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Preface

A mathematical theory of hypothesis testing in which tests. are
derived as solutions of clearly stated optimum problems was developed
by Neyman and Pearson in the 1930’s and since then has been con-
siderably extended. The purpose of the present book is to give a sys-
tematic account of this theory and of the closely related theory of con-
fidence sets, together with their principal applications. These include
the standard one- and two-sample problems concerning normal, bi-
nomial, and Poisson distributions; some aspects of the analysis of vari-
ance and of regression analysis (linear hypothesis); certain multivari-
ate and sequential problems. There is also an introduction to non-
parametric tests, although here the theoretical approach has not yet
been fully developed. One large area of methodology, the class of
methods based on large-sample considerations, in particular x? and like-
lihood ratio tests, essentially has been omitted because the approach
and the mathematical tools used are so different that an adequate treat-
ment would require a separate volume. The theory of these tests is only
briefly indicated at the end of Chapter 7.

At present the theory of hypothesis testing is undergoing important
changes in at least two directions. One of these stems from the realiza-
tion that the standard formulation constitutes a serious oversimplifica-
tion of the problem. The theory is therefore being re-examined from
the point of view of Wald’s statistical decision functions. Although
these investigations throw new light on the classical theory, they essen-
tially confirm its findings. I have retained the Neyman-Pearson formu-
lation in the main part of this book but have included a discussion of
the concepts of general decision theory in Chapter 1 to provide a basis
for giving a broader justification of some of the results. It also serves
as a background for the development of the theories of hypothesis test-

ing and confidence sets.
vii



viii PREFACE

Of much greater importance is the fact that many of the problems,
which traditionally have been formulated in terms of hypothesis testing,
are in reality multiple decision problems involving a choice between
several decisions when the hypothesis is rejected. The development of
suitable procedures for such problems is at present one of the most im-
portant tasks of statistics and is finding much attention in the current
literature. However, since most of the work so far has been tentative,
I have preferred to present the traditional tests even in cases in which
the majority of the applications appear to call for a more elaborate pro-
cedure, adding only a warning regarding the limitations of this ap-
proach. Actually, it seems likely that the tests will remain useful be-
cause of their simplicity even when a more complete theory of multiple
decision methods is available.

The natural mathematical framework for a systematic treatment of
hypothesis testing is the theory of measure in abstract spaces. Since
introductory courses in real variables or measure theory frequently pre-
sent only Lebesgue measure, a brief orientation with regard to the ab-
stract theory is given in Sections 1 and 2 of Chapter 2. Actually, much
of the book can be read without knowledge of measure theory if the
symbol [ p(x) du(x) is interpreted as meaning either [ p(x)dx or
3p(x), and if the measure theoretic aspects of certain proofs together
with all occurrences of the letters a.e. (almost everywhere) are ignored.
With respect to statistics, no specific requirements are made, all statis-
tical concepts being developed froia the beginning. On the other hand,
since readers will usually have had previous experience with statistical
methods, applications of each method are indicated in general terms
but concrete examples with data are not included. These are available
in many of the standard textbooks.

The problems at the end of each chapter, many of them with outlines
of solutions, provide exercises, further examples, and introductions to
some additional topics. There is also given at the end of each chapter
an annotated list of references regarding sources, both of ideas and of
specific results. The notes are not intended to summarize the principal
results of each paper cited but merely to indicate its significance for
the chapter in question. In presenting these references I have not
aimed for completeness but rather have tried to give a usable guide to
the literature.

An outline of this book appeared in 1949 in the form of lecture
notes taken by Colin Blyth during a summer course at the University
of California. Since then, I have presented parts of the material in
courses at Columbia, Princeton, and Stanford Universities and several
times at the University of California. During these years I greatly
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benefited from comments of students and 1 regret that I cannot here
thank them individually. At different stages of the writing 1 received
many helpful suggestions from W. Gautschi, A. Hgyland, and L. J.
Savage, and particularly from Mrs. C. Striebel, whose critical reading
of the next to final version of the manuscript resulted in many improve-
ments. Also, I should like to mention gratefully the benefit 1 derived
from many long discussions with Charles Stein.

It is a pleasure to acknowledge the generous support of this work
by the Office of Naval Research; without it the book would probably
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CHAPTER 1

The General Decision Problem

1. STATISTICAL INFERENCE AND STATISTICAL
DECISIONS

The raw material of a statistical investigation is a set of observations;
these are the values taken on by random variables X whose distribution
P, is at least partly unknown. Of the parameter 0, which labels the
distribution, it is assumed known only that it lies in a certain set Q, the
parameter space. Statistical inference is concerned with methods of using
this observational material to obtain information concerning the distribu-
tion of X or the parameter 6 with which it is labeled. To arrive at a more
precise formulation of the problem we shall consider the purpose of the
inference.

The need for statistical analysis stems from the fact that the distribution
of X, and hence some aspect of the situation underlying the mathematical
model, is not known. The consequence of such a lack of knowledge
is uncertainty as to the best mode of behavior. To formalize this,
suppose that a choice has to be made between a number of alternative
actions. The observations, by providing information about the distri-
bution from which they came, also provide guidance as to the best
decision. The problem is to determine a rule which, for each set of
values of the observations, specifies what decision should be taken.
Mathematically such a rule is a function 6, which to each possible value
x of the random variables assigns a decision d = d(z), that is, a function
whose domain is the set of values of X and whose range is the set of
possible decisions.

In order to see how 4 should be chosen, one must compare the con-
sequences of using different rules. To this end suppose that the con-
sequence of taking decision d when the distribution of X is P, is a /oss,
which can be expressed as a nonnegative real number L(f, d). Then
the long-term average loss that would result from the use of 4 in a number
of repetitions of the experiment is the expectation E[L(0, 6(X))] evaluated

1



2 THE GENERAL DECISION PROBLEM [1.1

under the assumption that P, is the true distribution of X. This expecta-
tion, which depends on the decision rule  and the distribution Py, is
called the risk function of 6 and will be denoted by R(6, §). By basing
the decision on the observations, the original problem of choosing a -
decision d with loss function L(6, d) is thus replaced by that of choosing
& where the loss is now R(, d).*

The above discussion suggests that the aim of statistics is the selection
of a decision function which minimizes the resulting risk. As will be
seen later, this statement of aims is not sufficiently precise to be meaningful ;
its proper interpretation is in fact one of the basic problems of the theory.

2. SPECIFICATION OF A DECISION PROBLEM

The methods required for the solution of a specific statistical problem
depend quite strongly on the three elements that define it: the class
P = {Py, 0 € Q} to which the distribution of X is assumed to belong;
the structure of the space D of possible decisions d; and the form of the
loss function L. In order to obtain concrete results it is therefore necessary
to make specific assumptions about these elements. On the other hand,
if the theory is to be more than a collection of isolated results, the assump-
tions must be broad enough either to be of wide applicability or to define
classes of problems for which a unified treatment is possible.

Consider first the specification of the class Z. Precise numerical
assumptions concerning probabilities or probability distributions are
usually not warranted. However, it is frequently possible to assume
that certain events have equal probabilities and that certain others are
statistically independent. Another type of assumption concerns the
relative order of certain infinitesimal probabilities, for example the
probability of occurrences in an interval of time or space as the length
of the interval tends to zero. The following classes of distributions
are derived on the basis of only such assumptions, and are therefore
applicable in a great variety of situations.

The binomial distribution b(p, n) with

(1) PX=2)= (:)p’(l —p w=0,n; 0<p<LL
This is the distribution of the total number of successes in # independent
trials when the probability of success for each trial is p.

* Sometimes, aspects of a decision rule other than the expectation of its loss are also
taken into account.
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The Poisson distribution P(r) with
’Tx
) PX=z)=—e7, z=01" 0<m

This is the distribution of the number of events occurring in a fixed
interval of time or space if the probability of more than one occurrence
in a very short interval is of smaller order of magnitude than that of a
single occurrence, and if the numbers of events in nonoverlapping intervals
are statistically independent. Under these assumptions, the process
generating the events is called a Poisson process.*

The normal distribution N(£, 02) with probability density

1 1 2 .

3) pl) = \/Z_;UCXP l:— 262(95 &) ], —0 <z E<o0;0<a0.
Under very general conditions, which are made precise by the central
limit theorem, this is the approximate distribution of the sum of a large
number of independent random variables when the relative contribution
of each term to the sum is small.

We consider next the structure of the decision space D. The great
variety of possibilities is indicated by the following examples.

Example 1. Let X;,---, X, be a sample from one of the distributions
(1)~(3), that is, let the X’s be distributed independently and identically according
to one of these distributions. Let 6 be p, , or the pair (&, o) respectively, and
let ¥ = (0) be a real-valued function of 6.

(i) If one wishes to decide whether or not y exceeds some specified value y,,
the choice lies between the two decisions dy: v > yoand d;: ¥ = y,. In specific
applications these decisions might correspond to the acceptance or rejection of a
lot of manufactured goods, of an experimental airplane as ready for flight
testing, of a new treatment as an improvement over a standard one, etc. The
loss function of course depends on the application to be made. Typically, the
loss is O if the correct decision is chosen, while for an incorrect decision the
losses L(y, dy) and L(y, d,) are increasing functions of [y — o|.

(ii) At the other end of the scale is the much more detailed problem of
obtaining a numerical estimate of y. Here a decision d of the statistician is a
real number, the estimate of v, and the losses might be L(y, d) = v(»)w(|d — v|)
where w is a strictly increasing function of the error |[d — y|.

(iii) An intermediate case is the choice between the three alternatives dy: ¥y < v,
di:y >y, doi v = v =y, for example accepting a new treatment, rejecting it,
or recommending it for further study.

* Such processes are discussed in the books by Feller, An Introduction to Probability
Theory and Its Applications, Vol. 1, New York, John Wiley & Sons, 2nd ed., 1957, and
by Doob, Stochastic Processes, New York, John Wiley & Sons, 1953.
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The distinction illustrated by this example is the basis for one of the
principal classifications of statistical methods. Two-decision problems
such as (i) are usually formulated in terms of testing a hypothesis which
is to be accepted or rejected (see Chapter 3). It is the theory of this
class of problems with which we shall be mainly concerned. The other
principal branch of statistics is the theory of point estimation dealing
with such problems as (ii). The investigation of multiple-decision
procedures illustrated by (iii) has only begun in recent years.

Example 2. Suppose that the data consist of samples X;;, j =1, n,
from normal populations N(;, 6%),i =1, -, s.

(i) Consider first the case s = 2 and the question of whether or not there is a
material difference between the two populations. This has the same structure
as problem (iii) of the previous example. Here the choice lies between the three
decisions dy: [&, — &| = A, dy: & > & + A, dy: £, < & — A where A is pre-
assigned. An analogous problem, involving k + 1 possible decisions, occurs
in the general case of k populations. In this case one must choose between
the decision that the k distributions do not differ materially, dy: max |¢; — &| <A,
and the decisions d;: max |§; — &| > A and &, is the largest of the means.

(i) A related problem is that of ranking the distributions in increasing order
of their mean &.

(iii) Alternatively, a standard &, may be given and the problem is to decide
which, if any, of the population means exceed that standard.

Example 3. Consider two distributions—to be specific, two Poisson
distributions P(r;), P(r5)—and suppose that 7, is known to be less that 7, but
that otherwisethe 7’s are unknown. LetZ,, - - -, Z, be independently distributed,
each according to either P(r;) or P(r;). Then each Z is to be classified as to
which of the two distributions it comes from. Here the loss might be the
number of Z’s that are incorrectly classified, multiplied by a suitable function
of r; and 7,. An example of the complexity that such problems can attain and
the conceptual as well as mathematical difficulties that they may involve is
provided by the efforts of anthropologists to classify the human population into
a number of homogeneous races by studying the frequencies of the various
blood groups and of other genetic characters.

All the problems considered so far could be termed action problems.
It was assumed in all of them that if 6 were known a unique correct
decision would be available, that is, given any 6 there exists a unique d
for which L(f,d) = 0. However, not all statistical problems are so
clear-cut. Frequently it is a question of providing a convenient summary
of the data or indicating what information is available concerning the
unknown parameter or distribution. This information will be used for
guidance in various considerations but will not provide the sole basis
for any specific decisions. In such cases the emphasis is on the inference
rather than on the decision aspect of the problem, although formally
it can still be considered a decision problem if the inferential statement
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itself is interpreted as the decision to be taken. An important class of
such problems, estimation by interval,* is illustrated by the following
example.

Example 4. Let X = (Xy,- -, X,) be a_sample from N(&, 0% and let a
decision consist in selecting an interval [L, L] and stating that it contains &.
Suppose that decision procedures are restricted to intervals [L(X), L(X)] whose
expected length for all ¢ and o does not exceed ko where k is some preassigned
constant. An appropriate loss function would be 0 if the decision is correct
and would otherwise depend on the relative position of the interval to the true
value of £ In this case there are many correct decisions corresponding to a
given distribution N(&, 02).

It remains to discuss the choice of loss function, and of the three
elements defining the problem this is perhaps the most difficult to specify.
Even in the simplest case, where all losses eventually reduce to financial
ones, it can hardly be expected that one will be able to evaluate all the
short- and long-term consequences of an action. Frequently it is possible
to simplify the formulation by taking into account only certain aspects
of the loss function. As an illustration consider Example 1(i) and
let L(0,dy) = a for y(0) <y, and L(0, d)) = b for p(6) >y, The
risk function becomes

aPy {§(X) = do} if y<
bPy {0(X) = di} if y >y,

and is seen to involve only the two probabilities of error with weights
which can be adjusted according to the relative importance of these
errors.  Similarly, in Example 3 one may wish to restrict attention to the
number of misclassifications.

Unfortunately, such a natural simplification is not always available,
and in the absence of specific knowledge it becomes necessary to select
the loss function in some conventional way, with mathematical simplicity
usually an important consideration. In point estimation problems
such as that considered in Example 1(ii), if one is interested in estimating
a real-valued function y = y(f) it is customary to take the square of the
error, or somewhat more generally to put

) L, d) = v(0)(d — y)*.

Besides being particularly simple mathematically, this can be considered
as an approximation to the true loss function L provided that for each
fixed 0, L(0, d) is twice differentiable in d, that L(6, y(6)) = 0 for all 6,
and that the error is not large.

(4) R(0, 6) = {

* For the more usual formulation in terms of confidence intervals, see Chapter 3,
Section 5, and Chapter 5, Sections 4 and 5.
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It is frequently found that, within one problem, quite different types
of losses may occur, which are difficult to measure on a common scale.
Consider once more Example 1(i) and suppose that y, is the value of
when a standard treatment is applied to a situation in medicine, agri-
culture, or industry. The problem is that of comparing some new process
with unknown y to the standard one. Turning down the new method
when it is actually superior, or adopting it when it is not, clearly entails
quite different consequences. In such cases it is sometimes convenient
to treat the various components, say L;, L, * * *, L,, separately. Suppose
in particular that r = 2 and that L, represents the more serious possibility.
One can then assign a bound to this risk component, that is, impose the
condition

©® EL,0, (X)) < a,

and subject to this condition minimize the other component of the risk.
Example 4 provides an illustration of this procedure. The length of
the interval [L, L] (measured in o-units) is one component of the loss
function, the other being the loss that results if the interval does not
cover the true &.

3. RANDOMIZATION; CHOICE OF EXPERIMENT

The description of the general decision problem given so far is still
too narrow in certain respects. It has been assumed that for each possible
value of the random variables a definite decision must be chosen. Instead,
it is convenient to permit the selection of one out of a number of decisions
according to stated probabilities, or more generally the selection of a
decision according to a probability distribution defined over the decision
space; which distribution depends of course on what z is observed.
One way to describe such a randomized procedure is in terms of a non-
randomized procedure depending on X and a random variable Y whose
values lie in the decision space and whose conditional distribution given
z is independent of 6.

Although it may run counter to one’s intuition that such extra randomi-
zation should have any value, there is no harm in permitting this greater
freedom of choice. If the intuitive misgivings are correct it will turn
out that the optimum procedures always are of the simple nonrandomized
kind. Actually, the introduction of randomized procedures leads to
an important mathematical simplification by enlarging the class of risk
functions so that it becomes convex. In addition, there are problems
in which some features of the risk function such as its maximum can be
improved by using a randomized procedure.
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Another assumption that tacitly has been made so far is that a definite
experiment has already been decided upon so that it is known what
observations will be taken. However, the statistical considerations
involved in designing an experiment are no less important than those
concerning its analysis. One question in particular that must be decided
before an investigation is undertaken is how many observations should
be taken so that the risk resulting from wrong decisions will not be excessive.
Frequently it turns out that the required sample size depends on the
unknown distribution and therefore cannot be determined in advance
as a fixed number. Instead it is then specified as a function of the
observations and the decision whether or not to continue experimentation
is made sequentially at each stage of the experiment on the basis of the
observations taken up to that point.

Example 5. On the basis of a sample X7, - - -, X,, from a normal distribution
N(¢, 6®) one wishes to estimate £&. Here the risk function of an estimate, for
example its expected squared error, depends on . For large o the sample
contains only little information in the sense that two distributions N (&4, 6% and
N(&,, 0% with fixed difference &, — &, become indistinguishable as o — oo,
with the result that the risk tends to infinity. Conversely, the risk approaches
zero as 6 — O since then effectively the mean becomes known. Thus the
number of observations needed to control the risk at a given level is unknown.
However, as soon as some observations have been taken, it is possible to
estimate o® and hence to determine the additional number of observations
required.

Example 6. 1In a sequence of trials with constant probability p of success,
one wishes to decide whether p < 1/2 or p > 1/2. It will usually be possible to
reach a decision at an early stage if p is close to 0 or 1 so that practically all
observations are of one kind, while a larger sample will be needed for inter-
mediate values of p. This difference may be partially balanced by the fact that
for intermediate values a loss resulting from a wrong decision is presumably less
serious than for the more extreme values.

Example 7. The possibility of determining the sample size sequentially is
important not only because the distributions Py can be more or less informative
but also because the same is true of the observations themselves. Consider,
for example, observations from the uniform distribution* over the interval
(6 — 4, 6 +§) and the problem of estimating 6. Here there is no difference in
the amount of information provided by the different distributions P, However,
a sample Xj, Xj, - - -, X, can practically pinpoint 0 if max |.X; — X;| is sufficiently
close to 1, or it can give essentially no more information than a single observation
if max |X; — X;| is close to 0. Again the required sample size should be
determined sequentially.

Except in the simplest situations, the determination of the appropriate
sample size is only one aspect of the design problem. In general, one

* This distribution is defined in Problem 1 at the end of the chapter.
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must decide not only how many but also what kind of observations to
take. Formally all these questions can be subsumed under the general
decision problem described at the beginning of the section, by interpreting
X as the set of all available variables, by introducing the decisions of
whether or not to stop experimentation at the various stages, by specifying
in case of continuance which type of variable to observe next, and by
including the cost of observation in the loss function. However, in
spite of this formal possibility, the determination of optimum designs
in specific situations is typically of a higher order of difficulty than finding
the optimum decision rule for a given experiment, and it has been carried
out in only a few cases. Here, we shall be concerned primarily with
the problem as it presents itself once the experiment has been set up,
and only in a few special cases attempt a comparison of different designs.

4. OPTIMUM PROCEDURES

At the end of Section 1 the aim of statistical theory was stated to be
the determination of a decision function 8 which minimizes the risk
function

@) R(8, 6) = EJL(0, (X))).

Unfortunately, in general the minimizing é depends on 6, which is un-
known. Consider, for example, some particular decision d,, and the
decision procedure &(x) = d, according to which decision dy is taken
regardless of the outcome of the experiment. Suppose that d, is the
correct decision for some 6, so that L(6y, dy) = 0. Then é minimizes
the risk at 0, since R(6,, ) = 0, but presumably at the cost of a high
risk for other values of 6.

In the absence of a decision function that minimizes the risk for all 6,
the mathematical problem is still not defined since it is not clear what
is meant by a best procedure. Although it does not seem possible to
give a definition of optimality which will be appropriate in all situations,
the following two methods of approach frequently are satisfactory.

The nonexistence of an optimum decision rule is a consequence of the
possibility that a procedure devotes too much of its attention to a single
parameter value at the cost of neglecting the various other values that
might arise. This suggests the restriction to decision procedures which
possess a certain degree of impartiality, and the possibility that within
such a restricted class there may exist a procedure with uniformly smallest
risk. Two conditions of this kind, invariance and unbiasedness, will be
discussed in the next section.

Instead of restricting the class of procedures, one can approach the
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problem somewhat differently. Consider the risk functions corresponding
to two different decision rules 6, and d,. If R(6, d,) < R(8, d,) for all 0,
then 9, is clearly preferable to 9, since its use will lead to a smaller risk
no matter what the true value of 0 is. However, the situation is not
clear when the two risk functions intersect as in Figure 1. What is needed
is a principle which in such cases establishes a preference of one of the
two risk functions over the other, that is, which introduces an ordering
into the set of all risk functions. A procedure will then be optimum if

R(6,9)

Figure 1.

its risk function is best according to this ordering. Some criteria that
have been suggested for ordering risk functions will be discussed in
Section 6.

A weakness of the theory of optimum procedures sketched above is
its dependence on an extraneous restricting or ordering principle, and
on knowledge concerning the loss function and the distributions of the
observable random variables which in applications is frequently unavail-
able or unreliable. These difficulties, which may raise doubt concerning
the value of an optimum theory resting on such shaky foundations, are
in principle no different from those arising in any application of mathe-
matics to reality. Mathematical formulations always involve simplifica-
tion and approximation, so that solutions obtained through their use
cannot be relied upon without additional checking. In the present case
a check consists in an over-all evaluation of the performance of the
procedure that the theory produces, and an investigation of its sensitivity
to departure from the assumptions under which it was derived.

The difficulties can be overcome in part by considering the same problem
with respect to a number of different formulations. If different optimality
criteria lead to a common solution this will be the best procedure from
several points of view and therefore will be more likely to be generally
satisfactory. In the contrary case, the method indicates the strength and
weaknesses of the various solutions and thereby possibly suggests a
compromise procedure. Similarly, the sensitivity of a procedure to
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deviations from the assumptions under which it was derived can be
tested, for example, by dropping one of the assumptions and comparing
the procedure obtained from the wider model with the original one.

5. INVARIANCE AND UNBIASEDNESS*

A natural definition of impartiality suggests itself in situations which
are symmetric with respect to the various parameter values of interest:
The procedure is then required to act symmetrically with respect to these
values.

Example 8. S;ppose two treatments are to be compared and that each is
applied n times. The resulting observations Xy, - - -, Xin and Xy, - - -, Xy, are
samples from N(§,, 62) and N(&,, o?) respectively. The three available decisions
aredy: |6, — & S A,dy: &, > & + A, dy & < & — A,and the lossis w; if decision
d; is taken when d; would have been correct. If the treatments are to be com-
pared solely in terms of the &’s and no outside considerations are involved, the
losses are symmetric with respect to the two treatments so that wg, = wga,
Wip = Wag, Wiz = Wy. Suppose now that the labeling of the two treatments as
1 and 2 is reversed, and correspondingly also the labeling of the X’s, the &'s, and
the decisions d, and d,. This changes the meaning of the symbols but the
formal decision problem, because of its symmetry, remains unaltered. It is
then natural to require the corresponding symrnetry from the procedure ¢ and
ask that 8(xy5, * * *, Tyns Tops * * *» Tgn) = do, dy, OT dp a8 0Ty, * * 5 Top, Typ, * * *5 Tpn) =
dy, d, or d, respectively. If this condition were not satisfied the decision as to
which population has the greater mean would depend on the presumably quite
accidental and irrelevant labeling of the samples. Similar remarks apply to a
number of further symmetries that are present in this problem.

Example 9. Consider a sample X;, - - -, X, from a distribution with density
o7 If[(x — &)/o] and the problem of estimating the location parameter &, say the
mean of the X’s, when the loss is (d — £)?/o2, the square of the error expressed
in o-units. Suppose that the observations are originally expressed in feet, and
let X; = aX; with a = 12 be the corresponding observations in inches. In the
transformed problem the density is oY@z’ — &)[o’] with & = aé, ¢’ = ao.
Since (d’ — &)%[0’? = (d — &?[o® the problem is formally unchanged. The
same estimation procedure that is used for the original observations is therefore
appropriate after the transformation and leads to d(aXj, - - -, aX;) as an estimate
of & = at, the parameter & expressed in inches. On reconverting the estimate
into feet one finds that if the result is to be independent of the scale of measure-
ments, d must satisfy the condition of scale invariance

6(aX19 Tt aXn)/a = ‘S(Xla Tt Xn)'

The general mathematical expression of symmetry is invariance under
a suitable group of transformations. A group G of transformations g

* The concepts discussed here for general decision theory will be developed in more
specialized form in later chapters. The present section may therefore be omitted at
first reading.
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of the sample space is said to leave a statistical decision problem invariant
if it satisfies the following conditions.

(i) It leaves invariant the family of distributions & = {P,, 0 € Q},
that is, for any possible distribution P, of X the distribution of gX,
say Py, is also in &. The resulting mapping 0’ = gf of Q is assumed
to be ontot Qand 1 : 1.

(i) To each g € G, there exists a transformation g* = h(g) of the decision
space D onto itself such that h is a homomorphism, that is, satisfies the
relation h(g,g,) = h(g,)h(g,), and the loss function L is unchanged under
the transformation so that

L(g, g*d) = L(, d).

Under these assumptions the transformed problem, in terms of X' = gX,
0" = g0, and d’ = g*d, is formally identical with the original problem
in terms of X, 6, and 4. Given a decision procedure 6 for the latter,
this is therefore still appropriate after the transformation. Interpreting
the transformation as a change of coordinate system and hence of the
names of the elements, one would, on observing z’, select the decision
which in the new system has the name d(z") so that its old name is g*-15(z").
If the decision taken is to be independent of the particular coordinate
system adopted, this should coincide with the original decision d(z),
that is, the procedure must satisfy the invariance condition

®8) O(gx) = g* d(x) forall ze X,geqG.

Invariance considerations are applicable only when a problem exhibits
certain symmetries. An alternative impartiality restriction which is
applicable to other types of problems is the following condition of
unbiasedness. Suppose the problem is such that to each 6 there exists
a unique correct decision and that each decision is correct for some 6.
Assume further that L(0,,d) = L(0,, d) for all d whenever the same
decision is correct for both 0, and 6, Then the loss L(0, d’) depends
only on the actual decision taken, say d’, and the correct decision d. The
loss can thus be denoted by L(d, d’) and this function measures how far
apart d and d’ are. Under these assumptions a decision function 6
is said to be unbiased if for all 6 and d’

E,L(d’, 6(X)) = E,L(d, 6(X))

where the subscript § indicates the distribution with respect to which the
expectation is taken and where d is the decision that is correct for 6.
Thus 6 is unbiased if on the average 8(X) comes closer to the correct

f The term onto is used to indicate that gQ is not only contained in but actually equals
Q; that is, given any ¢ in Q there exists 0 in Q such that g6 = 6",
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decision than to any wrong one. Extending this definition, ¢ is said to
be unbiased for an arbitrary decision problem if for all 6 and 6’

© E,L(®’, 8(X)) = EoL(B, 0(X))-

Example 10. Suppose that in the problem of estimating a real-valued
parameter 6 by confidence intervals, as in Example 4, the loss is 0 or 1 as the
interval [L, L) does or does not cover the true 6. Then the set of intervals
[L(X), L(X)] is unbiased if the probability of covering the true value is greater
than or equal to the probability of covering any false value.

Example 11. In a two-decision problem such as that of Example 1(i), let
wg and o, be the sets of 6-values for which d, and d, are the correct decisions.
Assume that the loss is 0 when the correct decision is taken, and otherwise is
given by L(6, dy)) = a for 6 € w,, and L(0, d;) = b for 0 € w,. Then

aPs {8(X) =d,} if 60'€w;
EoL(9', (X)) =
bP;{6(X) =d;} if 0 €w,
so that (9) reduces to
aPo {8(X) = dy} = bPy {8(X) = dy} for 0€w,
with the reverse inequality holding for 6€w,. Since Py {8(X) = dy} + Po {8(X) =
d,} = 1, the unbiasedness condition (9) becomes
a

Py {6(X) =dl}§a T for 6w,
(10)
a
Po{d(X) =d,} = P for 0€w,.

Example 12. In the problem of estimating a real-valued function ¥(6) with
the square of the error as loss, the condition of unbiasedness becomes

Eol6(X) — (00 = Eold(X) — y(0) forall 6,6

On adding and subtracting h(6) = Ep 6(X) inside the brackets on both sides,
this reduces to

[h(6) — »(0"R = [h(©6) — y(O) forall 6, 0"
If h(6) is one of the possible values of the function , this condition holds if and
only if
(11) Eo o(X) = p(0).

In the theory of point estimation, (11) is customarily taken as the definition
of unbiasedness. Except under rather pathological conditions, it is both a
necessary and sufficient condition for ¢ to satisfy (9). (See Problem 2.)

6. BAYES AND MINIMAX PROCEDURES

We now turn to a discussion of some preference orderings of decision
procedures and their risk functions. One such ordering is obtained by
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assuming that in repeated experiments the parameter itself is a random
variable ©. If for the sake of simplicity one supposes that its distribution
has a probability density p(0), the over-all average loss resulting from the
use of a decision procedure 4 is

(12) r(p, 0) = onL(O, o(X))p(0) db = f R(8, 0)p(0) db

and the smaller r(p, 9), the better is 6. An optimum procedure is one
that minimizes r(p, 6) and is called a Bayes solution of the given decision
problem corresponding to the a priori density p. The resulting minimum
of r(p, ) is called the Bayes risk of p.

R(8,9)

Figure 2.

Unfortunately, in order to apply this principle it is necessary to assume
not only that 6 is a random variable but also that its distribution is
known. This assumption is usually not warranted in applications.
Alternatively, the right-hand side of (12) can be considered as a weighted
average of the risks; for p(f) = 1 in particular, it is then the area under
the risk curve. With this interpretation the choice of a weight function
p expresses the importance the experimenter attaches to the various
values of 6.

If no prior information regarding 6 is available one might consider
the maximum of the risk function its most important feature. Of two
risk functions the one with the smaller maximum is then preferable, and
the optimum procedures are those with the minimax property of minimiz-
ing the maximum risk. Since this maximum represents the worst
(average) loss that can result from the use of a given procedure, a minimax
solution is one that gives the greatest possible protection against large
losses. That such a principle may sometimes be quite unreasonable is
indicated in Figure 2, where under most circumstances one would prefer
0, to &, although its risk function has the larger maximum.
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Perhaps the most common situation is one intermediate to the two
just described. On the one hand, past experience with the same or
similar kind of experiment is available and provides an indication of
what values of 0 to expect; on the other, this information is neither
sufficiently precise nor sufficiently reliable to warrant the assumptions
that the Bayes approach requires. In such circumstances it seems desirable
to make use of the available information without trusting it to such an
extent that catastrophically high risks might result if it is inaccurate or
misleading. To achieve this one can place a bound on the risk and
restrict consideration to decision procedures 6 for which

13) R(0,0) < C forall 6.

[Here the constant C will have to be larger than the maximum risk C,
of the minimax procedure since otherwise there will exist no procedures
satisfying (13).] Having thus assured that the risk can under no circum-
stances get out of hand, the experimenter can now safely exploit his
knowledge of the situation, which may be based on theoretical considera-
tions as well as on past experience; he can follow his hunches and guess
at a distribution p for 8. This leads to the selection of a procedure ¢
(a restricted Bayes solution), which minimizes the average risk (12) for
this a priori distribution subject to (13). The more certain one is of p,
the larger one will select C, thereby running a greater risk in case of a
poor guess but improving the risk if the guess is good.

Instead of specifying an ordering directly, one can postulate conditions
that the ordering should satisfy. Various systems of such conditions
have been investigated* and have generally led to the conclusion that the
only orderings satisfying these systems are those which order the procedures
according to their Bayes risk with respect to some a priori distribution
of 6.

7. MAXIMUM LIKELIHOOD

Another approach, which is based on considerations somewhat different
from those of the preceding sections, is the method of maximum likelihood.
It has led to reasonable procedures in a great variety of problems, and
is still playing a dominant role in the development of new tests and
estimates. Suppose for a moment that X can taken on only a countable
set of values z, Z,, - - -, with Py(z) = P, {X = z}, and that one wishes
to determine the correct value of 0, that is, the value that produced the

* See, for example, Savage, The Foundations of Statistics, New York, John Wiley
& Sons, 1954, and Section 4.3 of Blackwell and Girshick, Theory of Games and Statistical
Decisions, New York, John Wiley & Sons, 1954.
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observed z. This suggests considering for each possible 6 how probable
the observed x would be if 6 were the true value. The higher this proba-
bility, the more one is attracted to the explanation that the 6 in question
produced z, and the more likely the value of 6 appears. Therefore, the
expression Py(x) considered for fixed = as a function of 0 has been called
the likelihood of 0. To indicate the change in point of view, let it be
denoted by L,(f). Suppose now that one is concerned with an action
problem involving a countable number of decisions, and that it is formu-
lated in terms of a gain function (instead of the usual loss function),
which is 0 if the decision taken is incorrect and is a(0) > 0 if the decision
taken is correct and 0 is the true value. Then it seems natural to weight
the likelihood L,(0) by the amount that can be gained if 0 is true, to
determine the value of ) that maximizes a(0)L,(0) and to select the decision
that would be correct if this were the true value of 6.* Essentially the
same remarks apply in the case in which Py(z) is a probability density
rather than a discrete probability. The above motivation breaks down
for the problem of estimating a continuous parameter since there is then
no hope of determining the correct value of 6, but this can be considered
as a limiting case.

In problems of point estimation, one usually assumes that a(f) is
independent of §. This leads to estimating 6 by the value that maximizes
the likelihood L (6), the maximum likelihood estimate of . Another
case of interest is the class of two-decision problems illustrated by Example
1(i). Let wy and w, denote the sets of 6-values for which dy and d, are
the correct decisions, and assume that a() = ayor a; as 6 belongs to w,
or w, respectively. Then decision d, or d, is taken as @y SUPye,, Lo(6) <
O > @y Supye,, L,(0), that is, as

sup L(0) a
4 Lo 2.
(14) sup L(0) > o < a,
Oew,

This is known as a likelihood ratio procedure.t

Although the maximum likelihood principle is not based on any
clearly defined optimum considerations, it has been very successful in
leading to satisfactory procedures in many specific problems. For wide
classes of problems, maximum likelihood procedures have also been

* A variant of this approach has been suggested by Lindley, “Statistical inference,”
J. Roy. Stat. Soc., Ser. B., Vol. XI (1953), pp- 30-76.

T This definition differs slightly from the usual one where in the denominator on the
left-hand side of (14) the supremum is taken over the set w, U w,. The two definitions
agree whenever the left-hand side of (14) is =1, and the procedures therefore agree if
a;, < a.
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shown to possess various asymptotic optimum properties as the sample
size tends to infinity.* On the other hand, there exist examples for
which the maximum likelihood procedure is worse than useless; where
it is, in fact, so bad that one can do better without making any use of the
observations (see Chapter 6, Problem 18).

8. COMPLETE CLASSES

None of the approaches described so far is reliable in the sense that
the resulting procedure is necessarily satisfactory. There are problems
in which a decision procedure d, exists with uniformly minimum risk
among all unbiased or invariant procedures, but where there exists a
procedure ¢; not possessing this particular impartiality property and
preferable to &, (Cf. Problems 14 and 16.) As was seen earlier,
minimax procedures can also be quite undesirable, while the success of
Bayes and restricted Bayes solutions depends on a priori information
which is usually not very reliable if it is available at all. In fact, it seems
that in the absence of reliable a priori information no principle leading
to a unique solution can be entirely satisfactory.

This suggests the possibility, at least as a first step, of not insisting on
a unique solution but asking only how far a decision problem can be
reduced without loss of relevant information. It has already been seen
that a decision procedure 6 can sometimes be eliminated from considera-
tion because there exists a procedure ¢’ dominating it in the sense that

RB,8)< R(0,0) forall 6
R(, 8') < R(0, 6) forsome 6.

In this case 0 is said to be inadmissible; ¢ is called admissible if no such
dominating &’ exists. A class € of decision procedures is said to be
complete if for any 6 not in € there exists 0’ in ¢ dominating it. A
complete class is minimal if it does not contain a complete subclass. If
a minimal complete class exists, as is typically the case, it consists exactly
of the totality of admissible procedures.

It is convenient to define also the following variant of the complete
class notion. A class € is said to be essentially complete if for any
procedure & there exists 8’ in € such that R(6, 6") < R(0, 6) for all 6.
Clearly, any complete class is also essentially complete. In fact, the two

(15)

* For some recent discussions see, for example, Wald, “Tests of statistical hypotheses
concerning several parameters when the number of observations is large,” Trans. Am.
Math. Soc., Vol. 54 (1943), pp. 426-482, and LeCam, “On some asymptotic properties
of maximum likelihood estimates and related Bayes’ estimates,” Univ. Calif. Publs.
Statistics, Vol. 1(1953), pp. 277-330.
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definitions differ only in their treatment of equivalent decision rules,
that is, decision rules with identical risk function. If ¢ belongs to the
minimal complete class %, any equivalent decision rule must also belong
to €. On the other hand, a minimal essentially complete class need
contain only one member from such a set of equivalent procedures.

In a certain sense a minimal essentially complete class provides the
maximum possible reduction of a decision problem. On the one hand,
there is no reason to consider any of the procedures that have been weeded
out. For each of them, there is included one in € that is as good or
better. On the other hand, it is not possible to reduce the class further.
Given any two procedures in %, each of them is better in places than the
other, so that without additional information it is not known which of
the two is preferable.

The primary concern in statistics has been with the explicit determination
of procedures, or classes of procedures, for various specific decision
problems. Those studied most extensively have been estimation problems,
and problems involving a choice between only two decisions (hypothesis
testing) the theory of which constitutes the subject of the present volume.
However, certain conclusions are possible without such specialization.
In particular, two results concerning the structure of complete classes
and minimax procedures have been proved to hold under very general
assumptions:*

(i) The totality of Bayes solutions and limits of Bayes solutions constitute
a complete class.

(i) Minimax procedures are Bayes solutions with respect to a least
Javorable a priori distribution, that is, an a priori distribution that maxi-
mizes the associated Bayes risk, and the minimax risk equals this maximum
Bayes risk. Somewhat more generally, if there exists no least favorable
a priori distribution but only a sequence for which the Bayes risk tends
to the maximum, the minimax procedures are limits of the associated
sequence of Bayes solutions.

9. SUFFICIENT STATISTICS

A minimal complete class was seen in the preceding section to provide
the maximum possible reduction of a decision problem without loss of
information. Frequently it is possible to obtain a less extensive reduction
of the data, which applies simultaneously to all problems relating to a
given class Z = {P,, 0 € Q} of distributions of the given random variable
X. It consists essentially in discarding that part of the data which

* Precise statements and proofs of these results are given in the book by Wald,
Statistical Decision Functions, New York, John Wiley & Sons, 1950.
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contains no information regarding the unknown distribution P, and
which is therefore of no value for any decision problem concerning 6.

Example 13. Trials are performed with constant unknown probability
p of success. If X is 1 or 0 as the ith trial is a success or failure, the sample
(Xy, -+, X,) shows how many successes there were and in which trials they
occurred. The second of these pieces of information contains no evidence as
to the value of p. Once the total number of successes X X; is known to be equal

to 1, each of the ("') possible positions of these successes is equally likely

regardless of p. It follows that knowing X X; but neither the individual X; nor
p, one can, from a table of random numbers, construct a set of random variables
X;, -, X;, whose joint distribution is the same as that of X1, -+, X,. There-
fore, the information contained in the X; is the same as that contained in XX,
and a table of random numbers.

Example 14. If Xy,---, X, are independently normally distributed with
zero mean and variance o?, the conditional distribution of the sample point
over each of the spheres, ZX? = constant, is uniform irrespective of 6. One
can therefore construct an equivalent sample X7, - - -, X, from a knowledge of
TX? and a mechanism that can produce a point randomly distributed over a
sphere.

More generally, a statistic T is said to be sufficient for the family 2 =
{P,, 0 € Q}, or sufficient for 6 if it is clear from the context what set Q
is being considered, if the conditional distribution of X given T =1 is
independent of 0. As in the two examples it then follows under mild
assumptions* that it is not necessary to utilize the original observations X.
If one is permitted to observe only T instead of X, this does not restrict
the class of available decision procedures. For any value  of T let X,
be a random variable possessing the conditional distribution of X given ¢.
Such a variable can, at least theoretically, be constructed by means of a
suitable random mechanism. If one then observes 7 to be ¢ and X,
to be 2, the random variable X’ defined through this two-stage process
has the same distribution as X. Thus, given any procedure based on X
it is possible to construct an equivalent one based on X’ which can be
viewed as a randomized procedure based solely on 7. Henceif randomiza-
tion is permitted, and we shall assume throughout that this is the case,
there is no loss of generality in restricting consideration to a sufficient
statistic.

It is inconvenient to have to compute the conditional distribution of X
given ¢ in order to determine whether or not 7 is sufficient. A simple
check is provided by the following factorization criterion.

Consider first the case that X is discrete and let Py(z) = Py {X = x}.

* These are connected with difficulties concerning the behavior of conditional
probabilities. For a discussion of these difficulties see Chapter 2, Sections 3-5.
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Then a necessary and sufficient condition for T to be sufficient for 6
is that there exists a factorization

(16) Pyz) = g T(@)h(x),
where the first factor may depend on 0 but depends on x only through
T(x) while the second factor is independent of 0.
Suppose that (16) holds and let T(x) = t. Then P, {T = t} = LP,(z')
summed over all points 2" with T(2") = ¢, and the conditional probability
Py{X = 2|T =t} = Px)|P, {T = t} = h(x)[Sh(z’)

is independent of 0. Conversely, if this conditional distribution does
not depend on 0 and is equal to, say k(z, ), then Py(x) = P, {T =t} k(z, 1)
so that (16) holds.

Example 15. Let X, -, X, be independently and identically distributed
according to the Poisson distribution (2). Then

,,..‘..’a:,' e~

n
IT =
j=1

and it follows that X X; is a sufficient statistic for .

P(ry, -0, =

In the case that the distribution of X is continuous and has probability
density py(z) let X and T be vector-valued, X = (X, -, X,) and T =
(Ty, -+ -, T,) say. Suppose that there exist functions ¥ = (Y, - -, Y...)
on the sample space such that the transformation

amn (@, 2) o (Ty@), - -, T@), V@), - -+, ¥, (2))

is 1 :1 on a suitable domain, and that the joint density of T and Y
exists and is related to that of X by the usual formula*
(18) i@ = pi""(T(x), Y(x)) - |J],
where J is the Jacobian of (T, -+, T,, Yy, -+, ¥,_,) with respect to
(2, -+, 2,). Thus in Example 14, T = VEXZ Y, -, Y, can be
taken to be the polar coordinates of the sample point. From the joint
density p{¥(¢, y) of T and Y, the conditional density of ¥ given T = ¢
is obtained as

T,¥,
4 ]7.9 ! (ta ?/)
19) Pi'®) = Ty
’ §piY(y) dy
provided the denominator is different from zero.

* Regularity conditions for the validity of (18) are given by Tukey, “A smooth
invertibility theorem,” Ann. Math. Stat., Vol. 29 (1958), pp- 581-584; see also Lehmann

and Scheffé, “On the problem of similar regions,” Proc. Nat. Acad. Sci., Vol. 33 (1947),
pp- 382-386.
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Since in the conditional distribution given ¢ only the Y’s vary, T is
sufficient for 6 if the conditional distribution of Y given ¢ is independent
of 6. Suppose that T satisfies (19). Then analogously to the discrete
case, a necessary and sufficient condition for T to be sufficient is a factori-
zation of the density of the form

(20) Pi@) = gl T@)h().

(See Problem 19.) The following two examples illustrate the application
of the criterion in this case. In both examples the existence of functions
Y satisfying (17)-(19) will be assumed but not proved. As will be shown
later (Chapter 2, Section 6), this assumption is actually not needed for
the validity of the factorization criterion.

Example 16. Let X,,---, X, be independently distributed with normal
probability density '

Peo(x) = (2ma?)"2 exp (-— 2%2 Za? + (%in - 2—';-2 52) .

Then the factorization criterion shows (ZX;, £X?) to be sufficient for (¢, o).

Example 17. Let Xy, -+, X, be independently distributed according
to the rectangular distribution R(0, 0) over the interval (0, 6). Then py(x) =
6-"u(max z;, 6) where u(a, b) is 1 or 0 as a < b or a > b, and hence max X; is
sufficient for 6.

An alternative criterion of sufficiency provides a direct connection
between this concept and some of the basic notions of decision theory.
As in the theory of Bayes solutions, consider the unknown parameter 0
as a random variable ©® with an a priori distribution, and assume for
simplicity that it has a density p(). Then if T is sufficient, the conditional
distribution of © given X = z depends only on 7(z). Conversely, if
p(6) O for all 6 and if the conditional distribution of © given z depends
only on T(x), then T is sufficient for 6.

In fact, under the assumptions made, the joint density of X and ©®
is po(x)p(f). If T is sufficient it follows from (20) that the conditional
density of O given « depends only on T(xz). Suppose, on the other hand,
that for some a priori distribution for which p(6) # 0 for all 0 the con-
ditional distribution of @ given z depends only on T(z). Then

Po()p(6)
Jpo@)p(8') db"

and by solving for py(2) it is seen that T is sufficient.

= flT)]

Any Bayes solution depends only on the conditional distribution of
-@ given z (see Problem 8) and hence on T(z). Since typically Bayes
solutions together with their limits form an essentially complete class, it
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follows that this is also true of the decision procedures based on 7. The
same conclusion had already been reached more directly at the beginning
of the section.

By restricting attention to a sufficient statistic, one obtains a reduction
of the data and it is then desirable to carry this reduction as far as possible.
To illustrate the different possibilities, consider once more the binomial
Example 13. If m is any integer less than n and T, = 3" X, T, =
D% i1 Xy then (T4, T,) constitutes a sufficient statistic since the conditional
distribution of Xy, -, X, given T; = 1,, T, = t, is independent of p.
For the same reason, the full sample (X}, - - -, X,) itself is also a sufficient
statistic. However, T = 3"_, X, provides a more thorough reduction
than either of these and than various others that can be constructed.
A sufficient statistic T is said to be minimal sufficient if the data cannot be
reduced beyond T without losing sufficiency. For the binomial example
in particular, 3” | X, can be shown to be minimal (Problem 17). This
illustrates the fact that in specific examples the sufficient statistic determined
by inspection through the factorization criterion usually turns out to be
minimal. *

10. PROBLEMS

Section 2

1. The following distributions arise on the basis of assumptions similar to
those leading to (1)-(3).

(i) Independent trials with constant probability p of success are carried out
until a preassigned number m of successes has been obtained. If the number of
trials required is X' + m, then X has the negative binomial distribution

P{X=l‘}=(m+:lf—l)[7m(l—p)x’ x=0,1,2 -

X

(ii) In a sequence of random events, the number of events occurring in any
time interval of length = has the Poisson distribution P(4r), and the numbers of
events in nonoverlapping time intervals are independent. Then the “waiting
time” 7, which elapses from the starting point, say t = 0, until the first event
occurs, has the exponential probability density

plty =ze*, 1 =0.

* Explicit procedures for constructing a minimal sufficient statistic (called necessary
and sufficient by some writers) are given by Lehmann and Scheffé, **Completeness,
similar regions and unbiased estimation,” Sankhya, Vol. 10 (1950), pp. 305-340, and by
Bahadur, “Sufficiency and statistical decision functions,” Ann. Math. Stat., Vol. 25
(1954), pp. 423-462. See also Dynkin, “On sufficient and necessary statistics for
families of probability distributions,” Doklady Akad. Nauk SSSR (N. S.), Vol. 75 (1950),
pp- 161-164 and Uspehi Matem. Nauk (N. S.), Vol. 6 (1951), No. 1, pp. 68-90.
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(Let Ty, i =2, be the time elapsing from the occurrence of the (i — 1)st event
to that of the ith event. Then it is also true, although more difficult to prove,f
that Ty, Ty, - - - are identically and independently distributed.)

(iii) A point X is selected “at random” in the interval (a, b), that is, the
probability of X falling in any subinterval of (a, b) depends only on the length
of the subinterval, not on its position. Then X has the rectangular or uniform
distribution R(a, b) with probability density

p) =1/(b — a), a<x <b.

[i) If ¢+ > 0, then T > ¢ if and only if no event occurs in the time interval

©,n.]

Section 5

2. Unbiasedness in point estimation. Suppose that the parameter space 2 is
connected, that ¥ is a continuous real-valued function defined over Q which is
not constant in any open subset of Q, and that the expectation h(0) = Eg(X) is
a continuous function of 6 for every estimate 6(X) of »(6). Then (11) is a
necessary and sufficient condition for 6(X) to be unbiased when the loss function
is the square of the error.

[Unbiasedness implies that y2(6") — y2(6) = 2h(0) [y(0") — (6)] for all 6, 0.
If 6 is neither a relative minimum or maximum of 7, it follows that there exist
points 0’ arbitrarily close to § both such that p(0) + ¥(0") = and < 2h(0), and
hence that »(6) = h(6). That this equality also holds for an extremum of y
follows by continuity since y is not constant in any open set.]

3. Median unbiasedness. (i) A real number m is a median for the random
variable Yif P{Y = m} = 1/2; P{Y < m} = 1/2. Thenall real a;, a, such that
m<a, <a,orm =a, =aysatisfy E|Y —a,| < E|Y — ay.

(ii) For any estimate 6(X) of »(6), let m~(6) and m*(6) denote the infimum and
supremum of the medians of 4(X), and suppose that they are continuous
functions of 6. Let Q be connected and let ¥(6) be continuous and not constant
in any open subset of Q. Then the estimate 8(X) of »(0) is unbiased with
respect to the loss function L(6, d) = | 7(0) — d|if and only if (6) is a median of
8(X) for each 0. An estimate with this property is said to be median-unbiased.

4. Nonexistence of unbiased procedures. Consider a decision problem in
which for each 0 there exists a unique correct decision d, and suppose that

L®,d) = hO)V(d, d) for 0€w,

where o, denotes the set of 6’s for which d is correct. Then if the function A
takes on at least two distinct values on each w,, the risk function of any unbiased
procedure is identically zero, that is, typically no unbiased procedure exists.
As an example, let Xj,- -, X, be independently distributed with density
(/a)f (X — &a)and 0 = (&, a). Then no estimate of & exists, which is unbiased
with respect to the loss function (§ — d)?/a®.

5. Let % be any class of procedures that is closed under the transformations
of a group G in the sense that 8 € ¢ implies g*9g~ €¢ forallg € G.  If there exists

t For a proof see Doob, Stochastic Processes, New York, John Wiley & Sons, 1953,
p- 403.
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a unique procedure 9, that uniformly minimizes the risk within the class %, then
d, is invariant. If ¢, is unique only up to sets of measure zero, then it is almost
invariant, that is, for each g it satisfies the equation d(gx) = g*d(x) except on a
set N, of measure 0.

6. Relation of unbiasedness and invariance. (i) If dy is the unique (up to sets
of measure 0) unbiased procedure with uniformly minimum risk, it is almost
invariant.

(ii) If G is transitive and G* commutative, and if among all invariant (almost
invariant) procedures there exists a procedure d, with uniformly minimum risk,
then it is unbiased.

[()) This follows from the preceding problem and the fact that when 0 is
unbiased so is g*dg1.

(i) It is the defining property of transitivity that given 6, 8’ there exists &
such that 6’ = g6, Hence for any 0, 6

EL(0", 8o(X)) = E,L(89, 0o(X)) = E,L(b, g*-155(X)).
Since G* is commutative g*-18, is invariant, so that
R(6, §*7100) = R(0, dy) = EoL(0, 6o(X)).]

7. Counterexample. That conclusion (ii) of Problem 6 need not hold without
the assumptions concerning G* and G is shown by the problem of estimating
the mean & of a normal distribution N(&, ¢%) with loss function (& — d)?[o2.
This remains invariant under the groups G,: gr =2 + b, —0 < b < o and
Gy: gr =ar +b,0<a< o, —0 <<h < o, The best invariant estimate
relative to both groups is X but there does not exist an estimate which is unbiased
with respect to the given loss function.

Section 6

8. Structure of Bayes solutions. (i) Let © be an unobservable random
quantity with probability density p(6), and let the probability density of X be
pox) when © = 0. Then ¢ is a Bayes solution of a given decision problem if
for each x the decision () is chosen so as to minimize JL(, 8(x))m(6]x) db, where
(b)) = p(&)po(x)/jp(o’)p,,/(x) do’ is the conditional (a posteriori) probability
density of O given .

(ii) Let the problem be a two-decision problem with the losses as given in
Example 11. Then the Bayes solution consists in choosing decision d if

aP{® € o|r} < bP{O € wylx}

and decision d, if the reverse inequality holds. The choice of decision is
immaterial in case of equality.

(iii) In case of point estimation of a real-valued function £(0) with loss
function L(9, d) = (g(6) — d)?, the Bayes solution becomes d(x) = E[g(0)|x].
When instead the loss function is L(6, d) = |g(0) — d|, the Bayes estimate 6(x)
is any median of the conditional distribution of g(®) given z.

[()) The Bayes risk r(p, 0) can be written as JIfL(®, 8(x))m(6]x) db)p(x) dx, where
P@) = fp(6")py(x) db’.

(ii) The conditional expectation [L(6, dy)n(0]x) d reduces to aP{® € w,|x}
and similarly for d,.]



24 THE GENERAL DECISION PROBLEM [1.10

9. (i) As an example in which randomization reduces the maximum risk,
suppose that a coin is known to be either standard (HT) or to have heads on
both sides (HH). The nature of the coin is to be decided on the basis of a
single toss, the loss being 1 for an incorrect decision and O for a correct one.
Let the decision be HT when T is observed whereas in the contrary case the
decision is made at random, with probability p for HT and 1 —p for HH.
Then the maximum risk is minimized for p = 1/3.

(ii) A genetical setting in which such a problem might arise is that of a couple,
of which the husband is either dominant homozygous (AA) or heterozygous (Aa)
with respect to a certain characteristic and the wife is homozygous recessive (aa).
Their child is heterozygous and it is of importance to determine to which
genetical type the husband belongs. However, in such cases an a priori
probability is usually available for the two possibilities. One is then dealing
with a Bayes problem and randomization is no longer required. In fact, if the
a priori probability is p that the husband is dominant, then the Bayes procedure
classifies him as such if p > 1/3 and takes the contrary decision if p < 1/3.

10. Unbiasedness and minimax. Let Q = Qg U Q; where Q,, Q; are mutually
exclusive, and consider a two-decision problem with loss function L(6, d;) = a;
for 6 € Q; (j +# i) and L(6, d) =0for0eQ;(i=0,1).

(i) Any minimax procedure is unbiased.

(i) The converse of (i) holds provided Py(A) is a continuous function of 0 for
all A, and if the sets Q, and Q, have at least one common boundary point.

[(i) The condition of unbiasedness in this case is equivalent to sup Rs(0) =
ag /(@ + ay). That this is satisfied by any minimax procedure is seen by
comparison with the procedure d(z) = d, or = d, with probabilities a,/(ay + ay)
and a,y/(a, + a,) respectively.

(ii) If 6, is a common boundary point, continuity of the risk function implies
that any unbiased procedure satisfies Ry(0o) = aua,/(ay + a;) and hence sup
Ry(0) = agay/(ay + a1)]

11. Invariance and minimax. Let a problem remain invariant relative to the
groups G, G, and G* over the spaces 2, €, and D respectively. Then a
randomized procedure Y, is defined to be invariant if for all « and g the
conditional distribution of Y, given x is the same as that of g*~1Y,,.

(i) Consider a decision procedure which remains invariant under a finite
group G = {gy, - -,g~}. 1f a minimax procedure exists, then there exists one
that is invariant.

(i) This conclusion does not necessarily hold for infinite groups as is shown
by the following example. Let the parameter space Q consist of all elements 0
of the free group with two generators, that is, the totality of formal products
m - cma(n =0,1,2, ) where each m; is one of the elements a, a1, b, b~ and
in which all products aa', a-la, bb~* and b~'b have been canceled. The empty
product (n = 0) is denoted by e. The sample point X is obtained by multiplying
6 on the right by one of the 4 elements a, a”', b, b~! with probability 1/4 each,
and canceling if necessary, that is, if the random factor equals . The problem
of estimating 0 with L(6, d) equal to 0 if d = 6 and equal to 1 otherwise remains
invariant under multiplication of X, 0, and d on the left by an arbitrary sequence
7o m_gm_y(m =0,1,---). The invariant procedure that minimizes the
maximum risk has risk function R(0, o) = 3/4. However, there exists a non-
invariant procedure with maximum risk 1/4.
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[()) If Y, is a (possibly randomized) minimax procedure, an invariant minimax
procedure Y is defined by P(Y; = d) = XL, P(Y, , = gid)/N.

(i) The better procedure consists in estimating 6 to be m - -+ m,_, when
my -+ - m.is observed (k = 1), and to estimate 6 to be a, a1, b, b~ with probability
1/4 each in case the identity is observed. The estimate will be correct unless
the last element of X was canceled, and hence will be correct with probability
= 3/4.]

Section 7

12. (i) Let X have probability density po(x) with 6 one of the values 6, - - -, 6,,
and consider the problem of determining the correct value of 0, so that the
choice lies between the n decisions d, = 0,, -, d, = 6, with gain a(0;) if
d; = 0;and 0 otherwise. Then the Bayes solution (which maximizes the average
gain) when 0 is a random variable taking on each of the 7 values with probability
1/n coincides with the maximum likelihood procedure.

(ii) Let X have probability density py(x) with0 < 6 < 1. Then the maximum
likelihood estimate is the mode (maximum value) of the a posteriori density of
O given  when O is uniformly distributed over (0, 1).

13. (i) Let X3, - - -, X, be a sample from N(&, 6%) and consider the problem of
deciding between wy: £ <Oand w;: & 20. If & = Za,/n and C = (a;/ap)?",
the likelihood ratio procedure takes decision d, or d; as

Vni|Viw, — % <k or >k

where k = —VC —1ifC > landk = V(I — C)/Cif C < 1.
(i)) For the problem of deciding between wy: o <o, and w;: ¢ = g, the
likelihood ratio procedure takes decision d, or d, as

Z(x; — &P/no < or > k

where k is the smaller root of the equation Cx = ¢*-1if C > 1 and the larger
root of # = Ce®*-1if C < 1, where C is defined as in (j).

Section 8

14. Admissibility of unbiased procedures. (i) Under the assumptions of
Problem 10, if among the unbiased procedures there exists one with uniformly
minimum risk, it is admissible.

(i) That in general an unbiased procedure with uniformly minimum risk
need not be admissible is seen by the following example. Let X have a Poisson
distribution truncated at 0, so that P,{X = x} = 6%e-0/[x!(1 — e9)] for
# =1,2,---. For estimating ¥(6) = e-0 with loss function L(6, d) =(d — 6)?,
there exists a unique unbiased estimate, and it is not admissible.

[(i)) The unique unbiased estimate do(x) = (—1)*+! is dominated by d;(x) =0
or | as x is even or odd.]

15. Admissibility of invariant procedures. If a decision problem remains
invariant under a finite group, and if there exists a procedure 0, that uniformly
minimizes the risk among all invariant procedures, then d, is admissible.

[This follows from the identity R(0, 0) = R(g9, g*dg~1) and the hint given in
Problem 11(i).]
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16. (i) Let X take on the values 6 — 1 and 6 + 1 with probability 1/2 each.
The problem of estimating 6 with loss function L(6, d) = min (|0 — d|, 1)
remains invariant under the transformation gX = X + ¢, g0 =0 + ¢, g*d =
d + c. Among invariant estimates, those taking on the values X — 1 and
X + 1 with probabilities p and ¢ (independent of X) uniformly minimize the risk.

(ii) That the conclusion of Problem 15 need not hold when G is infinite
follows by comparing the best invariant estimates of (i) with the estimate d,(x)
which is X + 1 when X <0and X — 1 when X = 0.

Section 9

17. In n indepéndent trials with constant probability p of success, let X; = 1
or 0 as the ith trial is a success or not. Then X7_,X; is minimal sufficient.

[Let T = 2.X; and suppose that U = f(T) is sufficient and that f(k,) = - - - =
f(k,) =u. Then P{T = 1|U = u} depends on p.]

18. (i) Let X;, -+, X, be a sample from the uniform distribution R(0, 0),
0 <6 < o, and let T = max (X}, - - -, X,,). Show that T is sufficient once by
using the definition of sufficiency and once by using the factorization criterion
and assuming the existence of statistics Y; satisfying (17)~(19).

(ii) Let X, -+, X, be a sample from the exponential distribution with
density ae~**-®) when # 26 (0 <a < ®, — < b < ®). Use the factori-
zation criterion to prove that (min (X3, - - -, X)), 7., X)) is sufficient for a, b
assuming the existence of statistics Y; satisfying (17)-(19).

19. A statistic T satisfying (17)-(19) is sufficient if and only if it satisfies (20).
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CHAPTER 2

The Probability Background

1. PROBABILITY AND MEASURE

The mathematical framework for statistical decision theory is provided
by the theory of probability which in turn has its foundations in the theory
of measure and integration. The present and following sections serve
to define some of the basic concepts of these theories, to establish some
notation, and to state without proof some of the principal results. In
the remainder of the chapter, certain special topics are treated in more
detail.

Probability theory is concerned with situations which may result
in different outcomes. The totality of these possible outcomes is repre-
sented abstractly by the totality of points in a space Z. Since the events
to be studied are aggregates of such outcomes, they are represented by
subsets of Z. The union of two sets 4;, A, will be denoted by A; U 4,,
their intersection by A4, N A,, the complement of 4 by 4 =% — A4,
and the empty set by 0. The probability P(4) of an event A4 is a real
number between 0 and 1; in particular

1) PO)=0 and P& =1
Probabilities have the property of countable additivity,
()] P(UA,) = ZP(A,) ifA; N A;=0foralli#j.

Unfortunately it turns out that the set functions with which we shall
be concerned usually cannot be defined in a reasonable manner for all
subsets of & if they are to satisfy (2). Itis, for example, not possible to
give a reasonable definition of ‘““area” for all subsets of a unit square
in the plane.

The sets for which the probability function P will be defined are said
to be “measurable.” The domain of definition of P should include with
any set A its complement 4, and with any countable number of events
their union. By (1), it should also include Z". A class of sets that contains

30
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Z and is closed under complementation and countable unions is a
ofield. Such a class is automatically also closed under countable
intersections.

The starting point of any probabilistic considerations is therefore a
space Z', representing the possible outcomes, and a o-field o7 of subsets
of Z, representing the events whose probability is to be defined. Such
a couple (Z, /) is called a measurable space, and the elements of o/
constitute the measurable sets. A countably additive nonnegative (not
necessarily finite) set function u defined over .o/ and such that w0) =0
is called a measure. 1If it assigns the value 1 to Z it is a probability
measure. More generally, u is finite if u(Z) << oo and o-finite if there
exist Ay, Ay, - -+ in &/ (which may always be taken to be mutually
exclusive) such that U4, =% and u(4,) < oo for i=1,2,---.
Important special cases are provided by the following examples.

Example 1. Let 2 be the n-dimensional Euclidean space E,, and « the
smallest o-field containing all rectangles
R=A(ry, - 2)ia, <a; <b,i=1, -, n.*
The elements of 7 are called the Borel sets of E,. Over « a unique measure u
can be defined, which to any rectangle R assigns as its measure the volume of R,
n

n(R) = H (b; — ay).

t=1

The measure u can be completed by adjoining to =/ all subsets of sets of measure
zero. The domain of u is thereby enlarged to a o-field .+, the class of Lebesgue
measurable sets. The term Lebesgue measure is used for u both when it is
defined over the Borel sets and over the Lebesgue measurable sets.

This example can be generalized to any nonnegative set function »,
which is defined and countably additive over the class of rectangles R.
There exists then, as before, a unique measure p over (Z, o) that agrees
with » for all R. This measure can again be completed; however, the
resulting o-field depends on x and need not agree with the o-field .o/"
obtained above.

Example 2. Suppose that 2 is countable, and let &/ be the class of all
subsets of Z. For any set A4, define u(A4) as the number of elements of A if
that number is finite and otherwise as +c. This measure is sometimes called
counting measure.

In applications, the probabilities over (Z, 27) refer to random experi-
ments or observations, the possible outcomes of which are the points
z€Z. Let these observations be denoted by X, which may for example
be real- or vector-valued, and let the probability of X falling in a set 4

*If 7(x) is a statement concerning certain objects x, then {x: n(x)} denotes the set
of all those z for which =(x) is true.
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be P{X € A} = P(4). In this context, the probability P(4) will some-
times be denoted by P¥(4) and the probability measure P by PY. We
shall refer to X as a random variable* over the space (7', &), and to the
probability measure P or PX as the probability distribution of X. Mathe-
matically, a random variable is thus nothing but a carrier of its distribution.
If m(x) is any statement concerning the points  and if A is the set of
points « for which 7(x) holds, we shall also write P{r(X)} for the proba-
bility P¥(A).

Let X be a real-valued random variable with probability distribution
PY defined over the Borel sets of the real line. Then the cumulative
distribution function of X is defined as a point function F on the real line
by F(a) = P{X < a} for all real a. The function F is nondecreasing and
continuous on the right, and F(—o0) =0, F(+o) = 1. If Fis any
function with these properties, a measure can be defined over the intervals
by P{a << X< b} = F(b) — F(a). It follows from the generalization
of Example 1 that this measure uniquely determines a probability distri-
bution over the Borel sets. Thus the probability distribution P¥ and
the cumulative distribution function F each uniquely determines the
other. These remarks extend to probability distributions over an n-
dimensional Euclidean space, where the cumulative distribution function
is defined by

Fla, - a,) =PX;<ay, X, < a,).

The distribution of X also determines that of any function of X. Let
T be a function of the observations taking on values in some space .7 .
Such a function generates in 7 the o-field 4’ of sets B whose inverse image

A=T"'B)={x: z€Z,T(x) e B}

is in /. The values taken on by T(X) are again the outcomes of a
random experiment, so that 7 = T(X) is a random variable over the
space (7, #'). Since X € T-'(B) if and only if T(X) € B, the probability
distribution of T over (7, #’) is given by

3) PT(B) = P{T € B} = P{X € T"Y(B)} = PX(T-!(B)).

Frequently, there is given a o-field % of sets in .7~ such that the proba-
bility of the event T € B should be defined if and only if B € #. This
requires that 7-Y(B) € .« for all B € #, and the function (or transforma-
tion) T from (%, &) intot (7, #) is then said to be measurable. ~Another

* This differs from the definition given in most probability texts where a random
variable is taken to be a function from an original space to a range space (Z, &) and
where in addition Z is assumed to be the real line and « the class of Borel sets.

+ The term info is used to indicate that the range T(Z) of T is in .7 ; if 7(%) =7,
the transformation is said to be from Z onto .7 .
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implication is the sometimes convenient restriction of probability state-
ments to the sets in 4 even though there may exist sets B ¢ 4 for which
T-Y(B) € o/ and whose probability therefore could be defined.

In applications, there is given as the raw material of an investigation a
set of observations constituting the totality of the available data. This is
represented by a random variable X such that all other random variables
that can be considered are functions of X. The space (%', &) over which
X is defined is called the sample space, and any measurable transformation
T from (7', &) into (, &) is said to be a statistic. The distribution of T
is then given by (3) applied to all B € 4. With this definition, a statistic
is specified by specifying both the function 7 and the o-field Z. We
shall, however, adopt the convention that when a function T takes on its
values in a Euclidean space, unless otherwise stated the o-field & of
measurable sets will be taken to be the class of Borel sets. It then
becomes unnecessary to mention it explicitly or to indicate it in the
notation.

The distinction between statistics and random variables as defined
here is slight. The term statistic is used to indicate that the quantity is a
function of more basic observations; all statistics in a given problem are
functions defined over the same sample space (Z,.%). On the other
hand, any statistic T is a random variable since it has a distribution over
(7, #), and it will be referred to as a random variable when its origin is
irrelevant.  Which term is used therefore depends on the point of view
and to some extent is arbitrary.*

2. INTEGRATION

According to the convention of the preceding section, a real-valued
function f defined over (Z, /) is measurable if S7Y(B) € A for every
Borel set B on the real line. Such a function f is said to be simple if it
takes on only a finite number of values. Let u be a measure defined
over (Z', 2/), and let f be a simple function taking on the distinct values
ay, ", a, on the sets A, -+ -, 4,,, which are in .o/ since f'is measurable.
If u(A;) < oo when a; 0, the integral of f with respect to u is defined by

@ [ = zapuca.
Given any nonnegative measurable function f, there exists a non-

decreasing sequence of simple functions f, converging to f- Then the

* The above definition of statistic is close to the definition of random variable
customary in probability theory. However, the distinction made here corresponds
more closely to the way the terms are used informally in most statistical writing,
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integral of f'is defined as

(%) f fdu = lim | f, du,

n— 0

which can be shown to be independent of the particular sequence of f,’s
chosen. For any measurable function f its positive and negative parts
6) ft@) =max[f(),0] and f~(*)= max[—f(2),0]
are also measurable, and

f@) =@ -/ @.

If the integrals of f+ and f— are both finite, then fis said to be integrable,
and its integral is defined as

[ran=[r+au={r-an

If of the two integrals one is finite and one infinite, then the integral of f
is defined to be the appropriate infinite value.

Example 3. Let Z be the closed interval [a, b], & be the class of Borel sets or
of Lebesgue measurable sets in Z, and let u# be Lebesgue measure. Then the
b

integral of f with respect to u is written as | f(2) dx, and is called the Lebesgue
a

integral of f. This integral generalizes the Riemann integral in that it exists
and agrees with the Riemann integral of f whenever the latter exists.

Example 4. Let Z be countable and consist of the points z;, Z5, * - *; let &
be the class of all subsets of %, and let u assign measure b; to the point ;. Then
fis integrable provided Zf(z;)b; converges absolutely, and ffdu is given by this
sum.

Let PX be the probability distribution of a random variable X and let T
be a real-valued statistic. If the function T(z) is integrable, its expectation
is defined by

Q) ET) = f T(z) dPX(z).

Tt will be seen from Lemma 2 in Section 3 below that the integration can
be carried out alternatively in z-space with respect to the distribution of T
defined by (3), so that also

®) E(T) = f t dP7(1).

The above definition of the integral permits the basic convergence
theorem
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Theorem 1. Let f, be a sequence of measurable functions and let
So(x) — f () for all x. Then

[fudu— [rau

if either one of the following conditions hold:

(i) (Lebesgue monotone convergence theorem)

the f,’s are nonnegative and the sequence is nondecreasing
or

(i) (Lebesgue bounded convergence theorem)

there exists an integrable function g such that |f,(%)| < g(@) for all n
and x.

For any set 4 € &/, let I ; be its indicator function defined by

9) I x)=1 or 0 as z€Ad or x€Ad,
and let
(10) Lfdu = ffIA du.

If w is a measure and f a nonnegative measurable function over (%, &7),
then

~

(11 W) = | Jdp

defines a new measure over (%, o). The fact that (11) holds for all
A € o/ is expressed by writing

(12) dv = fdu or  f=dv/du.

Let u and » be two given o-finite measures over (%, &7). If there exists a
function f satisfying (12), it is determined through this relation up to sets
of measure zero, since

ffd,u:fgd,u forall 4e/
4 4

implies that /=g ae. u.* Such an f is called the Radon-Nikodym
derivative of v with respect to u, and in the particular case that v is a
probability measure, the probability density of v with respect to p.
The question of existence of a function f satisfying (12) for given
* A statement that holds for all points = except possibly on a set of yi-measure zero is

said to hold a.e. y¢; or to hold (., p) if it is desirable to indicate the o-field over which u
is defined.
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measures u and v is answered in terms of the following definition. A
measure v is absolutely continuous with respect to u if

u(4) =0 implies »(4) = 0.

Theorem 2. (Radon-Nikodym.) If u and v are o-finite measures over
(Z, A), then there exists a measurable function f satisfying (12) if and only
if v is absolutely continuous with respect to .

The direct (or Cartesian) product A X B of two sets 4 and Bis the set of
all pairs (z,y) with €4, yeB. Let (¥, ) and (%, %) be two
measurable spaces, and let &/ x % be the smallest o-field containing all
sets A X Bwith A € &/ and B € #. If u and v are two o-finite measures
over (Z, &) and (%, %) respectively, then there exists a unique measure
A= pu Xvover (Z X ¥, o x ), the product of u and », such that for
any A € &, Be &,

(13) A4 x B) = u(A)(B).

Example 5. Let Z, % be Euclidean spaces of m and n dimensions, and let
s/, # be the o-fields of Borel sets in these spaces. Then £ x # is an (m + n)-
dimensional Euclidean space, and & x # the class of its Borel sets.

Example 6. Let Z = (X, Y) be a random variable defined over (2 x %,
o x %) and suppose that the random variables X and Y have distributions
PX PY over (%, #) and (%, #). Then X and Y are said to be independent if the
probability distribution PZ of Z is the product PX x PY,

In terms of these concepts the reduction of a double integral to a
repeated one is given by the following theorem.

Theorem 3. (Fubini.) Let u and v be o-finite measures over (Z, /) and
(¥, B) respectively, and let . = u x v. Iff(x,y) is integrable with
respect to A, then

(i) for almost all (v) fixed y, the function f (x, y) is integrable with respect
to u,

(ii) the function (f (x, y) du(x) is integrable with respect to v, and

(14) [revaen = | | [rew @) | o).

3. STATISTICS AND SUBFIELDS

According to the definition of Section 1, a statistic is a measurable
transformation T from the sample space (Z, %/) into a measurable space
(7, #). Such a transformation induces in the original sample space the
subfield*

(15) Ay =TNHB) = {TY(B): Be %#}.

* We shall use this term in place of the more cumbersome ““sub-o-field.”
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Since the set T-'[T(4)] contains A but is not necessarily equal to 4, the
o-field .27, need not coincide with .2/ and hence can be a proper subfield
of /. On the other hand, suppose for a moment that.7 = T(Z), that
is, that the transformation 7 is onto rather than into .7. Then

(16) T[T-Y(B)] = B forall Be %,

so that the relationship 4, = T-1(B) establishes a 1 : 1 correspondence
between the sets of o7, and 4, which is an isomorphism—that is, which
preserves the set operations of intersection, union, and complementation.
For most purposes it is therefore immaterial whether one works in the
space (', ) or in (7, #). These generate two equivalent classes of
events, and therefore of measurable functions, possible decision pro-
cedures, etc. If the transformation 7T is only into .7, the above 1 : 1
correspondence applies to the class #’ of subsets of .7’ = T(Z) which
belong to A, rather than to 4 itself. However, any set BeZ is
equivalent to B'= B N.7" in the sense that any measure over (2, .&7)
assigns the same measure to B" as to B. Considered as classes of events,
</, and A therefore continue to be equivalent, with the only difference
that # contains several (equivalent) representations of the same event.

As an example, let 2" be the real line and o7 the class of Borel sets, and
let T(x) = 2® Let .7 be cither the positive real axis or the whole real
axis and let 4 be the class of Borel subsets of 7. Then .27, is the class
of Borel sets that are symmetric with respect to the origin. When
considering, for example, real-valued measurable functions, one would.
when working in 7 -space, restrict attention to measurable functions of
2% Instead, one could remain in the original space, where the restriction
would be to the class of even measurable functions of . The equivalence
is clear. Which representation is more convenient depends on the
situation.

That the correspondence between the sets 4, = T-Y(B) € .o/, and
B € establishes an analogous correspondence between measurable
functions defined over (2, ./y) and (7, #) is shown by the following
lemma.

Lemma 1. Let the statistic T from (2, &) into (7, #) induce the
subfield <. Then a real-valued .o/ -measurable function f is o -measur-
able if and only if there exists a A-measurable function g such that

S @) = gT(@)]
Jor all x.
Proof.  Suppose first that such a function g exists. Then the set

o f@) <r}y = T{: g(t) <1}
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is in &, and [ is &/,-measurable. Conversely, if f is &/;-measurable,
then the sets

4, —ix 2—n<f<)_’+‘, =0, %1, +2,-

are (for fixed n) disjoint sets in ./, whose union is Z, and there exist
B;, € # such that 4;, = T"X(B,,). Let

~
B:;z = Bin N U Bjn'
j#i
Since 4,, and 4, are mutually exclusive for i # j, the set T-(B,, N B;,) is

empty and so is the set T-1(B;, N B}). Hence, for fixed n, the sets B,
are disjoint, and still satisfy 4,, = T-(Bj,). Defining

f,,(x):zin if zed,, i=0,+1,42 -

one can write
fo(®@) = g.[T(2),

where

i
— for teB¥

on ins

i=0’:|:l,:|:2"'
ga(t) =

0 otherwise.

Since the functions g, are Z-measurable, the set B on which g,(?)
converges to a finite limit is in #. Let R = T(Z) be the range of T.
Then for ¢ € R,

lim g,[T(2)] = lim f,(x) = f(2)

for all x € Z so that R is contained in B. Therefore, the function g
defined by g(¢) = lim g, (¢) for ¢ € B and g(f) = 0 otherwise possesses the
required properties.

The relationship between integrals of the functions f and g above is
given by the following lemma.

Lemma 2. Let T be a measurable transformation from (¥, /) into
(7, B), u a o-finite measure over (¥, /), and g a real-valued measurable
function of 1. If u* is the measure defined over (7, %) by

17 u*(B) = p[T-Y(B)] forall Be4%,



2.4] CONDITIONAL EXPECTATION AND PROBABILITY 39

then for any B € 4,

(18) f 8lT@)] du(x) = f () du*(r)
T-Y(B) B

in the sense that if either integral exists, so does the other and the two are
equal.

Proof.  Without loss of generality let B be the whole space 7. If g is
the indicator of a set B, € 4, the lemma holds since the left- and right-
hand sides of (18) reduce respectively to u[T-!(B,)] and 1*(Bgy) which are
equal by the definition of u*. Tt follows that (18) holds successively for
all simple functions, for all nonnegative measurable functions, and hence
finally for all integrable functions.

4. CONDITIONAL EXPECTATION AND
PROBABILITY

If two statistics induce the same subfield 7, they are equivalent in the
sense of leading to equivalent classes of measurable events. This
equivalence is particularly relevant to considerations of conditional
probability. Thus if X is normally distributed with zero mean, the
information carried by the statistics |X |, X2, e%* etc., is the same.
Given that |X| = ¢, X2 = 12, ¢~ *" = ¢~ it follows that X is 41, and any
reasonable definition of conditional probability will assign probability 1/2
to cach of these values. The general definition of conditional probability
to be given below will in fact involve essentially only ./, and not the
range space .7 of T. However, when referred to 7, alone the concept
loses much of its intuitive meaning, and the gap between the elementary
definition and that of the general case becomes unnecessarily wide. For
these reasons it is frequently more convenient to work with a particular
representation of a statistic, involving a definite range space (7, 4).

Let P be a probability measure over (%, .7), T a statistic with range
space (7, #), and 7, the subfield it induces. Consider a nonnegative
function f which is integrable (.7, P), that is, .2/-measurable and P-
integrable. Then [, fdP is defined for all 4 €.« and therefore for all
Ay €, It follows from the Radon-Nikodym theorem (Theorem 2)
that there exists a function f,, which is integrable (.o7,, P) and such that

(19) ffdp=ffodp forall A, € .7,
Ay Ao

and that f, is unique (7, P). By Lemma 1, f, depends on only througa
T(x). In the example of a normally distributed variable X with zero
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mean, and T = X2, the function f; is determined by (19) holding for all
sets A, that are symmetric with respect to the origin, so that fo(z) =
@ + [ (=)

The function f, defined through (19) is determined by two properties:

(i) Its average value over any set A, with respect to P is the same as
that of f;

(i) It depends on x only through T(z) and hence is constant on the sets
D, over which T is constant.

Intuitively, what one attempts to do in order to construct such a
function is to define fy(z) as the conditional P-average of f over the set
D,. One would thereby replace the single averaging process of integrating
f represented by the left-hand side by a two-stage averaging process such
as an iterated integral. Such a construction can actually be carried out
when X is a discrete variable and in the regular case considered in Chapter
1, Section 9; fy(¥) is then just the conditional expectation of f(X) given
T(z). In general, it is not clear how to define this conditional expectation
directly. Since it should, however, possess properties (i) and (ii), and
since these through equation (19) determine f; uniquely (L, P), we shall
take fy(z) of (19) as the general definition of the conditional expectation
E[f(X )]T(z)]. Equivalently, if fo(x) = g[T(x)] one can write

E[f(0)|T = 1] = g(),

so that E[f(X)t|] is a #-measurable function defined up to equivalence
(%4, P7). In the relationship of integrals given in Lemma 2, if u = PY
then u* = P, and it is seen that the function g can be defined directly in
terms of f through

(20) f (@) dP¥(x) = fg(t) dP™(t) forall Be %,
7-1(B) B

which is equivalent to (19).
So far, f has been assumed to be nonnegative. In the general case, the
conditional expectation of f is defined as

E[f(X)|f] = E[f+(X)|] — E[f~(X)|1].

Example 7. Let X, --, X, be identically and independently distributed
random variables with a continuous distribution function and let

T(xy, -5 ,) = (D )
where +(1) < - - - < x(® denote the ordered «’s. Without loss of generality one
can restrict attention to the points with () < - < 2{") since the probability

of two coordinates being equal is 0. Then 2 is the set of all n-tuples with
distinct coordinates, 7 the set of all ordered n-tuples, and ./ and 4 are the
classes of Borel subsets of 2 and 7. Under T-! the set consisting of the single
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point @ = (a;, " -+, a,) is transformed into the set consisting of the n! points
(a;, -, a;,) that are obtained from a by permuting the coordinates in all
possible ways. It follows that ./ is the class of all sets that are symmetric in
the sense that if A4, contains a point x = (xy, - - -, ,) then it also contains all
points (v, - - -2, ).

For any integrable function f, let

1
Jo@) =5 2fCey, o)

where the summation extends over the n! permutations of (v, -, x,). Then
Jfo is #-measurable since it is symmetric in its # arguments. Also

B} f(‘l"l’ T, Tp) dP(‘rl) o dP(xn) =‘£ f(‘/l‘ip T "Ui,,) dP(xl) e dP((l',,)

Ao o

so that f satisfies (19). It follows that fo(@) is the conditional expectation of
f(X) given T(x).

The conditional expectation of f(.X) given the above statistic 7(x) can also be
found without assuming the X’s to be identically and independently distributed.
Suppose that X has a density A(z) with respect to a measure x (such as Lebesgue
measure), which is symmetric in the variables x,, - - -, 2, in the sense that for any
A €4/ it assigns to the set {x: (z; -+, ;) € A} the same measure for ail
permutations (iy, - - -, i,). Let

Z 'l?".”’winhwiv“'axin
oy = L SRLALICHEEN

11’ o .’ "l‘yl'n)

where here and in the sums below the summation extends over the n! permu-
tations of (zy,- -, x,). The function f;, is symmetric in its » arguments and
hence «/-measurable. For any symmetric set A,, the integral

f folvy, -, ;cn)h(le coay) dueg, -, )
4,
has the same value for each permutation (x;, - - -, 2, ), and therefore

f fier, b, ) duGey, - )
Ao
1
=f foley, - ay) oy Lh(;vil, s ) du(@y, )
Ao :

=f ‘f(wl’ T ‘Un)h(:l~11 T ‘Tn) d/‘(‘vla T xn)‘
Ao

It follows that fy(x) = E[f(X)|T(@)].

Equivalent to the statistic T(x) = (2 - - -, o)), the set of order statistics, is
Ux) = (Zx;, X2, -+ -, Xa?). This is an immediate consequence of the fact, to
be shown below, that if T(2%) = ¢° and U(z®) = 0, then

T{°) = U({u*) =S
where {£°} and {«®} denote the sets consisting of the single point #° and «°

respectively, and where S consists of the totality of points © = (v, - -, 2,)
obtained by permuting the coordinates of «® = (9, - - -, #9) in all possible ways.
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That T-Y{°}) = S is obvious. To see the corresponding fact for U-!, let
V(‘T) = (zxia z.xixjv Z xix]‘xk) Y .'171.’!’2 tee 1‘"),

i t<j 1<j<k
so that the components of V(x) are the elementary symmetric functions
vy = Za;, -+ U, =&y ¥, of the n arguments &y, - - -, v, Then
@ —a) (@ —x) =2 — 0@l ot = (=D

Hence V(z% = 1® = (29, - - -, v9) implies that V-1({s"}) = S. That then also
U-1({u?}) = S follows from the 1 : 1 correspondence between « and v established.
by the relations (known as Newton’s identities),*

Uy — Dyltg—y + Vollgp — = + (=D _quy + (=1ko, =0, 1<k=n.

It is easily verified from the above definition that conditional expectation
possesses most of the usual properties of expectation. It follows of
course from the nonuniqueness of the definition that these properties can
hold only (%, PT). We state this formally in the following lemma.

Lemma 3. If T is a statistic and the functions f, g, - - are integrable
(&, P), then a.e. (%, PT)

(i) Elaf (X) + bg(X)|] = aE[f(X)|1] + bE[g(X)|];

(i) E[A(T)f (X)|] = h(O)ELf (X)|t];

(i) ¢ < f(z) < b (L, P) implies a < E[f(X)|1] < b;

(V) | fo] £ 8. ful®) — [ (@) (o, P) implies E[f,(X)|t]— EL[f (X)t].

A further useful result is obtained by specializing (20) to the case that B
is the whole space . One then has

Lemma 4. IfE|f(X)| < oo, and if g(t) = E[f(X)|t], then
1 Ef (X) = Eg(T),

that is, expectation can be obtained as the expected value of the conditional
expectation.

Since P{X € A} = E[I 4(X)), where I 4 denotes the indicator of the set 4,
it is natural to define the conditional probability of A given T =t by

(22) P(A|t) = E[I 4(X)|1].
In view of (20) the defining equation for P(4|f) can therefore be written as
(23) PX(ANTYB) = f dP¥(z)

ANTY(B)

= JP(A|t) dP*(t) forall Be .
B

*For a proof of these relations see for example Dickson, New First Course in the
Theory of Equations, New York, John Wiley & Sons, 1939, Chapter X.
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1t is an immediate consequence of Lemma 3 that subject to the appropriate
null set* qualifications, P(4|t) possesses the usual properties of proba-
bilities, as summarized in the following lemma.

Lemma 5. If T is a statistic with range space (7, #), and A, B, A,,
Ay, - - - are sets belonging to o, then a.e. (4, P")

oL PUANL 1
(i) if the sets Ay, Ay, - - - are mutually exclusive,
P(UAilt) = ZP(Az‘lt);

(iii) A < B implies P(A|t) < P(B]r).

According to definition (22), the conditional probability P(A4|t) must be
considered for fixed 4 as a #-measurable function of ¢. This is in
contrast to the elementary definition in which one takes ¢ as fixed and
considers P(A|f) for varying 4 as a set function over .. Lemma 5
suggests the possibility that the interpretation of P(A|t) for fixed ¢ as a
probability distribution over .« may be valid also in the general case.
However, the equality P(d; U Ayr) = P(A,|1) + P(4y)t), for example,
can break down on a null set that may vary with 4, and A4,, and the
union of all these null sets need no longer have measure zero.

For an important class of cases, this difficulty can be overcome through
the nonuniqueness of the functions P(4 t), which for each fixed 4 are
determined only up to sets of measure zero in 7. Since all determinations
of these functions are equivalent, it is enough to find a specific determina-
tion for each A4 so that for each fixed s these determinations jointly
constitute a probability distribution over /. This possibility is illustrated
by Example 7, in which the conditional probability distribution given
T(x) = 1 can be taken to assign probability 1/n! to each of the n! points
satisfying T(x) = ¢. The existence of such conditional distributions will
be explored more generally in the next section.

S. CONDITIONAL PROBABILITY DISTRIBUTIONS

We shall now investigate the existence of conditional probability
distributions under the assumption, satisfied in most statistical appli-
cations, that 2" is a Borel set in a Euclidean space. We shall then say
for short that 4 is Euclidean and assume that, unless otherwise stated,
4/ is the class of Borel subsets of Z.

* This term is used as an alternative to the more cumbersome “set of measure zero.”

t This section may be omitted at first reading. Its principal application is in the
proof of Lemma 8(ii) in Section 7, which in turn is used only in the proof of Theorem 3
of Chapter 4.
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Theorem 4. If % is Euclidean, there exist determinations of the functions
P(A|t) such that for each t, P(A|t) is a probability measure over /.

Proof. By setting equal to 0 the probability of any Borel set in the
complement of &, one can extend the given probability measure to the class
of all Borel sets and can therefore assume without loss of generality that
Z is the full Euclidean space. For simplicity we shall give the proof only
in the one-dimensional case. For each real x put F(z, ) = P((—o0, x]|t)
for some version of this conditional probability function, and let
ry, Iy -+ - denote the set of all rational numbers in some order. Then
r; < r; implies that F(r;, 1) < F(r;, t) for all ¢ except those in a null set
N,;, and hence that F(z, 1) is nondecreasing in z over the rationals for all ¢
outside of the null set N' = UN,;. Similarly, it follows from Lemma
3(iv) that for all ¢ not in N”, as n tends to infinity lim F(r; + 1/n,t) =
F(r,t) for i=1,2,---,1im F(n,7) = 1, and lim F(—n,t) = 0. There-
fore, for all 7 outside of the null set N’ U N”, F(z, t) considered as a
function of z is properly normalized, monotone, and continuous on the
right over the rationals. For ¢ not in N’ U N” let F*(z, 1) be the unique
function that is continuous on the right in = and agrees with F(z, 1) for all
rational z. Then F*(z,t) is a cumulative distribution function and
therefore determines a probability measure P*(A|r) over /. We shall
now show that P*(4|t) is a conditional probability of A given 7, by
showing that for each fixed A it is a %#-measurable function of ¢ sat-
isfying (23). This will be accomplished by proving that for each fixed
Aed

PX(A|r) = P(4)) (%, P).

By definition of P* this is true whenever A is one of the sets (—co, z] with z
rational. It holds next when 4 is an interval (a, b] = (—0, b] — (—0, 4]
with a, b rational, since P* is a measure and P satisfies Lemma 5(ii).
Therefore, the desired equation holds for the field & of all sets 4 which
are finite unions of intervals (a,, ;] with rational end points. Finally,
the class of sets for which the equation holds is a monotone class (see
Problem 1) and hence contains the smallest o-field containing &, which
is &/. The measure P*(Alt) over &/ was defined above for all ¢ in
N’ U N”. However, since neither the measurability of a function nor
the values of its integrals are affected by its values on a null set, one can
take arbitrary probability measures over &7 for tin N’ U N” and thereby
complete the determination.

If X is a vector-valued random variable with probability distribution
PY and T is a statistic defined over (%, &7), let P! denote any version
of the family of conditional distributions P(A|t) over &/ guaranteed by
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Theorem 4. The connection with conditional expectation is given by
the following theorem.

Theorem 5. If X is a vector-valued random variable and E|f (X)| < oo,
then

24) E[f(X),t] = ff(x) dpPl(x) (%, PT).

Proof.  Equation (24) holds if f is the indicator of any set A € <.
It then follows from Lemma 3 that it also holds for any simple function
and hence for any integrable function.

The determination of the conditional expectation E[ f(X )|t] given
by the right-hand side of (24) possesses for each ¢ the usual properties
of an expectation, (i), (iii), and (iv) of Lemma 3, which previously could
be asserted only up to sets of measure zero depending on the functions
fs& - involved. Under the assumptions of Theorem 4 a similar
strengthening is possible with respect to (ii) of Lemma 3, which can be
shown to hold except possibly on a null set N not depending on the
function A. It will be sufficient for the present purpose to prove this
under the additional assumption that the range space of the statistic 7 is
also Euclidean. *

Theorem 6. If T is a statistic with Euclidean domain and range spaces
(Z', ) and (T, B), there exists a determination PX" of the conditional
probability distribution and a null set N such that the conditional expectation
computed by

E[f(X)|1] = ff(x) dPYV()
satisfies for all t ¢ N
(25) ETHT)f(X)|1] = hOELF (]

Proof.  For the sake of simplicity and without essential loss of generality
suppose that T is real-valued. Let P¥(4) be a probability distribution
over & for each ¢, the existence of which is guaranteed by Theorem 4.
For B € 4, the indicator function I(f) is #-measurable and

f (1) dP™(t) = PT(B' N B) = PX(T-\B’ N T-1B).
»

Thus by (20)
Ix() = PYYT-1B)  ae. PT.

* For a proof without this restriction see Section 26.2, Theorem A, of Loéve,
Probability Theory, New York, D. Van Nostrand Co., 1955.
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Let B, n=1,2, -, be the intervals of J with rational end points.
Then there exists a P-null set N = |J N,, such that for r ¢ N

I5,(t) = P*T-'B,)

for all n. For fixed ¢ ¢ N, the two set functions P¥/(7T-1B) and ()
are probability distributions over 2, the latter assigning probability 1
or 0 to a set as it does or does not contain the point #. Since these distri-
butions agree over the rational intervals B,, they agree for all B e %.
In particular, for ¢ ¢ N, the set consisting of the single point ¢ is in A,
and if

AY = {z: T(x) =1}

it follows that for all t ¢ N
(26) PY(A4®Y) = 1.
Thus

[Hren@ave = [ ireie e = o [1e @t

for t ¢ N, as was to be proved.

It is a consequence of Theorem 6 that for allz ¢ N, E[h(T)[ t] = h(t)and
hence in particular P(T€ B|t) =1 orOasteBort¢B.

The conditional distributions PX¥ still differ from those of the elemen-
tary case considered in Chapter 1, Section 9, in being defined over @, )
rather than over the set A® and the o-field &/ of its Borel subsets.
However, (26) implies that for t ¢ N

PXI(4) = PXV(A N AM).

The calculations of conditional probabilities and expectations are therefore
unchanged if for 7 ¢ N, PX" is replaced by the distribution P*, which
is defined over (4, &/¥) and which assigns to any subset of 4¥ the
same probability as P¥¥,

Theorem 6 establishes for all ¢ ¢ N the existence of conditional proba-
bility distributions P!, which are defined over (4, o/ ) and which
by Lemma 4 satisfy

@1 sroo=[ [ @i |t

7 —NLJa®
for all integrable functions f. Conversely, consider any family of distri-
butions satisfying (27), and the experiment of observing first T, and if
T =1, a random quantity with distribution PX¥. The result of this
two-stage procedure is a point distributed over (%, &) with the same
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distribution as the original X. Thus PV satisfies this “functional”
definition of conditional probability.

If (Z', o) is a product space (7 x %, # x €), then AV is the product
of % with the set consisting of the single point¢. Fort ¢ N, the conditional
distribution PX" then induces a distribution over (%, %), which in
analogy with the elementary case will be denoted by P¥!. 'In this case
the definition can be extended to all of 7 by letting P assign probability

1 to a common specified point y, for all € N. With this definition,
(27) becomes

(28) 5@ =[[[r69 apy)| a7

As an application, we shall prove the following lemma, which will
be used in Section 7.

Lemma 6. Let (7, #) and (¥, %) be Euclidean spaces, and let PI'Y
be a distribution over the product space (X, )= (T x U, B x %).
Suppose that another distribution P, over (', ) is such that

dPy(t, y) = a(y)b(t) dPy(t, y),
with a(y) > O for all y. Then under P, the marginal distribution of T
and a version of the conditional distribution of Y given t are given by
0 = b0 [at) aP5iw) | apio
and
Yl
dp{'ll(y) — a(.’/) dPo (y) i
a(y') dPi\(y)
¥
Proof. The first statement of the lemma follows from the equation
P {T € B} = E\[I(T)] = E[I(T)a( Y)K(T)]

= [ 50 [ [aw 4P} | P

To check the second statement, one need only show that for any integrable
J the expectation E,f(Y,T) satisfies (28), which is immediate. The
denominator of dP{! is positive since a(y) > 0 for all ¥.

6. CHARACTERIZATION OF SUFFICIENCY

We can now generalize the definition of sufficiency given in Chapter 1,
Section 9. If # = {P), 6 € Q} is any family of distributions defined over
a common sample space (Z', %), a statistic T is sufficient for & (or for 0)
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if for each A in & there exists a determination of the conditional proba-
bility function P,(A|r) that is independent of 6. As an example suppose
that X;,---, X, are identically and independently distributed with
continuous distribution function F,, 6€Q. Then it follows from
Example 7 that the set of order statistics T(X) = (X, --- XM} is
sufficient for 6.

Theorem 7. If & is Euclidean, and if the statistic T is sufficient for 2,
then there exist determinations of the conditional probability distributions
P,(A|t) which are independent of 0 and such that for each fixed t, P(A|t)
is a probability measure over /.

Proof. This is seen from the proof of Theorem 4. By the definition
of sufficiency one can, for each rational number r, take the functions
F(r, 1) to be independent of 0, and the resulting conditional distributions
will then also not depend on 0.

In Chapter 1 the definition of sufficiency was justified by showing that
in a certain sense a sufficient statistic contains all the available information.
In view of Theorem 7 the same justification applies quite generally when
the sample space is Euclidean. With the help of a random mechanism
one can then construct from a sufficient statistic 7 a random vector X’
having the same distribution as the original sample vector X. Another
generalization of the earlier result, not involving the restriction to a
Euclidean sample space, is given in Problem 11.

The factorization criterion of sufficiency, derived in Chapter 1, can
be extended to any dominated family of distributions, that is, any family
P = {P,, 0 € Q} possessing probability densities p, with respect to some
o-finite measure u over (Z, &7). The proof of this statement is based
on the existence of a probability distribution 4 = X¢,Py, (Theorem 2 of
the Appendix), which is equivalent to & in the sense that for any Aesd

(29) MA) =0 ifand only if P,(A4) =0 for all 0 e Q.

Theorem 8. Let & = {P,, 6 € Q} be a dominated family of probability
distributions over (¥, /) and let 2 = Zc,Py, satisfy (29). Then a statistic
T with range space (7, B) is sufficient for & if and only If there exist
nonnegative %-measurable functions gy(t) such that
(30) dPy(x) = g[T(x)] dA(z)
for all 6 € Q.

Proof. Let &, be the subfield induced by 7" and suppose that T is
sufficient for 6. Then for all 6 € Q, 4y € &/, and 4 € &/

f ) P(A|T(2)) dPy(x) = Py(A N Ag);
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and since 1 = X¢,P,,

f P(A|T(z)) di@) = M4 N A,),
AO

so that P(AlT(x)) serves as conditional probability function also for A.
Let g4(T(x)) be the Radon-Nikodym derivative dPy(x)[dA(x) for (<, A).
To prove (30) it is necessary to show that go(T()) is also the derivative of
Py for (o, 2). If A, is put equal to & in the first displayed equation,
this follows from the relation

P(A) = f P(AIT@)) dPy(z) = f ELy@)|T(@)] dPy(z)
- f El@)|T@)goT) di) = f E g/ T@) (@)|T(@)] dia)

= [aT)1.) dite) = [ g @

Here the second equality uses the fact, established at the beginning of the
proof, that P(4|T(x)) is also the conditional probability for 1; the third
equality holds since the function being integrated is 2,-measurable and
since dPy = g, dj. for (2/,, 4); the fourth is an application of Lemma 3(ii);
and the fifth employs the defining property of conditional expectation.

Suppose conversely that (30) holds. We shall then prove that the
conditional probability function P,(A|t) serves as a conditional probability
function forall P € 2. Let gy(T(x)) = dPy(x)/dA(x) on &/ and for fixed A
and 0 define a measure » over &/ by the equation dv = I , dP,. Then
over 7y, dv(x)|dPy(x) = EJI 4(X)|T(x)), and therefore

dv(x)[dA(x) = Py[A|T(x)lgy(T(x)) over o/,
On the other hand, dv(x)/dA(x) = I ,(x)gy(T(x)) over ., and hence
dv(x)|dM(x) = E;[1 (X)gy(T(X ))I T(x)] =P z[AIT(x)]go(T(x)) over .

It follows that P (A|T@)g,T) = Py(AT@)g,T@) (o, 4) and
hence (2, Pg). Since gy(T(x)) # 0 (7, P,) this shows that Py(A|T(2)) =
Py(A|T(z)) (¢, Pg), and hence that Py(4|T(x)) is a determination of
Py(A|T(2)).

Instead of the above formulation, which explicitly involves the distri-
bution 4, it is sometimes more convenient to state the result with respect
to a given dominating measure u.

Corollary 1. (Factorization theorem.) If the distributions Py of P
have probability densities p, = dPy|du with respect to a o-finite measure p,
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then T is sufficient for 2 if and only if there exist nonnegative HB-measurable
functions gy on T and a nonnegative s/-measurable function h on Z such
that

(31 Po(@) = gl(T@Ihx) (L, p).
Proof. Let 2 = Zc;P,, satisfy (29). Then if T is sufficient, (31) follows
from (30) with h = dA/du. Conversely, if (31) holds,
dMz) = Zc,go[T@)h(z) du(x) = k[T(@)Ih(z) du(z)

and therefore dPy(x) = g5 (T(x)) dA(x), where g5(1) = gy()/k(t) when
k(t) > 0 and may be defined arbitrarily when k(t) = 0.

7. EXPONENTIAL FAMILIES

An important family of distributions which admits a reduction by
means of sufficient statistics is the exponential family, defined by
probability densities of the form

k
32 po) = CO) oxp [zlgj(om(x)] He)

with respect to a o-finite measure u over a Euclidean sample space
(%, ). Particular cases are the distributions of a sample X = (X3,"", X,)
from a binomial, Poisson, or normal distribution. In the binomial
case, for example, the density (with respect to counting measure) is

(Z)p“(l — o= (1 — p)" exp [w log (l—’j—p)] (”)

Example 8. If Y,,- - -, Y, are independently distributed, each with density
(with respect to Lebesgue measure)

_ ylU =1 exp [—y/(20%)]
(33) PY) = ——GApRT()

then the joint distribution of the Y’s constitutes an exponential family. For
o =1, (33) is the density of the x>-distribution with f degrees of freedom; in
particular for fan integer, this is the density of Xf_, X7, where the X’s are a
sample from the normal distribution N(0, 1).

y >0,

Example 9. Consider n independent trials, each of them resulting in one of
the s outcomes E;, - - -, E, with probabilities py, - - -, p, respectively. If X;; is 1
when the outcome of the ith trial is E; and 0 otherwise, the joint distribution of
the X’s is

P{Xyy =2y, Xps = Ty} =‘p:5¢up§“’u . . ~‘p§“‘u,

where all «;; = 0 or 1 and Z;z;; = 1. This forms an exponential family with



2.7] EXPONENTIAL FAMILIES 51
Ty) =X} _j2; (j=1,--+,5s — 1). The joint distribution of the T’s is the
multinomial distribution
n!
et =ty — o =1, ))!
Pltl .. 'P§8:11 ([ —pr = _ps_l)n—tl——"'—t,,_l_

If X3,--+, X, is a sample from a distribution with density (32), the
Joint distribution of the X’s constitutes an exponential family with the
sufficient statistics ZLIT,-(X,.), j=1,--- k. Thus there exists a k-
dimensional sufficient statistic for (X, - - -, X,,) regardless of the sample
size. Suppose conversely that X, - - -, X, is a sample from a distribution
with some density py(x) and that the set over which this density is positive
is independent of 6. Then under regularity assumptions which make
the concept of dimensionality meaningful, if there exists a k-dimensional
sufficient statistic with k < n, the densities P,(%) constitute an exponential
family.*

Employing a more natural parametrization and absorbing the factor
h(z) into p, we shall write an exponential family in the form dPy(z) =
Po(x) du(z) with

'
(35) po(®) = CO) exp | 3 0,Ty(x)|.
j=1

For suitable choice of the constant C(6), the right-hand side of (35) is
a probability density provided its integral is finite. The set Q of para-
meter points 6 = (0, - - -, 0,) for which this is the case is the natural
parameter space of the exponential family (35).

Optimum tests of certain hypotheses concerning any 0, are obtained
in Chapter 4. We shall now consider some properties of exponential
families required for this purpose.

(34) P{Tl = tl» Y Ts-l = ts—l} =

Lemma 7. The natural parameter space of an exponential family
is convex.

Proof. Let (0, - -+, 0;) and (03, - - -, 0;) be two parameter points for
which the integral of (35) is finite. Then by Hélder’s inequality,

f exp [Z[a0; + (1 — o)0]T,(x)] du(z)

o 1—%
< [fexp [20,T;(x)] d,u(x)] [ f exp [Z0;T;(x)] d,u(x)] < o
for any 0 <o < 1.

* For a proof and statement of the regularity conditions see Koopman, “On distri-
butions admitting a sufficient statistic,” Trans. Am. Math. Soc., Vol. 39 (1936), pp.
399-409. The result is also discussed by Darmois, ““Sur les lois de probabilité a
estimation exhaustive,” Compt. Rend. Acad. Sci., Paris, Vol. 260 (1935), pp- 1265-1266,
and by Pitman, “Sufficient statistics and intrinsic accuracy,” Proc. Cambridge Phil.
Soc., Vol. 32 (1936), pp. 567-579.
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If the convex set Q lies in a linear space of dimension < k, then (35)
can be rewritten in a form involving fewer than k components of 7. We
shall therefore, without loss of generality, assume Q to be k-dimensional.

It follows from the factorization theorem that T(z) = (Ty(%), - * -, T(%))
is sufficient for Z = {P,, 6 € Q}.

Lemma 8. Let X be distributed according to the exponential family

dPEy() = CO,9) exp | 30.U.@) + 3 0,T(2) | du(z).
i=1 j=1

Then there exist measures A, and probability measures v, over s and r
dimensional Euclidean space respectively such that

() the distribution of T = (Ty,- -, T,) is an exponential Samily of the
form

(36) dPfy(t) = C(0,9) exp (z 19,@) diy(1),
i=1
(ii) the conditional distribution of U = (Uy,* -+, U,) given T =1 is
an exponential family of the form

37 dP‘,U"(u) = C(0) exp (’2 Giui) dv(u),
i=1

and hence in particular is independent of 9.

Proof. Let (6°9°) be a point of the natural parameter space, and
let u* = Py 4. Then
(0, 9) r

P [Z (0; = ) Ui(=) + Z & — 0;>)T,.(x)] du*(x),
1 j=1

X oo
dP;(x) = G0 .99 ex 2

and the result follows from Lemma 6, with

di(t) = exp (Zﬂ?ti)[fexp I:il(Oi - Bg)ui] dPg&!f,o(u)] dPJ 50(1)

and
dv(u) = dPlyo(u).

Theorem 9. Let ¢ be any bounded measurable function on (%, ).
Then

(i) the integral
&

38) [ exe| 28,70 | aueo

considered as a function of the complex variables 0, = &; + in; (j=
1, -+, k) is an analytic function in each of these variables in the region
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R of parameter points for which (&, -, &) is an interior point of the
natural parameter space Q;

(ii) the derivatives of all orders with respect to the 0’s of the integral (38)
can be computed under the integral sign.

Proof. 1f || < M, then
|$(x) exp [Z0,Ty(x)]| < M exp [E&,T,(2)]

so that the integral (38) exists and is finite for all points (&, - - -, &) of Q.
Let (&), - -, ) be any fixed point in the interior of Q, and consider one
of the variables in question, say ;. Breaking up the factor

$(@) exp [(&3 + MD)To(@) + - - - + (& + i) Ti(@)]
into its real and complex part and each of these into its positive and
negative part, and absorbing this factor in each of the four terms thus
obtained into the measure u, one sees that as a function of 6, the integral
(38) can be written as

f exp [0,Ty(@)] dis(@) — f exp [0,T,@)] duusla)

+ i f exp [0,T1(x)] duy(x) — ifexp [0, T1()] dp ().
It is therefore sufficient to prove the result for integrals of the form
w0 = [ exp 0T, ).

Since (&, -, &) is in the interior of Q, there exists d > 0 such that
¥(0y) exists and is finite for all 6, with |& — &)< 6. Consider the
difference quotient

w(f)(;) — t:;’0(0?) _ f exp [01T1(9;)] - Zzp [63T3()] du(a).
1= "1 11— Y1

The integrand can be written as

exp [(6, — ONTy(=)] — 1]
0, — 0(1) .
Applying to the second factor the inequality

exp [09T,(x)] [

exp (az) — 1

2z

< exp ((36|a|) for ¢ < 8,

the integrand is seen to be bounded above in absolute value by

1 1
5 lexp (1T, + 9Ty < 51exp (61 + O)T3] + exp [(63 — O)Ty)
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for |6, — 69| < 6. Since the right-hand side is integrable, it follows from
the Lebesgue bounded convergence theorem [Theorem 1(ii)] that for
any sequence of points 6{" tending to 0}, the difference quotient of
tends to

f Ty(@) exp [BTy(@)] du(a).

This completes the proof of (i), and proves (ii) for the first derivative.
The proof for the higher derivatives is by induction and is completely
analogous.

8. PROBLEMS

Section 1

1. Monotone class. A class # of subsets of a space is a field if it contains the
whole space, is closed under complementation and under finite unions; a class
M is monotone if the union and intersection of every increasing and decreasing
sequence of sets of .# is again in .#. The smallest monotone class .# containing
a given field # coincides with the smallest o-field #/ containing #.

[One proves first that # is a field. To show, for example, that A N B € .4,
when A4 and B are in .#, consider for a fixed set A € #, the class .# 4 of all Bin
#, for which A " Be #, Then .# ,is a monotone class containing #, and
hence .# ; = #,. Thus AN Be .# 4 for all B. The argument can now be
repeated with a fixed set B € .#, and the class .# of sets 4 in .#, for which
AN Be #, Since 4, is a field and monotone, it is a o-field containing #
and hence contains . But any o-field is a monotone class so that also .# is
contained in +.]

Section 2

2. Radon-Nikodym derivatives. (i) If 2 and p are o-finite measures over
(4, @) and u is absolutely continuous with respect to 4, then

f fu = f fj—’; .

for any u-integrable function f.
(ii) If 4, y#, and v are o-finite measures over (£, /) such that » is absolutely
continuous with respect to x and p with respect to 2, then

dv  dv du
— = a.e. A
dh  dp di
(iii) If 4 and v are o-finite measures, which are equivalent in the sense that each
is absolutely continuous with respect to the other, then

dv du\
— == a.e. j, v,
du dav
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(iv) If py, k =1,2,---, and p are finite measures over (2, &) such that
22 m(A) = u(A) for all A €, and if the u, are absolutely continuous with
respect to a o-finite measure 4, then u is absolutely continuous with respect to

4, and
n
d z My
k

n
d) .
kglh— "% I =1 =d—'“ ae. /

a i Ema SN Ta T @

[(i) The equation in question holds when f'is the indicator of a set, hence when
[ is simple, and therefore for all integrable f.
(if) Apply (i) with ' = dv/du.]

Section 3

3. Let (%, «) be a measurable space, and #/, a o-field contained in +. Suppose
that for any function 7, the o-field # is taken as the totality of sets B such that
T-Y(B) e«. Then it is not necessarily true that there exists a function T such
that T-1(#) = «,.

[An example is furnished by any </, such that for all « the set consisting of the
single point x is in &#/,.]

Section 4
4. (i) Let # be any family of distributions of X = (X3, - - -, X,,) such that
P{(Xi, Xi+1v Tt Xn) Xl» Y Xi—l) GA} = P{(Xls R Xn) € A}

for all Borel sets A and alli = 1, - - -, n. For any sample point (zy, - - +, x,,) define
(3/1, Y yn) = (xia Litls " " 5 %py Ty, © 00y xi—l) where Z; = ) = min (1‘1, Ty ‘Tn)-
Then the conditional expectation of f(X)given Y =y is

1
Sowns - y) = ;,[f(yp oY) W YY) o+ (W Y1s S YD)

(i) Let G = {gy," - -,g,} be any group of permutations of the coordinates
¥, %, of a point @ in n-space, and denote by gz the point obtained by
applying g to the coordinates of . Let # be any family of distributions P of
X = (X, -, X,) such that

39) PlgX €A} = P{Xe A} forall g€eG.
For any point = let + = T(z) be any rule that selects a unique point from the r

points g,x, k =1, - - -, r (for example the smallest first coordinate if this defines
it uniquely, otherwise also the smallest second coordinate, etc.). Then

EO0I = 3 figun.

(iii) Suppose that in (ii) the distributions P do not satisfy the invariance
condition (39) but are given by

dP(x) = h(z) du(x)
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where u is invariant in the sense that u{x: gz € A} = u(4). Then

7

: | kzl [fgrh(gt)
E[f(X)|) = =———-

kglh(g xf)

Section 5

5. Prove Theorem 4 for the case of an n-dimensional sample space.

[The condition that the cumulative distribution function be nondecreasing is
replaced by P{r; < X; S a1, - % < X = z;} = 0; .the condition that it be
continuous on the right can be stated as limp_.oF(z; + 1m, -z, + 1/m) =
F(zy, -, zp).]

6. Let & = % x 7 and suppose that P, P, are two probability distributions

given by
dPy(y, 1) = f(y)g(r) du(y) av(r)
dPy(y, 1) = h(y, 1) du(y) ()

where h(y, 1)|f(y)g(r) < . Then under P, the probability density of Y with
respect to p is

Yo o Wy T) | _ ]

Y = VY = h(y’ t) v ]
[pl ®) L,h(y, 1) d(t) f(y)Lf(y)g(t) &) (o).

Section 6

7. Symmetric distributions. (i) Let 2 be any family of distributions of
X = (Xy, - - -, X,,) which are symmetric in the sense that

P{(Xil9 ) 1‘,1,,) € A} = P{(Xl’ T Xn) GA}

for all Borel sets 4 and all permutations (iy, - *, in) of (1,-+-,n). Then the
statistic T of Example 7 is sufficient for £, and the formula given in the first part
of the example for the conditional expectation E[f(X )|T(x)] is valid.

(i) The statistic Y of Problem 4 is sufficient.

(iii) Let Xy, - - -, X, be identically and independently distributed according to a
continuous distribution P € 2, and suppose that the distributions of £ are
symmetric with respect to the origin. Let ¥; =|X;| and W; = V. Then
(W, - - -, W) is sufficient for 2.

8. Sufficiency of likelihood ratios. Let Py, Py be two distributions with
densities py, p1. Then T(x) = p,(x)/p,(#) is sufficient for # = {Py, P;}.
[This follows from the factorization criterion by writing p; = T'* pg, po = 1- po.l

9. Pairwise sufficiency. A statistic T is pairwise sufficient for 2 if it is
sufficient for every pair of distributions in 2.

(i) If 2 is countable and T is pairwise sufficient for 2, then T is sufficient for .

(i) If 2 is a dominated family and T is pairwise sufficient for 2, then T is
sufficient for 2.
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(@) Let # = {Py, Py, - -} and let /, be the sufficient subfield induced by 7.
Let2 = X¢;P; (c; > 0) be equivalentto #. Foreachj=1,2,-- - the probability
measure Z; that is proportional to (co/n)P, + c;P; is equivalent to {P,, P;}.
Thus by pairwise sufficiency, the derivative f; = dPy/[(co/n) dP, + c; dP))] is
#/,-measurable. Let S; = {z:fj(x) =0} and § =7, S;. Then Sec«,,
Py(S) =0, and on Z — S the derivative dPy/dX?_, c;P;equals Z7_; 1 [f; which is
</ »-measurable. It then follows from Problem 2 that

n

dP,  dP, djgf" P

da n di

is also «/-measurable.

(i) Let 2 = X7, ¢;Py, be equivalent to #. Then pairwise sufficiency of T
implies for any 6, that dPy,[(dPy, + dA) and hence dPg |dA is a measurable
function of T.]

10. If a statistic 7" is sufficient for 2, then for every function f which is
(#, Pg)-integrable for all 6 € Q there exists a determination of the conditional
expectation function E[f(X)|r] that is independent of 6.

{If & is Euclidean, this follows from Theorems 5 and 7. In general, if fis
nonnegative there exists a nondecreasing sequence of simple nonnegative
functions f, tending to f. ~ Since the conditional expectation of a simple function
can be taken to be independent of 6 by Lemma 3(ii), the desired result follows
from Lemma 3(iv).]

11. For a decision problem with a finite number of decisions, the class of
procedures depending on a sufficient statistic 7 only is essentially complete.*

[For Euclidean sample spaces this follows from Theorem 4 ‘without any
restriction on the decision space. For the present case, let a decision procedure
be given by d&(x) = (6'V(w), - - -, 8'™(x)) where 8')(x) is the probability with
which decision d; is taken when z is observed. If T is sufficient and ?(f) =
E[69(X)|1], the procedures & and 7 have identical risk functions.]

Section 7

12. Let X;(i =1, - 5) be independently distributed with Poisson distri-
bution P(4,), and let Ty = XX, T; = X;, A = Z1;,. Then T, has the Poisson
distribution P(4), and the conditional distribution of Ty, - - -, T,_, given Ty = ¢,
is the multinomial distribution (34) with n = ¢, and pi = AfA.

[Direct computation.]

13. Life testing. Let Xy, - - -, X, beindependently distributed with exponential
density (26)'e~*/2% for = = 0, and let the ordered X’s be denoted by ¥; < Y, <
--+ =Y, Itisassumed that ¥, becomes available first, then Y,, etc., and that
observation is continued until ¥, has been observed. This might arise, for
example, in life testing where each X measures the length of life of, say, an

* For a more general result see Bahadur, “A characterization of sufficiency,” Ann.
Math. Stat., Vol. 26 (1955), pp. 286-293, and Elfving, “Sufficiency and completeness,”
Ann. Acad. Sci. Fennicae, Ser. A, No. 135, 1952.
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electron tube, and n tubes are being tested simultaneously. Another appli-
cation is to the disintegration of radioactive material, where # is the number of
atoms, and observation is continued until r o-particles have been emitted.

(i) The joint distribution of Y3, -, Y, is an exponential family with density

r
1 n [ ‘zlyi +(n —r)y,,]
! P
Pl ) 0sm=rsw

(ii) The distribution of [Z7_,Y; + (n — r)Y,]/0is ¥ with2rdegrees of freedom.

(iii) Let Y;, Y,, - -+ denote the time required until the first, second, etc.,
event occurs in a Poisson process with parameter 1/26" (see Chapter 1, Problem 1).
Then Z, = Y,/0', Z, = (Y, — Y))[0, Z3 = (Y3 — Y,)/0’, - - - are independently
distributed as »* with 2 degrees of freedom, and the joint density of
Y,,- -, Y, is an exponential family with density

1 ,
(2—0,)—,exP(—yr/20), Osy; =" =Y

The distribution of Y,/6” is again x* with 2r degrees of freedom.

(iv) The same model arises in the application to life testing if the number » of
tubes is held constant by replacing each burned-out tube by a new one, and if
Y, denotes the time at which the first tube burns out, Y, the time at which the
second tube burns out, etc., measured from some fixed time.

[(i)) The random variables Z; = (n — i + 1)(¥; — Y;)[0 i =1, -, r) are
independently distributed as x*> with 2 degrees of freedom, and X5_,Y; +
(n =NY,)0 =2_,Z;]

14. The expectations and covariances of the statistics 7; in the exponential
family (35) are given by

EIT(X)) = —2log C®)/36;  (j =1,k
E[T(X)T{(X)] — [ET(X)ET(X)] = —*log C(6)/6,30;  (i,j =1, " k).

15. Let Q be the natural parameter space of the exponential family (35), and
for any fixed #,,4, ", (r <k) let Q(',l,...,o', be the natural parameter space
of the family of conditional distributions given T,y = 43, " ", T =ty

(i) Then Qj .4, contains the projection Qp, .4, of Q onto 6y, - - -, 0,.

(i) An example in which Qg .., is a proper subset of Qg ..o, is the
family of densities

Po,o,(x,y) = C(6y, 05) exp (6, + Oy —2y), 2,y >0.
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CHAPTER 3
Uniformly Most Powerful Tests

1. STATING THE PROBLEM

We now begin the study of the statistical problem whose theory has
been explored most thoroughly, the problem of hypothesis testing. As
the term suggests, one wishes to decide whether or not some hypothesis
that has been formulated is correct. The choice here lies between only
two decisions: accepting or rejecting the hypothesis. A decision procedure
for such a problem is called a test of the hypothesis in question.

The decision is to be based on the value of a certain random variable X,
the distribution P, of which is known to belong to a class 2 = {P,, 0 € Q}.
We shall assume that if 6 were known one would also know whether or
not the hypothesis is true. The distributions of & can then be classified
into those for which the hypothesis is true and those for which it is false.
The resulting two mutually exclusive classes are denoted by H and K
and the corresponding subsets of Q by Q and Q- respectively, so that
HUK=2 and QU Q, = Q. Mathematically, the hypothesis
is equivalent to the statement that P, is an element of H. It is therefore
convenient to identify the hypothesis with this statement and to use the
letter H also to denote the hypothesis. Analogously we call the distri-
butions in K the alternatives to H, so that K is the class of alternatives.

Let the decisions of accepting or rejecting H be denoted by d, and 4,
respectively. A nonrandomized test procedure assigns to each possible
value z of X one of these two decisions and thereby divides the sample
space into two complementary regions S, and S;. If X falls into S,
the hypothesis is accepted, otherwise it is rejected. The set Sy is called
the region of acceptance, and the set S, the region of rejection or critical
region.

When performing a test one may arrive at the correct decision, or one
may commit one of two errors: rejecting the hypothesis when it is true
(error of the first kind) or accepting it when it is false (error of the second
kind). The consequences of these are often quite different. For example,

60



3.1] STATING THE PROBLEM 61

if one tests for the presence of some disease, incorrectly deciding on the
necessity of treatment may cause the patient discomfort and financial
loss.  On the other hand, failure to diagnose the presence of the ailment
may lead to his death.

It is desirable to carry out the test in a manner which keeps the proba-
bilities of the two types of error to a minimum. Unfortunately, when
the number of observations is given, both probabilities cannot be controlled
simultaneously. It is customary therefore to assign a bound to the
probability of incorrectly rejecting H when it is true, and to attempt
to minimize the other probability subject to this condition. Thus one
selects a number « between 0 and 1, called the level of significance, and
imposes the condition that

1) P (6(X)=d} =P, {XeS}<a forall 0eQ,,.

Subject to this condition, it is desired to minimize P, {0(X) = d,} for 0
in Qg or, equivalently, to maximize

Although usually (2) implies that
3) sup P {X eS8} =a
Qp

it is convenient to introduce a term for the left-hand side of (3): it is
called the size of the test or critical region S,. Condition (1) therefore
restricts consideration to tests whose size does not exceed the given level
of significance. The probability of rejection (2) evaluated for a given 0
in Q is called the power of the test against the alternative . Considered
as a function of § for all 0 € Q, the probability (2) is called the power
Junction of the test and is denoted by f(6).

The choice of a level of significance o will usually be somewhat arbitrary
since in most situations there is no precise limit to the probability of an
error of the first kind that can be tolerated. It has become customary
- to choose for « one of a number of standard values such as .005, .01, or
-05. There is some convenience in such standardization since it permits
a reduction in certain tables needed for carrying out various tests.
Otherwise there appears to be no particular reason for selecting these
values. In fact, when choosing a level of significance one should also
consider the power that the test will achieve against various alternatives.
If the power is too low one may wish to use much higher values of « than
the customary ones, for example, .1 or .2.*

* A rule of thumb for choosing « in relation to the power of the test is suggested by

Lehmann, “Significance level and power,” Ann. Math. Stat., Vol. 29 (1958), Pp-
1167-1176.
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Another consideration that frequently enters into the specification of a
significance level is the attitude toward the hypothesis before the experi-
ment is performed. If one firmly believes the hypothesis to be true,
extremely convincing evidence will be required before one is willing to
give up this belief, and the significance level will accordingly be set very
low. (A low significance level results in the hypothesis being rejected
only for a set of values of the observations whose total probability under
the hypothesis is small, so that such values would be most unlikely to
occur if H were true.)

In applications, there is usually available a nested family of rejection
regions, corresponding to different significance levels. It is then good
practice to determine not only whether the hypothesis is accepted or
rejected at the given significance level, but also to determine the smallest
significance level & = &(x), the critical level, at which the hypothesis would
be rejected for the given observation. This number gives an idea of how
strongly the data contradict (or support) the hypothesis, and enables
others to reach a verdict based on the significance level of their choice.
(Cf. Problem 7 and Chapter 4, Problem 2.)

Let us next consider the structure of a randomized test. For any
value x such a test chooses among the two decisions, rejection or acceptance,
with certain probabilities that depend on x and will be denoted by ¢(x)
and 1 — ¢(x) respectively. If the value of X is , a random experiment
is performed with two possible outcomes R and R the probabilities of
which are ¢(x) and 1 — ¢(z). If in this experiment R occurs, the
hypothesis is tejected, otherwise it is accepted. A randomized test is
therefore completely characterized by a function ¢, the critical function,
with 0 < ¢(x) < 1 forall z. If ¢ takes on only the values 1 and 0, one is
back in the case of a nonrandomized test. The set of points x for which
#(x) = 1 is then just the region of rejection, so that in a nonrandomized
test ¢ is simply the indicator function of the critical region.

If the distribution of X is P,, and the critical function ¢ is used, the
probability of rejection is

£, 400 = [ $60) 0,
the conditional probability ¢(z) of rejection given z, integrated with

respect to the probability distribution of X. The problem is to select ¢
so as to maximize the power

(C)) By6) = Ey$(X) forall 0eQy
subject to the condition

(5) Eo ¢(X) g oL fOI‘ all 0 € QII‘
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The same difficulty now arises that presented itself in the general discussion
of Chapter 1. Typically, the test that maximizes the power against a
particular alternative in K depends on this alternative, so that some
additional principle has to be introduced to define what is meant by an
optimum test. There is one important exception: if K contains only
one distribution, that is, if one is concerned with a single alternative, the
problem is completely specified by (4) and (5). It then reduces to the
mathematical problem of maximizing an integral subject to certain side
conditions. The theory of this problem, and its statistical applications,
constitutes the principal subject of the present chapter. In special cases
it may of course turn out that the same test maximizes the power for all
alternatives in K even when there is more than one. Examples of such
uniformly most powerful (UMP) tests will be given in Sections 3 and 7.

In the above formulation the problem can be considered as a special
case of the general decision problem with two types of losses. Corre-
sponding to the two kinds of error one can introduce the two component
loss functions,

{L,(G,dl)=l or 0 as 6eQy or 0e€y

L(0,d)) =0 forall 6
and
{L2(0,d0)=0 or 1 as 0eQp or HeQ,

Ly0,d) =0 forall 6.

With this definition the minimization of ELy(0, (X)) subject to the
restriction EL;(0, (X)) < « is exactly equivalent to the problem of
hypothesis testing as given above.

The formal loss functions L, and L, clearly do not represent in general
the true losses. The loss resulting from an incorrect acceptance of the
hypothesis, for example, will not be the same for all alternatives. The
more the alternative differs from the hypothesis the more serious are the
consequences of such an error. As was discussed earlier, we have
purposely foregone the more detailed approach implied by this criticism.
Rather than working with a loss function which in practice one does not
know, it seems preferable to base the theory on the simpler and intuitively
appealing notion of error. It will be seen later that at least some of the
results can be justified also in the more elaborate formulation.

2. THE NEYMAN-PEARSON FUNDAMENTAL LEMMA

A class of distributions is called simple if it contains only a single
distribution and otherwise is said to be composite. The problem of
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hypothesis testing is completely specified by (4) and (5) if K is simple.
Its solution is easiest and can be given explicitly when the same is true
of H. Let the distribution under a simple hypothesis H and alternative
K be P, and P,, and suppose for a moment that these distributions are
discrete with P, {X = a} = P(x) for i =0, 1. If at first one restricts
attention to nonrandomized tests, the optimum test is defined as the
critical region S satisfying

(6) ZSP()(":) _<__ o

and
> Py(¥) = maximum.
xes

It is easy to see which points should be included in S. To each point are
attached two values, its probability under P, and under P;. The selected
points are to have a total value not exceeding « on the one scale, and as
large as possible on the other. This is a situation that occurs in many
contexts. A buyer with a limited budget who wants to get “the most for
his money” will rate the items according to their value per dollar. In
order to travel a given distance in the shortest possible time, one must
choose the speediest mode of transportation, that is, the one that yields
the largest number of miles per hour. Analogously in the present problem
the most valuable points x are those with the highest value of

r(x) = Py(x)/Py().

The points are therefore rated according to the value of this ratio and
selected for S in this order, as many as one can afford under restriction
(6). Formally this means that S is the set of all points x for which
r(x) > ¢, where ¢ is determined by the condition

Py{XeS}= 3 Py)=o.
z:r(z)y>c¢

Here a difficulty is seen to arise. It may happen that when a certain
point is included, the value o has not yet been reached but that it would
be exceeded if the next point were also included. The exact value o can
then either not be achieved at all, or it can be attained only by passing
over the next desirable point and in its place taking one further down the
list. The difficulty can be overcome by permitting randomization.
This makes it possible to split the next point, including only a portion of
it, and thereby to obtain the exact value « without breaking the order of
preference that has been established for the various sample points.
These considerations are formalized in the following theorem, the funda-
mental lemma of Neyman and Pearson.
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Theorem 1. Let P, and P, be probability distributions possessing
densities p, and p, respectively with respect to a measure p.*

(i) Existence. For testing H: p, against the alternative K: p, there
exists a test ¢ and a constant k such that

™ Ey $(X) = o

and

1 when p(x) > kpy(x)
®) $(x) =

0 when py(x) << kpy(x).

(ii) Sufficient condition for a most powerful test. If a test satisfies (7)
and (8) for some k, then it is most powerful for testing p, against p, at level o.

(i) Necessary condition for a most powerful test.  If ¢ is most powerful
at level o for testing p, against p,, then for some k it satisfies (8) a.e. p.
1t also satisfies (7) unless there exists a test of size <<a and with power 1.

Proof. For a =0 and « =1 the theorem is easily seen to be true
provided the value k = 40 is admitted in (8) and 000 is interpreted as 0.
Throughout the proof we shall therefore assume 0 < o < 1.

(i) Let ac) = Py {pr(X) > cpo(X)}. Since the probability is computed
under Py, the inequality need be considered only for the set where py(2) > 0,
so that o(c) is the probability that the random variable P X)[po(X)
exceeds ¢. Thus | — a(c) is a cumulative distribution function, and
a(c) is nonincreasing and continuous on the right, a(c — 0) — a(c) =
Py {py(X)[po(X) = ¢}, a(—0) = 1,and a(o0) = 0. Givenany0 < o < 1,
let ¢, be such that «(c)) < a < a(c, — 0) and consider the test ¢ defined
by

1 « — olcy) when () > copo(x)

— — 0 —
d(x) = { 2cs —0) — ey when  p;(x) = copo(x)
0 when  p;(x) < ¢opo().

Here the middle expression is meaningful unless a(c,) = a(c, — 0); since
then Py{p,(X) = copo(X)} = 0, ¢ is defined a.e. The size of & is

f J210:9)
|po(X)

2o oe) _p ()

alcy — 0) — acg) * lpo(X) c"} =%

Ey $(X) = P, >Co}+

so that ¢, can be taken as the k£ of the theorem.
It is of interest to note that ¢, is essentially unique. The only exception

* There is no loss of generality in this assumption since one can take u = P, + P,.
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is the case that an interval of ¢’s exists for which a(c) = a. If (¢’, ¢") is
such an interval, and

p(x) "

P =)

then Po(C) = a(c’) — a(c” — 0) = 0; and this implies u(C) = 0, P,(C) = 0.
Thus the sets corresponding to two different values of ¢ differ only in a
set of points which has probability 0 under both distributions, that is,
points that could be excluded from the sample space.

(ii) Suppose that ¢ is a test satisfying (7) and (8) and that ¢* is any
other test with E, $*(X)< «. Denote by S*and S the sets in the sample
space where ¢(x) — ¢*(x) > 0 and < O respectively. If z is in S*, ¢(x)
must be > 0 and p,(x) > kpo(x). In the same way p;(x) < kpo(=) for all
z in S, and hence

[6= 990 —pwadu=[ =90~ kp auz0.

The difference in power between ¢ and ¢* therefore satisfies

f(qs — Yy du > kf(qs — $*pydu = 0,

as was to be proved.

(iii) Let ¢* be most powerful at level « for testing p, against p;, and let
¢ satisfy (7) and (8). Let S be the intersection of the set St U S, on
which ¢ and ¢* differ, with the set {x: p;(¥) # kp,(2)} and suppose that
u(S) > 0. Since (¢ — ¢*)(p, — kp,) is positive on S, it follows that

f & — $)py — kpo) dp = f & — 9py — kpo) dp > 0
Stus- S

and hence that ¢ is more powerful against p; than ¢*. This is a contra-
diction, and therefore u(S) = 0, as was to be proved.

If ¢* were of size << « and power < 1, it would be possible to include in
the rejection region additional points or portions of points and thereby -to
increase the power until either the power is 1 or the size is a. Thus either
Ey¢*(X) = a or E; $*(X) = 1.

The proof of part (jii) shows that the most powerful test is uniquely
determined by (7) and (8) except on the set on which py(z) = kpy(x).
On this set, ¢ can be defined arbitrarily provided the resulting test has
size «.  Actually, we have shown that it is always possible to define ¢ to
be constant over this boundary set. In the trivial case that there exists a
test of power 1, the constant k of (8) is 0, and one will accept H for all
points for which p,(¥) = kp,() even though the test may then have
s1ze < «.

C= x:px) >0 and ¢ <
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It follows from these remarks that the most powerful test is determined
uniquely (up to sets of measure zero) by (7) and (8) whenever the set on
which p,(x) = kpy(x) has u-measure zero. This unique test is then clearly
nonrandomized. More generally, it is seen that randomization is not
required except possibly on the boundary set where it may be necessary to
randomize in order to get the size equal to «. In practice one will
frequently prefer to adopt a different value for the level of significance
which does not require randomization. In the case that there exists a
test of power 1, (7) and (8) will determine a most powerful test but it may
not be unique in that there may exist a test also most powerful and
satisfying (7) and (8) for some o’ < a.

Corollary 1. Let 8 denote the power of the most powerful level o test
(0 <<« < 1) for testing P, against P,. Then o < 3 unless Py = P,.

Proof.  Since the level « test given by ¢(x) = « has power «, it is seen
that o < 8. If o = <1, the test ¢(x) = « is most powerful and by
Theorem 1(iii) must satisfy (8). Then py(x) = p,(z) a.e. u, and hence
P,=P,.

An alternative method for proving the results of this section is based on
the following geometric representation of the problem of testing a simple
hypothesis against a simple alternative. Let N be the set of all points
(«, ) for which there exists a test ¢ such that

= Ey$(X), B =E $X).

This set is convex, contains the points (0, 0) and (1, 1), and is symmetric
with respect to the point (4, 1) in the sense that with any point («, f) it also
contains the point (1 — «, I — ). In addition, the set N is closed.
[This follows from the weak compactness theorem for critical functions,
Theorem 3 of the Appendix; the argument is the same as that in the
proof of Theorem 5(i).]

For each value 0 < «y << 1, the level «, tests are represented by the
points whose abscissa is < «,. The most powerful of these tests (whose
existence follows from the fact that N is closed) corresponds to the point
on the upper boundary of N with abscissa . This is the only point
corresponding to a most powerful level «, test unless there exists a point
(o, 1) in N with o < o (Figure 15).

As an example of this geometric approach, consider the following
alternative proof of Corollary 1. Suppose that for some 0 < «, < | the
power of the most powerful level o, test is «y. Then it follows from the
convexity of N that («, ) e N implies f < «, and hence from the
symmetry of N that N consists exactly of the line segment connecting the
points (0,0) and (1, 1). This means that [¢p, du = [¢p, du for all ¢



68 UNIFORMLY MOST POWERFUL TESTS 3.2

and hence that p, = p, (a.e. u), as was to be proved. A proof of Theorem
1 along these lines is given in a more general setting in the proof of
Theorem 5.

8 B
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] L > o o
0 1 0
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Figure 1.

3. DISTRIBUTIONS WITH MONOTONE
LIKELIHOOD RATIO

The case that both the hypothesis and the class of alternatives are
simple is mainly of theoretical interest since problems arising in appli-
cations typically involve a parametric family of distributions depending
on one or more continuous parameters. In the simplest situation of
this kind the distributions depend on a single real-valued parameter 0,
and the hypothesis is one-sided, say H: 0 < 0, In general, the most
powerful test of H against an alternative 0, > 6, depends on 0, and is
then not UMP. However, a UMP test does exist if an additional
assumption is satisfied. The real-parameter family of densities p,(z) is
said to have monotone likelihood ratio if there exists a real-valued function
T(x) such that for any 6 < 0’ the distributions P, and P, are distinct, and
the ratio p,(z)/p,(x) is a nondecreasing function of T(z).

Theorem 2. Let 0 be a real parameter, and let the random variable X
have probability density py(x) with monotone likelihood ratio in T(x).
(i) For testing H: 0 < 0, against K: 0 > 0, there exists a UMP test,
which is given by
1 when T(x)>C
)] d(x)=4y when T(x)=C

L0 when T(@)<C
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where C and y are determined by

(10) E, $(X) = a.
(ii) The power function
pO) = E, $(X)

of this test is strictly increasing for all points 0 for which f(0) < 1.

(iit) For all (', the test determined by (9) and (10) is UMP for testing
H':0< 0" against K': 0 > 0" at level ' = ().

(iv) For any 0 << 0 the test minimizes [(0) (the probability of an error
of the first kind) among all tests satisfving (10).

Proof. (i) and (ii). Consider first the hypothesis Hy: 0 = 0, and
some simple alternative 0, > 0,. Applying the fundamental lemma, one
finds that the most powerful test rejects when

I’ol(x)//’oo(x) >C
or equivalently when
T(x) > C.*

It follows from Theorem 1(i) that there exist C and v such that (9) and
(10) hold. By Theorem I(ii), the resulting test is also most powerful for
testing P, against P,. at level o' = f(0’) provided 0’ < 0”. Part (ii) of
the present theorem now follows from Corollary 1. Since 3(0) is therefore
nondecreasing the test satisfies

(11) Eyp(X)< o for 00,

The class of tests satisfying (I11) is contained in the class satisfying
E, $(X) < a. Since the given test maximizes f(f,) within this wider
class, it also maximizes $(0;) subject to (11); since it is independent of the
particular alternative 6, > 0, chosen, it is UMP against K.

(iii) is proved by an analogous argument.

(iv) follows from the fact that the test which minimizes the power for
testing a simple hypothesis against a simple alternative is obtained by
applying the fundamental lemma (Theorem 1) with all inequalities
reversed.

By interchanging inequalities throughout, one obtains in an obvious
manner the solution of the dual problem, H: 0 > 0, K: 6 < 6.

A few examples of families with monotone likelihood ratio, and hence
of UMP one-sided tests, will be given below. However, the main
applications of Theorem 2 will come later, when such families appear as
the set of conditional distributions given a sufficient statistic (Chapters 4
and 5) and as distributions of a maximal invariant (Chapters 6 and 7).

* Here and in similar derivations C is used as a generic notation.
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Example 1. From a lot containing N items of a manufactured product, a
sample of size n is selected at random, and each item in the sample is inspected.
If the total number of defective items in the lot is D, the number X of defectives
found in the sample has the hypergeometric distribution

(06 =2)
x n —x
()
n
Interpreting Pp(<) as a density with respect to the measure « that assigns to any

set on the real line as measure the number of integers 0, 1, 2, - - - that it contains,
and noting that

P{X =z} = Py2) =

PD+1(x)_ D+1N—-D—-n+z=x
Pp@y N-D D+1-z '’
it is seen that the distributions satisfy the assumption of monotone likelihood
ratios with T(x) = x. Therefore there exists a UMP test for testing the hypo-

thesis H: D =< D, against K: D > D,, which rejects H when X is too large,
and an analogous test for testing H': D = D,.

An important class of families of distributions that satisfy the assump-
tions of Theorem 2 are the one-parameter exponential families.

Corollary 2. Let 0 be a real parameter, and let X have probability
density (with respect to some measure u)

(12) po@) = C(0) ¥V @h(z)

where Q is strictly monotone. Then there exists a UMP test ¢ for testing
H: 0 < 0y against K: 6 > 0,. If Q is increasing,

$r)y=1,90 as Tx)>,=,<C

where C and y are determined by E, &(X) = o. If Q is decreasing, the
inequalities are reversed.

As in Example 1, we shall denote the right-hand side of (12) by Py(x)
instead of p,(x) when it is a probability, that is, when X is discrete and u
is counting measure.

Example 2. The binomial distributions b(p, n) with
Py(x) = (Z) poa - pyn-e

satisfy (12) with T(x) ==z, 6 = p, Q(p) = log[p/(1 — p)]. The problem of
testing H: p = p, arises, for instance, in the situation of Example 1 if one
supposes that the production process is in statistical control, so that the various
items constitute independent trials with constant probability p of being defective.
The number of defectives X in a sample of size » is then a sufficient statistic for
the distribution of the variables X;(i = 1, - - -, n), where X; is 1 or 0 as the ith
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item drawn is defective or not, and X is distributed as b(p, n). There exists
therefore a UMP test of H, which rejects H when X is too small.

An alternative sampling plan which is sometimes used in binomial situations
is inverse binomial sampling. Here the experiment is continued until a specified
number m of successes—for example, cures effected by some new medical
treatment—have been obtained. If Y; denotes the number of trials after the
(i — Dst success up to but not including the ith success, the probability that
Y;=yis pg' fory =0,1, -, so that the joint distribution of Y,, - Y,, is

Po(yrs - ym) =pmq™¥i, oy =0,1,-- k=1 m.

This is an exponential family with T(y) = Xy, and O(p) = log (1 — p). Since
Q(p) is a decreasing function of p, the UMP test of H: P = porejects H when T
is too small.  This is what one would expect since the realization of m successes
in only a few more than m trials indicates a high value of p. The test statistic
T, which is the number of trials required in excess of m to get m successes, has
the negative binomial distribution [Chapter 1, Problem 1(i)]

_(m+rt=1) ., _
P = s )omgt,  r=0,1,-

Example 3. 1If Xy, -, X, are independent Poisson variables with E(X;) = 4,
their joint distribution is

Jrt o+ 2, ,
AT T ey
Pl(xl' , ) P e .

This constitutes an exponential family with T(x) = Zx;, and Q(}) = log 4.
One-sided hypotheses concerning 2 might arise if 4 is a bacterial density and the
X’s are a number of bacterial counts, or if the X’s denote the number of a-
particles produced in equal time intervals by a radioactive substance, etc. The
UMP test of the hypothesis 2 < 2, rejects when £X; is too large. Here the
test statistic £ X; has itself a Poisson distribution with parameter nA.

Instead of observing the radioactive material for given time periods or count-
ing the number of bacteria in given areas of a slide, one can adopt an inverse
sampling method. The experiment is then continued, or the area over which
the bacteria are counted is enlarged, until a count of m has been obtained. The
observations consist of the times T}, - - -, T, that it takes for the first occurrence,
from the first to the second, etc. If one is dealing with a Poisson process and
the number of occurrences in a time or space interval = has the distribution

(A7)

!

P(‘T') = e_;‘f’ T = Os ls T

then the observed times are independently distributed, each with the exponential
probability density e~ for ¢ = 0 [Problem 1(ii) of Chapter 1]. The joint

densities
m

pl(tl""’ tm) =)'mexp (—1 zti)3 ty sty ;Oa
i=1
form an exponential family with T(t,, -, ¢,) =Zt; and Q(A) = —4. The
UMP test of H: 4 < 4, rejects when T = XT; is too small. Since 24T; has
density $¢=%/2 for u = 0, which is the density of a y2-distribution with 2 degrees
of freedom, 24T has a x-distribution with 2m degrees of freedom. The boundary
of the rejection region can therefore be determined from a table of 32.
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The formulation of the problem of hypothesis testing given at the
beginning of the chapter takes account of the losses resulting from wrong
decisions only in terms of the two types of error. To obtain a more
detailed description of the problem of testing H: 6 < 6, against the
alternatives 6 > 0,, one can consider it as a decision problem with the
decisions d, and d, of accepting and rejecting H and a loss function
L(6,d) = L(6). Typically, Ly6) will be 0 for 6 < 0, and strictly
increasing for 0 > 0, and L,(0) will be strictly decreasing for 6 < 6, and
equal to 0 for 6 > 6,. The difference then satisfies

(13) Li(0) — Lo(0) 20 as 65 0,

Theorem 3. (i) Under the assumptions of Theorem 2, the family of tests
given by (9) and (10) with 0 < « < 1 is essentially complete provided the
loss function satisfies (13).

(ii) This family is also minimal essentially complete if the set of points x
for which p,(x) > 0 is independent of 0.

Proof. (i) The risk function of any test ¢ is

RO, ¢) = f (@) B@LO) + [1 — $@ILo(0)} du()

- j 0@ {Lo(®) + [L0) — Lo(O)I(@)} du),

and hence the difference of two risk functions is

RO, $') — RO, ¢) = [Ly(6) — Ly(0)] f ¢ — $po dp.
This is < 0 for all 0 if

B0 = 50 = [ — dpudu >0 for 6.6,

Given any test ¢, let E, #(X) = o It follows from Theorem 2(i) that
there exists a UMP level « test ¢’ for testing 0 = 0, against 6 > 0,, which
satisfies (9) and (10). By Theorem 2(iv), ¢’ also minimizes the power for
6 < 6,. Thus the two risk functions satisfy R(6, ¢") < R(0, ¢) for all 6,
as was to be proved.

(ii) Let ¢, and ¢, be of sizes « < o’ and UMP for testing 6, against
6 > 6,. Then f, (0) < f, (0) for all 6> 0, unless Bs(0) = 1. By
considering the problem of testing f = 0, against 0 < 0, it is seen
analogously that this inequality also holds for all 6 < 0, unless 8, (0) = 0.

Since the exceptional possibilities are excluded by the assumptions, it
follows that R(6, ¢') S R(0, ¢) as 0 = 0, Hence each of the two risk
functions is better than the other for some values of 6.
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The class of tests previously derived as UMP at the various significance
levels « is now seen to constitute an essentially complete class for a much
more general decision problem, in which the loss function is only required
to satisfy certain broad qualitative conditions. From this point of view,
the formulation involving the specification of a level of significance can be
considered as a simple way of selecting a particular procedure from an
essentially complete family.

The property of monotone likelihood ratio defines a very strong

ordering of a family of distributions. For later use, we consider also
‘the following somewhat weaker definition. A family of cumulative
distribution functions F, on the real line is said to be stochastically
increasing (and the same term is applied to random variables possessing
these distributions) if the distributions are distinct and if 6 < 6" implies
Fy(x) = Fy(x) for all . 1If then X and X' have distributions F, and F)
respectively, it follows that P{X > x} < P{X' > z} for all = so that X’
tends to have larger values than X. In this case the variable X" is said
to be stochastically larger than X. This relationship is made more precise
by the following characterization of the stochastic ordering of two dis-
tributions.

Lemma 1. Let Fy and F, be two cumulative distribution functions on
the real line. Then Fy(x) < Fy() for all x if and only if there exist two non-
decreasing functions fy and f,, and a random variable V, such that (a)
Jo) < £1(v) for all v, and (b) the distributions of f(V) and f(V) are Fy and
F, respectively.

Proof. Suppose first that the required f, f;, and ¥ exist. Then

Fy@) = P{fyV) < o} < P{fo(V) < o} = Fy()
for all z. Conversely, suppose that Fy(z) < Fy(z) for all z, and let

fy) =inf{z: F(x — 0) < y < F(#)}, i=0,1. These functions are
nondecreasing and for f; = f, F, = F satisfy

SIF@)] <« and F[f(y]=y forall zandy.

It follows that y < F(z,) implies f (y) < f[F(zo)] < z, and that conversely
f (@) < =z, implies F[f(y)] < F(x,) and hence y < F(x,), so that the two
inequalities f'(y) < x, and y < F(x,) are equivalent. Let V be uniformly
distributed on (0, 1). Then P{f(V)< 2} = P{V' < F(x)} = F,(x). Since
Fy(x) < Fy(=) for all x implies fy(y) < fi(y) for all y, this completes the
roof.

P One of the simplest examples of a stochastically ordered family is a
location parameter family, that is, a family satisfying

Fy(x) = F(z — 0).
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To see that this is stochastically increasing, let X be a random variable
with distribution F(z). Then 6 < 6" implies

Fe—0)=PX<laox—-0}>PX<2—0}=F@x—0),

as was to be shown.

Another example is furnished by families with monotone likelihood
ratio. This is seen from the following lemma, which establishes some
basic properties of these families.

Lemma 2.* Let py(x) be a family of densities on the real line with
monotone likelihood ratio in x.

(1) If v is a nondecreasing function of x, then Egp(X) is a nondecreasing
Sfunction of 0; if Xy,---, X, are independently distributed with density
Do and ' is a function of x,, - - -, x, which is nondecreasing in each of its
arguments, then Eqp'(X,, - - -, X,,) is a nondecreasing function of 0.

(ii) Forany 6 < 0, the cumulative distribution functions of X under 0 and
0’ satisfy

Fy(x) < Fy(x) forall .

(iii) Let y be a function with a single change of sign. More specifically,
suppose there exists a value x such that y(x) < 0 for x < z, and y(x) > 0
for x > x,. Then there exists 0y such that Egqp(X)< 0 for 6 < 6, and
Egp(X) = 0 for 6 > 0, unless Eqp(X) is either positive for all 0 or negative
for all 6.

Proof. (i) Let 6 < 6" and let 4 and B be the sets for which p,(x) < py(x)
and p,(x) > py(x) respectively. If a = sup 4 y(x) and b = inf y(z), then
b—a>0and

f Wpw — po) du=> a L (Py = po) i + b L (P — po) di

=t-af Go-prduzo,

which proves the first assertion. The result for general n follows by
induction.

(ii) This follows from (i) by letting y(x) = 1 for > z, and p(x) = 0
otherwise.

(i) We shall show first that for any 6’ < 0", E,w(X) > 0 implies
Epp(X) = 0. If po(xg)/pe(xe) = 0, then py(x) =0 for x>z, and
hence E,y(X)< 0. Suppose therefore that py.(r,)/py(z,) = ¢ < 0.

* This is a special case of a theorem of Karlin relating the number of changes of sign

of Egp(X) to those of y(x) when the densities pg are of POlya type. See Karlin, “Polya
type distributions IL,” Ann. Math. Stat., Vol. 28 (1957), pp. 281-308.
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Then y(x) = 0 on the set S = {x: py(x) = 0 and p,-(x) > 0}, and

Epp(X) = f Y Por Py dp
s P

= [ cypy du +f cypy dp = cEy p(X) 2> 0.

o

The result now follows by letting 0, = inf {: Egp(X) > 0}.

Part (i) of the lemma shows that any family of distributions with
monotone likelihood ratio in = is stochastically increasing. That the
converse does not hold is shown for example by the Cauchy densities

1 1
71+ (x— 02

The family is stochastically increasing since 6 is a location parameter;
however, the likelihood ratio is not monotone. Conditions under which
a location parameter family possesses monotone likelihood ratio are
given in Chapter 8, Example 1.

4. COMPARISON OF EXPERIMENTS*

Suppose that different experiments are available for testing a simple
hypothesis H against a simple alternative K. One experiment results in a
random variable X, which has probability densities f and g under H and
K respectively; the other one leads to the observation of X'’ with densities
S"and g’. Let f(«) and B'(«) denote the power of the most powerful
level o test based on X and X'. In general, the relationship between
p(«) and f'(«) will depend on «. However, if f'(c) < B(x) for all «,
then X or the experiment (f, g) is said to be more informative than X'.
As an example, suppose that the family of densities p,(x) is the exponential
family (12) and that / = ' = Poy 8 = Po,, § = po, Where 0y < 0, <0,
Then (f, g) is more informative than (f’, g') by Theorem 2.

A simple sufficient conditiont for X to be more informative than X’ is
the existence of a function A(x, u) and a random quantity U, independent
of X and having a known distribution, such that the density of Y = A(X, U)
isf"or g’ as that of X'is for g. This follows, as in the theory of sufficient
statistics, from the fact that one can then construct from X (with the
help of U) a variable Y, which is equivalent to X’. One can also argue

* This section constitutes a digression and may be omitted.

t For a proof that this condition is also necessary see Blackwell, “Comparison of
experiments,”” Proc. Second Berkeley Symposium on Mathematical Statistics and
Probability, Berkeley, Univ. Calif. Press, 1951.
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more specifically that if ¢(x’) is the most powerful level « test for testing f”
against g’ and if y(x) = E¢[h(z, U)], then Eyp(X) = E$(X’) both under
H and K. The test y(z) is therefore a level o test with power $’(«), and
hence f(x) = B'(«).

When such a transformation 4 exists, the experiment (f, g) is said to be
sufficient for (f’,g’). Ifthen Xy, - -, X, and Xy, - - -, X, are samples from
X and X" respectively, the first of these samples is more informative than
the second one. It is also more informative than (Z,,---, Z,) where
each Z; is either X; or X; with certain probabilities.

Example 4. Two characteristics 4 and B, which each member of a popu-
lation may or may not possess, are to be tested for independence. The proba-
bilities p = P(4) and = = P(B), that is, the proportions of individuals
possessing properties A and B, are assumed to be known. This might be the
case, for example, if the characteristics have previously been studied separately
but not in_conjunction. The probabilities of the four possible combinations
AB, AB, AB, and AB under the hypothesis of independence and under the
alternative that P(4B) has a specified value p are

Under H: Under K:
\ B B B B
A pr pa—m P p—r
A|lQ=pn Q=pU—-m| 7=p 1—p—m+p

The experimental material is to consist of a sample of size s. This can be
selected, for example, at random from those members of the population possess-
ing property 4. One then observes for each member of the sample whether or
not it possesses property B, and hence is dealing with a sample from a binomial
distribution with probabilities

H: P(B|A) == and  K: P(B|4) = plp.

Alternatively, one can draw the sample from one of the other categories B,
B, or A4, obtaining in each case a sample from a binomial distribution with
probabilities given by the following table.

Population
Sampled  Probability H K
A P(B|4) w plp
B P(AIB) P p/n'
B P(4]B) P (p=pl—m
a P(B|) m (@ —pl1 = p)

Without loss of generality let the categories 4, 4, B, and B be labeled so that
p == =1/2. We shall now show that of the four experiments, which consist
in observing an individual from one of the four categories, the first one (sampling
from A) is most informative and in fact is sufficient for each of the others.
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To compare A with B, let X and X’ be 1 or 0 and let the probability of their
being equal to 1 be given by the first and second row of the table respectively.
Let U be uniformly distributed on (0, 1) and independent of X, and let Y =
hX,U)=1when X =land U = p/=, and Y = 0 otherwise. Then P{Y =1}
is p under H and p/= under K so that Y has the same distribution as X’. This
proves that X is sufficient for X, and hence is the more informative of the two.
For the comparison of 4 with B define Ytobe1 when X = 0and U < pla — =),
and to be 0 otherwise. Then the probability that ¥ = 1 coincides with the
third row of the table. Finally, the probability that ¥ =1 is given by the
last row of the table if one defines ¥ to be equal to 1 when X =1 and U <
(@ —p)(1 —p)and when X =0and U > (1 — = = pld = p).

[t follows from the general remarks preceding the example that if the experi-
mental material is to consist of s individuals these should be drawn from
category A, that is, the rarest of the four categories, in preference to any of the
others. This is preferable also to drawing the s from the population at large,
since the latter procedure is equivalent to drawing each of them from either
A or 4 with probabilities p and 1 — p respectively.

The comparison between these various experiments is independent not only
of o but also of p. Furthermore, if a sample is taken from A, there exists by
Corollary 2 a UMP test of H against the one-sided alternatives of positive
dependence, P(B|A) > = and hence p > pr, according to which the proba-
bilities of AB and AB are larger, those of 4B and AB smaller than under the
assumption of independence. This test therefore provides the best power that
can be obtained for the hypothesis of independence on the basis of a sample of
size s.

Example 5. 1In a Poisson process the number of events occurring in a time
interval of length v has the Poisson distribution P(Av). The problem of testing
4o against 4, for these distributions arises also for spatial distributions of particles
where one is concerned with the number of particles in a region of volume v.
To see that the experiment is the more informative the longer the interval v,
let v < w and denote by X and Y the number of occurrences in the intervals
(t,t +vyand (¢t + v,t + w). Then Xand Y are independent Poisson variables,
and Z = X + Y is a sufficient statistic for 2. Thus any test based on X can
be duplicated by one based on Z, and Z is more informative than X. That it is
in fact strictly more informative in an obvious sense is seen from the fact that the
unique most powerful test for testing 4, against 4, depends on X + Y and there-
fore cannot be duplicated from X alone.

Sometimes it is not possible to count the number of occurrences but only to
determine whether or not at least one event has taken place. In the dilution
method in bacteriology, for example, a bacterial culture is diluted in a certain
volume of water, from which a number of samples of fixed size are taken and
tested for the presence or absence of bacteria. In general, one observes then
for each of n intervals whether an event occurred. The result is a binomial
variable with probability of success (at least one occurrence)

p=1—e,

Since a very large or small interval leads to nearly certain success or failure, one
might suspect that for testing 4, against ‘4, intermediate values of v would be
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more informative than extreme ones. However, it turns out that the experi-
ments (g, 4,v) and (Agw, 4,;w) are not comparable for any values of v and w.*
(See Problem 15.)

5. CONFIDENCE BOUNDS

The theory of UMP one-sided tests can be applied to the problem of
obtaining a lower or upper bound for a real-valued parameter 6. The
problem of setting a lower bound arises, for example, when 6 is the
breaking strength of a new alloy; that of setting an upper bound when 6
is the toxicity of a drug or the probability of an undesirable event. The
discussion of lower and upper bounds is completely parallel, and it is
therefore enough to consider the case of a lower bound, say 6.

Since § = 6(X) will be a function of the observations, it cannot be
required to fall below 6 with certainty but only with specified high
probability. One selects a number 1 — «, the confidence level, and
restricts attention to bounds 0 satisfying

(14) P {0(X)<6}>1—a forall 6.

The function 6 is called a lower confidence bound for 6 at confidence level
1 — o; the infimum of the left-hand side of (14), which in practice will
be equal to 1 — «, is called the confidence coefficient of 0.

Subject to (14), 6 should underestimate 0 by as little as possible. One
can ask, for example, that the probability of § falling below any 6" << 6
should be a minimum. A function § for which

(15) Py {0(X) < 0’} = minimum
for all 6" < 6 subject to (14) is a uniformly most accurate lower confidence
bound for 6 at confidence level 1 — a.

Let L(0, §) be a measure of the loss resulting from underestimating 0,
so that for each fixed 0 the function L(, 0) is defined and nonnegative for

0 < 6, and is nonincreasing in its second argument. One would then
wish to minimize

(16) EyL(, 9)

subject to (14). It can be shown that a uniformly most accurate lower
confidence bound § minimizes (16) subject to (14) for every such loss
function L. (See Problem 17.)

The derivation of uniformly most accurate confidence bounds is
facilitated by introducing the following more general concept, which will

* For a discussion of how to select v in this and similar situations see Hodges, “The
choice of inspection stringency in acceptance sampling by attributes,” Univ. Calif.
Publ. Statistics, Vol. 1 (1949), pp. 1-14.
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be considered in more detail in Chapter 5. A family of subsets S(z) of
the parameter space Q is said to constitute a family of confidence sets at
confidence level 1 — « if

a7 Py{0eS(X)}=1—a forall HeQ,

that is, if the random set S(X) covers the true parameter point with
probability > 1 — o. A lower confidence bound corresponds to the
special case that S(x) is a one-sided interval

S(x) = {0: 0(x) < 0 < o0}

Theorem 4. (i) For each 0, € Q let A(,) be the acceptance region of a
level o test for testing H(0,): 0 = 04, and for each sample point x let S(x)
denote the set of parameter values

S(x) = {0: x € A(0), 0 € Q}.
Then S(z) is a family of confidence sets for 0 at confidence level 1 — «.

(i) If A(Oy) is UMP for testing H(0,) at level a against the alternatives
Ki(Oy), then S(X) minimizes the probability

Py {0’ € S(X)} forall 0eK(®®)
among all level 1 — o families of confidence sets for 0.

Proof. (i) By definition of S(x),

(18) f € S(x) if and only if =z € A(0),
and hence
Py {0 € S(X)} = Py {X € A(B)} > 1 — a.

(ii) If S*(z) is any other family of confidence sets at level 1 — «, and if

A*(0) = {x: 0 € S*(x)}, then
Py{X e A*O)} =P, {0 eS*(X)} > 1 — «,

so that 4*(f,) is the acceptance region of a level « test of H@y). It
follows from the assumed property of A4(0,) that for any 6 € K(0,)

Py {X € A*(0)} = P, {X € A(0,)}
and hence that
Py {0 € S*(X)} > P, {8, € S(X)}
as was to be proved.
The equivalence (18) shows the structure of the confidence sets S(x)
as the totality of parameter values 6 for which the hypothesis H(f) is

accepted when = is observed. A confidence set can therefore be viewed
as a combined statement regarding the tests of the various hypotheses
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H(0), which exhibits the values for which the hypothesis is accepted
(0 € S(x)) and those for which it is rejected (6 € S(x)).

Corollary 3. Let the family of densities py(x), 0 € Q2 have monotone
likelihood ratio in T(x) and suppose that the cumulative distribution function
F(t) of T = T(X) is a continuous function of t for each fixed 6.

(i) There exists a uniformly most accurate confidence bound § for 6 at
each confidence level 1 — a.

(ii) If x denotes the observed values of X and t = T(x), and if the equation

(19) Ft)=1—a
has a solution 6 = 0 in Q, then this solution is unique and 6(z) = 6.
Proof. (i) There exists for each 6, a constant C(6,) such that

Py {T> C(B)} = «

and by Theorem 2, T > C(6,) is a UMP level « rejection region for
testing 6 = 0, against 6 > 6,. By Corollary I, the power of this test
against any alternative 6, > 6, exceeds «, and hence C(,) < C(6,) so
that the function C is strictly increasing. Let A(f,) denote the acceptance
region T < C(6,) and let S(x) be defined by (18). It follows from the
monotonicity of the function C that S(x) consists of those values 6 € Q
which satisfy § < 6 where

6 = inf {f: T(x) < C(0)}.

By Theorem 4, the sets {6: 6(x) < 0}, restricted to possible values of the
parameter, thus constitute a family of confidence sets at level 1 — «,
which minimize P {§ < 6’} for all 6 € K(6"), that is, for all 6 > 6. This
shows 6 to be a uniformly most accurate confidence bound for 6.

(i) It follows from Corollary 1 that Fy(f) is a strictly decreasing
function of 6 at any point ¢ for which 0 << Fy(f) < 1, and hence that (19)
can have at most one solution. Suppose now that ¢ is the observed value
of T and that the equation Fy(f) = 1 — « has the solution 6 Q. Then
Fj(f) =1 —a and by definition of the function C, C(f) =t The
inequality ¢ < C(6) is then equivalent to C(6) < C(6) and hence to
6 < 6. It follows that § = 6, as was to be proved.

Under the same assumptions, the corresponding upper confidence
bound with confidence coefficient 1 — « is the solution 6 of the equation
Py {T >t} = 1 — « or equivalently of Fy(f) = a.

Example 6. To determine an upper bound for the degree of radioactivity
1 of a radioactive substance, the substance is observed until a count of m has

been obtained on a Geiger counter. The joint probability density of the times
T(i =1, - - -, m) elapsing between the (i — 1)st count and the ith one is

p(tls o ty) = }'me—lzt‘: by s tm = 0.
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If T = ZT; denotes the total time of observation, 2AT has a y2-distribution with
2m degrees of freedom and, as was shown in Example 3, the acceptance region
of the most powerful test of H(4y): 4 = 4, against 2 < 7, is 24,7 < C where
C is determined by the equation

c
fx§m=l-a.
0

The set S(7, - - -, t.,) defined by (18) is then the set of values 4 such that 2 < C/2T
and it follows from Theorem 4 that 1 = C/2T is a uniformly most accurate
upper confidence bound for 2. This result can also be obtained through
Corollary 3.

If the variables X or T are discrete, Corollary 3 cannot be applied
directly since the distribution functions F,(t) are not continuous, and for
most values 6, the optimum tests of H: 6 = 0, are randomized. How-
ever, any randomized test based on X has the following representation as a
nonrandomized test depending on X and an independent variable U
distributed uniformly over (0, 1). Given a critical function ¢, consider
the rejection region

R ={(z,u): u< $()}.

P{(X, U) € R} = P{U < $(X)} = EH(X),

whatever the distribution of X, so that R has the same power function as ¢
and the two tests are equivalent. The pair of variables (X, U) has a
particularly simple representation when X is integer-valued. In this
case the statistic

Then

T=X+4+U
is equivalent to the pair (X, U) since with probability 1

X=[T]’ U=T—[T],

where [T] denotes the largest integer < T. The distribution of T'is con-
tinuous, and confidence bounds can be based on this statistic.

Example 7. An upper bound is required for a binomial probability p—for
example, the probability that a batch of polio vaccine manufactured according
to a certain procedure contains any live virus. Let X,,---, X,, denote the
outcomes of n trials, X; being 1 or 0 with probabilities p and ¢ respectively,
andlet X =XX,. ThenT = X + U has probability density

(['tl]) P, 0=t <n+l

This satisfies the conditions of Corollary 3, and the upper confidence bound j
is therefore the solution, if it exists, of the equation

P, {T <t} =aq,
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where ¢ is the observed value of 7. A solution does exist for all values
« <t <n+a For n+a <t the hypothesis H(py): p = p, is accepted
against the alternatives p < p, for all values of p, and hence p = 1. For
t < «, H(py) is rejected for all values of p, and the confidence set S(¢) is therefore
empty. Consider instead the sets S*(t) which are equal to S(r) for t = « and
which for ¢ < « consist of the single point p = 0. They are also confidence
sets at level | — « since for all p,

P,{peSHT)} =P, {peS(T) =1—u
On the other hand, P,{p’ € S¥(T)} = P, {p’ € S(T)} for all p’ > 0 and hence
P,{p’ € SXT)} = P,{p’€S(T)} forall p’>p.

Thus the family of sets S*(r) minimizes the probability of covering p’ for all
p’ > p at confidence level 1 — a. The associated confidence bound pr@) =
p() for t =z« and p*(r) =0 for ¢ < « is therefore a uniformly most accurate
upper confidence bound for p at level 1 — a.

In practice, so as to avoid randomization and obtain a bound not dependent
on the extraneous variable U, one usually replaces T by X + 1 =[T]+1.
Since j*(r) is a nondecreasing function of ¢, the resulting upper confidence
bound g*([r] + 1) is then somewhat larger than necessary; as a compensation
it also gives a correspondingly higher probability of not falling below the true p.

Let 6 and § be lower and upper bounds for  with confidence coeffi-
cients 1 — a; and 1 — a,, and suppose that f(x) < 0(x) for all . This
will be the case under the assumptions of Corollary 3 if oy + oy < 1.
The intervals (0, 6) are then confidence intervals for 6 with confidence
coefficient 1 — «; — «y; that is, they contain the true parameter value
with probability 1 — o; — a,, since

P,{0<0<0}=1—0o —a, foral 0.

If 6 and 6 are uniformly most accurate, they minimize E,L,(0, 8) and
E,Ly(6, 6) at their respective levels for any function L, that is non-
increasing in 6 for § < 0 and 0 for § = 0 and any L, that is nondecreasing

in 0 for 6 > 6 and 0 for 6 < 6. Letting
L(0; 0,0) = L, 0) + Ly(®, 0),
the intervals (8, 0) therefore minimize E,L(0; 6, 6) subject to
Po{0>0< o, P{<0}<a,

An example of such a loss function is
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which provides a natural measure of the accuracy of the intervals. The
actual length 6 — 6 is not as meaningful in this context since there is no
merit in short intervals that are far away from the true 6.

An important limiting case corresponds to the levels a; = a, = 3.
Under the assumptions of Corollary 3 and if the region of positive density
is independent of 0 so that tests of power 1 are impossible when o < 1,
the upper and lower confidence bounds 6 and § coincide in this case.
The common bound satisfies

PO{Q§0}=PB{Q§0}=%,

and the estimate § of 0 is therefore as likely to underestimate as to over-
estimate the true value. An estimate with this property is said to be
median unbiased. (For the relation of this to other concepts of un-
biasedness, see Chapter 1, Problem 3.) 1t follows from the above result
for arbitrary «, and o, that among all median unbiased estimates, 6
minimizes EL(0, §) for any loss function which for fixed 6 has a minimum
of 0 at § = 0 and is nondecreasing as 6 moves away from 0 in either
direction. By taking in particular L(0, ) = 0 when |0 — 0| < Aand =1
otherwise, it is seen that among all median unbiased estimates, 6 minimizes
the probability of differing from 0 by more than any given amount; more
generally it maximizes the probability

Py (A, <0 — 0< A
for any A;, A, > 0.

6. A GENERALIZATION OF THE FUNDAMENTAL
LEMMA

The following is a useful extension of Theorem 1 to the case of more
than one side condition.

Theorem S. Let f,, -, f,,, be real-valued functions defined on a
Euclidean space % and integrable u, and suppose that for given constants
1, * s ¢y, there exists a critical function ¢ satisfying

(20) f¢ﬁd,4=c,., i=1,---m

Let € be the class of critical functions ¢ for which (20) holds.
(i) Among all members of € there exists one that maximizes

f¢fm+l dp.
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(ii) A sufficient condition for a member of € to maximize

f‘f’f mi1 A

is the existence of constants ky, - - -, k,, such that

m

#(x) =1 when f, () > .g,l k;fix)
(1)
4 =0 when fus@ < Skif(o)

(iii) If a member of € satisfies (21) withky, - - -, k., = 0, then it maximizes

[E2
among all critical functions satisfying
22) qufi du < ¢, i=1,-,m

(iv) The set M of points in m-dimensional space whose coordinates are

(quﬁdu,---,fmdu)

for some critical function ¢ is convex and closed. If (cy,~ "+, cy) is an
inner point* of M, then there exist constants ky,- -, k, and a test ¢
satisfying (20) and (21), and a necessary condition for a member of € to
maximize

[
is that (21) holds a.e. p.

Here the term “inner point of M in statement (iv) can be interpreted as
meaning a point interior to M relative to m-space or relative to the smallest
linear space (of dimension < n1) containing M. The theorem is correct
with both interpretations but is stronger with respect to the latter, for
which it will be proved.

We also note that exactly analogous results hold for the minimization of

I¢fm+l d:u
Proof. (i) Let {¢,} be a sequence of functions in ¢ such that Sbufmirdu
tends to sup, [¢f,,.1 du. By the weak compactness theorem for critical

* A discussion of the problem when this assumption is not satisfied is given by Dantzig
and Wald, “On the fundamental lemma of Neyman and Pearson,” Ann. Math. Stat.,
Vol. 22 (1951), pp. 87-93.
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functions (Theorem 3 of the Appendix), there exists a subsequence {4, }
and a critical function ¢ such that

f¢nfﬁcdﬂ—’f¢fkdﬂ for k=1, m+1.

It follows that ¢ is in € and maximizes the integral with respect to f,, ., du
within €.

(i1) and (iii) are proved exactly as was part (ii) of Theorem 1.

(iv) That M is closed follows again from the weak compactness theorem
and its convexity is a consequence of the fact that if ¢, and ¢, are critical
Up+ |

~

Figure 2.

functions, so is ad; + (1 — a)d, forany 0 < « < 1. If N is the totality
of points in (m + 1)-dimensional space with coordinates

([#5du - [#fuia ).

where ¢ ranges over the class of all critical functions, then N is convex
and closed by the same argument. Denote the coordinates of a general
point in M and N by (u," -, u,) and (4, -, u,, +1) respectively. The
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points of N, the first m coordinates of which are ¢;, - * -, ¢,,, form a closed
interval [c*, c**].

Assume first that c* < ¢**. Since (¢, " -+, ¢, €**) is a boundary
point of N, there exists a hyperplane II through it such that every point
of N lies below or onIl. Let the equation of IT be

m+1 N

> k=3 kic; + kpiac**.
i=1 i=1
Since (¢, * * *, C,,) is an inner point of M, the coefficient k,,.; # 0. To
see this, let c* << ¢ < ¢**, so that (¢, * - -, ¢, €) is an inner point of N.
Then there exists a sphere with this point as center lying entirely in N
and hence below I1. It follows that the point (cy, * - +, ¢,,, ¢) does not lie
on IT and hence that k., # 0. We may therefore take k,,.; = —1 and
see that for any point of N '

m

m
*
Upir — ,Zlk,-ui S — _zlkici'
= i=

That is, all critical functions ¢ satisfy
[#(fms = St <[ 604 (S = S s e

where ¢** is the test giving rise to the point (¢;, - - *, ¢, ¢**). Thus ¢**
is the critical function that maximizes the left-hand side of this inequality.
Since the integral in question is maximized by putting ¢ equal to 1 when
the integrand is positive and equal to 0 when it is negative, $** satisfies
(21) a.e. .

If ¢* = c**, let (c;, " * *, C,,) be any point of M other than (c;, - - -, ¢,,)-
We shall show now that there exists exactly one real number ¢’ such that
(¢}, cyy€’) is in N. Suppose to the contrary that (cj- -, ¢, c")
and (¢}, - - *, c,,, ¢') are both in N, and consider any point (cf, * * *, ¢, ¢”
of N such that (c,, - - -, ¢,,) is an interior point of the line segment joining
(cp, - cy) and (7, - -+, ;). Such a point exists since (¢;, - - -, ¢,,) is an
inner point of M. Then the convex set spanned by the three points
(€1p " € ), (€17 * s €y €'), and (cf, * + +, ¢, €”) is contained in N and
contains points (¢, - * *, €, €) and (cy, * -+, €, €) With ¢ < ¢, which is a
contradiction. Since N is convex, contains the origin, and has at most
one point on any vertical line 4, = ¢}, - * -, u,, = ¢,,, it is contained in a
hyperplane, which passes through the origin and is not parallel to the
U, -axis. It follows that

m

[#mrdn= 3 ke 45
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for all ¢. This arises of course only in the trivial case that

m

fm+1 = ‘21 kifia a.c. My

and (21) is satisfied vacuously.

Corollary 4. Let py, -, p,,, Pruiy be probability densities with respect
to a measure p, and let 0 << o < 1. Then there exists a test ¢ such that
E;p(X)=o(i=1,--,m) and E,., $(X)> o, unless p,..; = 3" kp:
a.e. u.

Proof.  The proof will be by induction over m. For m = 1 the result
reduces to Corollary 1. Assume now that it has been proved for any set
of m distributions, and consider the case of m + 1 densities py, * * -, iy
If py, - -, p,, are linearly dependent, the number of p, can be reduced and
the result follows from the induction hypothesis. Assume therefore that
P15 P are linearly independent. Then for each j = 1,-- -, m there
exist by the induction hypothesis tests ¢; and ¢ such that E; ¢,(X) =
E ¢i(X)=oforall i= 1, j— Lj+ 1, mand E; ¢(X) < a« <
E; ¢(X). It follows that the point of m-space for which all m coordinates
are equal to o is an inner point of M, so that Theorem 5(iv) is applicable.
The test $(2) = o is such that E; ¢(X) = « for i =1, -+, m. 1f among
all tests satisfying the side conditions this one is most powerful, it has to
satisfy (21). Since 0 < o << 1, this implies

n

Pmi1 = Zlkipi, a.t. u,
i<
as was to be proved.

The most useful parts of Theorems 1 and 5 are the parts (ii), which give
sufficient conditions for a critical function to maximize an integral subject
to certain side conditions. These results can be derived very easily as
follows by the method of undetermined multipliers.

Lemma 3. Let Fy,---, F,,, be real-valued functions defined over a
space U, and consider the problem of maximizing F,  \(u) subject to
Fu) =c,(i=1,"--,m). A sufficient condition for a point u® satisfying
the side conditions to be a solution of the given problem is that among all
points of U it maximizes

3

Fopa(u) — ElkiF (1)
for some ky, -+ k..

When applying the lemma one usually carries out the maximization for
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arbitrary k’s, and then determines the constants so as to satisfy the side
conditions.
Proof. 1If u is any point satisfying the side conditions, then

Foa(w) — AglkiFi(u) S Fon@® — 'ZlkiFi(“o),

and hence F,, () < F,, (.

As an application consider the problem treated in Theorem 5. Let U
be the space of critical functions ¢, and let Fy(¢) = f¢f;du. Then a
sufficient condition for ¢ to maximize F,, ,(¢), subject to Fi(¢) = c;, is
that it maximizes F,.1(¢) — Zk;F(P) = [(fri1 — Tk f)p du. This is
achieved by setting ¢(x) = 1 or 0 as f,,,,(x) > or << Zk; ().

7. TWO-SIDED HYPOTHESES

UMP tests exist not only for one-sided but also for certain two-sided
hypotheses of the form

(23) H:0<0, or 0=6, (6,<0,).

Such testing problems occur when one wishes to determine whether given
specifications have been met concerning the proportion of an ingredient
in a drug or some other compound, or whether a measuring instrument,
for example a scale, is properly balanced. One then sets up the hypothesis
that 6 does not lie within the required limits so that an error of the first
kind consists in declaring 6 to be satisfactory when in fact it is not. In
practice, the decision to accept H will typically be accompanied by a
statement of whether 0 is believed to be < 6, or = 6,. The implications
of H are, however, frequently sufficiently important so that acceptance
will in any case be followed by a more detailed investigation. If a
manufacturer tests each precision instrument before releasing it and the
test indicates an instrument to be out of balance, further work will be
done to get it properly adjusted. If in a scientific investigation the
inequalities § < 6, and 6 > 0, contradict some assumptions that have
been formulated, a more complex theory may be needed and further
experimentation will be required. In such situations there may be only
two basic choices, to act as if 8, << 0 < 0, or to carry out some further
investigation, and the formulation of the problem as that of testing the
hypothesis H may be appropriate. In the present section the existence of
a UMP test of H will be proved for exponential families.

Theorem 6. (i) For testing the hypothesis H: 6 <6, or 0=0,
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(0, < 0,) against the alternatives K: 0, < 0 < 0, in a one-parameter expo-
nential family there exists a UMP test given by

I when C;, <T(x)<C, (G, < Cy)
(24) #(x) =< y; when T(x)= C, i=1,2

0 when T(x) < or > C,,
where the C’s and y’s are determined by
(25) Ep, (X)) = Ep, $(X) = .

(ii) This test minimizes Ey $(X) subject to (25) for all 0 < 0, and > 0,.

(iii) For 0 <o <1 the power function of this test has a maximum at a
point 8y between 0, and 0, and decreases strictly as 0 tends away from 0,
in either direction, unless there exist two values t,, t, such that Py {T(X) =
n} + Py {T(X) = ty} = 1 for all 0.

Proof. (i) One can restrict attention to the sufficient statistic T = T(X),
the distribution of which by Lemma 8 of Chapter 2 is

dPy(t) = C(0) e¥ du(s),

where Q(0) is assumed to be strictly increasing. Let 0, < 6" < ,, and
consider first the problem of maximizing E,y(T) subject to (25) with
d(x) = y[T(x)]. If M denotes the set of all points (Ep,9(T), E,y(T)) as p
ranges over the totality of critical functions, then the point («, o) is an
inner point of M. This follows from the fact that by Corollary 1 the set
M contains points («, 4;) and (o, u,) With #; < o << u, and that it contains
all points (u, ) with 0 <<u < 1. Hence by part (iv) of Theorem 5 there
exist constants k;, k, and a test y,(7) such that ¢o(x) = y [T()] satisfies
(25) and that y,(r) = 1 when

kyC(0,)e® )" + kyC(6,)e?%t < C(6")e
and therefore when
a e’ + ae’ <1 (b, <0 <b,),

and y,(7) = 0 when the left-hand side is > 1. Here not both a’s can be
< 0 since then the test would always reject. If one of the a’s is < 0and
the other one is > 0, then the left-hand side is strictly monotone, and the
test is of the one-sided type considered in Corollary 2, which has a
strictly monotone power function and hence cannot satisfy (25). Since
therefore both a’s are positive, the test satisfies (24); by Theorem 5(iii) it
also maximizes E,y(T) subject to the weaker restriction E,p(T) < o
(i=1,2). To complete the proof that this test is UMP for testing H,
it is necessary to show that it satisfies E;p(T) < o for 6 < 6, and 6 > 0,
This follows from (ii) by comparison with the test p() = o
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(i) Let 6’ < 6, and apply Theorem 5(iv) to minimize E, ¢(X) subject
to (25). Dividing through by €%’ the desired test is seen to have a
rejection region of the form

alebll + azebz’ <1 (bl <0< bz)

Thus it coincides with the test yy(f) obtained in (i). By Theorem 5(iv),
the first and third conditions of (24) are also necessary, and the optimum
test is therefore unique provided P{T = C,;} = 0.

(iii) Without loss of generality let Q(0) = 6. It follows from (i) and
the continuity of p(0) = E, #(X) that either B(0) satisfies (iii) or there
exist three points 6’ < 6” < 6" such that f(0') = p(0") = p(6"). If
this common value is ¢, then 0 < ¢ < 1 since $(0) = 0 (or 1) implies
&(t) = 0 (or 1) a.e. v and this is excluded by (25). As is seen by the proof
of (i), the test maximizes E, $(X) subject to Ey $(X) = Ey. $(X) = ¢
forall ' < 6 << 6”, and the possibility Ey. ¢(X) = cis therefore excluded
by Corollary 4 unless py. = kypy + kapy- a.e. v. By the assumptions
made in (iii) this would imply the existence of three points t,, #,, t3 such that

Polts) PoA1)
PoAts) ? Polt)
which is impossible since [k, py(t) + kopy(t)l|pyAt) is convex.

1=k,

i=123,

In order to determine the C’s and y’s, one will in practice start with
some trial values Cy, ¥, find Cy, 5 such that f*(6;) = «, and compute
B*(05), which will usually be either too large or too small. For the
selection of the next trial values it is then helpful to note that if £*(0,) < «,
the correct acceptance region is to the right of the one chosen, that is, it
satisfies either C; > Cf¥ or C; = Cf and 7, < y{, and that the converse
holds if B*(0,) > «. This is a consequence of Lemma 2 applied to T(z).
Any test ¢* satisfying (24) and f*(0,) = « must be either to the right or
the left of the test ¢ satisfying (24) and (25). As ¢ is to the left or right of
$*, the function y(r) = ¢*(r) — ¢(¢) is monotone increasing or decreasing
and from the lemma g*(6,) > « or < a.

Although a UMP test exists for testing that 6 < 6, or = 0, in an
exponential family, the same is not true for the dual hypothesis H:
6, <6< 6, or for testing 0 = 0y (Problem 26). There do, however,
exist UMP unbiased tests of these hypotheses, as will be shown in
Chapter 4.

8. LEAST FAVORABLE DISTRIBUTIONS

It is a consequence of Theorem 1 that there always exists a most
powerful test for testing a simple hypothesis against a simple alternative.
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More generally, consider the case of a Euclidean sample space, probability
densities f;, ) € w, and g with respect to a measure x, and the problem
of testing H: f, € w, against the simple alternative K: g. The existence
of a most powerful level « test then follows from the weak compactness
theorem for critical functions (Theorem 3 of the Appendix) as in Theorem
5(1).

Theorem 1 also provides an explicit construction for the most powerful
test in the case of a simple hypothesis. We shall now extend this theorem
to composite hypotheses in the direction of Theorem 5 by the method of
undetermined multipliers. However, in the process of extension the
result becomes much less explicit. Essentially it leaves open the determina-
tion of the multipliers, which now take the form of an arbitrary distri-
bution. In specific problems this usually still involves considerable
difficulty.

From another point of view the method of attack, as throughout the
theory of hypothesis testing, is to reduce the composite hypothesis to a
simple one. This is achieved by considering weighted averages of the
distributions of H. The composite hypothesis H is replaced by the simple
hypothesis H; that the probability density of X is given by

() = f Ja) di0),

where 7 is a probability distribution over w. The problem of finding a
suitable 1 is frequently made easier by the following consideration.
Since H provides no information concerning 0 and since H, is to be
equivalent to H for the purpose of testing against g, knowledge of the
distribution 2 should provide as little help for this task as possible. To
make this precise suppose that 0 is known to have a distribution 2. Then
the maximum power f$; that can be attained against g is that of the most
powerful test ¢, for testing H, against g. The distribution 4 is said to be
least favorable (at level o) if for all 2’ the inequality §; < f,. holds.

Theorem 7.  Let a o-field be defined over w such that the densities Sfo()
are jointly measurable in O and x. Suppose that over this o-field there
exists a probability distribution 2 such that the most powerful level « test
1 for testing H, against g is of size < a also with respect to the original
hypothesis H.

(i) The test ¢, is most powerful for testing H against g.

(i) If ¢, is the unique most powerful level o test for testing H, against g,
it is also the unique most powerful test of H against g.

(iii) The distribution 1 is least favorable.

Proof.  We note first that 4, is again a density with respect to u since
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by Fubini’s theorem (Theorem 3 of Chapter 2)

[ duter = [0y [ ) e = [[arer=1.

Suppose that ¢, is a level « test for testing H and let ¢* be any other
level « test. Then since E, ¢*(X) < o for all § € w, we have

f $*@hy(2) du() = f E, $*(X) di(6) < a.

Therefore ¢* is a level « test also for testing H, and its power cannot
exceed that of ¢,. This proves (i) and (ii). If A" is any distribution, it
follows further that ¢, is a level « test also for testing H,, and hence that
its power against g cannot exceed that of the most powerful test which by
definition is 3.

The conditions of this theorem can be given a somewhat different form
by noting that ¢, can satisfy f Ey ¢:(X) dM(0) = « and E, (X)) < o for
all 6 only if the set of 0’s with E, ¢;(X) = « has A-measure one.

Corollary 5. Suppose that 2 is a probability distribution over w and that
o’ is a subset of w with (w') = 1. Let ¢, be a test such that

1 i g@) >k f f o) dA(6)
(26) $i(2) =
0 if glx)<k f fo@) dAO).

Then ¢, is a most powerful level o test for testing H against g provided

27) Eyp ¢y(X) = sup E; y(X) = o forall 6" eow'.
few

Theorems 2 and 6 constitute two simple applications of Theorem 7.
The set ' over which the least favorable distribution 4 is concentrated
consists of the single point 6, in the first of these examples and of the two
points 0, and 0, in the second. This is what one might expect since in
both cases these are the distributions of H that appear to be “closest’ to K.
Another example in which the least favorable distribution is concentrated
at a single point is the following.

Example 8. The quality of items produced by a manufacturing process is
measured by a characteristic X such as the tensile strength of a piece of material,
or the length of life or brightness of a light bulb. For an item to be satisfactory
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X must exceed a given constant u, and one wishes to test the hypothesis
H: p = p, where
p =P{X =u}

is the probability of an item being defective. Let X, - - -, X, be the measure-
ments of n sample items, so that the X’s are independently distributed with
common distribution about which no knowledge is assumed. Any distribution
on the real line can be characterized by the probability p together with the
conditional probability distributions P_ and P. of X given X <« and X > u
respectively. If the distributions P_ and P, have probability densities p_ and
P, for example with respect to 1« = P_ + P., then the joint density of X3, - - -, X,
at a sample point x,, - - -, @, satisfying

. Tipy " 5 Wiy SU S Tjy T,
is
prA = prp () e p@ Ipa @) o p, ).
Consider now a fixed alternative to H, say (p;, P, P.), with p; < p,. One
would then expect the least favorable distribution 4 over H to assign probability

1 to the distribution (p,, P_, P.) since this appears to be closest to the selected
alternative. With this choice of 4, the test (26) becomes

pl m ql n-m

x) = 1 r1 n

ba(x) or0 as (Po) (qo) > or < C,

and hence as m < or > C. The test therefore rejects when the number M of
defectives is sufficiently small or more precisely when M < C and with proba-
bility y when M = C where

(28) PM < C} +yP{M =C} =a for p=p,

The distribution of M is the binomial distribution b(p, n), and does not depend
on P, and P_. As a consequence, the power function of the test depends only
on p and is a decreasing function of p, so that under H it takes on its maximum
for p = p,. This proves / to be least favorable and ¢; to be most powerful.
Since the test is independent of the particular alternative chosen, it is UMP.

Expressed in terms of the variables Z; = X; — u, the test statistic M is the
number of variables = 0, and the test is the so-called sign rest (cf. Chapter 4,
Section 7). It is an example of a nonparametric test since it is derived without
assuming a given functional form for the distribution of the X’s such as the
normal, rectangular, or Poisson, in which only certain parameters are unknown.

The above argument applies, with only the obvious modifications, to the case
that an item is satisfactory if X lies within certain limits: « << X < v. This
occurs, for example, if X is the length of a metal part or the proportion of an
ingredient in a chemical compound, for which certain tolerances have been
specified. More generally the argument applies also to the situation in which X
is vector-valued. Suppose that an item is satisfactory only when X lies in a
certain set S, for example if all the dimensions of a metal part or the proportions
of several ingredients lie within specified limits. The probability of a defective
is then

p=PXeS),

and P_ and P, denote the conditional distributions of X given X €S and
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X € § respectively. As before there exists a UMP test of H: p = p,, and it
rejects H when the number M of defectives is sufficiently small, with the boundary
of the test being determined by (28).

A distribution 4 satisfying the conditions of Theorem 7 exists in most
of the usual statistical problems, and in particular under the following
assumptions.* Let the sample space be Euclidean, let w be a Borel set in
s-dimensional Euclidean space, and suppose that fy(x) is a continuous
function of 6 for almost all z. Then given any g there exists a distribution
A satisfying the conditions of Theorem 7 provided

lim | f, () du(@) =0
n—>0 JS

for every bounded set S in the sample space and for every sequence of
vectors 0, whose distance from the origin tends to infinity.

From this it follows, as did Corollaries 1 and 4 from Theorems 1 and 5,
that if the above conditions hold and if 0 << « <C 1, there exists a test of
power B > « for testing H: f,, 0 € w, against g unless g = Ify dX0) for
some 1. An example of the latter possibility is obtained by letting f,
and g be the normal densities N(0, of) and N(0, o}) respectively with
o} < 6% (Seep.97)

9. TESTING THE MEAN AND VARIANCE OF A
NORMAL DISTRIBUTION

Because of their wide applicability, the problems of testing the mean &
and variance o2 of a normal distribution are of particular importance.
Here and in similar problems later the parameter not being tested is
assumed to be unknown but will not be shown explicitly in a statement of
the hypothesis. We will write, for example, o < o, instead of the more
complete statement ¢ < 6y, —00 << & << 0. The standard (likelihood
ratio) tests of the two hypotheses o < oy and & < &, are given by the
rejection regions

(29) I, —ap=C
and B
(30) Vn (& — &) >c

Jni - S, — 2

* See Lehmann, “On the existence of least favorable distributions,” Ann. Math.
Stat., Vol. 23 (1952), pp. 408-416.
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The corresponding tests for the hypotheses ¢ > o, and E> ¢, are
obtained from the rejection regions (29) and (30) by reversing the in-
equalities. As will be shown in later chapters, these four tests are UMP
both within the class of unbiased and the class of invariant tests. How-
ever, at the usual significance levels only the first of them is actually UMP.

Let X;,---, X, be a sample from N(&, 62) and consider first the
hypotheses H,: 0 > 0, and H,: 0 < o,, and a simple alternative K:
& =&, 0 =0, It seems reasonable to suppose that the least favorable
distribution 1 in the (£, o)-plane is concentrated on the line o = G-
Since Y =2%X,/n=X and U= X(X, — X)? are sufficient statistics
for the parameters (&, ¢), attention can be restricted to these variables.
Their joint density under H, is

Cot™ =% exp (— %) fexp [— 2';2 (y — 5)2:| di(§)
0

(]

while under K it is

(n— u n
Cut® =9 exp (_ 26%)‘”‘? [:_ 252 (y— 51)2]‘
1

The choice of 4 is seen to affect only the distribution of Y. A least
favorable A should therefore have the property that the density of Y

under H,,
Vn n .
JVToﬁ exp [‘ pr y—9 ] aié),

comes as close as possible to the alternative density,

=
Vn n

—¢€X —_— y—f 2:'.
\/277'6% P[ 20%( 2

At this point one must distinguish between H, and H,. In the first case
0, << 0y. By suitable choice of 1 the mean of Y can be made equal to
&, but the variance will if anything be increased over its initial value 3.
This suggests that the least favorable distribution assigns probability 1
to the point & = &, since in this way the distribution of Y is normal
both under H and K with the same mean in both cases and the smallest
possible difference between the variances. The situation is somewhat
different for H, for which 6, << g,. If the least favorable distribution A
has a density, say A’, the density of Y under H, becomes

g \/; n 2
— —(y — A'(&) dE.
f_w —— exp[ 3 (0 5)] (&) de
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This is the probability density of the sum of two independent random
variables, one distributed as N(0, 63/n) and the other with density 4'(%).
If 2 is taken to be N(&, (62— o3)/n), the distribution of Y under H,
becomes N(£,, o3/n), the same as under K.

We now apply Corollary 5 with the distributions 4 suggested above.
For H, it is more convenient to work with the original variables than
with Y and U. Substitution in (26) gives ¢(x) = 1 when

(2rot) " exp | — s Bl — &
1
> G,

(2mad) ™2 exp |:-— 2L0%) Xx; — 51)2}
that is, when
(31 I, — &P < C
To justify the choice of 4, one must show that
P{E(X; — &) < Cf§, o}

takes on its maximum over the half plane ¢ > ¢, at the point & =&,
o = 0, For any fixed o, the above is the probability of the sample
point falling in a sphere of fixed radius, computed under the assumption
that the X’s are independently distributed as N(&, 0%). This probability
is maximized when the center of the sphere coincides with that of the
distribution, that is, when & = &,. The probability then becomes

X, — &\ C
P{Z(———’ ”t‘) < 5 & a= = P{ngg %}
c o o

where V;,- -+, V, are independently distributed as N, 1). This is a
decreasing function of o and therefore takes on its maximum when
0 = 0g.

In the case of H, application of Corollary 5 to the sufficient statistics
(Y, U) gives ¢(y, u) = 1 when

n-3) _" " = 2]
Cyu exp ( 20’%) exp [ 207 (y—§&)
n—3) — _“_)f [_ Mo — 2] ’
Cott exp ( 203 exp T (y — &P |\A (&) d&
u(l 1
= Kexp |:— > (;f — 0—:,_))}
that is, when

(32) u=S(x; — 82> C.

1%

G
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Since the distribution of X(X, — X)2/¢? does not depend on & or o, the
probability P{Z(X; — X)? > C[£, o} is independent of £ and increases
with g, so that the conditions of Corollary 5 are satisfied. The test (32),
being independent of £, and a,, is UMP for testing 0 < 0, against 0 > o,
It is also seen to coincide with the likelihood ratio test (29). On the
other hand, the most powerful test (31) for testing 0 = o, against ¢ << g,
does depend on the value &, of & under the alternative.

It was tacitly assumed so far that n > 1. If n= 1, the argument
applies without change with respect to H,, leading to (31) with n = 1.
However, in the discussion of H, the statistic U now drops out, and Y
coincides with the single observation X. Using the same 1 as before one
sees that X has the same distribution under H, as under K, and the test
#, therefore becomes ¢,(r) = «. This satisfies the conditions of Corollary
5 and is therefore the most powerful test for the given problem. It
follows that a single observation is of no value for testing the hypothesis
H, as seems intuitively obvious, but that it could be used to test H; if the
class of alternatives were sufficiently restricted.

The corresponding derivation for the hypothesis & < &, is less straight-
forward. It turns out* that Student’s test given by (30) is most powerful
if the level of significance « is > 1/2, regardless of the alternative £>¢&, 04,
This test is therefore UMP for o> 1/2. On the other hand, when
o < 1/2 the most powerful test of H rejects when X(x; — a)®> < b, where
the constants a and b depend on the alternative (&, o,) and on o. Thus for
the significance levels that are of interest, a UMP test of H does not exist.
No new problem arises for the hypothesis & > £, since this reduces to the
case just considered through the transformation Y, = Eo — (X, — &)

?

10. SEQUENTIAL PROBABILITY RATIO TESTS

According to the Neyman-Pearson fundamental lemma, the best
procedure for testing the simple hypothesis H that the probability density
of X is py against the simple alternative that it is p, accepts or rejects H as

P _ (@) - i)
Pon Po(x) - pol,)

is less or greater than a suitable constant C. However, further improve-
ment is possible if the sample size is not fixed in advance but is permitted
to depend on the observations. The best procedure, in a-certain sense,
is then the following sequential probability ratio test. Let A, < A, be

* See Lehmann and Stein, “Most powerful tests of composite hypotheses. 1.
Normal distributions,” Ann. Math. Stat., Vol. 19 (1948), pp. 495-516.



98 UNIFORMLY MOST POWERFUL TESTS [3.10

two given constants and suppose that observation is continued as long
as the probability ratio p,,/p,, satisfies the inequality

(33) Ay <P < 4,

Pon
The hypothesis H is accepted or rejected at the first violation of (33) as
PinlPon < Ag OF 24,

The usual measures of the performance of such a procedure are the
probabilities, say a, and a;, of rejecting H when p = p, and of accepting
it when p = p, and the expected number of observations E(N) when
p=pii=0,1).

Theorem 8. Among all tests (sequential or not) for which

P, (rejecting H) < «g, Py (accepting H) < oy

and for which Ey(N) and E,(N) are finite, the sequential probability ratio
test with error probabilities ay and «; minimizes both Eo(N) and E\(N).

In particular, the sequential probability ratio test therefore requires on
the average fewer observations than the fixed sample size test which
controls the errors at the same levels. The proof of this result will be
deferred to Section 12. In this and the following sections some of the
basic properties of sequential probability ratio tests will be sketched.

Because of the difficulty of determining exactly the boundaries A, and
A, for which «, and «, take on preassigned values, the following
inequalities are useful. Let R, be the part of n-space defined by the
inequalities

dg<PE 4 for k=1,--on—1 and 4D
Pox Pon
This is the set of points (;, - - *, ¢,,) for which the procedure stops with
N = n observations and rejects H. Then

o0 l 0
= < P =
%o ngl R, Pon = Ay ngl R, Pin A,

1 — o

Similarly, if S, denotes the part of n-space in which N =n and H is
accepted, one has

2 o
1 —oy= J >,
%o ngl S,,pon: Ao

Here it has been tacitly assumed that

P{N=n}= 3 pn=1 for i=0,1,
1

n= n=1JR,US,
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that is, that the probability is O of the procedure continuing indefinitely.
For a proof of this fact see Problems 34 and 35. The inequalities

I — oy

(34) A= —2 4 <

1 — o %

suggest the possibility of approximating the boundaries 4, and 4, that
would yield the desired o, and a; by

%

Ay =

’
1 » A=
- %y %o

By (34) the error probabilities of the approximate procedure then satisfy

’ _ ’ l—
al,§A6= o and 1 ,algA'1= oy

I — o I — o o, %

and hence

0o %
ay <

T 1l—-oy

and oy <

1 — oy

If typically «, and «, are of the order .01 to .1, the amount by which
o; can exceed o, (i = 1, 0) is negligible so that the probabilities of the
two kinds of error are very nearly bounded above by the specified «,
and a;. This conclusion is strengthened by the fact that ay + oy <
% + o, as is seen by adding the inequalities oj(1 — o) < (1 — &)
and op(1 — o)) < ag(1 — a}).

The only serious risk in using the approximate boundaries Aj, A is
therefore that o, and «) are much smaller than required, which would
lead to an excessive number of observations. There is some reason to
hope that this effect is also moderate. For let

(35) z; = log [py(x))[pe(=,)].
Then (33) becomes

log 4y < 3z, < log 4,,
=1
and when H is rejected the 2’s satisfy
attz <lgA<z+-- 42,

The approximation consists in replacing 2, + - -+ + z,, by log A,. The
error will usually be moderate since after n — 1 observations Xz, is
still << 4, and the excess has therefore had no possibility to accumulate,
but is due to a single observation. An analogous argument applies to
the other boundary.
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Example 9. Consider a sequence of binomial trials with constant proba-
bility p of success, and the problem of testing p = p, against p = P1po < po)-
Then

P _pEA —p)" T (plqo)ht(qx)"
— = yi—sn - \pa.) \a) -
Pon P5(L = po) P Mo

In the case that log (p;pg V)/log(qegi~?) is rational, exact formulas have been
obtainedt for the error probabilities and expected sample size which make it
possible to compute the effects involved in the approximation of Ao, 4, by
Aj, A;.  Asanillustration, suppose that p, = .05, py = .17, 24 = .05, «; = .10.
It then turns out that «j = .031, «; =.099, and that the expectations of the
sample size for the approximate procedure are Ey(N) =314, E{(N) = 30.0.
There is an alternate plan, determined by trial and error, with «¥ = .046,
a¥ =.097, EF(N) = 30.5, E¥(N) =26.1. Onthe other hand, the fixed sample
size procedure with error probabilities .05 and .10 requires 57 observations.

In order to be specific, we assumed in the definition of a sequential
probability ratio test that observation continues only as long as the
probability ratio is strictly between A, and A,. The discussion applies
equally well to the rule of continuing as long as A, < PinlPon < A1,
coming to the indicated conclusion the first time that p;,/pe, << Ao O
> A,, and deciding on the boundaries according to any fixed probabilities.
The term sequential probability ratio test is applied also to this more
general procedure. If the probability ratio py(X)/pe(X ) has a continuous
distribution, all these procedures are equivalent. However, in case of
discrete probability ratios the possibility of randomization on the boundary
is necessary to achieve preassigned error probabilities. If randomization
is permitted also between taking at least one observation or reaching a
decision without taking any observations, it can be shown that actually
any preassigned error probabilities can be achieved.§

11. POWER AND EXPECTED SAMPLE SIZE OF
SEQUENTIAL PROBABILITY RATIO TESTS

The preceding section is somewhat misleading in that it discusses the
problem in a setting, that of testing a simple hypothesis against a simple
alternative, which is interesting mainly because of its implications for the
more realistic situation of a continuous parameter family of distributions.

t+ Girshick, “Contributions to the theory of sequential analysis, II, IT1,” Ann. Math.
Stat., Vol. 17 (1946), pp. 282-298, and Polya, ““Exact formulas in the sequential analysis
of attributes,” Univ. Calif. Publs. Mathematics, New Series, Vol. 1 (1948), pp. 229-240.

* Taken from Robinson, ““A note on exact sequential analysis,” Univ. Calif. Publs.
Mathematics, New Series, Vol. 1 (1948), pp. 241-246.

§ This result is contained in an as yet unpublished paper by Stein, “Existence of
sequential probability ratio tests.” ~See also the abstract by Wijsman, *On the existence
of Wald’s sequential test,” Ann. Math. Stat., Vol. 29 (1958), pp. 938-939.
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Unfortunately, the property of being uniformly most powerful, which
the fixed sample size probability ratio test possesses for families with
monotone likelihood ratio (Theorem 2), does not extend to the sequential
case. More specifically, consider the sequential probability ratio test
for testing H: 6y against K: 0, and let its power function be () =
Py (rejecting H). Then if 0, is some other alternative, the sequential
probability ratio test for testing 6, against 0, with error probabilities o,
and «,; does not in general coincide with the original test, which therefore
does not minimize E, (N). 1t seems in fact likely that from an over-all
point of view the sequential probability ratio test is not the best sequential
procedure in the continuous parameter case, although it is usually better
than the best competitive test with fixed sample size.

When the probability density depends on a real parameter 6 and one is
testing the hypothesis 0 < ), one is usually not concerned with the
power of the test against alternatives 0 close to 0,, but would like to be
able to control the probability of detecting alternatives sufficiently far
away. The test should therefore satisfy

PO a for 00,
(36) (0 < 0,
BO) = p for 610,

which it will do in particular if
pOy) = o, p(0y) = B,

and if A(0) is a nondecreasing function of . The sequential probability
ratio test for testing 0y against 6, with error probabilities xy = «, a; =
1 — f thus is a solution of the stated problem provided its power function
is nondecreasing.

Lemma 4. Let Xy, X,, - - - be independently distributed with probability
density p,(x), and suppose that the densities p(x) have monotone likelihood
ratio in T(x). Then any sequential probability ratio test for testing 0,
against 01 (0, << 0,) has a nondecreasing power function.

Proof. LetZ; = log[p, (X i)/p(,n(X 2] = W(T;), where / is nondecreasing,
and let 6 < 6. By Lemma 2, the cumulative distribution function
Fy(t) of T, satisfies F,(t) < Fy(¢) for all ¢, and by Lemma 1 there exists
therefore a random variable ¥, and functions fand f” such that f'(v) < f'(v)
for all v and that the distributions of f(V,) and f'(V,) are F, and F,
respectively. The sequential test under consideration has the following
graphical representation in the (n, > ,A(t;)) plane. Observation is
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continued as long as the sample points fall inside the band formed by the
parallel straight lines

Sht)=logd, j=0.1.

The hypothesis is rejected if the path formed by the points (1, 4(1,)),
@, h(ty) + h(ty)), - - -, (N, h(ty) + - - - + h(ty)) leaves the band through
the upper boundary. The probability of this event is therefore the
probability of rejection, for 6 when each T; is replaced by f (V) and for 6
when T; is replaced by f'(V,). Since f(V;) < f'(V,) for all i, the path
generated by the f'(V,) leaves the band through the upper boundary
whenever this is true for the path generated by the f(V,). Hence f(6) <
B(6"), as was to be proved.

In the case of monotone likelihood ratios, the sequential probability
ratio test with error probabilities oy = a, o, = | — f8 therefore satisfies
(36). It follows from the optimum property stated in Section 10 that
among all tests satisfying (36) the sequential probability ratio test mini-
mizes the expected sample size for 6 = 6, and 0 = 6,. However, one is
now concerned with E,(N) for all values of 6. Typically, the function
E,(N) has a maximum at a point between 6, and 6;, and decreases as 0
moves away from this point in either direction. It frequently turns out
that the maximum is < n,, the smallest fixed sample size for which there
exists a test satisfying (36). On the other hand, this is not always the
case. . Thus, in Example 9 for py= .4, p, = .6, oy = o =.005 for
example, the fixed sample size n, is 160, and E,(N), while below this for
most values of p, equals 170 for p = 1/2. The important problem of
determining the test that minimizes sup E,(N) subject to (36) is still
unsolved.

An exact evaluation of the power function $(0) and the expected sample
size E,(N) of a sequential probability ratio test is in general extremely
difficult. However, a simple approximation is available provided the
equation

(37) Ey {[po,(X)[po (X'} = 1

has a nonzero solution i = A(6), as is the case under mild assumptions.
(See Problem 38.) Then

pie) = | 29 o

is again a probability density. Suppose now that h > O—the other case
can be treated similarly—and consider the sequential probability ratio
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test with boundaries A¢, A% for testing p, against p¥. With this procedure
observation is continued as long as

p;‘(xl) .. P:(xn)
Po(1) o)

If «y and 1 — of denote the probability of rejection when p, and p¥ are the
true densities, it is seen from (34) that the boundaries are given approxi-
mately by

0

* *
o 1 — ay
Ab~——, A~ —
1 — « 4
0 0

However, the test under consideration is exactly the same as the sequential

probability ratio test with error probabilities ¢y =, o, =1 — g for

testing 0, against 6,. Hence oy and f(0), the probability of rejection

for the two tests when p, is the true density, must be equal. Solving for
o from the above two approximate equatlons one therefore finds

Ah

(38) pO) ~ —— A=A

An approximation for Ey(N) can be based on Wald’s equation
(39 E(Zy + -+ + Zy) = E(N)E|(2),

which is valid whenever the Z’s are identically and independently distri-
buted and the procedure is such that the expected sample size E,(N) is
finite. For a proof of this equation see Problem 37. If the Z’s are
defined by (35) and the procedure is a sequential probability ratio test,
Z, + - - - + Z can be approximated as before by log 4, and log 4, when
H is rejected and accepted respectively, so that from (39) one obtains

B(6) log 4, + [1 — B(6)] log 4,

40 N)~
provided Ey(Z) # 0.
Example 10. In the binomial problem of Example 9, equation (37) becomes
P1 b
41
“ PR o=

Since the left-hand side is a convex function of 4 which is 1 for & = 0, it is seen
that the equation has a unique nonzero solution except when p = log (qo/ql)/
log (p190/peq1), in which case the left-hand side has its minimum at 4 =

Equations (38) and (41) provide a parametric representation of the approxnmate
power function, which can now be computed by giving different values to 4
and obtaining the associated values p and g from (38) and (41). (For & =0,
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f can be obtained by continuity.) The following is a comparison of the approxi-
mate with the exact values of p(p) and E(N) in the numerical case considered in

Example 9, with py = .05, p =.099, p, = A7:*
B(po) B(p) Blpy)  E,(N) E A(N) E,(N)

.05 .44 .90 30 39 25 Approx.
.031 .409 901 31.4 46.8 30.0 Exact

12. OPTIMUM PROPERTY OF SEQUENTIAL
PROBABILITY RATIO TESTSt

The main part of the proof of Theorem 8 is contained in the solution
of the following auxiliary problem. For testing the hypothesis H that
Po is the true probability density of X against the alternative that it is py,
let the losses resulting from false rejection and acceptance of H be wy and
w;, and let the cost of each observation be ¢. The risk (expected loss
plus expected cost) of a sequential procedure is then

aw; + cE(N)
when p, is the true density, where
«, = P, (rejecting H), o, = P, (accepting H)

are the two probabilities of error. If one supposes that the subscript i
of the probability density is itself a random variable, which takes on the
values 0 and 1 with probability = and 1 —  respectively, the total average
risk of a procedure 0 is

(42) r(m, 8) = mlagwy + cEo(N)] + (1 — mloyw; + cE{(N)].

We shall now determine the Bayes procedure for this problem, that is,
the procedure that minimizes (42). Here the interpretation of (42) as a
Bayes risk is helpful for an understanding of the proof and gives the
auxiliary problem independent interest. However, from the point of
view of Theorem 8, the introduction of the w’s, ¢, and = is only a mathe-
matical device, and the problem is simply that of minimizing the formal
expression (42).

The Bayes solutions involve two numbers 7’ < #” which are uniquely
determined by w,, w;, and ¢ through equations (44) and (45) below, and
which are independent of 7. It will be sufficient to restrict attention to the
case that 0 < =’ < #” < 1 and to a priori probabilities 7 satisfying
17, __g ™ g 7T”.

* Taken from Robinson, loc. cit., where a number of further examples are given.

t This section treats a special topic to which no reference is made in the remainder of
the book.
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Lemma S. Let @', n” satisfy the equations (44). If0 < ' < " < 1,
then for all 7' < = < 7" the Bayes risk (42) is minimized by any sequential
probability ratio test with boundaries

1_ ” 1_ ’
(43) Ay=—"ne =0 g =T 77

I T ’ l — = T

’

Proof. (1) We begin by investigating whether at least one observation
should be taken, in which case the resulting risk will be at least ¢, or
whether it is better to come to a decision immediately. Let 6, denote the
procedure that rejects H without taking any observations, and 0, the
corresponding procedure that accepts H, so that

r(m, dg) = mw,  and r(m, 0) = (1 — m)w,.
Let

p(m) = inf r(m, )
et

where % is the class of all procedures requiring at least one observation.
Then for any 0 < 2 < 1 and any =, m,,

plAmg + (1 — Hm] = ;né‘ [Ar(mo, 0) + (1 — Ar(my, )]
= 2p(mo) + (1 — Ap(my).

Hence p is concave, and since it is bounded below by zero it is continuous
in the interval (0, 1).* If

Wy WoW,
(s <
Wo + W, Wo + Wy

define 7" and =" by
(44) (@', 00) = p(m')  and  r(x",8,) = p(n").
(See Figure 3.) Otherwise let

W1
Wo + Wy
In the case 0 << 7’ << 7" < 1 with which we are concerned, 0o minimizes
(42) if and only if # < #’, and 6, minimizes (42) if and only if # > #".
This establishes the following uniquely as an optimum first step for
w7, 7n": If m <7’ or > 7", no observation is taken and H is rejected
or accepted respectively; if 7' < 7 << 7" the variable X, is observed.

(2) The proofis now completed by induction. Suppose that 7w’ <7 < 7"

and that n observations have been taken with outcomes Xy=2, 1, X, =
z,, and that one is faced with the alternatives of not taking another

(45) 77, = 77_/1 —

* See, for example, section 3.18 of Hardy, Littlewood, Polya, Inequalities, Cambridge
Univ. Press, 1934.
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observation and rejecting or accepting H with losses w,, w, for possible
wrong decisions, or of going on to observe X,,;. The situation is very
similar to the one analyzed in part (1). An unlimited supply of observa-
tions X, .1, Xnig * * - is available. The fact that one has already incurred
the expense of nc units does not affect the problem, since once this loss
has been sustained no future action can retrieve it. The procedure is
therefore as before: No further observation is taken if the probability of H

r(m,81) =w (1 = m)

H(m,00) = woT

p(m)

| |
o
|

L
|

b
! |
| |
| |
| |

0 T’ wy " 1
wo+ wy

Figure 3.

being true is < 7’ or > =", whereas X, is observed if this probability
is strictly between 7’ and ="

One aspect of the situation has changed as a result of observing z;,"*+, z,,.
The probability of H being true is no longer = but has become

— Trp()n R
TPon + (l - 7T)pln

the conditional (a posteriori) probability of H given X; = zy, - * -, X, = 2.
A complete procedure therefore consists in continuing as long as

ey, 2,)

< mry, ) <7

or equivalently as long as
Ay = T ‘l-—”‘n'”<&t< T ‘1—77'
l—7m = Pon l—m 7

= Al‘

7

H is accepted if, at the first violation of these inequalities, py,/[po, is << 4o
and rejected if it is > A,.
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(3) In part (1) of this proof the first step of the procedure was uniquely
determined as , for = < 7', as’d, for 7 > #”, and as taking at least one
observation when #’' <7 << #". For = = ', the procedure ¢, still
minimizes (42) but it is no longer unique, that is, there also exists a
procedure d € ¢ for which r(n’, 0) = p(«’). In order to belong to €,
such a procedure must require at least one observation. Once X, has
been observed, it follows from part (2) that the best procedure in € is
obtained by continuing observation as long as 7’ < w(xy, - - x,) < 7"

At the first step it is therefore immaterial whether on the boundary
experimentation is continued or the indicated decision is taken. The same
is then true at the subsequent steps. This establishes in particular that
for " < = < n” the procedure of taking a first observation and then
following the sequential probability ratio test with boundaries (43) is Bayes.

The required connection between the auxiliary problem and the original
one is established by the following lemma.

Lemma 6. Givenany0 < my < my < 1, there exist numbers0 < w < 1,
0 <Cc such that the Bayes solution of the auxiliary problem defined by
Wo =1 — w, wy = w, c, and an a priori probability 7 satisfying my < m < g
is a sequential probability ratio test with boundaries

™ 1—776

1l —7 my L —— ™,

Proof.* (1) By Lemma 5, the quantities =" and =" are functions of
wand c, and it is therefore sufficient to find w and ¢ such that 7'(w, ¢) = m,
7'(w, ¢) = m.  For fixed w, let 7'(c) = #'(w, ¢) and 7"(c) = #"(w, c).
If ¢ is the smallest value of ¢ such that 7'(co) = 7"(c,), then for 0 < ¢ < Co
the quantities 7'(c) and #"(c) are determined by the equations

(I — wya' = p(#', c), (I —#")yw = p(n’, ¢),

where p(m, ¢) stands for the quantity previously denoted by p(w). The
function p(=’, ¢) considered as a function of ¢ for fixed 7 has the following
properties. (i) It is continuous. This follows as before from its being
concave. (ii) It is strictly increasing, since for any 6 € % the risk (3, ')
increases strictly with ¢ and since the minimum risk p(7’, ¢) is taken on
by a procedure 6 € €. (iii) As ¢ tends to zero, so do p(7’, ¢) and p(7”, c).
This follows from the fact that for n sufficiently large there exists a test of
fixed sample size n for which the two error probabilities are arbitrarily
small.

* This proof was communicated to me by L. LeCam.
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These properties of the function p imply that for 0 <c <c¢, the
functions =" and =" are also continuous, strictly increasing and decreasing
respectively, and that #'(c) — 0, #"(c) — 1 as c— 0. On the other hand,
as ¢ — ¢y, 7"(c) — 7'(c) — 0 so that both quantities tend to the solution
7’ = 7" = w of the equation 7'(1 — w) = (1 — #")w. It follows from
these properties that for fixed w

_ '(c) 1= 7"(¢)
M) =170 7o

is a continuous, strictly increasing function of ¢, which increases from 0 to
1 as ¢ varies from 0 to ¢y = co(w).

(2) Let
7'(w, ¢) 1 — 7"(w,c)
—7aw,c) 7'(w, )

w"(w, ¢)

Aw, ) =7 y(w, ) = =m0

Instead of working with the variables =’ and #”, it is equivalent and more
convenient to work with 4 and y, and to prove the existence of w, ¢ such
that
don )= L0 0y yn = =
l—my m 1 —m

For any w, there exists by part (1) a unique cost ¢ = c(w) such that
Mw, c) = Ay. It will be shown below that y(w) = y[w, c(w)] is a 1:1
mapping of the interval 0 <w <1 onto 0 < << 00, and hence that
there exists a unique value w such that y(w) = y,. This will complete
the proof of the lemma.

(3) For the auxiliary problem defined by w, ¢ = c(w), and 7 = ='[w, c(w)]
there exists by Lemma 5 a Bayes solution 6" which is a sequential proba-
bility ratio test with boundaries

4= '[w, c(w)] ) 1 — #"[w, c(w)]
O T —alw,cw)] 7w, c(w)]

=Aw,cW)] =1, A =1

Let & be the corresponding solution of the problem defined by w, ¢ = c(w),
and 7 = 7"[w, ¢(w))], so that its boundaries are

w"[w, c(w)] ) 1 — 7'[w, c(w)] _

1
I I O B T 0 R N

Av=1, A

Then the error probabilities and the expectations of the sample size
ag, %1, Eg(N), E{(N) of 8’ and g, af, Eg(N), E{(N)of 6" depend on wand ¢
only through 2, and not through y, so that for fixed 1, they are fixed
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numbers. The Bayes risks for = = ='[w, c(w)] and 7 = 7"[w, ¢(w)] are
given by
p(n') = K7, &) and p(7") = r(a", 8")
and it follows from (44) that
r(m',0g) = r(=',0') and K=", ) = H(x", &").

These equations can be written more explicitly as

(1 —w) = 7'[ag(1 — w) + cEy(N)] + (1 — #')aw + cE(N)]
and

(I = 7w = 7"lag(1 — w) + cE{(N)] + (1 — 7")[olw + cE{(N)].

If one substitutes sy for 7’/(1 — =') and y for #”/(1 — =") and eliminates
¢, this reduces to a single equation connecting y and w:

Gor(l = ag) — wligy(1 = ) + s}y EG(N) + E{(N)}
= {=r20 + wl(l — &) + yu {2y Eg(N) + E;(N)}.
This is linear in w and for any y > 0 has a solution 0 < w < 1. Asa
function of y it is quadratic, and the coefficients of the constant and
quadratic terms have opposite signs provided 0 << w < 1. In this case

there exists therefore a unique positive solution y, which establishes the
required 1:1 relation between y and w.

To complete the proof of Theorem 8, consider now any sequential
probability ratio test with 4, < 1 < 4;, and any constant 0 < 7 < 1.
Let

’ ™ ” ™
7=, = .
Al —m) 4+ = Ayl — ) + =

These values satisfy (43) and 0 < #' < 7 < 7" < 1, and by Lemma 6
there exist therefore constants 0 < w < 1 and ¢ > 0 such that the given
test is a Bayes solution for the auxiliary problem withana priori probability
= of p, being the true density, with losses wy = 1 — w and w; = w, and
cost ¢. Let the error probabilities and expectations of the sample size be
o9, %y, Eo(N), E(N) for the given test, and consider any competitive
procedure 6%, with error probabilities a} < «, and expectations of sample
size Ef(N) < oo (i = 0,1). Since the given test minimizes the Bayes risk,
it satisfies

(1 = W)y + cEy(N)] + (1 — m)[woy + cE(N)]

< 7l(1 — wag + cEg(N)] + (1 — m)[wak + cEXN)]
and hence

mE(N) + (1 — mE(N) < 7E5(N) + (1 — mEF(N).
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The validity of this inequality for all 0 <7 <1 implies
E(N)X EFN)  and  E(N)< ET(N),

as was to be proved.

13. PROBLEMS
Section 2

1. UMP test for R(0, 6). Let X =(Xy, -, X,) be asample from the uniform
distribution on (0, 6).

(i) For testing H: 6 < 6, against K: 0 > 0, test is UMP at level « for
which Ep $(X) = «, Ey #(X) < afor 6 < 6, and #(x) = 1 when max (zy, - - -, x,)
> 0.

(ii) For testing H: 6 = 0, against K: 6 # 0, a unique UMP test exists, an_d
is given by ¢(x) = 1 when max (zy, -, %) > 0, or max (@, 2y < 0V o,
and ¢(x) = 0 otherwise.

[(ii) Determine the UMP tests for testing 6 = 0, against 6 < 6, and combine
this result with that of part (i).]

2. UMP test for exponential densities. Let Xy, -+, X, be a sample from the
distribution with exponential density ae=**~9, x = b.

(i) Determine the UMP test for testing H: b = boagainst K: b # by when a is
assumed known.

(ii) Determine the UMP test for testing H: a =a,, b = b, against the
alternatives a > ag, b < by. Explain the (very unusual) existence in this case
of a UMP test in a two-parameter problem.

[(i) The variables Y; = e—aY: are a sample from the uniform distribution on
0,e7%).]

3. If the sample space Z is Euclidean and Py, P, have densities with respect to
Lebesgue measure, there exists a nonrandomized most powerful test for testing
P, against P, at every significance level .t

[This is a consequence of Theorem 1 and the following lemma.; Let f =0

andf f(@)dr =a. Given any 0 <b <a, there exists a subset B of 4
: A

such thatf f@) dx = b.]
B

+ For more general results concerning the possibility of dispensing with randomized
procedures, see Dvoretzky, Wald, and Wolfowitz, “Elimination of randomization in
certain statistical decision procedures and zero-sum two-person games,” Ann. Math.
Stat., Vol. 22 (1951), pp. 1-21.

1 For a proof of this lemma see Halmos, Measure Theory, New York, D. Van
Nostrand Co., 1950, p. 174. The lemma is a special case of a theorem of Liapounoff,
“Sur les fonctions-vecteurs complétement additives,” Bull. Acad. Sci., URSS, Vol. 4
(1940), pp. 465-478.
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4. Fully informative statistics. A statistic T is fully informative if for every
decision problem the decision procedures based only on T form an essentially
complete class. If 2 is dominated and T is fully informative, then T is sufficient.

[Consider any pair of distributions P,, P, € # with densities Po» P1, and let
&: = pil(po + p1). Suppose that T is fully informative, and let =/, be the sub-
field induced by 7. Then # contains the subfield induced by (g4, 1) since it
contains every rejection region which is unique most powerful for testing
P, against Py (or P, against Py) at some level «. Therefore, T is sufficient for
every pair of distributions (P, P;), and hence by Problem 9 of Chapter 2 it is
sufficient for 2.]

Section 3

3. Let X be the number of successes in n independent trials with probability
p of success, and let ¢(z) be the UMP test (9) for testing p < p, against P> P
at level of significance «.

(i) For n = 6, Po = .25 and the levels « = .05, .1, .2 determine C and Y,
and find the power of the test against p, = .3, .4, .5, .6, .7.

(ii) If py = .2 and « = .05, and it is desired to have power B = .9 against
P1 = .4, determine the necessary sample size (a) by using tables of the binomial
distribution, (b) by using the normal approximation.*

(iii) Use the normal approximation to determine the sample size required
when « = .05, 8 = .9, Po = .01, p; = .02.

6. (i) A necessary and sufficient condition for densities po(x) to have monotone
likelihood ratio in x, if the mixed second derivative 22 log pe(x)[ 6 8z exists,
is that this derivative be =0 for all 0 and =.

(i) An equivalent condition is that

Ppo(@) _ 9pu(x) dpy(x)

po() 03 = 30 PP forall 6 and =.

7. Let the probability density py of X have monotone likelihood ratio in
T(x), and consider the problem of testing H: 6 <0, against 0 > 6,. If the
distribution of T is continuous, the critical level 4 is given by & = Py {T =1}
where 1 is the observed value of 7. This holds also without the assumption of
continuity if for randomized tests 4 is defined as the smallest significance level
at which the hypothesis is rejected with probability 1.

8. Let Xj,---, X, be independently distributed with density (260)-1e—*/20,
¥ =20andlet Y; <--- <Y, be the ordered X’s. Assume that Y, becomes
available first, then Y,, etc., and that observation is continued until Y, has been
observed. On the basis of Y, - - -, Y, it is desired to test H: 6 > 6, = 1000 at
level « = .05 against § < 6,.

(i) Determine the rejection region when r = 4, and find the power of the test
against 6, = 500. ‘

(i) Find the value of r required to get power f = .95 against this alternative.

[In Problem 13, Chapter 2, the distribution of [Z7-1Y: + (n — r)Y,)/6 was
found to be 2 with 2r degrees of freedom.]

* For a discussion of another convenient method applying to this and many related
problems, see Mosteller and Tukey, ““The uses and usefulness of binomial probability
paper,” J. Am. Stat. Assoc., Vol. 44 (1949), pp. 1