
10 Inferences about 
Population Means

In this chapter we are going to discuss ways for making inferences 
about means, first for a single population and then for a difference between the 
means of two populations. The procedures and conventions of significance testing 
were emphasized in the previous chapter, and now we are going to apply these 
procedures to tests of hypotheses about means. Remember that a significant re
sult will always be one falling among those that are extremely deviant from ex
pectation and that are improbable if the null hypothesis were true, but that agree 
relatively well with expectation and have relatively higher probability if some 
situation covered by the alternative hypothesis were true. Before the test is 
carried out, some a level for significance is chosen as a specification of “improbable 
event, given /f0,” for this situation. The conventional rules of the game determine 
which of the values of a are chosen.

10*1 Large-sample problems with unknown
POPULATION O'2

In most of the examples of hypothesis testing up to this point we 
have actually “fudged” a bit on the usual situation: we have assumed that a2 is 
somehow7 known, so that the standard error of the mean is also known exactly. 
In these examples the author did not explain how a2 became known, largely be
cause he could not think up a good reason. Now we must face the cold facts of the 
matter: for inferences about the population mean, <r2 is seldom known. Instead, we 
must use the only substitute available for tr2, which is our unbiased estimate $2, 
calculated from the sample.

Notice that this problem does not exist for hypotheses about a popu
lation proportion p, since the existence of an exact hypothesis about p specifies
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390 Inferences about Population Means

what the value of the standard error of P, the sample proportion, must be. There
fore, the special techniques of this chapter apply only to inferences about means, 
and not to inferences about proportions.

From what we have already seen of the relation between sample 
size and accuracy of estimation, it makes sense that for large samples s2 should be 
a very good estimate of a2. In general, for very large samples, there is rather little 
risk of a sizable error when one uses s in place of <r in estimating the standard error of 
the mean.

Hence, when the sample size is quite large, tests of hypotheses about 
a single mean are carried out in the same way as when o- is known, except that the 
standard error of the mean is estimated from the sample:

4 s Sest. cat = — 7=  — —y~
V n  %/n  -• 1

The standardized score corresponding to the sample mean is then referred to the 
normal distribution. This step is justified by the central limit theorem when N  is 
large, regardless of the population distribution's form.

For example, consider the following problem. A small rodent charac
teristically shows hoarding behavior for certain kinds of foodstuffs when the 
environmental temperature drops to a certain point. Numerous previous experi
ments have shown that in a fixed period of time, and given a fixed food supply, the 
mean amount of food hoarded by an animal is 9 grams. The experimenter is cur
rently interested in possible effects that early food deprivation may have upon 
such hoarding behavior in the animal as an adult. So, the experimenter takes a 
random sample of 175 infant animals and keeps them on survival rations for a 
fixed period wdiile they are at a certain age, and on regular rations thereafter. 
When the animals are adults he puts each one in an experimental situation where 
the lowered temperature condition is introduced. The amount of food each hoards 
is recorded, and a score is assigned to each animal.

What is the null hypothesis implied here? The basic experimental 
question is “Does the experimental treatment (deprivation) tend to affect the 
amount of food hoarded?” The experimenter has no special reason to expect 
either an increase or a decrease in amount, but is interested only in finding out if a 
difference from normal behavior occurs. This question may be put into the form 
of a null and an alternative hypothesis:

Ho’ po — 9 grams 
Hi: ^  9 grams.

Suppose that the conventional level chosen for a. is .01, so that the 
experimenter will say that the result is significant only if the sample mean falls 
among either the upper .005 or the lower .005 of all possible results, given Ho. 
Reference to Table I shows that .005 is the probability of z score in a normal dis
tribution falling at or below —2.58, and the probability is likewise .005 for a z 
equal to or exceeding +2.58. Accordingly, the sample result will be significant
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only if
M -  E{M) 

est. <Tjf

equals or exceeds 2.58 in absolute magnitude (disregarding sign). When the null 
hypothesis is true, E(M) — 9, and for a sample this large the value of the standard
error of the mean should be reasonably close to —4 ^  or ——.......the value of the

\ / N  V N  ~  1
sample estimate.

Everything is now set for a significance test except for the sample 
results. The sample shows a mean of 8.8 grams of food hoarded, with a standard 
deviation, S, of 2.3. The estimated standard error of the mean is thus

est. <t\% 2.3 __
\/l7 5  -  i

2.3
13.23 .1738

The standardized score of the mean is found to be

—

8.8 -  9 
.174

- . 2
T74 1.149.

This result does not qualify for the region of rejection for a = .01. Since the 
experimenter feels that he can afford to reject H0 only if the a probability of error 
is no more than .01, then he cannot do so on the basis of this sample. On the other 
hand, the risk run in accepting H q is unknown, so he might well suspend judgment, 
pending more evidence.

10.2 Confidence intervals for large samples
WITH UNKNOWN (X2

Confidence intervals may also be found by the methods of Chapter 9. 
However, either when a2 is unknown, or when the population distribution has un
known form, a normal sampling distribution is assumed only for large samples. 
Just as in significance tests, the estimated standard error of the mean can be used 
in place of ttm in finding confidence limits when the sample is relatively large.

For example, the experimenter studying hoarding behavior com
putes the approximate 99 percent confidence limits in the following way:

M  — 2.58 (est. et m) 
and M  +  2.58 (est. <tm)

so that for this problem, the numerical confidence limits are

8.8 -  2.58(.174) or 8.35 
and 8.8 +  2.58(.174) or 9.25.

The experimenter can say that the probability is approximately .99 that the true 
value of ju is covered by an interval such as that between 8.35 and 9.25.
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Notice that the value g0 = 9 falls between these limits, reflecting 
the fact that the hypothesis H0 cannot be rejected if a is set at .01 (two-tailed).

10.3 T he problem of unknown cr2 when sample
SIZE IS SMALL

Just as for any statistic used to estimate a parameter value, the 
estimated standard error of the mean will very likely not be exactly equal to cM. 
This is not a particular problem when sample size is large, since we can at least be 
sure that est. cm is very likely to be close to the true cm in value.

On the other hand, we simply cannot have this confidence in our 
estimate of the standard error when sample size is small. Our estimate is almost 
bound to be in error to some extent, and if the sample size is very small, we can 
expect the size of this error to be substantial in any given sample. This necessitates 
a different approach to the problem of testing hypotheses and establishing confi
dence intervals for the population mean for small samples.

In inferences about the ratio we would like to evaluate and refer 
to a normal sampling distribution is the standardized score

M -  E(M) 
Zm ~ — CM

[10.3.1*]

However, when we have only an estimate of cm, then the ratio we really compute 
and use is not a normal standardized score at all, although it has much the same 
form. The ratio actually used is

t = --------- — [10. 3. 2*]est. cm

There is an extremely important difference between the two ratios, zm and t. For 
zm, the numerator (M — E(M)) is a random variable, the value of which depends 
upon the particular sample drawn from a given population situation; on the other 
hand, the denominator is a constant, cm, which is the same regardless of the par
ticular sample of size N  we observe. Now contrast this ratio with the ratio t : just 
as before, the numerator of t is a random variable, but the denominator is also a 
random variable, since the particular value of s— and hence the estimate of cM—■ 
is a sample quantity. Over several different samples, the same value of M must 
give us precisely the same value of zm\ however, over different samples, the same 
value of M  will give us different t values. Similar intervals of t and zm values 
should have different probabilities of occurrence. For this reason it is risky to use 
the ratio t as though it were zm unless the sample size is very large.

10.4 T h e  distribution of t

The solution to the problem of the nonequivalence of t and zm rests 
on the study of t itself as a random variable. That is, suppose that the t ratio were
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computed for each conceivable sample of N  independent observations drawn from 
some normal population distribution with true mean y, Each sample would have 
some t value,

M -  E{M) _  M ~  n 
est. am s /y /N  — 1

[10.4.1*]

Over the different samples the value of t would vary, of course, and the different 
possible values would each have some probability-density. A random variable 
such as t is an example of a fesf-statistic, so called to distinguish it from an ordinary 
descriptive statistic or estimator, such as M  or s2. The t value depends on other 
sample statistics, but is not itself an estimate of a population value. Nevertheless, 
such test-statistics have sampling distributions just as ordinary sample statistics 
do, and these sampling distributions have been studied extensively.

In order io find the exact distribution of t, one must assume that ike basic 
population distribution is normal. The main reason for the necessity of this assump
tion is that only for a normal distribution will the basic random variables in numer
ator and denominator, sample M  and s, be statistically independent; this is a use 
of the important fact mentioned in Section 8.8. Unless M  and s are independent, 
the sampling distribution of t is extremely difficult to specify exactly. On the other 
hand, for the special case of normal populations, the distribution of the ratio t is 
quite well known. In order to learn what this distribution is like, let us take a look 
at the rule for the density function associated with this random variable.

The density function for t is given by the rule:

/(f; v) = G{v)
° c  <  t  <  CO 

0 < 1/ [10.4.2*]

Here, G{v) stands for a constant number which depends only on the parameter v 
(Greek nu), and how this number is found need not really concern us. Let us focus 
our attention on only the “working part" of the rule, w'hich involves only v and 
the value of t. This looks very different from the normal distribution function rule 
in Section 8.1. As with the normal function rule, however, a quick look at this 
mathematical expression tells us much about the distribution of t (for v > 1).

First of all, notice that the particular value of t enters this rule only 
as a squared quantity, showing that the distribution of sample t values must be 
symmetric, since a positive and a negative value having the same absolute size 
must be assigned the same probability-density by this rule. Second, since all the 
constants in the function rule are positive numbers, and the entire term involving 
t is raised to a negative power, the largest possible density value is assigned to 
t = 0. Thus t = 0 is the distribution mode. Furthermore, although it is not quite 
so apparent from an examination of the function rule, the distribution is unimodal 
and “bell-shaped.” If we inferred from the symmetry and unimodality of this 
distribution that the mean of t is also 0, we should be quite correct. In short, the 
f distribution is a unimodal, symmetric, bell-shaped distribution having a graphic 
form much like a normal distribution, even though the two function rules are quite
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dissimilar. Loosely speaking, the curve for a t distribution differs from the stand
ardized normal in being "plumper” in extreme regions and “flatter” in the central 
region, as Figure 10.4.1 shows. (Note that both t and the standardized normal 
distribution have a mean of zero,*' > 1 .)

The most important feature of the t distribution will appear if we 
return for a look at the function rule. Notice that the only unspecified constants 
in the rule are those represented in 10.4.2 by v and (?(»'), which depends only on v. 
This is a one-parameter distribution: the single parameter is v, called the degrees of 
freedom. Ordinarily, in most applications of the t distribution to problems involving a 
single sample, v is equal to N  — 1, one less than the number of independent observa
tions in the sample. For samples of N  independent observations from any normal 
population distribution, the exact distribution of sample t values depends only on 
the degrees of freedom, N  — 1. Remember, however, that the value of E(M) or p 
must be specified when a t ratio is computed, although the true value of a need not 
be known.

F I G .  10.4.1. Distribution o f t with v =  4, and standardized normal distribution

In principle, the value of v can be any positive number, and it just 
happens that v — N  — 1 is the value for the degrees of freedom for the particular 
t distributions we will use first. Later we will encounter problems calling for t dis
tributions with other numbers of degrees of freedom. Like most theoretical distri
butions, the t distribution is actually a family of distributions, with general form 
determined by the function rule, but with particular probabilities dictated by the 
parameter v. For any value of v > 1, the mean of the distribution of t is O.For 
v >  2 the variance of the t distribution is v/(v — 2), so that the smaller the value 
of v the larger the variance. As v becomes large the variance of the t distribution 
approaches 1.00, which is the variance of the standardized normal distribution.

Incidentally, the random variable t is often called "Student’s f,” and 
the distribution of t, "Student’s distribution.” This name comes from the statisti
cian W. S. Gosset, who was the first to use this distribution in an important prob
lem, and who first published his results in 1908 under the pen-name "Student.” 
Distributions of the general "Student” form have a number of important applica
tions in statistics. One such application will occur in Chapter 19. It should also 
be noted that Student distributions are closely related to the beta family of dis
tributions discussed in Chapter 8. This connection will be developed more fully 
in the next chapter.
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10.5 T he t and the standardized
NORMAL DISTRIBUTION

As we have seen, the “shape” of the t distribution is not unlike that 
of the normal distribution. Just as for the standardized normal, the mean of the 
distribution of t is 0 for v > 1 although the variance of t is greater than 1.00 for 
finite v > 2. Given any extreme interval of fixed size on either tail of the t distribu
tion, the probability associated with this interval in the t distribution is larger than 
that for the corresponding normal distribution of zm- The smaller the value of v, 
the larger is this discrepancy between t and normal probabilities at the extreme 
ends of each distribution. This reflects and partly explains the danger of using a t 
ratio as though it were a z ratio: extreme values of t are relatively more likely than 
comparable values of zm. A small sample size corresponds to a small value of v, or 
N — 1, and thus there is serious danger of underestimating the probability of an 
extreme deviation from expectation when sample size is small. This is apparent in 
the illustration (Figure 10.4.1) showing the distribution of i together with the 
standardized normal function.

Suppose that a sample of 5 observations is drawn, and from this 
sample we compute a ratio, t, using the estimate of <tm from the sample. Further
more, suppose that

M -  E(M) 
est. <tm

\  2.13.

That is, we obtain a value for t greater than or equal to 2.13. In the t distribution 
for samples of size 5 (v = 4), this interval has probability of .05. That is, when 
sample size is 5, so that degrees of freedom are 4, the probability of obtaining a 
ratio in this interval of values is 1/20. However, if the ratio is interpreted as a zu 
variable, then the normal probability for this interval is .0166. Incorrectly con
sidering a t ratio as a standardized normal variable leads one to underestimate the 
probability of values in extreme intervals, which are really the only intervals of 
interest in significance tests.

On the other hand, notice what should happen to the distribution of 
t as v becomes large (sample size grows large), as suggested both by Figure 10.4.1 
and by the variance of a t distribution. As sample size N grows large, the distribution 
of t approaches the standardized normal distribution. For large numbers of degrees of 
freedom, the exact probabilities of intervals in the t distribution can be approximated 
closely by normal probabilities.

The practical result of this convergence of the f and the normal 
probabilities is that the t ratio can be treated as a zM ratio, provided that the sam
ple size is substantial. The normal probabilities are quite close to—though not 
identical with—the exact t probabilities for large v. On the other hand, when sam
ple size is small the normal probabilities cannot safely be used, and instead one 
uses a special table based on the i distribution.

How large is “large enough” to permit use of the normal tables? 
If the population distribution is truly normal, even forty or so cases permit a fairly
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accurate use of the normal tables in confidence intervals or tests for a mean. If 
really good accuracy is desired in determining interval probabilities, the t distribu
tion should be used even when the sample size is around 100 cases. Beyond this 
number of cases, the normal probabilities are extremely close to the exact t 
probabilities. For example, in the “hoarding'’ experiment just discussed, use of t 
rather than z values would have given confidence limits of M ± 2.6(est instead 
of M ±  2.58(est cm), a very slight difference.

Recall that the stipulation is made that the population distribution 
be normal when the t distribution is used, even when the normal approximations 
are substituted for the exact (-distribution probabilities. As we have already seen, 
for a normal population the distribution of sample means must be normal anyway; 
the difficulty with the use of a normal sampling distribution for small N  comes 
solely from the fact that our estimate of the standard error is a random variable 
rather than a constant over samples, and this is the reason we must use the t dis
tribution. Thus the t distribution is related to the normal distribution in two dis
tinct ways: the parent distribution must be normal if ( probabilities are to be 
found exactly, and for sufficiently large N, the distribution of t approaches the 
normal sampling distribution in form.

10.6 T he application of the t distribution
WHEN THE POPULATION IS NOT NORMAL

It is apparent that the requirement that the population be normal 
limits the usefulness of the t distribution, since this is an assumption that we can 
seldom really justify in practical situations. Fortunately, when sample size is 
fairly large, and provided that the parent distribution is roughly unimodal and 
symmetric, the t distribution apparently still gives an adequate approximation to 
the exact (and often unknown) probabilities of intervals for / ratios under these 
circumstances. However, one should insist on a relatively larger sample size the 
less confident that he is that the normal rule holds for the population, if he plans 
to use the t distribution. In effect, if the sample size is large enough so that the 
normal probabilities are good approximations to the ( probabilities anyway, then 
the form of the parent distribution is more or less irrelevant. However, often the 
sample size is so small that the t distribution must be used and here it is somewhat 
risky to make inferences from ( ratios unless the population is more or less normally 
distributed. This is an especially serious problem when one-tailed tests of hy
potheses are made, since a very skewed population distribution can make the / 
probabilities for one-tailed tests considerably in error. Once again, it is wise to 
plan on somewhat larger samples when one is considering a one-tailed test using 
the t distribution and the population is not assumed normal.

10.7 T ables of the t distribution

Unlike the table of the standardized normal function, which suffices 
for all possible normal distributions, tables of the t distribution must actually in-
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elude many distributions each depending on the value of v, the degrees of freedom. 
Consequently, tables of t are usually given only in abbreviated form; otherwise, a 
whole volume would be required to show all the different t distributions one might 
need.

Table III in Appendix C shows selected percentage points of the dis
tribution of t, in terms of the value of v. Different v values appear along the left- 
hand margin of the table. The top margin gives values of Q, which is 1 — p(t Z  a), 
one minus the cumulative probability that t is less than or equal to a specific value 
a, for a distribution within the given value for v. A cell of the table then shows the 
value of t cutting off the upper Q proportion of cases in a distribution for v degrees 
of freedom.

This sounds rather complicated, but an example will clarify matters 
considerably: suppose that N  = 10, and we want to know the value beyond which 
only 10 percent of all sample i values should lie. That is, for the distribution of 
t shown in Figure 10.7.1, we warn the l value that cuts off the shaded area in the 
curve, the upper 10 percent:

First of all, since N — 10, v = Ar — 1 = 9. So, we enter the table 
for the row marked 9. Now since we want the upper 10 percent, we find the column 
for which Q = .1. The corresponding cell in the table is the value of t we are look
ing for, t = 1.383. We can say that in a t distribution with 9 degrees of freedom,

the probability is .10 that a l value equals or exceeds 1.383. Since the distribution is 
symmetric, we also know that the probability is .10 that a t value equals or falls 
below — 1.383. If we wanted to know the probability that t equals or exceeds 1.383 
in absolute value, then this must be .10 +  .10 = .20, or 2Q.

Suppose that in a sample of 21 cases, we get a t value of 1.98. We 
want to see if this value falls into the upper .05 of all values in the distribution. 
We enter row v = 21 — 1 = 20, and column Q = ,05; the t value in the cell is 
1.725. Our obtained value of i is larger than this, and so the obtained value does 
fall among the top 5 percent of all such values. On the other hand, suppose that 
the obtained t had been —3. Does this fall either in the top .001 or the bottom 
.001 of all such sample values? Again with v ~ 20, but this time with Q = .001, 
we find a t value of 3.552. This means that at or above 3.552 lie .001 of all sample 
values, and also at, or below —3.552 lie .001 of all sample values. Hence our sample 
value does not fall into cither of these intervals; we can say that the sample value 
does not fall into the rejection region for a = .002.



39$ Inferences about Population Means

The very last row, marked « , shows the z scores that cutoff various 
areas in a normal distribution curve. If you trace down any given column, you 
find that as v gets larger the t value bounding the area specified by the column 
comes closer and closer to this normal deviate value, until finally, for an infinite 
sample size, the required value of t is the same as that for z.

For one-tailed tests of hypotheses, the column Q values are used to 
find the t value which exactly bounds the rejection region. If the region of rejection 
is on the upper tail of the distribution, then Q is the probability of a sample value's 
falling into the region greater than or equal to the tabled value of t. If the region is 
on the lower tail, the t value in the table is given a negative sign, and Q is the 
probability of a sample's falling at or below the negative t value. If a two-tailed 
region is to be used, then the total a probability of error is 2Q, and the number in 
the table shows the absolute value of t that bounds the rejection region on either 
tail.

10.8 T he concept of degrees of freedom

Before we proceed to the uses of the £ distribution, it is well to exam
ine the notion of degrees of freedom. The degrees of freedom parameter reflects the 
fact that a t ratio involves a sample standard deviation as the basis for estimating 
<XAf. Recall the basic definitions of the sample variance and the sample standard 
deviation:

«  z(* -  M y
S = ----- N-----■

and = /2(x — M)2
\  N

The sample variance and standard deviation are both based upon a sum of squared 
deviations from the sample mean. However, recall another fact of importance 
about deviations from a mean: in Section 6.6 it was shown that

2  (** — AO = 0,
i

the sum of deviations about the mean must be zero.
These two facts have an important consequence: Suppose that you 

are told that N  = 4 in some sample, and that you are to guess the four deviations 
from the mean M . For the first deviation you can guess any number, and suppose 
you say

di = 6.

Similarly, quite at will, you could assign values to two more deviations, say

di = —9 
d3 = -7 .

However, when you come to the fourth deviation value, you are no longer free to 
guess any number you please. The value of di must be
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d4 = 0 — di — d<> — dz
or di = 0 -  6 +  9 +  7 = 10.

In short, given the values of any N — 1 deviations from the mean, which could 
be any set of numbers, the value of the last deviation is completely determined. 
Thus we say that there are ,V — 1 degrees of freedom for a sample variance, re
flecting the fact that only Ar — 1 deviations are "free” to be any number, but that 
given these free values, the last deviation is completely determined. It is not the 
sample size per se that dictates the distribution of t, but rather the number of 
degrees of freedom in the variance (and standard deviation) estimate. We will 
consider the degrees of freedom again in the next chapter, where the variance will 
be studied in more detail, and also in Chapter 14.

10.9 Significance tests for single means
USING THE t DISTRIBUTION

For the moment you can relax; there is really nothing new to learn! 
When the null hypothesis concerns a single mean, then the test is carried out just 
as before, except that the table of t (Appendix C, Table III) is used instead of the 
normal table (Appendix C, Table I). The a level is chosen, and the value (or 
values) of t corresponding to the region of rejection can be determined from the t 
table. The number of degrees of freedom used is simply v = N — 1. Then, the 
ratio

M -  E(M) 
est. aw [10.9.1 f]

obtained from the sample is compared with values in the rejection region specified 
by Table III. If the obtained t ratio falls into the rejection region chosen, the sam
ple result is said to be significant beyond the a level.

If the sample size is large, then the only difference in procedure is in 
the use of the normal tables to establish the region of rejection. Naturally, all the 
considerations hitherto discussed, especially the assumed normal distribution of 
the population, should be faced before the sample size and rejection region are 
decided upon. If large samples are available then the assumption of a normal 
population is relatively unimportant; on the other hand, this matter should be 
given some serious thought if you are limited to a very small sample size.

10.10 Confidence limits for the mean using
t DISTRIBUTIONS

The t distribution may also be used to establish confidence limits 
for the mean. For some fixed percentage representing the confidence level, 
100(1 — a) percent, the sample confidence limits depend upon three things: the 
sample value of M , the estimated standard error, or est. and the number of 
degrees of freedom, v. For some specified value of v, then the 100(1 — a) percent
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confidence limits are found from

M  — t(a/2;c) (est. <jm) 
M  +  f(a/2;*) (est. G\jw).

[10.10.1 f]

Here, h«/2; represents the value of t that bounds the upper a/2  proportion of 
cases in a i distribution with v degrees of freedom. In Table II this is the value 
listed for Q — a/2  and v. Thus, if one wants the 99 percent confidence limits, the 
value of a = .01, and one looks in the table for Q = .005.

For example, imagine a study using 8 independent observations 
drawn from a normal population. The sample mean is 49 and the estimated stand
ard error of the mean is 8.7. Now we want to find the 95 percent confidence limits. 
First of all, a — .05, so that Q — .025. The value of v is jV — 1, or 7. The table

shows a t value of 2.365 for Q = .025 
and v = 7, so that = 2.365. The
confidence limits are

49 -  (2.365) (3.7) = 40.25 
and 49 +  (2.365) (3.7) = 57.75.

Over all random samples, the 
probability is .95 that the true value of 
fi is covered by an interval such as that 
between 40.25 and 57.75, the confidence 
interval calculated for this sample.

In summary, confidence 
limits are calculated in much the same way, 
and have the same general interpretation, 
when based on the t distribution as for 

the normal distribution. The essential difference is that values of t corresponding 
to a/2 and v must be used instead of normal z values.

One important application of confidence intervals in psychology 
occurs when there is a set of some J  independent means, each based on a different 
sample given exactly one of a set of J  experimental treatments. In particular, the 
experimental treatments may represent some quantitative experimental variable 
(represented here by X), and the experimenter may be trying to infer the general 
form of relationship between the amount of treatment applied and the average or 
expected response of a subject in terms of variable Y. Here, he may choose to con
struct a confidence interval around each of the sample means on variable Y. Fig
ure 10.10.1 represents a set of such means, with the 95 percent confidence interval 
shown for each. In this figure, the horizontal axis represents the different levels or 
quantities of the treatment administered, and the open circles the corresponding 
means of the samples on the dependent variable, Y. The vertical bars extending to 
either side of a mean point symbolize the 95 percent confidence interval based on 
that sample’s mean. The experimenter’s best guess about the general form of the 
function relating the experimental variable to the dependent variable is sym
bolized by the heavy line in the figure: this is simply a plot joining the sample

Levels of X administered
F I G .  10.10.1, Confidence intervals for mean* 
based on five independent samples
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means, since his best guess about the population mean under any given treatment 
is the sample mean. Nevertheless, it may well be true that the form of relationship 
in the population is something like that shown by the broken line. The experi
menter has no basis at all for discounting the possibility of some such true relation 
on the basis of the obtained relation alone.

How sure can the experimenter be that the set of J  confidence inter
vals based on independent means all simultaneously cover the population values? 
In other words, how confident can he be that he has narrowed the possible rela
tionships between the experimental and dependent variables to those symbolized 
by graphs joining points within the various intervals of Figure 10.10.1? A little 
thought should convince you that the probability is not .95 that all J of the confi
dence intervals simultaneously cover the true means; we can, however, work out 
an approximation to the value of this probability.

Suppose that both the means and the estimated values, and thus 
the obtained values for the confidence limits themselves, are independent across 
samples. We can consider the event “confidence interval covers true y” as though 
it were a “success” in a binomial experiment for any of the samples. The proba
bility of any such success is .95 for a 95 percent confidence interval. Then the 
probability that all J  independent confidence intervals simultaneously cover the 
true means is simply the probability of exactly J out of J possible successes in a 
binomial experiment:

prob.(all J of the 95 percent confidence intervals cover true values

simultaneously) = (.95)J(.05)°

= (.95)'.

For the example in Figure 10.10.1, J — 5, so that the probability 
that the true means all are covered by the indicated intervals is

(.95)6 = .77.

The experimenter can have considerably less “confidence” in the statement that 
all of the confidence intervals simultaneously cover the true means than in the 
statement that any one confidence interval covers the true mean.

The probability of .77 calculated for this example was based on the 
assumption that each of the confidence limits obtained for a sample is independent 
of the corresponding limits obtained for the other samples. However, this is not a 
reasonable assumption in a great many instances, because the same estimated 
value of a or of <tm may be used for determining each of the confidence intervals. 
Nevertheless, even when the confidence limits for the various samples are not 
independent, the probability that all J  of the 100(1 — a) percent confidence inter
vals simultaneously cover the true values must lie between 1 — a and 1 — Ja. 
Conversely, given any J such confidence intervals, the probability that at least one 
fails to cover the true value is between a and Ja. For J  independent confidence 
intervals, the probability that at least one of the set fails to cover the true value is
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exactly 1 — (1 — a)J. The practical implication is clear: given enough confidence 
intervals calculated from a set of data the probability can be quite high that at 
least one fails to cover the true parameter value. For similar reasons, given enough 
significance tests carried out on a set of data, each with some conventional value 
for a, the probability can be much greater than a that at least one of these tests 
results in a Type I error. This point is an important one, and will recur in Chapters 
12 and 14.

10.11 Questions about differences between
POPULATION MEANS

Examples of hypotheses about single means often sound rather 
“phony” in their experimental contexts, and the reason for this is not hard to find. 
In most experimental work it is not true that the experimenter knows about one 
particular population in advance and then draws a single sample for the purpose 
of comparing some experimental population to the known population. Rather, it is 
far more common to draw twro samples, to only one of which the experimental 
treatment is applied; the other sample is given no treatment, and stands as a con
trol group for comparison with the treated group. In other situations, two different 
treatments may be compared. The advantages of this method over the single sam
ple procedure are obvious; the experimenter can exercise the same experimental 
controls on both samples, making sure that insofar as possible they are treated in 
exactly the same way, with the only systematic experimental difference being in 
the fact that something wras done to representatives of one sample which was not 
done to members of the other. Then, if a very large difference appears between the 
two samples he can rest assured that the difference is a product of the experimental 
treatments and not just a peculiarity introduced by the way in which his data were 
gathered.

Each treatment group is a sample from a potential population of 
observations made under that treatment. A difference between the treatment 
populations should exist if the treatment is having an effect; but what can the 
experimenter infer from a sample difference? His best estimate (based on these data 
alone) is that the population means are different to the same extent as the sample means. 
Regardless of the significance level given by any test he may apply, the actual difference 
obtained is always the best estimate he can make of the true difference between the 
population means.

As always, this estimate is in error to some unknown extent, and 
although the obtained difference between the sample means is the best guess the 
experimenter can make, there is absolutely no guarantee that this estimate is 
exactly correct. It could well be true that the difference the experimenter observes 
has no real connection with the treatment administered, and is purely a chance 
result.

What is needed is a way of applying statistical inference to differ
ences between means of samples representing two populations. First, large sample 
distributions of differences between sample means will be studied. Then, the 
application of the i distribution to small sample differences will be introduced.
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10.12 T he sampling distribution op differences
BETW EEN  MEANS

Suppose that we wished to test a hypothesis that two populations 
have means which differ by some specified amount, say 20 points. This is tested 
against the hypothesis that the population means do not differ by that amount. 
In our more formal notation:

Ho: m i —  M2 =  2 0

H i’, mi — M2 ^  20.
We draw a sample of size Ah from population 1, and an independent sample of size 
N 2 from population 2, and consider the difference between their means, Mi — M 2. 
Now suppose that we kept on drawing pairs of independent samples of these sizes 
from these populations. For each pair of samples drawn, the difference Mi — M 2 
is recorded. What is the distribution of such sample differences that we should 
expect in the long run? In other words, what is the sampling distribution of the 
difference between two means?

You may already have anticipated the form of the sampling distribu
tion of the difference between two means, since all the groundwork for this distri
bution has been laid in Section 8.9. The difference between sample means drawn 
from independent samples is actually a linear combination:

(1 )M ,+  ( - l ) J l / s.

Let us apply the results of Sections 8.9 and 8.10 to this problem. In the first place,

E { M i  -  M 2) =  E { M i)  -  E ( M i)  =  m i  -  M2, [1 0 .1 2 .1 * ]

which accords with principle 8.10.1 for any linear combination. Second, what is the 
standard error of the difference between two independent sample means? By 
principle 8.10.3,

var.Cilf, -  M t) = (l)V ^  +  ( - l ) V Ml
= +  [10.12.2*]

Hence, the standard error of the difference, vdiff., is

Cdiff. Vo- V +  oV: [10.12.3*]

provided that samples 1 and 2 are completely independent.
Actually, we could have found this last result quite easily without 

invoking principle 8.10.2. It may be instructive to do so.
By definition:

var.(Af! -  M t) =  E[(M1 -  Mi) -  (mi -  M2)]2 
= E[(Mi  -  mi) ~  (M 2 -  M2)]2.

For any given pair of samples, expanding the square gives

[(Mi  —  m i ) ~~ ( M 2 —  M2M 2 =  (Mi  —  m i) 2 +  (M 2 —  M2)2 "  2 ( M i  —  m O ( M 2 —  M2)-
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Now let us take the expectation of each of these terms separately:

E( M i -  mi)2 = <&, 
and E(M 2 -  M2)2 = <r\s%
by the definition of the variance of a sampling distribution of the mean. Further
more,

E[(Mi -  mi)(Af , -  M2)] = 0

by rule 6, Appendix B, since Mi and M 2 are independent. Thus, combining these 
results, we find that

var.(Af 1 -  Ma) = +  n fj

Notice that there is no requirement at all that the samples be of 
equal size. Regardless of the sample sizes, the expectation of the difference between 
two means is always the difference between their expectations, and the variance 
of the difference between two independent means is the sum of the separate sam
pling variances.

Furthermore, these statements about the mean and the standard 
error of a difference between means are true regardless of the form of the parent 
distributions. However, the form of the sampling distribution can also be specified 
under either of two conditions:

If the distribution for each of two populations is normal then the distribution of 
differences between sample means is normal.

This follows quite simply from principle 8.9 for linear combinations. When we can 
assume both populations normal, the form of the sampling distribution is known 
to be exactly normal.

On the other hand, one or both of the original distributions may not 
be normal; in this case the central limit theorem comes to our aid:

As both Ah and AT grow infinitely large, the sampling distribution of the differ
ence between means approaches a normal distribution, regardless of the 
form of the original distributions.

In short, when we are dealing with two very large samples, then the question of 
the form of the original distributions becomes irrelevant, and we can approximate 
the sampling distribution of the difference between means by a normal distribution.

10.13 A n  e x a m p l e  o f  a  l a r g e - s a m p l e

SIGNIFICANCE TEST FOR A D IFFEREN CE 
BETW EEN  MEANS

An experimenter working in the area of motivational factors in per
ception was interested in the effects of deprivation upon the perceived size of
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objects. Among the studies carried out was one done with orphans, who were com
pared with nonorphaned children on the basis of the judged size of parental figures 
viewed at a distance. Each child was seated at a viewing apparatus in which cut
out figures appeared. Each figure was actually of the same size and at the same 
distance from the viewer, although he was not told that the figures had the same 
size. A device was provided on which the child could actually judge the apparent 
sizes of the different figures in numerical terms. Several of the figures in the set 
viewed 'were obviously parents, whereas others were more or less neutral, such as 
milkmen, postmen, nurses, and so on. Each child was given a score, which was 
itself a difference in average judged size of parental and nonparental figures.

Now two independent randomly selected groups were used. Sample 1 
was a group of orphaned children without foster parents. Sample 2 was a group of 
children having a normal family with both parents. Both populations of children 
sampled showed the same age level, sex distribution, educational level, and so 
forth.

The question asked by the experimenter was, “Do deprived children 
tend to judge the parental figures relatively larger than do the nondeprived?” In 
terms of a null and alternative hypothesis,

H0- Mi — m? ^  0 
Hi'. Ml ~~ M2 >  0 .

The a level for significance decided upon veas .05. The actual results were

Sample 1 
Mi = 1 . 8  

si ~ .7
A' i — 125

Sample 2 
M s = 1 . 6  

s2 =  .9
N 2 = 150

These sample sizes are rather large, and the experimenter felt safe in 
using the normal approximation to the sampling distribution, even though he had 
no idea about the distribution form for the two populations sampled. The l ratio 
used was

(Mi - _ M Z) -  E (Mi  -  M g) 
est. <rdiff.

[10.13.1*]

In this problem, I?(Mi — M 2) = 0, under the hypothesis tested. It was obviously 
necessary for the experimenter to estimate the standard error of the difference, 
since both <n and cr2 were unknown to him. This estimate was found by first esti
mating Cjj, and :

est. * 5 ,.=  =  = - 0 0 4  [10.l3.2f]

est. -  .005. [10.13.3f]

Then,
est. GTdiff, =  V e s t. +  est. crWl =  V .0 0 4  +  .005 =  .095. [10.13.4f]
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On making these substitutions, the experimenter found
1.8 -  1.6

.095 2 . 11.

The rejection region implied by the alternative hypothesis is on the upper tail of 
the sampling distribution. For a normal distribution the upper 5 percent is 
bounded by z = 1.65. Thus, the result is significant; deviations this far from zero 
have a probability of less than .05 of occurring by chance alone when the true 
difference is zero.

The experimenter may conclude that a difference exists between 
these two populations, if  an a value less than .05 is a small enough probability of 
error to warrant this decision. However, the experimenter does not necessarily 
conclude that parental deprivation causes an increase in perceived size. The sta
tistical conclusion suggests that it might be safe to assert that a particular direc
tion of numerical difference exists between the mean scores of the two populations 
of children, but the statistical result is absolutely noncommittal about the reason 
for this difference, if such exists. The experimenter takes the step of advancing a 
reason at his own peril. The statistical test as a mathematical tool is absolutely 
neutral about what these numbers measure, the level of measurement, what was 
or was not represented in the experiment, and, most of all the cause of the experi
menter’s particular finding. As always, the test takes the numerical values as 
given, and cranks out a conclusion about the conditional probability of such num
bers, given certain statistical conditions.

The general procedure for hypotheses about two means when sample 
size is quite large is represented by this example. The test statistic is

(Mi -  M 2) -  E(Mi  -  Mi)ft —- ""
est* O'diff.

This t value may be referred to a normal distribution. The expected difference de
pends upon the hypothesis tested, and the estimated crdiff. is found directly from 
the estimate <t2m for each sample by 10.13.4.

The exact hypothesis actually tested is of the form

H q: mi “  M2 ~ k,

where k is any difference of interest. Quite often, as in the example, the experi
menter is interested only in k = 0, but it is entirely possible to test any other 
meaningful difference value. The alternative hypothesis may be directional,

Hi: mi — M2 > k 
or Hi: mi — M2 < k,
or nondirectional, Hr. mi — M2 ^  k,

depending on the form of the original question.
As an illustration of a situation where some value other than zero 

figures in the null hypothesis, and also as an illustration of a one-tailed test, take 
the following example: a manufacturer is considering introducing a change in 
training procedure for his new employees. However, it is more expensive than the
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old, and he feels that he cannot afford it unless the average output of a man trained 
in the new way is more than 50 units per hour better than that of a man trained 
under the old procedure. The null hypothesis is

H$: fx\ — pl2 Z 50,

since the exact value that the null hypothesis requires is given by 50 units per hour. 
The alternative hypothesis states

/ / 1: mi — M2 > 50.
Notice how the null and the alternative hypotheses are framed so as to correspond 
to the alternative practical decisions that our manufacturer may make: if the null 
hypothesis is true, he will not adopt the new training procedure since it does not 
meet the requirement he set up. lie has no interest in the training procedure if it 
is less than 50 units better than the old. If, however, the alternative hypothesis is 
true, then he will adopt the new7 procedure. In this instance, where clear-cut 
courses of action depend on the evidence, the one-tailed test of a nonzero hypothe
sis makes sense. Subjects are assigned at random to tw'o groups, one getting the 
new and the other the old training. Given large samples, the t ratio is computed 
just as in the previous example, except that here E(M l — M 2) = 50. A significant 
result gives the manufacturer considerable assurance in saying that one procedure 
is on the average more than 50 units better than the other.

10.14 Large-sample confidence limits
FOR A DIFFERENCE

When both samples are large, as in the example in Section 10.13, 
confidence limits are found exactly as for a single mean, except that (M i — M 2) 
and est. crdiff. are substituted for Af and est. cm respectively. Thus, 95 percent confi
dence limits for a difference with large samples are

Mi -  M, -  1.96 (est. o-diff.) [10.14.1*]
All — A/ 2 -|- 1.96 (est.

For the example in the preceding section, the 95 percent limits are

.2 -  1.96(.095)

.2 +  1.96(.095)

or .014 and .386. Notice that since the value ml — M2 = 0 does not fall within these 
values this value can be rejected as a hypothesis beyond the .05 level (two-tailed).

10.15 Using the t distribution to test
HYPOTHESES ABOUT DIFFERENCES

Given the assumption that both populations sampled have normal 
distributions, any hypothesis about a difference can be tested using the t distribu
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tion, regardless of sample size. However, one additional assumption becomes 
necessary: in order to use the t distribution for tests based on two (or more) samples, 
one must assume that the standard deviations of both (or all) populations are equal. 
The basis for this assumption will be discussed in the next chapter.

Given these assumptions, then the distribution of t for a difference 
has the same form as for a single mean, except that the degrees of freedom are

v = AG — 1 “h AG — 1 = AG -f AG — 2.
When samples are drawn from populations with equal variance, then the estimated 
standard error of a difference takes a somewhat different form. First of all, when
<Tl — <r 2 — c,

ffdiff. [10.15.1*]

Now, as we showed in Section 7.17, when one has two or more estimates of the 
same parameter <r2, the pooled estimate is actually better than either one taken 
separately. From 7.17.5 it follows that

est. a2 (AG -  l)sf +  (AG -  1 )sl 
AT, +  AG -  2

is our best estimate of <r2 based on the two samples. Hence

est. Cdiff. V est- •* (,v; +  at, )

//(AG -  l)s2 +  (AG -  I)s! 
\ \  AG +  AG — 2

\  / AG +  N t\  
A  N iN* ) [10 .15 .2 |]

This estimate of the standard error of the difference ordinarily forms the denomi
nator of the t ratio when the t distribution is used for hypotheses about a difference.

10.16 A n  e x a m p l e  o f  i n f e r e n c e s  a b o u t  a

DIFFERENCE FOR SMALL SAMPLES

Two random samples of subjects are being compared on the basis of 
their scores on a motor learning task. The subjects are allotted to two experimental 
groups, with five subjects in the first and seven in the second. In the first group a 
subject is rewarded for each correct move made, and in the second each incorrect 
move is punished. The score is the number of trials to reach a specific criterion of 
performance. The experimenter wishes to find evidence for the question, “ Does 
the kind of motivation employed, reward or punishment, affect the performance?” 
This question implies the null and alternative hypotheses:

£G: mi — Ms = 0
AG: Mi — M2 7*̂ 0.

The experimenter is willing to assume that the population distributions of scores
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are normal, and that the population variances are equal. The probability of 
Type I error decided upon is .01. Since this is a two-tailed test, a glance at 
Table II shows that fur Ni +  TV2 — 2 or 5 +  7 — 2 — 10 degrees of freedom, and 
for 2Q = .01, the required t value is 3.169. Thus an obtained i ratio equaling or 
exceeding 3.169 in absolute value is grounds for rejecting the hypothesis of no 
difference between population means.

The sample results are
Mi -  18 M2 = 20

s\ = 6.00 st = 5.83
The estimated standard error of the difference is found by the pooling procedure 
given in the last section:

est. ffdiff. -  ^est. <r*

_  /(4)(6) +  (6) (5.83)
V  10

= V 2 m
= 1.42.

Thus, the t ratio is
(Mi -  Mi) -  E{MX -  Mi) = —_2_ 

est. crdiff. 1.42 1.41.

This value comes nowhere close to that required for rejection, and thus if a must 
be no more than .01 the experimenter does not reject the null hypothesis. His best 
choice may be to suspend judgement, pending more evidence.

Confidence intervals are found j ust as for a single small sample mean:
the limits are

(Mi — M-i) — i{a/2; 0 (est. o-diff.) [10.16.1*]
(Ml — M2) +  t(a/2-,y) (est. <Tdiff,).

For this example, the 99 percent limits are

and
- 2  -  (3.169)(1.42) 

~2 +  (3.169)(1.42)
or approximately —6.5 and 2.5. The probability is .99 that the true difference, 
Mi — M2, is covered by an interval such as this. Once again, notice that this interval 
does contain the value 0, indicating the hypothesis entertained above is not 
rejected.

10.17 T h e  im p o r t a n c e  o f  t h e  a s s u m p t io n s

IN  A t TEST OF A D IFFERENCE

In order to justify the use of the t distribution in problems involving 
a difference between means, one must make two assumptions: the populations
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sampled are normal, and the population variances are homogeneous, <r2 having the 
same value for each population. Formally, these two assumptions are essential if 
the t probabilities given by the table are to be exact. On the other hand, in practi
cal situations these assumptions are sometimes violated with rather small effect 
on the conclusions.

The first assumption, that of a normal distribution in the popula
tions, is apparently the less important of the two. So long as the sample size is even 
moderate for each group quite severe departures from normality seem to make 
little practical difference in the conclusions reached. Naturally, the results are 
more accurate the more nearly unimodal and symmetric the population distribu
tions are, and thus if one suspects radical departures from a generally normal form 
then he should plan on larger samples. Furthermore, the departure from normality 
can make more difference in a one-tailed than in a two-tailed result, and once again 
some special thought should be given to sample size when one-tailed tests are 
contemplated for such populations. By and large, however, this assumption may 
be violated almost with impunity provided that sample size is not extremely 
small.

On the other hand, the assumption of homogeneity of variance is 
more important. In older work it was often suggested that a separate test for 
homogenity of variance be carried out before the t test itself, in order to see if this 
assumption were at all reasonable. However, the most modern authorities suggest 
that this is not really worth the trouble involved. In circumstances where they are 
needed most (small samples), the tests for homogeneity are poorest. Further
more, for samples of equal size relatively big differences in the population vari
ances seem to have relatively small consequences for the conclusions derived from 
a t test. On the other hand, when the variances are quite unequal the use of differ
ent sample sizes can have serious effects on the conclusions. The moral should be 
plain: given the usual freedom about sample size in experimental work, when in 
doubt use samples of the same size.

However, sometimes it is not possible to obtain an equal number in 
each group. Then one way out of this problem is by the use of a correction in the 
value for degrees of freedom. This is useful when one cannot assume equal popula
tion variances and samples are of different size. In this situation, however, the t 
ratio is calculated as in Section 10.13, udiere the separate standard errors are com
puted from each sample and the pooled estimate is not made. Then the corrected 
number of degrees of freedom is found from

(est. <YMt +  est. (rjf,)2_________
(est. <ri,,)y(Ni +  1) +  (est. <j2mY /(N 2 +  1) no .i7 .if]

This need not result in a whole value for v, in which case the use of the nearest 
whole value for v is sufficiently accurate for most purposes. When somewhat 
greater accuracy is desired, the approximate formula for critical values of t given 
in Section 14.17 is useful. When both samples are quite large, then both the 
assumptions of normality and of homogeneous variances become relatively unim
portant, and the method of Section 10.13 can be used.
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10.18 T he power of t tests

The idea of the power of a statistical test was discussed in the pre
ceding section only in terms of the normal distribution. Nevertheless, the same 
general considerations apply to the power of tests based on the t distribution. 
Thus, the power of a t test increases with sample size, increases with the dis
crepancy between the null hypothesis value and the true value of a mean or a 
difference, increases with any reduction in the true value of <r, and increases with 
any increase in the size of a, given a true value covered by H i.

Unfortunately, the actual determination of the power for a t test 
against any given true alternative is more complicated than for the normal distri
bution. The reason is that when the null hypothesis is false, each t ratio computed 
involves E(M ) or E(M i — M 2), which is the exact value given by the null (and 
false) hypothesis. If the true value of the expectation could be calculated into each 
t ratio, then the distribution would folknv the t function tabled in the appendix. 
However, when H 0 is false, each t value involves a false expectation; this results in 
a somewhat different distribution, called the noncentral t distribution. The proba
bilities of the various i’s cannot be known unless one more parameter, 5, is specified 
beside v. This is the so-called noncentrality parameter, defined by

S2 «  [10.18.1]
\  ffM /

The parameter <52 expresses the squared difference between the true expectation p 
and that given by the null hypothesis, or mo, in terms of <rM- For a hypothesis about 
a difference and for samples of equal size,

§2 = (̂ 1 ~  Ma) "  0*0, ~  Mo»)
°diff

[10.18.2]

The value of the parameter 5 is then the positive square root of $2.
The matter is made even more complex by the fact that a noncentral 

i distribution not only has an additional parameter that must be specified; the 
form of a noncentral V distribution differs from that of a central t distribution. 
Hence, rather detailed tables become necessary for each pair of parameter values 
v and 5 if exact determinations of power are to be made. Such tables are provided 
in some advanced texts on statistics.

Fortunately, when great accuracy is not required, an approximation 
based upon the normal distribution can be used. This approximation, given by 
Scheffe (1959), provides the cumulative probability that the variable t' is less than 
or equal to some value x, given the noncentral distribution with parameters v 
and 5. This is found by use of the expression

Pr(f'(„,i) ^  x) — Pr jz Z. (x — b)

where 2 is a value in a normal distribution with mean 0 and variance 1.00.
The use of this approximation can be demonstrated in terms of the 

preceding problem (Section 10.16). There, the null hypothesis w*as that of no
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difference between the two population means. Let us determine the power of this 
test against the alternative that jui — M2 = 4. That is, given that m — M2 = 4, 
what is the probability that the obtained t' value would fall outside the interval 
with limits —3.169 to 3.169?

We start off by calculating the value of the noncentrality parameter
8. We really need to know the true value of the standard error of the difference, 
crdiff., but in the absence of this information we will use the estimate from the 
samples. This was found to be 1.42. Then the value of 0 corresponding to a dif
ference of 4 is given by

8
4

Vdiff,
4

1.42 2.816.

Then

Pr(('<„#) Z 3.169) Pr \ z Z (3.169 -  2.816)

Pr(z Z .288) _
.614, approximately.

+ (3.169)2
2 ( 10)

Thus, we have found that if the true difference between the means is 4, the 
probability of an obtained tf value less than 3.169 is approximately the same as 
the probability of a normal z value less than .288. This probability is about .614.

Since this is a two-tailed test, we must also consider the possibility 
of an obtained t value that is less than —3.169. Then the probability of a Type II 
error will be the probability that t Z 3,169 minus the probability that t Z —3.169 
(i.e., the probability that t falls in the region of nonrejection for H 0, even though 
the true difference is 4). Hence we take

Pr(('(,.,} Z -3.169) = Pr ,  (-3 .169  -  2.816) \
v o  j

= Pr(z Z -4.88).
This probability is virtually zero in a normal distribution. We then take the 
probability that —3.169 Z t' Z 3.169 to be approximately .614, and this is the 
probability of a Type II error when m — M2 = 4. The power of the t test againBt 
this alternative is then approximately 1 — .614 or .386. If we desired, we could 
keep applying this method and construct the entire power function of the test 
for the various alternatives to the null hypothesis.

I t  should be kept in mind that this method depends upon the usual 
assumptions underlying the use of a t distribution being satisfied. That is, one 
still assumes that the parent distributions underlying the data are normal, that 
the observations are made independently and at random, and that, if two dis
tributions are involved, each has the same variance. The noncentral variable V 
differs from the central t variable only in that its distribution depends upon the 
new parameter 8. All of the other requirements for the .use of a t distribution 
must be met.
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When an experimenter assigns subjects at random to two experi
mental groups, giving a different treatment to subjects in each group, he is usually 
looking for evidence of a statistical relation. Here, the independent variable repre
sents the various experimental treatments and the dependent variable is the score 
of any subject within a group. Each treatment group is a random sample of all 
potential subjects given that treatment. The sample space is conceived as the set 
of all possible treatment-subject combinations, and the statistical relation itself 
is defined in terms of this sample space.

As we saw in Chapter 4, the complete absence of a statistical relation, 
or no association, occurs only when the conditional distribution of the dependent 
variable is the same regardless of which treatment is administered. Thus if the 
independent variable is not associated at all with the dependent variable the 
population distributions must be identical over the treatments. If, on the other 
hand, the means of the different treatment populations are different, the condi
tional distributions themselves must be different and the independent and depend
ent variables must be associated. The rejection of the hypothesis of no difference 
between population means is tantamount to the assertion that the treatment given 
does have some statistical association with the dependent variable score.

However, the occurrence of a significant result says nothing at all 
about the strength of the association between treatment and score. A significant 
result leads to the inference that some association exists, but in no sense does this 
mean that an important degree of association necessarily exists. Conversely, evi
dence of a strong statistical association can occur in data even when the results are 
not significant. The game of inferring the true degree of statistical association has 
a joker: this is the sample size. The time has come to define the notion of the 
strength of a statistical association more sharply, and to link this idea with that 
of the true difference between population means.

Just as in our discussion of relations in Chapters 1 and 4, let us call 
the experimental variable (or the independent variable) X  once again. Here, X  
may symbolize a number standing for a quantity of some treatment, or it may 
simply represent any one of a set of qualitatively different treatments. In either 
circumstance, X  stands for the status of the individual observation on the experi
mental factor, the condition manipulated by the experimenter. The dependent 
variable is T, which here stands for a numerical score. If we conceive the sample 
space as comprising the outcomes of our observing all of a population of individ
uals under each of the possible set of treatments X, then each possible observation 
in the experiment is some (a:, y) event. Furthermore, if individuals from the popu
lation of potential subjects are sampled at random, and assigned at random to the 
various possible treatments X  in the experiment, then the occurrence of any indi
vidual in the treatment x has a probability p{x). For our purposes, it will be 
convenient to assume that

/  ̂ number of individuals observed under treatment x

10.19 T e s t m a n s h ip , o r  h o w  b ig  is  a  d if f e r e n c e ?

total number of individuals observed
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When does it seem appropriate to say that a strong association exists 
between the experimental factor X  and the dependent variable F? Over all of the 
different possibilities for X  there is a probability distribution of F values, which 
is the marginal distribution of Y  over (x,y) events. The existence of this distribu
tion implies that we do not know exactly what the F value for any observation 
will be; we are always uncertain about F to some extent. However, given any par
ticular X, there is also a conditional distribution of F, and it may be that in this 
conditional distribution the highly probable values of F tend to “shrink” within 
a much narrower range than in the marginal distribution. If so, we can say that 
the information about X  tends to reduce uncertainty about F. In  general we will 
say that the strength of a statistical relation is reflected by the extent to which knowing 
X  reduces uncertainty about F.

One of the best indicators of our uncertainty about the value of a 
variable is a2, the variance of its distribution. The marginal distribution of F has 
variance <Ty, and given any X , the conditional distribution has variance tr îx- 
For the time being, let us assume that <t\\x is the same regardless of which X  we 
specify. This is exactly the assumption of equal variances made in the t test, since 
each population distribution is actually a conditional distribution, given some 
treatment specification. The reduction in uncertainty provided by X is then pro
portional to

<4 - 4 i x ,  [10.19.1 *]

the difference between the marginal and the conditional variance of F.
It is convenient to turn this reduction in uncertainty into a relative 

reduction by dividing by aY, giving

a>2 [10.19.2*]

The relative reduction in uncertainty about F  given by X  is shown by the index 
o}2 (Greek omega, squared). Sometimes the value w2 is called the proportion of 
variance in F  accounted for by X. Viewed either as a relative reduction in uncer
tainty, or as a proportion of variance accounted for, the index u2 represents the 
strength of association between independent and dependent variables. (The index 
o>2 is almost identical to two other indices to be introduced later, the intraclass 
correlation and the correlation ratio, usually represented by the symbols pI and ij2 
respectively. However, since these indices were developed for and are used in 
somewhat different contexts, it seems better to use the relatively neutral symbol 
u>2 here, to avoid later confusion.)

This index reflects the predictive power afforded by a relationship: 
when to2 is zero, then X  does not aid us at all in predicting the value of F. On the 
other hand, when w2 is 1.00, this tells us that X  lets us know F exactly. All inter
mediate values of the index represent different degrees of predictive ability. 
Notice that for any functional relation, oj2 = 1.00, since there can be only one F 
for each possible X. A value less than unity tells us that precise prediction is not 
possible, although X  nevertheless gives some information about F unless w2 = 0.

About now you should be wondering what the index u2 has to do
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with the difference between population means. It can be shown, by methods we 
shall use in Chapter 12, that when p(xi) = p(x2) = 1/2,

4  =  4 w  +  ~  M,)* [10.19.3*]

where m is the mean of population 1, M2 that of population 2, and

M i +  M2— 2 ~ Wj

the mean of the marginal distribution.
On substituting into 10.19.2, we find

2 (M l —  M2)2W = ---T~2-----4trfr

For two treatment-populations with equal variances the strength of the statistical 
association between treatment and dependent variable varies directly with the 
squared difference between the population means, relative to the unconditional, 
marginal, variance of Y.

When the difference mi ”  M2 is zero, then oj2 must be zero. In the 
usual t test for a difference, the hypothesis of no difference between means is 
equivalent to the hypothesis that u2 = 0. On the other hand, when there is any 
difference at all between population means, the value of w2 must be greater than 0. 
In short, a true difference is “big” in the sense of predictive power only if the 
square of that difference is large relative to a\. However, in significance tests such 
as t, we compare the difference we get with an estimate of (rdiSf, The standard error 
of the difference can be made almost as small as we choose if we are given a free 
choice of sample size. Unless sample size is specified, there is no necessary connec
tion between significance and the true strength of association.

This points up the fallacy of evaluating the “goodness” of a result in 
terms of statistical significance alone, without allowing for the sample size used. 
All significant results do not imply the same degree of true association between 
independent and dependent variables.

It is sad but true that researchers have been known to capitalize on 
this fact. There is a certain amount of “testmanship” involved in using inferential 
statistics. Virtually any study can be made to show significant results if one uses 
enough subjects, regardless of how nonsensical the content may be. There is surely 
nothing on earth that is completely independent of anything else. The strength of 
an association may approach zero, but it should seldom or never be exactly zero. 
If one applies a large enough sample of the study of any relation, trivial or mean
ingless as it may be, sooner or later he is almost certain to achieve a significant 
result. Such a result may be a valid finding, but only in the sense that one can say 
with assurance that some association is not exactly zero. The degree to which such 
a finding enhances our knowledge is debatable. If the criterion of strength of 
association is applied to such a result, it becomes obvious that little or nothing is 
actually contributed to our ability to predict one thing from another.
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For example, suppose that two methods of teaching first grade 
children to read are being compared. A random sample of 1000 children are 
taught to read by method I, another sample of 1000 children by method II. 
The results of the instruction are evaluated by a test that provides a score, in 
whole units, for each child. Suppose that the results turned out as follows:

Method I Method 11

<Mt-II M i  =  1 4 7 .6 40II si =  1 1

5
: II 0 0 0 N 2 =  1000

Then, the estimated standard error of the difference is about .145, and the z 
value is

z 147.21 -  147.64 
.145 2.96.

This certainly permits rejection of the null hypothesis of no differ
ence between the groups. However, does it really tell us very much about what 
to expect of an individual child’s score on the test, given the information that he 
was taught by method I or method II? If we look at the group of children taught 
by method II, and assume that the distribution of their scores is approximately 
normal, we find that about 45 percent of these children, fall below the mean score 
for children in group I. Similarly, about 45 percent of children in group I fall 
above the mean score for group II. Although the difference between the two 
groups is significant, the two groups actually overlap a great deal in terms of 
their performances on the test. In this sense, the two groups are really not very 
different at all, even though the difference between the means is quite significant 
in a purely statistical sense.

Putting the matter in a slightly different way, we note that the 
grand mean of the two groups is 147.425. Thus, our best bet about the score of 
any child, not knowing the method of his training, is 147.425. If we guessed that 
any child drawm at random from the combined group should have a score above 
147.425, we should be wrong about half the time. How'ever, among the original 
groups, according to method I and method II, the proportions falling above and 
below this grand mean are approximately as follows:

Below 147425 Above 147425

Method I .51 .49
Method II .49 .51

This implies that if we know a child is from group I, and we guess that his score 
is below the grand mean, then we will be wrong about 49 percent of the time. 
Similarly, if a child is from group II, and we guess his score to be above the 
grand mean, we will be wrong about 49 percent of the time. If we are not given 
the group to which the child belongs, and we guess either above or below the



grand mean, we will be wrong about 50 percent of the time. Knowing the group 
does reduce the probability of error in such a guess, but it does not reduce it 
very much. The method by which the child was trained simply doesn't tell us a 
great deal about what the child’s score will be, even though the difference in 
mean scores is significant in the statistical sense.

This kind of testmanship flourishes best when people pay too much 
attention to the significance test and too little to the degree of statistical associ
ation the finding represents. This clutters up the literature wfith findings that are 
often not worth pursuing, and which serve only to obscure the really important 
predictive relations that occasionally appear. The serious scientist ow~es it to him
self and his readers to ask not only, “Is there any association between X  and YV* 
but also, “How much does my finding suggest about the power to predict Y from 
X?” Much too much emphasis is paid to the former, at the expense of the latter, 
question.
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10.20 E stimating the strength of a statistical
ASSOCIATION FROM DATA

It is quite possible to estimate the amount of statistical association 
implied by any obtained difference between means. The ingredients for this kind 
of estimation are essentially those used in a t test. The problems connected with 
the sampling distribution of this estimate will be deferred until Chapter 12, and 
for the moment we shall consider only how this estimate is made and used.

(A number of ways have been proposed for estimating the strength 
of a statistical association from obtained differences between means. For reasons 
to be elaborated later, none of these methods is entirely satisfactory. The method 
to be introduced here is thus only one of the ways that may be encountered in the 
statistical literature, but it seems to have as much to recommend it as any other.)

For samples from two populations, each of which has the same true 
variance, cr\\x, a rough estimate of w2 is provided by

est. to2
____t2 -  1

t2 -f- Ni  T- A 2 — 1
[10.20.1]

(A more general form for estimating w2 will be given in Chapter 12.) Notice that if 
t2 is less than 1.00, then this estimate is negative, although w2 cannot assume nega
tive values. In this situation the estimate of w2 is set equal to zero.

Let us consider an example using this estimate. Imagine a study 
involving two groups of 30 cases each. Subjects are assigned at random to these 
two groups, and each set of subjects is given a different treatment. The results are

Group 1 
M i = 65.5 

s\ = 20.69 
Mi = 30

Group 2 
M i  = 69 

st = 28.96
N 2 = 30

First of all the t ratio is computed in the usual way (Section 10.16):
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and

Thus,

est. . .  =  =  24.83
5a

, /24.83("2) _  _Q
est. adiff. — y — 2 q~" “  1-29.

For a two-tailed test with 58 degrees of freedom, this value is significant beyond 
the .01 level. Thus, we are fairly safe in concluding that some association exists.

What do we estimate the true degree of association to be? Substitut
ing into 10.20.1, we find

est. oj2 (2.71)2 -  1 
(2.71)M- (60 -  1) .096.

Our rough estimate is that X  (the treatment administered) accounts for about 10 
percent of the variance of Y (the obtained score).

Suppose, however, that the groups had contained only 10 cases each, 
and that the results had been:

Here

so that

Group 1 
Mi = 65.5 

s\ = 5.55 
Ah = 10

Group 2 
M t = 69 

si = 7.78
iV2 = 10

e8t. ^ « ( ^  +  7.78)= ( u .7
lo

est. (Tditf. = yjQ.67 = 1-15

t = = -3.04.1. lo

For 18 degrees of freedom, this value is also significant beyond the .01 level (two- 
tailed), and once again we can assert with confidence that some association exists.

Again, we estimate the degree of association represented by this
finding:

est. w2 (3.04) 2 -  1
(3.04) 2 +  19 .29.

Here, our rough estimate is that X  accounts for about 29 percent of the variance 
in Y. Even though the difference between the sample means is the same in these 
two examples, and both results are significant beyond the .01 level, the second 
experiment gives a much higher estimate of the true association than the first.

The point of this discussion should be evident by now: statistical 
significance is not the only, or even the best, evidence for a strong statistical 
association. A significant result implies that it is safe to say some association 
exists, but the estimate of <a2 tells how strong that association appears to be. It



seems far more reasonable to decide to follow up a finding that is both significant 
and indicates a strong degree of association than to tie this course of action to 
significance level alone. Conversely, when a result fails to attain significance and 
there is no ready way to estimate the 0 probability, the experimenter really has at 
least two courses of action: he can suspend judgment temporarily and actually 
collect more data, or he can suspend judgment permanently by forgetting the 
whole business. If the estimated strength of association is relatively small it may 
not be worthwhile to spend more time and effort in this direction. Regardless of 
the courses of action open to the experimenter, on the whole it is reasonable that a 
better decision can be made in terms of both significance level and estimated 
strength of relation than by either taken alone. In most experimental problems we 
want to find and refine relationships that “pay off,” that actually increase our 
ability to predict behavior. When the results of an experiment suggest that the 
strength of an association is very low, then perhaps the experimenter should ask 
himself whether this matter is worth pursuing after all, regardless of the statistical 
significance he may attain by increased sample size or other refinements of the 
experiment.

10.21 Strength of Association and Sample Size 419

10.21 Strength  of association and sample size

Of all the questions that psychologists carry to statisticians, surely 
the most frequently heard is, “How many subjects do I need in this experiment?” 
The response of the statistician is very likely to be unsatisfactory, the gist being 
“How big is a difference that you consider important?” This is a question that can 
be answered only by the psychologist, and then only if he has given the matter 
some serious thought. If the experimenter cannot answer this question the statis
tician really cannot help him. Perhaps framing the essential point in terms of 
strength of a relation rather than the size of a difference will make it a little easier 
to grasp.

Basically, the question of sample size depends upon the strength of 
association the experimenter wants to detect as significant. Actually, this matter 
is properly discussed in terms of the t distribution, but for the kinds of rough 
determinations most psychologists need to make, the normal approximation will 
suffice.

Recall the basic definition of c*>2 in terms of two population means:

2 (Ml — fit}2 or = ~----------.

From this definition, we can derive the fact that

[10.21.1 *]

Given any value of a>2, we can find the ratio of the absolute difference between 
population means to the standard deviation of either population. The symbol A
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(capital Greek delta) will stand for this absolute difference between means in 
standard deviation units.

If we want to discuss the difference between means in units of the 
standard error of the difference, then for samples of the same size, n,

Imi ~  Ma| = A n
2

Now suppose that an experiment is being planned which involves 
two groups, each of size n. The experimenter wants to be very sure that he will 
detect a significant difference if the true degree of association w2 is k or more in 
value. How large should n be in each sample?

Several things must be specified: the value of k = co2, the a proba
bility, and the probability 1 — 0, which is the power of the test when the true 
degree of association is equal to k. Given these three specifications, then one can 
approximate the required size of n by taking

or

[10.21.2f]

[10.21.3f]

where i_a/a) is the value of a standardized score in a normal distribution cutting 
off the lower (1 — aj 2) proportion of cases, and is the standardized score 
cutting off the lower 0 proportion of cases. The value of A is found from the re
quired value of w2 by substitution into 10.21.1.

For example, suppose that the experimenter wants to be very sure 
to detect a true association when X  actually accounts for 25 percent or more of the 
variance of Y, so that w2 is .25 or more. He wants the test to have a power of .99 
when w2 = .25, and he has already decided that a must be .01. How many cases 
should he include in each sample?

First of all, solving from 10.21.1 for A, we find

A = 1.15.

The value of z(i_<,/2) is 2.58, and that for zCJJ) = —2.33. Thus,

.  = + -  30.5.(i.io )2

In order to have a — .01, and to have a test with power of about .99 for a signifi
cant result when w2 = .25, the experimenter should plan on about 37 subjects in 
each sample, a total of 74 subjects in all.

This may be more subjects than the experimenter can manage to 
obtain. He can reduce his estimate of the required number either by lowering his
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requirements for the power of the test, making the power, say, .95 for «2 = .25, or 
by raising the probability a to, say, .05. Suppose that he adopts the latter course, 
making a = .05. In this instance, his revised estimate of sample size is given by

2(1.96 +  2.33)2 
(1.15)2 27.9

showing that these requirements are approximately satisfied if he takes around 
28 subjects in each group, for a total of about 56 cases in all.

These estimates of required sample size are only approximate, since 
we use the normal rather than the t distribution. They are to be regarded only as 
rough guides to the general sample sizes required. Unless the sample size estimates 
turn out rather large as in the example, and if it is important that the experimenter 
fulfill the requirements he has set himself about w2, a, and 1 — £, he is very wise to 
take samples somewhat larger than his estimate suggests.

It is remarkable how few studies reported in psychology seem to be 
based on sample sizes chosen in any systematic way. Certainly there are situations 
where real limits exist about how large a sample can be, and here the experimenter 
merely does the best he can. However, there is usually some freedom of choice 
within fairly broad limits, One does not have to look very far to find the reason 
this question is often ignored: all too seldom is the experimenter prepared to state 
the strength of association that he feels he must be sure to detect as a significant 
result. To decide this requires a great deal of thought about the potential applica
tions, or the experimental follow-up that should be implied by a significant finding. 
On the other hand, unless this thought is expended in planning a study there is 
simply no way to determine required sample size. If psychologists are going to use 
conventions for deciding significance of results then perhaps a few conventions are 
called for about the strength of association it is desirable to detect as significant.

Regardless of the sample size actually chosen, the experimenter can 
form a rough estimate of the sensitivity of the experiment for detecting statistical 
association. For two relatively large samples of equal size, the expression

A2 = 2 [2 ( i - i /2)  j

n
[10.21.4*]

can be solved for A2. Then by the relation

w2 =
A2'

A2 +  4 [10.21.5s

one finds the strength of association for which the power is approximately .50. 
One can be reasonably sure that if the true degree of association is greater than 
the value of w2 found by this procedure, then he has better than a fifty-fifty chance 
of detecting this fact as a significant result. Conversely, if the true association is 
less than the value of a>2 found the chances are about .50 or better that he will not 
detect this as a significant result.

For example, suppose that 25 subjects are used in each of two experi
mental groups. The a level chosen is .01, two-tailed. Then
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A2

so that

The experimenter can say that if the true degree of association is about .12 or more 
he has at least a fifty-fifty chance of detecting this as a significant result.

Had the experimenter used 100 subjects per group, then the value of 
co2 in 10.21.4 would have been about .03. For this relatively large sample size the 
experimenter has about a fifty-fifty chance of detecting a significant difference 
when the experimental variable X  accounts for no more than about 3 percent of 
the variance of F. The larger the sample size, the smaller the proportion of vari
ance accounted for that we can safely expect to be detected as a significant 
result.

The discussion of sample size in this section has been conducted in 
terms of two-tailed tests, since these are most comon in psychological research. 
However, the same idea applies in approximating the required sample size for a 
one-tailed test as well. Instead of using za _u/2) in the computations, one simply 
substitutes z( where a is the chosen error probability in the one-tailed region. 
For one-tailed tests the statements made about degrees of association and their 
detection are valid only for differences in the direction of the region of rejection, 
of course.

2(2,58)2 
25 =  .53

.53
,53 4- 4 =  .12.

1 0 .2 2  C a n  a  s a m p l e  s i z e  b e  t o o  l a r g e ?

In one sense, even posing this question sounds like heresy! Psycholo
gists are often trained to think that large samples are good things, and we have 
seen that the most elegant features within theoretical statistics actually are the 
limit theorems, each implying a connection between sample size and the goodness 
of inferences.

Nevertheless, it seems reasonable that sample size can never really 
be discussed apart from what the experimenter is trying to do, and the stakes that 
he has in the experiment. So long as the experimenter’s primary interest is in precise 
estimation, then the larger the sample the belter. When he wants to come as close as 
he possibly can to the true parameter values, he can always do better by increasing 
sample size.

This is not, however, the main purpose of some experiments. These 
studies are, in the strict sense, exploratory. The experimenter is trying to map out 
the main relationships in some area. His study serves as a guide for directions that 
he will pursue in further, more refined, studies. He wants to find those statistical 
associations that are relatively large and that give considerable promise that a 
more or less precise relationship is there to be discovered and refined. He does not 
want to waste his time and effort by concluding an association exists when the 
degree of prediction actually afforded by that association is negligible. In short,
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the experimenter would like a significant result to represent not only a nonzero 
association, but an association of considerable size.

When this is the situation it is advisable to look into the effects of 
sample size on the probability of finding a significant result given a weak associ
ation. For example, an experimenter has decided to use 30 subjects in each of two 
experimental groups. However, he does not want to waste his time with a signifi
cant result when the true degree of association is .01 or less. He decides that he 
wants the probability of a significant result to be .05 or less when the true is .01 
or less. He has already decided that a must be .01, and he knowrs that this must be 
the probability of a significant result when to2 = O (the true difference is zero). 
For a two-tailed test, he cannot make the power of the test less than a. However, 
the experimenter's requirement is that his test have power of only .05 or less when 
w2 is less than or equal to .01.

Using 10.21.1 from the previous section,

— 2(.10) = .2, approximately.

In  this problem, 1 — /3 = .05, and so, by 10.21.3,

2(2.58 -  1.65)2 
n (.2)2 

= 43.

If he uses no more than about 43 subjects in each group then the experimenter can 
be quite sure that a significant result is not likely to occur when the true degree of 
association is .01 or less. However, if he uses more subjects, he cannot be this 
confident of not detecting a very small association.

What does setting maximum sample size at 43 dictate about the «2 
values he will detect as significant? How large a w2 will he detect as a significant 
result 95 percent of the time ? This is found from

_ 2(2.58 +  1.65)3 
43

= .83
so that

2 (.S3)2
Wi (.83)2 +  4 

= .15.

Even with the sample size of 43 eases per group, the experimenter knows that 
there is a probability of about .95 of finding a significant result when the true pro
portion of variance accounted for is as small as .15. This is not necessarily a negligi
ble degree of association, and in some contexts it may be very important to account 
for as much as .15 proportion of variance. Nevertheless, in this instance the experi
menter is interested in large degrees of association, and is content to rule out of 
consideration proportions of variance accounted for as small or smaller than .15.
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Trivial associations may well show up as significant results when the 
sample size is very large. If the experimenter wants significance to be very likely 
to reflect a sizable association in his data, and also wants to be sure that he will 
not be led by a significant result into some blind alley, then he should pay attention 
to both aspects of sample size. Is the sample size large enough to give confidence 
that the big associations wall indeed show up, while being small enough so that 
trivial associations will be excluded from significance?

10.23 P a i r e d  o b s e r v a t i o n s

Sometimes it happens that subjects are actually sampled in pairs. 
Even though each subject is experimentally different in one respect (nominally, 
the independent variable) from his pair-mate and each has some distinct depend
ent variable score, the scores of the members of a pair are not necessarily independ
ent. For instance, one may be comparing scores of husbands and wives; a husband 
is “naturally” matched with his wife, and it makes sense that knowing the hus
band’s score gives us some information about his wife’s, and vice versa. Or indi
viduals may be matched on some basis by the experimenter, and within each 
matched pair the members are assigned at random to experimental treatments. 
This matching of pairs is one form of experimental control, since each member of 
each experimental group must be identical (or nearly so) to his pair-mate in the 
other group with respect to the matching factor or factors, and thus the factor or 
factors used to match pairs is less likely to be responsible for any observed difference 
in the groups than if two unmatched groups are used.

Given two groups matched in this pairwise wray, either by the experi
menter or otherwise, it is still true that the difference between the means is an 
unbiased estimate of the population difference (in two matched populations):

E(M i — Mi) = m — m i.

However, the matching, and the consequent dependence within the pairs, changes 
the standard error of the difference. This can be shown quite simply: By defini
tion, the variance of the difference between two sample means is

^ d if f .  ~  E{M\  — ^ 2  —  M l  +  M 2 )2

which is the same as
E[{MX -  m i )  -  (Ilf* -  M 2 ) ] 2.

Expanding the square, we have

E(MX -  mi) 2 +  E(Mt ~  M2 ) 2 -  2E(M1 -  m)(M2 -  M2 ).

The first of these terms is just <r2Wl, and the second is cr2m . However, what of the 
third term? From rule 6 Appendix B we find that the expectation of this product 
must be zero when the variables are independent. On the other hand, when vari
ables are dependent the expectation is not ordinarily zero. Let us denote this last
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term above as cov.^M^Ms), the covariance of the means. Then, for matched 
groups,

V d if f .  =  4 f ,  +  -  2  cov.

In general, for groups matched by pairs, this covariance is a positive number, and 
thus the variance and standard error of a difference between means will usually be 
less for matched than for unmatched groups. This fact accords with the experi
menter’s purpose in matching in the first place: to remove one or more sources of 
variability, and thus to lower the sampling error.

On the other hand, some caution must be exercised in this matching 
process. In the first place, it can be true that the factor on which subject-pairs are 
matched is such that the means are negatively related. Thus, for example, suppose 
that one had an effective measure of the dominance of personality of an individual. 
It just might be that highly dominant women tend to marry men with low 
dominance, and vice versa, so that among husband-wife pairs, dominance scores 
are negatively related. Then, if our interest is basically that of comparing men and 
women generally on such scores, it would be a mistake to match, since the negative 
relationship would lead to a larger, rather than a smaller, standard error of the 
difference than would a comparison of unmatched groups.

Furthermore, such matching may be less efficient than the com
parison of unmatched random groups, unless the factor used in matching intro
duces a relatively strong positive relationship between the means. While a positive 
relationship, reflected in a positive covariance term, does reduce the standard 
error of the difference, this procedure also halves the number of degrees of freedom. 
Dealing with a sample of N pairs gives only half the number of degrees of freedom 
available when we deal with two independent groups of N  cases each. Thus, if the 
factor entering into the matching is only slightly relevant to the differences between 
the groups, or is even irrelevant to such differences, matching is not a desirable 
procedure. The experimenter should have quite good reasons for matching before 
he adopts this procedure in preference to the simple comparison of two randomly 
selected groups.

Let us leave these considerations for a moment and return to the 
actual procedure for matched groups. The unknown value of cov. (A/],M2) could 
be something of a problem, but actually it is quite easy to bypass this difficulty 
altogether. Instead of regarding this as two samples, we simply think of the data 
coming from one sample of pairs. Associated with each pair i is a difference

A  =  (yn -  yi%),

where Fn is the score of the member of pair i who is in group I, and Yi2 is the score 
of the member of pair i wrho is in group 2. Then an ordinary t test for a single mean 
is carried out using the scores Di. That is,
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and

Then

and t is found from

est. <xmd

N -  1
N{MbY 
N — 1 '

Sd

V W

M D -  E(Mp)  
est. <jmb

with N — 1 degrees of freedom. Be sure to notice that here N stands for the number 
of differences, which is the number of pairs.

Naturally, the hypothesis is about the true value of which
is always ml — M2- Thus any hypothesis about a difference can be tested in this 
way, provided that the groups used are matched pairwise. Similarly, confidence 
limits are found just as for a single mean, using MD and vmd in place of M and

An example will now be given of this method of computation for a 
test of the difference in means of two matched groups. Not only will this example 
illustrate the method; the data have also been “rigged” to illustrate the point 
made above, that in some situations it may be less efficient to match than to 
simply take two randomly selected groups for comparison. This example will 
involve matched groups where a negative relationship exists among the pairs.

Consider once again the question of scores on a test of dominance. 
The basic question has to do with the mean score for men as opposed to the mean 
score for women. In carrying out the experiment, the investigator decided to 
sample eight husband-wife pairs at random. The members of each pair were given 
the test of dominance separately, and the data turned out as follows:

Pair Husband Wife D D'

1 26 30 -4 16
2 28 29 -1 1
3 28 28 0 0
4 29 27 2 4
5 30 26 4 16
6 31 25 6 36
7 34 24 10 100
8 37 23 14 196

31 369

Then
, ,  31 Q Q7 2 369M p  =  -g =  3.87, s 2d =  - j -  -

3A59 / j - r r  
— c— =  V  4.45

(31):
7(8)

= 2.109.

= 35.59,

The t test is thus given by
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3.87 -  0 
2.109 1.835.

For 7 degrees of freedom, this result is not significant (two-tailed test) for a — .05 
or less.

Now let us change our frame of reference slightly. Suppose that it 
had been true that these data came from two independent groups, one of men and 
one of women, each drawn at random. In this case, the men's group (formerly the 
husbands) would show a mean of 30.37, and an unbiased estimate of the variance 
s2 of 13.00. The women's group would have a mean of 26.50, with an s2 value of 
6.02. Then the standard error of the difference would be estimated from

/7(13 +  6.02) / 2 \  
est.trdiff ^  1 6 - 2  \16y

= V^l-189 = 1*09, approximately.
Then, in this instance the t would be given by

. _ (30.37 -  26.50) -  0

which, for 14 degrees of freedom, is significant well beyond the .01 level, two- 
tailed. Why this very different result from the same set of numbers? The answer 
is given by the relationship of the scores when they are regarded as paired. Notice 
that high scores for husbands are paired with low scores for wives, and vice versa. 
This implies a negative relationship of such scores, leading to A negative covariance 
term in the estimate of the standard error. This, in turn, actually increases the 
size of the standard error relative to that for unmatched groups. When such a 
situation actually exists, there is a distinct disadvantage to matching.

Now do not get the idea that the option open to the author here is 
open to an experimenter. The sample is either draw*n from a population of pairs or 
from two independent populations, and one does not have the right to change his 
mind about the nature of the sample after the fact. This procedure wras strictly 
for illustrative purposes! Furthermore, wffien such matching or pairing is used, 
prior evidence or sheer common sense should suggest whether or not a positive 
relationship among the scores should exist or not. If such a positive relationship 
should exist, then the matching procedure may well reduce the sampling variance 
sufficiently to offset the loss in degrees of freedom, and a matching procedure may 
thus be desirable. The point is that this is not an automatic consequence of such 
matching. As with any question of experimental design, no routine procedure is 
advantageous for all situations, and the experimenter must bring his judgment and 
knowledge to bear on such decisions.

10.24 S i g n i f i c a n c e  t e s t i n g  i n  m o r e

COMPLICATED EX PERIM EN TS

Only in the very simplest experimental problems does the experi
menter confine himself to two treatment groups. It is far more usual to find
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experiments that involve a number of qualitatively or quantitatively different 
treatments. However, the basic conception of what the experimenter is doing re
mains the same: he is looking for evidence of a statistical relation between experi
mental and dependent variables. When there are several groups it is no longer 
possible to make a simple and direct connection between the degree of statistical 
association and the difference between any pair of means; here there are any num
ber of pairs of means that may be different and thus imply association, and the 
mechanism of the simple t test breaks down. Thus, we will introduce this problem 
once again in somewhat different terms in Chapter 12. However, before we can 
discuss methods general enough to handle multi-group data, we need to study two 
more theoretical sampling distributions, both of which grow out of problems of 
inference about population variances. The next chapter is devoted to the study of 
these two distributions.

E x er c ises

1. A random sample of 300 American women were asked to record their body temperatures 
twice a day for a full month. From their records an average value was found for each 
woman. The mean of these values was 98.7 with a standard deviation S of .95. Test 
the hypothesis that the mean body temperature of such American women is 98.6 
against the alternative that the mean is some other value.

2. Find the 99 percent confidence interval for the mean in problem 1.
3. In a study of truth in advertising, a government agency opened 500 boxes selected at 

random of a well-known brand of raisin bran. For each box the actual number of 
raisins was counted. The mean number of raisins was 32.4, with a standard deviation 
S = 4.1. Evaluate the company’s claim that each box contains 34 raisins on the 
average, against the alternative of fewer raisins than claimed.

4. Find the 95 percent confidence interval for the mean in problem 3.
5. Suppose that the body weight at birth of normal children (single births) within the 

United States is approximately normally distributed and has a mean of 115.2 ounces. 
A pediatrician believes that the birth weights of normal children born of mothers who 
are habitual smokers may be lower on the average than for the population as a whole. 
In order to test this hypothesis, he secures records of the birth weights of a random 
sample of 20 children from mothers who are heavy smokers. The mean of this sample is 
114.0 with S = 4.3. Evaluate the pediatrician’s hunch.

6. Reevaluate the data of problem 5 on the assumption that a sample of 80 children had 
been used.

7. For the results of problem 5, find the 99 percent confidence interval for the mean birth 
weight of normal children from smoking mothers.

8. Suppose that in a certain large community the number of hours that a TV set is turned 
on in a given home during a given week is approximately normally distributed. A 
sample of 26 homes was selected, and careful logs were kept of how many hours per 
week the TV set was on. The mean number of hours per week in the sample turned out 
to be 36.1 with a standard deviation S of 3.3 hours. Find the 95 percent confidence 
interval for the mean number of hours that TV sets are played in the homes of this 
community.

9. For the data of problem 8, test the hypothesis that the true mean number of hours is 
35. Test the hypothesis that the mean number of hours is 30.
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10. Four random samples are taken independently from a population. For each random 
sample, the ninety percent confidence interval for the mean is found. What is the 
probability that at least one of those confidence intervals fails to cover the population 
mean? What is the probability that two or more confidence intervals fail to cover the 
population value?

11. The same government agency referred to in problem 3 has decided to compare two 
well-known brands of raisin bran with respect to the numbers of raisins each contain 
on the average. Some 100 boxes of Brand A were taken at random, and the same 
number of boxes of Brand B were randomly selected. On the average the Brand A 
boxes contained 38.7 raisins, with S = 3.9, and Brand B contained an average of 36 
raisins with S = 4. Test the hypothesis that the two brands are actually identical in 
the average number of raisins that their boxes contain. Let Hi be “not H0”

12. For problem 11, find the 99 percent confidence interval for the difference in average 
number of raisins for Brands A and B.

13. The editor of a journal in Psychology tends to believe that the contributors to that 
journal now use shorter sentences on the average than they did a few years ago. In 
order to test this hunch, he takes a random sample of 150 sentences from journal 
articles written ten years ago and a random sample of 150 sentences from articles 
published within the last two years. The first sample showed a mean length of 127 
type spaces per sentence, whereas the second sample showed a mean length of 113 type 
spaces. The first standard deviation #8 = 41, and the second standard deviation S = 45. 
Should he conclude that the recent articles do tend to have shorter sentences?

14. Find the 95 percent confidence interval for difference in sentence length from problem 
13.

15. In an experiment, subjects were assigned at random between two conditions, five to 
each. Their scores turned out as follows:

CONDITION A CONDITION B

128 123
115 115
120 130
n o 135
103 113

Can one say that there is a significant difference between these two conditions? What 
must one assume in carrying out this test?

16. Find the 99 percent confidence interval for the difference between Conditions A and B 
in problem 8. On the evidence of this confidence interval, could one reject the hypothesis 
that the true mean of Condition B is five points higher than that of condition A?

17. In an experiment, the null hypothesis is that two means will be equal. The variance of 
each population is believed to be equal to 16. If a = .05, two-tailed, and the test is to 
have a power of .90 against the alternative that Mi — M2 = 3, about how many 
cases should one take in each experimental group?

18. Suppose that two brands of gasoline were being compared for mileage. Samples of each 
brand were taken and used in identical cars under identical conditions. Nine tests were 
made of Brand I and six tests of Brand II. The following miles per gallon were found.
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BRAND I BRAND II

16
18
15 
23 
17 
14 
19 
21
16

13
15
11
17
12
13

Are the two brands significantly different? What must be assumed here in order to 
carry out the test?

19. An experimenter was interested in dieting and weight losses among men and among 
women. He believed that in the first two weeks of a standard dieting program, women 
would tend to lose more weight than men. As a check on this notion, a random sample 
of 15 husband-wife pairs were put on the same strenuous diet. Their weight losses 
after two weeks showed the following:

PAIR HUSBANDS WIVES

1 5.0 lbs 2.7 lbs
2 3.3 4.4
3 4.3 3.5
4 6.1 3.7
5 2.5 5.6
6 1.9 5.1
7 3.2 3.8
8 4.1 3.5
9 4.5 5.6

10 2.7 4.2
11 7,0 6.3
12 1.5 4,4
13 3.7 3.9
14 5.2 5.1
15 1.9 3.4

Did wives lose significantly more than husbands? What are we assuming here?


