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A
lthough ever more countries commit to net-zero green-
house gas emissions, it remains unclear how to achieve 
them. Canada, the European Union, Japan, New Zealand 

and the United Kingdom have passed net-zero emissions targets 
into law while others such as China and the United States made 
similar pledges in official policy documents1. As a major emitter, the 
transportation sector is indispensable for achieving net-zero emis-
sions. Globally, it emitted nearly 8.5 Gt CO2 in 2019 or one-quarter 
of all GHG emissions, while the International Energy Agency sug-
gests that annual global sector emissions need to fall below 1 Gt CO2 
by 2050 to reach net-zero overall emissions1. So far, the sector  
has proven resilient to emissions reduction efforts, especially in 
road transport2.

The question how to best achieve net-zero emission targets trig-
gers fierce policy debates about the appropriate means as exempli-
fied in the context of the European Green Deal. To become the first 
climate-neutral continent by 2050, the European Union is currently 
revising its climate, energy and transport-related legislation under 
the so-called ‘Fit-for-55 package’. One building block is the ambi-
tious increase of EU member states’ emissions reduction targets for 
2030 from 30% to 40% compared with 2005 under the EU Effort 
Sharing Regulation (ESR). Under the ESR, each EU member state 
must meet binding annual emissions reduction targets for the agri-
culture, buildings and transport sectors by implementing national 
policies. Yet, according to the latest national projections available, 
most EU members will miss their targets pursuing current policy 
instruments. For transport specifically, emissions under the exist-
ing policies are projected to be at nearly the same level in 2030 as 
they were in 20203,4. Thus, the ESR exerts considerable pressure 
on EU Member States to strengthen climate policies in transport. 
Policymakers have to choose from myriads of promising policies 
to achieve emissions reductions. There is a controversial policy 
discussion about whether the ambitious climate targets are best 
achieved by using a policy mix that emphasizes tax policies, such 
as carbon taxes, or green spending, such as electric vehicle subsi-

dies, or command-and-control measures, such as speed limits and  
efficiency labels5,6.

There remains substantial empirical uncertainty around which 
policy mixes are effective in actually achieving the objective they 
were designed for. Part of this uncertainty remains because empiri-
cal policy evaluation in the existing literature predominantly focuses 
on evaluating single, known interventions in isolation by posing the 
forward causal question of what happens as a consequence of a par-
ticular policy7–10. This ‘effects of causes’ approach11 runs the risk of 
missing a priori unknown or underappreciated interventions. It also 
requires a context that allows for isolating a single policy’s effects 
from simultaneously implemented and potentially confounding 
ones. Such contexts are rare because policymakers routinely legis-
late mixes of many interventions simultaneously2,12. When having to 
choose from many interacting available policy interventions, it can, 
however, be more intuitive to ask a reverse causal question looking 
for ‘causes of effects’11 to find what caused reductions in emissions 
(rather than whether a single policy is effective). Such a question 
is highly relevant to identify either unknown but effective policies 
or, more importantly, effective mixes of interacting policy interven-
tions. However, in terms of technical implementation, it is less obvi-
ous how this kind of question may be tackled.

Here we introduce an approach to implement and answer the 
reverse causal question of ‘What reduced CO2 emissions?’ in the 
EU road transport sector between 1995 and 2018 by first detect-
ing substantial changes in emissions relative to a control group 
using machine learning and subsequently attributing them to likely 
causes such as single or interacting policy interventions. Because 
detection is separate from policy attribution, our approach neither 
requires any a priori knowledge of reductions in emissions, nor does 
it require a priori knowledge of the number of policies that caused 
these. Therefore, we are able to identify previously unknown poli-
cies or policy mixes that effectively reduce CO2 emissions. While 
the EU transport sector is a policy-relevant test bed, our approach is 
readily applicable in many other contexts.
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policy interventions that reduced emissions between 8% and 26%. The most successful policy mixes combine carbon or fuel 
taxes with green vehicle incentives and highlight that emissions reductions on a magnitude that matches the EU zero emission 
targets are possible.
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We produce three key findings. First, we detect ten successful pol-
icy interventions that reduced emissions between 8% and 26%. We 
link all these reductions to at least one tax that increases driving costs; 
we link seven breaks to carbon taxes, four breaks to fuel taxes and 
three to road tolls. Second, we link eight of the ten breaks to policy 
mixes that combine the aforementioned taxes with either CO2-based 
vehicle taxes or subsidies for low-emissions vehicles. Third, we link 
the breaks with the highest level of confidence and the greatest effect 
sizes of up to 26% to increases of existing but moderate carbon or 
fuel taxes. Altogether, the ten policy interventions we identified 
between 1995 and 2018 reduced emissions in the EU-15 (Austria, 
Belgium, Denmark, Finland, France, Germany, Greece, Ireland, 
Italy, Luxembourg, Netherlands, Portugal, Spain, Sweden, United 
Kingdom) by up to 35.9 Mt CO2. In comparison, the current ESR 
requires a reduction of 480 Mt CO2 for the same region between 2021 
and 2030. Even if we conservatively assume that agriculture, buildings 
and transport contribute in equal measure to these reductions, the 
transport policies implemented to date seem rather inadequate—even 
more so when we account for the imminent tightening of the ESR 
targets proposed in the EU’s Fit-For-55 package. At the same time, the 
relative reductions of up to 26% for certain breaks indicate consider-
able potential for future reductions. The most successful intervention 

implemented in Finland in 2000 (−17%), Sweden in 2001 (−11%), 
Ireland in 2011 (−13%) and Luxembourg in 2015 (−26%) combine 
increasing carbon or fuel taxes to curb mileage with complementary 
financial incentives to support the transition to greener vehicles.

using break detection to assess policies
Existing ex post policy evaluations predominantly focus on the for-
ward causal question of ‘What happens as a consequence of a par-
ticular known policy?’ It is reasonably straightforward to evaluate 
these with time-tested, quasi-experimental tools from programme 
evaluation, ranging from difference-in-differences13,14 and match-
ing15 to synthetic control methods9,10,16. However, drawing systematic 
inference is difficult because the available evidence is scattered across 
countries and policies and because the study of ‘effects of causes’ runs 
the risk of missing effective but unknown interventions or those 
falsely deemed ineffective. Moreover, the forward causal approach 
needs to ensure that treatments are independent and unconfounded, 
which is challenging because policymakers routinely implement 
mixes of many simultaneous interventions with common goals.

It is less obvious how to answer reverse causal questions such 
as ‘What has reduced emissions?’. As Gelman and Imbens11 put it: 
‘Reverse causal reasoning is different; it involves asking questions  
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Fig. 1 | emissions in road transport in europe. the natural logarithm of CO2 emissions (log(CO2); relative) between 1995 and 2018 by country. Please refer 

to Iceland for year indicators on the horizontal axis. the y axis indicates log(CO2). Rep., Republic. Background map from http://www.efrainmaps.es.
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and searching for new variables that might not yet even be in our 
model.’ We formalize this approach by expanding on the idea of 
‘searching for new variables’ and placing reverse causal analysis 
into the domain of variable selection, and more specifically break 
detection. We tackle the question of ‘What reduced emissions?’ by 
identifying notable reductions in CO2 emissions, which we identify 
as structural breaks. We use familiar two-way fixed effects (TWFE) 
panel estimators to detect these breaks and estimate a separate treat-
ment effect for each identified break in each country (Methods and 
refs. 17,18 for the relevant R package ‘getspanel’). Our approach iden-
tifies country- and time-specific treatment effects on the treated by 
detecting breaks for each policy and treated country. It reveals when 
an emissions break occurs within an approximate margin of error. 
Any policy implemented within this margin potentially caused the 
break. We place no restriction on the number of potential treatments 
nor do we impose a minimum break (that is, treatment) length.  
A causal interpretation rests on the assumption that there were no 
other influencing factors than the attributed policies themselves.

The idea of scrutinizing data for structural breaks is firmly estab-
lished in the time series literature on policy evaluation (for exam-
ple, ref. 19 on the Montreal Protocol, ref. 20 on UK CO2 emissions 
or ref. 21 on homicides). However, time series methods lack control 
groups, making causal interpretations difficult. The combination of 
conservative significance levels (to control the false positive rate of 
detection) and the use of control groups in the panel setting give the 
reverse causal approach credibility and reduces the risk of spuri-
ously identifying false positive results. We propose the approach to 
complement the traditional forward causal analysis. While the lat-
ter excels at recovering causal effects of known individual policies, 
the proposed reverse causal approach simplifies the identification of 
efficient mixes of policies with large effects that may not have been 
known a priori.

Specifically, we model the log of CO2 emissions (Fig. 1) as a func-
tion of log gross domestic product (GDP) and log population and 
allow for potential breaks in emissions in any country at any point 
in time that are captured by ‘indicators’: interactions of country and 
year fixed effects. Altogether, with an EU-15 sample and 23 time 
periods, the maximum number of 345 potential treatments exceeds 
the number of observations. However, countries are treated sparsely 
so that most indicators are statistically insignificant. We rely on 
machine learning to remove all but the significant ones (Methods). 
Those remaining show treatments that significantly reduced 
country-specific CO2 emissions relative to a control group condi-
tional on log GDP and log population. It is important to emphasize 
that these breaks are detected relative to the specified model condi-
tional on the control variables. For example, unconditional visual 
inspection of Fig. 1 might suggest a break in Greece’s CO2 emissions 
around 2009. However, the visual ‘break’ in Greek emissions could 
be explained by the drop in economic activity due to Greece’s sov-
ereign debt crisis. Once we condition on GDP (by including it as a 
control variable), there is no unexpected change in emissions (and 
thus no break detected), as emissions were falling in line with GDP.

Having identified a series of breaks, we subsequently attribute 
the significant indicators to policies and disregard those that show 
increases for this paper. We construct approximate confidence 
intervals around an indicator’s timing to accommodate for uncer-
tainty. These may be as short as a single year or may span several. 
Then, we search for policies implemented in these confidence 
intervals (Methods). In the rare event that an interval incorporates 
only a single policy intervention, attribution is made with respect 
to a single policy. Otherwise, attribution is made for a policy mix. 
Attribution using this approach is no different from arguing that a 
known intervention is exogenous or as-if random when addressing 
forward causal questions (discussion in Supplementary Note 1).
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The combination of European Union-wide, technological stan-
dards but largely diverse national policies across EU member states 
provides an ideal test bed to learn about effective policy mixes. EU 
CO2 efficiency standards for new vehicles have been in place since 
1998 and they became mandatory for each EU member state in 2009. 

In contrast, tax policies, which are the main instruments to achieve 
national ESR targets, and command-and-control measures vary 
considerably across member states and time. Prime examples are 
frequent changes in fuel taxes, the introduction of carbon taxes and 
road tolls. Moreover, several changes of CO2-based vehicle taxation 

Table 1 | Detected breaks, break dates and magnitudes

Country Model

1 2 3 4 5 6

eu-15 eu-15 eu-15 eu-31 eu-31 eu-31

Significance level in break detection 5% 1% 0.1% 5% 1% 0.1%

Denmark Effect −0.080

SE (0.020)

Year 2012

95% CI ± 6

Finland Effect −0.103 −0.123 −0.128 −0.156 −0.171

SE (0.020) (0.022) (0.024) (0.024) (0.028)

Year 2000 2000 2000 2000 2000

95% CI ± 2 ± 2 ± 2 ± 1 ± 2

Germany Effect −0.105 −0.131 −0.108 −0.112 −0.112

SE (0.018) (0.020) (0.022) (0.021) (0.025)

Year 2002 2002 2002 2003 2003

95% CI ± 2 ± 1 ± 3 ± 3 ± 4

Ireland Effect −0.087 −0.127

(1st break) SE (0.020) (0.023)

Year 2011 2011

95% CI ± 3 ± 2

Ireland Effect −0.148 −0.192 −0.247 −0.244 −0.229

(2nd break) SE (0.028) (0.028) (0.030) (0.034) (0.037)

Year 2015 2015 2015 2015 2015

95% CI ± 1 ± 1 ± 0 ± 1 ± 1

Luxembourg Effect −0.136 −0.108

(1st break) SE (0.024) (0.031)

Year 2007 2007

95% CI ± 1 ± 3

Luxembourg Effect −0.214 −0.193 −0.227 −0.262

(2nd break) SE (0.031) (0.030) (0.035) (0.038)

Year 2015 2015 2015 2015

95% CI ± 1 ± 1 ± 1 ± 1

Portugal Effect −0.094

SE (0.021)

Year 2011

95% CI ± 4

Sweden Effect −0.095 −0.103 −0.110

(1st break) SE (0.017) (0.019) (0.022)

Year 2001 2001 2001

95% CI ± 2 ± 2 ± 3

Sweden Effect −0.108 −0.115

(2nd break) SE (0.019) (0.022)

Year 2006 2006

95% CI ± 3 ± 4

this table shows treatment effects on CO2 emissions, standard errors (SE), the year of the break and its half interval. CI, confidence interval. All treatment effects are statistically significant at the 0.1% level.
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intended to nudge consumers to buy more fuel efficient vehicles. In 
addition, the introduction of tax credits and purchase subsidies for 
electric vehicles and alternative fuels have been popular policies to 
increase demand for new technologies. Speed limits, biofuel obliga-
tions and efficiency labels exemplify varying command-and-control 
measures across countries and time.

Policy mixes that effectively reduced emissions
We estimate reductions in emissions for the EU-15 members using 
either a sample of (i) EU-15 members or (ii) EU-31 members, which 
includes Norway, Iceland, Switzerland and the United Kingdom 
because they were part of the European Single Market and subject 
to harmonized regulations. The intuition for a second sample is that 
it increases the credibility of breaks that are consistently detected 
across both. We investigate the choice of three target levels of sig-
nificance for detecting treatments. The target levels of 5%, 1% or 
0.1% specify the expected false positive rate of the break detection 
(Methods). The combination of two samples and three target levels 
leads to a total of six different models.

Figure 2 shows that only ten of the 345 potential treatments 
across all countries, years and models are significant. The greater 
the diameter of a circle indicating a break point, the smaller the 
level of significance at which it is found in any of the models. The 
darker its colour, the higher the magnitude of its effect. Table 1 
presents detailed results. Altogether, the ten reductions in CO2 

emissions are from seven different countries. Figure 3 shows these 
relative to the estimated counterfactual (plotted in red for three 
years following each break date) given by log(CO2) in absence of 
the estimated breaks (estimated as coefficients on the detected 
break variables). We show the estimated counterfactuals at the 
estimated break dates (shown as grey vertical lines); however, 
there is uncertainty around the break dates (shown as grey shad-
ing), thus the counterfactuals may visually appear steeper and 
more sudden than the actual true underlying (albeit unknown) 
policy effects.

Altogether, we identify six of the ten reductions at a target sig-
nificance level (and thus expected false positive rate) of 0.1%  
(Fig. 2). We regard this rate as the most important criterion in break 
detection to control the level of confidence we require for a policy 
to be identified. With a rate of 0.1%, we set a very high bar to dispel 
any lingering doubts that our findings may be driven by spurious 
false positives. Second, the more models that detect an intervention, 
the more confident we are of identifying a break. For instance, we 
find that five of our six models indicate breaks for Finland in 2000, 
for Germany in 2002/2003 and for Ireland in 2015 (Table 1). We 
detect that six out of our ten breaks occur in both the EU-15 and 
the EU-31 sample. Finally, we consider the stability of our estimated 
effects across models as a third criterion of robustness (Table 1). 
For instance, for Luxembourg, the coefficients vary between −0.193 
and −0.262.
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Taking the coefficients with the highest magnitude of relative 
emissions reductions (in %) and the emissions level (in Mt CO2) 
in a given country at the time of the identified break indicates that 
the breaks we identified between 1995 and 2018 accounted for total 
emissions reductions of up to 35.9 Mt CO2. In comparison, the cur-
rent ESR requires a 30% reduction until 2030 compared with 2005 
levels in the sectors that are not subject to EU emissions trading, 
that is, agriculture, buildings and transport. This target translates 
into absolute emissions reductions of about 480 Mt CO2 in the 
EU-15 member states between 2021 and 2030. If we conservatively 
assume that each sector contributes in equal measure, the magni-
tude achieved by past transport policies seem inadequate—even 
more so when we account for the imminent tightening of the ESR 
targets to a reduction of 40% relative to 2005 emissions under the 

proposed revision of the ESR under the ‘Fit-For-55’ policy pack-
age. At the same time, the magnitude of three of the ten detected 
breaks exceeds 17%, which indicates considerable potential for 
future reductions.

Post-estimation, we can now attribute effects to their likely 
causes (Table 2) by matching policies with the break points’ con-
fidence intervals. Attribution reveals that many interventions are 
applied simultaneously often by one legislative package.

For example, we attribute the break point in Luxembourg’s emis-
sions around 2007 (99% CI: ± 1 year) to three potential policies: a 
CO2-based vehicle tax reform in 2006, a subsidy scheme for fuel 
efficient cars in 2007 and a 0.02€ per liter fuel tax increase in 2007 
(‘Kyoto Cents’). The two breakpoints in Sweden occur in 2001 (99% 
CI: ± 2–3years) and 2006 (99% CI: ± 3–4years). These correspond 

Table 2 | Attribution of detected breaks to policies

Country year Policy

Denmark 2012 2008: Carbon tax increase from 13€ t−1 CO2e to 23€ t−1 CO2e

2010: ‘Green ownership tax’ replaces weight-based taxes for light commercial vehicles

2010: Vehicle tax increase for cars without particle filters

Finland 2000 1996–1999: Carbon tax increases from 2.3€ t−1 CO2e in 1996 to 18€ in 1999

2001: Car ownership tax base changed from total mass to CO2 emissions

Germany 2002/2003 1999–2003: ‘Ecological tax Reform’ increases motor fuel tax annually by 0.0307€ l−1 over five years

2001: Harmonization of commuter tax deduction between transport modes

2004: Mandatory fuel efficiency labelling for passenger vehicles

2005: Road tolls for trucks (originally planned for 2003)

Ireland 2011 2008: Vehicle registration tax base and annual motor tax base shifts from engine size to CO2 emissions

2009: tax incentives for purchase of bicycles for commuting of up to 1,000€

2009: Electric vehicle subsidy scheme and vehicle registration tax relief

2010: Introduction of a 15€ t−1 CO2e carbon tax

2010: Biofuel obligations require blending 4% (6%) biofuels in 2010 (2013)

Ireland 2015 2014: Carbon tax increase to 20€

Luxembourg 2007 2007: Vehicle tax reform based on CO2 emissions

2007: Subsidy for purchase of energy efficient vehicles of 750€

2007–2008: ‘Kyoto Cents’ law raises fuel tax by 0.02€ l−1 for gasoline and 0.025€ l−1 for diesel

Luxembourg 2015 2013–2014: Subsidies for electric vehicles and vehicles with < 60g km−1 CO2

2015: VAt raise from 15% to 17% increases tax burden of fuelling and buying vehicles

Portugal 2011 2007: Vehicle ownership tax reform based on CO2 emissions

2008: Increase of fuel tax by about 0.025€ l−1

2010: Financial incentives to purchase electric vehicles

2012: Introduction of nationwide road tolls on motorways and trunk roads

2015: Introduction of a 5€ t−1 CO2e carbon tax

Sweden 2001 2001–2006: ‘Green tax Shift’

(i) Carbon tax increase from 40€ in 2000 to 57€ in 2001 to 100€ in 2006

(ii) Exemptions for biofuels from energy and carbon taxation since 2002

(iii) tax benefits for green company cars since 2002

Sweden 2006 2001–2006: ‘Green tax Shift’

(i) Carbon tax increase from 57€ t−1 CO2e in 2001 to 100€ in 2006

(ii) Exemptions for biofuels from energy and carbon taxation since 2002

(iii) tax benefits for green company cars since 2002

2005: Pump Act mandates fuel stations to supply biofuel

2006: Introduction of congestion charges in Stockholm

2007–2009: Subsidy of up to 1,000€ for eco-friendly vehicles

2008–2009: Carbon tax increase from 100€ t−1 CO2e in 2006 to 110€ in 2008 to 114€ in 2009
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to carbon tax increases implemented in 2001 and tightened annu-
ally through 2006. In particular, in 2001, Sweden raised CO2 taxes 
from 40€ to 57€ per ton and also introduced subsidies for biofuels 
and green company cars. Annually increasing CO2 taxes reached 
100€ per ton in 2006. The break in 2006 ( ± 3–4 years) also coin-
cides with the introduction of biofuel mandates, the implementa-
tion of road tolls in Stockholm in 2006, the introduction of subsidies 
for low-emission vehicles in 2007 and further carbon tax increases 
to 110€ in 2008 and 114€ in 2009, underlining the importance of 
considering policy mixes rather than individual policies, specifically 
as multiple detected breaks in a single country could also capture 
time-varying treatment effects through tightening emissions targets.

We continue by classifying the identified policies. We differenti-
ate between taxes on carbon, fuel or vehicles, road tolls, subsidies 
and command-and-control measures in Fig. 2. This helps to assess 
whether certain policies or mixes are superior. We produce four  
key findings.

First, we link all detected emissions reductions to at least one 
tax policy that increases the cost of driving; we link seven cases 
to carbon, four cases to fuel taxes and three cases to road tolls. 
Second, we link eight of the ten emissions breaks to policies that 
combine taxes that increase the cost of driving with reforms that 
emphasize CO2-based vehicle taxes (six cases) or subsidy schemes 
for low-emissions vehicles (six cases). For instance, we attribute the 
ten to 15% emissions reduction in Finland in 2000 to a combination 
of a carbon tax increase and switching to CO2-based vehicle taxes. 
Vehicle taxes and subsidies provide incentives to switch to more 
fuel efficient or zero emissions vehicles, in particular, if consumers 
either systematically underestimate or discount future savings from 
increased efficiency. Third, we link the breaks with the highest level 
of confidence and the greatest magnitude of effect (Finland 2000, 
Germany 2002/2003, Luxembourg 2015, Ireland 2015) to increases 
in existing but moderate carbon or fuel taxes.

Fourth, our finding that command-and-control measures relate 
only to three emissions breaks (mandatory efficiency labels in 
Germany and biofuel obligation schemes in Ireland and Sweden) 
potentially indicates that they either play a minor role in reducing 
CO2 emissions at the national level or that governments did not use 
them extensively. However, we caution against over-interpreting this 
finding because key command-and-control measures, such as effi-
ciency standards for new vehicles, are implemented at the EU level. 
We can detect measures only at the national level, which might be of 
limited impact. Moreover, our search for potential policy measures 
relies on databases that hardly include any public transport policies.

Finally, we note our approach’s limitations. One concern is that 
agnostic break detection runs the risk of not detecting real but less 
effective treatments. To address this concern, we use higher target 
levels of significance (that is, expected false positive rates) that allow 
identification of smaller and therefore more potential treatments 
(Fig. 2). As a further robustness check, we also searched our policy 
databases for carbon, fuel and road tax interventions that we do not 
detect (Table 3). Figure 4 compares all actually implemented car-
bon tax changes to the ones we detected. Overall, we detect all but 
two. The lack of evidence for any emission break in France despite 
its 2014 carbon tax introduction may be best explained by the fact 
that the initial tax of 7€ was offset by an equivalent reduction in the 
existing energy consumption tax22. Similarly, the lack of finding any 
effects for the 2011 carbon tax increase in Finland may be because 
of simultaneous reductions in the tax on engine power for cars and 
trucks that might have weakened its effect23. We do not find any 
major undetected toll increases except for one in Austria in 2004 
and the introduction of a vignette system in the United Kingdom 
in 2014. However, Table 3 shows that we do find a number of unde-
tected (sometimes transitory) changes in fuel taxes that exhibit a 
wide range of magnitudes. Potentially relevant but undetected fuel 
tax increases occur in Austria, Belgium, Italy, the Netherlands, 

Spain and the United Kingdom. The emissions effect of these tax 
changes is likely too small to be identified by our approach. We draw 
two conclusions from these robustness checks. First, we are more 
likely to detect large breaks and cannot detect effective policies that 
yield small reductions. Thus, our estimates for the effect sizes of our 
detected policy mixes provide a lower-bound estimate if countries 
in the control group also experienced smaller emissions reductions 
that we do not detect. Given the magnitude and urgency of the cli-
mate crisis and the ambitious EU climate targets, we believe a focus 
on interventions with large-scale effects is justified. Second, we 
caution against generalizing our results and using them as bench-
mark estimates for particular policy instruments or policy mixes. 
The provision of such benchmark estimates is an important policy 
question for future research that can be tackled by combining our 
proposed reverse causal approach with the standard forward causal 
approach (Supplementary Note 1 for a more detailed discussion).

Given that we detect breaks relative to a specified model con-
ditional on selected control variables, a related concern is that our 
model may be mis-specified and might lead to the detection of spuri-
ous breaks. However, Supplementary Tables 8–11 in Supplementary 
Note 3 show that our findings are generally robust to various alter-
native baseline model specifications (including new controls such 
as the share of urban population, nonlinear functional forms and 
linear country-specific time trends), especially based on our pre-
ferred EU-15 control group. There are two notable exceptions: 
(i) the break in Portugal, which already had weak support in our 
main Table 1 and, as expected with country-specific time trends, 
(ii) including time trends absorbs the two breaks in Sweden that 
indicate time-varying treatment effects from the Swedish climate 
policy package. In addition, a specification test suggested by Oster24 
shows that our results are robust with respect to omitted variable 
bias (Supplementary Table 12 in Supplementary Note 3).

Table 3 | undetected carbon, fuel or road pricing policies

Country year undetected Policies

Austria 2004 Introduction of electronic network-wide 
road toll system for trucks (which 
increased costs compared with the 
previous vignette system)

Austria 2008 Increase of fuel tax by about 0.03€ l−1

Austria 2012 Increase of fuel tax by about 0.04€ l−1

Belgium 2006 Increase of fuel tax by about 0.08€ l−1

Belgium 2010 Increase of fuel tax by about 0.02€ l−1

Finland 2010–2012 Increase of carbon tax from about 20€ 
to about 60€ t−1 CO2e

France 2014 Introduction of a 7€ t−1 CO2e carbon tax

Greece 2008–2012 Gradual increase of fuel tax from about 
0.33€ l−1 in 2008 to 0.67€ l−1 in 2012

Italy 2006 Increase of fuel tax by about 0.02€ l−1

Italy 2012 Increase of fuel tax by about 0.14€ l−1

Netherlands 2005 Increase of fuel tax by about 0.04€ l−1 
(and subsequently annual increases by 
about 0.01–0.02€ l−1)

Spain 2010 Increase of fuel tax by about 0.065€ l−1

United Kingdom 2012 Increase of fuel tax by about 0.06€ l−1 
(back to tax level before 2010)

United Kingdom 2014 Introduction of road toll vignette system 
for trucks

Data from ACEA tax Guide43, CESifo DICE Report44, World Bank’s Carbon Pricing Dashboard45 and 

country-specific sources specified therein.
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Another concern is that the estimated effects may not be gen-
eralizable because (i) we estimate country-specific effects for each 
intervention and (ii) we are more likely to detect large breaks.  
To partially address the latter concern, we report bias-adjusted 
coefficients that do not change the interpretation of our results in 
Supplementary Table 6 in Supplementary Note 3. The former con-
cern may be addressed by averaging over all identified and similar 
treatments to approximate the average treatment effect (in the spirit 
of ref. 25). But we do not seek to provide benchmark estimates for 
particular policy instruments here.

A final concern is that national policies may also affect neigh-
bouring countries. In particular, a fuel or carbon tax increase may 
cause fuel tourism in private consumers in the border region or 
cause firms to reroute their trucks for refuelling. To evaluate the 
potential bias from such spillovers, we exclude the two major transit 
countries with a low fuel tax regime, Austria and Luxembourg, from 
our sample to estimate our final model. Supplementary Table 7 in 
Supplementary Note 3 shows that we obtain very similar results in 
this restricted sample. Moreover, these concerns also apply to for-
ward causal analyses.

Conclusion
In this study, we propose a complementary approach to ex post 
policy evaluation. Instead of estimating the effect of a single, known 
cause on emissions, we seek to identify multiple, unknown causes of 
an emissions effect. As policymakers implement ever more climate 
policy packages to meet their obligations under the Paris Agreement 
or their own net-zero emissions targets, we believe our approach 
is policy relevant because it enables drawing systematic inference 
on the effectiveness of such policy mixes. We demonstrate this for 
the EU transport sector, which is a key bottleneck that impedes the 
European Union’s progress to achieve climate neutrality by 2050.

Our results show that relatively few policy interventions effec-
tively curbed CO2 emissions in road transport. We identify ten 
successful interventions with emissions reductions between 8% 

and 26% or 35.9 Mt CO2 between 1995 and 2018 and attribute all 
detected emissions reductions to policy mixes that comprise at least 
one tax policy intervention that increases the cost of driving. The 
fact that we detect nearly all carbon price interventions indicates 
that carbon pricing may be a critical element of effective policy 
packages. In addition, we attribute the vast majority of emissions 
reductions to policy mixes that combine carbon, fuel or road-use 
taxes with additional vehicle taxes or subsidies. The most successful 
examples of such combinations are policies implemented in Finland 
in 2000 (−17%) Sweden in 2001 (−11%), Ireland in 2011 (−13%) 
and Luxembourg in 2015 (−26%). Carbon, fuel or road-use taxes 
provide incentives to reduce mileage, yet they may not ensure that 
consumers invest in energy efficient vehicles if consumers are myo-
pic. This effect is known as the energy efficiency gap26. Vehicle taxes 
and subsidies can address myopic consumers and provide incen-
tives to adopt more fuel efficient vehicles. However, they suffer from 
the rebound effect that describes the unintended side effect that 
more efficient vehicles cost less to drive and, therefore, encourage 
additional mileage27. Our findings thus provide suggestive evidence 
that the combinations of policies that simultaneously address the 
energy efficiency gap and rebound effects are particularly effective. 
To check the robustness of this evidence based on country-specific 
effect estimates, future research may combine our proposed reverse 
causal approach with the standard forward causal approach to pro-
vide more systematic benchmark estimates for the effectiveness of 
particular policy mixes. Our findings are broadly in line with stud-
ies that use more structural modelling to evaluate policy mixes28,29 
and the literature suggesting that tax policies can address rebound 
effects30,31. Finally, we also show that the greatest emissions reduc-
tions occur when policymakers increase existing but moderate 
carbon or fuel taxes. This suggests that commitment to staggered, 
anticipated and permanent tax increases over time may be a strong 
determinant of emissions reductions.

Altogether, the ambitious country-specific emissions reduction 
targets under the EU effort sharing regulation require timely action. 

120

100

80

60

N
o

m
in

a
l 
c
a

rb
o

n
 t

a
x
 r

a
te

 i
n

 E
u

ro

40

20

0

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

Year

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Sweden

Portugal

Ireland

France

Finland

Denmark

Fig. 4 | Overview of implemented and detected carbon tax changes. Nominal carbon tax rates in € t−1 CO2 between 1995 and 2018 for all EU-15 countries 

with a carbon pricing scheme. We encircled relevant changes in carbon tax rates. A tick indicates that we detect the tax changes, while a cross indicates 

that we do not. Data from World Bank's Carbon Pricing Dashboard45 and country-specific sources specified therein.

NAtuRe eNeRgy | VOL 7 | SEPtEMBER 2022 | 844–853 | www.nature.com/natureenergy 851

http://www.nature.com/natureenergy


ARTICLES NATURE ENERGY

We identified policy mixes with emissions reductions on a magni-
tude that matches the reduction requirements under the net-zero 
emissions target for seven EU countries. If policymakers in these 
countries focused on the policy mixes that have been effective in 
the past, we should expect stronger reductions in road transport 
emissions. Although policies are context-specific, we yet believe 
that policymakers in other EU countries may also learn from these 
successful interventions.

Methods
Data. The data for road transport CO2 emissions is from section 1A3b of the 
Emissions Database for Global Atmospheric Research (EDGAR) v5.0 (ref. 32). We 
retrieved GDP and data on population sizes from World Bank33,34. The dependent 
variable is the natural logarithm of CO2 emissions log(CO2). log(GDP), log(GDP)2 
and log(population) enter the model as control variables. Supplementary Table 
4 in Supplementary Note 3 shows that our findings are robust, if we restrict CO2 
emissions to passenger vehicles only (that is, section 1A3bi).

We analysed emissions break in the EU-15 member states (Austria, Belgium, 
Germany, Denmark, Spain, Finland, France, United Kingdom, Ireland, Italy, 
Luxembourg, Netherlands, Greece, Portugal and Sweden) because they are 
subject to largely identical EU regulations (with some minor differences in 
implementation), in general, and specifically with respect to the European  
Single Market over our sample period from 1996 to 2018. We disregard years 
before 1996 due to major historic dissimilarities between these countries.  
For the control group, we also consider a broader sample of all 27 EU member 
states and the three European Free Trade Association states and the United 
Kingdom (EU-15, Croatia, Bulgaria, Cyprus, Czech Republic, Estonia, Hungary, 
Lithuania, Latvia, Malta, Poland, Romania, Slovakia, Slovenia, Switzerland, 
Iceland and Norway). Supplementary Tables 1–3 in Supplementary Note 2 provide 
summary statistics.

Empirical approach. We identify effective policy interventions by detecting 
structural breaks in TWFE panel models of CO2 emissions. Detected breaks 
identify heterogeneous treatment effects without prior knowledge on treatment 
assignment or timing. A standard approach to analyse policy effectiveness, often 
interpreted as difference-in-differences when treatment effects are homogeneous—
for example, ref. 13—is to model emissions using a TWFE estimator as a function 
of control variables and a binary variable that denotes the interaction of ‘treated’ 
countries that are subject to particular policies and the post-treatment period. Such 
‘known’ binary policy variables in a TWFE panel are equivalent to step shifts in 
the individual fixed effects of the treated countries (more detailed discussion in 
Supplementary Note 1).

Using the equivalence between step shifts in the unit-specific intercept (that 
is, fixed effect) and known treatments, we use an alternative approach to evaluate 
reverse causal questions regarding policy interventions. Rather than exclusively 
evaluating known interventions while disregarding unknown but effective policies, 
we estimate a TWFE panel in search of potential structural breaks (step shifts) in 
the unit-specific intercepts. Once a break has been identified, it can be interpreted 
as a treatment for the relevant country. We then attempt to attribute the break to a 
policy that affected the treated country around the detected time. Thus, rather than 
assessing effects of causes, our approach provides a data-driven method to first 
identify breaks which can, in a second step, be attributed to policy interventions. 
Pretis and Schwarz17 provide a detailed discussion of this modelling approach that 
was first introduced by Pretis35.

We formulate the detection of structural breaks as a problem of variable 
selection similar to ref. 36 but extended the approach to the panel setting, where 
we saturate a TWFE panel model with a full set of step shifts denoting potential 
treatment of every country at every point in time. We then apply variable selection 
methods from machine learning that allow for more candidate variables than 
observations to identify breaks without prior knowledge of their existence. We 
saturate a TWFE regression with a full set of break variables (step shifts) denoting 
potential treatment of each unit at every time period, nesting any specific 
treatment as a special case. In a balanced panel of N countries and T time periods 
this adds N(T − 1) potential break variables to be selected over. Therefore, we start 
with a full set of step functions with coefficients τj,s:
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where αi and ϕt denote individual and time fixed effects, xi,t is a vector of control 
variables that includes log(GDP), log(GDP)2 and log(population size). The 
population treatment coefficients τj,s are sparse with coefficients of zero for all but 
the treated countries. This operationalizes the notion of ref. 11 that reverse causal 
questions require variables ‘that might not yet even be in our model.’ The target 
of model selection is then to remove all but the relevant break variables so that 
in a final sparse model, the selected breaks correspond to the true underlying, 
and potentially unknown treatments. Let T̂r denote the set of detected treated 

countries, with associated detected treatment times T̂
j

 for each treated country 
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Coefficients τ̂
j,s

 correspond to estimates of heterogeneous treatment effects for 
the detected treated countries. For example, we may detect a break for Sweden 
in 2006 (Swe ∈ Tr, TSwe = 2006), where the associated estimated coefficient 
τ̂

Swe,2006

 on the break variable captures the country-specific treatment effect. The 
estimated treatment effects in the final retained model (2) can be interpreted as 
heterogeneous treatment effects estimated using interactions of the unit-fixed 
effects with treatment time for each treated unit as in ref. 25, thus also addressing 
recent concerns about imposing homogeneous treatment effects in panels with 
staggered adoption (for example, ref. 37). The main difference relative to the 
specification in ref. 25 is that in our application, each treated cohort consists of a 
single country.

We resort to machine learning to move from the general model (1) that embeds 
all possible treatment dates for all countries to the sparse model (2). A large set of 
potential selection algorithms are available. To carefully control the false positive 
rate of detected breaks, we apply the block search algorithm ‘gets’38 using the 
‘getspanel’ update in ref. 18, which forms part of the general-to-specific family of 
model selection. Alternatives include shrinkage-based methods such as the LASSO 
and variants thereof, though these do not target the false positive rate (refs. 39–41). 
Supplementary Note 1 provides a more detailed discussion.

The main calibration parameter of ‘gets’ is the target level of significance γc 
which controls the expected false positive rate of retained breaks and is defined 
as the number of non-zero treatment coefficients relative to all possible treatment 
coefficients. Their asymptotic properties are explored in ref. 42, who show that in 
the absence of breaks and accounting for multiple testing, the false positive rate 
converges to the chosen nominal level of significance of selection γc. If there are no 
true treatment breaks present, then the proportion of spuriously detected breaks 
converges to the chosen level of significance. For instance, with γc = 0.01, the expected 
false positive rate is 1% and we expect 0.01 × N(T − 1) spuriously retained breaks. We 
consider γc equal to 0.05, 0.01 and 0.001 in our models of CO2 emissions to assess the 
robustness of our results. Supplementary Table 5 in Supplementary Note 3 shows that 
our findings are robust to using cluster-robust standard errors.

Attribution. Our attribution strategy to match policy interventions to the year 
intervals for which we detect break points involved two primary databases and 
various supplementary data sources.

First, we searched for interventions in two main databases: (i) the IEA’s Policies 
and Measures Database that provides information on past, existing or planned 
climate and energy policies. Data is collected from governments, international 
organizations and IEA analyses, and governments can review the provided 
information periodically. (ii) The National Communications to the United Nations 
Framework Convention on Climate Change secretariat that our sample countries 
are required to submit regularly.

Second, to corroborate the information gained from the IEA and United 
Nations Framework Convention on Climate Change documents and to double 
check for any policies these two sources omit, we collected additional information 
from the European Automobile Manufacturers’ Association’s Annual Tax Guide 
that provides detailed information on fuel, vehicle and road tax schedules and 
subsidy programmes, the World Bank’s Carbon Pricing Dashboard that provides 
detailed information on carbon prices and the Climate Change Laws of the World 
database of the Grantham Research Institute. In a few cases, we also conducted 
specific searches on Google.

Data availability
All publicly available data analysed in this study are available from the 
corresponding author upon request and are also available from online repository 
Zenodo (https://doi.org/10.5281/zenodo.6768563).

Code availability
The code required to replicate our study is available from the corresponding author 
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