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Abstract: This paper describes and implements a simple partial solution to the most common problem in 

applied microeconometrics: estimating a linear causal effect with a potentially endogenous explanatory 

variable and no suitable instrumental variables. Empirical researchers faced with this situation can either 

assume away the endogeneity or accept that the effect of interest is not identified. This paper describes 

a middle ground in which the researcher assumes plausible but nontrivial restrictions on the correlation 

between the variable of interest and relevant unobserved variables relative to the correlation between the 

variable of interest and observed control variables. Given such relative correlation restrictions, the researcher 

can then estimate informative bounds on the effect and assess the sensitivity of conventional estimates to 

plausible deviations from exogeneity. Two empirical applications demonstrate the potential usefulness of 

this method for both experimental and observational data.
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1  Introduction

Applied researchers often find themselves attempting to measure the effect of a variable of interest on an 

outcome where the best available research design is a linear regression of the outcome on the variable of 

interest and some control variables. This standard research design requires the researcher to assume that the 

variable of interest is exogenous, or uncorrelated with the unobserved term in the regression. Exogeneity is 

a strong and potentially incorrect assumption whose failure will produce biased estimates, yet researchers 

and policymakers will often prefer a potentially biased estimate to no estimate at all, or to waiting for a better 

research design to appear.

This paper develops a middle ground between assuming exogeneity and giving up. It works by defining 

deviations from exogeneity in terms of a sensitivity parameter that describes the (unobserved) correlation 

between the variable of interest and the regression “error” term relative to the (observed) correlation between 

the variable of interest and the control variables. The strong assumption of exogeneity in the conventional 

regression analysis can then be replaced with a weaker assumption that this sensitivity parameter falls in 

some known range. Provided that this range is not too wide, the effect is partially identified – the researcher 

can place upper and lower bounds on its value – and can be subjected to hypothesis tests and confidence 

intervals with the usual interpretation.

The general idea of obtaining partial identification of a causal or structural parameter by imposing 

restrictions on some relative correlation parameter has been used in a number of previous papers. Settings 

considered in this literature include nonparametric treatment effects (Manski 1994, 2003; Rosenbaum 2002), 

parametric treatment selection (Imbens 2003; Altonji, Elder, and Taber 2005b) peer effects (Krauth 2007), 
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118      B. Krauth: Bounding a Linear Causal Effect Using Relative Correlation Restrictions

linear regression (Altonji, Elder, and Taber 2005a), instrumental variables (Altonji, Elder, and Taber 2005a; 

Conley, Hansen, and Rossi 2012; Kraay 2012; Nevo and Rosen 2012), and simultaneous equations (Lewbel 

2012). The primary contribution of this paper is threefold. First, it enables the construction of bounds on the 

true effect under any restriction on the sensitivity parameter, rather than just point estimates for a single 

value of this parameter. This is important in applied work because the bounds can potentially change dra-

matically with small changes in the sensitivity parameter. Second, it applies an explicit partial identification 

framework to sensitivity analysis in the linear regression setting. This framework clarifies several issues of 

identification and inference. For example, it enables the construction of Imbens and Manski (2004) confi-

dence intervals for partially identified parameters. Finally, the paper shows two example applications that 

demonstrate the methodology’s potential to extract useful new information from data.

The first application is to a field experiment (Krueger 1999) in which there are small deviations from pure 

random assignment. The second application is to an observational study (Bleakley 2010b) in which the claim 

of exogeneity is more controversial. I find that the experimental study is substantially more robust than the 

observational study. In particular, Krueger’s estimate of the effect of smaller classes on kindergarten test 

scores has narrow bounds and remains statistically significant even when the correlation between class size 

and unobservables is several times as large as the correlation observed between class size and the observed 

control variables. In contrast, the bounds on Bleakley’s estimate of the effect of malaria on labour productiv-

ity are wide and include zero if the correlation between malaria and unobservables is as much as 30% of the 

correlation between malaria and the observed control variables. These findings are entirely based on patterns 

in the data, but correspond to what we would expect given knowledge of each study’s research design. The 

results thus provide some evidence of this method’s potential to generate an informative sensitivity analysis.

1.1  Related Literature

Empirical researchers in economics have long augmented their main results with some form of informal sen-

sitivity analysis. Leamer (1978) was an early and forceful proponent of formalizing and expanding the use of 

sensitivity analysis in parametric models, and developed Bayesian-influenced methods for systematic sen-

sitivity analysis of measurement error (Klepper and Leamer 1984), model selection (Leamer 1978), and other 

common empirical problems. Manski (1994, 2003) adopts a mostly nonparametric approach, and recasts 

sensitivity analysis as estimation under assumptions that yield only partial identification of the parameter 

or estimand of interest. Manski’s research has also inspired an extensive theoretical literature on inference 

under partial identification.

The particular type of sensitivity parameter used in this paper is similar in spirit to those seen in a number 

of recent papers, in that it restricts the unmeasurable deviation from conditional exogeneity in terms that are 

relative to some related measurable quantity. Rosenbaum (2002) develops a treatment-effects framework in 

which there is an unobserved binary variable affecting both outcomes and selection into treatment. Rosen-

baum’s sensitivity parameter is defined as the maximum odds ratio of (unobserved) treatment probabilities 

among pairs of cases that have been matched on observed characteristics. Imbens (2003) considers a para-

metric treatment effects model and uses as a sensitivity parameter the proportion of otherwise unexplained 

variation in the outcome that could be explained by the unobserved term in the treatment selection equation. 

Altonji, Elder, and Taber (2005b) consider a bivariate probit model where the cross-equation correlation of 

unobservable terms is proportional to the correlation in observable terms. Krauth (2007) considers a multiple-

equation probit peer effects model in which the within-group correlation in unobservables is proportional to 

the within-group correlation in observables. Lewbel (2012) exploits a cross-equation covariance restriction 

to bound the parameters of a heteroskedastic simultaneous equations model without using instruments. 

Kreider and Hill (2009) and Kreider (2010) provide sensitivity analysis for treatment effects when treatment 

is subject to classification error. Conley, Hansen and Rossi (2012), Nevo and Rosen (2012) and Kraay (2012) 

develop tools for sensitivity analysis of instrumental variables regression in which the conventional IV exclu-

sion restriction is “almost” true.
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The most closely related papers are Altonji, Elder, and Taber (2005a) and Oster (2014) Altonji et al. (AET) 

propose an estimator of the bias in OLS or 2SLS estimation when the relationship between the variable of 

interest (for OLS) or its instrument (for IV) and unobservables is proportional to the relationship between that 

variable and the other observables. There are several important differences between the estimator in their 

paper and the one presented here. First, the relationship in AET is parameterized in terms of a ratio of linear 

projection coefficients, where the relationship here is parameterized as a ratio of correlations. The choice of 

parameterization is a matter of convenience here as there is a simple proportional relationship between these 

two ratios. Second, AET perform two calculations: a point estimate or bias correction under the assumption 

that the ratio of linear projection coefficients is exactly one, and a point estimate of the ratio under the null 

of no effect. In contrast, the approach described here allows both estimation of bounds and construction of 

Imbens and Manski (2004) confidence intervals under any assumption about the possible range of values 

for the sensitivity parameter. Oster (2014) proposes an extension of AET’s model in which unexplained vari-

ation in the outcome can be divided up into variation that could be explained by unobserved variables, and 

variation that is purely idiosyncratic (e.g., classical measurement error) and can be treated as truly exog-

enous. The model is then parameterized in terms of two sensitivity parameters: the proportional selection 

parameter as in AET ( ),δɶ  and the R2 from the regression of the outcome on all non-idiosyncratic variables 

(R
max

). Oster then uses results from several random-assignment studies to suggest an empirically plausible 

rule for setting δɶ  and R
max

. This approach has the advantage of providing a more empirically-grounded basis 

for setting appropriate values of the sensitivity parameters, at a cost of added complexity since there are 

two sensitivity parameters rather than one. In contrast to AET, Oster explicitly treats the resulting estimates 

as bounds on partially identified parameters, but does not take the additional step of developing inference 

procedures as done in this paper.

2  Overview

Consider an empirical researcher who is estimating a model of the form:

 x
y x β β ε= + +

c
c  (1)

where y is an outcome variable of interest, x is an explanatory variable of interest, and c is a vector of control 

variables. The researcher wishes to estimate β
x
, which is interpreted as the effect of x on y. The control vari-

ables are treated as exogenous:1

 corr( , ) 0ε =c  (2)

but the variable of interest x is potentially correlated with ε. In the absence of a suitable instrument for x, the 

researcher’s only conventional option is to assume that the explanatory variable of interest is also exogenous 

[i.e., corr(x, ε) = 0] and estimate the model by OLS, or to accept that the effect of interest is not identified.

The middle-ground alternative developed in this paper is to define a relative correlation parameter λ that 

satisfies:

 corr( , ) corr( , )x xε λ β=
c

c  (3)

and thus describes the correlation between the variable of interest and unobservables relative to the correla-

tion between the variable of interest and a particular index of the observed control variables. The choice of 

index is entirely a matter of convenience, as another index would just imply a different value of λ. The par-

ticular index used in this paper weights elements of c based on their statistical relationship with the outcome 

variable (the corresponding elements of β
c
), and has the useful property of invariance to arbitrary linear 

1 As long as no causal interpretation is imposed on β
c
, it can be defined so that c is exogenous by construction. However, this means 

that when referring to variation in ε as variation in “unobservables” we really mean the portion of variation in unobservables that is 

orthogonal to variation in observables. When β
c
 is given a causal interpretation, exogeneity of c is a nontrivial assumption.
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transformations of c. Alternative indices that use factor analysis or similar dimension reduction techniques 

can be easily accommodated in the framework developed here.

On its own, equation (3) imposes almost no restrictions on corr(x, ε) and can be interpreted merely as 

a definition for λ. Without further restrictions, the model parameters are not identified. While the conven-

tional exogeneity assumption (λ = 0) is sufficient for point identification and consistent estimation by OLS, 

this paper considers a weaker relative correlation restriction (RCR) of the form:

 
L Hλ λ λ≤ ≤  (4)

for some particular λL and λH. Given a sufficiently strong restriction, it is possible to estimate bounds on β
x
 

as well as conduct hypothesis tests and construct confidence intervals. Alternatively, λ could be used as a 

sensitivity parameter for the OLS estimates. That is, a researcher could estimate β
x
 by OLS, and then estimate 

the smallest value of λ that implies the OLS estimate is not robust (either in the sense that the bounds contain 

zero or in the sense that the confidence interval contains zero). Both of these approaches are demonstrated in 

the empirical examples in Section 5.

The usefulness of this model rests on the idea that a researcher can impose plausible a priori bounds on λ. 

This in turn requires that the magnitude and sign of the correlation between x and cβ
c
 provides at least some 

information about the magnitude and sign of the correlation between x and ε. For example, the restriction 

–1  ≤  λ  ≤  1 would imply that the correlation between the explanatory variable of interest is no more correlated 

with unobservables than it is with the observable control variables, while the restriction 0  ≤  λ  ≤  1 would imply 

the additional assumption that the two correlations have the same sign.

It is common practice in applied work to use patterns in observed explanatory variables as evidence 

in favor of ultimately untestable assumptions about unobserved variables. Papers using an experimental 

design, including the Krueger (1999) study used as an example application in Section 5.1, usually include a 

table showing that observed pre-treatment variables are roughly balanced between treatment and control 

groups, and interpret this balance as evidence for the balance in unobserved covariates that is required for 

identification. Observational studies using control variables, including the Bleakley (2010b) study used as an 

example application in Section 5.2, often report a simple regression, a “preferred specification” that includes 

the researcher’s preferred control variables, and then some “robustness check” specifications that include 

additional control variables. The researcher then shows that the estimated effect changes substantially from 

the simple regression to the preferred specification, but does not change much between the preferred specifi-

cation and the robustness checks. This is then used to argue that the identification problem has been solved, 

i.e., the researcher has found the exact set of control variables such that the remaining omitted variables are 

uncorrelated with the explanatory variable of interest. In other words, it is common in both experimental 

and observational studies to informally use low correlation between the explanatory variable of interest and 

some control variables as evidence in support of the identifying assumption of zero correlation between the 

explanatory variable of interest and the regression error term. This inference is usually implicit, and takes 

an “all or nothing” form: if the observed correlation is low enough, then it is assumed that the unobserved 

correlation can be taken as exactly zero. By making this inference explicit, this implicit decision rule can be 

replaced with a more plausible one: a low observable correlation suggests a low (but not necessarily zero) 

unobservable correlation, while a higher observable correlation suggests a higher unobservable correlation.

While the approach presented here emphasizes calculating bounds under multiple plausible assump-

tions on the sensitivity parameters, other work has suggested attention to particular assumptions. Altonji, 

Elder, and Taber (2005a,b) argue in favor of a particular assumption which they call “equal selection on 

observables and unobservables” as providing an upper bound on the bias from OLS/2SLS. The argument 

takes the form of an explicit formal model with outcome and selection equations in which a large set of 

observed variables are selected randomly from a much larger set of possible variables. As a result of this 

random selection, the observed variables and unobserved variables (once normalized by their coefficients 

in the outcome equation) are likely to have similar coefficients in the selection equation, with equality in the 

limit as one adds variables. The bias estimated under the assumption of equal selection can be considered 

an upper bound if observed variables are selected specifically because of their potential to reduce bias in the 
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OLS/2SLS estimates. The equal selection condition in Altonji, Elder, and Taber’s model is analogous but not 

identical to the restriction of equal corrrelation (λ = 1) in the model presented here. Oster (2014) takes Altonji, 

Elder, and Taber’s argument further by noting that some fraction of variation in outcomes is truly idiosyn-

cratic (for example, classical measurement error), and so the bound can further be narrowed by imposing an 

empirically plausible upper bound on the R2 from the regression of the outcome on both the observed and 

non-idiosyncratic unobserved variables.

Section 3 below describes the model more precisely and develops estimation and inference methods. In 

the interest of space, tractability and clarity the model is kept simple: the variable of interest is assumed to 

have a constant linear effect on the outcome variable, and is a scalar. These simplifications can be relaxed. 

Section 4.2 extends the analysis to cover heterogeneous effects. The other simplifications can also be relaxed, 

but doing so is beyond the scope of this paper. Nonlinear effects have been addressed by previous authors 

(Altonji, Elder, and Taber 2005b; Krauth 2007), and require much more detailed parametric restrictions on the 

relationships among model variables. The case where x is a k-vector can in principle be handled by making λ 

a k-vector as well, and is left for future research.

3  Detailed Methodology

3.1  Model

Let d≡[y x c], where y is a scalar outcome, x is a scalar explanatory variable of interest, and c is a k-length row 

vector of additional control variables including an intercept. The causal model is:

SSUMPTIONA 1: ( )
x

y y x x uβ= = +

where the random function y(·)is a potential outcome function giving the outcome associated with each pos-

sible value of x, the parameter of interest β
x
 represents the effect of x on y, and the unobserved random vari-

able u represents the effect of all other factors. These other factors are not affected by x but may be correlated 

with it. Section 4.2 considers an extension in which the effect of x on y is heterogeneous across individuals.

The control variables in c are of interest primarily as an aid to identification of β
x
, and so are not included 

explicitly in the structural model. They may or may not have a direct effect on y, and that effect may or may 

not be linear. Let up = cβ
c
 be the best linear predictor of u given c, i.e.:

 
�

1

1 1

1 1

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
ppp

x

x

xyu

E E u

E E y E E x

E E y E E x

β

β

β β

−

− −

− −

≡ ′ ′

= −′ ′ ′ ′

= −′ ′ ′ ′

c

c

c c c

c c c c c c

c c c c c c c c c
��������������������������

 

(5)

(where yp and xp are the best linear predictors of y and x, respectively, given c) and let ε be the corresponding 

residual:

 uε β≡ −
c

c  (6)

Note that these are just definitions and that β
c
 has no particular causal interpretation. Putting (5) and (6) 

together, we get:

 where ( ) 0
x

y x Eβ β ε ε= + + =′
c

c c  (7)

which looks like the usual OLS regression equation, but is missing the necessary assumption that E(xε) = 0, or 

equivalently that corr(x, ε) = 0.

That assumption is replaced by a weaker relative correlation restriction, which is defined as a nonempty 

and closed interval Λ that is known by the econometrician to satisfy:
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SSUMPTIONA 2:   cov( , ) var( ) cov( , ) var( )

for some 

x xε β λ β ε

λ Λ

=

∈

c c
c c

Assumption 2 is written in a somewhat nonintuitive fashion to allow maximum generality. In the usual case 

where cov(x, cβ
c
) and var(ε) are both nonzero and Λ is the finite interval [λL, λH], Assumption 2 simplifies to:

 

corr( , )

corr( , )
L Hx

x

λ

ε
λ λ

β
≤ ≤

c
c

�����������

 

(8)

That is, we are assuming that the correlation of the variable of interest (x) with unobservables (ε) relative to 

its correlation with observables (cβ
c
) can be restricted to lie within some known range (Λ).

The data takes the form of a sample of size n on d that can be used to construct a consistent and asymp-

totically normal estimator ˆ
n

m  of its first two moments. That is, let:

0
vech( ( ))m E≡ ′d d

where vech(·) is the half-vectorization function (i.e., given a symmetric matrix it returns a column vector of its 

unique elements). We assume that our estimator of m
0
 satisfies:

0
SSUMPTION ˆA  3: ( ) (0, )

D

n
n m m N Σ→−

where: Since m
0
 is just a vector of expected values, Assumption 3 is satisfied in a random sample by the cor-

responding sample average 
1

1
ˆ vech .

n

n i ii
m

n =

 
= ′  ∑ d d

Finally, a few convenient and easily-verified conditions are imposed on m
0
. First, all variables exhibit 

nontrivial variation:

SSUMPTIONA 4: ( ) is finite and positive definiteE ′d d

Positive-definiteness of E(d′d) is easily verified in data, and guarantees for example that β
c
 is well-

defined. Next, at least one of the control variables is useful in forecasting y:

SSUMPTIONA 5: var(y ) 0p
>

Assumption 5 can be tested by an ordinary coefficient significance test.

The final assumption, made primarily for convenience, is that at least one of the control variables is 

useful in forecasting x:

SSUMPTIONA 6: var(x ) 0p
>

Assumption 6 is also easily testable, and simplifies the description of the estimation method and its prop-

erties in the remainder of this section. Section 4.1 relaxes this assumption and shows that the key properties 

of the estimation method are unaffected.

3.2  Identification

In general, it is not possible in this setting to identify the true value of β
x
, but it is possible to identify a non-

trivial set B
x
 that must contain β

x
. This set is known as the identified set for the true effect, and includes ordi-

nary point identification (B
x
 = {β

x
}), partial identification ( ),

x
B ⊊R  and nonidentification (B

x
 = R) as special 

cases. This section characterizes the identified set.

First, note that the linear structure of the model implies that identification can be discussed entirely in 

terms of the relative correlation restriction Λ and the vector of second moments m
0
. Estimation will then be 
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based on a plug-in estimator that substitutes ˆ
n

m  for the unknown m
0
. Let an allowable second moment vector 

be defined as an arbitrary vector m the same length as m
0
 such that:

 ( ) is finite and positive definite
m

E ′d d  (9)

 var ( ) 0p

m
y >  (10)

 var ( ) 0p

m
x >  (11)

where the subscript m indicates that the expected values in question are calculated as if the unknown vector 

of second moments m
0
 were equal to m (i.e., E

m
(d′d) = vech−1(m)). This notation will be useful in describing 

estimators for the parameters of interest that are based on ˆ ,
n

m  which in a sufficiently large sample will be 

close to m
0
 but not identical. The model’s assumptions described in Section 3.1 imply that m

0
 satisfies (9)–(11) 

and is thus an allowable second moment vector. Since E
m

(d′d) is a continuous function of m, these conditions 

are also satisfied by any m sufficiently close to m
0
. This will in turn imply that since 

0
ˆ ,

p

n
m m→ the probability 

that ˆ
n

m  satisfies these conditions will be going to one as n goes to infinity.

Next, note that both β
c
 and λ would be identified if β

x
 were known. Ignoring for the moment the possibil-

ity of singular matrices or division by zero, let:

 
1 1( ;  ) ( ) ( ) ( ) ( )

x m m x m m
b m E E y b E E xβ − −

≡ −′ ′ ′ ′
c

c c c c c c  (12)

and:

 

corr ( , ( ; ))
( ; )

corr ( , ( ; ))
m x x

x

m x

x y b x b m
b m

x b m

β
λ

β

− −
≡

c

c

c

c
 

(13)

Equations (12) and (13) can be used to express the unknown parameters β
c
 and λ as known functions of the 

unknown structural parameter and vector of second moments, i.e.: β
c
 = β

c
(β

x
; m

0
) and λ = λ (β

x
; m

0
).

Finally, let B
x
(Λ; m) be defined as the set of all b

x
 satisfying:

 

cov ( , ( ; )) var ( ( ; ))

cov ( , ( ; )) var ( ( ; ))

m x x m x

m x m x x

x y b x b m b m

x b m y b x b m

β β

λ β β

− −

= − −

c c

c c

c c

c c
 

(14)

for some λ∈Λ. By construction, B
x
(Λ; m

0
) is the identified set for the true effect. It will usually be more con-

venient to work with its upper and lower bounds:

 ( ; ) inf ( ; )L

x x
m B mβ Λ Λ=  (15)

 ( ; ) sup ( ; )H

x x
m B mβ Λ Λ=  (16)

The identified set is not always convex, so these bounds are not necessarily sharp.

Figure 1 shows a typical example of what the λ(b
x
; m) function looks like, while Proposition 1 below 

describes its most important features more formally.

Proposition 1 [Properties of λ(·)] Let m satisfy (9)–(11). Then the function λ(.; m) has the following properties:

1. λ(b
x
; m) exists and is differentiable for all (m),

x x
b β∞

≠  where:

cov ( , )
( )

var ( )

p p

m

x p

m

x y
m

x
β∞

≡

2. Let:

var ( )
( ) 1

var ( )
m

p

m

x
m

x
λ∞

≡ −
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Then λ∞(m) ≥ 0 and:

lim ( ; ) lim ( ; ) ( )
x x

x xb b
b m b m mλ λ λ∞

→∞ →−∞

= =

3. For any λ≠λ∞(m) there exists at least one b
x
 satisfying (14).

4. Let:

( ;  ) { ;  ( ;  ) }
x x

B m b b mΛ λ Λ= ∈
ɶ

Then:

( ;  ) ( ;  ) ( ;  ) { ( )}
x x

B m B m B m mΛ Λ Λ β∞

⊂ ⊂ ∪ɶ ɶ

Proof: See Appendix A.1.

Although λ(b
x
; m) is continuous and differentiable for all β∞

≠ ( )
x x

b m  it is not always monotonic and can 

contain local maxima or minima. This non-monotonicity implies that the correct bounds as defined in equa-

tions (15) and (16) are not necessarily equal to inf({b:λ(b
x
; m)∈{λL,λH}}) and sup({b;λ(b

x
; m)∈{λL, λH}}). That is, 

the bounds cannot necessarily be constructed by just finding the point estimates associated with λL and λH. 

The estimation method described in Section 3.3 accounts for this issue and estimates the bounds as defined 

in equations (15) and (16).

Proposition 2 is the primary identification result of the paper, and describes conditions under which the 

identified set is both nonempty and bounded. Under these conditions, data can be used to estimate nontrivial 

bounds on the true effect.

Proposition 2 (Size of the identified set) The identified set B
x
(Λ; m

0
) is nonempty and bounded if λ∞(m

0
)∉Λ.

Proof: See Appendix A.2.

3.3  Estimation

The identified features of the model can be estimated by substituting ˆ
n

m  for m
0
 in the quantities defined in 

Section 3.2. Let:

1.0

0.5
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x

∞
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Figure 1: A Typical λ(b
x
; m).

In general, the function exists and is differentiable in b
x
 everywhere but at 

x
β∞ [the value of b

x
 at which corr(x, cβ

c
(b

x
)) = 0]. Its limit 

as b
x
 approaches  positive or negative infinity is λ∞. Near 

x
β∞ the function goes towards  positive or negative infinity. Both β∞

x
 and 

λ∞ are easily  identified from the data. Given the relative correlation restriction Λ = [λL, λH], the bounds [ , ]L H

x x
β β  can be found by 

inverting λ(b
x
; m).
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ˆ ˆ( ) ( ; )

ˆ ˆ( )

ˆ ˆ( )

ˆ ˆ( ) inf { : ( ; ) }

ˆ ˆ( ) sup{ : ( ; ) }

x x n

n

x x n

L

x x n

H

x x n

b b m

m

m

b b m

b b m

λ λ

λ λ

β β

β Λ λ Λ

β Λ λ Λ

∞ ∞

∞ ∞

≡

≡

≡

≡ ∈

≡ ∈

 

(17)

An important complication in characterizing the asymptotic properties of these estimators is the possibility of 

nonidentification. That is, the estimated bounds should go to infinity when the identified set is unbounded. 

Proposition 3 below shows this to be the case.

Proposition 3 (Consistency) The estimators defined in (17) are consistent. That is:

0

0

0 0

ˆ ( )

ˆ ( )

ˆ( ) ( ; )   ( )

p

x x

p

p

x x x x

m

m

b b m for all b m

β β

λ λ

λ λ β

∞ ∞

∞ ∞

∞

→

→

→ ≠

If B
x
(Λ; m

0
) is bounded then:

0

0

0

0 ( ; )

0

0 ( ; )

( ; )
ˆ ( ) ( ; ) | 0

( ; )
ˆ ( ) ( ; ) | 0

L
x x

H
x x

p xL L

x b m
x

p xH H

x b m
x

d b m
m if

db

d b m
m if

db

β Λ

β Λ

λ
β Λ β Λ

λ
β Λ β Λ

=

=

→ ≠

→ ≠

and if B
x
(Λ; m

0
) = R then for any B:

β Λ β Λ
→∞ →∞

> = < =
ˆ ˆlim Pr(( ( ) ) lim Pr(( ( ) ) 1H L

n n
B B

Proof: See Appendix A.3.

Note that consistency of ˆ ( )Lβ Λ  (for example) requires two conditions to be satisfied: that 

β Λ β∞
≠

0 0
( ; ) ( )L

x x
m m  (guaranteeing existence of the derivative ∂λ(b

x
; m)/∂b

x
 when evaluated at β Λ

0
( ; )L

x
m  

and that ∂λ(b
x
; m)/∂b

x
 is nonzero when evaluated at β Λ

0
( ; ).L

x
m  By analogy, ˆ ( )Lβ Λ  is likely to be a noisy 

estimator when either β Λ
0

( ; )L

x
m  is close to β∞

0
( ),

x
m  or when λ∞(m

0
) is close to Λ (since result 2 of Proposi-

tion 1 implies that ∂λ(b
x
; m)/∂b

x
→0 as |b

x
|→∞).

3.4  Inference

Hypothesis tests and confidence intervals can be constructed for partially identified parameters, with no 

change in interpretation.

A first step in developing inference is to obtain an asymptotic distribution for the estimators 

defined in equation (17). These estimators are in most cases differentiable functions of ˆ ,
n

m so they 

will be  asymptotically normal with a covariance matrix that can be obtained through straightforward 

 application  of the delta method. Proposition 4 below describes the asymptotic distribution for the 

bounds.  This asymptotic distribution can be used to construct Wald-type hypothesis tests and confidence 

intervals for β
x
.
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Proposition 4 (Asymptotic distribution for estimated bounds) Let:

0 0

0 0

( ; ),

( ; ),

( ; )

( ; ) /

( ; )

( ; ) /

L
x x

H
x x

m x

x x b m m m

m x

x x b m m m

b m

b m b
A

b m

b m b

β Λ

β Λ

λ

λ

λ

λ

= =

= =

 ∇
 
∂ ∂ 

≡ 
∇ 

 ∂ ∂
  

where the row vector ∇
m
λ(b

x
, m) is the gradient of λ(b

x
, m) with respect to m. If A exists, then:

0

0

ˆ ( ) ( ; )
( 0, )

ˆ ( ) ( ; )

L L
Dx

H H

x

m
n N A A

m

β Λ β Λ
Σ

β Λ β Λ

 −
→  ′

−  

Proof: See Appendix A.4.

Existence of the matrix A requires two conditions to be satisfied: that neither L

x
β  nor H

x
β  is identical to 

0
( )

x
mβ∞  (guaranteeing existence of the derivatives), and that ∂λ(b

x
; m)/∂b

x
 is nonzero when evaluated at L

x
β  

or .H

x
β  By analogy, the asymptotic distribution is likely to provide a poor approximation to the finite sample 

distribution when either L

x
β  or H

x
β  is close to ,

x
β∞  or when λ∞ is close to Λ.

In constructing confidence intervals under partial identification, Imbens and Manski (2004) note the 

necessity of distinguishing between a confidence interval for the identified set:

setlim Pr( ( ) ) 1
xn

B CIΛ α
→∞

⊂ = −

and a confidence interval for the true parameter value:

par

( )

lim inf Pr( ) 1
x x

xn b B

b CI
Λ

α
→∞

∈

∈ = −

A confidence interval for the identified set can be constructed using the lower and upper bounds, respec-

tively, of the ordinary confidence intervals for ˆ ( )Lβ Λ  and ˆ ( ).Hβ Λ  A confidence interval for the true param-

eter value is generally narrower than one for the identified set. Imbens and Manski describe a method of 

constructing such a confidence interval by reducing the critical values to account for the width of the identi-

fied set. Stoye (2009) notes that validity of the Imbens-Manski procedure requires a strong assumption of 

superefficient estimation for the width of the identified set. However, he also shows that superefficiency will 

hold if the estimators of the bounds are jointly asymptotically normal and ordered by construction (Stoye 

2009, Lemma 3). These criteria are satisfied in the setting of this paper, and so Stoye’s more elaborate proce-

dure is not required.

Hypothesis tests are subject to similar considerations. A one-sided hypothesis test on β
x
 can be imple-

mented by a conventional one-sided test on either L

x
β  or .H

x
β  A two-sided hypothesis test is potentially more 

complex because the simple null H
0
:β

x
 = b

x
 can be rejected if and only if the joint null 

0
:( , )L H

x x x x
H b bβ β≤ ≥  can 

be rejected. While there exist many options for hypothesis testing of multiple inequalities, a simple solution 

is to just invert the Imbens-Manski confidence interval. For example, we reject the null H
0
:β

x
 = b

x
 at 5% signifi-

cance if b
x
 is outside of the 95% confidence interval.

4  Extensions

4.1  Pure Random Assignment

The main results in Section 3 are derived under the assumption (Assumption 6) that the explanatory variable 

of interest is at least slightly correlated with the control variables. This assumption is made strictly for con-
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venience in presenting results, as it guarantees existence of the intermediate quantities λ(b
x
, m

0
), λ∞(m

0
), and 

β∞

0
( ),

x
m  and avoids the need to discuss various exceptions and special cases. This section replaces Assump-

tion 6 with its opposite:

SSUMPTIONA  6 : var( ) 0px =′

Assumption 6′ is an important special case because it will hold in pure random assignment.

Assumption 6′ implies that λ(b
x
, m

0
), λ∞(m

0
), and β∞

0
( )

x
m  are undefined and so the results in Section 3 do 

not apply. However, the identified set is still well-defined, and can be estimated consistently by the estima-

tors described in Section 3.3. The reason for this is that var(xp) = 0 implies cov(x, cβ
c
) is also zero, and since 

λ is finite by Assumption 2 this implies that cov(x, ε) is zero. Given that, Proposition 5 below shows that β
x
 

is point-identified and can be estimated by OLS. Proposition 6 below shows that the RCR bounds will also 

consistently estimate β
x
.

Proposition 5 (Size of the identified set) The identified set B
x
(Λ; m

0
) is nonempty and bounded for any Λ. In 

particular, Λ β
 

= = 
 

0

cov( , )
( ; ) { }.

var( )x x

x y
B m

x

Proof: See Appendix A.5.

Proposition 6 (Consistency) Suppose that Λ is bounded and includes zero. Then: ˆ ( )
pL

x
β Λ β→  and  

ˆ ( ) .
pH

x
β Λ β→

Proof: See Appendix A.6.

4.2  Heterogeneity in Response

The model presented in Section 3 assumes a constant marginal effect of x on y. This section describes how the 

estimation method would apply to the case of heterogeneous response.

To do this, replace Assumption 1 with:

SSUMPTIONA  1 : ( ) where ( )
x

y y x tx u E t β= = + =′

where t is the individual-specific marginal effect of x on y, and β
x
 is a parameter representing the average 

marginal effect in the population. If x is a binary treatment indicator, then Assumption 1′ fits the standard 

treatment effects framework, with u the untreated outcome, t+u the treated outcome, t the individual-specific 

treatment effect, and β
x
 the average treatment effect. For notational simplicity, normalize y, x, and c to mean 

zero so that c does not need to have an intercept.

The average marginal effect β
x
 is point-identified if the potential outcomes are mean-independent of 

x conditional on c, i.e., if E(t|x, c) = E(t|c) and E(u|x, c) = E(u|c). If these conditional expectation functions 

happen to be linear in c, then β
x
 is consistently estimated by the OLS regression of y on (x, c, xc). Note that 

conditional mean independence is the important assumption here, as one can always choose c to make the 

conditional expectations linear (e.g. by making c binary).

Next I derive a version of equation (18) that replaces the mean-independence and linear CEF assumptions 

with relative correlation restrictions. Without loss of generality, let xcβ
xc

+cβ
c
 be the best linear predictor of 

y–xβ
x
 given (xc, c). Let ε≡y–xβ

x
–xcβ

xc
–cβ

c
 be the corresponding residual. Then

 where ( ) ( ) 0.
x x

y x x E x Eβ β β ε ε ε= + + + = =′ ′
c c

c c c c  (18)

Consistent OLS estimation of equation (18) requires the additional assumption that E(xε) = 0 or equiva-

lently corr(x, ε) = 0. This condition would hold under the conditional mean-independence and linear CEF 
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assumptions, but the goal here is to relax those assumptions. As in Section 3.1, this is done by replacing the 

absolute correlation restriction corr(x, ε) = 0 with a relative correlation restriction Λ such that:

 

corr( , )
=

corr( , )
x

x

x x

ε
λ Λ

β β
∈

+
c c

c c
 

(19)

In this version of the model, the relative correlation parameter λ can be interpreted as the correlation between 

the treatment and unobserved heterogeneity (in both untreated outcome and treatment response) relative to 

the correlation between the treatment and observed heterogeneity (in both untreated outcome and treated 

response).

Equations (18) and (19) are identical to equations (7) and (8) in Section 3.1, with (xc, c) as the control vari-

ables instead of just c. Therefore this model can be fit into the framework of Section 3.1, and the results from 

Section 3 apply directly.

5  Applications

The two applications described in this section have been chosen to illustrate the two primary settings in 

which OLS regression is used to estimate causal effects: random-assignment experiments, and observational 

studies using control variables.

5.1  Application #1: Project STAR

Project STAR (Student/Teacher Achievement Ratio) is an influential class size experiment implemented 

in Tennessee in the late 1980s. Class size reductions are a common and expensive initiative for improving 

schools, but their effect on academic achievement is controversial (Hanushek 1986). As is often the case with 

field experiments involving human subjects, Project STAR’s implementation deviated slightly from the origi-

nal random-assignment design. The application here shows that relative correlation restrictions are useful 

for analyzing such deviations.

5.1.1  Background

The analysis here is based on Krueger (1999). A total of 79 schools were nonrandomly selected for participa-

tion in Project STAR. Within each school, students entering kindergarten in 1985 were randomly assigned 

to the small class (S) group, the regular class (R) group, or the regular class with full-time teacher aide (RA) 

group. Each school had at least one class of each type. Students in group S were organized into classes with 13 

to 17 students, while students in the R and RA groups were organized into classes with 22–25 students. Teach-

ers were also randomly assigned. The experimental treatment continued through grade 3, and students were 

given achievement tests each year. The implementation deviated from the experimental design in several 

ways. For example, some students were moved between the small and regular class groups as a result of 

behavioral issues and/or parental request. Other students left their original schools, and Krueger notes that 

there is some evidence that students in the small class treatment were less likely to change schools.

Krueger’s approach to the problem of imperfect randomization is similar to that described in Section 2. 

That is, he shows that observed pretreatment variables are similar (within-school) in the treated and control 

groups, and uses this observation to argue that it is reasonable to treat the data as arising from true random 

assignment:

“None of the three background variables displays a statistically significant association with class-type assignment at the 10 

percent level, which suggests that random assignment produced relatively similar groups in each class size, on average. As 
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an overall test of random assignment, I regressed a dummy variable indicating assignment to a small class on the three back-

ground measures in rows 1–3 and school dummies. For each wave, the student characteristics had no more than a chance 

association with class-type assignment.” (Krueger 1999, p. 504)

While Krueger presents these results as a “test” of the null hypothesis of random assignment, the deviations 

from the experimental design described above already imply that this null is false. Krueger says as much 

earlier in the paper: “As in any experiment, there were deviations from the ideal experimental design in the 

actual implementation of Project STAR” (Krueger 1999, p. 499). Failure to reject this null only means that the 

sample size is not big enough to reveal what is already known to be true.

An alternative interpretation of this procedure is that it aims to show that deviations from random assign-

ment produce small (if nonzero) differences in observable pre-treatment characteristics between treated and 

control groups, and therefore can plausibly be assumed to produce small differences in unobservable pre-

treatment characteristics. This interpretation can be made more explicitly and quantitatively by using rela-

tive correlation restrictions.

5.1.2  Data and Methodology

The data are from Finn et al. (2007). The outcome variable is the student’s score on the Stanford achievement 

tests, translated into percentile units based on the distribution of test scores in the control group. The treatment 

variable is an indicator for whether the student was assigned to a small class (13–17 students) or a regular class 

with or without a teacher’s aide (22–25 students). Control variables include school fixed effects as well as par-

ticipation in free/subsidized lunch program, race, gender, age, teacher race, teacher experience, and whether 

the teacher has a graduate degree. Krueger’s regressions include school-level fixed effects to account for the 

fact that class size was randomly assigned within schools, but assignment probabilities differed across schools. 

These fixed effects can be incorporated into the framework of this paper by applying the standard within trans-

formation and defining y, x and c in terms of deviations from the corresponding school-level averages.

5.1.3  OLS and RCR Results

The first two rows in Table 1 show OLS regression estimates for the effect of smaller classes, using a minor 

modification of the specification from Table 5 in Krueger (1999). The modification is that the regular/aide 

Table 1: OLS Estimates and RCR Bounds for the Effect of Small Classes on Average Percentile Rank on Stanford Achievement Test.

Grade   Kindergarten  Grade 1  Grade 2  Grade 3

OLS point estimate (λ = 0)   5.20***  6.72***  4.97***  5.30***

 (95% CI)   (3.17, 7.24)  (4.66, 8.78)  (2.90, 7.04)  (3.24, 7.36)

Bounds, 0  ≤  λ  ≤  0.1   [5.19, 5.20]***  [6.50, 6.72]***  [4.83, 4.97]***  [5.19, 5.30]***

 (95% CI)   (3.17, 7.23)  (4.53, 8.69)  (2.85, 6.98)  (3.14, 7.31)

Bounds, 0  ≤  λ  ≤  0.5   [5.17, 5.20]***  [5.62, 6.72]***  [4.26, 4.97]***  [4.72, 5.30]***

 (95% CI)   (3.00, 7.22)  (3.72, 8.49)  (2.44, 6.80)  (2.52, 7.17)

Bounds, 0  ≤  λ  ≤  1   [5.14, 5.20]***  [4.50, 6.72]***  [3.55, 4.97]***  [4.08, 5.30]***

 (95% CI)   (2.49, 7.21)  (2.27, 8.46)  (1.58, 6.73)  (1.30, 7.10)

Bounds, 0  ≤  λ  ≤  3   [4.99, 5.20]  [–0.15, 6.72]  [0.57, 4.97]  [0.44, 5.30]

 (95% CI)   (–1.00, 7.20)  (–5.11, 8.45)  (–3.49, 6.71)  (–7.27, 7.06)

λ̂∞   12.31  13.85  14.88  5.79
ˆ(0)λ   28.94  2.94  3.37  3.18

Minimum λ for which bounds include zero  12.31  2.94  3.37  3.18

Intervals in square brackets are the bounds themselves, while the intervals in the round brackets are 95% cluster-robust 

asymptotic confidence intervals. 

*** = Statistically significant at 1%, ** = significant at 5%, * = significant at 10%.
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class indicator has been dropped so that there is only one treatment effect of interest. Both Krueger and the 

original Project STAR research team found that the aide treatment was nearly irrelevant to student outcomes. 

The next few rows in Table 1 report bounds on the treatment effect under a series of relative correlation 

restrictions. Asymptotic 95% confidence intervals are reported in parentheses for both the OLS point esti-

mates and RCR bounds. All confidence intervals are robust to clustering by teacher, and the RCR confidence 

intervals are calculated based on the method described in Imbens and Manski (2004). Statistical significance 

for the RCR bounds is assessed by inverting the Imbens-Manski confidence intervals.

In addition to reporting bounds and confidence intervals for the class size effect, Table 1 reports three 

auxiliary statistics. The first is the estimated value of λ∞, the relative correlation at which identification breaks 

down. The second is the estimated value of λ(0), the relative correlation implied by a class size effect of 

exactly zero. The third is the lowest value of λ for which the RCR bounds include zero:

ˆ ˆinf { : (( , ]) 0 (( , ])}L Hλ β λ β λ−∞ ≤ ≤ −∞

Because the identified set is not necessarily convex, this value is not necessarily equal to ˆ( 0).λ  However, 

because the identified set is monotonic in Λ [in the sense that Λ′⊂Λ⇒B
x
(Λ′)⊂B

x
(Λ)] the value can be found by 

simple iteration starting from min ˆ ˆ( ( 0), ).λ λ∞

As in Krueger’s original paper, the OLS results in Table 1 suggest that the small-class treatment 

increases test scores by five to seven percentile points. The RCR results suggest that these findings are 

quite robust, especially for kindergarten test scores. If the correlation between the small-class treatment 

and unobservables is no larger than the correlation between the treatment and observables (0  ≤  λ  ≤  1), the 

RCR bounds on class size effects in all grades are quite narrow and the lower bounds of the confidence 

intervals are all far from zero. If the correlation with unobservables is allowed to be three times as large 

as the correlation with observables, the lower bounds for kindergarten, grade 2, and grade 3 effects are 

all strictly positive but statistically insignificant. The bounds on the class size effect remain strictly posi-

tive for any relative correlation below about twelve for Kindergarten, slightly less than three for grade 1, 

and slightly more than three for grades 2 and 3. The finding that the Kindergarten effects are more robust 

than the effects for other grades is consistent with the consensus in the literature (Schanzenbach 2006, 

p. 206) that the later grades deviate more from the random assignment design as a result of attrition and 

transfers.

5.2  Application #2: Economic Effects of Malaria

Bleakley (2010b) uses malaria eradication campaigns in the United States, Brazil, Colombia, and Mexico as 

natural experiments to measure the effect of childhood exposure to malaria on labor productivity. The eco-

nomic effects of malaria are both of direct interest for those tropical countries in which malaria remains an 

issue, and of interest in relation to the more general literature on the potential role of disease as a barrier to 

economic development.

5.2.1  Data and Model

Bleakley’s research design exploits two major malaria eradication campaigns, one in the southern United 

States in the 1920s and a worldwide campaign in the 1950s. The data are observed at the state level (for the 

United States, Brazil, and Mexico) or the municipio-level (for Colombia) for cohorts who reached adulthood 

before the campaign started (the pre-eradication cohort) and for cohorts born shortly after the campaign (the 

post-eradication cohort). The econometric model is:

 

, , , , ,

x

j post j pre j pre j pre j post

y x

Y Y M X

β β ε

β Γ α ε− = + + +

c
c

��������� ������� ��������� �����

 

(20)
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where Y
j,pre

 and Y
j,post

 are proxies for pre-eradication and post-eradication labor productivity, M
j,pre

 is a 

measure of pre-eradication malaria incidence or prevalence, and X
j,pre

 is a set of pre-eradication state 

characteristics used as control variables. The parameter of interest is β, which is interpreted as the (neg-

ative) effect of malaria (M
j,pre

) on productivity in the pre-eradication cohort (Y
j,pre

). This model can be 

interpreted as a standard two-period fixed effects research design that has been modified to allow state-

specific trends as long as those trends are exogenous conditional on the predetermined characteristics 

in X
j, pre

. This model can be incorporated into the RCR framework with the relative correlation parameter 

, ,

, ,

corr( , )
.

corr( , )

j pre j post

j pre j pre

M

M X

ε
λ

Γ
=  The OLS regression can then be interpreted as imposing the assumption λ = 0.

Data and code to generate the OLS results are obtained from Bleakley (2010a). Results are reported only 

for the US and Colombia, the two countries with the largest sample sizes and strongest OLS results in the 

original paper.

5.2.2  Results

Table 2 shows results for US states, using malaria mortality as a measure of malaria prevalence and Hong’s 

index of malaria ecology as a measure of malaria incidence. The labor productivity variables are the occupa-

tional income score and the Duncan socioeconomic index, both of which use the state occupational distribu-

tion to approximate log average earnings. Table 2 reports results for Bleakley’s “Basic” and “Full controls” 

Table 2: OLS and RCR Estimates of the Effect of Malaria Mortality and Ecology on Indicators of Labor Productivity in US States.

Malaria measure  

 

 

 

Malaria mortality 

 

 

 

Malaria ecology (Hong)

Dependent variable Occupational

income

score

 

 

 

Duncan

socioeconomic

index

Occupational

income

score

 

 

 

Duncan

socioeconomic

index

Basic specification        

 OLS point estimate   0.11***  0.13***  0.24***  0.22***

  (95% CI)   (0.03, 0.19)  (0.00, 0.27)  (0.17, 0.30)  (0.11, 0.32)

 Bounds, 0  ≤  λ  ≤  0.1   [0.08, 0.11]**  [0.09, 0.13]  [0.24, 0.26]***  [0.22, 0.28]***

  (95% CI)   (0.01, 0.19)  (–0.06, 0.28)  (0.18, 0.35)  (0.12, 0.37)

 Bounds, 0  ≤  λ  ≤  0.5   [–0.09, 0.11]  [–.17, 0.41]  [0.02, 0.45]  [–0.19, 0.63]

  (95% CI)   (–0.21, 0.18)  (–0.36, 0.92)  (–0.16, 0.60)  (–0.66, 0.98)

 Bounds, 0  ≤  λ  ≤  1   (−∞, ∞)  (−∞, ∞)  (−∞, ∞)  (−∞, ∞)

 Bounds, 0  ≤  λ  ≤  3   (−∞, ∞)  (−∞, ∞)  (−∞, ∞)  (−∞, ∞)

 λ̂∞   0.93  0.93  0.76  0.76

 ˆ(0)λ   0.32  0.26  0.53  0.32

 Minimum λ for which bounds include zero   0.32  0.26  0.53  0.32

Full controls        

 OLS point estimate   0.11**  0.17*  0.21***  0.26***

  (95% CI)   (0.01, 0.21)  (–0.02, 0.36)  (0.11, 0.32)  (0.07, 0.46)

 Bounds, 0  ≤  λ  ≤  0.1   [0.08, 0.11]*  [0.17, 0.17]  [0.17, 0.21]*  [0.26, 0.39]***

  (95% CI)   (–0.02, 0.19)  (–0.09, 0.34)  (–0.02, 0.29)  (0.11, 0.68)

 Bounds, 0  ≤  λ  ≤  0.5   [–0.43, 0.11]  [–0.90, 1.23]  (−∞, ∞)  (−∞, ∞)

  (95% CI)   (–2.02, 0.19)  (–4.29, 4.67)  (−∞, ∞)  (−∞, ∞)

 Bounds, 0  ≤  λ  ≤  1   (−∞, ∞)  (−∞, ∞)  (−∞, ∞)  (−∞, ∞)

 Bounds, 0  ≤  λ  ≤  3   (−∞, ∞)  (−∞, ∞)  (−∞, ∞)  (−∞, ∞)

 λ̂∞   0.53  0.53  0.35  0.35

 ˆ(0)λ   0.27  0.32  0.22  0.20

 Minimum λ for which bounds include zero   0.27  0.32  0.22  0.20

Ninety-five percent confidence intervals in parentheses, *** = statistically significant at 1%, ** = significant at 5%, * = significant 

at 10%. OLS estimates are reproduced from Bleakley (2010b), Table 1.
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132      B. Krauth: Bounding a Linear Causal Effect Using Relative Correlation Restrictions

specifications. The Basic specification includes the log of state average unskilled wages in 1899 and a dummy 

variable for southern states, while the Full controls specification also includes various indicators of health, 

education, demographic, and labour market conditions. For each specification, Table 2 reports the OLS 

point estimate of the effect of malaria on productivity. Each point estimate corresponds to a value reported 

in Table 1 in Bleakley (2010b). To facilitate comparison with the RCR results, Table 2 reports 95% asymptotic 

confidence intervals for the OLS estimates rather than standard errors as in the original paper. RCR bounds 

and confidence intervals are reported for the same ranges of the relative correlation parameter as in Table 1.

The OLS results for US states suggest a strong and statistically significant effect of malaria. The RCR 

results suggest that this finding is robust to a mild correlation between pre-eradication malaria incidence 

or prevalence and unobserved factors relative to the correlation between malaria and the control variables. 

For example, consider the Basic specification estimate of the effect of malaria mortality on the occupational 

index score. The results in Table 2 imply that if the correlation between initial malaria mortality and unob-

served factors is between zero and ten percent of the correlation between initial malaria mortality and the 

control variables (0  ≤  λ  ≤  0.1), then the bounds on the effect are [0.08, 0.11] in comparison to the point estimate 

of 0.11. These bounds are statistically significant at 5%, and the 95% confidence interval of (0.01, 0.19) is 

only slightly wider than the OLS confidence interval of (0.03, 0.19). While the OLS results are robust to a mild 

relative correlation, they are not robust to a moderate or large relative correlation. If the correlation between 

malaria and unobserved factors is equal to or greater than 32% of the correlation between malaria and the 

control variables, then the RCR bounds include no effect at all. The estimated value for λ∞ implies that no RCR 

bounds can be placed on the effect if the correlation between malaria and unobserved factors is as much as 

93% as large as the correlation between malaria and the control variables. Similar results are found using 

the Duncan socioeconomic index as the dependent variable, and using Hong’s malaria ecology index as the 

malaria variable: the findings of a substantial negative effect of malaria are robust to a mild relative correla-

tion but not to a moderate or high relative correlation. The results using the Full Controls specification are 

less clear: because of limited degrees of freedom, confidence intervals are substantially wider and the OLS 

results are not generally robust to even a mild relative correlation.

Table 3 reports results for Colombia. The OLS results suggest a large and significant effect of malaria 

on income, while the OLS results for literacy and schooling are weaker. For the Basic specification the RCR 

analysis implies that the effect of malaria ecology on income is robust to mild relative correlation for both 

measures, and is robust to moderate relative correlation for the Poveda measure of malaria ecology. These 

findings are further supported by the Full Controls specification: the OLS point estimates remain statistically 

significant and similar in magnitude to the Basic specification, and the RCR results for the Poveda measure 

suggest that the effect is robust to mild relative correlation.

Overall, Bleakley’s results are robust only to mild relative correlation. Estimated bounds on the effect of 

malaria generally include no effect when the correlation between malaria and unobservables is more than 

20–30% of the correlation between malaria and observables. Bleakley’s findings thus depend very critically 

on the claim that the control variables in the “full specification” include almost all important variables that 

affect productivity and are correlated with malaria incidence or prevalence.

6  Conclusion

The methodology developed in this paper provides a simple means of providing bounds on causal para-

meters under relative correlation restrictions. In the Project STAR application using data from a random-

assignment experiment, the bounds on the class size effect are narrow and the lower bound is strictly positive 

even if class size is several times more strongly correlated with unobserved factors than with the observed 

control variables. In the application using observational data to measure the effect of malaria on productivity, 

the bounds on the effect are much wider, and the lower bound is negative as long as the upper bound on the 

correlation between malaria and unobserved factors is at least 30% of the correlation between malaria and 

the observed control variables.
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While it is not surprising that data from random assignment is more reliable than observational data, 

note that this finding of greater robustness comes entirely from the data itself and not from any information 

on the research design. While the method described in this paper is no substitute for careful evaluation of 

research design, it provides a systematic and straightforward means for that evaluation to be informed by the 

data itself.

The methodology can be advanced in future research along two main fronts. First, the model is inten-

tionally kept simple here but might be usefully extended to accomodate common features like fixed effects 

or simple forms of nonlinearity. Second, the estimators used here are based on ratios and/or inverses, and 

the literature on weak identification emphasizes that standard delta-method asymptotics can provide a poor 

approximation in a finite sample when a relevant denominator is nearly zero. Alternative inference proce-

dures that are robust to this possibility may be useful in this setting.

Appendix Proofs of Propositions

A.1 Proposition 1

Proof: To establish result 1, note that:

corr ( , ( ) )
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We can apply several properties of the best linear predictor, specifically that cov(x, yp) = cov(xp, yp), 

cov(x, xp) = var(xp) and var(y–yp) = var(y)–var(yp), to further derive:

 

2

2

1

2

3

4

cov ( , ) var ( )
1

cov ( , ) var ( )
( ; )

var ( ) 2 cov ( , ) var ( )
1

var ( ) 2 cov ( , ) var ( )

1

=

1

m x m

p p p

m x m

x

m x m x m

p p p p

m x m x m

x y b x

x y b x
b m

y b x y b x

y b x y b x

p

p

p

p

λ

 −
− − 

=
− +

−
− +

 
−  

−
 

(21)

where p
1
, p

2
, p

3
, and p

4
 are all polynomials (and thus differentiable) in b

x
. They are also differentiable in m. 

Application of the quotient and product rules implies that λ(b
x
; m) is differentiable provided that (a) p

2
≠0, (b) 

p
4
≠0, and (c) 3

4

1.
p

p
>  Condition (a) fails if and only if:

Brought to you by | Tufts University

Authenticated

Download Date | 10/24/16 3:28 PM



B. Krauth: Bounding a Linear Causal Effect Using Relative Correlation Restrictions      135

2
cov ( , ) var ( ) 0p p p

m x m
p x y b x= − =

Since var
m

(xp) > 0 by equation (11), we can solve to get

cov ( , )
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x y
b m

x
β∞= =

Condition (b) fails if and only if:

4
var ( ) 0p p
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p y b x= − =

which implies that yp–b
x
xp is constant. Since the covariance of any random variable with a constant is zero, 

this in turn implies that cov(xp, yp–b
x
xp) = cov(xp, yp)–b

x
var(xp) = 0. Again we can solve for b

x
 to get:
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Condition (c) fails if and only if p
3
  ≤  p

4
, or equivalently:

var ( ) var ( )p p
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Note that yp–b
x
xp is the best linear predictor of y–b

x
x, so:
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m x m x m x x
y b x y b x y b x y b x− = − + − − −

This implies that var
m

(y–b
x
x–(yp–b
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xp)) = 0, which also implies that:
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Rearranging, we get:

p p
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y y b x b x= − +

which implies that y is an exact linear function of (x, c) and equation (9) is violated. Therefore, condition (c) 

must hold. Since conditions (a), (b), and (c) hold for all ( ), ( ; ),
x x x

b m b mβ λ∞
≠  is differentiable at all ( ).

x x
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≠

To establish result 2, note that var
m

(x) is strictly positive by (9) and var
m

(xp) is strictly positive by (11). 

Therefore:
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So by L’Hospital’s rule:
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By the same reasoning:
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So by two applications of L’Hospital’s rule:

2
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Result 2 can then be derived by substitution, and the argument repeated for lim .
x

b →−∞

To prove result 3 I first show how the behavior of λ(b
x
; m) near ( )

x
mβ∞  depends on some special cases:

Case A: Suppose that m implies an exact linear relationship between yp and xp, i.e.
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. Then equation (14) is satisfied for all λ when ( ) .
x x m

b m bβ∞= =
 Proof: To show that ( ) :

x m
m bβ∞ =

cov ( , )
( )

var ( )

cov ( , ) cov ( , )

var ( )

var ( ) 0

var ( )

p p

m

x p

m

p p p p p

m m m m m m

p

m

p

m m

p

m

m

x y
m

x

x a b x x y a b x

x

b x

x

b

β∞ =

+ + − −

=

+

=

=

  To show that equation (14) is satisfied at ( )
x

mβ∞  for all λ, note that cβ
c
(b

x
; m) = yp–b

x
xp. This implies 

that:

var ( ( ( ); )) var ( ( ) )

var ( )

var ( ) 2cov ( , ) var ( )

var ( )

0

p p

m x m x

p p

m m

p p p p

m m m m m m m

p p

m m m

m m y m x

y b x

y b x y b x a a

y a b x

β β β∞ ∞
= −

= −

= − − − +

= − −

=

c
c

  and by the same argument ( , ( ( ); ))=0.
m x

cov x m mβ β∞

c
c  Equation (14) thus reduces to 0 = λ0, a condi-

tion that is satisfied by any λ.

Case B: Suppose that m implies:

 

cov ( , ) cov ( , )

var ( ) var ( )

p p

m m

p

m m

y x y x

x x
=

 

(23)

 Then equation (14) is satisfied for all λ when ( ).
x x

b mβ∞

=

 Proof: First, note that in this case:

cov ( , ( ) ( ( ); )) cov ( , ( ) ( ) )

cov ( , ) ( )var ( ) cov ( , ) ( )var ( )

cov ( , ) cov( , )
cov ( , ) var ( ) cov ( , ) var( )

var ( ) var( )

0

p p

m x x m x x

p p p

m x m m x m

p p
p p pm

m m m p

m

x y m x m m x y m x y m x

x y m x y x m x

x y x y
x y x y x x

x x

β β β β β

β β

∞ ∞ ∞ ∞

∞ ∞

− − = − − +

= − − +

= − − +

=

c
c

 and:
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cov ( , ( ( ); )) cov ( , ( ) )

cov ( , ) ( )var ( )

cov ( , )
cov ( , ) var ( )

var ( )

0

p p

m x m x

p p p

m x m

p p

p p pm

m mp

m

x m m x y m x

x y m x

x y
x y x

x

β β β

β

∞ ∞

∞

= −

= −

= −

=

c
c

 Equation (14) thus reduces to 0 = λ0, which is satisfied for all λ.

Case C:  Suppose that neither (22) nor (23) hold. Then for any λ∈(–∞, λ∞(m))∪(λ∞(m), ∞) there is a b
x
 such that 

λ(b
x
; m) = λ, i.e., that solves equation (14).

  Proof: First, note that since cov ( , ) ( )var ( ) 0,p p p

m x m
x y m xβ∞

− =  the existence of a solution to equa-

tion (14) when ( )
x x

b mβ∞

=  requires that either var ( ( ) ) 0,p p

m x
y m xβ∞

− =  implying (22) holds, or 

cov ( , ) ( )var ( ) 0,
m x m

x y m xβ∞

− =  implying (23) holds. Since neither holds, there is no λ that satisfies 

equation (14) for ( ).
x x

b mβ∞

=

  Next I characterize the behavior of λ(b
x
; m) near ( ).

x
mβ∞  Since var

m
(xp) > 0, p

2
 is positive for  

( ),
x x

b mβ∞

<  negative for ( ),
x x

b mβ∞>  and zero when ( ).
x x

b mβ∞

=  Also note that cov ( , )
m x

x y − = 

cov ( , )
, ) ( )var ( ) cov ( , ) var ( ),

var ( )

p p

m

m x m m mp

m

x y
x y m x x y x

x
β∞

− = −  so p
1
 is strictly positive for all ( )

x x
b mβ∞

≈  if  

 
cov ( , ) cov ( , )

,
var ( ) var ( )

p p

m m

p

m m

x y x y

x x
>  and strictly negative for all ( )

x x
b mβ∞

≈  if 
cov ( , ) cov ( , )

.
var ( ) var ( )

p p

m m

p

m m

x y x y

x x
<  

This implies that:

( )

cov ( , ) cov ( , )
if 

var ( ) var ( )
lim ( ; )

cov ( , ) cov ( , )
if 

var ( ) var ( )

x x

p p

m m

p

m m

x p p
b m

m m

p

m m

y x y x

x x
b m

y x y x

x x

β

λ
∞↑


∞ >


=

−∞ <



 and

( )

cov ( , ) cov ( , )
if 

var ( ) var ( )
lim ( ; )

cov ( , ) cov ( , )
if 

var ( ) var ( )

x x

p p

m m

p

m m

x p p
b m

m m

p

m m

y x y x

x x
b m

y x y x

x x

β

λ
∞↓


−∞ >


=

∞ <



  I have thus established that lim ( ; ) ( ),
x

b x
b m mλ λ∞

→−∞
=  that lim ( ; )

x x
xb

b m
β

λ∞↑
 is either –∞ or ∞, and 

that λ(b
x
; m) is continuous on ( , ( )).

x
mβ∞

−∞  Suppose for the moment that 
( )

lim ( ; ) .
x x

xb m
b m

β
λ∞↑

=−∞  

By the intermediate value theorem, for any λ∈(–∞(m)), there exists some ( , ( ))
x x

b mβ∞

∈ −∞  such 

that λ(b
x
; m) = λ. This is a sufficient condition for b

x
 to solve equation (14). Since lim ,

x x
b β∞↑

=−∞  then 

( )
lim ( ; ) .

x x
xb m

b m
β

λ∞↓
=∞  Again, since λ(b

x
; m) is continuous on ( ( ), ),

x
mβ∞ ∞  the intermediate value 

theorem implies that for any λ∈(λ∞(m), ∞) there exists some ( ( ), )
x x

b mβ∞

∈ ∞  such that λ(b
x
; m) = λ. 

Therefore, for any λ∈(–∞, λ∞(m))∪(λ∞(m), ∞) there is a b
x
 such that λ(b

x
; m) = λ, i.e., that solves 

 equation (14). The same argument can be duplicated for the case lim ( ) .
x x

xb
b

β
λ∞↑

=∞  Note that there 

may or may not be a b
x
 such that λ(b

x
; m) = λ∞(m).

To prove result 4, pick any b
x
 and consider two cases. First, suppose that ( ).

x x
b mβ∞

=  Then ( ; )
x

b B mΛ∉ ɶ  since 

λ(b
x
; m) does not exist. Next, suppose that ( ).

x x
b mβ∞

≠  Then λ(b
x
; m) exists (by result 1 of this proposition) and 

provides the unique λ that solves equation (14) for that λ. Therefore,
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( ; )if and only if ( ; )  and ( )
x x x x x

b B m b B m b mΛ Λ β∞

∈ ∈ ≠
ɶ

which is another way of stating the result. □

A.2 Proposition 2

Proof: Since Λ is nonempty, λ∞(m
0
)∉Λ implies that Λ must contain some λ≠λ∞(m

0
). Result 3 of Proposition 1 

says that there exists some b
x
 such that (λ, b

x
) satisfy equation (14). Therefore, the identified set is nonempty.

Since Λ is closed, λ∞(m
0
)∉Λ implies that there is some ε > 0 such that (λ

∞
(m

0
)–ε, λ∞(m

0
)+ε) is disjoint 

from  Λ. Result 2 of Proposition 1 says that 
0 0 0

lim ( ; ) lim ( ; ) ( ).
x x

b x b x
b m b m mλ λ λ∞

→∞ →−∞
= =  This means that 

given such an ε, there is some finite B
ε
 such that 

0
( )

x
B m

ε
β∞>  and:

0 0 0

0 0 0

0

0 0

| | ( ; ) ( ( ) , ( ) )   ( by result 2 of Proposition 1)

( ; )   ( since( ( ) , ( ) )is disjoint from )

( , )   ( by definition of )

( , ) { ( )}   ( since 

x x

x

x

x x x

b B b m m m

b m m m

b B m B

b B m m B

ε

ε

λ λ ε λ ε

λ Λ λ ε λ ε Λ

Λ

Λ β β

∞ ∞

∞ ∞

∞

> ⇒ ∈ − +

⇒ ∉ − +

⇒ ∉

⇒ ∉ ∪ >

ɶ ɶ

ɶ
0

0

( ))

( , )   ( by result 4 of Proposition 1)
x x

m

b B mΛ

∞

⇒ ∉

Therefore, the identified set is bounded. □

A.3 Proposition 3

Proof: Both ( )
x

mβ∞  and λ∞(m) are continuous in m by the quotient rule, given that var
m

(xp) > 0. Result 1 of 

Proposition 1 says that λ(b
x
; m) is continuous in m for all ( )

x x
b mβ∞

≠ ). So the first set of results follows from the 

straightforward application of Slutsky’s theorem.

For the second result, note that the implicit function theorem implies that ( ; )L

x
mβ Λ  is continuously 

differentiable in m if 
( ; )

( ; )
| 0.

L
x x

x

b m
x

d b m

db β Λ

λ

=
≠  In that case, consistency of ˆ ( )

xL
b Λ  follows from Slutsky’s 

theorem. The same argument applies to ˆ ( ).
xH

b Λ

For the third result, note that if B
x
(Λ; m

0
) = R, then result 2 of Proposition 1 implies λ∞(m

0
) is in the 

interior of Λ. Therefore, there exists an ε > 0 and B
1
 < B such that [λ(B

1
; m

0
)–ε, λ(B

1
; m

0
)+ε]⊂Λ. Since 

1 1 0
ˆ( ) ( ; ):

p
B B mλ λ→

1
ˆ ˆlim Pr( ) lim Pr( ( ) ) 1

xLn n
b B Bλ Λ

→∞ →∞

< ≥ ∈ =

The same argument applies to ˆ ( ),
xH

b Λ  with a change of sign. □

A.4 Proposition 4

Proof: Both ( ; )L

x
mβ Λ  and ( ; )H

x
mβ Λ  are differentiable in m under these conditions, so the result follows 

from direct application of the delta method, where:

 

0

0

( ; ) |

( ; ) |

L

m x m m

H

m x m m

m
A

m

β Λ

β Λ

=

=

 ∇
 =

∇    

(24)

The expression for A given in the proposition comes from applying the implicit function theorem:
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( ; )

( ; )

( ; )
( ; )

( ; ) /

( ; )
( ; )

( ; ) /

L
x x

H
x x

L m x

m x

x x b m

H m x

m x

x x b m

b m
m

b m b

b m
m

b m b

β Λ

β Λ

λ
β Λ

λ

λ
β Λ

λ

=

=

∇
∇ =−

∂ ∂

∇
∇ =−

∂ ∂

 

(25)

and substituting. While mathematically unnecessary, this substitution is important computationally. 

 Derivatives of λ(b
x
; m) – a closed form function with closed form derivatives – can be calculated much more 

accurately than derivatives of ( ; )L

x
mβ Λ  – an implicit function that must be approximated by iterative 

methods. □

A.5 Proposition 5

Proof: If var(xp) = 0, then cov(x, yp–b
x
xp) = 0 for all b

x
. This implies that (14) holds if and only if cov(x, y–b

x
x) = 0, 

i.e., if b
x
 = cov(x, y)/var(x). □

A.6 Proposition 6

Proof: First, rewrite:

1

2

corr ( , )
( ; )

corr ( , )

cov ( , )

corr ( , ) var ( )var ( )

( ; )

( ; )

p p

m x x

x p p

m x

p p

m x x

p p p p

m x m m x x

x

x

x y b x y b x
b m

x y b x

x y b x y b x

x y b x x y b x y b x

q b m

q b m

λ
− − +

=

−

− − +

=

− − − +

=

The numerator of ˆ( ; )
x n

b mλ  is:

1
ˆ( ; ) cov( , ) var( )

p

x n x
q b m x y b x→ −

while the denominator is

2
ˆ( ; ) 0

p

x n
q b m →

In a given finite sample, 
2

ˆ( ; )
x n

q b m  will be nonzero with probability one if x or any of c is continuously 

distributed, and probability approaching one as n→∞ (WPA1) otherwise. So ˆ( ; )
x n

b mλ  will exist even though 

λ(b
x
; m

0
) does not. Let OLS( )

x
mβ  be the value of b

x
 that implies q

1
(b

x
; m) = 0, or equivalently:

OLS cov ( , )
( )

var ( )

p p

m

x p

m

x x y y
m

z x
β

− −
=

−

Note that OLS ˆ( )
x n

mβ  is just the coefficient on x from the OLS regression of y on x and c, and that:

 

OLS OLS

0

cov( , ) cov( , )
ˆ( ) ( )

var( )var( )

p p
p

x n x xp

x x y y x y
m m

xx x
β β β

− −

→ = = =

−

 

(26)
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Since OLS

1
ˆ( ( )) 0

x n
q mβ =  by construction and OLS

2
ˆ( ( )) 0

x n
q mβ ≠  WPA1:

OLS ˆ ˆ( ( ); ) 0 WPA1
x n n

m mλ β Λ= ∈

Therefore:

 OLSˆ ˆˆ( ) ( ) ( ) WPA1L H

x n
mβ Λ β β Λ≤ ≤  (27)

Pick any ε > 0. The event OLS ˆ(| ( ) | )
x n x

mβ β ε− <  clearly implies OLS ˆ( ( ) ),
x n x

mβ β ε> −  which itself implies 
ˆ( ( ) )H

x
β Λ β ε> −  by equation (27). Therefore:

OLS ˆˆPr(| ( ) | ) Pr( ( ) ) 1H

x n x x
mβ β ε β Λ β ε− < ≤ > − ≤

By (26), OLS ˆPr(| ( ) | ) 1,
x n x

mβ β ε− < →  so by the sandwich theorem:

 ˆPr( ( ) ) 1H

x
β Λ β ε> − →  (28)

Let λmax satisfy |λ|  ≤  λmax for all λ∈Λ. Then λ∈Λ implies |λ|  ≤  λmax. Therefore:

 
max

ˆ0 Pr( ( ) )

ˆPr( ( ; ) for some )

ˆPr(| ( ; ) | for some )

H

x

x n x x

x n x x

b m b

b m b

β Λ β ε

λ Λ β ε

λ λ β ε

≤ ≥ +

= ∈ > +

≤ ≤ ≥ +
 

(29)

Now, for any δ≠0

1

2

ˆ( ; ) cov( , ) ( )var( ) var( ) 0

ˆ( ; ) 0

p

x n x

p

x n

q m x y x x

q m

β δ β δ δ

β δ

→+ − + =− ≠

→+

Therefore:

 
maxˆPr(| ( ; ) | for some ) 0

x n x x
b m bλ λ β ε≤ ≥ + →  (30)

By the sandwich theorem (29) and (30) imply ˆPr( ( ) ) 0,H

x
β Λ β ε≥ + →  or equivalently that:

 ˆPr( ( ) ) 1H

x
β Λ β ε< + →  (31)

Taking (28) and (31) together produces:

 ˆPr(| ( ) | ) 1H

x
β Λ β ε− < →  (32)

which is the result stated in the proposition. The same argument applies to .L

x
β  □
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