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Abstract

A fundamental goal of scientific research is to generate true positives (i.e., authentic discoveries). Statistically, a true positive 

is a significant finding for which the underlying effect size (δ) is greater than 0, whereas a false positive is a significant finding 

for which δ equals 0. However, the null hypothesis of no difference (δ = 0) may never be strictly true because innumerable 

nuisance factors can introduce small effects for theoretically uninteresting reasons. If δ never equals zero, then with sufficient 

power, every experiment would yield a significant result. Yet running studies with higher power by increasing sample size 

(N) is one of the most widely agreed upon reforms to increase replicability. Moreover, and perhaps not surprisingly, the 

idea that psychology should attach greater value to small effect sizes is gaining currency. Increasing N without limit makes 

sense for purely measurement-focused research, where the magnitude of δ itself is of interest, but it makes less sense for 

theory-focused research, where the truth status of the theory under investigation is of interest. Increasing power to enhance 

replicability will increase true positives at the level of the effect size (statistical true positives) while increasing false positives 

at the level of theory (theoretical false positives). With too much power, the cumulative foundation of psychological science 

would consist largely of nuisance effects masquerading as theoretically important discoveries. Positive predictive value at 

the level of theory is maximized by using an optimal N, one that is neither too small nor too large.

Keywords Null hypothesis significance testing · False positives · Positive predictive value · Replication crisis

Introduction

Metascience has been defined as “turning the lens of science 

on itself” (Schooler, 2014). To enhance replicability, scien-

tists have proposed a variety of methodological and statisti-

cal reforms, such as preregistering experiments (Nosek et al., 

2018), conducting experiments with higher power (Button 

et al., 2013), and replacing null-hypothesis statistical testing 

with a measurement approach (Cumming, 2014). To further 

enhance the rigor of scientific research, reforms have also 

been proposed at the level of theory, such as making use 

of formal models to precisely specify assumptions about 

underlying theoretical processes (Borsboom et al., 2021; 

Muthukrishna & Henrich, 2019; Navarro, 2021; Oberauer 

& Lewandowsky, 2019). An argument could be made – and 

we do so here – that formal models can be used to enhance 

the rigor of metascience in much the same way.

Models make assumptions about latent variables, which 

are variables that cannot be directly observed (e.g., the 

strength of sensations, memories, emotions, etc.) or that are 

observable in principle but would be impractical to measure. 

An example of the latter is the underlying (i.e., true) effect 

size associated with an experimental protocol. In principle, 

the underlying effect size could be exactly measured by 

testing the entire population. However, because it would be 

impractical to do so, the underlying effect size for a given 

experimental protocol, like the strength of the sensation gen-

erated by a tone, is a latent variable.

If the magnitude of an underlying effect size for even one 

experimental protocol is essentially unknowable, trying to 

fathom how underlying effect sizes are distributed across the 

entire population of experiments that define a field might seem 

like a fruitless endeavor. However, the strength of a sensation 

generated by even one test stimulus is similarly unknowable, 

yet the distribution of the strength of sensations generated by 

test stimuli across trials has been profitably conceptualized in 
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terms of signal detection theory since the dawn of experimen-

tal psychology (Fechner, 1860; Wixted, 2020). In the signal 

detection framework, the strength of a sensation is typically 

conceptualized as a random draw from a Gaussian distribution 

of sensations across trials. The magnitude of an underlying 

effect size for a to-be-conducted experiment can be similarly 

conceptualized as a random draw from an unknown parent 

distribution. It is worth trying to specify what that distribution 

might be because, once defined, it becomes possible to model 

the distribution of underlying effect sizes that end up in the 

scientific literature.

Our focus here is not on traditional statistical distribu-

tions, such as the t-distribution or its close relative, the 

distribution of Cohen’s d. Distributions like these are often 

considered when analyzing data from a single experiment. 

Our focus is on the distribution of the true underlying effect 

sizes – such as the distribution of Cohen’s delta (δ) – across 

a population of experiments, without measurement error. 

By contrast, the distributions of t or d represent statistics 

that would be observed if a single experiment (with a single 

δ) were repeated many times, and they reflect measurement 

error.

Just as different people have different heights, different 

experimental protocols have different underlying effect sizes. 

And just as a given person can be conceptualized as a ran-

dom draw from the distribution of heights associated with 

a population of people, a given experiment can be concep-

tualized as a random draw from the distribution of underly-

ing effect sizes associated with a population of experiments 

(e.g., from experimental psychology). What is the shape of 

that distribution?

We suppose that most researchers have not considered 

that question very deeply beyond the slight consideration 

given to it when they consider statistical power for a sin-

gle experiment. To perform a power analysis, researchers 

who rely on traditional null-hypothesis significance testing 

(NHST) assume that the underlying effect size associated 

with the to-be-conducted experiment is either δ = 0 (the null 

hypothesis of no difference) or some specific value greater 

than 0, such as δ = 0.20 (the alternative hypothesis). At this 

stage, the researcher implausibly assumes that the underly-

ing effect size is drawn from a distribution consisting of 

only two specific values. This is, of course, an unreasonably 

circumscribed distribution because the underlying effect size 

associated with the experiment in question could be literally 

anything, not just one of the two values briefly considered to 

compute statistical power.

Researchers who rely on Bayesian null hypothesis test-

ing (BNHT) also typically assume that δ = 0 under the null 

hypothesis (the point-null, as in NHST), but, under the alter-

native hypothesis, they do not assume that δ is a “point alter-

native” (such as δ = 0.20). Instead, if the effect is real, they 

conceptualize δ as having been drawn from a continuous 

distribution, such as the Cauchy distribution (Rouder et al., 

2009). An important – and, in our view, realistic – feature of 

this approach is that it assumes small effects are more likely 

than large effects even when the theory under investigation 

is true. As Rouder et al. (2009) put it: “One advantage of 

this setting is that small effects are assumed to occur with 

greater frequency than large ones, which is in accordance 

with what experimentalists tend to find” (p. 230). Even so, 

the zero/non-zero status of δ is still assumed to map directly 

on to the true/false status of the theoretical mechanism being 

tested. This is the key issue because the null hypothesis of no 

difference (δ = 0) might never be strictly true. It might never 

be true because of what Baribault et al. (2018) referred to as 

“the vagaries and idiosyncrasies of experimental protocols” 

(p. 2607).

The critical but often overlooked distinction between the 

zero/non-zero status of δ and the true/false status of a theory 

under investigation was emphasized by Meehl (1967) long 

ago:

While no competent psychologist is unaware of this 

obvious distinction between a substantive psychologi-

cal theory T and a statistical hypothesis H implied by 

it, in practice there is a tendency to conflate the sub-

stantive theory with the statistical hypothesis, thereby 

illicitly conferring upon T somewhat the same degree 

of support given H by a successful refutation of the 

null hypothesis. (p. 107)

The problem with this way of thinking, as Meehl (1967) 

also pointed out, is that the null hypothesis of no difference 

is rarely if ever true even if the theory under investigation 

is false. In other words, the point-null hypothesis is a useful 

fiction that scientists adopt to perform statistical analyses, 

not a realistic depiction of underlying reality. Although δ = 0 

may never be strictly true, theories can be strictly false. This 

conundrum has long been appreciated by the field, but what 

it implies about the relationship between the magnitude of 

the underlying effect size and the true/false status of the 

theory under investigation has never been considered in a 

formal way, as we do here.

Our purpose is not to propose any new statistical test for 

dealing with the possibility that the null hypothesis of no 

difference is a fiction. Instead, we operate under the explicit 

assumption that, for the foreseeable future, analyses that 

adopt the point-null hypothesis – including both NHST and 

BNHT – will continue to dominate the statistical landscape. 

For the many studies that analyze their data using NHST or 

BNHT, our focus is on the relationship between the magni-

tude of δ (which could only be known if the entire popula-

tion were tested) and the validity of a theoretical mechanism 

that correctly predicted its direction.

The goal of most methodological and statistical recom-

mendations in the metascience literature is to ensure that a 
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claimed discovery is not a statistical false positive (i.e., to 

ensure that δ is not equal to zero). If the underlying effect 

size differs from zero and can be reproduced in large-N repli-

cation studies, the statistician is satisfied. This is true even if 

the effect size is small. It might not have practical relevance 

in that case – see, for example, efforts to specify the small-

est effect size of interest (e.g., Lakens et al., 2018) – but so 

long as the underlying effect size is greater than zero, it is, 

by definition, a real effect, not a statistical illusion. But if the 

non-zero underlying effect size is small, is it also a theoreti-

cal true positive (i.e., does it also substantiate the theory that 

predicted it)?

With few exceptions, theories make predictions about 

the direction of an effect, not about the specific magnitude 

of an effect. Imagine that δ = 0.02 for an experiment test-

ing Theory A and that δ = 0.20 for an experiment testing 

Theory B. Both underlying effect sizes differ from 0 in the 

direction predicted by the theory, so neither is a statistical 

false positive (Simmons et al., 2011), but are they equally 

likely to reflect true positives at the level of theory? We think 

that most scientists would say “yes.” That is, a replicable 

non-zero effect supporting the a priori directional predic-

tion made by a theory, no matter how small, is generally 

thought to support that theory to the same degree. However, 

we make the case here that the smaller the underlying effect 

size is, the less it supports the theory under investigation and 

the more likely it is to reflect a theoretically uninteresting 

nuisance factor.

As we use the term, a nuisance factor is any hidden cause 

of an underlying non-zero effect over and above the effect 

that might be contributed by a theoretical mechanism of 

interest. Examples of nuisance factors include (but are cer-

tainly not limited to) a pseudo-random number generator 

that leads to a slight confound across conditions; experimen-

tal instructions that unintentionally create a slight difference 

in attention to the task across conditions; research assistants 

who are not quite as blind to condition as the experimenter 

assumes; experimental participants who have taken a class 

related to the issue under investigation and manage to guess 

what the study is about; and so on. Regardless, if the effect 

caused by the nuisance factor is in the right direction, the 

theoretical mechanism under investigation will get the credit, 

even if the theory is wrong.1

The concept of a theoretical false positive is rarely con-

sidered, but the issue warrants attention because efforts to 

reduce false positives at the level of the underlying effect 

size, thereby mitigating the replication crisis, risk ushering 

in a new crisis at the level of theory. Indeed, one of the most 

widely agreed upon reforms for improving replicability is 

to increase sample size to enhance statistical power (e.g., 

Asendorpt et al., 2013; Bishop, 2019; Button et al., 2013; 

Turner et al., 2018). But if the null hypothesis of no dif-

ference is generally false, then, according to the argument 

we present here, this approach to increasing the detection 

of true positives at the level of the underlying effect size 

will have the unintended effect of increasing the detection 

of small-but-real effects that are false positives at the level 

of theory. Compounding that problem is the emerging idea 

that psychology should attach greater value to the discovery 

of small effects than it currently does (Götz et al., 2021).

Here, we advance the opposite perspective. In our view, 

a scientific discipline concerned with enhancing our under-

standing at the level of theory, like experimental psychol-

ogy, should not become enamored with small effect sizes. In 

addition, we argue that there are limits to how much statisti-

cal power is advisable when an experiment is conducted to 

test a theory-based prediction. Such experiments fall into 

the category of what we term “original science,” which is 

designed to expand the boundaries of knowledge (Wilson 

et al., 2020). Original science is distinct from “replication 

science,” which is designed to confirm a candidate discovery 

from the original science literature by precisely measuring 

its underlying effect size.

As we discuss in more detail later, the rules that optimize 

original science are not the same rules that optimize repli-

cation science. For example, unlike theory-focused origi-

nal science, where too much power can be problematic, for 

replication science, the higher the statistical power the bet-

ter (Wilson et al., 2020). This is because all an experiment 

does is measure an effect size (nothing more). If an origi-

nal experiment is among the small fraction of experiments 

deemed important enough to replicate, then the time has 

come to measure its underlying effect size as precisely as 

possible. Once the underlying effect size is precisely meas-

ured, further considerations are needed to decide if it is a 

theoretical true positive (reflecting a theoretical mechanism) 

or a theoretical false positive (reflecting a nuisance factor). 

One of those considerations is the magnitude of the precisely 

measured effect size.

In making our case, we emphasize two concepts that are 

likely to be unfamiliar to most researchers: (1) the concept of 

a theoretical false positive (as defined above) and (2) the con-

cept of an optimal sample size (not too small but also not too 

large). The optimal sample size for original science is the one 

that maximizes positive predictive value (PPV) at the level of 

theory. PPV at the level of theory is the probability that a p < .05 

result confirming a theory-based prediction reflects the effect of 

the theoretical mechanism, not a nuisance factor. Because our 

case rests on the notion that the null hypothesis of no difference 

is a useful fiction, not a realistic depiction of underlying reality, 

we next review the fascinating and enduring debate over that 

idea. Readers who need no convincing that the null hypothesis 

might never be strictly true can skip this section.

1 Credit will be shared across competing theoretical mechanisms that 

happen to make the same prediction.
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The null hypothesis of no difference 
is a fiction

Typically (though not necessarily), the null hypothesis states 

that the difference between the true underlying means of 

Condition A and Condition B (μA and μB, respectively) is 

exactly zero (i.e., μA - μB = 0). In that case, the true underly-

ing effect size would be exactly zero as well. For example, 

Cohen’s δ = (μA - μB) / σ, where σ is the common underly-

ing standard deviation for both conditions (Cohen, 1988). In 

terms of this effect-size measure, the null hypothesis of no 

difference is that δ = 0, and it is assumed to apply when the 

theoretical mechanism under investigation is false. This way 

of thinking implies that theoretically uninteresting nuisance 

factors do not create even so much as a small difference 

between groups when the theory is false. To us, and to many 

before us, this seems like an unrealistic assumption.

The way the underlying effect size is typically conceptu-

alized if the theory is true (i.e., the alternative hypothesis) 

is similarly unrealistic. As noted earlier, when conducting 

a power analysis, researchers often assume that when the 

theory is true, the underlying effect size is a specific non-

zero value (e.g., δ = 0.20), as if no other possibilities exist. 

For Bayesians who use BNHT, with probability P(H0), the 

underlying effect size associated with the null hypothesis is 

also assumed to be δ = 0.00 (as in NHST), but with prob-

ability P(H1), δ is not a point alternative. Instead, it is (more 

realistically) assumed to be drawn from a distribution, such 

as the Cauchy distribution.

But what if δ ≠ 0.00 even if the theoretical mechanism 

being tested is false? In that case, both statistical approaches 

would be based on a fictional (albeit useful) depiction of 

underlying reality. The idea that δ is never equal to zero is 

perhaps easiest to appreciate in quasi-experimental group 

designs in which the groups are either pre-existing (e.g., 

males vs. females, bilinguals vs. monolinguals, young vs. 

old, etc.) or created arbitrarily (e.g., those whose perfor-

mance falls above the mean on some measure vs. those 

whose performance falls below the mean). Many experi-

ments fall into this category. In the absence of random 

assignment, some difference between the two groups will 

always exist no matter what the dependent measure might 

be. Consider, for example, the results of a study by Bakan 

(1966):

Some years ago, the author had occasion to run a 

number of tests of significance on a battery of tests 

collected on about 60,000 subjects from all over the 

United States. Every test came out significant. Divid-

ing the cards by such arbitrary criteria as east versus 

west of the Mississippi River, Maine versus the rest 

of the country, North versus South, etc., all produced 

significant differences in means. (p. 425)

A similar issue emerges in studies that measure the cor-

relation between one variable and another variable measured 

from the same participant. The issue here is that, within 

individuals, everything is correlated with everything else 

to some small degree. Therefore, with sufficiently large N, 

the result will be significant every time (Meehl, 1967; Vul 

et al., 2009). When participants are not randomly assigned 

to different experimental conditions, there appears to be no 

debate over the idea that the null hypothesis of no difference 

is always false despite what researchers pretend to be true 

when conducting statistical analyses (Meehl, 1990).

What about when participants are randomly assigned to 

different conditions? Here, there is room for argument, and 

the longstanding debate over this issue is as interesting as 

it is unresolved. Cohen (1990) was adamant that, yes, even 

then, the null hypothesis of no difference is always false:

A little thought reveals a fact widely understood 

among statisticians: The null hypothesis, taken liter-

ally . . . is always false in the real world. It can only be 

true in the bowels of a computer processor running a 

Monte Carlo study (and even then a stray electron may 

make it false). (p. 1308)

Jones and Tukey (2000) emphatically agreed:

When A and B are different treatments, μA and μB are 

certain to differ in some decimal place so that μA - μB 

= 0 is known in advance to be false and μA - μB ≠ 0 

is known to be true (Cohen, 1990; Tukey, 1991). An 

extensive rebuttal to this claim has been provided by 

Hagen (1997), who stated that "I agree that A and B 

will always produce differential effects on some vari-

able or variables that theoretically could be measured. 

But I do not agree that A and B will always produce 

an effect on the dependent variable." (p. 20). We sim-

ply do not accept that view. For large, finite, treatment 

populations, a total census is at least conceivable, and 

we cannot imagine an outcome for which μA - μB = 0 

when the dependent variable (or any other variable) is 

measured to an indefinitely large number of decimal 

places. (p. 412)

However, a counterargument advanced by Hagen (1997) 

seems hard to summarily dismiss. He emphasized that argu-

ments like the ones quoted above refer to samples taken from 

a population, yet the null hypothesis pertains to the popula-

tion, not the samples. As he put it:

But the null hypothesis says nothing about samples 

being equal, nor does the alternative hypothesis say 

that they are different. Rather, when addressing group 

differences, the null hypothesis says that the observed 

samples, given their differences, were drawn from the 

same population, and the alternative hypothesis says 
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that they were drawn from different populations. (p. 

20)

Hagen (1997) acknowledged that an experimental manip-

ulation will always have an effect on some dependent meas-

ures despite random assignment to the treatment and control 

conditions (Conditions A and B, respectively). However, he 

also offered the following entertaining example to drive 

home the point that, for the specific dependent variable (DV) 

of interest, the null hypothesis of no difference is presumably 

true sometimes:

A few years ago, visual imagery therapists were treat-

ing AIDS patients by asking the patients to imagine 

little AIDS viruses in their bodies being eaten by mon-

sters…The effects of A and B are different, but many 

would question whether or not such changes would be 

reflected in the participant’s T-cell count. And if that 

is the DV, it is only that difference that would lead to 

a rejection of the null hypothesis. (p. 21)

This argument seems reasonably compelling to us (see 

also Oakes, 1975). Then again, a stickler could argue that 

instructing patients to imagine virus-eating monsters in 

hopes of inducing phagocytes to ingest and digest HIV (the 

theoretical mechanism) might have some slight effect on 

adrenaline levels (the nuisance factor). Although a large 

effect of this experimental manipulation is hard to imagine, 

a small adrenaline-induced effect on T-cells is at least con-

ceivable, one that would be detected with sufficient power. 

But no matter how real that small effect turns out to be, it 

would not lend much support to the proposed theoretical 

mechanism (phagocytosis).

Although some argue that small nuisance effects always 

exist (even when random assignment is used), it seems fair to 

suppose that there is some imaginable experimental manipu-

lation that would have literally no effect on the dependent 

measure of interest, not even to the farthest decimal place 

imaginable (i.e., to infinity and beyond). Meehl (1990) him-

self eventually accepted the null hypothesis of no difference in 

"pure experimental studies" (p. 204) while also noting that his 

colleague David Lykken and “several high-caliber graduate 

students” disagreed with him on that point. We disagree with 

him on that point, too.

So far as we can determine, for experiments using ran-

dom assignment, there has been no ultimate resolution to 

this debate. However, it is important not to overlook how 

narrow the focus of the remaining debate is. To our knowl-

edge, no one disputes that the null hypothesis of no differ-

ence is always false in quasi-experimental and correlational 

studies. Moreover, few dispute that the null hypothesis of 

no difference is sometimes false even when random assign-

ment is used. The only unresolved issue is whether the null 

hypothesis of no difference is always false when random 

assignment is used. Some say yes, others no.

Given how this debate has played out over the years, we 

assume that most scientists are willing to at least entertain 

the possibility that the null hypothesis of no difference is 

often not strictly true even though we pretend otherwise 

in virtually every statistical test we perform. What are the 

implications? We submit that the implications are non-trivial 

considering that theoreticians, unlike statisticians, often do 

not care about the magnitude of underlying effect sizes, per 

se.

Theory‑focused 
versus measurement‑focused research

Before presenting our case in formal terms, it is worth draw-

ing another distinction between theory-focused research and 

measurement-focused research (Table 1). As noted above, 

theory-focused research investigates the truth status of a 

proposed theoretical mechanism.2 Theories can be either 

true or false, even if underlying effect sizes associated with 

experiments designed to test them always differ from 0 to 

some degree. When the theory is false (e.g., people have 

Table 1  A summary of the distinction between theory-focused and measurement-focused research

• Theory-focused research

     ◦ Goal is to test a prediction made by a theory

     ◦ The binary decision (if p < .05 => credit the theory) is correct or incorrect

     ◦ PPV at the level of theory (proportion correct) is maximized by optimizing N

• Measurement-focused research

     ◦ Goal is to precisely measure the non-zero underlying effect size (δ)

     ◦ Purely applied research is one type of measurement-focused research

     ◦ When measuring δ, precision is maximized by maximizing N

2 Oberauer and Lewandowsky (2019) distinguished between dis-

covery-oriented research and theory-testing research, which differ 

depending on whether the connection between the theory and the 

tested hypothesis is weak or strong, respectively. Both are subsumed 

by what we call theory-focused research.
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ESP), we assume that the proposed theoretical mechanism 

(e.g., “quantum entanglement”) contributes nothing to the 

non-zero underlying effect size associated with the experi-

mental protocol. This is the null hypothesis at the level of 

theory, and, in our view, it is the null hypothesis of inter-

est in theory-focused research. Later, we present a formal 

argument that PPV at the level of theory is maximized by 

optimizing (not maximizing) N.

Unlike theory-focused research, for measurement-

focused research, the truth status of a proposed theoreti-

cal mechanism is not of interest. Instead, the question of 

interest is the magnitude of the underlying effect size per 

se (which is what statisticians focus on). Purely applied 

research is often measurement focused. Consider, for exam-

ple, an experiment testing whether police lineups yield 

better performance when the faces are presented simulta-

neously or sequentially. Mickes et al. (2012) investigated 

that question after proposing what they argued was a better 

measure of diagnostic accuracy than had been used to that 

point, namely, the area under the receiver operating char-

acteristic curve (AUC). At the time, no theory had been 

advanced to explain to why either lineup procedure would 

be diagnostically superior to the other according to AUC. 

Measurement was the only goal because a lineup procedure 

that achieves even slightly better diagnostic accuracy (e.g., 

slightly greater than the smallest effect size of interest), 

when multiplied across thousands of police departments, 

might be worth implementing in the real world. For meas-

urement purposes, maximizing precision is achieved by 

maximizing N.

Now consider again the distinction between original sci-

ence and replication science (Table 2). Original science is 

about expanding the boundaries of knowledge, whereas 

replication science is about confirming (or not) a finding 

from the original-science literature. Results obtained from 

experimental protocols in the original science literature do 

not directly answer the dichotomous questions of interest, 

such as (a) “Is the effect size different from 0 or not?” or (b) 

“Is the tested theoretical mechanism true or false?” Instead, 

because the measured effect size is a noisy estimate of the 

truth (i.e., it is a noisy estimate of the underlying effect size), 

a statistical test is needed to address such questions. At the 

replication stage, however, for the few original experiments 

that command attention, the goal should be to measure the 

truth as precisely as possible by maximizing N. In principle, 

though not always in practice, the measurement would be so 

precise as to render statistical analysis superfluous.

Imagine that a large-N replication study has provided a 

precise estimate of an underlying effect size of interest. If 

it is small yet undeniably greater than 0, it counts as a true 

positive at the level of the effect size (i.e., it is a statistical 

true positive). However, in what follows, we argue that the 

smaller the theory-supporting effect size is, the more likely 

it is to reflect a nuisance factor (i.e., the more likely it is to be 

a theoretical false positive). Theory-focused original-science 

research should try to avoid theoretical false positives and 

instead maximize the detection of theoretical true positives 

by optimizing, not maximizing, N.

In formal (but unrealistically simplified) terms

In a paper entitled “Power failure: Why small sample 

size undermines the reliability of neuroscience,” Button 

et al. (2013) presented a seemingly airtight mathematical 

argument in favor of large-N studies. Their paper has been 

influential, having been cited over 6,000 times according 

to Google Scholar. Button et al. (2013) assumed that a 

reasonable scientific goal is to ensure that a high pro-

portion of published p < .05 findings are statistical true 

positives. This proportion is known as positive predictive 

value, or PPV.3 As they used this term, PPV refers to the 

proportion of published p < .05 findings in which δ is 

not equal to 0. This is PPV at the level of the underlying 

effect size, and many scientists implicitly assume that it 

is PPV at the level of theory as well (Meehl, 1967).

Adopting the Neyman and Pearson (1933) perspective, 

the equation specifying the relationship between PPV at the 

Table 2  A summary of the distinction between original science and replication science

• Original science

     ◦ Discovery-oriented research designed to expand the boundaries of knowledge

     ◦ It includes testing a prediction derived from a theory (theory-focused research)

     ◦ It also includes testing a purely applied question (measurement-focused research)

• Replication science

     ◦ Confirmation-oriented research designed to measure the underlying effect size (δ) associated with a claimed discovery from original science

     ◦ Replication science is measurement-focused and is optimized by maximizing N

3 A more rational goal might be to maximize the ability to discrimi-

nate true hypotheses from false hypotheses (cf. Witt, 2019), but max-

imizing PPV is a sensible goal for a fixed alpha level. We proceed 

under the assumption that alpha is fixed at .05, in which case maxi-

mizing PPV is rational.



Psychonomic Bulletin & Review 

1 3

level of the underlying effect size, power (1 – β) and alpha 

(α) is:

where P(H1) is the prior probability that the alternative sta-

tistical hypothesis is true, and P(H0) is the prior probability 

that the null hypothesis of no difference is true. Because 

those are the only two possibilities, P(H0) + P(H1) = 1.

The prior odds, R, that the H1 is true is given by R = 

P(H1)/P(H0), so Equation 1 can be rewritten in the form used 

by Button et al. (2013):

One determinant of prior odds is how obvious the hypoth-

esis being tested is in advance of the experiment. As a gen-

eral rule, the more obvious it already is that H1 is true, the 

higher the prior odds (in the limit, R → ∞) and the more 

likely a significant effect is to replicate. Conversely, the less 

obvious it already is that H1 is true, the lower the prior odds 

(in the limit, R → 0), and the less likely a significant effect 

is to replicate. The appropriate level of R lies somewhere 

between these extremes, and it is a subjective judgment call. 

Different subfields of psychology (e.g., cognitive psychology 

vs. social psychology) may reasonably choose to operate at 

different points along that continuum (Wilson & Wixted, 

2018). This means that the different subfields would have 

different replication rates even if they conducted methodo-

logically similar experiments.

We assume that the prior odds for a given field are fixed, 

and for simplicity, we assume (as researchers typically do) 

that P(H0) = P(H1) = 0.5 such that R = 1 (i.e., the prior odds 

are even). If the prior odds are even, Equation 2 simplifies to:

From this perspective, science is a standard signal 

detection problem (Wilson et  al., 2020). In terms of 

signal detection theory, power (1 – β) is the “hit rate” 

(HR) and α is the “false alarm rate” (FAR). Increasing N 

selectively increases the HR (i.e., it selectively increases 

power) while leaving the FAR fixed at α = .05. Thus, as N 

increases, an ever-higher proportion of the p < .05 find-

ings in the literature would be true positives at the level 

of the effect size (i.e., as N increases, so does PPV). If 

so, then assuming unlimited resources, only good things 

come from increasing N.

Critically, this argument is completely dependent on 

the assumption that under H0, δ = 0. For measurement-

focused research, the null hypothesis of no difference is 

true by definition (i.e., by definition, H0 means δ = 0), 

(1)PPV =
P
(

H
1

)

(1 − �)

P
(

H
1

)

(1 − �) + P
(

H
0

)

�

(2)PPV =
R(1 − �)

R(1 − �) + �

(3)PPV = [(1 − �)]∕[(1 − �) + �]

and it does not matter that it may not apply to any exper-

imental protocol. All that matters is the magnitude of the 

underlying effect size, whatever it might be, and an ever 

more precise measure of it is obtained by increasing N. 

However, our concern is with theory-focused research. 

Although δ may never equal zero because of nuisance 

factors, some theories are surely false in the strictest 

sense of that word. Unfortunately, as power is increased 

via large N to detect the non-zero effect predicted by a 

theory, power to detect the nuisance effect will increase 

as well. Thus, at the level of theory, both the HR and the 

FAR would increase as N increases. That is the problem.

Continuing with the assumption that the prior odds 

are even, consider the 50% of experiments that test a 

prediction made by a true theoretical mechanism. With 

sufficient power, these non-zero effects would all be 

detected at p < .05, and they would all be statistical true 

positives (δ > 0 in the predicted direction). They would 

also all be theoretical true positives because the theory 

is true. For the 50% of experiments where the theory is 

false, the underlying effect caused by a nuisance factor 

would presumably be in the same direction predicted by 

the theory half the time (25% of the time overall) and in 

the opposite direction the other half of the time (again, 

25% of the time overall). With sufficient power, these 

effects would also be detected, and they would all be 

statistical true positives because, in truth, δ ≠ 0. Unfor-

tunately, when the nuisance effect happens to be in the 

same direction as that predicted by the theory (25% of 

the time overall), they would be theoretical false posi-

tives. Overall, 50% + 25% = 75% of experiments would 

confirm the theoretical prediction. Thus, with maximum 

power, PPV at the level of theory would be only .50 / 

(.50 + .25) = .67.

These considerations raise an important question: if the 

null hypothesis of no difference is never strictly true (as we 

and many other assume), then what would the relationship 

between PPV at the level of theory and N be? This turns 

out to be a more interesting question than it might seem 

at first glance.

For notational clarity, we redefine H0 to represent the null 

hypothesis at the level of theory. Assume that under H0 (the 

theoretical mechanism is false), the nuisance effect size is 

small but not zero. For example, assume that δ ∣ H0 = 0.02 

when the nuisance effect is in the same direction as the pre-

dicted effect, and δ ∣ H0 =  − 0.02 when the nuisance effect 

is in the opposite direction as the predicted effect. Further 

assume that under H1 (the theoretical mechanism is true), 

the effect size is 0.20 (i.e., δ ∣ H1 = 0.20). To determine the 

quantitative relationship between PPV at the level of theory 

and N under those conditions, we used the appropriately 

modified version of Equation 3:
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where 1− β1 is power to detect δ|H1 = 0.20 (as usual) and 

1− β0 is power to detect δ|H0 = 0.02 (i.e., power to detect a 

directionally correct nuisance effect).4 That is, we replaced 

α, which is constant with respect to N, with 1− β0, which 

increases with N.

For simplicity, we performed these calculations for a 

one-sample t-test, one-tailed (alpha level = .05), as if test-

ing a directional effect predicted by a theoretical mecha-

nism. With these settings, and as noted above, if power 

were 100%, 75% of experiments would yield a significant 

result in the predicted direction (50% because of the effect 

generated by a theoretical mechanism and 25% because a 

nuisance factor generated an effect in the predicted direc-

tion). In that case, as N → ∞, PPV at the level of theory 

would be .50 / (.50 + .25) = .67. As illustrated in Fig. 1, 

for the parameter settings used in this example, the rela-

tionship between PPV at the level of theory and N is non-

monotonic, reaching a maximum of .941 at an intermediate 

sample size of N = 284. In an era where N can easily be in 

the thousands or tens of thousands (and sometimes even 

hundreds of thousands), Fig. 1 illustrates why a widely 

agreed upon reform to improve replicability has its limits.

With their “power failure” title, Button et al. (2013) clev-

erly implied that appliances and experiments alike need 

enough power to function properly. However, appliances and 

experiments alike can have too much power and therefore 

need a surge protector to guard against too much current. 

Optimizing rather than maximizing N provides a surge pro-

tector (so to speak) that will prevent an influx of theoretical 

false positives into the scientific literature.

In formal (and more realistic) terms

Although useful for illustrative purposes, the underly-

ing effect size for a given experimental protocol is not 

realistically modeled as having been drawn from a point-

null (δ ∣ H0 = 0.02) distribution versus a point-alternative 

(δ ∣ H1 = 0.20) distribution. Instead, the underlying effect size 

has been drawn from an unknown continuous distribution. 

What might that distribution look like across all experiments 

conducted by psychologists, whether or not the result is sig-

nificant and whether or not it is published? There is no way 

to know. We can, however, try to take a principled approach 

to specify its possible shape.

(4)PPV =
[(

1 − �
1

)]

∕
[(

1 − �
1

)

+
(

1 − �
0

)]

As noted by Wilson et al. (2020), if all we know about a 

distribution is (1) its range and (2) its mean, then the maxi-

mum entropy distribution – that is, the distribution that is 

“…maximally noncommittal with regard to missing infor-

mation” (Jaynes, 1957, p. 623) – is the exponential. With 

the direction of the underlying effect defined to be positive, 

the range is 0 to infinity. Although we do not know the exact 

mean of the distribution, we do have considerable informa-

tion about it. For example, one estimated average effect size 

from the published social psychological literature is d = 0.43 

(Richard et al., 2003), which is likely inflated relative to the 

underlying effect sizes. It is also presumably larger than the 

underlying effect sizes of the many studies that were con-

ducted and that were not published (e.g., perhaps because 

they failed to achieve statistical significance). Thus, out of 

the infinite range of possibilities, the mean underlying effect 

size presumably falls between 0 and 0.43.

Though not an exact estimate, after considering how 

much of the infinite range of possibilities we can exclude, 

Wilson et al. (2020) proceeded on the assumption that we 

know not only the range but also the mean. We therefore 

assumed that underlying effect sizes are drawn from an 

exponential distribution. Because that analysis was predi-

cated on remaining maximally noncommittal about missing 

information, Wilson et al. (2020) stopped there. However, 

for thinking purposes, it seems reasonable to further sup-

pose that, for some experiments, the theoretical mechanism 

under investigation is true (H1) and for others, the theoretical 

mechanism is false (H0). We therefore take that additional 

step here to work out the relationship between the underlying 

effect size (δ) and the likelihood that it was obtained in an 

experiment in which the theory under investigation is true. 

This is the relationship of primary interest. Later, we model 

Fig. 1  Relationship between positive predictive value (PPV) at the 

level of theory vs. N under the assumption that δ|H0 = 0.02 and δ|H1 

= 0.20 for a one-tailed one-sample t-test (with α = .05). Under those 

conditions, the maximum PPV  (PPVmax) of 0.941 is achieved using a 

sample size (Nmax) of 284

4 1− β0 also includes power to falsely detect δ ∣ H0 =  − 0.02 using a 

one-tailed t-test. These sign errors are rare and quickly become negli-

gible as N increases.



Psychonomic Bulletin & Review 

1 3

the statistical selection of underlying effect sizes using a p 

< .05 filter for various N, where we again find that PPV at 

the level of theory is maximized when N is optimized, not 

when it is very small or very large.

Our model of science in a nutshell

A succinct one-paragraph summary of our model is as fol-

lows: If the theory that predicted the effect under investi-

gation happens to be false, the non-zero underlying effect 

size associated with the experimental protocol arises from 

a nuisance factor alone. If the theory happens to be true, 

its underlying mechanism adds to whatever nuisance effect 

would exist even if the theory were false. By chance, the 

direction of the nuisance effect will be the same as the direc-

tion of the effect predicted by the theory half of the time 

(adding to the effect contributed by the theoretical mecha-

nism, if the theory is true) and in the opposite direction the 

other half of the time (subtracting from the effect contributed 

by the theoretical mechanism, if the theory is true). Nuisance 

effects (“noise”) and theory-based effects (“signal”) are both 

assumed to be exponentially distributed, and an underly-

ing effect size is conceptualized as a random draw from the 

noise distribution when the theory is false (half the time) 

and as a random draw from the signal-plus-noise distribution 

when the theory is true (the other half of the time).

Our model of science in detail

That is all there is to our model of underlying effect sizes. 

Everything we say next follows directly from it. We first 

work out the implications of this model for the relationship 

between the magnitude of δ for a given experimental proto-

col and the odds that the tested theory is true independent of 

any statistical test, and then we revisit the issue of PPV at the 

level of theory for statistically significant results. For read-

ers who prefer to skip the math, Fig. 2 illustrates our model 

of underlying reality (under the assumption that nuisance 

effects are small relative to effects caused by a true theo-

retical mechanism), and Fig. 3 illustrates the corresponding 

relationship between the odds that the theory is true as a 

function of the magnitude of δ. Note that this relationship 

applies before any experimental result is selected using a 

p < .05 filter. PPV is a concept that applies after experimen-

tal results are selected in this way, and Fig. 6a depicts PPV 

at the level of theory as a function of N for the model shown 

in Fig. 2. Figures 4, 5 and 6b provide another example under 

the assumption that nuisance effects are, on average, as large 

as the effects generated by true theoretical mechanisms. The 

take-home message is the same either way: the smaller the 

non-zero magnitude of δ, the less support it offers for the 

theoretical mechanism that predicted it and the more likely it 

is to reflect a nuisance factor. In addition, PPV is maximized 

by optimizing (not maximizing) N.

Model mechanics We begin by partitioning δ into two 

independent components, δN and δS, where the subscript 

“N” stands for “noise (the share of the effect caused by a 

nuisance factor), and the subscript “S” stands for “signal” 

(the share of the effect caused by the theoretical mecha-

nism under investigation). If the theory that predicted the 

effect is false, then δS = 0. This is the null hypothesis at the 

level of theory (H0). In that case, δ = δN. When the theory 

is true, then δS > 0, in which case δ = δS + δN = δSN, where 

the subscript “SN” stands for “signal plus noise.” This is 

the alternative hypothesis at the level of theory (H1). These 

assumptions are summarized in Table 3.

When the theory being tested is true, we assume that δS is 

a random variable (x), falling in the positive range of (0, ∞). 

Thus, by definition, the direction of the effect predicted by 

the theory is positive. We take this unidirectional approach 

because it is hard to imagine a useful theory that predicts a 

non-zero effect but does not predict its direction (Jones & 

Tukey, 2000). More formally, we assume that x is an expo-

nentially distributed random variable with rate parameter λ, 

the pdf of which is:

Figure 2a illustrates this signal distribution for λ = 5 

(mean effect size = 1 / λ = .20).

Unlike δS, we assume that δN always differs from 0. 

After all, there is only one theory under investigation in the 

simplest case (which might be false), but there is an inex-

haustible supply of possible nuisance factors that might 

affect the dependent measure for a given experimental 

protocol. Even a standard random number generator does 

not generate truly random numbers but instead generates 

pseudo-random numbers that must introduce some (per-

haps infinitesimal) non-zero effect. We therefore assume 

that one or more nuisance factors plagues every experi-

mental protocol. However, the essence of our argument 

(i.e., that theoretical false positives will increase as power 

to detect nuisance effects increases) holds even if the null 

hypothesis of absolute 0 is sometimes true. Only the math 

would change, as we consider later. The argument is under-

mined only if virtually every experimental protocol is so 

pristine as to be entirely free of nuisance factors, in which 

case there would be little need to ever worry about poten-

tial non-obvious confounds.

Formally, we assume that δN is a bidirectional, exponen-

tially distributed random variable (x) with rate parameter μ, 

and its direction is in the same direction as that predicted by 

the theory (x > 0) half the time and in the opposite direction 

f (x, 𝜆) =

{

𝜆e−𝜆x if x ≥ 0

0 if x < 0
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(x < 0) the other half of the time. Thus, the pdf of the noise 

distribution is:

This can also be written more succinctly as 

g(x, μ) = 0.5μe−μ|x|.The mean of this mirror-imaged expo-

nential distribution is 1/μ for x > 0 and −1/μ for x < 0, so its 

overall mean is 
1∕�+(−1∕�)

2
= 0.5 Figure 2b illustrates these 

pure “noise” experiments with μ = 50 (i.e., for positive x, the 

mean equals 1/ μ = .02). Note that with a mean this small, 

many underlying effect sizes are negligible (e.g., ~5% are 

less than δN = .001 and 1% are less than δN = .0002). How-

ever, none are so small as to equal 0 exactly.

With both the signal and noise distributions defined, we 

can now specify the pdf of the signal-plus-noise distribution 

(i.e., the distribution of δSN), where δSN = δS + δN. This is the 

distribution of underlying effect sizes when the theory under 

investigation is true. Recall that when the tested theory is 

true, δS > 0, which is to say that its direction is positive (by 

definition). In that case, if δN happens to be in the same 

direction as δS (i.e., both positive), then their summed value 

is necessarily positive as well (δSN > 0). However, if δN is in 

the opposite direction, as it will be half the time, then the 

summed value can still be positive (when δS > δN), but it can 

also be negative (when δS < δN). As detailed in the Appendix, 

for the general case of λ ≠ μ, δSN is a random variable (x) 

distributed as follows:

where a =
��

�−�
 and b =

��

�+�
 . For λ = 5 and μ = 50, the signal-

plus-noise distribution – that is, the distribution of δSN – is 

the one shown in Fig. 2c.

Figure 2c indicates that when the theoretical mechanism 

under investigation is true, the underlying effect size (i.e., 

the effect size that would be measured if the entire popula-

tion were tested) is usually in the direction predicted by the 

theory. However, occasionally, the underlying effect is in 

the opposite direction predicted by a true theory. This hap-

pens when the effect of an opposite-direction nuisance factor 

more than cancels the effect contributed by the theoretical 

mechanism.

(5)g(x,�) =

{

0.5�e
−�x if x ≥ 0 (same direction)

0.5�e
�x if x ≤ 0 (opposite direction)

(6)

h(x, �,�) =

{

0.5a
(

e−�x − e−�x
)

+ 0.5b
(

e−�x
)

if x ≥ 0

0.5b(e�x) if x ≤ 0

The likelihood ratio Having specified both the noise dis-

tribution (the distribution of δN) and the signal-plus-noise 

distribution (the distribution of δSN), we are now in a posi-

tion to compute the likelihood that the effect is due to a 

theoretical mechanism (compared to the likelihood that the 

effect is instead due to a nuisance factor) as a function of the 

magnitude of δ. As a reminder, for half the experiments, we 

conceptualize δ as a random draw from the noise distribution 

(Fig. 2b) and, for the other half, as a random draw from the 

signal-plus-noise distribution (Fig. 2c).

For any given underlying effect size δ = xi, there is some 

probability that it is a signal (plus noise) trial, P(xi| s), and 

some probability that it is instead a noise trial, P(xi| n). 

Using the functions presented above, P(xi| s) = h(xi, λ, μ) 

and P(xi| n) = g(xi, μ).6 The likelihood ratio, L(xi), is equal 

to L(xi) = P(xi| s)/P(xi| n). Thus, for x = δ > 0 (i.e., when the 

underlying effect size is in the direction predicted by the 

theory), the likelihood ratio is:

With some algebraic rearrangement, this expression can 

be written as:

where k
1
=

�

�−�
 and k

2
=

�

�+�
.7

Equation 7 states that the likelihood ratio increases as a 

function of x. In other words, the larger the underlying effect 

size, the more support it offers for the theoretical mechanism 

under investigation. Although it seems reasonable to sup-

pose that nuisance effects are relatively small, this relation-

ship holds true no matter what the non-negative values of λ 

and μ might be. Thus, our argument is not dependent on the 

assumption that effects generated by nuisance factors are 

smaller than effects generated by the theoretical mechanism 

of interest. This can be appreciated by considering the first 

derivative of Equation 7. Dropping the subscript i on x, the 

first derivative of the likelihood ratio is:

The derivative on the right is the slope of the likelihood 

ratio versus x (where x represents the magnitude of δ). 

Because e(μ − λ)x is positive for x > 0, the slope of the function 

L
(
x

i
|x

i
> 0

)
=

0.5a
(
e
−𝜇x

i − e
−𝜆x

i

)
+ 0.5b

(
e
−𝜆x

i

)

0.5𝜇e−𝜇x
i

(7)L
(
x

i
|x > 0

)
=
(
k

1
+ k

2

)
e
(𝜇−𝜆)xi − k

1

(8)
d

dx

[(

k
1
+ k

2

)

e
(�−�)x − k

1

]

=
2��

� + �
e
(�−�)x

6 P(xi| s) means “probability of xi given that signal is present.” How-

ever, because noise is always present as well, this probability is pro-

vided by the signal-plus-noise distribution.
7 Again, this equation is for the general case where λ ≠ μ. See Appen-

dix for the corresponding equation for the special case where λ = μ 

(the equation itself is different, but the implications are the same).

5 Equation 5 is the Laplace distribution with a mean and mode of 0. 

However, this does not mean that an underlying effect size of 0 ever 

occurs. Instead, it means that an underlying effect size is more likely 

to be close to 0 than to any other value.
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relating the likelihood ratio to x is also positive for all x > 0. 

This means that the odds that the effect reflects the opera-

tion of a theoretical mechanism increases with x, and the 

key point is that this is true no matter what (positive) λ and 

μ might be. If μ > λ (i.e., if nuisance effects are smaller than 

theory-driven effects, on average), the derivative eventually 

explodes to infinity as x increases. If μ < λ (i.e., if nuisance 

effects are larger than theory-driven effects, on average), the 

derivative eventually asymptotes at 0 as x increases. But 

the slope is always positive, which means that the likeli-

hood ratio always increases with x. This, in turn, means that 

the larger the underlying effect size, the more likely it is 

to reflect the operation of a theoretical mechanism, not a 

nuisance factor.

Consider next how our model of underlying reality relates 

to the almost universal assumption that the null hypothesis 

of no difference is strictly true when the theory is false (i.e., 

when the theory is false, δ = 0). As μ increases, the mean of 

the noise distribution for positive x decreases (i.e., as μ → ∞, 

�
N
→ 0 ), at which point the null hypothesis of no difference 

is true even at the level of theory. As μ → ∞, the likelihood 

ratio in Equation 7 approaches ∞ even for x = 0 + ϵ (i.e., 

even for x slightly greater than 0). In other words, any non-

zero underlying effect size, no matter how small, indicates 

that the effect is due to the theoretical mechanism that pre-

dicted it. Thus, as μ → ∞, the null hypothesis at the level of 

theory reduces to the standard point-null hypothesis.

Figure 3a illustrates the relationship between the log 

likelihood ratio (i.e., log odds) and the underlying effect 

size for λ = 5 ( �
S
= 0.20 ) and μ = 50 ( �

N
= 0.02 for x > 0), 

and Fig. 3b presents the same information expressed as a 

probability.

If L(xi| x > 0) > 1, then the underlying effect size is more 

likely to reflect the hypothesized theoretical mechanism 

(signal plus noise) than it is to reflect a nuisance factor 

(noise alone). If L(xi| x > 0) < 1, it is the other way around. 

And if L(xi| x > 0) = 1, the odds are even. For convenience, 

we consider the log transform of the likelihood ratio in 

Fig. 3a. Negative log likelihood ratios mean that the under-

lying effect size likely reflects a nuisance factor, whereas 

positive log likelihood ratios mean that the underlying 

effect size likely reflects the hypothesized theoretical 

mechanism. The log likelihood ratio is equal to zero (and 

the probability equals .50) for the underlying effect size 

Fig. 2  a Exponential distribution of effect sizes generated by the the-

oretical mechanism of interest when the theory is true (δS). The mean 

of this distribution is 0.20. The direction of the effect predicted by the 

theory is defined to be positive, so negative values of δS do not exist. 

b Bidirectional exponential distribution of effect sizes generated by 

nuisance factors whether the theory is true or false (δN). The mean is 

equal to 0.02 when the nuisance effect is in the same direction pre-

dicted by the theory and is equal to -0.02 when it is in the opposite 

direction. c Distribution of the sum of δS and δN (signal plus noise, or 

δSN) when the theory under investigation is true

Table 3  The magnitude of the underlying effect size (δ) is conceptualized as the sum of an effect generated by a theoretical mechanism (δS) plus 

an effect generated by a nuisance factor (δN)

• Signal (δS)

     ◦ The share of δ caused by the operation of a theoretical mechanism

     ◦ If the theoretical mechanism is true, δS > 0; if it is false, δS = 0

• Noise (δN)

     ◦ The share of δ caused by an undetected nuisance factor

     ◦ δN ≠ 0 and is either positive or negative with respect to the theory-based prediction

• Signal + Noise (δS + δN)

     ◦ For a given experimental protocol, δ = δS + δN

     ◦ If the theoretical mechanism is false (δS = 0),  δ = 0 + δN = δN

     ◦ If the theoretical mechanism is true (δS > 0),  δ = δS + δN = δSN
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where the odds are even (which occurs at ~0.04 in this 

example).

The key point is that the smaller the underlying effect 

size, the less support it provides for the theory despite being 

a true (i.e., non-zero) effect in the direction predicted by the 

theory. This is precisely why, for theory-focused research, 

maximizing N to enhance replicability eventually becomes 

counterproductive. Despite maximizing replicability, it 

becomes counterproductive because ever-smaller values of 

δ would be detected at p < .05 and appear in the scientific 

literature as new theoretical discoveries when they actually 

reflect nuisance factors.

Another example To this point, we have used an example 

where nuisance effects are small, on average (μ = 50, so the 

mean of δN for x > 0 is equal to 1 / 50 = 0.02), relative to theory-

focused effects (λ = 5, so the mean of δS is equal to 1 / 5 = 0.20). 

We used this asymmetrical example because it is not a dramatic 

departure from what scientists already implicitly assume, which 

is that δN = 0 (the point-null hypothesis), with δS being some 

value substantially greater than that. However, there is no way 

to know if this intuition-based asymmetry in the relative size 

of signal versus noise effects is correct. To remain maximally 

noncommittal to unknown information, one might assume 

that nuisance effects and theory-based effects are, on average, 

equivalent. As detailed in the Appendix, in that special case 

(i.e., when λ = μ), the signal-plus-noise distribution becomes:

h(x,�) =

{

0.5�e
−�x(�x + 0.5 ) if x ≥ 0

0.25�e
�x if x ≤ 0

The noise distribution is the same as before:

As an example, assume that λ = μ = 5. In that case, the 

mean underlying effect size for nuisance factors and the 

mean underlying effect size contributed by true theoretical 

mechanisms would both be μ = 0.20. Figure 4 illustrates the 

signal distribution (which is the same as before), the noise 

distribution, and the signal-plus-noise distribution for this 

scenario.

Figure  5a illustrates the corresponding relationship 

between mean underlying effect size and the log odds that 

the theory is true, and Fig. 5b presents the same informa-

tion in terms of probability. Even if, on average, nuisance 

effects are this large, it nevertheless remains true that ever 

smaller underlying effect sizes for a given experimental 

protocol offer less support for the theory that predicted it. 

What changes is the slope of the function, which is shal-

lower than it was before. Now, the odds are even when the 

underlying effect size is 0.10, and the odds favor a nuisance 

factor when the underlying effect size is smaller than that.

As it turns out, and as is evident from the first deriva-

tive of the likelihood ratio function presented earlier in 

Equation 8, the key principle remains the same no mat-

ter what the exact positive values of λ and μ might be: 

larger underlying effects are more supportive of the the-

ory that predicted them than smaller underlying effects 

(and vice versa). Yet to address the replication crisis, 

increasing N without bound is increasingly considered 

g(x,�) =

{

0.5�e
−�x if x ≥ 0 (samedirection)

0.5�e
�x if x ≤ 0 (opposite direction)

Fig. 3  a Log odds that the theory of interest is true as a function of 

the magnitude of the underlying effect size (δ) for the model depicted 

in Fig.  2. For half the experiments, the theory was assumed to be 

false (so the effect size was a random draw from Fig. 2b) and for the 

other half it was assumed to be true (so the effect size was a random 

draw from Fig.  2c). The dashed lines indicate the underlying non-

zero effect size for which the odds are even that the effect is due to a 

nuisance factor vs. the theoretical mechanism of interest. b The same 

information expressed in terms of the probability that the theory of 

interest is true
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to provide only a benefit (increasing replicability, which 

it will certainly do), without cost beyond the increased 

consumption of resources. This is true for measurement-

focused research, but for theory-focused research, there 

is another cost that seems too high to pay. The cost is the 

increased introduction of small underlying effect sizes 

into the scientific literature, which will often be theo-

retical false positives masquerading as true theoretical 

discoveries.

What if the null hypothesis of no difference is sometimes 

true? We have assumed that nuisance effects always exist, 

drawn from an exponential distribution. However, allowing for 

the possibility that some experimental protocols achieve absolute 

methodological perfection (in which case the null hypothesis of 

no difference is literally true to the infinite decimal place) would 

not change our conclusion. For example, assume three possible 

outcomes for the noise distribution (the theory is false):

where π represents the proportion of experiments in which 

the null hypothesis of no difference is strictly true (i.e., the 

proportion of experiments where δ = 0). In that case, the 

probability of a nuisance factor generating an effect in the 

positive direction would be (1 − π)0.5, as would the probabil-

ity of a nuisance factor generating an effect in the opposite 

direction. For the general case where λ ≠ μ, the likelihood 

ratio for x > 0 now becomes:

g(x,𝜇) =

⎧
⎪
⎨
⎪
⎩

(1 − 𝜋)0.5𝜇e
−𝜇x if x > 0 (same direction)

(𝜋)0 if x = 0

(1 − 𝜋)0.5𝜇e
𝜇x if x < 0 (opposite direction)

L
(
x

i
|x > 0

)
=

0.5a
(
e
−𝜇x

i − e
−𝜆x

i

)
+ 0.5b

(
e
−𝜆x

i

)

(𝜋)0 + (1 − 𝜋)0.5𝜇e−𝜇x
i

where the term (π)0 in the denominator is included for the 

sake of clarity even though it equals 0. With some algebraic 

rearrangement as before, this expression can be written as:

Although we have assumed throughout that π = 0 (i.e., 

the null hypothesis of no difference is never strictly true 

even when the theoretical mechanism is false), Equation 9 

shows that our story does not depend on that assumption. 

So long as π < 1 (i.e., if the null hypothesis of no difference 

is sometimes false when the theoretical mechanism under 

investigation is false), the take-home message is the same: 

the smaller the underlying effect size, the less likely it is 

that the theoretical mechanism that predicted it is true. It is 

only when π = 1 (i.e., the null hypothesis of no difference 

is always strictly true when the theoretical mechanism is 

false) that the likelihood ratio becomes infinite for any non-

zero underlying effect size, no matter how small. For theory-

focused research, scientists who rely on standard NHST or 

BNHT adopt that assumption implicitly.

Positive predictive value (PPV) at the level 
of theory

So far, we have worked out the relationship between the 

underlying effect size associated with an experimental pro-

tocol (which could be known only if the entire population 

were tested) and the probability that it reflects the theoreti-

cal mechanism that predicted it rather than a nuisance fac-

tor. Because small effects are likely to reflect nuisance fac-

tors, the implication is that routinely maximizing N would 

(9)L
(
x

i
|x > 0

)
=

(
k

1
+ k

2

)
e(
𝜇−𝜆)xi − k

1

(1 − 𝜋)

Fig. 4  a Exponential distribution of effect sizes generated by a true 

theoretical mechanism (δS). The mean of this distribution is 0.20. b 

Exponential distribution of effect sizes generated by nuisance factors 

whether the theory is true or false (δN). The mean is now equal to 

0.20 for positive δN and is equal to -0.20 for negative δN. c Distribu-

tion of the sum of δS and δN (signal plus noise, or δSN) when the the-

ory under investigation is true. When nuisance effects are larger than 

effects caused by the theoretical mechanism of interest, underlying 

effect sizes opposite to the theoretically-predicted direction are fairly 

common (25% of the time in this example) even when the theory is 

true
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be problematic because small nuisance effects would be 

routinely detected at p < .05. Should we therefore mini-

mize N? That would be an even worse idea.

Figure 6 shows PPV at the level of theory for statisti-

cally significant (p < .05) results as a function of N for the 

two models of underlying reality considered above (Figs. 2 

and 4). Figure 6a assumes the model of underlying effect 

sizes depicted in Fig. 2 such that �
S
= .20 and �

N
= .02 for 

x > 0. Figure 6b assumes the model of underlying effect 

sizes depicted in Fig. 4 such that �
S
= .20 and �

N
= .20 

for x > 0. The statistical analyses testing for p < .05 effects 

involved one-tailed, one-sample t-tests (see Appendix for 

mathematical details). Clearly, as we also found earlier 

when using a much simpler model of underlying reality, 

PPV at the level of theory is maximized by neither mini-

mizing nor maximizing N but is instead maximized using 

an intermediate, optimal sample size (Nmax).

The optimal N in Fig. 6a is Nmax = 242. It is optimal 

in the sense that it maximizes PPV at the level of the-

ory for the scenario in which �
S
= .20 and �

N
= .02 and 

x > 0. As the mean of the noise distribution increases, 

Fig. 5  a Log odds that the theory of interest is true as a function 

of the magnitude of the underlying effect size (δ) for the scenario 

depicted in Fig. 4. This function was generated assuming that for half 

the experiments, the theory was false (so the effect size was a random 

draw from Fig. 4b) and for the other half of the experiments, the the-

ory was true (so the effect size was a random draw from Fig. 4c). The 

dashed lines indicate the underlying non-zero effect size for which the 

odds are even that the effect is due to a nuisance factor vs. the theo-

retical mechanism of interest. b The same information expressed in 

terms of the probability that the theory of interest is true

Fig. 6  a Positive predictive value (PPV) at the level of theory 

as a function of sample size (N) for the model depicted in Fig.  2 

( �
S
= .20 , �

N
= .02 for positive x). The maximum achievable PPV 

(PPVmax) is equal to .903, and the sample size that achieves that value 

(Nmax) is 242. b PPV at the level of theory as a function of sample 

size (N) for the model depicted in Fig. 4 ( �
S
= .20 , �

N
= .20 for posi-

tive x). The maximum achievable PPV (PPVmax) is equal to .763, and 

the sample size that achieves that value (Nmax) is 27. Also shown is 

the sample size that one would use to achieve 80% power (NNHST) 

assuming that δ = 0 under the null hypothesis and δ = 0.20 under the 

alternative hypothesis. For a one-tailed, one-sample t-test under those 

conditions, NNHST = 156 (its value is the same in panels a and b)
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however, optimal N decreases rapidly. In Fig. 6b, where 

�
S
= �

N
= .20 for x > 0, optimal Nmax = 27.

In Fig. 6a, PPV is, for all intents and purposes, max-

imized using the N that one would use to achieve 80% 

power to detect a small underlying effect size (δ = 0.20) 

under the standard assumptions of NHST (i.e., δ = 0 under 

the null hypothesis). In this scenario, based on standard 

NHST logic, 80% power would be achieved be testing 

NNHST = 156 participants. By most accounts, this would 

be an adequately powered study. By contrast, in Fig. 6b, 

where the mean of the noise distribution is equal to the 

mean of the signal distribution, the use of NNHST = 156 

participants would result in an overpowered experiment.

The key point is that, according to either version of 

underlying reality (Fig. 2 or Fig. 4), using large values of 

N reduces PPV in addition to consuming more resources. 

On the positive side, it also provides a more accurate 

estimate of δ. However, that benefit quickly yields dimin-

ishing returns. Figure 7 illustrates the average observed 

effect size (Cohen’s d) and the average underlying effect 

size (Cohen’s δ) as a function of N for statistically signifi-

cant (p < .05) results. Figure 7a assumes the model shown 

in Fig. 2 ( �
S
= .20 and �

N
= .02 for x > 0), and Fig. 7b 

assumes the model shown in Fig. 4 ( �
S
= .20 and �

N
= .20 

for x > 0). The mathematical formulas used to generate 

these plots are presented in the Appendix.

Note how inflated the observed p < .05 effect size is 

for small N (dashed curves). However, for NNHST = 156, 

Cohen’s d already provides a reasonably good estimate of 

Cohen’s δ, on average. Increasing N beyond that would 

further reduce the confidence interval around Cohen’s d, 

but that minor benefit would come at the major cost of 

detecting ever more theoretical false positives masquerad-

ing as theoretical true positives.

Figure 7 illustrates another point that we have not consid-

ered thus far here but did consider in Wilson et al. (2020). 

Whereas Fig. 6 illustrates that PPV is maximized using the 

optimal sample size of Nmax, Fig. 7 illustrates that the mean 

of the underlying p < .05 effect size (i.e., 𝛿 ∣ p < .05 ) is 

maximized using a much smaller N. More specifically, �
max

 

is achieved with N = 24 and N = 12 in Fig. 7a and b, respec-

tively. Why care about that measure? Without any dichoto-

mous consideration of effect sizes arising from theoretical 

mechanisms versus nuisance factors, Wilson et al. (2020) 

assumed that underlying effect sizes were drawn from a sin-

gle exponential distribution. A model of underlying reality 

like that would apply if, when testing non-obvious predic-

tions made by a theory, by assumption (not by mathematical 

derivation), the larger the underlying effect size, the more 

likely it is to reflect the theoretical mechanism rather than a 

nuisance factor. This is a continuous version of the dichoto-

mous model of underlying reality that we have pursued here. 

In the continuous version that Wilson et al. (2020) consid-

ered, the concept of PPV is not directly quantifiable. Given 

that model of underlying reality, powering experiments to 

maximize 𝛿 ∣ p < .05 would be a rational goal.

Yet scientists routinely assume, implicitly or explicitly, 

that half the tested theory-based hypotheses are true, and 

half are false (e.g., Rouder et al., 2009). After adopting 

that assumption here in a model of exponentially distrib-

uted underlying effect sizes, another optimal value of N is 

the one that maximizes PPV at the level of theory (Fig. 6). 

When nuisance effects are relatively small, the sample size 

that maximizes PPV at the level of theory is quite a bit 

larger than the sample size that maximizes the mean of 

p < .05 underlying effect sizes. Striving to maximize PPV 

at the level of theory seems like a reasonable goal for the-

ory-focused research so long as one is willing to grant the 

Fig. 7  a Mean observed effect size and underlying effect size (given 

p < .05) as a function of sample size (N) for the model depicted in 

Fig.  2 ( �
S
= .20 , �

N
= .02 for positive x). b Mean observed and 

underlying effect size (given p < .05) as a function of sample size (N) 

for the model depicted in Fig. 4 ( �
S
= .20 , �

N
= .20 for positive x). 

In panels a and b, �
max

 represents the maximum of 𝛿 ∣ p < .05 (i.e., 

the maximum of the mean δ for statistically significant results). As 

in Fig.  6, NNHST is the sample size that one would use to achieve 

80% power assuming δ = 0 under the null hypothesis and δ = 0.20 

under the alternative hypothesis for a one-tailed, one-sample t-test 

(NNHST = 156 in panels a and b)
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assumptions of the dichotomous model illustrated earlier 

in Figs. 2 and 4. But whether the goal is to maximize � 

for p < .05 results (Fig. 7) or to maximize PPV at the level 

of theory (Fig. 6), it is achieved by optimizing rather than 

maximizing N.

As noted above, and as illustrated in Fig. 7, when N is 

small and power is correspondingly low, the expected value 

of a p < .05 Cohen’s d is (on average) massively inflated. 

Thus, if experimental psychologists often run underpowered 

studies, as they undoubtedly do, replication studies (which 

are not selected using a p < .05 filter and therefore do not 

yield inflated estimates of Cohen’s d, on average) will have 

substantially smaller effect sizes than the original studies 

simply due to regression to the mean. This can create the 

impression of a replication crisis when the truth is consider-

ably more nuanced than that (Maxwell et al., 2015).

The replication crisis reconsidered

The debate over the existence of and proposed solutions 

to the replication crisis has focused almost exclusively on 

measured effect sizes, as if all of science consists of meas-

urement-focused research. Consider the Open Science Col-

laboration (2015, hereafter OSC2015), which directly repli-

cated 100 representative original-science experiments from 

the psychology literature, 97 of which reported a significant 

result. For those 97, the replication effect sizes were smaller 

than the original findings that were selected using a p < .05 

filter, and less than 40% of the replication experiments again 

yielded a p < .05 result.

If over 60% of the original studies replicated in OSC2015 

were statistical false positives (i.e., δ = 0), as many assume, 

then their corresponding replication Cohen’s d effect sizes 

would be centered on 0. However, Wilson et al. (2020) ana-

lyzed the non-significant replications and found that the 

average effect size was d = 0.141, an outcome significantly 

greater than 0 at p < .001. Similarly, a Bayesian analysis 

performed on these data yields a Bayes factor that strongly 

favors the alternative hypothesis over the point-null hypoth-

esis,  B10 = 27.5. Thus, it seems that many of the appar-

ent false positives are statistical true positives that have 

smaller effect sizes than originally reported. The effect sizes 

declined by ~50% largely because the to-be-replicated find-

ings were selected from underpowered original studies using 

a p < .05 filter, yielding inflated effect size estimates (Wilson 

et al., 2020). It stands to reason that many would have been 

detected as statistical true positives at the level of the effect 

size had the replication studies involved much larger N.

Imagine how different the impression of a replication cri-

sis might be had the replication experiments in OSC2015 

been so highly powered that the large majority of them 

yielded a significant effect in the same direction as the 

original experiments. The authors of OSC2015 reported 

that they had ~90% power to detect an effect size equal to 

the originally report effect size (see their Table 1). How-

ever, because those original effect sizes were, on average, 

double their true effect sizes (the results of the OSC2015 

replication experiments show that to be true), the replication 

experiments actually had far less power than that. Indeed, a 

replication experiment with 90% power to detect an effect 

size double the actual underlying effect size would, in truth, 

have about 40% power, which is close to the proportion of 

studies that yielded a significant result. Thus, the results of 

OSC2015 – which perhaps more than any other findings 

cemented the impression of a replication crisis – are consist-

ent with the hypothesis that all 100 of the original studies 

reported statistical true positives but with underlying effect 

sizes half of the originally reported effect sizes.

Then again, the non-significant replication effect sizes 

were small, on average, and our main point is that the smaller 

the underlying effect size, the more likely it is to reflect a  

theoretical false positive (even if it is a statistical true  

positive). Importantly, this concern applies not just to the 

“failed” replications but also to the “successful” replications.  

In fact, one of the successful replications in OSC2015  

provides a case study of our main point. The largest of the 

original experiments selected for replication in OSC2015 was 

a correlational study that had a sample size of N = 230,047. 

Perhaps not coincidentally, the statistically significant finding  

in that study was associated with the smallest effect size of the  

OSC2015 original experiments (r = .02, which translates to 

an approximate Cohen’s d of .05). The replication study used 

an even larger sample size (N = 455,326), and it obtained  

virtually the identical tiny effect size. Indeed, with such 

large N, the measured effect size is probably an almost exact  

estimate of the true underlying effect size. Because it differs 

from 0, it is a statistical true positive. Moreover, because both 

effect sizes are similar despite being small, the original effect 

is also validated from the “small telescopes” perspective  

(Simonsohn, 2015).

However, it is not validated from a theoretical perspec-

tive. If small effects tend to arise for theoretically uninterest-

ing reasons, it follows that the smaller the non-zero underly-

ing effect size, the less support it offers for the theory under 

investigation. At the level of theory, treating the non-signif-

icant OSC2015 results with an average effect size of 0.14 as 

false positives and this large-N finding with an effect size of 

only .05 as a true positive might be getting things backwards.

Recently, Protzko et al. (2020) reported an investigation 

of the replicability of 16 new discoveries from experiments 

that used what these authors regard as “current optimal prac-

tices,” namely, high statistical power (by which they mean 

large N), preregistration, and complete methodological trans-

parency (see also Nosek et al., 2022). The studies all used 

Ns of 1,500 or more, far larger than the typical N used in 
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psychological science. Perhaps not surprisingly given such 

large-N experiments, when one lab attempted to replicate 

an effect discovered by another lab, the large majority rep-

licated at p < .05 and with similar effect sizes. The authors 

concluded that “This high replication rate justifies confi-

dence in rigor enhancing methods,” such as increasing power 

by increasing N.

Such high replication rates satisfy the concerns of the 

statistician, whose focus is on measuring an effect size. But 

what about the concerns of the theoretician, whose main 

focus is on the truth status of a theory under investigation? 

Should the theoretician also take these high replication 

rates to mean that the original large-N studies reported new 

discoveries at the level of theory? The average effect size 

of the replication experiments was only d = 0.26. This is 

slightly smaller than the average replication effect size of 

the social psychology experiments in OSC2015 ( d = 0.33), 

many of which are regarded as replication failures. One 

replication experiment reported by Protzko et al. (2020) 

had an effect size of d ≈ 0.10, but it was clearly greater than 

0 after averaging the data over three independent replica-

tions. The approach used in this study did indeed achieve a 

high rate of replicability, but this achievement (we argue) 

may come with the hidden cost of detecting theoretical 

false positives.

This issue appears to be coming to a head. For exam-

ple, very recently, Marek et al. (2022) reported the results 

of brain-wide association studies (BWAS) using magnetic 

resonance imaging (MRI) and functional MRI (fMRI) to 

identify individual differences in “brain structure or func-

tion and complex cognitive or mental health phenotypes” (p. 

1). Using a neuroimaging database containing results from 

many different labs, they were able to achieve sample sizes 

of thousands of individuals (vastly larger than the typical N 

of ~25 for a neuroimaging study). From our perspective, the 

results were entirely predictable: “BWAS associations were 

smaller than previously thought, resulting in statistically 

underpowered studies, inflated effect sizes and replication 

failures at typical sample sizes. As sample sizes grew into 

the thousands, replication rates began to improve and effect 

size inflation decreased” (p. 1, emphasis added).

To say that effect size inflation decreased is to say that 

the large-N effect sizes were small. Consider a representative 

example from this study: the largest (top 10%) region-of-

interest effect sizes comparing an MRI measure of cortical 

thickness to a child behavioral checklist measure of psy-

chopathology ranged from .03 < |r| < .05 (see their Fig. 1c, 

p. 3). In terms of Cohen’s d, the range was .06 < |d| < .10, 

which is less than half of what is ordinarily considered to 

be a small effect size. Efforts were made to ameliorate the 

effects of potential nuisance factors like head motion, but 

what about the (inumerable) potential nuisance factors that 

went unnoticed? We submit that large-N findings like these, 

though highly replicable, are at significant risk of reflecting 

nuisance factors, not theoretically meaningful processes. We 

further submit that results like these portend the future of 

experimental psychology if it comes to value replicability 

above all else.

Other potential solutions to the large‑N 
problem

To avoid publishing theoretical false positives masquer-

ading as theoretical discoveries, instead of maximizing 

N to enhance replicability, we suggest trying to optimize 

N, which maximizes PPV at the level of theory. How else 

might the field address the problem of theoretical false 

positives? We consider two possibilities next.

The smallest effect size of interest The temptation to maxi-

mize N (to enhance replicability) while simultaneously 

specifying the smallest effect size of interest (to combat 

the insidious problem that is the main focus of this article) 

might seem like an attractive solution. This concept usually 

applies to a measured effect size (e.g., Cohen’s d), not to an 

underlying effect size (Cohen’s δ), but even if we apply it 

to δ, it does not effectively address the problem. Imagine, 

for example, that we specified δ = 0.05 as the smallest effect 

size of interest. For the scenario depicted in Fig. 3, where 

λ = 5 and μ = 50, the odds are barely greater than even that 

the theoretical mechanism generated the non-zero effect 

compared to it having been generated by a nuisance factor. 

As shown in Fig. 5, where λ = μ = 5, the odds are lower still.

Critically, no matter what the smallest effect size of inter-

est is declared to be, the larger any of the “qualifying” under-

lying effect sizes is, the more compelling support it provides 

for the theory under investigation. Therefore, in our view at 

least, the goal should be to conduct routine science in such 

a way as to select larger underlying effect sizes (in an effort 

to maximize PPV at the level of theory), not to minimize the 

damage caused by maximizing N (which minimizes PPV at 

the level of theory).

Test hypotheses that are more obviously true Another 

approach to maximizing the underlying effect size, thereby 

avoiding theoretical false positives, would be to conduct 

less risky science. As noted by Wilson and Wixted (2018), 

experimental protocols designed to test hypotheses that are 

already thought to be true and that are already well under-

stood at a theoretical level (e.g., depriving people of food 

makes them hungry) will have larger underlying effect sizes, 

on average, than experimental protocols designed to test 

hypotheses for which there is little reason to believe they 

are true (e.g., people can feel the future). This is because 

one factor that makes an effect obvious is that its effect size 
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is large enough that it can be readily detected under easy-

to-arrange experimental conditions and perhaps even during 

everyday life.

Testing already-thought-to-be-true theoretical mecha-

nisms would result in the publication of highly replicable 

experiments with large underlying effect sizes. However, it 

would not advance our understanding at the level of theory 

much at all. Indeed, taking this approach too far would seem 

to miss the point of scientific inquiry. The goal of origi-

nal science is not to confirm large effects that are already 

known to be true (even though it surely would achieve higher 

replication rates). To expand the boundaries of knowledge, 

it is essential to test hypotheses that are risky in the sense 

that the community of interested scientists would not deem 

the hypothesized result to be obvious in advance. An indi-

vidual experimenter might have good reason to believe that 

the hypothesis is likely to be true (e.g., based on logical 

reasoning or a formal model that other scientists have not 

yet considered), but the hypothesis is risky in that interested 

scientists would not consider it to be obvious.

As an example, Stroop (1935) suggested that reading 

words is essentially automatic given extensive prior train-

ing, but naming colors is not. As Stroop put it in a dazzling 

display of logical reasoning: “The word stimulus has been 

associated with the specific response 'to read,' while the 

color stimulus has been associated with various responses: 

'to admire,' 'to name,' 'to reach for,' 'to avoid,' etc.” (p. 660). 

That theoretical analysis was not obviously true to interested 

scientists who had not thought about it to the degree that 

Stroop had, but it leads to a prediction: if you present the 

word “blue” in red letters, it will slow color-naming times (if 

that is the task required of participants) but not word reading 

times (if that is instead the task required of participants).

The predicted outcomes were observed, and the slowing 

effect of an incongruent color word on color naming turned 

out to be a large. However, despite its large size, it was not 

obvious to scientists in advance. The fact that the large effect 

becomes obvious after the fact increases our confidence in 

the theory that predicted it. It seems reasonable to suggest 

that this is how science enhances our theoretical understand-

ing of the world, not by testing hypotheses that yield large 

effect sizes because they are already known to be true.

Conclusion

Many have argued before us that the null hypothesis of no 

difference is never strictly true (e.g., Cohen, 1990; Jones & 

Tukey, 2000; Meehl, 1967). With regard to quasi-experi-

mental designs and correlational studies, that idea appears 

to be universally accepted. For experimental designs using 

random assignment, it is possible to at least imagine a 

methodologically perfect study in which the null hypothesis 

of no difference is true. However, for many studies involv- 

ing random assignment, it seems likely that the experimen- 

tal manipulation will have some effect on the dependent  

variable for theoretically uninteresting reasons. If  

so, according to the model of science we presented here, 

it would necessarily follow that the smaller the non-zero 

underlying effect size associated with a given experimental 

protocol is, the less support it offers for the theory under 

investigation.

Intermediate‑N works well for original science

Our message runs counter to a compelling intuition accord-

ing to which an effective solution to the replication crisis 

would be to run very large-N experiments (largely eliminat-

ing the need for NHST because almost everything would be 

significant) and to publish everything (thereby eliminating 

publication bias). At least then we would have a precise and 

replicable estimate of δ for every experiment. Indeed, we 

would, but Figs. 3 and 5 illustrate why, for theory-focused 

research, this approach could make a mess of the scientific 

literature. For original science, it would be better to have a 

publication mechanism that endeavors to filter out experi-

ments associated with small δ (i.e., that endeavors to filter 

out theoretical false positives). In other words, as radical as 

it might sound, for theory-focused research, publication bias 

associated with the use of NHST or BNHT (using intermedi-

ate N) is a good thing, not a bad thing.

Götz et al. (2021) recently endorsed large-N studies, 

arguing that the resulting accumulation of small effects will 

provide an indispensable foundation for a cumulative psy-

chological science. Obviously, we disagree. According to the 

arguments presented here, large-N studies will lead to the 

more frequent publication of p < .05 theoretical false posi-

tives, which will unfortunately masquerade as true positives 

because the effects (despite being small) will be unambigu-

ously greater than 0 and will reliably replicate with an effect 

size similar to the one reported in the original study. For 

journals concerned with advancing theory, increasing the 

publication of replicable theoretical false positives (thereby 

decreasing PPV at the level of theory) cannot be regarded 

as improving science. Before going too far in that direction, 

the field should further debate the merits of increasing N 

without bound to maximize replicability versus optimizing 

N to maximize the probability that a claimed theoretical dis-

covery is true.

Unlike large-N studies, typical-N studies do not have 

extremely high power and therefore lead to the publica-

tion of p < .05 findings with observed effect sizes that 

provide an imprecise and (on average) inflated estimate 

of δ. Such findings do have signal value in that their cor-

responding underlying effect sizes are, on average, larger 
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than the underlying effect sizes associated with p > .05 

findings (Wilson et al., 2020). However, absent large-N, 

for any given p < .05 result, the underlying effect size 

remains uncertain. Many scientists are uncomfortable 

with that uncertainty, but the only remedy is to conduct 

every study with large enough N to precisely measure the 

underlying effect size. Unfortunately, that remedy might 

be worse than the problem it seeks to address because, if 

δ ∣ H0 > 0, it will increase the detection of theoretical false 

positives and reduce PPV at the level of theory.

Large‑N works well for replication science

Replication science is measurement focused Given our 

recommendation to avoid overpowered original-science 

experiments, are we therefore suggesting that the field must 

simply learn to live with the uncertainty associated with 

p < .05 findings published in the original science literature? 

No. Wilson et al. (2020) argued that resource-consuming 

large-N direct replications conducted by independent labs 

are essential (Zwaan et al., 2018). Moreover, in contrast to 

original science, replication science is optimized by using 

the largest possible N because it precisely estimates δ. At the 

replication stage, precise measurement is the only objective, 

and NHST and BNHT are no longer useful fictions. In other 

words, unlike theory-focused original science, replication 

science is inherently measurement-focused. Many reforms 

that have been proposed to address the replication crisis (the 

use of registered reports, abandoning NHST, conducting 

large-N experiments to measure the underlying effect size 

precisely, publishing everything, etc.) are much better suited 

to replication science than to original science.

Replicate influential experiments from original sci-

ence Because using the largest possible N is a resource-

intensive proposition, such replications are best focused 

on the relatively small subset of original science stud-

ies that gain currency (Wilson et  al., 2020). Large-N 

direct replications are not needed for every study, most 

of which will have little impact. Recently, Lewandowsky 

and Oberauer (2020) investigated this issue by formally 

modeling science under a variety of replication scenarios. 

They concluded that replicating experiments only after 

they attract the community’s interest “minimizes cost 

and maximizes efficiency of knowledge gain” (p. 1). This 

vision clearly differs from the competing “large-N publish 

everything” vision (Cumming, 2014), which, in our view, 

squanders resources while also maximizing the detection 

of theoretical false positives.

Although replication is an essential part of science, 

experimenters who replicate their own studies using large-

N will presumably carry any nuisance factor through to the 

replication stage. Large-N replications by independent labs 

would be better because some nuisance factors that might 

plague the original experiment (e.g., a programming error) 

are unlikely to show up again. Nevertheless, the independent 

replication study is likely to have its own nuisance factor, 

which will create an effect in the same direction as the origi-

nal experiment 50% of the time with sufficiently large-N.

Radical randomization An interesting way to address this 

problem would be to use “radical randomization,” where 

many labs independently replicate a finding while varying 

aspects of the procedure that are not central to the theory 

under investigation (Baribault et al., 2018). Then again, even 

this approach cannot fully address the problem because some 

nuisance factors (e.g., an unintended effect of experimental 

instructions that are essential to testing the theoretical pre-

diction) will carry through to the replication stage and be 

detected by others. Therefore, small underlying effects risk 

being theoretical false positives even when confirmed by a 

large-N study conducted by independent labs. This is why 

the field’s focus should be on maximizing PPV at the level 

of theory by selecting relatively large underlying effect sizes, 

not embracing ever smaller effects that are at risk of being 

theoretical false positives.

Interpreting a precisely measured but small 
non‑zero effect size

At the large-N replication stage, if it turns out that the origi-

nal discovery replicates but with a small effect size (e.g., 

δ = .05), the risk of it being a theoretical false positive is 

high. Then again, a theoretical true positive can have a small 

underlying effect size. Are there considerations that can help 

us to decide whether a small effect might be a theoretical 

true positive?

In agreement with sentiments expressed by Smith and 

Little (2018), we suggest that to the extent one can appeal to 

previously supported theoretical/mechanistic considerations 

to account for the small effect (e.g., if a well-specified quan-

titative theory unambiguously predicts it), the more likely it 

is to be a true positive at the level of theory. As explained in 

detail by Oberauer and Lewandowsky (2019), such models 

are constrained in what they predict and what they do not 

predict. They also rest on formalisms that are, in essence, 

summaries of empirical findings that have been successfully 

predicted in the past. As a result, the prior odds of a small 

underlying effect reflecting a true theoretical mechanism will 

be higher when the prediction is made by a formal model 

(one that stands on the shoulders of past research and on 

formal logic) compared to when it is made by a relatively 

imprecise and flexible verbal theory that is largely divorced 

from prior work (e.g., a theory of feeling the future based on 

quantum entanglement).
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If a small underlying effect size does in fact reflect the 

operation of a true theoretical mechanism, then it should 

be possible to use that theoretical knowledge to increase 

its magnitude. Indeed, for theory-focused research, the goal 

should be to use not-yet-obvious theoretical mechanisms 

to generate larger underlying effect sizes (i.e., to increase 

statistical power that way), not to chase ever smaller ones 

by maximizing N. Despite being true positives in a purely 

statistical sense, the smaller the underlying effect size is, 

the more likely it is to be nothing more than a theoretical 

false positive.

Appendix

In what follows, we use f(x) for the pure signal distribu-

tion (i.e., underlying effect sizes created by the theoretical 

mechanism of interest), g(x) for the pure noise distribution 

(i.e., underlying effect sizes created by nuisance factors), 

and h(x) for the signal-plus-noise distribution (i.e., underly-

ing effect sizes created by the additive combination of the 

theoretical mechanism of interest and nuisance factors). The 

basic mathematics of adding and subtracting exponential 

random variables has been addressed many times previously 

(e.g., Bolch et al., 1998).

Signal distribution

The direction of the effect predicted by the theory is 

defined to be positive. When the theory being tested 

is true, we assume that δS is a random variable (x), 

falling in the positive range of [0, ∞). For x > 0, we 

assume that x~Exp(1/λ) such that the pdf of the signal 

distribution is:

Noise distribution

We further assume that δN is a random variable (x) such that 

x~Exp(1/μ). Its direction may be the same as that predicted 

by the theory (x > 0, which occurs with probability .5) or 

the opposite direction (x < 0, which occurs with probability 

.5). For x > 0, we assume that x~Exp(1/μ), and for x < 0 we 

assume that x~Exp(−1/μ). That is, the pdf of the noise dis-

tribution is:

f (x, 𝜆) =

{

𝜆e−𝜆x if x ≥ 0

0 if x < 0

g(x,�) =

{

.5�e
−�x if x ≥ 0 (same direction)

.5�e
�x if x ≤ 0 (opposite direction)

Signal‑plus‑noise distribution

The signal-plus-noise distribution is the sum of a random 

variable drawn from the unidirectional signal distribu-

tion and a random variable drawn from the bidirectional 

noise distribution. When δN is in the same direction as 

δS (both positive), this amounts to summing two positive 

exponentially distributed random variables. When δN is 

in the opposite direction as δS (δS positive, δN negative), 

this amounts to subtracting one exponentially distributed 

random variable from another, which is equivalent to 

summing them except that one of the random variables 

is negative.

We first consider the general case where λ ≠ μ (and then 

subsequently consider the special case where λ = μ, for 

which different equations apply). When the theory-based 

effect and the nuisance effect happen to be in the same 

direction (which will happen in 50% of the experiments 

in which the tested theoretical mechanism is true), both 

signal and noise are conceptualized as exponential random 

variables with positive values. For two positive exponen-

tially distributed random variables, the pdf of their sum 

– that is, the convolution of two independent exponential 

distributions with rate parameters λ and μ–is given by:

δSN is conceptualized as a random variable (x) drawn 

from a distribution of this form when δN > 0 (i.e., when the 

nuisance effect is the same direction as the effect predicted 

by the theory of interest). In other words, this equation 

applies to the sum of two exponential distributions in the 

range (0, ∞). Thus, we can specify the signal-plus-noise 

distribution when δN > 0 as follows:

In the special case of λ = μ, and when δN > 0, the Erlang 

distribution applies instead:

For the other 50% of the time in which the theory is 

true, the nuisance effect is in the opposite direction as the 

effect predicted by the theory (i.e., δN < 0). Now, we add 

the signal distribution to the negative of the noise distribu-

tion, which is to say we subtract them. For two exponen-

tially distributed random variables with rate parameters 

λ and μ (i.e., for the general case where λ ≠ μ), the pdf of 

their difference is given by:

h(x) =
��

� − �

(

e
−�x − e

−�x
)

h
(
x|𝛿

N
> 0

)
=

𝜆𝜇

𝜆 − 𝜇

{
e
−𝜇x

− e
−𝜆x

if x ≥ 0

0 if x < 0

h
(
x|𝛿

N
> 0

)
= 𝜇2

{
xe

−𝜇x
if x ≥ 0

0 if x < 0
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In the special case of λ = μ, this becomes:

To specify the overall signal-plus-noise distribution, we 

simply add the signal-plus-noise distribution that arises 

when the nuisance effect is in the same direction as the 

effect predicted by the theory (which occurs with prob-

ability 0.5) to the signal-plus-noise distribution that arises 

when the nuisance effect is in the opposite direction as 

the effect predicted by the theory (which also occurs with 

probability 0.5).

As noted earlier, for the general case where λ ≠ μ, when the 

effects are in the same direction (i.e., δN > 0):

And when they are in the opposite direction (i.e., δN < 0):

We can use these equations to specify the relevant equa-

tions in terms of the direction of the summed variable (x). If 

x ≥ 0, based on the equations for h(x| δN > 0) and h(x| δN < 0) 

just above, we can write:

where a =
��

�−�
 and b =

��

�+�
 . The first bracketed term to the 

right of the equal sign represents the sum of the signal and 

noise distributions when both are in the positive direction, 

h(x| x > 0), which occurs with probability .50, and the second 

bracketed term on the right represents the sum of the signal 

and noise distributions when noise in the negative direction, 

h(x| δN < 0), which occurs with probability .50. Note that one 

of the two terms inside those rightmost brackets is included 

for clarity but is multiplied by zero. It is multiplied by zero 

because it represents those occasions in which negative nui-

sance effects are larger than the corresponding signal effects, 

making the summed signal-plus-noise effects (x) negative. 

Because this expression applies to only positive x, it reduces 

to:

This is a partial pdf because it does not yet include cases 

where x is less than 0. For x ≤ 0, we can analogously write:

h
(
x|𝛿

N
< 0

)
=

𝜆𝜇

𝜆 + 𝜇

{
e
−𝜆x if x ≥ 0

e
𝜇x if x ≤ 0

h
(
x|𝛿

N
< 0

)
=

𝜇

2

{
e
−𝜇x

if x ≥ 0

e
𝜇x

if x ≤ 0

h
(
x|𝛿

N
> 0

)
=

𝜆𝜇

𝜆 − 𝜇

{
e
−𝜇x

− e
−𝜆x

if x ≥ 0

0 if x < 0

h
(
x|𝛿

N
< 0

)
=

𝜆𝜇

𝜆 + 𝜇

{
e
−𝜆x if x ≥ 0

e
𝜇x if x ≤ 0

h(x|x ≥ 0) = .5
[
a
(
e
−�x − e

−�x
)]

+ .5
[
1 × b

(
e
−�x

)
+ 0 × b(e�x)

]

h(x|x ≥ 0) = .5
[
a
(
e
−�x − e

−�x
)]

+ .5
[
b
(
e
−�x

)]

h(x|x ≤ 0) = .5
[
0 × b

(
e
−�x

)
+ 1 × b(e�x)

]

which reduces to:

such that, over all x (i.e., from −∞ to +∞):

or

where, again, a =
��

�−�
 and b =

��

�+�
 . This is the signal-plus-

noise distribution in the general case where λ ≠ μ. It is the 

full pdf such that when integrated from −∞ to +∞, the 

result is 1. As an example, if λ = 5 and μ = 50, integrating 

h(x, λ, μ) from −∞ to 0 yields .045 (i.e., 4.5% of the distribu-

tion falls in the negative domain even though the theory is 

true), and integrating from 0 to +∞ yields .955 (i.e., 95.5% 

of the distribution falls in the positive domain, which is the 

direction predicted by the theoretical mechanism of 

interest).

In the special case where λ = μ, the overall signal plus noise 

distribution for same-direction experiments (δN > 0) is

and the overall signal plus noise distribution for opposite-

direction experiments (δN < 0) is

As before, we can use these equations to specify the sig-

nal-plus-noise distribution depending on the direction of the 

summed variable (x). If x ≥ 0, we can write:

or, more simply,

which further simplifies to:

For x ≤ 0, we have:

which simplifies to:

h(x|x ≤ 0) = .5b(e�x)

h(x, �,�) =

⎧
⎪⎨⎪⎩

.5

�
��

�−�

�
e
−�x − e

−�x
��

+ .5

�
��

�+�

�
e
−�x

��
if x ≥ 0

.5

�
��

�+�
(e�x)

�
if x ≤ 0

h(x, �,�) =

{

.5a
(

e
−�x − e

−�x
)

+ .5b
(

e
−�x

)

if x ≥ 0

.5b(e�x) if x ≤ 0

h
(
x|𝛿

N
> 0,𝜇

)
= 𝜇2

{
xe

−𝜇x if x ≥ 0

0 if x < 0

h
(
x|𝛿

N
< 0,𝜇

)
=

𝜇

2

{
e
−𝜇x

if x ≥ 0

e
𝜇x

if x ≤ 0

h(x|x ≥ 0,�) = 0.5
[
�

2(xe
−�x)

]
+ 0.5

[
1 ×

�

2
(e−�x) + 0 ×

�

2
(e�x)

]

h(x|x ≥ 0,�) = 0.5
[
�

2(xe
−�x)

]
+ 0.5

[
�

2
(e−�x)

]

h(x|x ≥ 0,�) = 0.5�e
−�x(�x + 0.5 )

h(x|x ≤ 0,�) = .5

[
0 ×

�

2
(e−�x) + 1 ×

�

2
(e�x)

]
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Thus, for all x, we simply sum h(x| x ≥ 0) and h(x| x ≤ 0):

This is the signal-plus-noise distribution in the spe-

cial case where λ = μ. This is the full pdf such that when 

integrated from −∞ to +∞, the result is 1. As an exam-

ple, if λ = 5 and μ = 5, integrating h(x, λ, μ) from −∞ to 0 

yields .25 (i.e., 25% of the distribution falls in the negative 

domain even though the theory is true), and integrating 

from 0 to +∞ yields .75 (i.e., 75% of the distribution falls 

in the positive domain, which is the direction predicted by 

the true theory).

Likelihood ratios

We first consider the general case where λ ≠ μ. For x ≥ 0, 

we noted earlier that:

and

Thus, for a specific positive underlying effect size, xi, 

we can specify their probabilities given that “signal” is 

present (the theory is true):

and given that only “noise” is present (the theory is false):

The likelihood ratio, L(xi), is given by:

which is equal to:

or:

h(x|x ≤ 0,�) = 0.5

[
�

2
e
�x

]
= 0.25�e

�x

h(x,�) =

{

.5�e
−�x(�x + 0.5 ) if x ≥ 0

.25�e
�x if x ≤ 0

h(x, �,�) = .5

[

��

� − �

(

e
−�x − e

−�x
)

]

+ .5

[

��

� + �

(

e
−�x

)

]

g(x,�) = .5�e
−�x

P
(
x

i
|s
)
= .5

[
��

� − �

(
e
−�x

i − e
−�x

i

)]
+ .5

[
��

� + �

(
e
−�x

i

)]

P
(
x

i
|n
)
= .5�e

−�x
i

L
(
x

i

)
= P

(
x

i
|s
)
∕P

(
x

i
|n
)

L
(
x

i
|x

i
≥ 0

)
=

.5a
(
e
−�x

i − e
−�x

i

)
+ .5b

(
e
−�x

i

)

.5�e−�x
i

L
(
x

i
|x

i
≥ 0

)
=

a
(
e
−�x

i − e
−�x

i

)
+ b

(
e
−�x

i

)

�e−�x
i

To find the specific value of xi where the odds are even, 

we first rearrange this equation to isolate the exponential 

term:

Next, we set L(xi| xi ≥ 0) = 1:

and then solve for xi:

which can be simplified to:

Because λ2 − μ2 = (λ − μ)(λ + μ), this equation further 

simplifies to:

As an example, if λ = 5 and μ = 50, the odds are even 

when the underlying effect size are xi = .0379. If λ = 5 and 

μ = 10, the odds are even when the underlying effect size 

are xi = .0811.

To find the minimum odds, we start with the same equa-

tion, but instead of setting L(xi| xi ≥ 0) = 1 (even odds) we 

set xi = 0:

and then simply solve for L(xi| xi ≥ 0), which comes to:

and reduces to:

As an example, if λ = 5 and μ = 50, the minimum odds 

are 0.0909 (i.e., the odds are 1 to 11 that the theory is 

true). If λ = 5 and μ = 10, the minimum odds are 0.333 

(i.e., the odds are 1 to 3 that the theory is true). For x < 0 

(i.e., when the underlying effect size is in the opposite 

direction predicted by the theory), the odds do not change 

beyond this minimum value, no matter how large the oppo-

site-direction effect size is. The reason is that the theoreti-

cal mechanism under investigation does not contribute to 

L
(
x

i
|x

i
≥ 0

)
=

�

� − �
−

2��

�2 − �2
e
(�−�)x

i

1 =
�

� − �
−

2��

�2 − �2
e
(�−�)x

i

x
i
=

1

� − �
log

[

�2 − �2

2�(� − �)

]

x
i
=

1

� − �

[

log

(

�2 − �2

� − �

)

− log (2�)

]

x
i
=

log(� + �) − log(2�)

� − �

L
(
x

i
|x

i
≥ 0

)
=

�

� − �
−

2��

�2 − �2
e
(�−�)0

L
(
x

i
|x

i
≥ 0

)
=

�

� − �
−

2��

�2
− �2

L
(
x

i
|x

i
≥ 0

)
=

�

� + �
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negative underlying effect sizes. Thus, different values of 

negative x merely reflect different magnitudes of nuisance 

effects (which are independent of effects caused by the 

theoretical mechanism of interest).

Now consider the likelihood ratio function for the spe-

cial case where λ = μ. Earlier, we noted that for x > 0:

and

Thus, for a specific positive underlying effect size, xi, 

we can specify their probabilities given signal (the theory 

is true):

and given noise (the theory is false):

As before, the likelihood ratio, L(xi), is given by:

which in this case is equal to:

Setting L(xi) = 1 and solving for xi (i.e., finding the 

underlying effects size for which the odds are even) yields:

Setting xi =0 and solving for L(xi) to find the minimum 

odds yields:

Positive predictive value

For a given δ and N, we are interested in P(p < α| δ), which 

is the probability of a p < α outcome given δ. To compute 

PPV, we need to compute that value separately for when 

the theory is true (H1, in which case δ was drawn from 

the signal-plus-noise distribution) and when it is false (H0, 

in which case δ was drawn from the noise distribution). 

Either way, the value of interest is equal to the probability 

that a t-score drawn from a non-central t distribution (with 

degrees of freedom ν = N - 1 and non-centrality param-

eter � = �
√

N  ) is statistically significant. For a one-tailed 

h(x|x > 0) = 0.5𝜇e
−𝜇x(𝜇x + 0.5 )

g(x|x > 0) = .5𝜇e
−𝜇x

P
(
x

i
|s
)
= 0.5�e

−�x
i

(
�x

i
+ 0.5

)

P
(
x

i
|n
)
= .5�e

−�x
i

L
(
x

i

)
= P

(
x

i
|s
)
∕P

(
x

i
|n
)

L
(

x
i

)

=
[

�e
−�x

i

(

�x
i
+ 0.5

)]

∕�e
−�x

i

L
(

x
i

)

= �x
i
+ 0.5

x
i
=

1

2�

L
(

x
i

)

= 0.5

t-test, P(p < α| δ) is the probability that an observed t-score 

exceeds the positive critical criterion (tc) for α = .05:

where P(t| υ, η) is the pdf of the Student’s t-distribution. In 

MATLAB, the cumulative density function (cdf) for the non-

central t distribution (nctcdf) can be used to compute this 

integral. For use with that cdf function, Equation 6 can be 

expressed as follows:

Next, we want to compute the probability of a p < α 

outcome (in the positive direction predicted by the theo-

retical mechanism) overall all δ for a given sample size, N, 

separately for noise trials and signal-plus-noise trials. The 

general expression is:

where x represents the underling effect size, δ, and P(x) is either 

the noise distribution, g(x, μ), or the signal-plus-noise distribu-

tion, h(x, λ, μ), as defined above. For noise trials, with α = .05, 

we represent the probability of a p < .05 outcome as PN:

and for signal-plus-noise trials, we represent the probability 

of a p < .05 outcome as PS:

From these two values, and assuming equal base rates 

as we have throughout, PPV for a given N is as follows:

We computed this value separately for N ranging from 

2 to 1000 to produce the data shown in Fig. 6.

Next, we describe how we computed the mean of both 

the underlying and observed effect sizes associated with 

p < .05 outcomes as a function N (Fig. 7).

Expected underlying and observed effect sizes

Underlying effect size For a given sample size, N, we 

want the expected value of δ given a significant (p < .05) 

outcome:

P(p < 𝛼|𝛿) = ∫
∞

tc

P(t|𝜐, 𝜂) dt

(A1)P(p < 𝛼|𝛿) = 1 − ∫
tc

−∞

P(t|𝜐, 𝜂) dt = 1 − nctcdf
(
tc, 𝜈, 𝜂

)

(A2)P(p < 𝛼) = ∫
∞

−∞

P(x) ⋅ P(p < 𝛼|x) dx

PN = P
(
p < .05|H0

)
= ∫

∞

−∞

g(x,𝜇) ⋅ P(p < 𝛼|x) dx

PS = P
(
p < .05|H1

)
= ∫

∞

−∞

h(x,𝜇) ⋅ P(p < 𝛼|x) dx

PPV =
P

S

P
S
+ P

N
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where x represents the underlying effect size, δ. According 

to Bayes theorem:

For our purposes, A = x and B = p < .05. Thus:

It therefore follows that:

or, in more complete form,

P(x) in the numerator and denominator of Equation A4 is 

now a joint function of the noise distribution, g(x, μ), and the 

signal-plus-noise distribution, h(x, λ, μ), as defined earlier. 

More specifically, because we assume equal base rates,

P(p < .05| x) in the numerator and denominator of Equa-

tion A4 was given earlier in Equation A1. For a given N, 

we computed E[(δ| p < .05] using Equation A4. Doing so 

separately for N ranging from 2 to 500 yielded the function 

relating � to N shown in Fig. 7.

Observed effect size A similar approach was used to 

compute the expected value of the observed Cohen’s d, 

E[(d| p < .05]. We first computed the expected value of t for 

a given α level (fixed at .05) and a given N for a statistically 

significant outcome, E[(t| α, N, p < α]. We then divided that 

expected t by the square root of N to yield an expected d 

given a statistically significant outcome.

The relevant equations are similar to those above, but 

there are a few differences. Now, for example, the denom-

inator of the expected value function is a double integral 

consisting of the probability of δ times the probability of 

drawing an observed t from the pdf of the non-central t 

distribution (with degrees of freedom ν = N - 1 and non-

centrality parameter � = �
√

N  ) (integrated from -∞ to ∞ 

with respect to δ and from tc to +∞ with respect to t). The 

numerator involves a similar double integral except also 

multiplied by the absolute value of t. That is:

(A3)E
[
(x|p < .05

]
= ∫

∞

−∞

xP(x|p < .05) dx

P(A|B) =
P(A) ⋅ P(B|A)

P(B)

P(x|p < .05) =
P(x) ⋅ P(p < .05|x)

P(p < .05)

E
[
(x|p < .05

]
=

∫ ∞

−∞
x ⋅ P(x) ⋅ P(p < .05|x) dx

P(p < .05)

(A4)E
[
(x|p < .05

]
=

∫ ∞

−∞
x ⋅ P(x) ⋅ P(p < .05|x) dx

∫ ∞

−∞
P(x) ⋅ P(p < .05|x) dx

(A5)P(x) = 0.5 g(x,�) + 0.5h(x, �,�)

where x and y represent δ and t, respectively. P(x) is given 

by Equation A5, and P(y) is the pdf of the t-distribution 

(corresponding to the nctpdf function in MATLAB). For a 

given N, the expected value of Cohen’s d is:

We computed this value separately for each N ranging 

from 2 to 500, with α = .05, yielding the function relating d 

to N shown in Fig. 7.
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