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Large teams develop and small teams disrupt 
science and technology
Lingfei Wu1,2, Dashun Wang3,4,5 & James A. evans1,2,6*

One of the most universal trends in science and technology today 
is the growth of large teams in all areas, as solitary researchers 
and small teams diminish in prevalence1–3. Increases in team size 
have been attributed to the specialization of scientific activities3, 
improvements in communication technology4,5, or the complexity 
of modern problems that require interdisciplinary solutions6–8. 
This shift in team size raises the question of whether and how 
the character of the science and technology produced by large 
teams differs from that of small teams. Here we analyse more 
than 65 million papers, patents and software products that span 
the period 1954–2014, and demonstrate that across this period 
smaller teams have tended to disrupt science and technology with 
new ideas and opportunities, whereas larger teams have tended to 
develop existing ones. Work from larger teams builds on more-
recent and popular developments, and attention to their work comes 
immediately. By contrast, contributions by smaller teams search 
more deeply into the past, are viewed as disruptive to science and 
technology and succeed further into the future—if at all. Observed 
differences between small and large teams are magnified for higher-
impact work, with small teams known for disruptive work and large 
teams for developing work. Differences in topic and research design 
account for a small part of the relationship between team size and 
disruption; most of the effect occurs at the level of the individual, 
as people move between smaller and larger teams. These results 
demonstrate that both small and large teams are essential to a 
flourishing ecology of science and technology, and suggest that, to 
achieve this, science policies should aim to support a diversity of 
team sizes.

Advocates of team science have claimed that a shift to larger teams 
in science and technology fulfils the essential function of solving  
problems in modern society that are complex and which require 
interdisciplinary solutions6–8. Although much has been demonstrated 
about the professional and career benefits of team size for team mem-
bers9, there is little evidence that supports the notion that larger teams 
are optimized for knowledge discovery and technological invention9. 
Experimental and observational research on groups reveals that indi-
viduals in large groups think and act differently—they generate fewer 
ideas10,11, recall less learned information12, reject external perspectives 
more often13 and tend to neutralize each other’s viewpoints14. Small 
and large teams may also differ in their response to the risks associated 
with innovation. Large teams, such as large business organizations, 
may focus on sure bets with large potential markets, whereas small 
teams that have more to gain and less to lose may undertake new, 
untested opportunities with the potential for high growth and failure15, 
leading to markedly different outcomes. These possibilities led us to 
explore the consequences of smaller and larger teams for scientific 
and technological advance, and how such teams search and assemble 
knowledge differently.

Previous research demonstrates that large article and patent teams 
receive slightly more citations2,16. However, citation counts alone 
cannot capture distinct types of contribution. This can be seen in the 

difference between two well-known articles: one about self-organized 
criticality17 (the BTW model, after the authors’ initials) and another 
about Bose–Einstein condensation18 (for which Wolfgang Ketterle 
was awarded the 2001 Nobel Prize in Physics) (Fig. 1, Extended Data 
Fig. 1b). The two articles have received a similar number of citations, 
but most research subsequent to the BTW-model article has cited only 
the model itself without mentioning references from the article. By con-
trast, the Bose–Einstein condensation article is almost always co-cited 
with Bose19, Einstein20 and other antecedents. The difference between 
the two papers is reflected not in citation counts but in whether they 
suggested or solved scientific problems—whether they disrupted or 
developed existing scientific ideas, respectively21. The BTW model 
launched new streams of research, whereas the experimental realiza-
tion of Bose–Einstein condensation elaborated upon possibilities that 
had previously been posed.

To systematically evaluate the role that small and large teams have 
in unfolding scientific and technological advances, we collected large-
scale datasets from three related but distinct domains (see Methods): 
(1) the Web of Science (WOS) database that contains more than 42 
million articles published between 1954 and 2014, and 611 million cita-
tions among them; (2) 5 million patents granted by the US Patent and 
Trademark Office from 1976 to 2014, and 65 million citations added by 
patent applicants; (3) 16 million software projects and 9 million forks to 
them on GitHub (2011–2014), a popular web platform that allows users 
to collaborate on the same code repository and ‘cite’ other repositories 
by copying and building on their code.

For each dataset, we assess the degree to which each work disrupts 
the field of science or technology to which it belongs by introducing 
something new that eclipses attention to previous work upon which it 
has built. We use a measure that was previously designed22 to identify 
destabilization and consolidation in patented inventions; this measure 
varies between −1 and 1, which corresponds to science and technology  
that develops or disrupts, respectively (Fig. 1a). We validate the dis-
ruption measure in several ways. First, we investigate the distribution 
of disruption across scientific papers (Fig. 1b); the disruptive BTW-
model article is located in the top 1%, whereas the developmental 
Bose–Einstein condensation paper is in the bottom 3% of the disrup-
tion distribution. We also find that, on average, Nobel-prize-winning 
papers register among the 2% most disruptive articles. Review articles 
are developmental with a negative mean of disruption (bottom 46%), 
whereas the original research works that they review have a positive 
mean (top 23%). Articles that headline prominent prior work—such 
as the Bose–Einstein condensation article—lie in the bottom 25% 
(Supplementary Table 1). We further confirmed these results with a 
survey in which we asked scholars from diverse fields to propose dis-
ruptive and developmental articles; this symmetrically confirmed the 
disruption measure (Supplementary Table 2). Finally, we find that in the 
titles of articles different words associate with disruptive (‘introduce’, 
‘measure’, ‘change’ and ‘advance’) versus developing (‘endorse’, ‘confirm’, 
‘demonstrate’, ‘theory’ and ‘model’) papers (Fig. 1c, Supplementary 
Table 3).
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We predict that work by small teams will be substantially more dis-
ruptive than work by large teams. Our databases of papers, patents and 
software strongly confirm this prediction. Our sources differ in scope 
and domain, but we consistently observe that over the past 60 years, 
larger teams produce articles, patents and software with a disruption 
score that markedly and monotonically declines with each additional 
team member (Fig. 2a–c, Extended Data Fig. 3). Specifically, as teams 
grow from 1 to 50 team members, their papers, patents and products 
drop in percentiles of measured disruption by 70, 30 and 50, respec-
tively (Extended Data Fig. 3a). In every case, this highlights a transition 
from disruption to development. These results support the hypothesis 
that large teams may be better designed or incentivized to develop cur-
rent science and technology, and that small teams disrupt science and 
technology with new problems and opportunities.

This phenomenon is amplified when we focus on the most disruptive 
and impactful work (Fig. 2d–f). We measure the impact of each article, 
patent and software using the number of citations each work received. 
As shown in Fig. 2d, solo authors are just as likely to produce high-im-
pact papers (in the top 5% of citations) as teams with five members, 
but solo-authored papers are 72% more likely to be highly disruptive 
(in the top 5% of disruptive papers). By contrast, ten-person teams are 
50% more likely to score a high-impact paper, yet these contributions 
are much more likely to develop existing ideas already prominent in 
the system, which is reflected in the very low likelihood they are among 
the most disruptive. By repeating the same analyses for patents (Fig. 2e) 
and software development (Fig. 2f), we find that disruption and impact 
consistently diverge as teams grow in size.

Differences in disruption between works produced by small and 
large teams are magnified as the impact of the work increases (Fig. 3a); 
high-impact papers produced by small teams are the most disruptive, 

and high-impact papers produced by large teams are the most devel-
opmental. As article impact increases, the negative slope of disruption 
as a function of team size steepens sharply. Even within the pool of 
high-impact articles and patents (Fig. 3a, top 5% of citations), which 
are statistically more likely produced by large teams (Fig. 2d), small 
teams have disrupted the current system with substantially more new 
ideas. We further split papers by time period (Extended Data Fig. 3c) 
and scientific field (Fig. 3b, Extended Data Fig. 4), and found that these 
patterns linking disruption and team size are stable for all eras and for 
90% of disciplines. The only consistent exceptions were observed for 
engineering and computer science, in which conference proceedings 
rather than journal articles are the publishing norm (the WOS database 
indexes only journal articles).

We considered whether observed differences between the work  
of small and large teams could simply be attributed to differences  
in disruptive potential for the different types of articles that they  
produce; for example, small teams may generate more theoreti-
cal innovations and large teams more empirical analyses. Drawing  
on a previous approach23, we matched papers from www.arXiv.
org with the WOS database and repeated our analyses controlling  
for the number of figures in each article (Extended Data Fig. 5a), as 
empirical papers tend to have more figures than theoretical ones.  
Our results suggest that most of the difference in disruption between 
work from smaller and larger teams is not driven by differences in 
whether they contributed theoretical versus empirical papers (that is, 
had more or less figures). The association remains the same when we 
consider other distinctions, including review versus original research 
articles. Review articles with fewer authors are more disruptive than 
those with more, just as with original research articles (Extended Data 
Fig. 5b).
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Fig. 1 | Quantifying disruption. a, Simplified illustration of disruption. 
Three citation networks comprising focal papers (blue diamonds), 
references (grey circles) and subsequent work (rectangles). Subsequent 
work may cite the focal work (i, green), both the focal work and its 
references (j, red) or just its references (k, black). Disruption, D, of the 
focal paper is defined by the difference between the proportion of type 
i and j papers pi − pj, which equals the difference between the observed 
number of these papers ni − nj divided by the number of all subsequent 
works ni + nj + nk. A paper may be disrupting (D = 1), neutral (D = 0) or 
developing (D = −1). b, The distribution of disruption across 25,988,101 
WOS journal articles published between 1900 and 2014. On this 
distribution, we mark the BTW-model (D = 0.86, top 1%) and  
Bose–Einstein condensation articles (D = −0.58, bottom 3%) along with 
several samples used to validate D (Methods, Supplementary Tables 1–3). 
This includes (1) 104 ‘disruptive’ articles (disruption mean E(D) = 0.215, 

top 2%) and 86 ‘developing’ articles (E(D) = −0.011, bottom 13%) 
nominated by a surveyed panel of 20 scholars across fields; (2) 877 Nobel-
prize-winning papers published between 1902 and 2009 (E(D) = 0.10, 
top 2%); (3) 22,672 review articles (E(D) = −0.0009, bottom 46%) and 
1,338,808 original research articles that they review (E(D) = 0.0008, 
top 23%); and (4) 148,303 articles that headline prominent prior work 
by mentioning one or more cited authors in the title (E(D) = −0.0049, 
bottom 24%). c, We select titles from 24,174,022 articles published 
between 1954 and 2014 and assign them to one of two groups, disrupting 
(D > 0) or developing (D < 0) articles. For the 1,033,879 words observed 
in both groups, we calculate the ratio of frequency in disrupting versus 
developing articles, r. We visualize differences in the content and writing 
style between these two groups in terms of verbs, nouns, and adverbs and 
prepositions (from left to right). To facilitate comparison, we visualize r in 
green if r > 1, and 1/r in red otherwise.
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Another possible explanation for our results is that the team effect 
that we observe occurs because the scientists, inventors and software 
designers involved in larger teams are qualitatively different from those 
comprising smaller teams. But when we predict disruptiveness as a 
function of team size, controlling for publication year, topic and author 
(Fig. 3c, Extended Data Fig. 3b, Supplementary Table 4), we find that 
the decrease of disruption with the growth of team size continues to 
hold, and controlling for authors greatly improves the percentage of 
variance explained (Supplementary Table 4).

We further test the robustness of our results against several differ-
ent definitions of the disruption measure, including the removal of 

self-citation links, exclusion of all but high-impact references and other 
variations (Extended Data Fig. 5g–i). Across all variations, our conclu-
sions remain the same.

The considerable difference in disruption between large and small 
teams raises questions regarding how these teams differ in searching the 
past to formulate their next paper, patent or product. When we dissect 
search behaviour, we find that large and small teams engage in notably 
different practices that may be related to divergent contributions in 
disruption and impact. Specifically, we measure search depth as average 
relative age of references cited and search popularity as median citations 
to the references of a focal work. We examine these search strategies 
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Fig. 2 | Small teams disrupt whereas large teams develop. a–c, For 
research articles (24,174,022 WOS articles published between 1954 and 
2014), patents (2,548,038 US patents assigned between 2002 and 2014) and 
software (26,900 GitHub repositories uploaded between 2011 and 2014), 
median citations (red curves, indexed by right y axis) increase with team 
size whereas the average disruption percentile (green curves, indexed by 
left y axis) decreases with team size. For all datasets, we present work with 
one or more citations. Teams of between 1 and 10 authors account for 98% 
of articles, 99% of patents and 99% of code repositories. Bootstrapped 95% 
confidence intervals are shown as grey zones. Extended Data Figure 3a 
shows that observed relationships hold for two orders of magnitude of 
team size. d–f, As in a–c but for extreme cases rather than for average 
behaviour. Relative ratios compare the observed proportion of teamwork 
being extremely (top 5%) disruptive or impactful (measured with 

citations) against a constant baseline (grey line y = 1), which indicates a 
situation in which the most disruptive and impactful work is distributed 
equally across team sizes. We find that the probability of observing 
papers, patents and products of highest impact increases with team size 
(Kolmogorov–Smirnov statistics and probabilities for all team sizes plotted 
in Extended Data Fig. 2f), whereas the probability of observing the most 
disruptive work decreases with team size (t-statistics and probabilities for 
all team sizes plotted in Extended Data Fig. 2c). For example, d shows that 
the percentage of top 5% disruptive papers depends on team size, with 
8.6% contributed by single authors and only 1.4% contributed by teams 
of ten authors. This posts relative ratios of 8.6/5 = 1.72 and 1.4/5 = 0.28, 
respectively. For software, 69% of the codebases have disruption values 
that equal 1; we therefore use this maximum value instead of the top 5%.
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research articles (24,174,022 WOS articles published between 1954 and 
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The disruption percentile decreases faster for higher-impact articles 
(darker green curves). The transition from disruption to development 
(D = 0) occurs when the disruption percentile equals 70. b, Disruption 
decreases with team size across nine fields for research articles. These 
fields were manually coded, on the basis of 258 sub-field labels attached to 
journals in WOS data. c, Plot of the regression coefficients of disruption 

percentile on team size from linear regressions, controlling for publication 
year, topic and author. The regression is based on the 96,386,516 WOS 
research articles (articles are counted repeatedly if they appear across 
the publication records of different scholars), contributed by 38,000,470 
name-disambiguated scholars. To control for topics, we use the field 
codes inherited from b. Estimated parameters from the regression models 
are presented in Supplementary Table 4. The same regressions using 
raw values of disruption rather than disruption percentile are shown in 
Extended Data Fig. 3b.
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across fields, time periods and impact levels in science, technology and 
software. We also relate these search strategies to temporal delay in the 
impact these works receive using the ‘Sleeping Beauty index’24, which 
captures a delayed burst of attention traced by convexity in the citation 
attention that a work receives over time.

We find that solo authors and small teams much more often build 
on older, less popular ideas (Fig. 4, Extended Data Fig. 6). Larger 
teams more often target recent, high-impact work as their primary 
source of inspiration, and this tendency increases monotonically with 
team size. It follows that large teams receive more of their citations  
rapidly, as their work is immediately relevant to more contemporaries 
whose ideas they develop and audiences primed to appreciate them. 
Conversely, smaller teams experience a much longer citation delay; 
the average Sleeping Beauty index percentile for solo and two-person  
research teams is twice that of ten-person teams (Extended Data 
Fig. 7). As a result, even though small teams receive less recognition 
overall owing to the rapid decay of collective attention25–27 (as shown 
in Fig. 2a), their successful research produces a ripple effect, which 
becomes an influential source of later large-team success (Extended 
Data Fig. 8).

We also consider the relationship between these distinctive search 
mechanisms and recent findings28 that suggest multi- and inter- 
disciplinary teams more often link work from divergent fields. We 
examined the novelty of journal combinations within article reference  
lists and also keyword combinations within articles in relation to 
team size. These show consistent diminishing marginal increases to 
novelty with team size, such that with each new team member, their 
contribution to novel combinations decreases (Extended Data Fig. 9). 
Moreover, using a previous measure of atypical combinations28, we find 
that atypical combinations increase slowly up to teams of approximately 
ten and then decrease sharply below the value associated with a solo 
investigator. Whereas larger teams facilitate broader search, small teams 
search deeper.

In summary, we report a universal and previously undocumented 
pattern that systematically differentiates the contributions of small 
and large teams in the creation of scientific papers, technology patents 
and software products. Small teams disrupt science and technology by 
exploring and amplifying promising ideas from older and less-popular 
work. Large teams develop recent successes, by solving acknowledged 
problems and refining common designs. Some of this difference results 
from the substance of science and technology that small versus large 
teams tackle, but the larger part appears to emerge as a consequence 
of team size itself. Certain types of research require the resources of 
large teams, but large teams demand an ongoing stream of funding 
and success to ‘pay the bills’29, which makes them more sensitive to the 
loss of reputation and support that comes from failure30. Our findings 
are consistent with field research on teams in other domains, which 
demonstrate that small groups with more to gain and less to lose are 
more likely to undertake new and untested opportunities that have 
the potential for high growth and failure15. Our findings are also in 
accordance with experimental and observational research on groups 
that demonstrates how individuals in large groups think and act  
differently from those in small groups10–14.

Both small and large teams are essential to a flourishing ecology of 
science and technology. Taken together, the increasing dominance of 
large teams, a flurry of scholarship on their perceived benefits2,6–9,28,31 
and our findings call for new investigations into the vital role that indi-
viduals and small groups have in advancing science and technology. 
Direct sponsorship of small-group research may not be enough to pre-
serve its benefits. We analysed articles published from 2004 to 2014 that 
acknowledged financial support from several top government agencies 
around the world, and found that small teams with this funding are 
indistinguishable from large teams in their tendency to develop rather 
than disrupt their fields (Extended Data Fig. 10). In contrast to Nobel 
Prize papers, which have an average disruption among the top 2% of all 
contemporary papers, funded papers rank near the bottom 31%. This 
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Fig. 4 | Small and large teams behave differently in their search through 
past work. a–c, For research articles (24,174,022 WOS articles published 
between 1954 and 2014), patents (2,548,038 US patents granted between 
2002 and 2014) and software (26,900 GitHub repositories uploaded 
between 2011 and 2014), the median popularity of references (in number 
of citations, shown as red curves and indexed by the right y axis) increases 
with team size, whereas the average age of references (green curves, 
indexed by the left y axis) decreases with team size. For all datasets, we 
present work with one or more citations. Bootstrapped 95% confidence 
intervals are shown as grey zones. Teams of between 1 and 10 authors 
account for 98% of articles, 99% of patents and 99% of code repositories. 
Extended Data Figure 3a shows that the observed relationships hold for 
two orders of magnitude of team size. d–f, As in a–c, but for extreme cases 
rather than for average behaviour. Relative ratios compare empirically 

observed proportions of teamwork that searches for extremely early or 
unpopular previous ideas against theoretical baselines of what would 
have been expected at random. The grey line (y = 1) indicates a scenario 
in which work building upon the earliest and the most unpopular ideas 
is distributed equally across team sizes. We find that the probability of 
observing papers, patents and products built upon the most influential 
previous work increases with team size, whereas the probability of citing 
older work decreases with team size. For example, d shows that the 
percentage of the 5% of articles that cite the oldest ideas is unequally 
distributed, with 7.2% contributed by single authors and only 1.6% 
contributed by ten author teams. This provides relative ratios 7.2/5 = 1.44 
and 1.6/5 = 0.32, respectively. Software has very few high-citation 
codebases; we therefore use the top 25% rather than top 5% reference 
popularity for our calculations.
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could result from a conservative review process, proposals designed 
to anticipate such a process or a planning effect whereby small teams 
lock themselves into large-team inertia by remaining accountable to a 
funded proposal. When we compare two major policy incentives for 
science (funding versus awards), we find that Nobel-prize-winning 
articles significantly oversample small disruptive teams, whereas those 
that acknowledge US National Science Foundation funding oversample 
large developmental teams. Regardless of the dominant driver, these 
results paint a unified portrait of underfunded solo investigators and 
small teams who disrupt science and technology by generating new 
directions on the basis of deeper and wider information search. These 
results suggest the need for government, industry and non-profit 
funders of science and technology to investigate the critical role that 
small teams appear to have in expanding the frontiers of knowledge, 
even as large teams rapidly develop them.

Online content
Any methods, additional references, Nature Research reporting summaries, source 
data, statements of data availability and associated accession codes are available at 
https://doi.org/10.1038/s41586-019-0941-9.
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MEthodS
No statistical methods were used to predetermine sample size. Randomization and 
blinding were not possible, given the observational nature of the study.
Dataset of research articles. Our WOS dataset contains 43,661,387 journal papers 
and 615,697,434 citations that span from 1900 to 2014. These papers are published 
across 15,146 journals. Data before the 1950s are sparse, and so results presented 
in the main text focus on papers published between 1954 and 2014. Data from this 
period contain 42,045,077 papers distributed across 15,070 journals. Among these 
articles, 66% (27,728,266) are cited at least once, generating 611,483,153 citations 
in total. To calculate disruption and other network measures, we constructed a 
directed network with papers as nodes and citations as links. We calculated the 
disruption score for 25,988,101 papers published between 1900 and 2014, among 
which are 24,174,022 papers published between 1954 and 2014.
Dataset of patents. The US Patent and Trademark Office patent dataset con-
tains 4,910,816 patents and 64,694,807 citations between 1976 and 2014, which 
represents the portion of the dataset with curated digital patent application data. 
Citation links added by inventors and patent examiners represent different dynam-
ics; examiner citations do not reflect the technology on which a proposed invention 
is built but rather the technologies with which it competes32. As such, we focus 
only on applicant citations, which are marked in the dataset after 2001 and repre-
sent 53% of total citations. From 2002 to 2014, we have 2,548,038 patents in total 
that are linked by 44,798,680 inventor citations. To calculate disruption and other 
measures, we constructed a directed network that contained patents as nodes and 
applicant citations as links.
Dataset of software. The GitHub data contain 15,984,275 code bases (or reposi-
tories) contributed by 2,348,085 programmers in GitHub between 2011 and 2014. 
In this period, 2,065,729 programmers contributed 9,127,410 forking patterns in 
which they copied and saved an existing repository to build upon it. To calculate 
disruption and other measures, we construct a citation network of repositories. 
For each repository, we identify its core members as those who contributed more 
edits, or ‘pushes’, than the average value of all contributors to a repository16. We 
then add a citation link from repository A to B if a core member of A forked the 
code from B between this user’s first and last edit of A. The constructed network 
contains 26,900 nodes (repositories) and 108,640 links.
Dataset of name-disambiguated WOS scholars. We use a hybrid algorithm to 
exploit both metadata and citations in disambiguating WOS authors. For each 
name (including family name and initials), we construct a network of relevant 
papers connected on the basis of a similarity measure that considers shared co- 
authors, references and citations33. Disconnected components of this network are 
assumed to correspond to distinct authors. As co-citation is an important feature 
in this similarity measure, our algorithm applies only to the 28,607,001 cited papers 
in the whole dataset of 43,661,387 papers (1900–2014). Different from a previous 
study33, we also use emails and institutions of authors to improve the algorithm 
by connecting name clusters that share this information. Although only 3% of the 
cited papers have email information and/or organization information, these papers 
connect 72% of the remaining papers. As emails are unique and institutions are 
rarely shared by scholars of the same name, adding metadata makes the unsuper-
vised algorithm semi-supervised, reduces the time complexity and increases accu-
racy. Finally, we obtain 10,051,491 scholars who contributed to 22,177,224 papers. 
Eighty-five per cent of these scholars contributed to three or more papers, and 44% 
contributed to four or more. We use the 2017 Open Researcher and Contributor 
ID (ORCID) dataset to validate the name disambiguation results, and find that 
precision is 78% and recall is 86% among the 118,094 ORCID scholars with three 
or more papers. We also test the results using a dataset of 31,070 Chinese scholars 
and 253,786 papers retrieved from the project outcome reports of research funded 
by National Natural Science Foundation of China; precision found in this test is 
79%, and recall is 65%.
Removing self-citations from WOS papers. Using the above-mentioned data 
of name-disambiguated scholars in WOS, we are able to test the robustness of 
the negative association between team size and disruption against the removal of 
self-citations (Extended Data Fig. 5). If a paper cites another that shares at least 
one common name-disambiguated author, we define it as a self-citation. Among 
the 615,697,434 citations created between 43,661,387 papers between 1900 and 
2014, 10.2% (62,626,733) are self-citations. For the 28,607,001 papers with at least 
one citation, 36.3% of them benefit from one or more self-citations. The averaged 
percentage of self-citation increases monotonically with team size from 2.9% for 
single-author papers and 8.7% for two authors to 12.3% for three authors, and sta-
bilizes at approximately 30% for 50 or more authors. This percentage also increases 
rapidly with the number of citations but peaks at 15% for ten-citation papers and 
then slowly deceases, returning to below 9% (which is the same percentage as in 
two-citation papers) for 100 or more citations.
Dataset of Nobel-prize-winning WOS papers. We collect 877 WOS papers, 
each of which earned their author(s) a Nobel Prize. These papers are published 
across 178 journals during the time period 1902 to 2009, including 316 papers in 

Physiology or Medicine, 284 papers in Physics and 277 papers in Chemistry. The 
average disruption of the Nobel-prize-winning papers is 0.10, ranking in the top 
2% of all WOS papers from the same time period.
Dataset of government-funded WOS papers. For the 43,661,387 WOS papers 
published between 1900 and 2014, WOS recorded acknowledged financial support 
for 10.9% (4,754,769). The percentage of financially supported papers began in 
2008, following a commitment by the WOS to record this information, and accel-
erated from that time; 15.2% in 2008, 38.9% in 2009 and 55.8% in 201434. To ana-
lyse the disruption of government-funded papers, we select 477,702 WOS papers 
that acknowledged funding from five major government agencies, published 
between 2004 and 2014. The acknowledged agencies include the National Science 
Foundation (NSF; 191,717 papers), National European Research Council and 
European Commission (ERC and EC; 81,296 papers), Natural Science Foundation 
of China (NSFC; 80,448 papers), German Research Foundation (DFG; 75,881 
papers), and Japan Society for the Promotion of Science (JSPS; 58,275 papers). 
These papers are published across 7,325 journals. A paper may be funded by 
multiple agencies. The average disruption of these papers is −0.0024, ranking in 
the tail 31% of all WOS papers from the same period. For NSF-funded papers, we 
calculate the average grant size (over multiple NSF grants acknowledged by the 
same paper). We find 140,972 papers that were supported by grants smaller than 
1 million US dollars, 24,370 papers that were supported by grants 1–5 million  
US dollars and 26,375 papers that were supported by grants of greater than 5 
million US dollars.
Fields, subfields and journals of WOS papers. The articles that we analysed  
are published across 15,146 journals that belong to 258 subfields, according to  
the subject category labels for journals in the WOS dataset. We code these sub-
fields into ten major fields that comprise the physical sciences, biology, medicine, 
environmental sciences, chemistry, agriculture, social sciences, engineering, com-
puter science and other. In Fig. 3b, we show the average disruption percentile 
against team size across nine fields, except ‘other’. In Extended Data Fig. 4, we 
selectively display the average disruption percentile against team size at the journal 
level for three or four subfields from each of the nine fields, except for computer 
science. We use ordinary least squares regression to fit the relation between team 
size and disruption percentile for 10,907 journals across 218 subfields. We find 
that among all studied journals, 86% post negative regression coefficients. If we 
only consider journals that publish a substantial number of articles or those for 
which the regression coefficient is significant, this fraction is higher: 91% of jour-
nals with more than 3,000 articles show a negative relationship between team size 
and disruption percentile, and 88% of journals post significant negative regression 
coefficients.
Modelling topics of WOS papers using Doc2vec. We randomly selected 
100,000 papers from 15,146 journals, weighted by the frequency of articles pub-
lished by those journals, to ensure that these papers cover a variety of topics. 
We then selected titles and abstracts from these papers and used them as the 
corpus on which to train a neural network that converts documents into vectors  
(Doc2vec)35. We used the Gensim Python library to train the vector space with  
model parameters as follows: size = 100 (vector length), min_count = 2 (minimum  
frequency of words used in the training), iter = 20 (number of iterations over the  
training corpus). After training, we measured the similarity between documents in  
the training set by calculating the cosine similarity between their estimated  
vectors. We find that greater than 96% of the inferred documents register as  
most similar to themselves, which suggests the trained Doc2vec model is work-
ing in a usefully consistent manner. To provide face validity for our model, we  
randomly select a document and provide documents that register most and  
least similar (Supplementary Table 5). Using the trained model, we infer 
100-dimensional vectors for each of the 45,553 articles contributed by 10,000 
scholars randomly selected from name-disambiguated data. These vectors are 
used as an alternative measure for topics in the linear regression model introduced 
in the next section.
Predicting disruption percentile using multivariate linear regressions. From 
the WOS name-disambiguated data, we select all scholars with at least one cited 
paper published between 1954 and 2014. In this way, we obtain 38,000,470 scholars 
and 96,386,516 articles (articles are counted repeatedly if they appear across the 
publication records of different scholars). For each article, we construct five groups 
of variables for each article: (1) disruption percentile, (2) team size, or number of 
authors (this group includes 15 dummy variables for teams of size 2 to 15, with  
articles having 15 or more authors aggregated into a single 15+ variable and 
solo-authored papers as the reference category); (3) publication year; (4) topic ID, 
which is a categorical variable with ten values, covering gross topic areas ranging 
from the physical sciences to the social sciences (see Fig. 3b); and (5) author ID, 
a numeric index for the scholar with whom each paper is affiliated. We run two 
regression models, with and without author fixed effects. In both, we cluster stand-
ard errors using author ID. We use the reghdfe package36 in STATA13 to run the 
regressions, which automatically identifies singleton groups and removes them 
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iteratively; the number of observations in the author fixed-effect model is therefore 
lower than that in the random effects model36.

We also test an alternative measure of topics using a smaller sample of 10,000 
randomly selected scholars. We construct 100 continuous variables varying from 
−3.2 to 3.2 that characterize topics for which we trained a Doc2vec model using 
titles and abstracts of 100,000 articles, as described above. We use this model to 
fit each of the 45,553 articles in the regression data and find that they provide 
results very similar to those using topic ID in predicting disruption percentile, 
which verifies the observed association between team size and disruption. Note 
that our linear regression models have some limitations. The name disambigua-
tion algorithm used in this paper favours authors in large teams as similar sets of 
co-authors are used to help to disambiguate authors. Our approach also favours 
articles published in recent years, and those with active scholars that have more 
data and are therefore more easily identified.
Validating disruption. The disruption measure that we studied is calculated 
from citation networks. We conduct five independent analyses to validate and 
more richly characterize this structural definition of disruption. The first two 
investigations involve the alignment of disruption with expert notions of dis-
ruption and development; the second two tests link disruption to the process of 
self-consciously disrupting or developing the landscape of previous work; and 
the last inquiry characterizes the full range of expressed behaviours associated 
with disrupting or developing in science. Specifically, these include: (1) linking 
articles with Nobel prizes and showing that, across fields, Nobel-prize-winning 
papers registered among the most disruptive, which validates the notion that that 
expert assessment of path-breaking research systematically breaks the path of 
acknowledgement to former work upon which it builds; (2) fielding and analysis 
of an independent survey of scholars from a range of fields; this survey invited 
these scholars to propose disruptive and developing articles that confirmed our 
measure; (3) association of article type and disruptiveness, revealing that review 
articles—which explicitly summarize previous original research—are substantially 
more developmental than the work they review; (4) identification and analysis of 
informal eponymous references in article titles and abstracts that signalled how 
researchers in developing articles explicitly expressed their intention to build on 
important, prior research; and (5) extraction and analysis of distinguishing words 
that descriptively differentiate disruptive from developing articles. We detail each 
of these in the sections below.
Nobel Prize disruption. We evaluated the association between Nobel Prize 
award-winning articles (in a variety of fields) and disruption. The Nobel Prizes 
were established as a consequence of Alfred Nobel’s last will and testament37 
drafted in 1895, which stated that the interest from his remaining fortune  
should be used to confer prizes on ‘those who, during the preceding year,  
shall have conferred the greatest benefit to mankind … to the person who  
shall have made the most important discovery or invention within the field 
of physics … the most important chemical discovery or improvement … the  
most important discovery within the domain of physiology or medicine …’. In 
our sample of 877 papers directly connected with a Nobel prize (covering the  
time period from 1902 to 2009), the average disruption is 0.10, which ranks 
within the top 2% of all WOS papers from the same time period, selecting as 
control group 3,372,570 papers from the same 178 journals and years. This  
pattern is strong and substantial for prizes in Physiology or Medicine (316 
papers), Physics (284 papers), and Chemistry (277 papers). Incidentally, we 
find that the probability of observing small-team, disruptive papers is nearly 
three times as high among Nobel-Prize-winning papers than those in the control 
group (Extended Data Fig. 10). This suggests that major scientific communities 
recognize work as important and path-breaking that has also been cited inde-
pendently from the work upon which it builds, signifying a break in the path of  
acknowledgement.
Disruption survey. We fielded an open-ended survey, performed in person, over 
the telephone or using Skype, which was approved by the University of Chicago 
Institutional Review Board (IRB18-1248). The survey requested that scholars 
across different fields propose papers that either disrupt or develop science in 
their fields, anchoring those definitions with the following discussion: ‘Developing 
papers represent extensions or improvements of previous theory, method or find-
ings (note that many papers will extend some scientific elements, while keeping 
others the same). Disrupting papers represent punctuated advances beyond pre-
vious theory, methods or findings (note that almost no papers can successfully 
disrupt all scientific elements; if they disrupt some things, they likely develop and 
keep others the same).’. We then provided respondents with the BTW-model and 
Bose–Einstein condensation papers to demonstrate the kinds of papers that we 
would define as disruptive and developmental, and to demonstrate how devel-
oping papers could also be important. Respondents then proposed from three to 
ten disrupting and developing papers. Our panel of scientists were solicited from 
ten prominent research-intensive institutions across United States, China, Japan, 
France and Germany. These scientists had training that ranged across mathematics, 

physics, chemistry, biology, medicine, engineering, computer science, psychology 
and economics. Among the 20 scholars from whom we received 190 answers,  
100% of their proposals agreed with our measure for the most disruptive paper 
they mentioned according to our measure (and all but six of their proposals agreed 
with our measure for the most developing paper they mentioned). The average 
disruption of papers nominated as disruptive is 0.2147, among the top 2% of most 
disruptive papers. The average disruption of papers nominated to be developing 
is −0.011, among the bottom 13% (Fig. 1c). This analysis resulted in an overall 
prediction area under the curve of 0.83, which suggests a predictive accuracy of 
83% and a much stronger sensitivity to extremes. We present a selected list of 
disruptive papers in Supplementary Table 2.
Review articles versus original research. Review articles channel attention to 
important past work, and thus should systematically tend to be more develop-
mental than disruptive. To test this hypothesis, we separate review articles from 
the original research articles they review by culling journals with the words both 
‘annual’ and ‘review’ in the title, which resulted in a sample of 22,672 review 
articles published in 48 journals between 1954 and 2014. We compare these 
with the 1,338,808 articles reviewed (cited) by them. This reveals that reviews, 
which explicitly summarize previous original research, are substantially more 
developmental than original research. Precisely, the mean disruption for reviews 
(−0.0009) corresponds to the 46th percentile of the disruption distribution (based 
on all cited papers published between 1900 and 2014), and the non-review mean 
(0.0008) corresponds to the 77th percentile of the disruption distribution. This 
difference indicates that original research articles are much more likely to be 
disruptive than work that reviews them.
Informal reference. To further validate the link between our ex post measure of 
disruption with the search strategy in the original work that eventually comes to 
be received by the community as disruptive, we identified research that specifically 
signalled an intention to extend the important work of earlier authors by extracting 
all eponyms or informal references to prior authors’ work in titles and abstracts, 
including ‘Bose’ and ‘Einstein’ from Bose–Einstein condensation, ‘Bohr’ from ‘Bohr 
radius’, ‘Higgs’ from ‘Higgs boson’ and so on. Specifically, we analyse 27,728,266 
WOS articles between 1954 and 2014 with one or more citations, in which for each 
paper we construct a list of the family names for scholars who authored any of the 
papers cited in the references. We then identify whether these names also appeared 
in title or abstract. We found that nearly a million research papers in the Web of 
Science—0.61% (148,303) of titles and 3.0% (727,254) of abstracts—contain the 
names of previous authors or concepts and phenomena named after them. Articles 
that develop previous science, according to our future citation-based measure of 
disruption, are 250% more likely to reference former research by author name in 
title or abstract, which suggests an explicit intention to extend previous work and 
attract the attention of audiences that have appreciated it (Supplementary Table 1). 
This validates our measure by revealing its alignment with other rich signals of 
linkage to past science. It also confirms another core dimension of the disruption 
measure that was not discussed by the original authors of this measure: a creative 
work’s future disruptive impact is strongly predicted by its search for the ideas 
upon which it will build. Research building on previous work that is either (1) 
sufficiently famous, such that it has been canonized, with the original author’s 
name attached to the phenomena by the community, or (2) sufficiently recent, 
such that the author’s name is familiar to the community, is much more likely to 
be received by that same community as an important extension of the prior known 
work. Our paper further suggests that this kind of developing activity is much more 
commonly performed by large teams.
Distinguishing words. Finally, we examined the titles and abstracts that intro-
duce papers, which are eventually determined by our measure to be disrup-
tive or developing papers. We identified those words that are most and least  
predictive of disruption, as measured by the relative ratio of their presence in 
disruptive versus developing articles. Specifically, we selected titles and abstracts 
from 24,174,022 WOS papers published between 1954 and 2014 with one or 
more citations for which D ≠ 0. We assign them into two groups: disrupting 
articles (D > 0; 6,397,815) and developing articles (D < 0;16,266,398). For words 
observed in both groups (1,033,879 words for titles and 3,492,223 words for 
abstracts), we calculate the ratio of their frequency in disrupting versus develop-
ing articles. In Supplementary Table 3, we present a sample of the most popular 
words with ratios that deviate significantly from 1. These distinguishing words 
(grouped by part of speech) characterize the manner in which articles come to 
disrupt or develop science. For example, ‘technique’, ‘device’, ‘tool’, and ‘measure’ 
are among the nouns that most distinguish titles and abstracts from disruptive 
articles. This suggests that new approaches are often used to disrupt science and 
technology with new findings and scientific possibilities. By contrast, ‘theory’, 
‘model’ and ‘hypothesis’ are all significantly and strongly associated with articles 
that develop ideas from previous work. Verbs associated with disruptive article 
titles and abstracts include ‘advance’, ‘introduce’ and ‘change’, which suggests the 
introduction of new approaches and new causal forces to a scientific domain. 
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On the other hand, ‘endorse’, ‘confirm’ and ‘demonstrate’ are much more likely 
to be found in developing articles. These focus on confirming and incrementally 
altering existing scientific components. For example, the contrast between ‘intro-
duce’ and ‘confirm’ is consistent with our definitions of disrupting and developing 
papers in terms of whether questions are asked or solved, respectively. Finally, 
adverbs and prepositions that distinguish disruptive article titles and abstracts 
include questioning words (who, why, what, where and when), which provides 
additional support for the increased likelihood of disruptive research to pose new 
questions. By contrast, ‘during’, ‘after’ and ‘from’ characterize work that devel-
ops—and integrates—insights from previous investigations. These distinguishing 
words are highly suggestive regarding strategies that characterize disruptive work. 
Moreover, they highlight differences in the search and positioning of ideas that 
come to correlate with how those articles are received, which forms the basis of 
our disruption measure.
Reporting summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this paper.
Code availability. All code is available at http://lingfeiwu.github.io/smallTeams.

Data availability
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data are available from the corresponding author upon reasonable request.
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Extended Data Fig. 1 | Visualizing disruption. a, Citation tree 
visualization that illustrates the visual influence of focal papers, drawing 
on past work and passing ideas onto future work. ‘Roots’ are references and 
citations to them, with depth scaled to their publication date; ‘branches’ on  
the tree are citing articles, with height scaled to publication date and 
length scaled to the number of future citations. Branches curve downward 
(brown) if citing articles also cite the focal paper’s references, and 
upward (green) if they ignore them. b, Two articles (the Bose–Einstein 

condensation and BWK-model articles) of the same impact scale 
represented as citation trees, to illustrate how disruption distinguishes 
different contributions to science and technology. c, Citation tree 
visualization that characterizes the visual influence of eleven focal papers 
from teams of different sizes. Disruption (D), citations (N), published year 
(Y) and team size (m) of papers are shown in the bottom left corner of each 
tree.
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Extended Data Fig. 2 | Comparing citation and disruption distributions 
across team sizes. We select 27,728,266 WOS papers of at least one 
citation published between 1954 and 2014. a, b, The distribution of 
disruption changes with team size (a); magnified versions of the grey area 
shown in b. c, We test differences in the distribution of disruption between  
each pair of team sizes from one to ten using a two-sample t-test. 
The t-statistics are given in green cells and the darkness of green is 
proportional to the size of each t-statistic. Asterisks under the numbers 
indicate P values. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. All pairs of tested 
disruption distributions significantly differ from one another. d, e, The 

distribution of citation changes with team size (d); magnified versions of 
the grey area shown in e. All figures clearly demonstrate how small teams 
oversample more disruptive and less impactful work. f, We test differences 
in the distribution of citations between team sizes using two-sample 
Kolmogorov–Smirnov tests, which are recommended for long-tailed 
distributed data. Numbers in cells show Kolmogorov–Smirnov statistics 
and the underlying asterisks indicate P values. All pairs of the tested 
citation distributions significantly differ from one another. Comparing 
disruption distributions with the Kolmogorov–Smirnov test reveals the 
same patterns of difference.
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Extended Data Fig. 3 | Decreasing disruption is robust across years, 
topics, authors, time periods and windows of disruption. a, For research 
articles (24,174,022 WOS articles published between 1954 and 2014), 
patents (2,548,038 US patents assigned between 2002 and 2014) and 
software (26,900 GitHub repositories uploaded between 2011 and 2014), 
median citations (red curves, indexed by right y axis) increase with team 
size from 1 to 100 (rather than 1 to 10 as in Figs. 2a–c, 4a–c), whereas 
the average disruption percentile (green curves, indexed by left y axis) 
decreases with team size. For all datasets, we present work with one or 
more citations. Green dotted lines show the point at which D = 0, the 
transition from development to disruption. Bootstrapped 95% confidence 
intervals are shown as grey zones. b, Plot of the regression coefficients of 
disruption (rather than disruption percentile as in Fig. 3c) on team size, 
from linear regressions controlling for publication year, topics and author. 
The regression is based on the 96,386,516 WOS research articles (articles 

are counted repeatedly if they appear across the publication records 
of different scholars) contributed by 38,000,470 name-disambiguated 
scholars. c, The negative correlation between disruption and team size 
holds across time periods. In contrast to the main body of the paper, which 
renders disruption in terms of percentile change, here we measure it in 
the native metric of disruption to highlight the shift with time. Earlier 
cohorts (red curves) are more disruptive than later cohorts. Nevertheless, 
with changes in team size, each cohort of papers traverses a majority of the 
total variation of disruption for that cohort. d–h, Decreasing disruption 
percentile and increasing citations with growing team size are robust to 
changes in the width of the time-window of observation from 5 years to 
40 years for 166,310 WOS articles published in 1970. i–m, As in d–h, but 
using 24,174,022 WOS papers published between 1954–2014; we observe 
the same pattern.
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Extended Data Fig. 4 | Decreasing disruption is robust when 
controlling for journal. a–c, Weighted moving average technique for 
data smoothing. The relationship between team size and disruption 
may be noisy owing to lack of data when we analyse WOS articles from 
the same journal. As shown in a, less than 1% of articles in ‘Artificial 
intelligence’ (a subfield of ‘Computer and Information Technology’) 
have more than six authors, but these articles contribute to substantial 
variance in the data. We use the moving average technique to limit noise 
in the data. More specifically, we define a parameter k, which provides 
the threshold value of mk for team size m such that P(m > mk) < k. For 
any data point with a team size greater than mk, its disruption percentile 
DPm is updated to be the average between its current value and the value 
of its left neighbour, DPm −1, weighted by corresponding sample sizes 
(the number of articles for a given team size). Panel a shows curves for 

the subfield ‘Artificial Intelligence’ before (blue dashed curve) and after 
(red curve) smoothing, in which the size of blue circles is proportional to 
sample size. Panels b and c show how smoothing depends on the value of 
k across ten randomly selected subfields. In d–l, each curve corresponds 
to a journal (only journals with more than three data points are shown) 
and each panel corresponds to a subfield. There are 15,146 journals, 258 
subfields and 10 major fields represented in our WOS data. Owing to the 
limited figure size, only four subfields are shown for each field. Curves are 
smoothed by setting the smoothing parameter k = 0.2. The darkness of 
curves is equally proportional to sample size and the absolute value of the 
regression coefficient examining the impact of disruption percentile on 
team size, such that journals with more articles and that display stronger 
(both negative and positive) relationships are more distinguishable from 
the background.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Decreasing disruption is robust when 
controlling for task, institution, platform, project scale and alternative 
disruption measures. a, b, Comparison between theoretical and empirical 
articles (a) and review and non-review articles (b). a, We separate 4,258 
papers from www.arXiv.org published between 1992 and 2003 into two 
groups on the basis of the number of figures they contain; this grouping 
comprised 1,502 articles without figures and 2,756 articles with figures. 
The assumption is that empirical papers tend to contain more figures than 
theoretical papers23. We match these articles to the WOS datasets and 
observe that for both theoretical and empirical articles, the disruption 
percentile decreases with the growth of team size. b, We select two groups 
of WOS articles on the basis of journal name; 22,672 reviewing articles 
published across 48 journals that have both ‘annual’ and ‘review’ in the 
title, and their 1,338,808 references (reviewed articles). For both reviewing 
and reviewed articles, the disruption percentile decreases with team size. 
c, d, Comparison of US patents across classes and owners. We plot the 
disruption percentile against team size for the seven most popular classes 
of patents (92,175 patents) (c) and the top five companies legally assigned 
the most patents (21,261 patents) (d) from 2002 to 2009. We observe that 
the decrease in disruption and increase in team size holds broadly across 
classes and owners. The moving average technique used in Extended Data 
Fig. 4 is used to smooth the curve (smoothing parameter k = 0.1). As 
sample size decreases rapidly with team size in the patent data, we assigned 
equal weights across team sizes in applying the smoothing technique. 
e, f, Comparison of GitHub software projects across programming 
languages and code-base sizes. We plot the disruption percentile against 
team size for the seven most popular programming languages (18,702) 

(e) and four scales of code-base sizes (24,853 code-bases) (f) from 2011 
to 2014. The decrease in disruption with growth of team size holds 
broadly across programming languages and code-base sizes. g, Simplified 
citation networks comprising focal papers (blue diamonds), references 
(grey circles) and subsequent work (rectangles). Subsequent work may 
cite: (1) only the focal work (i, green), (2) only its references (k, black) or 
(3) both focal work and references (j, brown). A reference identified as 
popular is coloured in red, and self-citations are shown by dashed lines 
(with corresponding subsequent work coloured in light brown). Five 
definitions of disruption are provided for comparison. D0 is the definition 
of disruption used in the main text. D1is defined the same way as D0, but 
with self-citations excluded. D2 is defined the same way as D0, but only 
considers popular references. We identified references as popular that 
received citations within the top quartile of the total citation distribution 
(≥24 citations). D3 simplifies D0 by only measuring the fraction of papers 
that cite the focal paper and not its references, among all papers citing the 
focal paper, which equals ni/(ni + nj). D4 is similar to D3, but considers the 
number of citations and not papers cited in calculating the fraction (for 
example, if a single referenced paper is cited five times, then it receives 
a count of five rather than one in this measure). h, A citation network 
copied from g, with one additional citation edge (brown curve) added. As 
a consequence, some—but not all—disruption measure variants change. 
i, All disruption measures decrease with team size. D0 and D1 are indexed 
by the right y axis and other disruption measures are indexed by the left 
y axis. One hundred thousand randomly selected WOS papers (97,188 
papers remained after excluding missing data) are used to calculate these 
disruption values.
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Extended Data Fig. 6 | Small teams cite earlier and less-popular 
references. a, We select 1,127,518 WOS articles published in 2010 and 
find that the probability of observing reference j of age t decreases 
exponentially with t, such that P(t) ~ e−λt. For larger teams P(t) decreases 
faster with t, suggesting that λ is determined by team size m. b, The 
relationship between m and λ (orange circles) can be fitted as λ ~ m0.07 
(red curve). c, From a and b, we can derive the dependency of E(t), the 
expected value of t, on m by integrating P(t) from zero to maximum t. This 
gives E(t) ~ 1/λ ~ m−0.07. Empirical data (blue rectangles) are consistent 
with this prediction (red curve). d, Probability of observing reference  

j with k citations decreases with k, supporting the relationship P(k) ~ k−α. 
To control the time window, we include only references published in 2005. 
For larger teams P(k) decreases more slowly with k, suggesting that α is 
affected by m. e, The empirical relationship between m and α (purple 
circles) and the fitting function as α ~ m−0.05 (red curve). f, From d and 
e, we can derive the dependency of E(k), the expected value of k, on m by 
integrating P(k) from minimum to maximum k. This gives E(k) ~ 1 + 1/
(α − 2) ~ 1 + 1/(m−0.05 − 2). The empirical data (green triangles) are 
consistent with this prediction (red curve).
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Extended Data Fig. 7 | Citation delay to small and disrupting teams. 
a, b, The decay of citations to WOS articles changes with team size and 
disruption. We selected 95,474 papers with 200–300 citations from 1954 
to 2014, and plot the probability of being cited against article age. Longer 
delays in citation are observed in smaller (a) and more disrupting (b) 
teams. In b, purple (37,805 papers), blue (4,931 papers) and green (26,698 
papers) curves correspond to 0–10, 55–65 and 90–100 percentiles of 
disruption, respectively. In both panels, curves are smoothed by a running 
average with a time window of five years. The coloured area shows one 
standard deviation of these averages. c, d, The Sleeping Beauty index24 
captures a delayed burst of attention by calculating convexity in the 
citation distribution of a particular work over time. The index is highest 
when a paper is not cited for some substantial period before receiving its 
maximum (which corresponds to belated appreciation), zero if the paper 
is cited linearly in the years following publication, and negative if citations 
chart a concave function with time (which traces early fame diminishing 
thereafter). We observe that the Sleeping Beauty index percentile decreases 

markedly with team size (c) and increases with disruption (d) across fields. 
e, f, The negative correlation between disruption percentile and impact in 
the short term (within 10 years) turns positive in the long term (over 30 
years) for the 166,310 papers published in 1970 (e). The same pattern is 
observed when all 22,174,022 papers from 1954 to 2014 are used (f).  
g, h, Achieving substantial citation attention for disruptive work occurs  
over the long term, if at all, whereas the risk of failure from disruption 
occurs over both the short and long term. Arrows trace the distance 
between the mean of future citation success (g) or failure (f) from 
developing to disrupting work produced by teams of each specified size. 
The probability of becoming one of the top 1% most-cited articles is higher 
for developing teamwork (negative disruption, the origin of arrows) within 
20 years and higher for disrupting teamwork (positive disruption, the 
target of arrows) over 30 years across team sizes (g). The probability of 
becoming one of the tail 10% least-cited articles is almost always higher 
for disrupting teamwork than developing teamwork across team sizes and 
time windows (h).



LetterreSeArCH

Extended Data Fig. 8 | The ripple effect of a shrinking small team 
population. a–f, The decline of small teams. a, b, Evolution of team-size 
distributions over time for WOS articles (a) and US patents (b). The 
distributions skew towards large teams over time. c, d, Average team size 
of articles increased from 2 to 5.5 between 1954 and 2014, and for patents 
team size increased from 1.7 to 2.7 between 1976 and 2014. e, f, Percentage 
of small teams (in which the number of team members m ≤ 3) decreased 
from 91% to 37% for articles, and from 94% to 74% for patents during the 

period of observation. g, The ripple effect. We select 2,640 small teams 
(m ≤ 3) from WOS articles that are among the top 1% in number of 
citations they received, as well those among the top 1% within the Sleeping 
Beauty index distribution24. We analyse the citations to these articles and 
find that the fraction of large teams (m > 3) increases over time. The red 
curve shows the average fraction of citations from large teams and the pink 
area spans one standard deviation. The selected 2,640 small-team articles 
are eventually cited by 657,946 large-team articles.
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Extended Data Fig. 9 | Diseconomies of scale in combinatorial novelty. 
a, b, Changes in journal-based combinatorial novelty with team size 
from WOS articles. We calculate the pairwise combinational novelty of 
journals in the references of an article using a previously published novelty 
measure28. This novelty measure is computed as the tenth percentile 
value of z-scores for the likelihood that reference sources combine, so 
a lower value of this index indicates higher novelty28. Here we convert 
this measure to percentiles and subtract from 100 to improve readability, 
such that a higher score indicates greater novelty. It seems natural that a 
larger team would provide access to a wider span of literature. We find 
that novelty does increase with team size, but with diminishing marginal 
increases to novelty with each additional team member. Beyond a team 
size of ten, novelty decreases sharply (a). The probability of observing 
papers within the top 5% of the novelty distribution increases, and then 
decreases, with team size. The dotted line shows the null model that the 

probability of high novelty is invariant to team size (b). c, d, Calculation 
of combinatoral novelty in a different way. We select 241,648 papers 
published in American Physical Society Journals, 1990–2010, and analyse 
the probability of two-way (pairwise) and three-way combinations of the 
‘Physics and Astronomy Classification Scheme’ codes using the Jaccard 
index. Similar to the novelty measure used in a and b, in the Jaccard 
index a lower value indicates higher novelty; we therefore convert it into 
percentiles and subtract from 100 such that a higher score indicates greater 
novelty. Again, we observe diminishing marginal increases to novelty with 
the growth of team size. e, f, We select 8,232,630 PubMed papers from 
between 1990 and 2010 and analyse the probability of two-way and three-
way combinations of medical subject headings using Jaccard indices. The 
diminishing marginal increases to novelty effect are also observed in this 
context.
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Extended Data Fig. 10 | Small, disruptive teams contribute 
disproportionately to Nobel Prizes and are underrepresented with 
government funding. a, Underfunded small-team, disruptive research. 
Disruption percentile versus team size for WOS papers either not 
annotated as funded, or as funded by the largest government agencies 
around the world. The 477,702 funded papers cover the time period 2004–
2014, and include 198,103 for NSF, 80,448 for NSFC, 81,296 for ERC and 
EC, 75,881 for DFG and 58,275 for JSPS. These papers are published across 
7,325 journals, and a paper may be funded by multiple agencies. The 
average disruption of these papers is −0.0024, ranking in the tail 31.0% 
of all WOS papers in the same period. We select 5,305,534 papers without 
any funding annotations from the same 7,325 journals and same time 
period (2004–2014) as a control group (dashed curve). The dashed grey 
line shows the mean disruption percentile for the control group. b, We 
select 191,717 papers published between 2008 and 2014 that acknowledged 
NSF with a grant number and retrieved grant size from the NSF website, 

including 140,972 papers for less than or equal to 1 million US dollars, 
24,370 papers for 1–5 million US dollars and 26,375 papers for more than 
5 million US dollars. The green and red zones mark two regions of interest: 
small-team (three or fewer members) disruptive (positive disruption) 
papers in green and large-team developing work in red. The probability of 
observing small-team disruptive papers in NSF granted papers is almost 
half that of observing them in the control group. c, We select 877 Nobel-
Prize-winning papers that cover the time period 1902–2009, including 316 
papers in Physiology or Medicine, 284 papers in Physics and 277 papers 
in Chemistry. We select 3,372,570 papers from the same 178 journals and 
same time period (1902–2009) as a control group (dashed curve). The 
average disruption of the Nobel-prize-winning papers is 0.10, ranking 
among the top 2% of all WOS papers from the same period. d, The 
probability of observing small-team disruptive papers is nearly three times 
as high in Nobel-Prize-winning papers as in the control group.
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection We performed most analysis with Python 3, using pandas dataframes and models, as described in the manuscript and Supplement. For 
the regression models, we used and Stata/SE 13.0 

Data analysis We performed all analysis with standard algorithms and data. We will also (redundantly) make our particular implementation of well-
known code available in a public GitHub repository that indexed in the manuscript and supplement to maximize reproducibility.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Our data involves use of public data including the GitHub public repository collection and the US Patent and Trademark office patent database. While we cannot 
redistribute these, we can and will publicly share how to access these resources and code regarding how to do it most effectively. We will also share all of the Web 
of Science data required to reproduce our analyses and figures.
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Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Data on teams size were collected for tens of millions of productive teams,  attributes of their productive output and its influence on 
future science and technology. This data was largely quantitative in nature, including author/inventor/developer number for each team, 
and network data regarding both how these objects searched through the space of past science and technology, and how their work was 
received by future generations.

Research sample Our sample involved more than 65 million teams producing science publications, technology patents, and software. This ranged from the 
end of the 19th Century for articles, from 1976 until the present for patents and over the 21st Century for software products. All of these 
details are specified clearly in the manuscript and supplement. We also included all data available in scientific papers, technology 
patents, and software relevant prior to the works in question to evaluate search, and posterior to them to evaluate impact, disruption 
and its delay. These works represent a population of relevant artifacts and should not be viewed as a sample of some different 
populations. We do find, however, that all subsamples of the data confirm the pattern we see in the populations as a whole. Moreover, 
because the patterns we evaluate are consistent across these massive populations, we suggest that they have likely relevance to other 
contexts of science, technology and cultural production as well

Sampling strategy We used all available data for our analysis of teams' search strategies, impact and disruption. We also subset the data and analyze it 
separately for subsamples, presenting results in the Supplement.

Data collection Our data was collected through administrative procedures that archive journal articles, publicly serve patents, and facilitate the sharing 
of code.

Timing The timing of our data collection involved collecting data through 2015, but only analyzing team work from years before this time, to 
allow time for the accumulation of citations, critical for our measurements.

Data exclusions No data were excluded from the analysis, other than by administrative convention. For example, the US patent system did not collect its 
data digitally until 1976. Despite image data from US patents being available through the end of the 18th Century, we used the digitally 
native patent data, from 1976 until the present.

Non-participation N/A

Randomization N/A 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics Most data from human participants was passively collected and curated through publicly available data. We also performed a 
small survey of scholars to solicit their nominations for most disruptive and developmental articles. 
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Recruitment For the disruption validation survey, we assembled a panel of young scientists from ten prominent research-intensive institutions 
across U.S., China, Japan, France, and Germany who responded to an online solicitation request. Relevant fields of these 
scientists covered math, physics, chemistry, biology, medicine, engineering, computer science, psychology, and economics. 
Among the 20 scholars, we received 190 answers

Ethics oversight University of Chicago Institutional Review Board (#IRB181248)

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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