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Preface

A mathematical theory of hypothesis testing in which tests. are
derived as solutions of clearly stated optimum problems was developed

by Neyman and Pearson in the 1930’s and since then has been con-

siderably extended. The purpose of the present book is to give a sys-
tematic account of this theory and of the closely related theory of con-
fidence sets, together with their principal applications. These include
the standard one- and two-sample problems concerning normal, bi-
nomial, and Poisson distributions; some aspects of the analysis of vari-
ance and of regression analysis (linear hypothesis); certain multivari-

ate and sequential problems. There is also an introduction to non-
parametric tests, although here the theoretical approach has not yet
been fully developed. One large area of methodology, the class of
methods based on large-sample considerations, in particular y? and like-
lihood ratio tests, essentially has been omitted because the approach
and the mathematical tools used are so different that an adequate treat-

ment would require a separate volume. Thetheory ofthese tests is only
briefly indicated at the end of Chapter7.

At present the theory of hypothesis testing is undergoing important

changesin at least two directions. One of these stems from the realiza-
tion that the standard formulation constitutes a serious oversimplifica-
tion of the problem. The theory is therefore being re-examined from

the point of view of Wald’s statistical decision functions. Although
these investigations throw new light on fhe classical theory, they essen-

tially confirm its findings. I have retained the Neyman-Pearson formu-
lation in the main part of this book but have included a discussion of

the concepts of general decision theory in Chapter 1 to provide a basis

for giving a broader justification of some of the results. It also serves
as a background for the development of the theories of hypothesis test-

ing and confidencesets.
Vil
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Of much greater importance is the fact that many of the problems,
which traditionally have been formulated in terms of hypothesistesting,
are in reality multiple decision problems involving a choice between

several decisions when the hypothesis is rejected. The development of
suitable procedures for such problemsis at present one of the most im-
portant tasks of statistics and is finding much attention in the current
literature. However, since most of the work so far has beententative,

I have preferred to present the traditional tests even in cases in which
the majority of the applications appear to call for a more elaborate pro-
cedure, adding only a warning regarding the limitations of this ap-

proach. Actually, it seems likely that the tests will remain useful be-
cause of their simplicity even when a more complete theory of multiple
decision methodsis available.
The natural mathematical framework for a systematic treatment of

hypothesis testing is the theory of measure in abstract spaces. Since

introductory courses in real variables or measure theory frequently pre-
sent only Lebesgue measure, a brief orientation with regard to the ab-
stract theory is given in Sections 1 and 2 of Chapter 2. Actually, much

of the book can be read without knowledge of measure theory if the
symbol J p(x) du(x) is interpreted as meaning either f p(x) dx or

p(x), and if the measure theoretic aspects of certain proofs together
with all occurrencesof the letters a.e. (almost everywhere) are ignored.

With respect to statistics, no specific requirements are made,all statis-
tical concepts being developed froia the beginning. On the other hand,
since readers will usually have had previous experience with statistical
methods, applications of each method are indicated in general terms

but concrete examples with data are not included. These are available

in many of the standard textbooks.

The problemsat the end of each chapter, many of them with outlines
of solutions, provide exercises, further examples, and introductions to

some additional topics. There is also given at the end of each chapter
an annotated list of references regarding sources, both of ideas and of
specific results. The notes are not intended to summarize the principal
results of each paper cited but merely to indicate its significance for
the chapter in question. In presenting these references I have not
aimed for completeness but rather have tried to give a usable guide to
the literature.

An outline of this book appeared in 1949 in the form of lecture

notes taken by Colin Blyth during a summercourse at the University
of California. Since then, I have presented parts of the material in
courses at Columbia, Princeton, and Stanford Universities and several

times at the University of California. During these years I greatly
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benefited from comments of students and I regret that I cannot here

thank them individually. At different stages of the writing I received

many helpful suggestions from W. Gautschi, A. Hgyland, and L. J.
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CHAPTER 1

The General Decision Problem

1. STATISTICAL INFERENCE AND STATISTICAL

DECISIONS

The raw material of a statistical investigation is a set of observations;
these are the values taken on by random variables X whose distribution
P, is at least partly unknown. Of the parameter 0, which labels the
distribution, it is assumed known only that it lies in a certain set Q, the
parameter space. Statistical inference is concerned with methodsof using
this observational material to obtain information concerning the distribu-
tion of X or the parameter 6 with whichit is labeled. To arrive at a more
precise formulation of the problem weshall consider the purpose of the
inference.

The needforstatistical analysis stems from the fact that the distribution
of X, and hence someaspect of the situation underlying the mathematical
model, is not known. The consequence of such a lack of knowledge
is uncertainty as to the best mode of behavior. To formalize this,

suppose that a choice has to be made between a numberofalternative
actions. The observations, by providing information about the distri-
bution from which they came, also provide guidance as to the best
decision. The problem is to determine a rule which, for each set of
values of the observations, specifies what decision should be taken.
Mathematically such a rule is a function 6, which to each possible value
x of the random variables assigns a decision d = 6(2), that is, a function

whose domain is the set of values of X and whose range is the set of
possible decisions.

In ordet to see how 6 should be chosen, one must compare the con-
sequences of using different rules. To this end suppose that the con-
sequence of taking decision d when the distribution of X is P, is a loss,

which can be expressed as a nonnegative real number L(6,d). Then
the long-term average loss that would result from the use of 6 in a number
of repetitions of the experimentis the expectation E[L(0, 6(X))] evaluated

1



2 THE GENERAL DECISION PROBLEM [1.1

under the assumption that P, is the true distribution of X. This expecta-
tion, which depends on the decision rule 6 and the distribution Po, is
called the risk function of 6 and will be denoted by R(@, 6). By basing
the decision on the observations, the original problem of choosing a ~
decision d with loss function L(0, d) is thus replaced by that of choosing
6 where the loss is now R(6,6).*

The abovediscussion suggests that the aim ofstatistics is the selection
of a decision function which minimizes the resulting risk. As will be
seen later, this statement of aimsis notsufficiently precise to be meaningful;
its proper interpretation is in fact one of the basic problemsofthe theory.

2. SPECIFICATION OF A DECISION PROBLEM

The methods required for the solution of a specific statistical problem
depend quite strongly on the three elements that define it: the class
P = {P,, 6 €Q} to which the distribution of X is assumed to belong;
the structure of the space D of possible decisions d; and the form of the
loss function L. In order to obtain concrete results it is therefore necessary
to make specific assumptions about these elements. On the other hand,
if the theory is to be more than a collection of isolated results, the assump-
tions must be broad enougheither to be of wide applicability or to define
classes of problems for which a unified treatment is possible.

Consider first the specification of the class Y. Precise numerical
assumptions concerning probabilities or probability distributions are
usually not warranted. However, it is frequently possible to assume
that certain events have equal probabilities and that certain others are
statistically independent. Another type of assumption concerns the
relative order of certain infinitesimal probabilities, for example the
probability of occurrences in an interval of time or space as the length
of the interval tends to zero. The following classes of distributions
are derived on the basis of only such assumptions, and are therefore

applicable in a great variety of situations.
The binomial distribution b(p, n) with

(1) Px =2) = (")prt — pr, © = 0,750 OSpS.

This is the distribution of the total number of successes in n independent
trials when the probability of success for each trialis p.

* Sometimes, aspects of a decision rule other than the expectation ofits loss are also

taken into account.
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The Poisson distribution P(r) with

(2) P(X = 2) =e, x=0,1,°°*; O<r.

This is the distribution of the number of events occurring in a fixed
interval of time or space if the probability of more than one occurrence
in a very short interval is of smaller order of magnitude than that of a
single occurrence, and if the numbers of events in nonoverlapping intervals
are statistically independent. Under these assumptions, the process

generating the events is called a Poisson process.”

The normal distribution N(é, o?) with probability density

l |
(3) p(x) = —— ex — ae — 8°], —o<2r7F&<o;0<a.

p V2n 6 P 20°

Under very general conditions, which are made precise by the central
limit theorem, this is the approximate distribution of the sum ofa large
number of independent random variables when the relative contribution
of each term to the sum is small.
We consider next the structure of the decision space D. The great

variety ofpossibilities is indicated by the following examples.

Example 1. Let X,,°--, X, be a sample from one of the distributions
(1)-(3), thatis, let the X’s be distributed independently and identically according
to one of these distributions. Let 6 be p, 7, or the pair (&, o) respectively, and

let » = (0) be a real-valued function of 0.

(i) If one wishes to decide whether or not y exceeds somespecified value 79,

the choice lies between the two decisions dj: y > Yo and dy: y Sv. In specific
applications these decisions might correspondto the acceptanceorrejection of a
lot of manufactured goods, of an experimental airplane as ready for flight
testing, of a new treatment as an improvement over a standard one, etc. The

loss function of course depends on the application to be made. Typically, the
loss is 0 if the correct decision is chosen, while for an incorrect decision the

losses L(y, dy) and L(y, d,) are increasing functions of ly — Vol-

(ii) At the other end of the scale is the much more detailed problem of
obtaining a numerical estimate of y. Here a decision d ofthestatistician is a
real number, the estimate of 7, and the losses might be L(y, d) = v(y)w(|d — 7)
wherew is a strictly increasing function of the error |d — y|.

(iii) An intermediate case is the choice betweenthe three alternatives dy: y < 79,
dy: ¥ > V4, d.: 9 SY S71, for example accepting a new treatment, rejectingit,

or recommendingit for further study.

* Such processes are discussed in the books by Feller, An Introduction to Probability
Theory and Its Applications, Vol. 1, New York, John Wiley & Sons, 2nd ed., 1957, and

by Doob, Stochastic Processes, New York, John Wiley & Sons, 1953.
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The distinction illustrated by this example is the basis for one of the
principal classifications of statistical methods. Two-decision problems
such as (i) are usually formulated in terms of testing a hypothesis which
is to be accepted or rejected (see Chapter 3). It is the theory of this
class of problems with which weshall be mainly concerned. The other
principal branch of statistics is the theory of point estimation dealing
with such problems as (ii). The investigation of multiple-decision
procedures illustrated by (iii) has only begun in recent years.

Example 2. Suppose that the data consist of samples X;;, 7 = 1,°°°, m4,

from normal populations N(é,, 0”), i = 1,-°-,s.

(i) Considerfirst the case s = 2 and the question of whether or not there is a

material difference between the two populations. This has the same structure
as problem (iii) of the previous example. Here the choice lies between the three
decisions dy: |& — &| < A, dy: & > §& +A, dy: & < & — A where A is pre-
assigned. An analogous problem, involving k + 1 possible decisions, occurs
in the general case of k populations. In this case one must choose between
the decision that the k distributions do notdiffer materially, dy: max |&; — &,| SA,
and the decisions d,: max |&; — &,| > A and &, is the largest of the means.

(ii) A related problem is that of ranking the distributions in increasing order

of their mean &.

(iii) Alternatively, a standard &) may be given and the problem is to decide

which, if any, of the population means exceed that standard.

Example 3. Consider two distributions—to be specific, two Poisson

distributions P(r,), P(7z2)—and suppose that 7, is known to beless that 7, but

that otherwise the 7’s are unknown. Let Z,,---, Z,, be independently distributed,
each according to either P(7,) or P(r,). Then each Z is to beclassified as to
which of the two distributions it comes from. Here the loss might be the
numberof Z’s that are incorrectly classified, multiplied by a suitable function
of r, and 7. An example of the complexity that such problemscan attain and
the conceptual as well as mathematical difficulties that they may involve is
provided by the efforts of anthropologists to classify the human population into
a number of homogeneous races by studying the frequencies of the various
blood groups and of other genetic characters.

All the problems considered so far could be termed action problems.
It was assumedin all of them that if 6 were known a unique correct
decision would be available, that is, given any 6 there exists a unique d
for which L(6,d)=0. However, not all statistical problems are so

clear-cut. Frequently it is a question of providing a convenient summary
of the data or indicating what information is available concerning the
unknown parameter or distribution. This information will be used for
guidance in various considerations but will not provide the sole basis
for any specific decisions. In such cases the emphasis is on the inference
rather than on the decision aspect of the problem, although formally
it can still be considered a decision problem if the inferential statement
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itself is interpreted as the decision to be taken. An important class of
such problems, estimation by interval,* is illustrated by the following
example.

Example 4. Let X =(Xj,:--, X,) be a_sample from M(é, 0”) and let a
decision consist in selecting an interval [L, L] and Stating that itcontains é.
Suppose that decision proceduresare restricted to intervals [LCX), LCX)] whose
expected length for all & and o does not exceed ko where k is some preassigned
constant. An appropriate loss function would be 0 if the decision is correct
and would otherwise depend ontherelative position of the interval to the true
value of . In this case there are many correct decisions corresponding to a
given distribution N(é, o?).

It remains to discuss the choice of loss function, and of the three
elements defining the problem this is perhaps the mostdifficult to specify.
Even in the simplest case, where all losses eventually reduce to financial
ones, it can hardly be expected that one will be able to evaluate all the
short- and long-term consequences of an action. Frequently it is possible
to simplify the formulation by taking into account only certain aspects
of the loss function. As an illustration consider Example 1(i) and
let L(9,d)) =a for (6)< yo and L(O,d;)=b for y(0)> yp». The
risk function becomes

(4) RO, 8) = (7 ((X)

=

do} if ySyo
bP, {O(X) =a} if y> yo,

and is seen to involve only the two probabilities of error with weights
which can be adjusted according to the relative importance of these
errors. Similarly, in Example 3 one may wishto restrict attention to the
number of misclassifications.

Unfortunately, such a natural simplification is not always available,
and in the absence of specific knowledge it becomes necessary to select
the loss function in some conventional way, with mathematical simplicity
usually an important consideration. In point estimation problems
such as that considered in Example I(ii), if one is interested in estimating
a real-valued function y = y(6) it is customary to take the square of the
error, or somewhat more generally to put

(5) L(G, d) = v(8)(d — y/.
Besides being particularly simple mathematically, this can be considered
as an approximation to the true loss function L provided that for each
fixed 0, L(, d) is twice differentiable in d, that L(6, »(0)) = 0 forall 0,
and that the erroris notlarge.

* For the more usual formulation in terms of confidence intervals, see Chapter 3,
Section 5, and Chapter 5, Sections 4 and 5.
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It is frequently found that, within one problem, quite different types
of losses may occur, which are difficult to measure on a commonscale.
Consider once more Example 1(i) and suppose that yp is the value of +
when a standard treatment is applied to a situation in medicine, agri-
culture, or industry. The problem is that of comparing some new process
with unknown y to the standard one. Turning down the new method
when it is actually superior, or adopting it whenit is not, clearly entails
quite different consequences. In such cases it is sometimes convenient
to treat the various components, say L,, Lo,::-, L,, separately. Suppose

in particular that r = 2 and that L, represents the moreseriouspossibility.
One can then assign a boundto this risk component, that is, impose the
condition

(6) EL,(9, 0(X)) S «,

and subject to this condition minimize the other componentofthe risk.
Example 4 provides an illustration of this procedure. The length of
the interval [L, L] (measured in o-units) is one component of the loss

function, the other being the loss that results if the interval does not
cover the true €.

3. RANDOMIZATION; CHOICE OF EXPERIMENT

The description of the general decision problem given so faris still
too narrow in certain respects. It has been assumedthatfor each possible
value of the randomvariables a definite decision must be chosen. Instead,
it is convenient to permit the selection of one out of a numberof decisions
according to stated probabilities, or more generally the selection of a
decision according to a probability distribution defined over the decision
space; which distribution depends of course on what x is observed.
One way to describe such a randomized procedure is in terms of a non-
randomized procedure depending on X and a random variable Y whose
values lie in the decision space and whose conditional distribution given

x is independentof0.
Although it may run counter to one’s intuition that such extra randomi-

zation should have anyvalue, there is no harm in permitting this greater
freedom of choice. If the intuitive misgivings are correct it will turn
out that the optimum procedures always are of the simple nonrandomized
kind. Actually, the introduction of randomized procedures leads to
an important mathematical simplification by enlarging the class of risk
functions so that it becomes convex. In addition, there are problems
in which some features of the risk function such as its maximum can be
improved by using a randomized procedure.
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Another assumption that tacitly has been made sofar is that a definite
experiment has already been decided upon so that it is known what
observations will be taken. However, the statistical considerations
involved in designing an experiment are no less important than those
concerning its analysis. One question in particular that must be decided
before an investigation is undertaken is how many observations should
be takensothatthe risk resulting from wrongdecisionswill not be excessive.
Frequently it turns out that the required sample size depends on the
unknown distribution and therefore cannot be determined in advance
as a fixed number. Instead it is then specified as a function of the
observations and the decision whether or not to continue experimentation
is made sequentially at each stage of the experiment on the basis of the
observations taken up to that point.

Example 5. On the basis of a sample Xj, -°--, X, froma normaldistribution
N(E, o”) one wishes to estimate €. Here the risk function of an estimate, for
example its expected squared error, depends on o. For large o the sample
containsonlylittle information in the sense that two distributions N(é,, 62) and
N(&3, 6”) with fixed difference & — & become indistinguishable as o— oo,
with the result that the risk tends to infinity. Conversely, the risk approaches
zero as o> 0 since then effectively the mean becomes known. Thus the
numberof observations needed to control the risk at a given level is unknown.
However, aS soon as some observations have been taken, it is possible to
estimate o? and hence to determine the additional number of observations
required.

Example 6. In a sequence oftrials with constant probability p of success,
one wishes to decide whether p S 1/2 or p > 1/2. It will usually be possible to
reach a decision at an early stageif p is close to 0 or | so that practically all
observations are of one kind, while a larger sample will be needed for inter-
mediate values of p. This difference may be partially balanced by the fact that
for intermediate values a loss resulting from a wrong decisionis presumablyless
serious than for the more extremevalues.

Example 7. The possibility of determining the samplesize sequentially is
important not only becausethe distributions Py can be more or less informative
but also because the sameis true of the observations themselves. Consider,
for example, observations from the uniform distribution* over the interval
(6 — 4, 6 + 4) and the problem of estimating 6. Here there is no difference in
the amountof information provided by the different distributions Py. However,
a sample X1, X2, -- *, X;, can practically pinpoint 0 if max |X; —_X;] is sufficiently
close to I, or it can give essentially no more information than a single observation
if max |X; — X;| is close to 0. Again the required sample size should be
determined sequentially.

Except in the simplest situations, the determination of the appropriate
sample size is only one aspect of the design problem. In general, one

* This distribution is defined in Problem 1 at the end of the chapter.
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must decide not only how many but also what kind of observations to

take. Formally all these questions can be subsumed under the general

decision problem described at the beginning of the section, by interpreting

X as the set of all available variables, by introducing the decisions of

whether or not to stop experimentation at the variousstages, by specifying

in case of continuance which type of variable to observe next, and by

including the cost of observation in the loss function. However, in

spite of this formal possibility, the determination of optimum designs

in specific situations is typically of a higher order ofdifficulty than finding

the optimum decision rule for a given experiment, and it has been carried

out in only a few cases. Here, we shall be concerned primarily with

the problem as it presents itself once the experiment has been set up,

and only in a few special cases attempt a comparisonofdifferent designs.

4. OPTIMUM PROCEDURES

At the end of Section 1 the aim ofstatistical theory was stated to be

the determination of a decision function 6 which minimizes the risk

function

(7) R(O, 6) = E{L(9, (X))].

Unfortunately, in general the minimizing 6 depends on 6, whichis un-

known. Consider, for example, some particular decision d), and the

decision procedure 6(x) = dy according to which decision dy is taken

regardless of the outcome of the experiment. Suppose that dy is the

correct decision for some 9, so that L(A, d9) = 0. Then 6 minimizes

the risk at 0, since R(6,, 6) = 0, but presumably at the cost of a high

risk for other values of 0.

In the absence of a decision function that minimizes therisk for all 6,

the mathematical problem is still not defined since it is not clear what

is meant by a best procedure. Although it does not seem possible to

give a definition of optimality which will be appropriate in all situations,

the following two methods of approach frequently are satisfactory.

The nonexistence of an optimum decision rule is a consequence of the

possibility that a procedure devotes too muchofits attention to a single

parameter value at the cost of neglecting the various other values that

might arise. This suggests the restri¢tion to decision procedures which

possess a certain degree of impartiality, and the possibility that within

such a restricted class there may exist a procedure with uniformly smallest

risk. Two conditions of this kind, invariance and unbiasedness, will be

discussed in the next section.

Instead ofrestricting the class of procedures, one can approach the
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problem somewhatdifferently. Considerthe risk functions corresponding
to two different decision rules 6, and 6,. If R(6, 6,) < R(0, 6,) forall 0,
then 6, is clearly preferable to 6, since its use will lead to a smaller risk
no matter what the true value of 0 is. However, the situation is not
clear when the tworisk functions intersect as in Figure 1. What is needed
is a principle which in such cases establishes a preference of one of the
two risk functions over the other, that is, which introduces an ordering
into the set of all risk functions. A procedure will then be optimum if

R(@, 6)

 a

Figure 1.

its risk function is best according to this ordering. Somecriteria that
have been suggested for ordering risk functions will be discussed in
Section 6.
A weakness of the theory of optimum procedures sketched above is

its dependence on an extraneousrestricting or ordering principle, and
on knowledge concerning the loss function and the distributions of the
observable random variables which in applications is frequently unavail-
able or unreliable. These difficulties, which may raise doubt concerning
the value of an optimum theory resting on such shaky foundations, are
in principle no different from those arising in any application of mathe-
matics to reality. Mathematical formulations always involve simplifica-
tion and approximation, so that solutions obtained through their use
cannot be relied upon without additional checking. In the present case
a check consists in an over-all evaluation of the performance of the
procedure that the theory produces, and aninvestigation ofits sensitivity
to departure from the assumptions under which it was derived.
The difficulties can be overcomein part by considering the same problem

with respect to a numberofdifferent formulations. If different optimality
criteria lead to a commonsolution this will be the best procedure from
several points of view and therefore will be more likely to be generally
Satisfactory. In the contrary case, the methodindicates the strength and
weaknesses of the various solutions and thereby possibly suggests a
compromise procedure. Similarly, the sensitivity of a procedure to
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deviations from the assumptions under which it was derived can be

tested, for example, by dropping one of the assumptions and comparing

the procedure obtained from the wider model with the original one.

5. INVARIANCE AND UNBIASEDNESS*

A natural definition of impartiality suggests itself in situations which

are symmetric with respect to the various parameter values of interest:

The procedure is then required to act symmetrically with respect to these

values.

Example 8. Suppose two treatments are to be compared and that each is

applied n times. The resulting observations X4;,° °°, Xin and X5,,°°°, Xon are

samples from N(é, o”) and N(és, 0”) respectively. The three available decisions

are dy: |§& — &,| S A,dy: & > & + A, dg: &2 < & — A,and thelossis w,; if decision

d; is taken when d; would have been correct. If the treatments are to be com-

pared solely in terms of the &’s and nooutside considerations are involved, the

losses are symmetric with respect to the two treatments so that Wo, = Wo»,

Wip = Woo, Wig = Woy. Suppose nowthat the labeling of the two treatments as

1 and 2 is reversed, and correspondingly also the labeling of the X’s, the é’s, and

the decisions d, and d,. This changes the meaning of the symbols but the

formal decision problem, because of its symmetry, remains unaltered. It is

then natural to require the corresponding symmetry from the procedure 6 and

ask that 5(244,° °°, ins Vers ° °°, Van) = do, dy, OF dy AS O(%g1, °° *; Vans V1, °° > Xn) =

dy, dz, or d, respectively. If this condition were notsatisfied the decision as to
which population has the greater mean would depend on the presumably quite

accidental and irrelevant labeling of the samples. Similar remarks apply to a
numberof further symmetries that are present in this problem.

Example 9. Consider a sample Xj, :- -, X, from a distribution with density

o-1f[(z — £)/o] and the problem of estimating the location parameter €, say the

meanof the X’s, when the loss is (d — &)?/o”, the square of the error expressed

in o-units. Suppose that the observationsare originally expressed in feet, and

let X¥} = aX; with a = 12 be the corresponding observations in inches. In the

transformed problem the density is o’1f[(a’ — &)/o’] with & =aé, 0’ =ao.

Since (d’ — &)?/o’2 = (d — &)/o? the problem is formally unchanged. The

same estimation procedurethat is used for the original observations is therefore

appropriate after the transformation andleads to 6(aXj, -: :, aX,,) as an estimate

of &’ = aé, the parameter & expressed in inches. On reconverting the estimate

into feet one finds that if the result is to be independent of the scale of measure-

ments, 6 mustsatisfy the condition of scale invariance

d(aX, mT aX,,)/a = 0X4, an X,):

The general mathematical expression of symmetry is invariance under

a suitable group of transformations. A group G of transformations g

* The concepts discussed here for general decision theory will be developed in more

specialized form in later chapters. Thepresent section may therefore be omitted at

first reading.
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of the sample spaceis said to leave statistical decision problem invariant
if it satisfies the following conditions.

(i) It leaves invariant the family of distributions A = {P,, 0 €Q},
that is, for any possible distribution P, of X the distribution of 2X,
say Py, is also in Y. The resulting mapping 6’ = g6 of Q is assumed
to be ontof Q and 1 1.

(i1) To each g €G,there exists a transformation g* = h(g)ofthe decision
space D onto itself such that h is a homomorphism,thatis, satisfies the
relation h(g,22) = h(g,)h(g2), and the loss function L is unchanged under
the transformation so that

(86, ¢*d) = L(6, d).

Under these assumptions the transformed problem,in terms of X’ = 2X,
O° = g0, and d’ = g*d, is formally identical with the original problem
in terms of X, 0, and d. Given a decision procedure 6 for the latter,
this is therefore still appropriate after the transformation. Interpreting
the transformation as a change of coordinate system and hence of the
names of the elements, one would, on observing x’, select the decision
which in the new system has the name 6(x’) so that its old nameis g*—16(2’).
If the decision taken is to be independent of the particular coordinate
system adopted, this should coincide with the original decision 6(2),
that is, the procedure mustsatisfy the invariance condition

(8) O(gx) = g* d(x) forall xe X,geEG.

Invariance considerations are applicable only when a problem exhibits
certain symmetries. An alternative impartiality restriction which is
applicable to other types of problems is the following condition of
unbiasedness. Suppose the problem is such that to each 6@ there exists
a unique correct decision and that each decision is correct for some 6.
Assume further that L(0,,d) = L(0,,d) for all d whenever the same
decision is correct for both 6, and 6,. Then the loss L(0, d’) depends
only on the actual decision taken, say d’, and the correct decision d. The
loss can thus be denoted by L(d, d’) and this function measures how far
apart d and d’ are. Under these assumptions a decision function 6
is said to be unbiasedif for all 6 and d’

E,Ld’, 0(X)) = E,L(d, 6(X))
where the subscript indicates the distribution with respect to which the
expectation is taken and where d is the decision that is correct for 0.
Thus 6 is unbiased if on the average 6(X) comes closer to the correct

Tt The term ontois used to indicate thatgQ is not only contained in but actually equals
Q; that is, given any 0’ in © there exists 0 in Q such that 76 = 6’.
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decision than to any wrong one. Extending this definition, 0 is said to

be unbiased for an arbitrary decision problemif for all 6 and 0°

(9) E,L(6", 0(X)) 2 E,L(@, 0(X)).

Example 10. Suppose that in the problem of estimating a real-valued

parameter 6by confidence intervals, as in Example 4, the loss is O or 1 as the

interval[L, L] does or does not cover the true 6. Then the set of intervals

[L(X), L(X)] is unbiased if the probability of covering the true value is greater

than or equal to the probability of covering any false value.

Example 11. In a two-decision problem such as that of Example 1), let

w, and w, be the sets of 6-values for which dy and d, are the correct decisions.

Assume that the loss is 0 when the correct decision is taken, and otherwise is

given by L(@, dy) = a for 9 Ea, and L(9, d,) = bfor@€m,. Then

aPo{i(X) =d)} if Ea,

EoL(6’, (X)) =
bPo {5(X) =d,} if A Ea,

so that (9) reduces to

aP» {i(X) = do} = bPo {(X) = d,} for Fea,

with the reverse inequality holding for 6€@,. Since Py {6(X) = do} + Pa {O(X) =

d,} = 1, the unbiasedness condition (9) becomes

a
é = <— 6

(10)
a

Po {6(X) = d,\ = a+b for 0€ ay.

Example 12. In the problem ofestimating a real-valued function y(@) with

the squareof the error as loss, the condition of unbiasedness becomes

Efo(X) — y(0)P = Eold(X) — (OP forall 6, 6’.

On adding and subtracting h(0) = Eo o(X) inside the brackets on both sides,

this reduces to

[A(6) — (0)P = [h(6) — pF for all 4, 6’.

If h(6) is one of the possible values of the function y, this condition holds if and

only if

(11) Eo 0X) = (8).

In the theory of point estimation, (11) is customarily taken as the definition

of unbiasedness. Except under rather pathological conditions, it is both a

necessary andsufficient condition for 6 to satisfy (9). (See Problem 2.)

6. BAYES AND MINIMAX PROCEDURES

Wenowturn to a discussion of some preference orderings of decision

procedures andtheir risk functions. One such ordering is obtained by
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assuming that in repeated experiments the parameteritself is a random
variable ©. If for the sake of simplicity one supposesthatits distribution
has a probability density p(@), the over-all averageloss resulting from the
use of a decision procedure 6 is

(12) r(p, 6) = | E,L(0, 6(X))p(6) do = | RO, 6)p(0) db
and the smaller r(p, 6), the better is 6. An optimum procedure is one
that minimizes r(p, 6) and is called a Bayes solution of the given decision
problem correspondingto the a priori density p. The resulting minimum
of r(p, 0) is called the Bayes risk of p.

R(0,6)*

 

 

 

 

Figure 2.

Unfortunately, in order to apply this principle it is necessary to assume
not only that @ is a random variable but also that its distribution is
known. This assumption is usually not warranted in applications.
Alternatively, the right-hand side of (12) can be considered as a weighted
average of the risks; for p(9) = 1 in particular, it is then the area under
the risk curve. With this interpretation the choice of a weight function
p expresses the importance the experimenter attaches to the various
values of0.

If no prior information regarding @ is available one might consider
the maximum ofthe risk function its most important feature. Of two
risk functions the one with the smaller maximum is then preferable, and
the optimum procedures are those with the minimax property of minimiz-
ing the maximum risk. Since this maximum represents the worst
(average) loss that can result from the use of a given procedure, a minimax
solution is one that gives the greatest possible protection against large
losses. That such a principle may sometimes be quite unreasonable is
indicated in Figure 2, where under most circumstances one would prefer
6, to d, althoughits risk function has the larger maximum.
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Perhaps the most commonsituation is one intermediate to the two
just described. On the one hand, past experience with the same or

similar kind of experiment is available and provides an indication of
what values of 6 to expect; on the other, this information is neither
sufficiently precise nor sufficiently reliable to warrant the assumptions
that the Bayes approach requires. In such circumstancesit seemsdesirable
to make use of the available information without trusting it to such an
extent that catastrophically high risks might result if it is inaccurate or
misleading. To achieve this one can place a bound on the risk and
restrict consideration to decision procedures 6 for which

(13) R(0,6)< C forall 0.

[Here the constant C will have to be larger than the maximumrisk Cy

of the minimax procedure since otherwise there will exist no procedures
satisfying (13).] Having thus assured that the risk can under no circum-
stances get out of hand, the experimenter can now safely exploit his
knowledge of the situation, which may be based on theoretical considera-
tions as well as on past experience; he can follow his hunches and guess
at a distribution p for 6. This leads to the selection of a procedure 6
(a restricted Bayes solution), which minimizes the average risk (12) for
this a priori distribution subject to (13). The more certain oneis of p,
the larger one will select C, thereby running a greater risk in case of a
poor guess but improvingthe risk if the guess is good.

Instead of specifying an ordering directly, one can postulate conditions
that the ordering should satisfy. Various systems of such conditions
have been investigated* and havegenerally led to the conclusion that the
only orderings satisfying these systems are those which order the procedures
according to their Bayes risk with respect to some a priori distribution
of 0.

7. MAXIMUM LIKELIHOOD

Another approach, whichis based on considerations somewhatdifferent
from those of the preceding sections,is the method of maximumlikelihood.
It has led to reasonable procedures in a great variety of problems, and
is still playing a dominant role in the development of new tests and
estimates. Suppose for a moment that X can taken on only a countable
set of values 2,,%,°°°, with P,(x) = P,{X = x}, and that one wishes
to determine the correct value of 0, that is, the value that produced the

* See, for example, Savage, The Foundations of Statistics, New York, John Wiley
& Sons, 1954, and Section 4.3 of Blackwell and Girshick, Theory ofGames and Statistical
Decisions, New York, John Wiley & Sons, 1954.



1.7] MAXIMUM LIKELIHOOD 15

observed x. This suggests considering for each possible 0 how probable
the observed x would be if 6 were the true value. The higher this proba-
bility, the more oneis attracted to the explanation that the 6 in question
produced x, and the morelikely the value of 6 appears. Therefore, the
expression P,(x) considered for fixed x as a function of 6 has been called
the /ikelihood of 9. To indicate the change in point of view, let it be
denoted by L,(0). Suppose now that one is concerned with an action
problem involving a countable number ofdecisions, andthatit is formu-
lated in terms of a gain function (instead of the usual loss function),
which is 0 if the decision taken is incorrect andis a(9) > 0 if the decision
taken is correct and6 is the true value. Then it seems natural to weight
the likelihood L,(6) by the amount that can be gained if 0 is true, to
determinethe value of 6 that maximizes a(9)L,(6) and to select the decision
that would be correct if this were the true value of 0.* Essentially the
Same remarks apply in the case in which P,(zx) is a probability density
rather than a discrete probability. The above motivation breaks down
for the problem of estimating a continuous parameter since there is then
no hope of determining the correct value of 6, but this can be considered
as a limiting case.

In problems of point estimation, one usually assumes that a(6) is
independent of 6. This leads to estimating 6 by the value that maximizes
the likelihood L,(8), the maximum likelihood estimate of 6. Another
caseofinterest is the class of two-decision problemsillustrated by Example
1(1). Let wo and w, denote the sets of 6-values for which dy and d, are
the correct decisions, and assume that a(9) = ay or a, as 6 belongs to wy
Or w, respectively. Then decision d, or d, is taken as A SUPpewL2(9) <
OF > Ay SUP,(9), that is, as

sup L,(0) ,
14

S20

__ =.4) sup L,(6) ~ OFS Ap
GEw,

This is knownasa likelihoodratio procedure.
Although the maximumlikelihood principle is not based on any

clearly defined optimum considerations, it has been very successful in
leading to satisfactory procedures in many specific problems. For wide
classes of problems, maximum likelihood procedures have also been

* A variant of this approach has been Suggested by Lindley, ‘Statistical inference,”’
J. Roy. Stat. Soc., Ser. B., Vol. XI (1953), pp. 30-76.

T This definition differs slightly from the usual one where in the denominator on the
left-hand side of (14) the supremum is taken over the set w) Uw,. The two definitions
agree whenevertheleft-hand side of (14) is <1, and the procedures therefore agree if
ay < a.
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shown to possess various asymptotic optimum properties as the sample

size tends to infinity.* On the other hand, there exist examples for

which the maximum likelihood procedure is worse than useless; where

it is, in fact, so bad that one can do better without making any use of the

observations (see Chapter 6, Problem 18).

8. COMPLETE CLASSES

None of the approaches described so far is reliable in the sense that

the resulting procedure is necessarily satisfactory. There are problems

in which a decision procedure 6 exists with uniformly minimum risk

among all unbiased or invariant procedures, but where there exists a

procedure 6, not possessing this particular impartiality property and

preferable to 9. (Cf. Problems 14 and 16.) As was seen earlier,

minimax procedures can also be quite undesirable, while the success of

Bayes and restricted Bayes solutions depends on a priori information

whichis usually not very reliable if it is available at all. In fact, it seems

that in the absence ofreliable a priori information no principle leading

to a unique solution can be entirely satisfactory.

This suggests the possibility, at least as a first step, of not insisting on

a unique solution but asking only how far a decision problem can be

reduced without loss of relevant information. It has already been seen

that a decision procedure 6 can sometimes be eliminated from considera-

tion because there exists a procedure 6’ dominating it in the sense that

R(6, 6’) < R(0, 6) forall 6

R(6, 6’) < R(O, 6) forsome 8.

In this case 6 is said to be inadmissible; 6 is called admissible if no such

dominating 6’ exists. A class @ of decision procedures is said to be

complete if for any 6 not in @ there exists 6’ in @ dominating it. A

complete class is minimalif it does not contain a complete subclass. If

a minimal complete class exists, as is typically the case, it consists exactly

of the totality of admissible procedures.

It is convenient to define also the following variant of the complete

class notion. A class @ is said to be essentially complete if for any

procedure 6 there exists 6° in @ such that R(O, 6’) < R(O, 6) for all 0.

Clearly, any completeclass is also essentially complete. In fact, the two

(15)

* For somerecent discussions see, for example, Wald, ‘“‘Tests of statistical hypotheses

concerning several parameters when the numberof observations is large,’ Trans. Am.

Math. Soc., Vol. 54 (1943), pp. 426-482, and LeCam,“On some asymptotic properties

of maximum likelihood estimates and related Bayes’ estimates,” Univ. Calif. Publs.

Statistics, Vol. 111953), pp. 277-330.



1.9] SUFFICIENT STATISTICS 17

definitions differ only in their treatment of equivalent decision rules,
that is, decision rules with identical risk function. If 6 belongs to the
minimal complete class @, any equivalent decision rule must also belong
to @. On the other hand, a minimal essentially complete class need
contain only one member from such

a

set of equivalent procedures.
In a certain sense a minimal essentially complete class provides the

maximum possible reduction of a decision problem. On the one hand,
there is no reason to consider any of the procedures that have been weeded
out. For each of them, there is included one in @ that is as good or
better. On the other hand,it is not possible to reduce the class further.
Given any two procedures in @, each of them is better in places than the
other, so that without additional information it is not known which of
the two is preferable.
The primary concerninstatistics has been withthe explicit determination

of procedures, or classes of procedures, for various specific decision
problems. Those studied mostextensively have been estimation problems,
and problems involving a choice between only two decisions (hypothesis
testing) the theory of which constitutes the subject of the present volume.
However, certain conclusions are possible without such specialization.
In particular, two results concerning the structure of complete classes
and minimax procedures have been proved to hold under very general
assumptions: *

(i) The totality of Bayes solutions andlimits ofBayes solutions constitute
a complete class.

(ii) Minimax procedures are Bayes solutions with respect to a Jeast
favorable a priori distribution, that is, an a priori distribution that maxi-
mizes the associated Bayes risk, and the minimaxrisk equals this maximum
Bayes risk. Somewhat more generally, if there exists no least favorable
a priori distribution but only a sequence for which the Bayes risk tends
to the maximum, the minimax procedures are limits of the associated
sequence of Bayes solutions.

9, SUFFICIENT STATISTICS

A minimal complete class was seen in the preceding section to provide
the maximum possible reduction of a decision problem without loss of
information. Frequently it is possible to obtain a less extensive reduction
of the data, which applies simultaneously to all problemsrelating to a
given class P = {P,, 6 € Q}ofdistributions of the given random variable
X. It consists essentially in discarding that part of the data which

* Precise statements and proofs of these results are given in the book by Wald,
Statistical Decision Functions, New York, John Wiley & Sons, 1950.
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contains no information regarding the unknown distribution P,, and

which is therefore of no value for any decision problem concerning 0.

Example 13. Trials are performed with constant unknown probability
p of success. If X; is 1 or 0 asthe ith trial is a success or failure, the sample
(X,,°°°, Xn) shows how many successes there were and in whichtrials they

occurred. The second of these pieces of information contains no evidence as

to the value of p. Once the total numberof successes 4; is knownto be equal

to t, each of the ("} possible positions of these successes is equally likely

regardless of p. It follows that knowing 2X; but neither the individual *; nor

p, one can, from table of random numbers, construct a set of random variables

Xj,°°°, X, whose joint distribution is the same as that of X,,:°°, X,. There-

fore, the information contained in the X; is the same as that contained in DX;

and a table of random numbers.

Example 14. If X,,--:, X, are independently normally distributed with

zero mean and variance o”, the conditional distribution of the sample point
over each of the spheres, XX? = constant, is uniform irrespective of o”. One
can therefore construct an equivalent sample Xj, ---, X;, from a knowledge of

=X? and a mechanism that can produce a point randomly distributed over a

sphere.

Moregenerally, a statistic T is said to be sufficient for the family 7 =

{P,, 9 € Q}, or sufficient for 6 if it is clear from the context what set 2

is being considered, if the conditional distribution of X given T = is

independent of 6. As in the two examples it then follows under mild

assumptions*thatit is not necessary to utilize the original observations X.

If one is permitted to observe only T instead of X, this does notrestrict

the class of available decision procedures. For any value ¢ of T let X,

be a random variable possessing the conditional distribution of X given tf.

Such a variable can, at least theoretically, be constructed by meansof a

suitable random mechanism. If one then observes 7 to be ¢ and X,

to be x’, the random variable X’ defined through this two-stage process

has the same distribution as XY. Thus, given any precedure based on X

it is possible to construct an equivalent one based on X” which can be

viewed as a randomized procedurebased solely on T. Hence ifrandomiza-

tion is permitted, and weshall assume throughout that this is the case,

there is no loss of generality in restricting consideration to a sufficient

statistic.
It is inconvenient to have to compute the conditional distribution of X

given t in order to determine whether or not T is sufficient. A simple

check is provided by the following factorization criterion.

Consider first the case that X is discrete and let P,(x) = P, {X = z}.

* These are connected with difficulties concerning the behavior of conditional

probabilities. For a discussion of these difficulties see Chapter 2, Sections 3-5.
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Then a necessary and sufficient condition for T to be sufficient for 6
is that there exists a factorization

(16) Px) = glT(x)hQ@),
where the first factor may depend on 6 but depends on x only through
T(x) while the second factor is independentof0.

Suppose that (16) holds and let T(x) = ¢. Then P, {7 = t} = IP,(z’)
summed overall points x’ with T(x’) = t, and the conditional probability

Py {X = 2|T = t} = P(x)/P, {T = t} = h(x)/Zh(2’)

is independent of 6. Conversely, if this conditional distribution does
not depend on @ andis equal to, say k(x,t), then P,(x) = P, {T = t} k(z,t)
so that (16) holds.

Example 15. Let X,,---, X, be independently and identically distributed
according to the Poisson distribution (2). Then

n

[IT 2;!
j=l

and it follows that 3X; is a sufficientstatistic for r.

PAX, .* "5 vy) =

In the case that the distribution of X is continuous and has probability
density p}(x) let X and T be vector-valued, ¥ = (X,,°°°, X,) and T=
(7,,°°+, T,) say. Suppose that there exist functions Y = (¥Y,,-°-, Yr)

on the sample space such that the transformation

(17) (2, a) L,)<> (T,(2), a) T(x), Y,(2), my Y,,_(2))

is 1:1 on a suitable domain, and that the joint density of T and Y
exists and is related to that of X by the usual formula*

(18) pi(a) = pP¥(T(x), ¥(x)) -|J],
where J is the Jacobian of (T7,,-°-, T,, Y1,°°*, Y,_,) with respect to

(%,°**,,). Thus in Example 14, T= 4/Yy¥2, y,,---, ¥,_, can be
taken to be the polar coordinates of the sample point. From the joint
density pg’*(t, y) of T and Y, the conditional density of Y given T= ft
is obtained as

T.Y
19 Hy) = Pe oY)( ) Po (y) f pt? (t, y’) dy

provided the denominatoris different from zero.

 

* Regularity conditions for the validity of (18) are given by Tukey, “A smooth
invertibility theorem,” Ann. Math. Stat., Vol. 29 (1958), pp. 581-584; see also Lehmann
and Scheffé, “On the problem ofsimilar regions,” Proc. Nat. Acad. Sci., Vol. 33 (1947),
pp. 382-386.
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Since in the conditional distribution given ¢ only the Y’s vary, T is
sufficient for 6 if the conditional distribution of Y given ¢ is independent
of 6. Suppose that T satisfies (19). Then analogously to the discrete
case, a necessary andsufficient condition for T to be sufficient is a factori-

zation of the density of the form

(20) Pox) = golT(x)JA(z).

(See Problem 19.) The following two examplesillustrate the application
of the criterion in this case. In both examples the existence of functions
Y satisfying (17)-(19) will be assumed but not proved. As will be shown
later (Chapter 2, Section 6), this assumption is actually not needed for
the validity of the factorization criterion.

Example 16. Let X,,°-:, Xn be independently distributed with normal

probability density

pase) = Grobynterp (sa%et + Be aH)
Then the factorization criterion shows (XX,, 4X?) to be sufficient for (, o).

Example 17, Let X,,°°:,X, be independently distributed according
to the rectangular distribution R(0, 9) over the interval (0, #). Then po(v) =

6-"u(max x,, 6) where u(a, b) is 1 or 0 as a Sb ora > 5, and hence max X;is

sufficient for 6.

An alternative criterion of sufficiency provides a direct connection

between this concept and some of the basic notions of decision theory.

As in the theory of Bayes solutions, consider the unknown parameter 6

as a random variable © with an a priori distribution, and assume for

simplicity that it has a density p(9). Then if Tis sufficient, the conditional
distribution of © given X = x depends only on T(x). Conversely, if

(8) ~ 0 forall 6 andif the conditional distribution of © given x depends

only on 7(x), then is sufficient for 6.

In fact, under the assumptions made, the joint density of X¥ and 0

is p,(x)p(9). If T is sufficient it follows from (20) that the conditional

density of © given x depends only on 7(x). Suppose, on the other hand,

that for somea priori distribution for which p(@) 4 0 forall 6 the con-

ditional distribution of © given x depends only on T(z). Then

PX)p(9)

Pex)p(8") db"

and by solving for p,(x) it is seen that T is sufficient.

= faT(x)]

Any Bayes solution depends only on the conditional distribution of

‘@ given x (see Problem 8) and hence on T(x). Since typically Bayes

solutions together with their limits form an essentially complete class,it
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follows that this is also true of the decision procedures based on T. The
same conclusion had already been reached more directly at the beginning
of the section.

By restricting attention to a sufficient statistic, one obtains a reduction
of the data andit is then desirable to carry this reduction asfar as possible.
To illustrate the different possibilities, consider once more the binomial
Example 13. If m is any integer less than n and 7, = >”_,X;, T, =
>? -ma1X;, then (T,, 7) constitutes a sufficient statistic since the conditional
distribution of 44,°--, X, given T, = t,, T, = ty is independent ofp.

For the samereason,the full sample (X,,- : -, X,,) itself is also a sufficient

Statistic. However, T= >7%_,X; provides a more thorough reduction

than either of these and than various others that can be constructed.
A sufficient statistic T is said to be minimalsufficient if the data cannot be
reduced beyond T without losing sufficiency. For the binomial example
in particular, >;_,X; can be shown to be minimal (Problem 17). This

illustrates the fact that in specific examples the sufficient statistic determined
by inspection through the factorization criterion usually turns out to be
minimal.*

10. PROBLEMS

Section 2

1. The following distributions arise on the basis of assumptions similar to
those leading to (1)-(3).

(1) Independenttrials with constant probability p of success are carried out
until a preassigned numbermof successes has been obtained. If the numberof
trials required is X¥ + m, then X has the negative binomial distribution

‘

pixma =(" FENpm = py, 2x =0,1,2,---:

(ii) In a sequence of random events, the number of events occurring in any
time interval of length 7 has the Poisson distribution P(Ar), and the numbersof
events in nonoverlapping time intervals are independent. Then the “waiting
time”’ 7, which elapses from the starting point, say r = 0, until the first event
occurs, has the exponential probability density

p(t) = 4e~*4, t=0.

* Explicit procedures for constructing a minimalsufficientstatistic (called necessary
and sufficient by some writers) are given by Lehmann and Scheffé, ‘Completeness,

similar regions and unbiased estimation,” Sankhya, Vol. 10 (1950), pp. 305-340, and by
Bahadur, ‘Sufficiency and statistical decision functions,’ Ann. Math. Stat., Vol. 25

(1954), pp. 423-462. See also Dynkin, “On sufficient and necessary statistics for

families of probability distributions,” Doklady Akad. Nauk SSSR (N.S.), Vol. 75 (1950),

pp. 161-164 and Uspehi Matem. Nauk (N. S.), Vol. 6 (1951), No. 1, pp. 68-90.
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(Let 7;, i = 2, be the time elapsing from the occurrence of the (i — 1)st event

to that of the ith event. Thenit is also true, although moredifficult to prove, t

that 7,, T>, --- are identically and independently distributed.)
(iii) A point X is selected “at random” in the interval (a, b), that is, the

probability of X falling in any subinterval of (a, 6) depends only on the length
of the subinterval, not on its position. Then X has the rectangular or uniform

distribution R(a, 6) with probability density

p(x) = 1/(6 — a), a<a<b,

(ii) If t > 0, then T > ¢ if and only if no event occurs in the time interval

(0,t).]

Section 5

2. Unbiasedness in point estimation. Suppose that the parameter space 2 is
connected, that y is a continuousreal-valued function defined over 2 which is
not constant in any open subset of ©, and that the expectation h(@) = E,6(X)is

a continuous function of 6 for every estimate 6(X) of y(). Then (11) is a

necessary and sufficient condition for 6(X) to be unbiased when the loss function

is the square of the error.
[Unbiasedness implies that y?(6’) — 7°(9) = 2A(8) [y(@) — ¥(6)] for all 6, 6’.

If 9 is neither a relative minimum or maximum ofy, it follows that there exist
points 6’ arbitrarily close to @ both such that »(0) + (6’) 2 and < 2A(0), and

hence that 7(@) = A(0). That this equality also holds for an extremum of y

follows by continuity since y is not constant in any openset.]

3. Median unbiasedness. (i) A real number mis a median for the random

variable Yif P{ Y =m} = 1/2; P{Y Sm} 21/2. Thenall real a,, a, suchthat
m <a, <a, orm = a, = a,satisfy E|Y — a,| < E|Y — a,].

(ii) For any estimate 6(X) of 7(), let m() and m*+(@) denote the infimum and

supremum of the medians of 6(X), and suppose that they are continuous

functions of 6. Let Q be connected andlet (6) be continuous and not constant

in any open subset of ©. Then the estimate 5(X) of 7(9) is unbiased with

respect to the loss function L(6, d) = | (0) —d | if and only if y(@) is a median of

6(X) for each 6. An estimate with this property is said to be median-unbiased.

4. Nonexistence of unbiased procedures. Consider a decision problem in

which for each @ there exists a unique correct decision d, and suppose that

L(6, d’) = h(#)V(d, a’) for @E€ wa

where «w, denotes the set of 6’s for which d is correct. Then if the function /

takes on at least two distinct values on each wg, the risk function of any unbiased

procedure is identically zero, that is, typically no unbiased procedure exists.

As an example, let Xj,---, X, be independently distributed with density

(1/a)f(X — §)/a) and @ = €, a). Then noestimate of & exists, which is unbiased

with respect to the loss function (§ — d)?/a’.

5. Let © be any class of procedures that is closed under the transformations

of a group G in the sense that 6 €@impliesg*6g-* €@forallg EG. If there exists

+ For a proof see Doob, Stochastic Processes, New York, John Wiley & Sons, 1953,

— p. 403.
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a unique procedure 6, that uniformly minimizes the risk within the class ¢, then
do is invariant. If 59 is unique only up to sets of measure zero,thenit is almost
invariant, that is, for each g it satisfies the equation d(g.v) = g*6d(x) except on a
set NV, of measure 0.

6. Relation of unbiasedness and invariance. (i) If 5g is the unique (up to sets
of measure 0) unbiased procedure with uniformly minimumrisk, it is almost
invariant.

(ii) If G is transitive and G* commutative, andif amongall invariant (almost
invariant) procedures there exists a procedure 5, with uniformly minimum risk,
then it is unbiased.

[4) This follows from the preceding problem and the fact that when 6 is
unbiased so is ¢*dég-1,

(ii) It is the defining property of transitivity that given 6, 6’ there exists 2
such that 0° = g0. Hence for any 9, 6’

EoL(0’, 59(X)) = EgL(6, 6)(X)) = EoL(6, g*-169(X)).

Since G* is commutative g*-16, is invariant, so that

RG, g*-165) = RO, 59) = EgL(O, boX)).]

7. Counterexample. That conclusion(ii) of Problem 6 need not hold without
the assumptions concerning G* and G is shown by the problem of estimating
the mean € of a normaldistribution N(&, 2) with loss function (€ — d)*/a?,
This remains invariant under the groups G;: gz =2 +b, —«© <b < o and
Ga: gx =ax +b,0 <a <0, —w <b < ow, The best invariant estimate
relative to both groups is X but there does notexist an estimate which is unbiased
with respect to the given loss function.

Section 6

8. Structure of Bayes solutions. (i) Let © be an unobservable random
quantity with probability density (6), and let the probability density of X be
pox) when © = 6. Then 6 is a Bayes solution of a given decision problem if
for each x the decision 6(x) is chosen so as to minimize JL(6, 6(x))(6|x) dé, where
m(6|ax) = p(4)p,(x)/Jp(8’)pe(x) do’ is the conditional (a posteriori) probability
density of © given x.

(ii) Let the problem be a two-decision problem with the losses as given in
Example 11. Then the Bayes solution consists in choosing decision d, if

aP{9 €a,|r} < bP{O Ea,|x}

and decision d, if the reverse inequality holds. The choice of decision is
immaterial in case of equality.

(iii) In case of point estimation of a real-valued function (9) with loss
function L(6, d) = (g(6) — d)*, the Bayes solution becomes 6(x) = Elg(©)|a).
Wheninstead the loss function is L(6,d) = |g(6) —d, the Bayes estimate d(x)
is any medianofthe conditionaldistribution ofg(@) given x.

[(i) The Bayesrisk r(p, 6) can be written as fL[Le, O(x))z(6|x) d6\p(x) dx, where
P(®) = fo(6’)py(a) ab’.

(i) The conditional expectation [L(6, d,)n(6|x) dO reduces to aP{O E w,|x}
and similarly for d,.]



24 THE GENERAL DECISION PROBLEM [1.10

9. (i) As an example in which randomization reduces the maximum risk,

suppose that a coin is knownto beeither standard (HT) or to have heads on

both sides (HH). The nature of the coin is to be decided on the basis of a

single toss, the loss being 1 for an incorrect decision and 0 for a correct one.

Let the decision be HT when

T

is observed whereas in the contrary case the

decision is made at random, with probability p for HT and 1 —p for HH.

Then the maximumrisk is minimized for p = 1/3.

(ii) A genetical setting in which such a problem mightariseis that of a couple,

of which the husbandis either dominant homozygous (AA) or heterozygous (Aa)

with respect to a certain characteristic and the wife is homozygousrecessive (aa).

Their child is heterozygous and it is of importance to determine to which

genetical type the husband belongs. However, in such cases an a priori

probability is usually available for the two possibilities. One is then dealing

with a Bayes problem and randomization is no longer required. In fact, if the

a priori probability is p that the husband is dominant, then the Bayes procedure

classifies him as such if p > 1/3 and takes the contrary decision if p < 1/3.

10. Unbiasedness and minimax. Let Q = Q) VU Q, where Qo, Q) are mutually

exclusive, and consider a two-decision problem with loss function L(0, d;) = a;

for 9E0;(j # i) and L(G, d;) = 0 for 6EQ; Gi =0, 1).

(i) Any minimax procedure is unbiased.

(ii) The converse of (i) holds provided P,(A)is a continuous function of @ for

all A, and if the sets Q, and Q, have at least one commonboundarypoint.

[(i) The condition of unbiasedness in this case is equivalent to sup R;(6) <

Aya,|(4y + a,). That this is satisfied by any minimax procedure is seen by

comparison with the procedure 6(x) = dy or = d, with probabilities a,/(@y) + 4)

and a,/(ay + a,) respectively.
(ii) If 6, is a common boundarypoint, continuity of the risk function implies

that any unbiased procedure satisfies R399) = @o41/(4yp + @,) and hence sup

Rg(9) = a%/(ay + 44).]

11. Invariance and minimax. Let a problem remain invariantrelative to the

groups G, G, and G* over the spaces 7, Q, and D respectively. Then a

randomized procedure Y, is defined to be invariant if for all x and g the

conditionaldistribution of Y, given x is the same asthat of g*~* Y,,.

(i) Consider a decision procedure which remains invariant under a finite

group G = {21,°"'; gy}. Ifa minimax procedure exists, then there exists one

that is invariant.
(ii) This conclusion does not necessarily hold for infinite groups as is shown

by the following example. Let the parameter space Q consist of all elements @

of the free group with two generators, thatis, the totality of formal products

m1°°° 1(n = 0,1, 2,---) where each 7; is one of the elements a, a~!, b, b-1 and

in which all products aa~, a-‘a, bb-) and b-1b have been canceled. The empty

product (n = 0) is denoted by e. The sample point X is obtained by multiplying

6 on the right by one of the 4 elements a, a~*, b, b~* with probability 1/4 each,

andcancelingif necessary,thatis, if the random factor equals 7, 1. The problem

of estimating 9 with L(@, d) equal to 0 if d = @ and equalto | otherwise remains

invariant under multiplication of X, 6, and d on theleft by an arbitrary sequence

T_m'°’T-97_4(m =0,1,°--). The invariant procedure that minimizes the

maximum risk has risk function R(0, 6) = 3/4. However, there exists a non-

invariant procedure with maximum risk 1/4.
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[(i) If Y,,is a (possibly randomized) minimax procedure, an invariant minimax
procedure Y, is defined by P(Y; = d) = X_\P(Y,,, = g7d)/N.

(ii) The better procedure consists in estimating 6 to be 7,-°°-7,_, when
7 °° + 7,18 observed (k = 1), and to estimate 6 to be a, a-}, b; b-! with probability
1/4 each in case the identity is observed. The estimate will be correct unless
the last element of X was canceled, and hence will be correct with probability
= 3/4.]

Section 7

12. (i) Let X have probability density po(x) with 6 one of the values 6,, - - -, 6,
and consider the problem of determining the correct value of 0, so that the
choice lies between the n decisions d, = 0,,:--,d, = 9, with gain a(6,) if
d; = 0;and 0 otherwise. Then the Bayes solution (which maximizes the average
gain) when @ is a random variable taking on eachofthe n values with probability
1/n coincides with the maximumlikelihood procedure.

(ii) Let X have probability density pg(z) withO <6 <1. Then the maximum
likelihood estimate is the mode (maximum value) of the a posteriori density of
© given « when © is uniformly distributed over(0, 1).

13. (i) Let X1,---, X, bea sample from N(é, o”) and consider the problem of
deciding between m9: € <Oanda,: £20. If @ = La,/n and C = (a,/a,)?”,
the likelihood ratio procedure takes decision d, or d, as

Vn &/VXa, —a?<k or >k

where k = —-VC—1ifC >landk = V(1 — C)/Cif C <1.
(ii) For the problem of deciding between wy: o <, and W,: 6 20, the

likelihood ratio procedure takes decision d, or d, as

2(2; — )?/no2? < or >k

where k is the smaller root of the equation Cx = e*-! if C > 1 and the larger
root of x = Ce*-! if C < 1, where

C

is defined asin (i).

Section 8

14. Admissibility of unbiased procedures. (i) Under the assumptions of
Problem 10, if among the unbiased procedures there exists one with uniformly
minimumrisk, it is admissible.

(ii) That in general an unbiased procedure with uniformly minimum risk
need not be admissible is seen by the following example. Let X have a Poisson
distribution truncated at 0, so that P,{X¥ =} = 6%e-§/[x'(1 — e-%] for
a =1,2,:--. For estimating »(@) = e~9 with loss function L(6, d) = (d — 6)2,
there exists a unique unbiased estimate, and it is not admissible.

[Gi) The unique unbiased estimate 6,(z) = (—1)*+! is dominated by 6,(z) = 0
or | as x is even or odd.]

13. Admissibility of invariant procedures. If a decision problem remains
invariant undera finite group, andif there exists a procedure 6, that uniformly
minimizes the risk among all invariant procedures, then 6, is admissible.

[This follows from the identity R(6, 6) = R(g6, g*dg-') and the hint given in
Problem 11(i).]
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16. (i) Let X take on the values 96 — 1 and 4 + 1 with probability 1/2 each.
The problem of estimating 6 with loss function L(6,d) = min (|6 — dl, 1)
remains invariant under the transformation eX = X +c, g6 = +c, g*d =

d-+c. Among invariant estimates, those taking on the values X — 1 and
X + 1 with probabilitiesp and g (independentof X) uniformly minimize the risk.

(ii) That the conclusion of Problem 15 need not hold when G is infinite
follows by comparing the best invariant estimates of (i) with the estimate 6,(x)
which is XY + 1 when X¥ < Oand X — 1 when X 20.

Section 9

17. In n independenttrials with constant probability p of success, let X; = 1
or 0 as the ith trial is a success or not. Then &7_,X;, is minimal sufficient.

[Let T = XX; and suppose that U =f(T)is sufficient and thatf(k,) =--- =
f(ky) =u. Then P{T = t|U = u} depends on p.]

18. (i) Let X,,°--, X, be a sample from the uniform distribution R(O, 6),

0 < 04 < o, and let T = max (X%},--:, X,). Show that is sufficient once by

using the definition of sufficiency and once by using the factorization criterion
and assuming the existence ofstatistics Y, satisfying (17)(19).

(ii) Let X,,:-:, X, be a sample from the exponential distribution with
density ae~**-) when « > 6(0 <a < ~, —~o <b < ). Use the factori-
zation criterion to prove that (min (Xj,---, X,), 47-1, is sufficient for a, b
assuming the existence of statistics Y; satisfying (17)-(19).

19. A statistic T satisfying (17)-(19) is sufficient if and only if it satisfies (20).
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CHAPTER 2

The Probability Background

1. PROBABILITY AND MEASURE

The mathematical framework for statistical decision theory is provided
by the theory of probability which in turn hasits foundationsin the theory
of measure and integration. The present and following sections serve
to define some of the basic concepts of these theories, to establish some
notation, and to state without proof some of the principal results. In
the remainder of the chapter, certain special topics are treated in more
detail.

Probability theory is concerned with situations which may result
in different outcomes. Thetotality of these possible outcomesis repre-
sented abstractly by the totality of points in a space 2. Since the events
to be studied are aggregates of such outcomes, they are represented by
subsets of 2. The union of two sets A,, A, will be denoted by A, U Ag,

their intersection by A, \ Ay, the complement of A by 4 = Z — A,
and the empty set by 0. The probability P(A) of an event A is a real
number between 0 and 1; in particular

(1) PO0)=0 and P(X)=1.

Probabilities have the property of countable additivity,

(2) P(UA,) = 2P(A,;) if A; A A; = Ofor all i Fj.

Unfortunately it turns out that the set functions with which weshall
be concerned usually cannot be defined in a reasonable manner forall
subsets of % if they are to satisfy (2). It is, for example, not possible to
give a reasonable definition of ‘‘area” for all subsets of a unit square
in the plane.
The sets for which the probability function P will be defined are said

to be “measurable.” The domain of definition of P should include with
any set A its complement A, and with any countable numberof events
theirunion. By (1), it should also include 2. A classof sets that contains

30
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4% and is closed under complementation and countable unions is a
o-field. Such a class is automatically also closed under countable
intersections.
The starting point of any probabilistic considerations is therefore a

space 2’, representing the possible outcomes, and a o-field . of subsets
of 2, representing the events whose probability is to be defined. Such
a couple (%, ) is called a measurable space, and the elements of
constitute the measurable sets. A countably additive nonnegative (not
necessarily finite) set function « defined over & and such that u(0) = 0
is called a measure. If it assigns the value 1 to & it is a probability
measure. More generally, uw is finite if u(2) < oo and o-finite if there
exist Ay, Ay,*** in & (which may always be taken to be mutually
exclusive) such that UJA,; = 2% and MA,) << oc for i= 1,2,--..
Important special cases are provided by the following examples.

Example 1. Let & be the n-dimensional Euclidean space E,, and the
smallest o-field containingall rectangles

R = {(2,° "*, Up): a; < av; S 5, i= I, 7 *, ny.*

The elements of .¥ are called the Borel sets of E,. Over a unique measure pu
can be defined, which to any rectangle R assigns as its measure the volume ofR,

MR) = Il (b; — aj).
t=1

The measure can be completed by adjoining to © all subsets of sets of measure
zero. The domain ofu is thereby enlarged to a o-field .’, the class of Lebesgue
measurable sets. The term Lebesgue measure is used for « both when it is
defined over the Borel sets and over the Lebesgue measurablesets.

This example can be generalized to any nonnegative set function »,
which is defined and countably additive over the class of rectangles R.
There exists then, as before, a unique measure mu over (2, WZ) that agrees
with » for all R. This measure can again be completed; however, the
resulting o-field depends on yw and need not agree with the o-field .o/’
obtained above.

Example 2. Suppose that % is countable, and let «/ be the class ofall
subsets of 2. For any set A, define u(A) as the number of elements of A if
that numberis finite and otherwise as +0. This measureis sometimes called
counting measure.

In applications, the probabilities over (2, ) refer to random experi-
ments or observations, the possible outcomes of which are the points
x€4. Let these observations be denoted by X, which may for example
be real- or vector-valued, and let the probability of X falling in a set A

* If w(x) is a statement concerning certain objects x, then {x: m(x)} denotes the set
of all those x for which 7(z) is true.
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be P{X € A} = P(A). In this context, the probability P(A) will some-

times be denoted by P*(A) and the probability measure P by P*. We

shall refer to X as a random variable* over the space (%, W), and to the

probability measure P or P* as the probability distribution of X. Mathe-

matically, a random variableis thus nothing buta carrierofits distribution.

If a(x) is any statement concerning the points x andif A is the set of

points x for which 7(zx) holds, we shall also write P{r(X)} for the proba-

bility P*(A).
Let X be a real-valued random variable with probability distribution

P* defined over the Borel sets of the real line. Then the cumulative

distribution function of X is defined as a point function F ontherealline

by F(a) = P{X< a} for all real a. The function F is nondecreasing and

continuous on the right, and F(—oo) = 0, F(+0) = 1. If F is any

function with these properties, a measure can be defined overthe intervals

by Pla< X< b} = F(b) — F(a). It follows from the generalization

of Example 1 that this measure uniquely determines a probability distri-

bution over the Borel sets. Thus the probability distribution P* and

the cumulative distribution function F each uniquely determines the

other. These remarks extend to probability distributions over an n-

dimensional Euclidean space, where the cumulative distribution function

is defined by

F(a, ms a,) = PIX, S a\,°" "> XS ay}.

The distribution of X also determines that of any function of X. Let

T be a function of the observations taking on values in some space 7.

Such a function generates in 7 the o-field Z’ of sets B whose inverse image

A = T-\(B) = {a: «€2%, T(x) € BS

is in &. The values taken on by 7(X) are again the outcomes of a

random experiment, so that T= T(X) is a random variable over the

space (7, Z’). Since X¥ e T~\(B) if and only if T(X) € B, the probability

distribution of T over (7, 4’) is given by

(3) P™(B) = P{T € B} = P{X © T-\(B)} = P*(T-(B)).

Frequently, there is given a o-field & of sets in 7 such that the proba-

bility of the event T € B should be defined if and only if Be ZB. This

requires that 7—(B) € ¥ for all Be ZB, and the function (or transforma-

tion) T from (2, ) intot (7, #)is then said to be measurable. Another

* This differs from the definition given in most probability texts where a random

variable is taken to be a function from an original space to a range space (7, 7) and

where in addition & is assumed to be the real line and «/ the class of Borel sets.

+ The term into is used to indicate that the range T(Y) of Tisin7; if T(?%) =7,

the transformation is said to be from 2% onto 7.
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implication is the sometimes convenientrestriction of probability state-
ments to the sets in # even though there mayexist sets B ¢ & for which
T~*(B) € & and whose probability therefore could be defined.

In applications, there is given as the raw material of an investigation a
set of observations constituting the totality of the available data. This is
represented by a random variable X such that all other random variables
that can be considered are functions of XY. The space (2%, ) over which
X is definedis called the sample space, and any measurable transformation
I from (2°, &) into (7, #) is said to be a statistic. The distribution of T
is then given by (3) applied to all Be Y. With this definition,a statistic
is specified by specifying both the function T and the o-field Z. We
shall, however, adopt the convention that when a function T takes onits
values in a Euclidean space, unless otherwise stated the o-field Z of
measurable sets will be taken to be the class of Borel sets. It then
becomes unnecessary to mention it explicitly or to indicate it in the
notation.
The distinction between statistics and random variables as defined

here is slight. The term statistic is used to indicate that the quantity is a
function of more basic observations; all statistics in a given problem are
functions defined over the same sample space (%,.W). On the other
hand, anystatistic T is a random variablesinceit has a distribution over
(7, &), andit will be referred to as a random variable whenits origin is
irrelevant. Which term is used therefore depends on the point of view
and to someextentis arbitrary.*

2. INTEGRATION

According to the convention of the preceding section, a real-valued
function f defined over (2, x) is measurable if J-\(B) € @ for every
Borel set B on the real line. Such a function f is said to be simple if it
takes on only a finite number of values. Let mu be a measure defined
over (%, W), and letf be a simple function taking on the distinct values
a,°**,@, on the sets A),---, A,,, which are in & since fis measurable.
If u(A;) < 00 when a; ¥ 0,the integral offwith respect to yu is defined by

(4) |fdu = Sa,uA)).
Given any nonnegative measurable function f, there exists a non-

decreasing sequence of simple functions /,, converging to f. Then the

* The above definition of statistic is close to the definition of random variable
customary in probability theory.. However, the distinction made here corresponds
more closely to the way the termsare used informally in moststatistical writing.
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integral offis defined as

(5) fdp =lim f, dy,
n—CO

which can be shownto be independentof the particular sequence off,,’s
chosen. For any measurable function f its positive and negative parts

(6) ft(e) = max[f(@),0] and f-(x) = max [—f(@), 0]
are also measurable, and

f@) =f*@ —f-@).

If the integrals off+ andf- are both finite, thenfis said to be integrable,
and its integral is defined as

fren [roan fae
If of the two integrals oneis finite and oneinfinite, then the integral off
is defined to be the appropriate infinite value.

Example 3. Let % be the closedinterval[a, 5], . be the class of Borelsets or

of Lebesgue measurable sets in 2, and let u be Lebesgue measure. Then the
b

integral off with respect to » is written as[f(x) dx, andis called the Lebesgue
a

integral of f. This integral generalizes the Riemann integral in that it exists
and agrees with the Riemann integral off wheneverthelatter exists.

Example 4. Let £ be countable and consist of the points 7,, 7,°--; let 7

be the class ofall subsets of 2, and let » assign measure b; to the point z;,. Then
fis integrable provided Xf(a;)b; converges absolutely, and [fdis given by this
sum.

Let P* be the probability distribution of a random variable X and let T
be a real-valuedstatistic. If the function T(2)is integrable, its expectation

is defined by

(7) E(T) = |T(x) dP*(z).

It will be seen from Lemma2 in Section 3 below that the integration can

be carried out alternatively in t-space with respect to the distribution of T

defined by (3), so that also

(8) E(T) = t dP7(t).

The above definition of the integral permits the basic convergence

theorem
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Theorem 1. Let f, be a sequence of measurable functions and let

Si(x) >f(x) for all x. Then

[s. du— [rau

if either one of the following conditions hold:
(i) (Lebesgue monotone convergence theorem)

the f,,S are nonnegative and the sequence is nondecreasing
or

(ii) (Lebesgue bounded convergence theorem)

there exists an integrable function g such that |f,(x)| < g(x) for all n
and x.

For any set A € &,let 1, beits indicator function defined by

(9) [,z)=1 or 0 as EA or wed,

and let

(10) [fae = [ta de
If « is a measure and fa nonnegative measurable function over (%, .V),
then

a

(11) »(A) = |fae

defines a new measure over (.%, .). The fact that (11) holds forall

A € & is expressed by writing

(12) dv = fdu or f= dr/du.

Let « and » be twogiven o-finite measures over (%, ). If there exists a
function / satisfying (12), it is determined through this relation up to sets
of measure zero, since

| fu = |a forall AEW
A JA

implies that f= g a.e. w.* Such an f is called the Radon-Nikodym
derivative of v with respect to uw, and in the particular case that » is a
probability measure, the probability density of v with respect to ym.
The question of existence of a function fsatisfying (12) for given

* A statement that holds for all points x except possibly on a set of s:-measure zero is
said to hold a.e. 44; or to hold (.Y, 44) if it is desirable to indicate the o-field over which u

is defined.
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measures y and » is answered in terms of the following definition. A
measure » is absolutely continuous with respect to uw if

(A) =O implies »(A) = 0.

Theorem 2. (Radon-Nikodym.) If « and v are o-finite measures over
(X, WL), then there exists a measurablefunctionfsatisfying (12) if and only
if v is absolutely continuous with respect to w.

Thedirect (or Cartesian) product A x B of two sets A and Bistheset of
all pairs (x,y) with «eA, yeB. Let (%, M) and (Y, #) be two

measurable spaces, and let x x & be the smallest o-field containingall
sets A xX BwithA ce Mand Bef. If wand v are two o-finite measures
over (%, WH) and (Y, #) respectively, then there exists a unique measure
A=puxvover(% x Y¥, LH x B), the product of u and », such that for

any Ace WH, BES,

(13) MA xX B) = p(A)r(B).
Example 5. Let 2, Y be Euclidean spaces of m and n dimensions, andlet

xf, B be the o-fields of Borel sets in these spaces. Then 2 x ¥ is an (m + n)-
dimensional Euclidean space, and . x & the class of its Borelsets.

Example 6. Let Z = (X, Y) be a random variable defined over (7 x Y,

sf x %) and suppose that the random variables X and have distributions
PX, PY over (%, ¥) and (Y¥, #). Then X and aresaid to be independentif the

probability distribution P? of Z is the product P* x PY.

In terms of these concepts the reduction of a double integral to a
repeated oneis given by the following theorem.

Theorem 3. (Fubini.) Let and v be o-finite measures over (X, L) and
(Y, B) respectively, and letth =u xv. Iff(x,y) is integrable with
respect to A, then

(i) for almostall (v) fixed y, thefunctionf (x, y) is integrable with respect

to M,

(ii) the function [f(x, y) du(x) is integrable with respect to v, and

(14) [re ai,= [|[ren ate)| do).

3. STATISTICS AND SUBFIELDS

According to the definition of Section 1, a statistic is a measurable
transformation T from the sample space (2%, ) into a measurable space
(7, #). Such a transformation inducesin the original sample space the

subfield*

(15) Gy = T-(B) = {T-(B): Be B}.
* Weshall use this term in place of the more cumbersome“sub-o-field.”
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Since the set T~'[T(A)] contains A but is not necessarily equal to A, the

o-field need not coincide with and hence can be a proper subfield
of &. On the other hand, suppose for a momentthat .7 = 7(%), that
is, that the transformation 7 is onto rather than into -7. Then

(16) T[T-(B)] = B forall Be Z,

so that the relationship Ay = T1(B) establishes a | : 1 correspondence
between the sets of ., and &, which is an isomorphism—thatis, which
preserves the set operations of intersection, union, and complementation.
For most purposesit is therefore immaterial whether one works in the
space (7, Wo) or in(7, B). These generate two equivalent classes of
events, and therefore of measurable functions, possible decision pro-
cedures, etc. If the transformation T is only into .7, the above 1: 1
correspondence applies to the class #’ of subsets of F’ = T(X) which
belong to 4, rather than to # itself. However, any set BEF is
equivalent to B’ = BO.’in the sensethat any measure over (2, 97)
assigns the same measure to B’ as to B. Considered asclasses of events,
, and # therefore continue to be equivalent, with the only difference
that # contains several (equivalent) representations of the same event.
As an example,let .7be the real line and . the class of Borel sets, and

let T(x) = x. Let 7 be either the positive real axis or the whole real
axis and let # be the class of Borel subsets of7. Then .%,is the class
of Borel sets that are symmetric with respect to the origin. When
considering, for example, real-valued measurable functions, one would.
when working in .7-space, restrict attention to measurable functions of
x*, Instead, one could remain in the original space, wherethe restriction
would beto the class of even measurable functions of x. The equivalence
is clear. Which representation is more convenient depends on the
situation.
That the correspondence between the sets Ay = T7(B)€ &, and
Beestablishes an analogous correspondence between measurable
functions defined over (2, 9) and (7, #) is shown by the following
lemma.

Lemma 1. Let the statistic T from (2, 2) into (7, B) induce the
subfield %y. Then a real-valued :¢-measurable function fis  o-measur-
able if andonlyif there exists a B-measurable function g such that

F() = alT(a)]
for all x.

Proof. Supposefirst that such a function g exists. Then theset

ws f(@) <r} = T(t: gd) <r})
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is in W,, and f is W,_-measurable. Conversely, if f is e)-measurable,
then the sets

i+]
Qn
 An = [55 </@S ; i= 0, +1, +2,-:-

are (for fixed 7) disjoint sets in , whose union is 2, and there exist
B,, € & such that A,;, = T-(B,,). Let

~~

Bis, = Bin -™ U Bin.
j#i

Since A,, and A,,, are mutually exclusive for i ¢ j, the set T"(B,,, O B,,) 1s

empty andso is the set T-(B,,, © By,). Hence, for fixed n, the sets By,
are disjoint, andstill satisfy A,, = T—(B;,). Defining

ful) = if x € Ain, i= 0, +1, +2,°°°,

one can write

frlx) = 8nAlT@),

where

- for teBt, i=0,+1,+2,-°:
Sn(t) = 2”

0 otherwise.

Since the functions g, are @-measurable, the set B on which g,(t)
converges to a finite limit is in #. Let R = T(%) be the range of T.
Then for t € R,

lim g,[T(x)] = limf,(~) = f(@)

for all x€2% so that R is contained in B. Therefore, the function g
defined by g(t) = lim g,(t) for t € B and g(t) = 0 otherwise possesses the
required properties.
The relationship between integrals of the functions f and g aboveis

given by the following lemma.

Lemma 2. Let T be a measurable transformation from (2, X) into
(7, B), wa o-finite measure over (2%, WL), and g a real-valued measurable
function of t. If u* is the measure defined over (7, B) by

(17) u*(B) = p[T-(B)] forall BeZ,
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then for any Be ZB,

(18) { elT(x)] dul) = | a(t) du*(1)
TB) B

in the sense that if either integral exists, so does the other and the two are
equal.

Proof. Without loss of generality let B be the whole space 7. Ifgis
the indicator of a set By € &, the lemmaholdssince the left- and right-
hand sides of (18) reduce respectively to u[T-1(B,)] and 4*(Bo) which are
equal by the definition of u*. It follows that (18) holds successively for
all simple functions, for all nonnegative measurable functions, and hence
finally for all integrable functions.

4, CONDITIONAL EXPECTATION AND
PROBABILITY

If two statistics induce the same subfield .,, they are equivalent in the
sense of leading to equivalent classes of measurable events. This
equivalence is particularly relevant to considerations of conditional
probability. Thus if X is normally distributed with zero mean, the
information carried by the statistics |X, X2, e-*", etc., is the same.
Given that |X| = t, X2 = 72, e-** = eit follows that Y is +t, and any
reasonable definition of conditional probability will assign probability 1/2
to each of these values. The general definition of conditional probability
to be given below will in fact involve essentially only %, and not the
range space 7 of T. However, whenreferred to ~, alone the concept
loses much of its intuitive meaning, and the gap between the elementary
definition and that of the general case becomes unnecessarily wide. For
these reasonsit is frequently more convenient to work with a particular
representation ofa statistic, involving a definite range space (7, Y).

Let P be a probability measure over (2, WV), T a statistic with range
space (7, B), and W, the subfield it induces. Consider a nonnegative
function f which is integrable (.o/, P), that is, -measurable and P-
integrable. Then {,fdP is defined for all A € . and therefore forall
A,E Wy. It follows from the Radon-Nikodym theorem (Theorem 2)
that there exists a function fo, whichis integrable (.e,, P) and such that

(19) | fdP = | fodP forall A, €%,,
Ag Ag

and thatfo is unique (.%», P). By Lemma1,fy depends on 2 only througn
I(x). In the example of a normally distributed variable XY with zero



40 THE PROBABILITY BACKGROUND [2.4

mean, and T = X2, the function fj is determined by (19) holding for all

sets A, that are symmetric with respect to the origin, so that f(x) =

Myf(x) + f(—2)).
The function fy defined through (19) is determined by two properties:

(i) Its average value over any set Ay with respect to P is the same as

that of/;
(ii) It depends on x only through T(z) and hence is constant on the sets

D,, over which T is constant.

Intuitively, what one attempts to do in order to construct such a

function is to define f,(x) as the conditional P-average off over the set

D,. One would thereby replace the single averaging processof integrating

f represented by the left-hand side by a two-stage averaging process such

as an iterated integral. Such a construction can actually be carried out

when_X is a discrete variable and in the regular case considered in Chapter

1, Section 9; f(x) is then just the conditional expectation off(X) given

T(x). In general,it is not clear how to define this conditional expectation

directly. Since it should, however, possess properties (i) and (11), and

since these through equation (19) determine fy uniquely (., P), we shall

take f,(x) of (19) as the general definition of the conditional expectation

E[f(X)|T(z)]. Equivalently,iffo(7) = g[T(2)] one can write

E[f(X)|T = t] = g(2),

so that E[f(X)¢|] is a@-measurable function defined up to equivalence

(BZ, P™). In the relationship of integrals given in Lemma2, if w = p*

then »* = P’, andit is seen that the function g can be defined directly in

terms off through

(20) { f (2) dPX(x) = } e(t)dP™(t) forall Be&%,
T-\(B) B

which is equivalent to (19).
So far, f has been assumedto be nonnegative. In the general case, the

conditional expectation offis defined as

ELf(X)|) = ELf+(O|N — ELf-())A-

Example 7. Let X;,°°:, X, be identically and independently distributed

random variables with a continuousdistribution function and let

T(x}, oo (vw), re vl)

where v() <--- <2denote the ordered x’s. Without loss of generality one

can restrict attention to the points with x<--- <xsince the probability

of two coordinates being equal is 0. Then 2is the set of all n-tuples with

distinct coordinates, 7 the set of all ordered n-tuples, and -Y and #4are the

classes of Borel subsets of # and 7. Under T-! the set consisting of the single
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point a = (a,,---,a,) is transformed into the set consisting of the n! points
(a;,,° °°, @;,) that are obtained from a by permuting the coordinates in all
possible ways. It follows that .”y is the class of all sets that are symmetric in
the sense that if Ay contains a point x = (2,,°--,,) then it also containsall
points (v;,, ° > +,2;,).

For any integrable function f, let

i
fol) == Uflen 5 %i,)

where the summation extends over the 7! permutations of (v,,°°-, v,). Then
fo 18 -measurable since it is symmetric in its n arguments. Also

1 f@., "+1, &y) dP(x1) sc AP(2p) -{ f@, Ts v;,) dP(x;) *+ + dP(x,)
Ao 0

so that f satisfies (19). It follows that fo(x) is the conditional expectation of
f(X) given T(x).

The conditional expectation off(X) given the abovestatistic T(x) can also be
found without assuming the X’s to be identically and independently distributed.
Suppose that X has a density h(x) with respect to a measure mu (such as Lebesgue
measure), which is symmetric in the variables x, - - -, x, in the sense that for any
A €# it assigns to the set {v: (x;,---,v;,) € A} the same measure forail
permutations(/,,---,/,). Let

Ferg, -an,) = fein tin) A ing 9 i)
yore DA(a
 

i's %,)

where here and in the sums below the summation extends over the 7! permu-
tations of (7,,:--,2,). The function fo is symmetric in its n arguments and
hence .¥-measurable. For any symmetric set Ag, the integral

| fol@r, my Cy)h(x;, “, 2;,) du(x,, my Xn)

Ag

has the same value for each permutation (v;, °°, 2;,), and therefore

| fol MARY, +, Xp) du(24, °° *, Xp)
Ag

lo
= fol@1; ms Ly) nl LA(w;,, my x;) du(2,, rey v,)

Ag °

-| f@1, mt, Ly)h(ey, ne) Xp) du(x,, mT Xp).

Ao

It follows that fo(~) = ELf(X)|T(2)).
Equivalent to the statistic T(z) = (7---, «™), the set of order statistics, is

U(a) = (2a, Ux?, ---, La). This is an immediate consequenceofthe fact, to
be shownbelow,that if T(x®) = 1° and U(x®) = i, then

T(t) = UA!) = S

where {7°} and {uw} denote the sets consisting of the single point 1° and
respectively, and where S consists of the totality of points « = (a,---,z,)

obtained by permuting the coordinates of x® = (z?,- - -, 79) in all possible ways.
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That 7-({1°}) = S is obvious. To see the corresponding fact for U-", let

V(x) = (dz, >%%;, > UU;Lpy* *, Lye + * * Ly),
a <j i<j<k

so that the components of V(x) are the elementary symmetric functions

v, = Lay ++, Un = 71° * ty Of the nm arguments 2, °° °,,. Then

(x — 2X4) wee (x — Ln) = yr — p,xr-t + Vor"? — et (—1)"v,.

Hence V(x°) = v® = (v9, ---, v9) implies that V-({v°}) = S. That then also

U-1({i}) = S follows from the 1 : 1 correspondence between u and vestablished,
by the relations (known as Newton’s identities), *

Uy — VpUp—y + Volly-g — °° + (DRTe+ (—1)*kv, = 9, 1 Sk sn.

It is easily verified from the abovedefinition that conditional expectation

possesses most of the usual properties of expectation. It follows of

course from the nonuniquenessofthe definition that these properties can

hold only (%, P7). We state this formally in the following lemma.

Lemma 3. Jf T is a statistic and the functions f, g,-++ are integrable

(J, P), then a.e. (B, P*)

(i) Elaf(X) + bg(X)|= aELf(X)|1) + bElg(X)IA;
(ii) ElA(T)f(X)|) = ADELA:
(iii) a<f(x) < b(W&,P) implies a < E[f(X)|NS 6;

(iv) |fa] < g, fale) >f(@) (&, P) implies ELf,(X)|—> ELf(X)|A.
A further useful result is obtained by specializing (20) to the case that B

is the whole space 7. One then has

Lemma 4. IfE|f(X)| < ©, and ifg(t) = ELf(X)

(21) Ef(X) = Eg(T),

that is, expectation can be obtained as the expected value of the conditional

expectation.

Since P{¥ € A} = E[I_4(X)], where I, denotes the indicatorof the set A,

it is natural to define the conditional probability of A given T=

t

by

 
t], then

(22) P(A|t) = E{l(x)|¢).

In view of (20) the defining equation for P(A|t) can therefore be written as

(23) P*(A A T-(B)) = | dP*(x)
ANT-\B)

= | Pulp dP?(t) forall BeZ.
B

*For a proof of these relations see for example Dickson, New First Course in the

Theory of Equations, New York, John Wiley & Sons, 1939, Chapter X.
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It is an immediate consequence of Lemma3 that subject to the appropriate
null set* qualifications, P(A|t) possesses the usual properties of proba-
bilities, as summarized in the following lemma.

Lemma 5. /f T is a statistic with range space (7,2), and A, B, Ay,
Ay,* ++ are sets belonging to &, then a.e. (B, P") ,

(i) OS P(Alt) < 1;
(11) if the sets A,, Ay,*** are mutually exclusive,

P(UA,|t) = ZP(AN);
(iti) A < B implies P(A|t) < P(BIr).

According to definition (22), the conditional probability P(A|t) must be
considered for fixed A as a Z-measurable function of t. This is in
contrast to the elementary definition in which one takes ¢ as fixed and
considers P(A|t) for varying A as a set function over .. Lemma 5
suggests the possibility that the interpretation of P(A|t) for fixed t as a
probability distribution over & maybe valid also in the general case.
However, the equality P(A, U A,|t) = P(A,|t) + P(A,|t), for example,
can break down on a null set that may vary with A, and A,, and the
union ofall these null sets need no longer have measure zero.

For an importantclass ofcases, this difficulty can be overcome through
the nonuniqueness of the functions P(A t), which for each fixed A are
determined only up tosets of measure zero in t. Since all determinations
of these functions are equivalent,it is enoughto find a specific determina-
tion for each A so that for each fixed ¢ these determinations jointly
constitute a probability distribution over ~. This possibility is illustrated
by Example 7, in which the conditional probability distribution given
I(x) = t can be taken to assign probability 1/n! to each of the n! points
satisfying T(x) = t. The existence of such conditional distributions will
be explored moregenerally in the next section.

 

 

3S. CONDITIONAL PROBABILITY DISTRIBUTIONSt

We shall now investigate the existence of conditional probability
distributions under the assumption, satisfied in moststatistical appli-
cations, that 2 is a Borel set in a Euclidean space. We shall then say
for short that & is Euclidean and assume that, unless otherwise stated,
SG is the class of Borel subsets of 2%.

* This term is used as an alternative to the more cumbersome “set of measure zero.”
T This section may be omitted at first reading. Its principal application is in the

proof of Lemma 8(ii) in Section 7, which in turn is used only in the proof of Theorem 3
of Chapter4.
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Theorem 4. /f.2is Euclidean, there exist determinationsofthefunctions
P(A|t) such that for eacht, P(A|t) is a probability measure over &.

Proof. By setting equal to 0 the probability of any Borel set in the
complementof2, one can extend the given probability measureto the class

of all Borel sets and can therefore assume without loss of generality that

& is the full Euclidean space. For simplicity we shall give the proofonly
in the one-dimensional case. For each real x put F(z, t) = P((—©, x]|t)

for some version of this conditional probability function, and let
ry, 1s,°** denote the set of all rational numbers in some order. Then

r; <r; implies that F(r;, t) << F(r;, 0) for all ¢ except those in a null set

N,,, and hence that F(z, t) is nondecreasing in x over therationalsforall f

outside of the null set NV’ = UN,,. Similarly, it follows from Lemma
3(iv) that for all ¢ not in N”, as n tends to infinity lim F(r; + 1/n, t) =

F(r,, t) for i= 1, 2,-°-+, lim F(n, t) = 1, and lim F(—n, t) = 0. There-

fore, for all t outside of the null set N’ UN”, F(x, t) considered as a

function of x is properly normalized, monotone, and continuous on the
right over the rationals. For ¢ not in N’ U N"let F*(z, t) be the unique

function that is continuous onthe right in and agrees with F(z,t) for all

rational x. Then F*(x,t) is a cumulative distribution function and

therefore determines a probability measure P*(A|t) over . Weshall

now show that P*(Alt) is a conditional probability of A given tf, by
showing that for each fixed A it is a @-measurable function of ¢ sat-
isfying (23). This will be accomplished by proving that for each fixed

AEah

P*(Alt) = P(A|t) (B, P*).

By definition of P* this is true wheneverA is oneofthe sets (— 00,2] with x

rational. It holds next when A is an interval(a, b] = (— 0, b] — (— ©, a]

with a, b rational, since P* is a measure and P satisfies Lemma S(1i).

Therefore, the desired equation holds for the field ¥ ofall sets A which
are finite unions of intervals (a,, b;] with rational end points. Finally,
the class of sets for which the equation holds is a monotoneclass (see
Problem 1) and hence contains the smallest o-field containing 7, which

is &. The measure P*(Alt) over . was defined above for all ¢ in

N’ UN". However, since neither the measurability of a function nor
the values of its integrals are affected by its values on a null set, one can
take arbitrary probability measures over for tin N’ U N“and thereby

complete the determination.
If X is a vector-valued random variable with probability distribution

P*andT is a statistic defined over (%, %), let P*" denote any version
of the family of conditional distributions P(A|t) over .7 guaranteed by
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Theorem 4. The connection with conditional expectation is given by
the following theorem.

Theorem 5. If X is a vector-valued random variable and E|f(X)}< 00,
then

(24) ELf(X)|q] = [re dP*\"(x) (B, P*).

Proof. Equation (24) holds if fis the indicator of any set A € oA.
It then follows from Lemma3 that it also holds for any simple function
and hence for any integrable function.

The determination of the conditional expectation E[f(X)|t] given
by the right-hand side of (24) possesses for each ¢ the usual properties
of an expectation,(i), (iii), and (iv) of Lemma3, which previously could
be asserted only up to sets of measure zero depending on the functions
J, %,°** involved. Under the assumptions of Theorem 4 a similar
strengthening is possible with respect to (ii) of Lemma 3, which can be
shown to hold except possibly on a null set N not depending on the
function A. It will be sufficient for the present purpose to prove this
under the additional assumption that the rangespace ofthestatistic T is
also Euclidean.*

Theorem 6. Jf T is a statistic with Euclidean domain and range spaces
(2, L) and (7, B), there exists a determination P*"' of the conditional
probability distribution and a null set N such that the conditional expectation
computed by

ELf(X)|d =|f(@) dP*(x)
satisfies for allt € N

(25) E[A(T)f(X)|] = ADELS(X)|A.

Proof. For the sake of simplicity and withoutessential loss ofgenerality
suppose that T is real-valued. Let P*"(A) be a probability distribution
over & for each #, the existence of which is guaranteed by Theorem 4.
For B € &, the indicator function J,,(t) is @-measurable and

| 1,(t) dP7(t) = P™(B’ OB) = PX(T-1B’ A T-B).»

Thus by (20)
I,(t) = P*"(T-B) ae. PT.

* For a proof without this restriction see Section 26.2, Theorem A, of Loéve,
Probability Theory, New York, D. Van Nostrand Co., 1955.
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Let B,, n= 1,2,°:-, be the intervals of 7% with rational end points.

Then there exists a P-null set N = LU N,, such that for t ¢ N

Ip,(t) = P¥(T>B,)
for all n. For fixed t ¢ N, the two set functions P*'"(T-1B) and J;(t)

are probability distributions over &, the latter assigning probability |

or 0 to a set as it does or does not contain the point ¢. Since these distri-

butions agree over the rational intervals B,, they agree for all Be Z.

In particular, for t ¢ N, the set consisting of the single point ¢ is in B,

andif
A‘) = {x: T(x) = t}

it follows that for allt ¢ N

(26) PAI(AM) = 1.

Thus

[are@nf@dPr"@=[ATOaP*") = Ho[feaPtte@e

for t ¢ N, as was to be proved.

It is a consequence of Theorem 6 that for allt ¢ N, E[h(TNa = h(t) and

hence in particular P(T € B\t) = 1 or Oaste Bort¢g B.
The conditional distributions P*" still differ from those of the elemen-

tary case considered in Chapter 1, Section 9, in being defined over (Z, LH)

rather than over the set A‘) and the o-field </) of its Borel subsets.

However, (26) implies that for t ¢ N

PX'(4) = PX"(A 1 AM),

Thecalculations of conditional probabilities and expectations are therefore

unchangedif for t ¢ N, P*" is replaced by the distribution P*", which

is defined over (A), o/‘") and which assigns to any subset of A’ the

same probability as P*"’.
Theorem 6 establishes for all t ¢ N the existence of conditional proba-

bility distributions P*", which are defined over (A, sf) and which

by Lemma4 satisfy

2 syoo={|fs@are| are
for all integrable functions f. Conversely, consider any family of distri-

butions satisfying (27), and the experiment of observingfirst 7, and if

T =t, a random quantity with distribution P*". The result of this

two-stage procedure is a point distributed over (%, .w) with the same
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distribution as the original X. Thus P*!! satisfies this “functional”
definition of conditional probability.

If (2, ) is a product space (7 x Y, B® x G), then A” is the product
of¥ with the set consisting ofthe single pointt. Fort ¢ N,the conditional
distribution P*!’ then induces a distribution over (Y,@), which in
analogy with the elementary case will be denoted by P¥'. In this case
the definition can be extendedto all ofJ byletting P*! assign probability
1 to a common specified point y, for all t¢ N. With this definition,
(27) becomes

(28) HT Y)=|||po array] are
As an application, we shall prove the following lemma, which will

be used in Section 7.

Lemma 6. Let (7, &) and (Y,@) be Euclidean spaces, and let Pt:
be a distribution over the product space (I, VZ)=(F x¥, Bx ).
Suppose that another distribution P, over (2%,) is such that

dP,(t, y) = a(y)b(t) dPo(t, y),
with aly) > 0 for all y. Then under P, the marginal distribution of T
and a version of the conditionaldistribution of Y given t are given by

APE) = 10]|acydPEM)| aes
and

dPYM(y) = 4) dP4"(y)

aly’) dPo"(y’)y

Proof. The first statement of the lemmafollows from the equation

P, {T € B} = Ef,(T)] = Edll,(T)a(¥Y)O(T)]

= |o0 ||ay ay"| dPH0,
To check the second statement, one need only showthatfor any integrable
f the expectation E,f(Y,T) satisfies (28), which is immediate. The
denominator of dP¥!!is positive since a(y) > 0 forall y.

6. CHARACTERIZATION OF SUFFICIENCY

Wecan nowgeneralize the definition of sufficiency given in Chapter1,
Section 9. If P = {Py, 6 € Q}is any family of distributions defined over
a common sample space (2°, W), a statistic T is sufficient for P (or for 6)
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if for each A in W there exists a determination of the conditional proba-

bility function P,(A|t) that is independent of 6. As an example suppose

that X,,-°:, X, are identically and independently distributed with

continuous distribution function F,,9¢€Q. Then it follows from

Example 7 that the set of order statistics T(X) = (XM, +--+, XM™) As

sufficient for 6.

Theorem 7. Jf% is Euclidean, andifthe statistic T is sufficient for F,

then there exist determinations of the conditional probability distributions

P,(A|t) which are independent of 9 and such that for each fixedt, P(AIt)

is a probability measure over &.

Proof. This is seen from the proof of Theorem 4. By the definition

of sufficiency one can, for each rational number r, take the functions

F(r, t) to be independent of 9, and the resulting conditional distributions

will then also not depend on 0.

In Chapter | the definition of sufficiency wasjustified by showing that

in a certain sense a sufficientstatistic containsall the available information.

In view of Theorem 7 the same justification applies quite generally when

the sample space is Euclidean. With the help of a random mechanism

one can then construct from a sufficient statistic T a random vector X°

having the same distribution as the original sample vector X. Another

generalization of the earlier result, not involving the restriction to a

Euclidean sample space, is given in Problem 11.

The factorization criterion of sufficiency, derived in Chapter 1, can

be extended to any dominated family of distributions, that is, any family

P = §{P,, 0 €Q} possessing probability densities py with respect to some

a-finite measure pw over (%, V). The proof of this statement is based

on the existence of a probability distribution A = Xc,P, (Theorem 2 of

the Appendix), which is equivalent to F in the sense that for any AEA

(29) (A) =0 ifandonlyif P,(A)=0 forall Oe Q.

Theorem 8. Let P = {P,, 0 €Q} be a dominatedfamily of probability

distributions over (X, WX) and let 4 = Xc;Po, satisfy (29). Then a statistic

T with range space (7, &) is sufficient for P if and only if there exist

nonnegative B-measurable functions g,(t) such that

(30) dP(x) = golT(«)] dd(x)

for all 0 €Q.

Proof. Let &%, be the subfield induced by T and suppose that J is

sufficient for 0. Then for all 9€ Q, Ay € Ho, and AEH

[_Peari@y apse) = PA 9 Ads
“0
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and since A = Xc;Po,

| P(A|T(x)) d(x) = (A 1 A,),
Ay

so that P(A|T(x)) serves as conditional probability function also for A.
Let g,(T(x)) be the Radon-Nikodym derivative dP,(x)/dA(x) for (A, A).
To prove (30) it is necessary to showthat g,(T(x)) is also the derivative of
P, for (W, 4). If Ay is put equal to & in the first displayed equation,
this follows from the relation

P(A) =|P(A|T(x)) dP,(2) =|EL4()|T(@)] aP,(2)

=|EL@|T@leAT@)) d(x) =|Exlgo(T())Tg()|T(@)] adc)

=|g(T(2))q(x) d(x) =[eT(2)) dX(c)
Here the second equality uses the fact, established at the beginning of the
proof, that P(A|T(z)) is also the conditional probability for A; the third
equality holds since the function being integrated is  -measurable and
since dP, = g, dA for (W%,, A); the fourth is an application of Lemma3(ii);
and the fifth employs the defining property of conditional expectation.

Suppose conversely that (30) holds. We shall then prove that the
conditional probability function P,(A|t) serves as a conditional probability
function for allPe FY. Let g,(T(x)) = dP,(x)/dA(x) on & andforfixed A
and 6 define a measure v over W by the equation dv = 1, dP,. Then
over Lo, dr(x)/dP,(x) = E,[I_4(X)|T(x)], and therefore

dy(x)/dA(x) = PAT(x)]go(T(x)) over Gp.

On the other hand, dv(x)/dA(z) = I4(x)g,(T(x)) over ., and hence

dv(x)/di(x) = E,[I_(X)g(T(X))| T(x)] = PAT(x)]go(T(x)) over Go.

It follows that P,(A|T(x))go(T(x)) = Po(A|T(x))g,(T(x)) (>, 4) and
hence (Wp, P,). Since g,(T(x)) 4 0 (Wo, P,) this shows that P,(A|T(x)) =
PA|T(x)) (Wo, Po), and hence that P,(A|T(x)) is a determination of
PA|T(x)).

Instead of the above formulation, which explicitly involves the distri-
bution A, it is sometimes more convenient to state the result with respect
to a given dominating measure uw.

Corollary 1. (Factorization theorem.) If the distributions P, of P
have probability densities py = dP,/du with respect to a o-finite measure p,
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then

T

issufficientfor P ifand only if there exist nonnegative B-measurable

functions g, on T and a nonnegative -measurable function h on & such

that

(31) Pox) = gl(T@)W@)

=

(A, pH).

Proof. Let A = Xc;Po, satisfy (29). Then if Tis sufficient, (31) follows

from (30) with h = da/du. Conversely, if (31) holds,

d(x) = TeigolT(V(x) due) = AIT@)A@) du(z)
and therefore dP,(x) = gi(T(x)) dA(x), where go(t) = go(t)/k(t) when

k(t) > 0 and may be defined arbitrarily when k(t) = 0.

7. EXPONENTIAL FAMILIES

An important family of distributions which admits a reduction by

means of sufficient statistics is the exponential family, defined by

probability densities of the form
k

(32) pale) = C10) exp |¥OO)T(2)| MC)
with respect to a o-finite measure over a Euclidean sample space

(%, of). Particular casesare the distributions of a sample X = (X4,°°", Xa)

from a binomial, Poisson, or normal distribution. In the binomial

case, for example, the density (with respect to counting measure) is

(*)pc — p)* = (1 — p)" exp |» log (4)| (").

Example 8. If Y,,---, Y, are independently distributed, each with density

(with respect to Lebesgue measure)

_ ylF2)—1 exp [—y/@o*)]
(33) PolY) —_ (202)? T(f/2) ’

then the joint distribution of the Y’s constitutes an exponential family. For

o = 1, (33) is the density of the y2-distribution with f degrees of freedom; in

particular for fan integer, this is the density of af_,X%, where the X’s are a
sample from the normaldistribution N(O, 1).

y > 0, 

Example 9. Consider n independenttrials, each of them resulting in one of

the s outcomes E,, - - :, E, with probabilities p,,---, p, respectively. If X;; is 1

when the outcomeofthe ith trial is E; and 0 otherwise, the joint distribution of

the X’sis

P{X, = %1,°°'5 Xns = Tns = p™*ipyria 7° pss,

where all z,; = 0 or 1 and &,z,; = 1. This forms an exponential family with
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T,(v) = L7_4%;; (jf = 1,--++,s — 1). The joint distribution of the T’s is the
multinomialdistribution

n!

ty! ss t,-4'(n —_ hy — 8 8 t.-)!

 (34) PXT, = hh, ee) T5-1 = teat =

t ts_1Pio:pea (1 —pp-ct: — ps)"8bs,

If X,°°-, X, is a sample from a distribution with density (32), the
joint distribution of the X’s constitutes an exponential family with the
sufficient statistics >?,7,(X;), j= 1,-:-,k. Thus there exists a k-
dimensionalsufficient statistic for (X,,---, X,) regardless of the sample
size. Suppose conversely that X,,---, X,, is a sample from distribution
with some density p,(x) and that the set over whichthis density is positive
is independent of 6. Then under regularity assumptions which make
the concept of dimensionality meaningful, if there exists a k-dimensional
sufficient statistic with k <n, the densities p,(x) constitute an exponential
family.*
Employing a more natural parametrization and absorbing the factor

A(x) into w, we shall write an exponential family in the form dP,(x) =
PAX) du(x) with

k
(35) P(*) = C(O) exp Sar(0)

For suitable choice of the constant C(9), the right-hand side of (35) is
a probability density provided its integral is finite. The set Q of para-
meter points 0 = (6,,---,0,) for which this is the case is the natural
parameter space of the exponential family (35).
Optimum tests of certain hypotheses concerning any 0, are obtained

in Chapter 4. We shall now consider some properties of exponential
families required for this purpose.

Lemma 7. The natural parameter space of an exponential family
is convex.

Proof. Let (9,,---*, 6,) and (6,,---,6;) be two parameter points for
whichthe integral of (35) is finite. Then by Hdlder’s inequality,

[exp [{[x); + (1 — «)04)T;,(x)] du(x)

<| foxp 24,740 ate)||[exp (20:70) dute)|<0
foranyO<a<l.

* For a proof and statement of the regularity conditions see Koopman, “On distri-
butions admitting a sufficient statistic,” Trans. Am. Math. Soc., Vol. 39 (1936), pp.
399-409. The result is also discussed by Darmois, ‘‘Sur les lois de probabilité a
estimation exhaustive,” Compt. Rend. Acad. Sci., Paris, Vol. 260 (1935), pp. 1265-1266,
and by Pitman, “Sufficient statistics and intrinsic accuracy,” Proc. Cambridge Phil.
Soc., Vol. 32 (1936), pp. 567-579.
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If the convex set Q lies in a linear space of dimension < k, then (35)

can be rewritten in a form involving fewer than k components of T. We

shall therefore, without loss of generality, assume Q to be k-dimensional.

It follows from the factorization theorem that T(x) = (T,(2), °

+

°, T,(x))

is sufficient for F = {P,, 6 € Qh.

Lemma 8. Let X be distributed according to the exponentialfamily

dP?(x) = C(6, 3) exp > 6,U(«x) + > 0,7(2)| d(x).
i=1 j=l

Then there exist measures 4, and probability measures v, over s and r

dimensional Euclidean space respectively such that

(i) the distribution of T = (T,,°-+, T,) is an exponential family ofthe

form

(36) dP}(t) = C(8, 8) exp (3,9, di,(t),

(ii) the conditional distribution of U = (U,,°-:, U,) given T=t Is

an exponentialfamily of theform |

(37) dP’'(u) = C6) exp (> ou, dv(u),
m1

and hence in particular is independent of0.

Proof. Let (6°, 9°) be a point of the natural parameter space, and

let u* = Poogo. Then

(6,9)
APS) = Topopa °xp |>(9, — 6;)U(%) +z(8; — OT) du*(a),

and the result follows from Lemma6, with

di,(t) = exp 9%)||exp 50. - ou,| dPia) AP#o.g0(t)

and

dy(u) = APjo!,0(u).

Theorem 9. Let ¢ be any bounded measurable function on (2%, %).

Then
(i) the integral

(38) [$eexp [30,7509| due

considered as a function of the complex variables 0;= €; + in; (j=

1,---+,k) is an analytic function in each of these variables in the region
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R of parameter points for which (&,,---, &,) is an interior point of the
natural parameter space Q;

(li) the derivatives of all orders with respect to the 0’s of the integral (38)
can be computed undertheintegral sign.

Proof. If |¢|< M,then
|P(x) exp [L0;7;,(x)]] < M exp [ZE,7;(x)]

so that the integral (38) exists andis finite for all points (€,, - - -, &,) of Q.
Let (&,---, &) be anyfixed pointin the interior of Q, and consider one
of the variables in question, say 6,. Breaking up the factor

P(x) exp [(E5 + ind)To(x) +--+ + (Ef + in?)T,(x)]
into its real and complex part and each of these into its positive and
negative part, and absorbing this factor in each of the four terms thus
obtained into the measure y, onesees that as a function of 6, the integral
(38) can be written as

| exp [6,7(2)] du,(z) — i} exp [0:Ty(2)] dyug(x)

+1 | exp [6,7)(x)] du3(x) — i | exp [0,7,(x)] du,(«).

It is therefore sufficient to prove the result for integrals of the form

0.) = | exp [TW] duce)
Since (£?,---, &?) is in the interior of Q, there exists 6 > 0 such that
y(9,) exists and is finite for all 6, with |& — {|< 6. Consider the
difference quotient

we = wy _ | exp (0,7,ww) _- [6°T,(z)] du(z).

1 1 1— Vy

The integrand can be written as

exp [(9, — OT.(«)] —

A, — #4 )
Applying to the second factor the inequality

 

 exp [697,(x)]

exp (az) — 1
< exple) for |z| < 6,

  z@

the integrand is seen to be bounded abovein absolute value by

| I5 exprT, + 417i] S = lexp (0) + 5)71] + exp [62 — d)7]
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for |0, — 6{|< 6. Since the right-handside is integrable, it follows from
the Lebesgue bounded convergence theorem [Theorem l(ii)] that for
any sequence of points 6%") tending to 6}, the difference quotient of y
tends to

[ Te) exp FTL] due

This completes the proof of (i), and proves (ii) for the first derivative.

The proof for the higher derivatives is by induction and is completely
analogous.

8. PROBLEMS

Section 1

1. Monotone class. A class ¥ of subsets of a space is a field if it contains the
whole space, is closed under complementation and underfinite unions; a class
M is monotone if the union andintersection of every increasing and decreasing
sequence of sets of  isagainin-@. The smallest monotoneclass -4containing
a given field 7 coincides with the smallest o-field / containing 7.

[One provesfirst that >, is a field. To show, for example, that AM BeE.#,

when A and B are in 4, consider for a fixed set A € ¥, the class -#, of all Bin
4, for which AN BeE.a,. Then 4, is a monotoneclass containing ¥, and
hence 4, =.4. Thus AN Be-.#, for all B. The argument can now be
repeated with a fixed set B € -@, and the class -#,,; of sets A in -49 for which
AN BE M,. Since -4, is a field and monotone, it is a o-field containing *
and hence contains . But any o-field is a monotoneclass so that also -4Is
contained in #,]

Section 2

2. Radon-Nikodym derivatives. (i) If 4 and y« are o-finite measures over

(7’,) and y is absolutely continuous with respect: to 4, then

{fdu = |fe d).

for any u-integrable function /.
(ii) If A, w, and »v are o-finite measures over (7, «/) such that » is absolutely

continuous with respect to “ and #« with respect to 7, then

dy dvde,
di. du da “es

(iii) If « and v are o-finite measures, which are equivalent in the sense that each

is absolutely continuous with respect to the other, then

dv du\ ~*
— = {— ae. fl,
du dv
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(iv) If w,, k =1,2,---, and uw are finite measures over (2, .~) such that
Ue,(A) = mA) for all A Ex, and if the Hy, are absolutely continuous with
respect to a o-finite measure 4, then yw is absolutely continuous with respect to
A, and

n n

d»> wt, d)> u
Cal dy i ala= . = ae. i.dh A, dh? nny Gh

 
 

[(i) The equation in question holds whenfis the indicator of a set, hence when
fis simple, and therefore forall integrable /.
(ii) Apply (i) with f = dv/du.]

Section 3

3. Let (%, #) be a measurable space, and 7, ao-fieldcontainedin.”. Suppose
that for any function T, the o-field # is taken asthetotality of sets B such that
T-'(B) Ev. Thenit is not necessarily true that there exists a function T such
that T-\(#) = A».

[An exampleis furnished by any 7, such that forall x the set consisting of the
single point x is in .~%5.]

Section 4

4. (i) Let P be any family of distributions of X¥ = (X,,---, X,) such that

PU(X;, Xys1 my Xn; X, ns X;-1) E A} = P(X, mts X7) E A}

for all Borel sets A and alli = 1,---,m. For any sample point(%,, - - -, x,) define
(Y1, mr Yn) = (x, Vi+1s "5 Xn, 1, my Xj) where = ap(1) = min (x, ar Ly).

Then the conditional expectation off(X) given Y = y is

1
fois °°) Yn) = 7 Uf 5 Yn) +fY2.°° 5 Uns Vy) Ho HOY Wyss Yn-DI-

(ii) Let G = {g,,---,g,} be any group of permutations of the coordinates
tj," *",;%, Of a point x in n-space, and denote by gx the point obtained by
applying g to the coordinates of x. Let F be any family of distributions P of
X = (X,,:° °°, X,) such that

(39) PigX € A} = P{X € A} forall g EG.

For any point x let t = T(z) be any rule that selects a unique point from the r
points 2,2, k = 1,---,r (for example the smallest first coordinate if this defines
it uniquely, otherwise also the smallest second coordinate, etc.). Then

1 r

EYO|N =~>fleet

(iii) Suppose that in (ii) the distributions P do not satisfy the invariance
condition (39) but are given by

dP(x) = h(x) du(x)
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where is invariant in the sense that w{a: gx € A} = (A). Then

r

>>f(gnth(gxt)

E(f(X)\] = ——————°
2WExt)

Section 5

5. Prove Theorem 4 for the case of an n-dimensional sample space.
[The condition that the cumulative distribution function be nondecreasingis

replaced by P{x, < X, £%,°°*,% < Xn S x, 20; .the condition that it be

continuous on the right can be stated as limm—oF(*, + 1 [m, +++, ly, + 1fm) =

F(x), my Ln).

6. Let =¥Y x JF and suppose that Py, P, are two probability distributions

given by
dPly, t) =fg du)ar(*)

dP,(y, t) = hy, t) duty) dr()

where h(y, O/f(y)g(t) < ©. Then under P, the probability density of Y with

respect to u is

 

Yi) = ant | _ |
Pi (y) (DEa|Fee Y=~y\}.

Y(y) = W(t) = hty, 2) , |
P (y) [. hy, t) dv(t)

=

f(y){.ONO &(t) dv(?).

Section 6

7. Symmetric distributions. (i) Let P be any family of distributions of

X = (X,,°-°:, Xn) which are symmetric in the sense that

PU(Xj,. +++, Xi,) € A} = P(X, Xn) € 4}

for all Borel sets A and all permutations (i, °° -, in) of (1, °° -, 7). Then the

statistic T of Example7 is sufficient for 7, and the formula given in thefirst part

of the example for the conditional expectation E[f(X)|7(x)] is valid.

(ii) The statistic Y of Problem 4is sufficient.
(iii) Let X,,°- +, X;, be identically and independently distributed according toa

continuous distribution P € 7, and suppose that the distributions of 7 are

symmetric with respect to the origin. Let V; =|X,| and W,;=V™. Then
(W,,:-+, W,) is sufficient for 7.

8. Sufficiency of likelihood ratios. Let Po, P, be two distributions with

densities po, p;. Then T(x) = p,(x)/po(@) is sufficient for ? = {Po, Py}.

(This follows from the factorization criterion by writing p) = T: Po; Po = 1° Po-l

9. Pairwise sufficiency. A Statistic T is pairwise sufficient for 7 if it is

sufficient for every pair of distributions in Z.

(i) If is countable and is pairwise sufficientfor 7, then T is sufficientfor F.

(ii) If F is a dominated family and

T

is pairwise sufficient for 7, then T is

sufficient for 7.
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[G) Let F = {Po, P,,---} and let /, be the sufficient subfield induced by T.
Leta = Xc;P; (c; > 0) be equivalentto 7. Foreach/ = 1, 2, ---the probability
measure A; that is proportional to (co/n)Py + c;P; is equivalent to {Pp, P,}.
Thus by pairwise sufficiency, the derivative f; = dPy/[(co/n) dP, + c;dP;)] is
#-measurable. Let S; = {x: f(x) =0} and S =U%_,S;. Then SE€.%,,
PS) = 0, and on % — S the derivative dP,/d&}_, c;P; equals &”_, 1/f; whichis
J-measurable. It then follows from Problem 2 that

n

P.
aP _ dP, . dd6 ?

dA
 da 2
d> c;P;

j=1

is also %9-measurable.
(ii) Let 4 = X57, ¢;Po, be equivalent to ¥. Then pairwise sufficiency of T

implies for any 69 that dPo,/(dP», + di) and hence dP»,/dd is a measurable
function of 7.]

10. If a statistic T is sufficient for 7, then for every function f which is
(x, P9)-integrable for all 6 € Q there exists a determination of the conditional
expectation function Eolf(X\2 that is independentof6.

[If 2 is Euclidean, this follows from Theorems 5 and 7. In general, if f is
nonnegative there exists a nondecreasing sequence of simple nonnegative
functions f,, tending to f. Since the conditional expectation of a simple function
can be taken to be independent of 6 by Lemma 3(ii), the desired result follows
from Lemma3(iv).]

11. For a decision problem with a finite number of decisions, the class of
procedures depending on

a

sufficient statistic T only is essentially complete.*
[For Euclidean sample spaces this follows from Theorem 4 without any

restriction on the decision Space. Forthe presentcase, let a decision procedure
be given by d(x) = (6(a), ---, d(x) where 6(zx) is the probability with
which decision d; is taken when x is observed. If T is sufficient and(1) =
E[6(Xx|], the procedures 6 and 7 have identical risk functions.]

Section 7

12. Let X;(i = 1,---+,5) be independently distributed with Poisson distri-
bution P(A,), and let Ty = XX;, T; = X;,4 = L/;. Then 7, has the Poisson
distribution P(A), and the conditional distribution of T,,---, T,_, given Ty = ty
is the multinomial distribution (34) with n = ft, and Pi = 4,[4.

[Direct computation.]

13. Life testing. Let X;,°--, X;, beindependently distributed with exponential
density (26)~te-?° for « = 0, andlet the ordered X’s be denoted by Y, < Y, <
‘++ SY,. It is assumed that Y, becomes available first, then Y2, etc., and that
observation is continued until Y, has been observed. This might arise, for
example, in life testing where each X measures the length of life of, say, an

* For a more general result see Bahadur, ‘‘A characterization of sufficiency,” Ann.
Math. Stat., Vol. 26 (1955), pp. 286-293, and Elfving, “Sufficiency and completeness,”
Ann. Acad. Sci. Fennicae, Ser. A, No. 135, 1952.
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electron tube, andn tubes are being tested simultaneously. Another appli-

cation is to the disintegration of radioactive material, where n is the numberof

atoms, and observation is continued until r «-particles have been emitted.
(i) The joint distribution of Y,,---, Y, is an exponential family with density

ion | mi + (n —|

Qa@ =P LT 26 7
(ii) The distribution of[27_, Y; + (x — r) Y,]/@ is x? with2rdegrees offreedom.

(iii) Let Y,, Yo,°°* denote the time required until the first, second, etc.,

event occurs in a Poisson process with parameter 1/26’ (see Chapter 1, Problem 1).

Then Z, = Y,/0’, Z, = (Yo — Yp/, Zz = (V3 — Y2)/0’,- +: are independently

distributed as xy? with 2 degrees of freedom, and the joint density of

Y,,°°°, Y, is an exponential family with density

1
(ay &*P (—y,/20), OSy,S°': SY.

Thedistribution of Y,/0’ is again x? with 2r degrees of freedom.
(iv) The same modelarises in the application tolife testing if the number 7 of

tubes is held constant by replacing each burned-out tube by a new one,andif

Y, denotes the time at which the first tube burns out, Y, the time at which the

second tube burnsout, etc., measured from somefixed time.

(ii) The random variables Z; = (n — i + 1)(Y; — Y;-1)/9 (i =1,---,r) are

independently distributed as y2 with 2 degrees of freedom, and [at_,Y; +

(n —r)Y,]/6 = 21Z;.]

14. The expectations and covariances of the statistics 7; in the exponential

family (35) are given by

E[T(X)] = —alog C()/3;, (f= 1,°-+ 4)
E[T(X)T(X)) — [ET(X)ET(X)) = —2log C(0)/ 20,20, (i,j = 1, -- +B.
15. Let Q be the natural parameter space of the exponential family (35), and

for any fixed ¢,43,°°°, % (r < k) let 168,9 be the natural parameter space

of the family of conditional distributions given 77.) = tri1,° °° T;, = ty

(i) Then 4,,.-,e,, contains the projection Q,,.-..0,, of Q onto 4, °° -, 9.

(ii) An example in which bp,.....0,, is a proper subset of O%,,---,0,, is the

family of densities

P0,8,(&, y) = C(O, 9,) exp (6,2 + Oy —2y), x,y > 0.

 

r?
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CHAPTER 3

Uniformly Most Powerful Tests

1. STATING THE PROBLEM

We now begin the study of the statistical problem whose theory has
been explored most thoroughly, the problem of hypothesis testing. As
the term suggests, one wishes to decide whether or not some hypothesis
that has been formulated is correct. The choice here lies between only
two decisions: accepting or rejecting the hypothesis. A decision procedure
for such a problem is called a test of the hypothesis in question.
The decision is to be based on the value of a certain random variable X,

the distribution P, of which is known to belong to aclass F = {P,, 0 € Q}.
Weshall assume that if 6 were known one would also know whether or
not the hypothesis is true. The distributions of # can then beclassified
into those for which the hypothesis is true and those for whichitis false.
The resulting two mutually exclusive classes are denoted by H and K
and the corresponding subsets of 2 by Q,, and Q), respectively, so that
HUK=89 and Q, VQ, =Q. Mathematically, the hypothesis
is equivalent to the statement that P, is an element of H. It is therefore
convenient to identify the hypothesis with this statement and to use the
letter H also to denote the hypothesis. Analogously we call the distri-
butions in K the alternatives to H, so that K is the class ofalternatives.

Let the decisions of accepting or rejecting H be denoted by d, and d,
respectively. A nonrandomized test procedure assigns to each possible
value x of XY one of these two decisions and thereby divides the sample
space into two complementary regions Sy and S,. If X falls into Sy
the hypothesis is accepted, otherwise it is rejected. The set Sp is called
the region of acceptance, and the set S, the region of rejection or critical
region.

Whenperforming a test one may arrive at the correct decision, or one
may commit one of two errors: rejecting the hypothesis when it is true
(error of the first kind) or accepting it whenit is false (error of the second
kind). The consequences ofthese are often quite different. For example,

60
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if one tests for the presence of some disease, incorrectly deciding on the
necessity of treatment may cause the patient discomfort and financial
loss. On the other hand,failure to diagnose the presence of the ailment
maylead to his death.

It is desirable to carry out the test in a manner which keeps the proba-
bilities of the two types of error to a minimum. Unfortunately, when
the numberofobservationsis given, both probabilities cannotbe controlled
simultaneously. It is customary therefore to assign a bound to the
probability of incorrectly rejecting H when it is true, and to attempt
to minimize the other probability subject to this condition. Thus one
selects a number « between 0 and1, called the /evel of significance, and
imposes the condition that

(1) Pi((X) = da} =P {XES}<a forall 0€Q,,.

Subject to this condition, it is desired to minimize P, {O(X) = dp} for 6
in Qor, equivalently, to maximize

(2) P(X) = a} =P {XeES,} forall 0EQ,.

Although usually (2) implies that

(3) sup P, {X €S,} = a,
Quy

it is convenient to introduce a term for theleft-hand side of (3): it is
called the size of the test or critical region S,. Condition (1) therefore
restricts consideration to tests whose size does not exceed the given level
of significance. The probability of rejection (2) evaluated for a given 9
in Q; is called the power of the test against the alternative 86. Considered
as a function of @ for all 0 €Q, the probability (2) is called the power
function of the test and is denoted by f(6).

The choiceofa level of significance « will usually be somewhat arbitrary
since in mostsituations there is no precise limit to the probability of an
error of the first kind that can be tolerated. It has become customary

_ to choose for « one of a number of standard values such as .005, Ol, or
‘05. There is some convenience in such standardization since it permits
a reduction in certain tables needed for carrying out various tests.
Otherwise there appears to be no particular reason for selecting these
values. In fact, when choosing

a

level of significance one should also
consider the power that the test will achieve against various alternatives.
If the power is too low one may wish to use much highervalues of « than
the customary ones, for example, .1 or .2.*

* A rule of thumbfor choosing « in relation to the powerofthetestis suggested by
Lehmann, “Significance level and power,”” Ann. Math. Stat., Vol. 29 (1958), pp.
1167-1176.



62 UNIFORMLY MOST POWERFUL TESTS [3.1

Another consideration that frequently enters into the specification of a
significance level is the attitude toward the hypothesis before the experi-
ment is performed. If one firmly believes the hypothesis to be true,
extremely convincing evidence will be required before one is willing to
give up this belief, and the significance level will accordingly be set very
low. (A lowsignificance level results in the hypothesis being rejected
only for a set of values of the observations whose total probability under
the hypothesis is small, so that such values would be most unlikely to
occur if H were true.)

In applications, there is usually available a nested family of rejection
regions, corresponding to different significance levels. It is then good
practice to determine not only whether the hypothesis is accepted or
rejected at the given significance level, but also to determine the smallest

significance level & = &(z), the critical level, at which the hypothesis would
be rejected for the given observation. This numbergives an idea of how
strongly the data contradict (or support) the hypothesis, and enables
others to reach a verdict based on the significance level of their choice.
(Cf. Problem 7 and Chapter 4, Problem 2.)

Let us next consider the structure of a randomized test. For any

value x such a test chooses amongthe two decisions,rejection or acceptance,

with certain probabilities that depend on x and will be denoted by ¢(z)
and 1 — d(x) respectively. If the value of X is x, a random experiment
is performed with two possible outcomes R and R the probabilities of
which are ¢(z) and 1 — d(x). If in this experiment R occurs, the

hypothesis is rejected, otherwise it is accepted. A randomized test is
therefore completely characterized by a function ¢, the critical function,
with 0 < d(x) < 1 forall. If ¢ takes on only the values | and 0, one is
back in the case of a nonrandomized test. The set of points x for which
¢(x) = 1 is then just the region of rejection, so that in a nonrandomized

test ¢ is simply the indicator function of the critical region.
If the distribution of X is P,, and the critical function ¢ is used, the

probability of rejection is

E, 4(X)=|$2) AP(2),
the conditional probability ¢(x) of rejection given x, integrated with
respect to the probability distribution of X. The problem is to select

so as to maximize the power

subject to the condition

(5) E,$(X)< a forall @€Q,.
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The samedifficulty now arises that presenteditself in the general discussion
of Chapter 1. Typically, the test that maximizes the power against a
particular alternative in K depends on this alternative, so that some
additional principle has to be introduced to define what is meant by an
optimum test. There is one important exception: if K contains only
one distribution, thatis, if one is concerned with a single alternative, the
problem is completely specified by (4) and (5). It then reduces to the
mathematical problem of maximizing an integral subject to certain side
conditions. The theory of this problem, anditsstatistical applications,
constitutes the principal subject of the present chapter. In special cases
it may of course turn out that the same test maximizes the powerforall
alternatives in K even when there is more than one. Examples of such
uniformly most powerful (UMP)tests will be given in Sections 3 and 7.

In the above formulation the problem can be considered as a special
case of the general decision problem with two types of losses. Corre-
sponding to the two kindsoferror one can introduce the two component
loss functions,

ray at or 0 as G€Q, or O60,

L,(0,d))=0 forall 6
and

Lo d)=0 or 1 as OEQy, or OEQ,

L(6,d,)=0 forall 0.

With this definition the minimization of EL,(6, 6(X)) subject to the
restriction EL,(, 6(X)) <a is exactly equivalent to the problem of
hypothesis testing as given above.
The formalloss functions L, and L, clearly do not represent in general

the true losses. The loss resulting from an incorrect acceptance of the
hypothesis, for example, will not be the samefor all alternatives. The
more the alternative differs from the hypothesis the more serious are the
consequences of such an error. As was discussed earlier, we have
purposely foregone the more detailed approach implied by this criticism.
Rather than working with a loss function which in practice one does not
know,it seems preferable to base the theory on the simpler and intuitively
appealing notion of error. It will be seen later that at least some of the
results can be justified also in the more elaborate formulation.

2. THE NEYMAN-PEARSON FUNDAMENTAL LEMMA

A class of distributions is called simple if it contains only a single
distribution and otherwise is said to be composite. The problem of
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hypothesis testing is completely specified by (4) and (5) if K is simple.
[ts solution is easiest and can be given explicitly when the same is true
of H. Let the distribution under a simple hypothesis H and alternative
K be P, and P,, and suppose for a momentthat these distributions are

discrete with P, {X = x} = P(x) for i= 0,1. If at first one restricts

attention to nonrandomized tests, the optimum test is defined as the

critical region S satisfying

(6) > Pz) < «
res

and
> P,(x) = maximum.
re

It is easy to see which points should be included in S._ To each pointare
attached two values, its probability under Py and under P,. The selected

points are to have total value not exceeding « on the onescale, and as

large as possible on the other. This is a situation that occurs in many

contexts. A buyer with a limited budget who wantsto get “the most for

his money”’ will rate the items according to their value per dollar. In

order to travel a given distance in the shortest possible time, one must

choose the speediest mode of transportation, that is, the one that yields

the largest number of miles per hour. Analogouslyin the present problem

the most valuable points 2 are those with the highest value of

r(x) = P,(x)/P(2).

The points are therefore rated according to the value of this ratio and

selected for S in this order, as many as one can afford underrestriction

(6). Formally this means that S is the set of all points x for which

r(x) > c, where c is determined by the condition

Po{XES}= D> P(x) =«.
rir(r)>Cc

Here a difficulty is seen to arise. It may happen that when certain

pointis included, the value « has not yet been reached but that it would

be exceeded if the next point were also included. The exact value « can

then either not be achieved atall, or it can be attained only by passing

over the next desirable point and in its place taking one further downthe

list. The difficulty can be overcome by permitting randomization.

This makes it possible to split the next point, including only a portion of

it, and thereby to obtain the exact value « without breaking the order of

preference that has been established for the various sample points.

These considerations are formalized in the following theorem, the funda-

mental lemma of Neyman and Pearson.
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Theorem 1. Let Py and P, be probability distributions possessing
densities py and p, respectively with respect to a measure q.*

(i) Existence. For testing H: py against the alternative K: p, there
exists a test @ and a constant k such that

(7) Eo $(X) = a

and

1 when p,(x) > kp(x)

(8) P(x) =
0 when p,(x) < kp)(2).

(ii) Sufficient condition for a most powerfultest. Ifa test satisfies (7)
and (8)for some k, thenit is most powerfulfor testing py againstp, at level «.

(ii) Necessary condition for a most powerful test. If¢ is mostpowerful
at level « for testing py against p,, then for some it satisfies (8) a.e. .
It also satisfies (7) unless there exists a test of size <x and with power |.

Proof. For «=0 and « = 1 the theorem is easily seen to be true
provided the value kK = +00 is admittedin (8) and 0-00 is interpreted as0.
Throughout the proof we shall therefore assume 0 < « < 1.

(i) Let a(c) = Po (p(X) > cpo(X)}. Since the probability is computed
under Po, the inequality need be considered only for the set wherep,(x) > 0,
so that a(c) is the probability that the random variable PLX)PAX)
exceeds c. Thus | — a(c) is a cumulative distribution function, and

a(c) is nonincreasing and continuous on the right, «a(c — 0) — a(c) =
Po {P(X)/[po(X) = c}, e(—00) = 1,anda(oo) = 0. GivenanyO<a <1,
let cy be such that a(cy) << « < «(cg — 0) and consider the test 4 defined

by
l when p,(x) > CoPo(x)

a — a(Cy)
P(x) = | when  p,(x) = ¢opo(*)

a(Cy — 0) — (Cp)
0 when p,(x) < Copo(2).

 

Here the middle expression is meaningful unless «(cy) = «(cy — 0); since
then Po{p(X) = copo(X)} = 0, ¢ is defined a.e. Thesize of is

|p(X)
Eg p(X) = Py p(X)   

 

a — a(Cy) Pp (ae _ ; = 4,
- | r ay — 0) = ag) °\p(X)

so that cy can be taken as the k of the theorem.

It is of interest to note that cy is essentially unique. The only exception

* There is no loss of generality in this assumption since one can take « = P, + Py.



66 UNIFORMLY MOST POWERFULTESTS [3.2

is the case that an interval of c’s exists for which a(c) = «. If (c’, c”) is

such an interval, and

P1(2) < cl"

Pol)

then P,(C) = a(c’) — a(c” — 0) = 0; andthis implies u(C) = 0, P,(C) = 9.

Thusthe sets corresponding to two different values of ¢ differ only in a

set of points which has probability 0 under both distributions, thatis,

points that could be excluded from the sample space.

(ii) Suppose that ¢ is a test satisfying (7) and (8) and that $* is any

other test with E, 6*(X)< «. Denote by S+ and S~ the sets in the sample

space where $(x) — $*(x) > 0 and < 0 respectively. If x is in St, d(x)

must be > 0 and p,(x) > kpo(x). In the same way p,(x) < kpo(&) for all

x in S-, and hence

[@- $90 - kpw a =[. G- #90. — kro du 20.
The difference in power between ¢ and ¢* thereforesatisfies

[— $9p, au = k[— 4%du 2 0.
as was to be proved.

(iii) Let A* be most powerful at level « for testing pp against p,, and let

¢ satisfy (7) and (8). Let S be the intersection of the set St US", on

which ¢ and ¢* differ, with the set {x: p,(x) 4 kpo(x)} and suppose that

u(S) > 0. Since (¢ — 4*)(p, — kpo) is positive on S, it follows that

S+US-
s

and hence that ¢ is more powerful against p, than ¢*. This is a contra-

diction, and therefore (S) = 0, as was to be proved.

If 6* were of size < « and power < 1, it would bepossible to include in

the rejection region additional points or portions of points and thereby to

increasethe poweruntil either the poweris 1 or the size is x. Thus either

Ey $*(X) = « or E, $*(X) = 1.

The proof of part (iii) shows that the most powerful test is uniquely

determined by (7) and (8) except on the set on which p,(x) = kp)().

On this set, 6 can be defined arbitrarily provided the resulting test has

size a. Actually, we have shownthat it is always possible to define ¢ to

be constant over this boundary set. In thetrivial case that there exists a

test of power 1, the constant k of (8) is 0, and one will accept H for all

points for which p,(z) = kp,(z) even though the test may then have

SIZE << a.

C=j\a:p(z)>0 and c< 
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It follows from these remarks that the most powerfultest is determined
uniquely (up to sets of measure zero) by (7) and (8) whenever the set on

which p,(x) = kpo(x) has w-measure zero. This uniquetestis then clearly
nonrandomized. More generally, it is seen that randomization is not

required except possibly on the boundary set where it may be necessary to
randomize in order to get the size equal to «. In practice one will
frequently prefer to adopt a different value for the level of significance
which does not require randomization. In the case that there exists a
test of power 1, (7) and (8) will determine a most powerful test but it may

not be unique in that there may exist a test also most powerful and
satisfying (7) and (8) for some a’ < «.

Corollary 1. Let {5 denote the power of the most powerful level « test
(O< a <1) for testing P, against P,. Then a < B unless Py = Py.

Proof. Since the level « test given by ¢(x) = « has power«,it is seen
thata <p. Ifa =f <1, the test ¢(x) = « is most powerful and by
Theorem I(iil) must satisfy (8). Then po(x) = p,(x) a.e. uw, and hence

Py = P,.

Analternative method for proving the results of this section is based on
the following geometric representation of the problem oftesting a simple
hypothesis against a simple alternative. Let N be the set of all points
(«, 3) for which there exists a test ¢ such that

a= Ey o(X), Bp = E, G(X).

This set is convex, contains the points (0, 0) and (1, 1), and is symmetric
with respect to the point (4, 4) in the sense that with any point(a, A) it also
contains the point (1 — «,1—£). In addition, the set N is closed.
[This follows from the weak compactness theorem forcritical functions,
Theorem 3 of the Appendix; the argument is the same as that in the
proof of Theorem S(i).]

For each value 0 < a < 1, the level a» tests are represented by the
points whose abscissa is < a. The most powerful of these tests (whose
existence follows from the fact that N is closed) corresponds to the point
on the upper boundary of N with abscissa a. This is the only point
corresponding to a most powerful level a» test unless there exists a point
(a, 1) in N with « < a(Figure 15).

As an example of this geometric approach, consider the following
alternative proof of Corollary 1. Suppose that for some 0 < a, < 1 the
powerof the most powerful level «» test is x». Then it follows from the

convexity of N that (a, 8) ¢N implies 6 <«, and hence from the
symmetry of N that N consists exactly of the line segment connecting the
points (0,0) and (1,1). This means that (¢p9 du = {dp, du for all ¢
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and hencethat py = p, (a.e. 4), as was to be proved. A proof of Theorem
1 along these lines is given in a more general setting in the proof of

Theorem 5.
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Figure 1.

3. DISTRIBUTIONS WITH MONOTONE

LIKELIHOOD RATIO

The case that both the hypothesis and the class of alternatives are
simple is mainly of theoretical interest since problems arising in appli-
cations typically involve a parametric family of distributions depending
on one or more continuous parameters. In the simplest situation of
this kind the distributions depend on a single real-valued parameter 0,
and the hypothesis is one-sided, say H:9< 69. In general, the most
powerful test of H against an alternative 6, > 9) depends on 6, andis
then not UMP. However, a UMPtest does exist if an additional

assumption is satisfied. The real-parameter family of densities p,(x) is
said to have monotonelikelihood ratio if there exists a real-valued function
T(x) such that for any 6 < 6’ the distributions P, and P, are distinct, and

the ratio py(x)/p,(x) is a nondecreasing function of 7(z).

Theorem 2. Let 0 be a real parameter, and let the random variable X
have probability density p(x) with monotone likelihood ratio in T(2).

(i) For testing H: 0 < 69 against K: 0 > 6, there exists a UMPtest,
which is given by

| 1 when T(r) >C

(9) d(x) = y when T(x) =C

{0 when T(x)<C
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where C and y are determined by

(10) Eu, P(X) = a.

(ii) The power function

p(9) = E, ¢(X)

of this test is strictly increasing for all points 6 for which B(0) <1.
(ili) For all 0", the test determined by (9) and (10) is UMP fortesting

H’:0< 0’ against K': 9 > 0' at level a= B(6').
(iv) For any 0 < 64 the test minimizes B(0) (the probability of an error

of the first kind) among all tests satisfying (10).
Proof. (i) and (ii). Consider first the hypothesis Hy: 0 = 0, and

some simple alternative 0, > 9). Applying the fundamental lemma, one
finds that the most powerful test rejects when

Po(*)[Po(%) > C
or equivalently when

T(x) > C.*

It follows from Theorem 1(i) that there exist C and vy such that (9) and
(10) hold. By Theorem I(ii), the resulting test is also most powerful for

testing P, against P,. at level «’ = A(0’) provided 0’ < 0”. Part (ii) of

the present theorem now follows from Corollary 1. Since £(@)is therefore
nondecreasing thetest satisfies

(11) E, (X)< a for 6<0,.

The class of tests satisfying (11) is contained in the class satisfying
Ey, 9X) <a. Since the given test maximizes f(9,) within this wider
class, it also maximizes {(6,) subject to (11); since it is independentof the
particular alternative 0, > 9) chosen, it is UMP against K.

(ili) is proved by an analogous argument.
(iv) follows from the fact that the test which minimizes the power for

testing a simple hypothesis against a simple alternative is obtained by
applying the fundamental lemma (Theorem 1) with all inequalities
reversed.

By interchanging inequalities throughout, one obtains in an obvious
mannerthe solution of the dual problem, H: 0 > 6, K: 0 < 9,.
A few examples of families with monotonelikelihood ratio, and hence

of UMP one-sided tests, will be given below. However, the main
applications of Theorem 2 will come later, when such families appear as
the set of conditional distributions given a sufficient statistic (Chapters 4
and 5) and as distributions of a maximal invariant (Chapters 6 and 7).

* Here andin similar derivations C is used as a generic notation.
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Example 1. From a lot containing N items of a manufactured product, a

sample ofsize n is selected at random,andeach item in the sample is inspected.
If the total numberof defective items in the lot is D, the number X of defectives
found in the sample has the hypergeometric distribution

(2)Xx n——-2

M)n

Interpreting Pp(x) as a density with respect to the measure « that assigns to any
set on the real line as measure the numberofintegers 0, 1, 2, - - - that it contains,
and noting that

P{X =x} = P)(z) =

Pprilet) D+1N—-D—-n+e

Pox) N-D D+1—-2 *”
  

it is seen that the distributions satisfy the assumption of monotonelikelihood
ratios with 7(x) =x. Therefore there exists a UMPtest for testing the hypo-
thesis H: D S Dy against K: D > Do, which rejects H when_X is too large,
and an analogoustest for testing H’: D = Dp.

An important class of families of distributions that satisfy the assump-
tions of Theorem 2 are the one-parameter exponential families.

Corollary 2. Let 6 be a real parameter, and let X have probability
density (with respect to some measure A)

(12) PAX) = C(B) OPOH(zx)

where Q is strictly monotone. Then there exists a UMPtest @ for testing
H: 0 < 0 against K:0 > 4. If Q is increasing,

d(x) =1,y,0 as T(x) >,=,<C

where C and y are determined by Es, Q(X) =a. If Q is decreasing, the

inequalities are reversed.

As in Example 1, we shall denote the right-hand side of (12) by P,(x)
instead of p,(x) when it is a probability, that is, when X is discrete and u
is counting measure.

Example 2, The binomial distributions b(p, n) with

P,(x) = (") pr — pyr

satisfy (12) with T(x) =z, 6 =p, Q(p) = log[p/(1 — p)]. The problem of

testing H: p = pp arises, for instance, in the situation of Example 1 if one
supposes that the production processis in statistical control, so that the various
items constitute independenttrials with constant probability p of being defective.
The numberofdefectives X in a sample ofsize 7 is then a sufficient statistic for
the distribution of the variables X,(i = 1,---, 7), where X; is | or O as the ith
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item drawn is defective or not, and YX is distributed as b(p, n). There exists
therefore a UMPtest of H, which rejects H when_X is too small.

Analternative sampling plan which is sometimes used in binomialsituations
is inverse binomial sampling. Here the experimentis continued until a specified
number m of successes—for example, cures effected by some new medical
treatment—have been obtained. If Y, denotes the numberoftrials after the
(i — I)st success up to but not including the ith success, the probability that
Y; = y is pq’ for y = 0, 1,---, so that the joint distribution of Y,,---, Y,, is

PAY; sy Ym) = pqryi, Y, = 0, l, sees k= l, “mM,

This is an exponential family with T(y) = Xy,; and Q(p) = log(1 — p). Since
Q(p) is a decreasing function ofp, the UMPtest of H: p < Po rejects H when T
is too small. This is what one would expect since the realization of m successes
in only a few more than m trials indicates a high value of p. Theteststatistic
T, which is the numberoftrials required in excess of m to get m successes, has
the negative binomial distribution (Chapter 1, Problem 1(i)]

t—1)\_

Example 3. If X,,:--, X, are independent Poisson variables with E(X,) = 4,
their joint distribution is

A*1 + owe + In ;

PAy,* ++, X_) = —-——— eo,ator a,!

This constitutes an exponential family with T(x) = X2,, and Q(A) = log 4.
One-sided hypotheses concerning 4 might arise if 2 is a bacterial density and the
X’s are a numberof bacterial counts, or if the Y’s denote the number of a-
particles produced in equal time intervals by a radioactive substance, etc. The
UMPtest of the hypothesis 2 < 2) rejects when SX,is too large. Here the
test statistic XX; hasitself a Poisson distribution with parameter n/.

Instead of observing the radioactive material for given time periods or count-
ing the number of bacteria in given areas of a slide, one can adopt an inverse
sampling method. The experiment is then continued, or the area over which
the bacteria are countedis enlarged, until a count of m has been obtained. The
observations consist of the times 7,, - - -, T,,, that it takes for thefirst occurrence,
from the first to the second, etc. If oneis dealing with a Poisson process and
the number of occurrences in a time or space interval + has the distribution

(Ar)?
v !

thie

ew =0,1,°°-, P(x) =

then the observed times are independently distributed, each with the exponential
probability density de~* for t = 0 [Problem I(ii) of Chapter 1]. The joint
densities

m

PAT, + ++, tm) = 2™ exp (4 > ti), hy’ stm = 9,
i=l

form an exponential family with T(t,,---, tm) = Lt; and Q(/) = —/. The
UMPtest of H: 4 < Ay rejects when T = XT;is too small. Since 24T, has
density e—“/? for u = 0, whichis the density of a 7?-distribution with 2 degrees
of freedom, 247 has a x?-distribution with 2m degrees of freedom. The boundary
of the rejection region can therefore be determined from a table of 7.
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The formulation of the problem of hypothesis testing given at the
beginning of the chapter takes account of the losses resulting from wrong
decisions only in terms of the two types of error. To obtain a more
detailed description of the problem of testing H:6< 09 against the
alternatives 0 > 05, one can consider it as a decision problem with the
decisions d, and d, of accepting and rejecting H and a loss function
L(0, d;) = L,(8). Typically, L,(0) will be 0 for 6< 4, and strictly
increasing for 0 > 6, and L,(8) will be strictly decreasing for 6 << 69 and
equal to 0 for 9 > 6). The difference thensatisfies

(13) L,(0) —L,(9) 20 as 05 O.

Theorem 3. (i) Under the assumptions of Theorem 2, thefamily of tests
given by (9) and (10) with O0< «<1 is essentially complete provided the
loss function satisfies (13).

(ii) This family is also minimalessentially complete if the set ofpoints x

for which p,(x) > 0 is independentof 0.

Proof. (i) The risk function of any test ¢ is

RO, $) = i}(a) {(x)L(8) + UL — $(x)1L(0)} deux)

-|pol) {Lo(8) + (L(8) — Lo(OI$(@)} dul),

and hence the difference of two risk functions is

ROG, ¢') — R(O, 4) = [Ly(9) — Lo(8)]|($’ — bp, du.
This is < 0 forall 6 if

B,(0) — B,(0) =|(6 — Produ =0 for 0 =Oo.
Given any test ¢, let E, o(X) =a. It follows from Theorem 2(i) that
there exists a UMPlevel « test ¢’ for testing 9 = 6, against 0 > 95, which
satisfies (9) and (10). By Theorem 2(iv), ¢’ also minimizes the powerfor
0 <@,. Thusthe tworisk functions satisfy R(0, 6’) < R(9, ¢) forall 9,

as wasto be proved.
(ii) Let ¢, and ¢,, be of sizes « < «’ and UMPfortesting 9) against

6 > 65. Then By(9) < By_(6) for all 6 > 69 unless B,,(0) = 1. By

considering the problem of testing 6 = 0) against 0 < 0 it is seen
analogouslythat thisinequality also holds for all 6 < 4, unless f$4) = 0.

Since the exceptional possibilities are excluded by the assumptions, it
follows that R(0, 4’) < R(O, 4) as 9 2 9. Hence each of the two risk
functions is better than the other for some values of 6.
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Theclass of tests previously derived as UMPatthe varioussignificance
levels « is now seen to constitute an essentially complete class for a much
more general decision problem,in which the loss function is only required
to satisfy certain broad qualitative conditions. From this point of view,
the formulation involving the specification of a level of significance can be
considered as a simple wayofselecting a particular procedure from an
essentially complete family.
The property of monotone likelihood ratio defines a very strong

ordering of a family of distributions. For later use, we consider also
the following somewhat weaker definition. A family of cumulative
distribution functions F, on the real line is said to be stochastically
increasing (and the same term is applied to random variables possessing
these distributions) if the distributions are distinct and if 0 < 6’ implies
F(x) = F,(x) for all x If then X¥ and YX’ have distributions F, and F%
respectively, it follows that P{X > x} < P{X’> x} for all x so that X’
tends to have larger values than X. In this case the variable X’ is said
to be stochastically larger than X. This relationship is made moreprecise
by the following characterization of the stochastic ordering of two dis-
tributions.

Lemma 1. Let Fy and F, be two cumulative distribution functions on

the realline. Then F,(x) < F(x)for all x if andonly if there exist two non-
decreasing functions fy and f,, and a random variable V, such that (a)
Sov) S fil) for all v, and (b) the distributions off,(V) andSV)are Fy and

F, respectively.

Proof. Supposefirst that the required fo, f,, and V exist. Then

F(x) = Pifi(V) S 2} S Ptf(V) S x} = F(z)
for all x. Conversely, suppose that F,(x) << Fy(x) for all a, and let

Sky) = inf {x: F(x — 0) y < F(x)}, i=0,1. These functions are
nondecreasing and for f; = f, F; = F satisfy

S(F(®)] < x and Fif(y] = y forall 2x and y.

It follows that y < F(xq) impliesf(y) < f[F(%o)] < xo and that conversely
SY) S % implies FLf(y)] < F(z) and hence y < F(z,), so that the two

inequalities f(y) < x9 and y < F(a) are equivalent. Let V be uniformly

distributed on (0,1). Then P{f(V)< x} = P{V< F(a)! = F(x). Since
F,() S F(x) for all x implies fo(y) <f(y) for all y, this completes the
roof.

, One of the simplest examples of a stochastically ordered family is a
location parameter family, that is, a family satisfying

F(x) = F(x — 0).
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To see that this is stochastically increasing, let X be a random variable

with distribution F(z). Then 6 < 6’ implies

F«—-AN=PiX<c¢-OS>P{[X<c-H}=Fa—O),

as was to be shown.
Another example is furnished by families with monotone likelihood

ratio. This is seen from the following lemma, which establishes some
basic properties of these families.

Lemma 2.* Let p,(x) be a family of densities on the real line with

monotonelikelihood ratio in x.
(i) If y is a nondecreasing function of x, then E,p(X) is a nondecreasing

function of 0; if X,,+++, X, are independently distributed with density

Pe and y’ is a function of x,,° ++, x, which is nondecreasing in each ofits
arguments, then E,p'(X,, °° +, X,,) is a nondecreasingfunction of 9.

(ii) For any 0 < 6’, the cumulative distributionfunctions ofX under 6 and
6° satisfy

F(x) < F(x) forall zx.

(iii) Let py be a function with a single change of sign. More specifically,
suppose there exists a value x9 such that (x) < 0for x < xq and y(x) = 0

for x = 4%. Then there exists 0) such that E,y(X)< 0 for 6 < 6 and
Egy(X) = 0for 6 > 6, unless Eyy(X)is either positivefor all 6 or negative

for all 6.
Proof. (i) Let 0 < 6’ and let A and B be the sets for whichp,(x) < p(x)

and py(x) > po(x) respectively. Ifa = sup, y(x) and b = inf, (2), then
b—a= Oand

i}W(Py — ps) du> ai} (py — py) du +b[(py — ps) du

= (b —a)|te. ~ p) du > 0,
which proves the first assertion. The result for general n follows by
induction.

(ii) This follows from (i) by letting y(~) = 1 for z > zy and y(x) = 0

otherwise.

(iii) We shall show first that for any 0° < 0", E,y(X) > 0 implies
Eyy(X) = 0. If po-(%o)/Po(%) = 00, then p,{x)=0 for x >a and
hence E,y(X)< 0. Suppose therefore that p,-(X9)/po{%o) = ¢ < ©.

* This is a special case of a theorem of Karlin relating the number of changes of sign
of Egy(X) to those of y(x) when the densities pg are of Polya type. See Karlin, “Polya
type distributions II,” Ann. Math. Stat., Vol. 28 (1957), pp. 281-308.
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Then (x) = 0 on the set S = {x: p,(x) = 0 and p,(x) > 0}, and

Eyiy(X) = [ yppy du
S Pe’

2 [ cypy du +[ cypy du = cEy y(X) = 0.
co To

The result now follows by letting 0) = inf {0: E,y(X) > 0}.

Part (ii) of the lemma shows that any family of distributions with
monotone likelihood ratio in x is stochastically increasing. That the
converse does not hold is shown for example by the Cauchy densities

l |

71+ (a — 6)?

The family is stochastically increasing since 6 is a location parameter;
however, the likelihood ratio is not monotone. Conditions under which
a location parameter family possesses monotone likelihood ratio are
given in Chapter 8, Example 1.

4. COMPARISON OF EXPERIMENTS*

Suppose that different experiments are available for testing a simple
hypothesis H against a simple alternative K. One experimentresults in a
random variable X, which has probability densities f and g under H and
K respectively; the other one leads to the observation of X’ with densities
f’ and g’. Let B(«) and f’(«) denote the power of the most powerful
level « test based on X and Y’. In general, the relationship between
p(a) and B(x) will depend on «. However, if B’(«) < P(a) for all «,
then X or the experiment (f, g) is said to be more informative than X’.
As an example, supposethat the family of densities p,(x) is the exponential
family (12) and that f = f’ = py, g = py, 2’ = Po» Where 09 < 9, <6.
Then (f, g) is more informative than (f’, g’) by Theorem 2.
A simple sufficient conditiont for X to be more informative than X’is

the existence of a function A(x, u) and a random quantity U, independent
of X and having a knowndistribution, such that the density of Y = A(X, U)
isfor g’ as that of X isfor g. This follows, as in the theory ofsufficient
Statistics, from the fact that one can then construct from X (with the
help of U) a variable Y, which is equivalent to X’. One can also argue

* This section constitutes a digression and may be omitted.
t For a proof that this condition is also necessary see Blackwell, “Comparison of

experiments,” Proc. Second Berkeley Symposium on Mathematical Statistics and
Probability, Berkeley, Univ. Calif. Press, 1951.
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morespecifically that if d(x’) is the most powerfullevel « test for testingf’
against g’ and if p(x) = Ed¢[h(z, U)], then Ey(X) = Ed(X’) both under
H and K. Thetest y(z) is therefore a level « test with power f’(a), and

hence B(a) = B’(a).
Whensucha transformation h exists, the experiment(f, g) is said to be

sufficient for(f’,g’). Ifthen X,,--:, X, and Xj,---, X, are samples from
X and X’respectively, the first of these samples is more informative than
the second one. It is also more informative than (Z,,---, Z,) where

each Z;,is either X, or X; with certain probabilities.

Example 4. Two characteristics A and B, which each member of a popu-
lation may or may not possess, are to be tested for independence. The proba-
bilities p = P(A) and 7 = P(B), that is, the proportions of individuals
possessing properties A and B, are assumed to be known. This might be the
case, for example, if the characteristics have previously been studied separately
but not in conjunction. The probabilities of the four possible combinations
AB, AB, AB, and AB under the hypothesis of independence and under the
alternative that P(AB) has a specified value p are

 

 

 

Under H: Under K:

B B B B

A pr pd — 7) p pp
A (il —p) (—-pXl—7| ~-p 1l—-p-7+tp

The experimental material is to consist of a sample of size s. This can be
selected, for example, at random from those membersof the population possess-
ing property A. One then observes for each memberof the sample whether or
not it possesses property B, and hence is dealing with a sample from a binomial
distribution with probabilities

H: P(B|A) =a and K: P(B|A) = p/p.

Alternatively, one can draw the sample from one of the other categories B,

B, or A, obtaining in each case a sample from a binomial distribution with
probabilities given by the followingtable.

 

Population
Sampled Probability H K

A P(B\A) 7 pip

B P(A[B) P pi

B P(A|B) Pp (p—py — 7)
A P(B\A) 7  —(w — pi— p)

Withoutloss of generality let the categories A, A, B, and B be labeled so that

p <7 1/2. We shall now showthat of the four experiments, which consist
in observing an individual from oneof the four categories, the first one (sampling
from A) is most informative and in fact is sufficient for each of the others.
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To compare A with B, let X and X’be 1 or 0 andlet the probability of their
being equal to 1 be given by the first and second row ofthe table respectively.
Let U be uniformly distributed on (0, 1) and independent of XY, and let Y =
A(X, U) = 1 when X = 1 and U < p/z, and Y = 0 otherwise. Then PLY = 1}
is p under H and p/z under K so that Y has the samedistribution as X’.. This
proves that X is sufficient for X’, and hence is the more informative of the two.
For the comparison of A with B define Y to be 1 when Y = OandU < Pid — 7),
and to be 0 otherwise. Then the probability that Y = 1 coincides with the
third row of the table. Finally, the probability that Y =

1

is given by the
last row of the table if one defines Y to be equal to 1 when Y¥ = 1 and U <
(7 — p)/(l — p) and when X¥ =O and U > (1 —72 — pi — p).

It follows from the general remarks preceding the examplethatif the experi-
mental material is to consist of s individuals these should be drawn from
category A, thatis, the rarest of the four categories, in preference to any of the
others. This is preferable also to drawing the s from the populationatlarge,
since the latter procedure is equivalent to drawing each of them from either
A or A with probabilities p and 1 — Pp Tespectively.
The comparison between these various experiments is independent not only

of « but also of p. Furthermore, if a sample is taken from A, there exists by
Corollary 2 a UMPtest of H against the one-sided alternatives of positive
dependence, P(B|A)> 7 and hence p > pm, according to which the proba-
bilities of AB and AB are larger, those of AB and AB smaller than under the
assumption of independence. This test therefore provides the best powerthat
can be obtained for the hypothesis of independence on the basis of a sample of
size S.

Example 5. In a Poisson process the numberof events occurring in a time
interval of length v has the Poisson distribution P(4v). The problem of testing
4) against A, for these distributionsarises also for spatial distributions of particles
where one is concerned with the numberofparticles in a region of volumev.
To see that the experiment is the more informative the longer the interval v,
let v < w and denote by X and Y the numberof occurrences in the intervals
(t,t +v)and(t +v,¢+ w). Then Xand Yare independent Poisson variables,
and Z = X +

Y

is a sufficient statistic for 2.. Thus any test based on Y can
be duplicated by one based on Z, and Z is more informative than X. Thatit is
in fact strictly more informative in an obvioussense is seen from thefactthat the
unique most powerful test for testing 2) against 4; depends on Y + Y andthere-
fore cannot be duplicated from _X alone.
Sometimes it is not possible to count the number of occurrences but only to

determine whether or not at least one event has taken place. In the dilution
method in bacteriology, for example, a bacterial culture is diluted in a certain
volume of water, from which a numberof samples offixed size are taken and
tested for the presence or absence of bacteria. In general, one observes then
for each of n intervals whether an event occurred. The result is a binomial
variable with probability of success (at least one occurrence)

p=1-—e-*.,

Since a very large or small interval leads to nearly certain successorfailure, one
might suspect that for testing 4) against ‘A, intermediate values of v would be
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more informative than extreme ones. However, it turns out that the experi-

ments (Agu, 4,0) and (Aw, 4,w) are not comparable for any values of v and w.*
(See Problem 15.)

5. CONFIDENCE BOUNDS

The theory of UMP one-sided tests can be applied to the problem of
obtaining a lower or upper bound for a real-valued parameter 6. The
problem of setting a lower bound arises, for example, when @ is the
breaking strength of a new alloy; that of setting an upper bound when 6
is the toxicity of a drug or the probability of an undesirable event. The
discussion of lower and upper bounds is completely parallel, and it is
therefore enough to consider the case of a lower bound,say 0.

Since 6 = 6(X) will be a function of the observations, it cannot be

required to fall below 6 with certainty but only with specified high
probability. One selects a number 1 — «, the confidence level, and
restricts attention to bounds 6 satisfying

(14) P,{0X)<O}>1—a forall 6.

The function 6 is called a lower confidence bound for 6 at confidencelevel
1 — a; the infimum ofthe left-hand side of (14), which in practice will

be equal to 1 — «,is called the confidence coefficient of 8.
Subject to (14), 9 should underestimate 6 by aslittle as possible. One

can ask, for example, that the probability of 6 falling below any 0° < 6
should be a minimum. A function @ for which

(15) P, {0(X) < 6} = minimum

for all 0’ < 6 subject to (14) is a uniformly most accurate lower confidence
bound for @ at confidence level 1 — «a.

Let L(8, 6) be a measure of the loss resulting from underestimating 9,
so that for each fixed 6 the function L(9, 6) is defined and nonnegative for
6 < 0, and is nonincreasing in its second argument. One would then
wish to minimize

(16) E,L(9, 9)

subject to (14). It can be shown that a uniformly most accurate lower
confidence bound 9 minimizes (16) subject to (14) for every such loss

function L. (See Problem 17.)

The derivation of uniformly most accurate confidence bounds is
facilitated by introducing the following more general concept, which will

* For a discussion of howtoselect v in this and similar situations see Hodges, ‘“The
choice of inspection stringency in acceptance sampling by attributes,” Univ. Calif.
Publ. Statistics, Vol. 1 (1949), pp. 1-14.
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be considered in more detail in Chapter 5. A family of subsets S(x) of
the parameter space Q is said to constitute a family of confidence sets at
confidence level 1 — «aif

(17) P,GeS(X)}>1—a forall 6€Q,

that is, if the random set S(X) covers the true parameter point with
probability > 1—«. A lower confidence bound corresponds to the
special case that S(x) is a one-sided interval

Sle) = (0: (2) <0 < oo}.
Theorem 4. (i) For each 0) € Q let A() be the acceptance region ofa

level « test for testing H(y): 0 = 09, andfor each sample point x let S(x)
denote the set ofparameter values

S(x) = {0:2 € A(9), 0 EQ}.

Then S(x) is a family ofconfidence sets for 6 at confidence level 1 — «.
(it) If A(9o) is UMPfor testing H(0,) at level « against the alternatives

K(8p), then S(X) minimizes the probability

P,(0' € S(X)} forall 6 € K(6’)

among all level 1 — « families of confidence sets for 0.
Proof. (i) By definition of S(x),

(18) O€S(x) if and only if 2 ¢ A(6),

and hence

P, {0 €S(X)} = P, {X € A(6)} > 1 — «.

(ii) If S*(x) is any other family of confidencesets at level 1 — «, and if
A*(6) = {x: 0 € S*(a)}, then

P, {X € A*(6)} = P, {0 € S*(X)} > 1 — a,
so that A*(O,) is the acceptance region of a level « test of H(6,). It
follows from the assumed property of A(6) that for any 6 € K(6,)

Py {X € A*(Oo)} => Py {X € A(6y)}
and hence that

Po (99 © S*(X)} = Po {09 € S(X)}

as was to be proved.

The equivalence (18) shows the structure of the confidencesets S(x)
as the totality of parameter values 6 for which the hypothesis H(6) is
accepted when x is observed. A confidence set can therefore be viewed
as a combined statement regarding the tests of the various hypotheses
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H(@), which exhibits the values for which the hypothesis is accepted

(9 & S(x)) and those for whichit is rejected (6 € S(z)).

Corollary 3. Let the family of densities p(x), 8 €Q have monotone
likelihood ratio in T(x) and suppose that the cumulative distributionfunction
F,(t) of T = T(X)is a continuous function of t for each fixed 0.

(i) There exists a uniformly most accurate confidence bound 0 for 6 at
each confidence level 1 — u.

(ii) Ifx denotes the observed values ofX and t = T(x), and if the equation

(19) F(t)=1l—a

has a solution 9 = 6 in Q,then this solution is unique and 6(x) = 6.

Proof. (i) There exists for each 4) a constant C(69) such that

Po, {T > C(8o)} = «

and by Theorem 2, T > C(9)) is a UMP level « rejection region for

testing 6 = 0) against 6 > 05. By Corollary 1, the power of this test
against any alternative 0, > 6) exceeds «, and hence C(69) < C(,) so
that the function is strictly increasing. Let A(69) denote the acceptance
region T < C(6,) and let S(x) be defined by (18). It follows from the

monotonicity of the function C that S(x) consists of those values 6 € Q

which satisfy 6 < 6 where

6 = inf {0: T(x) < C(B)}.
By Theorem 4, the sets {0: 6(x) < 6}, restricted to possible values of the
parameter, thus constitute a family of confidence sets at level 1 — a,
which minimize P {9 < 6’} for all 6 € K(6’), thatis, for all 0 > 6". This
shows 8 to be a uniformly most accurate confidence boundfor 0.

(ii) It follows from Corollary 1 that F,(t) is a strictly decreasing
function of 6 at any point ¢ for which 0 < F,(t) < 1, and hence that (19)

can have at most one solution. Suppose now that ¢ is the observed value

of T andthat the equation F,(t) = 1 — « has the solution 6€Q. Then
Ft)=1—a and by definition of the function C, C(#)=1. The
inequality t< C(@) is then equivalent to C(6) < C(6) and hence to

6< 0. It follows that 6 = 6, as wasto be proved.

Under the same assumptions, the corresponding upper confidence
bound with confidence coefficient 1 — « is the solution 6 of the equation
P, {T => t} = 1 — « or equivalently of F,(t) = «.

Example 6. To determine an upper bound for the degree of radioactivity
A of a radioactive substance, the substance is observeduntil a count of m has

been obtained on a Geiger counter. The joint probability density of the times
T,i = 1,---, m) elapsing between the (i — 1)st count andthe ith one is

Plt, ar) tm) = Ame-Adt;, thy ' stm = 0.
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If T = XT; denotes the total time of observation, 2AT has a y?-distribution with
2mdegrees of freedom and, as was shown in Example 3,the acceptance region
of the most powerful test of H(49): 4 = Ay against 4 <A, is 24,T < C where
C is determined by the equation

C

[ ain =1-
0

Theset S(t,,°--, tm) defined by (18)is then the set of values 4 such that A < C/2T
and it follows from Theorem 4 that 4 = C/2T is a uniformly most accurate
upper confidence bound for 4. This result can also be obtained through
Corollary 3.

If the variables X or T are discrete, Corollary 3 cannot be applied
directly since the distribution functions F,(t) are not continuous, and for
most values 6) the optimum tests of H: 6 = 6, are randomized. How-
ever, any randomizedtest based on X has the following representation as a
nonrandomized test depending on X and an independent variable U
distributed uniformly over (0, 1). Given critical function ¢, consider
the rejection region

R= (a, u):u< d(x)}.

PUX, U)e€ R} = PLUS 4(X)} = EG(X),

Then

whatever the distribution of X, so that R has the same powerfunction as ¢
and the two tests are equivalent. The pair of variables (X, U) has a
particularly simple representation when X is integer-valued. In this
case thestatistic

T=X+U

is equivalent to the pair (X, U) since with probability 1

X=[T], U=T-—[T),

where [T] denotes the largest integer < 7. The distribution of T is con-
tinuous, and confidence bounds can be based on thisstatistic.

Example 7. An upper boundis required for a binomial probability p—for
example, the probability that a batch of polio vaccine manufactured according
to a certain procedure contains any live virus. Let X,,---, X, denote the
outcomes of n trials, X; being 1 or 0 with probabilities p and q respectively,
and let ¥ = XX;. Then T= X + U has probability density

n

grt) =O St <n.
(",) ya

This satisfies the conditions of Corollary 3, and the upper confidence bound f
is therefore the solution,if it exists, of the equation

P,{T <t} =,
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where ¢ is the observed value of 7. A solution does exist for all values

a<t<n+a. For n+a<t, the hypothesis H(po): p =o is accepted

against the alternatives p < po for all values of po and hence p=1. For

t < a, H(py) is rejected for all values ofpy and the confidenceset S(r)is therefore

empty. Consider instead the sets S*(t) which are equal to S(t) for t 2 « and

which for t < « consist of the single point p = 0. They are also confidence

sets at level 1 — « since forall p,

P,{p ES*(T)} 2 Pp{p € S(T)} =1 —%.

On the other hand, P, {p’ € S*(T)} = P, {p’ € S(T)} for all p’ > 0 and hence

Py{p’ €S*(T)} = Pp{p’' € S(T)} forall p’ > p.

Thus the family of sets S*(r) minimizes the probability of covering p’ for all

p’ > p at confidence level 1 — «. The associated confidence bound p*() =

p(t) for t = « and p*(t) = 0 for ¢ <« is therefore a uniformly most accurate

upper confidence boundforp at level 1 — «.
In practice, so as to avoid randomization and obtain a bound not dependent

on the extraneous variable U, one usually replaces T by ¥ +1 =[7] +1.

Since p*(f) is a nondecreasing function of ¢, the resulting upper confidence

bound p*([r] + 1) is then somewhatlarger than necessary, as a compensation

it also gives a correspondingly higher probability of not falling below thetruep.

Let @ and 6 be lower and upper bounds for 4 with confidence coeffi-

cients 1 — «, and 1 — a, and suppose that 6(x) < 6(x) for all x. This

will be the case under the assumptions of Corollary 3 if a, + #2. <I.

Theintervals (0,6) are then confidence intervals for 6 with confidence

coefficient 1 — a, — a; that is, they contain the true parameter value

with probability 1 — a, — a9, since

Pi, f9<O0< HO =1—a,—a, forall 0.

If 0 and 6 are uniformly most accurate, they minimize E,L,(0, 6) and

E,L,(0, 6) at their respective levels for any function L, that is non-

increasing in 9 for 9 < 6 and 0 for 6 = 6 and anyL,thatis nondecreasing

in 6 for6>6and0ford6< 6. Letting

LO; 0, 6) = L,(8, 9) + L.(6, 9),

the intervals (0, 6) therefore minimize E,L(0; 9, 6) subject to

Pi {O0>N< ay, Py {P< A< ay.

An example of such a loss function is

(6-9 if 9<0<8

UO WD= 9-0 HF O<8

0-6 if 6<9,
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which provides a natural measure of the accuracyof the intervals. The
actual length 6 — @ is not as meaningful in this context since there is no
merit in short intervals that are far away from thetrue 0.
An important limiting case corresponds to the levels «, = a, = }.

Under the assumptionsof Corollary 3 andif the region ofpositive density
is independent of 0 so that tests of power 1 are impossible when « < 1,
the upper and lower confidence bounds 6 and @ coincide in this case.
The common boundsatisfies

Po tO < 0} = P, {0 = 0} = 5,

and the estimate 8 of 6 is therefore aslikely to underestimate as to over-
estimate the true value. An estimate with this property is said to be
median unbiased. (For the relation of this to other concepts of un-
biasedness, see Chapter 1, Problem 3.) It follows from the aboveresult
for arbitrary «, and a, that among all median unbiased estimates, 6
minimizes EL(6, 6) for any loss function whichforfixed 0 has a minimum
of 0 at 9 = @ and is nondecreasing as 8 moves away from 6 in either
direction. By takingin particular L(6, 6) = 0 when |6 — 6| << A and =1
otherwise,it is seen that amongall median unbiased estimates, 8 minimizes
the probability of differing from 6 by more than any given amount; more
generally it maximizes the probability

Py{—-A, S 9 —9SA4)}
for any A,, A, > 0.

6. A GENERALIZATION OF THE FUNDAMENTAL
LEMMA

The following is a useful extension of Theorem 1 to the case of more
thanoneside condition.

Theorem 5. Let fi,°++,finy1 be real-valued functions defined on a
Euclidean space X and integrable , and suppose that for given constants
C1,° °°, C,, there exists a criticalfunction ¢ satisfying

(20) |#idu =u i=1,--+m.

Let © be the class of criticalfunctions ¢ for which (20) holds.
(1) Among all members of© there exists one that maximizes

[4m1 ab.
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(ii) A sufficient condition for a member of© to maximize

[4mri Au

is the existence of constants k,,° °°, k,, such that

me

o(a) = 1 when fiyi(*) > x kK;f(x)

(21)

d(x) =O when f,,.:(%) < 2Kfd),

(iii) Ifa member of@ satisfies (21) with ky, +++, km = 0, then it maximizes

|#ner tu
amongall criticalfunctions satisfying

(22) [ide Se, i=1,-+*,m.

(iv) The set M ofpoints in m-dimensional space whose coordinates are

(|i don fBln dt
for some critical function ¢ is convex and closed. If (cy,***, Cm) is an

inner point* of M, then there exist constants k,,*--,k, and a test >

satisfying (20) and (21), and a necessary condition for a member of © to

maximize

|nnn a
is that (21) holds a.e. wu.

Herethe term “inner point of M”in statement(iv) can be interpretedas

meaninga pointinterior to M relative to m-spaceorrelative to the smallest

linear space (of dimension < m) containing M. The theorem is correct

with both interpretations but is stronger with respect to the latter, for

which it will be proved.

Wealso note that exactly analogousresults hold for the minimization of

bfn+ du.

Proof. (i) Let {¢,,} be a sequence offunctions in @ such that J¢,,fins du

tends to sup, f¢fmii 44. By the weak compactness theorem for critical

* A discussion of the problem whenthis assumptionis notsatisfied is given by Dantzig

and Wald, ‘On the fundamental lemma of Neyman and Pearson,” Ann. Math. Stat.,

Vol. 22 (1951), pp. 87-93.
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functions (Theorem 3 of the Appendix), there exists a subsequence {Prd
and a critical function ¢ such that

|#0,h au|os du for k=1,---,;m+ 1.

It followsthat ¢ is in @ and maximizesthe integral with respect toFar dus
within @.

(11) and(iii) are proved exactly as waspart (ii) of Theorem 1.
(iv) That M is closed follows again from the weak compactness theorem

and its convexity is a consequence of the fact that if 4, and 4,arecritical
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functions, so is a¢, + (1 — a), for anyO<a< 1. If Nis the totality
of points in (m + 1)-dimensional space with coordinates

(efi au,--.|%fusrdu),
where ¢ ranges overthe class ofall critical functions, then N is convex
and closed by the same argument. Denote the coordinates of a general
point in M and N by (u,°--, u,,) and (uy, °° +, Up) respectively. The
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points of N, the first 7: coordinates of which are c,, - -, c,,, form a closed

interval [c*, c**].

Assumefirst that c* < c**. Since (c,,°°°, C,,,c**) is a boundary

point of N, there exists a hyperplane II through it such that every point
of N lies below or on II. Let the equation ofII be

m+1

>kim: = > kc; + Kinwsce**
i= =1

Since (c,,° °°, Cm) is an inner point of M, the coefficient k,,,; 70. To

see this, let c® < c < c**, so that (c,, °° +, C,,,¢) iS an inner point of N.

Then there exists a sphere with this point as center lying entirely in N
and hence below II. It follows that the point (c,,-- +, c,,, c) does notlie

on IT and hence that k,,,, #0. We may therefore take k,,,, = —1 and

see that for any point of N |
me

Until — >kuz ry >» kc;.
i=1

Thatis, all critical functions ¢ satisfy

[8 (funn — 3kifi)du<[$**(Sorr — Zkoh) a
where 4** is the test giving rise to the point (c,,---,C,,¢**). Thus 6**
is the critical function that maximizes the left-hand side of this inequality.
Since the integral in question is maximized by putting ¢ equal to 1 when
the integrand is positive and equal to 0 whenit is negative, }** satisfies
(21) a.e. yu.

If c* = c**, let (c,, °°, c,,) be any point of M other than (cr, -,,).
Weshall show now that there exists exactly one real numberc’ such that
(C1,°° Cn C) is in N. Suppose to the contrary that (c,---, ¢,,¢’)
and ( -+,¢,,¢) are both in N, and consider any point (cj, °° *, Cy, c”
of N such that(c,,°--, c,,) is an interior point of the line segmentjoining
(ci,° °°, ¢,,) and (cj,-*°*,¢,). Such a point exists since (c, °°, ¢,,) is an
inner point of M. Then the convex set spanned by the three points
(Cys °° 5 Cy C's (Cis °° *s Crys €'), and (cj, +++, ¢,, ¢”) is contained in N and
contains points (c,°*°, Cm, ¢) and (c,,°**, Cm, ¢) with ¢ <c, which is a

contradiction. Since N is convex, contains the origin, and has at most
one point on anyvertical line uw, = cj,° +, Up, = C,, it is contained in a

hyperplane, which passes through the originand is not parallel to the
Umii-axis. It follows that

m

[ner du = Sh,|of dy
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for all ¢. This arises of course only in the trivial case that

me

Im+1 = 2 K ifis a.c. UU,

and (21) is satisfied vacuously.

Corollary 4. Let Py,° °°, Pins Pmyi be probability densities with respect

to a measure mw, and let 0 <a«< 1. Then there exists a test d such that

E, $(X) = «(i = 1,°++,m) and E,,,, 6(X) > a, unless pin= >”KiDin
a.e. [.

Proof. The proof will be by induction over m. For m = 1 theresult
reduces to Corollary 1. Assume nowthatit has been proved for any set
of mdistributions, and consider the case of m + 1 densities p,,° °°; Pint

If p\,°**, Py» are linearly dependent, the numberofp,; can be reduced and
the result follows from the induction hypothesis. Assume therefore that
Pi,’ * "> Pm are linearly independent. Then for each j = 1,--:,m there
exist by the induction hypothesis tests ¢, and ¢; such that E;, 4X) =
E, $(X) = « for all i= 1,--+,7— 1,74 1,-++, mand E, }6,(X) <a <
E,$(X). It follows that the point of m-space for whichall m coordinates
are equal to « is an inner point of M, so that Theorem S(iv) is applicable.
The test ¢(x) = « is such that FE, 6(X) = « fori=1,---,m. If among
all tests satisfying the side conditions this one is most powerful, it has to
satisfy (21). Since 0 < « < 1, this implies

m

Pm >= >pi a.€. LU,

as wasto be proved.

The most useful parts of Theorems | and 5 are theparts (ii), which give
sufficient conditionsfora critical function to maximize an integral subject
to certain side conditions. These results can be derived very easily as
follows by the method of undetermined multipliers.

Lemma 3. Let Fy,°°-, F,,, be real-valued functions defined over a

space U, and consider the problem of maximizing F,,,,(u) subject to
Fu) =c;(@ = 1,+++,m). A sufficient condition for a point u° satisfying
the side conditions to be a solution of the given problem is that amongall
points of U it maximizes

Finiy(u) — LEi(U)

for some k,,-+-,km-

When applying the lemmaoneusually carries out the maximization for
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arbitrary k’s, and then determines the constants so as to satisfy the side

conditions.

Proof. If u is any pointsatisfying the side conditions, then

m

Finii(U) ~~ DKF) < Fryii(u°) ~~ DFM),

and hence F,,41(¥) S Finiv).

As an application consider the problem treated in Theorem 5. Let U

be the space of critical functions ¢, and let F,(¢) = fof,du. Then a

sufficient condition for ¢ to maximize F,,,,(¢), subject to F,(¢) = ¢;, is

that it maximizes F,,.,(¢) — Dk;F(¢) = ffnar — UA:SIE du. This 1s

achieved bysetting f(x) = 1 or 0 as f,,41(%) > or < Xk;f,(2).

7. TWO-SIDED HYPOTHESES

UMPtests exist not only for one-sided but also for certain two-sided

hypotheses of the form

(23) H:0<0, or 026, (0, < 44).

Such testing problems occur when one wishes to determine whether given

specifications have been met concerning the proportion of an ingredient

in a drug or some other compound, or whether a measuring instrument,

for examplea scale, is properly balanced. Onethensets up the hypothesis

that 6 does not lie within the required limits so that an error ofthefirst

kind consists in declaring @ to be satisfactory when in fact it is not. In

practice, the decision to accept H will typically be accompanied by a

statement of whether 6 is believed to be < 0, or = 6. The implications

of H are, however, frequently sufficiently important so that acceptance

will in any case be followed by a more detailed investigation. If a

manufacturer tests each precision instrument before releasing it and the

test indicates an instrument to be out of balance, further work will be

done to get it properly adjusted. If in a scientific investigation the

inequalities 0 < 0, and 0 > 0, contradict some assumptions that have

been formulated, a more complex theory may be needed and further

experimentation will be required. In such situations there may be only

two basic choices, to act as if 0, < 0 < 9, or to carry out some further

investigation, and the formulation of the problem as thatoftesting the

hypothesis H may be appropriate. In the present section the existence of

a UMPtest of H will be proved for exponential families.

Theorem 6. (i) For testing the hypothesis H: 9<6, or 02 4,
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(8, < 95) against the alternatives K: 0, <0< 6, in @ one-parameter expo-
nentialfamilythere exists a UMPtest given by

1 when C, < T(x) <C, (Cy < C,)

(24) P(x) = {y;, when T(x) = C,, i= 1,2

QO when T(x) <C, or > Co,

where the C’s and y’s are determined by

(25) Ey, ¢(X) = Es, P(X) = «.

(il) This test minimizes E, ¢(X) subject to (25) for all 6 < 6, and > 04.
(ili) For 0 <a < 1 the power function of this test has a maximum at a

point 0 between 6, and 6, and decreases strictly as 6 tends away from 6
in either direction, unless there exist two values t,, t, such that P, {T(X) =
ty} + Py {T(X) = ty} = 1 for all 0.

Proof. (i) One canrestrict attention to the sufficient statistic T = T(X),
the distribution of which by Lemma8 of Chapter 2 is

dP,(t) = C(B) e&dy(t),
where Q(@) is assumedto bestrictly increasing. Let 6, < 0’ < 6,, and
consider first the problem of maximizing E,p(T) subject to (25) with
P(x) = y[T(x)]. If M denotes the set ofall points (Eyy(T), Ey,y(T)) as p
ranges over the totality of critical functions, then the point (a, «) is an
inner point of M. This follows from the fact that by Corollary 1 the set
M contains points («, u,) and (a, uy) with u, << « < u, andthat it contains
all points (u, u) with O<u< 1. Hence bypart (iv) of Theorem 5 there
exist constants k,, k, and a test wo(t) such that do(x) = y,[T(x)] satisfies
(25) and that y,(t) = 1 when

ky C(B,)eeOr"’ + kyC(By)e@2" < C(O’)eWO

and therefore when

ae’ tae’ <1 (b <0<b,),

and y(t) = 0 when theleft-hand side is > 1. Here not both a’s can be
< 0 since then the test would alwaysreject. If one of the a’s is < 0 and
the other one is > 0, then the left-handside is strictly monotone, and the
test is of the one-sided type considered in Corollary 2, which has a
strictly monotone power function and hence cannotsatisfy (25). Since
therefore both a’s are positive, the test satisfies (24); by Theorem S(iii) it
also maximizes E,(T) subject to the weaker restriction Eyy(T) S «
(i= 1,2). To complete the proof that this test is UMP for testing H,
it is necessary to show thatit satisfies E,y(T) < « for 6 < 6, and 6 > 6.
This follows from (ii) by comparison with the test p(t) = «.
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(ii) Let 0’ < 0, and apply Theorem S(iv) to minimize Ey, o(X) subject
to (25). Dividing through by e@°, the desired test is seen to have a
rejection region of the form

ae’! tae’!<1 (b <0< by).

Thus it coincides with the test y(t) obtained in (i). By Theorem S(iv),

the first and third conditions of (24) are also necessary, and the optimum

test is therefore unique provided P{T = C,} = 0.
(iii) Without loss of generality let Q(0) = 6. It follows from (i) and

the continuity of 6(0) = E, @(X) that either A(0) satisfies (ili) or there
exist three points 6’< 6" <6" such that f(0’) = 6(6") = B(6"). If
this common value is c, then 0 <c <1 since f(0’) = 0 (or 1) implies

d¢(t) = 0 (or 1) ae. v and this is excluded by (25). As is seen by the proof

of (i), the test maximizes E, A(X) subject to Ey f(X) = Ey. d(X) = c

for all 0’ < 0 < 0”, and the possibility E,.. 6(X) = cis therefore excluded
by Corollary 4 unless py, = kypy + kopa.e. v. By the assumptions

madein (iii) this would imply the existence of three points 7, fg,3 such that

Pots) Port)
+k 5

Poti) * Ports)
which is impossible since [k,po({t) + kepo-At)l/po-At) is convex.

  l=k, i = 1, 2, 3,

In order to determine the C’s and y’s, one will in practice start with
sometrial values Cy, v7, find Cy, yz such that 6*(0,) = «, and compute
B*(0,), which will usually be either too large or too small. For the
selection of the nexttrial valuesit is then helpful to note that if B*(@.) < a,

the correct acceptance region is to the right of the one chosen,thatis, it
satisfies either C, > C* or C, = Cf and y, < yf, and that the converse
holds if 8*(0,) > «. This is a consequence of Lemma2 applied to T(z).
Anytest ¢* satisfying (24) and £*(0,) = « must be either to the right or
the left of the test ¢ satisfying (24) and (25). As is to theleft or right of
o*, the function y(t) = ¢*(t) — A(t) is monotoneincreasing or decreasing

and from the lemma £*(6,) > « or < @.
Although a UMPtest exists for testing that 0< 6, or = @, in an

exponential family, the same is not true for the dual hypothesis H:
6,<0< 6, or for testing 6 = 6) (Problem 26). There do, however,
exist UMP unbiased tests of these hypotheses, as will be shown in

Chapter 4.

8. LEAST FAVORABLE DISTRIBUTIONS

It is a consequence of Theorem 1 that there always exists a most
powerfultest for testing a simple hypothesis against a simple alternative.
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More generally, consider the case of a Euclidean sample space, probability
densities f;, 0 © w, and g with respect to a measure mu, and the problem
of testing H: f,, 0 € w, against the simple alternative K: g. The existence
of a most powerful level « test then follows from the weak compactness
theorem forcritical functions (Theorem 3 of the Appendix) as in Theorem
S(i).
Theorem | also provides an explicit construction for the most powerful

test in the case of a simple hypothesis. Weshall now extend this theorem
to composite hypotheses in the direction of Theorem 5 by the method of
undetermined multipliers. However, in the process of extension the
result becomes muchless explicit. Essentially it leaves open the determina-
tion of the multipliers, which now take the form of an arbitrary distri-
bution. In specific problems this usually still involves considerable
difficulty.

From another point of view the method of attack, as throughout the
theory of hypothesis testing, is to reduce the composite hypothesis to a
simple one. This is achieved by considering weighted averages of the
distributions of H. The composite hypothesis H is replaced by the simple
hypothesis H, that the probability density of X is given by

h(a) = | fle) a2,
where / is a probability distribution over w. The problem of finding a
suitable A is frequently made easier by the following consideration.
Since H provides no information concerning @ and since H, is to be
equivalent to H for the purpose of testing against g, knowledge of the
distribution 4 should provide aslittle help for this task as possible. To
makethis precise suppose that 6 is known to have a distribution 4. Then
the maximum powerf,that can beattained against g is that of the most
powerful test ¢, for testing H, against g. The distribution 2 is said to be
least favorable (at level «) if for all 2’ the inequality 6, < B,- holds.

Theorem 7. Let a o-field be defined over w such that the densities So(x)
are jointly measurable in 0 and x. Suppose that over this o-field there
exists a probability distribution 2 such that the most powerful level « test
, for testing H, against g is of size < « also with respect to the original
hypothesis H.

(i) The test $, is most powerfulfor testing H againstg.
(11) If p, is the unique most powerful level « test for testing H, against g,

it is also the unique most powerful test ofH againstg.
(iit) The distribution A is least favorable.

Proof. We notefirst that h, is again a density with respect to mu since
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by Fubini’s theorem (Theorem 3 of Chapter 2)

[isduce) = [© |fie) duce) = [ao=.

Suppose that ¢, is a level « test for testing H and let ¢* be any other
level « test. Then since E, 6*(X) < « for all 0 € w, we have

[sone du(x) = | E, 6*(X) da(6) < «.

Therefore 4* is a level « test also for testing H, and its power cannot
exceed that of ¢,. This proves (i) and (ii). If A’ is any distribution,it

follows further that ¢, is a level « test also for testing H,, and hence that

its power against g cannot exceed that of the most powerful test which by

definition is B,.

The conditions of this theorem can be given a somewhatdifferent form

by noting that ¢, can satisfy[ b,(X) da(8) = a and E, $,(X) < « for

all 6 only if the set of 6’s with E, ¢,(X) = « has A-measure one.

Corollary 5. Suppose that A is a probability distribution over w and that
w’ is a subset of w with (w') = 1. Let ¢, be a test such that

li it g(a) > k{fla) dA(8)

(26) p(x) = !
| 0 if g(a) <k|fla) dA(8).

Then d, is a most powerful level « test for testing H against g provided

(27) Ey $,(X) = sup E, ¢(X) =a forall 6’ ea”.
G€w

Theorems 2 and 6 constitute two simple applications of Theorem 7.
The set w’ over which the least favorable distribution A is concentrated
consists of the single point 6, in the first of these examples and of the two
points 6, and 6, in the second. This is what one might expect since in
both cases theseare the distributions ofH that appear to be “‘closest”’ to K.
Another example in which the least favorable distribution is concentrated

at a single point is the following.

Example 8. The quality of items produced by a manufacturing process is
measured bya characteristic X such as the tensile strength of a piece of material,
or the length oflife or brightness of a light bulb. For an item to be satisfactory



3.8] LEAST FAVORABLE DISTRIBUTIONS 93

X must exceed a given constant u, and one wishes to test the hypothesis
H: p = po where

p=PLX Su}

is the probability of an item being defective. Let X,,---, X, be the measure-
ments of n sample items, so that the X’s are independently distributed with
commondistribution about which no knowledge is assumed. Anydistribution
on the real line can be characterized by the probability p together with the
conditional probability distributions P_ and P.. of X given X Su and X¥ > u
respectively. If the distributions P_ and P, have probability densities p_ and
p., for example with respect tou = P_ + P., then the joint density of Xj, -°--, X;,
at a sample point 2, ---, 2, satisfying

e e e e . < . e ° ° eVis »Uj, SUK X%, 9 Ujom

pd — py-™p_(aj,) °° + p(%;,,)p(&j,) +++ pj,_,,)-

Consider now a fixed alternative to H, say (p,,P_, P.;), with py < po. One
would then expect the least favorable distribution 4 over H to assign probability
I to the distribution (py, P_, P..) since this appears to be closest to the selected
alternative. With this choice of 4, the test (26) becomes

(x) =lor0O as (71) (4) : >or <C,
Po’ Yo

and hence as m <or > C. Thetest therefore rejects when the number M of

defectives is sufficiently small or more precisely when M < C and with proba-
bility y when M = C where

(28) P{M <C}+yP{M=C}=«a for p=ppo.

The distribution of M is the binomial distribution b(p, n), and does not depend

on P..and P_. As a consequence, the powerfunction of the test depends only
on p andis a decreasing function of p, so that under H it takes on its maximum
for p = po. This proves 4 to be least favorable and 4, to be most powerful.
Since the test is independent of the particular alternative chosen, it is UMP.

Expressed in terms of the variables Z; = X; — u, the test statistic M is the
number of variables <0, and the test is the so-called sign test (cf. Chapter4,
Section 7). It is an example of a nonparametric test since it is derived without
assuming a given functional form for the distribution of the X’s such as the
normal, rectangular, or Poisson, in which only certain parameters are unknown.

The above argument applies, with only the obvious modifications, to the case
that an item is satisfactory if X lies within certain limits: uw < X¥ <v. This
occurs, for example, if X is the length of a metal part or the proportion of an
ingredient in a chemical compound, for which certain tolerances have been

specified. More generally the argumentapplies also to the situation in which XY
is vector-valued. Suppose that an item is satisfactory only when X lies in a
certain set S, for exampleif all the dimensions of a metal part or the proportions
of several ingredients lie within specified limits. The probability of a defective
is then

p=P{xX eS},

and P_ and P, denote the conditional distributions of X given X €S and
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X € S§ respectively. As before there exists a UMP test of H: p =po, and it
rejects H when the number M ofdefectivesis sufficiently small, with the boundary
of the test being determined by (28).

A distribution A satisfying the conditions of Theorem 7 exists in most
of the usual statistical problems, and in particular under the following
assumptions.* Let the sample space be Euclidean,let w be a Borel set in
s-dimensional Euclidean space, and suppose that /,(x) is a continuous
function of 6 for almost all z. Then given any g there exists a distribution
A satisfying the conditions of Theorem 7 provided

lim gl(x) du(x) = 0

for every bounded set S in the sample space and for every sequence of
vectors 0,, whose distance from the origin tendsto infinity.
From this it follows, as did Corollaries 1 and 4 from Theorems| and 5,

that if the above conditions hold and if 0 < « < 1, there exists a test of

power f > « for testing H: fy, 0 Ew, against g unless g = [f, dA(0) for
some A. An example of the latter possibility is obtained by letting /,
and g be the normal densities N(0, 05) and N(0, oj) respectively with
o3 < ot. (See p. 97.)

9. TESTING THE MEAN AND VARIANCE OF A

NORMAL DISTRIBUTION

Because of their wide applicability, the problems of testing the mean ¢
and variance o? of a normal distribution are of particular importance.
Here and in similar problems later the parameter not being tested is
assumedto be unknown butwill not be shownexplicitly in a statement of
the hypothesis. We will write, for example, o < og instead of the more
complete statement o < 09, —00 <&< oo. The standard (likelihood
ratio) tests of the two hypotheses o <oy and €< &are given by the
rejection regions

(29) U(x,—- «P= C

and _

 

 J : U(x; — «)*
n— |

* See Lehmann, ‘On the existence of least favorable distributions,” Ann. Math.

Stat., Vol. 23 (1952), pp. 408-416.
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The corresponding tests for the hypotheses o >, and & = & are
obtained from the rejection regions (29) and (30) by reversing the in-
equalities. As will be shownin later chapters, these four tests are UMP
both within the class of unbiased andthe class of invariant tests. How-
ever, at the usual significance levels only thefirst of them is actually UMP.

Let X;,°--, X, be a sample from M(&, o2) and consider first the
hypotheses H,: o => o) and Hy: o< oy, and a simple alternative K:
¢ = ¢;,0 =0,. It seems reasonable to suppose that the least favorable
distribution A in the (é, 0)-plane is concentrated on the line o = Oo:
Since Y= 2XYX/n= X and U = X(X, — X)? are sufficient statistics
for the parameters (¢, c), attention can be restricted to these variables.
Their joint density under H,is

u n

Coexp (— sa) Jme - 25Y | “)\ 0 0

while under K it is

 

 

3(n — u nCul)exp (~ 5s) exp |- = y — 5)
1 1

The choice of A is seen to affect only the distribution of Y. A least
favorable A should therefore have the property that the density of Y
under H,,

Va n
leeXp |- 2e2 (y — 9) | di(é),

comesasclose as possible to the alternative density,

 

vn n ,
Tanah? |~ 3g~

At this point one must distinguish between H, and H,. In thefirst case
0; < 09. By suitable choice of 2 the mean of Y can be made equalto
¢,, but the variancewill if anything be increased overits initial value 05.
This suggests that the least favorable distribution assigns probability 1
to the point € = &, since in this way the distribution of Y is normal
both under H and K with the same meanin both cases and the smallest
possible difference between the variances. The situation is somewhat
different for H, for which oy < o,. If the least favorable distribution 7
has a density, say 4’, the density of Y under H, becomes

°° Vn n 3
— — A'(é) dé.
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This is the probability density of the sum of two independent random

variables, one distributed as N(0, o3/n) and the other with density 1’(é).

If A is taken to be NM(é,, (o?— 62)/n), the distribution of Y under H,

becomes N(é,, o7/n), the same as under K.

We nowapply Corollary 5 with the distributions A suggested above.

For H, it is more convenient to work with the original variables than

with Yand U. Substitution in (26) gives ¢(z) = 1 when

]Qnoiy-M* exp |— 5x Bes —|
1 > C,
 

(27102) ~"!? exp | = d(x; — |

that is, when

(31) Xa, —- &)?<C.

Tojustify the choice of 2, one must show that

PAX(X, — &) S CE, 0}

takes on its maximum over the half plane o = oy at the point =,

G =,. For any fixed o, the above is the probability of the sample

point falling in a sphere offixed radius, computed under the assumption

that the X’s are independently distributed as M(&, o?). This probability

is maximized when the center of the sphere coincides with that of the

distribution, that is, when € = é,. The probability then becomes

X,- §&\? C C
piz(=—=) < sé, | = Pizvi< q

oO — o —

where V,,°*:, V, are independently distributed as N(0,1). This is a

decreasing function of o and therefore takes on its maximum when

o = 0.
In the case of H, application of Corollary 5 to the sufficient statistics

(Y, U) gives d(y, u) = 1 when

1m) exp(—  Vexp |— iy — |Cu exp ( =exp | 7 (y &)

C yiir—3) exp (- 4) [exp |- tn (y _ 52 dé

° 20 20%2
0

= ACXPp| — 5 | 7 73
P 2\oi 9%

that is, when

(32) u= X(x, — «#)? = C.

C,IV
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Since the distribution of X(¥, — X)?/o? does not depend on

&é

or o, the
probability P{X(X, — X)? = Clé, o} is independent of & and increases
with o, so that the conditions of Corollary 5 are satisfied. Thetest (32),
being independentof £, and o,, is UMPfortesting o < oo against o > ay.
It is also seen to coincide with the likelihood ratio test (29). On the
other hand, the most powerful test (31) for testing « > 0, against o < dy
does depend on the value &, of & under the alternative.

It was tacitly assumed so far that n> 1. If n = 1, the argument
applies without change with respect to Hj, leading to (31) with n = 1.
However, in the discussion of H, the statistic U now drops out, and Y
coincides with the single observation Y. Using the same / as before one
sees that X has the samedistribution under H, as under K, and the test
p, therefore becomes ¢,(x) = a. This satisfies the conditions of Corollary
5 and is therefore the most powerful test for the given problem. It
follows that a single observation is of no value for testing the hypothesis
H, as seemsintuitively obvious, but that it could be usedtotest H, if the
class of alternatives weresufficiently restricted.
The corresponding derivation for the hypothesis & < é,is less straight-

forward. It turns out* that Student’s test given by (30) is most powerful
if the level of significance is > 1/2, regardlessof the alternative E, > &o, 04.
This test is therefore UMP for «= 1/2. On the other hand, when
a < 1/2 the most powerful test of H rejects when &(x; — a)? < b, where
the constants a and b depend on the alternative (€,;,0,)andon«. Thus for
the significance levels that are of interest, a UMPtest of H does notexist.
No new problem arises for the hypothesis & > &, since this reduces to the
case just considered through the transformation Y, = Ey — (X; — &o).2

10. SEQUENTIAL PROBABILITY RATIO TESTS

According to the Neyman-Pearson fundamental lemma, the best
procedure for testing the simple hypothesis H that the probability density
of X is po against the simple alternative thatit is p, accepts or rejects H as

Pin — Py(X}) et Py(x,,)

Pon Pol) oo Pl»)

 

is less or greater than a suitable constant C. However, further improve-
ment is possible if the sample size is not fixed in advance butis permitted
to depend on the observations. The best procedure, in a‘certain sense,
is then the following sequential probability ratio test. Let Ay < A, be

* See Lehmann and Stein, “‘Most powerful tests of composite hypotheses. I.
Normal distributions,” Ann. Math. Stat., Vol. 19 (1948), pp. 495-516.
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two given constants and suppose that observation is continued as long

as the probability ratio p,,,/po, satisfies the inequality

(33) Ay <n < Ay.
Pon

The hypothesis H is accepted or rejected at the first violation of (33) as

PrnlPon & Ao OF ZA).

The usual measures of the performance of such a procedure are the

probabilities, say x9 and «,, of rejecting H when p = pyandofaccepting

it when p = p, and the expected number of observations E,(N) when

Theorem 8. Amongail tests (sequential or not) for which

P, (rejecting H)< %, =P, (accepting H)< a

and for which E(N) and E,(N)arefinite, the sequential probability ratio

test with error probabilities a and a, minimizes both E,(N) and E,(N).

In particular, the sequential probability ratio test therefore requires on

the average fewer observations than the fixed sample size test which

controls the errors at the same levels. The proof of this result will be

deferred to Section 12. In this and the following sections some of the

basic properties of sequential probability ratio tests will be sketched.

Because of the difficulty of determining exactly the boundaries Ay and

A, for which a) and a, take on preassigned values, the following

inequalities are useful. Let R, be the part of n-space defined by the

inequalities

A, <P <A, for k=1,--5n—-1 and A, So.
Pox Pon

This is the set of points (x,,°--, ,) for which the procedure stops with

N = n observations and rejects H. Then

~ 1 2 l—«a
= < — | = 1 .

*0 2, R, Pon — A, 2 R, Pin A,

 

Similarly, if S,, denotes the part of n-space in which N =n and H is

accepted, one has
° a

1 — % = > { Pon = — .
n=1 Sp Ao

Here it has been tacitly assumed that

P,{N=n}= > Pn=1 for i1=0,1,
1n= n=1/R,US,
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that is, that the probability is 0 of the procedure continuing indefinitely.
For a proofof this fact see Problems 34 and 35. The inequalities

 

(34) Ay2=——, AX
Lm hy Xo

 

suggest the possibility of approximating the boundaries A, and A, that
would yield the desired a» and «, by

Ky l— a
/, A= .

4

— %& Xp

 

 

By (34) the error probabilities of the approximate procedure then satisfy

 

  

 

  

/ /o ou l—«o l—«a,
a } and >A =

1 — a — 1 — a& ly Lg

and hence

XL oatHy < and a, <

If typically x» and a, are of the order .01 to .1, the amount by which
a; can exceed a, (i = 1,0) is negligible so that the probabilities of the
two kinds of error are very nearly bounded above by the specified a
and «,. This conclusion is strengthened by the fact that a +a, <
% + %, as is seen by adding the inequalities «(1 — %) < «(1 — a4)
and a(1 — «;) < a(1 — «!).
The only serious risk in using the approximate boundaries Aj, Aj is

therefore that a) and «, are much smaller than required, which would
lead to an excessive number of observations. There is some reason to
hope that this effect is also moderate. Forlet

(35) z; = log [p,(z;)/po(z;)].

Then (33) becomes

log Ag << Sz; < log A,,
t=1

and when His rejected the z’s satisfy

abet + zy< log A; Sy +++ +2,

The approximation consists in replacing z; +--+ + z, by log A,.. The
error will usually be moderate since after n — 1 observations ™z, is
still < A, and the excess has therefore had no possibility to accumulate,
but is due to a single observation. An analogous argument applies to
the other boundary.
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Example 9. Consider a sequence of binomial trials with constant proba-

bility p of success, and the problem oftesting p = po against p = pP1(Po < P1)-

Then

 

 

Pin _ pri — p,)”~ =i _ (Pia)(22)

Pon Parl — po)” ~~"! =\pogr’ —\4o!

In the case that log (p,p92)/log (qo91_) is rational, exact formulas have been

obtainedt for the error probabilities and expected sample size which makeit

possible to compute the effects involved in the approximation of Ao, A; by

At, Ai. Asan illustration,; suppose that py = .05, p, = .17, % = .05,%, = .10.

It then turns out that «, = .031, «, = .099, and that the expectations of the

sample size for the approximate procedure are E,(N) = 31.4, E,(N) = 30.0.

There is an alternate plan, determined by trial and error, with a* = .046,

ak = .097, E*(N) = 30.5, E*(N) = 26.1. On the other hand,the fixed sample

size procedure with error probabilities .05 and .10 requires 57 observations.

In order to be specific, we assumed in the definition of a sequential

probability ratio test that observation continues only as long as the

probability ratio is strictly between Ay and A,. The discussion applies

equally well to the rule of continuing as long as Ag < Pin/Pon < A,

coming to the indicated conclusion the first time that p,,/Pon < Ao OF

> A,, and deciding on the boundaries according to any fixed probabilities.

The term sequential probability ratio test is applied also to this more

general procedure. If the probability ratio p,(X)/po(X) has a continuous

distribution, all these procedures are equivalent. However, in case of

discrete probability ratios the possibility of randomization on the boundary

is necessary to achieve preassigned error probabilities. If randomization

is permitted also between taking at least one observation or reaching a

decision without taking any observations, it can be shown that actually

any preassigned error probabilities can be achieved.§

11. POWER AND EXPECTED SAMPLESIZE OF

SEQUENTIAL PROBABILITY RATIO TESTS

The preceding section is somewhat misleading in that it discusses the

problem ina setting, that of testing a simple hypothesis against a simple

alternative, which is interesting mainly becauseof its implications for the

morerealistic situation of a continuous parameter family of distributions.

+ Girshick, “Contributions to the theory of sequential analysis, II, III,” Aun. Math.

Stat., Vol. 17 (1946), pp. 282-298, and Polya, ‘Exact formulas in the sequential analysis

of attributes,” Univ. Calif. Publs. Mathematics, New Series, Vol. 1 (1948), pp. 229-240.

+ Taken from Robinson, **A note on exact sequential analysis,” Univ. Calif. Publs.

Mathematics, New Series, Vol. 1 (1948), pp. 241-246.

§ This result is contained in an as yet unpublished paper by Stein, “Existence of

sequential probability ratio tests.” See also the abstract by Wijsman,“‘Onthe existence

of Wald’s sequential test,” Ann. Math. Stat., Vol. 29 (1958), pp. 938-939.
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Unfortunately, the property of being uniformly most powerful, which
the fixed sample size probability ratio test possesses for families with
monotone likelihood ratio (Theorem 2), does not extend to the sequential
case. More specifically, consider the sequential probability ratio test
for testing H: 9 against K:6,, and let its power function be /(0) =
P, (rejecting H). Then if 9, is some other alternative, the sequential
probability ratio test for testing 0) against 9, with error probabilities «,
and a, does not in general coincide with the original test, which therefore
does not minimize E,(N). It seems in fact likely that from an over-all
point of viewthe sequential probability ratio test is not the best sequential
procedure in the continuous parametercase, although it is usually better
than the best competitive test with fixed sample size.
When the probability density depends on a real parameter 6 and oneis

testing the hypothesis 0 < 9, one is usually not concerned with the
powerof the test against alternatives 0 close to 6), but would like to be
able to control the probability of detecting alternatives sufficiently far
away. Thetest should thereforesatisfy

BO)<a« for 0<0,
(36) (99 < 9)),

B(0) => B for 0> 0,

whichit will do in particularif

PO) = 4, BA) = B,

and if 6(@) is a nondecreasing function of 9. The sequential probability
ratio test for testing 9) against 0, with error probabilities a) = «, a, =
1 — # thusis a solution of the stated problem provided its power function
is nondecreasing.

Lemma 4. Let X,, X5,-- + be independently distributed with probability
density p,(x), and suppose that the densities p(x) have monotone likelihood
ratio in T(x). Then any sequential probability ratio test for testing 6,
against 0, (89 < 0) has a nondecreasing power function.

Proof. LetZ, = log [Po(X)/Po,(X)] = A(T;), where h is nondecreasing,
and let 0< 6’. By Lemma 2, the cumulative distribution function
F(t) of T;, satisfies F(t) << F,(t) for all t, and by Lemma | there exists
therefore a random variable V; and functionsfandf’ such thatf(v) < f’(v)
for all v and that the distributions of f(V;,) and f’(V,) are F, and Fy,
respectively. The sequential test under consideration has the following
graphical representation in the (n, >"_,A(t;)) plane. Observation is
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continued as long as the sample pointsfall inside the band formed by the

parallel straight lines

YA) =log 4A, j=, 1.
i=1

The hypothesis is rejected if the path formed by the points (1, A(t,)),

(2, A(ty) + h(te)), °°, (N, A(t) ++ °° + A(ty)) leaves the band through

the upper boundary. The probability of this event is therefore the

probability of rejection, for 6 when each 7; is replaced byf(V,) and for 0°

when T;, is replaced by f’(V,). Since f(V,) Sf'(V;) for all i, the path

generated by the f’(V,) leaves the band through the upper boundary

wheneverthis is true for the path generated by the f(V;). Hence 8(6) <

B(0’), as was to be proved.

In the case of monotone likelihood ratios, the. sequential probability

ratio test with error probabilities x) = «, «, = 1 — # therefore satisfies

(36). It follows from the optimum property stated in Section 10 that

amongall tests satisfying (36) the sequential probability ratio test mini-

mizes the expected sample size for 6 = 6, and 6 = 0,._ However, oneis

now concerned with £,(N) for all values of 6. Typically, the function

E,(N) has a maximum at a point between 0) and 0,, and decreases as 0

moves away from this point in either direction. It frequently turns out

that the maximum is < No, the smallest fixed sample size for which there

exists a test satisfying (36). On the other hand, this is not always the

case.. Thus, in Example 9 for pp = .4, py = .6, % = % = .005 for

example, the fixed samplesize ny is 160, and E,(N), while below this for

most values of p, equals 170 for p = 1/2. The important problem of

determining the test that minimizes sup E,(N) subject to (36) is still

unsolved.
An exact evaluation of the power function £(6) and the expected sample

size E,(N) of a sequential probability ratio test is in general extremely

difficult. However, a simple approximation is available provided the

equation

(37) E¢ ([po(XPo(Xy=

has a nonzero solution h = h(@), as is the case under mild assumptions.

(See Problem 38.) Then

pile) = es)polt)

is again a probability density. Suppose now that h > 0—the other case

can be treated similarly—and consider the sequential probability ratio
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test with boundaries Aj, Aj for testing p, againstp*. With this procedure
observation is continued as long as

Pl) PlXn)

If ag and 1 — aj denote the probability of rejection whenp, and p* are the
true densities, it is seen from (34) that the boundaries are given approxi-
mately by

h< A!  

0

x 27 Ab l— a
1 — * ? 1™ *K

Xp Xo

 Ai~w

However,the test under consideration is exactly the same as the sequential
probability ratio test with error probabilities «) = «, «, = 1-—£ for
testing 6) against 6,. Hence a and £(6), the probability of rejection
for the two tests when p,is the true density, must be equal. Solving for
9 from the above two approximate“ee one therefore finds

— Al

(38) BO) ~aR

An approximation for E,(N) can be based on Wald’s equation

(39) E(Z, +++ + Zy) = E(N)E,(Z),

which is valid whenever the Z’s are identically and independently distri-
buted and the procedure is such that the expected sample size E,(N) is
finite. For a proof of this equation see Problem 37. If the Z’s are
defined by (35) and the procedure is a sequential probability ratio test,
Z, + +++ + Zy can be approximated as before by log A, and log Ay when
Hf is rejected and accepted respectively, so that from (39) one obtains

B(9) log A, + [1 — B(8)] log Ao

E{Z)
 (40) EN) ~

provided £,(Z) + 0.

Example 10. In the binomial problem of Example 9, equation (37) becomes

“ He+(Q)—
Since the left-hand side is a convex function of 4 which is 1 for h = 0,it is seen
that the equation has a unique nonzero solution except when p = log (4/41)/
log (p190/Po9x), in which case the left-hand side has its minimum at A = 0.
Equations (38) and (41) provide a parametric representation of the approximate
power function, which can now be computed by giving different values to h
and obtaining the associated values p and # from (38) and (41). (For h = 0,
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6 can be obtained by continuity.) The followingis a comparisonof the approxi-

mate with the exact values of p(p) and E,(N) in the numerical case considered in

Example 9, with py = 05, p = .099, py = .17:*

OS 44 .90 30 39 25 Approx.

031 .409 .901 31.4 46.8 30.0 Exact

12. OPTIMUM PROPERTY OF SEQUENTIAL

PROBABILITY RATIO TESTS{

The main part of the proof of Theorem

8

is contained in the solution

of the following auxiliary problem. Fortesting the hypothesis H that

Po is the true probability density of X against the alternative that it is pj,

let the losses resulting from false rejection and acceptance of H be wy and

w,, and let the cost of each observation bec. The risk (expected loss

plus expected cost) of a sequential procedure is then

aw, + cE(N)

whenp;is the true density, where

a» = Py (rejecting H), a, = P, (accepting H)

are the two probabilities of error. If one supposes that the subscript /

of the probability density is itself a random variable, which takes on the

values 0 and 1 with probability 7 and 1 — 7 respectively, the total average

risk of a procedure 0is

(42) r(a, 0) = miagWy + CE(N)] + CL — milo+ cE(N)I-

Weshall now determine the Bayes procedure for this problem, that 1S,

the procedure that minimizes (42). Here the interpretation of (42) as a

Bayes risk is helpful for an understanding of the proof and gives the

auxiliary problem independent interest. However, from the point of

view of Theorem 8, the introduction of the w’s, c, and 7 is only a mathe-

matical device, and the problem is simply that of minimizing the formal

expression (42).
The Bayes solutions involve two numbers nm’ <7" which are uniquely

determined by wy, w,, and c through equations (44) and (45) below, and

which are independentof 7. It will be sufficient to restrict attention to the

case that 0 < 7’ <7” <1 and to a priori probabilities 7 satisfying

mong’.

* Taken from Robinson, Joc. cit., where a number of further examples are given.

+ This section treats a special topic to which no referenceis made in the remainder of

the book.



3.12] OPTIMUM PROPERTY OF SEQUENTIAL TEST 105

Lemma 5. Let 7’, 7" satisfy the equations (44). If0 <7’ <7" <1,
then for all 7’ < <n" the Bayes risk (42) is minimized by any sequential
probability ratio test with boundaries

l]— 7” l—7’

(43) Ay = - " — ? A, = - ° -log 7 l—~-w7 7

 

  

/

Proof. (1) We begin by investigating whether at least one observation
should be taken, in which case the resulting risk will be at least c, or
whetherit is better to cometo a decision immediately. Let 0g denote the
procedure that rejects H without taking any observations, and 0, the
corresponding procedure that accepts H, so that

r(77, 09) = TW and r(z, 6) = (1 — z)wy.
Let

p(z) = inf r(z, 6)
EC

where @ is the class of all procedures requiring at least one observation.
Then for any 0 <4< 1 and any 7, 7,

plAmy + (1 — Aj] = inf [Ar(7, 6) + (1 — A)r(m, 6)]

= Ap(m) + (1 — A)p(m).
Hencep is concave, andsince it is bounded below by zero it is continuous
in the interval (0, 1).* If

Wo + Wy Wo + Wy
define 7’ and 7” by

(44) r(ar", 09) = p(z7’) and r(z”, 0,) = p(z’).

(See Figure 3.) Otherwiselet

(45) r= 7" =A
Wo + Wy

In the case 0 < 7’ < 7” < 1 with which we are concerned, 09 Minimizes
(42) if and only if 7 < 7’, and 6, minimizes (42) if and only if 7 > 7”.
This establishes the following uniquely as an optimum first step for
tA7": ifm <7’ or > 7", no observation is taken and His rejected
or accepted respectively; if 7’ < <7"the variable Y, is observed.

(2) The proofis now completed byinduction. Suppose that 7’ <a< 7"
and that n observations have been taken with outcomes X,=2,,°°°, X, =
«,, and that one is faced with the alternatives of not taking another

* See, for example,section 3.18 of Hardy, Littlewood, Polya, Inequalities, Cambridge
Univ. Press, 1934.
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observation and rejecting or accepting H with losses wo, w, for possible
wrong decisions, or of going on to observe X,,,,. The situation is very
similar to the one analyzed in part (1). An unlimited supply of observa-
tions X,41, Xn42,°°° 1s available. The fact that one has already incurred
the expense of nc units does not affect the problem, since once this loss
has been sustained no future action can retrieve it. The procedure is
therefore as before: No further observation is takenif the probability ofH

r(7,6,) =w,(1 — 7)

r(7v,69) = WoT

p(ir)
|

| |
| |
|
| |
| |
| |
| |
|
| |
l |
 

0 T! Wy vw" 1

Wotw,
 

Figure 3.

being true is <7’ or > 7”, whereas X,,,, is observed if this probability
is strictly between 7’ and 7”.

Oneaspectofthe situation has changedasa result of observing 2,,°°:, 7,.
The probability of H being true is no longer 7 but has become

TPon ,

TPon + (I —_ T)Pin

the conditional(a posteriori) probability ofHgiven X, = x,,°°°, X, ne
A complete procedure therefore consists in continuing as long as

 
m(x;, o° , x) _

W < ma, ° °°, 2%_) <7"

or equivalently as long as

7 L— 7" Din 7 l—a7
Ay = " <_< ° = Aj.

l-—-7 7 Pon l-7 @
 
 

H is acceptedif, at the first violation of these inequalities, p,,,/Pon 18S < Ao

and rejected if it is > Aj.
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(3) In part (1) of this proofthefirst step of the procedure wasuniquely
determined as 69 for 7 < 7’, as ‘6, for 7 > 7”, and as taking at least one
observation when 7’ <a< 7". For 7=7', the procedure dy still
minimizes (42) but it is no longer unique, that is, there also exists a
procedure 6 €@ for which r(z’, 6) = p(z7’). In order to belong to @,
such a procedure must require at least one observation. Once X, has
been observed, it follows from part (2) that the best procedure in @ is
obtained by continuing observation as long as 7’ < n(2,°--2,)< 7".
At the first step it is therefore immaterial whether on the boundary

experimentationis continuedor the indicated decision is taken. The same
is then true at the subsequent steps. This establishes in particular that
for 7’ << 7m"the procedure of taking a first observation and then
following the sequential probability ratio test with boundaries (43) is Bayes.

The required connection between the auxiliary problem andthe original
one is established by the following lemma.

Lemma 6. Given any0< To) < 19 <1, there exist numbersO < w < l,
0 <¢ such that the Bayes solution of the auxiliary problem defined by
Wo = | — w, wy = w, c, and ana prioriprobability 7 satisfying m, <1 <1"
is a sequential probability ratio test with boundaries

7 | =7 | A, =

l—7r 7% l—7 7%,

/

TT l= 7)
A, =  

Proof.* (1) By Lemma5, the quantities 7’ and 7” are functions of
w and c, and it is therefore sufficient to find w and c such that (Ww, C) = 7,
m"(w, c) = 75. For fixed w, let m'(c) = 7'(w, c) and m'(c) = 7"(w,Cc).
If cg is the smallest value of c such that m'(Co) = 7’(c,), then for0 << ce < Co
the quantities m’(c) and 7’(c) are determined by the equations

(1 — w)z’ = p(z’, c), (1 — 7")w = p(x’, c),

where p(7, c) stands for the quantity previously denoted by p(7). The
function p(x’, c) considered as a functionofc for fixed 7’ has the following
properties. (i) It is continuous. This follows as before from its being
concave. (ii) It is strictly increasing, since for any 6 €@ therisk r(6, 7’)
increases strictly with c and since the minimum risk p(7’, c) is taken on
by a procedure 6 € @. (iii) As ¢ tends to zero, so do p(7’, c) and p(7", c).
This follows from the fact that for n sufficiently large there exists.a test of
fixed sample size n for which the two error probabilities arearbitrarily
small.

* This proof was communicated to me by L. LeCam.
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These properties of the function p imply that for 0<c< cg the
functions 7’ and 7” are also continuous,strictly increasing and decreasing
respectively, and that 7’(c) > 0, 7’(c)—> | as c-> 0. Onthe other hand,
aS C—> Cy, 7’(c) — 7'(c)—> 0 so that both quantities tend to the solution

n’ = 7" = w ofthe equation 7’(1 — w) = (1 — 7’)w. It follows from

these properties that for fixed w

— amc) 1-7)

Mc) = l—7v(c) w'(c)
 

is a continuous,strictly increasing function of c, which increases from 0 to

l as c varies from 0 to Cy = C,(w).

(2) Let

m(w,c) 1l— m"(w, C) m’(w, C)
 Aw, c) = j v(w, c) = i

—7(wc) 7'(w, c) — n’(w, c)

Instead of working with the variables 7’ and 7”, it is equivalent and more
convenient to work with 4 and y, and to prove the existence of w, c such

that

To 1 — cA To
A(w, c) = 1 7 " = ho; v(w, c) = 7 — Yor

— To To 1 — 7
 

 

For any w, there exists by part (1) a unique cost c = c(w) such that
A(w, c) = Ay. It will be shown below that y(w) = y[w, c(w)] is a 1:1

mapping of the interval 0< w<1 onto 0<y< o, and hence that
there exists a unique value w such that y(w) = yj». This will complete

the proof of the lemma.
(3) For the auxiliary problem defined by w, c = c(w), and 7 = 7'[w,c(w)]

there exists by Lemma5 a Bayes solution 6’ which is a sequential proba-
bility ratio test with boundaries

  

’ ’ 1 — " ’ ’goa Te)Iay, c()] = dg AL =
1 — 7'[w, cw] aL, e(w)]

Let 0” be the corresponding solution of the problem defined by w, c = c(w),
and 7 = 7"[w, c(w)], so that its boundaries are

nw n am’[w, c(w)] ; 1 — a[w, c(w)] _ 1
Ag —_ l, A, ~— 1— a’[w, c(w)] a’[w, c(w)] — Ao 

Then the error probabilities and the expectations of the sample size
O%» %1, Eg(N), E,(N) of 6’ and a, «1, E5(N), E;(N)of 6” depend on w and c
only through A, and not through y, so that for fixed A) they are fixed
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numbers. The Bayes risks for 7 = 7’[w, c(w)] and 7 = 1[w, c(w)] are
given by

p(7’) = r(7’, 0’) and p(7") = r(m”, 6”)

and it follows from (44) that

rm’, 09) =r’, 0’)

=

and ~—r(z", 6.) = r(x", 6”).

These equations can be written more explicitly as

m'(L ~ w) = m'[ag(1 — w) + cEQ(N)] + (1 — 7')falw + cE(N))
and

(1 — n")w = n’[ag(1 — w) + cEQ(N)] + (1 — 2"Jat + cE%(N)].
If one substitutes Ay for m’/(1 — a’) and y for 7"/(1 — 7”) and eliminates
c, this reduces to a single equation connecting y and w:

ov(L = a) — wiAop(L — a) + aiTHyEQ(N) + EVN)!

= {-7% + wll — af) + yoo]HAgvEg(N) + E(N)}.
This is linear in w and for any y > 0 has a solutionO<<w<1. Asa
function of y it is quadratic, and the coefficients of the constant and
quadratic terms have opposite signs provided 0 << w< 1. In this case
there exists therefore a unique positive solution », which establishes the
required 1:1 relation between y and w.

To complete the proof of Theorem 8, consider now any sequential
probability ratio test with Ay <1 < Aj, and any constant 0 <7 <1.
Let

7 TT, Mu
T= 9 T= .

A,jl—a)+a Al—a7)+7
 

 

These values satisfy (43) and 0 <7 <a<7" <1, and by Lemma 6
there exist therefore constants 0 < w < 1 and c > 0 such that the given
test is a Bayes solution for the auxiliary problem withana priori probability
7m Of Po being the true density, with losses w, = 1 — w and Ww, = w, and
cost c. Let the error probabilities and expectations ofthe sample size be
A, %, E(N), £,(N) for the given test, and consider any competitive
procedure 6*, with error probabilities «* < «, and expectations of sample
size E7(N) < co (i = 0,1). Since the given test minimizes the Bayesrisk,
it satisfies

m(1 — wey + cE((N)] + (1 — m)lwa, + cE,(N)]

S all. — wag + cES(N)] + (Ll — a)[wak* + cE*(N)]
and hence

mE9(N) + (1 — m)E\(N) < 7EQ(N) + (1 — a)ET(N).
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The validity of this inequality for all 0 << 7 < 1 implies

E(N)S EX(N) and E(N) S E7(),

as was to be proved.

13. PROBLEMS

Section 2

1. UMPtestfor R(O, 9). Let X = (X,, °°, Xn) be a sample from the uniform

distribution on (0, 9).

(i) For testing H: 6 < 09 against K: 9 > 9apy test is UMPatlevel « for

which Eo, ¢(X) = %, Eo ¢(X) S % for 0 < 65, and d(x) = 1 when max(2, ** *, tn)

> Oo.
(ii) For testing H: 0 = 6) against K: 6 # O) a unique UMPtestexists, and

is given by ¢(x) = 1 when max (7,°°', Ln) > O Or max (Xy,°°*,X,) S O°a,

and ¢(x) = 0 otherwise.

[(ii) Determine the UMPtests for testing 9 = 9) against 8 < 4 and combine

this result with that of part (i).]

2. UMPtest for exponential densities. Let X,,---, X, be a sample from the

distribution with exponential density ae~Ut—5) x = b,

(i) Determine the UMPtest for testing H: b = bo against K: b # by when ais

assumed known.
(ii) Determine the UMPtest for testing H: a = @p, b = by against the

alternatives a > do, b < by. Explain the (very unusual) existence in this case

of a UMPtest in a two-parameter problem.

[(i) The variables Y; = e—?*: are a sample from the uniform distribution on

(0, e-”).]

3. If the sample space Z is Euclidean and Po, P, have densities with respect to

Lebesgue measure, there exists a nonrandomized most powerful test for testing

P, against P, at every significance level «.t

[This is a consequence of Theorem | and the following lemma.? Let f 20

and| f(x) de =a, Given any 0 Sb Sa, there exists a subset B of A

A

such that| f(a) dx = b]
B

+ For moregeneral results concerning the possibility of dispensing with randomized

procedures, see Dvoretzky, Wald, and Wolfowitz, “Elimination of randomization in

certain statistical decision procedures and zero-sum two-person games,” Ann. Math.

Stat., Vol. 22 (1951), pp. 1-21.
+ For a proof of this lemma see Halmos, Measure Theory, New York, D. Van

Nostrand Co., 1950, p. 174. The lemmais a special case of a theorem of Liapounoff,

“Sur les fonctions-vecteurs complétement additives,” Bull. Acad. Sci., URSS, Vol. 4

(1940), pp. 465-478.
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4. Fully informative statistics. A statistic T is fully informative if for every
decision problem the decision procedures based only on T form an essentially
complete class. If # is dominated and

7

is fully informative, then 7 is sufficient.
[Consider any pair of distributions P,, P, € A with densities Po Pr and let

£i = pil(Po + Pi). Suppose that T is fully informative, and let «/, be the sub-
field induced by 7. Then #, contains the subfield induced by (29, £1) since it
contains every rejection region which is unique most powerful for testing
Po against P, (or P, against Py) at some level «. Therefore, T is sufficient for
every pair of distributions (Pp, P,), and hence by Problem 9 of Chapter

2

it is
sufficient for 7.]

Section 3

5. Let X be the numberof successes in n independenttrials with probability
Pp of success, andlet (x) be the UMPtest(9) for testing p < Po against p > po
at level of significance «.

(i) For n = 6, Po = -25 and the levels « = .05, .1, .2 determine C and v,
and find the powerofthetest against p, = .3, .4, .5, .6, .7.

Gi) If pp = .2 and « = .05, and it is desired to have power 8 = .9 against
P, = .4, determine the necessary sample size (a) by using tables of the binomial
distribution, (b) by using the normal approximation.*

(iii) Use the normal approximation to determine the sample size required
when « = .05, 8 = .9, Po = -Ol, py = .02.

6. (i) A necessary andsufficient condition for densities Po(x) to have monotone
likelihood ratio in x, if the mixed second derivative 2 log po(x)/ 00 ax exists,
is that this derivative be =0 for all 6 and z.

(ii) An equivalent condition is that

px) < Apolx) apo(x)
ar =~ 20 = forall 6 and xz. Pol)

7. Let the probability density ps of X¥ have monotone likelihood ratio in
T(x), and consider the problem of testing H: 9 < 4, against 0 > 6). If the
distribution of 7 is continuous, the critical level & is given by &¢ = Po {T =r}
where f¢ is the observed value of T. This holds also without the assumption of
continuity if for randomized tests < is defined as the smallest significance level
at which the hypothesis is rejected with probability 1.

8. Let X;,---, X, be independently distributed with density (20)-te—7/29,
« 20 and let Y; S--- S Y, be the ordered X¥’s. Assumethat Y, becomes
available first, then Y,, etc., and that observation is continued until Y, has been
observed. On the basis of Y,,---, Y, it is desired to test H: 9 > 6) = 1000 at
level « = .05 against 6 < 6.

(1) Determine the rejection region when r = 4, andfind the powerofthe test
against 6, = 500. |

(ii) Find the value of r required to get power f = .95 againstthis alternative.
(In Problem 13, Chapter 2, the distribution of (ei -1Y;, + ( —r)Y,)/6 was

found to be y? with 2r degrees of freedom.]

* For a discussion of another convenient method applying to this and manyrelated
problems, see Mosteller and Tukey, ‘The uses and usefulness of binomial probability
paper,” J. Am. Stat. Assoc., Vol. 44 (1949), pp. 174-212.
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9. When a Poisson process is observed for a time interval of length 7, the

number X of events occurring has the Poisson distribution P(A7). Under an

alternative scheme, the processis observed until r events have occurred, and the

time 7 of observation is then a random variable such that 2A7T has a y?-distri-

bution with 2r degrees of freedom. Fortesting H: 4 S A, at level « one can,

under either design, obtain a specified power 8 against an alternative 4, by

choosing 7 andr sufficiently large.
(i) The ratio of the time of observation required for this purpose under the

first design to the expected time required under the secondis 47/r.

(ii) Determine for which valuesof 4 each of the two designsis preferable when

Ag = 1,4, = 2,0 = .05, 8 = .9.

10. Extension ofLemma 2. Let Py and P, be two distributions with densities

Po: P1 Such that p,(x)/po() is a nondecreasing function of a real-valued statistic

T(z).

(i) If T has probability density p, when the original distribution is P;, then

Px(t)/po(t) is nondecreasingin ¢.
(ii) Egy(T) S E,y(7) for any nondecreasing function y.

(iii) If py(x)/po(~) is a strictly increasing function of t = T(x), so is py(t)/po()

and E,yw(T) < E,y(T) unless y[T(x)] is constant a.e. (P) + P;) or Eqy(T) =

Eyw(T) = +.
(iv) For any distinct distributions with densities po, Pr,

—o < Ey log [p,(X)/p(X)] < Ey, log [pi(X)/polX)] = ©.

[((i) Without loss of generality suppose that prlx)[po(x) = T(@). Then for

any integrable 4,

[sonic dv(t) =[Ar@ITeps d(x) =}P(t)tpo(D) av(n),

and hence p4(t)/po(t) = f a.e.

(iv) The possibility Ey log [puX)/polX)] = © is excludedsince by the convexity

of the function log,

E, log (p(X)[polX)] S log Eqlpi(X)/po(X)] = 9.

Similarly for E,. The strict inequality now follows from (iii) with T(x) =

Pi)[po*)-]

J 1. If F,, F, are two cumulative distribution functions on the real line such that

“~ F(a) < Fo(x) for all x, then Eyy(X) S E,y(X)for any nondecreasing function y.

Section 4

12. If the experiment (f, g) is more informative than (f’,g’), then (g,f) is

more informative than (9’, f’).

13. Conditions for comparability. (i) Let X and X’ be two random variables

taking onthe values 1 and 0, and suppose that P(X = 1} = po, PLX’ = 1} = po

or that P(X =1} =p,, P{X’ =1} =pj. Without loss of generality let

Po <Po Po <Pu Po <Pi- (This can be achieved by exchanging X with X’

and by exchanging the values 0 and 1 of one or both of the variables.) Then

X is moreinformative than X’if and only if (1 —p,)(1 —po) S (1 —po)(l —pv.
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(ii) Let Uy, Uz, be independently uniformly distributed over (0, 1) and let
Y=1 if X =1 and U, <>, and if ¥ = 0 and Uy S 7. and Y = 0 otherwise.
Under the assumptionsof(i) there exist O < Yo. ¥1 S 1 such that P{Y = 1} = p'
when P{X = 1} = p; (i = 0, 1) provided (1 — py)— ps) =A — Po)— pj).
This inequality, which is therefore sufficient for a sample X,,---, X, from X to
be more informative than a sample Xj,---, X¥,; from X’, is also necessary.
Similarly, the condition pyp, < pop%is necessary andsufficient for a sample from
X’ to be more informative than one from_X.

(i) The powerf(x) of the most powerful level « test ofPo against p, based on
A'S ap,/Po if & S py and py + 9199 Ma — po) if Po =%. One obtains the desired
result by comparing the graphs of f(«) and (x).

(ii) The last part of (ii) follows from a comparison of the power £,(«) and
B,(«) of the most powerfullevel « tests based on 2X, and 1X! for « close to 1.
The dual condition is obtained from Problem 12.]

14. For the 2 x 2 table described in Example 4, and under the assumption
Pp =m 1/2 madethere, a sample from B‘is more informative than one from J.
On the other hand, samples from B and 8 are not comparable.

[A necessary and sufficient condition for comparability is given in the pre-
ceding problem.]

15. In the experiment discussed in Example 5, ” binomialtrials with pro-
bability of success p=1—e” are performed for the purpose of testing
4 =A, against A = A,. Experiments corresponding to two different values of v
are not comparable.

Section 5

16. (i) For n = 5, 10 and 1 —« = .95, graph the upper confidence limits
P and p* of Example 7 as functions of t = x + u.

(ii) For the same values of n and &%, = % = .05, graph the lower and upper
confidence limits p and #.

17. Confidence bounds with minimum risk. Let L(0, 6) be nonnegative and
nonincreasing in its second argument for §< 6, and equal to 0 for 6 = @.
If 6 and 6* are two lower confidence boundsfor 6 such that

Po {8 <6} <P, {O* <6} forall 0 <6,
then

E,L(6, 8) < E,L(, 6*).

[Define two cumulative distribution functions Fand F* by F(u) = P, {8 < u}/
Po {O* <6}; F*(u) = P, {0* < u}/P, {0* < 6} for u < 6 and F(u) = F*(u) = 1
for wu 26. Then F(u) < F*(u) for all u, and it follows from Problem 11 that

E,{L(6, 6)) < P,{6* < 6}|(0, u) dF)

S Po {O* = 9}

|

L(6, u) dF*(u) = ELL(6, 6*)).]
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Section 6

JAB. If A(6) denotes the power function of the UMPtest of Corollary 2, and

if the function Q of (12) is differentiable, then (6) > 0 for all 6 for which

Q’(0) > 0.

_ [To show that 6’(6)) > 0, consider the problem of maximizing, subject to

Eo) ¢(X) = «, the derivative (89) or equivalently the quantity EnglTXOX).

19. Optimum selection procedures. On each member of a population n

measurements (X,, °°, X,) = X are taken, for example the scores of n aptitude

tests which are administered to judge the qualifications of candidates for a

certain training program. A future measurement

Y

such as the score in a final

test at the end of the programis of interest but unavailable. The joint distri-

bution of X and Y is assumed known.
(i) One wishes to select a given proportion « of the candidates in such a way

as to maximizethe expectation of Y for the selected group. This is achieved by

selecting the candidates for which E(Y|x) = C, where C is determined by the

condition that the probability of a member beingselected is x. When E(Y|x) =

C, it may be necessary to randomize in order to get the exact value «.

(ii) If instead the problem is to maximize the probability with which in the

selected population Y is greater than or equal to some preassigned score Yo,

one selects the candidates for which the conditional probability P{Y = yolx}

is sufficiently large.
[(i) Let 4(z) denote the probability with which a candidate with measurements

x is to be selected. Then the problem is that of maximizing

{| [yp*'*(y)d(x) ay p*(2) dx

subject to

[eopre dx = «.]

20. The following example shows that Corollary 4 does not extend to a

countably infinite family of distributions. Let p, be the uniform probability

density on [0, 1 + 1/n] and po the uniform density on (0, 1).

(i) Then Po is linearly independentof(py, Po, °° -), that is, there do not exist

constants ¢,, Ca, °°: such that py = Lenn.
(ii) There does not exist a test ¢ such that fp, = « for n = 1, 2,°°° but

f¢po > «.

21. Let Fy,°°*, Fm+, be real-valued functions defined over a space U. A

sufficient condition for uy to maximize F,,., subject to Fu) S ¢; (i =1,°:°,m)

is that it maximizes F,,..(u) — Xk,;F,(u) for some constants k; 2 0 and that

Fu) = c; for those values i for which k; > 0.

Section 7

22. For a random variable ¥ with binomialdistribution b(p, n) determine the

constants C;, y; (i = 1, 2) in the UMPtest (24) for testing H: p <= .2or 2.7

when « =.1 and =15. Find the powerof the test against the alternative

p= 4.
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23. Polya type. A family of distributions with probability densities p,(x)
which are continuousin the real variables 6 and z is said to be of Pélya type
if for alla, <--- <a, and6, <-:: <4,

Poy(2) .* * Poy(p)

(46) A, = 20 forall n =1,2,--.,

  Po,(2) ** * Po,(%n)

and strictly ofPolya typeif strict inequality holds in (46). For n = 1 the con-
dition states that p(x) 2 0, for n = 2 that po(x) has monotonelikelihoodratio.
The exponential families (12) with T(x) = x and Q(@) = 0 are strictly of Polya
type.

"That the determinant |e%*|, i, 7 =1,---,n, is positive can be proved by
induction. Divide the ith column by e%:*%:, i =1,---,n; subtract in the
resulting determinant the (n — 1)st column from the zth, the (n — 2)nd from

the (n — 1)st,---, the Ist from the 2nd; and expand the determinant obtained
in this way by thefirst row. Then A, is seen to have the samesign as

An = |e — eniXj-1|, i, —_ 2, oe 5 n,

where n; = 9; — 9,. If this determinant is expanded by the first column one
obtains a sum of the form

afer" — ene) foe + a,(e™nt2 — eln%1) = h(xz) _ h(x) = (x5 — Xy)h'(Ys),

where x, Sy, Sz. Rewriting h’(y,) as a determinant of which all columns
but the first coincide with those of A), and proceeding in the same manner with
the other columns, one reduces the determinantto |e”:¥i|, i, j = 2, ---,n, which
is positive by the induction hypothesis.]

24, Pélya type 3. Let @ and x be real-valued and suppose that the pro-
bability densities pg(x) are such that po(x)/po(x) is Strictly increasing in x for
6 <6’. Then the following two conditions are equivalent: (a) For 6, < 6, < 6,
and k,, k», k, > 0, let

o(&) = kypo(x) — kapo,(x) + kspo,(2).

If g(x) = g(%3) = 0, then the function & iS positive outside the interval (x,, x3)

and negative inside. (b) The determinant A, given by (46) is positive for all
0, < 0, < 65, 41 <a. < 2g. (It follows from (a) that the equation g(x) = 0
has at most two solutions.)

[That (b) implies (a) can be seen for x, < 2, < zg, by considering the deter-
minant

&(%) g(Xp) &(x3) |

PoX,) P02) Pe,(%3) .

Po(%1) Po(X2) po,(3)

Suppose conversely that (a) holds. Monotonicity of the likelihood ratios
implies that the rank of A, is at least two, so that there exist constants ky, ko, ks
such that 9(7,) = g(x3) = 0. That the k’s are positive follows again from the
monotonicity of the likelihood ratios.]

25. Extension of Theorem 6. The conclusions of Theorem 6 remain valid
if the densities pp of a sufficient statistic T, which withoutloss of generality will
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be taken to be X,satisfy the following conditions: (a) pox) is continuous in x

for each 6; (b) po(x)/po(x) is strictly increasing in x for 9 < 6’; and the deter-

minant A, defined by (46) is positive for all 6, < 6, < 6, and x, < % < 23.
[The two properties of exponential families that are used in the proof of

Theorem 6 are continuity in x and (a) of the preceding problem.]

26. For testing the hypothesis H’: 6, <0 < 6,(6, = 6,) against the alter-
natives 6 < 6, or 6 > 6,, or the hypothesis 6 = 9) against the alternatives
0 # 65, in an exponential family or more generally in a family of distributions
satisfying the assumptions of Problem 25, a UMPtest does notexist.

[This follows from a consideration of the UMPtests for the one-sided hypo-
theses H,: 6 20, and Hy: @ S 4.)

Section 8
UZ

27. Let the variables X;(i = 1,---,5) be independently distributed with
Poisson distribution P(A,;). For testing the hypothesis H: uA; < a(for example,

that the combined radioactivity of a number of pieces of radioactive material
does not exceed a), there exists a UMPtest, which rejects when UX; > C.

(If the joint distribution of the X’s is factored into the marginaldistribution of
=X, (Poisson with mean &%/,) times the conditional distribution of the variables
Y; = X,/XX; given XX; (multinomial with probabilities p; = 4,/24,), the
argument is analogousto that given in Example8.] (7 2 Opel

28. Confidence bounds for a median. Let X,,-:-, X, be a sample from a
continuous cumulative distribution function F. Let & be the unique median of

F if it exists or more generally let = inf {é’: F(é) = 1/2}.
(i) If the ordered X’s are X<--- < X™) a uniformly most accurate lower

confidence bound for € is € = X‘) with probability p,& = X+) with prob-
ability (1 — p) where k and p are determined by

n n 1 n n

I= 1 - (") —=I|-—.%.
pd, (") 2” + p) >, 2”J

(ii) This bound has confidence coefficient | — « for any median ofF.
(iii) Determine most accurate lower confidence boundsfor the 100p-percentile

é of F defined by § = inf {&’: F(é) = p}.
[Forfixed the problem of testing H: § = §, against K: £ > &) is equivalent

to testing H’: p = 1/2 against K’: p < 1/2.)

. A counterexample. Typically, as « varies the most powerfullevel « tests
or testing a hypothesis H against a simple alternative are nested in the sense
that the associated rejection regions, say R,, satisfy R, C Ry for any « < @’.
This relation always holds when is simple, but the following example shows

that it need notbe satisfied for composite H.
Let X take on the values 1, 2, 3,4 with probabilities under distributions

Po, P, Q:

 

| 2 3 4

2 4 3. A
P0 13 13 13 13

4 2. A 6
P1 13 3 13

QO 4 3 2 AL
3 13 3 
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Then the most powerfultest for testing the hypothesis that the distribution of X
is Po or P; againstthe alternativethat it is Q rejects at level « = 35; when Y = 1
or 3, and at level x = 38 when XY = or 2.

30. Let X and Y be the numberof successes in two sets of n binomialtrials
with probabilities p, and p, of success.

(i) The most powerful test of the hypothesis H: p, < p, against an alternative
(pi, P2) with p, < py and p; + py = 1 at level « < } rejects when Y- Y¥ > C
and with probability + when Y — Y¥ = C.

(ii) This test is not UMPagainst the alternatives Pi < Po.
[(i) Take the distribution 2 assigning probability 1 to the point py = p, = 1/2

as an a priori distribution over H. The most powerful test against (pj, ps)
is then the one proposed above. Toseethat / is least favorable, consider the
probability of rejection P(p,, ps) for py = py = p. By symmetry this is given by

2p(p, p) = P{|Y — X| > C} + yPf[y — X| = Ch.

Let X; be 1 or 0 as theith trial in the first series is a success or failure, andlet Y;
be defined analogously with respect to the second series. Then Y — XY =
Li=1(Y; — X;), and the fact that 2A(p, p) attains its maximum for p = 1/2 can
be proved by induction overn.

(ii) Since A(p, p) < « for p # 1/2, the power f(p, pz) is < « for alternatives
P1 < Pe Sufficiently close to the line py = p,. That the test is not UMP now
follows from a comparison with 4(2, y) = «.]

Bl. Sufficient statistics with nuisance parameters. (i) A statistic T is said to
be sufficient for 6 in the presence of a nuisance parameter 7 if the parameter
Space is the direct product of the set of possible 6- and 7-values, and if the
following two conditions hold: (a) the conditional distribution given T=tf
depends only on 1; (b) the marginal distribution of T depends only on 6. If
these conditionsare satisfied, there exists a UMPtest for testing the composite
hypothesis H: @ = 0) against the composite class of alternatives 0 = 6,, which
depends only on T.

(ii) Part (i) provides an alternative proof that the test of Example 8 is UMP.
[Let y(t) be the most powerfullevel « test for testing 9 against 6, that depends

only on ¢, let (2) be anylevel « test, and let p(t) = E,,[o(XI). Since Foy(T) =
Fo,P(X), it follows that y is a level « test of H andits power,andtherefore the
powerof ¢ does not exceed the powerofyo.]

Section 9

_ 32. Let X1---,X,, and Y,,---, Y, be independent samples from N¢é, 1)
and N(y, 1), and consider the hypothesis H: 7 <é against K: 7 > &. There
exists a UMPtest, andit rejects the hypothesis when Y — X is too large.

[If 5; <7, is a particular alternative, the distribution assigning probability
1 to the point 7 = § = (mé, + n7,)/(m + n)is least favorable.]

33, Let X4,°°+, Xm; Yy,°°+, Yp, be independently, normally distributed with
means § and 7, and variances o? and 72 respectively, and consider the
hypothesis H: + <o against K: o <r.

(i) If € and 7 are knownthere exists a UMPtest given by the rejection region
L(Y; — nP/XCX; — £2 = Cc.

(ii) No UMPtest exists when é and 7” are unknown.
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Section 10

34. Distribution of sequential sample size. Let X; (i = 1, 2,° +) be identically

and independently distributed and let Z, be defined by (35). If N is the number

of observations required by the sequential probability ratio test (33) where

Ay <1 < Aj, and if the true distribution of X is such that P{Z =0} <1,

then there exists 0 < 6 < 1 and C >

O

such that P{N =n} < Co”.

[Let c = log A, — log Ag and supposefirst that P{|Z| <c} =p <1. The
event N = n implies that

log Ag < 2,21 + 2, °°*,2%1 t °° + 2n-1 < log Aj,

and hence that |z,|, |zo|,---, |@n-,| are all <c. Therefore P {N2=n} spi=

po\:p". If P{|Z| < c} = 1, thereexists r such that P{\Z, +-°°:+Z,| Sc} =

p <1, and this implies that P {N = rm} S p™~ and hencethat

P{N =n} < plrirl -1 < prir-2 = p-(pur)r.]

35. Momentsof sequential sample size. Under the assumptions of the pre-

ceding problem (i) E(N) < © and (ii) E(e%) < © for some t >

0

so that

E(N*) < © for all k =1,2,---. Also quite generally (iii) P{Z = 0} <1

if the true distribution of the X’s is either Py or P, and if Py # Py.

[G)

E(N) = > nP{N =n} = > P{N=n SCM < ».
n=1 n=1 n=1

(ii)
E(e’) < XLel™P {N =n} S CxU(6e')” < ©

provided e’ < 6-1.)

Section 11

36. Power of binomial sequential probability ratio test. In the sequential

probability ratio test of Examples 9 and 10 for testing that a binomial prob-

ability is py against the alternative thatit is p,, let py = G9 and suppose that log

Agllog (gopo) = —a and log A,/log (qgpo 1) = 5 where a and 6 are positive

integers.
(i) Then the inequalities (34) become equalities and the approximations (38)

and (40) become exact formulas.

(ii) The power function ofthetest is

b — a+b

B(p) =1P—P for p#1i/2
~ gat? — p+?

B(1/2) = a/(a + b) (by continuity).

(iii) The stopping rule is the same as that imposed by chance on two gamblers

with capitals a and b who play a sequenceof gamesfor unit stakes with prob-

abilities p and g of winning each game, and who continue playing until one of

them has exhausted his capital.*

* For an alternative derivation of the formula for A(p) in this setting see, for example,

Chapter 14, Section 2, of Feller, An Introduction to Probability Theory and Its Appli-

cations, Vol. 1, New York, John Wiley & Sons, 2nd ed., 1957.
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[The test continues as long as —a < 2a, —n < b, and(i) and (ii) follow

from the fact that the middle term of this inequality is 0 for n = 0 and with each
observation either increases or decreases by 1.]

37. Wald’s equation. If Z,,Z,,°-~ are identically and independently dis-
tributed with E|Z | < o, and if the numberof observations is decided according
to a sequential rule with E(N) < ©, then

(47) E(Z, + °°: + Zw) = E(N)E(Z).

[The left-hand side equals
wo

>» P {N = ny>BUEN = n) _
n=1

>PIN = n}E(Z;|N = n)
n=I

M
s

a

= > P{N = i}E(Z,|N = i).
1=1

Since the event N =i depends only on Z,, ---, Z;-4, it is independent of Z;;
also X9_,P{N = i} = E(N), and this establishes the desired equation. To
justify the rearrangingoftheinfinite series, replace Z,; by |Z,| throughout. This
showsthat

E|Z, + +--+ Zy| SE(Z| +--+ + [Zp = E[Z|- EN) < @,
which proves the required absolute convergence.]

38. (i) Let Z be a random variable such that (a) E(Z) + 0, (b) y(h) = E(e")
exists for all real h, (c) P {e% < 1 — 6} and P {e2 > 1 + 6}are positive for some
6 >0. Then there exists one and only one solution h #0 of the equation
yh) = 1.

(ii) This provides sufficient conditions for the existence of a nonzero solution
of (37). |

(i) The function y is convex since y’(h) = E(Z%e’4) > 0; also y(h)>
as h— +o. Therefore y has a minimum hp, at which y’(hj) = E(Ze’7) = 0
so that by (a) Ay * 0. Since y(0) = 1, there exists a unique 4, 4 0 for which

y(hy) = 1.

(ii) With Z defined by (35), (37) can be written as E(e’4) = 1.]

39. The following example showsthat the power of a test can sometimes be
increased by selecting a random rather than a fixed sample size even when the
randomization does not depend on the observations.* Let X,,:--, X, be

independently distributed as N(6,1) and consider the problem of testing
H: 0 = O against K: 0 = 0, > 0.

(i) The power of the most powerful test as a function of the sample size n
is not necessarily concave.

(ii) In particular for « = .005, 6, = 4, better power is obtained by taking 2 or
16 observations with probability 1/2 each than by taking a fixed sample of 9
observations.

(lit) The powercanbe increased furtherif the test is permitted to have different

significance levels «, and «, for the two sample sizes andit is required only that

* This and related examples were discussed by Kruskal in a seminar held at Columbia
University in 1954. Recently, a more detailed investigation of the phenomenon has
been undertaken by Cohen, “‘On mixed single sample experiments,” Ann. Math. Stat.,
Vol. 29 (1958), pp. 947-971.
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the expected significance level be equal to « = .005. Examples are: (a) with
probability 1/2 take n, = 2 observations and perform thetest of significance at

level «, = .001 or take my = 16 observations and perform the test at level
a, = .009; (b) with probability 1/2 take n, = 0 or n, = 18 observations and
let the respective significance levels be «, = 0, x, = .01.

14. REFERENCES

The method of hypothesis testing developed gradually, with early

instances frequently being rather vague statements of the significance or

nonsignificance of a set of observations. Isolated applications [the
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1877), and Edgeworth (1885). A systematic use of hypothesis testing
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CHAPTER 4

Unbiasedness: Theory

and First Applications

1. UNBIASEDNESS FOR HYPOTHESIS TESTING

A simple condition that one may wish to impose ontests of the hypothe-
sis H: 0 €Q), against the composite class of alternatives K: 6 € QO
is that for no alternative in K the probability of rejection should be less
than the size of the test. Unless this condition is satisfied there will
exist alternatives under which acceptance of the hypothesis is more
likely than in somecases in which the hypothesis is true. A test ¢ for
which the above condition holds, that is, for which the power function
B4(9) = E, d(X)satisfies
a) BO) <a if O6€Q,

BO) >a if 060,
is said to be unbiased. For an appropriate loss function this was seen
in Chapter | to be a particularcase of the general definition of unbiased-
ness given there. Whenever a UMPtest exists, it is unbiased since its
power cannotfall below that of the test d(x) = a.
For a large class of problems for which a UMPtest does notexist,

there does exist a UMP unbiased test. This is the case in particular for
certain hypotheses of the form 6 < 6) or 0 = 05, where the distribution
of the random observables depends on other parameters besides 0.

When£,(6) is a continuous function of 0, unbiasedness implies

(2) P4(9) = « forall Oinw

where w is the common boundary of Q,, and Q,., that is, the set ofall
points 6 that are points or limit points of bothQ,;,andQ,. Tests satisfy-
ing this condition are said to be similar on the boundary (of H and K).
Since it is more convenient to work with (2) than with (1), the following
lemmaplays an importantrole in the determination ofUMPunbiasedtests.

125
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Lemma 1. Jf the distributions P, are such that the power function of
every test is continuous, and if ¢, is UMP amongall tests satisfying (2)
and is a level « test of H, then $y is UMP unbiased.

Proof. The class of tests satisfying (2) contains the class of unbiased
tests, and hence ¢y is uniformly at least as powerful as any unbiasedtest.
On the other hand, ¢, is unbiased sinceit is uniformly at least as powerful
as f(x) = «.

2. ONE-PARAMETER EXPONENTIAL FAMILIES

Let 0 be a real parameter, and X = (Xj,-°-°-, X,) a random vector with

probability density (with respect to some measure j)

Pox) = CAE"?h(a).
It was seen in Chapter 3 that a UMPtest exists when the hypothesis H
and the class K of alternatives are given by (i) H: 9 < 69, K: 06> 4)

(Corollary 2) and (ii) H:0< 6, or 0> 6, (0, < 6), K: 0, < 0<6,
(Theorem 6) but not for (iii) H: 6, << 6 < 0,, K:0< 0, or 9 >6,. We
shall now show that in case (iii) there does exist a UMP unbiased test

given by

(1 when T(z)<C,or>C,

(3) d(x)= {y, when T(z)=C, i=1,2
lo when C, < T(x) < Cy,

where the C’s and y’s are determined by

(4) Ey, $(X) = Eo, P(X) = «.

The powerfunction E, ¢(X) is continuous by Theorem 9 of Chapter 2,
so that Lemma is applicable. The set w consists of the two points 0,
and 0,, and wetherefore considerfirst the problem of maximizing Ey, o(X)

for some 6’ outside the interval [6,, 9,], subject to (4). If this problem

is restated in terms of 1 — ¢(x), it follows from part (ii) of Theorem 6,

Chapter 3,that its solution is given by (3) and (4). This test is therefore
UMPamongthosesatisfying (4), and hence UMP unbiased by Lemma1.
It further follows from part(iii) of the theorem that the power function of
the test has a minimum at a point between 6, and 6., and is strictly
increasing as 0 tends away from this minimum in either direction.
A closely related problem is that of testing H: 6 = 0) against the

alternatives 0 ~ 0). For this there also exists a UMP unbiased test
given by (3), but the constants are now determined by

(5) E,IoX)] = «
and

(6) E,(T(X)O(X)] = E,{TI«.
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To see this, let 6° be any particular alternative and restrict attention
to the sufficient statistic T, the distribution of which by Chapter 2, Lemma
8, 1s of the form

aP,(t) = C(6)e™ dv(t).

Unbiasedness of a test y(t) implies (5) with (x) = y[T(zx)]; also that
the power function #(0) = E,[y(T)] must have a minimum at 0 = ,.

By Theorem 9 of Chapter 2 the function (9) is differentiable, and the
derivative can be computedbydifferentiating E,y(T) under the expectation
sign, so that for all tests y(t)

; C9)
B'(9) = E[Ty(T)] + ~~CO) Edly(T)I.

For y(t) = a, this_becomes

C9) |
ET) + ~~CO)

Substituting this in the expression for 8’(6) gives

B'(0) = E[Ty(T)] — E(T)ELy(7)],

and hence unbiasedness implies (6) in additionto (5).
Let M betheset of points (E,Ly(T)], EoLTy(T)]) as y ranges over the

totality of critical functions. Then M is convex and containsall points
(u, uE,(T)) with 0O<u<1. It also contains points («, uv.) with u, >
aE,(T). This follows from the fact that there exist tests with E,ly(T)] = «
andB'(89) > 0 (see Problem 18 of Chapter 3). Since similarly M contains
points («, uw) with u, <a,(T), the point (a, a£,(7)) is an inner point
of M. Therefore, by Theorem S(iv) of Chapter 3 there exist constants
k,, k, and a test y(t) satisfying (5) and (6) with d(x) = y[T(x)], such that
y(t) = 1 when

C(O)(ky + ketye’’ < C(0’) e**

and therefore, when

a, + ast < e%.

This region is either one-sided or the outside of an interval. By Theorem
2(i1) of Chapter 3 a one-sided test has a strictly monotone powerfunction
and therefore cannotsatisfy (6). Thus y(t) is 1 when t < C, or > C,,
and the most powerful test subject to (5) and (6) is given by (3). This
test is unbiased, as is seen by comparing it with d(x) = a. It is then also
UMPunbiased since the class of tests satisfying (5) and (6) includes the
class of unbiasedtests.
A simplification of this test is possible if for 6 = 6, the distribution

> T is symmetric about some point a, that is, if P,wo<a-u=
Py {Tt >a-+u} for all real wu. Any test which is symmetric about a
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andsatisfies (5) mustalso satisfy (6) since E,[Ty(T)] = E,|(T — a)y(T)] +

aE,WT) = aa = E,(T)«. The C’s and y’s are therefore determined by

Po, {T< CG} + Y1P9, {T = Cy} = a/2

Cy = 2a — CG, Yo = 71:

The abovetests of the hypotheses 6, << 0 < 6, and 6 = 6)arestrictly

unbiased in the sense that the power is >« for all alternatives 6. For

the first of these tests, given by (3) and (4), strict unbiasedness is an

immediate consequence of Theorem 6(iii) of Chapter 3. This states in

fact that the power of the test has a minimum at a point 0) between

6, and 6, and increasesstrictly as 6 tends away from 9,in either direction.

The second of the tests, determined by (3), (5), and (6), has a continuous

power function with a minimum of« at 6 = 6). Thusthere exist O,<

6) < 9, such that 6(0,) = B(0,) = cwherea << c<1. The test therefore

coincides with the UMP unbiased level c test of the hypothesis 6, <

6 < 6,, and the power increasesstrictly as 8 moves away from Oy in

either direction. This proves the desired result.

Example 1. Let X be the number of successes in 7 binomialtrials with

probability p of success. A theory to be tested assigns to p the value Py so that

one wishes to test the hypothesis H: p = py. When rejecting H one will usually

wish to state also whether p appearsto be less or greater than po. If, however,

the conclusion that p # po in any case requires further investigation, the pre-

liminary decision is essentially between the two possibilities that the data do or do

not contradict the hypothesis p = po. The formulation of the problem as one

of hypothesis testing may then be appropriate.

The UMPunbiased test of H is given by (3) with T(X) = X. Condition (5)

becomes
Cy—-1 2

>» (") pans + > (1 - 1 (C,) p596-¢ =1-a,
a=C,+1 \ t=1 a

and the left-hand side of this can be obtained from tables of the individual

probabilities and cumulative distribution function of *. Condition (6), with

the help of the identity

Lq~n— 2x — 1 x—1,(n—1)—(2—-

o(")ps = mpo(" 1) Igy D— Gn)

reduces to

Co—-1
5 (” _ )aa? ~ (x-1)

r=Ci+1 \% — I
2

: n—1 _ —y-(a.—

=

the left-hand side of which can be computed from the binomialtables.
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As n increases, the distribution of (X — npy)/Vnpogy tends to the normal
distribution N(0, 1). For sample sizes which are not too small, and values of
Po Which are not too close to 0 or 1, the distribution of X is therefore approxi-
mately symmetric with respect to the origin. In this case, the much simpler
‘equaltails”’ test, for which the C’s and y’s are determined by

“St (n n) o,n—C“qn—% pan —Cy

», (:) Pofe ‘ (é) Pod

= r( ~ pogo +S (") pigs-* = 5)
a z=Cgt1 \” 2

is approximately unbiased, and constitutes a reasonable approximation to the
unbiased test. Of course, when n is sufficiently large, the constants can be
determined directly from the normal distribution.

Example 2. Let X = (X,,:--, X,) bea sample from a normal distribution
with mean 0 and variance o?, so that the density of the X’s is

I \” I

(a5) or (234)
Then 7(x) = Xv? is sufficient for o2, and has probability density (1/o7)f,(y/o?),
where

 

1

27/27(n/2)

is the density of a z’-distribution with n degrees of freedom. For varying o,
these distributions form an exponential family, which arises also in problems of
life testing (see Problem 13 of Chapter 2), and concerning normally distributed
variables with unknown mean and variance (Section 3 of Chapter 5). The
acceptance region of the UMP unbiased test of the hypothesis H: o =, is

Cy S Uai/op SC,
with

Cs
Trl) dy =1—«a

Cy
and

Ce

| Ufy) dy = (1 — 9)E,,(EX2)/o2 = n(1 — 2),
Cy

For the determination of the constants from tables of the y°-distribution, it is
convenient to use the identity

to rewrite the second condition as

PC»

[ fr+2oY) dy =1— 4.
Cy

x
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rc 2

Alternatively, one can integrate | yfrly) dy by parts to reduce the second

e e 1

condition to

CreeCl? — Cpl%e-Cal?

Actually, unless 1 is very small or o9 very close to 0 or «, the equaltails test

given by

x
C1 00

fly) dy = { fly) dy =5
0 Cey

is a good approximation to the unbiased test. This follows from the fact that

T, suitably normalized, tends to be normally and hence symmetrically distri-

buted for large n.

3. SIMILARITY AND COMPLETENESS

In many important testing problems, the hypothesis concernsa single

real-valued parameter, but the distribution of the observable random

variables depends in addition on certain nuisance parameters. For a

large class of such problems a UMP unbiased test exists and can be

found through the method indicated by Lemma 1. This requires the

characterization of the tests ¢, which satisfy

E, 0X) = «

for all distributions of X belonging to a given family A* = {P,, 8 € w}.

Such tests are called similar with respect to Y* or w since if ¢ is non-

randomized with critical region S, the latter is ‘‘similar to the sample

space” £ in that both the probability P, {X ¢S} and P,{X eZ} are

independentof 6 € w.

Let T be a sufficient statistic for A*, and let A” denote the family

{P?,0¢€w} of distributions of T as 6 ranges over w. Then any test

satisfying

(7) E[p(xX)t]=a ae. Pt

is similar with respect to A* since then

E,{¢(X)] = Ey {El¢(X)|T]}} = « forall @eo.

A test satisfying (7) is said to have Neyman structure with respect to I.

It is characterized by the fact that the conditional probability of rejection

is x on each of the surfaces T = ¢. Since the distribution on each such

surface is independent of 0 for 6€«, condition (7) essentially reduces

the problem to that of testing a simple hypothesis for each value of t.

+ Astatementis said to hold a.e. F if it holds except on a set N with P(N) = 0 for

all Pe F.
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It is frequently easy to obtain a most powerful test among those having
Neyman structure, by solving the optimum problem on each surface
separately. The resulting test is then most powerful among all similar
tests provided every similar test has Neyman structure. A condition for
this to be the case can begiven in terms of the following definition.
A family F of probability distributions P is complete if

(8) E,pl[f(x)] =0 forall PeF

implies

(9) f(z) =0 ae F.

In applications, F will be the family of distributions of a sufficient
Statistic.

Example 3. Consider n independenttrials with probability p of success, and
let X; be 1 or 0 astheith trial is a success or failure. Then T= X, +--- +X,
is a sufficient statistic for p, and the family of its possible distributions is
P ={b(p,n),0 <p S 1}. Forthis family (8) implies that

n

(t) n p' =0 forall O<p<o
t=0 t

where p = p/(l — p). Theleft-handside is a polynomialin p, all the coefficients
of which must be zero. Hence f(t) =0 for t =0,---, and the binomial
family of distributions of T is complete.

Example 4. Let X,,:::, X, be a sample from the uniform distribution
R(0, #),0 <@ < 0. Then T = max (Xj,:--, X,) is a sufficient statistic for 9,
and (8) becomes

0
ic dP#(t) = ro f@):dt =0 forall 0.

0

Letf(.) = f*(t) — f-(O) wheref* and f- denote the positive and negative parts of
f respectively. Then

vt(A) = [r+(t)t”dt and y-(A) = | fOrat
A A

are two measures over the Borel sets on (0, «), which agree forall intervals and
hence for all A. This impliesf*(t) = f~(t) except possibly on a set of Lebesgue
measure zero, and hence f(t) = O ae. Y?.

Example 5. Let Xj,°°°,Xm;  Yy---, Y, be independently normally
distributed as N(&, 07) and N(E, 7?) respectively. Then the joint density of the
variables is

1. E l EE,
C(é, 6, 7) exp (- 532" +5 de, — 5Yi + 52) ,

Thestatistic |
T = (2Y,, DX, DY;, VV?)
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is sufficient; it is, however, not complete, since E(X Y;/n — 2.X;/m) is identically

zero. If the Y's are instead distributed with a mean E(Y) = 7 which varies

independently of & theset of possible values of the parameters 6, = — 1/26,
6, = E/o®, 6, = —1/27?, 0, = m/z? contains a four-dimensional rectangle, and
it follows from Theorem 1 below that #7 is complete.

Completeness of a large class of families of distributions including
that of Example 3 is covered by the following theorem.

Theorem 1. Let X be a random vector with probability distribution

dP,(x) = C(0) exp 5 6,T(2) du(x)
j=l

and let P™ be the family of distributions of T = (T,(X),-- +, T(X)) as
6 ranges over the set w. Then Y" is'complete provided w contains a

k-dimensional rectangle.

Proof. By making a translation of the parameter space one can assume
without loss of generality that w contains the rectangle

I= {(0,,° °°, 9,): -a< 0; a,j =1,°-°, k}.

Let f(t) = ft(t) — f-() be such that

E,f(T)=0 forall Oeo.

Then for all 9 €/, if » denotes the measure induced in T-space by the
measure LU,

[erro any =femP-O doe
and hence in particular

i}ft(t) a(t) -|f-@) a(t).

Dividing f by a constant, one can take the common value of these two

integrals to be 1, so that

dP*(t) = ft(t) dr(t) and dP~(t) = f-(t) dv(t)

are probability measures, and

|els dP+(t) = |e°%sls dP-(t)

for all 6 in J. Changing the point of view, consider these integrals now
as functions of the complex variables 6; = €; + in,, j= 1,°°:,k. For
any fixed 0,,°°°, O94, O° °°; 6,, with real parts strictly between —a

and +a, they are by Theorem 9 of Chapter 2 analytic functions of 0;
in the strip Rj;—-a<& <a, —0 <%,;< 0 of the complex plane.
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For 65, -- *, 6, fixed, real, and between —a anda, equality ofthe integrals
holds on the line segment {(&,, 7): —a < & <a, yn, = 0} and can there-
fore be extended to the strip R,, in which the integrals are analytic. By
induction the equality can be extended to the complexregion {(,, «+ -, 6,):
(;,7;) © R; for j= 1,---,k}. It follows in particular that for all real
(71, °**s Nx)

fer dP*+(t) =|en dP~(t).

These integrals are the characteristic functions of the distributions P+
and P~ respectively, and by the uniqueness theorem for characteristic
functions, * the two distributions P+ and P- coincide. From the definition
of these distributions it then follows that f+(t) = f(r), a.e. », and hence
that f(t) = 0 a.e. A”, as wasto be proved.

Example 6. Let X,,°°:, Xy be independently and identically distributed
with cumulative distribution function F €., where ¥ is the family ofall con-
tinuous distributions. Then the set of orderstatistics T(X) = (X, +--+, X(Y))

was shownto besufficient for ¥ in Chapter 2, Section 6. Weshall now prove
it to be complete. Since T(X) = (XX; 2X?,---,ZX¥) is equivalent to
T(X)in the sense that both induce the same subfield of the sample space, T’(X)
is also sufficient and is complete if and only if T(X) is complete. To prove the
completeness of T’(X) and thereby that of T(X), consider the family of densities

f@) = CG, -- +, 6x) exp (—a?* + Oa +--+ + Oya)

where C is a normalizing constant. These densities are defined for all values of
the 6’s since the integral of the exponential is finite, and being continuous they
belong to #. The density of a sample of size N is

CN exp (—da2 + 6,220; tere Oy,20a)

and these densities constitute an exponential family#7). By Theorem 1, T’(X)
is complete for *, and hence also for ¥, as was to be proved. (Foranalter-
native proof, see Problems12, 13.)

The same method of proof establishes also the following more generalresult.
Let X;;,, 7=1,-°°°,N;; i=1,-°-+,¢, be independently distributed with con-
tinuous distributions F;, and let X{}) <--- < X‘"4 denote the N; observations
Xi,°°', Xiy, arranged in increasing order. Then the set of orderstatistics

1 N,). . 1 N(X§P, +++, x¢ Drees XCD... x! c))

is sufficient and complete for the family of distributions obtained by letting
F,,’ ++, F, range overall distributions of *. Here completeness is proved by
considering the subfamily 7, of ¥ in which the distributions F; have densities
of the form

fl2) = C.On, °°, O;x,) exp (—a?\; 4 Oyu +°°° + 0;v2).

* See, for example, section 10.6 of Cramér: Mathematical Methods of Statistics,
Princeton Univ. Press, Princeton, 1946.
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For the present purpose the slightly weaker property of bounded

completeness is appropriate, a family F of probability distributions being

boundedly complete if for all bounded functions f, (8) implies (9). If F

is complete it is a fortiori boundedly complete.

Theorem 2. Let X be a random variable with distribution P ¢ P and

let T be a sufficient statistic for P. Then a necessary and sufficient

condition for all similar tests to have Neyman structure with respect to T

is that the family F* of distributions of T is boundedly complete.

Proof. Suppose first that A” is boundedly complete, and let $(X)

be similar with respect to FY. Then

E[¢(X) — «4] =0 forall PeF?

and hence, if p(t) denotes the conditional expectation of ¢(X) —

given ¢,

Ey(T)=0 forall Pe F’.

Since y(t) can be taken to be bounded by Lemma 3 of Chapter 2, it

follows from the bounded completeness of A” that p(t) = 0 and hence

E[¢(X)|t] = « a.e. A”, as was to be proved.
Conversely suppose that #” is not boundedly complete. Then there

exists a function f such that |f (1)| < M for some M,that Ef(T) = 0 for

all PT e YT, and f(T) ~ 9 with positive probability for some P* « F?.

Let f(t) = cf (t) + « where c = min(a, 1 — «)/M. Then ¢ is a critical

function since 0< ¢(t)< 1, and it is a similar test since E¢(T) = «

for all P’ c P™. But ¢ does not have Neymanstructure since ¢(T) 4 «

with positive probability for at least somedistribution in Pf".

4. UMP UNBIASED TESTS FOR MULTIPARAMETER

EXPONENTIAL FAMILIES

An important class of hypotheses concerns a real-valued parameter

in an exponential family, with the remaining parameters occurring as

unspecified nuisance parameters. In manyof these cases, UMP unbiased

tests exist and can be constructed by meansof the theory of the preceding

section.
Let X be distributed according to

(10) dPX,(x) = C(6, 3) exp  ou() + Ss .7(2)| du(z), (0,0) EQ
t=1

and let @ =(0,,--°+,9,) and T = (T,,---,7;,). We shall consider the
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problemsoftesting the following hypotheses H, against the alternatives
Kj, j= 1,°°° 4:

H,:60< 65 K,: 0 > 9

H,:9< 60, or 06> 6, Ky: 0,6< 6,

Hy:0,<0< 6, K3:0 <0, or 0 > 6,

H,: 0 = 6, K,: 0 4 65.

Weshall assume that the parameter space Q is convex, and that it has
dimension k + 1, that is, that it is not contained in a linear Space of

dimension <k + 1. This is the case in particular when Q is the natural
parameter space of the exponential family. We shall also assume that
there are points in Q with 6 both < and >Op, 6,, and 9, respectively.

Attention can berestricted to the sufficient statistics (U, T) which have

the joint distribution
/ I :

(11) dPY;"(u, 1) = C(O, 9) exp (du +5 9.t:) du, t), (0,0) €Q.
. i=]

When T = is given, U is the only remaining variable and by Lemma 8
of Chapter 2 the conditional distribution of U given t constitutes an
exponential family

dP',"(u) = C,(9) exp (9u) dv (u).

In this conditional situation there exists by Corollary 2 of Chapter 3 a
UMPtest for testing H, with critical function ¢, satisfying

| | l when u > C,(t)

(12) d(u, t) = vot) when u = C,(t)

| 0 when wu <C,(t)

where the functions Cy and yy are determined by

(13) E,[6(U, T)|t] = « for all ¢.

For testing H, in the conditional family there exists by Theorem 6
of Chapter 3 a UMPtest with critical function

J when C(t) <u < C,(t)
|

(14) d(u, t) = y(t) when u= C(t), i=1,2

| 0 when wu < C,(t) or >C,(t)

where the C’s and y’s are determined by

(15) Ey[b2(U, T)|t] = Ey[2(U, T)|t] = «.
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Consider next the test ¢g satisfying

| ] when u< C,(t) or >C,(t)

(16) d(u, t)=4 y(t) when u= C,(1), i= 1,2

lo when C,(t)<u < C,(t)

with the C’s and y’s determined by

(17) E,{ds(U, TA = Eolda(U, T)|A = «.
When T = is given, this is by Section 2 of the present chapter UMP

unbiased for testing H, and UMP amongall tests satisfying (17).

Finally, let 6, be a critical function satisfying (16) with the C’s and

y’s determined by

(18) Exloa(U; T)\t] =

and

(19) E,(Ub,(U, T)|t] = «£,,[U|A.

Then given T = t, it follows again from the results of Section 2 that ¢,

is UMP unbiasedfor testing H, and UMP amongall tests satisfying (18)

and (19).

So far, the critical functions 4; have been considered as conditional

tests given 7 = 1. Reinterpreting them now as tests depending on U

and T for the hypotheses concerning the distribution of X (or the joint

distribution of U and 7)as originally stated, we have the following main

theorem.

Theorem 3. Define the critical functions: $, by (12) and (13); $2

by (14) and (15); $3 by (16) and (17); 4 by (16), (18), and (19). These

constitute UMPunbiasedlevel « testsfor testing the hypotheses H,,:**, H,

respectively when the joint distribution of U andT is given by (11).

Proof. The statistic T is sufficient for 0 if 6 has any fixed value, and

hence is sufficient for each

o, = (0,9): (0,9 €Q,0=6,;, j=, 1,2.

By Lemma8 of Chapter 2, the associated family of distributions of T

is given by
k

dP5s(t) = C(9;, 9) exp zg,dy, (t), (0,0)eo,; j=9, 1, 2.
i=1

Since by assumption Q is convex and of dimension & + 1 and contains

points on both sides of 6 = 9,, it follows that «, is convex and of dimension
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k. Thus @,; contains a k-dimensional rectangle; by Theorem 1 the
family

Pi = (P59: (6,9) €w,}

is complete; and similarity of a test ¢ on w, implies

Egl¢(U, T)|\¢) = &.

(1) Considerfirst H,. By Theorem 6 of Chapter 2 the power function
of all tests is continuousfor an exponential family. It is therefore enough
to prove ¢, to be UMP amongall tests that are similar on wy (Lemma1),
and hence amongthosesatisfying (13). On the other hand, the over-all
powerofa test ¢ against an alternative (6, #) is

(20) Exlb(UT) = | [oo api)| dPT(1)
One therefore maximizes the over-all power by maximizing the power
of the conditional test, given by the expression in brackets, separately
for each t. Since ¢, has the property of maximizing the conditional
power against any 6 > 4, subject to (13), this establishes the desired
result.

(2) The proof for H, and Hg is completely analogous. By Lemma1,
it is enough to prove #, and ¢, to be UMP amongalltests thatare similar
on both «, and w., and hence amongalltests satisfying (15). For each
t, p, and ¢, maximize the conditional powerfor their respective problems
Subject to this condition and therefore also the unconditional power.

(3) Unbiasedness of a test of H, implies similarity on w, and

0
oy, [EysP(U, T)] =O on ap.

The differentiation on the left-hand side of this equation can be carried
out under the expectation sign, and by the computation which earlier
led to (6), the equation is seen to be equivalent to

EySlUA(U, T) — aU] — 0 on Wo:

Therefore, since A? is complete, unbiasedness implies (18) and (19).
Asin the preceding cases the test, which in additionsatisfies (16), is UMP
amongall tests satisfying these two conditions. That it is UMP unbiased
now follows, as in the proof of Lemma1, by comparison with thetest
f(u, t) = a.

(4) The functions ¢,,--*-,¢, were obtained above for each fixed t¢ as
a function of u. To complete the proofit is necessary to show that they
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are jointly measurable in u and t, so that the expectation (20) exists. We

shall prove this here for the case of ¢,; the proof for the other cases is

sketched in Problems 14 and 15. To establish the measurability of 4,

one needs to show that the functions C,(t) and yp(t) defined by (12) and

(13) are f-measurable. Omitting the subscript 0, and denoting the

conditional distribution function of U given T= tf and for 0 = 9 by

Fu) = Po, {US ut}
one can rewrite (13) as

F(C) — y[FA(C) — F(C — 0) = 1 — @.

Here C = C(t) is such that F(C — 0) <1 —a< F(C), and hence

C(t) = Fy4(1 — @)

where F,1(y) = inf {u: Fu) > y}. It follows that C(t) and (rf) will

both be measurable provided F,(u) and F,(u — 0) are jointly measurable

in wu and ¢ and F, 1(1 — «) is measurablein ¢.
For each fixed u the function F,(u) is a measurable function of t, and

for each fixed ¢ it is a cumulative distribution function and therefore in

particular nondecreasing and continuouson the right. From the second

property it follows that F,(u) > c if and only if for each n there exists a

rational number r such that u<r<u+ 1/nand F(r) = c. Therefore,

if the rationals are denoted by r,, rs, ° °°,

{(u, t): Fu) = ch = NU fu, t): OS r, —u < In, Fr) = ¢}.

This shows that F,(u) is jointly measurable in u and ¢t. The proof for

F(u — 0) is completely analogous. Since Fy(y) <u if and only if

Fu) > y, F,1(y) is t-measurable for any fixed y and this completes the

proof.

Thetest ¢, of the above theorem is also UMP unbiasedif Q is replaced

by the set Q’ = QN{(6,9): 6 = 95} and hence for testing H’: 6 = 6

against 0 > 69. The assumption that Q should contain points with

0 < 6, was in fact used only to prove that the boundary set w, contains

a k-dimensionalrectangle, and this remainsvalid if Q is replaced by ’.

The remainder of this chapter as well as the next chapter will be

concerned mainly with applications of the preceding theorem to various

statistical problems. While this provides the most expeditious proof

that the tests in all these cases are UMP unbiased, there is available also

a variation of the approach, which is more elementary. The proof of

Theorem 3 is quite elementary except for the following points: (i) the
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fact that the conditional distributions of U given T = ¢ constitute an
exponential family, (ii) that the family of distributions of T is complete,
(iii) that the derivative of Ey54(U, T) exists and can be computed by
differentiating under the expectationsign,(iv) that the functions ¢,, « « -, Py
are measurable. Instead of verifying (i) through (iv) in general, as was
done in the above proof, it is possible in applications of the theorem to
check these conditions directly for each specific problem, which in some
Cases is quite easy.
Through a transformation of parameters, Theorem 3 can be extended

to cover hypotheses concerning parameters of the form

k
O*=aO+> ad, a0.

i=1

This transformation is formally given by the following lemma, the proof
of which is immediate.

Lemma 2. The exponential family of distributions (10) can also be
written as

dP50x) = K(6*, 8) exp [0*U*(x) + E9,TF(@)] du(z)
where

ura pear, My
AQ Q

Application of Theorem 3 to the form of the distributions given in
the lemma leads to UMPunbiasedtests of the hypothesis H¥: 0* < 6,
and the analogously defined hypotheses H*, H#*, H*.

Whentesting one of the hypotheses H, oneis frequently interested in
the power f(0’,0) of ¢, against some alternative 6’. As is indicated
by the notation andis seen from (20), this powerwill usually depend on
the unknown nuisance parameters 0. On the other hand, the power
of the conditional test given T = 1,

BO'|t) = E,lo(U, T)|A),

is independent of # and therefore has a known value.
The quantity {(6’|t) can be interpreted in two ways. (i) It is the

probability of rejecting H when T= 1¢. Once T has been observed to
have the value ¢ it may befelt, at least in certain problems, that this is a
more appropriate expression of the power in the given situation than
(0,9), which is obtained by averaging B(6’|t) with respect to other
values of ¢ not relevant to the situation at hand. This argumentleads to
difficulties since in many cases the conditioning could be carried even
further and it is not clear where the process should stop. (ii) A more
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clear-cut interpretation is obtained by considering B(6’|t) as an estimate

of 6(6’,2). Since

EylB(6'|T)] = BO’" 9),

this estimate is unbiased in the sense of Chapter 1, equation (11). It
follows further from the theory of unbiased estimation and the com-
pleteness of the exponential family that amongall unbiased estimates of
B(0", #) the present one has the smallest variance.*

Regardless of the interpretation, (0’|t) has the disadvantage compared
with an unconditional power that it becomes available only after the
observations have been taken. It therefore cannot be used to plan the
experiment and in particular to determine the samplesize, if this must be
done prior to the experiment. On the other hand, a simple sequential

procedure guaranteeing a specified power 6 against the alternatives 0 = 0°
is obtained by continuing taking observations until the conditional power

BOO'|t) is >B. 

5. COMPARING TWO POISSON OR

BINOMIAL POPULATIONS

A problem arising in many different contexts is the comparison of two
treatments or of one treatment with a control situation in which no
treatment is applied. If the observations consist of the number of
successes in a sequence of trials for each treatment, for example the

numberof cures of a certain disease, the problem becomesthatoftesting
the equality of two binomial probabilities. If the basic distributions are
Poisson, for example in a comparisonofthe radioactivity oftwo substances,
one will be testing the equality of two Poisson distributions.

Whentesting whether a treatment has a beneficial effect by comparing

it with the control situation of no treatment, the problem is of the one-
sided type. If &and &, denote the parameter values when the treatment
is or is not applied, the class of alternatives is K: , > &,. The hypothesis
is £, = &, if it is known a priori thatthere is either no effect or a beneficial
one; it is &,< &, if the possibility is admitted that the treatment may
actually be harmful. Since the test is the same for the two hypotheses,
the second somewhat safer hypothesis would seem preferable in most
cases.
A one-sided formulation is sometimes appropriate also when a new

treatment or process is being compared with a standard one, where the
new treatmentis of interest only if it presents an improvement. On the

* See Theorem 5.1 of Lehmann and Scheffé, ““Completeness, similar regions and
unbiased estimates,”’ Sankhya, Vol. 10 (1950), pp. 305-340.
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other hand,if the two treatments are on an equal footing, the hypothesis
¢, = ¢, of equality of two treatments is tested against the two-sided
alternatives €, ~ &,. The formulation of this problemasoneofhypothesis
testing is usually quite artificial since in case of rejection of the hypothesis
one will obviously wish to know which of the treatments is better.*
Such two-sided tests do, however, have important applications to the
problem of obtaining confidence limits for the extent by which one
treatmentis better than the other.
To apply Theorem 3 to this comparison problem it is necessary to

express the distributions in an exponential form with 6 = FT (é1, €2), for
example 0 = , — &, or &,/& such that the hypothesesofinterest become
equivalent to those of Theorem 3. In the present section the problem
will be considered for Poisson and binomial distributions; the case of
normaldistributions will be taken up in Chapter 5.

Weconsider first the Poisson problem in which X and

Y

are inde-
pendently distributed according to P(A) and P(m) so that their joint
distribution can be written as

P{X =a, Y= 9} =aexp [yiog4 + (@ + log].

By Theorem 3 there exist UMP unbiased tests of the four hypotheses
,,-+:, Hy, concerning the parameter 6 = log (u/A) or equivalently
concerning the ratio p = w/A. This includesin particular the hypotheses
SA (or w =A) against the alternatives u >A, and w=A against
ft # 4. Comparing the distribution of (X, Y) with (10), one has U = Y
and T = X + Y, and by Theorem

3

thetests are performed conditionally
on the integer points of the line segment ¥ + Y=

tf

in the positive
quadrant of the x, y-plane. The conditional distribution of Y given
X + Y = tis (Problem 12 of Chapter 2)

PLY =y|X+ y=H=(‘)( C y( ; " =O, 1,°--¢L =Y —_ — y A+ u A+ mu Y= YU, 1, 9 5

the binomial distribution corresponding to f¢ trials and probability
p = ul/(A + pw) of success. The original hypotheses therefore reduce to
the corresponding ones about the parameterp of a binomial distribution.
The hypothesis H: «< ai, for example, becomes H: p< aj(a + 1),

* For a discussion of the comparison of two treatmentsas a three-decision problem,
see Bahadur, “A property ofthe t-statistic,” Sankhya, Vol. 12 (1952), pp. 79-88, and
Lehmann,“A theory of some multiple decision procedures,” Ann. Math. Stat., Vol. 28
(1957), pp. 1-25, 547-572.
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which is rejected when Y is too large. The cutoff point depends of
course, in addition to a, also ont. It can be determined from tables ofthe

binomial, and for large ¢ approximately from tables of the normal

distribution.
In many applications the ratio p = u/A is a reasonable measure ofthe

extent to which the two Poisson populations differ, since the parameters
A and mw measure the rates (in time or space) at which two Poisson pro-
cesses produce the events in question. One might therefore hope that
the power of the above tests depends only on this ratio, but this is not
the case. On the contrary, for each fixed value of p corresponding to an
alternative to the hypothesis being tested, the power f(A, u) = (A, pA)
is an increasing function of 2, which tends to 1 as A—> co and toa as A— 0.
To see this consider the power B(p|t) of the conditional test given t. This

is an increasing function of ¢ since it is the power of the optimum test
based on ¢ binomial trials. The conditioning variable T has a Poisson
distribution with parameter A(1 + p), and its distribution for varying A

forms an exponential family. It follows (Lemma 2 of Chapter 3) that
the over-all power E[B(p|T)I is an increasing function of A. As 4-0

or oO, T tends in probability to 0 or oo, and the power against a fixed
alternative p tends to « or 1.

The abovetest is also applicable to samples Xj,°--, X,, and Y,,°°°, Y,
from two Poisson distributions. The statistics X = }”.,X, and Y=
>"_, Y; are then sufficient for 2 and y, and have Poisson distributions with
parameters mA and nu respectively. In planning an experiment one
might wish to determine m = so large thatthe test of, say, H: pSpo
has poweragainsta specified alternative p, greater than or equal to some
preassigned £6. However, it follows from the discussion of the power
function for 2 = 1 which applies equally to any other x, that this cannot
be achieved for any fixed 7 no matter how large. This is seen moredirectly
by noting that as A—> 0, for both p = py and p = p, the probability of

the event Y = Y=O tends to 1. Therefore, the power of any level «
test against p = p, and for varying 4 cannot be bounded awayfrom «.
This difficulty can be overcome only by permitting observations to be
taken sequentially. One can for example determine f, so large that the
test of the hypothesis p < po/(1 + po) on the basis of f) binomial trials

has power > # against the alternative p, = p,/(1 + p,). By observing

(X,, Y;), (Xe, Y),°** and continuing until 2(X; + Y,) = to, one obtains
a test with power > £ againstall alternatives with p = p,.*
The corresponding comparison of two binomial probabilities is quite

* A discussion of this and alternative procedures for achieving the same aim is given
by Birnbaum,“Statistical methods for Poisson processes and exponential populations,”
J. Am. Stat. Assoc., Vol. 49, pp. 254-266.
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similar. Let X and Y be independent binomial variables with joint
distribution

m XL Nt —2X n n—
PX = a, Y=y}= (") via (*) P2292"

m n myn Pe _ Pi("" (") q''92 €Xp |v(tog log}

+ (x + y) log”
q

The four hypotheses H,,---,H, can then be tested concerning the

parameter 0 = log (22/es) or equivalently concerningtheratio p = Pe /Pr
fel Jel 91

This includes in particular the problems of testing Hy: po < p, against
P2> Pp, and Hy: pp =p, against p,~p,. As in the Poisson case,
U= Y and T= X + Y, and thetest is carried out in terms of the
conditional distribution of Y on the line segment X + Y=rf. This
distribution is given by

CQ) PY=a|Xt¥=h= Clo,” \ (Mo, y=Oterne

y
hypotheses H, and Hj, the boundary value 6, of (13), (18), and (19) is 0,
and the corresponding value of p is py = 1. The conditional distribution
then reduces to (

where C,(p) = 1 Xrnol, "Y) (*) p”. In the particular case of the

PLY =y|X+4 yay eaalld)

"7"
which is the hypergeometric distribution.*

y=0,- 1,

6. TESTING FOR INDEPENDENCE IN A
2x 2 TABLE

The problem of deciding whether two characteristics A and B are
independent in a population was discussed in Section 4 of Chapter 3

* Tables facilitating the tests in this case are given, among others, by Mainland,
Herrera, and Sutcliffe, Tables for Use with Binomial Samples, New York, Department
of MedicalStatistics, N. Y. Univ. College of Medicine, 1956, and by Armsen,‘Tables
for significance tests of 2 x 2 contingency tables,” Biometrika, Vol. 42 (1955),
pp. 494-511.
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(Example 4), under the assumption that the marginal probabilities p(A)

and p(B) are known. The most informative sampleof size s was found to

be oneselected entirely from that oneof the four categories A, A, B, or B,

say A, whichis rarest in the population. The problem then reduces to

testing the hypothesis H: p = p(B) in a binomial distribution A(p,s).
In the more usual situation that p(A) and p(B) are not known,a sample

from one of the categories such as A does not providea basis for distingui-
shing between the hypothesis and the alternatives. This follows from
the fact that the number in the sample possessing characteristic B then
constitutes a binomial variable with probabilityp(B|A), which is completely
unknown both when the hypothesis is true and whenit is false. The
hypothesis can, however, be tested if samples are taken both from categories
A and 4or both from B and B. In the latter case, for example,if the
sample sizes are m and n, the numbersofcases possessing characteristic A

in the two samples constitute independent variables with binomial

distributions b(p,,m) and b(p,, n) respectively where p, = P(A|B) and
P2 = P(A|B). The hypothesis of independence of the two characteristics:
p(A|B) = p(A), is then equivalent to the hypothesis p, = pz, and the
problem reduces to that treated in the preceding section.

Instead of selecting samples from two of the categories, it is frequently

more convenient to take the sample at random from the population as a
whole. The results of such a sample can be summarized in the following
2 x 2 contingency table, the entries of which give the numbers in the

various categories.

mA
)

A
 

B xX Xx’ M

B Y Y’ N
   T T’ S

The joint distribution of the variables X, X’, Y, and Y’ is multinomial,

and is given by

P{X = x, Xy'= x’, Y= y, Y’= y’t = FatyPaBPABPABPA

s!
7) PAB exp (x tog P42 +x‘log £42 + y log 242)

PAB PABalae ty ty’ PIB
Lemma2 and Theorem 3 are therefore applicable to any parameter of the

form

0* = ay log + a, log + a, log ——PAB

Pape
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Putting a, = a, = 1, a9 = —1, A= e” = (pappan)[(pappag), and de-
noting the probabilities of A and B in the population by py = pyz + Paps

Pp = Pap + Pip; One finds

1—A
Pap = PaPpt aPABPAB

]—A
PAs = PaPsB —APABPAB

1—A
PAR = PAPB—- —\—PapPaB

1—A
Pap = PaPatA PaBPaB

Independence of A and B is therefore equivalent to A = 1, and A < 1
and A > | correspondto positive and negative dependence respectively. f

Thetest of the hypothesis of independence,or any ofthe four hypotheses
concerning A,is carried out in terms of the conditional distribution of Y
given X + X’=m, ¥ + Y=1. Instead of computing this distribution
directly, consider first the conditional distribution subject only to the
condition X¥ + X’=~m, and hence Y+ Y’=s —m=n. This is seen
to be

PX =2,Y=y|X+ X’ =m}

TINO \ Pal \Pp Pa! \Pp
which is the distribution of two independent binomial variables, the
number of successes in m and n trials with probability py = p4p/p, and
Pe = Pazlpz-. Actually, this is clear without computation since we are
now dealing with samples of fixed size m and n from the subpopulations
B and B, and the probability of A in these subpopulations is p, and ps.
If now the additional restriction ¥ + Y = ¢ is imposed, the conditional
distribution of X subject to thetwoconditions ¥ + ¥’= mandX¥ + Y=1t
is the sameas that of X given ¥ + Y =

t

in the case of two independent
binomials considered in the previous section. It is therefore given by

PIX =x|X+ X'=mX+Y=th= cle") (, "Jo

x=0,°°-,¢,

+ A is equivalent to Yule’s measure of association, which is Q = (1 — A)/(l + A).
For a discussion of this and related measures see Goodman and Kruskal, ‘‘Measures of
association for error classifications,” J. Am. Stat. Assoc., Vol. 49 (1954), pp. 732-764.
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thatis, by (21) expressed in terms of x instead of y. (Here the choice of X

as testing variable is quite arbitrary; we could equally well again have

chosen Y.) For the parameter p onefinds

_ eefe _ PAsPAaB _ 4

q2/ 1 PABPAB

From these considerations it follows that the conditional test given

X+ X’=m,X+ Y =z,fortesting any of the hypotheses concerning A

is identical with the conditional test given X + Y=t of the same

hypothesis concerning p = A in the preceding section, in which X + X‘=

m wasgiven a priori. In particular, the conditional test for testing the

hypothesis of independence A = 1, the Fisher—Irwin test, is the same as

that of testing the equality of two binomial p’s and is therefore given in

terms of the hypergeometric distribution.
At the beginningofthe section it was pointed out that the hypothesis of

independencecan betested on the basis of samples obtained in a number

of different ways. Either samplesoffixed size can be taken from A and A

or from B and B, or the sample can be selected at random from the

population at large. Which of these designs is mostefficient depends on

the cost of sampling from the various categories and from the population

at large, and also on thecost of performing the necessaryclassification ofa

selected individual with respect to the characteristics in question. Suppose, —

however, for a momentthat these considerations are neglected and that

the designs are compared solely in terms of the powerthat the resulting

tests achieve against a commonalternative. Then the following results*

can be shown to hold asymptotically as the total sample size s tends to

infinity.
(i) If samples of size m and n (m + n = 5) are taken from B and B or

from A and A, the best choice of m and nis m =n = 5/2.

(ii) It is better to select samples of equal size s/2 from B and B than

from A and 4provided |p, — 1/2| > |p4 — 1/2\-
(iii) Selecting the sample at random from the population at large is

worse than taking equal samples from either A and A or from B and B.

These statements, which we shall not prove here, can be established by

using the normal approximation for the distribution of the binomial

variables XY and Y when m and n are fixed, and by noting that under

random sampling from the population at large, M/s and N/s tend in

probability to pz and pg respectively.

* These results were conjectured by Berkson and proved by Neymanin a course

on x?.
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7. THE SIGN TEST

To test consumer preferences between two products, a sample of n
subjects is asked to state their preferences. Each subject is recorded as
plus or minus asit favors product A or B. The total number ofplus
signs is then a binomial variable with distribution b(p, n). Consider the
problem oftesting the hypothesis p = 1/2 of no difference against the
alternatives p= 1/2. (As in previous such problems we disregard here
that in case of rejection it will be necessary to decide which of the two
products is preferred.) The appropriate test is the two-sided sign test,
which rejects when | Y — 4n| is too large. This is UMP unbiased (Sec-
tion 2).

Sometimes the subjects are also given the possibility of declaring
themselves as undecided. If p,, p_, and po denote the probabilities of
preference for product A, product B, and of no preference respectively,
the numbers XY, Y, and Z of decisions in favor of these three possibilities
are distributed according to the multinomial distribution

!
 (22) rymiP-PPo (ty tz=n),

and the hypothesis to be tested is H: p, = p_. Thedistribution (22) can
also be written as

n! P+ " Po ) yn

aly lz! (; — Po =) (; — Po — P+ (> Pa Pal
and is then seen to constitute an exponential family with U = Y, T = Z,
9 = log[p,/(1 — pp — p,)), 8 = log[p,/U1 — Po — P.)]. Rewriting the
hypothesis H as p, = 1 — po — p,, it is seen to be equivalent to 6 = 0.
There exists therefore a UMP unbiased test of H, which is obtained by
considering z as fixed and determining the best unbiased conditionaltest
of H given Z =z. Since the conditional distribution of Y given z is a
binomial distribution b(p,n — z) with p = p,/(p, + p_), the problem
reducesto that of testing the hypothesis p = 1/2 in a binomialdistribution
with n — z trials, for which the rejection region is | Y — 4(n — z)| > C(2).
The UMPunbiasedtest is therefore obtained by disregarding the number
of cases in which no preference is expressed (the number ofties), and
applying the sign test to the remaining data.
The power of the test depends strongly on pp, which governs the

distribution of Z. For large po, the number n — z oftrials in the con-
ditional binomial distribution can be expected to be small, and the test
will thus have little power. This may be an advantagein thepresentcase,
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since a sufficiently high value of po, regardless of the value of p,/p_,
implies that the population as a wholeis largely indifferent with respect to
the products.
The above conditional sign test applies to any situation in which the

observations are the result of n independenttrials, each of whichis either
a success (+), a failure (—), or atie. As an alternative treatmentofties,

it is sometimes proposed to assign each tie at random (with probability
1/2 each) to either plus or minus. The total number Y’ of plus signs
after the ties have been broken is then a binomial variable with distri-
bution b(z, n) where 7 = p, + 4po. The hypothesis H becomes 7 = 1/2,
and is rejected when |¥’ — 4n| > C, where the probability of rejection
is « when 7 = 1/2. This test can be viewed also as a randomized test

based on X, Y, and Z,andit is unbiased for testing H in its original form

sincep, is = or ~ p_as7ris = or 1 /2. Since the test involves randomi-

zation other than on the boundaries of the rejection region, it is less
powerful than the UMP unbiased test for this situation, so that the
random breaking ofties results in a loss of power.

This remark might be thought to throw somelight on the question of
whether in the determination of consumer preferences it is better to
permit the subject to remain undecided or to force an expression of
preference. However, here the assumption of a completely random
assignmentin case of a tie does not apply. Even whenthe subject is not
consciousof a definite preference, there will usually be a slight inclination
toward one ofthe two possibilities, which in a majority of the cases will
be brought out by a forced decision. This will be balanced in part by

the fact that such forced decisions are more variable than those reached

voluntarily. Which of these two factors dominates depends on the

strength of the preference.
Frequently, the question of preference arises between a standard

productand a possible modification or a new product. If each subjectis

required to express a definite preference, the hypothesis of interest is

usually the one-sided hypothesis p, << p_, where + denotes a preference

for the modification. However, if an expression of indifference is per-

mitted, the hypothesis to be tested is not p, < p_ but rather p, S po + p_

since typically the modification is of interest only if it is actually

preferred. As was shown in Chapter 3, Example 8, the one-sided sign

test which rejects when the numberof plussigns is too large is UMPfor.

this problem.
In some investigations, the subject is asked not only to express a

preference but to give a moredetailed evaluation, such as a score on some

numerical scale. Depending on the situation, the hypothesis can then

take on one of two forms. One maybeinterested in the hypothesis that
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there is no difference in the consumer’s reaction to the two products.
Formally, this states that the distribution of the scores X1,°°°; Xq
expressing the degree of preference of the nm subjects for the modified
product is symmetric aboutthe origin. This problem, for which a UMP
unbiased test does not exist without further assumptions, will be con-
sidered in Chapter 6, Section 9.

Alternatively, the hypothesis of interest may continue to be H: p, = p_.
Since p_ = P{X < 0} and p, = P{X > 0}, this now becomes

H: P{X > 0} = P{LX < 0}.

Here symmetry of X is no longer assumed even when P{¥ <0} =
P{X > 0}. If no assumptions are made concerning the distribution of X
beyond the fact that the set of its possible values is given, the sign test
based on the numberof X’s that are positive and negative continues to be
UMPunbiased.
To see this, note that any distribution of X can be specified by the

probabilities

p-=P{IX<0}, py =P{X>0}, po = P{X¥ =0},
and the conditional distributions F_ and F, of X given Y <Oand ¥>0
respectively. Consider any fixed distributions F_, F’, and denote by
F9 the family ofall distributions with F_ = F_, F, = F', and arbitrary
P-» P+» Po- Any test that is unbiased for testing H in the original family
of distributions in which F_ and F, are unknownis also unbiased for
testing H in the smaller family %,. We shall show below that there
exists a UMP unbiased test ¢y of Hin Fy. It turns out that 4, is also
unbiased for testing H in F and is independent of F__, F’.. Let ¢ be any
other unbiased test of H in #, and consider any fixed alternative which
withoutloss of generality can be assumed to bein. Fy. Since ¢ is unbiased
for F,it is unbiased for testing p, = p_ in F9; the powerof 4,against
the particular alternative is therefore at least as good as that of ¢. Hence
dy is UMP unbiased.
To determine the UMP unbiased test of H in Fo, let the densities of

F” and F’, with respect to some measure u be f’ and f{. Thejoint
density of the X’s at a point (2,,---,,) with

Tye, LOS aSr Sea, Cay ay
ty

m

is

P’_Pop's.f-@i,) - “f(afi(%,) - “f(y,).

Thesetof statistics (r, s, m) is sufficient for (p_, po, p,) andits distribution
is given by (22) withx =r, y= m,z= s. Thesigntest is therefore seen
to be UMPunbiased asbefore.
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8. PROBLEMS

Section 1

1. Admissibility. Any UMP unbiased test ¢, is admissible in the sense that
there cannot exist another test ¢,, which is at least as powerful as 4, against all
alternatives and more powerful against some.

[If ¢ is unbiased and ¢’ is uniformly at least as powerful as ¢, then ¢’ is also

unbiased.]

2. Critical levels. Consider a family of tests ofH: 6 = 9) (or 6 S 4p), with level
a rejection regions S, such that (a) Pe, {X €S,} = « for all 0 <« <1, and
(b) S., = Na>a,Sa for all 0 < %» <1, which in particular implies S, C Sy,
for « <a’,

(i) Then thecritical level & is given by & = a(x) = inf {«: x € S,}.
(ii) When 6 = 65, the distribution of @ is the uniform distribution over(0, 1).

(iii) If the tests S, are unbiased, the distribution of « under any alternative
6 satisfies

Pole Sa} > Po, {% Sa} =a,

so that it is shifted toward the origin.
If the critical values are available from a number of independent experi-

ments, they can be combinedby(ii) and(iii) to provide an over-all test* of the

hypothesis.
(& <« if and only ifzeS,, and hence Pe {x Sa} = Py{X ES,} = B,(6),

which is « for 9 = 6, and = « if 6 is an alternative to H.]

Section 2

3. Let X have the binomial distribution b(p, n) and consider the hypothesis

fi P = Po at level of significance «. Determine the boundary values of the
UMPunbiased test for n = 10, « = .1, pp = .2 and « = .05, py = .4, and in

each case graph the power functions of both the unbiased and the equaltails
test.

4. Let X have the Poisson distribution P(r), and consider the hypothesis

H: 7 =7,. Then condition (6) reduces to

Ce-—1 mt 2 Ci-1

———

e

” — yy. oO. —T) — _

. Let T,/0 have a 7?-distribution with n degrees of freedom. Fortesting
: 6 = at level of significance « = .05, find n so large that the powerof the

UMPunbiasedtest is = .9 against both 6 = 2 and 6 <3. How large does n
have to beif the test is not required to be unbiased?

* For a discussion of a numberof such tests see Wallis ““Compounding probabilities
from independentsignificancetests,” Econometrica, Vol. 10 (1942), pp. 229-248, and
Birnbaum, ‘“‘Combining independenttests of significance,’ J. Am. Stat. Assoc., Vol. 49

(1954), pp. 559-574.
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6. Let X and Y be independently distributed according to one-parameter
exponential families, so that their joint distribution is given by

APo,,0,(2, y) = C(0,)e%T®) du(x)K(8,)e%2UW)dy(y),
Then a UMPunbiased test does notexist for testing H: 6, = a, 0, = b against
the alternatives 6, 4 a or 0, # b.

[The most powerful unbiased test against the alternatives 6, + a, 6,=b
and 6, = a, 0, # bhave acceptance regions C, < T(x) < C,and K, < Uly) < K,
respectively. These tests are also unbiased against the widerclass ofalternatives
K: 6, # aor 9, # b or both.]

7. Let CX, Y) be distributed according to the exponential family

AP6,,6,(%, y) = CO, Bajos"+ Fay du(x, y).

The only unbiased test for testing H: 6, Sa, 6, <b against K: 6, >a or
6, > b or bothis A(z, y) = x.

[Take a = 5 = 0,andlet A(6,, 6,) be the powerfunction of any level « test.
Unbiasedness implies B(0, 6,) = « for 6, < 0 and henceforall 6, since A(0, 6.)
is an analytic function of 6,. Forfixed 8, > 0, B(,, 0.) considered as a function
of 6, therefore has a minimumat 6, = 0,so that 0B(9,, 8)/06, vanishes at 6, = 0
for all positive 6,, and hence for all 6,. By considering alternatively positive
and negative values of 6, and using the fact that the partial derivatives ofall
orders of £(4,, 8) with respect to 6, are analytic, one finds that for each fixed
G, these derivatives all vanish at 6, = O and hence that the function 8 must be
a constant. Because of the completeness of (X, Y), 8(6,, 6) =« implies
d(x, y) = 2.]

8. For testing the hypothesis H: 6 = 6, in the one-parameter exponential
family of Section 2, let @ be the totality of tests satisfying (3) and (5) for some
—-oeSC,S5C, S$ wand0 Sy,S 1.

(1) @ is complete in the sense that given any level « test 4, of H there exists
¢ € @ such that ¢ is uniformly at least as powerful as ¢o.

(ii) If $),¢, € @, then neither of the two tests is uniformly more powerful
than the other.

(iii) Let the problem be considered as a two-decision problem, with decisions
d, and d, correspondingto acceptance and rejection of H, and with loss function
L(@, d,;) = L,(6), i =0,1. Then ¢ is minimal essentially complete provided
L,(9) < L,(9) for all 6 4 6.

(iv) Extend the result of part(iii) to the hypothesis H’: 6, <6 < 6,.
‘[(@) Let the derivative of the power function of 45 at 6, be B4,(99) =p. Then

there exists ¢ € © such that B3(89) = p and ¢ is UMP amongall tests satisfying
this condition.

(ii) See Chapter 3, end of Section 7.

(ili) See Chapter 3, proof of Theorem 3.]

Section 3

9. Let Xj,°-:, X, be a sample from (i) the normal distribution N(ac, 0),
with a fixed and 0 <o < o; (ii) the uniform distribution R(@ — 4,6 +4),
—0o <@< ©; (iii) the uniform distribution R(6,,6,), —0o < 0, <0, < o,
For these three families of distributions the following statistics are sufficient:
(i) T= (2X, UX, (ii) and (iii) T = (min (X,, -- +, X,), max (X,,°°°, X,)).
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The family of distributions of T is complete for case (iii), but for (i) and (i1)

it is not complete or even boundedly complete.

(i) The distribution of &X,/V2X? does not depend on o.]

10. Let X,,---, X,, and Y,,---, Y, be samples from N(&, 0?) and N(é, 7”).
Then T = (XX;,, UY;, &X?, X Y?), which in Example 5 was seen not to be com-
plete, is also not boundedly complete.

[Letf(t) be 1 or —1 as ¥ — @ is positive or not.]

‘1. Counterexample. Let X be a random variable taking on the values
-—1,0, 1, 2, +--+ with probabilities

Po{X = -1$ =6;  Peo{X =z} =(1 — 876", «x =0,1,°°°.

Then ? = {Po,0 < @ < 1} is boundedly complete but not complete.

12. Let A = {P} be a family of distributions with the property that for any
P, Q € A, there exists 0 < p < 1 such that pP + (1 —p)Q ©. Suppose that
h(x,,° + *, Z,) is a symmetric function satisfying

(23) [ice -+ +, ¢,) dP(x,):--dP(%,) =0 forall PEF.

Then

(24) [es ++, ty) AP,(%1) °° - aP,(%,) =O forall Py,--°,P, €F.

(1) If P,,---, Py € F there exist probabilities p,, -- -, p,, positive and adding
up to 1, such that (p,P) +--+ +piP)(pi +++: + pi) © F for alli = 1,---, k.

(2) For any integers 1 Si) <i < °° << SA, let a(i,, °° °, i) be the set of

all n-tuples (j1,° °°, jn) such that (a) every componentis one of the integers

i;,° °°, iy, and (b) each of these integers occurs at least once among (jis ** y Jn)

If

Mju Jn) = Pi,’ P|Me "++, Uy) AP;(1) ++ AP;,(Xn);

then (23) implies

X Minsjd =0
aigst

for all (i,,°--, i,) with k Sn.

This is proved by induction over k. For k = it is a direct consequence of
(23). To prove for example that dia(1,2)L(Jv °° + jn) = 9, let P = (pyP, + P2P2)/

(py, + p2) be the element of # guaranteed by (1). Then

0 =|Wary, * «+; %_) AP) «> + APC,py + po)"

= > I(js °° sn) + > (jis ts nds

a(1,2) )a(1) Ua(2

and the result follows since the second term onthe right-hand side has already

been shownto be zero.
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(3) It follows from (2) with k =n that XJ(ji, °° *s Jn) = 0 when the summation
extends over all permutations(Jv sJn) Of U,--+, 2). Since J is symmetric
in its n arguments, this showsthat /(1, ---,) = 0, as was to be proved.]

13. Continuation. Let © be the class of uniform distributions over finite
intervals, and let F be the class of convex combinations of a finite number of
distributionsfrom@. If X,,---, X, are identically and independently distributed
according to P € Z, the set of orderstatistics T = (¥™,---, X¥') is sufficient
for Y, and the family #7 of distributions of T is complete.

[That 7 is sufficient follows from Example7 of Chapter 2. Completeness of
P?is seen by applying the preceding problem to the equation E,h(T) = 0 for
all Pe F.]

Section 4

14. Measurability of tests of Theorem 3. The function ¢3 defined by (16) and
(17) is jointly measurable in u andt.

[With C, =v and C, = w,the determining equations for v, w, 7, Yo are

(25) Fo) +0 — Fyw)] + [F@) — Fv—)] + ylF,0v) — Fw —)] = «

and

(26) Gdv—-) + [1 — G,(w)] + ¥4[Gv) — Gv—)] + vAG(w) — GAw—)] = «

where

Uu

(27) F(u) -| Ci(,)e"Y dv{y), Gu) -| C(9,)e°24 dvi(y)
—®

denote the conditional cumulative distribution function of U given ¢ when
6 = 6, and 6 = 6,respectively.

(1) For each O Sy Sa let vy, ) = Fy) and wy, ) = Fol —a +),
where the inverse function is defined as in the proof of Theorem 3. Define
7[y, t) and y,(y, t) so that for v = u(y, ft) and w = w(y, t),

Fiv—) + y,[Fiv) — Fi(v—)] = y

1 — Fw) + y1[Fi(w) — F(w—-)] = « — y.

(2) Let Ay, t) denote the left-hand side of (26), with v = u(y, t), etc. Then
H(0, t) > «and H(a«, t) <a. This follows by Theorem 2 of Chapter 3 from the
fact that v(0, t) = —o and w(a, t) = «© (which shows the conditional tests
corresponding to y = 0 and y = « to be one-sided), and thattheleft-handside
of (26) for any y is the powerof this conditionaltest.

(3) Forfixed ¢, the functions

d Ay, t) = Gv—) + y,[Gv) — Gv—)]
an

ALfy, t) = 1 — Gw) + y[Gw) — Gw—)]

are continuousfunctions of y. This is a consequence ofthe fact, which follows
from (27), that a.e. A” the discontinuities andflat stretches of F;, and G, coincide.
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(4) The function H(y, #) is jointly measurable in y andt. This follows from

the continuity of H by an argumentsimilar to the proof of measurability of F,(u)

in the text. Define
y(t) = inf {y: Hy, 0 < «},

and let v(t) = vfy(t), ft], etc. Then (25) and (26) are satisfied for all tr. The

measurability of v(t), w(t), 7,(¢), and y(t) defined in this mannerwill follow from

measurability in ¢ of y(t) and F;“{y(a)]._ This is a consequenceoftherelations,

which hold forall real c,

{t: yt) <c} =U ft: Hr, 0 < &}
r<c

where r indicates a rational, and

{t: FOUyO) Sc} = {t: y@) — Fc) S 0}.]

15. Continuation. The function ¢, defined by (16), (18), and (19) is jointly

measurable in u and ¢.
[The proof, which otherwise is essentially like that outlined in the preceding

problem, requires the measurability in z and f ofthe integral

gz, t) -| - u dF,(u).

This integral is absolutely convergentforall ¢ since F; is a distribution belonging

to an exponential family. For any z < ©, o(z, t) = lim g,(2, 1), where

ce ° ;—] .

wie =¥(¢-Z)[A(2Ge - 0) ~r(2-£-0)|

and the measurability ofg follows from that of the functions g,. The inequali-

ties corresponding to those obtained in step (2) of the preceding problem result

from the property of the conditional one-sided tests established in Problem 18

of Chapter 3.]

16. The UMPunbiasedtests of the hypotheses Hj, -- -, H, of Theorem 3 are

unique if attention is restricted to tests depending on U andthe T’s.

Section 5

17. Let X and Y be independently distributed with Poisson distributions

P(A) and P(u). Find the power of the UMPunbiasedtest of H: » < A, against

the alternatives 4=.1, w =.2; 4=1, w=2; 4=10, w =20; A =.1,

pe = .4; at level of significance « = .1.

[Since T = X + Y has the Poisson distribution P(A + p), the poweris

1 =F potAMaw
t=0 °

where A(t) is the power of the conditional test given ¢ against the alternative in

question.]

18. Sequential comparison of two binomials. Consider two sequences of

binomial trials with probabilities of success p, and pz respectively, and let

p = (polqa) + (pilqi)-
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(i) If « < , no test with fixed numbers of trials m and n for testing H:
= po Can have power = f against all alternatives with p = py.
(ii) The following is a simple sequential sampling scheme leading to the

desired result. Let the trials be performed in pairs of one of each kind, and
restrict attention to those pairs in which oneofthetrials is a success and the
other a failure. If experimentation is continued until N such pairs have been
observed, the number of pairs in which the successful trial belonged to the
first series has the binomial distribution b(z, N) with 7 = Pigel(Pid2 + Pog) =
I/(1 +p). A test of arbitrarily high power against p, is therefore obtained
by taking N large enough.

(iii) The pairs of trials to which attention is restricted in (ii) constitute
independent binomialtrials with probability 7 of success. Analternative pro-
cedure for testing H: 7 = 7, (or 7 <7) to that given in (ii) is the sequential
probability ratio test, based on a sequence of such pairs, for testing 7 = 7
against 7 = 7.

Section 6

19. Runs. Consider a sequence of N dependenttrials, and let Y; be 1 or 0
as the ith trial is a success or failure. Suppose that the sequence has the
Markovproperty*

P{X; = I|2,, 7s ",0;_y} = P LX; = I 2;_y}

and the property of stationarity according to which P{X, = 1} and P{X; =
1|x;_,} are independentof i. The distribution of the X’s is then specified by the
probabilities

Pi=P{X;, =X1.=1} and py =P{X,; =1|X,_, =0}

and bythe initial probabilities

m=P{X,=1} and m=1—7, = P{X, =0}.

(i) Stationarity implies that

™ =Pol(Po +9), 7 =4!(Po + )-

(ii) A set of successive outcomes 2;, %;41,° °°, 24; is said to form a run of
zeros if 7 = 24, =*+* = 4,4; =0, and x_, =1 or i = 1, and 2,4,;,, = 1 or
i+j=N. A run of ones is defined analogously. The probability of any
particular sequence of outcomes(2,, - - -, Ly;) 1S

1
V yn —VA_AUAM —U

+ PoP1 9190 >
Pot 9

where m and n denote the numberof zeros and ones, and u and v the numberof
runs of zeros and ones in the sequence.

20. Continuation. For testing the hypothesis of independence of the X’s,
Hf: Po = Py, against the alternatives K: po <p, consider the run test, which
rejects H when the total number of runs R = U + is less than a constant

* For a recent discussion of statistical problems in more complex Markov chains,
see Anderson and Goodman,“‘Statistical inference about Markov chains,”’ Ann. Math.

Stat., Vol. 28 (1957), pp. 89-110, and Goodman, ‘Simplified runs tests and likelihood

ratio tests for Markoff chains,”’ Biometrika, Vol. 45 (1958), pp. 181-197.
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C(m) depending on the number m of zeros in the sequence. When R = C(m),

the hypothesis is rejected with probability y(m), where C andy are determined by

Py{R < C(m)|m} + y0m)Px {R = C(m)|m} = «.

(i) Against any alternative of K the most powerful similar test (which is at
least as powerful as the most powerful unbiased test) coincides with the run test
in that it rejects H when R < C(m). Only the supplementary rule for bringing

the conditional probability of rejection (given m) up to « depends onthe specific
alternative under consideration.

(ii) The run test is unbiased against the alternatives K.
(iii) The conditional distribution of R given m, when istrue, is*

2hMr 1) 

 

P{R =2r} = ;

0")
m—1\(n -—1 m—1\(n —1

rearay alta) a =a)

[(i) Unbiasedness implies that the conditional probability of rejection given
mis « for all m. The most powerful conditionallevel « test rejects H for those

sample sequences for which A(u, v) = (po/py)"(9ilqo)” is too large. Since
Po < pi and g, < qo and since |v — u| can only take on the values 0 and |, it
follows that

A(1, 1) > AQ, 2), AQ, 1) > AQ, 2) > AQ, 3), AG, 2) > + °°.

Thusonly the relation between A(i, i + 1) and A@ + 1, i) depends on the specific

alternative, and this establishes the desired result.
(ii) That the above conditionaltest is unbiased for each m is seen by writing

its power as

B(po, pilm) = (1 — y)P{R < C(m)|m} + yP{R S C(m)|m},

since by (i) the rejection regions R < C(m) and R < C(m) + 1 are both UMP
at their respective conditionallevels.

(iii) When is true, the conditional probability given m of any set of m zeros
m+n
m ), The number of ways of dividing 1 ones into rand ‘n onesis | /(

groupsis (” _ ') andthat of dividing m zeros into r + 1 groupsis (™ , I). The

conditional probability of getting r + 1 runs of zeros and r runs of onesis

therefore (” 7 y(" 7 ')/ (” + "). To complete the proof, note that the
r r—\| m

total number of runs is 2r + 1 if and only if there are either r + 1 runs of
zeros and r runs of ones or r runs of zeros and r + 1 runs of ones.]

* This distribution is tabled by Swed and Eisenhart, ‘“‘Tables for testing randomness
of grouping in a sequenceofalternatives,” Ann. Math. Stat., Vol. 14 (1943), pp. 66-87.
For further discussion of the run test see Wolfowitz, ‘“‘On the theory of runs with some
applications to quality control,” Ann. Math. Stat., Vol. 14 (1943), pp. 280-288.
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JARank-sum test. Let Y,,---, Yy be independently distributed according
to the binomial distributions b(p;, n;), i = 1,--+-, N, where

Pi = WL + 7+820],

This is the model frequently assumed in bio-assay, where x; denotes the dose,
or some function of the dose suchasits logarithm,of a drug given to n,; experi-
mental subjects, and where Y; is the number among these subjects which respond
to the drug at level x;. Here the x; are known, and « and 6 are unknownpara-
meters.

(i) The joint distribution of the Y’s constitutes an exponential family, and
UMPunbiased tests exist for the four hypotheses of Theorem 3, concerning
both « and f.

(ii) Suppose in particular that x; = Ai, where A is known, andthat n; = 1
for alli. Let be the numberofsuccesses in the N trials, and let these successes
occur in the syst, sond,---,s,th trial where s; <s,<--: < Sn» Then the
UMPunbiasedtest for testing H: B =0 against the alternatives 8 > 0 is carried
out conditionally, given n, and rejects when the rank-sum >7~=15; is too large.*

(iit) Let Y,,---, Yy, and Z,,---,Zy be two independent sets of experiments
of the type described at the beginning of the problem, corresponding, say, to
two different drugs. If Y, is distributed as b(p;,m,) and Z; as b(z;,n,;), with

Pi = WM + eHFPuy, ns = ALL + e+8m],
UMPunbiasedtests exist for the four hypotheses concerning y — « and 6 — f.
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CHAPTER 5

Unbiasedness: Applications to Normal

Distributions; Confidence Intervals

1. STATISTICS INDEPENDENT OF A
SUFFICIENT STATISTIC

A general expression for the UMP unbiased tests of the hypotheses

H,: 0 < 6) and H,: 0 = 6, in the exponential family

(1) dP»s(x) = C(8, 8) exp [BU(z) + 2d,T(x)] du(@)

was given in Theorem 3 of the preceding chapter. However, this turns

out to be inconvenient in the applications to normal and certain other

families of continuous distributions, with which weshall be concerned in

the present chapter. In these applications, the tests can be given a more

convenient form, in which they no longer appear as conditional tests in

terms of U given f but are expressed in terms of a single test statistic.

This reduction depends on the existence of a statistic V = h(U, T)

which is independent of T when 6 = 69, and which for each fixed ¢ is

monotone in U for H, and linear in U for Hy. Thecritical function 4,

for testing H, thensatisfies
(1 when v > Cy

(2) ov) = \" when v = Cy

0 when v < Cy

where C, and y, are no longer dependent on f¢, and are determined by

(3) Eo, $V) = a.

Similarly the test ¢, of H, reduces to

| when v < C, orv>C,

(4) d(v) = vi when v = C,; p= 1,2

[0 when C) <0 <C,

160
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where the C’s and y’s are determined by

(5) E,[$V = «
and

(6) Ey,(VG(V)] = aE,(V).
The corresponding reduction for the hypotheses H,: 0 <0, 0r6> 96,

and H,: 9, < 0 < 6, requires that V be monotone in U for each fixed t,
and be independent of T when 6 = 6, and 6 = ,. Thetest ¢; is then
given by (4) with the C’s and »’s determined by

(7) Ey, $V) = Eo, $3(V) = a.

The test for Hy, as before hasthe critical function

Pav; a) = 1 — 6,(v5 1 — o).
This is summarized in the following theorem.

Theorem 1. Supposethat the distribution of X is given by (1), and that
V = AU, T) is independent of T when 0 = 6). Then d, is UMP unbiased
for testing H, provided the function

h

is increasing in u for each t, and 4, is
UMP unbiasedfor H, provided

h(u, t) = a(t)u + b(t) with a(t) > 0.

The tests $ and $3 are UMP unbiasedfor H, and H, if V is independent of
T when 6 = 0, and 64, andif h is increasing in u for eacht.

Proof. Thetest of H, defined by (12) and (13) of Chapter 4 is equivalent
to that given by (2), with the constants determined by

Po (V > Co(d)|t} + YDPo, V = Coat} = «.

By assumption, V is independent of T when 0 = 6y, and C, and 7,
therefore do not depend on ¢. This completes the proof for H,, and that
for H, and Hyis quite analogous.
The test of H, given in Section 4 of Chapter 4 is equivalent to that

defined by (4) with the constants C; and y; determined by Evloa V, t)|t] =

mane V—b), V — b(t)Fa[44.9 407] = an,[41]
which reducesto

EyIVoY, t)|t) = aE,[Vt].

Since V is independent of T for 6 = 6y, so are the C’s and v’s, aS was to
be proved.



162 UNBIASEDNESS: APPLICATIONS [5.1

To prove the required independence of V and 7 in applications of

Theorem 1 to special cases, the standard methods ofdistribution theory

are available: transformation of variables, characteristic functions,

and the geometric method. Frequently, an alternative approach, which

is particularly useful also in determining a suitable statistic V, is provided

by the following theorem.

Theorem 2. Let the family of possible distributions of X be P=

{P,, 0 € wh, let T be sufficient for P, and suppose that the family P* of

distributions of T is boundedly complete. If V is any statistic whose dis-

tribution does not depend on 9, then

V

is independentofT.

Proof. For any critical function ¢, the expectation E,f(V) is by

assumption independent of 3. It therefore follows from Theorem 2 of

Chapter 4 that £[¢(V)| 2] is constant (a.e. A”) for every critical function d

and hence that V is independentof 7.

Corollary 1. Let P be the exponential family obtained from (1) by

letting 6 have some fixed value. Then a statistic V is independent of T

for all 8 provided the distribution of V does not depend on ¥.

Proof. It follows from Theorem | of Chapter 4 that #* is complete

and hence boundedly complete, and the preceding theorem is therefore

applicable.

Example 1. Let X1,°°°, Xn be independently, normally distributed with

mean & andvariance 2. Supposefirst that o? is fixed at 05. Then the assump-

tions of Corollary 1 hold with T = X = DXX;,/n and % proportional to &._ Let f

be any function satisfying

f(y + 65°55 ®_ + c) = f(%y °° +s Xn) for all real c.

If
V =f(%, °°) Xn),

then also V =f(X%, —§,.°°°) Xn — £). Since the variables X; — & are distri-

buted as N(0, 02) which does not involve , the distribution of V does not depend

on €. It follows from Corollary 1 that any such statistic V, and therefore in

particular V = x(x, — X), is independent of X. This is true for all o.

Suppose, on the other hand, that E is fixed at &). Then Corollary | applies

with T = XX, — €,)? and @ = —1/20". Let f be any function such that

f(c®, °° +, C&n) =ft,) forall c > 0,

andlet

V =f{(% — So's Xn — §o):

Then V is unchanged if each X; — & is replaced by (X; — £,)/o and since these

variables are normally distributed with zero mean and unit variance, the distri-

bution of V does not depend ono. It follows thatall suchstatistics V, and hence

for example

(¥ —&VEX, — XR and (KX — &)/VUCX — Fo),
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are independent of uCXY; — &)?. This, however, does not hold for all &, but

only when & = &5.

Example 2. Let U,/oj and U,/c3 be independently distributed according to
z°-distributions withf; andf, degrees of freedom respectively, and suppose that
o3/o% =a. The joint density of the U’s is then

I
Cuilase 1 exp | —5,303 0" + Wo)|

so that Corollary 1 is applicable with T = aU, + U, and & = —1/203. Since
the distribution of

_U, _ U,/05

~ U; ° U,oF

does not depend on og, V is independent of aU, + U,. For the particular case
that o, = 0, this proves the independence of U,/U, and U, + U,.

 

Example 3. Let (X;,:°:, X,) and (Y,,°°:, Y,) be samples from normal

distributions N(é, 02) and N(y,7?) respectively. Then T = (X, 2X2, Y, DY?)
is sufficient for (¢, 07, 7, 7”) and the family of distributions of T is complete.

Since _

u(X; — X)¥; — Y)

VX; — XRUCY; — VY)?

is unchanged when X; and Y; are replaced by (X; — &)/o and (Y; — »)/7, the

distribution of V does not depend on any of the parameters, and Theorem 2

shows V to be independentof 7.

 

 

2. TESTING THE PARAMETERS OF A

NORMAL DISTRIBUTION

The four hypotheses o < 09, 6 = 09, EX &o, € = & concerning the
variance o” and mean € of a normaldistribution were discussed in Chapter
3, Section 9, and it was pointed out there that at the usual significance

levels there exists a UMPtest only for the first one. We shall now show
that the standard(likelihood ratio) tests are UMP unbiased for the above

four hypotheses as well as for some of the corresponding two-sided
problems.
For varying & and o, the densities

2

(8) (2702) —"? exp (- meexp (- 53— La? + =:2,

of a sample X;,---, X,, from M(é, 0?) constitute a two-parameter exponen-
tial family, which coincides with (1) for

06= —1/207, b&b =n/o?, U(x) = X2?, T(x) = & = Xz,/n.

By Theorem 3 of Chapter 4 there exists therefore a UMP unbiasedtest
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of the hypothesis 9 > 6), which for 9) = —1/205 is equivalent to

H:o > oy. Therejection region of this test can be obtained from (12)
of Chapter 4, with the inequalities reversed since the hypothesis is now

6 > 6). In the present case this becomes

En? < C,(8)
where

P,, (SX? < C,(A)|z} = «.
If this is written as

Lax? — n# < C2),

it follows from the independence of UX? — nX? = X(X, — X)? and X

(Example 1) that C,(€) does not depend on z. Thetest therefore rejects

when L(x, — £)? < C,, or equivalently when

(9) U(x, — £)/09 <C,

with Cy determined by P,{2(X, — XY)2/o2< Cyt =a. Since U(X, — X)?/

og has a y?-distribution with n— 1 degrees of freedom, the deter-

mining condition for Co is

Co

(10) { x2_1(y) dy = «

where 72_, denotes the density of a x? variable with n — 1 degrees of

freedom.

The same result can be obtained through Theorem 1. A Statistic

V = A(U, T)of the kind required by the theorem—that is, independent

of X for o = o, andall —is

V = 0X, — XP = U = aT.

This is in fact independent of X for all € and o?. Since A(u, t) is an

increasing function of u for each ¢, it follows that the UMP unbiased

test has a rejection region of the form V< Cp.

This derivation also shows that the UMP unbiased rejection region for

H:o< 0, or o= ogis

(11) Cy < Ue; — HP < C,

where the C’s are given by

Cy /o4 5 C,/0% >

(12) | 42 _s(y) dy = [ 42 _i(y) dy = «.
C, /of C,/s3
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Since A(u, t) is linear in u, it is further seen that the UMP unbiased
test of H: o = oy has the acceptance region

(13) Cy < Xe, — #P/op < CG
with the constants determined by

C2 | CS
(14) dn-y) dy = —— | en-aly) dy = 1 — «.

Cy n— | Cy

This is just the test obtained in Example 2 of Chapter 4 with X(~, — #)?
in place of Xa; and n — | degrees of freedom instead of n, as could have
been foreseen. Theorem | shows for this and the other hypotheses
considered that the UMP unbiased test depends only on V. Since the
distributions of V do not depend on &, and constitute an exponential
family in o, the problems are thereby reduced to the corresponding ones
for a one-parameter exponential family which were solved previously.
The power of the above tests can be obtained explicitly in terms of the

z°-distribution. In the case of the one-sided test (9) for example, it is
given by

C.c2 C952/o

=e -| tery) dy.on

fax, — XPBlo) = P,; \

The same method can be applied to the problems of testing the hypo-
theses €< &against & > &and & = &, against § 4 &. Asis seen by
transforming to the variables X, — &, there is no loss of generality in
assuming that £; = 0. It is convenient here to make the identification
of (8) with (1) through the correspondence

O=né/o*, @®=—1/20°%, Ua)=%, T(x) = Xz.

Theorem 3 of Chapter 4 then shows that UMP unbiasedtests exist for
the hypotheses 0 < 0 and 0 = 0, which are equivalent to  < Oand & = 0.
Since

V = XIVXX, — XP = UT — nv?

is independent of T= XX? when = 0 (Example 1), it follows from
Theorem | that the UMP unbiased rejection region for H:€< is
V = C, or equivalently

 

(15) (x) > Cy
where

V/nk
(16) t(x) = 

J+ u(x2; — ae
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In order to apply the theorem to H’: § = 0, let W= X[V=X?. This

is also independent of XX? when & = 0, and in addition is linear in

U =X. Thedistribution of W is symmetric about 0 when é = 0, and

conditions (4), (5), (6) with W in place of V are thereforesatisfied for the

rejection region |w| > C’ with Pz_y {|W| 2 C’} =a. Since

— V(a— InW@)

V/1 — nWXa)

the absolute value of ¢(x) is an increasing function of | W(x)

rejection region is equivalent to

(17) lt(x)| = C.

From (16) it is seen that t(X) is the ratio of the two independent random

variables W/nX/o and VX(X,; — X)?/(n — 1)o%. The denominator is

distributed as the square root of a y? variable with n — | degrees of

freedom, divided by n — 1; the distribution of the numerator, when & = 0

is the normal distribution N(0, 1). The distribution of such a ratio is

Student’s t-distribution with n — 1 degrees of freedom, which has proba-

bility density

 t(x)

, and the
 

 

ty) = 1 T(4n) l .

“mm ceeeee "
n— 1

 (18)

The distribution is symmetric about 0, and the constants Cy and C of

the one- and two-sided tests are determined by

a) fnady= a and |tay = 3
For € £0, the distribution of 1(X) is the so-called noncentralt-distri-

bution, which is derived in Problem 3. Some properties of the power

function of the one- and two-sidedf-test are given in Problems|, 2, and 4.

Wenote here that the distribution of *(X), and therefore the power of the

above tests, depends only on the noncentrality parameter 0 = Vnélo.

This is seen from the expression of the probability density given in

Problem 3, but can also be shown by the following direct argument.

Suppose that é’/o’ = é/o #0, and denote the common value of &'/&

and o’/o by c, which is then also different from zero. If X, = cX, and

the X, are distributed as N(é, 0”), the variables X; have distribution

N(E’, o’2). Also t(X) = t(X’), and hence t(X") has the same distribution

as t(X), as was to be proved.
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If €, denotes any alternative value to é = 0, the power A(é, o) = f(6)
depends ono. As o-—>0o, 6-0, and

B(,, 0.) +f(0) = BO, o) = a,

since fis continuous by Theorem 6 of Chapter 2. Therefore, regardless
of the sample size the probability of detecting the hypothesis to be false
when & = &, > Ocannot be made >f > «forallo. This is not surprising
since the distributions N(0, o?) and N(é,, 6”) becomepractically indis-
tinguishable when

o

is sufficiently large. To obtain a procedure with
guaranteed power for ¢ > &,, the sample size must be made to depend
ono. This can be achieved by a sequential procedure, with the stopping
rule depending on an estimate of o, but not with a procedure of fixed
sample size. (See Problems 15 and 17.)
The tests of the more general hypotheses é < &, and é = &, are reduced

to those above by transforming to the variables X¥; — &. Therejection
regions for these hypotheses are given as before by (15), (17), and (19),
but now with

Vint — &y)

J u(x, — x)?
n— |

It is seen from the representation of (8) as an exponential family with
6 = né/o” that there exists a UMP unbiased test of the hypothesis a <
§/o” < b, but the method doesnot apply to the moreinteresting hypothesis
aS &<b;* noris it applicable to the corresponding hypothesis for the
mean expressed in o-units: a< é/o< 5b, which will be discussed in
Chapter6.
The tests for mean and variance, which above were proved to be UMP

unbiased, in one important respect behavevery differently. If the variables
X,,°**, X, constitute a sample from any distribution with finite variance
and zero mean andif the sample size n is sufficiently large, the distribution
of the statistic (16) will be approximately the normaldistribution N(0, 1).
This follows from the central limit theorem, according to which

VnX/o has the limiting distribution N(O, 1), and the fact that
2(X; — X)?/(n — 1)o? tends to one in probability, by a convergence
theorem of Cramér.t As a consequence, at least for large samples,

t(x) = 
 

 

* This problem is discussed in Section 3 of Hodges and Lehmann, “Testing the
approximate validity of statistical hypotheses,” J. Roy. Stat. Soc., Ser. B., Vol. 16
(1954), pp. 261-268.

t For a statement and proofof this theorem see Cramér, Mathematical Methods of
Statistics, Princeton Univ. Press, 1946, p. 254.
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the size of the t-test will be approximately equal to the stated significance

level even when the underlying distribution is not normal.*

On the other hand, the limiting distribution of L(X, — X)2/Vno?is

not independent of the underlying distribution of the X,; but depends on

the fourth moment E(X}). To see this, suppose withoutloss of generality

that E(X,) = 0 since X(X, — X)? does not depend on the meanofthe X;.

Then VnX has the limiting distribution N(0, 0?) and nX2/4/n tends to

zero in probability. It follows that [Z(X¥; — X)? — no®|/Vn has the

same limiting distribution as [XX7 — no®|//n; namely by the central

limit theorem the normal distribution NM(0, 7”) where 7? is the variance

of the variables X?. As a consequence, the size of the variance tests (9)

and (11) may be far from the stated significance levels even for large

samples when the underlying distribution’ is not normal.

3. COMPARING THE MEANS AND VARIANCES

OF TWO NORMAL DISTRIBUTIONS

The problem of comparing the parameters of two normal distributions

arises in the comparison of two treatments, products, etc., under conditions

similar to those discussed in Chapter 4 at the beginning of Section 5.

Weconsiderfirst the comparison of two variances o® and 7°, which occurs

for example when oneis concerned with the variability of analyses made

by two different laboratories or by two different methods, and specifically

the hypotheses H: 7?/o? < Ay and H’: 1*/o? = Ao,

Let X¥ =(X,,°°*, X,,) and Y=(Y¥,,-°:, Y,) be samples from the

normal distributions N(é, 02) and N(7, 7?) with joint density

]1 v2 m—é_ nn _
Cle na, sdexp (— shy Bat — a tah + e+ Ta)

This is an exponential family with the four parameters

6= 1/272, b= —1/20% B,=nn/7, 93 = mé/o”

* More detailed investigations of the behavior of the t-test for non-normal distri-

butions were carried out by Gayen,“Thedistribution of Student’s ¢ in random samples

of any size from non-normal universes,” Biometrika, Vol. 36 (1949), pp. 353-369,

and by Geary, “The distribution of Student’s ratio for non-normal samples, Suppl.

J. Roy. Stat. Soc., Vol. 3 (1936), pp. 178-184. In particular, it is shown there that the

limiting behavior takes over much soonerfor the two-sided than for the one-sidedtest,

andthat in fact the one-sided test for small samplesis quite sensitive to departures from

normality. See also Tukey, “Some elementary problemsof importance to small sample

practice,” Human Biology, Vol. 20 (1948), pp. 205-214, and the survey paper by Wallace,.

“Asymptotic approximations to distributions,” Ann. Math. Stat., Vol. 29 (1958), pp.

635-654.
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and the sufficient statistics

U=ZXY?, T,==5X2, T.=Y, T,=X%.

It can be expressed equivalently (see Lemma 2 of Chapter 4), in terms of
the parameters

O* = (—1/27?) + (1/2A,02), OF = 9%, (i = 1, 2, 3)

and thestatistics

U*=ZY?2, TES EXP +(IAJEY?2, TK=Y, TH=X.
The hypotheses 6* < 0 and 0* = 0, which are equivalent to H and H’
respectively, therefore possess UMP unbiased tests by Theorem 3 of
Chapter4.

When 7? = Ajo?, the distribution of the statistic

_ 2u(Y; — Y)?/Ag _ u(¥; — Y¥)?/7?

— U(X, — X)? — U(X, — X)?/0?

 

does not depend on o, &, or 7, and it follows from Corollary 1 that V
is independent of (77, 73, T;)._ The UMP unbiasedtest of H is therefore
given by (2) and (3), so that the rejection region can be written as

2(Y; — Y}*[Ad(n _ I) > C,.

aX, — XP[(m — 1) ~
When 7° = Ajo?, the statistic on the left-hand side of (20) is the ratio
of the two independent x? variables X(Y, — Y)?/7? and XX, — X)?/0?,
each divided by the numberofits degrees of freedom. The distribution
of such a ratio is the F-distribution with n — 1 and m — 1 degrees of
freedom, which has the density

(21) F-1,m-11Y)

T[d0m + n — 2)] (” —i yr—D-1

 (20)

 
 

 

~ Tim — DIPB@— DI \m—1 n—1 we

The constant Cy of (20) is then determined by

(22) [ Fyamaly) dy = 0.
In order to apply Theorem 1 to H’let

W = 2(Y; — Y)?/Ay

2(X; — XP + (1/A,)=(¥; — ¥)?
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Thisis also independentof T* = (TT, TZ, 73) when 7 = Ago”, andis linear
in U*. The UMP unbiased acceptance region ofH’is therefore

(23) Qsweed
with the constants determined by (5) and (6) where V is replaced by W.
On dividing numerator and denominator of W by o?it is seen that for
7? = Ajo, the statistic W is a ratio of the form W,/(W, + W,) where

W, and W, are independent ? variables with n — 1 and m — | degrees

of freedom respectively. Equivalently, W= Y/ + Y) where Y=
W,|W., and where (m — 1) Y/(n — 1) has the distribution F,,_,,,-1. The
distribution of W is the beta-distribution} with density

(24) Byn—1),40n—-1)()

[4(m + n — 2)]
= wim—B(p — wy) Owl.
Timpani” “-™”
 

Conditions (5) and (6), by meansof the relations

E(W nal
(W) = m+tn—2

and
n— |

W'Brn—1),4m—-1)(") = m+n—2 Brns1y,sn—1)()

become

Ce ('g

(25) | By—1),4m—)) dw = [ Byin4.1),40n-1)) dw=1— a.

The definition of V shows that its distribution depends only on the

ratio 72/02, and so does the distribution of W. The powerof the tests

(20) and (23) is therefore also a function only of the variable A = 7?/o?;

it can be expressed explicitly in terms of the F-distribution, for example

in the first case by

_ (UCY; — Y)?/7?(n — 1) CoAol

PA) = P\ISCX, — X)*/o%(m — 1) 2 A |
 

-| FamY) dy.
CpAo/A

The hypothesis of equality of the means , 7 of two normal distributions

with unknown variances o? and 7?, the so-called Behrens-Fisher problem

is not accessible by the present method. (See Example 5 of Chapter 4;

+ The relationship W = Y/(1 + Y)showsthe F- and beta-distributions to be equiva-

lent. An advantageofthe latter are the extensive tables of its cumulative distribution

function, Tables of the Incomplete Beta Function, Cambridge Univ. Press, 1932, edited

by Karl Pearson.
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for a possible approach to this problem see Chapter 6, Section 6.) We
Shall therefore consider only the simpler case in which the two variances
are assumed to be equal. The joint density of the X’s and Y’s is then

l oe §(26)  C(é, 7, 6) exp |- 58 (Laz + Ly?) + a La, + 7 Sy,| 5

which is an exponential family with parameters

0 = n/o?, 1= é/o*, 8, = —1/20c?

and the sufficient statistics

U = XY,, T, = 2X, T, = XX? + LY?

For testing the hypotheses

Ain-ES0 and HW’:in—E=0

it is more convenient to represent the densities as an exponential family
with the parameters

geot=ae.re? OF = 8,é i 2 m nh)o

(- + 4] °

and the sufficient statistics

U*=Y—X, T= mX¥+nY, Ty = XX? + XY?

That this is possible is seen from the identity

(7 — )(n — )

|

(mé + ng)\(mé + nm)+ .

TI m+n
m n

mé& + nny =  

It follows from Theorem 3 of Chapter 4 that UMP unbiased tests exist
for the hypotheses 0* < 0 and 6* = 0, and hence for H and H’.
When 7 = €,the distribution of

Y—X U*
V= =

Vi(X; — XP + LY, — Vy J
   
 

T* — I T*2 mn U2

2 mtn } m+n

 

does not depend on the common mean

€

or on a,asis seen by replacing
X, by (X; — §/o and Y; by (Y; — &)/o in the expression for V, and V
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is independent of (Ty, Tz). The rejection region of the UMP unbiased
test of H can therefore be written as V > Co or

(27) ((X, Y) = Cp;

, > 1 1net
m on

V/[X(X, — XP + UY, — VYP/(m +n — 2)

Thestatistic t(X, Y) is the ratio of the two independent variables

where

(28) «Xx, Y)= 
 

 

 

Y—X U(X, — XP

+

UY; — YYand pe P+ 2% FP
1 1 (m +n — 2)o?Ehmi oon

The numerator is normally distributed with mean (7 — EVm7! + ne
and unit variance; the denominator as the square root of a 7? variable
with (m + n — 2) degrees of freedom, divided by (m+n — 2). Hence
t(X, Y) has a noncentral t¢-distribution with (m + n — 2) degrees of

freedom and noncentrality parameter

n—§
é6 QQ.

J: 1
— + —o

m on

Whenin particular 7 — ¢ = 0, the distribution of 1(X, Y) 1s Student’s

t-distribution, and the constant Cy is determined by

(29) [tiesn-alo) dy =
As before, the assumptions required by Theorem | for H" are not

satisfied by V itself but by a function ofV,

Y—X

(XX, + XUY;)

m+n

 W=
 

Joxp+zy?-

which is related to V through
W

mn[- w
m+n

Since W is a function of V it is also independent of (Tf, T7) when 7 = &;

V= 
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in addition it is a linear function of U* with coefficients dependent only
on 7*. The distribution of W being symmetric about 0 when n= 6,
it follows, as in the derivation of the corresponding rejection region (17)
for the one-sample problem, that the UMP unbiased test of H’ rejects
when |W|is too large or equivalently when

(30) (X,Y)> c.

The constant C is determined by

x

(31) [tncnalo) dy = %.
C

The power of the tests (27) and (30) depends only on (7 — €)/o and
is given in terms of the noncentral f-distribution.

_

Its properties are
analogous to those of the one-sample t-test (Problems 1, 2, and 4).
As in the corresponding one-sample problem, the tests based on the

t-statistic (28) are insensitive to departures from normality while this is
not the case for tests based on the F-ratio (20).t The result follows in both
cases by applying the argumentgiven in the one-sample problem. The
robustnessofthe t-test will be seen from

a

different point of view in Section
8, where a modified test is discussed, the size ofwhichis exactly independent
of the underlying distribution.

4. CONFIDENCE INTERVALS AND FAMILIES
OF TESTS

Confidence bounds for a parameter 0 corresponding to a confidence
level 1 — « were defined in Chapter 3, Section 5, for the case that the
distribution of the random variable X depends only on 6. When nuisance
parameters # are present the defining condition for a lower confidence
bound 4 becomes

(32) Pog{O(X)< 0}>1—« forall 6,8.

Similarly, confidence intervals for 9 at confidence level 1 — « are defined
as a set of random intervals with end points 6(X), 6(X) such that

(33) Pog (K(X) SOS AXN>S1—a forall 6, 0%.

Tt Tests for two or more variances which do not suffer from this disadvantage are
discussed by Box, ‘‘Non-normality and tests of variances,” Biometrika, Vol. 40 (1953),
pp. 318-335, and by Box and Andersen, “Permutation theory in the derivation of robust
criteria and the study of departures from assumptions,” J. Roy. Stat. Soc., Ser. B,
Vol. 17 (1955), pp. 1-34.
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The infimum over (6, 8) of the left-hand side of (32) and (33) is the

confidence coefficient associated with these statements.
As was already indicated in Chapter 3, confidence statements permit

a dual interpretation. Directly, they provide bounds for the unknown
parameter 6 and thereby a solution to the problem ofestimating 8. The
statement 6 < 0 < is notas precise as a point estimate, but it has the
advantage that the probability of it being correct can be guaranteed to
be at least 1 — a. Similarly, a lower confidence bound can be thought
of as an estimate 6, which overestimates the true parameter value with
probability <«. In particular for « = 3,if 8 satisfies

Pos (9S 0} = Pos {9 = 0} = 4,

the estimate is as likely to underestimate as to overestimate and is then
said to be median unbiased. (See Chapter 1, Problem 3, for the relation
of this property to a more general concept of unbiasedness.)

Alternatively, as was shown in Chapter 3, confidence statements can

be viewed as equivalent to a family of tests. The following is essentially
a review of the discussion of this relationship in Chapter 3, madeslightly
more specific by restricting attention to the two-sided case. For each

6, let A(0,) denote the acceptance region of a level « test (assumed for the

momentto be nonrandomized) of the hypothesis H(05): 0 = 05. If

S(xz) = {0: x € A(0)}

then

(34) 6¢S(x) if and only if xe A(9),

and hence

(35) Pop OE S(X)} 2 1l—a forall 4, #.

Thus any family of level « acceptance regions, through the correspondence

(34), leads to a family of confidence sets at confidence level 1 — «.

Conversely, given any class of confidence sets S(x) satisfying (35), let

(36) A(9) = {x: 0 € S(2)}.

Thenthe sets A(0,) are level « acceptance regionsfor testing the hypotheses

H(6,): 6 = 99, and the confidence sets S(x) show for each 99 whether for

the particular z observed the hypothesis 6 = 6, is accepted or rejected at

level «.
Exactly the same arguments apply if the sets A(@)) are acceptance

regions for the hypotheses 9 < 4. As will be seen below, one- and

two-sidedtests typically, although not always,lead to one-sided confidence

bounds and to confidence intervals respectively.
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Example 4. Confidence intervals for the mean é of a normal distribution
with unknown variance can be obtained from the acceptance regions A(&,)
of the hypotheses H: & = £5. These are given by

Vi(a, — #?/(n — 1)
where C is determined from the f-distribution so that the probability of this
inequality is 1 — « when & = So. [See (17) and (19) of Section 2.] The set
S(x) is then the set of &’s satisfying this inequality with € = &,, that is, the interval

 

 

 

 

L(x; — #).

 

_ C¢ - _ C 1

The class of these intervals therefore constitutes confidence intervals for g
with confidence coefficient 1 — «.
The length of the intervals (37) is proportional to V>(«, — #)? and their

expected length to o. For large o, the intervals will therefore provide only
little information concerning the unknown &. This is a consequence of the
fact, which led to similar difficulties for the corresponding testing problem,
that two normaldistributions N(&o, 67) and N(é,,0?) with fixed difference of
means become indistinguishable as o tends to infinity. In order to obtain
confidence intervals for & whose length does not tend to infinity with o, it is
necessary to determine the number of observations sequentially so that it can
be adjusted to o. A sequential procedure leading to confidence intervals of
prescribed length is given in Problems 15 and 16.

However, even such a sequential procedure does not really dispose of the
difficulty, but only shifts the lack of control from the length of the interval to
the numberof observations. As o — oo, the number of observations required
to obtain confidence intervals of bounded length also tends to infinity. Actually,
in practice one will frequently have an idea of the order of magnitude ofo.
With a sampleeither offixed size or obtained sequentially,it is then necessary to
establish a balance between the desired confidence | — «, the accuracy given by
the length / of the interval, and the numberof observations n one is willing to
expend. In such an arrangement two of the three quantities 1 — «, |, and n
will be fixed while the third is a random variable whose distribution depends
on o, so that it will be less well controlled than the others. If | — « is taken
as fixed, the choice between a sequential scheme and oneoffixed sample size
thus dependsessentially on whetherit is more important to control / or n.
To obtain lower confidence limits for €, consider the acceptance regions

Vd(x;, — #?/(n — 1)
for testing £ < £5 against § > £). The sets S(x) are then the one-sidedintervals

 

 0

 

Co- CC {/ 1. _
u Vn Jae Ly SE,

the left-hand sides of which therefore constitute the desired lower bounds é,

If « = 3, the constant C, is 0; the resulting confidence bound € = X isa median
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unbiased estimate of and amongall such estimates it uniformly maximizes

P{-A, S&—& SA} forall A,,A, 20.

(For a proofsee p. 83.)

5. UNBIASED CONFIDENCE SETS

Confidence sets can be viewed as a family of tests of the hypotheses

6 € H(6’) against alternatives 6 € K(0’) for varying 8. A confidence

level of 1 — « then simply expresses the fact that all the tests are to be

at level «, and the condition therefore becomes

(38) Pog {0 ES(X)}>1— « forall 6¢ HO) andall @.

In the case that H(6’) is the hypothesis 6 = 6’ and S(X)is the interval

[6(X), 6(X)], this agrees with (33). In the one-sided case in which H(60’)

is the hypothesis 6 < 6’ and S(X) = {0: 6(X) < 6}, the condition reduces

to Py» {(X) < 6} > 1 — « for all &’ > 4, and this is seen to be equiva-

lent to (32). With this interpretation of confidence sets, the probabilities

(39) Py (OE S(X)}, 0 € KO’)

are the probabilities of false acceptance of H(6’) (error of the second

kind). The smaller these probabilities are, the more desirable are the

tests.

From the point of view of estimation, on the other hand, (39) is the

probability of covering the wrong value 0". Witha controlled probability

of covering the true value, the confidence sets will be more informative

the less likely they are to cover false values of the parameter. In this

sense the probabilities (39) provide a measure of the accuracy of the

confidence sets. A justification of (39) in terms of loss functions was

given for the one-sided case in Chapter 3, Section 5.

In the presence of nuisance parameters, UMP tests usually do not

exist and this implies the nonexistence of confidencesets that are uniformly

most accurate in the sense of minimizing (39) for all 6’ such that 6 € K(6')

and for all @. This suggests restricting attention to confidence sets

which in

a

suitable sense are unbiased. In analogy with the corresponding

definition for tests, a family of confidence sets at confidence level 1 — «

is said to be unbiasedif

(40) Py» fe S(X)}S1—a forall 6 suchthat Oe K(6’)
andfor all 3 and 0,

so that the probability of covering these false values does not exceed the

confidencelevel.
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In the two- and one-sided cases mentioned above, condition (40)
reduces to

Poo {80S H<1—a forall 6’ ~9 andall 8
and

Pos (9S O}S1—a forall 0’<#4 andall #.
With this definition of unbiasedness, unbiased families of tests lead to
unbiased confidence sets and conversely. A family of confidence sets
is uniformly most accurate unbiased at confidence level 1 — « if it
minimizes the probabilities

Pog (0 € S(X)} forall 6’ suchthat 6c K(@’)

and for all # and 6,

subject to (38) and (40). The confidence sets obtained on the basis of the
UMPunbiased tests of the present and preceding chapter are therefore
uniformly most accurate unbiased. This applies in particular to the
confidence intervals obtained in the preceding section. Some further
examples are the following.

Example 5. If X,,---, X, is a sample from N(é, 67), the UMP unbiased
test of the hypothesis = oy is given by the acceptance region (13)

Ci SX(a; — #/8b < CG
where C; and C; are determined by (14). The most accurate unbiased confidence
intervals for o? are therefore

a Be —-ZPr <<a — £),

Similarly, from (9) and (10) the most accurate unbiased upper confidence limits
for o” are

os = Ee — x)

where
C

| xn-ly) dy = 1 — a,
Co

The corresponding lower confidence limits are uniformly most accurate
(without the restriction of unbiasedness) by Chapter 3, Section 9.
Example 6. Confidence intervals for the difference A = 1 — £ of the means

of two normal distributions with common variance are obtained from tests of
the hypothesis 7 —& =A). If X,,---, X,, and Y,,°°°, Y, are distributed as.
N(é, 0") and N(y,0?) respectively, and if Y; = Y; — Ao, 7’ = —Ag, the
hypothesis can be expressed in termsof the variables Y; and Y/ as 7’ — € = 0.
From (28) and (30) the UMP unbiased acceptance region is then seen to be

oe iol
\(g —z soi/[ead

v[X(a;, — #2 + Xy; — 9I/(m +n — 2D

A C, 
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where C is determined by (31). The most accurate unbiased confidenceintervals

for 7 — & are therefore

(41) (g¥—-Z)-CSsyn-ESY-H+CS

where

 

m n m+n—2

St = (7 4 ‘) U(x; — #)? + Ly; — 9)? .

The one-sided intervals are obtained analogously.

Example 7. If X;,:-:, Xm and Y;,°°:, Y, are samples from N(é, 0”) and

N(n, 72), most accurate unbiased confidence intervals for A = 1?/o? are derived

from the acceptance region (23) as

1 — Cy Uy; — 9 < 7 < I - Cy Uy; — 9)

(42) Cy d(x; — x) = o2 ~ Ci d(x; _ 7

  

where C,and C, are determined from (25).* In the particular case that m = n,

the intervals take on the simpler form

1 Ly; _- gy)" 7 ji —- gy)

X(z; — «)?

where k is determined from the F-distribution. Most accurate unbiased lower

confidence limits for the variance ratio are

1 Ly -Pin-1) 2
Cy U(x; — #7/(m — 1) ~o

with Co given by (22). If in (22) « is taken to be 4, this lower confidence limit

A becomes a median unbiased estimate of 7?/o?. Amongall such estimatesit
uniformly minimizes

(43) TA
N

k Xa; _— £)? “Oo
|
4

 (44) A= Il

n

2

P -As4-ASA, forall A,, A, =0.

(For a proofsee p. 83.)

So far it has been assumed that the tests from which the confidence
sets are obtained are nonrandomized. The modifications that are necessary
when this assumption is not satisfied were discussed in Chapter 3. The
randomized tests can then be interpreted as being nonrandomized in the
space of X and an auxiliary variable V which is uniformly distributed on
the unit interval. If in particular X is integer-valued as in the binomial
or Poisson case, the tests can be represented in terms of the continuous

variable X + V. In this way, most accurate unbiased confidence
intervals can be obtained, for example, for a binomial probability p from
the UMP unbiased tests of H: p = py (Example | of Chapter 4). It

* A comparison ofthese limits with those obtained from the equaltails test is given
by Scheffé, ‘“‘On the ratio of the variances of two normal populations,’ Ann. Math.

Stat., Vol. 13 (1942), pp. 371-388.
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is not clear a priori that the resulting confidencesets for p will necessarily
be intervals. This is, however, a consequence ofthe following lemma.

Lemma 1. Let X be a real-valued random variable with probability
density po(x) which has monotonelikelihood ratio in x. Suppose that UMP
unbiased tests of the hypotheses H(6o): 6 = 0y exist and are given by the
acceptance regions

C(I) S&S C,H),

and that they are strictly unbiased. Then the functions C,(@) are strictly
increasing in 0, and the most accurate unbiased confidence intervalsfor 0 are

Co(a) << O< Cy! (2).

Proof. Let 6) < 9, and let £,(8) and £,(0) denote the power functions

C2 (6)

C1(6)

A(9)
 

To 
 

Figure |

of the above tests ¢q and ¢, for testing 0 = 6, and 6 = 6,. It follows
from the strict unbiasedness ofthe tests that

EgleX) — $o(X)] = By(8) — « > 0 > ax — By(4,)

= EyloX) — $(X)].

Thus neither of the two intervals [C,(0;), C,(0;)] (i = 0, 1) contains the
other, and it is seen from Lemma2(ii) of Chapter 3 that C,(0,) < C(6,)
fori = 1,2. The functions C, therefore have inverses, and the inequalities
defining the acceptance region for H(8) are equivalent to Cy1(zx) <L6<
Cy*(x), as was to be proved.

The situation is indicated in Figure 1. From the boundaries x = Ci(8)
and x = C,(9) of the acceptance regions A(9) one obtains for each fixed
value of x the confidence set S(x) as the interval of 6’s for which C\(8) <
x < C,(6).
By Section 2 of Chapter 4, the conditions of the lemmaare satisfied

in particular for a one-parameter exponential family, provided the tests
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are nonrandomized. In cases such as that of binomial or Poisson distri-

butions, where the family is exponential but X is integer-valued so that

randomization is required, the intervals can be obtained by applying

the lemmato the variable ¥ + V instead of X, where V is independentof

X and uniformly distributed over(0, 1).

In Lemma1, the distribution of X was assumed to depend only on 0.

Consider now the exponential family (1) in which nuisance parameters

are present in addition to 6. The UMP unbiased tests of 6 = 6, are then

performed as conditional tests given T = t, and the confidence intervals

for 6 will as a consequence also be obtained conditionally. If the

conditional distributions are continuous, the acceptance regions will be

of the form
C0; thu< C,(9; 2)

where for each ¢ the functions C, are increasing by Lemma 1. The

confidence intervals are then

Cr(u; th 6< Cr*(u; 2).

If the conditional distributions are discrete, continuity can be obtained

as before through addition of a uniform variable.

Example 8. Let X and Y be independent Poisson variables with means

A and pu, and let p = u/A. The conditional distribution of Ygivn X¥ + Y=t

is the binomial distribution b(p, t) with

p =pl(l +p).

The UMPunbiasedtest ¢(y, 1) of the hypothesis p = pg Is defined for each t as

the UMP unbiased conditional test of the hypothesis p = po/(1 + po). If

PO Sp = p@
are the associated most accurate unbiased confidence intervals for p given f,

it follows that the most accurate unbiased confidence intervals for “/A are

PIL — pi) S #/A S POU — PO)
The binomial tests which determine the functions p(t) and P(t) are discussed in

Example 1 of Chapter 4. 7

6. REGRESSION

The relation between two variables XY and Y can be studied by drawing

an unrestricted sample and observing the two variables for each subject,

obtaining n pairs of measurements (Xj, Y4),° °°, (X,, Y,,) (see Section 11

and Chapter 6, Problem 11). Alternatively, it is frequently possible to

control one of the variables such as the age of a subject, the temperature

at which an experiment is performed, or the strength of the treatment

that is being applied. Observations Y,,---, Y, of Y can then be obtained
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at a number of predetermined levels x,,---, 2, of x. Suppose that for
fixed x the distribution of Y is normal with constant variance o? and a
meanwhichis a function of x, the regression of Y on x, and which is assumed
to be linear,

E(Y|] = at px.

Putting v, = (x, — ®/V(a, — @? and » + dr, = « + fx,, so that
dv; = 0, Xv? = 1, and

— —_— 0I5 5) SE  OO—O7O7r—————————————_—_—_——_— 9

oe VX(x, — x)? VX(x, — x)*

the joint density of Y,,---, Y,, is

] l
—______ —_ —. —y— dp,

Tana| 38 BH 7 ord")
These densities constitute an exponential family (1) with

U=%v,Y, Ty = XY?, T, = XY,~* 0

6 = 6/o?, 0, = —1/20°, B, = y/o.

This representation implies the existence of UMP unbiasedtests of the
hypotheses ay + bd = c where a, b, and care given constants, and therefore

of most accurate unbiased confidence intervals for the parameter

p = ay + bo.

To obtain these confidence intervals explicitly, one requires the UMP
unbiased test of H: p = pg, which is given by the acceptance region

JbXe; Y,+aY— pol/'V(a2/n) + pb? cc
45 =
”) VIE(¥, — PP — ee, ¥)7I(n — 2) ~
 

 

where
C

| toy) dy = 1 — a.
—C

(See Problem 20 and Chapter 7, Section 6.) The resulting confidence
intervals for p are centered at buv,; Y; + aY and their length is

 

L = 2CV[(a@2/n) + PYX(Y; — ¥)® — (20; Y)2]/(n — 2).

It follows from the transformations given in Problem 20 that[X(Y, — Y)? —
(Xv; Y,)?]/o? has a y?-distribution with n — 2 degrees of freedom and

hence that the expected length of the intervals is

E(L) = 2C,,oV(a2|n) + B.
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In particular applications, a and b typically are functions of the 2’s.

If these are at the disposal of the experimenter and there is therefore

some choice with respect to a and b, the expected length of L is minimized

by minimizing (a?/n) + 6?. Actually, it is not clear that the expected

length is a good criterion for the accuracy of confidence intervals, since

short intervals are desirable when they cover the true parameter value

but not necessarily otherwise. However, the same result holds for other

criteria such as the expected value of (p — p)? + (p — p)? or more

generally of f\(\p — p|) + fo(/p — pl), where f, and f, are increasing

functions of their arguments. (See Problem 20.) Furthermore, the

same choice of a and b also minimizes the probability of the intervals

covering any false value of the parameter. Weshall therefore consider

(a2/n) + b? as an inverse measure of the accuracy of the intervals.

Example 9. Confidence intervals for the slope 6 = 6/ VvX(x; — £)* are

obtained from the above intervals by letting a =0 and 6 = I/VXa, — #)?.

Here the accuracy increases with X(z; — <)? and, if the x; must be chosen from

an interval [C), C,], it is maximized by putting half of the values at each end

point. However, from a practical point of view, this is frequently not a good

design since it permits no check of the linearity of the regression.

Example 10. Another parameter of interest is the value « + fr, to be

expected from an observation Y at = 2%. Since

a + Bry =y + H(xXy — B/VUa; — #)*,

the constants a and b are a = 1, b = (xy — 2)/VXa; — #)*. The maximum

accuracy is obtained by minimizing |Z — x9| and if £ = x» cannot be achieved

exactly also maximizing &(x; — 2).

Example 11. Frequently it is of interest to estimate the point x at which

a + Bx has a preassigned value. One may for example wishto find the dosage

2 = —a/B at which E(Y|x) =0, or equivalently the value v = (v — «)/

VvX(x; — £)* at which y + 6v =0. Most accurate unbiased confidence sets

for the solution —y/6 of this equation can be obtained from the UMP unbiased

tests of the hypotheses —y/é = vy. The acceptance regions of these tests are

given by (45) with a = 1, b = vo, and py = 0, and the resulting confidence

sets for v are the sets of values v satisfying |

vC2S? — (Xv; Y,)?] — 2v¥(a0; Y,) + . (C252 —nY?) =0

where S? =[D(Y; — Y)? — (Xv; Y)*)/(n — 2). If the associated quadratic

equation in v has roots v, 5 the confidence statement becomes

v<v sv when (20,Y,|/S > C
and _

v<v or ov2v when |2v,Y,\/S < C.

The somewhat surprising possibility that the confidence sets may be the

outside of an interval actually is quite appropriate here. When the line
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y =y + ov is nearly parallel to the v-axis, the intercept with the v-axis will be

large in absolute value, but its sign can be changed by a very small change in
angle. There is the further possibility that the discriminant of the quadratic
polynomialis negative,

nY? + (Xv; Y;)? < C?S?,

in which case the associated quadratic equation has no solutions. This con-
dition implies that the leading coefficient of the quadratic polynomialis positive,
so that the confidence set in this case becomes the whole real axis. The fact
that the confidencesets are not necessarily finite intervals hasled to the suggestion
that their use be restricted to the cases in which they do have this form. Such
usage will howeveraffect the probability with which the sets cover the true value
and hence the validity of the reported confidence coefficient.*

7. PERMUTATION TESTS

For the comparison of a treatment with a control situation in which
no treatmentis given, it was shownin Section 3 that the one-sided f-test
is UMP unbiased for testing H: 7 = &€ against 7 —€=A>0 when
the measurements X,,:--, X,, and Y,,---, Y, are samples from normal

populations M(é, o?) and N(7, o?). We shall now consider this problem

without the assumption of normality, supposing instead that the X’s and
Y’s are samples from distributions with densities f(x) and f(y — A)
where f is assumed to be continuous a.e. but otherwise unknown. In
this nonparametric formulation, the joint density of the variablesis

(46) Fed fn)Y% —MfYr-A) feF,

where ¥ is the family of all probability densities that are continuousa.e.
If there is muchvariation in the population being sampled,the sensitivity

of the experiment can frequently be increased by dividing the population
into more homogeneous subgroups, defined for example by some charac-
teristic such as age or sex. A sample of size N, (i = 1,--:,c) is then
taken from the ith subpopulation, m, to serve as controls and the other
n, = N; —m, to receive the treatment. If the observations in the ith

subgroup of such a stratified sample are denoted by

(X0°°° X
im, Yas **s Yin,) =(Ziy,°°', Zin,)>

the density of Z = (Z,), °° +, Z,y,) is

(47) paz) = TT L/iea) . filCimS(Ya — A):: “FYin, — A)}.

* A method for obtaining the size of this effect has been developed by Neyman and
tables have been computed on its basis by Fix. This work is reported by Bennett,
“On the performance characteristic of certain methods of determining confidence
limits,” Sankhya, Vol. 18 (1957), pp. 1-12.
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Unbiasedness of a test ¢ for testing A = 0 against A > 0 implies that

for allf° °° ft

(48) |f(z)po(z) dz = a (dz = dz, °° + dz,n,).

Theorem 3. If F is the family of all probability densities f that are

continuous a.e., then (48) holds for allf,,-++,f.<€F if and only if

Y dz)=a ae.(49 ___
) N,!- °° N,! vesio

where S(z) is the set ofpoints obtainedfrom z by permuting for each i = 1,

-++\¢ the coordinates z;; (J=1,°°°> N,) within the ith subgroup, in all

N,!--+- N,! possible ways.

Proof. To prove the result for the case c = 1, note that the set of order

statistics T(Z) = (Z™, ++ -,Z%”) is a complete sufficient statistic for F

(Chapter 4, Example 6). A necessary and sufficient condition for (48)

is therefore

(50) E[¢(Z)TRI=a ae.

The set S(z) in the present case (c = 1) consists of the N' points obtained

from z through permutation of coordinates, so that S(z) = {2’: T(z’) =

T(z)}. It follows from Section 4 of Chapter 2 that the conditional

distribution of Z given T(z) assigns probability | /N! to each of the N!

points of S(z). Thus (50)is equivalent to

(51) — > dozZ)=a ae,
N! 2’ES(z)

as was to be proved. The proof for general c is completely analogous

andis left as an exercise (Problem 21).

The tests satisfying (49) are called permutation tests. An extension

of this definition is given in Problem 31.

8. MOST POWERFUL PERMUTATION TESTS

For the problem of testing the hypothesis H: A = 0 of no treatment

effect on the basis of a stratified sample with density (47) it was shown

in the preceding section that unbiasedness implies (49). We shall now

determine the test which, subject to (49), maximizes the power against a

fixed alternative (47) or more generally against an alternative with

arbitrary fixed density A(z).
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The powerofa test ¢ against an alternative h is

|b(z)h(2) dz =|E[$(Z)|t] dP?(2).

Let ¢ = T(z) = (2,---,2%) so that S(z) = S(t). As was seen in
Example 7 and Problem 4 of Chapter 2, the conditional expectation of
#(Z) given T(Z) = is

> p(z)h(z)
t) = zeS(t)

y(t) Saw
zeS(t)

To maximize the power of ¢ subject to (49) it is therefore necessary to
maximize y(t) for each f subject to this condition. The problem thus
reduces to the determination of a function ¢ which, subjectto

> (2) ————_—_—— = &
zeS(t) N,! oes N,!

maximizes

h(z)
> f(z)eT *

26S(t) > h(z’)
z’ES(t)

By the Neyman-Pearson fundamental lemma,this is achieved byrejecting
H for those points z of S(t) for which the ratio

h(z)N,!--- N,!

> A’)
z’EeS(t)

 

is too large. Thus the most powerfultest is given by thecritical function

1 when A(z) > C[T(z)]

$(2) = y when h(2) = C[T@)]
O when A(z) < C[T(z)].

(52)

To carry out the test, the N,!--- N,! points of each set S(z) are ordered
according to the values of the density h. The hypothesis is rejected for
the k largest values and with probability » for the (k + 1)st value, where
k and y are defined by

K+y=aN,!°-- NI.

Consider now in particular the alternatives (47). The most powerful
permutation test is seen to depend on A andthef;, and is therefore not
UMP.



186 UNBIASEDNESS: APPLICATIONS [5.8

Of special interest is the class of normal alternatives with common
variance:

fi = NEw 0°).

The most powerful test against these alternatives, which turns out to
be independent of the ¢,, o?, and A, is appropriate when approximate
normality is suspected but the assumption is not felt to be reliable. It
may then be desirable to control the size of the test at level « regardless
of the form of the densities f; and to have the test unbiased againstall
alternatives (47). However, among the class of tests satisfying these
broadrestrictions it is natural to makethe selection so as to maximize the
power against the type of alternative one expects to encounter, thatis,
against the normalalternatives.
With the above choice off;, (47) becomes

m;

(53) h(z) = (V27 o)* eXp5IG<2 . ¥((2;; — é;)?
jJ=1

N; ‘

+ > (z;,—-—§; — ay) |.
j=m,+1

Since the factor exp [—)>,>3+ ,(z,; — &,)?/207] is constant over S(t), the
test (52) therefore rejects H when exp (AY,;>}:,,,.12:;) > C[T(2)] and
hence when

(54) LT Yw= > w> Are
i=l j= t=1 jg=m;+1

Of the N,!---N,! values thatthe test statistic takes on over S(t),

only (7m) uo a, are distinct since the value of the statistic is the
"1 c

samefor any two points z’ and 2” for which (2;1, ° + +, 2j»,) and (24° ++, 24,,,)
are permutations of each other for each i. It is therefore enough to
compare these distinct values, and to reject H for the k’ largest ones and
with probability y’ for the (k’ + 1)st, where

4 nyt ag (Na)... (Ne
vty= a(n) (7)

The test (54) is most powerful against the normal alternatives under
consideration amongall tests which are unbiased andoflevel « for testing
H: A = 0 in the original family (47) with f,---,f,¢4. To complete
the proof of this statement it is still necessary to prove the test unbiased
against the alternatives (47). We shall show more generally that it is
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unbiased against all alternatives for which Xi, (J= 1,°°+,m,),
Yy.(k =1,--+-+,,) are independently distributed with cumulative
distribution functions F;,G; respectively such that Y, 18 stochastically
larger than X,,, that is, such that G,(z) < F,(z) for all z. This is a con-
sequence of the following lemma.

Lemma 2. Let X,,---, X,,; Y,,°°', Y, be samples from continuous
distributions F, G andlet P(%,° °°, Lins Yt’, y,) be a critical function
such that (a) its expectation is « whenever G = F, and (b) y¥; S y;; for
i= 1,:--,n implies

P(X, °°, Tm Yi °° *s Yn) SPM, Lm Yi» oo", Yn):

Then the expectation B = B(F, G) of ¢ is >« forall pairs of distributions
for which

Y

is stochastically larger than X; it is Sa if X is stochastically
larger than Y.

Proof. By Lemma 1 of Chapter 3 there exist functions jf, g and in-
dependent random variables V,, - - -, Vin+n Such that the distributions of
J(V;) and g(V,) are F and G respectively and that f(z) < g(z) for all z.
Then

Eelf(Vy); * SIVfVmeas _ LVnen] = %
and

Edif("), °° STVmdi ZUmars ms LU.nin] = B.

Since for all (11, ° ++, Upsn)s

PL(Ds 5LOmdsfCmids >fCmen)

< ALS(vy); a Sf(Um); 2(Uimns1)s ar) LUmin)

the same inequality holds for the expectations of both sides and hence
a< p.

The prooffor the case that YX is stochastically larger than Y is completely
analogous. The lemmaalso generalizes to the case ofc vectors (Xin ';
Xim,s Vas? Y;,,) with distributions (F,, G,). If the expectation of
a function ¢ is then « when F, = G, and

¢

is nondecreasing in each y,,
whenall othervariables are heldfixed, it follows as before that the expecta-
tion of ¢ is > « when the random variables with distribution G, are
stochastically larger than those with distribution F,.

In applying the lemmato the permutation test (54) it is enough to
consider the case c = ], the argument in the more general case being
completely analogous. Since the rejection probability of the test (54)
is « whenever F = G, it is only necessary to show thatthecritical function
¢ of the test satisfies (b). Now ¢=1 if 1%, exceeds sufficiently
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many of the sums >",;2;,, and henceifsufficiently manyofthe differences

m+n men

t=m4+1 t=m+1

are positive. For a particular permutation (jy, °°, jm+n)

mtn m+n p Pp

ei ~~ > @5, = > as, ~~ > @r,

t=m+1 t=m+1 )=1 i=1

where r; <-+*: <r, denote those of the integers jn41,°°'s/m+n that

are <m, and s,<-:-< 5s, those of the integers m+1,°°',m-+n
not included in the set (jmiis***sJmin): If 22, — 22,, is positive and

y,<y;, that is, z;< z; for i=m-+1,--+,m-+n, then the difference

Lz,, — Lz,, is also positive and hence ¢ satisfies (b).

The same argument also shows that the rejection probability of the
test is <« when the density of the variables is given by (47) with A < 0.
The test is therefore equally appropriate if the hypothesis A = 0 1s

replaced by A < 0.
Except for small values of the sample sizes N,, an exact application of

the permutationtest (54) is impracticable since the amount of computation
very quickly becomes prohibitive. In the case c= 1, for example,
determination of the cutoff point C[T(z)] requires finding the sets of
subscripts (j,,°° +, /,) giving rise to the & largest values of >?_, z;, where

w=1 J;

k is the largest integer not exceeding a(n). If « = .05, k = 12 for

m =n = butalready exceeds 9000 for mm = n= 10. There is however
available a very convenient large sample approximation. On multiplying
both sides of the inequality

Ly; > C[T(2)]

by [(1/m) + (1/n)] and subtracting (22, + Xy;)/m, the rejection region

for c=1 becomes 9 —@> C[T(2)] or W= (9 — DV3%, &; — BD?
> C[T(z)] since the denominator of W is constant over S(z) and hence

depends only on 7(z). As was seen at the end of Section 3, this is equi-
valent to

a 1 |
(J — 2)/J— + -

m n

V[X(x, — 2 + Uy; — 9")+ n — 2)

 

 (55) > C[T(2)]. 

The rejection region therefore has the form of a f-test in which the
constant cutoff point Cy of (27) has been replaced by a random one. It
turns out that when the hypothesis is true, so that the Z’s are identically
and independently distributed, and if E/Z|> < oo and m/n is bounded
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away from zero and infinity as m and

n

tend toinfinity, the difference
between the random cutoff point C[7T(Z)] and C, tends to zero in
probability.* In the limit, the permutation test therefore becomes
equivalent to the t-test given by (27)-(29). It follows that the permutation
test can be approximated for large samples by the standard t-test. An
exactly analogousresult holds for c > 1; the appropriate t-test is given
in Chapter 7, Problem 7.

9. RANDOMIZATION AS A BASIS FOR

INFERENCE

The problem oftesting for the effect of a treatment was considered in
Section 3 under the assumption that the treatment and control measure-
ments Xj,°°°, X,, and Y,,°--, Y, constitute samples from normal
distributions and in Sections 7 and 8 without relying on the assumption
of normality. We shall now consider in somewhat more detail the
structure of the experiment from which the data are obtained, resuming
for the momentthe assumption that the distributions involved are normal.
Suppose that the experimental material consists of m + n patients,

plants, pieces of material, etc., drawn at random from the population to
which the treatment could be applied. The treatment is given to n of
these while the other mserve as controls. The characteristic that is to be
influenced by the treatment is then measured in each case, leading to
observations X,,---°, X,,3 Yy,°°°, Y,.

To be specific, suppose that the treatment is carried out by injecting a
drug and that m + ampules are assigned to the m +n patients. The
ith measurementcan be considered as the sum of two components. One,
say U,, 1S associated with the ith patient; the other, V,, with the ith
ampule and the circumstances under whichit is administered and under
which the measurements are taken. The variables U, and V, are assumed
to be independently distributed, the V’s with normaldistribution N(y, 02)
or N(é, o*) as the ampule contains the drug or is one of those used for
control. If in addition the U’s are assumed to constitute a random
sample from N(, oj) it follows that the X’s and Y’s are independently
normally distributed with common variance o? + o? and means

QX)y=ut& EY=ut+y.

* An account of the required limit theorems andreferences to the original work of
Dwass, Hoeffding, Noether, and Wald and Wolfowitz is given in Chapter 6, Section 6,
of Fraser, Nonparametric Methodsin Statistics, New York, John Wiley & Sons, 1957.
For a discussion of more precise approximations to permutation tests see Box and
Andersen, ‘Permutation theory in the derivation of robust criteria and the study of
departures from assumption,” J. Roy. Stat. Soc., Ser. B, Vol. XVII (1955), pp. 1-34.
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Except for a change of notation their joint distribution is then given by

(26), and the hypothesis 7 = & can be tested by the standard t-test.

Unfortunately, under actual experimental conditions, it is frequently

not possible to ensure that the patients or other experimental units

constitute a random sample from the population of such units. They

maybe patients in a certain hospital at a given time, or prisoners volunteer-

ing for the experiment, and may constitute a haphazard rather than a

random sample. In this case the U’s would have to be considered as

unknown constants since they are not obtained by any definite sampling

procedure. This assumption is appropriate also in a different context.

Suppose that the experimental units are all the machines in a shop or

fields on a farm. If the experiment is performed only to determine the

best method for this particular shop or farm, these experimental units

are the only relevant ones; that is, a replication of the experiment would

consist in comparing the two treatments again for the same machines or

fields rather than for a new batch drawn at random from

a

large popula-

tion. In this case the units themselves, and therefore the w’s, are constant.

Under the above assumptions the joint density of the m + 1 measure-

mentsis
1 m n |

—_—_—_—_ —_—_ — _—ye— 2 u.— — 2

(/220)™*" ©*P 20? (= (2;

—

ui

—

SY +2 (Yj

—

Umsg

—

0) )

Since the u’s are completelyarbitrary,it is clearly impossible to distinguish

between H: 7 = & and the alternatives K: 7 > &. In fact, every distri-

bution of K also belongs to H and vice versa, and the most powerful

level « test for testing H against any simple alternative specifying ©, 7, o,

and the u’s rejects H with probability « regardless of the observations.

Data which could serve as a basis for testing whether or not the

treatment has an effect can be obtained through the fundamental device

of randomization. Suppose that the N = m+n patients are assigned

to the N ampules at random,thatis, in such a way that each of the N!

possible assignments has probability 1/N! of being chosen. Then for a

given assignment the N measurements are independently normally

distributed with variance o? and means ¢ + u;, (i= 1,--°-,m) and

n+u;, (G=mt+1,:::,m+n). The over-all joint density of the

variables

. (Zj, ar) Zx) = (X}, me, Xm Yi mrs Y,,)

is therefore

1 l(56) — se
omip (/270)*

x exp si (3 — u;. — é)? +2(y; — 4; i)
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where the outer summation extendsoverall N! permutations(j,, - + -, jy) of
(1,-++,.N). Under the hypothesis 7 = é this density can be written as

I N >
5) MyZpaeOL 3a BEHh
where ¢,, = uj, + & =u, + 7.
Without randomization, a set of y’s which is large relative to the

x-values could be explained entirely in termsof the unit effects u,. How-
ever, if these are assigned to the y’s at random,they will on the average
balance those assigned to the z’s. As aconsequence, a marked superiority
of the second sample becomes very unlikely under the hypothesis, and
must therefore be put downto the effectiveness of the treatment.
The methodofassigning the treatments to the experimental units com-

pletely at random permits the construction of a level « test of the hypo-
thesis 7 = &, whose power exceeds « against all alternatives 7 — é > 0.
The actual power of such a test will however depend not only on the
alternative value of 7 — &, which measures the effect of the treatment,
but also on the unit effects u;. In particular, if there is excessive variation
among the u’s, this will swamp the treatment effect (much in the same
way as an increase in the variance o? would), andthetest will accordingly
have little power to detect any given alternative 7 — é.

In such cases the sensitivity of the experiment can be increased by an
approach exactly analogousto the methodofstratified sampling discussed
in Section 7. In the present case this means replacing the process of
complete randomization described above by a morerestricted randomiza-
tion procedure. The experimental material is divided into subgroups,
which are more homogeneousthan the material as a whole, so that within
each group the differences among the w’s are small. In animal experi-
ments, for example, this can frequently be achieved by a division into
litters. Randomization is then applied only within each group. If the
ith group contains N, units, n; of these are selected at random to receive
the treatment, and the remaining m, = N, — n, serve as controls (XN, = N,
Lm, = m, Ln, = n).

An example of this approach is the method of matched pairs. Here
the experimental units are divided into pairs, which are as like each other
as possible with respect to all relevant properties, so that within each
pair the difference of the u’s will be as small as possible. Supposethat
the material consists of n such pairs, and denote the associated unit
effects (the U’s of the previous discussion) by U,, Uj;---; U,, U‘. Let
the first and second memberofeach pair receive the treatmentor serve as
control respectively, and let the observationsfor the ith pair be Y, and Y,.
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If the matching is completely successful, as may be the case, for example,
when the samepatient is used twice in the investigation of a sleeping drug,
or whenidentical twins are used, then U; = U;,forall i, and the density

of the X’s and Y’s is

|
(58) p |- F52 [X(x, —§ — u,)? + Ly, — 4 - wil.

]
—————_ &X

(V270)?”

The UMPunbiased test for testing H: 7 = & against 7 > & is then given
in terms of the differences W, = Y, — X;, by the rejection region

a

 

 (59) 4/nw/J X(w,; — Ww)? > C.
n— 1

(See Problem 25.)

However, usually one is not willing to trust the assumption u; = uy;
even after matching, and it again becomes necessary to randomize.
Since as a result of the matching the variability of the w’s within each
pair is presumably considerably smaller than the over-all variation,
randomization is carried out only within each pair. For each pair, one
of the units is selected with probability 1/2 to receive the treatment, while
the other serves as control. The density of the X’s and Y’s is then

1 1 n 1Il [exp |- sale, — § — uP + (4-9 -|
0) 2" (V270)" j=1

| '
+ exp |- 752 [(z,-E-—uyr+Yy;,-—7- uy}

Underthe hypothesis 7 = &, and writing

ay = Vip -i2 = Yi» Ca =o + U;, Ce= nt u; (i= 1,°°-, 7),

this becomes

(61) / >iexp |- Jj y S (2, — cy.
2” (/270)?” 20? °

Here the outer summation extends over the 2” points ¢’ = (€),, °° +s Sho)

for which (Ci C9) is either (C1, Sia) OF (Cia, Si).

10. PERMUTATION TESTS AND RANDOMIZATION

It was shownin the preceding section that randomization provides a
basis for testing the hypothesis 7 = & of no treatmenteffect, without any
assumptions concerning the experimental units. In the present section, a
specific test will be derived for this problem. When the experimental
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units are treated as constants, the probability density of the observations
is given by (56) in the case of complete randomization and by (60) in the
case of matched pairs. More generally, let the experimental material be
divided into c subgroups, let the randomization be applied within each
subgroup, and let the observationsin the ith subgroup be

(Zi, Zin.) = (Xi *; Xim;) Yas cs Yin

For any point u = (u,,,°°°, u,v)» let S(u) denote as before the set of
N,!+++N,! points obtained from u by permuting the coordinates within
each subgroupin all N,!---N,! possible ways. Then the joint density
of the Z’sis

] y l

Nyt Net wet (V2n0)*

1 eC fm , N; ,

x €xp E 72 (Se: —€&-u,"+ > (@%-—n- 4) |
t=1\j=1 j=m;+1

(62)

and under the hypothesis of no treatmenteffect

©) pa=a eo [-ae S Yes]6 he)= —_——— ©&x —_- — ig — Gi .
Pov Nyt No eEty (V2n0)9 P 20°i” ’

It may happen that the coordinates of u or ¢ are not distinct. If then
some of the points of S(u) or S(¢) also coincide, each should be counted
with its proper multiplicity. More precisely, if the N,!--- N,! relevant
permutations of N, +----+ N. coordinates are denoted by 2,,k =
I,---+,.N,!+--N.!, S(Q can be taken to be the ordered set of points g,.¢,
k= 1,+-+,N,!--+ N.!, and (63), for example, beconies

(2) ] Nites Ne! ] ( l cP)
D Ly)= —_———— CX —-—-—— | — 9gPhO NTN! 2 WanaPAW 78 Fm

where |u?| stands for }¢_, >", ue.

Theorem 4. A necessary and sufficient condition for a criticalfunction d
to satisfy

(64) [$0peSx (de = dey dey)
for allo > 0 and all vectors € is that

I
(65) Ni!+N!afl ) < Xx a.c.

The proofwill be based on the following lemma.
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Lemma 3. Let A be a set in N-space with positive Lebesgue measure

u(A). Then for any « > 0 there exist real numbers o > 0 and &,°°°, x

such that
P{(X,,°°°, Xx) EAS 2l—e

where the X’s are independently normally distributed with means E(X;) = §;

and variance 0%, = 9°.

Proof. Suppose without loss of generality that u(A) <0. Given

any 7 > 0, there exists a square Q such that

m(Q OA) < nu(Q).

This follows from the fact that almost every point of A has metric density

1,* or from the more elementary fact that a measurable set can be approxi-

mated in measure by unions of disjoint squares. Let a be such that

— |" 2/2) d ‘ye— ex (—1t?/2 r=(1-9

V2m l, P 2

and let

_§ (v2) ‘

T= 2\ 2G) °

If (€,, °°, Ey) is the center of Q, and if o = b/a = (1/2a)[u(Q)]""* where

2b is the length of the side of Q, then

l | l
—_—_ ex — + Be, - 8 dx 7+ dit,

(V220)" “ANQ P 20? .

1 ]
<1| « [— Be, — ep] dey dy= (Vino) 5 p Io2 ( 1 N

] [’ (—1?/2) at_.= _—_- |——= ex —_ =.

/In J—a P 2

On the other hand,

I 1

a

[ANN
—— Y(x. — &.)7

|

du, +++ dry

(V270)* \,nor | 42 (x;

—

§;) Ly Ly;

1 ~ €
< —— A ~%4

= Vinay MAO OS 3
and by adding the two inequalities one obtains the desired result.

* See for example Hobson, Theory ofFunctions ofa Real Variable, Vol. 1, Cambridge

Univ. Press, 3rd ed., 1927, p. 194.
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Proof ofthe theorem. Let ¢ be anycritical function, andlet

(z) = (2’).? NARAi oy”

If (65) does not hold, there exists 7 > 0 such that y(z) > « + 7 ona set
A of positive measure. By the lemma there exists o>0O and (=
(Cu,°°'s Gey.) such that P{Ze A}>1—n when Z,,,-- +,Z.n, are
independently normally distributed with common variance o? and means
E(Z,;) = ¢;;. It follows that

(66) [sep.c dz =lv(2)po(e) de =|¥@)7Tina

]
x exp | 552 md(z,; _ c)| dz > (x + Le! — n),

which is > « since « + 7 <1. This proves that (64) implies (65). The
converse follows from the first equality in (66).

Corollary 2. Let H be the class of densities

{Po(2): 6 > 0, —0 < f,, < oh.

A complete family oftests for H at level of significance « is the class of
tests 6 satisfying

(67) > dz) =« a.e.
N,! “7 N.! 2’ES(z)

Proof. The corollary states that for any given level « test ¢, there
exists an element ¢ of @ which is uniformly at least as powerful as dy.
By the preceding theorem the average value of 4, over each set S(z) is
<a. On the sets for which this inequality is strict, one can increase ¢,
to obtain a critical function ¢ satisfying (67), and such that 4,(z) < ¢(z)
forallz. Since against all alternatives the powerof ¢ is at least that of dy,

this establishes the result. An explicit construction of ¢, which shows
that it can be chosen to be measurable, is given in Problem 28.

This corollary shows that the normal randomization model (62) leads
exactly to the class of tests that was previously found to be relevant when
the U’s constitute a sample but the assumption of normality was not
imposed. It therefore follows from Section 8 that the most powerful
level ~ test for testing (63) against a simple alternative (62) is given by
(52) with A(z) equal to the probability density (62). If 7 —é =A, the
rejection region of this test reduces to

(68) > exp s>(s,5 ZijMis + A > (245 — “))| > C[T(2)],
u ES(u) j=m,t1
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since both L2z,, and LLZz;, are constant on S(z) and therefore functions
only of 7(z). It is seen that this test depends on A andthe unit effects
u,;, SO that a UMPtest does not exist.
Among the alternatives (62) a subclass occupies a central position and

is of particular interest. This is the class of alternatives specified by the
assumption that the unit effects u, constitute a sample from a normal
distribution. Although this assumption cannot be expected to hold
exactly—in fact, it was just as a safeguard against the possibility ofits
breakdown that randomization was introduced—it is in many cases
reasonable to supposethatit holds at least approximately. The resulting
subclass of alternatives is given by the probability densities

]
69 TT

(©) (V2i0)*

x exp|— 3=Y(Ses - u—- H+ ¥ Gy — us — n) |.
j=m,+1

These alternatives are suggestive also from slightly different point of
view. The procedure of assigning the experimental units to the treatments
at random within each subgroup was seen to be appropriate when the
variation of the w’s is small within these groups and is employed when
this is believed to be the case. This suggests, at least as an approximation,
the assumption of constant u,; = u,, whichis the limiting case of a normal
distribution as the variance tends to zero, and for which the density is
also given by (69).

Since the alternatives (69) are the same as the alternatives (53) of
Section 8 with u,; — é = &,, u,; — 7 = &, — A, the permutation test (54)
is seen to be most powerful for testing the hypothesis n = & in the normal
randomization model (62) against the alternatives (69) with n — § > 0.
The test retains this property in the still more general setting in which
neither normality nor the sample property of the U’s is assumedto hold.

Let the joint density of the variables be

SU Thies 4-8 TE few ui — 0}
weS(u) t=1 j=m,+1

withf, continuousa.e. but otherwise unspecified.* Under the hypothesis
H:n = é, this density is symmetric in the variables (z,,, °° +, 2;,,) of the

ith subgroup for each i, so that any permutation test (49) has rejection

* Actually, all that is neededis that f,,---, f, € 7 where F is any family containing
all normal distributions.
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probability « for all distributions of H. By Corollary 2, these permuta-
tion tests therefore constitute a complete class, and the result follows.

11. TESTING FOR INDEPENDENCEIN A

BIVARIATE NORMAL DISTRIBUTION

So far, the methodsof the present chapter have beenillustrated mainly
by the two-sample problem. Asa further example, we shall now apply
two of the formulations that have been discussed, the normal model of
Section 3 and the nonparametric one of Section 7, to the hypothesis of
independencein a bivariate distribution.
The probability density of a sample (X,, Y,),---,(X,, Y,) from a

bivariate normaldistribution is

(70) a(x; — €)—<—{—_[_>= x ary

a

y

V2QrorVT— py Ld — py lo)
]_ “= U(x, — Ey; — 4) + 72 >(Y; — i) |

Here (€, o?) and (7, 7”) are the mean and variance of XY and Y respectively,
and p is the correlation coefficient between X and Y. The hypotheses
pS po and p = pg for arbitrary py cannotbe treated by the methods of
the present chapter, and will be taken up in Chapter 6. For the present,
we shall consider only the hypothesis p = 0 that X and

Y

are independent,
and the corresponding one-sided hypothesis p < 0.
The family of densities (70) is of the exponential form (1) with

and

p _ —| _ —1

ap) Bop AT pe)
), = (5-2) =(4-2)
ann p?\c2 ar)’ t= p?\7? oor

The hypothesis H:p <0 is equivalent to <0. Since the sample
correlation coefficient

_ X(X; — XY; — Y)

— VEX, — XP UY, — YP
 

 

is unchanged when the X, and Y, are replaced by (XY; — 4)/o and
(Y, — n)/7, the distribution of R does not depend on &, 7, o, or 7, but
only on p. For 0 = 0 it therefore does not depend on #,,°--°, #, and
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hence by Theorem 2, R is independent of (7,,---, 7,) when 6 =0. It

follows from Theorem 1 that the UMP unbiased test of H rejects when

(71) R> Co,
or equivalently when

 (72) Ko. 

R
>

V(L — R®)/(n — 2)

The statistic R is linear in U, andits distribution for p = 0 is symmetric
about 0. The UMP unbiased test of the hypothesis p = 0 against the
alternatives p ~ 0 therefore rejects when

Ro
V(1 — R°)/(n — 2)

Since Vn — 2 R/V'1 — R® has the ¢-distribution with n — 2 degrees of
freedom when p = 0 (Problem 32), the constants K, and K, in the above

tests are given by

(74) |teAy) dy =a and | toy) dy = =.
Ko K, 2

(73)   1°

Since the distribution of R depends only on the correlation coefficient p,
the sameis true of the powerofthesetests.

Wenext consider the problem without the assumption of normality,
in a nonparametric formulation. For any bivariate distribution of
(X, Y), let Y, denote a random variable whose distribution is the con-

ditional distribution of Y given x We shall say that there is positive
dependence between X and if for any x < x’ the variable Y,, is stochasti-
cally larger than Y,. Generally speaking, larger values of Y will then
correspondto larger values of X; this is the intuitive meaning ofpositive
dependence. An example is furnished by any normal bivariate distri-

bution with p > 0. (See Problem 36.)

Consider now the hypothesis of independence against the alternatives

of positive dependence in a general bivariate distribution possessing a
probability density with respect to Lebesgue measure. Unbiasedness of a
test ¢ implies that the rejection probability is « when X and Y are

independent, and hence that

ce ne ee Y1> ar) Yn)fy(%y) i fiz,folY) °° *flYn) da dy = a

for all probability densities f, and f,. By Theorem 3 this in turn implies

1

GahPi igh Yay 9 Bs) =
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Here the summation extendsoverthe (n!) points of the set S(x, y), which

is obtained from a fixed point(x, y) with x = (a, °-°+,2,), ¥ = (Yy°°°s Yn)

by permuting the x-coordinates and the y-coordinates, each among
themselves in all possible ways.

Amongalltests satisfying this condition, the most powerful one against
the normalalternatives (70) with p > 0 rejects for the k’ largest values of
(70) in each set S(x,y), where k’/(n!)? = a. Since La*, Ly?, Lax,, Ly,

are all constant on S(z, y), the test equivalently rejects for the k’ largest

values of Xa,y, in each S(x, y). |
Of the (7!)? values thatthestatistic LX; Y, takes on over S(z, y), only n!

are distinct since the statistic remains unchanged if the X’s and Y’s are
subjected to the same permutation. A simpler form ofthetest is therefore
obtained, for example byrejecting H for the k largest values of Lay, of
each set S(z, y), where #9) < +--+ < x) and k/n! = a. The test can be

Shown to be unbiased against all alternatives with positive dependence.
(See Problem 41 of Chapter 6.)

In order to obtain a comparison of the permutation test with the
standard normal test based on the sample correlation coefficient R, let
T(X, Y) denote the set of ordered X’s and Y’s,

T(X, Y) = (XM, 06 KOM; YD, --- pony,

The rejection region of the permutation test can then be written as

UX, Y;, > CIT(X, Y)I,
or equivalently as

R> K[T(X, Y)].

It again turns* out that the difference between K[T(X, Y)] and the cutoff

point Cy, of the corresponding normal test (71) tends to zero, and that the

two tests become equivalent in the limit as ” tends to infinity. Sufficient
conditions for this are that oj, of > 0 and E(|X|§), E(| Y|3) < o. For

large n, the standard normaltest (71) therefore serves as an approximation
for the permutation test which is impractical except for small samplesizes.

12. PROBLEMS

Section 2

ALet X,,-:°, X, be a sample from N(é,o*). The power of Student’s
t-test is an increasing function of é/o in the one-sided case H: § <0, K: & > 0,

and of |é|/o in the two-sided case H: § = 0, K: & 40.

* For a proofsee the book by Fraser, to which reference is made in Section 8.
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[if
 

S = Io w(x, — FY,
n—1

the power in the two-sided case is given by

' -p{-S _Vuk

=9

CS _ Vail
oO Oo Oo oO Oo

and the result follows from the fact that it holds conditionally for each fixed

value of S/c.]

2. In the situation of the previous problem there exists no test for testing

H:é = Oat level «, which for all o has power = f > « against the alternatives

(,0) with € = &, > 0.
[Let B(E,, 0) be the power of any level « test of H, and let 6(c) denote the power

of the most powerful test for testing § = 0 against & = ¢, when o is known.

Then inf £,(&,,0) < inf, B(o) = «.]

3. (i) Let Z and V be independently distributed as N(6, 1) and 4° with f

degrees of freedom respectively. Then the ratio Z + VV/f has the noncentral

t-distribution with f degrees of freedom and noncentrality parameter 6, the

probability density of which ist

] 00 1 7 2

— (f—1) 1 _ ff, fy — |

(79) pal) BITDTGA) Vaf\, , exp A= 20) HP (+)f | | a

or equivalently

76 = 375(76) pat) = 2E-DE/Vaf exp ( 2f+ a)
f \i9tD pe 1 or \*

fez:2) | v’ exp |- 5 (: — VPat;] | dv.

Another form is obtained by making the substitution w = tvy| Vf in_(75).

(ii) If X,,---,X, are independently distributed as N(6, o?), then VnX +

VXCX,; — X)?/(n — 1) has the noncentral t-distribution with n — 1 degrees of

 

 

 

 

 

freedom and noncentrality parameter 6 = Vn Elo.

[(i) The first expression is obtained from the joint density of Z and V by

transforming to t =z + Vo/f and v.]

f Let X;,:-:, X, be a sample from N(é, 02). Denote the powerof the one-

sided f-test of H: & <0 against the alternative E/o by B(é/o), and by B*(E/o)

the power of the test appropriate when is known. Determine f(é/o) for

+ The cumulative distribution function as well as the probability density of this

distribution has been tabled by Resnikoff and Lieberman, Tables of the Non-central

t-distribution, Stanford Univ. Press, 1957. See also Merrington and Pearson, “An

approximation to the distribution of non-central ¢,” Biometrika, Vol. 45 (1958),

pp. 484-491.
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n = 5, 10, 15, « = .05, &/o = .7, .8, .9, 1.0, 1.1, 1.2 and in each case compareit
with B*(E/c). Do the same for the two-sided case.

5. Let Z,,---,2Z, be independently normally distributed with common vari-
ance o* and means E(Z,;) = ¢(i =1,---,s), E(Z) =O (i =s +1,-- ‘,n).
There exist UMP unbiased tests for testing ¢; S @? and % = 29 given by the
rejection regions

2, -& IZ. — al 

> C,  

 
> Co and

J. > Z3/(n — 5) J. > Z2/(n — 5)
a +1 a +1=S

=s

When ¢, = 29, the test statistic has the t-distribution with n — 5 degrees of
freedom.

6. Let X;,-°-, X, be independently normally distributed with commonvari-
ance o” and means é,,:--,é,, and let Z; = 2”_,a;;X; be an orthogonal trans-
formation (that is, 4?_,a;,a;, = 1 or Oas j = korj #k). TheZ’sare normally
distributed with commonvariance o? and means ¢; = La;,é;.

[The density of the Z’s is obtained from that of the Y’s by substituting
x, = 2b,;z; where (b;;) is the inverse of the matrix (a;,), and multiplying by the
Jacobian whichis 1.]

7. If X1,°°-+, X, is a sample from N(é, o”), the UMP unbiased test of € <0
and ¢ = 0 can be obtained from Problems 5 and 6 by making an orthogonal

transformation to variables Z,, ---, Z, such that Z, = Vn_X.
[Then

n n n n

> Z? => 2? —-Z2 => xX? —nX*2? = d(x, — XP]
i=2 i=1 i=1 t=1

8. Let Xj, X2,°-- be a sequence of independent variables distributed as
N(é, 6?) and let Yn = ["Xn4, — (X, +--+ + X,)1/ Vntn + 1).

(i) The variables Yj, Y;,--- are independently distributed as N(0, 0°).
(ii) On the basis of the Y’s, the hypothesis o =o, can be tested against

o = 0, by meansof a sequential probability ratio test.

Section 3

9. Let X;,---, X, and ¥;,°--, Y, be independent samples from N(é,0?)
and N(n, 7?) respectively. Determine the sample size necessary to obtain power
=f against the alternatives 7/o > A when « = .05, 8 = .9, A = 1.5, 2, 3,
and the hypothesis being tested is H: r/o <1.

10. If m =n, the acceptance region (23) can be written as

max (S}/A9S%, ApS?-/S%) < (1 — CYC,

where S} = X(X; — X)*, S} = X(Y; — Y)? and where C is determined by

N
R

C!

{ Bn—1, n-1(w) dw =
0

11. Let X,‘-+, X and Y,,:--, Y, be samples from N(é, 0”) and N(n,0”).
The UMPunbiasedtest for testing 7 — € = Ocan be obtained through Problems
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5 and 6 by making an orthogonaltransformation from (X,,°°°; Xm, Yy,°°°> Yn)

to (Z;,° °°, Zm4n) Such that Z; = (Y —- X)/V(1/m) + (1/n), Z, = (UX; + LY;)/

Vm +n.
 

12. Exponential densities. Let X;,°-:, X, be a sample from a distribution

with exponential density ate~*—»)/* for x = b.
(i) For testing a = | there exists a UMPunbiasedtest given by the acceptance

region
C, S$ 22[z; — min (%,--:, 7,)] SC,

wherethetest statistic has a y?-distribution with 2n — 2 degrees of freedom when

a = 1, and C,, C, are determined by

Cy Cs

{ X3n—2(Y) dy = { Xen(Y) dy =1—«a.
Cy ,

(ii) For testing b = 0 there exists a UMP unbiasedtest given by the acceptance
region

9 <—2mn (1, "+, Xn)

~ X[z; — min (2, ***, 27)
When b = 0, thetest statistic has probability density

pw =— D/A +)", u =o.

[These distributions for varying b do not constitute an exponential family and

Theorem 3 is therefore not directly applicable.
(i) One can restrict attention to the ordered variables X!) <--- < Xx”)

since these are sufficient for a and b, and transform to new variables Z, = nX"),

Z, =(n —i + ILX™ — X'™] for i = 2, ---, 2 as in Problem 13 of Chapter 2.

When a = 1, Z, is a complete sufficient statistic for b, and the test is therefore

obtained by considering the conditional problem given z,. Since U7_2Z; is

independent of Z,, the conditional UMP unbiased test has the acceptance

region C, S< X7_.Z; < C, for each 2, and the result follows.
(ii) When b = 0, &%_,Z; is a complete sufficientstatistic for a, and the test

is therefore obtained by considering the conditional problem given %7_,2;.

The remainder of the argumentuses the fact that Z,/27_,Z; is independent

of&"_,Z; when b = 0, and otherwiseis similar to that used to prove Theorem 1.]

C. II
A

13. Extend the results of the preceding problem to the case, considered in

Problem 8, Chapter 3, that observation is continued only until XQ) ee Kr)

have been observed.

Section 4

14. On the basis of a sample X = (Xj,---, X,,) of fixed size from N(€, ao")

there do not exist confidence intervals for & with positive confidence coefficient

and of boundedlength.
[Consider any family of confidence intervals 6(X) +: L/2 of constant length L.

Let &,-°°+,&,y be such that |& —é,| > ZL whenever i#j. Then the sets

S; = {x: |x) — &| SL/2} ( =1,---+,2N) are mutually exclusive. Also,

there exists og > 0 such that

|Pé.,0 {xX €§;} _ Peo {Ye §;}| < 1/2N for o> 09
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as is seen by transforming to new variables Y; = (X; — é,)/o and applying
Lemmas 2 and 4 of the Appendix. Since min; Pzo{X €S;} S1/2N, it
follows for o > oy that min, Pz, {X €S,;} < 1/N, and hence that

inf Peo {)(X) — €| < L/2} < 1/N.

The confidence coefficient associated with the intervals 0(X) + L/2 is therefore
zero, and the same mustbe true a fortiori of any set of confidence intervals of
length < LJ

I5. Stein's two-stage procedure. (i) If mS?/o® has a 72-distribution with m
degrees of freedom, and if the conditional distribution of Y given S =s is
N(0, o7/S?), then Y has Student’s r-distribution with m degrees of freedom.

(ii) Let X}, X2,--- be independently distributed as N(é,o?). Let xX) =
2u70_,X;/No, S? = u"0_,(X; — Xo)7/(No —_ 1), and let Qa, —S—° ce = an, = a,

Qnj+1 = °° * =a, = band

n

=ny be measurable functions of S. Then

n

> a(X; — §)
Y =i=!

n
2 2JS 24
——

has Student’s distribution with ny — 1 degrees of freedom.
(iti) Consider a two-stage sampling schemeIT, in which S? is computed from

an initial sample of size m9, and then n — n, additional observationsare taken.
The size of the second sample is such that

S2
n = max }" + 1, A + ,

where cis any given constant and where [y] denotes the largest integer < y.
There then exist numbers ay, ---, a, such that A=" = An, Ang==
An, Xa; = 1, U?_,a? = c/S®. It follows from (ii) that mu?_,a(X,; — 8/Vc has
Student’s ¢-distribution with ny — 1 degrees of freedom.

(iv) The following sampling scheme II,, which does not require that the
second sample contain at least one observation,is slightly more efficient than
IT, for the applications to be made in Problems 16 and 17. Let No, S*, and c
be defined as before,let

S2

n = max . = + ! ;

a; = 1/n(@i =1,---,n) and X = L%_,a,X;. Then Vn(X — £)/S has again the
t-distribution with ny — | degrees of freedom.

(Gi) Given S = s, the quantities a, b, and n are constants, 270 ,a(X; — &) =
noa(X, — &) is distributed as N(0, noa’o*), and the numerator of Y is therefore
normally distributed with zero mean and variance o2X”"_,a?. The result now
follows from (i).]
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16. Confidence intervals offixed length for a normal mean. (i) In the two-

stage procedure II, defined in part(iii) of the preceding problem,let the number

c be determined for any given L > 0 and 0 < y < 1 by

L/[2Vc¢

| _tny-1Y) dy = ¥
—L/2Ve

where f;,-1 denotes the density of the f-distribution with ny — | degrees of

freedom. Then the intervals &?_,a;X,; + L/2 are confidence intervals for & of

length L and with confidence coefficient y.
(ii) Let c be defined asin (i), and let the sampling procedure be IT, as defined

in part (iv) of Problem 15. The intervals X + L/2 are then confidence intervals

of length L for € with confidence coefficient = y, while the expected number of

observations requiredis slightly lower than under I}.
[(i) The probability that the intervals cover € equals

n

Peo -— Ssa< ——=/= y.

2Vc Ve 2Vc

(ii) The probability that the intervals cover ¢ equals

VnlX —

&|_

Vn VnlX —Pea{4=e 2Peo <+ _»
S 2S S 2V¢

17. Two-stage t-tests with power independent of o. (i) For the procedure
II, with any given c, let C be defined by

{ tn, —1(Y) dy = 4.
Cc

Then the rejection region (2%_,a;X; — &)/Vc > C defines a level « test of
H:& < &, withstrictly increasing power function £,(¢) depending only on é¢.

(ii) Given any alternative , and any « < B <1, the number c can be chosen

so that B,(&,) = B. _

(iii) The test with rejection region Vn(X — &)/S > C based on II, and the

samec as in (i) is a level « test of H which is uniformly more powerful than the

test given in (i).
(iv) Extend parts (i)-(iii) to the problem of testing § = , against € 4 Sp.

(i) and (ii) The powerof thetest is

B.(§) -| EE tn, -1(Y) dy.
C-— =0

Ve

(iii) This follows from the inequality Vn |é — &|/S = |€ — £0l/ Vc.

 

Section 5

18. Let X,,---, X, be distributed as in Problem 12. Then the most accurate

unbiased confidence intervals for the scale parameter a are

2 ax, — min (#,°°°,7,)] Sas 2 dv, — min (x, °° *, %,)).
Cy Cy
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19. Most accurate unbiased confidence intervals exist in the following
Situations:

(i) If X, Y are independent with binomial distributions b(p;, m) and b(po,n),
for the parameter p,q2/poq,.

(11) Ina 2 x 2 table, for the parameter A of Chapter 4, Section 6.

Section 6

20. (i) Under the assumptions made at the beginning of Section 6, the UMP
unbiased test of H: p = py is given by (45).

(ii) Let (p, p) be the associated most accurate unbiased confidence intervals
for p = ay + 66 where p = pla, 5), p = pla, b). Then iff,and fyare increasing
functions, the expected value off,(|p — p|) + fa(lp — pl) is an increasing function
of a?/n + b?. -

[(G) Make any orthogonal transformation from Y1,°°°,Y, to new variables

24,°°',% Such that z,; = X[bv; + (a/n)\y;| V(a?/n) + Bb’, 22 = Lav; — b)y,/
Va? + nb, and apply Problems 5 and6.

Gi) If aj/n + b? < a3/n + 63, the random variable |A(a,, b,) — p| is stochasti-
cally larger than |p(a,, b,) — p|, and analogously forp.]

Section 7

21. Prove Theorem 3 for arbitrary values ofc.

| Section 8

2 If co =1,m =n = 4, « =.1, and the ordered coordinates 2"), ---, 2(™)

of a point z are 1.97, 2.19, 2.61, 2.79, 2.88, 3.02, 3.28, 3.41, determine the points
of S(z) belonging to the rejection region (54).

23. Confidence intervals for a shift. Let Xy,°--, Xm; Y3,°°°, Yn be inde-

pendently distributed according to continuous distributions F(x) and
G(y) = Fy — A) respectively. Without any further assumptions concerning
F, confidence intervals for A can be obtained from permutation tests of the
hypotheses H(Ay): A = Ay. Specifically, consider the point (21, °° °,2m4n) =

(7, ° °°; Um Yy — A, +++, Yn — A) and the mn ") permutations i; <--: <i;

ima <°'* <Jmin Of the integers 1,---,m +n. Suppose that the hypothesis
H(A) is accepted for the k of these permutations which lead to the smallest
values of

 

 

m+n m

> 2;[n -> z,,[m
j=m+1 j=l

‘mtn

m

is accepted constitute an interval, and these intervals are confidence intervals
for A at confidence level 1 — «.

[A point is in the acceptance region for H(A)if

uy; — A/n — Xa,Jm|=|9 —# -Al

where k = (1 — °( ): Then the totality of values A for which H(A)

 
is exceeded by at least (” + ") —k of the quantities |g’ — %’ — yA| where

m
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(01,5 's Ls Yas °° 's Yn) iS a permutation of (7, ° °°, %ms Y's Yn), the quantity

y is determined by this permutation, and |y| = 1. The desired result now follows

from the fact that if

gg —z—A? Sy — x— yA?

or moregenerally if (a — A)? < (6 — yA)? for some a and b both when A = Ag

and when A = A,, then the sameinequality holds for any A between Ay and 4).]

Section 9

24. In the matched pairs experiment for testing the effect of a treatment,

suppose that only the differences Z; = Y; — X; are observable. The Z’s are

assumedto be a sample from an unknowncontinuousdistribution, which under

the hypothesis of no treatmenteffect is symmetric with respect to the origin.

Underthe alternatives it is symmetric with respect to a point £ > 0. Determine

the test which among all unbiased tests maximizes the power against the

alternatives that the Z’s are a sample from N(¢, o*) with ¢ > 0.

[Under the hypothesis,the set ofstatistics (27_, Z2-+-, 2_, Z2”) is sufficient;

that it is complete is shown as the corresponding result in Theorem 3. The

remainder of the argumentfollowsthe lines of Section 8.]

25. (i) If Xy,°°°; Xns Ya,°°°) Yn are independent normal variables with

commonvariance o2 and means E(X;) = é;, E(Y,;) = & + A the UMPunbiased

test of A = 0 against A > 0 is given by (59).
(ii) Determine the most accurate unbiased confidence intervals for A.

(i) The structure of the problem becomesclear if one makes the orthogonal

transformation X; = (Y; — X;)/ V2, Y! =(X; + Y)/V2.]

26. Comparison oftwo designs. Under the assumptions madeatthe beginning

of Section 9, one has the following comparison of the methods of complete

randomization and matched pairs. The unit effects and experimentaleffects

U;, and V;, are independently normally distributed with variances of, o* and means

E(U,) = and E(V,;) =

&

or 7 as V; corresponds to a control or treatment.

With complete randomization, the observations are X; = U; + V;(i =1,°-+,™

for the controls and Y,; = Un+; + Vn; (i = 1, °° +, 7) for the treated cases, with

E(X,) =u +& E(Y;) =u +7. For the matched pairs, if the matching is

assumed to be perfect, the X’s are as before but Y; = U; + Vri; UMP

unbiased tests are given by (27) for complete randomization and by (59) for

matched pairs. The distribution of the test statistic under an alternative

A =n —€ is the noncentral ¢-distribution with noncentrality parameter

Vn A/V2(c? + 02 and (2n — 2) degrees of freedom in the first case, and with

noncentrality parameter Vn A/V20 and n — | degrees of freedom in the second

one. Thus the method of matched pairs has the disadvantage of a smaller

number of degrees of freedom and the advantage of a larger noncentrality

parameter. For « = .05 and A = 4, compare the power of the two methods

as a function of m when o, = 1,0 = 2 and wheno, = 2,0 = 1.

27. Continuation. An alternative comparison of the two designs is obtained

by considering the expected length of the most accurate unbiased confidence

intervalsfor A = 7 — fineachcase. Carry this out for varying n and confidence

coefficient 1 — « = .95 wheno, = 1,¢ = 2 and wheno, = 2,0 = 1.
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Section 10

28. Suppose that a critical function ¢, satisfies (65) but not (67) and let
a <4. Then the following construction provides a measurablecritical function
¢ satisfying (67) and such that ¢,(z) < 4(z) for all z. Inductively, sequences of
functions4, 2, --- and Yo, ¥,, * : are defined through the relations

Ym(2) => bm(2’)/Ny!--- N.S, m=0,1,°°::
2’ES(Z)

and

$m—(2z) + [% — Ym_y(2)] if both ¢,,(2) and Ym(2) are <a

$m(Z) =

dm_1(2) otherwise.

The function ¢(z) = lim ¢,,(z) then satisfies the required conditions.

[The functions ¢,, are nondecreasing and between 0 and 1. It is further
seen by induction that 0 <« —y,(z) <(1 —y)™[« — y,(z)] where y =
1/N,!---N,!.]

29. Consider the problem of testing H: 7 = & in the family of densities (62)
whenitis given thato > c > 0 andthat the point (€,,, ---, Cen,) Of (63)lies ina

bounded region R containing a rectangle, where c and R are known. Then
Theorem 4 is no longer applicable. However, unbiasedness of a test ¢ of H
implies (67), and therefore reduces the problem to the class of permutation
tests.

[Unbiasedness implies [¢(z)po,c(z) dz = « and hence

1 I1 =|v(2)po,¢ (2) dz =|p(z) Wana exp | - x03 Da(2;; — tu|

for allo >c and ¢ in R. The result follows from completeness of this last
family.]

30. To generalize Theorem 4 to other designs, let Z = (Z,,---, Z,) and let
G = {g), °° *,g,} be a group of permutations of N coordinates or moregenerally
a group of orthogonal transformations of N-space. If

_1< 1 1 3
(77) Po,t(2) =1 (Vinay o*P ( —~ F652 lz — 944]

where |z|? = 222, then J¢(z)po,c(z) dz < « for allo > 0 and all ¢ implies

(78) , > 2) Sa ae.
lr 2’ES(z)

where S(z) is the set of points in N-space obtained from z by applyingtoit all
the transformations g,,k = 1,---,r.

31. Generalization of Corollary 2._ Let H be the class of densities (77) with
o>Oand -—wo <l,< 0 (§=1,---,N). A complete family of tests of H
at level of significance « is the class ofpermutation tests satisfying

(79) ! > d@) =a ae.
V 2’ES(z)
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Section 11

32. (i) If the joint distribution of X and

Y

is the bivariate normaldistri-

bution (70), then the conditional distribution of Y given x is the normaldistri-

bution with variance 72(1 — p?) and mean 7 + (pz/o)(x — 6).

(ii) Let (X,, Y3),°°°; (Xn» Yn) be a sample from a bivariate normal distri-

bution, let R be the sample correlation coefficient, and suppose that p = 0.

Then the conditional distribution of Vn —2R/V1 — R? given 21,°°*, Lp

is Student’s t-distribution with n — 2 degrees of freedom provided U(x; — 2)’ > 0.

This is therefore also the unconditional distribution of this statistic.

(iii) The probability density of R itself is then

 

1 Tha — DI in-2— _ pe

Viti =a”?(80) P(r)

(Gi) If v; = (#; — *)/ VX(x; — £)? so that Lv; = 0, Xv? = 1, the statistic can

be written as
Dv; Y;

VisY? —nY? — (ov,Yn — 2)
 

 

Since its distribution depends only on p one can assume 7) = 0,7 =1. The

desired result follows from Problem 6 by making an orthogonaltransformation

from (Y,,°°°, Yn) to (Z,°°°, Zp) Such that Z, = VnY, Z, = D0; Y;.]

33. (i) Let (X%,, Yp,-°°°s (Xn Yn) be a sample from the bivariate normal

distribution (70), and let S2 = XCX; — X)*, S3 = 2% — Y)?, Sip = XCX; — X)

(Y; — ¥). There exists a UMP unbiasedtest for testing the hypothesis r/o = A.

Its acceptance region is

 

 

aes?SH
V(A2S? + S23)? — 44°82,”

and the probability density of the test statistic is given by (80) when the

hypothesis is true.
(ii) Under the assumption 7 = a,there exists a UMP unbiasedtest for testing

n = &with acceptance region |¥ — X|/VS? + S} —S,. SC. On multi-
plication by a suitable constantthetest statistic has Student’s t-distribution with

n—1 degrees of freedom when 7 = &. (Without the assumption 7 =<¢,

this hypothesis is a special case of the one considered in Chapter 7, Example 11.)

(Gi) The transformation U = AX + Y,V = X — (1/A) Y reduces the problem

to that of testing that the correlation coefficient in a bivariate normal distri-

bution is zero.
(ii) Transform to new variables V; = Y; — Xi, Ui = Y, + X;.]

34. Let (X;,, Y1),°°*,(Xns Yn) be a sample from the bivariate normaldistri-

bution (70), and let S? = X(X; — X)*, Sy = UX — OO% — Y), S2=

x(Y; — Y)?. _

(i) Then ($2, S,., 53) are independently distributed of (X, Y), and their joint

distribution is the same as that of (U"21X/2, D¢x}X) Yj, LPLLY;) where (X;,

Y!),i =1,--++,n — 1, are a sample from the distribution (70) with ¢ = 7 = 0.
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(ii) Let X,,---, X,, and Y1,°°°, Ym be two samples from N(0,1). Then
the joint density of S? = XX?, Sy. = UX; Y;, S2 = LY? is

I 1

Fan— 1) 8152 ~ Siexp (—ASF + 9B)
for sf, < s?s2, and zero elsewhere.

(ili) The joint density of thestatistics (S2, Sj», S3) of part (i) is

(81) (sis — sj_)8—#) exp

|

— I Si _ 2pSi2 4 82
4nV(n — 2)(orV1 — pyr
 

for s?, < s2s?, and zero elsewhere.
{) Make an orthogonal transformation from X4,°°°, X, to X1,°°°, X;

such that X, = VnX, and apply the same orthogonal transformation also to
Y,,-°*, Y,. Then Y, = vn¥,

nn—-1 n n—1

AXP =2% — BP XE =DOG — DG — P),
t= v= = =

n~—l n _

DY? =>"; ~ Y)*.
t=1 wl

The pairs of variables (Xj, Y;),---, (X/, YJ) are independent, each with a
bivariate normal distribution with the same variances and correlation as those
of (XY, Y) and with means E(X/) = E( Y;) =Ofori=1,---,n—1.

(ii) Considerfirst the joint distribution of S,, = X,Y, and S} = LY? given
t,°*',2m. Letting Z,; = S,,/VXx? and making an orthogonal transformation
from Yj,°--, ¥,toZ,,°*-,Zmso that $2 = 2?_,Z?, the variables Z, and mus
Z? = S? — Z? are independently distributed as N(0, 1) and y2,_, respectively.
From this the joint conditional density of S,, = s,Z, and S? is obtained by a
simple transformation of variables. Since the conditional distribution depends
on the x’s only through s?, thejoint density of S?, S15, S2 is found by multiplying
the above conditional density by the marginal oneof S?, which is 72. The proof
is completed through use ofthe identity

 

Val(m —1Mm = WIPGm)=D
(iil) If (X’, Y) = (XY, Vis -- +3 Xf, YZ) is a sample from a bivariate normal

distribution with = 7 =0, then T = (XX;2, DXiY;, 2 Y;?) is sufficient for
6 = (0, p, 7), and the density of T is obtained from that given in part (ii) for
6, = C1, 0, 1) through the identity [Chapter 3, Problem 10(i)]

POC) = paOlpEoY’, yWpE-¥(e’, y)I.
The result now follows from part G) with m =n — 1]

35. If (%4, Yy),°°+,(X,, Y,) is a sample from a bivariate normal distri-
bution, the probability density of the sample correlation coefficient R is*

* This density and the associated cumulative distribution function are tabled by
David, Tables of the Correlation Coefficient, Cambridge Univ. Press, 1938.
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Qn—-3
oO 7 ,

(82) pil) =Td —HHMA — HOD.Pha + k — DI eerpn

or alternatively

(83) p(r) = n—-2 (1 — p2)H™—D1 — 72m—4) *ee

_

idt

° m » dervi-e

Another form is obtained by making the transformation ¢ = (1 — v)/( — prv)

in the integral on the right-handside of (83). The integral then becomes

 

 

(84) 1 [ (i _ y)r-2 “1 _ A(t + py-t hb

(1 — pr)k29-3)} 25 2 p ,

Expandingthe last factor in powers of v, the density becomes

n—21(n — 1)
85 = 1 —p2)t"-Da1 — r? i(n—4)(] — or —nt+}3

85) = Tq apt

~

PG

—

HOT

—

a)

F(hihm ~};)
2

where

2Ta@+/)Tbe+j/) TO 286 F(a, b,c, = ==(86) @ bo) =Tay 16) Fe +p7
 

 

is a hypergeometric function.

[To obtain the first expression make a transformation from (S?2, S8, Sys)

with density (81) to (S?, $3, R) and expand the factor exp {ps,,/(1 — p?)or} =

exp {prs,5,/(1 — p®)o7} into a powerseries. The resulting series can be integrated

term by term with respect to sj} and s3. The equivalence with the second

expression is seen by expanding .the factor (1 — prt)-‘"-)) under the integral

in (83) and integrating term by term.]

36. If X and Y have a bivariate normal distribution with correlation

coefficient p > 0, they are positively dependentin the sense of Section 11.

(The conditional distribution of Ygiven x is normal with mean 7 + pra(a — &)

and variance 72(1 — p”). Through addition to such a variable of the positive

quantity pro“'(a’ — x) it is transformed into one with the conditional distri-

bution of Y given x’ > «.]
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CHAPTER 6

Invariance

1. SYMMETRY AND INVARIANCE

Manystatistical problems exhibit symmetries, which provide natural

restrictions to impose on thestatistical procedures that are to be employed.
Suppose, for example, that X,,---, X,, are independently distributed with
probability densities p,(%),°--, po(x,). For testing the hypothesis
H: 0, =--- = 6, against the alternative that the 6’s are notall equal, the
test should be symmetric in 2, ---, x, since otherwise the acceptance or
rejection of the hypothesis would depend on the (presumably quite
irrelevant) numbering of these variables.
As another example considera circular target with center O, on which

are marked the impacts of a number of shots. Suppose that the points of
impact are independent observations on a bivariate normal distribution
centered on O. In testing this distribution for circular symmetry with
respect to O, it seems reasonable to require that the test itself exhibit such
symmetry. Forif it lacks this feature, a two-dimensional (for example,
Cartesian) coordinate system is required to describethe test, and acceptance
or rejection will depend on the choice of this system, which under the
assumptions madeis quite arbitrary and has no bearing on the problem.
The mathematical expression of symmetry is invariance undera suitable

group of transformations. In the first of the two examples above the
group is that of all permutations of the variables 4,°°°, 2, since a
function of n variables is symmetric if and only if it remains invariant
under all permutations of these variables. In the second example,
circular symmetry with respect to the center O is equivalent to invariance
underall rotations about O.

In general, let X be distributed according to a probability distribution
Py, 8 € Q, andlet g be a transformation of the sample space %. All such
transformations considered in connection with invariance will be assumed
to be 1 : 1 transformations of % onto itself. Denote by gX the random
variable that takes on the value gz when X = x, and suppose that when
the distribution of X is P,, 6 €Q, the distribution of gX is P, with 6’

213
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also in Q. The element 0’ of Q which is associated with 0 in this manner

will be denoted by g@ so that

(1) Py {gX € A} = Pi{X € A}.

Here the subscript 6 on the left memberof(1) indicates the distribution of
X, not that of gX. Equation (1) can also be written as P,(g71A) = Pjo(A)

and hence as

(2) P.0(2A) = P,(A).

The parameter set Q remains invariant under g (or is preserved by g)if
g0 €Q for all 6 €Q,and if in addition for any 6’ € Q there exists 6 « Q
such that 0 = 6’. These two conditions can be expressed by the
equation

(3) gQ = Q.
The transformation g of Q onto itself defined in this way is 1 : 1 provided
the distributions P, corresponding to different values of 6 are distinct.
To see this let g0, = g0,. Then Py,(gA) = Pyo(gA) and therefore
Py(A) = Po,(A) for all A, so that 0, = 4,.

Lemma 1. Let g,g’ be two transformations preserving Q. Then the

transformations g’g and g~* defined by

(2’g)x = g(gx) and gp(g-4z) = x forallae®

also preserve Q. and satisfy

(4) ge=ei-g and  (g-1) = (gy.
Proof. Uf the distribution of X is P,, that of gX is P5, and that of

g'gX = g'(gX) is therefore Pz.59. This establishes the first equation of
(4); the proof of the second one is analogous.

Weshall say that the problem of testing H: 6 € Qy against K:0 €Q,

remainsinvariant undera transformationg ifg preserves both Q;, and Q,,,

so that the equation

(5) GQ7 = Qy

holds in addition to (3). Let @ be a class of transformationssatisfying

these two conditions, and let G be the smallest class of transformations

containing @ and such that g, g’ € G implies that g’g and g~* belongto G.
Then G is a group of transformations, all of which by Lemma| preserve
both Q and Q,,. Any class @ of transformations leaving the problem

invariant can therefore be extended to a group G. It follows further

from Lemma 1 that the class of induced transformations g form a group

G. The two equations(4) express the fact that G is a homomorphism of G.
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In the presence of symmetries in both sample and parameter space
represented by the groups G and G,it is natural to restrict attention to
tests @ which are also symmetric, that is, which satisfy

(6) P(gx) = d(x) forall xe€X and geG.

A test ¢ satisfying (6) is said to be invariant under G. Therestriction to
invarianttests is a particular case of the principle of invariance formulated
in Section 5 of Chapter 1. As was indicated there and in the examples
above, a transformation g can be interpreted as a change of coordinates.
From this point of view, a test is invariant if it is independent of the
particular coordinate system in which the data are expressed.
A transformation g, in order to leave a problem invariant, must in

particular preserve the class .M of measurable sets over which the distri-
butions P, are defined. This means that any set A € .W is transformed
into a set of W andis the image of such

a

set, so that gA and g~14 both
belong to . Any transformationsatisfying this condition is said to be
bimeasurable. Since a group with each element g also contains gt,
its elements are automatically bimeasurableif all of them are measurable.
If g’ and g are bimeasurable, so are g’g and g-}._ The transformations of
the group G above generated by a class @ are therefore all bimeasurable
provided this is the case for the transformationsof @.

2. MAXIMAL INVARIANTS

If a problem is invariant under a group of transformations, the principle
of invariance restricts attention to invariant tests. In order to obtain the
best of these, it is convenientfirst to characterize the totality of invariant
tests.

Let two points x), x, be considered equivalent under G

1 ~ X_ (mod G)

if there exists a transformation g € G for which x, = ga,. Thisis a true
equivalence relation since G is a group andthe sets of equivalent points,
the orbits of G, therefore constitute a partition of the sample space.
(Cf. Appendix, Section 1.) A point x traces out an orbit as all transforma-
tions g of G are applied to it; this means that the orbit containing x
consists of the totality of points gx with g€G. It follows from the
definition of invariance that a function is invariant if and only if it is
constant on each orbit.
A function T is said to be maximal invariantif it is invariant and if

(7) T(x) = T(x.) implies x, = gx, forsome g eG,
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thatis, if it is constant on the orbits but for each orbit takes on a different

value. All maximalinvariants are equivalent in the sense that their sets of

constancy coincide.

Theorem 1. Let T(x) be a maximalinvariant with respect toG. Thena

necessary and sufficient conditionfor ¢ to be invariantis that it depends on x

only through T(z), that is, that there exists a function h for which p(x) =

h{T(x)] for all x.

Proof. Vf (x) = A{T(x)] for all x, then d(gx) = A[T(gx)] = A[T(x)] =

¢(x) so that ¢ is invariant. On the other hand,if ¢ is invariant and if

T(x,) = T(x,), then x, = gx, for some g and therefore $(x2) = (2).

Example 1. (i) Let x = (x,, °°, 2), and let G be the group oftranslations

gx = (% + 6,°°', Xn +0), | —o<c< ow,

Then the set of differences y = (| — %p, °° *, 2-1 — %m) iS invariant under G.

To see that it is maximal invariant suppose that 7; — 2x, = 2; —x, for

i=1,::-,n—1. Putting x, —«, =c, one has x; = x, +c for all i, as was

to be shown. Thefunction y is of course only one representation of the maximal

invariant. Others are for example (x, — 22, 2 — %3,°°*, Ln_1 — ) or the

redundant(7, — %,°-:,2%, — £). In the particular case that n = 1, there are

no invariants. The whole space is a single orbit so that for any two points

there exists a transformation of G taking one into the other. In such a case

the transformation group

G

is said to be transitive. The only invariantfunctions

are then the constant functions ¢(z) = c. |

(ii) If G is the group of transformations

£x = (CX, °° *, CX), c #0,

a special role is played by any zero coordinates. However,in statistical appli-

cations the set of points for which noneof the coordinates is zero typically has

probability 1; attention can then berestricted to this part of the sample space

and the set of ratios 7,/2,, °° °,;__;/%, is a maximal invariant. Without this

restriction, two points x, x’ are equivalent with respect to the maximalinvariant

partition if among their coordinates there is the same number of zeros (if any),

if these occur at the same places and if for any two nonzero coordinates x;, 2;

the ratios x,/x; and x;/x; are equal.
(iii) Let x = (2,,°°*,%,) and let G be the group of all orthogonal trans-

formations x’ = I'x of n-space. Then Xa; is maximal invariant, that is, two

points « and x* can be transformed into each other by an orthogonal trans-

formation if and only if they have the same distance from the origin. The

proof of this is immediate if one restricts attention to the plane containing the

points x, «* and the origin.

Example 2. Let x = (2,°°-*,%,) and let G be the set of n! permutations

of the coordinates of x. Then the set of ordered coordinates (order statistics)

al) <+-- <a) jg maximal invariant. A permutation of the x, obviously

does not change the set of values of the coordinates and therefore not the vl),
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On the other hand, two points with the same set of ordered coordinates can be
obtained from each other through a permutation of coordinates.

Example 3. Let G be the totality of transformations x; = f(x),i =1,-+-+,n,
such that f is continuousandstrictly increasing, and suppose that attention can
be restricted to the points all of whose n coordinates are distinct. If the 2;
are considered as 1 points on the real line, any such transformation preserves
their order. Conversely, if x,,---,x, and a{,---, x, are two sets of points in
the same order, say x, <--- < w,, and x; <+-- <a, there exists a trans-
formation f satisfying the required conditions and such that 2% = f(x,) for all i.
It can be defined for example as f(x) = x + (xj, —%,,) for « <2,, f(x) =
x +(x;, —2%;,) for « 22,and to be linear between x;, and x,,,, fork =1,
**';m — 1. A formal expression for the maximal invariant in this case is the
set of ranks (r,, +++, rn) Of (x1, +--+, 2,). Here the rank r; of x; is defined through

L;, = alts)

so that r; is the numberof 2’s <z;. In particular r; = 1 if x, is the smallest z,
r; = 2 if it is the second smallest, etc.

Frequently, it is convenient to obtain a maximal invariant in a number
of steps, each corresponding to a subgroup of G. To illustrate the
process and difficulty that may arise in its application,let x = (x,,---, 2,),
Suppose that the coordinates are distinct, and consider the group of
transformations

gx = (ax, + b,--+, ax, +5), a+~0, —o<b< oo.

Applying first the subgroup of translations 7; =2;-+ 6 a maximal
invariant is y = (y¥,,°°°,Y¥,-3) with y,; =2,—2x,. Another subgroup

consists of the scale changes x; = az, This induces a corresponding
changeofscale in the y’s: y; = ay,, and a maximalinvariant with respect

to this group acting on the y-spaceis z = (z,,°--, 2,2) with z; = y,/y,,_1.
Expressing this in terms of the a’s we get z, = (x; — x,)/(%,_1 — Xp),

which is maximal invariant with respect to G.

Suppose nowthe process were carried out in the reverse order. Appli-
cation first of the subgroup x; = az, yields as maximal invariant u =
(u,°°*,U,1) with u; = x,/x,. However, the translations x’, = x, + b
do not induce transformations in u-space since (x; + b)/(x, + 6) is not a
function of z,/z,.

Quite generally, let a transformation group G be generated by two
subgroups D and in the sense thatit is the smallest group containing D
and £. Then G consists of the totality of products e,,d,, °° ed, for
m= 1,2,---,withd,€ D,e,;e E(i=1,---,m).* The following theorem

shows that whenever the process of determining a maximal invariant in
steps can becarried outatall, it leads to a maximal invariant with respect
to G.

* See Section 1 of the Appendix.
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Theorem 2. Let G be a group of transformations, and let D and E be

two subgroups generating G. Suppose that y = s(x) is maximal invariant

with respect to D, and that for anye ek

(8) s(x) = s(x) implies s(ex,) = s(ex,).

If z = t(y) is maximalinvariant under the group E* of transformations e*

defined by
e*¥y = s(ex) when y = s(z),

then z = t[s(x)] is maximalinvariant with respect to G.

Proof. To showthat ¢[s(x)] is invariant, let x’ = gz, g = md, °° yd).

Then

t[s(x’)] = t[s(Cmdm*** 14x) = tlems(dm * > * 14%)

= t[8(Cm—14m—1*** €14,%)),

and the last expression can be reduced by induction to ¢[s(x)]. To see

that 7[s(x)] is in fact maximal invariant, suppose that t[s(a’)] = t[s(x)].

Setting y’ = s(x’), y = s(x) one has t(y’) = ¢(y), and since t(y) is maximal

invariant with respect to E* there exists e* such that y =e*y. Then

s(a’) = e*s(x) = s(ex), and by the maximalinvariance of s(x) with respect

to D there exists d € D such that x’ = dex. Since de is an element of G

this completes the proof.

3. MOST POWERFUL INVARIANT TESTS

The class of all invariant functions can be obtained as thetotality of

functions of a maximal invariant T(x). Therefore, in particular the class

of all invarianttests is the totality of tests depending only on the maximal

invariantstatistic T. The latter statement, while correct for all the usual

situations, actually requires certain qualifications regarding the class of

measurable sets in T-space. These conditionswill be discussed at the

end of the section; they are satisfied in the examples below.

Example 4. Let X =(Xj,,°°:, X,), and suppose that the density of X

is f(t, — 9,- ++, &,_ — 9) under H,(i = 0, 1) where 6 ranges from —© to o.

The problem oftesting Ho against H, is invariant under the group G of trans-

formations

ga = (2%, +6,°°*,% + 0), —-om <c< @,

which in the parameter space induces the transformations

£9 =O+.¢.

By Example I, a maximal invariant under G is Y = (X, — X,,°°°, Xn_1 — Xn).

The distribution of Y is independent of 6 and under H;has the density

a

fn + me. °" 'y Yn-1 + es z) dz.

ee —®
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Whenreferred to Y, the problem of testing Hy against H, therefore becomes one
of testing a simple hypothesis against a simple alternative. The most powerful
test is then independent of 6, and therefore UMP amongall invariant tests.
Its rejection region by the Neyman-Pearson lemmais

0 00

fi + 2,°°',Yn_1 + 2, z) dz | fi@, + U,**', Xp, + U) du
— a —_
  

00 = >C.

| f0Yr + 25°55 Ynt2Da | fol@, + Uy +++, %, + ud du

Example 5. If X;,:--, X, is a sample from M(é,o?), the hypothesis H:
o = oremainsinvariant underthe transformations X/ = X; +c, —0© <c< 0.
In terms of the sufficient statistics Y = ¥, S? = X(X,; — X)* these transforma-
tions become Y’ = Y +c, (S?)’ = S2, and a maximal invariant is S2. The
class of invarianttests is therefore the class of tests depending on S?. It follows
from Theorem 2 of Chapter 3 that there exists a UMP invariant test, with
rejection region U(X; — X)? <C. This coincides with the UMP unbiased
test (9) of Chapter 5.

Example 6. If X,,---, X, and Y,,---, Y, are samples from N(é, 0?) and
N(n,7°), a set of sufficient statistics is T, = X, T, = Y, Tz = V(X, — X)?,
and 7, = VX(Y; — Y)?. The problem of testing H: 7/02 < A, remains
invariant under the transformations Ty = 7, +¢,, Tz = Tz +c, Tz = Tz,
Ty = T,, —© <4, ¢, < ©, and also under a commonchangeofscale ofall
four variables. A maximal invariant with respect to the first group is (73, T;).
In the space of this maximal invariant, the group of scale changes induces the
transformations T,; = cT3;, Ty = cT,,0 < c, which has as maximalinvariant the
ratio 7,/T3. The statistic Z = Tj/(n — 1) + T3/(m — 1) on division by A =
7*/o has an F-distribution with density given by (21) of Chapter 5, so that the
density of Z is C(Ayz—3)

—_ 4(m+n—2)?

(3 + ” i?)
m— 1

z>0. 

 

Forvarying A, these densities constitute a family with monotonelikelihoodratio,
so that amongall tests of H based on Z, and therefore amongall invarianttests,
there exists a UMPonegiven by the rejection region Z > C. This coincides
with the UMPunbiasedtest (20) of Chapter5.

Example 7. In the method of paired comparisons for testing whether a
treatment has a beneficial effect, the experimental material consists of n pairs
of subjects. From eachpair, a subject is selected at random for treatment while
the other serves as control. Let X; be 1 or 0 asfor the ith pair the experiment
turns out in favor of the treated subject or the control, and let p; = P{X; = 1}.
The hypothesis of no effect, H: p; = 1/2 fori = 1, ---, n, is to be tested against
the alternatives that p; > 1/2 for all i.

The problem remains invariant under all permutations of the n variables
X,°°*, X,, and a maximal invariant under this group is the total number of
successes X = X, +--+ + X,. The distribution of X is

Pi Pi

n 7 qi, qi,
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where g; = 1 —p; and where the summation extends over all (”} choices

of subscripts i; <-:: <ji,. The most powerful invariant test against an
alternative (p;,° °°, Py) rejects H when

, /

Pa. Pix
=F >C.

le
t 4

Vix Fix

To see that fis an increasing function of k, note that a; = p;/q; > 1, and that

244i, nn aj, = (k + 1)2a,, nn Qinss

j
and

224, ‘say, =(n — k)da;, +++ a;,.

Here in both equations, the second summation on the left-hand side extends
over all subscripts i; < --- <i, of which noneis equalto j, and the summation
on the right-hand side extends over all subscripts i, <--- <é, and 4) <---
< ix,, respectively without restriction. Then

~_ |! y...g =) 9a. +a,err) 2a;,°° Qin, nnCael ai,

>Ya, ++ +a;,=f,
(7)k

as was to be shown. Regardless of the alternative chosen, the test therefore

rejects when k > C, and hence is UMPinvariant. If the ith comparison is

considered as plus or minusas X; is 1 or 0, this is seen to be another example of
the sign test. (Cf. Chapter 3, Example 8, and Chapter 4, Section 7.)

Sufficient statistics provide a simplification of a problem by reducing the

sample space; this process involves no change in the parameter space.

Invariance, on the other hand, by reducing the data to a maximalinvariant

statistic JT, whose distribution may depend only on a function of the

parameter, typically also shrinks the parameter space. The details are

given in the following theorem.

Theorem 3. Jf T(z) is invariant under G, and if v(6) is maximalinvariant

under the induced group G, then the distribution ofT(X) dependsonly on v(8).

Proof. Let v(6,) = v(6,). Then 6, = g6,, and hence

Po, {T(X) € B} = Py {T(gX) € B} = Pye, {T(X) € B} = Po, {T(X) € B}.

This result can be paraphrased by sayingthat the principle of invariance

identifies all parameter points that are equivalent with respect to G.

In applications, for instance in Examples 5 and 6, the maximal invariants
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T(x) and 6 = c(9) under G and G are frequently real-valued, and the

family of probability densities p,(t) of T has monotonelikelihood ratio.
Fortesting the hypothesis H: 6 < dg there exists then a UMPtest among
those depending only on 7, and hence a UMPinvarianttest. Its rejection
region is tf = C where

(9) | “Pat dt = «.
C

Consider this problem now as a two-decision problem with decisions
dy and d, of accepting or rejecting H, and a loss function L(0, d,) = L,(0).

Suppose that L,(9) depends only on the parameter 6, L,(0) = L;(6) say,
and satisfies

(10) Li(d) — Li(5) 20 as 6 < by.

It then follows from Theorem 3 of Chapter 3 that the family of rejection
regions ¢f = C(a), as « varies from 0 to 1, forms a complete family of
decision procedures among those depending only on tf, and hence a
complete family of invariant procedures. As before, the choice of a
particular significance level a can be considered as a convenient way of
specifying a test from this family.

At the beginning of the section it was stated that the class of invariant
tests coincides with the class of tests based on a maximalinvariantstatistic
T= T1(X). However,a statistic is not completely specified by a function
but requires also specification of a class # of measurable sets. If in the
present case & is the class ofall sets B for which T—1(B) € oA, the desired

Statement is correct. For let d(x) = y[T(x)] and ¢ be .%-measurable, and
let C be a Borel set on the line. Then d-(C) = T—[p-(C)] € YW and

hence y(C) € Z, so that wy is B-measurable and ¢(x) = y[T(x)] is a test
based onthestatistic T.

In most applications, T(z) is a measurable function taking on values in a
Euclidean space and it is convenient to take & as the class of Borelsets.
If f(x) = y[7T(x)] is then an arbitrary measurable function depending only
on 7(x), it is not clear that y(t) is necessarily @-measurable. This

measurability can be concluded if 2 is also Euclidean with . the class of
Borel sets, and if the range of 7 is a Borel set. We shall prove it here

only under the additional assumption (which in applications is usually
obvious, and which will not be verified explicitly in each case) that
there exists a vector-valued Borel-measurable function Y(x) such that.

[T(x), Y(x)] maps 2 onto a Borel subset of the product space. 7 x Y, that

this mappingis 1:1, and that the inverse mappingis also Borel-measurable.
Given any measurable function @ of x there exists then a measurable
function ¢’ of (t, y) such that d(x) = ¢'[T(x), Y(a)]. If ¢ depends only
on T(x), ¢ depends only on ¢ so that #(t, y) = y(t) say, and yp is a
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measurable function of ¢.* In Example I(i) for instance, where 7 =
(x,,°°°,x,) and T(x) = (a, — 2,,°°*;%,_1 — &,), the function Y(x) can
be taken as Y(x) = 7z,,.

4. SAMPLE INSPECTION BY VARIABLES

A sample is drawn from a lot of some manufactured product in order
to decide whetherthe lot is of acceptable quality. In the simplest case,
each sampleitem isclassified directly as satisfactory or defective (inspection
by attributes), and the decision is based on the total numberofdefectives.
More generally, the quality of an item is characterized by a variable Y
(inspection by variables), and an item is considered satisfactory if Y
exceeds a given constant u. The probability of a defective is then

p=P\YsSu}
and the problem becomesthatof testing the hypothesis H: p = po.
As was seen in Example 8 of Chapter 3, no use can be madeof the

actual value of Y unless something is known concerning the distribution
of Y. Inthe absence of such information, the decision will be based as

before simply on the number of defectives in the sample. Weshall
consider the problem now underthe assumption that the measurements
Y,,°°:, Y, constitute a sample from N(7, 07). Then

p=|"ao= Sa- nt| ay = 0 (“—}

Oy) =|" exp (—Ha
TT

 

where

denotes the cumulative distribution function of a standard normal

distribution, and the hypothesis H becomes (u — 7)/o = O(py). In
terms of the variables X¥, = Y,; — u, which have mean & = 7 — u and

variance o%, this reduces to

H: &/o<

with 0, = —®-(p,). This hypothesis, which was considered in Chapter
5, Section 2, for 6) = 0, occurs also in other contexts. It is appropriate
whenoneis interested in the mean & of a normaldistribution, expressed in
o-units rather than on fixed scale.
For testing H, attention can berestricted to the pair of variables ¥ and

S=vVX(X, — X)? since they form a set of sufficient statistics for (¢, ¢).

* The last statement is an immediate consequence, for example, of Theorem B,

Section 34, of Halmos’ Measure Theory, New York, D. Van Nostrand Co., 1950.
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These variables are independent, the distribution of ¥ being N(E, o?/n)
and that of S/o being z,_,. Multiplication of ¥ and S by a common
constant c > 0 transforms the parameters into ¢’ = cé, o =o, so that
¢/o and hence the problem oftesting H remains invariant. A maximal
invariant underthese transformationsis &/s or

_ Vn
s/Vn —1

the distribution of which depends only on the maximal invariant in the
parameter space 0 = é/o (cf. Chapter 5, Section 2). Thus, the invariant
tests are those depending only on f, and it remains to find the most
powerful test of H: 6 < 6, within thisclass.
The probability density of ¢ is (Chapter 5, Problem 3)

co 1 2 1 .

Pt) = cf exp |- 3(14/- - 7 5} Jno exp (—4w) dw,

where 6 = Vn is the noncentrality parameter, and this will now be
shown to constitute a family with monotonelikelihood ratio. To see that
the ratio

[exp |- (4 “6|wit™—2) exp (—4w) dw
0 2 n— | , "
00 ~ l Ww 2

Jyree [—3(/ 5weeexp (40) din
is an increasing function oft for dg < 6,, supposefirst that ¢ < 0 andlet
v= —tVwi(n — 1). The ratio then becomes proportional to

f

 

 

 (=

[roexp [—(0, — do)v — (n — 1)v?/222] dv
0
 

[ro exp [—(n — 1)v?/22?] dv
0

= | exp [—(0, — do)v] 2,2(v) dv

where f (v) = exp (—dqv)v"“1 exp (—v?/2)

J (v) exp [—(n — 1)v?/22?]
and Sev) = —

| f@) exp [—(n — 1)2?/22?] dz.

 

Since the family of probability densities g,2(v) is a family with monotone
likelihood ratio, the integral of exp [—(6, — 6,)v] with respect to this
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density is a decreasing function of t? (Problem 10 of Chapter 3), and hence

an increasing function of ¢ fort <0. Similarly one finds that r(t) is an

increasing function of t for t > 0 by making the transformation v =

tVw/(n — 1). By continuity it is then an increasing function of f forall t.

There exists therefore a UMPinvariant test of H: &/o < 05, which

rejects when tf > C, where Cis determinedby (9). In termsofthe original

variables Y, the rejection region of the UMPinvariant test of H: p = Po

becomes

an Ving — u)

VEy, — Pn — 1)
If the problem is considered as a two-decision problem with losses Ly(p)

and L,(p) for accepting or rejecting p = po, which depend only on p and

satisfy the condition corresponding to (10), the class of tests (11) con-

stitutes a complete family of invariant procedures as C varies from —0o

to ©.

Consider next the comparison of two products on the basis of samples

Xy°°Xmi Yat s Yn from N(E, 0?) and M(n, o”). If

_ u—é _ i 1)
p = 0 o ). 7 = 0 3 9

one wishesto test the hypothesis p < 7, which is equivalent to

H: nS.

>C. 
 

  

 

Thestatistics X, Y, and S = VX(X, — X)? + XY; — Y)P area set of

sufficient statistics for &, 7, o. The problem remains invariant under the

addition of an arbitrary common constant to X and Y, which leaves

Y — X and S as maximal invariants. It is also invariant under multi-

plication of ¥, ¥, and S, and hence of Y — X and S, by a common

positive constant, which reduces the data to the maximal invariant

(Y — X)/S. Since
] l

9 ~ al[2 + n

siVm +n—2

 t=

has a noncentralf-distribution with noncentrality parameter 0 = Vmn

(y - Em + no, the UMPinvariant test of H: 7 — E< 0 rejects

when t > C. This coincides with the UMP unbiasedtest (27) of Chapter

5, Section 3. Analogously the corresponding two-sided test (30) of

Chapter 5, with rejection region |t| = C, is UMP invariant for testing

the hypothesis p = 7 against the alternatives p # 7 (Problem 10).
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5S. ALMOST INVARIANCE

Let G be a group of transformations leaving a family P = {P,, 0 € Q}
of distributions of X invariant. A test ¢ is said to be eguivalent to an
invariant test if there exists an invariant test y such that d(x) = w(x)
for all x except possibly ona Y-null set N; ¢ is said to be almostinvariant
with respect to G if

(12) d(gx) = d(x) forall re X — N,, geG

where the exceptional null set N, is permitted to depend on g. This
concept is required for investigating the relationship of invariance to
unbiasednessandto certain other optimum properties. In this connection
it is important to know whether a UMPinvariant test is also UMP
among almost invariant tests. This turns out to be the case under
assumptions which are made precise in Theorem 4 below and which
are satisfied in all the usual applications.

If @ is equivalent to an invariant test then (gx) = d(x) for all
x¢N Ug"N. Since P,(g-N) = P=(N) = 0, it follows that ¢ is then
almost invariant. The following theorem gives conditions under which
conversely any almost invarianttest is equivalent to an invariant one.

Theorem 4. Let G be a group of transformations of &, and let & and
B be o-fields of subsets of % and G such that for any set A€ & the set
ofpairs (x, g) for which gx € A is measurable L x B. Suppose further
that there exists a o-finite measure v over G such that »(B) = 0 implies
(Bg) = 0 for all g€G. Then any measurable function that is almost
invariant under G (where ‘almost’ refers to some o-finite measure js) is
equivalent to an invariantfunction.

Proof. Because of the measurability assumptions, the function $(gx)
consideredas a function of the two variables x and g is measurable Y x &.
It follows that ¢(gx) — ¢(x) is measurable ./ x @&, and so therefore is
the set S of points (x, g) with ¢(gx) 4 d(x). If ¢ is almost invariant,
any section of S with fixed gis a u-nullset. By Fubini’s theorem (Theorem
3 of Chapter 2) there exists therefore a -null set N such that for all

wed —N (gx) = f(z) a.e. v.

Withoutloss of generality suppose that »(G) = 1, and let A bethe set of
points x for which

|H(g'x) db(e') = (ge) acer.
If

f (x, g) = |$(g'x) dv(g') — (gx),
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then A is the set of points x for which

|f(g) d(g) = 0.
Since this integral is a measurable function of x, it follows that A is

measurable. Let

w(x) -|)ee° d(g) if xEA

0 if céA.

Then y is measurable and y(x) = ¢(x) for x ¢ N since ¢(gx) = ¢(x) ae. »

implies that {4(g’x) dv(g’) = d(x) and that xe A. To show that yp is
invariant it is enough to prove that the set A is invariant. For any point

a € A, the function ¢(gzx) is constant except on a null-subset N, of G.
Then ¢(ghx) has the same constant value for all g ¢ N,h-* which by

assumption is again a y-null set; and hence hx € A, which completes the
proof.

Corollary 1. Suppose that the problem of testing H:0€w against
K: 0 €Q—@ remains invariant under G and that the assumptions of
Theorem 4 hold. Then if by is UMP invariant, it is also UMP within the

class of almost invarianttests.

Proof. \f ¢ is almost invariant, it is equivalent to an invariant test
by Theorem 4. The tests ¢ and y have the same power function, and
hence ¢, is uniformly at least as powerful as ¢.

In applications, Y is usually a dominated family, and w any o-finite

measure equivalent to F (which exists by Theorem 2 of the Appendix).

If ¢ is almost invariant with respect to F it is then almost invariant with

respect to w and hence equivalent to an invariant test. Typically, the

sample space % is an n-dimensional Euclidean space, is the class of

Borel sets, and the elements of G are transformations of the form y =

f(x, 7) where 7 ranges over set of positive measure in an m-dimensional

space and f is a Borel measurable vector-valued function of m+n

variables. If @ is taken as the class of Borel sets in m-space, the measur-

ability conditions of the theorem aresatisfied.
The requirementthat for all g €G and Be Z

(13) »(B)=0 implies (Bg) = 0

is satisfied in particular when

(14) (Bg) = (B) forall geG, BE®.

The existence of such a right invariant measure is guaranteed for a large

class of groups by the theory of Haar measure. Alternatively, it is

usually not difficult to check condition (13) directly.
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Example 8. Let G be the groupofall nonsingularlinear transformations of
n-space. Relative to a fixed coordinate system the elements of G can berepre-
sented by nonsingular 2 x n matrices A = (a;;), A’ = (a;;), °+ + with the matrix
product serving as the group product of two such elements. The o-field #
can be taken to be the class of Borel sets in the space of the n? elements of the
matrices, and the measure » can be taken as Lebesgue measure over #. Consider
now a set S of matrices with »(S) = 0, and the set S* of matrices A’A with
A’ € Sand A fixed. Ifa = max |a;;|,C’ = A’A, and C’ = A’A, the inequalities
laj;— @;| Se for all i, j imply |c7; — c),| < nae. Since a set has v-measure
zero if and only if it can be covered by a union of rectangles whose total measure
does not exceed any given e > 0,it follows that »(S*) = 0, as was to be proved.

In the preceding chapters, tests were compared purely in terms oftheir
power functions (possibly weighted according to the seriousness of the
losses involved). Since the restriction to invariant tests is a departure
from this point of view, it is of interest to consider the implications of
applying invariance to the power functions rather than to the tests
themselves. Any test that is invariant or almost invariant under a group
G has a powerfunction, whichis invariant under the group G induced by
G in the parameter space.

Tosee that the converseis in general nottrue, let X,, X2, X; be indepen-

dently, normally distributed with mean & and variance o?, and consider
the hypothesis o = oy. The test with rejection region

\X,—- X)>k when ¥ <0

|X; -— X,.) >k when X¥>0

is not invariant under the group G of transformations X; = X, +c
but its power function is invariant under the associated group G.
The two properties, almost invariance of a test ¢ and invarianceofits

powerfunction, become equivalent if before the application of invariance
considerations the problem is reduced to a sufficient statistic whose
distributions constitute a boundedly complete family.

Lemma 2. Let the family P® = {Pj, 6 €Q} of distributions of T be
boundedly complete, and let the problem of testing H:0€Q, remain
invariant under a group G of transformations of T for all 0. Then a
necessary and sufficient condition for the power function of a test y(t) to be
invariant under the induced group G over Q is that y(t) be almost invariant
under G.

Proof. For all 6€Q we have E,.y(T) = E,yw(gT). If py is almost
invariant, E,y(T) = E,y(gT) and hence E,y(T) = E,y(T) so that the

power function of y is invariant. Conversely, if E,y(T) = Ezgy(T),

then E,y(T) = E,y(gT), and it follows from the bounded completeness

of F* that y(gt) = y(t) ae. FP”.
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As a consequence, it is seen that UMP almost invariant tests also

possess the following optimum property.

Theorem 5. Under the assumptions of Lemma 2, let v(8) be maximal

invariant with respect to G and suppose that amongthe tests of H based on

the sufficient statistic T there exists a UMP almostinvariant one, say o(t).

Then ,(t) is UMPin theclass of all tests based onthe original observations

X, whose power function depends only on v(9).

Proof. Let (x) be any suchtest, and let y(t) = E[d(X)|t]. The power

function of y(t), being identical with that of ¢(x), depends then only on

v(6), and henceis invariant under G. It follows from Lemma2 that y(¢)

is almost invariant under G, and y,(t) is uniformly at least as powerful as

y(t) and therefore as ¢(2).

Example 9. For the hypothesis 7? < o” concerning the variances of two

normal distributions, the statistics (¥, Y, S%, 5?-) constitute a complete set of

sufficient statistics. It was shown in Example 6 that there exists a UMP

invariant test with respect to a suitable group G, which has rejection region

S2,/S% > Cp. Since in the present case almost invariance of a test with respect

to G implies that it is equivalent to an invariant one (Problem 13), Theorem

5

is

applicable with v(0) = A = 7?/o?, and the test is therefore UMP amongalltests

whose powerfunction depends only on A.

6. UNBIASEDNESS AND INVARIANCE

The principles of unbiasedness and invariance complement each other

in that each is successful in cases where the other is not. For example,

there exist UMP unbiased tests for the comparison of two binomial or

Poisson distributions, problems to which invariance considerations are

not applicable. UMP unbiasedtests also exist for testing the hypothesis

Oo = dy against o # oy in a normaldistribution, while invariance does

not reduce this problem sufficiently far. Conversely, there exist UMP

invariant tests of hypotheses specifying the values of more than one

parameter (to be considered in Chapter 7) but for which the class of

unbiased tests has no UMP member. There are also hypotheses, for

example the one-sided hypothesis ¢/o < 6, in a univariate normal distri-

bution or p< py in a bivariate one (Problem 11) with 9, po # 9, where

a UMPinvariant test exists but the existence of a UMP unbiased test

does not follow by the methods of Chapter 5 andisstill an open question.

On the other hand, to some problemsboth principles have been applied

successfully. These include Student’s hypotheses §< & and ¢ =

concerning the mean of a normal distribution, and the corresponding

two-sample problems 7 — & < Ay and 7 — & = Ay when the variances

of the two samples are assumed equal. Other examples are the one-sided
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hypotheses o? > o? and 17/0? > Ay concerning the variances of one or
two normal distributions. The hypothesis of independence p = 0 in a
bivariate normal distribution is still another case in point (Problem 11).
In all these examples the two optimum procedures coincide. Weshall

now showthat this is not accidental but is the case whenever the UMP
invariant test is UMP also amongall almost invariant tests and the UMP

unbiased test is unique. In this sense, the principles of unbiasedness and
of almost invariance are consistent.

Theorem 6. Suppose that for a given testing problem there exists a

UMP unbiased test ¢* which is unique (up to sets of measure zero), and
that there also exists a UMP almost invariant test with respect to some
group G. Then the latter is also unique (up to sets of measure zero), and
the two tests coincide a.e.

Proof. If U(«) is the class of unbiased level « tests, and if geG,

then ¢ € U(x) if and only if ¢g € U(«).t Denoting the power function
of the test ¢ by £,(8), we thus have

B5x9) = Py(9) = sup (20) = sup f,,(9) = sup f,,(0) = B4.(8).
gE U(x) ¢€ U(x) pgeU(a)

It follows that 6* and ¢*g have the same powerfunction, and, because
of the uniqueness assumption, that ¢* is almost invariant. Therefore,

if @ is UMP almost invariant, we have £,(0) > £4.(9) for all 6. On
the other hand, ¢’ is unbiased as is seen by comparingit with the invariant
test d(x) = a, and hence £,(0)< £,.(6) for all 6. Since ¢’ and ¢$*
therefore have the same powerfunction, they are equal a.e. because of the
uniqueness of @*, as was to be proved.

This theorem provides an alternative derivation for some ofthe tests
of Chapter 5. In Theorem 3 of Chapter4, the existence of UMP unbiased
tests was established for one- and two-sided hypotheses concerning the
parameter 6 of the exponential family (10) of Chapter 4. For this family,
the statistics (U, 7) are sufficient and complete, and in terms of these
Statistics the UMP unbiasedtest is therefore unique. Convenient explicit
expressions for some of these tests, which were derived in Chapter 5,

can instead be obtained by noting that when a UMPalmost invariant
test exists, the same test by Theorem 6 must also be UMPunbiased. This
proves for examplethatthe tests of Examples 5 and6 of the present chapter
are UMP unbiased.

The principles of unbiasedness and invariance can be used to supple-
ment each other in cases where neither principle alone leads to a solution
but where they do so when applied in conjunction. As an example
consider a sample X,,°--, X, from N(&, 0”) and the problem of testing

Tt ¢g¢ denotes the critical function which assigns to x the value ¢(¢2).
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H: é/o = 6, # 0 against the two-sided alternatives that /o #65. Here
sufficiency and invariance reduce the problem to the consideration of

t=Vn z/Vx(x, — #)?/(n — 1). The distribution of this statistic is the

noncentral t-distribution with noncentrality parameter 6 = Vnélo, and
n — 1 degrees of freedom. For varying 6, the family of these distribu-
tions can be showntobestrictly of Polya type and hence in particular
of type 3.* It follows as in Chapter 3, Problem 25, that amongalltests
of H based on ¢, there exists a UMP unbiased one with acceptance region
C, <t< C, where C,, C, are determined by the conditions

Pr{QStScj=l1—a and OP {GQStsS Co}/06|5_5,= 0.

In terms of the original observations, this test then has the property of
being UMP amongall tests that are unbiased and invariant. Whether

it is also UMP unbiased without the restriction to invariant tests is an
open problem.

Anothercase in which the combination of invariance and unbiasedness
appears to offer a promising approach is the so-called Behrens-Fisher
problem. Let X,,°-*,X, and Y,,°-*, Y, be samples from normal
distributions M(&, o?) and M(n, 7) respectively. The problem is that
of testing H: 7 < é (or 7 = &) without assuming equality of the variances
o2and7?. A set ofsufficientstatistics for (&, 7, o, 7) is then (X, Y, S}, S$)

where S2 = X(X,— X)? and S} = X(Y;— Y)?. Adding the same
constant to ¥ and Y reduces the problem to Y — X, S%, S}, and multi-
plication of all variables by a common positive constant to (Y — X)/

V/S%. 4+ S2 and S?/S%. One would expect any reasonable invariant
rejection region to be of the form

Y _ X S2

VSz + Sz S%

for some suitable function g. If this test is also to be unbiased, the

probability of (15) must equal « when 7 = é for all values of 7/o.
Whetherthere exists a function g with this property is an open question.

However, an approximate solution is available, which has been tabled
and which for practical purposes provides a satisfactory test.

 

(15)

* Karlin, “‘Decision theory for Pélya type distributions. Case of two actions, I.,”
Proc. Third Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1,

Berkeley, Univ. Calif. Press, pp. 115-129.
t Welch,“The generalization of Student’s problem when severaldifferent population

variances are involved,” Biometrika, Vol. 34 (1947), pp. 28-35; Aspin, “Tables for use

in comparisons whose accuracy involves two variances,” Biometrika, Vol. 36 (1949),

pp. 290-296. See also Chernoff, ‘Asymptotic studentization in testing of hypotheses,”
Ann. Math. Stat., Vol. 20 (1949), pp. 268-278, and Wallace, ‘“‘Asymptotic approximations

to distributions,” Ann. Math. Stat., Vol. 29 (1958), pp. 635-654, Section 8.
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Any UMPunbiased test has the important property of admissibility
(Problem | of Chapter 4), so that there cannot exist another test which

is uniformly at least as powerful and against somealternatives actually
more powerful than the given one. The corresponding property doesnot
necessarily hold for UMP invariant tests as is shown by the following
example.

Example 10.* Let (X,,, Xj.) and (Xo, X99) have bivariate normal distri-
butions with zero means and covariance matrices

( o? ree) and ( Ac? ers)

2 2P0190, OS Apo,o, Acs

Suppose that these matrices are nonsingular, or equivalently that |p| 4 1, but
that o,,0,,p, and A are otherwise unknown. The problem of testing A = |

against A > | remains invariant under the group G of all commonnonsingular
transformations

Xi = 4X1 + aXe

(i = 1, 2).

Xjq = AyXi + AXie

Since the probability is 0 that X4,Xo. = Xj.Xo,, the 2 x 2 matrix (X;;) is non-
singular with probability 1, and the sample space can therefore be restricted to
be the set of all nonsingular such matrices. Given any two sample points
Z =(X;;) and Z’ = (X;,) there exists a nonsingular linear transformation A

such that Z’ = AZ. There are therefore no invariants under G, and the only

invariant size « test is¢ =a. It follows vacuously that this is UMPinvariant
although its power is (A) =«. On the other hand, X,, and X,, are indepen-
dently distributed as N(0, o?) and N(0, Ao?). On the basis of these observations
there exists a UMPtest for testing A = | against A > 1 with rejection region
X,/X7, > C (Problem 33, Chapter 3). The power function of this test is
strictly increasing in A and hence > « for all A > 1.

Admissibility of optimum invariant tests therefore cannot be taken for
granted but must be established separately for each case. Let 6 = v(0)
be maximal invariant under G and suppose in order to be specific that
the hypothesis to be tested is 6 << dy. To prove admissibility of a level
a test do, it is sufficient to show for somesubset ’ of alternatives that if

g is any level « test, then E, O(X) => E,¢9(X) for all 6 €Q’ implies
E, (X) = Ey 6(X) for all 6. Admissibility proofs typically fall into
one of three categories as they establish this (a) locally, that is, for all 6
satisfying 0g < v(@) < 6, for some 6, > do; (b)for all sufficiently distant
alternatives, thatis, all alternatives satisfying v(0) > 6, for some 6, > 6y;

(c) for all alternatives at any given distance 4,thatis, satisfying v(0) = 6.

Proofs of type (a) or (b) are not entirely satisfactory since they do not

* This example was communicated to me by Professor C. M. Stein
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rule out the existence of a test with better power for all alternatives of

practical importance and worse only when both tests have power very

close to 1 or at alternatives so close to the hypothesis that the value of the

powerthere is immaterial.

As an example consider the UMP unbiased test ¢, of Theorem 3,

Chapter4,for testing H: 0 < 6, against 6 > 9in the presence of nuisance

parameters #. To showthatthis is locally admissible,let ¢ be any other

level « test of H. If Ey5 ¢(X) < « for some # then by continuity there

exists 0, > 6) such that for 0) <9< 9, Egg G(X) <a < Egy $,(4),

and it follows that locally ¢ is not uniformly as powerful as ¢,._ If on

the other hand E,5 ¢(X) = « forall & then Ep5 $(X) < Eo5 $i(X)for

all 0 > 6, and all # since in the proof of Theorem 3, ¢, was shown to

be UMP amongall tests that are similar on the boundary. This argument

does not however eliminate the possibility of a test which is biased near

H but uniformly more powerful than ¢, against all alternatives being at

least a certain distance from H. Admissibility against distant alternatives

has been proved for certain hypotheses concerning exponential families, *

and againstalternatives at any given distance for some location parameter

problemst including thatof testing ¢/c < 6, against €/o = 6, in a normal

distribution.

7. RANK TESTS

One of the basic problemsofstatistics is the two-sample problem of

testing the equality of two distributions. A typical example is the

comparison of a treatment with a control, where the hypothesis of no

treatment effect is tested against the alternatives of a beneficial effect.

This was considered in Chapters 4 and 5 underthe assumption ofnormality,

and the appropriate test was seen to be based on Student’s ¢._ It was also

shown that when approximate normality is suspected but the assumption

cannot be trusted, one is led to replacing the t-test by its permutation

analogue, which in turn can be approximated by theoriginal /-test.

Weshall consider the same problem below without, at least for the

moment, making any assumptions concerning even the approximate form

of the underlying distributions, assuming only that they are continuous.

The observations then consist of samples Xj,°-°°, X,, and Y%4,°°°, Y,

* Birnbaum, ‘“‘Characterizations of complete classes of tests of some multiparameter

hypotheses with applicationsto likelihoodratio tests,” Ann. Math. Stat., Vol. 26 (1955),

pp. 21-36, and Stein, “The admissibility of Hotelling’s T°-test,” Ann. Math. Stat.,

Vol. 27 (1956), pp. 616-623.
+ LehmannandStein,“The admissibility of certain invariantstatistical tests involving

a translation parameter,” Ann. Math. Stat., Vol. 24 (1953), pp. 473-479.
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from twodistributions with continuous cumulative distribution functions
F’and G, and the problem becomesthat oftesting the hypothesis

A,:G = F.

If the treatment effect is assumed to be additive, the alternatives are
G(y) = F(y — A). We shall here consider the more general possibility
that the size of the effect may depend onthe value of y (so that A becomes
a nonnegative function of y) and therefore test H, against the one-sided
alternatives that the Y’s are stochastically larger than the Y’s,

K,: G(z) < F(z) forall z, and GS F.

An alternative experiment that can be performedto test the effect
of a treatment consists of the comparison of N pairs of subjects, which
have been matchedso as to eliminate as far as possible any differences
not due to the treatment. One memberofeach pair is chosen at random
to receive the treatment while the other serves as control. If the normality
assumption of Chapter 5, Section 4, is dropped and the pairs of subjects
can be considered to constitute a sample, the observations (X, Yi),° °°,
(Xy, Yx) are a sample from a continuousbivariate distribution F. The
hypothesis of no effect is then equivalent to the assumption that F is
symmetric with respect to the line y = x

Hy: F(x, y) = Fly, x).

Another basic problem, which occurs in many different contexts,
concerns the dependenceor independenceoftwo variables. In particular,
if (Xj, Y,),-°-, (Xn, Yy) is a sample from a bivariate distribution F,
one will be interested in the hypothesis

Al: F(x, y) = G,(x)HA(y)

that X and Y are independent, which was considered for normaldistribu-
tions in Section 9 of Chapter 5. The alternatives of interest may, for
example, be that X and are positively dependent (cf. Chapter 5, Section
11). An alternative formulation results when 2, instead of being random,
can beselected for the experiment. If the chosen values are x, << ++: < ay
and F; denotes the distribution of Y given x,, the Y’s are independently
distributed with continuous cumulative distribution functions F,,---, Fy.

The hypothesis of independence of Y from x becomes

Ay: Fy =: =Fy

while under the alternatives of positive dependence the variables Y,
are stochastically increasing with i.

In these and other similar problems, invariance reduces the data so
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completely that the actual values of the observations are discarded and
only certain order relations between different groups of variables are
retained. It is nevertheless possible on this basis to test the various
hypotheses in question, and the resulting tests frequently are nearly as
powerful as the standard normaltests. We shall now carry out this
reduction for the four problems above.
The two-sample problem of testing H, against K, remains invariant

underthe group G ofall transformations

x, = f(x,), y; = f(ys) (i= 1,°°+, m;j= 1,-*-, 7)

such that f is continuous andstrictly increasing. This follows from the
fact that these transformations preserve both the continuity of a distri-
bution and the property of two variables being either identically distributed
or one being stochastically larger than the other. As was seen (with a
different notation) in Example 3, a maximalinvariant underG is the set

of ranks

(R’; S’) = (Rj, ms Ris Si, mT; S,)

of X,,°°°; Xm3 Yy,°°°, Y, in the combined sample. Since the distribu-

tion of (Rj, °°, R3 S;,°°*, S,) is symmetric in the first m and in the
last n variables for all distributions F and G, a set of sufficient statistics

for (R’, S’) is the set of the X-ranks and that of the Y-ranks without regard
to the subscripts of the X’s and Y’s. This can be represented by the
ordered X-ranks and Y-ranks

Ri<-''<R, and S,<-::<S,,

and therefore by one of these sets alone since each of them determines
the other. Any invariant test is thus a rank test, that is, it depends only
on the ranks of the observations, for example on (Sj, ---, S,).

To obtain a similar reduction for H,, it is convenient first to make the

transformation Z, = Y; — X;, W; = X; + Y;. The pairs of variables

(Z,, W,) are then again a sample from a continuousbivariate distribution.
Underthe hypothesis this distribution is symmetric with respect to the
w-axis, while under the alternatives the distribution is shifted in the

direction of the positive z-axis. The problem is unchangedif all the w’s
are subjected to the same transformation w; = g(w,) where g is 1 : 1
and has at most a finite number of discontinuities, and (Z,,---, Zy)
constitutes a maximalinvariant under this group. [Cf. Problem 2(ii).]

The Z’s are a sample from a continuous univariate distribution D,
for which the hypothesis of symmetry with respect to the origin

H,: D(z) + D(—z) = 1 forall z
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is to be tested againstthe alternatives that the distribution is shifted toward
positive z-values. This problem is invariant under the group G ofall
transformations

z=f() (G=1,--:,N)

such that fis continuous, odd. andstrictly increasing. Ifia <
O<2z;,°°*,2; where ij<--++ <i, and j,<---</j,. let Sits Sy
denote the ranks of z,.---,2; among the absolute values |z|, - - -. |zy|

, /and ry,°**,r, the ranks of |z,|,---, |z, | among |z,|,---,|z,|. The

 

transformations f preserve the sign of each observation, and hence in
particular also the numbers m and n. Since f is a continuous,strictly
increasing function of|z|, it leaves the order of the absolute values invariant
and therefore the ranks r; and s;. To see that the latter are maximal
invariant, let (z,,---, zy) and (z,,--:,zy) be two sets of points with
m' =m, n' =n and the same r, and s;. There exists a continuous,
Strictly increasing function on thepositive real axis such that|z’| = tf(lz;))
andf(0) = 0. Iffis defined for negative z byf(—z) = —f (2), it belongs
to G and z; = f(z,) for all i, as was to be proved. As in the preceding
problem,sufficiency permits the further reduction to the ordered ranks
lh<tt+ <r, and s; <-++<s,. This retains the information for the
rank of each absolute value whether it belongs to a positive or negative
observation, but not with which positive or negative observation it is
associated.
The situation is very similar for the hypotheses Hz and H,. The

problem oftesting for independence in a bivariate distribution against
the alternatives of positive dependence is unchanged if the Y, and Y,
are subjected to transformations X; = f(X;), Y; = g(Y,) such that f and
g are continuousandstrictly increasing. This leaves as maximalinvariant
the ranks (Rj,°+-,; Ry) of (X4,°++, Xy) among the X’s and the ranks
(S},-++, Sy) of (¥,°+:, Yy) among the Y’s. The distribution of
(Ri, S), ++, (Ry, Sy) is symmetric in these N pairs for all distributions
of (X, Y). It follows that a sufficient statistic is (S,,°- +, Sy) where
(1, S)), +++, (N, Sy) is a permutation of (Rj, Si), °°, (Ry, Sy) and where
therefore S;, is the rank of the variable Y associated with the ith smallest _Y.
The hypothesis H, that Y,,---, Y,, constitutes a sample is to be tested

against the alternatives K, that the Y; are stochastically increasing with i.
This problem is invariant under the group of transformations y, = f(y;)
wherefis continuousandstrictly increasing. A maximalinvariant under
this groupis the set of ranks S,,---, Sy of Y,,---, Yvy.
Some invariant tests of the hypotheses H, and H, will be considered

in the next two sections. Correspondingresults concerning H; and H,
are given in Problems 39-41.
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8. THE TWO-SAMPLE PROBLEM

The principle of invariance reduces the problem oftesting the two-
sample hypothesis H: G = F against the one-sided alternatives K that the
Y’s are stochastically larger than the X’s, to the ranks S; <--: < S, of the
Y’s. The specification of the S; is equivalent to specifying for each of
the N = m+n positions within the combined sample, the smallest, the
next smallest, etc., whether it is occupied by an z ora y. Since for any
set of observations n of the N positions are occupied by y’s andsince the

(*) possible assignments of 7 positions to the y’s are all equally likely

when G = F,the joint distribution of the S; under H is

(16) P(S, =5,°°S, =5,} = 1/(*)
n

for each set 1< 5, < 5g <°°'<5,<N. Anyrank test of H ofsize

a=k/ (7) therefore has a rejection region consisting of exactly k points

(Sy, °° *s Sp).
Fortesting H against K there does not exist a UMPranktest, and hence

no UMPinvariant test. This follows for example from a consideration
of two of the standard tests for this problem, since each is most powerful
amongall rank tests against some alternative. The twotests in question
have rejection regions of the form

(17) h(sy) + +++ + A(s,) > C.

One, the Wilcoxon two-sample test,* is obtained from (17) by letting
h(s) = s, so that it rejects H when the sum of the y-ranks is too large.

Weshall show below that for sufficiently small A, this is most powerful

againstthe alternatives that F is the logistic distribution F(x) = 1 /Q + e7*)

and that G(y) = F(y — A). The other test, the Fisher- Yates test, has

the rejection region (17) with h(s) = E(V') where Vi) <ee < VN)

is an ordered sample of size N from a standard normaldistribution.

This is most powerful against the alternatives that F and G are normal

distributions with common variance and means & and 7 = € + A, when

A is sufficiently small.

* For tables of this test cf. p. 157.
+ Tables of the expected order statistics from a normal distribution are given in

Biometrika Tables for Statisticians, Vol. 1, Cambridge Univ. Press, 1954, Table 28

(to 3 decimals for N < 20 and to 2 decimals for N S 50), and by Teichroew, ‘‘Tables of

expected values of orderstatistics and products of order statistics ---,” Ann. Math.
Stat., Vol. 27 (1956), pp. 410-426 (to 10 decimals for N S 20).
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To prove that these tests have the stated properties it is necessary to
know the distribution of (S,,°--, S,) under the alternatives. If F and
G have densities f and g such that f is positive whenever g is, the joint
distribution of the S, is given by

2( V1) 2( V'sn)) N(18) PUS = 7755, = 5} = ELfra - far](|
where V‘)) <--+< V()is an ordered sample of size N from the distri-
bution F. (See Problem 22.) Consider in particular the translation
alternatives

 

ey)=f(y — A),

and the problem of maximizing the power for small values ofA. Suppose
thatfis differentiable and that the probability (18), which is now a function
of A, can be differentiated with respect to A under the expectation sign.
The derivative of (18) at A = 0 is then :

0
aa fo {S; = Sy,°"', Si — Sy} ls =o

_ f'(VSv) _ re}(8) .

7 eGV1) + + f(VERr) J) \n

Since under the hypothesis the probability of any ranking is given by
(16), it follows from the Neyman-Pearson lemma in the extended form
of Theorem 5, Chapter 3, that the derivative of the power function at
A = 0 is maximized bytherejection region

n ’ ys.)

(19) -3eo|>

The same test maximizes the poweritself for sufficiently small A. To
see this let s denote a general rank point (s,,---,s,), and denote by s
the rank point giving the jth largest value to the left-hand side of(19).

Ifa=k/ (7) the powerofthe test is then

  

. | ‘rod a |
f(A) = 2, Ps) =2 ey +A aq Pals?|4 <0 4. | ,

n

Since there is only a finite number of points s, there exists for each j
a number A; > 0 such that the point s”also gives the jth largest value
to Pa(s) for all A << A;. If

A

is less than the smallest of the numbersA,,

i Ce (n) the test also maximizes [(A).
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Iff(x) is the normal density N(é, o?),

 _f@__d _a-é
Fe) deIMO =a?

and the left-hand side of (19) becomes

(s;)
7= 1Sew)

Oo Oo

where W') < +--+ < W) is an ordered sample from N(0, 1). Thetest
that maximizes the power against these alternatives (for sufficiently small
A) is therefore the Fisher-Yates test.

In the case of the logistic distribution,

F@y=1/l+e*) f@=e1 +e"y,

—f'@f@) = 2F(@) — 1.

The locally most powerful rank test therefore rejects when LE[F(V))] >

C. If V has the distribution F and 0< y< 1,

P{F(V) < y} = PV< FA(y)} = FIFY)] = »,

so that U = F(V) is uniformly distributed over (0, 1).* The rejection
region can therefore be written as DE(U‘*) > C where UY < +++ < U™
is an ordered sample of size N from the uniform distribution R(0, 1).

Since E(U‘)) = s,/(N + 1), the test is seen to be the Wilcoxontest.

Both the Fisher-Yates test and the Wilcoxon test are unbiased against
the one-sided alternatives K. In fact, let ¢ be the critical function of any

test determined by (17) with A nondecreasing. Then ¢ is nondecreasing
in the y’s and the probability of rejection is « for all F= G. It follows
from Lemma2 of Chapter5 that the test is unbiased against all alternatives
of K.

It follows from the unbiasedness properties of these tests that the

most powerful invariant tests in the two cases considered are also most
powerful against their respective alternatives among all tests that are
invariant and unbiased. The nonexistence of a UMPtest is therefore
not relieved by restricting the tests to be unbiased as well as invariant.
Nor does the application of the unbiasedness principle alone lead to a
solution, as was seen in the discussion of permutation tests in Chapter 5,

Section 8. With the failure of these two principles, both singly and in
conjunction, the problem is left not only without a solution but even

and hence

* This transformation, which takes a random variable with continuous distribution

F into a uniformly distributed variable, is known as the probability integral transfor-
mation.
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without a formulation. A possible formulation (stringency) will be
discussed in Chapter 8. However, the determination of a most stringent
test for the two-sample hypothesis is an open problem.
Although optimum properties have not yet been established for any

two-sample test, both tests mentioned above appearto be very satisfactory
in practice, as are others such as van der Waerden’s testt which has the
rejection region (17) with A(s) = ®-(s/N + 1) where ® is the cumulative
distribution function of a standard normal distribution. Even when F
and G are normal with commonvariance, thesetests are nearly as powerful
as the f-test.
To obtain a numerical comparison, suppose that the two samples are

of equal size and consider the ratio n*/n of the numberof observations
required by two tests to obtain the same powerf against the samealterna-
tive. Let m = nand m* = n* = g(n) be the samplesizes required by one
of the rank tests and the t-test respectively, and suppose (as is the case
for the tests under consideration) that the ratio n*/n tends to a limit e
independent of « and f as n->co. Then

e

is called the asymptotic
efficiency of the rank test relative to the t-test. Thus, if in a particular
case e = 3, the rank test requires approximately twice as many observations
as the t-test to achieve the same power.

In the particular case of the Wilcoxon test,t e turns out to be equal
to 3/7 ~ .95 when F and G are normaldistributions with equal variance.
When F and G are not necessarily normal but differ only in location,
e depends on the form of the distribution. It is always >.864, but may
exceed | and canin fact be infinite. Thesituation is even more favorable
for the Fisher-Yates test. Its asymptotic efficiency relative to the f-test
is always >1 when F andG differ only in location; it is 1 in the particular
case that F is normal. The sameresults hold for van der Waerden’s
test, which appears to be asymptotically equivalent to that of Fisher and
Yates.
The above results do not depend on the assumption of equal sample

sizes; they are also valid if m/n and m*/n* tend to a commonlimit p as
n—>oco where0< p< oo. Atleast in the case that F is normal, the
asymptotic results agree well with those found for very small samples.

Tt Tables facilitating this test are given by van der Waerden and Nievergelt, Tables
for Comparing Two Samples by X-Test and Sign Test, Berlin, Springer Verlag, 1956.

+ For a discussion of these andrelated efficiency results, see for example Hodges and
Lehmann, “The efficiency of some nonparametric competitors of the f-test,” Ann.
Math. Stat., Vol. 27 (1956), pp. 324-335; Chernoff and Savage, ‘Asymptotic normality
and efficiency of certain nonparametricteststatistics,” Ann. Math. Stat., Vol. 29 (1958),
pp. 972-994; van der Waerden, ‘“‘Order tests for the two-sample problem and their
powers,”’ Koninkl. Ned. Akad. Wetenschap., Proc., Ser. A, Vol. 55 (1952), pp. 435-458
and Vol. 56 (1953), pp. 303-316.
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For testing G = F against the two-sided alternatives that the Y’s are

either stochastically smaller or larger than the X’s, two-sided versions of

the above tests can be used. In particular, if m =n, (17) suggests the

rejection region
|ZA(s;) — LA(r,;)| > C.

The theory hereis in still less satisfactory state than in the one-sided case.

Thus, for the two-sided Wilcoxon test obtained by putting A(k) =k,

and other similar tests, it is not even known whether they are unbiased

against the two-sided alternatives in question, or whether they are admis-

sible within the class of all rank tests. On the other hand, the relative

asymptotic efficiencies are the sameas in the one-sided case.

The two-sample hypothesis G = F can alsobetested against the general

alternatives G = F. This problem arisesin deciding whethertwo products,

two sets of data, etc., can be pooled when nothing is known about the

underlying distributions. Since the alternatives are now unrestricted,

the problem remains invariant under all transformations x; = f (x;,),

y¥,=fiy) i= leon ms falcon such thatfhas only a finite number

of discontinuities. There are no invariants under this group, so that

the only invariant test is d(x, y) =a. This is however not admissible

since there do exist tests of H that are strictly unbiased againstall alterna-

tives G + F (Problem 343. The test most commonly employed for this

problem is the Smirnov test. Let the sample cumulative distribution

functions of the two samples be defined by

Sats Lm (z) = alm, SyIn (z) = B/n,

where a and b are the numberof x’s and y’s less or equal to z respectively.

Then

H

is rejected according to this test* when

sup |Sy,,--2, @ — Sy.-rm @>
Z

9. THE HYPOTHESIS OF SYMMETRY

When the method of paired comparisons is used to test the hypothesis

of no treatmenteffect, the problem wasseen in Section 7 to reduce through

invariance to that of testing the hypothesis

H,: D(z) + D(—z) = 1 forall 2,

* A survey dealing with the theory ofthis and related tests and containing references

to the relevant tables is given by Darling, ‘The Kolmogorov-Smirnov, Cramer-von

Mises tests,” Ann. Math. Stat., Vol. 28 (1957), pp. 823-838. A detailed study of

the distribution of the test statistic under the hypothesis is presented by Hodges, ‘The

significance probability of the Smirnov two-sample test,” Arkiv Mat., Vol. 3 (1957),

pp. 469-486.
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which states that the distribution D of the differences Z, = Y, — Xj
(i = 1,---+, N) is symmetric with respect to the origin. The distribution
D can be specified by the triple (p, F, G) where

p=PiZ50}, FQ) =P\Z\<2e]Z<0}, G@=P{Z<4Z>0},
and the hypothesis of symmetry with respect to the origin then becomes

H: p = 3, G=F.

Invariance and sufficiency were shown to reduce the data to the ranks
Sy) <+++< S, of the positive Z’s among the absolute values IZ\|,° °°, Zy\.
The probability of S; = 5,,---,.S, = s, is the probability of this event
given that there are 1 positive observations multiplied by the probability
that the numberofpositive observations is n. Hence

  

N n ~N—n
PYS|) = 5,°°°, S, = st = (’ Ja — p)"p* Pro US, = S00, S,= s,\n}

where the second factoris given by (18). Under H, this becomes

P{S, = Sy5 my S,, = S,,} = 1/2*

for each of the £6) = 2” n-tuples (s,,---,5,) satisfying 1<

Sy<t++<s,<N. Any ranktest of size « = k/2* therefore has a
rejection region containing exactly k such points(s,, - + +, s,).
The alternatives K of a beneficial treatment effect are characterized by

the fact that the variable Z being sampled is stochastically larger than
some random variable which is symmetrically distributed about 0. It
is again suggestive to use rejection regions of the form A(s,) +--+: +
h(s,,) > C, where however is no longer a constant as it was in the two-
sample problem but depends on the observations. Two particular cases
are the Wilcoxon one-sample test, which is obtained by putting h(s) = s,
and the analogue of the Fisher-Yates test with A(s) = E(W‘*)) where
W® <+++< W)are the ordered valuesof|V,|,---, |Vy|, the V’s being
a sample from N(0, 1). The W’s are therefore an ordered sample of

size N from a distribution with density V2/7 e-”’/? for w > 0.
As in the two-sample problem, it can be shown that each ofthese tests

is most powerful (amongall invariant tests) against certain alternatives,
and that they are both unbiased against the class K. Their asymptotic
efficiencies relative to the ¢-test for testing that the mean of Z is zero have
the same values 3/7 and | as the corresponding two-sample tests, when
the distribution of Z is normal.

In certain applications, for example where the various comparisons
are made underdifferent experimental conditions, or by different methods,
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it may be unrealistic to assume that the variables Z,,°°°,Zy have a

commondistribution. Supposeinstead that the Z, are still independently

distributed but with arbitrary continuous distributions D;. The hypo-

thesis to be tested is that each of these distributions is symmetric with

respect to the origin.

This problem remains invariant under all transformations z, = filz,),

i= 1,---, N, such that each f; is continuous, odd, andstrictly increasing.

A maximal invariant is then the number n of positive observations, and

it follows from Example 7 that there exists a UMP invariant test, the

sign test, which rejects when n is too large. This test reflects the fact

that the magnitude of the observationsor of their absolute values can be

explained entirely in terms of the spread of the distributions D,, so that

only the signs of the Z’s are relevant.

Frequently, it seems reasonable to assume that the Z’s are identically

distributed but the assumption cannot be trusted. One would then

prefer to use the information provided by the rankss; but requires a test

whichcontrols the probability of false rejection even when the assumption

fails. As is shown by the following lemma, this requirement is in fact

satisfied for every (symmetric) rank test. Actually, the lemma will not

require even the independenceof the Z’s; it will show that any symmetric

rank test continues to correspondto the stated levelofsignificance provided

only the treatmentis assigned at random within each pair.

Lemma 3. Let 4(z,,°°*,2y) be symmetric in its N variables and such

that

(20) En (Z,, °°» Zy) = %

when the Z’s are a sample from any continuous distribution D which is

symmetric with respect to the origin. Then

(21) Eb(Zy,***,Zy) = 2
if the joint distribution of the Z’s is unchanged under the 2* transformations

Z, = +Z,,°°°,Zy = £Zy.

Proof. Condition (20) implies

(22) | LY THt2e5°°7 £42" -NY =a ae.
jyy)

where the outer summation extends over all N! permutations (j,, °- +, jy)

and the inner one over all 2” possible choices of the signs + and —.

This is proved exactly as was Theorem 3 of Chapter 5. If in addition ¢

is symmetric, (22) implies

(23) Xo(4%,° °°: +2z,)/2* = «.
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Suppose that the distribution of the Z’s is invariant under the 2”trans-
formations in question. Then the conditional probability of any sign
combination of Z,,---,Zy given |Z,|,---,|Z,| is 1/2%. Hence (23) is
equivalent to

(24) E[¢(Z,, my Zy)| |Z,

 

 9° ° 5 Z| |= x a.c.

and this implies (21), as was to be proved.

10. INVARIANT CONFIDENCE SETS

Confidence sets for a parameter 6 in the presence of nuisance parameters
# were discussed in Chapter 5 (Sections 4 and 5) under the assumption
that 6 is real-valued. The correspondence between acceptance regions
A(§o) of the hypotheses H(6)): 0 = 6) and confidence sets S(x) for 6
given by (34) and (35) of Chapter 5 is, however, independent ofthis
assumption; it is valid regardless of whether 6 is real-valued, vector-
valued, or possibly a label for a completely unknowndistribution function
(in the latter case, confidence intervals become confidence bandsfor the
distribution function). This correspondence, which can be summarized
by the relationship

(25) 0 €S(x) if and only if x € A(6),

was the basis for deriving uniformly most accurate and uniformly most
accurate unbiased confidence sets. In the present section, it will be used
to obtain uniformly most accurate invariant confidencesets.

Webegin by defining invariance for confidence sets. Let G be a group
of transformations of the variable X preserving the family ofdistributions
Poo. (8, 8) € Q} and let G be the induced group of transformations of .
If g(0, 0) = (0’, 3’) we shall suppose that 6’ depends only on ¢ and 6
and not on ¥, so that g induces a transformation in the space of 6. In
order to keep the notation from becoming unnecessarily complex,it will
then be convenientto write also 6’ = g0. For each transformation g € G,
denote by g* the transformationacting onsets S in 6-space and defined by

(26) g*S = {g0: 06S},

so that g*S is the set obtained by applying the transformation g to each
point 6 of S. A confidence procedure, given by a class of confidence
sets S(x) is then said to be invariant under G if

(27) g*S(x) = S(gx) forall xe, g eG.

This definition is a particular case of the invariance concept discussed
in Chapter 1. If the transformation g is interpreted as a change of
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coordinates, (27) means that the confidence statement does not depend

on the coordinate system used to express the data. The statement that

the transformed parameter g0 lies in S(gx) is equivalent to stating that

6 € g*-18(gx), which is equivalent to the original statement 6 € S(z)

provided (27) holds.

Example 11. Let X, Y be independently normally distributed with means

£, 7 and unit variance, and let G be the groupofall rigid motions of the plane,

which is generated by all translations and orthogonal transformations. Here

2 =¢ for all g €G. An example of an invariant class of confidence sets is

given by
S(x,y) = (0): @ —EP + —n? SCG,

the class of circles with radius VC and center (x,y). The set g*S(x, y) is the

set of all points g(é, 7) with (&, 7) € S(@, y), and henceis obtained by subjecting

S(x, y) to the rigid motiong. The result is the circle with radius VC and center

g(x, y), and (27)is therefore satisfied.

In accordance with the definitions given in Chapters 3 and 5, a class

of confidence sets for 6 will be said to be uniformly most accurate invariant

at confidence level 1 — « if amongall invariantclasses ofsets at that level

it minimizes the probability

Pog (9 € S(X)} forall #0. .

In order to derive confidence sets with this property from families of

UMPinvariant tests, we shall now investigate the relationship between

invariance of confidence sets and of the associatedtests.

Suppose that for each 6there exists a group of transformations G,,,

which leaves invariant the problem oftesting H(9): 6 = 6, and denote

by G the group of transformations generated by thetotality of groups Gg.

Lemma 4. (i) Let S(x) be any class of confidence sets that is invariant

under G and let A(@) = {x: 6 € S(x)}; then the acceptance region A(®) is

invariant under Gy for each 0.
(ii) If in addition, for each 6) the acceptance region A(9,) is UMP

invariant for testing H(6) at level a, the class of confidence sets S(x) is

uniformly most accurate amongall invariant confidence sets at confidence

level 1 — a.

Proof. (i) Consider any fixed 6 and let g €G,. Then

gA(6) = {gx: 0 € S(x)} = {x: 6 € S(g12)} = {x: 0 € g*¥1S(x)}

= {x: 90 € S(x)} = {x: 6 € S(x)} = A(6).

Here the third equality holds since S(x) is invariant, and the fifth one

since g € G, and therefore g0 = 0.

(ii) If S’(x) is any otherinvariant class of confidence setsat the prescribed
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level, the associated acceptance regions A’(0) by (i) define invarianttests
of the hypotheses H(6). It followsthat these tests are uniformly at most
as powerful as those with acceptance regions A(6) and hence that

Py (0ES(X)} < Py (0 ES(X)} forall 0° +8,

as was to be proved.
It is an immediate consequence of the lemma that if UMPinvariant

acceptance regions A(9) have been found for each hypothesis H(6)
(invariant with respect to G,), and if the confidencesets S(z) = {0:2 € A(6)}
are invariant under G, then they are uniformly most accurate invariant.

Example 12. Under the assumptions of Example 11, the problem oftesting
¢ = &, 1] = mq is invariant under the group G:,, ,, of orthogonal transformations
about the point (&5, 7/9):

X” = &) = ay(X — &o) + ay Y — 19), Y’ — 09 = An(X — &) + aol Y — No)

where the matrix (@,;) is orthogonal. There exists under this group a UMP
invariant test, which has the acceptance region (Problem 8 of Chapter 7)

(X — &)? +(Y¥ — mH) SC.

Let Gy be the smallest group containing the groups G:,, for all £,. Since this
is a subgroup of the group G of Example 11 (the two groupsactually coincide
but this is immaterial for the argument), the confidence sets (Y — £)? + (¥ — 7)?
= C are invariant under Gy and hence uniformly most accurate invariant.

Example 13. Let X,,---, X, be independently normally distributed with
mean ¢ and variance o*. Confidence intervals for are based on the hypotheses
H(S9): ¢ = &, which are invariant under the groups Gz, of transformations
X; = aX; — &) + & (@ #0). The UMPinvariant test of H(&,) has accept-
ance region

Vin — In |X — )|/VXX; — XP <C,

and the associated confidence intervals are

(28) ¥-—L_ veep cee ¥4———— V=XCX, — XPVan oT) uCX; X).
Vn(n — 1)

The group G in the present case consists ofall transformations g: XY, = aX; +
b(a # 0), which on & induces the transformation g: & =ab +b. Application
of the associated transformation g&* to the interval (28) takes it into the set of |
points a§ + b for which

&

satisfies (28), that is, into the interval with end points

 

aX +b —|a| CVICX,; — XP/n(n — 1)
 

and aX+b+|al|\CVX(X; — X)2/n(n — 1).

Since this coincides with the interval obtained by replacing X; in (28) with
aX; + b, the confidence intervals (28) are invariant under G, and hence uniformly
most accurate invariant.
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11. CONFIDENCE BANDS FOR A DISTRIBUTION
FUNCTION

Suppose that X = (Xj,°°-, X,) is a sample from an unknown con-
tinuous cumulative distribution function F, and that lower and upper
bounds Ly and My are to be determined such that with preassigned
probability 1 — « the inequalities

Lx(u) < Fu) < Mx(u) forall wu

hold for all continuous cumulative distribution functions F. This
problem is invariant under the group G of transformations

X; = 2(X;), i= lece, Nn,

where g is any continuous strictly increasing function. The induced

transformation in the parameter space is gF = F(g7").
If S(x) is the set of continuous cumulative distribution functions

S(a) = {F: L,(u) < F(u) < M,(u) for all u},

then

g*S(x) = {gF: L, (u) < Fu) < Mu) forall u}

= {F: L,[g\u)] < Fu) < Mfg(u)] for all uj.

For an invariant procedure, this must coincide with the set

S(gx) = {F: Loe)-9(2,4) S&S FU) S Mya,-o(2,(4) for all u}.

The condition of invariance is therefore

Lyap--ga8) = LA); Myal¢@)] = M,(u) forall x and w.

To characterize the totality of invariant procedures, consider the sample
cumulative distribution function T,, given by

T(u)=ifn for ®u<ax"*),  j=0,--+,0,

where x!1) <++-+ <2!” is the ordered sample and where x= —oo,
a("+1) = 09, Then a necessary and sufficient condition for L and M

to satisfy the above invariance condition is the existence of numbers

Ay, °° *5 An; Ap, ** *» A, Such that

L{u)=a,  M,u)=a, for t® <u<a%*,

That this condition is sufficient is immediate. To see that it is also

necessary, let u,u’ be any two points satisfying x<< u<u' < 20%,
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Given any ¥,°°*,y, and v with ¥ <v<y"*”there exist g, g°€G
such that

g(y) — gy”) = re, g(v) = U, g(v) =u’,

If L,, M, are invariant, it then follows that L,(u’) = Lv) and L,(u) =
L,(v), and hence that L,(u’) = L,(u) and similarly M,(u’) = M,(u), as
was to be proved. This characterization shows L, and M, to be step
functions whose discontinuity points are restricted to those ofT,.

Since any two continuousstrictly increasing cumulative distribution
functions can be transformed into one another through a transformation
g, it follows thatall these distributions have the same probability of being
covered by an invariant confidence band. (See Problem 48.) Suppose
now that F is continuous but no longerstrictly increasing. If J is any
interval of constancy of F, there are no observations in J so that J is also
an interval of constancy of the sample cumulative distribution function.
It follows that the probability of the confidence band covering F is not
affected by the presence of J and hence is the same for all continuous
cumulative distribution functions F.
For any numbersa;, a; let A,, A; be determined by

a; = (ifn) — A, a; = (i/n) + Aj.

Then it was seen above that any numbers Aj,---,A,; Aj, ---, A’ define
a confidence band for F, which is invariant and hence has constant
probability of covering the true F. From these confidence bands a test
can be obtained of the hypothesis of goodness of fit F = F, that the
unknown F equals a hypothetical distribution Fy. The hypothesis is
accepted if Fo lies entirely within the band,thatis, if

—A; < F,(u) — T,(u)< A; forall et <y< git

andall i=1,---,x.

Within this class of tests there exists no UMP memberand the most common
choice of the A’s is A; = A; =A for all i. The acceptance region of
the resulting Kolmogorov test* can be written as

sup |F,(u) — T,(u)| < A.
—-OlU< @©

* A survey dealing with the theory ofthis andrelatedtests (including tests for good-
ness offit when the hypothesis specifies a parametric family rather than a single distri-
bution) is given by Darling, “The Kolmogorov-Smirnov, Cramér-von Mises tests,”
Ann. Math. Stat., Vol. 28 (1957), pp. 823-838. This paper contains in, particular also
references to the tables which are required to carry out the test. A discussion of some
of the associated one-sided tests is given by Chapman, “‘A comparative study of several
one-sided goodness-of-fit tests,” Ann. Math. Stat., Vol. 29 (1958), pp. 655-674.
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This is the limiting case of the Smirnov two-sampletest as the size of the

second sample tendsto infinity.

12. PROBLEMS

Section 1

1. Let G be a group of measurable transformations of (%,.) leaving

P ={Po,6 €Q} invariant, and let T(x) be a measurable transformation to

(7,%). Suppose that T(x,) = T(x.) implies T(g2,) = T(gx2) for all g €G,

so that G induces a group G* on 7 throughg*7T(x) = T(gz), and suppose further

that the induced transformations g* are measurable 4. Then G* leaves the

family PT = {Pf, 6 € Q} ofdistributions of 7 invariant.

Section 2

2. (i) Let Z bethetotality of points x = (%,°--, x,) for which all coordinates

are different from zero, and let G be the group of transformations x; = cx;,

c>0. Then a maximal invariant under G is (sgn 2p, %4/%p.° °°, Tn—a/®n)

where sgn x is | or —1 as 2 is positive or negative.

(ii) Let 2 be the space of points « = (2, °°, z,) for which all coordinates are

distinct and let G be the groupofall transformations x; = f(x,), i=1,-°°,4,

such that fis a 1 : 1 transformation of the real line onto itself with at most a

finite numberof discontinuities. Then G is transitive over 7.

((ii) Let « = (x,,°°°,%) and x’ = (%},°°',2Xy) be any two points of 2.

Let I, °° :, J, be a set of mutually exclusive open intervals which (together with

their end points) cover the real line and such that x; € I; Let Ij,--+,7, bea

corresponding set of intervals for ai,°°*,&,. Then there exists a transforma-

tionfwhich mapseach J; continuously onto I}, maps x; onto x;, and the set of

n — 1 end points of Jj, ---, J, onto the set of end points of Ij, °-:, Ih.)

3. (i) Asufficient condition for (8) to hold is that D is a normal subgroupof G.

(ii) If G is the group of transformations x’ = ax + b,a #0, —~ <b< ow,

then the subgroup of translations x’ =x +6 is normal but the subgroup

x’ = ax is not.

[The defining property of a normal subgroup is that given de D, ge G,

there exists d’€ D such that gd =d'g. The equality s(7,) = s(%2) implies

x, = dx, for some d € D, and hence ex, = edx, = d’exy. The result (i) now

follows since s is invariant under D.]

Section 3

4. Let X, Y have the joint probability density f(x,y). Then the integral

h(z) =| fy —2,y) dy is finite for almost all z, and is the probability

density of Z=Y-X.
b

[Since P{Z < b} = h(z) dz, it is finite and hence fh is finite almost

everywhere.] v— ©

5, (i) Let X = (X,,:° +, X,) have probability density (1 /6)fl(@, — 5/6, °° °;

(1, — §)/0] where —«0 <& < », 0 <6 are unknown, and where f is even.
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The problem oftesting f = fy against f = f, remains invariant underthe trans-
formations x; = ax; +b(i=1,---,n),a #0, —0 <b < oo, and the most
powerful invarianttest is given by the rejection region

oO io6)

| | ’ vf(va, +- uy--', VLyp, + U) dv du
—o J0

>C | { vu"*fi(vr, + U,***, U%, + u) dv du.
—ao J/0

(ii) Let ¥ = (X4,--+-, X,) have probability density f(w, — X%_4w148;,° °°
Ly, — U*¥_,w,,;B;) where k <n, the w’s are given constants, the f’s are unknown,

and where we wish to testf = fo againstf = f;. The problem remainsinvariant
under the transformations x, = x; + L*_.w,;y;, —0© <v,°°+,y, < ©, and
the most powerful invarianttest is given by the rejection region

[- , ce _ W158;, Ty ey 2WnjP;) dp,,°- +, dB,

> C, 

| . |foe _ Wy5B, Ty ey LWjB;) dp, my dp,

[A maximalinvariant is given by

n n n

1, = (x, — > Qty, Vg — > Agr °° y Upn-K > An—K,rEr)
r=n—k+1 r=n—k+1 r=n—k+1

for suitably chosen constants a;,.]

6. Let X1,°°'; Xm; Yy,°**, Y, be samples from exponential distributions

with densities o~te— (*-*)/° for x = &, and re~—-"" for y = 7.
At) For testing s/o < A against 7/o > A, there exists a UMP invarianttest

with respect to the group G: X; =aX;+56, Y,; =aY; +c,a>0, —o <4,
c < ©, andits rejection region is

ay; — min (Y4, my Yn)Xl; — min (x, mr ty Lm)] >C.

(a)This test is also UMP unbiased.

(iii) Extend these results to the case that only the r smallest X’s and the s
smallest Y’s are observed.

[(ii) See Problem 12 of Chapter 5.]

__ 7. If X,°++, X, and Y,,---, Y, are samples from N(é,o?) and N(y, 7?)
respectively, the problem of testing 7” = o? against the two-sided alternatives
7 # o* remains invariant under the group G generated by the transformations
X; =aX;+b, Y; =aY; +c, a#0, and X¥; = Y;, Yj = X;. Thereexists
a UMPinvariant test under G with rejection region

W = max {X(¥, — PDX, — XU, — KPXY;, — MR =SK.

[The ratio of the probability densities of W for 7?/o2 =A and 72/o2 = 1
is proportional to [(1 + w)/(A + w)]”? + [U1 + w)/( + Aw)! for w = 1.
The derivative of this expression is 20 forall A.]

Section 4

8. (i) When testing H: p <p against K: p > py by meansof the test
corresponding to (11), determine the sample size required to obtain power
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B against p = p,, « =.05, B =.9 for the cases pp =.1, py = 5, .20, .25;

Po = 05, py = -10, 15, .20, .25; po = -01, py = .02,.05, .10, .15, .20.

(ii) Compare this with the sample size required if the inspection is by attri-

butes, and the test is based on the total number of defectives, and with the

expected sample size if the binomial sequential probability ratio test is used for

testing po against py.

9. Sequential t-test. The hypothesis p = py or equivalently ¢/o < 49 of

Section 4 can be tested by meansofthe following sequential r-test. Let 6) < 0,
and ¢, = sgn x,, and for n > let

n eee 2 eee ne=3 ( _uti) and, et eV
n S,lVn —1

If ps(ty, °°» tn) denotes the joint (generalized) density of t,° °°, fn, observation

is continued as long as

Ay< Ps(tt my tr)IPatr "tS tn) < A,

and at the first violation of these inequalities the hypothesis is accepted or
rejected as the probability ratio is < Ap or >A).

(i) It can be shown* that this procedure terminates with probability 1. Use

this to show that the inequalities (34) of Chapter 3 hold in the present case.
(ii) The procedure is greatly simplified and can be based on tables of the

noncentral ¢ density by noting that

Pstis “+, tn) _ Ps:{tn)

Pooltis*'s tn) Pag(tn)
where for n > 1, pg(t,) is the density of the noncentral ¢-distribution given by

(75) of Chapter 5 with f = n.
(iii) It is interesting to note that the probability ratio can be expressed as the

ratio of the average densities of the original variables Xy,---, X,, averaged

with respect to the scale-invariant measure do/o; thatis, it equals

oc 1 l 2|!
{ (Vey exp| 73 L(x; — 6,0) le do |

od i i
i (VineyViney exp| — x3 X(x; — 596) | do

(i) The argumentis the same as that used to prove (34) of Chapter3.

(ii) To prove this result, which is equivalent to the statement that ¢, is suf-

ficient for 6 on the basis of t,,---, t,, it is enough to show that for fixed 4p,

the ratio ps(ty,° °°, tn)/Pa(ti °° *s tn) Is a function only of 6 and ¢,. If y; =

x,/\v;)(i = 1,-°+-+,n), the density p(t), °°, t,) differs from the joint density

hs(¥y, °° *, Yn) Of the y’s by a factor independentof 6 so that the ratio of the

pss equals the corresponding ratio of the h,’s. The joint density of the y’s is

 

 
 

oO n| 1
oe e — n—1 —_ _— 2ASY1, °°5 Yn) = (Vanoy [ v1 exp x3 > (vy: —50) | dv

1=1

* David and Kruskal, ‘““The Wagrsequentialr-test reaches a decision with probability

one,” Ann. Math. Stat., Vol. 27 (1956), pp. 797-805 and Vol. 29 (1958), p. 936.
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for y; = +1, —0O < ¥Y,°°'5Y%n < ©. Putting w =vV2*_,y2/o and z, =

awil VDPyy.2. this becomes

oo  expl-@/2)— 2) [?_ ae
hs§Y, *s Un) = (Viny(eyay? [ w ‘exp | 5(w ea|

andsince z,, is a function of f,, this proves that ¢, is sufficient for 6 on the basis

of t1,°° 5 th.*
(iii) Make the transformation v’ = v/o and compare with the ratio of the

h;‘s.]

10. Two-sided t-test. (i) Let X,,---, X, be a sample from N(é, 0”). For

testing § = 0against ¢ # 0, there exists a UMP invariant test with respect to
the group X; == 0X, c #0, given by the two-sided f-test (17) of Chapter 5.

(ii) Let X,,°°°, X,, and Y,,--., Y, be samples from N(é, 7) and N(n, 0”)

respectively. For testing 7 =& against n # € there exists a UMPinvariant
test with respect to the group X; = aX; + b, Yj; =aY; +b, a #0, given by
the two-sided f-test (30) of Chapter5.

[(i) Sufficiency and invariance reduce the problem to |¢|, which in the notation
of Section 4 has the probability density po(t) + po(—t) for t > 0. The ratio

 

oe

of this density for 6 = 0, to its value for 6 = 0 is proportional to [ (e°1” +
v0

e~°1”)g,2(v) dv, which is an increasing function of 2 and hence of|¢|.]

11. Testing a correlation coefficient. Let (X1, Yy),°*:,(Xn, Yn) be a sample
from a bivariate normaldistribution.

(i) For testing p S pg against p > py there exists a UMPinvariant test with

respect to the group of all transformations X; =aX,+6, Y;=cY; +d
for which a and c are >0. This test rejects when the sample correlation
coefficient R is too large.

(ii) The problem oftesting p == 0 against p + O remainsinvariant in addition

under the transformation Y; —Y,, X; = X;. With respect to the group
generated by this transformation and those of (i) there exists a UMPinvariant
test, with rejection region |R| = C.

[(i) To show that the probability density p,(r) of R has monotonelikelihood

ratio, apply the condition of Chapter 3, Problem 6(i), to the expression (85)
given for this density in Chapter 5. Putting ¢ = pr + 1, the second derivative
é” log p,(r)/ p or up to a positive factor is

2
>ect-[j — it —- I) + +e]ew].
j=

To see that the numeratoris positive for all ¢ > 0, note thatit is greater than

2 Sew2 ycHIG —H@t -—1 +0 4,1.
j=itl1

* An alternative proof of (ii) based on the facts that 2@,/n and s, are sufficient for

(€, «) on the basis of the original observations 2,°--,2,; that ¢, is a maximalinvar-

iant function of these sufficient statistics under changes of scale; and that t,, - °°, ty

are invariant under these transformations, is given by Cox, “Sequential tests for com-
posite hypotheses,” Proc. Camb. Phil. Soc., Vol. 48 (1952), pp. 290-299, where a number

of other examples are treated by the same method.
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Holding i fixed and using the inequality c;., < 4c,, the coefficient of ¢’ in the

interior sum is 20.]

12. For testing the hypothesis that the correlation coefficient p of a bivariate

normaldistribution is <p), determine the power against the alternative p = p,

when the level of significance « is .05, pp = .3, py = .5 and the sample size n

is 50, 100, 200.
Section 5

13. Almost invariance of a test ¢ with respect to the group G ofeither Problem

6(i) or of Example 6 implies that ¢ is equivalent to an invarianttest.

Section 6

14. Consider a testing problem which is invariant under a group G of trans-

formations of the sample space, and let @ be a class of tests which is closed under

G so that ¢ €¢ implies ¢g € © where ¢g is the test defined by ¢9(x) = ¢(g2).

If there exists an a.e. unique UMP member¢of @, then ¢o is almost invariant.

15. Envelope power function. Let S(«) be the class of all level « tests of a

hypothesis H, and let 83(0) be the envelope power function, defined by

Bz (6) = sup Bg(6)
6ES( a)

where 64 denotes the power function of ¢. If the problem oftesting H is

invariant under a group G, then 6*(6) is invariant under the induced group G.

16. (i) A generalization of equation (1) is

} f(x) dP(x) = { f(gin) dP(x).
A gA

(ii) If Po, is absolutely continuous with respect to Po,, then P5o, is absolutely

continuous with respect to Po, and

dP» dP56:
1 —

ap,= aro,
(iii) The distribution of dPo,/dPo,(X) when X is distributed as Po, is the same

as that of dPjo,/dPjo,(X’) when X’is distributed as P3o,.

17. Invariance of likelihood ratio. Let the family of distributions P=

{Po, 8 € Q} be dominated by p,let po = dP»/du, let ug—* be the measure defined

by ug(A) = w[g1(A)], and suppose that « is absolutely continuous with respect

to ugfor all g EG.
(i) Then

 

 

(gx) (a.e. Po,).

pol) = pyolg2) ie) (ae. 1).

(ii) Let Q and w be invariant under G, and countable. Then the likelihood

ratio supapo(x)/supwpo(@) is almost invariant under G.

(iii) Suppose that po(~)is continuousin @ forall x, that is separable, and that

Q and w are invariant. Then the likelihood ratio is almost invariant under G.

18. Inadmissible likelihood ratio test. In many applications in which a UMP

invariant test exists, it coincides with the likelihood ratio test. That this is,

however, not always the case is seen from the following example. Let Pi° °°;

P,, be n equidistant points on the circle x2 + y? = 4, and Q,,---, Q, on the
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circle 2° + y? = 1. Denote the origin in the z, y-plane by O, letO0 <a <4
be fixed, and let (XY, Y) be distributed over the 2n + 1 points P,,- ++, Pr,
Q1,°°*, Qn, O with probabilities given by the following table:

 

| PB 9, O
H aljn (1 — 2a)/n ou

K piln 0 (n — 1)/n

where Xp; = 1. The problem remains invariant under rotations of the plane
by the angles 2kn/n (k =0,1,---,2 —1). The rejection region of the likeli-
hood ratio test consists of the points P,,---, P,, and its poweris I/n. On the
other hand, the UMPinvarianttest rejects when X = Y = O, and has power
(n — 1)/n.

19. Let G be a group of transformationsof 2, and let / be a o-field of subsets
of % and « a measure over (7,.%). Then a set A €& is said to be almost
invariantif its indicator function is almost invariant.

(i) The totality of almost invariant sets forms a o-field WZ, and a critical
function is almost invariant if and onlyifit is «,-measurable.

(ii) Let P = {Po, 6 EQ} be a dominated family of probability distributions
over (%, /), and suppose that 0 = 6 for all EG, @€Q. Then the o-field
9 Of almost invariantsets is sufficient for 7.

[Let 4 = &c;Po, be equivalent to 7. Then

dP» dP,-16 _ dP»
Tp8) = De, dP, (x) = HA (v) (ae. A)

so that dP»/d/ is almost invariant and hence ,-measurable.]

Section 8

20. Wilcoxon two-sample test. Let U;; =1 or 0 as X; < Y; or X; > Y;,
and let U = XXU,; be the numberof pairs X,;, Y; with Y; < Y;.

(i) Then U = XS; — 4n(n + 1) where S, <--- <S, are the ranks of the
Y’s, so that the test with rejection region U > is equivalent to the Wilcoxon
test.

(ii) Any given arrangementof x’s and y’s can be transformed into the arrange-
ment x-+--xy---y through a numberof interchanges of neighboring elements.
The smallest numberof steps in which this can be donefor the observed arrange-
ment ism +n — U., |

21. Expectation and variance of Wilcoxon statistic. If the X’s and Y’s are
samples from continuousdistributions F and G respectively, the expectation and
variance of the Wilcoxonstatistic U defined in the preceding problem are given

by

(29) E(U/mn) = P{X < Y} -|Fac

and

(30) mn Var (U/mn) -|Fac +(n — vfa — G)dF

2
+(m — 1) FedG —(m +n —1)(|Fas).
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Under the hypothesis G = F, these reduce to

(31) E(U/mn) = 3, Var (U/mn) = (m +n + 1)/12man.

22. (i) Let Z,,:--, Zy be independently distributed with densities fj, ---, fy,
and let the rank of Z; be denoted by 7;. Iffis any probability density which is
positive wheneverat least one of the /; is positive, then

_ yet AAV©. fyV™
(32) P{T, = t,,:°', Ty =ty} = Ni ELFay Lae FV)

where V1) < --- < V‘4) is an ordered sample from a distribution with density/.
(ii) If N=m+a, fi=-°: =fn =f, fru = = min = §> and

S, <-++: <S, denote the ordered ranks of Zmi3,°°*;Zmin among all the
Z’s, the probability distribution of Sj, ---, S, is given by (18).

[(i) The probability in question is J--- |AD ---fx@y) de, - ++ dey inte-
grated over the set in which z, is the t,th smallest of the z’s for i = 1,--°, N.
Under the transformation w, =z; the integral becomes J vs -f film) °°

fy,) dw, +++ dwy, integrated over the set wy <--:<wy. The desired
result now follows from the fact that the probability density of the order
statistics VO) <--- < VOX) is NIf(wy) ++ + f(wy) for wy < +++ < Wy]

23. (i) For any continuous cumulative distribution function F, define
F-\(0) = —o, F-\y) = inf {x: F(x) =y} for O<y <1, FU") = © if
F(x) < 1 for all finite x and otherwise as inf {v: F(x) = 1}. Then F[F“(y)] = y

for allO <y <1, but F“'[F(y)] may be <y.
(ii) Let Z have a cumulative distribution function G(z) = A[F(z)] where F

and f# are continuous cumulative distribution functions, the latter defined over

(0,1). If Y = F(Z), then P{Y < y} =A(y) forallO sy S1.
(iii) If Z has the continuous cumulative distribution function F, then F(Z)

is uniformly distributed over (0, 1).

[(ii) P{F(Z) < y} = P{Z < Fy} = FIFO) = y.]
24. Let Z; have a continuous cumulative distribution function F; (i = 1,--°,N),

andlet G be the groupofall transformations Z; = f(Z,) such that fis continuous
andstrictly increasing.

(i) The transformation induced by f in the space of distributions is F; =

F(f~).
a Two N-tuples of distributions (Fj, °° -, F;y) and (Fy,°°°, Fyy) belong to

the same orbit with respect to G if and only if there exist continuous distri-
bution functions /,,°-:, Ay defined on (0, 1) and strictly increasing continuous

distribution functions F and F’ such that F; = A,(F) and F; = h,(F’).

(i) P(f(Z) Sy} = P{Z, <fw} = Ff).
(ii) If F, = 4,(F) and the F/ are on the same orbit so that F; = F,(f—'), then

F; =h{F’) with F’ = F(f). Conversely, if F; = h(F), F; = h,F’), then

F; = F{f) with f = F(F).]

25. Under the assumptionsof the preceding problem,if F; = A,(F), the distri-

bution of the ranks 7,,°°-:, Ty of Z,, °°, Z) depends only on the /,, not on F.
If the A, are differentiable, the distribution of the 7; is given by

(33) PIT, = ty, +++, Ty = ty} = EtA(UG)«+ hy(U)YN!] N N 1
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where U"!) < --- < U*) is an ordered sampleof size N from the uniform distri-
bution R(O, 1) over (0, 1).

[The left-hand side of (33) is the probability that of the quantities F(Z,),---,
F(Z,,), the ith one is the ¢;th smallest for / = 1,---,N. This is given by
f--- Shad - + Ayyy) dy integrated over the region in which y; is the ¢,th

smallest of the y’s fori =1,---,N. The proof is completed as in Problem 22.

26. Distribution of orderstatistics. (i) If Z,,- ++, Z, is a sample from a cumu-
lative distribution function F with density f, the joint density of Y; = Z°),
i=1,---,n, is

N'f(yy) -- -fYn)
(s, — IMs, —5, —1)!---(N—s,)!

— F(y2~*17F + CL = FY)7%

(34) [F(yy)}1 — LF(Ye) 

for ¥, <<+°* <¥Yp.
(ii) For the particular case that the Z’s are a sample from the uniform distri-

bution on (0, 1), this reduces to

N!

©) Goi oa DlWes!
yt(y, _ y,)27%1-1 ---(1- Yn)® ~8n,

 

For n = I, (35) is the density of the beta-distribution B,\_,,;, which therefore
is the distribution of the single orderstatistic Z®) from R(O, 1).

(iii) Let the distribution of Y,,---, Y,, be given by (35), and let V; be defined
by Y¥; =ViVizy'°*V, for i=1,---,n. Then the joint distribution of the
V, 18

N! n
i —-1 — 7).)841 78; 71 —N 1

6 — DE Wasp) Lb G

=

eh (Snua

=N

+1) 

so that the V; are independently distributed according to the beta-distribution
Bs.,s;, — 8;

((i) If Y, = Z%),---, ¥, = Zn) and Yy,.,°°°, Yy are the remaining Z’s
in the original order of their subscripts, the joint density of Y,,---, Y, is
NN — 1)---(N=-n+ Df --- SfGnid > ++fYy) Gnz1 ++: dyintegrated over
the region in which s; — 1 of the y’s are <y,, 5, — 5, — 1 between y, and
Y2,°°*, and N —s, > yy. Consider any set where a particular s, — 1 of the
y’S iS <Y,, a particular s, — s; — 1 of them is between y, and y,, etc. There
are N!/(s,; —1)!---(N—s,)! of these regions, and the integral has the

same value over each of them, namely [F(y)]}*1~[F(y.) — F(y,)}27%71---
[1 — F(y,)}*~*.]

27. (i) If X4,---, X,, and Y,,---, Y, are samples with continuous cumulative
distribution functions F and G = A(F) respectively, and if A is differentiable,
the distribution of the ranks S, <--- < S, of the Y’s is given by

 

_ Efh(UGY) «+ + A’(UG»))
— (” + ")

m

where U"!) <--- < U'™+) is an ordered sample from the uniform distribution
R(O, 1).

(36) PS, =5,,°°°,8, = Sn}
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(ii) If in particular G = F* where k is a positive integer, (36) reduces to

(37) P{S, =5,°°',S, = Sn} =
kn TI I(s; + jk —j) . T(s544)

(” + ") jel 1(s;) P(sj41 + jk —J)
m

 

28. For sufficiently small 6 > 0, the Wilcoxon test maximizes the power
(among ranktests) against the alternatives (F,G) with G = (1 — 6)F + OF”.

29. An alternative proof of the optimum property of the Wilcoxontest for
detecting a shift in the logistic distribution is obtained from the preceding

problem by equating F(x — 6) with (1 — #)F(z) + 6F*(x), neglecting powers of
6 higher than the first. This leads to the differential equation F — 0F’ =

(1 — 6)F + 6F?, the solution of which is the logistic distribution.

30. Let Fy be a family of probability measures over (7, <7) and let © be a
class of transformations of the space 2. Define a class *, of distributions by:
F,éf,if there exists Fy € F, and fe such that the distribution of f(X) is
F, when that of X is Fo. If ¢ is any test satisfying (a) Er, $(X) = « for all
Fy) € Fo, and (b) ¢(x) < $[f(x)] for all and all fe%, then ¢ is unbiased for

testing 7, against Fy.

31. Let X,,°°°, Xm; Y3,°°*, Yn be samples from a common continuous
distribution F. Then the Wilcoxon statistic U defined in Problem 20 is distri-

buted symmetrically about 57m even when m # n.

32. Confidence intervals for a shift. Let X,,°--,; Xm; Y1,°**, Yn be samples
from distributions F(x) and G(y) = F(y — A) respectively. The hypothesis
A = A,canbetested by applying the two-sided Wilcoxontest to the observations
X; and Y; _ Ao.

(i) The resulting confidence intervals for A are

y() —_ V(m) < A < y(™) —_ XM)

when the confidence coefficient is 1 — 2/(” ~ "), and

min (Y) — Xr) y'2) — X'm)) <A< max (Y™) — X02) yirn-l) X))

m+ ")
m |

(ii) Determine the confidence interval for A when the confidence coefficient
is 20/21, m =n = 6, and the observations are: x: .113, .212, .249, .522, .709,

.788; y: .221, .433, .724, .913, .917, 1.58.

when the confidence coefficient is 1 — 4/ (

33. (i) Let X, X’and Y, Y’ be independent samplesof size 2 from continuous

distributions F and G respectively. Then

p = P{max(X, X’) < min(Y, Y’)} + P{max(Y, Y’) < min(X, X)} = 442A

where A = {(F — G)* d[{(F + G)/2].
(ii) A = Oif and only if F = G.
(i) p = Jd — F)? dG? + fl — G) dF’, which after some computation

reduces to the stated form.
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(ii) A = 0 implies F(x) = G(a) except on a set N which has measure zero
both under F and G. Suppose that G(v,) — F(#,) = 7 >0. Then there exists
%y such that G(x») = F(«,) + 4and F(x) < G(«) for ty Sx Sx, Since
G(x) — G(%,) > 0, it follows that A > 0.]

34. Continuation. (i) There exists at every significance level « a test of A:
G = F which has power >« against all continuous alternatives (F, G) with
F +#G.

(ii) There does not exist a nonrandomized unbiased test of H against all

G + Fatlevel x =1/(" *").
m

[() Let X;, X;; Y;, Y¥; Gi =1,---,n) be independently distributed, the X’s
with distribution F, the Y’s with distribution G, and let V; = 1 if max (X,, X/) <
min (Y;, Y;) or max (Y,, Y;) < min(X;, X$), and V; =0 otherwise. Then
XV; has a binomial distribution with the probability p defined in Problem 33,
and the problem reduces to that of testing p = 1/3 against p > 1/3.

(ii) Consider the particular alternatives for which P{X < Y} is either 1 or 0.]

Section 9

35. (i) Let m and n be the number of negative and positive observations
among 2,,°°:,Zy, and let S; <--- <§, denote the ranks of the positive
Z’s among|Z|,---, |Z]. Consider the N + 4N(N — 1)distinct sums Z; + Z;
with i = jas wellasi # j. The Wilcoxon rank sum 3S; is equal to the number
of these sumsthatare positive.

(ii) If the commondistribution of the Z’s is D, then

E(XS;) = 4N(N + 1) — ND(O) — $N(N — 1)fD(—z) dD).

[() Let K be the required numberof positive sums. Since Z; + Z; is positive
if and only if the larger of |Z,| and |Z,| is positive, K = X*_,X_,U;; where
U;; = 1if Z; > 0 and |Z;,| < Z,; and U,,; = 0 otherwise.]

36. Let Z,,°--,Zy be a sample from a distribution with density f(z — 4)
where f(z) is positive for all z and fis symmetric about 0, and let m,n, and the
S; be defined as in the preceding problem.

(i) The distribution of n and the S; is given by

(38) P{the numberofpositive Z’s is n and S, = s,,°--, S_, = Sn}

f( Vow + 0) -- -f( Vm) + A)f( Vis) — 0) -- »f(VESn) — 6)

f° V)) .-  f( V)) |

where V{) < --- < V(%) is an ordered sample from a distribution with density
2f(v) for v > 0, and 0 otherwise.

(ii) The rank test of the hypothesis of symmetry with respect to the origin,
which maximizes the derivative of the power function at 6 =0 and hence
maximizes the powerfor sufficiently small 6 > 0, rejects when

n f(a

—E ——_— >C,
PpfV%)

(ili) In the particular case that f(z) is a normal density with zero mean, the
rejection region of (ii) reduces to DLE(V“))) > C, where VOD < +--+ < VW)
is an ordered sample from a z-distribution with 1 degree of freedom.

I
= sy
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(iv) Determine a density f such that the one-sample Wilcoxon test is most
powerful against the alternatives f(z — 6) for sufficiently small positive 6. |

(i) Apply Problem 22(i) to find an expression for P{S, = 5,,°°°, Sn = Sn
given that the numberofpositive Z’s is n}.]

37. An alternative expression for (38) is obtained if the distribution of Z is
characterized by (p, F,G). If then G = A(F) and is differentiable, the distri-

bution of m and the S; is given by

(39) p™ 1 — p)E[A'(UG)) - - + h’(US»))]

where U(1) < --- < U‘) is an ordered sample from R(0, 1).

38. Unbiased tests of symmetry. Let Z,,--:,Zy be a sample, and let ¢ be
any rank test of the hypothesis of symmetry with respect to the origin such that
z; <2‘, for all i implies (2, «> +, 2y) S$, ° °° zy). Then ¢ is unbiased against

the one-sided alternatives that the Z’s are stochastically larger than some random
variable that has a symmetric distribution with respect to the origin.

39. The hypothesis of randomness. Let Z,,°--,Zy be independently distri-
buted with distributions F,, ---, Fy, and let 7; denote the rank of Z; among the
Z’s. For testing the hypothesis of randomness: F, =: = Fy against the
alternatives K of an upward trend, namely that Z; is stochastically increasing
with i, consider the rejection regions

(40) dit; > C

and

(41) DIE(VD) > C
where V‘!) < --+ < V‘%) is an ordered sample from a standard normaldistri-
bution and where ¢; is the value taken on by 7,,.

(i) The second of these tests is most powerful among ranktests against the
normalalternatives F = N(y + id, o*) for sufficiently small6.

(ii) Determine alternatives against which the first test is a most powerful

ranktest.

(iii) Both tests are unbiased against the alternatives of an upward trend;

so is any ranktest ¢ satisfying $(2;, °° -,2y) S ¢(21,°°*, 2) for any two points

for which i < j, 2; < 2; implies z; < z; for all i and /.
[(iii) Apply Problem 30 with @ the class of transformations 2) = 2, 2; = fi(2i)

for i > 1, where z < f,(z) <--- <fy(2) and each f; is nondecreasing. If

F, is the class of N-tuples (F,,°--, Fy) with F) =---: = Fy, then ¥, coincides

with the class K of alternatives.]

40. Let U;; = 1 if (j — i(Z; — Z;) > 0, and = 0 otherwise.
(i) The test statistic iT; can be expressed in terms of the U’s through the

relation

 

, IN
MA
>

iT, = Sj — Uy + MAE ONS
1 1<Jj

(ii) The smallest number of steps [in the sense of Problem 20(ii)] by which

(Z,,°°*,Zy) can be transformed into the ordered sample (Z(1). + Z)) is
[N(N — 1)/2] — U, where U = 2, <;U;,;. This suggests U > C as another re-
jection region for the preceding problem.
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(i) Let Vj; =1 or 0 as Z; SZ; or Z; >Z;. Then T; = X4_,V;; and
Vi; = U,; or 1 — U,;; asi<jori2j. Expressing Xf_,jT; = D8,jd4_V;;
in terms of the U’s and using the fact that U;; = U;;, the result follows by a
simple calculation.]

41. The hypothesis of independence. Let (X,, Yy),° ++, (Xx, Yy,) be a sample
from a bivariate distribution and (X", Z,), - --, (¥“), Z,) be the same sample
arranged according to increasing values of the X’s so that the Z’s are a permu-
tation of the Y’s. Let R; be the rank of X; among the X’s, S; the rank of Y;,
amongthe Y’s, and 7; the rank of Z; among the Z’s, and consider the hypothesis
of independence of X and against the alternatives of positive dependence.

(i) In terms of the T’s this problem is equivalent to testing the hypothesis
of randomness of the Z’s against the alternatives of an upward trend.

(1i) The test (40) is equivalent to rejecting when the rank correlation coefficient

x(R;i — RMS; —S) 12 p(x, -*1)(s,-N+)
Vv SUR; _ RYX(S, _ Ss)? N3 —N , 2 ‘ 2

is too large.

(iii) An alternative expression for the rank correlation coefficient* is

1-9 ys, RP =1
N?—N~~? oo N? —N

(iv) The test U>C of Problem 40(ii) is equivalent to rejecting when
Kendall’s -statistic* 4; —;V;;/N(N — 1) is too large where V;; is + 1 or — 1 as
(Y; — Y,)(X; — X,) is positive or negative. |

(v) The tests (ii) and (iv) are unbiased against the alternatives of positive
dependence.t

   

 X(T; — i)*.

Section 10

42. In Example 11, a family of sets S(z, y) is a class of invariant confidence
sets if and only if there exists a set # of real numbers such that

S(x,y) = U UE, 1): (@ — EP + (y — 9)? = r?h.

43. Let Xj,°-°, Xn; Yy,-°+, Y, be samples from N(é,o?) and N(n, 72)

respectively. Then the confidence intervals (43) of Chapter 5 for 7?/o?, which
can be written as

L(Y; — YP/kKUCX, — XP S/o? < kUCY; — Y)2/XUCX,; — X),

are uniformly most accurate invariant with respect to the smallest group G
containing the transformations ¥; =aX +6, Y; =aY+c for all a £40,
6, c and the transformation X, = dY,, Y; = X,/d for alld + 0.

[Cf. Problem 6.]

* For further material on these statistics see Hoeffding, “‘A class of statistics with

asymptotically normal distributions,” Ann. Math. Stat., Vol. 19 (1948), particularly
section 9, and Kendall, Rank Correlation Methods, London, Charles Griffin and Co.,

2nd ed., 1955.

t A different type of test, which pays particular attention to the extreme observations,
has been proposed by Olmstead and Tukey, ‘A corner test for association,” Ann.
Math.Stat., Vol. 18 (1947), pp. 495-513.
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44. One-sided invariant confidence limits. Let 6 be real-valued and suppose
that for each 65, the problem oftesting 6 < 6, against 6 > 6, (in the presence
of nuisance parameters #) remains invariant under a group Ge, and that A(9p)
is a UMPinvariant acceptance region for this hypothesis at level «. Let the
associated confidence sets S(x) = {8: x € A(6)} be one-sided intervals S(x) =

{0: (x) < 6}, and suppose they are invariant underall Gg and hence underthe
group G generated by these. Then the lower confidence limits 8(X) are uniformly
most accurate invariant at confidence level 1 — « in the sense of minimizing
Po» {8(X) < 6’} for all 0’ < 8,

45. Let X,,--°, X, be independently distributed as N(&,o*). The upper
confidence limits o? < X(X; — X)?/Cy of Example 5, Chapter 5, are uniformly
most accurate invariant under the group X; = X; +c, —-2 <c < ©. They
are also invariant (and hence uniformly most accurate invariant) under the
larger group X; = aX; +c, —© <a,c < o.,

46. (i) Let X,,--:, X, be independently distributed as N(é,o*) and let
6 = E/o. The lower confidence bounds @ for 6, which at confidence level
1 —« are uniformly most accurate invariant under the transformations
X’, = aX,, are
 

6 = CHVnX/VXX, — XP— 1)
where the function C(@) is determined from a table of noncentral ¢t so that

Po {VnX/V X(X; — XP/(n — 1) S C()} =1 — a.

(ii) Determine 9 when the ~’s are 7.6, 21.2, 15.1, 32.0, 19.7, 25.3, 29.1, 18.4

and the confidence level is 1 — « = .95.

 

47. (i) Let (X%), Y,),°°-, (Xn, Yn) be a sample from a bivariate normaldistri-
bution andlet

_ of BG — 2% — f) |
7 V>X(X, — XPEY; — YR

where C(p) is determined such that

“(X; — X)(¥; — Y)

, \7 “(X; — XPLY; — PP
Then p is a lower confidence limit for the population correlation coefficient p

at confidence level 1 — «; it is uniformly most accurate invariant with respect
to the group of transformations X; = aX; + 6, Y'; =cY; +d, with ac > 0,
—o<bd< o,

(11) Determine p at level 1 — « = .95 when the observations are (12.9, .56),

(9.8, .92), (13.1, .42), (12.5, 1.01), (8.7, .63), (10.7, .58), (9.3, .72), (11.4, .64).

0) =1—-«.

Section 11

48. If the confidence sets S(x) are invariant under the group G, then the
probability Ps {6 € S(X)} of their covering the true value is invariant under the
induced group G.

49. Consider the problem of obtaining a (two-sided) confidence band for an
unknowncontinuous cumulative distribution function F.
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(i) Show that this problem is invariant both under strictly increasing and
strictly decreasing continuous transformations X; = /f(X;), i = 1,:--°,”, and
determine a maximal invariant with respect to this group.

(ii) Show that the problem is not invariant under the transformation

X, if |X) >1

X,+1 if -—1l < X; <1.

[(ii) For this transformation g, the set ¢*S(x) is no longer a band.]
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CHAPTER 7

Linear Hypotheses

1. A CANONICAL FORM

Manytesting problems concern the means of normal distributions and
are special cases of the following general univariate linear hypothesis.
Let X,,°°:, X, be independently normally distributed with means
&,,: °°, €, and commonvariance o”. The vector of means* € is known to

lie in a given s-dimensionallinear subspace IT, (s <n), and the hypothesis
H is to be tested that € lies in a given (s — r)-dimensional subspace
I, of Tg (Ss).

Example 1. In the two-sample problem of testing equality of two normal
means(considered with a different notation in Chapter 5, Section 3), it is given

that €; = § for i =1,---,m, and &; =» for i =n, + 1,--+,n, +, and the

hypothesis to be tested is 7 = § The space IIg is then the space of vectors

(058m 075) = €,- ++, 1,0,---,0) + 10, +--+, 0, 1,°--, 1

spanned by (I,:--,1,0,--:,0) and (0,--:,0,1,---,1), so that s = 2.

Similarly, II, is the set of all vectors (&,---, €) = U1, +--+, 1), and hencer = 1.
Another hypothesis that can be tested in this situation is 7 = =0. The

space II, is then the origin, s —- r =0 and hence r = 2. The more general
hypothesis = £5, 7 = 7 is not a linear hypothesis since I1,, does not contain
the origin. However, it reduces to the previous case through the transforma-
tion X; = X; — 6,50 =1,°--,m), X; = X; — 29 @ =m + 1,°°+, my, + nd).

Example 2. The regression problem of Chapter 5, Section 6, is essentially
a linear hypothesis. Changing the notation to make it conform with that of the
present section, let ¢; = « + Pt;, where «, 8 are unknown,and the ¢; known and

not all equal. Since Ig is the space of all vectors « (1,---, 1) + B(t, °° +, ty),
it has dimension s = 2. The hypothesis to be tested may be « =f =0
(r = 2) or it may only specify that one of the parameters is zero (r = 1). The
more general hypotheses « = %9, 6 = fy can be reduced to the previous case
by letting X; = X; — % — fot; since then E(XY;) = «’ + f’t; witha’ = a — ap,

Bp’ = B — Bo.

* Throughout this chapter, a fixed coordinate system is assumed given in n-space

A vector with components ¢,,---,é, is denoted by &, and an » x 1 column matrix
with elements £,,---, &, by &.

265
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Higher polynomial regression and regression in several variables also fall
underthe linear hypothesis scheme. Thusif &; = « + Bt; + yt? or more gener-
ally &; = « + Bt; + yu; where the r; and u; are known,it can be tested whether
one or more of the regression coefficients «, 8, y are zero, and by transforming
to the variables X% — %) — Bot; — You; also whether these coefficients have
specified values other than zero.

In the general case, the hypothesis can be given a simple form by
making an orthogonal transformation to variables Y,,-°--, YVe

(1) Y= CX, C = (c;;); i,j=1,°--,A,

such thatthe first s row vectors ¢,,°-*, c, of the matrix C span I], with

Cry°° *,€, Spanning II,,. Then Y,,,;=--: Y, =0 if and only if X
is in II, and Yj; =---= Y,= Yu. =°°: = Y, =0 if and only if

Xisin II,,. Let 4; = E(Y,) so that 7 = C&. Then since € lies in IIp a

priori and in II,, under H, it follows that 7; = 0 fori=s+1,-°--,nin
both cases, and 7; = 0 for i= 1,---,r when is true. Finally, since

the transformation is orthogonal, the variables Y,,---, Y, are again
independently normally distributed with common variance o”, and the
problem reduces to the following canonical form.
The variables Y,,---, Y, are independently, normally distributed with

commonvariance o? and means E(Y,;) = y,; fori = 1,--+-+, sand E(Y,) = 0

fori=s-+1,---, xn, so that their joint densityis

(2) ay exp |— (S@-ur+3w)].

The 7’s and o? are unknown,and the hypothesis to be tested is

(3) Hin = + =y,=0 (rSs<n).
Example 3. To illustrate the determination of the transformation (1),

consider once more the regression model &; = « + ft; of Example 2. It was
seen there that [Iq is spanned by (1, ---, 1) and (t,,---,f,). If the hypothesis

being tested is 6 = 0,II, is the one-dimensional space spanned bythefirst of
these vectors. The row vector c, is in II,, and of length 1, and hence cy =

(1/Vn,---,1/Vn). Since c, is in IIg, of length 1, and orthogonal to c,, its
coordinates are of the forma + bt;,i = 1,--+-:,, where a and b are determined
by the conditions X(a + bt;) = 0 and Xa + bt)? = 1. The solutions of

these equations are a = —bt, b = 1 |vX(t; — 1)?, and therefore a + bt; =

(t; — N/VX(t; — ?, and

txt, -—) UX - X\(t; — 1)

VvL(t; — t)? Vit; — 7)?

The remaining row vectors of C can be taken to be anyset of orthogonal unit
vectors which are orthogonalto IT q; it turns out not to be necessary to determine
them explicitly.

  



7.1] A CANONICAL FORM 267

If the hypothesis to be tested is « = 0, II., is spanned by (4, °+°, f,) So that

the ith coordinate ofc, is t,/VXt?. The coordinates of c, are again of the form
a + bt; with a and 6 now determined by the equations X(a + br,r; = 0 and

(a + bt)? =1. The solutions are 6 = —ani/Xf, a = VLt?/nX(t; — 0)?
and therefore

nut? .
Y,=ispe (x —_ SE 1%)

In the case of the hypothesis « = 6 = 0, IT. is the origin and c,, c, can be taken
as any two orthogonalunitvectors in IIq. One possible choice is that appropriate
to the hypothesis 8 = 0, in which case Y,is the linear function given there and
Y, = VnXx.

The general linear hypothesis problem in terms of the Y’s remains
invariant under the group G, of transformations Y,; = Y,+ c, for
i=r+1,---,s; Y;= Y, fori=1,--+,r; s+1,-++,n. This leaves
Y,,°°°, Y, and Y,.,,°°:, Y, as maximal invariants. Another group of

transformations leaving the problem invariant is the group G, ofall
orthogonaltransformations of Y,,--:, Y,. The middle set of variables

having been eliminated, it follows from Chapter 6, Example (iii), that a
maximal invariant under G, is U = 37_, Y%, Y,.1,°°*, Y,. This can be
reduced to U and V = }?_,., Y} by sufficiency. Finally, the problem
also remains invariant under the group G; of scale changes Y; = cY,,
c#0, for i=1,---,n. In the space of U and V this induces the

transformation U* = c?U, V* = c?V, under which W = U/V is maximal
invariant. Thus the principle of invariance reduces the data to the
single statistic

Y

(4) W=2,

Y;
t=s+1

Each of the three transformation groups G; (i = 1, 2, 3) which lead to
the above reduction induces a corresponding group G; in the parameter
space. The group G, consists of the translations 7, = y; + c;(i=rt

l,---, 5s), 7; = 7; G=1,°--+,r), o =o; which leaves (715° °*s Np, 0) as

maximal invariants. Since any orthogonaltransformation of Y,,---, Y,

induces the sametransformation on 7, - « -, 7, and leaves o? unchanged, a
maximal invariant under G, is (>%_,77, 0”). Finally the elements of G,
are the transformations 7, = cy,, 0’ = co, and hence a maximalinvariant
with respect to the totality of these transformationsis

D7;
— t=!

o2

-
~
.
P
h
o

Me
|i

M-
~
>

(5) yr  



268 LINEAR HYPOTHESES [7.1

It follows from Theorem 3 of Chapter 6 that the distribution of Wdepends
only on y%, so that the principle of invariance reduces the problem to
that of testing the simple hypothesis H:y=0. More precisely, the
probability density of W is (cf. Problems 2 and 3)

“aya 00 (Fy2)* wit-1+k

(9) Pw) =e 2tea w)irrn—ark
 

where
“= Par +n —s) +k] -

DGr + kPa — s)]
For any y, the ratio Py(w)/Polw) is an increasing function of w, and it

follows from the Neyman—Pearson fundamental lemma that the most
powerful invariant test for testing y = 0 against py = y, rejects when W

is too large or equivalently when

> Yer
(7) We = =I >C.

> Yila—s)
1=st+l

 

 

The cutoff point C is determined so that the probability of rejection is «

when y = 0. Since in this case W* is the ratio of two independent 7?

variables, each divided by the number of its degrees of freedom, the

distribution of W* is the F-distribution with r and n —s degrees of

freedom andhence Cis determined by

(8) [Fano dy =o
The test is independent of y,, and hence is UMP amongall invariant

tests. By Theorem 5 of Chapter6,it is also UMP amongall tests whose

powerfunction depends only on y”.
The rejection region (7) can also be expressed in the form

 

> ¥?
(9) an > Cc’.

LVi+ VV
i=1 7=8s+1

When y = 0, the left-hand side is distributed according to the beta-

distribution with r and n — s degrees of freedom [defined through (24)

of Chapter 5], so that C’ is determined by

1

(10) [Beano dv =
For an alternative value of yp, the left-hand side of (9) is distributed
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according to the noncentral beta-distribution with noncentrality parameter
y, the density of which is (Problem 3)

(11) gly) = enSSO seu ult)¥ mmo «Ck! r+ k,2(m—s)

The powerof the test against an alternative y is therefore*

1

Bw) =|stv) dy,
In the particular case r = 1, the rejection region (7) reduces to

(12) > Cp. 

 

This is a two-sided t-test, which by the theory of Chapter5 (see for example
Problem 5 of that chapter) is UMP unbiased. On the other hand, no
UMPunbiasedtest exists for r > 1.

2. LINEAR HYPOTHESES AND LEAST SQUARES

In applications to specific problems it is usually not convenient to
carry out the reduction to canonical form explicitly. The test statistic W
can be expressed in termsofthe originalvariables by noting that SP4 YP
is the minimum value of

§ n n

> (¥%; — 0)? + > Y= >(Y; -— EYP
t=1 t=st+l i=1

under unrestricted variation of the 7’s. Also, since the transformation
Y = CX is orthogonal and orthogonal transformations leave distances
unchanged,

D6 — BOP = 3% = 8
Furthermore, there is a 1: 1 correspondence between the totality of
s-tuples (7, °° +, 7,) and the totality of vectors in IIg. Hence |

n n

(13) > Y? = > (%;—
t=st+1 i=1

* A set of charts for the power is given by Pearson and Hartley, “Charts of the
power function for analysis of variance tests, derived from the noncentral F distri-
bution,” Biometrika, Vol. 38 (1951), pp. 112-130, and by Fox, “Charts of the power

of the F-test,” Ann. Math. Stat., Vol. 27 (1956), pp. 484-497. A computing formula

for the noncentral beta-distribution is discussed by Hodges, ‘On the noncentral beta
distribution,” Ann. Math. Stat., Vol. 26 (1955), pp. 648-653.
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wherethe &’s are the least squares estimatesof the é’s under Q, thatis, the

values that minimize ?_,(X; — &,)? subject to & in IIo.

In the same wayit is seen that

y+ Yy? = d(x, - 6"
1=s+1 w=1

where the és are the values that minimize X(X,; — ¢;)? subject to ¢ in

II,,. The test (7) therefore becomes

[> (x, — Be — su- £)| [:
(14) we = Lis al

3%- E)/(n — s)

where C is determined by (8). Geometrically the vectors § and E are the

projections ofX on II, and II,so that the triangle formed by X, &, and

X

 
  

Io
 

Figure 1.

[
S
r
e
y

has a right angle at £. (Figure 1.) Thus the denominator and

numerator of W*, except for the factors 1/(n — s) and 1/r, are the squares

of the distances between X and & and between §E and é respectively. An

alternative expression for W* is therefore

rG — E)2/r

(15) w* = 

3-H9)
It is desirable to express also the noncentralityparameter y? = >_1175/0"

in terms of the &’s. Now X = C-1Y, € = C7'y, and
~
~

(16) Sr=3i8-B06 - 9
a
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If the right-hand side of (16) is denoted by f(X), it follows that ¥*_,77?
= f(5)
A slight generalization of a linear hypothesis is the inhomogeneous

hypothesis whichspecifies for the vector of means é a subhyperplane IT’,
of IT, not passing through the origin. Let II,, denote the subspace of
II,, which passes through the origin and is parallel to II’. If 69 is any
point of IT,,, the set IT{, consists of the totality of points & = E* + E% as
€* ranges over II,,.. Applying the transformation (1) with respectto II,,,
the vector of means 7 for ¢ € II’, is then given by 7 = CE = CE* + CE
in the canonical form (2), and the totality of these vectors is therefore
characterized by the equations y, = ni, -+ +, 1, = 7°, 74, ="'° =, =0
where7} is the ith coordinate of Cé°. In the canonical form, the inhomo-
geneous hypothesis ¢eII,, therefore becomes , = 7° (i = 1,---,7r).
This reduces to the homogeneouscase by replacing Y, by Y; — 79, andit
follows from (7) that the UMPinvariant test has the rejection region

(17) i=l > C, 

and that the noncentrality parameteris y? = >%_,(n, — °)?/o?.
In applicationsit is usually most convenientto apply the transformation

X; — &} directly to (14) or (15). It follows from (17) that such a trans-
formation always leaves the denominator unchanged. This can also be
seen geometrically since the transformation is a translation of n-space
parallel to II, and therefore leaves the distance X(X, — £,)? from X to
II, unchanged. The noncentrality parameter can be computed as before
by replacing X by & in the transformed numerator(16).
Some examples of linear hypotheses, all with r= 1, were already

discussed in Chapter 5. The following treats two of these from the
present point of view.

Example 4. Let X,,:--, X, be independently, normally distributed with
common mean u and variance o”, and consider the hypothesis H: s« = 0. Here
IIo is the line £, = --- = &,, Iq is the origin, and s and r are both equalto |.
From the identity

LX; — jy)? = LX; - XY + n(X - uy’, (X = 2 X;/n)

it is seen that é, =X, while é, = 0. Thetest statistic and y? are therefore given

by
W =nX?/X(X, — X) and y? = nu?/o?,

Under the hypothesis, the distribution of (n — 1)W is that of the square of a
variable having Student’s r-distribution with n — 1 degrees of freedom.
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Example 5. In the two-sample problem considered in Example 1, the sum
of squares

Ny n

(Hi - HF + > (XK — 0?
t=1 i=n,+1

is minimized by
n

Aa m1

E={xXMY= > Xin, F=_XM = D Xin,
1=1

while under the hypothesis 7 — € = 0
R

Ea = X= [XY + XPYn.
The numeratorof the test statistic (15) is therefore

NyNyn(x— X)? + n(X® — XP =if ) af ) n+ th [xX® — xOp,

The more general hypothesis 7 — & = 9 reduces to the previous case by re-

placing X; by X; — 6, for i =n, +1,--+,”, and is therefore rejected when

(x@) — XW — 00(7 + -)
Ny Ny

| So — XY)? + s (X; - xo] [eo + nz — 2)
i=n,4+1

>C. 

1 1
The noncentrality parameter is y? = (n — & — 9p)?/ (7 + =o*, Under the

1 Ne
hypothesis, the square root of the test statistic has the /-distribution with

n, +n. — 2 degrees of freedom.

3. TESTS OF HOMOGENEITY

The UMPinvariant test obtained in the preceding section for testing

the equality of the means of two normal distributions with common

variance is also UMP unbiased (Section 3 of Chapter 5). However,

when a numberof populations greater than 2 is to be tested for homo-

geneity of means, a UMPunbiasedtest no longer exists so that invariance

considerations lead to a new result. Let X¥,,(@=1,-°3.935 i= 1L-->, S)

be independently distributed as N(u;, 0”) and consider the hypothesis

Hi py 0° = My
This arises, for example, in the comparison of a number of different

treatments, processes, varieties, locations, etc., when one wishes to test

whether these differences have any effect on the outcome X. It may

arise more generally in any situation involving a one-way classification of

the outcomes, that is, in which the outcomesare classified according to a

single factor.
The hypothesis H is a linear hypothesis with r = s — 1, with IIg given
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by the equations ¢;; = £,, for j,k = 1,--+,n; i=1,---,s and with II,
the line on which all n = Xn, coordinates é,, are equal. We have

2L2(X;; — uj? = LUX; — X,.)? + 2n(X;. — ",)

with X;. = >%,X;,,/n,, and hence &,, = X,.. Also,

LUX; — uw)? = LU(X,, — X..)? + n(X.. — pw)?

with X,, = XLX;,,/n so that &,, = X... Using the form (15) of W*, the
test therefore becomes

an Xx,. — X..)2/(s — 1(18) w* —_ n( we ° ) [(s ) > C

«SSX, — X,2/a— so
The noncentrality parameteris

 

yp? = in(u; — p.)?/0*
with

b= Ln,y,/n,

The sum of squares in both numerator and denominatorof (18) admits
three interpretations, whichareclosely related: (i) as the two components
in the decomposition ofthe total variation

LUX;; - X= LUCX,; — X;,)? + an,X;. — X..)*,

of which the first represents the variation within, and the second the
variation between populations; (ii) as a basis, through thetest (18), for
comparing these two sources of variation; (iii) as estimates of their
expected values, (n — s)o* and (s — 1)o2 + Inu, — tu.)? (Problem 9).
This breakdownofthe total variation, together with the various interpreta-
tions of the components, is an example of an analysis of variance, which
will be applied to more complex problems in the succeeding sections.

Weshall now digress for a moment from thelinear hypothesis scheme
to consider the hypothesis of equality of variances when the variables
X;; are distributed as N(u;, 07), i= 1,---,s. A UMP unbiased test
of this hypothesis was obtained in Chapter 5, Section 3, for the case
s = 2, but does notexist for s > 2 (see, for example, Problem 6 of Chapter
4). Unfortunately, neither is there available for this problem a group
for which there exists a UMPinvariant test. To obtain a test, we shall
now give a large-sample approximation, which for sufficiently large n
essentially reduces the problem to that of testing the equality of s means.

It is convenientfirst to reduce the observations to the set of sufficient
Statistics X; = >,X,,/n; and S? = >\(X,, — X;)2, i=1,--+,s. The
hypothesis

H:0,=°"°:=0,

remains invariant under the transformations X;, = X;; +.¢, which in
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the spaceofsufficientstatistics induce the transformations S;2= S$? X; =

X,. +c. A set of maximal invariants under this group are Sf}, ---, SP.

Each statistic S? is the sum of squares of n, — 1 independent normal

variables with zero mean and variance o;, and it follows from the central

limit theorem that for large n,;
S?

vn = 1( ;- 2)z

 

 

is approximately distributed as N(0, 207). This approximation is incon-

venient for the present purpose since the unknown parameters o, enter

not only into the mean butalso the variance of the limiting distribution.

The difficulty can be avoided through the use of a suitable variance

stabilizing transformation. Such transformations can be obtained by

the following observation.* Jf T,, is a sequence ofreal-valued statistics

such that

V

nT, ~ 9) has the limiting distribution N(O, 7?), then for

any continuously differentiable function f, the limiting distribution of

Valf(T,) —f(9)] is normal with zero mean and variance 7°(df/d6)°.

The variance of this limiting distribution is therefore independent of 9

provided the derivative off (6) is proportional to 1/7(8).

This applies to the present case with n =n, — 1, T, = S?/i(n; — 1),

6 = o7, and 7? = 267, and leads to the transformation f(9) = log 6 for

which the derivative is proportional to 1/6. The limiting distribution of

Vn, — 1 {log [S?/(n; — 1)] — log o7} is the normaldistribution with zero

mean andvariance2, so that for large n, the variable Z; = log [S?/(n; — 1)]

has the approximate distribution N({,,a7) with ¢,; = log a=

2/(n; — 1).
The problem is now reduced to that of testing the equality of means

of s independent variables Z, distributed as N(C,, a?) where the a, are

known. In the particular case that the n,; are equal, the variances a;

are equal and the asymptotic problem is a simpler version (in that the

variance is known) of the problem considered at the beginning of the

section. The hypothesis 2, = --: = 6, is invariant under addition of a

commonconstantto each ofthe Z’s and under orthogonaltransformations

of the hyperplanes which are perpendicular to the line Z; = +--+ = Z,.

The UMPinvariant rejection region is then

(19) X(Z; — Z)/a®# > C

where a? is the commonvariance of the Z; and where C is determined by

(20) [ (2-1(y) dy = «.

* For a proof see for example Rao, Advanced Statistical Methods in Biometric

Research, New York, John Wiley & Sons, 1952, Section Se.
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In the more general case of unequal a,, the problem reduces to a linear
hypothesis with known variance through the transformation Z; = Z,/a,,

and the UMPinvariant test under a suitable group oflinear transforma-
tions rejects when

leh)? _ 5(Z)*_ Eze . ¢
X1 /a5 a; X(1/a)

1(21) sa(z, _
a;

(see Problem 10) where C is again determined by (20). This rejection

region, which is UMPinvariant for testing ¢, = --- = €, in the limiting
distribution, can then be said to havethis property asymptotically for
testing the original hypothesis H: o, =--- = o,.
The same methodcan be used to test the homogeneity of a numberof

binomialor Poisson distributions. The details are indicated in Problem 11.
When applying the principle of invariance,it is important to make sure

that the underlying symmetry assumptions really are satisfied. In the
problem oftesting the equality of a number of normal means ,,,° °°, 1,
for example, all parameter points, which have the same value of y? =
Xn“; — w.)*/o*, are identified under the principle of invariance. This
is appropriate only when these alternatives can be considered as being
equidistant from the hypothesis. In particular, it should then be im-
material whether the given value of y? is built up by a numberof small
contributions or a single large one. Situations where instead the main
emphasis is on the detection of large individual deviations do not possess
the required symmetry, and the test based on (18) need no longer be
optimum.

Usually in such situations a more complex procedureis called for than
the testing of a single hypothesis. When comparing a numberofvarieties
or treatments for example, one would typically wish to decide not only
whether they are equal but in case this hypothesis is rejected would like
to rank or group them orat least pick out those that are best. Suppose
for simplicity that the sample sizes are equal, n; =n for i=1,--°,s.
A natural procedure which leads to a grouping of the values ju; consists

in claiming uw, and yu, to be different if |X, — X,| > CS/Vsn(n — 1)
where S? = X2(X,, — X,.)%., The over-all hypothesis H of equality

* A more commonly used asymptotic test of H is Bartlett’s test (see for example
Section 6a of Rao, op.cit.), whichis essentially the likelihoodratiotest.

} Other types of multiple decision procedures for this and more general linear
hypothesis situations have been proposed by, among others, Duncan, ‘‘Multiple range
and multiple F tests,” Biometrics, Vol. 11 (1955), pp. 1-42; Scheffé, “A method for

judging all contrasts in the analysis of variance,” Biometrika, Vol. 40 (1953), pp. 87-104;
and Tukey, in “Comparing individual means in the analysis of variance,” Biometrics,
Vol. 5 (1949), pp. 99-114, and in an unpublished work.
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of all meansis then accepted if

max |X;. — X;, < ct

S/Vsn(n — 1)

When H is rejected, it is asserted that wu; > mu, for all pairs (i, 7) for

which X,. — X;. > CS/ V/sn(n — 1). Thesignificance level at which

H

is

tested here is the probability of declaring any ofthe differences u; — p,;

significant when actually the w’s are allequal. The left-handside of (22)

is the studentized range of the sample means.

An analogous approachis possible in the comparison of several vari-

ances. Suppose again that the sample sizes are equalandlet the variances

o? and o? beclassified as 0% < of or oj > 9; if S?/S? is > C or << 1/C

(C > 1) and as being equal if neither of these inequalities holds. The

over-all hypothesis o, = --- = o, is then accepted if

(23) max (S?/S?) = max Sj/min S;< C.f
i,j k k

(22)  

The studentized range and maximum F-ratio tests do not appear to

possess any optimum properties when viewed astests of the hypotheses

fy =''' =p, and o, =°*''=46, respectively. However, they do

possess such properties when considered as solutionsto the problem of

ranking the meansorvariances(ties being permitted).7

4. TWO-WAY CLASSIFICATION: ONE

OBSERVATION PER CELL

The hypothesis of equality of several meansarises when a number of

different treatments, procedures, varieties, or manifestations of some

other factors are to be compared. Frequently oneis interested in studying

the effects of more than onefactor, or the effects of one factor as certain

other conditions of the experiment vary, which then play the role of

additional factors. In the present section we shall consider the case

that the numberoffactorsaffecting the outcomesof the experimentis two.

Suppose that one observation is obtained at each of a numberoflevels

of these factors, and denote by X¥;,@=1,-°,.a;j,= 1°": b) the value

observed whenthefirst factor is at the ith and the secondat the jth level.

It is assumed that the X,, are independently normally distributed with

* Tables of C are given in Biometrika Tables, Vol. 1, Cambridge Univ. Press, 1954,

Table 29, and by May,“Extended andcorrected tables of the upper percentage points

of the studentized range,”’ Biometrika, Vol. 39 (1952), pp. 192-193.

+ Tables of C are given in Biometrika Tables, op. cit., Table 31.

+ Lehmann, “A theory of some multiple decision problems,” Ann. Math. Stat.,

Vol. 28 (1957), pp. 1-25 and 547-572.
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constant variance o7, and for the moment also that the two factors act

independently (they are then said to be additive) so that &,, is of the form

a;+f8;. Putting w=ai+ Bo and a, =a; —a/, 6, = Bi — Bi, this
can be written as

(24) f= eta, + ; ua; = Uf; = 0,

where the «’s, 6’s, and uw are uniquely determined by (24) as

(25) a= o.—-6., Pre b;—-E., wH..®

Consider the hypothesis

A:a,=:::=a,=0

that the first factor has no effect on the outcome being observed. This

arises in two quite different contexts. The factor of interest, correspond-
ing say to a numberof treatments, may be / while « correspondsto a
classification according to, for example, the site on which the observations
are obtained (farm,laboratory, city, etc.). The hypothesis then represents
the possibility that this subsidiary classification has no effect on the
experiment so that it need not be controlled. Alternatively, « may be
the (or a) factor of primary interest. In this case, the formulation of the
problem as one of hypothesis testing would usually be an oversimplification
since in case of rejection of H, one would require estimates of the «’s

or at least a grouping according to high and low values.
The hypothesis H is a linear hypothesis with r=a—1, s=1-+

(a—1)+ (6-1) =a+b—1andn—s=(a—1)(b—1). Theleast
Squares estimates of the parameters under 2 can be obtained from the
identity

22(X;; — E;;) = LuX;; —- b= B;)?

= LU[(X,, — X). — Xj, + X.) + (X%,. — X.. — a)
+ (X,, -— X.. — 6) + (X. — wP

= LU(X,, — X;. — X + X..)? + bxu(X;. — X.. — «,)?
+ aX(x., — X.. — B® + ab(X.. — pw)’,

whichis valid since in the expansion of the third sum of squares the cross-
product terms vanish. It follows that

A

a, = X;. — X..5 B; = X.; — X.., fi = X..,

and that

* The replacing of a subscript by a dot indicates that the variable has been averaged
with respect to that subscript.
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Under the hypothesis H westill have B; = X,,— X,. and 7 = X.., and

hence &,, — &,; = X;. — X.... The best invariant test therefore rejects

when

bXuCX;,. —_ X..)*/(a — 1)

LO(X;; — Xj. — Xi + XPMa — 16 — 1)
 (26) W*= > C.

The noncentrality parameter, on which the powerof the test depends, 1s

given by

(27) 2 — bS(E,, — &..)°/o® = bUa2/o?.

This problem provides another example of an analysis of variance.
The total variation can be broken into three components,

LU(X,; — X..)? = bU(X,. — X..)? + a(x; — X..)?

+ LUX; — X;. — X.; + X,.)*.

Of these, the first contains the variation due to the «’s, the second that

due to the f’s. The last component, in the canonical form of Section 1,

is equalto >"_,,,Y7. Itis therefore the sum of squares ofthose variables

whose means are zero even under 2. Since this residual part of the

variation, which on division by n — s is an estimate of o?, cannot be put

down to anyeffects such as the «’s or ’s,it is frequently labeled “‘error,”

as an indication that it is due solely to the randomnessofthe observations,

not to any differences of the means. Actually, the breakdown is not

quite as sharp as is suggested by the above description. Any component

such as that attributed to the «’s always also contains some “error,” as

is seen for example from its expectation, whichis

EX(X,. — X..)? = (a — 1)0? + bdo?.

Instead oftesting whether a certain factor has any effect, one may wish

to estimate the size of the effect at the various levels of the factor. Other

parameters, which it is sometimes interesting to estimate, are the average

outcomes(for exampleyields) &,., -- -, £,. when the factoris at the various

levels. If 6; = w+t+a, = &,., confidence sets for Or,-++, 6.) are obtained

by considering the hypotheses H(0°): 6, = 67 G@ = 1, 28) Fortesting

6, =°:: = 6, =0,the least squares estimates of the‘g, are &, = X, +

X.,; — X., and E., = X,—X. The denominator sum of squares is

therefore XU(X,, — X;. — X.; + X..)? as before, while the numerator

sum of squares is

>(FF — é,,)? = buX;.

The general hypothesis reduces to this special case by replacing X;,; by
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the variable X,, — 6. Since s=a+6—1 and r =a,the hypothesis
H(6°) is rejected when

bxX;, — 9})?/a

EL(%,—X,—-X,+XJ@—-De—-)~ ~
 

The associated confidencesets for (6,,---, 0,) are the spheres

X(6, — X,)? S aCxXxX(X,, — X;. — X., + XPMa — 1) — 1b.

When considering confidence sets for the effects a,,---,«, one must

take account of the fact that the «’s are not independent. Since they add
up to zero, it would be enoughto restrict attention to «,,°--, «4.
However, an easier and more symmetric solution is found byretaining
all the «’s. The rejection region of H: a; = «? for i= 1,-+-,a (with
Za;= 0) is obtained from (26) by letting X;; = X;; — «9, and henceis
given by

bXU(X,. — X.. — af)? > CLX(YX,, — X;,. — X; + X..)2(b — 1).

The associated confidence set consists of the totality of points (a, ---, ,)
satisfying Xa, = 0 and

Dla; — (X,. — XP < CEUX, — X,. — Ky +X.)— 0).
In the space of (a,°-+-, «,), this inequality defines a sphere whose center
(X,. — X..,°+°, X,. — X..) lies on the hyperplane Xa; = 0. The con-
fidence sets for the «’s therefore consist of the interior and surface of the
great hyperspheres obtained by cutting the a-dimensional spheres with the
hyperplane La, = 0.

In both this and the previous case, the usual method showstheclass of
confidence sets to be invariant under the appropriate group oflinear
transformations, and the sets are therefore uniformly most accurate
invariant.

5S. TWO-WAY CLASSIFICATION:

m OBSERVATIONS PER CELL

In the preceding section it was assumed that the effects of the two
factors a and # are independent and hence additive. The factors may,
however, interact in the sense that the effect of one depends onthelevel

of the other. Thusthe effectiveness of a teacher depends for example on
the quality or the age of the students, and the benefit derived by a crop
from various amounts ofirrigation depends on the type of soil as well as
on the variety being planted. If the additivity assumption is dropped,
the means¢;; of X,; are no longer given by (24) under Q but are completely
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arbitrary. More than ab observations, one for each combination of

levels, are then required since otherwise s =n. Weshall here consider
only the simple case in which the numberof observations is the same at
each combination oflevels.

Let Xi, @=1,°°a; j=1,°°:,b; k= 1,°+-+,m) be independent
normal with common variance 52and mean E(X.x = &,, In analogy
with the previous notation we write

= erat pt yi;

with 2,0, = 2,6; = Uy, = Uy, = 0. Then o, is the average effect
of factor | at level i, averaged over the 6 levels of factor 2, and a similar

interpretation holds for the f’s. The y’s are called interactions, since y,,
measures the extent to which thejoint effect €,, — &.. of factors | and 2 at
levels i and j exceeds the sum (€;. — &..) + (¢.,; — &..) of the individual

effects. Consider again the hypothesis that the «’s are zero. Then
r=a—1,s=ab, and n—s =(m-— l)ab. From the decomposition

DUUXi, — §4)? = LUXig, — Xiyz.)? + MUU(X;. — §,,)?
and

UX(Xi;, — §:))? = VUXj. — X.. — X;yX... = Yi)?

+ bxX;.. — X... — a,)% + aX(X,,. ve — Bi)? + ab(X... — pw)?

it follows that

f=po'.=X =f —-£ =¥X,.-YX..,

By = By = 4, i.=X;.—-X.., $i = Fi = Xy. — Xp. — XGA...
and hence that

DUXs — EP? = LULLX55 a Xi;.)°;

TLU(é,; — é,) = mb2(X;,.. — X...)?.

The most powerful invariant test therefore rejects when

mbx(X,;.. — X...)?/(a — 1)

DLXi, — Xj;.)?/(m — 1)ab

and the noncentrality parameterin the distribution of W* is

(29) mbX(E,. — €..)?/o2 = mbXa?/o?.

Another hypothesis of interest is the hypothesis H’ that the two factors
are independent,T

 (28) W* = >C,

H’:y,;=0 forall i, 7.

+ A test of H’ against certain restricted alternatives has been proposed for the case
of one observation per cell by Tukey, “One degree of freedom for non-additivity,”
Biometrics, Vol. 5 (1949), pp. 232-242.
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The least squares estimates of the parameters are easily derived as before,
and the UMPinvariant test is seen to have the rejection region (Problem
12)

(30) W* = muX(X;;. — X;.. — Xj. + X...)P2M(a — 1I)(b — 1)

LEDXij — Xij.)?[(m — lab .
 >C.

Under H’,thestatistic W* has the F-distribution with (a — 1)(b — 1) and
(m — l)ab degrees of freedom; the noncentrality parameter for any

alternative set of y’s is

(31) y= midXy%,/0*.

The decomposition of the total variation into its various components,
in the present case is given by

LUX, — X...)% = mbu(X,.. — X...)? + maX(X.;. — X...)

+ m2X(X,;. — X;.. — Xj. + Xi) + DEL(YX,y, — X,;)?.

Here thefirst three terms contain the variation due to the «’s, §’s, and y’s
respectively, and the last componentcorresponds to error. Thetests for
the hypotheses that the «’s, f’s, or y’s are zero,the first and third of which
have the rejection regions (28) and (30), are then obtained by comparing
the a, 8, or y sum of squares with that for error.

An analogous decomposition is possible when the y’s are assumed a
priori to be equal to zero. In that case, the third component which
previously wasassociated with y represents an additional contribution to
error, and the breakdown becomes

DUUX4, — X...)? = mbu(X,.. — X...)? + maX(X.;. — X...)?

+ U(X,5, — Xi. ~— X,5. + X...)*,

with the last term corresponding to error. The hypothesis H: «, =
‘++ = a, = 0 is then rejected when

mb2(X,.. — X...)?/(a — 1)
U(X, — X;.. — Xj. + X...)2(abm — a — b +1) > ©
 

Suppose now that the assumption of no interaction, under which this
test was derived, is not justified. The denominator sum of squares then
has a noncentral y?-distribution instead of a central one, and is therefore
stochastically larger than was assumed (Problem 13). It follows that the
actualrejection probability is less than it would be for LXy?, = 0. This
showsthat the probability of an error of the first kind will not exceed the
nominallevel of significance regardless of the values of the y’s. However,
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the power also decreases with ZZyj./o? and tends to zero as this ratio

tends to infinity.
The analysis of variance and the associated tests derived in this section

for two factors extend in a straightforward mannerto a larger numberof

factors (see for example Problem 14). On the other hand, if the number

of observations is not the same for each combination oflevels (each ce/f),

the problem, while remaining a linear hypothesis, becomes more complex.

Of great importance are arrangements in which only certain combina-

tions of levels occur since they permit reducing the size of the experiment.

Thus for example three independent factors, at m levels each, can be

analyzed with only m? observations, instead of the m* required if 1

observation were taken at each combination of levels, by adopting a

Latin square design (Problem 15).
The class of problems considered here contains as a special case the

two-sample problem treated in Chapter 5, which concernsa single factor

with only two levels. The questions discussed in that connection regarding

possible inhomogeneities of the experimental material and the randomiza-

tion required to offset it are of equal importance in the present, more

complex situations. If inhomogeneous material is subdivided into more

homogeneous groups, this classification can be treated as constituting

one or more additional factors. The choice of these groupsis an important

aspect in the determination of a suitable experimental design.t— A very

simple example of this is discussed in Problems 26 and 27 of Chapter 5.

To guard against possible inhomogeneities (and other departures from

the assumptions made) even in the subgroups, randomization is used in

the assignment of treatment factors within the groups. As was the case

in the two-sample problem, the process of randomization alone without

any assumptions concerning the method of sampling the experimental

units, normality, independence, etc., makes it possible to obtain level «

tests of the various hypotheses of interest. These permutation tests in

the present case consist in computing the appropriate F-statistic W*, but

comparing it only with the values obtained from it byapplying to the

observations the permutations associated with the randomization pro-

cedure.t These tests are as before asymptotically equivalent to the

corresponding F-tests, by which they can therefore be approximated.

+ For a discussion of various designs and the conditions under which they are

appropriate see, for example, Kempthorne, The Design and Analysis of Experiments,

New York, John Wiley & Sons, 1952, and Cochran and Cox, Experimental Designs,

New York, John Wiley & Sons, 2nd ed., 1957. Optimum properties of certain designs,

proved by Wald, Ehrenfeld, Kiefer, and others, are discussed by Kiefer, ‘On the

nonrandomized optimality and randomized nonoptimality of symmetrical designs,”

Ann. Math. Stat., Vol. 29 (1958), pp. 675-699.

+ For details see Kempthorne,loc.cit.
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6. REGRESSION

Hypotheses specifying one or both of the regression coefficients «,
when X,,:-:, X, are independently normally distributed with common
variance o” and means

(32) f= a + Pt,

are essentially linear hypotheses, as was pointed out in Example 2. The
hypotheses H,:«% =a) and H,:/ = fy were treated in Chapter 5,

Section 6, where they were shown to possess UMP unbiased tests. We
shall now consider H, and H,, as well as the hypothesis Hz: « = a,

fb = B,, from the present point of view. By the general theory ofSection 1
the resulting tests will be UMP invariant under suitable groups oflinear
transformations. For the first two cases, in which r = 1, this also

provides by the argument of Chapter 6, Section 6, an alternative proof of
their being UMP unbiased. |
The space Iis the same for all three hypotheses. It is spanned by

the vectors (1,---, 1) and (t,,---,¢,) and has therefore dimension s = 2

unless the t,; are all equal, which we shall assume not to be the case. The
least squares estimates « and f under Q are obtained by minimizing
U(X; — « — ft,)?. For any fixed value of £, this is achieved by the

value « = X — ft, for which the sum of squares reduces to X[(X, — X) —
B(t;-— OP. By minimizing this with respect to f one finds

2(X,; — X)\(t; — 1) -
(33) p= L,— ) a= X — pr; 

and

U(X, — & — Bt, = U(X, — X)? — PPX(t, — 1)?

is the denominator sum of squaresfor all three hypotheses. The numerator
of the test statistic (7) for testing the two hypotheses « = 0 and 8 = Ois Y?
and for testing « = 6 = Ois Y?+4 Y?.
For the hypothesis « = 0,the statistic Y, was shown in Example3 to be

equal to

(XY — 7121,X,/2G) VndF/Ut, — PF = &VnX(t, — DEL.
Since then

  

 

E(Y,) = « VaXt; — 22/22,
the hypothesis « = ais equivalent to the hypothesis E( Y,) = 7? =

ayVn&(t; — t)?/Xt;, for which therejection region (17) is(n — s)(Y, — °)?/

>Pg41¥? > Cy and hence

|& — a| VndX(t; — 12/27

VEX, — & — BrP(a — 2)

 

 

 

 
(34) > Cp.
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For the hypothesis 8 = 0, Y, was shown to be equal to

D(X, — Xt, — DVUG — DP = BVIG—
Since then E(Y,) = £ V/X(t; — t)?, the hypothesis 6 = fp is equivalent to

E(Y,) = n° = By V X(t; — 7)? and the rejection regionis

\B — Bo| VX(t; — ty

V(X, —a— Bt)?(n — 2)

 (35)  

Fortesting « = § = 0, it was shown in Example 3 that

Y,=BV=G,—-, Yo=VnX¥ = Vn(a + Bn;

and the numerator of (7) is therefore

(VY? + Y3/2 = [n(& + Bt? + PLC; —17/2.

The more general hypothesis « = %, 6 = fy is equivalent to E(Y,) = n>

E(Y.) = 72 where 7? = By VX(t; — 1), 18 = Vn(%> + Bot), and the
rejection region (17) can therefore be written as

[n(& — a9)® + 2nt(& — ao — Bo) + Ur(B — Bo)*)/2

X(X; — & — Bt,)?/(n — 2)
 (36) >C.

The associated confidence sets for (a, 8) are obtained by reversing this

inequality and replacing a») and fy by « and f. Theresulting sets are

ellipses centered at(&, £).
The simple regression model (32) can be generalized in many directions;

the means &, may for example be polynomials in t; of higher than thefirst

degree (see Problem 18), or more complex functions such as trigono-

metric polynomials; or they may be functions of several variables,

t,, U;,v; Some further extensions will now beillustrated by a number of

examples.

Example 6. A variety of problems arise when there is more than one

regression line. Suppose that the variables %;; are independently normally

distributed with commonvariance and means

(37) g45 = a; + Biti; G=

|

ar Nj; i= lec, b).

The hypothesis that these regression lines have equalslopes

H: pp =-°° = B,

may occur for example when the equality of a number of growth rates is to be

tested. The parameter space II has dimension s = 2b provided noneof the

sums &,(t;; — t,.)2 is zero; the numberof constraints imposed by the hypothesis
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isr =b —1. The minimum value of UX(X;; — &,,)? under Q is obtained by
minimizing Uj(X;; — «; — f;t;;)* for each i, so that by (33),

D(%; — X;.)(tiy — ty)
J

dt — ;,)?
j

Under H, one must minimize LECX,; — «; — Bt,;)2, which for any fixed £
leads to «; = X;. — Bt;. and reduces the sum of squares to SX[(X;; — X;.) —
B(ty; — t;.)F. Minimizing this with respect to f one finds

“a

pi = 

 

a ULX;; — Xi; _ t;.) A 4
= ° a = X.. — ft.

P DU(t;; — t;.) 7% not
Since

Xi3 — $i = Xj — & — Bit = (Xi — Xi) — Bt — 4)
and

a

é; — E, = (4; —4&,) + t(B; — p) = (B; — Bt;; — t;.),

the rejection region (15)is

DAB; — BPE; — t.2(b - 1)
= 5 >C

LU(X,;; — X;.) — BAti; — tPF) — 25)

wherethe left-hand side under H has the F-distribution with 6 — 1 andn — 26
degrees of freedom.

Since

E(B;) = B; and E(B) = UP(tj; — t).)P/LU(ty; — t;.)°,

the noncentrality parameter of the distribution for an alternative set of f’s is

y? = Lp; — BPXAt;; — t;.)?/o?, whereB = E(8). In the particular case that
the n; and the r;; are independentofi, 6 reduces to 6 = X8,/b.

 (38)

Example 7. The regression model(37) arises in the comparison of a number
of treatments when the experimentalunits are treated as fixed and the uniteffects
u;; (defined in Chapter 5, Section 10) are proportional to known constants 1¢,;.

Here t;; might for example be a measureofthefertility of the i, jth piece of land
or the weight of the i, jth experimental animal prior to the experiment. It
is then frequently possible to assumethat the proportionality factor 8; does not
depend on the treatment, in which case (37) reduces to

(39) Sig Sy + By

and the hypothesis of no treatmenteffect becomes

H: a =-++ =4,.
The space ITq coincides with IT. of the previous example, so thats = b + I

and

 

LUX — XN — te) Br
p= UX(t;; — t,.) FS Ae Ph

Minimization of LX(X;; — « — Br,;)? gives

B _ 2X; _— X..ti; _ t..) 4 -xX.— ft.
 

UdX(t;; — t..)? ,
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where X.. = UXX;,/n, t.. = LUt,,/n, n =n; The sum of squares in the
numerator of W* in (15) is thus

ELE; — &)® = DIX. — X..) + Bt; — tt) — Bt — 18.
The hypothesis H is therefore rejected when

TUX; — X..) + BU; — 4) — BU; — tPMb — 1)

LUCK; -— X).) — Bs — t)P/ -— 6 - 1)

where underHthe left-handside has the F-distribution with b — landn — b — 1
degrees of freedom.
The hypothesis H can be tested without first ascertaining the values of the

t;;; it is then the hypothesis of no effect in a one-wayclassification considered
in Section 3, and the test is given by (18). Actually, since the unit effects u,;
are assumedto be constants, which are now completely unknown,the treatments
are assigned to the units either completely at random or at random within
subgroups. The appropriate test is then a randomization test for which (18)
is an approximation. ,

 (40) > C,

Example 7 illustrates the important class of situations in which an
analysis of variance (in the present case concerning a one-wayclassification)
is combined with a regression problem (in the present case linear regression

on the single “concomitantvariable” ¢). Both parts of the problem may
of course be considerably more complex than was assumed here. Quite

generally, in such combined problems one can test (or estimate) the
treatmenteffects as was done above, and a similar analysis can be given
for the regression coefficients. The breakdown of the variation into its
various treatment and regression components is the so-called analysis of
covariance.

7. MODEL II: ONE-WAY CLASSIFICATION

The analysis of the effect of one or more factors has been seen to depend
on whether the experimental units are fixed or constitute a random sample
from a population of such units. The same distinction also arises with
respect to the factor effects themselves, which in some applications are
constants and in others unobservable random variables. If all these
effects are constant or all random one speaks of model I or model II
respectively, and the term mixed modelrefers to situations in which both

types occur. Of course, only the model I case constitutes a linear
hypothesis accordingto the definition given at the beginning of the chapter.
In the present section we shall treat as model II the case of a single factor
(one-wayclassification), which was analyzed underthe model I assumption
in Section 3.
As an illustration of this problem, consider a material such assteel,

which is manufactured or processed in batches. Suppose that a sample
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of size n is taken from each of s batches and that the resulting measure-
ments X,,(j=1,°':,2; i= 1,°+°+,5) are independently normally
distributed with variance o? and mean &,.__If the factor correspondingto i
were constant, with the sameeffect «,; in each replication of the experiment,
we would have

pH Ute, (Lax; = 0)
and

Xj, = eta + U;;

where the U;, are independently distributed as N(0, 0”). The hypothesis
of no effect is &; = --- = &, or equivalently a, =---=a,=0. How-
ever, the effect is associated with the batches, of which a newsetwill be

involved in each replication of the experiment; and the effect therefore
does not remain constant. Instead, we shall suppose that the batch
effects constitute a sample from a normaldistribution, and to indicate

their random nature weshall write A, for «; so that

(41) Xi =u+tA;+ U;;. |

The assumption of additivity (lack of interaction) of batch and unit

effect, in the present model, implies that the A’s and U’s are independent.

If the expectation of A, is absorbed into y, it follows that the A’s and U’s

are independently normally distributed with zero means and variances
a“, and o” respectively. The X’s of course are no longer independent.
The hypothesis of no batch effect, that the A’s are zero and hence

constant, takes the form

H: 0, = 0.

This is not realistic in the present situation, but is the limiting case of the
hypothesis

H(Ag): 04/0? S Ag

that the batch effect is small relative to the variation of the material
within a batch. These two hypotheses correspond respectively to the
model I hypotheses Xa? = 0 and Xa?/o? < Ao.

To obtain a test of H(A,) it is convenient to begin with the same
transformation of variables that reduced the corresponding model I
problem to canonical form. Each set (Xj,°-+°, X;,) is subjected to an

orthogonal transformation Y,, = >7_4¢,,X, such that Y,, = VvnX,..

Since c,, = 1/Vn for k = 1,-++,n (see Example 3), it follows from the
assumption of orthogonality that }7_,c,, = 0 for j = 2,---,m and hence
that Y,; = d%_1¢,.U, for j>1. The Y;,; with 7> 1 are therefore
independently normally distributed with zero mean and variance o?.

They are also independentof U,, since (VnU,. Yio'** Yin) = C(UAU9° *°

U;,)’, (a prime indicates the transpose of a matrix). On the other hand,
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the variables Y,, = a/nX,. = VVnut + A, + U;,.) are also independently

normally distributed but with mean Vnp and variance o? + no%. If

an additional orthogonal transformation is made from (Yy,°°°, You)

to (Z,,,°°°,Z,) such that Z,, = VsY.,4, the Z’s are independently

normally distributed with commonvariance o? + no”, and means E(Z,,) =

Vsnp and E(Z,,) =Ofori>1. Putting Z,, = Y,, for 7 > 1 for the sake

of conformity, the joint density of the Z’s is then

]4? —ns/2.—(n—1)8/ 72 2)\—8/2 |- ———_——_=—(42) (22)~™!*o (o? + no) exp Xo? + nod)

§ 8 n

(ce — Vsn BL)? + > 2.) — J > > 2
i=2 20° i=1j=2

The problem oftesting H(A) is invariant underaddition of an arbitrary

constant to Z,,, which leaves the remaining Z’s as a maximalset of

invariants. These constitute samples of size s(n — 1) and s — 1 from

two normal distributions with means zero and variances o? and 7? =
o? + no. The hypothesis H(A,) is equivalent to 72/0? << 1 + Aon, and

the problem reduces to that of comparing two normal variances, which

was considered in Example 6 of Chapter 6 without the restriction to zero

means. The UMPinvariant test, under multiplication of all Z,; by a

commonpositive constant, has the rejection region

1 Sis — 1)
(43) We = (1 +Ayn) S#/(n — Is

>C 

where
n § n s n

Sa= 2, Zi and S= 2 2 Zii = 2,* Yit=1j=2

The constant C is determined by

[ F,1(n—1sl¥) dy = &.

Since
n n 9

2 2 2
>¥%- YA = > UZ —nu;
j=l j=l

— 79 2 = 2 2
and > Z,-Zi= > Ya -9Vh,

i=l i=1

the numerator and denominator sum of squares of W*, expressed in terms

of the X’s, become

Si=n>d(X,—-X and SF=> D(X; — %.).
i=1 t=1j=1
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In the particular case Ay = 0, the test (43) is equivalent to the corre-

sponding model I test (18) but they are of course solutions of different
problems, and also have different power functions. Instead of being
distributed according to a noncentral y?-distribution as in model I, the
numerator sum of squares of W* is proportional to a central y? variable
even whenthe hypothesis is false, and the powerofthe test (43) against an
alternative value of A is obtained from the F-distribution through

B(A) = Px {w*> C} = | Fya(n—1)s(Y) dy.
1+ Ao” o

1+ An
 

The family of tests (43) for varying Ag is equivalent to the confidence
statements

_1f Sis — 0)
(44) S= lastmsis <4
The corresponding upper confidence bounds for A are obtained from the
tests of the hypotheses A > Ay. These have the acceptance regions

W* => C’, where W*is given by (43) and C’is determined by| Fy1(n—1s
or

= 1 — a, and the resulting confidence boundsare

1f S2/(s — 1) _ x

(49) AS na—1)s 1 =A.

Both the confidence sets (44) and (45) are invariant with respect to the

group of transformations generated by those considered for the testing
problems, and hence are uniformly most accurate invariant.
When A is negative, the confidence set (A, 00) contains all possible

values of the parameter A. For small A, this will happen with high
probability (1 — « for A = 0), as mustbethe case since A is then required

to be a safe lower bound for a quantity which is equal to or near zero.
More awkwardis the possibility that A is negative, so that the confidence
set (—oo, A) is empty. An interpretation is suggested by the fact that
this occursif and only if the hypothesis A > Agis rejected forall positive
values of Ay. This may be taken as an indication that the assumed
model is not appropriate, although it must be realized that for small A
the probability of the event A < 0 is near « even when the assumptions
are satisfied, so that this outcome will occasionally be observed.
The tests of A << A, and A > A, are not only UMPinvariant but also

UMP unbiased, and UMPunbiasedtests also exist for testing A = A,
against the two-sided alternatives A 4 A,. This follows from the fact
that the joint density of the Z’s constitutes an exponential family. The
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confidence sets associated with these three families of tests are then

uniformly most accurate unbiased (Problem 19). That optimum unbiased

proceduresexist in the model II case but notin the corresponding modelI

problem is explained by the different structure of the two hypotheses.

The model II hypothesis o7, = 0 imposes one constraint since it concerns

the single parameter o%,. On the other hand, the corresponding model I

hypothesis %_ ja? = 0 specifies the values of the s parameters a, °° °, %5,

and since s — 1 of these are independent, imposes s — | constraints.

8. NESTED CLASSIFICATIONS

Thetheory ofthe preceding section does not carry over even to so simple

a situation as the general one-wayclassification with unequal numbers in

the different classes (Problem 22). However, the unbiasedness approach

does extend to the important case of a nested (hierarchical) classification

with equal numbers in each class. This extension is sufficiently well

indicated by carrying it through for the case of two factors; it follows for

the general case by induction with respect to the numberof factors.

Returningto the illustration of a batch process, suppose that a single

batch of raw material suffices for several batches of the finished product.

Let the experimental material consist of ab batches, b coming from each

of a batches of raw material, and let a sampleofsize n be taken from each.

Then (41) becomes

(46) Xijn = +A, + By +

U

six (Gi=1,°-+,a;5

falebs kala)
where A, denotestheeffect of the ith batch of rawmaterial, B,;that of the

jth batch of finished product obtained from this material, and U;,, the

effect of the Ath unit taken from this batch. All these variables are

assumed to be independently normally distributed with zero means and

with variances 02, 0%, and o? respectively. The main part of the induction

argumentconsists in proving the existence of an orthogonaltransformation

to variables Z;,,, the joint density of which, except for a constant,is

] — a

2(o? + rea+ bno®) (eu — Vabn wy + 2, u)

-aa+ no»)>34ut 5823xain

As

a

first step, there exists for each fixed i, j an orthogonal transforma-

tion from (Xj, ° °° Xijn) to (Yin °°» Yijn) such that

Yin ==Vn Xi. ==Vn ll + Vn (A; + B;; + U;;.).

 (47) exp E
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As in the case of a single classification, the variables Y,,, with k > 1
depend only on the U’s, are independently normally distributed with

zero mean and variance o*, and are independent of the U,,... On the
other hand, the variables Y;;, have exactly the structure of the Y,, in the

one-way classification,

Yin = w+ A; + U;;,

where pw’ = Vnuy, A, = Vn A;, U;; = Vn (B,; + U,;.), and where the
variances of A; and U;; are of = no% and a” = o? + no% respectively.
These variables can therefore be transformed to variables Z,,, whose

density is given by (42) with Z;,, in place of Z,,. Putting Z,,, = Y,,, for
k > 1, the joint density ofall Z,,, is then given by (47).

Two hypotheses of interest can be tested on the basis of (47): Hy:
o*,|(0? + no%) < Ay and Hy: o%/02 << Ay, which state that one or the

other of the classifications haslittle effect on the outcome. Let

s2 a 3 3 a b > 9 a 0b n 3

A= 2 Zin Sp= > » Lijt» SY = » > d Zin
1=2 i=1j=2 t=1j=1lk=2

To obtain a test of H,, one is tempted to eliminate S? through invariance
under multiplication ofZ,,;, fork > 1 by an arbitrary constant. However
these transformations do notleave (47) invariant since they do not always

preserve the fact that o? is the smallest of the three variances o?, o? + no%,
and o® + no}, + bno%,. Weshall instead consider the problem from the
point of view of unbiasedness. For any unbiased test of H,, the proba-
bility of rejection is « whenever o%/(o? + no%,) = A,, and hence in
particular when the three variances are o?, 75, and (1 + bnA,)r2 for any

fixed 75 andall o? < 75. It follows by the techniques of Chapter 4 that
the conditional probability of rejection given S? = s* must be equal to «
for almost all values of s?. With S? fixed, the joint distribution of the
remaining variables is of the same type as (42) after the elimination of
2311, and a UMP unbiased conditional test given S? = s® has the rejection

region
2

(48) wr = 1 _. Sala 7 DS
1+ bnA, Sz/(b — la

Since S4 and S% are independent of S?, the constant C, is determined by

the fact that when o%/(o? + no%,) = Ag, the statistic W* is distributed as
Fa—1,(6—1)a and hence in particular does not depend on s._ Thetest (48)is
clearly unbiased and hence UMPunbiased.
The argument with respect to H, is completely analogous and shows

the UMP unbiasedtest to have the rejection region

1 S%/(b — l)a
+ . 8 >C

(4) P= Ty nA, S?/(n —l)ab= ~”
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where C, is determined by the fact that for o%/0? = Ao, the statistic WF

is distributed as Fi, _1)a,(n—1)ab-

It remains to express the statistics S?, S?, and S? in terms of the X’s.

From the corresponding expressions in the one-way classification, it

follows that
a

Si = 2Zin — Zh = bU(Yj,.4 — Y..1)*,
a

a b

Sz = >|>Zi _ Zi| = 22U(Vin — Yaa)?
i=1Lj=

and

S? =
t 2 >, Yin — vis] = E>> Uijn — nU3.|

~ 222 (Ui, — Ui)’.

iM
s

j=1

Hence

(50) S23 = bnd(X;,..— XJ, 83 = BUX. — Xi...)
S? — UU5 — X;;.)*.

It is seen from the expression of the statistics in terms of the Z’s that

their expectations are E[S4/(a — 1)] = 0? + no®, + bno®, E[S3/(6 — 1a]

= og? + no%, and E[S?/(n — 1)ab] = o?. The decomposition

TEU(Xiy, — X...)2 = S4 + Spt S?

therefore forms a basis for the analysis of the variance of X;,,

Var (Xin) = o%4 + o% + 0

by providing estimates of the components of variance 0%, o'%, and o”, and

tests of certain ratios of these components.

Nested two-wayclassifications also occur as mixed models. Suppose

for example that a firm produces the material of the previousillustrations

in different plants. If «; denotes the effect of the ith plant (which is

fixed since the plants do not changein a replication ofthe experiment),

B,, the batch effect, and U;,, the unit effect, the observations have the

structure

(31) Xin = Bt G+ Bi; + Visite

Instead of reducing the X’s to the fully canonical form in terms of the

Z’s as before, it is convenient to carry out only the reduction to the Y’s

(such that Y;,; = VnX;.) and the first of the two transformations which
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take the Y’s into the Z’s. If the resulting variables are denoted by W,,,,

they satisfy W,,, = VbYYiWise = Vij, for k > 1 and

Wn Wa= Si  & VWh=sh FSSWhas
i=1 t=1j= ? J =

where S4, S%, and S? are given by (50). The joint density of the W’sis,
except for a constant,

(52) exp|— (Som — a — aye +SBvt)

53> Sta].
~ 262 <4 ;* 1k=2

2(o? + no%)

This showsclearly the different nature of the problem oftesting that
the plant effect is small,

Aig ="''=a,=0 or A’: Xa?/(o? + nor) < A,

and testing the corresponding hypothesis for the batch effect: o%/o2 < Ay.
The first of these is essentially a model I problem (linear hypothesis).
As before, unbiasedness implies that the conditional rejection probability
given S*? = 5s? is equal to a a.e. With S? fixed, the problem oftesting H
is a linear hypothesis, and the rejection region of the UMPinvariant
conditional test given S? = s® has the rejection region (48) with A, = 0.
The constant C, is again independent of S* and the test is UMP among
all tests that are both unbiased and invariant. A test with the same
property also exists for testing H’. Its rejection region is

S4l(a — 1)
S3/(b — la

where C” is determined from the noncentral F-distribution instead of
as before, the (central) F-distribution (see Problem 5).
On the other hand, the hypothesis o%/o? < Ayis essentially model II.

It is invariant under addition of ana constant to each of the
variables Wi, which leaves S¥_)>3_. Wi, and S?_,>°_,>"_.W2, as
maximal invariants, and hence reduces the structure to pure model II
with oneclassification. The test is then given by (49) as before. It is
both UMPinvariant and UMPunbiased.
A two-factor mixed model in which there is interaction between the

two factors will be considered in Example 11 below.

2C

9. THE MULTIVARIATE LINEAR HYPOTHESIS

The univariate linear models of Section | arise in the study ofthe effects
of various experimental conditions (factors) on a single characteristic
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such as yield, weight, length of life, blood pressure, etc. This character-
istic is assumed to be normally distributed with a mean which depends
on the various factors under investigation, and a variance whichis in-
dependent of these factors. We shall now consider the multivariate
analogue of this model, which is appropriate when one is concerned with
the effect of one or more factors simultaneously on several characteristics,
for example the effect of a change in the diet of dairy cows on both fat
content and quantity of milk.
The multivariate generalization of a real-valued normally distributed

random variable is a random vector (X,,°:-, X,) with the multivariate

normal probability density

(53) x exp [—322,27, — §,)(2; — §)

where the matrix A = (a,,) is positive definite, and || denotes its deter-
minant. The means and covariance matrix of the X’s are given by

(54) E(X;) = é,, E(X; — EMX; — E,) = 0;;5 (o;,;) = A-},

Consider now n independent multivariate normal vectors X, =

(Xy1°°' Xgp), SEI with means E(X,,;) = &,; and common

covariance matrix A-!. As in the univariate case, a multivariate linear

hypothesis is defined in terms of two linear subspaces II, and IIL, of
n-dimensional space having dimensions s<n and 0O<s—r<s. It
is assumed known that for all i= 1,---,p, the vectors (&1,,°°°, §ni)

lie in II,; the hypothesis to be tested specifies that they lie in Il. This

problem is reduced to canonical form by applying to each of the p vectors
(X,,°°*; Xn) the orthogonal transformation (1). If

p
X00 X

Xu X
nD

and the transformed variables are denoted by Xj, the transformation

may be written in matrix form as

X* = CX,

where C = (c,,) is an orthogonal matrix.
To obtain the joint distribution of the Xj; consider first the covariance

of any two of them, say Xf = Y%_1¢,,X,, and Xj = D51¢35X5j-
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Using the fact that the covariance of X,, and X,; is zero when y 4 6
and o,,; when y = 6, we have

aCov (X eis Xi) = x> Calas COV (X,;, X4j)

o,; When a=6. ij
= OC.. > C..Co.. =

"ane O when a+/f.

The rows of X* are therefore again independent multivariate normal
vectors with common covariance matrix A~. It follows as in the uni-
variate case that the vectors of meanssatisfy

Sap =c = EF =0 (i= 1,---, p)

under Q, and that the hypothesis becomes

A: &,=-++ = EX =O) (i =1,°-+,p).

Changing notation so that Y’s, U’s, and Z’s denote thefirst r, the next
s — rand the last m =n — s sample vectors, we therefore arrive at the

following canonical form. The vectors Y,, U3, Z, (@=1,°°°,r; B=
I,--+,s —r;y =1,-++,m) are independently distributed according to
p-variate normal distributions with common covariance matrix A7},
The meansof the Z’s are given to be zero, and the hypothesis H is to be
tested that the meansof the Y’s are zero. If

D
Yue Ny

Y,rl Yip

invariance and sufficiency will be shown below to reduce the observations
to the p x p matrices Y’Y and Z’Z. It will then be convenient to have
an expression ofthesestatistics in terms of the original observations.

As in the univariate case, let (£,,,---, &,,) and (é;, mts, é.) denote

the projection of the vector (Xj,;,°°°, X,;) on I[g and II,. Then

n

> (Xai ~ EAX,; — a)
a=1

is the inner product of two vectors, each of which is the difference between
a given vector andits projection on ITg. It follows that this quantity
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is unchanged under orthogonal transformations of the coordinate system

in which the variables are expressed. Now the transformation

Xi

Xni

may be interpreted as expressing the vector (X4;,°°°, X,;) in a new

coordinate system, the first s coordinate axes of which lie inme The
projection on II, of the transformed vector (Y};, °° + Yew Ohi ty Uspis

Lis * > Zmid IS (Niet *s Yr Uris U;_,i5 O *, 0), S0 that the

difference between the vector and its projection is 0, °2°50,21;,°°°, Zma)-

Theijth element of Z’Z is therefore given by

(55) L2nzJ = 2Nai ~~ EX; ~ Ey):

Analogously, the projection of the transformed vector (Yy;,°°°, Yris

Uris 0's U,» 0, ++, 0) on Tl, is (0,°°-, 0, Oy, + °°, Usma O,°-°,

0) and the difference between the orojections on II, and IT,, is therefore

(Y1°°°, Yp30,°°:,0,°°°,0). It follows that the sumDyi Vp; iS equal

to the inner product (for the ith and jth vector) of the difference of these
projections. On comparing this sum with the expression of the same
inner product in the original coordinate system,it is seen that the i, jth

element of Y’Y is given by

(56) >> Y5; Y5; = >(Ei — EME; — é,.).

10. REDUCTION BY INVARIANCE

The multivariate linear hypothesis, described in the preceding section
in canonical form, remains invariant under certain groups of transforma-
tions. To obtain maximal invariants under these groups we require,
in addition to some of the standard theorems concerning quadratic
forms, the following lemma.

Lemma 1. JfM is any m x p matrix, then
(i) M'Mis positive semidefinite,
(ii) the rank of M'M equals the rank of M,so that in particular M'M

is nonsingular if and only ifm = p and M is of rank p.
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Proof. (i) Consider the quadratic form Q = u'(M’M)u. If w= Mu,
then

QO=w'w= 0.

(ii) The sum of squares w’w is zero if and only if the vector w is zero,

and the result follows from the fact that the solutions u of the system of
equations Mu = 0 form a linear space of dimension p — p where p is
the rank of M.

Weshall now consider three groups under which the problem remains
invariant.

G,. Addition of an arbitrary constant d,; to each of the variables Us,

leaves the problem invariant, and this eliminates the U’s since the Y’s
and Z’s are maximal invariant underthis group.

G,. In the process of reducing the problem to canonical form it was
seen that an orthogonal transformation

Y*=CcCY

affects neither the independenceof the row vectors of Y nor the covariance
matrix of these vectors. The means of the Y*’s are zero if and only if
those of the Y’s are, and hence the problem remains invariant underthese
transformations.
The matrix Y’ Y of inner products of the columnvectors of Y is invariant

under G, since Y*’Y* = Y’C’CY= Y’Y. The matrix Y’Y will be
proved to be maximal invariant by showing that Y’Y = Y*’Y* implies
the existence of an orthogonal matrix C such that Y* = CY. Consider
first the case r = p. Withoutloss of generality the p columnvectors of
Y can be assumedto be linearly independentsince the exceptional set of
Y’s for which this does not hold has measure zero. The equality Y’ Y =
y*'Y* implies that C= Y*Y~! is orthogonal and that Y* = CY,
as was to be proved. Suppose next that r > p. There is again no loss
of generality in assuming the p columnvectors of to belinearly indepen-
dent. Since for any two p-dimensional subspaces of r-space there exists
an orthogonal transformation taking oneinto the other, it can be assumed
that (after a suitable orthogonal transformation) the p column vectors
of Y and Y* lie in the same p-space, and the problem is therefore reduced
to the case r= p. If finally r < p, the first r column vectors of Y can
be assumed to be linearly independent. Denoting the matrices formed
by the first r and last p — r columns of Y by Y, and Y, so that

Y=(Y, Y,),

one has Y{’ Yf = Y,Y, and by the previous argument there exists an
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orthogonal matrix B such that Y* = BY,. Fromthe relation Y{" Y7 =
Y, Y, it now follows that YF = (Y{"’)"!Y, Y. = BY,, and this completes
the proof.

Similarly the problem remains invariant under the orthogonal trans- —
formations

Z* = DZ,

which leave Z’Z as maximal invariant. Alternatively the reduction to
Z'Z can be argued from the fact that Z’Z together with the Y’s and U’s
form a set of sufficient statistics. In either case the problem under the
groups G, and G, reduces to the two matrices V = Y’Y and S = Z’Z.

G,. We now impose the restriction m = p (see Problem 24), which
assures that there are enough degrees of freedom to provide a reasonable
estimate of the covariance matrix, and consider the transformations

Y* = YB, Z* = ZB,

where B is any nonsingular p x p matrix. These transformations act
separately on each of the independent multivariate normal vectors
(Yo'**s Yep)» (Zy.°°*s Z,py), and clearly leave the problem invariant.

The induced transformation in the space of V= Y’Y and S = ZZ is

V* = B’VB, S* = BSB.

Since |B’(V — AS)B| = |BP|V — aS|, the roots of the determinantal

equation

(57) \V — aS| =0
are invariant under this group. To see that they are maximal invariant,
suppose that the equations |V — AS| = 0 and |V* — AS*| = 0 havethe
same roots. One may again without loss of generality restrict attention
to the case that p of the row vectors of Z are linearly independent,so that
the matrix Z has rank p, and that the sameis true of Z*. The matrix S
is then positive definite by Lemma | and it follows from the theory of
the simultaneous reduction to diagonal form of two quadratic formst
that there exists a nonsingular matrix B, such that

where A is a diagonal matrix whose elements are the roots of (57) and /
is the identity matrix. There also exists B, such that

BLV*B,= A,  BLS*B, = 1

and thus B = B,B,' transforms V into V* and S into S*.

+ See for example Anderson, An Introduction to Multivariate Statistical Analysis,
New York, John Wiley & Sons, 1958, Theorem 3 of Appendix 1.
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Of the roots of (57), which constitute a maximal set of invariants,
some may be zero. In fact, since these roots are the diagonal elements
of A, the number of nonzero roots is equal to the rank of A and hence
to the rank of V = B,~'AB,', which by Lemma1 is min (p, r). When
this number is > 1, a UMP invariant test does not exist. The case
p = | is that of a univariate linear hypothesis treated in Section 1. We
shall now consider the remaining possibility that r = 1.
When r = 1, the equation (57), and hence the equivalent equation

|VS-1 — Al] = 0,

has only one nonzero root. All coefficients of powers of A of degree
< p — | therefore vanish in the expression of the determinantas a poly-
nomial in A, and the equation becomes

(—A)? + W(—A)-1 = 0

where W is the sum of the diagonal elements (trace) of VS-!. If S#
denotes the i, jth element of S-! and the single Y-vector is (Y,,-°°°, Y,),
an easy computation showsthat

(58) W = >

A necessary and sufficient condition for a test to be invariant under
G,, Ge, and G;is therefore that it depends only on W.
The distribution of W depends only on the maximal invariant in the

parameter space; this is found to be

(59) y=
a

Qi;iM
e

M
s

j=1

where 7, = E(Y;), and the probability density of W is given by (Problems
28-30)

ye we (by?)*
(60) P,(v) =e ty ~, ki Cr (1 4 w)mt 1)+k °

wip-1l+k
 

This is the same as the density (6) of the test statistic in the univariate
case with r= p andn—s=m+1-—p. For any Wo < y, the ratio
Py)[Py() is an increasing function of w and it follows from the
Neyman-Pearson lemmathat the most powerful invariant test for testing
H:, =-+-+ = 1, =

0

rejects when

W

is too large or equivalently when

1—
(61) mt

Pe

wsc.

The quantity mW, which for p = 1 reduces to the square of Student’s ¢,
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is essentially Hotelling’s T?-statistic to which it specializes in Example 8
below. The constant C is determined from the fact that for y = 0 the
statistic (m + 1 — p)W/p has the F-distribution with p and m+ 1 — p
degrees of freedom. Asin the univariate case, there also exists a UMP
invariant test of the more general hypothesis H’: y* < y%, with rejection
region W > C’.

Since a UMPinvariant test does not exist when min (p, r) > 1, various

functions of the roots 4; of (57) have been proposedastest statistics for

this case, among them the sum ofthe roots, the maximum or minimum

root, and the product II?_,(1 + 4,)~!, which is the likelihood ratio

criterion. |

11, APPLICATIONS

The various univariate linear hypotheses with r = 1 such asthat specify-
ing the mean of a normaldistribution, the difference of the means of two
normal distributions with equal variance, the slope of a regression line,
etc., can now be extended to the multivariate case.

Example 8. Let (Xx, °°, Xep), * =1,°-++,”, be a sample from a multi-

variate normal distribution with mean (é,,---, )) and covariance matrix A

both unknown, and consider the problem of testing the hypothesis H: §, =
-++=&, =0. It is seen from Example 4 that

ze a

fu = DXeiin = X53 Sai = 2
p=1

By (55), the ijth element S;; of S = Z’Z is therefore

n

Si; = 2(Xai _— X.;) (Xe; — X.;)
O=

and by (56)
Y,Y; = nX.;X.;

With these expressions the test statistic is the quantity W of (58), and the test
is given by (61) with s = 1 and hence with m =n —s =n —1. Thestatistic
T? = (n — 1)W is known as Hotelling’s T?.

Example 9. Let (X{),---,X®), a =1,:°+,m, and (XP), ---, XP),
B =1,°--,Mm,, be independent samples from multivariate normal distributions

with commoncovariance matrix A~} and means(£1), - - -, &) and (é{2), - - -, €42)),
and consider the hypothesis H: £0 = &{?) fori =1,---,p. Then s = 2 and
it follows from Example 5 that for all « and f

ED = xP, EP = x”
and

m1 Ne _

EW) = &) = ( > x9+> x) /(nm, +m) = X,
a=1 B=1
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Hence
Ny Ng

Sis = 2(AD — XDA — XD) +SP — XDA — XO,
and the expression for Y; Y; can be simplified to

YY; =n(XD — XX; — X) + n(x— X)x® -— X).*
In addition to the above and other similar extensions of univariate

hypotheses, the test (61) can also be applied to certain problems which
are not themselves linear hypotheses as defined in Section 9, but which
reduceto this form through invariance considerations. Let (Xai) Xap)s
“a = 1,--++,n, be a sample from a multivariate normal distribution with
mean (,, +--+, €,) and covariance matrix A-}, and consider the hypothesis
that the vector (&,,---, é,,) lies in a (p — r)-dimensional subspace of
p-space. The observations can be transformed in the usual mannerto a
set of variables (Yy1,°°+, Yu Zy,°°'sZy), PD=rtl constituting a
sample from a p-variate normal distribution with mean (M155 Nes
{°° *, G) such that the hypothesis becomes H: y, =--: = 7, = 0.

This problem remainsinvariant undera groupoflinear transformations
for which the Y’s are a maximalset of Invariants, and in terms of the Y’s
the hypothesis reduces to that treated above in Example 8. There exists
therefore a UMPinvarianttest of H given by (61) with p=randm=
n—l. Before proving that the Z’s can be discarded, we shall give two
illustrations of this type of problem.
Example 10. Let (Xx1,° ++, Xxq. Xa**'s Xu,29))% = 1,°°+,n, bea sample

from a multivariate normal distribution, and consider the problem of testing
A: &,,; =§;fori=1,--°, q. This mightarise for example when X4,,° °°, Xeg
and Xy9.3,° °°, Xaoq are g measurements taken on the same subject at two
different periods after a certain treatment, or taken on theleft and right sides
of the subject. In terms of the variables

Yxi = Xoq45 — Xq;5 Lae = Xx; (x =1,---,n; i=1,---,q),

the hypothesis becomes 7; = E(Y,;) =0 for i =1,-: ‘+,qg, and the UMP
invariant test consists in applying the test of Example 8 to the Y’s with g in
place ofp.

Example 11. Let (Xai, °--, Xap), % = 1, °° +, 0, be a sample from a p-variate
normal distribution, and consider the problem of testing the hypothesis H:
¢) ='°* = &. In termsof thenew variables Y2; = Xa; — Xop(i = 1, °° .p-)
and Z, = Xx», the hypothesis again has thecanonical form 7, = --- = np_, = 0,
and the problem reduces to that of Example 8 with p — 1 in place ofp. Asan
application suppose that a shop has p machines for manufacturing a certain
product, the quality of which is measured by a random variable XY. In an
experiment, 1 workers are put on each of the machines, with_Y.ai being the result
of the ath worker on the ith machine. If the m workers are considered as a

* A test of A for the case that p > n, +n, — 21s discussed by Dempster, “A high
dimensional two-sample significance test,” Ann. Math. Stat., Vol. 29 (1958), pp-
995-1010.
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random sample from a large population, the vectors (Xx, ° °°, Yap) may be
assumed to be a sample from a p-variate normal distribution. Of the two
factors involved in this experiment one is fixed (machines) and one random

(workers), in the sense that a replication of the experiment would employ the
same machines but a new sample of workers. The hypothesis being tested is
that the fixed effect is absent. The test in this mixed model is quite different
from the corresponding modelI test where both effects are fixed, and which was

treated in Section 4.

Wereturn nowto the general case of a sample (Y,1,°°*, Yan Zar’ * *s Za)
a = 1,---,2, from a p-variate normal distribution with mean (7, °° *, 175

¢,,°°°, %) and the hypothesis 7, = --- = 7, = 0 which wasillustrated
by Examples 10 and 11. Interpreting the set ofpn variables for a moment
as the set of p= r-+/ vectors in n-space, (Y,,,°°°, Yn). i= ler,

and (Z,;,°°*,Zn;), J = 1,°°°,/, consider an orthogonal transformation
,

of n-space which transforms (x,,°°-,2,) into (xj,-+-,%,) such that

x| = Vné. Let this transformation be applied to each of the p observa-
tion vectors, and let the transforms of (Y,,,°°°, Y,,,;) and (Z,,,° °°, Zn;)

be denoted by (U,;,°--, U,,) and (V,;,°°°, Vj) respectively. Then in

particular U,; = Vn Y., Yi; = Vn Z.;, and the sets of variables

(Uys °° 5 Uae, Vaiss Vets & = 1,°°°,n, are independently distributed,

each according to an (r + /)-variate normal distribution with common

covariance matrix, and means E£(U,,) = Vn nH, E(V,;) = Jn ¢;, and

E(U,,;) = E(V,;) = 0 for « > 1.
Letting

aUs °** Us, Vor * Vax

U=| - and V=][ - - |,

On Un, Vor Vint

it is seen that the following two groups leave the problem invariant.
G,. Addition of an arbitrary constant c,; to each of the variables V,,,

JH)
G,. The transformations

V* = UB+ VC, U*=U

where B is any r X / and C any nonsingular / x / matrix.
Before applying the principle of invariance, it will be convenient to

reduce the problem bysufficiency.
The variables U,,, V;; together with the matrices of inner products

U'U, U’V, and V’V form set of sufficient statistics for the unknown

vector mean and covariance matrix, and by Problem 1 of Chapter 6 the
groups G, and G,also leave the problem invariantifit is first reduced to
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the sufficient statistics. A maximal set of invariants with respect to G,
are the U,, and the matrices U’U, U’V, and V’V. Weshall now prove
that under the group which G, induces onthissetofstatistics, the U,, and
U'U are maximalinvariant. This will complete the desired elimination of
the V’s and hence ofthe Z’s.
To prove this, it is necessary to show that for any given (n — 1) x /

matrix V** there exist B and C such that V* = UB + VCsatisfies

U'V* = U'V** and VV = VER Yee,

Geometrically, these equations state that there exist vectors (V5;°°°,V%,
i= 1,---,/, which lie in the space E spanned by the column vectors of
U and V, and which havea preassignedset of inner products among each
other and with the columnvectors of U.

Consider first the case/= 1. Ifr + 1 > —1, one can assumethat
V and the columnsof U span the (n — 1)-dimensional space, and one can
then take V*¥ = V**, Ifr +1 <n—1, V and the columns of U may
be assumed to be linearly independent. There then exists a rotation
about the space spanned by the columns of U as axis, which takes V**
into a vector lying in E, and this vector has the properties required of V*.
The proof is now completed by repeated application of the result for

this special case. It can be applied first to the vector (Vo1,°°°, Vi), to
determinethe first column of B and a numberc,, to which one may add
zeros to construct the first column of C. By adjoining the transformed
vector (Vz, +++, V;x,) to the columns of U and applying the result to the
vector (Vy9,--+, V2), one obtains a vector (Vox, ° °°, V5) whichlies in
the space spanned by (Vq,°--, Vn), (Yoo **, Vo) and the column
vectors of U, and which in addition has the preassigned inner products
with (V3\,°--, V,4), with the columns of U and withitself. This second
step determines the second column of B and two numbers C19, Cog to which
zeros can be added to provide the second column of C. Proceeding
inductively in this way, one obtains for C a triangular matrix with zeros
below the main diagonal, so that C is nonsingular. Since U, V, and V**
can be assumed to have maximalrank, it follows from Lemma 1 andthe
equation V*"V* = V**’V** that the rank of V* is also maximal, and
this completes the proof.

12. yx? TESTS: SIMPLE HYPOTHESIS AND
UNRESTRICTED ALTERNATIVES

UMPinvarianttests exist only for rather restricted classes of problems,
among which linear hypotheses are perhaps the most important. How-
ever, when the number of observations is large, there frequently exist
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tests which possess this property at least approximately. Although a
detailed treatment of large-sample theory is outside the scope of this
book, we shall indicate briefly the theory of two types of tests possessing
such properties: ? tests and likelihood ratio tests. In both cases the
approximate optimum property is a consequence of the asymptotic
equivalence of the problem with one oftesting a linear hypothesis. This
relationship will be sketched in the next section. As preparation we
discuss first a special class of y? problems.

It will be convenient to begin by considering the following modification

of the linear hypothesis model. Let Y= (¥,,---, Y,) have the multi-

variate normal probability density

 (62) vA exp [1S Yay— note, — n)|

with known covariance matrix A~!. The point of means 7 = (7, ° °°, %q)
is known to lie in a given s-dimensional linear space II, with s<q;
the hypothesis to be tested is that 7 lies in a given (s — r)-dimensional

linear subspace I1,, of Ig (F< 5). This problem is invariant under a
suitable group G of linear transformations, and there exists a UMP
invariant test with respect to G, given by the rejection region

(63) DLA;(Y; _ nY; — 7) — Lda;(y; —_ ANY; —_— 115)

= 2a,(7; _ nd; — 73) = C.

Here 7 is the point of IIg which is closest to the sample point y in the
metric defined by the quadratic form X2a,,«;x,, that is, which minimizes
the quantity X2a,(y; — n)(y; — 4;) for 7 in Ig. Similarly 7n is the

point in I,, minimizing this quantity.
When the hypothesis is true, the left-hand side of (63) has a y*-distri-

bution with r degrees of freedom, so that C is determined by

(64) {“£Odz =a.

When is not in II,the probability of rejection is*

(65) {°Pilz) dz

where p,(z) is the noncentral y? density [(86) of Problem 2] with r degrees

* Tables are given by Patnaik, “The non-central y? and F-distributions and their
applications,” Biometrika, Vol. 36 (1949), pp. 202-232; by Fix, “Tables of noncentral
y?,” Univ. Calif. Publ. Statistics, Vol. 1 (1949), pp. 15-19; and by Fix, Hodges, and
Lehmann,“Therestricted y? test,’ in Studies in Probability and Statistics Dedicated to

Harald Cramér, Almquist and Wiksell, Stockholm, 1959.
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of freedom and noncentrality parameter A? obtained by replacing y,, 7,, 7);
in (63) by their expectations, or equivalently, if (63) is considered as a
function of y, by replacing y by 7 throughout. This expression for the
poweris valid even when the assumed modelis notcorrect so that E(Y) =
n does not lie in II,. For the particular case that 7 €II,, the second
term in this expression for /? equals 0. A proof of the above statements
is obtained by reducing the problem to a linear hypothesis through a
suitable linear transformation. (See Problem 33).

Returning to the theory of y? tests, which deals with hypotheses
concerning multinomial distributions, consider n multinomialtrials with
m possible outcomes. If p = (p,,°--, p,) denotes the probabilities of
these outcomes and X; the numberoftrials resulting in the ith outcome,
the distribution of X = (X,,-°-, X,,) is

n!
(66) P(%,°°', 2) =>Pi i ‘pom (La; =n, Lp = 1).v!---ax,,!

The simplest y? problems are those of testing a- hypothesis H: p = 7
where 7 = (7,°°*, 7) is given, against the unrestricted alternatives
p#7. Asn-—> oo, the powerofthe tests to be considered will tend to one
against any fixed alternative.* In order to study the power function of
such tests for large n,it is of interest to consider a sequence ofalternatives
p’”tending to 7 as n— oo. If the rate of convergence is faster than
1/Vn, the powerof even the most powerful test will tend to the level of
significance x. The sequencesreflecting the aspects of the power that are
of greatest interest, and which are mostlikely to provide a useful approxi-
mation to the actual power forlarge but finite n, are the sequences for
which Vn(p\™ — 7) tends to a nonzero limit, so that

 

A.

(67) Pr = 7, ++ R,
n

Say, where /nR, tends to zero as n tends to infinity.
Let

(68) Y, = (X, — nz)/Vn.

Then >, Y; = 0, and the mean of Y, is zero under H and tends to A;
under the alternatives (67). The covariance matrix of the Y’s is

(69) O;= —7,7, if if; 0;,, = 7{1 — 7;)

when # is true, and tends to these values for the alternatives (67). As
n—> oo, the distribution of Y = (Y,,---, Y,,_;) tends to the multivariate
normaldistribution with means E(Y,) = 0 under H and E(Y,) = A,for

* A sequenceoftests with this property is called consistent.
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the sequence ofalternatives (67), and with covariance matrix (69) in both

cases.* The density of the limiting distribution is
m—1 9

m1 (y — A)? > wv, — 4)

(70) ——cexp -; 5 UTA (>
 

i=1 TT ;i 7

and the hypothesis to be tested becomes H: A, = --- =A,,_, = 0.

According to (63), the UMPinvariant test in this asymptotic model

rejects when
m—1 ,,2 l m—-1 2

2 Hi ('S » >C
7=1 7; Tm \j=1

and hence when
m — 2

t=1 TT;

where v, = X,/n and C is determined by (64) with r=m—1l. The

limiting powerof the test against the sequenceof alternatives (67) is given

by (65) with 22 = >”,A?/a;. This provides an approximation to the

powerfor fixed n and a particular alternative p if one identifies p with p\™

for this value of n. From (67) one finds approximately A; = V/n(p; — 7);

so that the noncentrality parameter becomes

(pi = 7)”
(72) R=n>

i=1 7;a

Example 12. Suppose the hypothesis is to be tested that certain events

(births, deaths, accidents) occur uniformly over a stated time interval such as

a day orayear. If the time interval is divided into m equal parts and p; denotes

the probability of an occurrence in the ith subinterval, the hypothesis becomes

H: p; =1/m fori =1,---,m. Thetest Statistic is then

where »; is the relative frequency of occurrence in the ith subinterval. The

approximate power of the test is given by (65) with r =m — 1 and #? =

mnd7_[pi — (/m)P.

13. y2 AND LIKELIHOOD RATIO TESTS

It is both a strength and a weakness of the y? test of the preceding

section that its asymptotic power depends only on the weighted sum of

squared deviations (72), not on the signs of these deviations and their

distribution over the different values of i. This is an advantage if no

* A proof assuming H is given for example by Cramer, Mathematical Methods of

Statistics, Princeton Univ. Press, 1946, Section 30.1. It carries over with only the

obvious changes to the case that H is nottrue.
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knowledge is available concerning the alternatives since the test then
provides equal protection against all alternatives that are equally distant
from H: p = zm in the metric (72). However, frequently one does know
the type of deviations to be expected if the hypothesis is not true, and in
such cases the test can be modified so as to increase its asymptotic power
against the alternatives of interest by concentratingit on thesealternatives.
To derive the modified test, suppose that a restricted class ofalternatives

to H has been defined

K: pes, pHa.

Let the surface Y have a parametric representation

Pi =f91,° °°; 9.) i= 1,°--;m

m7, = f(O9,- ++, 8°).

Suppose that the 6, are real-valued, that the derivatives Of,/00, exist and
are continuousat 9°, and that the Jacobian matrix (0/;/00,;) has rank s at
6°. If 6") is any sequence such that

(73) Vn(O— 6)> 6,
the limiting distribution of the variables (Y,,---, Y,,_,) of the preceding
section is normal with mean

_ of
(74) E(Y;) = A; —os00, 90

and covariance matrix (69). This is seen by expanding f,; about the point
6° and applyingthe limiting distribution (70). The problem of testing H
against all sequences of alternatives in K satisfying (73) is therefore
asymptotically equivalent to testing the hypothesis

A, =-::=A,,=0

in the family (70) against the alternatives K: (A,,---, A,,_,) € Ig where
IT, is the linear space formed by thea of points with coordinates

(75) A, =30,7*

Wenote for later use that for " fixed n, the totality of points

andlet

P=7t+s i=l,--',m
7:

with the A, satisfying (75), constitute the tangent plane to Y at 7, which
will be denoted by S.

Let (AyesAm) be the values minimizing >”,(y; — A)?/z, subject
to the conditions (Ai,° + Any) € Hg and A,, = —(A, +---+A,,_,).
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Then by (63), the asymptotically UMP invarianttest rejects H in favor of

K if

 

m m A m A 5

> ys > (y; — 4,)? > A;
t=1 _ i=1 — i=l > C,

TT. TT. TT.
a t a

or equivalently if

n > (v;,-a> (vy; - Bi) n > (B; — 7;)"
(16) TE a "e -
 

where the #, minimize X(v, — p,)2/7; subject to pe SY. The constant C

is determined by (64) with r= s. An asymptotically equivalent test,

which, however, frequently is more difficult to compute explicitly, is

obtained by letting the p; be the minimizing values subject to p € S

instead of p¢ Y. An approximate expression for the power of the test

against an alternative p is given by (65) with /? obtained from (76) by

substituting p; for v; when J, are considered as functionsof the »,.

Example 13. Supposethat in Example 12, where the hypothesis of a uniform

distribution is being tested, the alternatives of interest are those of a cyclic

movement, which may be represented at least approximately by a sine wave

Qn
1 Tn .

patte|” >, sin (u — 8) du, i=l,:-°°,m.

(m i-1)—

Here p is the amplitude and 6 the phasing of the cyclic disturbance. Putting

— = pcos, 7 = psin 8, we get

l
Pi = | A + a§ + 5,n)

where

a, =2msin=sinQi-1)—, 6; = —2msin — cos (2i — 1)-.
m m m m

The equations for p; define the surface ”, which in the present case is a plane

so that it coincides with /.
The quantities &, 4 minimizing X(y;, — pi)?/7; subject to p € # are

E = da,v;,/Uatzz;, 1 = Db;|ub?7;

with 7, = 1/m. Let m> 2. Using the fact that Xa; = Ub; = Xa,b; = 0 and

that
m m

S sink i —N2 = Y cov Qi-N2=F,
i=1 m i= 2a

the test becomes after some simplification

m 7 2 m T 2

2n|2 sin (27 — 1) | + 2n| 2” cos (2i — D7 >C

i= i=
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where the number of degrees of freedom of the left-hand side is s = 2. The
noncentrality parameter determining the approximate poweris

e 7 2 e 7 2 e 7

2 =nlémsin—] +n{ymsin—) = np*m? sin? —.
m m m

The x? tests discussed so far were for simple hypotheses. Consider
now the more general problem oftesting H: p € 7 against the alternatives

K:peES,péZ where J c FY and where Y and 7 have parametric
representations

S : D = fi(O,, mT, 0); TF: Dp; = f(H, ms OY, O15 ++, O).

The basis for a large-sample analysis of this problem is the fact that

for large n a sphere of radius p/Vn can be located which forsufficiently
large p contains the true point p with arbitrarily high probability.
Attention can therefore be restricted to sequences of points p\(™€ #

which tend to some fixed point 7¢7Z at the rate of 1/Vn. More
specifically, let 7; = (6, -- -, 6°) and let 6‘) be a sequencesatisfying (73).
Then the variables (Y,,°-°, Y,,-1) have a normal limiting distribution

with covariance matrix (69) and a vector of means given by (74). Let

Il, be defined as before, let II,, be the linear space

SOD;
T,,: A; = 6,——|,

j 4, 00; 90

and consider the problem oftesting that p‘”) is a sequence in H for which
0‘) satisfies (73) against all sequences in K satisfying this condition.
This is asymptotically equivalent to the problem,discussed at the beginning
of Section 12, of testing (A,,---, A,,_,) € I, in the family (70) whenitis

given that (A,,---,A,,_;) Elly. By (63), the rejection region for this

problem is

u(y; — A)?/7; — &(y; — A,P?/a, > C

where the A, and A, minimize X(y; — A,)?/7,; subject to A,, = —(A, +
-++ + A,_,) and (A,,---,A,,,) in Hg and II, respectively. In terms
of the original variables, the rejection region becomes

(77) nv; — p)*|7, — nUv; — p,)*/7;, > C.

Here the f,; and p; minimize

(78) L(y; — p,)*/7;

whenpis restricted to lie in the tangent plane at 7 to Y and7 respectively,
and the constant C is determined by (64).
The above solution of the problem depends on the point 7 which is

not given. A test which is asymptotically equivalent to (77) and does not
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depend on 7 is obtained if p; and p, are replaced by p; and p** which
minimize (78) for p restricted to Y and 7 instead of to their tangents,
and if further 7, is replaced in (77) and (78) by a suitable estimate, for
example by v;. This leads to the rejection region

(79) nX(v, — p¥*?P?/v, — nv, — p*)?/v, = nu(pF — p**)P?/v, > C

where the p** and p* minimize

(80) U(r; — pi)*/¥;

subject to pe ZY and pe & respectively, and where C is determined by
(64) as before. An approximation to the powerofthe test for fixed n and
a particular alternative p is given by (65) with A? obtained from (79) by
substituting p; for v; when the p* and p** are considered as functions of
the »,.T

A moregeneral large-sample approach, which unlike 7? is not tied to
the multinomial distribution, is based on the method of maximum

likelihood. We shall here indicate this theory only briefly, and in
particular shall state the main facts without the rather complex regularity
assumptions required for their validity.;

Let p,(x), 0 = (6, -- -, 0,) be a family of univariate probability densities
and consider the problem oftesting, on the basis of a (large) sample
X,,°°*, X,, the simple hypothesis H: 0, = Of, i= 1,-*-,r. Let 6 =

(6,,---, 6.) be the maximumlikelihood estimateof0, that is, the parameter

vector maximizing p,(z,)°° + p(x,). Then asymptotically as n— oo,
attention can be restricted to the 6, since they are “‘asymptotically suffi-
cient.”§ The powerof the tests to be considered will tend to one against
any fixed alternative, and the alternatives of interest similarly as in the 7?
case are sequences 6%”) satisfying

(81) Vn (65) — 6°)—>A,.

If Y,= V/n(6, — 6), the limiting distribution of Y,,---, Y, is the

multivariate normal distribution (62) with

0” log poX)
sc q.(9° = — —_—____

(82) aj; a,(0 ) E ( 06, 00;

+ For a proof of the above statements and a discussion of certain tests which are
asymptotically equivalent to (76) and sometimes easier to determine explicitly, see
Fix, Hodges, and Lehmann,loc.cit.

+ For a detailed treatment see Wald, “Tests of statistical hypotheses concerning
several parameters when the numberof observationsis large,” Trans. Am. Math. Soc.,

Vol. 54 (1943), pp. 426-483.
§ This was shown by Wald,Joc. cit.; for a definition of asymptotic sufficiency and

further results concerning this concept see LeCam, “On the asymptotic theory of
estimation and testing hypotheses,” Proc. Third Berkeley Symposium on Mathematical
Statistics and Probability, Univ. Calif. Press, 1956.

 6 = 60
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and with 7, = 0 under H and n, = A,for the alternatives Satisfying (81).
By (63), the UMPinvarianttest in this asymptotic model rejects when

(83) — iM
-

iM
-

a;n(6; — 0°)(6, — 69) > C.
v J

Under H, the left-handside has a limiting y2-distribution with r degrees of
freedom, while under the alternatives (81) the limiting distribution is
noncentral y* with noncentrality parameter

(84) 72 = — a,,n(O™ — 6)(6— 69,MO j a 7 J j

The approximate poweragainst a specific alternative 6 is therefore given
by (65), with A? obtained from (84) by substituting 6 for 0”,
The test (83) is asymptotically equivalent to the likelihood ratio test,

which rejects when

85 A = Pol) * + * Poo(%p) k.

°°) " p6(a) °° * PUFn) <
 

This is seen by expanding $”_, log p,o(x,) about >?_1 log pg(x,) and
using the fact that at 6 = 6 the derivatives a log p,(x,)/00; are zero.
Application of the law of large numbers shows that —2 log A,, differs
from the left-handside of (83) by a term tending to zero in probability as

_n-»>0o. In particular, the twostatistics therefore have the same limiting
distribution.
The extension of this method to composite hypothesesis quite analogous

to the corresponding extension in the y? case. Let 0 = (9,,°°:, 90.) and
A:6;= 6; fori=1,- -,r(r<s). If attentionis restricted to sequences
0) satisfying (81) for i= 1,---+,s and some arbitrary 6°,,,°--, 6°, the
asymptotic problem becomesthat of testing 7, =--- = 7, =0 against
unrestricted alternatives (7,,-°--,7,) for the distributions (62) with
a;; = a;,(0°) given by (82). Then 1; = Y, for all i, while n, = 0 for
i=1,-::,rand = Y; fori=r-+1,---,5, so that the UMP mvariant
test is given by (83). The coefficients a,; = a,,(0°) depend on 6°,,,°--, 6°
but as before an asymptotically equivalent test statistic is obtained by
replacing a;,(0°) by a,,(). Again, the statistic is also asymptotically
equivalent to minus twice the logarithm of the likelihood ratio, and the
test is therefore asymptotically equivalentto the likelihoodratio test.*

* The asymptotic theoryof likelihood ratio tests has been extended to more general
types of problems, including in particular the case ofrestricted classes of alternatives,
by Chernoff, ‘“‘On the distribution of the likelihood ratio,” Ann. Math. Stat., Vol. 25
(1954), pp. 573-578.
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14. PROBLEMS

Section 1

1. Expected sums of squares. The expected value of the numerator and
denominatorofthe statistic W* defined by (7) is

r r n

(> v2tr = 0 ++ > n? and z| > Y2/(n — 9| = 0%,
i=1 P= i=s+1

2. Noncentral x?-distribution. (i) If X is distributed as N(y, 1), the probability
density of V = X? is py(v) = DpoPAP)forii(v), where P,(y) = (y?/2)ke—iv"/k!
and where f3;,,, is the probability density of a x? variable with 2k + 1 degrees
of freedom.

(ii) Let Y,,---, Y, be independently normally distributed with unit variance
and means 7,,°°°,7,. Then U = XY?is distributed according to the noncentral

y?-distribution with r degrees of freedom and noncentrality parameter py? =
F403, which has probability density

(86) pe(u) =>PuvifrssulW

Here P,(y) and f,2,(u) have the same meaningasin (i) so that the distribution

is a mixture of 7?-distributions with Poisson weights.
[((i) This is seen from

pi(ve) = eHP+O(CVY? 4 e—¥Y*)/2V2a

by expanding the expression in parentheses into a power series, and using the

fact that I(2k) = 2-1T(A)T(k + 4)/V7.
(ii) Consider an orthogonal transformation to Z,,°-°,Z, such that Z, =

7; Y;/y. Then the Z’s are independent normal with unit variance and means

E(Z,) = y and E(Z;) = 0 fori > 1.]

3. Noncentral F- and beta-distribution. Let Y,,°-°:; Yr; Ysia.°°'s Yn be

independently normally distributed with common variance o? and means

E(Y;) = y,fi = I, . 1); E(Y;) =O =S+ I, ° +, n).

(i) The probability density of W = X7_, Y?/L7_,,, Y? is given by (6). The
distribution of the constant multiple (n —s)W/r of W is the noncentral

F-distribution.
(ii) The distribution of the statistic B = X$_,Y?/(X5_,Y? + DrosYP

is the noncentral beta-distribution, which has probability density

(87) 2Pegirrenn—9(b)

where

(88) Spq(d) = PtPpag pet, o<b<!
Dip) l@

is the probability density of the (central) beta-distribution.

4. (i) If p,(x) is the noncentral x’ or the noncentral F density, then the ratio

Pv(2)/py() is an increasing function of x for all yo < yy.
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(ii) Under the assumptions of Section 1, the hypothesis H’: y? < y?
(yy > 0 given) remains invariant under the transformations G,i = 1, 2, 3)
that were used to reduce H: y = 0, and there exists a UMPinvarianttest with
rejection region W > C’. The constant C’ is determined by Py, {W>Ch =a,
with the density of W given by(6).

(i) Let f(2) = Xiobxz"/Xyo 9a,2" where the constants a,, b, are >O and
ma,z* and Xb,z* converge for all z > 0, and suppose that b,/a;, < b;,4,/a,41
for all k. Then

>> (n — k)(a,b, — a,b,)z*t"-1
, kn

f (z) = oe) 2

k=0

is positive since (n — k)(a,b, — a,b,) > 0 fork <n, and hence fis increasing.]

 

5. Best average power. (i) Consider the general linear hypothesis H in the
canonical form given by (2) and (3) of Section 1, and for ANY Nriqs’ * 5 Nos O,
and p let S = S(7,43,° °°, Ns, 3 p) denote the sphere {(7,, °° +, 7,): Xf_4n?/o? =
p*}. If Bg(7, °°, 75,0) denotes the power of a test ¢ of H, then the test (9)
maximizes the average power

[ e0en "Ss Mey o) aa| [ a4

Ss Js

for every 7,44,° °°; Ns, 0, and p amongall unbiased (or similar) tests. Here dA
denotes the differential of area on the surface of the sphere.

(ii) The result (i) provides an alternative proof of the fact that the test (9)
is UMP amongall tests whose power function depends only on &_472/07.

(@) If U = 27, ¥?, V = X"_,,, Y2, unbiasedness (or similarity) implies that
the conditional probability of rejection given Y,,,,---, Y, and U+V equals
a a.e. Hence for any given 7,,4,°°-*, 7,6, and p, the average power is maxi-
mized by rejecting when the ratio of the average density to the density under H
is larger than a suitable constant C(y,44° °'s Ys) U& + v) and hence when

r

LUE Urs M5 Ny) = [ exp (> nan?) AA > CYruts °°) Yes U + 0)2

Aswill be indicated below, the function g depends on y,, °° *, y, only through wu
and is an increasing function of wu. Since under the hypothesis U/(U + V)
is independent of Y,ap°'', ¥, and U + V, it follows that the test is given by
(9). |

The exponent in the integral defining ¢ can be written as Lrny;|o2 = pVu
cos 8/o where # is the angle (0 < 6 <7) between (ny,°°°, n,) and (y,,° °°, y,).
Because of the symmetry of the sphere, this is unchangedif f is replaced by the
angle y between (7,, °° -, 7,) and an arbitrary fixed vector. This showsthat &
depends on the y’s only through uw; for fixed ,,---,7,, ¢ denote it by A(u).
Let S’ be the subset of Sin which O <y <7/2. Then

h(u) = [ [exp (pVu cos y/o) + exp (—pVu cos y/c)] dA,
JS’

which proves the desired result.]
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Section 2

6. Under the assumptions of Section 1 suppose that the means ; are given by

§

E, = > ai8;
j=1

where the constants a;; are known and the matrix A = (qa;;) has full rank, and
where the #; are unknown parameters. Let 6 = X$_,e;8; be a given linear
combination of the §;.

(i) If B; denotes the values of the 6; minimizing XUCX; — E,)? and if 6 =

X3_,e,8; = &%_,d;X;, the rejection region of the hypothesis H: 6 = 4, is

6 — Og//VEa?
VIX, — &)2/(n — 5)
 

 (89)

where the left-hand side under H has the distribution of the absolute value of

Student’s ¢ with n — s degrees of freedom.
(ii) The associated confidence intervals for 8 are

 
 

(90) 6 —kVSCX, — &)2/(n — 5) $0 <6 + kVIX, — §)2/(n — 5)

with k = CoVXd?. These intervals are uniformly most accurate invariant
under a.suitable group of transformations.

[G) Considerfirst the hypothesis 6 = 0 and suppose withoutloss of generality
that 6 = 8,; the general case can be reduced to this by makinga linear trans-
formation in the space of the f’s. If a,,-- +, a, denote the column vectors of

the matrix A which by assumption span ITy, then 5 = Ba, +--> + B,a, and
since € is in IIg also € = fa, +--+ + fa. The space ITI., defined by the
hypothesis 8; = 0 is spannedby the vectors a, -- -, a, and also by the row vectors

Co, ** *, ¢, of the matrix C of (1), while c, is orthogonal to IT... By (1), the vector

X is given by X = X7_,Y,c; and its projection ¢ on IT, therefore satisfies

é = ¥$_,Y,¢;. Equating the two expressions for E and taking the inner product

of both sides of this equation with c, gives Y, = BX"_a,c,Since the c’s are

an orthogonal set of unit vectors. This shows that Y, is proportional to py

andsince the variance of Y,is the sameasthat of the X’s that | Y,| = [8,|/V2a?.

The result for testing 6, = 0 now follows from (12) and (13). The test for

B, = B9 is obtained by making the transformation X* = X; — ayP2.

(ii) The invariance properties of the intervals (90) can again be discussed

without loss of generality by letting 6 be the parameter f,. In the canonical

form of Section 1, one then has E(Y,) = 7, = Af, with |A| = 1/ Vv aud? while

Ney **s Ns do not involve B,. The hypothesis P, = B° is therefore equivalent

to 7, = 79 with 7? = AB%. This is invariant (a) under addition of arbitrary

constants to Y,,°-:, Y,; (b) under the transformations Y* =—(Y,— 7%) + 78;

(c) under the scale changes Y¥ = cY, (i = 2,°°-, n), Y* — 79* =c(Y, — 79).

The confidence intervals for 9 = 8, are then uniformly most accurate invariant

under the group obtained from (a), (b), and (c) by varying 7.]
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7. Let X;(j = 1,°--, m,;) and Y,,(k = 1,---,2,;) be independently normally
distributed with common variance o? and means E(X,;) = &; and E(Y,,;) =
$; + 4. Then the UMP invariant test of H: A =0 is given by (89) with
6 =A,0, =0

 

 
 

mn; NS wi -SX) DHFDn -9
6 _ 2 i é _ j=1 <

mn; i

25,
where N; ='m,; + nj.

8. Let X4,-- +, X, be independently normally distributed with known variance
o2 and means E(X;) = &;, and consider any linear hypothesis with s < n (instead
of s <n which is required when the variance is unknown). This remains
invariant under a subgroup of that employed when the variance was unknown,
and the UMPinvarianttest has rejection region

(91) d(x, — 6) — Lx, — &)? = UE, - 492 > Co?
with C determined by

(92) | “i(y) dy = «.
C

Section 3

9. If the variables X;;(j = 1,---,2,;;i = 1,-- +, s) are independently distributed
as N(u;, 67), then

E{xn,(X;. _— X..)*] = (s - 1)c? + mn,(ue; — hu.)

E(XXCX;; — X;.)?] = (n — s)o?.

10. Let Z,,:--,2Z, be independently distributed as N(é;, a2), i =1,--+, 5
where the a; are known constants.

(i) With respect to a suitable group of linear transformations there exists a
UMP invariant test of H: ¢; =--- = ¢, given by the rejection region (21).

(ii) The power of this test is the integral from C to o of the noncentral ,?
density with s — 1 degrees of freedom and noncentrality parameter /? obtained
by substituting ¢; for Z; in the left-hand side of (21).

11. (i) If X has a Poisson distribution with mean E(X) = 7, then for large

A the statistic VX is approximately distributed as N(V4, 3).
(ii) If X has the binomial distribution b(p, n), then for large n the quantity

arc sin VX/n is approximately distributed as N(arc sin Vp, 1/4n).*

Section 5

12. The linear hypothesis test of the hypothesis of no interaction in a two-way
classification with mobservationsper cell is given by (30).

* A detailed discussion ofthese transformationsis given by Eisenhart in Chapter 16
of Selected Techniques of Statistical Analysis, New York, McGraw-Hill’ Book Co.,
1947. Certain refinements are discussed by Anscombe,“Transformations of Poisson,
binomial and negative binomial data,” Biometrika, Vol. 35 (1948), pp. 246-254, and by
Freeman and Tukey, “Transformations related to the angular and the square root,”
Ann. Math. Stat., Vol. 21 (1950), pp. 607-611.
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13. Let X, denote a random variable distributed as noncentral x? with f

degrees of freedom and noncentrality parameter 4°. Then X7is stochastically

larger than X, if 4 <1’.
[It is enough to show that if Y is distributed as N(0, 1), then (Y + 4’)* is

stochastically larger than (Y + A)?. The equivalent fact that for any z > 0,

PY +2 <2 SPY +4 <4,
is an immediate consequence of the shape of the normal density function.

An alternative proof is obtained by combining Problem 4 with Lemma 2 of

Chapter 3.

14. Let X46 =1,-°,4; fH,6; k=l,---, m) be independently

normally distributed with commonvariance o* and mean

E(Xin) =e +a + By try (a; = UB; = Ly, = 0).

Determine the linear hypothesis test for testing H: a, = ++: = %q = 0.

15. In the three-factor situation of the preceding problem, suppose that

a =b =m. The hypothesis H can then be tested on the basis of m* obser-

vations as follows. At each pair of levels (i, 7) of the first two factors one

observation is taken, to which we refer as being in the ith row and the jth

column. If the levels of the third factor are chosen in such a way that each of

them occurs once and only once in each row and column, the experimental

design is a Latin square. The m? observations are denoted by Xj5(x) where the

third subscript indicates the level of the third factor when the first two are at

levels i and j. It is assumed that E(Xjj (e)) = ij) = @ + % + By + Yin with

De, = xB; = Ly, = 0.

(i) The parameters are determined from the &’s through the equations

Eu) = Mtoe, 850) =H +B, Sey =H Ye Se) =

(Summation over j with i being held fixed automatically causes summation also

over k.)
(ii) The least squares estimates of the parameters may be obtained from the

identity

>> [255(K) _— Essel = my[z;.(.) —_ Lo.(0) _ a]? + mY[X.,(.) _ U.o(+) _ BF

t J

 

+ mXUX.. (7) — Xi.) V1} + m[2..(.) —_ ul

+ 22 [sey — Vince) — Vag(y — Ve(ey #20.P
2 :

(iii) For testing the hypothesis H: «, =+:* =%m =0, the test statistic

W* of (15) is
mXX;...) _ X47

DIULX5%) —_ Ze(*) X.j(+) - X..(H) + 2X...)/(m — 2)

The degrees of freedom are m — 1 for the numerator and (m — 1)(m — 2)

for the denominator, and the noncentrality parameter is y? = mlc?/o”.

Section 6

16. In a regression situation, suppose that the observed values X; and Y;

of the independent and dependent variable differ from certain true values Xj

and Y; by errors U;, V; which are independently normally distributed with zero
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means and variances of, andoj. Thetrue values are assumedtosatisfy a linear
relation: Y; =« + BXj. However, the variables which are being controlled,
and which are therefore constants, are the X; rather than the X/. Writing
x; for X;, we have x; = Xj + U;, Y; = Yj + V;, and hence Y; = « + Bx; +
W;, where W; = V; — BU;. The results of Section 6 can now be applied to
test that 6 or « + xy have a specified value.

17. Let Xj,°--, Xm; Yy,°++, Y, be independently normally distributed with
commonvariance o? and means E(X;) = « + B(u; — uv), E( Y;) =v + dv; — v)
where the u’s and v’s are known numbers. Determine the UMPinvarianttests
of the linear hypotheses H: B =O and H: « =y, B =.

18. Let X,,°--, X, be independently normally distributed with common
variance o? and means &, = « + fr; + yt? where the f; are known. If the
coefficient vectors (rf, ---, ti), k = 0, 1, 2, are linearly independent, the para-
meter space IIg has dimension s = 3, and theleast squares estimates &, B,
are the unique solutions of the system of equations

amity + Burkt + york? = DX, (k =0,1, 2).

The solutions are linear functions of the X’s and if y = Xc;X.i, the hypothesis
y = 0 is rejected when

PIVde? .
VEX, — & — Bt; — $12)?/(n — 3)
 Co. 

Section 7

19. (i) The test (43) of H: A < A, is UMP unbiased.
(ii) Determine the UMP unbiased test of H: A =A, and the associated

uniformly most accurate unbiased confidence sets for A.

20. In the model (41), the correlation coefficient p between two observations
X;;, X;, belonging to the sameclass, the so-called intraclass correlation coefficient,
is given by p = o%,/(o%, + 0”),

Section 8

21. The tests (48) and (49) are UMP unbiased.

22. If X;; is given by (41) but the numbern; of observations per batch is not

constant, obtain a canonical form correspondingto (42) byletting Y,, = Vvn;X,ie

Note that the set of sufficient statistics has more components than when 7,is
constant.

23. The general nested classification with a constant numberof observations

per cell, under model II has the structure

(93) Xijg... = BM +A; + By + Cin t+ + Uijg... ,

f=1,---,a;f=1,°°°,6; K=1,-+,c3 ce.

(i) This can be reduced to a canonical form generalizing (47).
(ii) There exist UMP unbiasedtests of the hypotheses

Hy: 04[(cd +++ 0% + d---o?, +--.- + 0?) <A,,

Hp: 0}/(d-+-o2 +-+- +07) S Ay.
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Section 10

24. (i) If m < p, the matrix S, and hence the matrix S/m which is an unbiased
estimate of the unknown covariance matrix of the underlying p-variate distri-
bution, is singular. If m = p, it is nonsingular with probability 1.

(ii) Ifr + m Sp,the test p(y, u, z) = « is the only test thatis invariant under

the groups G, and G; of Section 10.
[(ii) The U’s are eliminated through G,. Since the r + m row vectors of the

matrices Y and Z may be assumedto be linearly independent, any suchset of
vectors can be transformed into any other through an elementof G3.]

25. (i) If p<r+m, and V=Y’Y, S=Z’Z, the p X p matrix V+S

is nonsingular with probability 1, and the characteristic roots of the equation

(94) lV —-A’V + S)| =0

constitute a maximalset of invariants under G,, Gs, and G3.
(ii) Of the roots of (94), p — min (r, p) are zero and p — min (m, p) are equal

to one. There are no other constant roots so that the numberof variable roots,

which constitute a maximal invariant set, is min(r, p) + min(m, p) — p.

[The multiplicity of the root 4 = 1 is p minus the rank of S, and hence
p —min(m, p). Equation (94) cannot hold for any constant 4 40,1 for
almost all V, S since for any 4. + 0, V + «S is nonsingular with probability 1.]

26. (i) If Aand Barek x mand ™x k matrices respectively, then the product

matrices AB and BA have the same nonzero characteristic roots.

(ii) This provides an alternative derivation of the fact that W defined by (58)

is the only nonzero characteristic root of the determinantal equation (57).
((i) If x is a nonzero solution of the equation ABxr = Ax with 4 # 0, then

y = Bx isa nonzero solution of BAy = dAy.]

27. In the case r = 1, the statistic W given by (58) is maximalinvariant under
the group induced by G, and Gz;onthestatistics Y;, Ua Mi =1,---,p; « =1,

--ss —l) and S =Z’Z.
[There exists a nonsingular matrix B such that B’SB = I and suchthat only

the first coordinate of YB is nonzero. This is seen byfirst finding B, such that
B,SB, =I and then an orthogonal Q such that only the first coordinate of
YB,Q is nonzero.]

28. Let Zx,;(a =1,°:°,m; i=1,---,p) be independently distributed as
N(O, 1) and let Q = Q(Y) be an orthogonal m x m matrix depending on a

random variable Y that is independent of the Z’s. If ZX, is defined by

CAF + Zn) = (Z\;°° “LZ£j)Q’,

then the Z;, are independently distributed as N(O, 1) and are independentof Y.
[For each y, the conditional distribution of the (Z,,;°-+-Zm,;)Q’(y), given

Y = y,is as Stated.]

29. LetZbethe m x p matrix (Z,,;) wherep < mandthe Z,, are independently
distributed as N(0, 1), let S = Z’Z, andlet S, be the matrix obtained by omitting

the last row and column of S. Then the ratio of determinants |S|/|S,| has a
x°-distribution with m — p + 1 degrees of freedom.
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[Let Q be an orthogonal matrix (dependent on Zj,,°°-,Zm1) such that
(211° °° Z,,)Q’ = (RO--- 0), where R? =D"_,Z2,. Then

R 0::-: 0 R Z5°°° 2%

Zi “ot LZiaby f0 . .

S=Z'Q'0Z =

* ar * * ... *
Lp Zip 0 Zm9 Zmp

where the Z% denote the transforms under Q. Thefirst of the matrices on the
right-handside is equal to the product

I} OF

oz)air) (
where Z* is the (m — 1) x (p — 1) matrix with elements Z*, (2 = 2,---, m:
i =2,---,p), is the(p — 1) x (p — 1) identity matrix, Z* is the column vector
(Z;3°-+Z,3)’, and O indicates a row or column of zeros. It follows that |S|
is equal to R* multiplied by the determinant of Z*’Z*. Since S, is the product
of the m x (p — 1) matrix obtained by omitting the last column ofZ multiplied
on the left by the transpose of this m x (p — 1) matrix, S;| is equal to R?
multiplied by the determinant of the matrix obtained by omitting the last row
and column of Z*’Z*. The ratio |S{/|S,| has therefore been reduced to the
corresponding ratio in terms of the Z{,; with m and p replaced by m — 1 and
p — 1, and by induction the problem is seen to be unchanged if m and p are
replaced by m —k and p —k for any k <p. In particular, |$|/|S,| can be
evaluated under the assumption that mandp have been replaced by m —(p — 1)
and p—(p—1)=1. In this case, the matrix Z’ is a row matrix (Zi *°
Zm—p+ia); the determinantofS is [S| = X37?1Z2, which has a y2,_,,,-distri-
bution; and since S is a1 x 1 matrix, |S,| is replaced by 1.]

30. The statistic W = YS-1Y’defined by (58), where Y is a row vector, has
the distribution of a ratio, of which the numerator and denominatorare distri-
buted independently, as noncentral y? with noncentrality parameter y? and P
degrees of freedom and as central y? with m+1—p degrees of freedom

 

 

respectively.
[Since the distribution of W is unchanged if the same nonsingular trans-

formation is applied to (Y,,---, Y,,) and each of the m vectors (Lyi, °* 5 Zap)s
the commoncovariance matrix of these vectors can be assumedto be the identity
matrix. Let Q be an orthogonal matrix (depending on the Y’s) such that
(Y,--: ¥,)Q = (00---7) where T? = > Y?, Since QQ’is the identity matrix
one has

W = (YQVQ’S“*Q)Q'Y’) = (0--- OT)\(Q’S“1Q)(0 - - - OT)’.
Hence W is the product of T?, which has a noncentral y?-distribution with P
degrees of freedom and noncentrality parameter y*, and the element which lies
in the pth row and the pth column of the matrix Q’S-! Q = (O’SQ)=
(O’Z’ZQ)"}. By Problems 28 and 29, this matrix is distributed independently
of the Y’s and the reciprocal of the element in question is distributed as
dm—p+1]
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31. Let (X,,°°°, X,,)) ¥ = 1,°°°, N, be a sample from a p-variate normal

distribution with unknown covariance matrix and mean E(X,,) = %; +

Bu, —u) where the u’s are known numbers. The hypothesis H: 6, =
-++ = 8, =0 isa multivariate linear hypothesis with r= 1, s = 2. One has
& = 6, =X, 8; = Duy —uyX%, — X.)/tya1u, — 4)’, and the test
statistic W is given by (58) with

Si; = LX, — a, —™ B(u, — u.)\[X,; a a; —_ B(uty — u.)]

and _.
Y,Y; = BB2u(u, _ u.)?.

32. Let X¥ =(X,,), (= 1,°°5p3 « =1,°°°,N, be a sample from a p-

variate normaldistribution, let g < p, max (q,p —q) = N, and consider the

hypothesis H that (Xj,,°--, X1,) is independent of (X1,41,°°* X\,), that is,

that the covariances o,;; = E(X,; — &;)(X%qj; — &) are zero for all i = 4, j > 4.

The problem oftesting H remains invariant under the transformations X%; =

X,; + b,and X* = XC where Cis any nonsingularp x p matrix of the structure

c=("
0 Cr

with C,, and Cy, being g x q and (p — q) x (p — 9)respectively.

(i) A set of maximal invariants under the induced transformations in the space

of the sufficient statistics X.,; and the matrix S, which we partition as

( i.
S =

Sor Soo

are the g roots of the equation

|S12539'Se1 — AS,| = 0.

(ii) In the case g = 1, a maximalinvariantis the statistic R’ = S9599'So1/S115

which is the square of the multiple correlation coefficient between X, and

(Xio,°°+, X,,). The distribution of R® depends only on the square p* of the

population multiple correlation coefficient, which is obtained from R® by

replacing the elements of S by their expected valueso;;.

(iii) Using the fact that the distribution of R* has the density

(1 — R=P-D(RYVO—V-AL — pAS GHYMRYPHWN = 1) +A
PEW — DITEO — pri So ATPDA

and that the hypothesis H for g = 1 is equivalent to p = 0, show that the UMP

invariant test rejects this hypothesis when R? > Co.

(iv) When p = 0,thestatistic :

_R_N=P
1—-R® p-1

 

 

has the F-distribution with p — 1 and N — p degrees of freedom.

+ See for example Anderson, An Introduction to Multivariate Statistical Analysis

New York, John Wiley & Sons, 1958.
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[() Suppose that |S,2532152; — 4S,,| = 0 and |S4S4-1S% — 1S*| = 0 have
the same roots. Then there exist matrices B and C such that BS,,B’ =I =
CSAC’ and BS,.S35!S2,B’ = CSS, 1S*, = A where Ais the diagonal matrix
whosediagonalelementsarethe roots 4. Since S;1 and S¥~—!are positive definite
there exist nonsingular matrices E and E* such that S>! = EE’ and S*~} =
E*E*’, (This can be seen by reducing E to diagonal form throughan orthogonal
transformation.) Then

(BS,,E)(BS,,E) = (CS*,E*)(CS*,E*)’

and it follows from the argument given in Section 10 in connection with G,
that there exists an orthogonal matrix Q such that BS,.EQ = CS,%E*, so that
Ch = C1B and Coo = EQE*"1]

Section 12

33. The problem of testing the hypothesis 1 € IT,, when the distribution of Y
is given by (62) with » € IIg remains invariant under a suitable group oflinear
transformations, and with respect to this group the test (63) is UMPinvariant.
The probability of rejecting with this test is given by (65) and (66)for all points
(iy, 7", 9) ).

[There exists a nonsingular linear transformation Z =C Y for which C’A—1C
is the identity matrix, and in terms ofZ the problem reducesto a linear hypothesis
with knownvariance.]

Section 13

34. Let the equation of the tangent /ata be p; = 7,1 + a6 +--+: +4,,€,)
and suppose that the vectors (a,,,°--,a;,) are orthogonal in the sense that
2a,4;,7; =Oforallk #1.

(i) If (&,---,&) minimizes Lv; — p,)*/7; subject to pe ¥, then é, =
2,30[Xap7.

(ii) The test statistic (76) for testing H: p = 7 reducesto

35. Independence in contingency tables. Consider a twofold classification of
n elements into classes A4,,:--, A, and B,,--., B, respectively. If n;; is the
number of elements belonging to both A, and B,, the likelihood ratio test for
testing the hypothesis H that the 4 and classifications are independent rejects
when

[DateTer
A= j

II nyt
a,j

is too large, where n,. = 4,n,;/b, n.; = X4n;;/a. For large n, the distribution of
—2 log A under is 7? with (r — 1)(s — 1) degrees of freedom.
[The likelihood of a multinomial sample 2,,°--+,2%, with m classes is pro-

portional to pjt--- p,m which has the maximum value (x,/n)"! - - + (a_/n)®m,
This can be seen for example by considering numbers of which 2; are equalto
p;/«; for i = 1,---, mand noting that their geometric meanis less than or equal
to their arithmetic mean. The result follows by applying this result to the
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multinomial situations with probabilities p,(i = 1,---,a; j= 1,°--:, 5) which

constitute 2, and with p,;; = p;p;}(up,; = up; = 1) which constitute «.]
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CHAPTER 8

The Minimax Principle

1. TESTS WITH GUARANTEED POWER

The criteria discussed so far, unbiasedness and invariance, suffer from

the disadvantage of being applicable, or leading to optimum solutions,

only in rather restricted classes of problems. We shall therefore turn

now to an alternative approach, which potentially is of much wider

applicability. Unfortunately, its application to specific problems is in
general not easy, and has so far been carried out successfully mainly in
cases in which there exists a UMPinvarianttest.

One of the important considerations in planning an experimentis the

number of observations required to insure that the resulting statistical

procedure will have the desired precision or sensitivity. For problems

of hypothesis testing this means that the probabilities of the two kinds of
errors should not exceed certain preassigned bounds, say « and | — 8,
so that the tests mustsatisfy the conditions

E@QX)<a for @€Qy

(1)
Ey(X)>B for 0€Qx.

If the power function E,y(X) is continuous and if « < f, (1) cannot hold

whenthe sets Q,, and Q, are contiguous. This mathematical difficulty

correspondsin part to the fact that the division of the parameter values 0

into the classes Q,, and Q, for which the two different decisions are

appropriate is frequently not sharp. Between the values for which one

or the other of the decisions is clearly correct there may lie others for
which the relative advantages and disadvantages of acceptance and

rejection are approximately in balance. Accordingly we shall assume

that Q is partitioned into three sets

OQ = Oy + Q, + Qx,
of which Q, designates the indifference zone, and Q;, the class of parameter

values differing so widely from those postulated by the hypothesis that

326
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false acceptance of H is a serious error, which should occur with pro-
bability at most 1 — f.
To see how the sample size is determinedin this situation, supposethat

X1, Xe, °** constitute the sequence of available random variables, and for
a momentlet n be fixed and let ¥ = (X,---, X,). In the usual appli-
cational situations (for a more precise statement, see Problem 1) there
exists a test y, which maximizes

(2) inf E,p(X)
QR

amongall level « tests based on X. Let 8, = inf, Eop(X) and suppose
that for sufficiently large n there exists a test satisfying (1).* The desired
sample size, which is the smallest value of n for which 8, > 8, is then
obtained by trial and error. This requires the ability of determining for
each fixed 7 the test that maximizes (2) subject to

(3) E,g(X) < a for 6 E Oy.

A method for determining a test with this maximin property (of maxi-
mizing the minimum powerover Q,,) is obtained by generalizing Theorem
7 of Chapter 3. It will be convenientin this discussion to make a change
of notation, and to denote by w and w’the subsets of Q previously denoted
by Q7, and Q,. Let P = {Py, 6 ew Uw’} be a family of probability
distributions over a sample space (2, W) with densities py = dP,/du
with respect to a o-finite measure yu, and suppose that the densities Po)
consideredas functions ofthe two variables (x, 0) are measurable (o/ x B)
and ( x Z’) where # and #are given o-fields over w and w’. Under
these assumptions, the following theorem gives conditions under which a
solution of a suitable Bayes problem provides a test with the required
properties.

Theorem 1. For any distributions 4 and 2’ over B and B’, let P14 be the
most powerful test for testing

hte) =| paz) d4(0)
at level « against

n'a) =|pula) di’)
and let B,, be its power against the alternative h’. If there exist 4 and WV
suth that sup Exp;AX)<

OQ infEoX) = Baar

* Conditions under which this is the case are given by Berger, “On uniformly
consistent tests,’ Ann. Math. Stat., Vol. 22 (1951), pp. 289-293.
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then
(i) gy. ; maximizes inf,,Ep(X) among all level « tests of the hypothesis

H: 0 €w and is the unique test with this property if it is the unique most

powerful level « test for testing h against h’.

(ii) The pair of distributions A, A’ is least favorable in the sense that for

any other pair v, v’ we have
Bax < By,yrs

Proof. (i) If y* is any otherlevel « test of H,it is also of level a for

testing the simple hypothesis that the density of X is A, and the powerof

g* against h’ therefore cannot exceed Bia. It follows that

inf Eyp*(X) <| Eqp*(X) di'(8) < Baw = inf EePaalX),

and the second inequality is strict if p,is unique.

(ii) Let », v’ be any other distributions over (a, B) and (w’, Z’), and let

so =| pi); 8'@ =|pd WO.
Since both y,, and @,,, are level « tests of the hypothesis that g(x)is the

density of X, it follows that

Bey >|pag(2) due) > inf EupAX) = Baa

Corollary 1. Let 4, 4’ be two probability distributions and C a constant

such that

1 if | p(x) d2'(8) > C{ po) da(8)

 m@a=ty it | peaawo=c[_poey aie

 0 if { pole) di’) < C| pox) dA(6)

is a size « testfor testing that the density ofX is | p(x) da(@) and such that

(6) A(c9) = 4'(w) = 1

where

Wy = {0:0 ew and Ey,,(X) = sp EyGiAX)}

Wo = {0: 0 E (’ and EuPiaX) = infEvaa(X)}-

Then the conclusions of Theorem | hold.
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Proof. Ifh, h’, and 8,,are defined as in Theorem 1, the assumptions

imply that p,, is a most powerful level « test for testing A against h’, that

sup Exp;.(X) = [ Ep;A(X) di(0) = a,
and that

inf ExpX) = | Eup) dO) = Bay.
Condition (4) is thus satisfied and Theorem 1 applies.
Suppose that the sets 0,,, Q,, and 2, are defined in terms of a non-

negative function d, which is a measure of the distance of 6 from H, by

Q7, = (0: d(6) = 0}; OQ, = {(0:0< d(0) <A}; Ox = {6:d(0)> A}.

Suppose also that the power function of any test is continuous in 0.
In the limit as A = 0, there is no indifference zone. Then Q, becomes
the set (0: d(@) > 0} and the infimum of A() over Q;, is < « for anylevel
a test. This infimum is therefore maximized by any test satisfying
B(6) = « for all 6 € QO,that is, by any unbiasedtest, so that unbiasedness

is seen to be a limiting form of the maximin criterion. A more useful
limiting form,since it will typically lead to a uniquetest, is given by the
following definition. A test go is said to maximize the minimum power
locally* if, given any other test g, there exists A, such that

(7) inf 8,(9) = inf 8,(6) forall O<A<A,

where wa is the set of 6’s for which d(0) > A.

2. EXAMPLES

In Chapter 3 it was shownfor a family of probability densities depending
on a real parameter 6 that a UMPtestexists for testing H: 6 < 6, against
0 > 6provided forall 6 < 6’ the ratio po,(x)/p,(x) is a monotone function
of some real-valued statistic. This assumption, although satisfied for a
one-parameter exponential family, is quite restrictive, and a UMPtest of
Hf will in fact exist only rarely. A more general approachis furnished by
the formulation of the preceding section. If the indifference zone is the
set of 6’s with 09 < 9 < 6,, the problem becomesthat of maximizing the
minimum power over the class of alternatives w’:6 > 6,. Under
appropriate assumptions, one would expect the least favorable distri-
butions 4 and 4’ of Theorem | toassign probability 1 to the points 6, and
6,, and hence the maximin test to be given by the rejection region

* For a local optimum property not involving the choice of a distance function d see
Problem 4.
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Po,{=)/po,(=) > C. The following lemma gives sufficient conditions for

this to be the case.

Lemma 1. Let X,,°::, X, be identically and independently distributed
with probability density f(z) where 0 and x are real-valued, and suppose
that for any 0 <6"the ratio f,(x){fo(x) is a nondecreasing function of «.
Thenthe level « test yp ofH which maximizes the minimumpowerover w’is

given by
Ll if r(ay,c°+,2,) > C

(8) P(X, °°", t,) = |’ if r(z,°°°,",)=C

Lo if r(%,°°°,%,) <C

where r(x, °° *, ©) = fo,(%1) ° - fo(«,)].fo(1) * + * fo,(&n) and where C and

y are determined by

(9) Ey@(Xy*+) Xp) = &.
Proof. The function g(x,---,2x,) is nondecreasing in each of its

arguments, so that by Lemma2 of Chapter 3

E,WX, my ey) < EyWX, a) X,)

when 0 < 6’. Hence the power function of g is monotone and @ is a

level « test. Since gp = y,,, where A and /’ are the distributions assigning

probability 1 to the points 6, and6,, condition (4)is satisfied, which proves

the desired result as well as the fact that the pair of distributions(A, 2’)is

least favorable.

Example 1. Let 6 be a location parameter so that fo(x) = g(x — 9), and

suppose for simplicity that g(x) > 0 for all x. We will show that a necessary

and sufficient condition for f6(x) to have monotone likelihood ratio in x is that

—logg is convex. The condition of monotonelikelihoodratio in z,

&(x — 6’) — 8e — 0’)

g(x — 9) g(x’ — 0)

is equivalent to

log g(x’ — 6) + logg(x — 6’) S logg(@ — 9) + log g(x’ — 8’).

Since x —0 =2(x — 0’) + (1 — (@’ — 9) and 2’ —W =(1 — “(x -—6) +

t(x’ — 6) where t = (x’ — x)/(x’ — x + 0’ — 6), a sufficient condition for this

to hold is that the function —logg be convex. To see that this condition is

also necessary, let a < b be any real numbers andlet x — 6’ =a, x’ —6 = 6,

and «’ — 0’ =x —86. Thenz —0= k(x’ —6 +2 — 6’) = $a + 5D), and the

condition of monotonelikelihood ratio implies

Slogg(a) + log g(b)] < loggi3(@ + 4)).
Since log g is measurable, this in turn implies that —logg is convex.*

* See Sierpinski, “Sur les fonctions convexes mesurables,”’ Fundamenta Mathe-

maticae, Vol. 1 (1920), pp. 125-129.

forall x <w,0 <0’,
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Two distributions which satisfy the above condition [besides the normal
distribution for which the resulting densities po(x,, - + -, 7,) form an exponential
family] are the double exponentialdistribution with

g(x) = fe"!
and the logistic distribution whose cumulative distribution function is

l

l+e*

so that the density is g(x) = e-*/(1 + e-*).

Example 2. To consider the corresponding problem for a scale parameter,
let f(z) = 6h(x/6) where fA is an even function. Without loss of generality
one maythenrestrict x to be nonnegative,since the absolute values | X,|, - - -, |X;
form

a

set of sufficientstatistics for 6. If Y; = log X; and 7 = log9,the density
of Y;, is

G(x) = 

h(ev-)ev—",

By Example 1, if h@) > 0 for alla =0,a necessary andsufficient condition for
fo(@)[fox) to be a nondecreasing function of x for all 6 <6’ is that —log
[e"h(e’)] or equivalently —log A(e”) is a convex function of y. An example
in which this holds, in addition to the normal and double exponential distri-
butions wherethe resulting densities form an exponential family, is the Cauchy
distribution with

I] I

wi +2?

Since the convexity of —log h(y) implies that of —log h(e”), it followsthatif
A is an even function and A(x — 6) has monotonelikelihood ratio, so does
h(x/6). When h is the normal or double exponential distribution, this property
of h(x/6) follows therefore also from Example 1. That monotone likelihood
ratio for the scale parameter family does not conversely imply the same property
for the associated location parameter family is illustrated by the Cauchy distri-
bution. The condition is therefore more restrictive for a location than for a
scale parameter.

Thechief difficulty in the application of Theorem | to specific problems
is the necessity of knowing,orat least being able to guess correctly, a pair
of least favorable distributions (A, 4’). Guidance for obtaining these
distributions is sometimes provided by invariance considerations. If
there exists a group G oftransformations of X such that the induced group
G leaves both w and w’ invariant, the problem is symmetric in the various
6’s that can be transformed into each other under G. It then seems
plausible that unless 2 and A’ exhibit the same symmetries, they will
make thestatistician’s task easier, and hence will not be least favorable.

h(x) =

Example 3. In the problem of paired comparisons considered in Example
7 of Chapter 6, the observations X; (i = 1,---,) are independent variables
taking on the values | and 0 with probabilities p; and g; = 1 — p;. The hypo-
thesis H to be tested specifies the set w: max p; S 3. Only alternatives with
Pi =} for all i are considered, and as w’ we take the subset of those alternatives
for which max p; 2 $ + 6. One would expect4 to assign probability | to the
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point pj =-** = Pn = $, and 2’to assign positive probability only to the n

points (p,,° °°, Pn) Which have n — 1 coordinates equal to 4 and the remaining

coordinate equal to 4 + 6. Because of the symmetry with regard to the n

variables it seems plausible that 2’ should assign equal probability 1/n to each

of these 1 points. With these choices, the test y,4, rejects when

n 4 + 6\%

> (1 5) > C.
1=1

 

This is equivalent to
n

> 2; > C,
i=l

which had previously been seen to be UMPinvariantfor this problem. Since

the critical function 9,12, °° *, Zn) 1s nondecreasing in each of its arguments,

it follows from Lemma 2 of Chapter 3 that p; <p; for i = 1,---,m implies

|pVa,alX1, mr fs Xn) Ss EnpeersPalX, mrs Xn)

and hence the conditions of Theorem 1 aresatisfied.

Example 4. Let X = (X,,°°°, Xn) be a sample from N(é, 0”), and consider

the problem oftesting H: o = 0» against the set of alternatives w’: o So,

or 6 So, (6, <4) <6). This problem remains invariant under the trans-

formations X/ = X; + which in the parameter space induce the group G

of transformations &’ = & +c, 0’ =o. One would therefore expect the least

favorable distribution 4 over the line @: — 0 <& <,o = 4p,to be invariant

under G. Such invariance implies that 4 assigns to any interval a measure

proportional to the length of the interval. Hence 4 cannot be a probability

measure and Theorem

1

is notdirectly applicable. The difficulty can be avoided

by approximating 4 by a sequence of probability distributions, in the present

case for example by the sequence of normal distributions N(0O, k), k = 1,2,°°°.

In the particular problem under consideration, it happensthat there also exist

least favorable distributions 4 and 4’, which are true probability distributions

andtherefore not invariant. These distributions can be obtained by an examina-

tion of the corresponding one-sided problem in Chapter 3, Section 9, as

follows. On w, where the only variable is 6, the distribution 4 of & is taken as

the normal distribution with an arbitrary mean ¢, and with variance (o2 — o?)/n.

Under 4’ all probability should be concentrated on the two lines o =o, and

o => in the (&,o)-plane, and we put 4’ = pA, + gi, where 4; is the normal

distribution with mean £, and variance (0% — 02)/n while 4, assigns probability

1 to the point (€), %). A computation analogous to that carried out in Chapter

3, Section 9, then shows the acceptance region to be given by

P a! _ ge — (eg ~ EYlo, exp 208 X(x;

—

&) 208 (@

—

&) |

—1
+ F exp a [Z@, — HF + mE —7

2 2 <C
 

n—1 209 9 05

1 —1 -
——— exp lz X(z; — #) — sch (% — 5

which is equivalent to
C, SX, —- 7 SC.
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The probability of this inequality is independent of £, and hence C, and C,
can be determined so that the probability of acceptance is 1 — a wheno = Oo;
and is equal for the two values o = 0, ando = oy.

It follows from Section 7 of Chapter 3 that there exist p and C whichleadto
these values of C, and C, and that the above test satisfies the conditions of
Corollary 1 with ) = w, and with @) consisting of the two lines o =o, and
o = 0p.

3. MAXIMIN TESTS AND INVARIANCE

Whenthe problem oftesting Q;, against Q, remains invariant under
a certain group of transformations, it seems reasonable to expect the
existence of an invariant pair of least favorable distributions (or at least
of sequences of distributions which in somesenseare least favorable and
invariant in the limit), and hence also of a maximin test which is invariant.
This suggests the possibility of bypassing the somewhat cumbersome
approach of the preceding sections. If it could be proved that for an
invariant problem there alwaysexists an invariant test that maximizes the
minimum powerover Q,, attention could berestricted to invariant tests;
in particular, a UMPinvariant test would then automatically have the
desired maximin property. These speculations turn out to be correctfor
an important class of problems, although unfortunately not in general.
To find out under whatconditions they hold, it is convenient first to
separate out the statistical aspects of the problem from the group theoretic
ones by meansof the following lemma.

Lemma 2. Let P = {Po, 6 € Q} be a dominatedfamily of distributions
on (2, L), and let G be a group of transformations of (%, LX), such that
the induced group G leaves the two subsets Qy, and Q of Q invariant.
Suppose that for any critical function p there exists an (almost) invariant
critical function w satisfying

(10) inf ExeQ(X) S Egy(X) < sup Ezop(X)
G G

forall6 EQ. Then if there exists a level « test ¢g maximizing info,H-oAX),
there also exists an (almost) invariant test with this property.

Proof. Let infoEopo(X) = 8, and let yy be an (almost) invariant test
such that (10) holds with gy = @, y = yo. Then

EgyX) S sup Expo(X)< a forall 660,
G

and

EgyX) = inf E599(X) = 6 forall 06€¢Q,
G

as was to be proved.
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To determine conditions under which there exists an invariant or

almost invariant test p satisfying (10), considerfirst the simplest case that

G is a finite group, G = {g;,°°*, gv} say. If y is then defined by

1 N

(11) va) =—>wg),

it is clear that y is again a critical function, and thatit is invariant underG.

It also satisfies (10), since E,p(gX) = Ezep(X) so that Egy(X) is the

average of a numberof terms of which the first and last memberof (10)

are the minimum and maximum respectively.

Anillustration of the finite case is furnished by Example 3. Here the

problem remains invariant under the m! permutations of the variables

(X,,°°°, X,). Lemma 2 is applicable and shows that there exists an

invariant test maximizing infyFyp(X). Thus in particular the UMP

invariant test obtained in Example 7 of Chapter 6 has this maximin

property and therefore constitutes a solution of the problem.

The definition (11) suggests the possibility of obtaining y(x) also in

other cases by averaging the values of g(gx) with respect to a suitable

probability distribution over the group G. To see what conditions would

be required of this distribution, let Z be a o-field of subsets of Gand va

probability distribution over (G, 4). Disregarding measurability prob-

lems for the moment,let p be defined by

(12) y(2) ={p(ex) dr(g).

Then 0 < py <1, and (10) is seen to hold by applying Fubini’s theorem

(Theorem 3 of Chapter 2) to the integral of y with respect to the distri-

bution Py. For any gp €G,

y(2o2) =|pee) d(g) = {(hz) dv*(h)

where h = gg, and where »* is the measure defined by

v*(B) = »(Bg,') forall Be &,

into which v is transformed by the transformation h = gg». Thusy will

have the desired invariance property, y(goz) = (2) forall gy €G,if » is

right invariant, thatis, if it satisfies

(13) (Bg) = »(B) forall BEB, geG.

The measurability assumptions required for the above argumentare:

(i) For any A&W, the set of pairs (x, g) with gx ¢A is measurable

x x Z. This insures that the function p defined by (12) is again

measurable. (ii) For any Be &, g €G,the set Bg belongs to B.
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Example 5. If Gisa finite group with elements ¢,, °° -, &xN; let F be the class
of all subsets of G and » the probability measure assigning probability 1/N to
each of the N elements. Condition (13) is then satisfied and the definition (12)
of y in this case reducesto (11).

Example 6. Consider the group G of orthogonal n x n matrices I’, with
the group product I’, I’, defined as the corresponding matrix product. Each
matrix can be interpreted as the point in n-dimensional Euclidean space whose
coordinatesare the n° elements of the matrix. The group then defines a subset
of this space; the Borel subsets of G will be taken as the o-field . To prove
the existence of a right invariant probability measure over (G, #),* we shall
define a random orthogonal matrix whose probability distribution satisfies
(13) and is therefore the required measure. With any nonsingular matrix
x = (2,;), associate the orthogonal matrix y = f(x) obtained by applying the
following Gram-Schmidt orthogonalization process to the m row vectors
; = (Uj, °° ', 2) Of x: y, is the unit vector in the direction of 213 Yo the unit
vector in the plane spannedby .r, and v9, which is orthogonal to y, and forms an
acute angle with x,; etc. Let y =(y;;) be the matrix whose ith row is Y;.
Suppose nowthat the variables X,,(i, ) = 1,---,n) are independently distri-

buted as M(0, 1), let X denote the random matrix (X,,;), and let Y = f(x).
To showthat the distribution of the random orthogonal matrix

Y

satisfies (13),
consider any fixed orthogonal matrix I’ and any fixed set BE. Then
P{Y € BY} = P{ YI’ € B} and from the definition of fit is seen that YI’ =
f(XT’). Since the n? elements of the matrix YI’ have the same joint distri-
bution as those of the matrix X, the matricesf(T’) andf(X) also have the same
distribution, as was to be proved.

Examples 5 and 6 are sufficient for the applications to be made here.
General conditions for the existence of an invariant probability measure,
of which these examplesare simple special cases, are given in the theory
of Haar measure.f |

4. THE HUNT-STEIN THEOREM

Invariant measures exist (and areessentially unique) for a large class of
groups, but unfortunately they are frequently not finite and hence cannot
be taken to be probability measures. The situation is similar and related
to that of the nonexistence of a least favorable pair of distributions in
Theorem 1. There it is usually possible to overcome the difficulty by
considering instead a sequence of distributions, which has the desired

* A more detailed discussion of this invariant measureis given by James, “Normal
multivariate analysis and the orthogonal group,” Ann. Math. Stat., Vol. 25 (1954),
pp. 40-75.

T This is treated for example in the books by Montgomery and Zippin, Topological
Transformation Groups, New York, Interscience Publishers, 1955, Chapters I, II, and
by Halmos, Measure Theory, New York, D. Van Nostrand Co., 1950, Chapters XI,
XII.



336 THE MINIMAX PRINCIPLE [8.4

property in the limit. Analogously we shall now generalize the con-

struction of y as an average with respect to a right invariant probability

distribution, by considering a sequence ofdistributions over G, which are

approximately right invariant for n sufficiently large.

Let P = {Po, 6 €Q} be a family of distributions over a Euclidean

space (%, »/) dominated bya o-finite measure yu, and let G be a group of

transformations of (2, .) such that the induced group G leaves 2

invariant.

Theorem 2. (Hunt-Stein.) Let Z be a o-field of subsets of G such that

for any A € & the set ofpairs (x, g) with gx € A is in A X B andfor any

Be Band g e€G the set Bg is in B. Suppose that there exists a sequence

of probability distributions v,, over (G,#) which is asymptotically right

invariant in the sense thatfor any g€G,BEB

(14) lim |y,(Bg) — ¥,(B)| = 0.

Then given any criticalfunction y, there exists a criticalfunction p whichis

almost invariant andsatisfies (10).

Proof. Let

y,(2) =|pen) dr,(2),

which as before is measurable and between 0 and 1. By the weak

compactness theorem (Theorem 3 of the Appendix) there exists a sub-

sequence {y,,} and a measurable function p between 0 and | satisfying

lim |Yn,P du =|vp du

for all y-integrable functions p, so that in particular

lim Eypn,(X) = Eoy(X)
I—

for all 6 €Q. By Fubini’s theorem

Eyp,(X) = |[Ep(eX)] dr,(g) = {ExoX) dy»,(8)
so that

inf E5op(X) < Ey,,(X) S sup Exoy(X)
G G

and y satisfies (10).

In order to prove that y is almost invariant we shall now show that for

all x and g,
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By the bounded convergence theorem [Theorem I(ii) of Chapter 2] this
will imply that

[. [y,,(¢2) — p,(2)] dP;(x) —> 0
for all 6 © Q and A € XA, and hencethat p(gx) = (x) (a.e. P) as was to
be proved.
For fixed x and any integer m, let G be partitioned into the mutually

exclusive sets

l
B= [heG:a, < olla) Sa, +4, k=0,-++,m

i

where a, = (k — 1)/m. In particular, By is the set {h eG: y(hx) = 0}.
It is seen from the definition of the sets B, that

mem m 1

> 4%(By) <> phx) dv,(h)< > (2 + “) v,(By)
k=0 k=00 B, k=0 m

m 1

< > AVy(B,) + —
k=0 m

and analogously that

m m l

> plage) dv,(h) — > ay,(B.g-)| < —
k=0/ B,g7! k=0 m

 

 

from which it follows that

2
Pn(gz) — Pnl®)| S > lal * rn(Bg) — Vn(By)| + m

By (14) the first term of the right-hand side tends to zero as i tends to
infinity, and this completes the proof.

When there exists a right invariant measure » over G, and a sequence
of subsets G, of G with G, © G,4,, UG, = G, and W(G,) =c, <0,
it is suggestive to take for the probability measures v, of Theorem 2
the measures »/c, truncated on G,. This leads to the desired result in
the example below. On the other hand, there are cases in which there
exists such a sequence of subsets of G, but no invarianttest satisfying
(10) and hence no sequence »,, satisfying (14).

Example 7. Let x = (x,,:--+,2,), % be the class of Borel sets in n-space,
and G the group oftranslations (7; + g,°--,%, +g), ~~ <g <0. The
elements of G can be represented by the real numbers, and the group product
&gis then the sum g + 9’. If # is the class of Borel sets on the real line, the
measurability assumptions of Theorem 2 aresatisfied. Let » be Lebesgue
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measure, which is clearly invariant under G, and define », to be the uniform

distribution on the interval [(—n,n) ={g: —n Sg Sn}. Then for all

BeZ,geG,

1
yn(B) — »n(Bg)| = = [BO I(—n, n)| — vy [BO—-n —g,n—-g)l S s

so that (14) is satisfied.
This argument also covers the group of scale transformations (az,,°--°, aX»),

0 <a < ©, which can be transformed into the translation group by taking

logarithms.

The reduction of the maximin problem canbe carried out in steps under

the assumptions of Theorem 2, Chapter 6. Suppose that the problem

remains invariant under two groups D and E, and denote by y = s(x)

a maximal invariant with respect to D and by E* the group defined in

Theorem 2, Chapter 6, which E induces in y-space. If D and £*satisfy

the conditions of the Hunt-Stein theorem,it followsfirst that there exists

a maximin test depending only on y = s(x), and then that there exists a

maximin test depending only on a maximalinvariant z = t(y) under E*.

Example 8. Consider a univariate linear hypothesis in the canonical form

in which Y,,:--, Y, are independently distributed as N(n;, 0”), where it is given

that 7.4; =*** =, = 0, and where the hypothesis to be tested is 7, =°'*° =

n, = 0. It was shown in Section 1 of Chapter 7 that this problem remains

invariant under certain groups of transformations and that with respect to these

groups there exists a UMPinvariant test. The groups involved are the group

of orthogonal transformations, translation groups of the kind considered in

Example 7, and a group of scale changes. Since each of these satisfies the

assumptions of the Hunt-Stein theorem, and since they leave invariant the

problem of maximizing the minimum poweroverthe set of alternatives

r

(16) 2mle =y2  (y, > 0),
=

it follows that the UMPinvariant test of Chapter7 is also the solution ofthis

maximin problem. Itis also seen slightly more generally that the test which is

UMPinvariant under the same groupsfor testing

;
> no < y5
i=1

(Problem 4 of Chapter 7) maximizes the minimum power over the alternatives

(16) for pp < ¥4.

Example 9. (Stein.) Let G be the groupofall nonsingularlinear transforma-

tions ofp-space. That for p > 1 this does notsatisfy the conditions of Theorem

2 is shown by the following problem, which is invariant under G but for

which the UMPinvariant test does not maximize the minimum power. Genera-

lizing Example 10 of Chapter 6, let X = (X,,°°°+, X,), Y =(1%1,'° +, Yp) be

independently distributed according to p-variate normaldistributions with zero
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means and nonsingular covariance matrices E(X; Xj) = 0;; and E(Y; Y;) = Ao;;,
and let H: A < A,betested against A = A,(Ay < A,), the o,; being unknown.

This problem remainsinvariantif the two vectors are subjected to any common
nonsingular transformation, and since with probability | this groupis transitive
over the sample space, the UMPinvariant test is trivially 9(v, y) =a. The

maximin poweragainst the alternatives A = A, that can be achieved by invariant
tests is therefore «. On the other hand,the test with rejection region Y?/X? > C
has a strictly increasing power function B(A), whose minimum overtheset of
alternatives A = A,is B(A,) > B(A,) = @.

It is a remarkable feature of Theorem 2 that its assumptions concern
only the group G andnotthe distributions Py. When these assumptions
hold for a certain G, it follows from (10) as in the proof of Lemma 2

that for any testing problem which remains invariant under G and
possesses a UMPinvarianttest, this test maximizes the minimum power
over any invariant class of alternatives. Suppose conversely that a UMP
invariant test under G has been shown in a particular problem not to
maximize the minimum power, as was the case for the group of linear
transformations in Example 9. Then the assumptions of Theorem 2
cannotbesatisfied. However, this does not rule out the possibility that
for another problem remaining invariant under G, the UMP invariant
test may maximize the minimum power. Whether or not it does is no
longer a property of the group alone but will in general depend also on
the particular distributions.

Consider in particular the problem of testing H:&, =-:-=&, =0
on the basis of a sample (X,,,°°°, X,,), ® = 1,°°:,, from a p-variate

normal distribution with mean E(X,,;) = €; and common covariance
matrix (o,;) = (a,;)-}. This was seen in Section 10 of Chapter 7 to be
invariant under a number of groups including that of all nonsingular
linear transformations of p-space, and a UMPinvariant test was found
to exist. An invariant class of alternatives under these groupsis

(17) uda,,¢€;/0" = Yr

Here Theorem 2 is not applicable, and whether the UMPinvarianttest
maximizes the minimum poweragainst the alternatives (17) is an open
question.

5. MOST STRINGENT TESTS

Oneofthe practical difficulties in the consideration of tests that maximize
the minimum powerovera class Q,,- of alternatives is the determination
of an appropriate Q,-. If no information is available on which to base
the choice of this set and if a natural definition is not imposed byinvari-
ance arguments, a frequently reasonable definition can be given in terms
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of the power that can be achieved against the various alternatives. The

envelope power function B, was defined in Chapter 6, Problem 15, by

(18) B.(8) = sup P,(8),

where £,, denotes the powerof a test p and where the supremum is taken

over all level « tests of H. Thus 8;(8) is the maximum power that can

be attained at level « against the alternative 0. (That it can be attained

follows under mildrestrictions from Theorem 3 of the Appendix.) If

Sx= {0: B(8) = A},

then of two alternatives 0, € Sx, 92 € S4,, 9, can be considered closer

to H, equidistant, or further away than 6, as A, is <, =, or >Ag.

The idea of measuring the distance ofan alternative from H in terms of

the available information has been encountered before. If for example

X,,°°*, X, is a sample from N(é, 62), the problem oftesting H: E<0

was discussed (Chapter 5, Section 2) both when thealternatives © are

measured in absolute units and in o-units. The latter possibility corre-

sponds to the present proposal, since it follows from invariance considera-

tions (Problem 15 of Chapter 6) that B%(é, o) is constant on the lines

&/o = constant.

Fixing a value of A and taking as Q, the class of alternatives 6 for

which (0) > A, one can determinethetest that maximizes the minimum

power over Q,. Another possibility, which eliminates the need of

selecting a value ofA, is to consider for anytest the difference B,(0) —

B,(0). This difference measures the amount by which the actual power

B(9) falls short of the maximum power attainable. A test that minimizes

(19) sup [B3(9) — B,(9)]

is said to be most stringent. Thus a test is moststringentifit minimizes

its maximum shortcoming.

Let pg, be a test that maximizes the minimum power over S,, and

hence minimizes the maximum difference between f7(@) and 6,(0) over

S*%. If @, happens to be independentof A, it is most stringent. This

remark makes it possible to apply the results of the preceding sections

to the determination of most stringent tests. Suppose that the problem

of testing H: 0 € w against the alternatives 0 €Q — w remains invariant

under a group G,that there exists a UMP almost invariant test @» with

respect to G, and that the assumptions of Theorem 2 hold. Since (6)

and hence the set Sr is invariant under G (Problem 15 of Chapter 6),

it follows that y, maximizes the minimum power over S, for each A,

and q, is therefore most stringent.

As an example of this method consider the problem of testing H:
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Pi **s Pn 1/2 against the alternative K: p, > 1/2 for all i where DP:
is the probability of success in the ith trial of a sequence of n independent
trials. If X; is 1 or 0 astheith trial is a success or failure, the problem
remains invariant under permutations of the X’s, and the UMPinvariant
test rejects (Example 7 of Chapter 6) when 2X, > C. It now follows
from the remarks abovethat this test is also moststringent.

Anotherillustration is furnished by the general univariate linear hypo-
thesis. Here it follows from the discussion in Example 8 that the standard
test for testing Hin, =--:= 7, =0 or HA’: ¥7_, 72/0? < y2 is most
Stringent.
The determination of most stringent tests for problems to which the

invariance methodis not applicable has not yet been carried out for many
specific cases. The following is a class of problems for which they are
easily obtained by a direct approach. Let the distributions of X constitute
a one-parameter exponential family, the density of whichis given by(12)
of Chapter 3, and consider the hypothesis H: 0 = 0). Then according
as 0 > ) or 6 < O, the envelope power £;(6) is the power of the UMP
one-sided test for testing H against 0 > 6) or 6 <6. Suppose that
there exists a two-sided test gy given by (3) of Chapter 4, such that

(20) sup [B,(0) — B,.(8)] = sup [B,(9) — B,(9)),

and that the supremum is attained on both sides, say at points 6, <
6,<6,. If P,,(9;) = 8; i= 1, 2, an application of the fundamental
lemma [Theorem S(iii) of Chapter 3] to the three points 0,, 04, 05 shows
that amongall tests y with 6,(6,) > B, and B,() > Bs, only gysatisfies
B99) << «. For any other level « test, therefore, either B(8) < By
or 8(92) < By, and it follows that q, is the unique moststringenttest.
The existence of a test satisfying (20) can be proved by a continuity
consideration [with respect to variation of the constants C,; and y, which
define the boundary of the test (3) of Chapter 4] from the fact that for the
UMPone-sided test against the alternatives 6 > 0, the right-hand side
of (20) is zero and theleft-handside positive, while the situation is reversed
for the other one-sidedtest.

6. PROBLEMS

Section 1

1. Existence of maximin tests. Let (#, #) be a Euclidean sample space and
let the distributions Pe, @ € Q be dominated by a o-finite measure over (2, ).
For any mutually exclusive subsets Qy, Q,¢ of © there exists a level « test maxi-
mizing (2).
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[Let 6 = sup [info,Eop(X)] where the supremum is taken overall level «

tests of H: 9 €Qy. Let ¢, be a sequenceoflevel « tests such that infopEoPnX)

tends to f. If yn, is a subsequence and ¢ a test (guaranteed by Theorem 3 of the
Appendix) such that Eogn,(X) tends to Eep(X) for all 6 EQ, then ¢ is a level «

test and info, Eop(X) = B.]

2. Locally most powerful tests. Let d be a measure of the distance of an
alternative 0 from a given hypothesis H. A level « test @ is said to be locally
most powerful (LMP)if, given any other level « test y, there exists A such that

(21) By(8) 2 B(6) forall 6 with 0 <d(6) <A.

Suppose that 6 is real-valued and that the power function of every test is con-
tinuously differentiable at 4.

(i) Then a LMPtest of H: @ = 6, against 6 > 6, exists and is defined by the
fact that it maximizes 8’(@9) amongall level « tests of H.

(ii) A LMP test maximizes the minimum powerlocally provided its power
function is bounded away from « for every set of alternatives which is bounded
away from H.

(iii) Let X,,°--, X,, be a sample from a Cauchydistribution with unknownloca-
tion parameter 0 so that the joint density of the X’s ism"II?_,[1 + (@, — 0)?}-.
The LMPtest for testing 6 = 0 against 6 > 0 at level « < 3 is not unbiased and
hence does not maximize the minimum powerlocally.

[Gii) There exists M so large that any point with z; = M for alli =1,---,n
lies in the acceptance region of the LMP test. Hence the power ofthe test
tends to zero as 6 tendsto infinity.)

3. A test %, is LMP unbiasedif it is unbiased andif, given any other unbiased
level « test y, there exists A such that (21) holds. Supposethat 6 is real-valued
and that the power function of every test is twice continuously differentiable at
6). Then a LMP unbiased level « test of H: 9 = 65 against 6 # 45 exists
and is defined by the fact that it maximizes £’(9,) amongall unbiased level «
tests of H.

Section 2

4. Let the distribution of X depend on the parameters (6, 6) = (6,,---,

6,,9;,°°*,9,). A test of H: 6 = 6°is locally strictly unbiased if for each @,
(a) B,(6°, 9) = a, (b) there exists a 6-neighborhood of 6° in which ,(0, 9) > «
for 0 + 6°,

(i) Suppose that the first and second derivatives

and p38) =
. a

BRO) = 36, By(8, 9) 90 2,00,
 

B,(8, 9)
g0

exist for all critical functions » and all #. Then a necessary andsufficient
condition for p to be locally strictly unbiased is that 62(8) = 0 for all i and @,
and that the matrix (67/(8)) is positive definite for all 3.

(ii) A test of H is said to be of type E (type D if s = 0 so that there are no
nuisance parameters) if it is locally strictly unbiased and amongall tests with
this property maximizes the determinant (8) (This determinant under the
stated conditions turns out to be equal to the Gaussian curvature of the power
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surface at 6°.) Then the test y, given by (7) of Chapter7 for testing the general
linear univariate hypothesis (3) of Chapter7 is of type E.

[Gii) With 6 = (m,,---,7,) and # = (n,4127's 15,0) the test 99, by Problem
5 of Chapter 7, has the property of maximizing the surface integral

|[B.(n, 0°) — a] dA

amongall similar (and henceall locally unbiased) tests where S = {(n,,°--, 7,):
2-177 = po}. Letting p tend to zero andutilizing the conditions

£8) = 0, [ven dA =O fori + I [oe dA = k(po),
Ss S

one finds that %) maximizes 4_,82(n, 0”) among all locally unbiased tests.
Since for any positive definite matrix, |(6%)| < I1f2, it follows that for any
strictly locally unbiasedtest 9,

(62)| < TB! Sepiry < Deel= BBY = ((8%)|,
5. Let Z;,°--,Zy be identically independently distributed according to a

continuousdistribution D, of whichit is assumed only thatit is symmetric about
some (unknown) point. For testing the hypothesis H: D(0) = }, the sign
test maximizes the minimum poweragainst the alternatives K: D(0) < gq < 4).
[A pair of least favorable distributions assign probability 1 respectively to the

distributions F € H, G € K with densities

where for all x, positive, negative or zero, [x] denotes the largest integer <z.]

6. Let f,(x) = Og(x) + (1 — A(x) with O <6 <1. Then fx) satisfies
the assumptions of Lemma | providedg(x)/h(x) is a nondecreasing function of z.

 

7. Let x = (2,,:--,x,) and let &0(x, ) be a family of probability densities
depending on @ = (6), - - -, 6,) and the real parameter &, and jointly measurable
inwand &. For each 6,let /o(£) be a probability density with respectto ao-finite
measure » such that po(x) = feo(x, &)ho(£) do(é) exists. We shall say that a
function f of two arguments u = (uy, °° *, Uy), V = (V4, ° °°, v,) is nondecreasing
in (u,v) if fu’, o/flu,v) Sf’, v’)/f(u, v’) for all (u, v) Satisfying u; < uj;
3S v,(i =l1,--,r; j=1,--+-+,s). Then Pax) is nondecreasing in (z, @)
provided the product g(x, &)hg(£) is (a) nondecreasingin (x, 0) for each fixed é;
(b) nondecreasing in (6, ) for each fixed x; (c) nondecreasing in (x, &) for each
fixed 6. |

[Interpreting 2,(z, &) as the conditional density of x given &, and /o(&) as the
a priori density of &, let p(€) denote the a posteriori density of & given x andlet
p’(S) be defined analogously with 6’ in place of 6. That p,(z) is nondecreasing
in its two arguments is equivalent to

(6) (a’, §
|om é) p(§) dv(§) S lo ; p’(&) dv(é).
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By(a) it is enough to prove that

D=|Leo(o’, EDlgala, Slle’(E) — p(8)] av(8) = 0.

Let S_ = {&: p’(8)/p(S) < I} and S, = {€: p(/p(S) = 13. By (ii) the set S_
lies entirely to the left of S,. It follows from (iii) that there exists a < b such
that

D= a [o’(E) — p(S)] dS) + b[ [e’(é) — p(§)] ar(é),

and hence that D = (b — a [o’(E) — p(6)] dv(é) = 0.)
S.

8. (i) Let X have binomial distribution b(p,n) and consider testing H:
P = Po at level « against the alternatives Q¢: pl S4polqg or = 2polgo. For
a = .05 determine the smallest sample size for which there exists a test with
power 2.8 against 0, if py = .1, .2, .3, .4, .5.

(ii) Let X,,---, X, be independently distributed as N(é,o?). For testing
o = 1 at level « = .05, determine the smallest sample size for which there exists
a test with power = .9 against the alternatives o? < } and o? = 2.

[See Problem 5 of Chapter 4.]

9. Double exponential distribution. Let X,,---, X, be a sample from the
double exponential distribution with density $e—'*—*, The LMPtest for
testing 6 < 0 against 9 > 0 is the sign test. h

[The following proofis for the case that the levelis of the form « = Dpto") [2”,

so that the level « sign test is nonrandomized. Let R,(k = 0,---, 7) be the

subset of the sample space in which k of the X’s are positive and n — k are
negative. Let 0 <k <1 <n and let S,, S, be subsets of R,, R, such that
P,(S;,) = Po(S,) #0. Then it follows from a consideration of Po(S,) and
P(S,) for small 6-that there exists A such that Po(S,) < Pe(S,) for0 <6 <A,
Suppose now thatthe rejection region of a nonrandomizedtest of 6 = 0 against
6 > 0 does not consist of the uppertail of a sign test. Then it can be converted
into a sign test of the samesize by a finite numberof steps, each of which consists
in replacing an S; by an S, with k < /, and each of which therefore increases
the powerfor 6 sufficiently small. For randomized tests the argumentis similar,
with 9,, 9, replacing S,, S;.]

Section 4

10. Let X = (X),:°-, X,) and Y = (¥,,°--, Y,) be independently distributed

according to p-variate normal distributions with zero means and covariance
matrices E(X,X;) = 0;; and E(Y,Y,) = Ag;,;.

(i) The problem of testing H: A < A, remains invariant under the group G
of transformations X¥* = XA, Y* = YA where A = (a;;) is any nonsingular
Pp X p matrix with a;; = 0 fori > j, and there exists a UMPinvarianttest under
G with rejection region Y?/X? > C.

(ii) The test with rejection region Y?/X? > C maximizes the minimum power
for testing A < Ay against A = A, (Ay < A)).
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[(ii) That the Hunt-Stein theorem is applicable to G can be provedin steps
by considering the group G, of transformations Xj = «,X, +-:-: +4,X,,
X,= X,; fori =1,---,¢ —1,q +1,°--, p, successively for g = l,---,p—.
Here «, # 0 since the matrix A is nonsingular if and only if a,,; 4 0 for all i.
The group product (7,,°-°,y,) of two such transformations (4), °° -, a) and

(By,°°°; ) is given by Y= “468, + Bi, V2 = to, + Bo,* °°, Yq-1 = XoBy + Bo.

Yq = %B, which shows G, to be isomorphic to a group of scale changes (multi-
plication ofall componentsby £,) andtranslations (additionof(f;, - - -, 8,_, 0)).
The result now follows from the Hunt-Stein theorem and Example 7 since the
assumptions of the Hunt-Stein theorem, except for the easily verifiable measur-
ability conditions, concern only the abstract structure (G, #), and not the specific
realization of the elements of G as transformations of some space.]

11. Supposethat the problem oftesting 6€ Q,, against 6€ Q, remains invariant
under G, that there exists a UMP almost invariant test gmwith respect to G,

and that the assumptions of Theorem 2 hold. Then gg, maximizes
info[w(@)Eop(X) + u(6)] for any weight functions w(9) = 0, u(@) that are

invariant under G.

Section 5

12. Existence of most stringent tests. Under the assumptions of Problem |
there exists a moststringent test for testing 6 € Q,, against @ EQ — Q,.

13. Let {Q,} be a class of mutually exclusive sets of alternatives such that the
envelope power function is constant over each 2, and that YQ, = 2 — Oz,
and let @, maximize the minimum powerover Qn. If ya = — is independent
of A, then ¢ is most stringent for testing 6 € Q,,.

14. Let (Z,,°-+, Zy) = (X%1,°°°; Xm, Y1,°°°, Yn) be distributed according

to the joint density (56) of Chapter 5 and consider the problem of testing H:
n = & against the alternatives that the X’s and Y’s are independently normally

distributed with commonvariance o? and means 7 # & Then the permutation
test with rejection region | Y — X| > C[T(Z)], the two-sided version ofthetest
(55) of Chapter 5, is most stringent.

[Apply Problem 13 with each of the sets 2, consisting of two points (£,, 7, 9),
(€5, 7, 6) such that

m n
 

 

 

n
= — ——— 6 = 0: = 0

f= m+n’ a +7 $2 C+?

m
= — 0

oe ¢ m+n

for some € and 6.]
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Appendix

1. EQUIVALENCE RELATIONS; GROUPS

A relation: x ~y amongthe points of a space 2, is an equivalence

relation if it is reflexive, symmetric, and transitive, that is, if

(i) «~ax forall xreZ;

(ii) «~y implies y~2;

(iii) s<~y,y~z implies x~z.

Example 1. Consider a class of statistical decision procedures as a space,

of which the individual procedures are the points. Then the relation: 6 ~ 0’

if the procedures 6 and 6’ have the samerisk function, is an equivalence relation.

As another example consider all real-valued functions defined over the real

line as points of a space. Then the relation: f~g if f(z) = g(@) a.e., is an

equivalence relation. |

Given an equivalence relation, let D, denote the set of points of the

space that are equivalent tox. Then D, = D,ife~y,and D, O D, = 0

otherwise. Since by (i) each point ofthe space lies in at least one of the

sets D,, it follows that these sets, the equivalence classes defined by the

relation ~, constitute a partition of the space.

A set G ofelementsis called a group ifit satisfies the following conditions.

(i) There is defined an operation, group multiplication, which with

any two elements a, b € G associates an element c of G. The element c

is called the product of a and b andis denoted by ab.
(ii) Group multiplication obeys the associative law

(ab)c = a(bc).

(iii) There exists an element e € G,called the identity, such that

ae=ea=a forall aeéeG.

(iv) To each element a € G,there exists an element a~€ G,its inverse,

such that
aait=ata=e.

Both the identity element and the inverse a~! of any element a can be

shown to be unique.
348
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Example 2. Thesetof all n x n orthogonal matrices constitutes a groupif
matrix multiplication and inverse are taken as group multiplication and inverse
respectively, and if the identity matrix is taken as the identity element of the
group. With the same specification of the group operations, the class ofall
nonsingular 7 x n matrices also forms a group. Onthe other hand, theclass
of all x x n matrices fails to satisfy condition (iv).

If the elements of G are transformations of some space onto itself,
with the group productba defined astheresult of applyingfirst transforma-
tion a and followingit by 5,G is called a transformation group. Assump-
tion (ii) is then satisfied automatically. For any transformation group
defined over a space & the relation between points of 2:

«~y if there existsa@eG suchthat y= az,

is an equivalence relation. That it satisfies conditions (i), (ii), and (iii)
required of an equivalencefollows respectively from the defining properties
(iii), (iv), and (i) of a group.

Let © be any class of 1:1 transformations of a space and let G be
the class of all finite products a#!a#!---a+!, with a,,---, An E@,
m = 1, 2,:-+-, where each of the exponents can be +1 or —1 and where
the elements a,, a,,--- need not be distinct. Then it is easily checked
that G is a group,and is in fact the smallest group containing @.

2. CONVERGENCE OF DISTRIBUTIONS

When studying convergence properties of functions it is frequently
convenient to considera class of functionsas a realization of an abstract
space ¥ of points f in which convergence of a sequence f, to a limit ff
denoted byf,—f, has been defined.

Example 3. Let « be a measure over a measurable space (7, WV).
(i) Let * be the class of integrable functions. Then fn converges to f in

the mean if*

(1) [ls —f| du — 0.

(ii) Let F be a uniformly bounded class of measurable functions. The
sequence f, is said to converge to f weakly if

(2) |fnp UW —|fp de

for all functions p that are integrable wu.

* Here andin the examples that follow, the limit fis not unique. Morespecifically,
iff, > f, then f, — g if and only iff = ¢ (ae. 2). Putting f~¢ whenf = ¢ (ae. 0),
uniqueness can be obtained by working with the resulting equivalence classes of
functions rather than with the functions themselves.
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(iii) Let 7 be the class of measurable functions. Then f, converges to f
pointwise if

(3) fr(%) >f(z) ae. pm.

A subset Fy of F# is dense in F if, given any fe F,there exists a
' sequence in ¥F, having f as its limit point. A space ¥ is separable if
there exists a countable dense subset of A. A space ¥ such that every
sequence has a convergent subsequence whose limit point is in F is
compact. * A space ¥ is a metric space if for every pair of points f, g
in F there is defined a distance d(/, g) = 0 such that

(i) df,g)=0 ifand only if f=g;

(ii) df, g) = d(g,f);
(ili) df, g) + d(g,h) = d(f,h) forall fig,h

The space is pseudometric if(i) is replaced by
G)dff>=0 forall feF

A pseudometric space can be converted into a metric space by intro-
ducing the equivalence relation f~g if d(f,g)=0. The equivalence
classes F, G, +++ then constitute a metric space with respect to the distance
D(F, G) = df, g) wherefe F, g €G.

In any pseudometric space a natural convergence definition is obtained
by putting f,—fif df,f)— 0.

Example 4. The space of integrable functions of Example 3(i) becomes a
pseudometric space if we put

d(f.g) =|if — el du
and the induced convergence definition is that given by (1).

Example 5. Let F be a family of probability distributions over (7, ).
Then # is a metric space with respect to the metric

(4) d(P, Q) = sup |P(A) — Q(A)|
Ac

Lemma 1. If F is a separable pseudometric space then every subset
ofF is also separable.

Proof. By assumption there exists a dense countable subset {f,,} of
F. Let

Sinn = AS Uffr) < fm}
and let A be any subset of #. Select one element from each of the
intersections A S,,, that is nonempty, and denote this countable
collection of elements by Ay. If ais any element of A and m any positive
integer there exists an elementf, such that d(a,f,)<1/m. Therefore

* The term compactness is more commonly used for an alternative concept, which
coincides with the one given here in metric spaces. The distinguishing term sequential
compactness is then sometimes given to the notion defined here.
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a belongs to Sinn,» the intersection A 9 Sin, 18 nonempty, and there
exists therefore an element of Ay whose distance to a is <2/m. This
shows that Ag is dense in A, and hencethat A is separable.

Lemma 2. A sequence f, of integrable functions converges to f in
the meanif andonly if

(5) | fnrdu— | fdu uniformly for Ae.
A A

Proof. That (1) implies (5) is obvious since for all A € Y

|f du — |fay <I —f| du.

Conversely suppose that (5) holds and denote by A, and A’, the set of
points 2 for which f,(x) > f(a) andf,(x) <f(z) respectively. Then

[lfe—fdu = [. —f)du— [m-Pdu 0.
Lemma 3. A sequence f,, of uniformly bounded functions converges

to a boundedfunctionf weakly if andonly if

(6) | du| fdu forall A with p(A)< oo.
A A

  

Proof. That weak convergence implies (6) is seen by taking for p in
(2) the indicator function of a set A, which is integrable if u(A) < 00.
Conversely (6) implies that (2) holdsifp is any simple function s = La,IA,
with all the u(A;) << oo. Given any integrable function p there exists,
by the definition of the integral, such a simple function s for which
§|p — s| du < «/3M where M is a bound on the |f|’s. We then have

[nrdu |i — 9) a [re-pa + [tn Ns

The first two terms on the right-hand side are <e/3, and the third term
tends to zero as n tends to infinity. Thusthe left-hand side is <e for n
sufficiently large, as was to be proved.

< +
     

Lemma 4.* Let f and f,, n=1,2,---, be nonnegative integrable
functions with

[fae =[fodu =.

Then pointwise convergenceoff,, to f implies that f,, —>f in the mean.
* Scheffe, “A useful convergence theorem for probability distributions,” Ann. Math.

Stat., Vol. 18 (1947), pp. 434-438.
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Proof. If g,=f, —f, then g, = —f, and the negative part g, =
max (—g,, 0) satisfies |g, |<f Since g,(x)— 0 (a.e. ), it follows from
Theorem I(ii) of Chapter 2 that {g7 du— 0, and fg, du then also tends
to zero since fg,du=0. Therefore flg,| du = f(g +8,)du— 0,
as was to be proved.

Let P and P,, n= 1, 2,---, be probability distributions over (%, 7)

with densities p,, and p with respect to w. Consider the convergence
definitions

(a) Pap (ae. 1);
(b) flpn — p| du0;
(c) fgp, du— \gp du for all bounded measurable g;

and

(b’) P,(A)— P(A) uniformly for all A € W;

(c’) P,(A)—> P(A) forall AE.
Then Lemmas2 and 4 together with a slight modification of Lemma 3
show that (a) implies (b) and (b) implies (c); and that (b) is equivalent

to (b’) and (c) to (c’). It can further be shown that neither (a) and (b)

nor(b) and (c) are equivalent. *

3. DOMINATED FAMILIES OF DISTRIBUTIONS

Let 4 be a family of measures defined over a measurable space (2, VW).
Then .@ is said to be dominated by a o-finite measure mu defined over
(%, xX) if each memberof -@ is absolutely continuous with respect to ym.
The family -@ is said to be dominated if there exists a o-finite measure
dominating it. Actually, if is dominated there always exists a finite
dominating measure. For suppose that .@ is dominated by yw and that
L = UA; with u(A,)finite for alli. If the sets A; are taken to be mutually

exclusive, the measure v defined by »(A) = 2y(A A A,)/2°W(A,) also

dominates -4@ andis finite.

Theorem 1. A family F of probability measures over a Euclidean
space (#, WX) is dominatedifand only if it is separable with respect to the
metric (4) or equivalently with respect to the convergence definition

P,—P if P,(A)—P(A) uniformly for Ae.

Proof. Suppose first that Y is separable and that the sequence {P,,}

* Robbins, ‘Convergence of distributions,” Ann. Math. Stat., Vol. 19 (1948), pp.

72-76.
+ Berger, “‘Remark on separable spaces of probability measures,” Ann. Math. Stat.,

Vol. 22 (1951), pp. 119-120.
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is dense in Y, and let w = UP,/2". Then u(A) = 0 implies P,,(A) = 0

for all n, and hence P(A) = 0 for all Pe Y. Conversely suppose that P
is dominated by a measure mu which without loss of generality can be
assumed to befinite. Then we must show that the set of integrable
functions dP/du is separable with respect to the convergence definition
(5) or, because of Lemma 2, with respect to convergence in the mean.
It follows from Lemma | thatit suffices to prove this separability for the
class ¥ ofall functions f that are integrable uw. Since by the definition
of the integral every integrable function can be approximated in the mean
by simple functions, it is enough to prove this for the case that ¥ is the
class of all simple integrable functions. Any simple function can be
approximated in the mean by simple functions taking on only rational
values, so thatit is sufficient to prove separability of the class of functions
url, where the r’s are rational and the A’s are Borel sets, with finite

f-measure since the f’s are integrable. It is therefore finally enough to
take for A the class of functions 7,, which are indicator functions of

Borel sets with finite measure. However, any such set can be approxi-
mated by finite unions of disjoint rectangles with rational end points.
The class of all such unions is denumerable, and the associated indicator

functions will therefore serve as the required countable dense subset
of F.

An examination of the proof shows that the Euclidean nature of the
space (2, </) was used only to establish the existence of a countable num-

ber of sets A; € W such that for any A € with finite measurethere exists
a subsequence A; with u(A;)—> u(A). This property holdsquite generally
for any o-field ., which has a countable number of generators, that is,
for which there exists a countable number ofsets B; such that A is the

smallest o-field containing the B;.* It follows that Theorem 1 holds for
any o-field with this property. Statistical applications of such o-fields
occur in sequential analysis, where the sample space Z is the union
XZ = U4; of Borel subsets 2; of i-dimensional Euclidean space. In
these problems, 2%’, is the set of points (,,- - -, x;) for which exactly i observa-
tions are taken. If 7, is the o-field of Borel subsets of %,, one can

take for & the o-field generated by the ~,, and since each .W,; possesses
a countable numberof generators so does ®.

If does not possess a countable number of generators, a somewhat
weaker conclusion can be asserted. Two families of measures /@ and WV
are equivalent if u(A) = 0 for all w €-H implies »(A) = 0 for all EY

and vice versa.

* A proof of this is given for example by Halmos, Measure Theory, New York,
D. Van Nostrand Co., 1950. (Theorem B ofSection 40.)
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Theorem 2.t A family F of probability measures is dominated by a
o-finite measure if and only if P has a countable equivalent subset.

Proof. Suppose first that Y has a countable equivalent subset

{P,, P,,°:*}. Then # is dominated by w = XP,/2". Conversely let

P be dominated by a o-finite measure u, which withoutloss of generality

can be assumedto befinite. Let 2 be the class of all probability measures
Q of the form Xc,P,, where P; € Y, the c’s are positive, and uc; = 1.

The class 2 is also dominated by pu, and we denote by q a fixed version

of the density dQ/du. Weshall prove the fact, equivalent to the theorem,

that there exists Q, in 2, such that Q,(A) = 0 implies Q(A) = 0 for

all O € J.

Considerthe class @ of sets C in . for which there exists Q €2 such that

g(x) > 0 ae. w on C and Q(C)>0. Let u(C;) tend to supy “(C), let

gx) > 0 a.e. on C,, and denote the union of the C; by Cy. Then q(x) =

Xc,q,(z) agrees a.e. with the density of Qj = Xc;Q; and is positive a.e.

on Cy, so that C) €@. Suppose now that Q,(A) = 0, let Q be any other

memberof 2, and let C = {x: q(x) > 0}. Then Q,(A N Cy) = 0, and

therefore u(A A C,) = Oand O(A NC,) = 0. Also QA NCy AC) =

0. Finally, Q(A A Cy NC) > 0 would lead to u(Cy U [A 9 Cy 1 C))

> p(C,) and henceto a contradiction of the relation u(Co) = supg u(C)

since A (1 Cy O C and therefore Cy U [A M Cy A C] belongs to @.

4. THE WEAK COMPACTNESS THEOREM

The following theorem forms the basis for proving the existence of

most powerful tests, most stringenttests, etc.

Theorem 3. (Weak compactness theorem.) Let m be a o-finite

measure over a Euclidean space or more generally over any measurable

space (#, XL) for which x has a countable number of generators. Then

the set of measurable functions ¢ with O< ¢ <1 is compact with respect

to the weak convergence (2).

Proof. Given any sequence {¢,}, we must prove the existence of a
subsequence {¢,,} and a function ¢ such that

im|$4,2 du ={op du

+ Halmosand Savage,“Application of the Radon-Nikodym theorem to the theory of

sufficient statistics,’ Ann. Math. Stat., Vol. 20 (1948), pp. 225-241.

+ Banach, Théorie des opérations linéaires, Warszawa, Fundusg Kultury Narodowej,

1932, p. 131. |
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for all integrable p. If u* is a finite measure equivalent to « then p*
is integrable «* if and only ifp = (du*/dy)p*is integrable uw, and {dp du =
{¢p* du* for all 6. We maytherefore assume without loss of generality
that yw is finite. Let {p,,} be a sequence of p’s, which is dense in the p’s
with respect to convergence in the mean. The existence of such a sequence
is guaranteed by Theorem | and the remark followingit. If

®,(p) ={PnP Ae

the sequence ®,(p) is bounded for each p. A subsequence ®, can be
extracted such that ®,(p,,) converges for each p,, by the following
diagonal process. Consider first the sequence of numbers {®,(p,)}
which possesses a convergent subsequence Dy(Pr), Pn(pPy),***. Next
the sequence ®,,(Pa), ®,.(P2), - has a convergent subsequence Pie(Pa)s
®,-(P2),***. Continuing in this way let n, = nj, ng = n),n, = n,-+-.
Then nm, <n, <-->, and the sequence {®,,} converges for each p,,.
It follows from the inequality

[(@., = $0i < [s,— bun ay +21] — pal de
that ©,(p) converges for all p. Denoteits limit by ®(p), and define a
set function D* over by putting

Then ®* is nonnegative and bounded since for all A, ®*(A) < p(A).
To see that it is also countably additive let A = UA, where the A, are
disjoint. Then ®*(A) = lim OF(UA,) and

, du — 3O*(A,)
UA,   

S l Pn, du — 2°*(A,)

UA. -k
k =1

+

  k=m+1
| $,,du— > O*A,)
=

k

k=m+1

Here the second term is to be taken as zero in the case of a finite sum
A = U;-14;, and otherwise does not exceed 2u(U?-m+14,), which can
be madearbitrarily small by taking m sufficiently large. For any fixed
m the first term tends to zero as i tendsto infinity. Thus ®* is a finite
measure over (%,.V). It is furthermore absolutely continuous with



356 THE WEAK COMPACTNESS THEOREM

respect to u, since (A) = 0 implies ®,,(74) = 0 for all i, and therefore

O(/_,) = @*(A) = 0. We can now apply the Radon-Nikodym theorem

to get

@*(A) =| é@du forall A,
A

withhO<¢@<1. Wethen have

| du| ddu forall A,
A A

and weak convergence of the ¢,to ¢ follows from Lemma 3.
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Absolute continuity, 36

Acceptance sampling, see Sample in-
spection

Additivity of effects, 277; test for, 280;

in modelII, 287

Admissibility, 16; of unbiased and in-

variant procedures, 25; of UMP un-

biased tests, 150; of UMP invariant

tests, 231; of t- and T2-test, 232; lo-

cal, 232; of likelihood ratio tests,

232, 252

Almost everywhere (a.e.), 35, 130

Almost invariance: of decision pro-

cedures, 23; of tests, 225; relation to

invariance, 225, 252; relation to in-

variance of power function, 227; re-

lation to unbiasedness, 229; of likeli-

hood ratio, 252; of sets, 253; relation

to maximin tests, 333

Analysis of covariance, 286, 322

Analysis of variance, 273, 322; for one-

way Classification, 273; for two-way

classification, 278, 281; randomiza-

tion in, 282; different models for,

286; in model II, 292. See also Lin-

ear hypothesis, univariate

Arc sine transformation for binomial

variables, 315, 322

Association, measures of, 145; corner

test for, 259

Attributes, sample inspection by, 70,

222; paired comparisons by, 219,

331, 341

Average power, maximum, 313
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Bartlett’s test for equality of variances,
275

Bayesrisk, 13

Bayes solution, 13, 23, 25; restricted,

14; for sequential two-decision prob-
lems, 104

Behrens-Fisher problem, 170, 230, 261,

262, 263, 264

Beta distribution, 170; relation to F-

distribution, 170; in testing ratio of

variances, 170, 201; as distribution

of orderstatistics, 255; in testing lin-

ear hypotheses, 268; noncentral, 269,

312

Bimeasurable transformation, 215

Binomial distribution, 2; sufficient sta-

tistics for, 18, 26; as exponential fam-

ily, 70; completeness of, 131; in com-

paring two Poisson distributions,

141; arcsine transformation for, 315,

322. See also Multinomial distribu-

tion; Negative binomial distribution

Binomial probabilities: one-sided test

for, 70, 111, 148, 250; confidence

bounds for, 81, 113; sequential prob-

ability ratio test for, 100, 103, 118,

250; two-sided test for, 114, 128,

147, 150; comparison of two, 117,

143, 154, 205; comparison of k, 275.

See also Contingency table; Median;

Paired comparisons; Sample inspec-

tion; Sign test

Binomial probability paper, 111

Bioassay, 157

Bivariate normal distribution, 197; test
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of independence in, 197; test for

ratio of variances in, 208; test for

equality of means in, 208; joint dis-

tribution of second moments in, 209.

See also Multivariate normal distri-

bution
Bivariate normal distribution: the cor-

relation coefficient, distribution of,

208, 209; test for, 251; confidence

bounds for, 260

Borelsets, 31

Bounded completeness,

completeness, 152.

pleteness

134; without

See also Com-

Canonical form: for univariate linear

hypothesis, 266, 271; for nested

classification in model II, 290, 317;

for multivariate linear hypothesis,

295
Cartesian product of sets, 36

Cauchy distribution, 75, 331, 342

x2-distribution, 50; test of scale param-

eter in, 129, 150; in tests of homoge-

neity, 274; in linear hypotheses with

known covariance matrix, 304, 315;

noncentral, 304, 312, 315; in multi-

variate analysis, 318, 319. See also

Exponential distribution; Life testing;

Normal distribution: the variance;

Poisson process

x2-test, 303, 306, 321, 322

Combination of tests, 150

Compact space, 350
Comparison of experiments, 75, 112;

for testing independence in a 2 X 2

table, 76, 146; for sample inspection,

78, 250; for testing the scale of a

Poisson process, 112; for testing con-

sumer preferences, 148; in regression

analysis, 182; for comparing two

treatments, 206. See also Design of

experiments; Sample size

Complete class: of decision procedures,

16; relation to sufficiency, 57; of one-

sided tests, 72; of two-sided tests,

151

Completeness: of a family of distribu-

tions, 131; of binomial distributions,

131; of uniform distributions, 131,
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152; of exponential families, 132; of

order statistics, 133, 153; relation to

bounded completeness, 134, 152

Completion of a measure, 31

Components of variance, 292

Composite hypothesis, 63

Concomitant variable, 286

Conditional distribution, 43

Conditional expectation, 40; proper-

ties of, 42; as integral, 45

Conditional power, interpretation of,

139
Conditional probability, 42
Conditional test, 136, 157

Confidence coefficient, 78, 174

Confidence level, 78

Confidence sets, 5, 79, 82, 174; uni-

formly most accurate, 78, 113; rela-

tion to tests, 79, 81, 174; empty, 82,

289; relation to median unbiasedesti-

mates, 83, 174; uniformly most ac-

curate unbiased, 177; which are not

intervals, 182; uniformly most ac-

curate invariant, 243, 259

Consistent sequence of tests, 305

Consumer preferences, 147
Contingency table, 76, 113, 144, 321

Convergence: in the mean, 349; weak,

349; pointwise, 350

Convergence theorem: bounded, 35;

monotone, 35; of Cramér, 167; for

densities, 351

Corner test for association, 259

Correlation coefficient: in bivariate

normal distribution, 208, 209, 251,

260; rank, 259; intraclass, 317; mul-

tiple, 320

Countable additivity, 30

Countable generators of a o-field, 353
Counterexamples: to existence of non-

randomized or invariant minimax

procedure, 24; to nested acceptance

regions, 116; to concavity of power

as function of sample size, 119; to

existence of nontrivial unbiased test,

151; to bounded completeness im-

plying completeness, 152; to convex-

ity of optimum confidence sets, 182;

to admissibility or minimax property

of UMPinvariant test, 231, 338; to
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admissibility of likelihood ratio test,
252

Counting measure, 31

Cramér-von Mises test, 240, 247

Critical function, 62

Critical level, 62, 111, 150

Critical region, 60

Cumulative distribution function, 32,

56; sample, 240; confidence bands

for, 246, 260

Decision rule, 1

Decision space, 2

Dense subset, 350

Dependence: positive, 77, 145, 198,
210, 233; measures of, 145

Design of experiments, 7, 146, 282,

346. See also Comparison of ex-
periments

Direct product, 36

Distribution, see the following families

of distributions: Beta; Binomial; Bi-

variate normal; Cauchy; x2; Double

exponential; Exponential; F; Hyper-

geometric; Monotone likelihood ra-

tio; Multinomial; Multivariate nor-

mal; Negative binomial; Poisson:

Polya type; Student’s ¢; T2; Uniform

Dominated family of distributions, 48,

352

Double exponential distribution, 331,

344

Efficiency, relative asymptotic, 239

Envelope power function, 252, 340

Equivalence: of statistics, 39; of fami-

lies of measures, 353

Equivalence classes, 348

Equivalence relation, 348

Equivalent family of distributions, 48

Errors of first and second kind, 60

Estimation, see Confidence sets; Maxi-

mum likelihood; Median unbiased

estimate; Unbiasedness

Euclidean space, 43

Expectation, 34; conditional, 40, 42, 45

Exponential distribution, 21; relation to

Poisson process, 21, 71, 142; suffi-

cient statistics for, 26; order statis-

tics from, 57; confidence bounds and
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tests for location and scale param-

eter in, 80, 110, 111, 202, 204, 211;
two-sample problem for, 249, 262;

k-sample problem for, 264. See also
Life testing

Exponential family of distributions, 50;

natural parameter space of, 51, 58;

analyticity of integrals w.r.t., 52;

moments of sufficient statistics for,

58; testing one-parameter, 70; com-

pleteness of, 132; testing multipa-
rameter, 134, 151; equivalent forms
for, 139; admissibility of tests in,
232

F-distribution, 169; in confidence inter-

vals and tests for ratio of variances,

169, 178; relation to B-distribution,

170; in testing linear hypotheses,

268; noncentral, 269, 293, 304, 312;

in model II analysis of variance, 288,

291; relation to T2-distribution, 300;

relation to distribution of multiple
correlation coefficient, 320

Factorization theorem for sufficient sta-
tistics, 18, 26, 49

Fiducial inference, 121, 123

Fisher-Irwin test for independence in
2X 2 tables, 146

Fisher-Yates test, 236, 239

Fubini theorem, 36

Fundamental lemma of Neyman and
Pearson, 64; generalized, 83, 121

Goodness offit, test of, 247. See also
x°-test

Group, 348; finite, 24, 334, 335; free,
24; permutation, 207; translation,
216, 337; transitive, 216; orthogonal,

216, 335, 349; full linear, 338

Guaranteed power: in sequential prob-
ability ratio tests, 101; achieved
through sequential procedures, 140,
142, 204; with minimal sample size,
327

Haar measure, 226, 335

Hierarchical classification, 290, 317
Homogeneity, test of: for Poisson dis-

tributions, 158, 275; for exponential



364

distributions, 264; for normal distri-

butions, 272, 273; for binomial dis-

tributions, 275

Hotelling’s T2, see T2-distribution;, T?-

test

Hunt-Stein theorem, 336, 345
Hypergeometric distribution, 70; UMP

one-sided test for testing mean of,
70; in testing equality of two bi-

nomials, 143; in testing for inde-

pendence in a 2 <2 table, 146

Independence, 36; test of, in contin-

gency tables, 76, 143, 321; of a sta-

tistic from a complete sufficient sta-

tistic, 162; test of, in bivariate nor-

mal distributions, 198, 251; nonpa-

rametric hypothesis of, 198, 233,

235; nonparametric test of, 259

Indicator function, 35
Integrable function, 34
Interactions, 280; test for absence of,

280; in mixed models, 302

Into, 32
Intraclass correlation, 317

Invariance: of a decision procedure,

11, 23, 24, 25, 29; relation to un-

biasedness, 23, 228; relation to mini-

max principle, 24, 333, 336; of a

test, 215; of a measure, 226, 334;

of power functions, 227; of confi-

dence sets, 243, 246, 259, 260; rela-

tion to sufficiency, 251, 253; of like-

lihood ratio, 252; warning against

inappropriate use of, 275. See also

Almost invariance

Invariant measure, 226, 334; over

orthogonal group, 335
Inverse sampling: for binomial trials,

71; in the Poisson case, 71

k-sample problem, see Homogeneity,

test of

Kendall’s t-statistic, 259

Kolmogorov test for goodness of fit,

247

Laplace distribution, see Double expo-

nential distribution

Latin square, 282, 316

SUBJECT INDEX

Least favorable distribution, 17, 91,

328
Least squares estimates, 270

Lebesgue convergence theorems, 35

Lebesgue measure, 31
Level of significance, 61, 221. See also

Critical level

Life testing, 57, 121. See also Expo-

nential distribution; Poisson process

Likelihood, 15

Likelihood ratio test, 15, 25, 28; invari-

ance of, 252; example of inadmis-

sible, 252; large sample theory of,

310, 311, 321
Linear hypothesis, multivariate, 294;

canonical form for, 295; reduction

of, through invariance, 296, 318;

properties of test for, 299, 300, 339;

extension of, 300; likelihood ratio

test of, 300; with known covariance

matrix, 304; power of test for, 319.

See also Multivariate normal distri-

bution; T?-test

Linear hypothesis, univariate, 265;

canonical form for, 266; optimum

properties of test for, 268, 313, 338,

341, 343; power of test for, 269; ex-

tensions of, 271, 314; confidence sets

in, 278, 314; permutation test for,

282; with known variance, 315. See

also Analysis of variance; Mixed

model; Model II; One-way classifica-

tion; Regression; Two-way classifica-

tion; etc.

Local optimum properties of tests, 114,

159, 329, 342, 346

Location parameter:

through invariance,

for, 263, 330
Location parameter family of distribu-

tions: is stochastically increasing, 73;

condition for, to have monotone

likelihood ratio, 330

Logarithmic transformation, 274, 322

Logistic distribution, 236, 238, 256, 331

Loss function, 1; specification of, 5;

for one-sided tests, 72, 221; for con-

fidence bounds, 78, 113; for confi-

dence intervals, 82, 182; for median

elimination of,

218, 248; test
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unbiased estimates, 83; for two-

sided tests, 151

Markovchain, 155

Matched pairs, see Paired comparisons

Maximal invariant, 215; in steps, 217

Maximin test, 327; local, 329, 342; re-

lation to invariance, 333; existence

of, 341

Maximum F-ratio, 276

Maximum likelihood, 15, 25, 310, 321

Measurable: space, 31; set, 31; trans-

formation, 32

Median: confidence bounds for, 116,

123; tests for, 159, 264

Median unbiased estimate, 22; relation

to confidence bounds, 83, 174; ex-

amples of, 175, 178

Metric space, 350

Minimal complete class of decision
procedures, 16

Minimal sufficient statistic, 21, 26, 59

Minimax principle, 13, 17; relation to
unbiasedness, 24, 329: relation to

invariance, 24, 333, 336; in hypothe-

sis testing, 327. See also Maximin
test

Mixed model, 286; for nested classi-

fication, 292; two-factor, 293, 301

Model I in analysis of variance, 286

Model II in analysis of variance, 286,
290, 317

Monotoneclass of sets, 54

Monotone likelihood ratio, 68; of hy-

pergeometric distribution, 70; impli-

cations of, 74; conditions for, 111; of

noncentral ¢, 223; of distribution of

correlation coefficient, 251; of non-

central x2 and F, 312; tests based on

samples from a distribution with,

330; of location parameter families,

330; of mixture of distributions, 343

Most stringent test, 239, 339, 345

Multinomial distribution, 51; as condi-

tional distribution, 57; in testing

consumer preferences, 147; y2-tests

in, 305; limiting distribution of, 305;

maximum likelihood estimates of pa-

rameters of, 321

365°

Multiple correlation coefficient, 320;
distribution of, 320; optimum test of,
320, 324, 347

Multiple decision procedures, 4; for
ranking a set of normal means or

variances, 276. See also Three-de-
cision problems

Multivariate analysis, 322. See also

Linear hypothesis, multivariate; Mul-

tiple correlation coefficient
Multivariate linear hypothesis, see Lin-

ear hypothesis, multivariate
Multivariate normal distribution, 294;

testing the mean vector of, 300; test-

ing equality of two mean vectors,

300; testing equality of the compo-
nents of the mean vector, 301; test-

ing symmetry in the mean vector,
301; as limit of a multinomial dis-
tribution, 305; testing independence
of two sets of variates in, 320. See
also Bivariate normaldistribution

Natural parameter space of an expo-
nential family, 51

Negative binomial distribution, 21, 71
Nested classification, 290, 317

Newton’s identities, 42

Neyman-Pearson fundamental lemma,
64; generalized, 83, 121

Neymanstructure, tests of, 130, 134
Noncentral: t-distribution, 166, 200,

223, 250; F-distribution, 269, 293,
304, 312; x?-distribution, 304, 312,
315; beta distribution, 312

Nonparametric tests: surveys of, 261;
bibliography of, 263. See also Per-
mutation test; Rank test; Sign test

Normaldistribution, 3; sufficient statis-
tics for, 20

Normal distribution, the mean: non-
existence of UMPtest for, 97; test
for, based on random sample size,
119; optimum test for, 165, 201, 222,
230, 232, 251, 271; robustness of
test for, 168; confidence intervals
for, 175, 245; median unbiased esti-
mate of, 175; nonexistence of test
with controlled power, 200; two-
Stage confidence intervals of fixed
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length, 204; two-stage test with con-

trolled power, 204; test and confi-

dence bounds for standardized, 222,

230, 250, 260; sequential test for,

250. See also Paired comparisons;

Permutation test; Student’s ¢-distri-

bution; Symmetry
Normal distribution, the variance: op-

timum test for, 95, 129, 164, 168,

219, 332, 344; confidence intervals

for, 177, 260; sequential test for,

201
Normal distribution, two samples:

testing equality of means (variances

equal), 117, 171, 188, 210, 224, 272;

testing equality of variances, 117,

169, 173, 201, 228, 249; testing equal-

ity of means (variances unequal),

170, 230; confidence intervals for

difference of means, 177; confidence

intervals for ratio of variances, 178,

259; permutation test for difference

of means, 188, 196, 345; compari-

son with matched pairs, 206; two-

stage test for difference of means,

210. See also Behrens-Fisher prob-

lem; Homogeneity, test of; Stu-

dent’s ¢t-distribution

Normal subgroup, 248

Null set, 43

One-way classification, 272; in model

II, 286

Onto, 11, 32
Orbit of a transformation group, 215
Order statistics, 41; equivalent to sums

of powers, 41; as sufficient statistics,

56; completeness of, 133, 153; in

permutation tests, 184; as maximal

invariants, 216; expected values of,

236; distribution of, 255

Paired comparisons: normal theory

and permutation tests for, 192, 206;

generalization of, 193; comparison

with complete randomization, 206;

by attributes, 219, 331, 341; rank

tests for, 233, 234, 240
Pairwise sufficiency, 56

Permutation test, 184, 207; most pow- .
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erful, for nonparametric hypothesis,

184, 199; approximated by standard

normal tests, 189, 199; most power-

ful, in randomization model, 195;

confidence intervals based on, 205;

most. stringent, 345
Poisson distribution, 3; sufficient sta-

tistics for, 19; as distribution of sum

of Poisson variables, 57; one-sided
test for mean of, 71, 112; in testing

sum of Poisson parameters, 116;

two-sample problem for, 141, 154;

k-sample problem for, 158, 275;

confidence intervals for ratio of
means of two, 180; square root

transformation for, 315

Poisson process, 3; distribution of

waiting times in, 21; test for scale

parameter in, 71, 112; comparison

of experiments for, 77, 112; confi-

dence bounds for scale parameter

of, 80; comparison of two, 142. See

also Exponential distribution

Pélya type distribution, 74, 115, 122

Positive dependence, 77, 145, 198, 210,

235
Positive part of a function, 34

Power function, 61; of one-sided test,

69, 114; of two-sided test, 89; of

sequential probability ratio test, 101,

102; estimation of, 140; of invariant

test, 227

Powerof a test, 61
Preference ordering of decision pro-

cedures, 9, 12

Probability density, 35;

theorem, 351

Probability distribution of a random

variable, 32

Probability integral transformation, 238

Product measure, 36

convergence

Radon-Nikodym derivative, 35; prop-

erties of, 54
Radon-Nikodym theorem, 36

Random variable, 32; relation to sta-

tistic, 33

Randomization: to lower the maximum

risk, 24; possibility of dispensing

with, 110; as a basis for inference,
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190; relation to permutation tests,
192

Randomized: decision procedure, 6;

invariant decision procedure, 24:

test, 62, 81; confidence sets, 81

Randomness: hypothesis of, 235; test
of, 258

Rank correlation coefficient, 259

Ranks, 217; as maximalinvariants, 217,

234; distribution of, 237, 254, 255,

257, 258
Rank-sum test, 157, 158. See also Wil-
coxon test

Rank test: for two-sample problem,
236, 253, 257; for hypothesis of

symmetry, 241, 257; for hypothesis

of randomness, 258; for hypothesis
of independence, 259

Rectangular distribution, see Uniform
distribution

Regression: test for, coefficients, 181,

266, 283, 317; confidence intervals

for, 181, 205, 284; confidence sets

for abscissa of, line, 182; elimina-

tion of, coefficients, 249; polynomial,

284, 317; comparing, lines, 284, 317;

relation to analysis of covariance,

286; in a multivariate distribution,

320

Restricted Bayes solution, 14
Restricted y2-test, 307

Risk function, 2

Robustness of tests, 168, 173

Runs: for testing independence in a

Markov chain, 155; distribution of,

156

Sample, 3; stratified, 183; haphazard,
190

Sample cumulative distribution func-
tion, 240, 246

Sample inspection: by attributes, 70,
222, 250; choice of inspection strin-

gency for, 78; by variables, 92, 222,

249; for comparing two products,
147, 224; comparison of two meth-

ods for, 250

Sample size: of sequential probability
ratio tests, 103, 118; increased power

through randomization of, 119;

367

minimum, with guaranteed power,
327

Sample space, 33; for sequential anal-
ysis, 353

Scale parameter: elimination of,
through invariance, 249: test for,
263, 331

Selection procedures, 114, 121

Separable space, 350
Sequential probability ratio test, 97,

100; power function of, 101, 102,
118; sample size of, 103, 118; opti-
mum property of, 104; for compar-
ing two binomial distributions, 154;
for comparing two variances, 201

Sequential procedures: advantages of,
7; to obtain guaranteed power, 140;
for comparing two Poisson distribu-
tions, 142. See also Inverse sam-
pling; Stein’s two-stage procedure

Sequential t-test, 250
Shift, confidence intervals for: based
On permutation tests, 205; based on
rank tests, 256. (For tests of shift,
see Two-sample problem, nonpara-
metric.)

g-field, 31; with countable generators,
353

o-finite, 31
Sign test, 93: for testing consumer

preferences, 147; treatment of ties
in, 148; for testing point of sym-
metry, 149, 343; for paired com-
Parisons, 220; for testing hypothesis
of symmetry, 242; for testing double
exponential distribution, 344. See
also Binomial probabilities; Median;
Sample inspection

Significance level, 61, 221.
Critical level

Similar test, 125, 130; relation to un-
biasedness, 125; characterization of,
134

Simple function, 33
Simple hypothesis, 63
Size of a test, 61
Smirnov test for two-sample problem

240, 248
Square root transformation for Poisson

variables, 315, 322

See also



368

Stationarity, 155

Statistic, 33; subfield induced by a, 37;

equivalent representations of a, 39;

fully informative, 111

Stein’s two-stage procedure, 203

Stochastic process, 121, 122. See also

Poisson process
Stochastically increasing, 73, 233

Stratified sample, 183

Strictly unbiased test, 128

Studentized range, 276

Student’s ¢-distribution, 166; noncentral,

166, 200, 223, 250; in two-sample

problem, 172; in regression analysis,

181, 283; in paired comparisons,

192, 206; in two-stage sampling,

203; as conditional distribution of

function of correlation coefficient,

208; in linear hypothesis with one

constraint, 269. See also Normal

distribution, the mean; Normal dis-

tribution, two samples

Student’s t-test: as likelihood ratio test,

25; is UMP for a= ¥, 97; is UMP

unbiased, 166, 172; robustness of,

168, 173; relation to permutation

test, 189; power of, 199, 200; is

UMP invariant, 224; admissibility

of, 232; efficiency of, relative to

rank tests, 239. See also Sequential

t-test

Sufficient experiment, 76

Sufficient statistic, 17, 47; factorization

criterion for, 18, 26, 49; definition

of, in terms of a posteriori distribu-

tion, 20; minimal, 21, 26; likelihood

ratio as, 56; pairwise, 56; relation to

fully informative statistic, 111; in

the presence of nuisance parameters,

117; independence from a, 162; rela-

tion to invariance, 251; asymptot-

ically, 310

Symmetry: relation to invariance, 10,

213: sufficient statistics for distribu-

tion with, 56; hypothesis of, with

respect to zero, 149, 206, 234, 241,

257, 343

T2-distribution, 300, 319; in two-sam-

ple problem, 300; in testing sym-
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metry, 301; application to two-factor

mixed model, 302

T2-test: admissibility of, 232; is UMP

invariant, 299, 318; maximin prop-

erty of, is an open question, 339

Test, 60; randomized, 62, 81; uniformly

most powerful (UMP), 63; of type

A, 123, 346; of type A,, 123; un-

biased, 125; similar, 125, 130; strictly

unbiased, 128; of type B, 158, 346;

of type B,, 158; locally most pow-

erful (LMP), 159, 342; invariant,

215; almost invariant, 225; maximin,

327; locally maximin, 329; most

stringent, 340, 345; of type D, E, 342

Three-decision problems, 88, 141

Ties in sign test, 148
Transformation: of integrals, 39; prob-

ability integral, 238; variance sta-

bilizing, 274, 322; logarithmic, 274;

arc sine, 315; square root, 315

Transitive transformation group, 216

Trend, test for absence of, 258

Two-sample problem, nonparametric:

permutation test for, 183, 188; con-

fidence intervals for shift in, 205,

256; rank test of, against one-sided

and two-sided alternatives, 233, 236,

240; rank test of, against general

alternatives, 240, 257

Two-sample problem, parametric, see

Binomial distribution; Exponential

distribution; Normal distribution;

Poisson distribution

Two-way classification: with one ob-

servation per cell, 276; confidence

intervals in, 278; with m observa-

tions per cell, 279; mixed modelfor,

293, 301. See also Interactions;

Nested classification

Type of test, see Test

Unbiasedness: of decision procedures,

11; of tests, 12, 125; of confidence

sets, 12, 176; of point estimates, 12,

22, 140; median, 22, 83; relation of,

to invariance, 23, 228; relation of,

to minimax principle, 24, 329; rela-

tion of, to similarity, 125; strict, 128

Undetermined multipliers, 87, 114
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Uniform distribution, 22; estimating Waiting times, see Exponential distri-
the mean of, 7; sufficient statistics bution; Poisson process
for, 20, 26, 151; test for scale pa- Wald’s equation, 103, 119
rameter of, 110; relation to expo- Weak compactness theorem, 354
nential distribution, 110; complete-  wijcoxon Statistic: table of distribu-ness of, 131, 151; of critical level, tion of, 157; expectation and vari-
150; of probability integral, 238, ance of, 253; symmetry of, 256254; order statistics from, 255; test- Wilcoxon test: two-sample, 157, 236,ing that a distribution is, 306, 308 238, 253, 256: relative asymptotic

Uniformly most accurate, see Confi- efficiency of, 239: one-sample, 241,dence sets
;Uniformly most powerful (UMP), see 258; confidence intervals based on,

Test 256

Van der Waerden’s test, 239 Yule’s measure of association, 145
°
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