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Abstract

Many of the statistical models that could provide an accurate, interesting,
and testable explanation for the structure of a data set turn out to have in-
tractable likelihood functions.Themethod of approximate Bayesian compu-
tation (ABC) has become a popular approach for tackling such models. This
review gives an overview of the method and the main issues and challenges
that are the subject of current research.
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1. INTRODUCTION

In recent years the advent of machine learning has placed into a deeper focus the aims of statistical
inference, particularly the relative roles of prediction and explanation. An explanation for the
data typically involves uncovering the structure and parameterization of a mechanistic model.
Diggle &Gratton (1984) distinguished two forms of statistical model: those that are prescribed in
terms of known distributions, with known likelihood functions, and those that are implicit, from
which we can simulate samples but do not have access to an explicit expression for the likelihood.
These latter models are often described as generative models. Simulations from implementations
of generative models have increasingly been used to give training data sets for supervised machine
learning purposes, potentially bridging the two cultures of Breiman (2001). In turn, interest in
uncovering the generative model from a machine learning perspective has overlapped with the
tradition of likelihood-free inference methods (Diggle & Gratton 1984), of which approximate
Bayesian computation (ABC) forms a part. There have been many thorough reviews of ABC in
both the statistical andmore applied literature over the past 10 years, and this article aims to briefly
introduce the method, review areas of recent activity, and make connections with the machine
learning literature where appropriate.

The basic outline of what subsequently became known as ABC was introduced by Pritchard
et al. (1999) for solving an application in population genetics. The method addresses the problem
of finding the posterior distribution of parameters in a model that explains a potentially rich and
complex data set. Such data sets typically consist of n observations yobs = (yobs,1, . . . yobs,n ) where
each yobs,i may be of high dimension. The standard ABC approach is to use a mapping s(y) to a
lower dimensional and simpler set of summary statistics s. The model implies the existence of a
density fn(s|θ ), but we have no straightforward access to it. The target of inference in ABC is

pε (θ , s|sobs ) ∝ π (θ ) fn(s|θ )Kε (‖s − sobs‖),

where sobs = s(yobs ), π (θ ) is the prior, Kε (x) is a kernel function with scaling parameter (band-
width) ε, and ‖ · ‖ is a distance metric, which is usually Euclidean. The ABC posterior for θ is the
marginal

pε (θ |sobs ) =
∫
pε (θ , s|sobs )ds.

The motivation behind ABC is the notion that it is straightforward to devise Monte Carlo algo-
rithms to sample from pε (θ |sobs ) without needing an explicit expression for the likelihood function
fn(s|θ ). A typical simple algorithm is the following:

Algorithm 1.

1. Sample θi ∼ π (θ ).
2. Simulate si from the generative model having implicit density fn(s|θi ).
3. Reject with probability proportional to Kε (‖si − sobs‖).
4. Repeat steps 1–3 until a sufficiently large sample of sizeM is obtained.

The resulting accepted θi are drawn from the ABC posterior pε (θ |sobs ), which converges to p(θ |sobs )
as ε → 0. Most implementations of ABC use a uniform kernel, corresponding to the use of an
indicator function at the rejection step:

I{‖s − sobs‖ ≤ ε}.

The algorithm is illustrated schematically in Figure 1.
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Figure 1

This figure illustrates the joint distribution p(θ , s) for univariate θ and s. Algorithm 1 samples points from pε (θ , s|sobs ), leading to
summaries of samples from the ABC posterior pε (θ |sobs ) such as the histogram at the upper right. At the bottom right are shown the
commonest kernels K (·). Note that in the case of the Gaussian ε corresponds to the standard deviation, leading to a more tapered
rejection region than shown here.

Note that Algorithm 1 describes an online procedure, with a fixed ε andM, necessarily leading
to an uncertain number of simulations. In fact, many ABC algorithms choose an initial numberN
of simulations and retain all sampled points, choosing the value of ε as the empirical quantile cor-
responding to Pr(‖si − sobs‖ < α) for some proportion α. If we assume that the parameter vector
and summary statistic vector have p and r elements, respectively, then the set of sampled points
forms a reference table withN rows and p+ r columns (Figure 2). Before rejection, steps 1 and 2

θ1,1 . . . θ1,p

θ1

s1,1 . . . s1, r

s1

θi,1 . . . θi, p

θi

si,1 . . . si, r

si

θN ,1 . . . θN ,p

θN

sN ,1 . . . sN , r

sN

Figure 2

Structure of the reference table that is commonly mentioned in ABC analyses.
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of Algorithm 1 jointly sample from p(θ , s), and step 2, considered alone, samples from themarginal
p(s), which is the prior predictive distribution of s.

In the outline above, θ is generally a vector, and it is straightforward to extend the approach to
include an indicator mj , j = 1, . . . ,K , for K different models, in which case the length of θ may
vary amongmodels, and the table illustrated inFigure 2will be a ragged array.Monte Carlometh-
ods, for example, the same rejection algorithm above, can be used to report marginal probabilities
for the mj (described in more detail in Section 5).

The types of model to which ABC may be most usefully applied typically involve high-
dimensional latent variables over which we wish to marginalize. The advantage of ABC is that
traversing through the space of latent variables, often a reason for slow convergence of many
Markov chain Monte Carlo (MCMC) algorithms, is not a constraint. Typically, latent variables
are not kept in the reference table and are discarded during simulation. The range of applications
of ABC tends to reflect this feature, and it is now widely used in a number of different fields.
Examples include population genetics (Sjödin et al. 2012), ecology ( Jabot & Lohier 2016), epi-
demiology (McKinley et al. 2018), systems biology (Liepe et al. 2014), anthropology (Kandler &
Powell 2018), psychology (Turner et al. 2013), environmental modeling (Cui et al. 2018), climate
modeling (Holden et al. 2018), and astronomy (Hahn et al. 2017). Many of the methods dis-
cussed in the present article are implemented in software, particularly as R packages (summarized
in Kousathanas et al. 2018).

Research on the ABC method falls naturally into a number of themes, which are discussed
further below. From a theoretical perspective, major topics have been the sensitivity to choice of
summary statistics and also the convergence properties as ε → 0. The accuracy of ABC model
choice and asymptotic behavior of ABC as n → ∞ have also been investigated. Research has also
focused on developing computational approaches to improve efficiency—that is, to make infer-
ences based on smaller values of ε than is feasible with pure rejection (Algorithm 1). Many of the
Monte Carlo computational approaches developed for Bayesian inference translate straightfor-
wardly to ABC. However, some more ABC-specific algorithms have also been developed, which
are based on modeling the joint distribution pε (θ , s|sobs ). This review first covers these postsam-
pling adjustment methods because they are widely applicable and also relevant to the choice of
summary statistics and the examination of the convergence and asymptotic behavior of ABC.

2. REGRESSION-ADJUSTMENT TECHNIQUES

An early technique in ABC has been regression-adjustment, which has been shown to often give
improved convergence, for a given ε, to the ideal target p(θ |sobs ) (Li & Fearnhead 2018a, Blum
2010). The method can typically be applied for any Monte Carlo method that gives samples from
pε (θ , s|sobs ). The basis of the approach is that, given a sample i = 1, . . . ,M of

{θi, si} ∼ pε (θ , s|sobs ),

we can use regression to obtain an estimate of E(θ |s) and then adjust each sampled θi as

θ∗
i = θi − Ê(θ |s) + Ê(θ |sobs ).

Beaumont et al. (2002) originally suggested using weighted linear regression with weights from
an Epanechnikov kernel (alternatively, unweighted, if using Algorithm 1 above, where the kernel
weights are included in the rejection algorithm). Blum & François (2010) introduced nonlinear
regression using a one-layer neural network and modified the regression-adjustment algorithm
to include a correction for heteroscedasticity. This latter is obtained by an additional regression

2.4 Beaumont
Review in Advance first posted on 
November 28, 2018. (Changes may still 
occur before final publication.)

A
nn

u.
 R

ev
. S

ta
t. 

A
pp

l. 
20

19
.6

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
U

ni
ve

rs
ity

 o
f 

R
ho

de
 I

sl
an

d 
on

 1
1/

29
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



ST06CH02_Beaumont ARjats.cls November 14, 2018 17:4

step on the residuals to obtain an estimate of the standard deviation of residuals as a function of
θ , σ̂ (θ |s). The modified adjustment step is then

θ∗
i = σ̂ (θ |sobs )

σ̂ (θ |s) (θi − Ê(θ |s)) + Ê(θ |sobs ).

Blum & François (2010) show that both changes often lead to improvement over the original
method of Beaumont et al. (2002), as measured by squared error.The adjustment is applied to each
component of the parameter vector individually, which can be justified in terms of the asymptotic
behavior of ABC (Frazier et al. 2018).

When the observations are not well explained by the model, the results obtained from
regression-adjustment are potentially more misleading than the use of standard rejection (van der
Vaart et al. 2015, Frazier et al. 2017). In this case sobs may be an outlier in the distribution
pε (θ , s|sobs ), and regression-adjustment extrapolates rather than interpolates. Model-checking
methods (see Section 6) are useful for identifying such problems and potentially suggesting solu-
tions. A further issue is that the regression-adjustment may yield values of θ∗

i that are outside the
support of the prior or implicit likelihood function (for example, giving negative parameter values
in models that do not allow this, or parameter values outside the range of a prior).This latter prob-
lem is partially addressed by transforming the simulated values of θ prior to regression-adjustment
(Csilléry et al. 2012), although back-transformation will then lead to biased estimates. The poten-
tial for regression-adjustment to give problematic θ∗

i has prompted the use of methods that target
the implicit likelihood fn(s|θ ), using multivariate regression methods (Leuenberger & Wegmann
2010, Fan et al. 2013). The method of Leuenberger &Wegmann (2010) is a standard component
of the ABCtoolbox package (Wegmann et al. 2010) that is widely used in population genetics.

Another regression-based method is that of Nakagome et al. (2013), who use kernel ridge-
regression to introduce nonlinearity (note that the term “kernel” here does not refer to a density
kernel as in Algorithm 1). The basis of the approach is to note that, for a summary statistic vector
of length r and N simulated samples (see Figure 2), regularized regression can be performed as a
function of (sT s + λIr )−1 or (ssT + λIN )−1. The former involves inverting a r × r matrix, whereas
the latter involves inverting a N ×N matrix. The entries in the Gram matrix G = ssT are inner
products, 〈si, sk〉 = ∑r

j=1 si, j sk, j , for two vectors of summary statistics, si and sk. The kernel trick
relies on the fact that a suitably smooth function (a kernel) applied to each term of the Gram
matrix corresponds to the inner product of a highly nonlinear transformation φ(·) of the original
coordinates:

κ (〈si, sk〉) = 〈φ(si ),φ(sk )〉.

The form of φ(·) is unknown in general, but not required. Nakagome et al. (2013) use the radial
basis kernel function

κ (〈si, sk〉) = exp(−‖si − sk‖2/σ 2),

with a chosen bandwidth σ . (Although this form of κ (·) does not appear to involve an inner prod-
uct, it can be shown to be a function of an infinite sum of terms 〈si, sk〉n/n!.) Ridge regression is
then used to compute an estimate of E(θ |sobs ). An advantage of the method is that it can work ef-
ficiently for very large numbers of summary statistics. A potential constraint is that it is restricted
to a relatively small reference table because of the difficulties of inverting an N ×N matrix when
the number of simulated samples,N , is large. Also, there is no standard method for choosing the
kernel function, although the radial basis function above is popular. The kernel parameters (i.e., σ
above) and regularization parameter are typically chosen using cross-validation. However, for the
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examples studied, Nakagome et al. (2013) show improved performance over standard local linear
regression and also the semiautomatic ABC method (Fearnhead & Prangle 2012), described in
Section 3.2 below.

3. SUMMARY STATISTICS, DIMENSION REDUCTION,
AND TOLERANCE INTERVAL

The performance of ABC depends on the choice of summary statistics (Prangle 2018). The mo-
tivation for mapping raw data to summary statistics is primarily to make comparison between
the observations and the simulated data more efficient. Typically, raw data sets contain many ex-
changeable elements: The individual yobs,i are exchangeable, and often so are the elements of which
each is composed. Simple distance metrics on the raw data, such as the Euclidean metric, take no
account of the exchangeability and are inefficient (Sousa et al. 2009). The challenge is to develop
methods that overcome this problem (Chan et al. 2018). An advantage of most summary statistics
is that the functions to compute them are typically invariant to permutations of exchangeable el-
ements. But then ABC can appear subjective and arbitrary, inviting concern that the results of a
study are dependent on the choice of summary statistics. Two main approaches have been taken to
address this problem: One is to choose subsets of summary statistics that satisfy some optimality
criterion ( Joyce & Marjoram 2008, Nunes & Balding 2010); an alternative approach has been to
find an optimal projection of a set of summary statistics onto a lower dimensional map (Wegmann
et al. 2009, Fearnhead & Prangle 2012). Implicit in both approaches is the assumption that, pro-
vided a large enough initial set of summaries is chosen, the resulting subset or projection will not
be sensitive to the initial composition of statistics.

3.1. Optimal Subsets of Summary Statistics

The study by Joyce &Marjoram (2008) introduced the concept of approximate sufficiency (AS) in
ABC. The general idea is that, having initially identified a set of trial summary statistics, S, some
approximately sufficient subset s ⊆ S can be found. The log likelihood for a vector of summary
statistics can be written as

log f (s1, . . . , sk|θ ) = log f (s1|θ ) + log f (s2|s1, θ ) + · · · + log f (sk|s1, . . . , sk−1, θ ).

If s1, . . . , sk−1 are sufficient, then f (sk|s1, . . . , sk−1, θ ) is independent of θ . The basis of their method
is to develop a score

δk = supθ

{
log f (sk|s1, . . . , sk−1, θ )

}− inf θ

{
log f (sk|s1, . . . , sk−1, θ )

}
,

and then test whether δk is less than some threshold. The summary statistics are deemed approxi-
mately sufficient if the difference in log-likelihood for any θ is less than or equal to the threshold.

Since the ratio of posterior densities is proportional to the ratio of likelihood functions,

eδk = supθRk(θ )
inf θRk(θ )

,

where

Rk(θ ) = p(θ |s1, s2, . . . , sk )
p(θ |s1, s2, . . . , sk−1)

.
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In the context of ABC, Joyce & Marjoram consider univariate θ and use Algorithm 1 to draw
samples of θ from pε (θ |sobs ). They assume that the length of the summary statistic vector is initially
kmax, and the method first creates a reference table of draws of θ and s1, . . . , skmax from the joint
distribution p(s, θ ) (steps 1 and 2 of Algorithm 1). The values of θ are binned, and the numbers
of sampled values in each bin are proportional to the posterior density. With the reference table,
it is straightforward to compute the estimate R̂k(θ ) for any k and sequence of summary statistics,
and estimate

δ̂k = max j,l [log R̂k(θ j ) − log R̂k(θl )].

It is necessary to choose a sequence of summary statistics to test and then stop adding statistics
once δ̂k is less than some threshold. A drawback of the approach, as with stepwise methods in
regression, is that the order of testing summary statistics will matter. They suggest selecting sk
randomly from among the remaining statistics, and then, if it is included, systematically testing to
drop any of the other statistics in the current set. They apply the method to a number of test data
sets to illustrate the performance of the approach. In an example with a known sufficient statistic,
this was always chosen across a number of test data sets, but in other examples, different subsets
were chosen for different test data sets. This latter observation is not surprising since the Pitman-
Koopman-Darmois theorem shows that only for models in the exponential family is the number
of summary statistics bounded (equal to the number of parameters in the model) irrespective of
sample size. Thus, for most intractable models that ABC is applied to, there is unlikely to be a
specific set of summary statistics sufficient for θ that is the same for all data.

An alternative method selecting a subset of summary statistics s ⊆ S has been proposed by
Nunes & Balding (2010) based on finding a subset that minimizes the entropy of the posterior
distribution:

H = E[− log p(θ |sobs )].

They consider the situation where they have samples of θi ∼ pε (θ |sobs ), where sobs ⊆ S is evaluated
for the observations. The method uses the nearest-neighbor method of Singh et al. (2003) to
estimate entropy for the kth nearest neighbor:

Hk = p
M

M∑
i=1

log ‖θi − θi,k‖ + K , 1.

where Hk is an estimate of H , k is the kth neighbor (they use k = 4), p is the length of the pa-
rameter vector,M is the number of accepted samples from the rejection algorithm, ‖θi − θi,k‖ is
the Euclidean distance of the kth nearest neighbor from the focal θi sampled from the ABC re-
jection algorithm, and K is a constant that depends on M, k, and p. One of the algorithms they
present is similar to that of Joyce & Marjoram (2008) but uses the minimum of Equation 1 as
the criterion for choosing summary statistics, where the θi are computed for different subsets of
summary statistics. The optimal set, SME , is obtained by searching through all subsets to find that
which minimizes Equation 1. They demonstrate modestly improved performance over the Joyce
& Marjoram method for similar example data sets and models. The minimum entropy approach
favors a narrow posterior distribution but does not include a measure of the accuracy of the point
estimate. Addressing this, they also present a two-stage procedure in which they first find the op-
timal set of summary statistics for the target data set, SME,obs, and then identify ns simulated data
sets that have the smallest Euclidean distance to the target, using the first-stage optimal set of
summary statistics SME,obs. For the jth data set, with a known θ j , rejection ABC is applied, which
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generates samples θi from the posterior pε (θ |sobs ). The square root of the mean sum of squared
errors, R, can be computed as

R( j) =
(
1
n

n∑
i=1

‖θi − θ j‖2
)1/2

,

which is then averaged over the ns simulated data sets

MR = 1
ns

ns∑
j=1

R( j). 2.

Using this as the optimality criterion, they find a new subset S2 by searching all subsets of the orig-
inal set of summary statistics. This latter approach, while computationally muchmore demanding,
shows substantially improved performance over the minimum-entropy method (and the method
of Joyce & Marjoram). Thus, from a heuristic perspective, including criteria that minimize en-
tropy and minimize integrated squared error seems desirable. However, the AS method of Joyce
& Marjoram (2008) is theoretically well motivated, and the overall performance of AS may be
enhanced by improving the implementation details.

3.2. Projection

As observed by Joyce & Marjoram (2008), and in accord with the Pitman-Koopman-Darmois
theorem,Nunes & Balding (2010) find that the best choice of summary statistics varies across data
sets. In view of the difficulties in implementing methods based on AS, an alternative approach is
to project the summary statistics onto a lower-dimensional space in some optimal way.

3.2.1. Semiautomatic ABC. Assume that the ABC method yields a point estimate, θ̂ , for pa-
rameter θ . Fearnhead & Prangle (2012) prove that the summary statistic that minimizes quadratic
loss, defined by

L = (θ − θ̂ )TA(θ − θ̂ ),

for suitable matrix A, is when sobs = E(θ |yobs ). That is, the optimal summary statistic, in terms of
minimizing quadratic loss, for inferring a parameter θ , is the true posterior mean, given the data.
Although this may seem somewhat circular because we do not have access to the true posterior
mean, it implies that a suitable summary statistic is an estimate of the posterior mean Ê(θ |y),
or Ê(θ |s(y)), as in regression-adjusted ABC (Section 2). Thus, the method involves projection of
the high-dimensional data onto a single dimension for each component of the parameter vector.
Fearnhead & Prangle (2012) propose that the summary statistic function s(·) is potentially an
identity function of y, or a nonlinear transformation.However, as noted earlier, exchangeability of
the components of y may make it preferable to choose summary statistics. In the examples given
by Fearnhead & Prangle (2012), where the data are directly used, these are not exchangeable, but
are order statistics or measurements from time series. An outline of the proposed method is as
follows:

1. Choose a vector-valued function s(·).
2. Compute sobs for the observed data.
3. Optionally, use a pilot simulation to determine a bounded region within which to sample θ

proportional to the prior π (θ ); alternatively, sample from the prior directly.
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4. Simulate N parameter vectors and corresponding summary statistics, giving a reference
table as in Figure 2. Typically the summary statistics are centered and scaled to have unit
variance.

5. For each component of the parameter vector, θ·, j , perform linear regression to obtain an
estimate of E(θ·, j|y) as [β ( j)]T (1, s).

6. Perform ABC (e.g., as in Algorithm 1) using the projection [β ( j)]T (1, s) for components
j = 1, . . . , p of the parameter vector.

Thus, the approach is to learn the optimal summary statistics by obtaining the linear predictor
of E(θ·, j|y) using simulations from the joint distribution p(θ , s). The linear predictors for each
component of the parameter vector form the columns of a matrix C, allowing the mapping of a
simulated summary statistic vector si with r components to sTi C, with p components and obser-
vations sTobsC. It should be noted that since the intercept term is the same for si and sobs, it can be
discarded, so that C has dimensions r × p. Fearnhead & Prangle (2012) show that the approach
performs very well across a wide range of examples. The method is related to the widely used
partial least squares (PLS) approach of Wegmann et al. (2009). Both methods give a projection of
a high-dimensional set of summary statistics to a lower dimension using simulations from p(θ , s).
However, in the case of PLS, the projection is orthogonal, and the elements of the projection ma-
trix are not straightforwardly related to the least-squares linear predictors.Wegmann et al. (2009)
suggest using cross-validation to choose the number of projected summary statistics, whereas in
the case of semiautomatic ABC, one summary statistic is used for each parameter that is inferred.
A recent example of the use of the PLSmethod in population genetics for improving the efficiency
of ABC, explicitly in the context of AS, is described by Kousathanas et al. (2016).

The implication in Fearnhead & Prangle (2012) that it is optimal to use one statistic for each
parameter is further strengthened by the study of Li & Fearnhead (2018b), which examines the
asymptotic behavior of ABC algorithms as the sample size n → ∞. They show that if r > p then
it always possible to find a projection of the original summary statistics down to p dimensions,
which has asymptotic variance lower than or equal to the original r summary statistics. Although
the theorem in Li & Fearnhead (2018b) does not imply a particular form for the projection, the
results in Fearnhead & Prangle (2012) suggest a useful approach for finding it.

3.2.2. Nonlinear projection. Influenced by the results of Fearnhead & Prangle (2012), several
studies have used neural networks and deep learning to model the relationship between parameter
values and summary statistics. The method of Jiang et al. (2017) aims to find an optimal projec-
tion, using the posterior mean as a summary statistic following Fearnhead & Prangle (2012), by
connecting the full set of raw data to the input layer of a deep neural network (DNN) with three
hidden layers. They note the tendency of DNNs to overfit and suggest that this is best addressed
by simulating training sets that are many times larger than the number of parameters. They ex-
amine regularization methods for the neural network but do not obtain significant improvement.
In the example data sets they investigate, they show that a DNN leads to improvement over linear
fits to the raw data. As in Fearnhead & Prangle (2012), they chose a test data set where exchange-
ability is not an issue. Creel (2017) also uses a deep learning network to find the posterior mean,
which is then used as a summary statistic. In this case, the method is based on a set of predefined
summary statistics, rather than using the full set of data.

The study of Chan et al. (2018) develops an all-encompassing approach to likelihood-free in-
ference suitable for exchangeable data, where a neural network framework takes the raw data as
input and returns a representation of the posterior as a function, which, in their example, is a
softmax classifier whose output is interpreted as a posterior probability. Their test case example is
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identifying recombination hot spots fromDNA sequence data, where the network is trained to re-
turn the posterior probability that a section of sequence is a recombination hot spot. To tackle the
problem of exchangeability among the elements of data, for example, among the rows of a multi-
variate data matrix, the network is designed so that the initial layers provide a mapping of the data,
ignoring the exchangeability, to which a symmetric function is then applied. Thus, the output of
the initial layers of the network can be regarded as a set of functions �i(y1), . . . ,�i(yn ) of the in-
put. A symmetric function g can then be applied. In their example they suggest the element-wise
maximum:

g := max(�i(y1), . . . ,�i(yM )).

This then yields a set of summary statistics that are acted on by further layers of the neural net-
work, and the weights for all the edges in the network are updated using a stochastic optimization
technique. In their example application, the method appears to perform very strongly in compar-
ison with a leading composite-likelihood approach.

Marin et al. (2016) have introduced a method based on the random forests algorithm to
combine summary statistics (the random forests method can also be applied for model choice;
Section 5). They develop an approach to obtain an estimate of the posterior expectation E(θ |yobs )
from multiple summary statistics and then, rather than using regression-adjustment methods, es-
timate quantiles of the posterior directly. The method is illustrated with a complex population
genetic example of human demographic history using a large-scale single nucleotide polymor-
phism data set.

Following Fearnhead&Prangle (2012),Mitrovic et al. (2016) have used kernel ABC (Section 2)
to perform nonlinear regression in a two-step procedure. They first generate candidate summary
statistics from a kernel ridge-regression of parameter values against data, and then they use the
parameter estimates as summary statistics. They are able to show in example data sets that they
achieve improved performance over semiautomatic ABC. Mitrovic et al. (2016) point out that
using the two-step approach of Fearnhead & Prangle (2012) overcomes a potential limitation of
the kernel method, which is restricted by the size of the Gram matrix that needs to be inverted,
because the second step (ABC with the projected summary statistics) can be performed with an
arbitrarily large number of samples.

3.3. A Comparison of Methods

Blum et al. (2013) provide a detailed empirical comparison of different methods for choosing
summary statistics, based on data simulated under three different models, motivated by practical
applications. Their study uses MR, the square root of the mean sum of squared errors averaged
over test data sets, as used by Nunes & Balding (2010) (Equation 2), to compare methods rela-
tive to that of plain rejection ABC. They show that regression-adjustment often gives improved
performance compared with plain rejection, and then they include this in the procedures they
examine. They find that, for their examples, all methods they compared had generally improved
performance over standard rejection. The results are variable across the models they examine and
illustrate that it is difficult, on the basis of a relatively small set of empirical example-based analy-
ses, to strongly favor one method over another. The computationally expensive two-stage method
of Nunes & Balding (2010) and the projection method of Fearnhead & Prangle (2012) performed
well. The semiautomatic ABC method outperformed the PLS projection method for many com-
ponents of the parameter vector. The method of Joyce & Marjoram (2008) performed generally
quite poorly. A reasonable conclusion based on these results is that the method of Fearnhead &
Prangle (2012) is a safe and quickly implemented option, often yielding substantial improvement
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gains over plain rejection, although there is clearly scope for further improvements in methods
for choosing summary statistics.

3.4. Rejection Kernel and Bandwidth

Key components in the computation of the ABC posterior

pε (θ , s|sobs ) ∝ π (θ ) fn(s|θ )Kε (‖s − sobs‖)

are the kernel function Kε (‖s − sobs‖) and the choice of ε. From the perspective of computational
ease, also supported by theoretical results on asymptotic efficiency (Li & Fearnhead 2018b), an
appropriate choice of ε can be made indirectly via the proportion of simulated points that are
accepted (Beaumont et al. 2002). The two most commonly used kernel functions are the uniform
kernel and the Epanechnikov kernel, and the most commonly used distance metric is Euclidean.
There has, however, been much research on different methods of scaling the summary statistics.
For a vector si, corresponding to a row of s, the squared Euclidean distance from si,obs can be written
as

(si − si,obs )TA(si − si,obs ),

with A = diag(1, . . . , 1), the identity matrix. In this case, standard rejection defines an ellipse:

I{(si − si,obs )TA(si − si,obs ) < ε} 3.

(Fearnhead & Prangle 2012). Written in this way, it can be seen that there is some level of dual-
ity between the projection method that is used and the choice of scaling for the distance metric.
One of the simplest and widely used scaling approaches is to divide the summary statistics by
their estimated standard deviations in the sampled prior predictive distribution, giving the projec-
tion A = diag(1/σ̂ 2

1 , . . . , 1/σ̂
2
r ) resulting in a rejection ellipsoid. A robust alternative is to use the

median absolute deviation (Csilléry et al. 2012).
As noted by Prangle (2017) there are many choices available for A, giving generalized rejection

ellipsoids, such as, for example, the estimated precision matrix from the prior predictive distribu-
tion, giving a Mahalanobis distance. Similarly, the projection method of Fearnhead & Prangle
(2012), yielding a matrix of coefficients A, leads to an ellipsoid

I{(si − si,obs )TAAT (si − si,obs ) < ε},

which has the same form as Equation 3 above. Thus, it can be seen the choice of projection and
the choice of scaling for the distance metric are closely bound together, with different choices
of A leading to different shapes of the acceptance envelope around Sobs. Prangle (2017) shows
that there are significant improvements to ABC inference when the elements, wi, of the diagonal
scaling matrix A = diag(1/w2

1, . . . , 1/w
2
r ) are learned in a sequential algorithm (Section 4.2). It

would be of interest to see how the elements of the general matrix A can be learned through an
iterative ABC algorithm, although as Prangle (2017) points out, controlling the stability of such
an algorithm and proving convergence may be challenging.

4. COMPUTATIONAL TECHNIQUES

A variety of computational methods have been proposed to improve the efficiency of ABC in-
ference (Sisson & Fan 2018). The rejection method outlined in Algorithm 1 assumes that the
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parameter values are sampled from the prior. However, if the data are informative and so the
posterior distribution has a more concentrated density than the prior, this basic algorithm is not
efficient.One general approach (Fearnhead&Prangle 2012) is to use some chosen proposal distri-
bution for importance sampling and reweight accordingly. Another solution is to use regression-
adjustment methods (Section 2). However, most applications of ABC use one of two widely used
methodologies that were introduced within 10 years of the original ABC algorithm of Pritchard
et al. (1999), often in conjunction with regression-adjustment.

4.1. Markov Chain Monte Carlo

The firstMCMC version of ABCwas introduced byMarjoram et al. (2003).The ABC-MCMC al-
gorithm and its variants have been widely used.The algorithm follows that of a typicalMetropolis-
Hastings algorithm, and the ABC counterpart of the likelihood ratio is the accept/reject step
I{‖s − sobs‖ ≤ ε}.

Algorithm 2.

1. Choose a value for ε, start with t = 1, and choose an initial value for θ (1) (e.g., θ (1) ∼
π (θ )).

2. Propose a new value of θ from a Metropolis-Hastings kernel θ ′ ∼ q(·|θ (t ) ).
3. Simulate s ∼ fn(s|θ ′ ).
4. With probability

min
(
1,

π (θ ′ )q(θ (t )|θ ′ )
π (θ (t ) )q(θ ′|θ (t ) )

I{‖s − sobs‖ ≤ ε}
)
, 4.

θ (t+1) = θ ′; θ (t+1) = θ t otherwise.
5. Increment t = t + 1.
6. Repeat from step 2 until convergence.

From an efficiency perspective, the value of I{‖s − sobs‖ ≤ ε} is typically tested first in Equation 4
although, using the result of Peskun (1973), it is possible to split Equation 4 into two steps and
move to the second step with probability

min
(
1,

π (θ ′ )q(θ (t )|θ ′ )
π (θ (t ) )q(θ ′|θ (t ) )

)
,

before moving to step 5 of the algorithm with probability

I{‖s − sobs‖ ≤ ε}.

Although this splitting of the Metropolis-Hastings step is less efficient generally (Peskun 1973),
this variant may be more efficient for ABC if the generative model is expensive to simulate. An
additional modification is to view

I{‖s − sobs‖ ≤ ε}

as a Monte Carlo estimate based on a sample size of N = 1 from the likelihood∫
f(ε,sobs )(s|θ , )ds.

Thus, with larger sample sizes, the algorithm becomes an ABC version of the pseudomarginal
algorithm (Beaumont 2003, Andrieu & Roberts 2009).With the pseudomarginal algorithm, there
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is typically an optimal value ofN  1. By contrast, Bornn et al. (2017) demonstrated that for ABC,
it is generally the case that a sample of size 1 in the MCMC setting is most efficient.

An attractive feature of ABC-MCMC is that it can straightforwardly be used with a flat im-
proper prior. Because the acceptance rate is higher when in regions of parameter space with high
likelihood, the ABC-MCMC algorithm has a lower acceptance rate when in the tails of the pos-
terior distribution, which can lead to poor mixing (Baragatti et al. 2013). To accommodate this,
a tempering approach can be used (Ratmann et al. 2007) in which, during the burn-in phase, a
larger value of ε is chosen and progressively reduced to εmin. Statistics from the posterior are then
computed from parameter values simulated with εmin. Another method is to treat ε as a parame-
ter of the model (Bortot et al. 2007, Ratmann et al. 2009) and then compute posterior quantities
conditional on I{‖s − sobs‖ ≤ εmin}.

4.2. Sequential Monte Carlo

As withMCMC, the motivation for the application of sequential approaches to ABC is to improve
efficiency of the proposal distribution and allow for a smaller bandwidth in the acceptance kernel.
There are two forms of the ABC sequential Monte Carlo (ABC-SMC) algorithm that are widely
used.One group of methods (Beaumont et al. 2009, Sisson et al. 2009,Toni et al. 2009), introduced
by Sisson et al. (2007), can be regarded as an ABC version of population Monte Carlo (PMC)
(Cappé et al. 2004) and is based on sequential importance sampling. An alternative approach,
analogous to standard particle-filtering algorithms, was introduced by Del Moral et al. (2012).

The rationale of the PMC approach is to successively fit, at the tth iteration, an approximating
kernel density Kt (·) to the samples from the posterior generated at each step. This approximating
kernel is then used as the proposal distribution for the next step.An importance weight corrects for
sampling from the proposal distribution rather than the prior (step 1 of Algorithm 1). The initial
proposal density q1(θ ) is often taken to be the prior π (θ ). However, some other initial density for
q1(θ ) can be specified (noting also that the weight for the ith particle, wi, can be multiplied by
some constant). Subsequent (t > 1) proposal distributions have density

qt (θ ) =
(

N∑
i=1

wt−1
i Kt (θ |θ t−1

i )

)
/

N∑
i=1

wt−1
i .

The ABC-PMC algorithm is then:

Algorithm 3a.

1. Start with t = 1.
2. Repeat steps 1–4 of Algorithm 1, sampling from qt (θ ) rather than π (θ ), until M

particles are obtained.
3. For i = 1, . . . ,M set importance weight wt

i = π (θ ti )/qt (θ
t
i ).

4. Set t = t + 1; repeat until termination criterion is reached.

The proposal kernel is often taken to be

Kt (θ |θ ′ ) = N (θ ′, 2t−1),

where t−1 is the empirical covariance matrix computed from the weighted particles at iteration
t − 1. The stopping criterion can be based on choosing a succession of εt , either in advance or
adaptively while running the algorithm (Drovandi & Pettitt 2011).

The ABC-SMC algorithm of Del Moral et al. (2012) differs from ABC-PMC in that it uses a
Metropolis-Hastings proposal kernel for regenerating particles. Additionally, the algorithm uses
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resampling from the particle weights, as in a bootstrap particle filter. The particle weights are
given by the kernel Kε (‖s − sobs‖), which is taken to be I{‖s − sobs‖ ≤ ε}. An optional feature of the
algorithm is that for each particle, θi, D data sets can be simulated, and therefore weights can be
computed as

wt
i = 1

D

⎧⎨
⎩

D∑
j

I{‖s j − sobs‖ ≤ ε}
⎫⎬
⎭ .

The algorithm then shares features with the MCMC variants discussed in Section 4.1. However,
for ease of explication, it is assumed that D = 1 in the example algorithm below. The aim is to
choose values of εt adaptively such that a proportion α of the particles that are accepted within
the tolerance εt−1 are also accepted within εt , i.e.,

α

N∑
j=1

I{‖s − sobs‖ ≤ εt−1} =
N∑
j=1

I{‖s − sobs‖ ≤ εt}.

Initially ε0 = ∞. The ABC-SMC algorithm of Del Moral et al. (2012) can be given in simplified
form as:

Algorithm 3b.

1. Initialize, with t = 0, i = 1, . . . ,N sample {θ (t )
i , s(t )i } with weight wi = 1/N .

2. Set t = t + 1.
3. Compute εt using α, as described.
4. For all i ∈ (1, . . . ,N ) such that ‖s − sobs‖ ≤ εt , set wi = 0.
5. Renormalize weights

∑
i wi = 1 and compute the effective sample size ESS =(∑N

i=1 w2
i

)−1
.

6. If ESS < N/2, resample N particles according to weight wi.
7. Use a Metropolis-Hastings kernel to perturb all particles with wi > 0:

θ ′
i ∼ qt (·|θ t−1

i ), si′ ∼ fn(s|θi ).

8. Apply step 4 of Algorithm 2.
9. Repeat from step 2 until the stopping rule εt < εT .

Control of the approach to the target value of the tolerance εT is via the parameter α. Exploration
of suitable values for εT and α is important for the efficient use of the algorithm.

The package EasyABC ( Jabot et al. 2013) implements both approaches to sequential ABC given
in Algorithms 3a and 3b. A comparison of the approaches is given by Daly et al. (2017), who
compare a number of different rejection kernels, motivated by a concern to accommodate model
error (Wilkinson 2013). They find that the PMC version of the algorithm is more sensitive to the
form of the rejection kernel that they use.

4.3. ABC and Big Data

Recently there has been interest in methods for combiningMonte Carlo inferences frommultiple
data sets (Scott et al. 2016). There are many contexts in which the need to combine data sets may
arise. For example, in population genomics, it may be infeasible to make inferences for whole
genomes and more efficient to make inferences on sections of genome; after these components
are computed by a cluster, the results can be combined. Thus, we assume that the data can be
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broken into L components (sites), and the likelihood factorizes:

p(y|θ ) =
L∏
j=1

p(y j|θ ),

so that

p(θ |y) ∝ π (θ )
L∏
j=1

p(y j|θ )

or

p(θ |y) ∝
L∏
j=1

p(y j|θ )π (θ )1/L

(Scott et al. 2016).Monte Carlo methods, if applied in this way, typically yield random draws from
the subposterior (Scott 2017), i.e., the ith particle sampled from the jth site is sampled

θi, j ∼ p(θ |y j )π (φ)1/L.

The challenge is to design methods that will combine the information from these individual parti-
cles. The most common assumption is that in a big data setting, the Bernstein–vonMises theorem
holds, and the target distribution can be approximated by a multivariate Gaussian. The consensus
Monte Carlo method (Scott et al. 2016) proposes to fit multivariate Gaussians to the sampled θi, j

from each subposterior and multiply the densities together.
The consensus Monte Carlo approach is strongly related to the EP-ABC method (Barthelmé

& Chopin 2014, Barthelmé et al. 2018), which uses expectation propagation (EP) (Minka 2001).
The aim of EP is to find a solution in terms of matching factors:

p̃(θ |y) =
L∏
j=0

g j (θ ).

The parameters of the g j (θ ) are initialized and then fitted in a series of sweeps through the
data. For the jth site,

1. The cavity distribution is formed:

g− j (θ ) =
(

L∏
k=0

gk(θ )

)
/g j (θ ).

2. The tilted distribution is

∝ g− j (θ )p(y j|θ ).

3. A new g′
j (θ ) is found that minimizes the Kullback-Leibler divergence between the tilted

distribution and g− j (θ )g′
j (θ ).

If the g j (θ ) are from the exponential family,minimization of Kullback-Leibler divergence is equiv-
alent to choosing moments of g− j (θ )g′

j (θ ) to be the same as those of the tilted distribution. In
the standard EP algorithm, numerical methods such as quadrature are used to achieve this. The
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algorithm is repeatedly applied to all n sites until convergence. An example parallel EP-ABC al-
gorithm, from Barthelmé et al. (2018), is:

Algorithm 4.

1. Initialize natural parameters λ0, . . . , λL.
2. λ = ∑L

j=0 λ j , τ = t (λ).
3. For i = 1, . . . ,M, sample particles θi ∼ N (θ |τ ), si ∼ f (s|θi ).
4. For sites j = 1, . . . ,L:

(a) Weight particles i = 1, . . . ,M by N (θ j,i|τ− j )/N (θ j,i|τ )Kε (‖s j − s j,obs‖).
(b) Use weighted particles to compute empirical parameters τ j and transform to nat-

ural parameters λ j = t−1(τ j ).
(c) Resimulate {θi, si} as in step 3 when the effective number of particles becomes too

small.
5. Stop when the change in λ is small enough.

This algorithm can be unpacked as follows. Distributions in the exponential family can be param-
eterized by their mean parameter, which, for a Gaussian, can be taken as

τ = {μ,} ,

with mean vector μ and covariance matrix , or natural parameter

λ = {
μ−1,−1} ,

with functions t (·), t−1(·) mapping between them. For distributions of the same member of the ex-
ponential family, the natural parameter of the product of density functions is the sum of the natural
parameters of each density. It is convenient to use the shorthand λ− j = ∑L

i �= j λi, τ− j = t (λ− j ). In
the algorithm, λ0 is the natural parameter vector for the prior and remains fixed. Arbitrary initial
points are chosen for remaining λ j . Step 3 of the algorithm simulates particles from the current
approximation of the posterior predictive distribution psobs (θ , s). Step 4a applies an importance
weight N (θ j,i|λ− j )/N (θ j,i|λ) to correct for the fact that θ j,i is not simulated from the cavity dis-
tribution. In the case of the EP-ABC algorithm and other Monte Carlo EP algorithms (Gelman
et al. 2014), the moments estimated in step 4b have an appreciable variance in comparison with
standard EP, which is based on an analytical solution or quadrature. The EP algorithm is a fixed-
point recursion and potentially unstable in the face of Monte Carlo noise, and Hasenclever et al.
(2017) show that a modification leads to a stochastic gradient descent algorithm that is generally
more efficient in the face of noisy moment estimates. An advantage of using the EP approach
with ABC is that it shares characteristics with ABC-SMC algorithms, in that it allows refinement
of the proposal distribution for site j and converges on the EP approximation ∝ p(θ |s)/p(θ |s j ),
potentially allowing for refinement of the bandwidth ε. The parallel version of the algorithm also
has the advantage that the reference table (step 3 of Algorithm 4) need only be simulated infre-
quently.Using this approach, Barthelmé et al. (2018) were able to achieve up to a 100-fold increase
in computation speed for some problems in comparison with a standard ABC algorithm.

5. MODEL CHOICE

From its earliest introduction, ABC has been widely used to compare models in a Bayesian frame-
work (Pritchard et al. 1999). In this case, we may consider a series of models, labeled by index
1, . . . ,K , with a sampled model indicator mi ∈ {m1, . . . ,mK }.
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Algorithm 5.

1. Sample mi ∼ π (m).
2. Sample θi ∼ π (θ |mi ).
3. Simulate si from the generative model having implicit density fn(s|θi,mi ).
4. Reject with probability proportional to Kε (‖si − sobs‖).
5. Repeat steps 1–3 untilM acceptances are obtained.

As with parameter estimation, variants of the MCMC and SMC versions of ABC can also be
used for model choice. It is also possible to use a regression-based variant of ABC to estimate
the posterior probability of each model using multinomial logistic regression (Beaumont 2008) or
logistic regression with a neural network (Blum & François 2010).

The approximation inherent in ABC depends on the choice of summary statistics, and this
potentially affects the accuracy of model choice (Didelot et al. 2011, Robert et al. 2011). These
authors note that, since the summary statistic vector is a deterministic function of the data,

p(xobs|m) = p(xobs, sobs|m) = p(sobs|m)p(xobs|sobs,m).

This implies that the ABC method will only give accurate estimates of the marginal likelihood
ratio

p(sobs|m1)/p(sobs|m2)

if

p(xobs|sobs,m1)/p(xobs|sobs,m2) = 1,

which will only be the case if sobs either is sufficient for both models (Grelaud et al. 2009) or
gives the same departure from sufficiency. This observation could also apply to any ratio of pos-
terior densities p(sobs|θ1)/p(sobs|θ2) and is a necessary consequence of the approximation inherent
in ABC. Didelot et al. (2011) show that p(xobs|sobs,m1)/p(xobs|sobs,m2) = 1 holds in the case where
the models m1 and m2 are nested submodels of model m, for which sobs is sufficient. However,
Robert et al. (2011) argue this property will not hold more generally and give examples where
ABC fails to converge to the true model as the sample size increases. Marin et al. (2014) show
that a necessary condition for an ABC model choice algorithm to converges on the true model
is that, as the sample size increases, the mean of the posterior predictive distribution of the sum-
mary statistic vector converge to different values under the different models. This has motivated
approaches to identify summary statistics that are able to discriminate between models. Marin
et al. (2014) propose to simulate samples from the posterior predictive distribution and show
that the mean of the summary statistic vector is different under the two models. The method of
Prangle et al. (2014b) follows directly from Fearnhead & Prangle (2012). They show that, given
a summary statistic vector s, an optimal summary statistic T (s) is the vector of posterior proba-
bilities T (s) = {T1(s), . . . ,TK−1(s)} for modelsm1, . . . ,mk−1, and use logistic regression to estimate
T (s) from pilot simulations. A related approach, suggested by Estoup et al. (2012), is to use linear
discriminant analysis to project the summary statistic matrix into K − 1 orthogonal vectors that
maximize the separability of the K models. A machine learning method using the random forests
algorithm has been proposed by Pudlo et al. (2015). This gives a classifier based on a weighted
set of decision trees derived from the summary statistics. Although the classification probability is
not Bayesian, the method appears to perform favorably in many cases. It would appear that patho-
logical model choice behavior of ABC typically arises when a small number of summary statistics
are used relative to the number of parameters in the competing models.With a range of summary
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statistics, and application of methods to reduce the dimensionality, it may be possible to achieve a
satisfactory level of approximation.

6. MODEL-CHECKING

As suggested by Gelman et al. (2013), model-checking should form a natural part of the Bayesian
approach to hypothesis testing and falsification.Model-checking within the ABC framework arises
naturally as a consequence of the ready availability of samples from the prior predictive distribu-
tion in the standard formulation of ABC (Ratmann et al. 2009), which involves drawing samples
from the joint distribution of parameters and summary statistics and then finding the marginal
density

p(s) =
∫
p(s|θ )π (θ )dθ.

It is also straightforward to obtain samples from the posterior predictive distribution (Nott et al.
2018):

psobs (s) =
∫
p(s|θ )p(θ |sobs )dθ.

Posterior predictive checks typically involve the computation of the empirical p-value of discrimi-
natory summary statistics under a predictive distribution simulated from repeated draws of θ from
the posterior (Gelman et al. 2013). Again, the ABC framework is helpful here because summaries
are a natural part of the method. Gelman et al. (1996) suggest defining a discrepancy function
D(y, θ ), for example, based on the deviation of y from its expectation under θ . Nott et al. (2018)
note that the advantage of a single discrepancy function is that it reduces the test to a univariate
one. However, such a function may not be straightforwardly available in the case of intractable
likelihood functions, and an empirical p-value based on the Mahalanobis distance of the observed
summary statistic vector from the simulated posterior predictive mean vector may be a suitable
alternative. Typically, these p-values are not well calibrated because of the induced association be-
tween simulated and observed summary statistics if using parameters sampled from the posterior
(Rubin-Delanchy & Lawson 2014, Nott et al. 2018). A standard approach to calibration (Hjort
et al. 2006) is to estimate posterior predictive p-values (p1, . . . , pQ ) with Q pseudoobserved data
sets (PODs) drawn from the prior predictive distribution, and then approximate the calibrated
p-value as the fraction of p j that are less than pobs. This can be expensive because each POD
requires computation of a separate posterior distribution followed by estimation of a posterior-
predictive p-value. However, regression-adjusted ABC lends itself to this approach because the
same simulated reference table {θi, si} ∼ π (θ ) fn(s|θ ) i = 1, . . . ,M can be reused for each POD.
Nott et al. (2018) propose a method based on the regression-adjustment method of Blum &
François (2010). Nott et al. show that with an ecological population-dynamic model, they achieve
similar accuracy in a shorter time than a full-likelihood method.

6.1. Calibration and Coverage

Model-checking also requires an examination of the coverage properties of posterior distribu-
tions, introduced above in the context of calibration of posterior inferences. Calibration, in this
context, is the property that under repeated sampling of true parameter values θi from the prior,
the probability of observing θi to be in some regionA of the posterior is

∫
A p(θ |sobs )dθ (Cook et al.

2006). The need for an acceptance kernel as an integral part of the ABCmethod generally leads to
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posterior distributions that are not perfectly calibrated (Fearnhead & Prangle 2012, Wilkinson
2013, Rodrigues et al. 2018). This can lead to bias, particularly for interval estimates. For exam-
ple, in the case of a univariate normal model with variance σ 2 and kernel bandwidth ε, the ABC
estimate will converge to σ 2 − ε with increasing n. This bias can become important in sequen-
tial algorithms, including filtering algorithms, because the bias can be propagated (Fearnhead &
Prangle 2012, Dean et al. 2014). One alternative for avoiding this is a slight modification of the
ABC algorithm to compute a noisy value for the observed summary statistic s′obs = sobs + x where
x ∼ Kε (x), which is perfectly calibrated (Fearnhead & Prangle 2012). In the limit as ε → 0, the
standard and noisy versions of ABC converge to the same posterior. This corresponds to the view-
point suggested byWilkinson (2013) that ABC can be regarded as exact Monte Carlo in which the
rejection kernel corresponds to the stochastic observation equation of the model—i.e., it is exact
for a different model. There is a variance/bias tradeoff in the application of the noisy versus stan-
dard versions of ABC, and the use of the noisy version is only recommended for longer iterations
of an SMC algorithm (Dean et al. 2014, Yıldırım et al. 2015).

Although standard ABC is not perfectly calibrated, measuring the degree of departure as a
function of bandwidth ε is a useful part of model-checking. One general approach for Monte
Carlo methods (Cook et al. 2006) is to examine posterior coverage of the true parameter value,
drawn from the prior, θ∗ ∼ π (θ ). If themethod is perfectly calibrated, the empirical p-value Pr(θ ≤
θ∗|sobs ) should be uniform across many draws of θ∗ (Wegmann et al. 2009). However, as noted
by Prangle et al. (2014a), θ∗ should also give uniform p-values if the algorithm simply returned
the prior π (θ ), so the test is potentially conservative. In fact, values θ∗ drawn from any region
A ∝ p(θ∗, sobs )I{sobs ∈ A} should be calibrated, and, assuming the test is motivated around a target
real data set, Prangle et al. (2014b) suggest choosing A to be in the vicinity of the real target,
which, in general, will give a different marginal distribution for θ∗ than if the prior was used.
Their algorithm for model choice is similarly motivated. In this case, they suggest that under
perfect coverage, the model label associated with a data set giving posterior probability zA for
a reference model A should follow a Bernoulli distribution with probability zA. Thus, a test for
coverage would be to see if there is a linear relationship with slope 1 and intercept 0 between the
predicted and observed probability of belonging to model A.

Rodrigues et al. (2018) suggest that the method for assessing calibration can also be used in a
postprocessing step to transform samples θi so that they are approximately calibrated. From the
distribution of θi ∼ pε (θ |sobs ) it is possible to estimate the distribution function Fobs(θ ). Further-
more, conditional on each si jointly simulated with the θi in the standard ABC prior predictive
distribution {θi, si} ∼ π (θ ) fn(s|θ ), it is also possible to estimate an ABC posterior with distribution
function Fi(θ ). Rodrigues et al. (2018) propose the transformation θ ′

i = F−1
obs (pi ) where the pi are

calculated from the simulated distribution functions as pi = Fi(θ ){θi}. Rodrigues et al. (2018) offer
various methods for improving the computational efficiency of the approach.

7. RELATED METHODS

A relative of the ABC approach is the method of indirect inference introduced by Gourieroux
et al. (1993) and Heggland & Frigessi (2004), which is typically used in the context of maximum
likelihood estimation. An approximating model is developed for the problem,with tractable likeli-
hood. The parameters of this model can be estimated by standard maximum likelihood. Denoting
by φ̂obs and φ̂sim the maximum likelihood estimation for the observed and simulated data, θ̂ for the
target modeled is estimated by minimizing some measure of discrepancy between φ̂obs and φ̂sim.
Comparisons and discussions of ABC and indirect inference are given by Fearnhead & Prangle
(2012) and Drovandi et al. (2015). For intractable models that are also very expensive to simulate,
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an alternative to ABC is the method of Bayesian emulation (Kennedy & O’Hagan 2001), which
aims to fit a more tractable approximating model using a set of pilot simulations. A comparison
and implementation in an ABC context is given by Jabot et al. (2014) (see also Holden et al. 2018).

The method of synthetic likelihood (Wood 2010), as with the ABC approach of Leuenberger
&Wegmann (2010), aims to model the likelihood fn(s|θ ) as a multivariate normal. This is applied
in an MCMC framework. Instead of the standard rejection kernel I{‖s − sobs‖ ≤ ε} used in step 4
of Algorithm 2, a direct estimate of fn(s|θ ′ ) for proposed θ ′ is made from J simulations s j ∼ fn(s|θ ′ )
and by estimating the sample mean and covariance:

μ̂ = (1/J)
J∑
j=1

s j

σ̂ = (1/( j − 1))
J∑
j=1

(s j − μ̂)(s j − μ̂)T .

An estimate of the likelihood can then be obtained from the multivariate density:

f̂ (s|θ ′ ) := MVNθ ′ (μ̂, ̂).

Example applications of synthetic likelihood in ecology, including comparisons with ABC, are de-
scribed by Fasiolo & Wood (2018). The use of unbiased estimates of the mean and covariance
does not lead to unbiased estimates of the density. However, Price et al. (2017) use the theory of
Ghurye&Olkin (1969) to obtain unbiased density estimates.The resulting algorithm corresponds
to a pseudomarginal MCMC sampler (Andrieu & Roberts 2009) in the case that the likelihood is
multivariate normal. Although implemented in an MCMC algorithm, in principle, the synthetic
likelihood approach can also be used to sample from the posterior, as in a standard Monte Carlo
rejection algorithm (Price et al. 2017). In that case it can be seen that, in contrast with ABC, which
uses a fixed kernel, the synthetic likelihoodmethod uses a rejection kernel that is adaptively a func-
tion of θ . However, the synthetic likelihood method is potentially costly because typically J  1,
and Wilkinson (2014) and Meeds & Welling (2014) suggest different methods for improving ef-
ficiency by recycling estimates during the algorithm using a Gaussian process approximation.

8. CONCLUSIONS

It should be apparent from this review that the original methodology introduced by Pritchard et al.
(1999) has evolved into a family of likelihood-free statistical methods that carry the umbrella term
of ABC.The basic philosophy behind these approaches is that by constructing and simulating from
generative models, one can understand the target system better, and also make better predictions
and test hypotheses.

This review has attempted to give some overview of current developments in ABC, although,
since it is still a rapidly evolving field of research, it is difficult to pick out the major strands. There
have recently been advances in the theoretical justification of the ABC approach, particularly with
regard to the apparent uncertainty arising from the choice of summary statistics. A recent theme
has been the utilization of methods, some of which derive from the machine learning community,
to improve performance and efficiency of ABC, particularly when using large data sets. For large-
scale modeling, the application of ABC with emulation methods seems promising ( Jabot et al.
2014, Holden et al. 2018). An area that seems worthy of further investigation is the behavior of
ABC methods under model misspecification (Frazier et al. 2017, Ratmann et al. 2009). Overall,
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however, it is clear that ABC is a promising method for tackling a variety of scientific problems
and that the theoretical developments and availability of software appear to be keeping pace with
the expansion in its range of applications.
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