
 THE ECONOMIC LIFE OF INDUSTRIAL EQUIPMENT

 GABRIEL A. D. PREINREICH

 WHEN TO REPLACE individual units of durable equipment by similar
 or improved units is one of the main problems, upon which the success
 of industrial enterprise depends. Nevertheless, no unified presentation
 of its many aspects appears to have been published up to the present.
 The principal writers refer to replacement merely incidentally, when
 discussing the subject of depreciation. From the theoretical point of
 view, such an approach really amounts to putting the cart before the
 horse.' Replacement is the basic problem, because it actually affects
 the composition and productivity of a plant. Calculations of deprecia-
 tion are mere figures entered into books, the significance of which
 depends entirely on the use to which they are put. The concept of de-
 preciation does not enter into the theory of capital value at all. In
 practice, on the other hand, differences in depreciation methods do to
 some extent influence the judgment of traders in the negotiable
 symbols of composite capital goods. This anomaly is due partly to
 defective accounting methods. A study of the replacement problem
 by itself must precede attempts to correct the situation.

 The value aspect of replacement or "economic life" arises from the
 familiar phenomenon that many types of "machines" outlive their
 usefulness. The income stream derived from their operation gradually
 declines, until a more attractive alternative becomes available. The
 theory that the economic life of a machine is a period which makes the
 unit cost (plus interest) of the product a minimum, appears to have
 been originated by Professor J. S. Taylor.2 His algebraic presentation
 was simplified and refined by Professor Harold Hotelling,3 who em-
 ploys continuous functions for the purpose. The basic formula given
 by the latter writer is:4

 1 I have done that too in"Annual Survey of Economic Theory: The Theory of
 Depreciation," ECONOMETRICA, Vol. 6, July, 1938, pp. 219-241. The present
 article is an attempt to organize and expand the comments there made on the
 replacement problem.

 I am greatly indebted to Professors James C. Bonbright, Ragnar Frisch, and
 Harold Hotelling for the interest they have taken in my MS at various stages of
 its preparation. Professor Bonbright's unfailing readiness to discuss the main
 trend of reasoning helped me greatly in clarifying my ideas and their presenta-
 tion. Instances of mathematical obscurity pointed out by Professor Frisch were
 corrected in footnotes. Professor Hotelling's extensive comments and my replies
 will be found in the appendix, which is submitted in lieu of revisions in the text.

 2 "A Statistical Theory of Depreciation," Journal of the American Statistical
 Association, December, 1923, pp. 1010-1023.

 3 "A General Mathematical Theory of Depreciation," ibid., September, 1925,
 pp. 340-353. 4 P. 343, formula (2).
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 THE ECONOMIC LIFE OF INDUSTRIAL EQUIPMENT 13

 T

 (1) B = [wQ(t) - E(t) ]e4-i(T)dTdt + S(T)e-f i(r)dT.

 In this changed notation, B=original cost of a single machine,

 T=unknown date at which it ought to be discarded, w=unknown

 lowest unit cost (plus interest) of the product, Q(t) = rate of production,

 E(t) =combined rate of all expenses, except depreciation and interest,

 i(t)=rate of interest, and S(T)=selling price (scrap value) of the
 machine, when discarded.

 By differentiating with respect to T, the unit cost may be written:

 E(T) + i(T)S(T) - S'(T)
 (2) w = Q

 Q(T)

 "This equation states that the cost of a unit of product is found by
 adding the operating cost E(T) of the machine (at the time when it is
 least efficient and about to be scrapped) to interest i(T)S(T) on the
 scrap value and the rate of depreciation -S'(T) of the scrap value and
 dividing this sum by machine's rate of production."5 The result will

 be a minimum, when T is determined by substituting (2) in (1) and
 solving. Professor Taylor's algebraic formula corresponds to equation

 (1) solved for w, viz.:

 B - S(T)e-T + fo'E(t)e-i'dt

 (3) w=- ATfoQ(t)e-itdt
 from which he obtained the minimum by successive trials equivalent

 to dw/dT=0. Since the argument is not essentially concerned with the
 variability of the rate of interest, it is permissible to employ a constant
 rate for brevity.

 Neither of the authors cited defines clearly the exact limitations,

 within which he considers this method valid. In a general way, both
 have in mind principally the static situation, where a machine will

 be replaced by another of identical type, operated under the same eco-
 nomic conditions. With respect to dynamic developments, Professor
 Taylor merely hints that "if replacement alternatives were changing,
 whether through changing operating costs or through changed service
 unit requirements, the optimum economic life of the machine in use
 would be altered and it would continue in operation for any period
 for which its discounted operating cost was less than the unit cost plus
 of the best current replacement alternative."6 This statement appar-
 ently expresses the condition:

 5 Hotelling, p. 345.

 6 Taylor, p. 1022.
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 14 GABRIEL A. D. PREINREICH

 E1(T1) + iS,(T1) - Si'(Ti)

 WI = Q1(T1)

 (4) E2(T2) + iS2(T2) - S2'(T2)
 = - - = ~~~~W2

 Q2(T2)

 where the entire economic life T2 of the replacement alternative must
 first be calculated from (1) and (2), or (3). The unexpired life T1 of
 the machine now in service is then allegedly determined.

 Closer examination shows that the problem of economic life is not
 quite so simple as Professor Taylor's sketch implies. Some of the prin-
 cipal ramifications worthy of study may be classified under three
 headings:

 A. Scope

 1. A single machine;
 2. A finite chain of replacements;
 3. An infinite chain;
 4. A number of parallel chains, whose replacement dates are

 evenly staggered;
 5. A large plant continuously renewed in accordance with natural

 variations in the behavior of similar machines.

 B. Limitations

 1. Scarcity of new machines available for replacement;
 2. Scarcity of various operating facilities or ingredients of produc-

 tion;

 3. Scarcity of demand for product;
 4. Scarcity of capital;
 5. Regulation of profit by law.

 C. Economic conditions

 1. The static case, where only variations due to the age of the
 machine are considered;

 2. Variations due to the number of co-operating machines;
 3. Change in ownership and outlook;
 4. Change in the type of machine used (obsolescence);
 5. The general dynamic case, embracing extraneous influences as

 well.

 It would be difficult to exhaust the implications of this triple classi-
 fication. All that can be done is to outline the general trend of reason-
 ing by building up the main problem gradually.
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 THE ECONOMIC LIFE OF INDUSTRIAL EQUIPMENT 15

 I

 When a single machine will not be replaced, it becomes immediately
 apparent that economic life depends, not on the unit cost, but on the
 market price of the product. If the capital value of a single-machine
 enterprise shall be a maximum, the equations to be solved simultane-
 ously are:

 T

 (5) V = [zQ(t) - E(t) ]e-itdt + Se-iT

 and

 (6) dV/dT = 0 = zQ(T) - E(T) - iS.

 This idea is analogous to (1) and (2), except that the unknown
 capital value V was substituted for the known original cost B and the
 known market price z of the product for its unknown "unit cost plus"
 w. The variability of the scrap value is also disregarded here, but only
 for brevity. The most lucrative life-span T of the machine can now be
 found from (6) alone and inserted in (5) to find V.

 Partisans of the Taylor theory invariably point out that no machine
 can have a capital value greater than replacement cost. Any goodwill in
 excess of that amount must be due, not to the machine, but to extrane-
 ous and intangible advantages. This argument is valid enough for a
 number of purposes, but the calculation of economic life is not among
 them. Since no income whatever can be had without the machine, the
 entire value of the enterprise must be imputed to it to determine the
 proper date of scrapping.7

 A simple example is presented in Figure 1. The data are z = $10,
 Q(t)=1-0.04t, E(t)=1+0.2t, B=$19.5016, i=0.05, and S=$4. The
 correct economic life is accordingly T = 14.66 years, whereas the result
 from the Taylor-Hotelling calculation would be w = $5 and T = 9.5
 years.

 The approach (5), (6) is valid regardless of what the Taylorean unit
 cost w may be. But replacement is justified only if z > w. If the supply
 of replacements limits the size of the enterprise, a machine will be
 acquired whenever possible and operated until the date determined
 by (6). To facilitate reference, I shall call this rule the individual rule,
 since each machine stands only on its own merits.

 The situation is altogether different, when only a single machine can
 be kept in operation at any given time. Starting with a finite chain of
 replacement, we may write V=B+G, where G means goodwill. The
 capital value of this chain consists of the capital value of the machine

 I But see appendix, points 3 and 5.
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 16 GABRIEL A. D. PREINREICH

 in service, plus the present worth of the aggregate goodwill of all
 replacements:

 *Tj

 (7) Gj [zQ(t) -E(t)]e-itdt + (S + Gj__)e-Ti- B.

 DOLLARS PER YEAR
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 FIGURE 1.-A single machine. Cost B = $19.5016, scrap value S =$4; gross in-.
 come (sales) (I) = zQ (t) = $10(1 -0.04t); operating expenses (II) = E(t) = $(1 +0.2t).

 Economic life: (1) individual rule; (2) . . . (7) . . . ( oo) chain rule, depending
 upon how many successive replacements will occur; (T) Taylor rule; (P) profit
 rule (discount rate pmax.= 38.31555% per annum); (U) public-utility rule
 = Taylor rule, when discount rate p = 7% per annum; (e) Taylor rule = chain
 rule, when sales are constant. Discount rate used for (T) and (e) was 5% per
 annum.

 Cost of sales wQ(t): (I) profit rule; (III) infinite chain rule; (IV) Taylor rule;
 (V) public-utility rule; (VI) Taylor rule =chain rule for constant sales.

 Upper right shows auxiliary construction of regression lines of Figure 3. Eco-
 nomic life varies between maximum (e) and minimum (oo). Numbering along
 those ordinates refers to number of evenly staggered parallel chains. See note 11.

 The subscript j = 1, 2, 3, . . , indicates the number of links in the
 chain. The second relation needed for solution is again the derivative
 dGj/dTj=O, viz.:

 (8) Gii= zQ(T)-E(T) S

 Beginning with Go = 0, the latter equation determines T1, the economic
 life of the last machine in the chain, which is the same as that obtained
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 THE ECONOMIC LIFE OF INDUSTRIAL EQUIPMENT 17

 from (6). This result, inserted in (7), yields G1, which is in turn sub-
 stituted in (8) to find T2. Returning to (7) we now obtain G2 and so
 forth. Each machine will have a longer life than its predecessor and a

 shorter life than its successor in the chronological chain. The life-
 spans of the last seven links in a chain of replacements are shown in

 Figure 1, numbered backward from the end. The data assumed lead to
 T= 14.66, T2 =11.687, T3=10.142, T4=9.247, T5=8.696, T6=8.345,
 and T7= 8.116 years.

 As the chain is lengthened, a limit eventually emerges, where

 G1 = G_1 and T = Ti-1. That is the case of the infinite chain, in which
 the economic life of all replacements is the same, viz., Too- = 7.6461

 years in Figure 1. This answer can be obtained directly by omitting
 all subscripts and substituting G from (8) for both G's in (7). The
 equation for the calculation of the standard period T may then be
 rearranged to read:

 9 z LQ(T) - Q(0)- f Q'(t)e-itdt]

 = E(T) - E(0)- E'(t)e-itdt - i(B - S).

 To simplify the expression a bit, the integrations of (7) were per-

 formed by parts. Accordingly, Q'(t) and E'(t) represent the rates of
 change of production and expenses respectively. The criteria of re-
 placement for a single infinite chain and static conditions now become
 apparent from a generalized graphic solution of (9).

 Figure 2 compares the behavior of three types of machines. They are

 similar in all respects, excepting only their rates of production. The
 output of the first is constant, that of the second decreases with grow-
 ing age (as assumed in Figure 1), and that of the third increases with
 age. Depending upon the functions chosen, the curves will differ in
 details, but their general behavior is quite uniform. For T7>0, the left
 side of equation (9) is always zero, when Ql'(t) =0; negative, i.e., de-
 clining from a maximum of zero, when Q2'(t)<0; and positive, i.e.,
 rising from a minimum of zero, when Q3'(t)>0. As for the right side,
 there is only one curve, rising from the minimum - i(B -S), since the
 same expense function growing with age serves for all examples.

 Upon considering the three types of behavior in turn, we find first
 that, when the rate of production is constant, the market price of the
 product has no bearing on the date of replacement which is given by

 the intercept T7 of the right side of (9) on the axis of abscissae. In such
 circumstances, formula (9) leads to Taylor's date of replacement.

 Curves II and III correspond to the second and third type and were
 drawn for the special case, where the product happens to be sold at
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 18 GABRIEL A. D. PREINREICH

 its exact minimal unit cost w, as determined by formula (2). The two
 sides of equation (9) then intersect at points, the abscissae of which
 could also have been computed by the Taylor-Hotelling method.

 When the product is sold at more than its unit cost, i.e., when z >w,
 curves II and III will evidently be deflected toward the axis of or-
 dinates, thereby accelerating replacement for Type II and retarding it
 for Type III. The two broken curves indicate this development. For

 DOLLARS PER YEAR

 0 ARSR

 -i(B -S) "

 FIGURE 2.-Graphic solution of formula (9). A single infinite chain consisting
 alternatively of three different types of machines. Type I has constant output;
 Type II has output declining with age; and Type III has output growing with
 age. All other characteristics are identical and expressed by curve IV.

 Solid curves were drawn for case when output is sold at its exact unit cost z = w.
 Broken curves refer to case z > w, showing that increase in profits leaves the
 economic life of Type I unchanged, but shortens life of Type II and lengthens
 life of Type III. The graph is not applicable to case z <w, which forbids replace-
 ment.

 the extreme z = oo, Type II would have to be discarded and replaced
 instantaneously whereas, beyond the limit zQ3'(t)= E'(t), Type III no
 longer presents any problem of economic life. Replacement then de-
 pends on physical life alone.

 Neither formula (9) nor its graph is valid for z <w. In such a case,
 replacement would be uneconomic, but the machine already in service
 should be operated until the date determined from (6). The lower the
 selling price, the sooner the enterprise must be abandoned.

 The results obtained from (9) can be duplicated by the Taylor tech-
 nique by pretending that sales above or below a certain constant
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 THE ECONOMIC LIFE OF INDUSTRIAL EQUIPMENT 19

 volume of output P are deductions from, or additions to operating
 expenses. The net rental zQ(t)-E(t) may be expressed alternatively
 as zP-F(t), when F(t)=E(t)+z[P-Q(t)]. The economic life T of

 any machine in an infinite chain is then given by

 B - Se-iT + o F(t)e-itdt F(T) + iS
 (10) w = =

 P P
 - (1-e-iT)

 regardless of the value assigned to P. This equation is preferable to

 (9) for general purposes. It seems appropriate to call it the chain rule.
 Before leaving the single chain of replacements, the complexity of

 its general dynamic aspect may be outlined. Let T1 be the unexpired
 remainder of the economic life of the machine now in service and

 T2y ... Thy * * *, T. the entire economic lives of the successive re-
 placements. The dates of replacement will then be Dha=-Z..Tj, so
 that equation (7) may be generalized in the form:

 Dh -'

 rhDh

 + [Sh(Dh) + G_ -h(Dh) ]e-fDh- (T) -Bh(Dh-1)

 where Rh(t) =z(t)Qh(t)-Eh(t). The index h means that all functions
 differ not only from machine to machine by virtue of changes in type,
 but also according to the economic conditions which happen to pre-
 vail during the periods Th, which begin at the unknown dates Dh_l.

 The derivative of (11) for Th is:

 Rh(Dh) + Sh'(Dh)+ Gh'(Dh) - Dhh
 (12) Gw-h(Dh) = S(h

 i(Dh)

 Beginning now with h = co and Go = 0 as in the static case, it is theo-
 retically possible to express from (12) the economic life T. of the last
 machine in terms of known functions of the unknown date D,,-1. The
 result G1 from (11) is then substituted in (12), placing h = -1 to find
 T,1 in terms of DG,,2. By repeating the process, the aggregate goodwill
 of all future machines will eventually be expressed as a function of the
 unexpired life T1 of the machine now in service. The final step is then
 to solve (11) and (12) for T1, when h 1, but omitting the last term
 B1(Do) on the right of (11).

 This presentation makes allowance for all replacement problems
 which a so-called "one-horse outfit" can encounter in a dynamic
 economy. The only requirement is that known functions be substi-
 tuted for the symbols treated as known. The effect of various degrees
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 20 GABRIEL A. D. PREINREICH

 of competition or monopoly, etc., can be readily studied within the

 framework (11) by using suitable definitions. But if such complications
 are introduced too soon, the main point may be overlooked. Thus,
 Dr. C. F. Roos8 devotes considerable attention to the market price of

 the product, but considers only a single replacement, i.e., several co-
 operating chains of only two links each. For longer chains it will not

 be true, even under static assumptions that "the analogue of the

 Hotelling hypothesis ... would require for the replacement problem

 that the operator endeavor to maximize the sum Vj(tj)+V2(t1)."9
 Neither of these two capital values can be found without first knowing
 those of all subsequent replacements.

 From a practical viewpoint, the foregoing demonstration amounts
 to a reductio ad absurdum, for it is obviously impossible to predict how
 machines, which have not even been invented as yet, will behave under
 economic conditions prevailing in the dim future. The best that can
 be done is to estimate somehow the aggregate goodwill of all future
 machines and then to determine the life of the machine now in service
 in such a manner that its capital value, plus the present worth of the

 estimated future goodwill, shall be a maximum. For this purpose
 it is also reasonable to assume that the goodwill estimate remains

 unchanged within the limited range of doubt surrounding the date of
 replacement of the present machine.

 To maintain the cost of the product at a variable minimum con-

 sistent with dynamic changes is equally impossible, though the under-
 lying theory of public welfare could be readily reviewed by placing

 G=O and substituting the weighted average unit cost wi,_h+l of all
 future machines for the market price z(t) in (11) and (12). Returning to

 Professor Taylor's suggestion, interpreted by equation (4), it may be
 seen that he considers the unit cost w2 of the replacement alternative

 as permanent. In strict theory w,,_(D1), an absurdly complicated and
 untrustworthy function of all future events, would have to be substi-
 tuted for W2.

 II

 Let us now consider the static case, where more than a single chain
 can be operated, the number being limited only by the demand for
 the product. For this purpose we may rewrite equation (7) in the
 form:

 (13) G-k f T[z(Xk)Q(t) - E(t)]e-i'dt + SeiT - B
 1 - eiT

 8 "A Mathematical Theory of Depreciation and Replacement," American
 Journal of Mathematics, January, 1928, pp. 147-157.

 9 Ibid., p. 156. See also his final formula (6)
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 THE ECONOMIC LIFE OF INDUSTRIAL EQUIPMENT 21

 The goodwill of k chains equals kc times the goodwill of a single chain,
 regardless of how the chains are staggered as to replacement dates,

 because the rule found valid for a single chain distributes the stream
 of excess profits evenly over the life of a machine (see Figure 1). The
 nature of the demand function (in which X is the parameter of scarcity)

 and the method of staggering may introduce summations of successive
 integrals in lieu of a single integral. In any event, however, the general
 rule consists of applying the theory of maxima and minima with respect
 to both T and k. To avoid cumbersome formulae, let the numerator of
 equation (3) be denoted by W [i.e., all terms in the numerator of (13)
 which are independent of k by - W], the denominator of (3) [i.e.,
 the factor of z(Xk) in (13) ] by Q, and the denominator of (13) by Ii.
 If derivatives are indicated by primes, the two operations lead to the
 results:

 W
 (14)10 dG/dk = 0, z(Xlk) + kz'(X, k) = -,

 Q

 and

 Wi' - IIV'
 (15) dG/dT = 0, z(Xk) =

 QI' - IQ'

 When the division of (15) is performed, subtraction of (15) from
 (14) gives, upon rearrangement:

 (16) W W' - kz'(X, k)(QI'/I - Q')
 Q Q'

 Since the number of machines is a discrete variable, the unadjusted
 result of differentiation for k implies k= oo and X=0. On the other
 hand, W/Q=W'/Q' is the essence of the Taylor method. It follows
 that this rule is a limit of the general rule, but that it can be valid
 only when the second term in the numerator vanishes. Apart from the
 two special cases mentioned in Part I, that can happen only when the
 market price of the product is independent of the output of an infi-
 nitely large number of machines. In addition, all other limitations on
 the size of the enterprise must be ineffective.

 To illustrate this aspect of the Taylor rule, it is necessary to assume
 that the market can absorb only a given output Pk per unit of time.

 10 Professor Frisch suggested that I clarify the meaning of my symbol z'(X, k)
 thus: Let Xk =v. Then, dz(v)/dv =z'(v) =z'(Xk), whereas z'(X, k)=dz(v)/dk
 =Xz'(v). The important point is that both z(Xk) and kz'(X, k) are functions of the
 product Xk and therefore X and k occur in the final solution only in the form of
 that product and not singly.
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 22 GABRIEL A. D. PREINREICH

 If so, the optimum number of evenly staggered chains and their re-

 newal period T can be found from:

 k k- 1 r x Tlk-
 (17) 1 _ { Z fP +f Q(t + jT/k) e-i(t+jTIk)dt

 (17) - E(t)e-itdt + Se-iT - B}.

 The symbol x represents the recurrent fractional periods, for which

 the combined productive capacity of evenly staggered machines exceeds

 the salable output Pk =EZ -Q(x+jT/k). Between x and T/k the pro-
 ductive capacity is deficient and sales are lost. To any volume of

 demand Pk there will correspond a definite number k of parallel
 chains and a definite replacement period, which makes the aggregate

 goodwill a maximum. Formula (17), as written, applies to productive
 capacity declining with age. Should the reverse be true, P and

 Q(t+jT/k) change places.

 The regression lines of Figure 3 are obtainable from the equivalent

 of (15) by placing k =1, 2, 3, ... , and varying P in each instance
 within such limits that x will vary from 0 to T/k. The actual task

 would be quite tedious, but the principles of a simple graphic solution
 soon emerge." As the addition of successive chains declines in relative
 importance, the oscillations of economic life are gradually damped until
 they merge with the axis T = 9.5 years, which is the Taylor-Hotelling

 solution for the data underlying both Figures 1 and 3.
 The special expression (13) can now be generalized by letting all

 functions depend in various ways (e.g., via the output) on the product
 Xk, where X =a common parameter of many different kinds of elastic

 scarcity. If dG/dT = 0 and dG/dk = 0 are then solved simultaneously,'2

 11 The initial and terminal points of each regression line, the initial tangents on
 the right, and the levels of indifference are given by the relation of P, k, and x
 to each other. The final tangents on the left must be vertical. Only the curvatures
 may be slightly inaccurate, except for the first and first two chains, which I
 have calculated. The technique is clarified by an auxiliary diagram, in which the
 ordinates per chain of all terminal points are plotted and connected by straight
 lines. See upper right of Figure 1. For this purpose, ten units of the scale of
 ordinates represent one unit of annual demand per machine.

 12 Professor Frisch was particularly interested in "the way in which X and k
 approach their respective limits," fearing that the results might depend thereon.
 In the course of correspondence on this point, it developed that my procedure

 must be explained in greater detail.
 In equations (13), (14), and (15), let us assume that k is a continuous variable

 and that the necessarily discrete number of parallel chains is K instead. Differ-
 entiation with respect to k and T then yields the solution Xk = c, where X is a
 given constant, so that k = c/X will not be an integer, except by accident. If it is
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 THE ECONOMIC LIFE OF INDUSTRIAL EQUIPMENT 23

 T = axis of convergence and 1/Xk = distance of successive indifference

 levels from each other. These levels should be counted from the floor
 level defined by G = 0, below which it would not be profitable to replace
 a machine.

 It can thus be shown that the general rule may lead to innumerable

 different limits, of which the Taylor rule is not the most likely one.
 To calculate a plausible example would be a task of some magnitude.

 I have therefore illustrated only a single change in the data of Figure 1,

 namely z(Xk)=$10(1-Xk). As seen in Figure 4, economic life con-
 verges rapidly toward an axis of T=8.42221 years. A slightly better

 example of elastic demand would be z(Xk) = $10 [1 -XZ`Q(t+jT/k) ],
 but it requires the summation of separate integrals having the suc-
 cessive intervals jT/k ? t ' (j+ 1) T/k. I have calculated only the limit

 for k= oo, i.e., the axis T=11.8324 years. The Taylor method would
 give 9.5 years in both instances. The respective goodwills are XGmax.

 = 0.2487075 X $79.7042 = $19.8230 as compared to the Taylorean

 XG = 0.25 X $78.3735=$19.5934 for Figure 4 and XGmax.=0.327534

 X $38.6264 = $12.6515 as against XG = 0.2996193 X $41.2412 = $12.3566

 not, I take the two nearest integral values K=k-a and K+l=k+b, where
 a+b = 1. For the two alternative arguments XK and X(K+1), formula (15) fur-
 nishes the two corresponding periods Ta and Tb, one of which is longer and the
 other shorter than the abscissa of the axis of convergence T derived from the

 simultaneous equations (14) and (15). Similarly, formula (13) will then have two

 solutions, viz., Ga for XK and Ta, and Gb for X(K+1) and Tb. Both Ga and Gb must
 be smaller than the impossible maximum G for Xk and the axis T. In the circum-

 stances, the best answer obtainable is either Ga or Gb, whichever be greater. The
 correct number of parallel chains and the economic life of the machines is ac-

 cordingly either K and Ta, or K+1 and Tb, as the case may be.
 The parameter of elastic scarcity X in Figure 4 (or the salable output P per ma-

 chine in Figure 3) is not a variable in this presentation. Changes in the value as-
 signed to it create, not a dynamic problem, but merely so many separate static
 ones. The value of Xk = c is unique for a given set of functions W, Q, and I, so

 that k is always defined rigidly by X. In place of k, however, only integral values
 of K are available, of which the best must be selected. If the solutions of succes-
 sive problems are connected by regression lines, Figures 3 and 4 result. To the
 extreme X =0 there will correspond the extreme k = K+a = K+l -b = Co. The
 difference between a continuous and a discrete variable then disappears and eco-
 nomic life can not differ from the abscissa of the axis of convergence.

 The problem could be further clarified graphically in a plane having the co-
 ordinates X and k. A rectangular hyperbola will define all rectangles of equal area

 Xk = c. By raising ordinates from the two integral values of K nearest to any
 abscissa k, two rectangles are formed, one of which is too large and the other too
 small. Variation of X will then lead to a zigzag line oscillating around the hyper-

 bola. But the lower the value assigned to X, the less the two curves can differ
 from each other, until both merge at the limit X = 0, k = co. The opposite limit of
 X is that value A, for which z(A) = w = Taylorean unit cost. Any further infini-
 tesimal increase in X causes G <0 and breaks the last chain of replacements.
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 THE ECONOMIC LIFE OF INDUSTRIAL EQUIPMENT 25

 for the second example. The coefficients are the various values of
 Xk, when X =0 and k = cox. A comparison of the relative magnitudes of
 infinitely large amounts is thus possible.

 The scope of the individual rule must also be mentioned. First, it is
 always valid when G <0, i.e., when replacement would be uneconomic.
 It minimizes the loss on machines already on hand (see broken lines
 at bottom of Figures 3 and 4). Second, it is a limit of the general rule,
 when a scarcity of renewals is the only effective limitation. This may
 be shown by restoring z for z(Xk) and substituting instead B(Xk) for
 B in formula (13). Operations analogous to (14), (15), (16) furnish
 the necessary condition kB'(X, k) = 0. Limited volume at a fixed price,
 i.e., a rigid scarcity of replacements, must prevail, just as for the
 Taylor rule with respect to demand. Third, the individual rule will
 affect the problem, when k#- oo. If the stream of replacements is limited
 only elastically by rising costs, it is not proper to discard a machine
 upon acquisition of another. This situation may be stated with slight
 oversimplifications as follows:

 1 -e {Z [f R(k + 12 t + jO) + f0R(k, t + j0)] e-i(t+i)dt

 + Se-T -B(0)

 where R(k, t) =z(k)Q(k, t) -E(k, t) and 0=interval between consec-
 utive purchases of machines. The loose relationship of k, x, 0, and
 T to each other can be stated only by stipulating x = T - kO, when
 kO < T < (k+ 1)0. As 0 is decreased continuously, k increases by
 units and recurrent odd periods x are left over, during which there will
 be one more machine in service. Ultimately k = oo, 0=0, and x =0,

 FIGURE 3.-Economic life of a plant consisting of several evenly staggered
 infinite chains, when the annual demand Pk is rigidly limited in volume, but the
 market price (z = $10) is independent of that volume. The greater the absorptive
 capacity of such an artificial market is, the less can economic life differ from the
 Taylor-Hotelling solution T = 9.5 years. Machines are of type illustrated in
 Figure 1. When Pk = P <0.397756, the broken line (individual rule) defines the
 age at which the machine in service, and with it the enterprise, must be scrapped.

 FIGURE 4.-Economic life of a plant consisting of several evenly staggered
 infinite chains, when the market is elastically limited by prices linearly, but in-
 versely related to the number of parallel chains employed. Convergence occurs
 toward a limit differing from the Taylor-Hotelling solution. Machines are of
 type illustrated in Figure 1, but market price is z(Xk) =$10(1 -Xk), where
 I > >-0 is the parameter of scarcity and k = 1, 2, 3, c o, X the number of co-
 operating chains. When X > 2, i.e., 1 /X < 2, the broken line (individual rule) de-
 fines the age at which the machine in service, and with it the enterprise, must be
 scrapped.
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 whereupon the influence of the individual rule disappears and the
 simplified approach based on the chain rule becomes correct. Lack of
 space prevents further consideration of this complication, but its
 existence should be noted.

 III

 Up to this point, explicit reference was made only to the first three
 types of limitation listed in the introduction. Tacitly, however, the
 principle of the scarcity of capital was also observed in its conven-
 tional formulation, according to which additional funds are available
 only up to the marginal dose, which earns barely the rate of interest.
 This limitation will now be examined for its own sake.

 The capital value of a plant consisting of k machines of all ages from
 O to 0 may be written:

 I C/k k-1

 f, R(t + jO/k)e-itdt - (B - S)e-iolk
 (19) Vk = i

 1-e-iE)/k

 When k = 1, the formula is evidently equivalent to (7) without sub-
 scripts. Upon passing to the limit k= oo, we obtain:

 _ fR(t)dt- b
 (20) V - = R , b = B-S.

 i

 The capital value of a static composite plant equals the present
 worth of a perpetual income stream of constant intensity. The factor
 0 on the left indicates that the number of machines in service is
 linearly related to the renewal period.

 Since the statement is often heard that the owner will do everything
 in his power to make "enterprise capital value" a maximum, it should
 be noted that this is true only in a rather technical sense. Literal
 interpretation would suggest such operations as d(VO)/dO = O or

 d[VE/1fQ(t)dt]/dO=0, which would indeed make capital value a
 maximum attainable under the corresponding exclusive and rigid con-
 ditions of scarcity. Such a procedure, however, would be distinctly
 detrimental to the owner. The correct attitude is that of a purchaser,
 who has just acquired the plant in question at a cost C. He will want
 to know, whether or not there exists a different renewal period T,
 which would make his purchase more, i.e., most profitable. The search
 is simplest in the case, where the size of the enterprise is limited only
 by the stream of replacements available:

 f R(t)dt - b
 (21) G - + (3- T)S - C.
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 When the present renewal period is too long, it is best to sell the
 oldest machines for scrap and replace only the remainder. Differentia-
 tion for T leads immediately to the individual rule. Conversely, when
 the present renewal period is too short, (21) must be rewritten:

 f o' R (t) dt -b _ e-ift [J R(T t+s tC (22) G=fRtt- - I T- f R(r)dr + Sdt - C.
 t o @~~~~~+t

 The second term on the right is the capital value of machines be-
 tween the ages ( and T, which are nonexistent at the moment, when
 the lengthening of the life-span is decided upon. Differentiation for T
 again leads to the same rule. The proof by the Taylor rule is similar in
 principle, except that the formulae corresponding to (21) and (22)
 must be so set up as to maintain constant the old composite output
 fJQ(t)dt. This entails a change in both the renewal rate and the
 number of machines in service.

 It can thus be demonstrated in many different ways that "enterprise
 capital value" must be made a maximum, not for any mature plant,
 but for one in the process of transition to the optimum renewal period.
 In terms of the data underlying Figure 1, the greatest capital value
 obtainable from formula (20) would correspond to T= 15 years.
 Nevertheless the economic life under the individual rule is 14.66 be-
 cause, during the change to the shorter life-span, more capital can be
 extracted from the plant than the amount by which its capital value
 will ultimately drop. Similarly, if the Taylor rule should be applicable,
 T = 9.5 is a better answer than the maximum at ( = 9.072. The con-
 ventional concept of the scarcity of capital is thus illustrated. The
 conclusion may also be drawn immediately that economic life is inde-
 pendent of the prices at which the plant is bought and sold. Whatever the
 so-called investment C may be, it always disappears in the differentia-
 tion process leading to the optimum.

 Further scrutiny of the Taylor rule shows that it may also be looked
 upon as a method of maximizing the gross income per dollar of outgo.
 By making w from formula (3) a minimum, its reciprocal 17w auto-
 matically becomes a maximum. This has also been hailed as proof of
 universal validity even though, in the general case, it clearly implies
 a greater scarcity of capital than indicated by the market rate of inter-
 est. Under the conventional assumption, it will pay to use additional
 doses beyond the maximal rate of return, down to the margin.

 The "rate of return" maximized by the Taylor rule is an unusual
 concept, to say the least. When a business man has occasion to use the
 term, he means something else, namely the annual amount of profit
 divided by his investment. Operating expenses must be paid out of
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 current income to keep going, so that he has but little choice in the
 matter. The need for timely replacement, on the other hand, is less
 apparent and therefore often underrated. Such neglect enhances the
 scarcity value or productivity of renewal expenditures beyond those
 of operating costs. Many plants are in a run-down condition, because
 the resultant rise in the rate of profit hides the more significant decline
 in its amount. The limit is reached, when the operator has "spread
 himself so thin" that he can no longer obtain a loan. A replacement
 policy then arises, which aims to maximize the rate of return on the
 investment. The static theoretical solution can be found from any one
 of the special rules given so far, by substituting the unknown rate of
 profit p for the rate of interest i. The original cost of a machine always
 equals the net rental and the scrap value, discounted at the rate of
 profit. Since the unit selling price of the product accordingly equals the
 unit cost (plus profit), all approaches lead to the same rule G(p) = 0,
 which will be called the profit rule. For the data of Figure 1, the answer

 iS pmax. = 38.31555 per cent per annum (compounded instantaneously)
 at T = 12.4563 years.

 The profit rule is another limit of the general rule. The substitution
 of pmax. for i will be theoretically proper, whenever the hire of addi-
 tional capital would exceed the maximal rate of profit. The owner of
 several enterprises must equalize the scarcity of capital for all by con-
 sidering the lowest of the various rates of profit as his private rate of
 interest. Only the least lucrative enterprise will then be governed by
 the profit rule; to the rest, the general rule will apply, as determined
 by all elastic scarcities. As soon as an outsider is willing to lend at a
 lower, though perhaps still exorbitant rate, that new rate supersedes
 the former private scarcity rate in all the enterprises owned.

 This reasoning leads directly to the correct principle of public-
 utility regulation. By fixing the "fair rate of return" by law, a rigid
 condition of scarcity is created, which automatically cancels the in-
 fluence of all other elastic (or less stringent rigid) scarcities upon eco-
 nomic life. For corroboration, see formula (14), where G=0 is a suffi-
 cient condition for kz'(X, k) = 0. It follows that the profit rule reduces the
 consumer's costs to a minimum. Provided only that the fair rate of
 return be used in lieu of the rate of interest, this rule may be called the
 Taylor rule, the individual rule, or the chain rule, as preferred.

 The theory of public-utility regulation is thus quite definite and
 leaves no room for equivocation. Most of the difficulties created by
 dynamic changes could also be overcome by actually fixing, i.e., also
 guaranteeing the rate of return. A "consumers' surplus (deficit)" ac-
 count, serving as a temporary reservoir of all differences, would furnish
 the necessary guidance for "rate" regulation, if its level and rate of
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 change were currently observed. From an accounting viewpoint, the
 problein is simple enough, but the clerical cost of calculating all ad-
 justments by hindsight might well be prohibitive. Perhaps sampling
 methods could be employed.'3 Whether or not it would be sound public
 policy to guarantee the return is beyond the scope of this article, but
 the present obstacle race between inflated rate bases and inadequate
 returns thereon is certainly no solution.

 IV

 An assumption used throughout the two preceding sections must
 now be revised. For the purpose of gradual transition from the single-
 machine problem to that of a large plant, it may be permissible to
 postulate identical economic lives for co-operating machines of iden-
 tical type, but observation shows that that is never the case in practice.
 Some machines drop out very soon, while others continue to render
 useful service far beyond the average life of a large group.

 Statisticians have published voluminous data on the behavior of
 different types of equipment, but have made no attempt to justify
 scrapping by any value theory of economic life. They merely assembled
 the observed facts, namely, how many machines of a given type were
 actually scrapped at what ages out of what total number.'4 This
 information, compiled in the form of a histogram, can be normalized
 and fitted with a frequency distribution f(t), which vanishes for all
 values of t, except those within the interval 0 < t < n, where n = maximal
 age. The frequency distribution cumulated backward is the mortality
 curve M(t) and the area enclosed by the latter and the co-ordinate
 axes is the average life a:

 n rn
 (23) M(t) = f (i)dT, M(O) = 1, M(n) = 0, f M(t)dt = a.

 The procedure must now be connected with the value theory of
 economic life, as outlined in the preceding sections. If the mortality
 curve is the result of scrapping each machine separately in accordance
 with the general rule, it follows that the operating expenses and in
 general also the rate of production differ from machine to machine,
 despite the identity in type. The symbols of the net rental R(t) =zQ(t)
 -E(t) should therefore be expanded to R(y, t) =zQ(y, t) -E(y, t),
 where y expresses the variation from machine to machine. The mor-

 13 For general suggestions, see my articles, "The Principles of Public Utility
 Depreciation," Accounting Review, June, 1938, pp. 149-165 and "The Practice
 of Depreciation," ECONOMETRICA, Vol. 7, July, 1939, p. 259 and p. 262, point 5.

 14 Cf. Edwin B. Kurtz, Life Expectancy of Physical Property, Ronald Press Co.,
 New York, 1930.
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 tality curve is then defined in terms of T = M-1(y), i.e., by the individu-
 al economic lives of many machines acquired at the same time, when

 those lives are extended horizontally and arrayed from top to bottom,
 from the shortest to the longest. The inversion y = M(T) discloses, how

 many per centum survive any age T.

 The mechanics of renewal are defined by a variable-limit integral

 equation of the closed-cycle type, here written in the form of a Volterra
 equation of the first kind :15

 t

 (24) e Jox(r)dr = X(t) + f u(r)X(t - r)dr, 0 < t < n.

 The term on the left is an index of size or volume, when x(t) =rate

 of growth. On the right, X represents any function of limited varia-
 tion, which differs from zero only within a range n. The renewal rate

 is denoted by u. Whenever n/ co, equation (24) must be applied to
 subsequent intervals of n years in the form:

 (25) efo'x(t)dr =d u&(r)X(t - r)dr + f u+iQ(r)X(t - r)dr,
 t-n n

 nj ? t ? n(j + 1).

 The relationship of renewals to mortality and growth may be ex-
 pressed in any number of ways, for instance:

 I. The independent renewal rate u, may be given by the probable
 future scarcity of new machines available as replacements. Upon
 placing X(a) = M(a) = mortality under the corresponding limit of the
 general rule, the right side of (24) and (25) is known and determines

 an index of the optimum number of machines, which should compose
 the plant at any given time t.

 II. The number renewal rate corresponds to situations where it
 seems easiest to guess the future in terms of the number of machines
 employable. The left side of (24) and (25) is known and X(a) = M(a)
 determines UII. This entails a serial calculation for successive values

 15 For the derivation and solution see op. cit. in note 1, pp. 221 et seq. Since
 publication of that paper, my attention was called to A. J. Lotka's numerous
 articles dealing in the main with similar population problems, but including also
 an excursion into "Industrial Replacement" (Skandinavisk Aktuarietidskrif t,
 1933, pp. 51-63). He employs a technique developed by Paul Hertz in "Die
 Bewegung eines Elektrons" (Mathematische Annalen, 1908, pp. 84-86). This
 approach consists of substituting a generalized Fourier series for the real solution
 and gives very poor results during the early years to which foresight can possibly
 extend. For a demonstration see my paper, "The Theory of Industrial Replace-
 ment," Skandinavisk Aktuarietidskrift, 1939, pp. 1-9.
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 of j, so that u11, (t) is always known from the preceding step, whereas
 uII,i+1(t) is the function sought.

 III. The output renewal rate will be obtained, if it is found preferable

 to guess x(t) =future rate of growth in output. In that case, X(a)

 =fM(c)Q(y, a)dy and equations (24) and (25) must be solved for u11I
 as before.

 IV. The capital renewal rate is suggested by the profit rule. The left

 side of (24) and (25) expresses the capital available at various times

 and therefore on the right X(a) = fe-Pv [ M KR (y, v)dy+Sf(v) ]dv. The
 task of solving for UIV must again be undertaken.

 Carrying theory to extremes, it might be held that the choice of the

 renewal rate is governed by that one of the innumerable composite

 limits of the general rule, which happens to be in force in a particular

 case. Obviously, however, the capital value of the plant must be the
 same for any kind of renewal rate, if the same rule of economic life

 was employed in its calculation. Only the unit of measurement will

 differ, in terms of which the capital value is expressed. Such units are

 for instance the intensity of the flow of new machines at t = 0, the origi-
 nally installed number of machines, the original volume of output, or

 the original capital. All rates of renewal and all rates of growth are thus

 convertible into terms of one another.
 To find the capital value of the plant, the net rentals of all machines

 composing it at various times are first added up. This involves two
 steps, namely summation for each separate age group and totalling

 for all such groups:

 M(t) t M(t-r)
 (26) r (t)- R(y, t)dy + u(r) R(y, t -r)dyd,

 0 < t < n.

 The first term on the right refers to the machines originally installed
 and hence vanishes when t > n. The second term should then be sub-
 divided as in (25). Purely for brevity of notation, however, it is per-

 missible to designate the renewal rate by u(t) for the entire interval
 0 t < co. We may accordingly write:

 rt M M(t-,r)
 (27) r(t) = f u(r)f R(y, t - r)dydr, n < t < m.

 t-nO

 For a constant rate of growth x (t) = x < 0, the rate of renewal con-
 verges more or less rapidly toward its asymptote:

 1

 (28) u(oo)exoo = fnX U,
 f0X()e-xrdr
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 which can be readily derived from formula (25). The ultimate net
 rental function then becomes:

 *n M(T)

 r (oo) e-x = U e-xr R(y, r)dydr

 (29) 1 T
 = u J R(y, r)e-xTdTdy, T= M-1(y)

 and leads to the capital value of a mature planit:

 Ulexr - lrT SX-
 (30) V(v) = . [ fTR(y, T)e-xdTdy - b -I

 -x _o oU2_

 i> x = t - oo > 0.

 In this formula, U1 = asymptote of any kind of renewal rate, whereas
 U2 =asymptote of number renewal rate, since the scrap values sunk
 into a growing plant can be related to no other. No similar distinction
 need be drawn for the rates of growth, as they will all be equal in the
 end. The formula differs from (20) only by the introduction of in-
 dividual characteristics and a rate of growth. If those two refinements
 are deleted, only the constant factor U1 remains to denote the unit of
 measurement. The integration with respect to y is merely an averaging
 process, so that all conclusions drawn in Sections II and III hold good
 in terms of the average machine. The rate of growth does not influence
 that average because all renewal lots, though unlike in size, are con-
 sidered large enough to show a similar distribution of individual char-
 acteristics.

 Let us now consider the problem of obsolescence. With the passage
 of time, we shall reach the successive dates Dh (where h = 1, 2, 3, - ,
 co), when replacement by an improved type of machine becomes pos-
 sible. To simplify the final formula, let us also include immediately
 the items of income and outgo arising in addition to the net rental.
 These are the renewal rate and the rate of scrap sales. For machines of
 type h, we thus obtain the triple expression:

 t rMh U-r)

 Ph(t) = Uh(T) Rh(y, t-T)dy+Shfh(t-T) dr-Bhuh(t),
 Dh-l

 Dh-1 ?- t ? Dh-1 + nh-1,

 * t ~~~ r Mh(t--)

 (31) = Uh (T) f Rh(Y, t T)dy+Shfh(t-T) dT-BhUh(t),

 Dh-1 + nh-1 <- t < Dhy
 r Dh F rPh(tT) .1

 T) L J Rh(Y t -T)dy + ShOh(t- r) dr,
 Dh < t ? Dh+ Vh.
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 How the first of these equations must be amended for h= 1, may be
 seen by providing all component elements of (26) with that subscript.
 Equation (27) is equivalent to the corresponding term of the second
 form of P1(t).

 At the dates Dh, the replacement of type h stops and the installation
 of type h?+1 begins. During the last of the three intervals (31), there-
 fore, the flow of net income is Ph(t) +Ph+l(t), where the latter function
 takes its first form. It should also be noted that although, in the ab-
 sence of a change in type, forecasts of Rh, Bh, and Sh determine Mh by
 means of the governing limit of the general rule of economic life, the
 same relations do not hold with respect to the third variety of Ph(t).

 The final mortality curve /Ih, its derivative -qh, and Vh=1-hI1(O) are
 forms of an unknown function to be determined in such a manner that
 the capital value

 rH

 (32) V(Dh) = f P(T)ei(Dh-r)d T+ L(H)ei(Dh-H)
 Dh

 shall become a maximum. In this formula, P(r) represents the partly
 overlapping series Ph(T) for all consecutive values of h. The other new
 symbols are H=D =horizon, i.e., limit beyond which it is not ex-
 pected that operations will continue,16 and L(H) =liquidating value,
 best defined as the capital value after abandonment of further re-
 newals.

 The determination of the number renewal rate Uh+1 may vary ac-
 cording to circumstances. If perfect co-operation between machines of
 types h and h+ ? is possible, its first segment will be defined by the
 equation

 D Dh rt
 (33) efo(T)dT = Dd Uh(T)h(t - T)dT + Uh+l(r)Mh+l(t - T)drT

 t - vh Dh Dh < t Dh + Vh,

 which contains the same two unknown functions as the corresponding
 segment of P(T) in (32). Multiplication of Uh+1 by an appropriate con-
 stant will be in order, when old and new machines are not exchangeable

 16 Whenever the rate of growth equals or exceeds the rate of interest, the coun-
 terpart of formula (30) leads to an infinite capital value. This impossible result
 calls attention to the element of risk, usually expressed by the addition of an in-
 surance premium to the pure money rate. In my opinion, such a two-in-one tool
 of analysis is not always flexible enough and therefore I have elsewhere suggested
 the use of a horizon as a measure of risk in the valuation of common stocks. Cf.
 my book The Nature of Dividends, New York, 1935, p. 10 and mathematical
 appendix, where two separate horizons are employed to approximate the risks of
 perpetual earnings and expansion respectively. For present purposes a single
 horizon will do, so long as the rate of growth is considered variable.
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 at par. It is also possible, however, that the whole plant of type h must
 be scrapped immediately,'7 because the two types can not be used side

 by side. In that case, Uh+1 is defined by Mh+1 alone. Many other cases
 may arise between these two extremes. Depending upon the relation-

 ship between the average age of the machines composing the plant
 at the time Dh and the net proceeds from their forced sale, it may or
 may not be worth while to operate the abandoned type h for a short
 time and to curtail the early purchases of type h+1 accordingly. The
 special problem of economic life during a process of liquidation will
 also emerge at the final date H. The details of (32) will thus vary ac-
 cording to the specific case under consideration. Ordinarily, it is reason-
 able to assume that only one change in type can be foreseen at any
 given time, so that the index h can have only the value w -1. If that

 should not be the case, solution must begin at the end of the composite
 chain and proceed backward in a manner reminiscent of single-chain
 dynamics.

 Although this description of the composite chain considers only ob-
 solescence, the general dynamic situation can also be readily visual-
 ized. The subscript h identifies not only the type of replacements, but
 also the successive periods, during which one type is preferred to all
 others. Its meaning may therefore be expanded to include a reference
 to all extraneous changes in economic conditions as well. All functions
 then obtain an additional argument to denote that they are also sub-
 ject to change with the passage of time.18

 The index h can also be used to express successive changes in owner-

 ship and outlook. For otherwise static conditions, Rh=Rh+?, Bh=
 Bh+,, and Sh=Sh+1, but Mh5H Mh+i and Uh7 Uh+1, when the new
 owner can improve upon the replacement policy followed by his pred-

 ecessor. In that case Mh+1 is given by the new forecast of future con-
 ditions, including the nature of the governing rule, while, within the
 period of transition, Mh is once more an unknown function to be
 determined so as to make V(Dh) a maximum. This generalizes the
 simpler discussion based on formulae (20), (21), and (22).

 The main structure of replacement theory may be completed by

 17 This problem is discussed in simpler terms by Professor P. 0. Pedersen, "On
 the Depreciation of Public Utilities," Ingeni#rvidenskabelige Skrifter B Nr. 12,
 Dansk Ingeniorforening, Copenhagen, 1934, pp. 69-99.

 18 Such a presentation is of course subject to Professor Hotelling's observation
 that it considers "time as a passive parameter, carrying along the gradually
 changing influences of a mass of unspecified sources of variation" (cf. "The
 Work of Henry Schultz," ECONOMETRICA, Vol. 7, April, 1939, p. 99). For pur-
 poses of a general theory of economic life, however, it is sufficient to note that,
 if specifications are available, they can be readily utilized within the framework
 of formula (32).
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 mentioning the liquidating rule derived from (32) by the operation

 dV(t)/dH=O. This rule is analogous to the individual rule (6) and

 states that liquidation should take place, when the difference between
 income and outgo drops below the rate of interest on the liquidating or

 break-up value of the enterprise. This value is of course the present
 worth, at the date H, of all proceeds collected, less expenses incurred
 thereafter. As in (6), the amount of investment shown by the books
 has no bearing on the optimum.

 v

 To summarize the conclusions reached, it may be said that the
 theory of economic life is essentially a theory of scarcity. Successful

 enterprise has many tangible and intangible ingredients, each of which
 may be limited either rigidly as to volume, or elastically by price move-
 ments. Starting with a total lack of elasticity, it is evident that the
 relatively greatest scarcity alone determines the size of the plant. All

 others pass unnoticed. As shown, Professor Taylor's theory presupposes
 that a rigid demand for the product is the least abundant ingredient.
 The individual rule and the profit rule are counterparts with respect to

 the supply of new machines and capital. Analogous rules can be readily
 developed for rent, labor, fuel, etc.

 The general rule of replacement, which is simply the theory of max-
 ima and minima, has a separate solution for every kind of rigid scarcity

 and for every volume of the supply so limited. When the volume re-

 quired by a single machine becomes insignificant in comparison to the
 total, the problem is simplified into making the excess profit (goodwill)

 per unit of that ingredient a maximum. In the case of demand, that
 means making the cost per unit of demand (output) a minimum. In

 all other instances, the limitation operates at the other end of the
 productive process and therefore the first description applies. The

 excess profit per new machine, per square foot of space, per hour of
 labor, per ton of fuel, etc., must be made a maximum, depending upon

 where the shortage is felt.

 Elastic scarcities introduced singly lead to another set of rules. Their
 relationship to the Taylor-Hotelling theory is best disclosed by copying

 the Taylor technique exemplified by formula (3). A glance at equation
 (16) shows that the correct demand rule may be written in the ab-
 breviated notation:

 w
 (34) w = e -kz' (X,k)f(QIq/IW-Q/1W)dT dw/dT = 0.

 Q

 This formula can also be used to express the limit of the general rule

 for any other case of isolated elastic scarcity, for instance a labor rule,
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 a tax rule, etc. Only the meaning of the symbols must be appropriately
 generalized. In the numerator of formula (13), let some term other than
 the sales be dependent on the number of machines and let that term
 (or subterm) be rewritten in the form "price times rate of consump-
 tion. " Then let - W = all terms independent of k, Q = discounted
 volume of the ingredient consumed during the life of the machine, and

 z (Xk) =purchase price per unit of that ingredient. It follows that the
 counterpart of the Taylorean "unit cost plus" w is that price of the
 only scarce ingredient, which would cause the goodwill to vanish. By
 maximizing it with respect to T, the difference w-z (Xk)=excess
 profit per unit of the ingredient will also become a maximum. All opera-
 tions are the same as for the demand rule, only the terminology and
 the signs are reversed.19

 The last step in analysis consists of combining all scarcities. Since
 all are ordinarily elastic, none may be neglected. Some are no doubt
 negative, in which case the law of increasing returns must be offset
 against the law of diminishing returns. The theoretical assumption
 k = oo implies that the plant has reached a size, where the latter pre-
 dominates. The final conclusion is therefore that excess profits must be
 made a maximum in terms of a composite index of productive activity, not

 with reference to any single ingredient, such as demand.
 If all prices, whether paid or received, are denoted by zj(Xk) or z; for

 short and all discounted volumes consumed or produced by f0Qs(t)e-itdt
 or Q3 for short, the static replacement problem can be summarized by
 the symbolic formulae:

 00

 (dG/dk = 0 = j (z; + zM)Qi,
 (35) 1 21

 dG/dT = 0 = E (IQj' - Q3')zi,
 j=1

 where zj'=kdz(Xk)/dk, QJ'=dQi/dT, I=(1-e-iT)/i, and I'=e-iT.
 Prices received are positive and prices paid are negative. This notation
 covers scrap sales and renewal costs also, if Qs = e-iT, zs = S, QB=1,
 and ZB = -B. For general dynamic conditions the twin formulae (35)
 will fail and a guessing process idealized by (32) must take their place.

 19 It is worth repeating that all such special rules can be valid only for k-oo.
 The expression kz'(X, k) does not thereby become infinite, since it also contains
 the parameter of scarcity X, the limit of which is zero. Neither should it be over-
 looked that the presentation in the form (34) serves only for the calculation of
 the unit costs. To find the limits of T and Xk, equations analogous to (14) and
 (15) must be solved simultaneously, using the same generalized definitions as in

 (34).
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 All rules of economic life are also rules of depreciation, since each
 suggests the apparently most logical way (out of innumerable other
 possibilities conforming to the terminal condition) in which costs ought
 to be distributed in the corresponding circumstances. For instance,
 if the fuel supply were rigidly limited, all costs should be written off
 in proportion to the fuel consumption. To exaggerate for the sake of
 emphasis, it might then be said that the investment consists entirely
 of fuel. Similarly, it may consist of anything else. In general, it con-
 tains a bit of everything. The original cost of a machine could thus be
 analyzed into its components:

 00

 (36) B(O) = wjQi,
 j=1

 subject to the proviso j7?B, meaning that the term WBQB =-B(O) has
 been removed from the summation and transferred to the left side of
 the equation.

 In addition to an infinite number of different sets of unit costs vary-
 ing with the age of the machine, which would satisfy (36), if the w; had
 been left under the integral signs included in Qi, we can also find an
 infinite number of satisfactory sets of constant unit costs. The most
 logical of all these sets is that which can be had by considering each
 ingredient in turn as the only scarce one, i.e., performing all calcula-
 tions (34), after the limit of Xk has been determined and after w; is
 substituted for the corresponding prices z;, which are included in the
 cumulative symbol W. Each unit cost will thus be expressed in terms
 of all the others. Simultaneous solution of all equations (34) is then
 in order. The number of conditions so given is sufficient, since WB=ZB
 =-B(O) for this particular purpose.

 If that be considered the correct procedure, the theoretical deprecia-
 tion method for a single machine operated by an unregulated enterprise
 would be:

 oo f T

 (37) B(t) = 7- wiQi()ei(t-7)dr, j B.

 This expression includes the scrap value, if wsQs(r) is defined as
 iS! (ei(T-t)-1). The only conclusion which I shall draw from this
 analysis for the present is that it explains, why "unexpired cost" or
 "investment" inust remain a vague and nebulous concept for practical
 purposes.

 Accountants are beginning to realize, how little meaning can be
 ascribed to balance-sheet figures certified to "conform to generally
 accepted accounting principles consistently applied in the past."20 In

 20 The phrase officially adopted by the American Institute of Accountants
 reads: " . . . conform to generally accepted accounting principles applied on a
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 view of the extreme complexity of the situation and the difficulty of

 obtaining the data required, not much can be done beyond facing the
 facts frankly and striving at least for the comparability of successively

 reported profits by ironing out, as far as possible, all those short-term
 fluctuations which tend to becloud the main issue, i.e., the problem of
 appraising the capital value of an enterprise.21

 Although I believe I have fairly stated the serious theoretical limita-

 tions of the Taylor-Hotelling idea of minimizing unit costs, I never-

 theless consider it the most valuable single rule of thumb which can

 be laid down for the general guidance of the entrepreneur, at least
 when the number of machines employed is very large and no radical
 change in type is imminent. Demand is usually the most irnportant in-
 gredient of successful enterprise. In addition, equipment can seldom

 be exploited to the full extent of its capacity. In some fields, this limit
 can never even be approached. As far as the machines themselves are

 concerned, there may thus be no reason why the output of any one

 should not be approximately constant for successive accounting peri-
 ods. Extraneous economic conditions will, of course, introduce fluctua-

 tions in output and price or, what is more to the point, in the product
 of both per machine. Even then, however, the trend per machine may
 not differ substantially from a horizontal line. In such cases, it follows
 that the natural instinct to minimize unit costs can lead to no great

 error. In any event, the rule will serve as a useful median or point of
 departure for guessing the average life under moderately dynamic con-

 ditions. In what direction it is apt to err in various circumstances, I
 have attempted to point out at least in a general way.22

 basis consistent with the preceding year" (Journal of Accountancy, July, 1939,
 p. 18). This amendment robs the "certificate," "report," or "opinion" of even the
 last vestige of its significance. See note 21 below.

 21 For a discussion of the practical criteria governing the choice of a deprecia-
 tion method see "The Practice of Depreciation," cited in note 13 above. Apart

 from the conclusions there reached, long-range consistency is the most important
 prerequisite of comparability. Which of the various contradictory, but never-

 theless "generally accepted" methods is consistently applied, matters less in

 the long run. See op. cit. in note 1, conclusions 2 and 4 on p. 232. Also p. 240,
 ibid.

 22 These comments refer to unregulated enterprise only. In addition, the
 Taylor-Hotelling theory is entirely correct from the viewpoint of public welfare,
 at least so long as each regulated enterprise must still stand on its own feet.
 Neither of the two authors had considered this aspect at the time the papers cited

 were written. Since then, Professor Ilotelling has dealt extensively with "The

 General Welfare in Relation to Problems of Taxation and of Railway and
 Utility Rates" (ECONOMETRICA, Vol. 6, July, 1938, pp. 242-269), but his perti-
 nent conclusion is that "nothing could be more absurd than the current theory

 that the overhead costs of an industry must be met out of the sale of its products
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 The practical significance of this resume is unfortunately impaired
 by the difficulty of determining the extent to which any particular
 machine happens to differ from the average of its type. I know of no

 instance, where it is considered feasible to keep individual operating

 records in sufficient detail to be of any real help. In addition, unfore-

 seen accidents will happen so that, in the last analysis, physical in-

 spection will probably remain the deciding factor. On the whole then,
 I am not greatly impressed by the practical merits of the theory of

 economic life, although it is no doubt a fascinating subject, worthy of
 study for the sake of its legitimate place in economics. From any other

 viewpoint, it seems to share the well-known peculiarity of the weather:

 A great deal may be said, but very little can be done about it!
 New York, N.Y.

 APPENDIX

 In recognition of Professor Harold Hotelling's priority in this field,
 the MS of this paper was submitted to him for criticism. The resultant
 exchange of thoughts is here summarized with his permission and in
 compliance with Professor Frisch's suggestion. The numbered remarks
 are his, the answers mine.

 1. The idea of an infinite chain of replacements which you have de-

 veloped, seems to me well worthy of consideration. It is interesting that
 we have in the various dates of replacement an infinite number of vari-
 ables, with respect to which the discounted profit is to be a maximum.
 Under static economic conditions, or under economic conditions vary-
 ing in a preassigned fashion, the infinite chain seems to be merely

 another way of looking at the problem to which I gave chief attention
 in my 1925 paper and to yield the same numerical results.

 Answer: I agree that the numerical results will be the same, if "static

 economic conditions or economic conditions varying in a preassigned
 fashion" are suitably defined in one of three alternative ways, viz.,

 when: (1) so-called perfect competition prevails, i.e., cost and market
 price can not differ; (2) the rate of sales z(t)Q(t) is constant; and (3) the

 selling price is independent of the output of a very large (infinite)
 number of machines and no other limitations exist, which would make

 the employment of a smaller (infinite or finite) number more profitable.
 2. I can see now how it is that you can in some cases arrive at a

 valuation of a machine that is higher than the cost. Such cases seem

 or services, in order to find out whether the creation of that industry was a wise

 social policy" (p. 268). I don't object, but it seems to me that, pending the
 general adoption of such a social philosophy, the public welfare could be greatly

 enhanced by considering Professor Hotelling's earlier theory as a standard of
 public-utility regulation.
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 to call for a limitation in the supply of renewals. In that case, the
 existing machines will have a scarcity value which might enhance the
 value above cost. This limitation, however, violates the assumption of
 static economic conditions, which was made explicitly in the relevant
 part of my paper.

 Answer: That is the most elementary case, used for introductory
 purposes. The general situation, where all scarce ingredients of enter-
 prise contribute toward the goodwill, is reviewed in Part V. As for
 the underlying assumptions, a mutually satisfactory agreement could
 perhaps be reached by saying that the Taylor-Hotelling theory is two-
 dimensional, i.e., limited to a time-value plane. Within that plane, it is
 correct, when "static economic conditions" are defined as in the answer
 to comment 1 above. I have added a third dimension, namely the
 number of co-operating machines. In the circumstances, the two-
 dimensional analysis should turn out to be a special case of the three-
 dimensional one. As may be seen from the text, that is indeed the case.

 3. The most vulnerable part of this paper is, I think, the third para-
 graph on page 15. As to its first sentence, I think no one would deny
 that the capital value of a machine might be greater than its cost new,
 provided economic conditions are changing sufficiently. As to the last
 sentence of this paragraph: "Since no income whatever can be had
 without the machine, the entire value of the enterprise must be imputed
 to it, to determine the proper date of scrapping," the argument might
 be applied to declare that each essential part of an enterprise has a
 value equal to the whole. Many fallacies of this type are cited by Bon-
 bright in his treatise on value.

 Answer: Taken out of its context, this passage does sound a bit
 vulnerable, although it is correct enough in the simple introductory
 case, to which it refers, i.e., where the enterprise consists only of a
 single machine (which will not be replaced) and an intangible differ-
 ential advantage. When building up a complex problem gradually, it
 is sometimes hard to avoid oversimplifications at the start. Moreover,
 the difficulty is a purely verbal one. Whether or not it is proper to refer
 to the sum of the machine's cost and the goodwill (arising from the
 co-operation of all ingredients) as the capital value of the machine, my
 point is that the goodwill must not be excluded from the formula, from
 which the economic life of the machine is determined. In the three
 special cases, however, the goodwill drops out, either by definition,
 or in the process of solution.

 4. In distinguishing between the market price z and the value w of a
 unit of product or, as I call it in my 1925 paper, "theoretical selling
 price," you may not have observed that in that paper I treated the case
 in which the market price of the product of the machine was given by
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 conditions beyond the control of the owner of the machine. As I pointed
 out near the beginning of the paper, this is a case of somewhat limited

 applicability, in which the entrepreneur might find himself "resting
 precariously on the judgment of his competitors." It seemed to me that

 a more generally important problem was that connected with cost
 determination in conjunction with the attempt to minimize cost or
 maximize profit. It was in connection with this more general case that
 I used the ideas of unit cost and unit cost plus, which had existed for

 a long time, but had been applied in a slightly inexact manner to this
 problem by Taylor.

 Answer: I recall the passage, but am inclined to hold that the entre-
 preneur is always resting more or less precariously on the judgments

 of the consumer, the competitor, and his own. That seems to me the
 essence of competition. He will always sell above cost, when he can, and
 temporarily below cost, when he would lose more by closing his plant

 altogether. But if he does either of these things, the Taylor-Hotelling
 rule of replacement will no longer be valid, except in the two remaining

 special cases, both of which assume z > w. The attempt to maximize
 profit is in order, but greater generality will result from applying it to

 all ingredients of enterprise, not only to demand. The scarcity analysis
 in terms of the number of co-operating machines is essential for this
 purpose.

 5. In many cases the market price of the product of the machine has
 no definite meaning because nothing is sold which is the product of one

 machine alone; the articles sold are the product of many machines
 under the same ownership, each of which is essential to the finished
 product. The price of the finished product may well contain an element
 of monopoly profit or rent in addition to special advantages which can

 not be assigned unambiguously to any particular physical property.
 This is the typical situation in industry. In such cases we cannot speak

 of the value of the product of a machine as determined by external

 market conditions alone. The "theoretical selling price" used by
 Taylor and myself becomes a practical tool in connection with cost

 accounting which should have considerable practical utility under
 these conditions. Value must be assigned to the service of a machine
 by the owner of a complicated industrial plant on the basis of the best
 possible alternative to that service. Under static economic and tech-
 nological conditions, the best alternative to a machine is typically
 another machine of the same kind.

 Answer: My omission of the typical case, where a product must pass
 through many plant departments, before being finished, is no doubt a
 major defect. The correction is not difficult, however. The problem
 consists of prorating the total selling price Z among the plant de-
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 partments in such a manner that the various economic lives thereby

 determined shall make the aggregate goodwill a maximum. If j be

 the serial number of the departments, we have the unknowns G, Tj,

 kj, and z;, which can be found from an equal number of simultaneous

 equations G = 1Gj, dG/dTj = 0, dG/dkj = 0, zX = Z-E jj1 zj, and
 dG/dz _1 = 0.

 Many intangibles ranging all the way from a patent to advertising

 slogans behave just like machines in the sense that they not only entail

 original costs, but are also subject to expiration, deterioration, growing

 costs of maintenance, etc., and must therefore be renewed from time

 to time. For present purposes, they may be considered as so many

 additional plant departments and treated in the same manner. The
 goodwill is only that residual intangible, which has none of the at-

 tributes of a machine, but is a mere appendage of successful enterprise,
 arising from monopolistic or differential advantages inherent in th(
 ingredients of production. This goodwill can be made a maximum only
 by allocating it to the various plant departments in the manner out-
 lined. Adequate elaboration must be omitted for the present, but it ih
 nevertheless apparent enough that, if this goodwill were set up as E

 separate entity by determining the economic lives on the basis of th(

 departmental Taylorean unit costs, its value would drop below th(
 maximum attainable by the correct application of the theory of max
 ima and minima. Two simple numerical examples for a one-departmen

 enterprise were given in Part II. Incidentally, I do not determine th(
 market price by external conditions alone, but assume that it is ii
 some manner inversely related to the number of co-operating machines

 6. The whole theory of value and of valuation indeed needs revision
 In particular, the role of marginal costs needs increased attention; thuz

 instead of writing for the rent of the machine R(t) = wQ(t) - E(t), w
 might well write R(q, t) =wQ(q, t) -E(q, t), where q is the number o

 units of output at time t, and then observe that q is a function at th
 disposal of the owner in his attempt to maximize his aggregate profit
 This is a decidedly more general approach than by variation of T alone

 Answer:This fruitful lead occurs already in Professor Hotelling's 192
 paper and therefore I should certainly have referred to it. As he ther
 states, this approach is applicable where his tentative postulate of us
 at full capacity is not even approximately true. A further implicatio
 is that a reduction of the equipment maintained is not feasible. Th
 idea has monopolistic aspects, which I did point out very briefly i
 footnote 17 of the paper cited in note 1 above. For this purpose,
 have considered q as the unknown ratio of the optimum rate of outpu
 to the total capacity.

 7. On page 28 you state that "the theory of public-utility regulo
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 tion is thus quite definite and leaves no room for equivocation." This
 is so drastic a statement that it is quite likely to be challenged. My

 own feeling is that, if the statement is true, it is true only as a part of,
 or as an addition to current legal theory, but it seems to me that the

 entire basis of this current theory is extremely shaky and will ulti-
 mately have to be discarded in favor of the operation of utility plants in

 the genuine interest of maximum public service. As I pointed out in
 ECONOMETRICA, for July, 1938, this means a fundamental and drastic
 change from current theory and practice.

 Answer: I agree that my statement should be interpreted only in the
 light of current legal theory. In fact, I realized that a qualification

 was in order before this comment reached me and have therefore added
 footnote 22, which covers the point.

 8. You refer to your theory as three-dimensional, with a two-dimen-
 sional cross-section corresponding to my work. This is approximately

 correct but, from another point of view, the number of dimensions in
 dealing with an infinite chain of replacements might be regarded as
 infinite. In problems of the continuous variation of the rate of opera-
 tions also, we have something like a function of an infinite number of
 variables to maximize. My work on "The Economics of Exhaustible
 Resources" (Journal of Political Economy, April, 1931) is but a special
 case of this. The appropriate mathematical tool for such cases is the
 calculus of variations. The case of an infinite chain of replacements has
 a special mathematical interest because it gives a problem of maximiz-
 ing a function of an infinite number of discrete variables and thus, in
 a sense, stands between the calculus of variations and ordinary differ-
 ential calculus.

 Answer: I agree, but wish to point out that comments 5 and 6 above

 add two further dimensions, so that we now have five in all, in my sense
 of the word. As additional dimensions are introduced, each previous
 presentation of the problem of economic life becomes a special case of
 the last one.

 9. It appears that we are now in agreement regarding most points.

 Our differences seem to be largely concerned with different cases, all of
 which have economic importance within their respective spheres. This
 whole discussion illustrates the varied possibilities of setting up a
 mathematical model to represent the infinite complexities of empirical
 reality. Different theories arise from emphasis on one or another of
 the many relevant considerations.

 Answer: It seems to me that our cases differ only with respect to the
 number of dimensions considered in the analysis and in our respective
 definitions of "static economic conditions." When these differences are
 reconciled, all apparent contradictions disappear.
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 10. I suppose that the only thing that can be said about replace-
 ment that will be completely general is that an entrepreneur may be
 expected to try to maximize the present value of all his future net
 profits.23 This general statement leaves the way open for innumerable
 variations regarding assumptions appropriate to special cases. The im-
 portant thing in building up a theory will thus be to make perfectly
 clear the assumptions and definitions in each case.

 Answer: I agree.

 23 Upon re-reading this appendix, I fear that the term "net profits," as here
 repeatedly employed, may be misunderstood by those, who are well aware
 that capital value can not be computed from what accountants call "net profit."
 Professor Hotelling uses the term in the sense of the Fisherian net income
 stream, i.e., my formulae (31). This stream includes scrap sales and purchases
 of new machines, although both items are considered capital transactions in
 accountancy. On the other hand, it ignores depreciation, although accountants
 must ordinarily make some such deduction, before arriving at their "net profit."
 The two concepts are equivalent when the "retirement method" is employed or,
 regardless of the method of depreciation, in the special case of a mature plant
 operated under static economic conditions [see formula (30) for x =0 and refer-
 ences at end of note 21 above]. Detailed definitions of the numerous "income"
 concepts in economics and accountancy were given in Chapter II of op. cit. in
 note 16 above. A short review and graphic clarification of the persistent verbal
 confusion will be found in my recent article on "Economic Theories of Good-
 will," Journal of Accountancy, September, 1939, p. 175 et seq.
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