of the likeli
hood we obtain e~lKS where
(1) *S = (/a — m'yriijM. — m') + (m -  p)ln(m -  p)

= p*n'p — m’1 nfp — p ‘ n'm' -f m''n'm' + m'nm -  p lnm — m‘ np +  p lnp  .
Remembering that n' and n are symmetric we can regroup the terms on the right to obtain
(2) S = Si +  St 
where
(3) S{ = (p — [n' +  n]- 1[n'm' +  n m])‘(n' -f n)(p -  [n' +  n]- 1[n'm' +  n m])

= (M -  m")(n"(/A -  m") ,
(4) S2 = m!1 n'm' +  m‘nm -  (n'm' +  n m)l(n' +  n)_1(n'm' +  nm) .

1. Since ft appears only in Si, the kernel of the conditional distribution of (/!|m) is e~ 
and the distribution will therefore be nondegenerate Normal with parameters (12-14) pro
vided that n" is positive definite. Since i\ is positive-definite, n = n’t] will be positive- 
definite for any n > 0; and therefore n" = n' +■ n will be positive-definite for any n > 0 
even if n' = 0.

Although this completes the proof of (12-14), we anticipate future needs by giving two 
alternate factorizations of the sum Si which plays no role in the distribution of (/Z|m).

2. Writing n"-1 in place of (n' +  n)-1 in the last term on the right hand side of (4) 
and then expanding we obtain

S2 = m'r n'm' +  m* n m -  m'* n'n"-1 n'm'
— m'1 n'n"-1 n m — ml n n"-1 n'm' — m' n n"_1 n m 

= m'(n — n n"-1 n) m — ml n n"_1 n'm'
— m''n'n"~lnm +  m''(n' — n'n"-1 n') m'

The two quantities within parentheses on the right can be reduced:
n — n n"-1 n = n — (n" — n') n"-1 n = n'n"-1 n , 

n' — n'n"-1 n' = n' — (n" — n) n"-1 n' = n n"-1 n' ,
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a n d  s in c e

n'n"-1n = (n" -  n) n"-l(n" -  n') = n n" ' 1 n' +  n" -  n' -  n = n n"” 1 n' 
w e  m a y  d e f in e

nu = n'n"-1 n = n n"-1 n'
a n d  w T ite

(5) S2 = (m — — m') .
We shall see later that, when S2 is written in this form, e~lhS* is the kernel of the marginal 
or unconditional distribution of fh.

3. We can express S2 in terms of m" rather than m by substituting on the right-hand 
side of (4)

ml nm  = (n-1[n"m" — n'm/])<n(n”l[n"m" — n'm']) , 
n'm' -f n m = n"m" ,

thus obtaining
S2 = m"'(n"n-1 n" -  n") m" -  m"‘n"n-1 n'm'

-  m" n'n-1 n"m" +  m''(n' +  n'n-1 n') m' .
The two quantities within parentheses can be reduced: •

n"n-1 n" -  n" = (n' +  n) n* 1 n" -  n" = n'n’ 1 n" , 
n' -f n'n-1 n' = n' +  (n" — n) n-1 n' = n"n-1 n' ;

and since
n'n-1 n" = (n" — n) n-1(n' +  n) = n"n_1 n' +  n" — n' — n = n"n_1 n' 

we may define
n* = n'n-1 n" = n"n-1 n'

and wrrite
(6) S2 = (m" -  m')‘n*(m" -  m') .
We shall see later that, when S2 is written in this form, e~ is the kernel of the prior density 
of m". 4

12.2. Sampling Distributions With Fixed n

Throughout Section 12.2 we assume that a sample with predetermined n = nx\ 
is to be drawn from an r-dimensional Independent Multinormal process whose 
precision h = hr\ is known but whose mean (L is a random variable having a proper 
Normal distribution with parameter (mr, n'), the word proper implying that n ' is 
PDS.

12,2.1. Conditional Distribution of (m|/x)
Given a particular value /a of the process mean fl, the conditional distribution 

of m is Normal with density
D(m|/a; n) (12-15)

and with mean and variance
E ( i R | m ; h )  =  f i  ,

V(m|M;n) = (/m)-1 .
313

(12-16)



12.2.1 Part I I I :  Distribution Theory

► Since by (12-7a)

/ft = - 2 x < ’> 
n

is a linear combination of independent Normal random variables, it follows immediately 
from Corollary 2.2 of Section 8.2.3 that m is Normal, and by this same Corollary in con
junction with (12-5) the mean and variance of m are

E(tR|m. n) = -  2 il) = 1 2 M M ,n n

V(ift|M, n) = £  2  V(*»V, n) = i  2 (Ati)-‘ = ^  nT ‘ = (Anil)- = ( to )-  . A

12.2,2. Unconditional Distribution of m
When the process mean fL is treated as a random variable having a Normal 

distribution with parameter (m', n'), the unconditional distribution of m is Normal 
with density

D(m|/n', n '; n) =  h n )f$ (ji\m \ hn') dp

where
= hnu)

nu == n'n" -1  n = n n" -1  n' , n^ 1 = n,_1 +  n_1

(12-17a)

(12-17b)
The mean and variance of this distribution are

E(m|m', n' ;n)  = m' = E(/&|m', n') ,
V(m|m', n '; n) = (tou)“ l = V(/Z|m', n') +  V(m|M, n) . (12-18)

► To show th a t the marginal distribution of fit is Normal we need only recall (1) that 
(ifi, pi) is Normal because fi is Normal and (m\fi) is Normal with linear regression and con
stant variance, and (2) tha t any marginal distribution of a joint Normal distribution is Nor
mal.

To find the parameters of the distribution of m we substitute the formula (8-17) for 
/v(m) and fs (fi)  in the integrand of (12-17a), drop factors constant as regards m and /a, 
and thus find tha t the kernel of the joint density of pi and m can be written e 'i* 5* wrhere

S* = (m -  fx)1 n(m -  /*) -f (ft -  m')'n'(/i -  m') .
Comparison with formula ( 1) in the proof of (12-14) shows tha t S* as defined above is 
identical to the S of tha t formula; and we may therefore use the results (3) and (5) obtained 
in th a t proof to write

S* = S, +  S2
where

51 = (m -  m " y  n "(/i -  m") ,
5 2 = (m — m ')‘ n u(m — m') .

Since the integral of over —« < / L t < o o i s a  constant as regards m, the kernel of the 
marginal or unconditional density of m is simply e~lhSt, in accordance with (12-17).

Alternate proof. (12-17) can also be proved by observing tha t pi and i  = m — p  are 
independent Normal random variables, from which it follows immediately tha t

m = pi + i  
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is Normal with mean and variance
‘ E(m) =  E(j*) +  E(«) = E(ft) +  0 = m ' ,

V(ifk) = V(/Z) +  V(I) = Y(ft) +  V(m|M) = (/in')-1 +  (An)-* .
Since

n,_1 +  n-1 = n_l(n' -f n) n'_1 = (n'n"-1 n)_1 = nj-1 , 
the parameters of (12-17) follow from these values of the moments. ^

12.3. Preposterior Analysis With Fixed n

In this entire section as in the previous one we assume that a sample with 
predetermined n is to be drawn from an r-dimensional Independent Multinormal 
process whose relative precision r\ and mean precision h are both known but whose 
mean ft is a random variable having a proper Normal distribution with parameter 
(m', n'). The fact that the distribution is proper implies that n' is PDS.

12.3.1. Distribution of m"
By (12-14), the parameter m" of the posterior distribution of ft will have the 

value
m" = n " - 1̂ 'm ' +  nm ) , (12-19)

so that before m is known we can obtain the distribution of m" from the uncondi
tional distribution (12-17) of rh. The distribution so determined is Normal with 
density

D(m"|m', n '; n) = hn*)
where

n* = n "n -l n' = n 'n ^ n "  , n*-1 = n '"1 -  n ""1 .

The mean and variance of the distribution are 

E (m "|m ',n ';n ) = m' ,
V (m "|m ',n ';n ) = (hn*)~l = (/in')"1 -  (An")"1 .

(12-20a)

(12-20b)

(12-21)

► Since m" as defined by (12-19) is a linear transformation of the Normal random vari
able m, it follows immediately from Corollary 2.1 of Section 8.2.3 that rh" is Normal; and 
by this same Corollary in conjunction with (12-18) the mean and variance of rh" are

E(m") = n"- 1[n'm' -fnE(m)] = n,/- l[n'm' +  n m'] = n"-1n"m' = m' ,

n - 'n V - 'J n a "-1

= 7 n'^1 n n"-1 = (An*)-1 .h

The parameters of (12-20) are then determined by these values of the moments.
The alternative expressions given in (12-20b) for n* and n*-1 are easily derived:

n* = n"n_1 n' = (n' +  n) n-1(n" — n) = n'n-1 n" ; 
n*-1 s  n '- 'n n " - ‘ = n '-^n" -  n') n""1 = n '"1 -  n""1 .
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Alternate Proof. (12-20) can also be derived directly from the joint density of fi and fh 
without first obtaining the marginal density of ih. We saw in the proof of (12-17) that 
after we have eliminated p  from this joint density we are left with the kernel e~VlStf and by 
formula (6) in the proof of (12-14)

S2 = (m" -  m'), n*(m" -  m!)
in accordance with the exponent called for by (12-20).

Still another derivation of the parameters of (12-20) will be given in the discussion of 
(12-22). <4

12.3.2. Distribution of fit"
The mean p" of the posterior distribution of (L  will, by (12-13a), be equal to 

the parameter m" of that distribution, and therefore the distribution of jH" is 
given directly by (12-20) with p" substituted for m". When, however, we think 
of this distribution as a distribution of the posterior mean rather than as a dis
tribution of a mere parameter, it becomes instructive to observe that formulas 
(12-21) for the mean and variance amount to

E(/l"|m',n';n) = E(p|m', n') ,
V(*"|m', n'; n) = V(p|m', n') -  V(p|m", n") ,

in accordance with general relations (5-27) and (5-28). These relations con
stitute, of course, an alternative way of deriving the parameters of the distribution 
(12-20) of r h " .

B .  I n d e p e n d e n t  M u l t i n o r m a l  P r o c e s s ,  R e l a t i v e  P r e c i s i o n  K n o w n

12.4. Prior and Posterior Analysis

12.4.1. Likelihood of a Sample When Only tj I s Known
We have already seen in (12-8) that if the stopping process is noninformative 

the kernel of the likelihood of observations x(1), • • • , x(,), • • • x(n) on an r-dimen- 
sional Independent Multinormal process is

e-\h*v- hlir+r) (12-23)

where the statistics m, n, v, and v have the definitions (12-7). These four statistics 
are sufficient when both the process mean p and the mean precision h are unknown 
and only the relative precision tj is known.

12.4-2. Likelihood of the Statistics (m, n) and (v, v)
For the same reasons as in the univariate case, Section 11.5.2, we may wish 

to use the information contained in an incomplete statistic (m, n) or (v, v), and to 
do so we need the marginal likelihood of the statistic in question given (p, h). 
The kernel of the likelihood of (m, n) is

fcir , (12-24a)
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while th e  kernel of th e  likelihood of (v, v) is

e - lhvvhi' . (12-24b)

► To prove formula (12-24) we shall first transform the independent x (/) with correlated 
components £{tJ) into independent ZU) with independent components 2iJ). Then expressing 
m and v in terms of the we shall show that their distributions are independent and tha t 
their kernels are given by (12-24).

Because h  and therefore tj =  h//i is positive-definite, there exists (by Theorem 7 of 
Section 8.0.3) a nonsingular matrix Q such th a t Q ‘r\Q  = I. Defining new variables z (D by

Q Z(i) = X(,) — fJL

and substituting in the exponent of e in the complete sample likelihood (12-6) we obtain

-*/i2(x<'> - M)‘Tl(*(/) -M) = ,
thus showing tha t the 2(tJ) have independent Normal distributions with the same mean 0 
and precision h.

Now defining

* = J. yn 9U)Zi = „ i Zi ,n
t =  1, 2, • • • , r ,

Vi ^  !Lr 2 " -» (^ > -  *)* ,7 1 — 1

w'e observe (1) th a t the r pairs (?,-, t>») are mutually independent because the 2<(/) are mutu
ally independent, and (2) tha t for any i the random variables !, and are independent with 
joint density

D(z„ Vi) = / at(z,|0, hn) f y2(Vi\h, n -  1)

by the univariate theory in the proof of (11-38). I t  follows tha t the joint density of the 
r pairs (r„ £,) is

n ;.i[A (z ,|0 ,/m )/Y2( ^ , n  -  1) = m i | 0 ^ n l ) n ; . 1/ 72(i;l|/l,n  -  1) .

The mean i  is independent of the r vs.
Formula (12-24a) is now proved by observing tha t if i  is Normal with parameter 

(0, hn I), then

rh= -2*<'> = - 2 ( Q z<’> + m) =M +  Q f
71 71

is Normal with mean /a and variance Q hn I Q* =  hnr\ =  hn; in other words,

D(m) « /J?(m|M, An) -  (2tt) .

The kernel (12-24a) of the likelihood of m is now obtained by simply dropping from this 
density all factors constant as regards /a.

To prove formula (12-24b) we write the definition (12-7) of v in the form

r(n — 1) v = 2(x(') — m)‘ (x(/) — m) .
Substituting herein

x<’> -  m = (x('> -  m) “  (m -  /a) = Q(*(/) “  *) 
317



12.4.2 Pari I I I :  Distribution Theory

we obtain
r(n -  l)t; = 2(2(» -  I)1 Q‘ Q(z(» -  2) = 2(z(» -  2)‘1(z<>> -  2)

= 2?.! 2?.! (*j'> -  *)f = 2fr.!  2 ; . t -  2,)* •
Recalling our definition

and defining 

we can express v as

n — l

V = 2J.1?,

r
Because the t\ are independent the density of ^  = 2 t\- is the convolution of the r densities 
of thetu. By (7-53), this convolution is gamma-2 with parameter (h/rt r[n — 1]) = (h/r, v), 
so that using the formula (7-50) for f yi we may write

D(F) = e h'W')v(iv[h/r]V)l'-1 
( hv -  D!

\v(h/r) .

Substituting herein v = V /r  and multiplying by the Jacobian \dV/dv\ = r we obtain

DM = e~iKw9(\hw)i9~l 
t t * -  1)1

The kernel (12-24b) of the likelihood of v is now obtained by simply dropping from this 
density all factors constant as regards h. ^

Again for the same reasons as in the univariate case, we wish to express the 
kernel of the likelihood of the complete sample in such a way that it automatically 
reduces to (12-24a) when only (m, n) is available and to (12-24b) when only (t;, v) 
is available. We therefore define

p = rank(n) = if n = 0 
if n >  0 (12-25)

and write the kernel (12-23) in the form
• /iir . (12-26)

With the convention that
1. v — 0 when v is unknown or irrelevant,
2. n = 0 when m is unknown or irrelevant,

the complete kernel (12-26) reduces to (12-24a) in the first case and to (12-24b) 
in the second.

124-3. Conjugate Distribution of (fl, fi)
When the relative precision t\ of an Independent Multinormal process is 

known but both the mean fl and the mean precision K are random variables, the 
most convenient prior distribution of (/d, ft) —the natural conjugate of (12-26)— 
is what we shall call the (multivariate) Normal-gamma distribution, defined by
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h\m, v, n, v) = h n )fyt{h\v, v)
0C v  . / i * - >  , ( 1 2 - 2 7 )

where n expresses the information on /a in units of the process mean precision h 
as discussed in Section 12.1.4 and p =  rank(n). Since n must be PDS and there
fore of full rank r if (12-27) is to represent a proper (convergent) density, p will 
in this case be equal to r and the definition of / #  implied by (12-27) is identical 
to the definition (8-17); we write p rather than r in (12-27) so that our formulas 
for the posterior density will generalize automatically to the limiting case where 
prior information is totally negligible and the decision maker sets n' = 0.

If the prior distribution of (/I, R) is Normal-gamma with parameter (m', t/, n', / )  
where n' is of rank p' and a sample then yields a statistic (m, v, n, v) where n is 
of rank p, the posterior distribution of (/£, R) will be Normal-gamma with parame
ters

m " = (n' +  n)-■‘(n'm' +  n m) , (12-28a)
n" = n' +  n , p = rank(n") , (12-28b)

[W  -1- m n'm'] -1- [w 4- m ' n m ]  -  m '"n"m " (12-28c)V = [,' +  p'] +  [, +  p] -  P" ’
v" = i—

i 

+ -+-[*' +  p] — P" (12-28d)

► Multiplying the kernel of the prior density (12-27) by the kernel of the likelihood (12-26) 
we have

e-  JAkV -  + Jp'-l e ~ i htf9-  $*(m-M)*n(m-m> + #

We observe first that the posterior exponent of h will be

\v* +  W  -  1 +  +  ip = \W  +  p' +  v +  P -  p"] +  ip" -  1 .
By (12-28d) this can be written

W  +  W ' -  1
in agreement with the exponent of h in (12-27). We next observe that the posterior ex
ponent of c will be — ih multiplied by

v'v' -f- (m — m')f n'Qx — m') +  w +  (m — /a)* n(m — /n) .

Using (1) through (4) in the proof of (12-14) this can be written

(ji — m")*n"(M — m") +  v*v' +  m^n'm' +
— (n'm' +  n m)* n"_1(n'm' +  n m) .

By (12-28ab) the last term in this expression can be written

(n"m")'n"-1(n"m") = ,

and by (12-28cd) the whole expression can therefore be written

(/a -  m")‘ n"(/A -  m") + v"v"

in agreement with the exponent of e in (12-27).
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12.44 . Distributions of h
If the joint distribution of (/Z, R) is Normal-gamma as defined by (12-27), 

the marginal distribution of fi is gamma-2 as defined by (7-50),
D(fc|m, t>, n, v) = f+(h\v, p) , (12-29)

while the conditional distribution of fi for given is of the same type but with 
different parameters:

D(/i|/a; m, v, n, v) = f y2(h\V, p +  v) (l2-30a)
where

V = vv + (fi — m)t n(/a — m) 
V + v

(12-30b)

Since both these distributions are of exactly the same type as the corresponding 
distributions of R when ji is univariate, the discussion of the marginal distribution 
of R in Section 11.5.4 and the discussion of the implied distribution of a = V 1 /R 
in Section 11.1.4 apply here without change.

► By definition, the marginal density of Ji is obtained by integrating the joint density 
(12-27) over — 00 </*<<»,  and since f y2(v\h, v) does not contain ** this integral is

fAh\», v) |m, hn) dft = fn(h\v, v) .

To find the conditional density of R given fi we write the kernel (12-27) of the joint 
density of (fit, R) in the form

g -  +  ml) ^J(P  +  »')- 1  —  e - ^ h ( P  +  y ) V  f a U p  +  y ) - l  ^

Comparison with (7-50) then shows that the density of (R\fi) is gamma-2 with the param
eters specified by (12-30). <4

124-5. Distributions of fi
If the joint distribution of (/Z, R) is Normal-gamma as defined by (12-27), 

the marginal distribution of fi is Student as defined by (8-28):
D(/i|m, !>, n, p) = /S>(m\m,n/v, p) . (12-31)

I t then follows immediately from (8-29) that

E(fi\m) v, n, v) s= p, = m , v >  1 , (12-32a)

V(/Z|m, v, n, v) =  p. = n_1 v —v—z  » v >  2 . (12-32b)v Z

The conditional density of fi given h is of course f N(n\m, hn).

► By definition, the marginal density of fi is given by the integral

f “ }s(jt\m, hn) fyt(h\v, v) dh .
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Substituting herein h = h*/v and using the definition (7-50) of />2 we obtain

J j  / at(a* K  h*a/v) v) dh* ;

and (12-31) then follows by (8-28). ◄

12.5. Sampling Distributions With Fixed n

In this section we assume that a sample with predetermined n >  0 and there
fore of rank p = r is to be drawn from an r-dimensional Independent Multinormal 
process whose relative precision tj is known but whose parameter (jl, ft) is a random 
variable having a proper Normal-gamma distribution with parameter (m', v n', / ) .  
The fact that the distribution is proper implies that n' is of rank p = r and that 
v', v' >  0.

12.5.1. Conditional Joint Distribution of (m, h)
The conditional joint distribution of the statistic (m, fJ) for a given value of 

the process parameter (/a, h) has as its density the product of the independent 
individual densities of m and V:

D(m, v\p, K n, v) = /J?(m|M> hn)f+(v\h, v) . (12-33)
The proof was given in the proof of (12-24).

12.5.2. Unconditional Joint Distribution of (rh, v)
The unconditional joint distribution of (m, 0) has the density 

D(m, v\m', t/, n', / ;  n, v)
= J ~ k j “/$(m|#», ha) fyi(v\h, v) fWy(ji, h\m’, v', n', / )  dh dfx

cc ---------------------is l lL ! -------------------  ,
(;v'v' +  w  +  [m — m ']‘ nM[m — m'])*'"

where
n„ = n'n" -1  n = n n" _1 n' , n.7 1 = n'_t +  n~‘ ,

.

(12-34a)

(12-34b)

► To evaluate the integral (12-34a), we replace fny by its definition (12-27) and write 
the integral in the form

/ ;  \J-» ha') fyt(.v\h, v) !AhW, A dh .
When the inner integral is evaluated by use of (12-17) this becomes

/ 0“  ha. )  fyt(v\h, v) Mh\A A  dh .
Replacing fa and th e /^s  in this expression by their formulas and dropping constants we have

f  * e-  ^$(r+r'+r)-l ^Jr-i ^
JO ’
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Substituting herein
h = z/A , A = $(vV +  w +  [m — m ']‘ n u[m — m ']) ,

we obtain
Jq“ e~ 'zV'+’+T)-1 dz .

The integral in this expression is simply a constant multiplied by F7.(« |£[V +  v +  r]) = 1; 
and since v" = v’ +  v + r when p' = p = p" = r, the factors preceding the integral are 
proportional to (12-34). ^

12.5.3. Unconditional Distributions of m and d
From the unconditional joint distribution (12-34) of (m, fl) we can obtain two 

distributions of m, both unconditional as regards the parameter (/a, h). The first 
of these is also unconditional as regards v; its density is

D(m|m', v'y n', / ;  n, v) = f^ (m \m 'y nu/t/, v') . (12-35)
The second is conditional on v even though unconditional as regards (ft, h) ; its 
density is

D(m|m', t/, n', v'; n, v; v) = f f (m \m 'y n J V y v' +  v) (12-36a)
where

V =  v'v' W • (12-36b)

In the same way the joint distribution of (my V) implies two distributions of V. 
Marginally as regards m, the statistic V has the inverted-beta-2 density

D(t»|m',«/, n', v'; n ,v) = | Jr, K  vV/v) ; (12-37)

while conditional on m the density of V is

D(t>|m', t/, n', n, m) = f m  (»|*r, W  +  r], ™  +  M )  (12-38a)

where
M  = (m — m ')‘ nu(m — m!) . (12-38b)

► The marginal density (12-35) of fh and the conditional density (12-38) of (0|m) are 
obtained by writing the kernel (12-34a) of the joint density of (fit, v) in the form

______________ 1______________  (w)iw~1(v,vf -f [m — m'pnuph — m '])W  p)
(v'v' +  [m — m']*n«[m — m/])$(r"“r> *  (w +  v’v' +  [m — m']1 nu[nk — m

a ^(m lm ', nu/v'y v" -  v -  r ) f i$t(v\ivy \[v" -  v]yv'v' +  M '

where M is defined by (12-38b) and v" = v* +  v +  r.

The conditional density (12-36) of (ih\v) and the marginal density (12-37) of V are 
obtained by writing the kernel (12-34a) of the joint density in the form
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_______________(w 4- v 'v W ______________
(w +  vV)i(̂ #“r) (w + v'v' +  [m — m ']*nu[m — +  vV)ir

-  fm  ( t - l i v ,  \[v" - f - v l  n JV , v" -  r)

where V is defined by (12-36b). <4

12.6. Preposterior Analysis With Fixed n

In this section as in the previous one we assume that a sample with predeter
mined n of rank r is to be drawn from an r-dimensional Independent Multinormal 
process whose relative precision r\ is known but whose mean fi and mean precision R 
are random variables having a proper Normal-gamma distribution with parameter 
(m', v', n', v ) where n' is of rank r and v'y v' >  0.

12.6.1. Joint Distribution of (/ft", v")
By expressing the random variable (m, 5) in terms of the random variable 

(m", 0") wre can obtain the joint density of the latter from the joint density (12-34) 
of the former:

oc

D(m", v"\m', v n', n, v)
(✓ V/ -  yV -  rm" -

where
n* ss n '^ - 1 n' = n 'n -1 n" , n*"1 = n '” 1 -  n ""1 ,
^  = v' +   ̂ +  r ,

and the values of the variables m" and vn are constrained by
y"v" > yV  , (m" -  m y  n*(m" -  m') <  y"v” -  v'v' .

(12-39a)

(12-39b)

(12-39c)

► The proof of (12-39) proceeds in three steps: we first show that
(1) (m -  m ')‘ n tt(m -  m') =  (m" -  m')‘n*(m" -  m') ; 
we next show that
(2) vfvf +  w +  (m — m')'nu(m — m!) = v”v” ;
and we then substitute these results in (12-34).

Equation (1) follows immediately by comparison of the right-hand sides of (5) and (6) 
in the proof of (12-14). Comparison of the right-hand sides of (4) and (5) in this same 
proof then shows that

(m — m'Vntt(m — m!) = mft n'm' +  m'nm -  (n'm' +  n m)‘ n"_1(n'm' +  n m)
= m'1 n'm' +  m' nm -  m"1 n"m" ,

and substitution of the left-hand side of this equation in the definition (12-28cd) of vnvn 
proves equation (2) above. Now using (1) and (2) to replace the variables (m, v) of (12-34) 
by the variables (m", v") we obtain
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(3) (y"v" -  yV -  [m" -  m'Y n*[m" -  m '])*-1 
(i/V')*""

where J  is the Jacobian of the transformation. To evaluate J  we write

and then compute

m = n -1(n"m" -  n'm')
= v~l(v"v" — v'v' — [m" — m']*n*[m" — m'])

8(m, v) n-> n" 0
8(m", v") — V-* v"

thus showing that J  is a constant as regards m" and v The proof of (12-39) is completed 
by observing that it is identical to (3) except for the constantJ. ^

12.6.2. Distributions of m "  and v"
From the joint distribution (12-39) of (m", fj") we can derive two distributions 

of m": the distribution of m" conditional on a particular value of fJ", and the dis
tribution of m" which is marginal as regards V". This latter, unconditional dis
tribution of m" has the Student density

D(m"|m', i/, n', n, v) = Ar)(m"|m', n*/V, *') (12-40)

where n* is defined by (12-39b). The conditional distribution of (m"\v") has the 
inverted-Student density (8-34):

where
D(m"|m', t/, n', n, v") = /fi(m "|m ', n*/V , v)

V =

(12-41a)

(12-41b)

In the same way the joint distribution of (m", fl") implies two distributions 
of f?". Marginally as regards m", the density of f>" is inverted-beta-1:

D(y"|m', v’, n', ; n, r) = / .„  (»"| Jr', Jr", • (12-42)

Conditional on a particular m", the density is of the same type but with different 
parameters:

D(t>"|m',«/, n \  v'; n, m") = f m (»"| J|V +  r], Jr", yV + **)  (12-43a)

where
M = (m" -  m ')1 n*(m" -  m') . (12-43b)

These distributions are identical to the corresponding distributions for the case 
where m" is scalar, i.e., where r = 1.

► To obtain the marginal density (12-40) of m" and the conditional density (12-43) of 
(v"\ m") we first simplify notation by using the definition (12-43b) of M to write the kernel 
(12-39) of the joint density of (m", v") in the form
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(1)

r „ v'v' + m ~iJ-1 r „ y  4- .1/1 JO'"-*’)

1 ■ ✓ ' _ L  .
(;v'v' + M) i 1'" -"  ^ v" V

Since v" — v — v' +  r and v = v" — (V +  r], this is proportional to

W W W ,  n*/V, »-')/*. +  r], w ,  V'V' *  M)  ■

To obtain the marginal density (12-42) of t>" and the conditional density (12-41) of 
(m"|t/') we write the kernel (12-39) of the joint density in the form

(v"vn -  yy )l^> -*  {v"v" -  yy -  [m" -  -  m '])*-1 .
( ' (v"v")V  X (v"v" -  y,vf) \{y+r)~l ’
The first factor is obviously proportional to foi(v"\%v', Jv", v’v’/vn)\ and if we use the 
definition (12-4lb) of V to write the second factor in the form

(vV — (m" — — m')]^-1 a [y — (m" — m')l(n*/V){m" — m')]i'_1(„y)J(r+r)-l ~ y±r

and recall that |n*/F| = \n*\/Vr we see that this factor is proportional to (12-41a). ^

12.6.3. Distributions of f." and fL"
The variance jl" of the posterior distribution of p. will, by (12-32b), be propor

tional to the parameter v" of that distribution,

r  = , r " > 2  , (12-44)

so that before the sample outcome is known the distribution of the random vari
able ji" can be easily obtained from the (marginal) distribution (12-42) of 0". 
Since this latter distribution is the same as when fL is univariate, we have by 
(ll-66a) that

E(p."|m', v’, n', v \ n, ,)  =  n " -‘ -  2 E(0") = n " -1 -  2
= n n'ji'. (12-45)

The mean p"  of the posterior distribution of p  will, by (12-32a), be equal to 
the parameter m" of that distribution, so that the prior distribution of p" is 
obtained by merely substituting p" for m" in the formula (12-40) for the (mar
ginal) density of m". I t  then follows by (8-29) that the mean and variance of 
0 "  are

E(/T'|m', */, n', n, ,)  =  m' =  E(p|m', t/, n', ,') , 

V(/8t"|m', t/, n', v'; n, v) =  n*"1 v'

=  V(p|m', t/, n', ✓ ) -  E[V(p|m", 0", n", ,")] ,

v' >  1 , (12-46a) 

✓  > 2 (12-46b)
in accordance with the general relations (5-27) and (5-28). These relations of 
course constitute an alternative method of deriving the parameters of the distribu
tion (12.40) of m".
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C .  I n t e r r e l a t e d  U n i v a r i a t e  N o r m a l  P r o c e s s e s

12.7. Introduction
In some situations utilities depend on the joint distribution of some number r 

of unknown scalar quantities au> * * * , M»> * ■ * > Mr each of which is the mean of a 
distinct univariate Normal data-generating process as defined by (11-1). The tth 
process generates independent random variables :£<(1), • • • , £<(j), • • • with identical 
densities

fW b iln 'h i)  , (12-47)
and each of the r processes operates independently of all the others. In the gen
eral case, the processes are related through a joint prior distribution of their 
parameters • • • , /2r, fii, • • • , fir, but we shall here consider only the special case 
where the ratios are known with certainty for all (t, i ') even though the actual 
value of fit may not be known for any of the processes.

Because the processes operate independently, a different number of observa
tions may be taken on each. The sample from the ith  process will yield the 
statistics

7i, : the number of observations on the ith  process , (12-48a)

m, = — Z jxl” (=  0 if ni = 0) , (12-48b)Ui
v{ = 7i, - l  ( = 0  if nt = 0) , (12-48c)

Vi =  - 2 , ( x { ' >  -  m < ) *  ( =  o  i f  r <  =  0 )  .  ( 1 2 - 4 8 d )

The kernel of the joint likelihood of all r samples is the product of the likelihoods 
of the individual samples as given by (11-37) with n — 1 replaced by v:

H[e~ — #*»)* — M il1)  IJ .

If we now define the mean precision of the r processes
(12-49)

h m (ja  h iy i - ,
the relative precision of the tth  process

(12-50a)

Vu =  hi/h ,

and the effective number of observations on the tth  process

(12-50b)

71,, =  n%fjii , ’

the kernel can be written (dropping the constant II i?„in<)

(12-50c)

g— \hZriii¥tvr- —m,)* fifam .
and if we further define

(12-51)

M s  [mi •••/*«•• • t*r]‘ (12-52a)

m = [wti • • • m, • • • mr]‘ , 
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nn

0

n = nn

0

(12-52c)

nrr_

p =  rank(n) = number of processes sampled , (12-52d)

v =  2<_i Vi , (12-52e)

v = i  2  rinVtVi = Xij — (xP -  m,)2 , (12-52f)

the kernel can be written
e-\hrv- jMm-iO'nCm-#*) /^(p + v) . (12-53)

I t  is thus apparent that the statistic (m, u, n, v) is sufficient for the entire set of 
r samples.

12.8. Analysis When All Processes Are Sampled

If now we at first assume that all r processes are sampled, p = r, then the 
kernel (12-53) of the likelihood of these r samples, one from each of r independent 
processes, is formally identical to the kernel (12-8) of the likelihood of a single 
sample from an r-dimensional Multinormal process; and it can also be shown 
that the conditional distribution of the statistics (m, V) for predetermined values 
of (n, v) and given values of the parameters (ji, h) is identical to the corresponding 
distribution for a sample from a Multinormal process:

D(m, h, n ,»-) = fW(m\ix, h n )fyt(v\h, v) . (12-54)

I t follows that if we assign to (fi, R) a prior distribution of the same type that we 
assigned in the case of the Multinormal process, the entire analysis of our present 
problem will be identical to the analysis of the Multinormal process given in Sec
tions 12.1 through 12.6. If the mean precision h of the r processes is knowm and 
a Normal prior distribution is assigned to fiL,

D'(m) = /tf(/i!m ',/m ') , (12-55)

then the formulas given in Section 12.2 for unconditional distribution of m and 
in Section 12.3 for the prior distribution of m" apply without change. If h is 
unknown and a Normal-gamma prior distribution is assigned to £),

D'(m, h) = / tf  M m 'f An') U W ,  v') , (12-56)

the formulas in Section 12.5 for the unconditional distributions of m and 0 and in 
Section 12.6 for the prior distributions of m" and 0" apply without change.
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► To prove (12-54), we start from the fact that, by (11-52), the statistics

fhx = — 2,- £̂ J) and t\ = — 2,(£}J) — m,)1 fit n% — 1
of the sample from the ith process are independently distributed with densities
(1) hxn %) m /v(mt|/x<, hnu) « ,
(2) Vi) = fy2(Vi\hriii, v{) <r e -iHl,iiPi9i(ihriiiViVi)iPi~l .
Since the processes themselves are also independent, the vector th of the r sample means 
will be independent of the “pooled” statistic

V  = - — ---- 2 TU i V i V i2 n, — r
and therefore the joint density of m and v is the product of their individual densities. It 
follows that (12-54) can be proved by proving that the first factor therein is the density 
of i h  and that the second factor is the density of 0.

To show that t h  has the density f $ ( m \ n ,  /in), we need only recall that the independence 
of the rhi means that their joint density is the product of their individual densities as given 
by (1) above,

D(m) oc _  6—\hZnu{mi-iu)* _  jMm-/*)in(m-*) >

To show that 0 has the density fyt(v\h, v), we first substitute
Wi = J htiaWi

in (2) to obtain
D(w%) « « fy M tv i)  .

Because the 0< and therefore the tZ\- are independent, the distribution of
f t  m 2 ibi

has as its density the convolution of the r densities of the individual i b i \  and by (7-42) 
this convolution is

M W f t X v i )  oc e ~ w W W ' * - 1 .
Substituting herein

v s  2 n  ,
W e  2 Wi = 2 ihrjuViVi = \hw  ,

we see that
D(v) oc e -K ’G M * '-1 a fa (v\h, v) . 4

12.9. Analysis W hen Only p < r Processes Are Sampled

12.9.1. Notation
We next consider the case where observations have been or are to be taken 

on only p < r of the r processes whose parameters are related a priori by (12-55) 
or (12-56). To facilitate discussion, we assume without loss of generality that it 
is the first p processes on which observations are taken, partition

. h e r e '  I” * 1, '
Ml 18 P  X 1 ,

(12-67)

and partition the parameters of the prior distribution of Qa|A) accordingly:
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m' =

n' =

where m' is r X 1 , 
m[ is p X 1 ,

where n' is r X r , 
nh is p X p .

(12-58)

The parameters m " and n" of the posterior distribution of fi will of course be parti
tioned in this same way. To correspond with this notation we define the “natural” 
statistics

m i  - [ m i  • • • m p ] ‘ ,

“ n n  “

• 0

n n  =
0  •

_  nPP-
V =  2 f _ i  Vi =  2  n ,  —

(12-59a)

(12-59b)

(12-59c)

V rn  i  2 = ~v 2 u j  (xi-0 -  m,)2 ; (12-59d)

the statistics m and n defined by (12-52bc) are then of the form

m is r X 1 ,m
- m

=  r«u  on 
Lo o j

where

where

mi is p X 1 ,
n isr X r , 
nu is p X p ,

(12-60)

and will be referred to as “augmented” statistics.

12.9.2. Posterior Analysis
I f  h is known, if the r X 1 random variable fi has a Normal distribution with 

parameter (m', n'), and if samples from p of the r processes yield the augmented 
statistic (m, n) defined by (12-60), then the posterior distribution of fi is Normal 
and its parameters are given by (12-14) without change:

n" = n' +  n , (12-61a)
m" = n,,_1(n'm' +  n m) . (12-61b)

I f  h is unknown, if {fi, ft) has a Normal-gamma distribution with parameter 
(m', v', n', v'), and if samples from p of the r processes yield a statistic (m, v, n, v) 
as defined by (12-59) and (12-60), then the posterior distribution of {fi, ft) is Normal- 
gamma with parameters m" and n” as given by (12-61) and

= V  +p'] +  [- +  p] -  v"  ,
, (12-62) 

v" = 7 ([vV +  m '‘n'm'] +  [w +  m ' nm ]  — m ”‘n',m ”),

where p' =  rank(n') and p" = rank(n").
329



► The argument which led to (12-53) as the kernel of the joint likelihood of r samples 
obviously leads to

nu(mi-Mi) $̂(p+r)

as the likelihood of p samples in terms of the natural statistics mi and nu. The definitions 
(12-60) of the augmented statistics m and n imply, however, that

e~  ^hw-  -/*) i n(m -*») §̂(p+>)

will have exactly the same value as the previous expression for all §i. Since this latter 
expression is identical to (12-8) and since the proofs of (12-14) and (12-28) did not depend 
on any assumption that n was of full rank, they hold unchanged for (12-61) and (12-62). ^

12.9.2 Part I I I :  Distribution Theory

12.9 ,3 . Conditional Sampling Distributions With Fixed n

I t  is obvious that, for given (/a, A), the conditional distributions of the natural 
statistics fhi and f) as defined by (12-59) depend on p x and h in exactly the same 
way that m and P as defined by (12-52) depend on /a and h. There is consequently 
no need to prove that the joint density of (mi, P) is the product of the independent 
individual densities of mi and P and is given by (12-54) modified to read

D(mi, v\fih A;n, v) = / ^ ( hiiImi, h n n )fy2(v\hy v) . (12-63)

12.9.4• Marginal Distribution of (jh\h) and (/Zi, A)
From (12-63) it is clear that the unconditional distributions of mi and P will 

depend on the distribution of (/Zi|A) if A is known or on the distribution of (Jh, h) 
if h is unknown in the same way that the distributions of m and P depended on the 
distribution of (/z|A) or (/Z, R)\ and therefore our next step must be to obtain the 
distributions of (fii\h) and (/Zi, R). In both cases the required distributions are, 
of course, the distributions marginal as regards /Z2.

The prior distribution of (/Zi|A) is given immediately by (8-20): its density is
D'(mi|A; m', n ')  = /fcVilmJ, hn'm) (12-64a)

where
n'm = nu -  n Ja n ^ n S i , n ^ 1 = (n '-%  . (12-64b)

Then since the factor f y2(h|t/, v') in the prior density (12-56) of (/Z, K) is the marginal 
density of it follows at once that the prior density of (/Zi, K) is

D '(Mi, A|m', i/, n', ✓ ) = /fcVilm l, h i Q f + W ,  *’) • (12-65)
The posterior distributions of (fli\h) and (/Zi, K) are now easily found. Since 

the prior distributions are of the same form as the prior distributions of (fi\h) and 
(/Z, ft) and since as was shown in the proof of (12-62) the likelihoods of mi and P 
are of the same form as the likelihoods of m and P, the posterior distributions of 
0*i|A) and {fih R) are given directly by (12-14) and (12-28) with r everywhere 
replaced by p. Assuming that the prior distributions are proper, i.e., that v'y v* > 0 
and that ni, is PDS, we have

rC =  n i, +  n u  ,

m'/ = n " - 1̂  ml +  n u  nu) ,
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vn  = v +  v +  p  , (12-66c)

v" = ([•'V +  m'i‘ m{] +  [w +  m\ nu mi] -  mi" n" m") . (12-66d)

► To show that (12-66b) is consistent with the definition of m" in Section 12.9.1 as the 
first component of m" = n"-1(n'm' -f n m), we define

u" = n"_1 ,
write (12-6lb) in partitioned form as

r mi i  = r u,*"i. r n»*m*+ n» + nu m* i ,
Lmj'J Lui! u« J L n2i ml + 1122 ml J ’

use (12-61&) and (12-60) to write
Tud uHI = Tni! +  n„ n i jT 1 ,
Lun U22J  L nil ni2j ’

and use (8-3), (12-64b), and (12-66a) to evaluate
ull = (nJi +  nu — nl2 nai^nai)”1 = (n£, +  nn)~l = n^'-1 ,
. . n  _  _ / / - i  _ /  _ / - iU12 — — nm ni2 n22 ,

When these values are substituted in the partitioned formula for m" given just above, 
the first row reduces to formula (12-66b) for ml'. ^

12.9.5. Unconditional Distributions of /hi and v
The changes which must be made in the formulas for the unconditional den

sities of m and f) given in Sections 12.2 and 12.5 in order to obtain the correspond
ing densities of mi and 0 are now obvious without proof.

I f  h is  known, the unconditional density of mi is obtained by modifying (12-17) 
to read

D(mi|/i; m', n '; n) = /Jp(mi|m{, hnu) (12-67a)
where

n„ =  n ^ n ; '”1 nu = n u n " " 1 n^ , n ”1 = n'm- 1 +  nfi1 . (12-67b)

I f  h is unknown, the unconditional joint density of (mi, 0) is obtained by 
modifying (12-34) to read

D(mi, v\m', v’> n', vf ; n, v) oc
(v'v’ + w +  [mi — m(]* nu[mi — m l])lr"

(12-68)

where nu is defined by (12-67b) and v" by (12-66c). The same changes in (12-35) 
through (12-38) give the densities of mi and 0 separately.

12.9.6. Distributions of rfi"  and v"
The distributions of ml' and 0" as defined by (12-66) follow from the distribu

tions of m" and 0" given in Sections 12.3 and 12.6 just as obviously as the distribu
tions of mi and 0 follows from the distributions of m and 0.

I f  h is known, the density of ml' is obtained by modifying (12-20) to read
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D(mi'\h; m!, n';n) = hn$

Part I I I :  Distribution Theory

(12-69a)
where

— Din 1̂1 — Dm 1̂1 n*m~l = n; - 1 -  n; ' - 1 . (12-69b)
I f  h is unknown, the joint density of (m", 0") is obtained by modifying (12-39) 

to read
D(m(', v"\m!, v', n', v \ n, v)

a W’y" -  »V -  rmr -  ml]* n;,[m{' -  mil)*-*
( / V ' ) * ' "

(12-70)

where nj, is defined by (12-69b) and v” by (12-66c). The same changes in (12-40) 
through (12-43) give the densities of ml' and v" separately.

12.S.7. Preposterior Analysis
The results given in the previous section suffice for preposterior analysis 

only in the rather special case where utilities depend only on m{' and/or t>". More 
frequently they will also depend on m£', and it is here that analysis of our present 
problem differs sharply from analysis when observations are taken on all r /xs. If 
we rewrite formula (12-61b) considering m" and mi as random variables we obtain

m" = n"-1 ^n'm' +  n > (12-71)

and we see at once that because the only random variable on the right-hand side 
of this equation is mi and the distribution of mi is p-dimensional, the distribution 
of m" is confined to a p-dimensional subspace within the r-space on which m" is 
defined. This means that it would be extremely awkward to try to work with the 
distribution of the complete r X 1 vector m" expressed in analytic form; we shall 
do better to express the (r — p) X 1 vector m2 as a function of the p X 1 vector 
m 1 and work with the p-dimensionai distribution of mj' which we obtained in the 
previous section.

Although it is quite possible to find the functional relation between m '2 and 
m'\ by using (12-71) to express m2 as a function of mi and mi as a function of ml', 
it will be more instructive to obtain the desired relation by direct consideration 
of the joint distribution of fix and /Z2 and of the effect of sample information on 
this distribution. By (8-21) or (8-31), the mean of the prior conditional distribu
tion of /Z2, given a particular pi, is

E2| 1 (/I2IM1) = m 2 — n22 1 n2i(Mi ““ ml) , (12-72)
where E2n denotes expectation with respect to /Z2 for fixed am. Since the sample 
information mi bears directly on fix alone, not on /x2, this information cannot 
affect the conditional distribution of /I2 given fix and (12-72) holds just as well 
after the sample has been taken as before. We may therefore take the expecta
tion of both sides of (12-72) with respect to the posterior distribution of (Lx and thus 
obtain

m f2' = E"(aZ2) = El' = E[f{mf2 -  n ^ 1 -  ml])
= m2 — n ^ 1 n2i(ml' — ml) .
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This relation enables us to express as a function of m " any utility originally ex
pressed as a function of m" and thus to compute expected utility by use of the 
distribution of m " or of (m", 0") obtained in the previous section.

► To derive (12-73) algebraically, we start from the partitioned expression for m" given 
in the comment on (12-66) and write

m2 = U2i(nn m[ +  n{2 m'2 +  nlt mx) +  u22(n21 m[ +  n22 m2)
= (u2{ n(i +  u22 n2l) m[ +  (u2{ n{2 +  u22 n22) m2 +  u2{ nu mi .

Remembering that u"n" = I and that
„ _ Pnii +  nu n{2"|L n2i n22J

and using (12-66a) we can reduce this expression to
m2 = - u «  n„ m( +  m2 +  u2( nu mx = m2 + U2i([n» -  n"] m[ +  nu mx) .

Transposing the formula for u[2 given in the comment on (12-66) and then using (12-66b) 
we have

m2 = m2 -  n22_1 n21 n " _1([n* -  n"] m[ +  n„ mi)
= m2 — n'22l n2i(m'i — m[)

as was to be shown. ^
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C H A P T E R  13

N o r m a l  R e g r e s s i o n  P r o c e s s

13.1. Introduction

13.1.1. Definition of the Normal Regression Process
An r-dimensional Normal Regression process can be defined as a process 

generating independent scalar random variables y\t • • • , y if • • • according to the 
model

y { = x tj0j +  ii , (13-1)
where the /3s are parameters whose values remain fixed during an entire experi
ment, the zs are known numbers which in general may vary from one observation 
to the next although usually (but not necessarily) xn is a dummy to which the 
value 1 is assigned on each observation, and the is are independent random vari
ables with identical Normal densities

/y ( e |0 ,  h) =  ( 2 T ) - » 6 -» * * fc *  .

The parameter h will be called the 'precision  of the process. 
If we define the vectors

Xi = [xn  Xi2 • * • Xir]1 ,
0 - [ f t  f t ••• 0r ] ‘ ,

the model (13-1) of the ith observation can be written
y { = x\ 0  +  h .

I t  then follows from (13-2) that the density of j/, is

= (2*)-* A*

(13-2)

(13-3)

(13-4)

(13-5)

IS .1.2. Likelihood of a Sample
The likelihood that a Normal Regression process will generate n values 

2/i, • • • , yi, • • • , yn in that order is the product of the likelihood of the individual 
values as given by (13-5):

( 2 i r ) - * " e - » WB̂ “ * ^ > , A * "  . ( 1 3 - 6 )

Provided that the process by which the xs were chosen is noninformative in the 
sense of Section 2.3, this is the likelihood of the sample described by the n ys and 
n X8.

The factors in (13-6) which vary with the parameters fi and h are
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e-\Wvi-xi'P)' hhn , (13-7)
and this can therefore be taken as the kernel of the likelihood. To put this kernel 
in a form easier to manipulate, we define the vector of all ys observed during an 
experiment,

y  = [yi • • • y< • • • yn]1 (i3-8a)
and the matrix of all the xs,

“Xn ••• Xlj • • • Xl r “

X = xi = Xu • • • Xij * * * Xi r

_ Xni • • * Xnj * * * Xnr _
The kernel (13-7) can then be written

e-\h(y-Xfi)'(y-X0) f t jn

If now we let b denote any solution of the “normal equations”
X* X b = X* y , where b is r X 1

and define
n =  X1 X , so that n is r X r
p =  rank(X) = rank(n) , 
v = n — p ,

v = -v ( y -  X b)‘(y -  X b) ,

(13-8b)

(13-9)

(13-10a)

(13-10b)
(13-10c)
(13-10d)

(13-10e)

the kernel (13-9) can be written in the form
e-th(y-Xb)'(u-Xb) / j jv  e - j M X 6 - X m X 6 - X / J )  / ^ p

or equivalently
e~lh”  f t l '  e-iHb-fi)'n{b-fi) hlv

(13-lla)

(13-llb)
If the n X r matrix X is of rank r, then X1 X = n has an inverse and b is uniquely 
determined by

b = n -1 X 'y  . (13-12)
If rank(X) = p <  r, there will be an infinity of bs satisfying (13-10a); we can 
assign arbitrary values to r  — p components of b and then solve for the remaining 
p components in terms of these. In either case, however, the n X 1 vector X b 
defined by (13-10a) is unique and there is no ambiguity about the sample likeli
hood as given by either version of (13-11).

► To prove (13-11), observe that the exponent of e in (13-9) can be written as — \h multi
plied by

( y - X b + X b -  XP)‘( y -  X b + X b - X p )
= (y -  X bY(y -  X b) +  (Xb -  X 0)‘(Xb -  Xfi)

+  (y -  Xb)‘X(6  — P) +  (b — &)*X‘(y — Xb) ,

and the last two terms on the right vanish because
335



13.1.2 Part I I I :  Distribution Theory 

X ' ( y - X b )  = [(y -  X b y x y  = 0
by (13-10a).

That the “normal equations’’ (13-10a) always have a solution and that X b is unique 
even if b is not can easily be seen by thinking of y as a point in Euclidean n-space # (n). 
If X is of rank p, the columns of X span a p-dimensional subspace R(p) withinRin), and (13-10a) 
defines X b as the projection of y on R{p) by requiring that (y — X b) be orthogonal to the 
columns of X. This projection necessarily exists and is unique even though its representa
tion X b as a linear combination b of all r columns of X will not be unique unless these col
umns &Teju8t sufficient in number to span ft(p), i.e., unless p = r. ^

13.1.3. Analogy With the Multinormal Process
Comparison of the kernel (13-1 lb) of a sample from the Normal Regression 

process with the kernel (12-8) of a sample from the Independent Multinormal 
process shows that the two are formally identical when X and therefore n are of 
full rank r. I t  follows that in this case the entire analysis of the Regression prob
lem will be formally identical to the analysis in Chapters 12A and 12B of the Multi
normal process; but there is nevertheless an important practical difference between 
the two problems: computation of the Multinormal statistic m is a real aid to data 
processing, whereas computation of the Regression statistic b by solution of the 
normal equations (13-10a) is too laborious to be worth while. We shall therefore 
present most of our results both in terms of 6, to show the analogy between the 
two problems, and in terms of y, for practical applications.

When X and n are of rank p < r and b is not unique, there is a very close 
resemblance between our present problem and the problem of using the Multi
normal model to represent r distinct univariate Normal processes on only p < r 
of which observations are actually taken. The statistic n defined for this latter 
problem in (12-60) is of rank p just like the statistic n in our present problem, and 
the statistic m there defined contains p “real” and r — p arbitrary elements just 
like the statistic b of our present problem; and it will turn out that these partly 
arbitrary statistics behave in our present problem just as they did in the previous 
problem. For simple posterior analysis, they can be used exactly like ordinary 
statistics; but their sampling distributions require special treatment as do the 
preposterior distributions based on these sampling distributions.

A .  N o r m a l  R e g r e s s i o n  P r o c e s s ,  P r e c i s i o n  K n o w n

13.2. Prior and Posterior Analysis

13.2.1. Likelihood of a Sample When h Is  Known
When the process precision h is known, the only factor in the complete sample 

kernel (13-11) which varies with unknown parameters is
e- jM X 6 - X m X 6 - X 0 )

or equivalently
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Either of these expressions can therefore be taken as the kernel when h is known: 
the unique statistic (X, X b) or any statistic (b, n) satisfying (13-10a) is sufficient 
when h is known, whether or not b itself is unique.

13.2.2. Distribution of 0
When the process precision h is known but the regression coefficient /5 is a 

random variable, the most convenient distribution of 0—the natural conjugate of 
the sample kernel (13-13b)—is a Normal distribution as defined by (8-17):

/v(0|b, An) oc e-iw-b»n(fi-b) f (13-14)
where n expresses the information on 0  in units of the process precision A; cf. 
Section 12.1.4. The mean and variance of this distribution are, by (8-18):

E(/5|&, n) = b ,
V(0 |b,n) = (An) - 1

(13-15)

If a Normal prior distribution with parameters (b n') is assigned to /3 and 
if a sample then yields data (X, y) or a sufficient statistic (b, n), the posterior 
distribution of $ will be Normal with parameters

n" = n' +  X‘ X = n' +  n , (13-16a)
b" = n"_1(n'b' +  X* y) = n'^tn'b' +  n b) . (13-16b)

► To prove (13-16) we can start from the sample kernel in the form (13-13b) and then 
use identically the same argument used to prove (12-14) with 0 substituted for p  and b 
for m; notice that this proof does not require the existence of n-1 or the uniqueness of b.

Alternatively, we can prove (13-16) without even formal reference to b by using the 
likelihood in the form (13-9). M ultiplying the kernel of this likelihood by the kernel of 
the prior density (13-14) we obtain e~ihT where

(1) T = (y — X 0)‘(y -  X 0) +  (0 -  b')‘ n'(0 -  V) .
Regrouping terms we can write

(2) T = 7\ +  T2 
where

(3) Tx = (0 -  [n' +  X‘ X]-»[n'b' +  X* y])‘(n' +  X' X)(0 -  [n' +  X* X]“»[nV +  X1 y])
-  (0  -  V y  n" (0  -  b") ,

(4) T* = b'* n'b' +  y‘ if -  (nV +  X* y)‘(n' +  X1 X )- ‘(n'b' +  X* y)
= b'‘n'b' +  y‘y -  b"*n"b" .

1. Since 0 appears only in Th the kernel of the conditional distribution of (/5|y) is e~ihTl 
and the distribution will therefore be nondegenerate Normal with parameters (13-16) 
provided that n" =  (n' +  X1 X) is positive-definite. Since X1 X is positive-semidefinite by 
its form, n" will be positive-definite if either (a) n' is positive-definite, i.e., if the prior dis
tribution is proper, or (b) X is of rank r, i.e., if the observations y suffice to establish a dis
tribution of ji even though the prior parameter n' =  0. The matrix n" may of course be 
positive-definite even though neither n' nor X* X is positive-definite; but this can happen 
only if n' is of rank less than r but greater than 0, and such prior distributions will rarely 
occur in practice.

2. Although this completes the proof of (13-16), we anticipate future needs by giving
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an alternate factorization of the sum T2 which plays no role in the distribution of (/5|y). 
Writing n"” 1 in place of (n' +  X4 X)-1 in the last term of the middle member of (4) and then 
expanding we obtain

T2 = b'* n'b' +  yl y — b'1 n'n"_l n'b'
-  bfl n'n" - 1 X* y — yl X n""1 n'b' -  y< X n""1 X1 y 

= y'(I -  X n" - 1 X') y -  yl X n" - 1 n'b'
-  b" n'n""1 X' y +  b"(n' -  n'n""1 n') b' .

Substituting (n" — X1 X) for every n' on the right-hand side of this result we reduce it to
T2 = y4(I -  X n" - 1 X1) y -  yf X(I -  n"-» X1 X) b'

-  b"(I -  X4 X n""1) X1 y +  b"(X4 X -  X4 X n""1 X4 X) b'
(5) = (y -  X b')*(I -  X n" - 1 Xl)(y -  X b') .
We shall see later that, when T% is written in this form, e“ i*r* is the kernel of the marginal 
or unconditional distribution of ^

13.3. S am pling  D is tr ib u tio n s  W ith  F ixed  X

In this section we assume that a sample with predetermined X and therefore 
with predetermined n = X* X is to be drawn from an r-dimensional Normal Regres
sion process whose precision h is known but whose regression coefficient /5 is a 
random variable having a proper Normal distribution with parameter (b', n'). 
The fact that the distribution is proper implies that n' is PDS and thus of rank r.

13.3.1. Conditional Distribution of (jj\p)
Because the individual ys are independent by the definition of the Normal 

regression process, the joint density of n ys for a given value of the process param
eter p is the product of the individual densities as given by (13-5), and the defi
nitions (13-8) of y  and X make it clear that this product can be written

D(y\P;X) = fW (y \X fl,h I)  . (13-17)

The mean and variance of the distribution are

E(y|0;X) -  XU , 
V(y|0; X) = (AI)-1 (13-18)

These results hold whether X is of rank r or of rank p < r.

13.3.2. Unconditional Distribution of y
The unconditional density of y—i.e., the density given X but not P—is

D(y\b', n'; X) = j ‘jW ( y \X 0 ,  hn') dp

= f$ \y \X  b', hnv)
where

n„ =  I — Xn"-»X' , n, - 1 = Xn'->X* +  I .

The mean and variance of this distribution are
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E(y|b', n'; X) = Xb' ,
V($|b',n';X) = (fcn, ) - 1 .

Again these results apply whether X is of rank r or of rank p <  r.

(13-20)

► To show that the marginal distribution of y is Normal we need only recall (1) that the 
joint distribution of (y, j5) is Normal because the distributions of /5 and of (§\P) are Normal, 
and (2) that any marginal distribution of a joint Normal distribution is Normal.

To find the parameters of the distribution of y we substitute the formula (8-17) for 
/v(y) and fs(P) in the integrand of (13-19a), drop factors constant as regards y and 0 , and 
thus find that the kernel of the joint density of /5 and § can be written e~bhT* where

T* = (y -  X » ‘(y -  Xfl) +  (fi -  b y  n'(fi -  V) .
Comparison with formula (1) in the proof of (13-16) shows that T* as defined above is 
identical to the T of that formula; and we may therefore use the results (3) and (5) obtained 
in that proof to write

T* = T i+  T2
where

Tx = 09 -  b"Y n"0S -  b") ,
T2 = (y -  X b')‘(I -  X n" - 1 Xf)(y -  X V) .

Since the integral of e- !*7’1 over —« < / 3 < o o i s a  constant as regards y, the kernel of the 
marginal or unconditional density of y is simply e~lhTt, in accordance with (13-19).

To prove that the formula for n^1 in (13-19b) follows from the definition there given 
of n„ itself, i.e., to prove that

I -  X n" - 1 X1 = (X n' - 1 X' +  I)-1 ,
we multiply both sides by the nonsingular matrix (X n/_1 X* +  I) and obtain

(I -  Xn"-* X'XXn' - 1 X1 +  I) = I ,
implying that

X n' - 1 X‘ = X(n"-1 -f n"-1 X* X n'-1) X1 .
The equation is now proved by substituting (n" — n') for X* X inside the parentheses. 

Alternate proof. (13-19) can also be proved by making use of the facts (1) that
$ = X 0 + «

is by definition a sum of independent Normal random variables, (2) that i  has density 
/*(€|0, J*I), and (3) that the density of X/5 can be found from the fact that & has density 
/*(/3|b', hn’). From (1) it follows immediately that § is Normal and from (2) and (3) that 
its mean and variance are

E(y) = E(X/5) +  E(l) = X E(/3) + fl = X 6' ,
V(y) = V(X /5) +  V(«) = X V(/5) X‘ +  (AI)_1 

= X(W)-» X' +  («)-* = (hay)-‘ .
The parameters of (13-19) are then determined by these values of the moments. ^

13.3.3. Distributions of b When X Is  of Rank r
When X is of rank r and the statistic b is unique, the conditional distribution 

of b for a given value of the process parameter p is given by
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D(b|0; X) = m b \f i , h n ) (13-21)
where n = X* X. The unconditional distribution of 5, given X but not 0 , is

D(5|6', n'; X) = V , hnu) (13-22a)
where

n * 1 s  n '-1 +  n~l , ntt = n 'n"-1 n = n n " _1n' . (13-22b)
For the corresponding formulas for the case where X is of rank p < r, see (13-51) 
and (13-56).

► To prove (13-21) we first observe that when X is of rank r the statistic b has the defi
nition (13-12)

b = n~'X‘y
and is thus a linear combination of Normal random variables. Now n_1 X' is an r X  r 
matrix of rank r and r cannot exceed the number n of the rows of X; and since the dimen
sionality of y is n, it follows by (8-26) in conjunction with (13-18) that b is Normal with 
mean and variance

E(B|/3, n) = n-‘ X' E(y|0) = n-> X‘ X 0 = 0 ,
V(S|0, n) = n-> X* V(p|0) X n-> = n-' X‘(AI)-‘ X n-‘

= /r 1 n-1 n n-1 = (/in) -1 .
To prove (13-22) we use (8-26) in conjunction with (13-20):

E(B|6 ',n';n) = n-‘X'(X6 ') = b’ ,

V(B|b',n';n) = n-> X' \  (1 +  Xn'-> X') X r 1 = in - '(n  +  nn'->n) n-' h n

= £(n-« +n'->) = (l.n,)-' .

Alternatively we could argue that /5 and
i  = b -  & = n" 1 X‘(X |5 +  i) -  /5 = n- 1 X‘ i 

are independent Normal random variables and therefore that
B = 0 +  i

is Normal with mean and variance
E(&) = E($) +  E(i) ,
V(B) = V(j5) +  V(«) .

The mean and variance of $ are given by (13-15) as
E(0) = b' , V(0) = (An')-' ;

and from the fact that 4 has density /w(«|0, hi) we can compute
E(4) = n-» X‘ E(4) = n-' X‘ 0 = 0 ,
V(«) = n-> X* V(4) Xn-> = n-' X'(AI)-' X r 1 = (An)" 1 .

Substituting these results in the previous formulas for the mean and variance of b we obtain

V(&) = J (n'-‘ +  n -) a  (An„)-> 
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From the definition
n* 1 = n'-1 +  n-1 ,

the alternative formulas in (13-22b) are easily derived with the aid of (8-1):
nu = (n'_1 +  n-1)-1 = n'(n' +  n)_l n = n' n"_1 n

= n(n' +  n)-1 n' = n n"_I n' . ^

13.4. Preposterior Analysis With Fixed X of Rank r
In this section we assume as in the previous section that a sample with pre

determined X is to be drawn from an r-dimensional Normal Regression process 
whose precision h is known but whose regression coefficient /S is a random variable 
having a Normal distribution with parameter (b' , n') where n' is PDS and there
fore of rank r. We also assume in this section that X and therefore n = X* X 
are of rank r, and our results will not apply without change if this assumption is 
violated.

13,4-1 - Distribution of b "
The parameter 6" of the posterior distribution of /5 will, by (13-16), have the 

value
b" = n " -1 n 'b ' +  n " "1 X1 y  , (13-23)

so that before y is known we can obtain the distribution of b" from the uncondi
tional distribution (13-19) of y. When X and therefore n"_1 X* are of rank r, 
the distribution so determined is Normal with density

D(b"|b', n '; X) = fV (b " |b', hn*) (13-24a)
where

n* =  n"n_1 n' = n 'n "1 n" , n*"1 = n '" 1 -  n " -1 . (13-24b)
For the case where X is of rank p < r, see (13-60).

► Since b" as defined by (13-23) is an r X 1 linear combination of n > r Normal random 
variables, it follows from (8-26) in conjunction with (13-20) that if the r X n matrix n"-1 X* 
is of rank r, then b" is Normal with mean and variance

E(&") = n"- 1(n'b' +  X‘E[jr]) = n"-l(n'b' + X‘X V) = b' ,

V(6") = n"-‘ X‘ V(f) X n"-> = n"-‘ X‘ \  (X n '-‘ X' +  I) X n"-'n

= 7 n"-‘(ii n'-‘ n +  n) n"-« = \ n"->([n" -  n'] n'-' n +  n) n"-' n h

___ 1 _ / _ i _  _ / / _ i= n 1 n n 1 . n

Because n is of full rank, we may define

n* =  n" n_1 n'
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and write our last result in the form
V(5") = (/m*)-1 .

For the derivation of the alternative formulas for n*, see the proof of (12-20). ◄

13.4.2. Distribution of j§"
The mean of the posterior distribution of /8 will, by (13-15), be equal to the 

parameter 6" of that distribution; and the prior distribution of can therefore 
be obtained by simply substituting j5" for b" in (13-24). The mean and variance 
of the distribution of /5" thus determined are, by (8-18),

E($"|b',n';X) = b '  = E ( f i \ V , n ' )  , rio
V(g"lV ,  n'; X) = (fcn*)-> = n') -  n") ,

in accordance with the general relations (5-27) and (5-28). These relations con
stitute, of course, an alternative way of deriving the parameters of (13-24).

B .  N o r m a l  R e g r e s s i o n  P r o c e s s ,  P r e c i s i o n  U n k n o w n

13.5. Prior and Posterior Analysis

13.5.1. Likelihood of a Sample When Neither (3 Nor h Is  Known
We have already seen in (13-9) and (13-11) that the kernel of the likelihood 

of observations 2/1, • • • , yn on a Normal Regression process is
e-lh(y- W dr-W  fcjn (13-26)

= e~ iMv-x&)*(v-xb) hi* e-lh(Xb-X0)'(Xb-X0) fop (13-27)
= e - \h" h\* e - l W - W - n  hi? (13-28)

and that these expressions have a unique value whether or not b  itself is unique. 
The statistic (6, v, n, v) is sufficient; p =  rank(X) = rank(n) is simply an auxiliary 
abbreviation.

For exactly the same reasons as in the Multinormal or univariate Normal 
problem, we may wish to use an incomplete statistic (6, n) or (v, v) when the com
plete sufficient statistic (b, v, n, v) is unavailable or irrelevant—cf. Section 12.4.2. 
To use (b, n) we must substitute for the likelihood of the complete sufficient statistic 
( b y  Vy n, v) the marginal likelihood of (b, n), the kernel of which is

e-ih(b-fi)‘n{b-fi) tfp  = e-\h(Xb-jfi)<{Xb-X0) h\v . (13-29a)

while to use (V y v) we must use its marginal likelihood, the kernel of which is
c-1 /ii' = e-^(y-xfr)*(y-X6) m (13-29b)

With the convention that

1. v = 0 when v is unknown or irrelevant,
2. n = 0 when b is unknown or irrelevant,
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the complete kernel (13-27) or (13-28) reduces to (13-29a) in the former case, to 
(13-29b) in the latter.

► To show that the formulas (13-29) give the kernels of the marginal likelihoods of (b, n) 
and (v, v) we shall prove the stronger proposition that the likelihoods of (b, n) and (v, v) are 
independent with kernels given by (13-29). To do so we return to the geometry introduced 
in the proof of (13-11), regard y as a point in Euclidean n-space, and decompose this space 
into the p-dimensional subspace Rip) spanned by the columns of X and the orthogonal sub
space R{9) where v = n — p. We now observe that because (y — X 6) is orthogonal to ft(p) 
while X b and X /3 lie wholly within Rip), we may regard (X b — X f3) and (y — X b) as 
the orthogonal components of (y — X (3) in R(p) and R{y) respectively. Since (y — X /3) is 
spherical Normal with mean 0 and precision h, its orthogonal components are spherical 
Normal with mean 0 and precision h, and the right-hand sides of (13-29) are the kernels 
of these two Normal densities in p-space and v-space respectively.

This means that (13-29a) is the kernel of the total likelihood of all y in R{n) correspond
ing to a particular X b in R{p) and that (13-29b) is the kernel of the total likelihood of all y 
in fl(n) corresponding to a particular (y — X b) in R{,). Since there are many (y — X b) in 
R{¥) which yield the same value of (y — X b)*(y — X b) = w, we would have to integrate 
(13-29b) over all these points in order to compute the actual marginal likelihood of (vf v)\ 
but since this integral would be simply (13-29b) multiplied by a volume element which 
does not involve (3 or h, the kernel of the marginal likelihood of (v, v) is simply (13-29b). 
The same kind of argument shows that we can take (13-29a) as the kernel of the marginal 
likelihood of (b, n) without even asking whether or not Rip) contains more than one X b 
corresponding to a given (6, n). ^

13.5.2. Distribution of (/S, h)
The most convenient distribution of (/S, R)—the natural conjugate of (13-28)— 

is a Normal-gamma distribution formally identical to (12-27):
ffiy(P,h\b,v9n ,r)a: h\* e~\h"  hh'~1 , (13-30)

where n measures the information on (3 in units of the process precision h and the 
abbreviation p denotes rank(n). For (13-30) to represent a proper distribution, 
we must have p — r; cf. Section 12.4.3.

If the prior distribution of (#, R) is Normal-gamma with parameter (b', t/, 
n', vf) where rank(n') = p', and if a sample then yields data (y, X) where X is of 
rank p or a sufficient statistic (b, v, n, v) where n is of rank p, the posterior dis
tribution of (/5, R) will be Normal-gamma with parameters

n" = n' +  X‘ X = n' +  n , (13-31a)
b" = n"-I(n'b' +  X'y) = n"-l(n'b' +  n b) , (13-31b)
V" = rank(n") , (13-31c)
v" = W  +  p'] +  [> +  p] -  p" , (13-31d)

v" = J , [(>V +  V 'v !V )  +  y ‘y -  b"1 n"b"]
1 (13-31e)

= ĵ 77 [(*V +  b" n'b') +  (n> +  b‘ n b) -  b"‘ n"b"] .

These results apply regardless of the rank of either n' or X.
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13.5.2 Part I I I :  Distribution Theory

► To prove the formulas expressed in terms of y and X, we multiply the sample kernel 
in the form (13-26) by the prior kernel (13-30), thus obtaining

e- \ h { T + W  }i \ W + p ' + n ] - \

where, as we saw in the proof of (13-16),
T = (fi -  b"Y n"Q3 -  b") +  V 'n 'V  + y‘y -  b '"n"b" .

The definitions (13-31) now allow us to write
T +  v'v' = (0 -  bn)1 n"(/3 -  6") +  *V '

in agreement with the exponent of e in (13-30); and since n = p -f v by the definition (13-10d) 
of v they also allow us to write

v* +  p +  n = vf +  p' +  v +  p = v" -J- p"
in agreement with the exponent of h in (13-30).

To prove formulas (13-3lab) expressed in terms of b and n, we need only refer to the 
proof of (13-16). To prove (13-31e) in terms of b and n, we write

y‘y = ( [ y - X 6 ] +  X b)'([y -  X b] +  X b)
= (y -  X by(y -  X b) +  (X b)‘(X b) +  (y -  X by X b + (X by(y -  X b) .

The first term on the right is w by the definition (13-10e), the second term is bl nb  by 
(13-10b), and the last two terms vanish because

X‘(y -  X 6) = X ‘y - X ' X &  = 0
by (13-10a). We may therefore write

y‘y = w +  b'n b ,
and substitution of this result in the first version of (13-31e) produces the second. ^

13.5.3. Marginal and Conditional Distributions of fi
If the joint distribution of (/5, R) is Normal-gamma as defined by (13-30) and 

the parameter v of this distribution is greater than 0, the discussion in Section 
12.4.4 of the analogous distribution (12-27) shows that the marginal distribution 
of fi is gamma-2 with density

D(/i|b, vt n, v) = fyi(h\v, v) (13-32)

while the conditional distribution of fi given fi is gamma-2 with density

where
D(/i|b, vf n, fi) = f y2(h\V, v +  p) (13-33a)

v  s  w + ( P - b y n ( f i - b )
v +  p (13-33b)

13.5.4. Marginal and Conditional Distributions of /5
If (fi, fi) is Normal-gamma and the parameter n of its distribution is of rank r, 

the discussion in Section 12.4.5 shows that the marginal distribution of /5 is Student 
with density
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DOJ|b, v, n, v) = f S m ,  n/v, v) (13-34)
and therefore, by (8-29), with mean and variance

E(/5|6, t>, n, i>) = b , (13-35a)

V(/§|b, v, n, v) = n~l t; • (13-35b)

Normal Regression with Unknown Precision 13.5.4

The conditional distribution of given h is of course Normal with density /$ (0 |b , hn).

13.6. Sampling Distributions With Fixed X

In this section we assume that a sample with predetermined X and therefore 
with predetermined n = X* X is to be drawn from an r-dimensional Normal Regres
sion process whose parameter (/5, K) is a random variable having a proper Normal- 
gamma distribution with parameter (b', t/, n', v'). The fact that the distribution 
is proper implies that v v  > 0 and that n' is PDS and thus of rank r.

13.6.1. Unconditional Distribution of y
The conditional distribution of y for a particular value of the process parameter 

(0, h) was given in (13-17). The unconditional distribution of y is Student with 
density

D(p|b', v', n', v'; X) = f _ \  j QmfW (y\Xp, h\b’, vr, n', / )  dh dp

= / H y | X b \ n » ' )  
where as defined in (13-19b)

n , s l  -  X n"_1 X‘ , n ; 1 =  X n '- ‘ X' +  I .

The mean and variance of this distribution are
E ( y |b ', t / ,n > ';X )  = X 6' ,

V(jr|b ',«/, n', ✓ ; X) =  n^ 1t/ ^  ’

These results hold whether X is of rank r or of rank p <  r.

(13-36a)

(13-36b)

(13-37)

► To prove (13-36) we recall that by (13-19) the conditional density of $ given h but not 0 
is/y(y|X6', hop) and that by (13-32) the marginal density of Ji is frt(h \v ', v '). The conclusion 
then follows by the argument used to prove (12-31). ^

1S.6.S. Conditional Joint Distribution of (6, 0[/3, h)
Provided that X and therefore n are of rank r, the conditional distribution of 

(6, 0) for given (/J, h) as well as (n, v) is the product of the independent densities 
of (5|/J, h) and (V\h):

D (b, v\0, h; n, v) = f^ (b \0 , hn) f M K  *0 . (13-38)

For the case where X is of rank p <  r, see (13-51).
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► To prove (13-38) we return to the proof of (13-29), where it was shown that the densities 
of X & and (fj — X b) were independent and respectively proportional to
(!) e-JA(X6-X̂ )'(X6-X )̂

defined on R(p) and
(2) g-JMy-Xbj'cy-Xft)^,

defined on J2(r). Writing (1) in the form
e-Jb(6-/»XlX(6-^) f a  ^

we see immediately that if X* X = n is of full rank r and therefore positive-definite, the 
r X 1 vector b has density /jj)(6|/3, hn). Next interpreting the quantity

(y -  X b)'(y - X b )  = w

in (2) as the square of the length of the y-dimensional vector (y — X b), we see that the 
random variable v is constant on the surface of a y-dimensional hypersphere of radius 
proportional to Vv. Since the volume of such a hypersphere is proportional to (V̂ t/)' =ylr, 
the volume of the spherical shell within which v < v < v +  dv will be proportional to 
d(vi”) cc vl*~l dv. Substituting w in (2) and multiplying by tdr“l we see that the density 
of v is proportional to

e -lkP9hh' ,

which apart from constants is fy*(v\h, v). Finally, since the distributions of X b and 
(ff — Xb) are independent, the distributions of b and V are independent, from which it 
follows that the joint density of (5, v) is simply the product of the individual densities, 
thus completing the proof of (13-38). ^

13.6.3. Unconditional Distributions of h and ff
Provided that X and therefore n are of rank r, the joint distribution of (&, v) 

unconditional on (0, h) has the density

where

D(b, v\b'y v'f n', y'; n, y) oc ____________ (w) lr~x____________
(yV + w + [ b - b ' ] <  n*[b -  &'])*'"

ntt =  n 'n"-1 n = n n"_l n' , n « 1 = n,_1 +  n-1 , 
v" — v' +  y +  r .

(13-39a)

(13-39b)

This joint density can also be written as either (1) the product of the marginal 
density of b and the conditional density of V given b,

fs \b \b ', nwV, - ') /* .  *|V +  r], (13-40a)

where
B = (b -  b 'y  nu(b -  b') , (13-40b)

or (2) the product of the marginal density of P and the conditional density of B 
given v,

W , V'v '/v ) t t \b \b ',* J V ,V' +  V )  
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where
vv' +  w 

v’ +  V ’

For the case where X is of rank p < r, see Section 13.9.3.

(13-41b)

► The proofs of (13-39) through (13-41) are identical to the proofs of the corresponding 
formulas (12-34) through (12-38) with /3 and b substituted for/* and m. ^

13.7. Preposterior Analysis With Fixed X of Rank r
In this section as in the previous one we assume that a sample with predeter

mined X and therefore with predetermined n and v is to be drawn from an r-dimen- 
sional Normal Regression process whose parameter (&, R) is a random variable 
having a proper Normal-gamma distribution with parameter (b', i/, n', v)  where 
t/, v' >  0 and rank(n') = r. We also assume in this section that X and therefore 
n = X‘ X are of rank r, and our results will not apply without change if this as
sumption is violated.

13.7.1. Joint Distribution of (b", t>")
By using (13-31) to express the random variable (5, S) in terms of the random 

variable (h", f>") we can obtain the joint density of the latter from the uncondi
tional joint density (13-39) of the former:

D(b", v"\b', v’, n', , ' ; n ( ,) « (v"v" - v v

where
n* b  n"n-1 n' = n'n"1 n" , 
v"  =  v' +  v +  r ,

rb " - b'v n*r&" - yi)̂ -1
(v"v")V

n*-i = n '"1 -  n " - 1 ,

(13-42a)

(13-42b)

and the variables b" and v" are constrained by

v"v" >  v'v' ,
(6" -  b'Y n*(6" -  b') < v"v" -  v'v' (13-42c)

► The proof of (13-42) proceeds in three steps: we first show that

(1) (6  -  b')<njb -  b') = (6 " -  b')‘n*(b" -  V) ; 

we next show that

(2) yV +  yv+ ( b -  b')‘nu(b -  b') = v"v" ;

and we then substitute these results in (13-39).
To prove equation (1) we first use the definitions (13-31ab) of b" and n" to write

b — b' = n -‘(n"6" -  n'6 ') -  b’ = n~> n"f>" -  n-*(n" -  n) b' -  b'
= n-‘n"(6 " -  V) .
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Substituting this result and the definition (13-39b) of nu in the left-hand side of (1) we 
then obtain

(b" -  b')<n"n-|(n'n"-In)n-1n"(b" -  &') = (b" -  b')'n" n"1 n'(b" -  b') ;
and by the definition (13-42b) of n* this is the right-hand side of (1).

To prove equation (2), we first expand
(b -  b')'n tt(b -  b') = b‘ nu b +  b" nu b' -  b*nttb' -  b'*nub .

We then derive alternate formulas for ntt from formulas (13-39b)
nu =  n'n"-1 n = (n" -  n) n"-» n = n -  n n""1 n 

= n n" - 1 n' = (n" -  n') n"” 1 n' = n' -  n'n""1 n'
and substitute in the previous equation to obtain

(b -  b')‘ntt(b -  b') = b‘(n -  n n ' ^ n )  b +  b"(n' -  n'n"-'n') b'
— b*(n n"_1 n') b' — b'*(n'n"-1 n) b 

= b'n b +  b'*n'b' — (n'b' +  n b)tn"-1(n,b' +  n b)
= b*n b +  b'^n'b' -  b"‘n"b" .

13.7.1 Part I I I :  Distribution Theory

Equation (2) is proved by substituting this result in the left-hand member and comparing the 
result with the second formula for v"v" in (13-31e).

We can now use (1) and (2) to obtain (13-42) from (13-39); for the details, see the proof 
of (12-39). 4

15.7.2. Distributions of b" and 0"
The marginal densities of 5" and 0" determined by the joint density (13-42) 

are respectively
D(b"|b', t/, n', n, v) = /^ (b " |b ', n*/*', ✓ ) , (13-43)

where n* is defined by (13-42b), and

D(t;"|b', 1/,  n', n, v) = f m(v"\W , K ,  ^ ' / . " )  . (13-44)

The proofs are identical to the proofs of (12-40) and (12-42) with b substituted 
for m; and the conditional distributions of (6"|t/') and (0"| b") can be obtained 
from (12-41) and (12-43) by the same translation.

13.7.3. Distributions of /§" and
The mean 0" of the posterior distribution of /5 will, by (13-35a), be equal to 

the parameter b" of that distribution, and therefore the prior distribution of j§" 
is given directly by (13-43) with 0" substituted for b". The variance p" of the 
posterior distribution of # will, by (13-35b), be in simple proportion to the param
eter v" of that distribution, and therefore the prior distribution of fJ" can be 
obtained by obvious modifications of (13-44).

Since these distributions are formally identical to the distributions of the 
quantities &!' and jl" which were discussed in Section 12.6.3, we refer the reader 
to that section for further comment.

348



Normal Regression with X* X Singular 13.8

C. N o r m a l  R e g r e s s i o n  P r o c e s s ,  X* X S i n g u l a r

13.8. Introduction
When the rank p of the matrix X is less than the number r of parameters 0, 

the statistic b  is not completely determinate. As seen in Section 13.1.2, r — p 
elements may be given arbitrary values after which the p remaining elements will 
be determined by these assignments and the observations y. Although this 
arbitrariness in the definition of b  makes no difference whatever in simple posterior 
analysis, as we saw in Sections 13.2 and 13.5, it obviously means that the sampling 
distributions of Sections 13.3 and 13.6 will not apply. What is much more im
portant, it means that the preposterior analysis in Sections 13.4 and 13.7 will not 
apply, since if the distribution of h is p-dimensional, the distribution of

5" = n"_1(n'b' +  n 5)

will necessarily be confined to a p-dimensional subspace within the r-space on 
which b" is defined.

The problem of obtaining these degenerate distributions in usable form is 
very much like the problem which arose in Section 12.9 when we wished to analyze 
the relations among the means of r univariate processes only p of which were 
actually to be sampled, since in both cases the statistic m or b has r — p arbitrary 
elements and the statistic n is of rank p. The present problem has one additional 
complication, however: the conditional distribution of the observations y  will in 
general depend on all r components of the parameter 0, whereas in Section 12.9 
our task was simplified by the fact that the conditional distribution of the observa
tions depended on only those p components of p  which represented the means of 
the processes actually sampled.

I S .8.1. Definitions and Notation
Recalling from the comment on (13-12) in Section 13.1.2 that our difficulties 

are due to the fact that the unique projection of the sample pointy on the p-dimen- 
sional column space of X can be expressed as an infinity of different combinations 
b of the r > p nonindependent columns of X, we shall select some one set of p col
umns which are independent and express the projection of y  as a unique combina
tion b * of these columns alone.

To simplify notation we shall assume without loss of generality that the first 
p columns of X are linearly independent and take them as our chosen set. We 
then partition

X = [Xi X,] where ?  !S n *  r ’ (13-45)Xi is n X p ,

_ _ rxi X i xi Xj“i
A A |_Xi X ,  Xi x jn (13-46)

and digress slightly from our immediate objective to point out that if we define
349



13.8.1

we can write

Part I I I :  Distribution Theory 

Q =  nfi* nij ,
X2 = Xi Q .

(13-47)

(13-48)

► It is shown in Section 8.0.4 that the projection of any vector v on the column space of Xi 
is [Xi(X{ XO-1 X{] v, and accordingly the fcth column of XiQ = [X^X/ Xi)-1 X/] X2 
is the projection of the kth column of X2 on the column space of Xi. Then since the fact 
that every column of X2 is by hypothesis a linear combination of the columns of Xi means 
that every column of X2 lies wholly within the column space of Xi, the projection of any 
column of X2 is simply the column itself: the kth column of XiQ is the kth. column of X2. 4|

We are now ready to find the unique p-tuple b* which will express the projec
tion of y  on the column space of X as a linear combination of the p independent 
columns of Xi. To have this property, b* must satisfy the revised normal equa
tions (cf. 13-10a).

Xi Xxb* = x i if ; (13-49a)
and since Xi and therefore Xi Xi = Qu are of full rank, these equations have the
unique solution

b* — Du' X5 y . (13-49b)
If we also define

. r b* l u b is r X 1 , 
L 0 J  6* is p X 1 , (13-50)

the fact that X b = Xi b* makes it obvious that the projection of y on the column 
space of Xi or X can also be expressed as X b  and therefore that b as thus defined 
satisfies the original normal equations (13-10a).

13.9. D istributions of h* and  v

13.9.1. Conditional Distributions of b* and v
For given (0, h) as well as X, the joint density of the statistics h* and V is the 

product of their independent individual densities,
D(b*, v\p, h; X) = hnn) f M h ,  0  Q3-51a)

where v is defined by (13-10d) and

P* = [I Q] P = Pi +  Q f t  , (13-51b)
Pi and P2 being respectively the first p and last (r — p) elements of the r X 1 
vector p.

► By the definition (13-50) of b}

x  b = [x, x ,i[b0*] = X, b* , 
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and by (13-48) and (13-51b),
X P = Xi[I Q]0 -  Xi0* .

The proof of (13-51) is now identical to the proof of (13-38) with (X b — X/3) everywhere 
replaced by (Xi b* — Xi 0*) and with n = X* X everywhere replaced by nn = X[ Xi. <4

13.9.2. Distributions of (#*|h) and (&*, h)
From (13-51) it is clear that the unconditional distributions of S* and V will 

depend on the distribution of (|5*|/i) if h is known or on the distribution of (/§*, h) 
if h is unknown in the same way that the distributions of 6 and V depended on the 
distributions of (£|/i) or (/8, h). The prio r  distribution of (fi*\h) is given immedi-
ately by the definition (13-51b) of /§* in conjunction with (8-26):

D(/5*|/i ; b', n') = W (fi*\b*', hn'm)
where

(13-52)

b*' = [I Q ] 6 ' = - 6 i  +  Q «  , 
niT1 = [I Q] n '- ‘ [I Q]‘ . (13-53)

Then since by (13-32) the prior density of K marginally as regards /S 
it follows at once that the prior density of (&*, K) is

is f yt(h\v', y'),

D(0*, h\b', v', n', y') = ftf«J*\b*', hn'm) fyt(h\v', y') . (13-54)
The posterior distributions of (/3*|/i) and (/5*, K) are now given by formulas 

exactly analogous to those which apply when X is of rank r. Assuming that the 
prior distributions are proper, i.e. that t/, v >  0 and that n'm is PDS, we have

tC = n'm + nn , (13-55a)
b*" = n ” _1(n^ b*' 4- nn b*) , (13-55b)

y" = y' + y + p , (13-55c)

v" = l-  (|>V +  &*'< n 'm 6*'] +  [*, +  b *1 nu b *] -  &*"• n" &♦" . (13-55d)

13.9.S. Unconditional Distributions of h* and 5
We can now obtain the unconditional densities of 5* and 8 by obvious modifi

cations in the formulas given in Sections 13.3.3 and 13.6.3 for the unconditional 
densities of 5 and 8.

I f  h is known, the density of 5* is obtained by modifying (13-22) to read

where
D(b*|b', n '; X) = f f f ib ^ b * ',  hnu) (13-56a)

n„ = n ^ n ^ ' - ' n n  = nun,l" - l  r,' n*-1 = n ; - 1 +  nf,1 . (13-56b)

I f  h is unknown, the joint density of (5*, 8) is obtained by modifying formula 
(13-39) to read

D(b*, v\b', v ',n ', y' -X)  oc
(vV +  w  +  [6* -  &*']' nv[&* -  &*'])§'" 
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where nu is defined by (13-56b) and vn by (13-55c). The same changes in (13-40) 
give the marginal density of b* separately,

D(b*|b', t/, n', v'; X) = fP(b*\b*', nu/v', v’) , (13-58)
while formula (13-41) for the marginal density of 0 applies with no changes a t all.

13.10. Preposterior Analysis

The problem of preposterior analysis when only p of r univariate processes 
were to be sampled was handled in Sections 12.9.6 and 12.9.7 by first obtaining 
the distributions of the posterior parameters m" and (m", 0") and then showing 
that m f2 could be expressed as a function of m". In our present problem such an 
approach is not convenient because on the one hand we cannot be sure that b[' 
will have a nondegenerate distribution while on the other hand the posterior util
ities are not naturally expressed in terms of the well-behaved quantity b*" and 
therefore there is no advantage to be gained by obtaining its prior distribution. 
We shall therefore attack our present problem by direct use of the unconditional 
distribution of the statistic b* or of the joint unconditional distribution of the 
statistic b* and the posterior parameter 0".

13.10.1. Utilities Dependent on h" alone
Whether or not the process parameter h is known, formulas (13-16b) and 

(13-31b) show that before the sample outcome is known the random variable 5" is 
related to the random variable b by

6" = n"_1(n'b' +  nb)  , (13-59)

and by the definition (13-50) of b for our present problem this may be written

5" = n " - ‘ (n 'b ' +  5*^ • (13-60)

By use of this formula utilities originally expressed in terms of b" can be reex
pressed in terms of b* and expected utilities can then be computed by use of the 
distribution (13-56) if h is known or by use of (13-58) if h is unknown.

13.10.2. Utilities Dependent on (&", 0") Jointly
If h is unknown and utilities depend on both 6" and 0", expected utilities can 

be computed by first using (13-60) to replace 5" by b* and then using the joint 
distribution of (b*, 0"), whose density is

D(6’ , .1 6 ', X) «  ~  ~  °*[l’* ~  1>*'])>" (13-61)

where nu is defined by (13-56b) and v" by (13-55c).

► The joint distribution of (5*", 0") can obviously be obtained by substituting b*", b*', 
and nj, for b", b', and n* in (13-42), thus obtaining
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(yV; -  vV -  [b*" -  b*']' n* [b*" -  b*']*-1 .
(v 'V ')* " ' 1

and equation (1) in the proof of (13-42) then shows that we may replace b*" and in this 
result by b* and nH. ^

13.10.8. Distribution of 0"
The marginal distribution of 0" is the same whether or not X is of rank r; 

it is given by (13-44) as
D(0"|b', t/, n', X) = /* i ( i / ' |K  W ,  v't//v”) . (13-62)

► Formula (13-62) follows immediately from the fact that the joint distribution of (h*”, v") 
when X is of rank p is exactly analogous to the joint distribution of (5", v") when X is of 
rank r. ^
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t

06
16
26
35
•45
55
65
75

•85
95

1 05
1 15
1 25
1 35
1 45
1 55
1 66
1 75
1 65
1 95

2 05
2 15
2 25
2 3 5
2 45
2 95
2 65
2 75
2 85
2 95

3 0 5
3 15
3 25
3 35
3 45
3 5 5
3 6 5
3 75
3 85
3 95

4 05
4 15
4*25
4'35
4 45
4 55
4 65
4 75
4 85
4 95

5 05
5 13
5 25
5 35
5*45
5 55
5 65
3 75
5 85
5 95

6 05
6 1 5
6 25
6 35
6.45
6.55
6.65
6 7 5
6 85
6.95

7.05
7.15
7.25

Table I

S T A N D A R D IZ E D  S T U D E N T  D E N S IT Y  FU N C T IO N

»l= 1 m= 2 n =  3 n =  4 #i = 5 m =  6 IIc
3175162 3528915 3669407 3744146 3790377 3821751 3844419

*3113056 3476700 '3621007 3697771 '3745279 •3777513 3800812
'2993859 3376051 3527034 3607428 3657201 3690998 '3715433
2835724 3233913 •3392790 •3477591 3530188 3565942 3591812
2647068 3059329 3225401 3314454 3369826 3407543 3434890
2443839 2862204 '3033028 3125209 3182744 3222033 3250551
2237680 2652188 2824067 2917505 2976083 3016202 3045385
2037184 2437833 2606467 2698820 2756981 2796934 2826058
1847953 2226122 2387219 2476003 2532132 2570792 2599031
1673114 2022282 2172082 2254950 2307468 2343702 *2370201

1513960 1829920 1965463 2040439 •2087951 2120731 2144703
1370549 1650211 1770484 1836082 1877489 1906975 1926781
1242185 1487194 1589119 1644395 1678943 1703535 1716653
1127759 1338070 1422386 1466924 1494216 1512570 1525725
1025979 1203447 1270562 1304403 1324372 1337391 *1346482
0935518 1082557 1133371 1156930 1169791 1177592 1182887
0855098 0974411 1010161 1024127 1030315 1033193 1034502
0783532 0877915 0900033 0905284 0905388 0903768 0901612
0719751 0791955 0801962 0799476 0794183 0788576 0783350
0662801 0715447 0714866 0705662 0695706 0686667 0678807

0611840 0647366 0637669 0622752 ’060*872 0596969 0586927
0566136 0586769 0569334 0549665 0532574 0518360 0506578
0525047 0532797 0508888 0485357 0465721 0449716 0436610
0488018 0484682 0455437 042SH48 0107274 0389952 0375906
0454566 0441735 0408165 0379236 0356262 0338045 0323397
0424272 0403348 0366342 0335699 0311794 0293046 0278091
0396771 0368986 0329314 0297496 0273061 0254094 0239079
0371749 0338176 0296507 0263968 0239340 0220412 0205541
0348928 0310505 0267397 0234531 0209988 0191308 0176746
0328070 0285609 0241549 0208669 0184435 0166174 0152044

0308964 0263171 0218562 0185929 0162184 0144463 0130866
0291426 0242912 0198093 0165916 0142797 0125715 0112716
0275295 0224588 0179838 0148283 0125894 0109518 0097162
0260429 0207984 0163535 0132729 0111145 0095519 0083832
0246704 0192913 0148951 0118992 0098263 *0083412 0072405
0234008 0179209 0135886 0106843 0087000 0072933 0062603
0222245 0166727 0124162 0096085 0077142 0063856 0054192
0211326 0155339 0113626 0086544 0068502 0055986 0046968
0201175 0144932 0104142 0078071 0060921 0049155 0040759
0191724 0135406 0095592 0070535 0054261 0043218 0035417

0182910 0126675 ;0087871 0063822 0018401 0038053 0030817
0174680 0118655 0080890 0057835 0043238 0033554 0026851
0166982 0111281 0074566 0052486 0038683 0029630 0023129
0159774 0104491 0068831 0047701 0034660 0026203 0020471
0153015 0098229 0063621 0043413 0031100 0023206 0017912
0146655 0092447 0058881 0039567 0027946 0020582 0015695
0140705 0087099 0054563 0036110 0025148 0018282 0013773
0135092 0082147 0050624 0033000 0022661 0016261 0012103
0129803 0077556 0047025 0030197 0020449 0014484 0010650
0124815 0073294 0043734 0027668 0018479 0012920 0009386

0120106 0069333 0040719 0025382 0016720 0011540 0008283
0115654 0065647 0037954 0023315 0015149 0010322 0007320
0111443 0062214 0035415 0021444 0013743 0009246 0006478
0107455 0059012 0033080 0019742 0012484 0008292 0005740
0103675 0056022 0030931 0018198 0011355 0007447 0006094
0100090 0053228 0028951 0016794 0010340 0006697 0004527
0096685 0050614 0027124 0015515 0009427 0006030 0004028
0093449 0048165 0025436 •0014350 0008605 0005436 0003589
0090371 0045871 •HJ23375 0013286 0007964 *0004907 0003201
0087442 0043717 00224.31 0012313 0007195 0004431 0002859

0084651 0041694 0021091 0011424 0006590 0004012 0002557
0081991 0039793 0019851 0010609 0006013 0003633 0002290
0079453 0038032 0018696 0009861 0005547 0003297 0002053
0077031 0036320 0017625 0009175 0005197 0002993 0001843
0074716 0034732 0016628 0008545 0004688 0002721 0001657
0072504 0033235 0015699 0007965 0004317 0002476 0001491
0070387 0031821 0014834 0007431 0003979 0002256 0001343
0068362 0030486 0014027 0006939 O0O3671 0002057 0001211
0066422 0029224 0013273 0006485 0003390 0001878 0001093
0064562 0028030 0012568 0006066 0003133 0001716 0000988

0062780 0026899 0011910 0005678 0002899 0001570 0000804
0061070 0025827 0011293 0005319 0002684 0001437 0000810
0059428 0024812 0010715 0004987 0002488 0001317 0000734

354



Table I  (continued)
S T A N D A R D IZE D  S T U D E N T  D E N S IT Y  FU N C TIO N

fs*(t\n)

* n = 9 n -  10 n —12 n — 15 a II S *. =  24 n - 3 0 *1 - 0 0 « = K

06 3674964 3865738 3901977 *3918304 3934709 3942957 3951216 3907788 *3984239
•16 3632204 3843283 3880103 3876765 3893644 '3902118 3910612 *3927071 *3944793
25 3746377 3760004 3777534 •3795165 3812902 '3821805 *3830735 3848000 3800081
'35 3626709 3639048 3657040 3676365 3695203 3704665 *3714158 *3733221 *3752403
*45 '3471796 3464852 3504562 3524416 3544418 •3554475 *3504528 *3584042 *3005270
55 '3289158 3302831 3323488 3344322 3365338 3375913 3386531 3407089 *3429439
65 3085018 3099026 3120272 3141730 3163407 3174325 *3185299 3207413 3229724
75 2865667 '2879743 2901058 2922619 '2944132 *2955434 '2906494 2908817 *3011374
65 2637504 2651199 2671960 *2692868 2714289 2725040 2735805 2757715 *2779849
95 2406352 2419227 2438770 2458779 2478664 2488803 2499020 2519058 *2540591

106 2177405 2189049 2206729 2224645 2242811 '2251985 *2201220 2279900 2298821
1 15 1955051 1965110 1980358 1995786 '2011396 2019277 2027201 2043188 2059303
1 25 1742808 1750999 1763366 1775824 1788376 1794676 1801004 1813711 1820491
1 35 1543282 1549419 1558612 1537771 1576837 1581428 1585949 1594938 1003833
145 1358248 1362251 1368126 1373823 1379317 1381980 1384583 1389590 1394300
1 55 1188730 1190610 1193177 1195417 1197251 1198021 1198880 1199048 1200090
1 65 1035100 1034955 1034358 1033255 1031596 1030540 1029317 1030304 1022049
1 75 0897216 0895212 0891703 0887533 0882633 0879890 0870937 0870349 0802773
1 65 0774531 0770880 0764795 0757912 0750151 0745916 0741422 0731030 0720049
1 95 0666207 0661153 0652860 0643699 0633522 0628030 0022249 0009709 0595947

2 05 0571219 0565021 0554966 0543933 0531821 0525311 0518527 0503940 0487920
2 15 0488427 0481339 0469921 0457481 0443927 0436700 0429157 0413050 0395500
2 25 0416649 0408919 0395528 0383113 0368590 0360892 0352802 0335835 0317397
2 35 0354712 0346562 0333562 0319569 0304512 0296361 0286314 0270897 0252182
2 45 0301485 0293115 0279828 0265608 0250403 0242415 0234100 0210830 0198374
2 55 0255903 0247484 0234182 0220037 0205015 0197167 01890>0 0172249 0154493
2 65 0216986 0208662 0195574 0181750 0167179 0159613 0151802 0135820 0119122
2 75 0183846 0175729 0163039 0149730 0135317 0128643 0121333 0100338 0090930
2 85 0155665 0147867 0135712 0123063 0109959 0103255 0090402 0082071 0008728
2 95 0131799 0124343 0112824 0100938 0083744 0092559 0070334 0003834 0051420

3 05 0111566 0104519 0093703 0082642 0071417 0065776 0000139 0048904 0038098
3 15 0094446 0087837 0077762 0067557 0057322 0052231 0047184 0037310 0027943
3 25 0079976 0073816 0034496 0055154 0045900 0041349 0038870 0028202 0020290
3 35 0067750 0062043 0053474 0044980 0036677 *0032642 0028714 0021270 *0014587
3 45 0057424 0052162 0044327 0036649 0029251 0025702 0022282 0015923 0010383
3 55 0048704 0043874 0036744 0029841 0023290 0020190 0017230 0011849 0007317
3 65 0041340 0036924 0030462 0024286 0018516 0015827 0013293 0000770 *0005105

3 75 0035120 0031095 0025261 0019758 0014703 0012383 0010223 0000450 0003520
3 65 0029864 0026207 0020956 0016071 0011662 0009671 0007843 0004729 0002411
3 95 0025421 0022106 0017393 0013072 0009242 0007542 0000003 0003448 0001033

4 05 0021662 0018665 0014446 0010634 0007319 0005874 0004584 0002500 0001094
4 15 0018480 0015775 0012006 0008652 0005792 0004569 0003494 0001805 0000720
4 25 0015785 0013347 0009986 0007012 000456: 00035M 0002059 0001299 0000477
4 35 0013499 0011305 0008313 0005734 0003624 0002757 0002020 0000929 0000310
4 45 0011559 0009587 0006927 0004672 0002*66 0002139 0001532 0000663 0000200
4 55 0009911 0006140 0005778 0003809 0002266 00016.59 0001101 0000470 0000127
4 65 0008509 0006920 0004825 0003107 0001792 0001286 0000878 0000333 0000080
4 75 0007315 0005890 0004033 0002537 0001418 0000997 0000604 0000235 0000050
4 85 0006297 0005020 0003375 0002073 0001122 0000772 0000502 0000165 0000031
4 95 0005419 0004284 0002828 0001695 OOOOSh" O000599 0000379 0000116 0000019

5 05 0004666 0003661 0002372 0001388 0000703 0000464 0000280 0000081 0000012
5 15 0004051 0003133 0001993 0001138 0000557 0000359 0000215 0000056 0000007
5 25 0003507 0002681 0001676 0000931 0000441 000027S 0000)62 0000039 0000004
5 35 0003040 0002304 0001411 fHKK*767 0000330 0O00216 0000122 0000027 0000002
& 45 00026.39 0001980 0001190 0000631 0000278 •*000167 OOOOOO? ' OOOOO19 0000001
5 55 0002294 0001703 "00100* "000.MV* 0000221 0000130 0000069 0O0C013 0000001
5 65 0001997 0001468 0000549 000042' 0000176 '4*000101 OOoOO52 0000009
5 75 0001740 0001266 0000719 *K>O03r»3 0000140 • *00007- ooooor* 0000007
5 vS (*001519 0001094 0000610 0000292 000011? 000'*'UO 0000004
5 95 0001328 0000947 OOOQ517 •'*000241 0000089 •0000047 ■ >000*122 0000003

6 05 0001162 '0000820 0000440 ' 0000200 0000071 04)00037 0000017 000O002
6 15 0001018 0000711 0000374 OOOO166 •ni *00057 0000029 0000013 0000001
6 25 OOOOS93 0000618 0000319 0O0O136 000004" 0000022 OOOOO10 0000001
6 35 0000785 0000536 0000272 n o o o iis 0000036 oooooIS 0000007 0001*001
6 45 0000690 000046b 0000233 "000095 0000029 0000014 0(V 0**06
6 55 000060s 0000408 0000199 0004*080 OOOO"23 ooooon 0000*504
6 65 0000537 0000357 0000171 0000067 OOOOO 1'.' oooooos "OOOOOO3
6 75 0O00474 00003)2 0000146 0000056 00000 IS 0000007 0000002
6 85 0000419 0000273 0000126 0000047 0000012 0000005 0000002
6 95 0000371 0000239 0000108 0000039 000*V) 10 0000004 0000001

7 05 0000329 0000210 0000093 0000033 0000008 0000003 OOOOOOl
7 15 0000292 0000184 0000080 0000028 0000006 0000003 0000001
7 25 0000299 0000162 0000069 0000023 0000005 0000002 0000001

R e p ro d u c e d  b y  p e rm is s io n  o f  P .  V . S u k h a tm e  a n d  S u n k h y a  f ro m  S a n k h y a  v o l. i  (1938).
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Table I I

U N IT-N O R M A L LIN E A R -LO SS IN T E G R A L

L n * (u ) (t — u)(2t ) i e dt =  / n*(u) — u Gn*(u)

Ln*(—u) = u +  Ln*(u)
Examples: L**(2.47) = .002199; L**(-2.47) = 2.472199

deci
mal 

prefix -
03 .04 .05 .06 .07 .08 .og .10

tenths of the mean 
tabular difference 

(negative) 
1 2  3 4 500 .01 02

.0 3989 3940

.1 3509 3464

.2 3069 3027
-3 2668 2630
-4 2304 2270

-5 1978 1947
.6 1687 1659
.7 1429 1405
.8 1202 1181
-9 1004 0986

1.0 .0 8332 8174
1.1 .0 6862 6727
1.2 .0 5610 5496
13 .0 4553 4457
1 4 .0 3667 3587

1.5 .0 2931 2865
1.6 .0 2324 2270
1 7 .0 1829 1785
1.8 .0 1428 1392
1.9 .0 1105 1077

2.0 .o* 8491 8266
2.1 .0* 6468 6292
2.2 .0* 4887 4750
2 3 .o« 3662 3556
2.4 .o* 2720 2640

2 5 .0* 2004 1943
2.6 .0* 1464 1418
2.7 .0* 1060 1026
2.8 .0* 7611 7359
2.9 .0* 5417 5233

3-o .0* 3822 3689

3 1 . .0* 2673 2577

3-2 .o» 1852 1785

3 3 .0* 1273 1225

3-4 .o4 8666 8335

3 5 •O4 5848 5620

3-6 .o4 39 i i 3755

3-7 .04 2592 2486

3.8 .o4 1702 1632

3-9 .o4 1108 1061

3890 3841 3793 3744
3418 3373 3328 3284
2986 2944 2904 2863
2592 2555 2518 2481
2236 2203 2169 2137

1917 1887 1857 1828
1633 1606 1580 *554
1381 1358 1334 13*2
1160 1140 1120 1100
0968 0950 0933 0916

8019 7866 7716 7568
6595 6465 6336 6210
5384 5274 5165 5059
4363 4270 4179 4090
3508 3431 3356 3281

2800 2736 2674 2612
2217 2165 2114 2064
1742 1699 1658 1617
1357 1323 1290 1257
1049 1022 0996 0970

8046 7832 7623 74*8
6120 5952 5788 5628
4616 4486 4358 4235
3453 3352 3255 3*59
2561 2484 2410 2337

1883 1826 1769 17*5
1373 1330 1288 1247
0993 0961 0929 0899
7115 6879 6650 6428
5055 4883 4716 4555

3560 3436 33*6 3*99
3*99

2485 2396 2311 2227
2227

1720 1657 1596 1537
*537

1179 1135 1093 1051
1051

8016 7709 74*3 7*27
7127

5400 5188 4984 4788
4788

3605 3460 3321 3188
3*88

2385 2287 2193 2103
2103

1563 1498 1435 1375
1375

1016 0972 0931 0891
0891

3697 3649 3602 3556
3240 3*97 3*54 31*1
2824 2784 2745 2706
2445 2409 2374 2339
2104 2072 2040 2009

*799 177* 1742 *7*4
1528 *503 1478 1453
1289 1267 *245 *223
1080 1061 1042 1023
0899 0882 0865 0849

7422 7279 7*38 6999
6086 5964 5844 5726
4954 4851 4750 4650
4002 39*6 383* 3748
3208 3*37 3067 2998

2552 2494 2436 2380
2015 1967 1920 1874
1578 *539 1501 *464
1226 1*95 1164 *134
0945 0920 0896 0872

7219 7024 6835 6649
5472 5320 5*72 5028
4**4 3996 3882 3770
3067 2977 2889 2804
2267 2199 2132 2067

1662 1610 1560 I5**
1207 1169 1132 *095
0870 0841 0814 0787
6213 6004 5802 5606
4398 4247 4101 3959

3087 2978 2873 2771

2*47 2070 *995 1922

1480 1426 *373 1322

1012 0973 0937 0901

6852 6587 6331 6085

4599 4417 4242 4073

3059 2935 2816 2702

2016 1933 *853 1776

13*7 1262 1208 1157

0853 0816 0781 0747

3509 5 10 14 *9 24
3069 4 9 *3 18 22
2668 4 8 12 16 20
2304 4 7 11 *5 18
1978 3 7 10 *3 16

1687 3 6 9 12 *5
1429 3 5 8 10 *3
1202 2 5 7 9 11
1004 2 4 6 8 10
0833 2 3 5 7 9

6862 *5 29 44 59 74
5610 *3 25 38 50 63
4553 11 21 32 42 53
3667 9 18 27 35 44
293* 7 *5 22 29 37

2324 6 12 18 24 30
1829 5 10 *5 20 25
1428 4 8 12 16 20
1105 3 6 10 *3 16
0849 3 5 8 10 *3

6468 20 40 61 81 IOI
4887 16 32 47 63 79
3662 12 24 37 49 61
2720 9 19 28 38 47
2004 7 14 21 29 36

1464 5 11 16 22 27
1060 4 8 12 16 20
0761 3 6 9 12 *5
54*7 22 44 66 88 n o
3822 16 32 48 64 80

12 25 37 50 62
2673 II 21 32 42 53

9 18 27 36 45
1852 8 *5 23 30 38

6 13 *9 25 32
1273 5 11 16 21 26

4 9 13 18 22
0867 4 7 11 *5 18

3* 62 92 *23 *54
5848 26 51 77 102 128

21 42 64 85 106
39** 18 35 53 70 88

*4 29 43 58 72
2592 12 24 36 48 60

10 20 29 39 49
1702 8 16 24 32 40

7 *3 20 26 33
1108 5 11 16 21 27

4 9 13 17 22
07*5 4 7 11 *4 l8

Interpolation by mean tabular difference: Interpolation by exact tabular difference:
Ln *{3.473) -  .002199 -  .000021 *= .00217a  1 ^ (2 .4 7 3 )  -  .002199 -  (.3K.000067) -  .002179-
Error never exceeds .3% of true value. Error never exceeds .03% of true value.
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