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It is seldom, if ever, that human beings are not actively searching for something.

They may be searching for the next correct turning in the road they travel; for

a misplaced object of value; for a name to put to the familiarface that suddenly

confronts them; or for a solution of tomorrow’s problems. All such search is

beset with uncertainties. (Bell, 1979, page 14)

Imagine searching for a paragraph that you read some time ago. You have a

visual memory of that paragraph on a right-hand page of a book, towardthe

top. Though you think you remember the particular book, you are not

absolutely certain. Systematically, you begin leafing through the book’s 10

chapters. The paragraph does not turn up in the first chapter, or in the second,

third ... . As you proceed without success through the chapters, does your

hope of finding the paragraph in the next chapter increase or decrease?
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And what of your hope offinding it in the bookat all? Imagining yourselfin

this familiar situation, you may feel that before you reached the end ofthe

book, despair would set in (“this must be the wrong book”). On the other

hand, the longer you search the more reluctant you may beto quit, not only

because of the efforts invested up to now, but because of a persisting intuition

that the chances of finding the paragraph in the next chapter increase after

each successive disappointment.

Weall too often find ourselves in this type of search process. Without a

realistic assessment of the uncertainties involved, we may either overestimate

our chance of success, thus wasting more time in a futile search, or under-

estimate our chances, giving up too early in frustration and unjustified despair

(MacGregor,Fischhoff, & Blackshaw, 1987). Considering the simplicity of the

search situation in question and everybody’s familiarity with the experience,

it has surprised us to find that studies analyzing probabilistic reasoning in such

situations are scarce. The psychological studies concerning search that we

found deal mostly with seeking strategies, not with the course of the searcher’s

optimism throughout a systematic search characterized by prior uncertainty.

(We make this statement despite realizing that our own search strategies might

have been suboptimal; we might have abandoned the search prematurely.)

Bell (1979) reviews investigations of several types of physical search,

conducted mainly by John Cohen and his collaborators. In their studies,

subjects (children) choose locations in which to search for an object which is

known for sure to be in one of the available locations (see, e.g., Cohen &

Meudell, 1968, Experiment 4}. Thus, subjects’ hope assessments (confidence

ratings) in these studies confound probabilistic judgments with evaluations of

the wisdom oftheir own choices. Another class of studies concerns search

decisions and confidence assessments in complex hierarchical systems. These

studies include investigations of locating general items of knowledge in a

Statistical Abstract, and searching computerized databases (see, for example,

MacGregor, Fischhoff & Blackshaw, 1987, and references therein).

The more typical real-world search process involves situations whereinitial

uncertainty about the existence of a target object in a finite field of locations

is followed by a systematic search of these locations, with a series of negative

results. We have encountered variations of such situations in math-education

journals, in popular scientific literature, in fiction, and in daily living.

Consider the following four examples.

Example 1 The Case of Sherlock Holmes. In Arthur Conan Doyle’s story,

The Six Napoleons(cited by Jones, 1966), the great detective Sherlock Holmes

deduces that one of six plaster busts of Napoleon conceals a priceless pearl.

As the story unfolds, the busts are smashed one by one, until Sherlock finds

and dramatically smashes the last one, recovering the pearl. As usual, the

detective reveals his reasoning, noting that the numerical chances of finding
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the pearl in the next bust increased as their number dwindled, until with the
last bust it reached certainty. Jones (1966) points out that the scientific
viewpoint would doubt Sherlock’s initial certainty, and would start with, say,

only a 50% chance that Sherlock’s theory is right: “As successive busts are

smashed and nopearl is found,the rising chance offinding it in the next is

balanced by the evidence of this growing succession of failures that Sherlock
is wrong, and that there isn’t any pearl at all.” (page 466)

Example 2 Doctor Fischer’s Bomb Party, Graham Greene’s (1980) Dr

Fischer wants to test the limits of greediness. He invites six wealthy guests to

a party and shows thema barrel in a corner of his garden in whichare six

Christmas crackers. Five of the crackers, he explains, contain a cheque for two

million Swiss Francs. The sixth contains enough explosive so primed as to end

the life of whoever pulls the cracker. The guests are challenged to approach

the barrel one by one and try their luck. Dr Fischer assures them that the

cheques are there, but the matter is complicated by the possibility that the

presence of the bomb might be a hoax. While one of the guests prepares

(hesitantly) to make his move, he is preempted by Mrs Montgomery who

pushes ahead of him to the barrel, explaining that “the odds would never be

as favorable again” (Greene, 1980, page 127). Is she right? (See Ayton &

McClelland’s, 1987, delightful paper on that ghastly party.)

Example 3. The Key Problem. A man comes home at night during a

blackout. He has two similar bunchesof keys in his pocket; one for home, one

for work. In the darkness, he picks one bunch from his pocket. The bunch

comprises 7 keys of which only one will fit his door;if, that is, he has picked

the right bunch. Hetries the keys successively (sampling without replacement).

Weare interested in his confidence that he’s got the right bunch, and in his

immediate expectancy of unlocking the door whenkeyafter key fails to do the

job (L.V. Glickman, personal communication, 1984. Adapted from a problem

in Feller, 1957, page 54).

Example 4 Ler Sleeping Flies Lie. Raphael Falk, a Hebrew University

geneticist, told us about his experience of expecting a phone call from the Dean

of his faculty. The Dean had told him the previous day that he might call him

in his lab between 10 and 11 a.m. Raphael spent that morning examining

successive bottles inhabited by Drosophila flies, looking for a certain rare

mutant. His routine was to etherize the flies in each bottle for a few minutes

and then inspect them under the microscope.If the inspection were to be inter-

rupted, the flies would wake up and fly away. He kept working calmly until

about 10:30a.m., by which time the Dean had still not called. Raphael

reported feeling that the chances of the Dean calling were dropping steadily

as time went on. However, he becameincreasingly nervous about etherizing
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the flies in each successive bottle, fearing that the Dean’s impending call would
disrupt the inspection

In orderto investigate the nature of probabilistic reasoningin situations like
those described above, we devised two experimental problems, each of which
involved two hope questions (long- and short-term). Problem 1 (inspired by
Meshalkin, 1963/1973, page 21) concerns a standard search situation (similar
to Example 3). Problem 2 involves an equivalent wait situation (similar to
Example 4). The two situations are structurally analogous, although the first
describes an active search process while the second describes an extended wait
for a target event to occur.

Wewill present the two standard problems along with the Bayesiansolution.
Then wewill discuss a numberof features of the solution by applying it to a
variety of situations including the four examples just cited. After describing
how our subjects reasoned about the standard problems, we will present a
didactic device we developed to make the search problem more conducive to
resolution. Finally, we will explore subjects’ ability to transfer the lesson
learned from the didactic device to the analogous wait problem.

15.1 STANDARD PROBLEMS AND THEIR
SOLUTION

Problem 1 The Standard Search Problem. The Desk: Seek and you Shall
Find?

Long-term probability version (Desk-Long—DL). Imagine that you are
searching for an important letter that you received some time ago. Usually
yourassistant puts your letters in the drawers of your desk after you have read
them. He remembersto dothis in 80% of the cases, and in 20% of the cases
he leaves them somewhereelse.

Thereare eight drawers in your desk. If indeed your assistant has placed the
letter in your desk, you know from past experience that it is equally likely to
be in any of the eight drawers.
You start a thorough and systematic search of your desk.

(A) You search the first drawer, and theletter is not there. How would you
nowevaluate the probability that the letter is in the desk?

(B) Youcontinue to search the next three drawers, until altogether you have
searched four drawers. The letter is nor there.
Howwould you nowevaluate the probability that the letter is in the desk?

(C) You continue to search three more drawers, until altogether you have
searched seven drawers. The letter is nor there.
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How would you mowevaluate the probability that the letter is in the
desk?

Short-term probability version (Desk-Short—DS). Same problem-stem as
DL, but the three questionsare:

(A) You search the first drawer, and theletter is nor there. How would you
now evaluate the probability that the letter is in the next drawer (i.e., in
the second drawer)?

(B) You continue to search the next three drawers, until altogether you have
searched four drawers. The letter is nor there.

Howwould you mowevaluate the probability that the letter is in the next
drawer(i.e., in the fifth drawer)?

(C) You continue to search three more drawers, until altogether you have

searched seven drawers. Theletter is not there.

How would you now evaluate the probability that the letter is in the next

drawer(i.e., in the eighth drawer)?

Problem 2 The Standard Wait Problem. At the Bus Stop.

Long-term probability version (Bus-Long—BL). Imagine that you and your

friend are tourists in a big foreign city. You find yourself late in the evening

looking for transportation back to your hotel. You approach a bus stop that

doesn’t display any timetable. You know, however, that the buses in this city

run punctually each half hour during the evening, only it is now so late that

you are somewhat worried that they might have already stopped running.

You know that 60%of the bus routes in the city operate this late, and 40%

do not, but you don’t know whetherthis particular bus is still running or not.

It is now 11:30 p.m., and you decide to wait until either the bus arrives or

midnight, whichever happens first.

Since you have no idea about the bus’s exact schedule, you figure that the

bus is equally likely to arrive in any of the six five-minute intervals during the

coming half-hour (if indeed it is still running).

(A) The bus does not arrive in the first five minutes. It is now 11:35.

How would you mow evaluate the probability that the bus will arrive

sometime before midnight?

(B) Another ten minutes elapse. The time is now 11:45, and the bus Aas not

arrived,
How would you now evaluate the probability that the bus will arrive

sometime before midnight?

(C) Ten more minutes go by. The time is now 11:55, and the bus has not

arrived,
How would you now evaluate the probability that the bus will arrive

sometime before midnight?
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Short-term probability version (Bus-Short—BS}. Same problem-stem as BL,

but the three questionsare:

(A) The bus does not arrive in the first five minutes. It is now 11:35,

How would you now evaluate the probability that the bus will arrive

during the next five minutes (i.¢e., between 11:35 and 11:40)?

(B) Another ten minutes elapse. The time is now 11:45, and the bus has not

arrived,

How would you now evaluate the probability that the bus will arrive

during the next five minutes (i.e., between 11:45 and 11:50)?

(C) Ten more minutes go by. The time is now 11:55, and the bus has not

arrived.

How would you now evaluate the probability that the bus will arrive

during the next five minutes (i.e., between 11:55 and midnight)?

15.1.1 The Mathematical Long- and Short-run Functions

Wesolve the Standard Search Problem (Problem 1) for the general case of n

equally likely drawers and prior probability Lo that the letter is in the desk.

The solution applies as well to the isomorphic Wait Problem (Problem 2). If

the letter is in the desk, the conditional probability of nor finding it when

searching the first / drawers is (n —/)/m; if the letter is out of the desk, not

finding it in the first / drawers is a certainty. Let’s denote the respective long-

and short-term posterior probabilities we wish to find by L; = P (letter is in

desk | letter was notin first / drawers), S; = P (letter is in next drawer| letter

was not in first ¢ drawers). Clearly, So = Lo/m, and S; = Li/(n — 7). By Bayes’

rule,

_ [(n — Din} Lo
[((n — /{n]Lo+ (1 - Lo)

A few algebraic manipulations yield

i

 

(n — i)Lo ;
L,=-———— = ae .n= iLo i=0, 1,2, sn- lyn (15.1)

Lo .
S) = = = 5.2i=ile ?=0,1,2,...,n-1 (15.2)

Formulas (15.1) and (15.2) describe the hope functions for the long run (Li)
and the short run (S;), given / initial failures.

Table 15.1 presents the specific forms which L; and S; assumein the case

of Problems | and 2, along with the answers to the questions posed in the

Problems. The numbers in Table 15.1, as well as formulas (15.1) and (15.2),

indicate that the long-term hope function, Z;, decreases as i grows, whereas
the short-term hope function, S;, increases with tr, until L,-17 = Sy”-1.
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Table 15.1 Long- and short-term hope functions for the
desk and bus problems (Problems 1 & 2)
 

 

Long Run Short Run

DL DS

Problem | Li Sri a= ~ Si;=

10-7! 10-7

Desk

Lo=0.80 (A)i=l 7/9=77.8% 1/9 = 11.1%
n=8 (B)i=4 4/6=66.7% 1/6 = 16.7%

i=7(C) 1/3 = 33.3% 1/3 = 33.3%

BL BS

Problem 2 Li= bri S;=J
10-7 10-7

Bus

Lo = 0.60 (A) i= 1 5/9 = 55.6% 1/9 = 11.1%

n=6 (B) '=3 3/7 = 42.9% 1/7 = 14.3%

i=§ 1/5 = 20.0% 1/5 = 20.0%
 

15.1.2 Further Explorations

A numberofissues surface as we extend our formal analysis to the examples

cited earlier. Suppose Lo = 1, as in the case of Sherlock’s absolute confidence

that the pearl is hidden in one of the busts (Example 1). If indeed there is no

doubt whatsoever aboutthe existence of the target object in one of the avail-

able locations, no initial sequence of failures, long as it may be, will shatter

that (long-term)certainty. L; will equal 1 for all values of /. The short-term

probability of success in the next unit (location or time slot) will equal the

inverse of the number of remaining units and will thus rise to 1 when only one

unit remains (i.e., for i=— 1). The results for the case of initial certainty

mayalso be obtained from formulas (15.1) and (15.2) by substituting | for Lo.

These formulasare, in fact, valid for the entire range of possible values of Lo,

including the end points 1 and 0.

Figure 15.1 presents the long- and the short-term hope functions for the data

of the standard search problem (Problem 1). Sherlock’s short-term hope

function (Example 1), in which Lo=1 and n=8, is added for comparison

(inspired by Jones, 1966).

Dr Fischer’s bomb party (Example 2) raises a third question, in addition to

our long- and short-run questions: Which (if any) is the safest serial position

beforehand? The a priori probability of blowing the bomb(finding the object)

in ordinal position (location) i, denoted Aj, can be successively computed,
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Figure 15.1 Long- and short-term hope functions for Lo = 0.80 and n= 8 (Lo = 1 in
Sherlock’s case)

given Lo. Suppose Lo=}. Let m be 6, as in Greene’s (1980) story. The
conditional probability L; that a bombexists in the barrel, given that / crackers
have been safely pulled, is obtained by applying (15.1) to the present case:

6—i
Li=-—.

12-1
i=0,1,2,...,6

For player i, we multiply the probability of the previous j~ 1 players not
detonating the bomb by the conditional probability of the presence of a bomb
given that information(i.e., Li-1). We then multiply that result by the prob-
ability of player / pulling the bomb-cracker out of the remaining 6—i+1
crackers. These three factors are listed, in turn, in each row of Table 15.2.
Computing these products, we see that the a priori probabilities of pulling the
bombare the samefor all the ordinalpositions (Ayton & McClelland, 1987).
The function A; is thus constantoverall the values of i. There was no reason
for Mrs Montgomeryto rush to play first.

In hindsight, it should have been obvious that, prior to starting the game,
all the participants are equally likely to detonate the bomb (just as the @ priori
probabilities of finding the letter in any of the drawers of the desk are equal).
Without loss of generality, we can imagine that instead of going in turn, the
six players are assigned a cracker at random,and theyall pull simultaneously.
The modified version is evidently symmetric with respect to all players.
Consequently, their chances of detonating the bombare equal(see Falk, 1993,
Problems 2.3.3, 2.4.12, and 2.4.13).
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Table 15.2. A_ priori probabilities of
blowing the bombas a function ofserial

position, Ly = 0.50; n= 6 (Example 2)
 

 

i Aj

Ixoxtet
2 6 12
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12 10 4 12
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As we saw, our hope functions, which are defined as conditional prob-

abilities given an initial sequence of / negative outcomes, are generally nor

constant (see Figure 15.1). This is true for all cases, barring L; when Lo = |

(Example 1). In terms of Dr Fischer’s bomb party (Example 2), the course of

the function Z implies that “if we entertain any degree of doubt concerning

the presence of a bomb in any of the crackers then that doubt will be fuelled

the more crackers that are pulled without a bomb exploding” (Ayton &

McClelland, 1987, page 180). At the sametime, the course of the function 6

indicates that the risk of the next cracker blowing up increases with the number

of innocuous crackers that have been pulled.

By the same token, the man whotries consecutive keys in the bunch andfails

to unlock the door (Example 3) should realize that the possibility he holds the

wrong bunch is becoming more and moreprobable. On the other hand, heis

not to blame for persisting in his attempts with the same bunch, because in

each successive trial he is slightly more likely to succeed.

Suppose the police are scanning house after house in a given neighborhood

in search of an escaped prisoner. The information that the runaway might be

in the neighborhood was received from a source that is usually reliable. The

police are right to become increasingly a/ert when moving from one house to

the next. Their mounting apprehension, however, does not contradict the
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assessment that the overall chances of finding the escapee in the neighborhood

keep dropping as the search progresses unsuccessfully. These two apparently

conflicting tendencies characterize all situations where we sequentially search

for an object in a given space, provided we lack complete certainty thatit is

there and the object is equally likely at the beginning to be in each unit of the

space.

Whenwaiting for an initially uncertain event to happen in consecutive time

units, the long- and short-range conditional probabilities of occurrence behave

precisely as the respective hope functions in search situations. Thus, the

geneticist (Example 4) was justified as time elapsed both in losing confidence

that the Dean would call, and in hesitating to anesthetize another batch of

flies. His feelings matched the course of the actual long- and short-term prob-

abilities of receiving the phonecall.

Finally, the search (or wait) for Mr Right is roughly subject to the same

apparently paradoxical rules. Patterns of nuptiality in several societies from

about ages 18 to 30 indicate that although individuals who do not marry for

several years are less likely ever to do so, their short-term conditional prob-

abilities of marrying within a year keep rising for a while (Gabriel, 1960). The

long- and short-term functions describe the two faces of our optimism, or

pessimism, depending on the desirability of the target event.

15.2. SUBJECTIVE HOPE

The ordinary person looking for some lost object instinctively holds to the

scientific viewpoint ... . He is neither philosophically unmoved bythe progress

of the search, nor does his optimismrise increasingly as successive possibilities

are eliminated. His initial cautious hopeis increasingly balanced by the growing

conviction, born of successive failures, that it’s not there, that it’s not anywhere:

and when he regards this as adequately proven, he gives up. (Jones, 1966,
page 466)

To find out whether Jones’ evaluation of the “ordinary person”is true, we

asked subjects to answer the questions posed in Problems | and 2. The general

question of whether people intuitively grasp the Bayesian solution can be

decomposed into several morespecific questions. To what extent is base-rate

information (prior probability) taken into account? Howis the ongoing failure
to find the object incorporated into the reasoning? Do people correctly assess
the direction of the two functions, namely, the simultaneous descent of the
long-term hope (L) andascentofthe short-term hope (S$)? Do they experience
an intuitive conflict when trying to evaluate S;, sensing that the general hope
is decreasing but the diminishing number of remaining possibilities suggests
that success in the next trial becomes more likely?
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In addition to the numerical versions of Problems | and 2 given above, we

composed directionalversions of these examples whichdiffered only in asking

about directions instead of numbers. Thus, for example, question (A) in

directional DL version asked whether the probability that the letter is in the

desk is nowgreater than, equal to, or less than 80%. Question (B) asked

whether the same probability is nowgreater than, equal to, or less than what

it was in (A), and (C) asked to comparethe target probability with what it was

in (B). The same was true for the directional DS version which asked in (A)

whether the probability that the letter is in the next drawer is nowless than,

equal to, or greater than whatit was for the first drawer. Question (B) asked

for a comparison of the short-run probability with that of (A), and so on.

Equivalent changes were introduced into the directional versions of BL and

BS.

The design included eight kinds of problems made up ofall combinations

of three binary variables: (1) story (desk or bus), (2) range (long orshort), (3)

question type (numerical or directional). Sixty-one subjects—36 under-

graduate students of psychology from the University of Massachusetts,

Amherst, and 25 senior high-school students (of ages 17 & 18) from

Massachusetts— answered two problems. The two forms each subject got

differed on all three dimensions. Thus, a subject who first got directional BL

would then receive numerical DS. Order of administration and all other

aspects of design were counterbalanced. Subjects were instructed at the head

of the form to read the problem carefully and trust their common sense in

answering the questions. They were asked at the end to explain their

reasoning.

45.2.1 Directional and Numerical Assessments

Wefirst analyzed the data ordinally. Ignoring the exact valuesin the numerical

versions, we sorted responses into three main types: strictly increasing, strictly

decreasing, or a constant function. A fourth category (other) included

functions which changed directions or were weakly monotonic. (The under-

graduate and senior high-school students’ responses were pooled since the

patterns of responses of the two groups were very similar.) Table 15.3 shows

the two-dimensionaldistribution, pooled across story types, of the 61 subjects

according to the kind of L and S functions which they produced.

Theresults in Table 15.3 showthat a majority of the subjects (35) intuitively

sensed the decline of the Z function. The modal group of subjects (27) pro-

duced an increasing S function. Yet, only about one fifth of the subjects

(12) generated the correct combination of a decreasing L and an increasing S

function. It is noteworthy that in a pilot study with 42 undergraduate law

students at the Hebrew University of Jerusalem, about one fifth (8) produced

the correct combination. Thepilot study used different but isomorphic stories
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Table 15.3 Subjects classified according to the long- and short-term hope
functions they produced
 

Long-run hope
 

Short-run hope Increasing Decreasing Constant Other Total
 

Increasing — 12 ll 4 27
Decreasing _— 7 1 1 9

Constant — 6 7 1 14
Other — 10 —_ 1 11

Total — 35 19 7 61
 

(searching an escapedprisoner in successive houses, and waiting for a forgetful
professor to come to an appointment).

Noneof the 61 subjects responded with a correct triplet of numerical prob-

abilities to any of the L or S forms. This wastrue for all the numerical versions

and for many ofthe directional versions in which subjects gave numerical
answers while explaining their choices. Overall, it is clear that students of
fairly high ability are incapable of correctly assessing the L and S hope prob-
abilities, but they have a rudimentary conception of the correct directions of
the two functions.

15.2.2 Principal Assumptions Underlying Solution Strategies

Solution strategies are suggested by the pattern of subjects’ numerical
responses and the explanations they provided. In examining these, a few
heuristics appear to us to be guiding a substantial number of responses. In
particular, in many cases assumptions of constancy underlie the choice of the
three answers.

Suppose one assumes that the given Lo of 0.80 in Problem 1 (desk) stays
unchanged despite failing to find the letter in the first i drawers. That assump-
tion, which we label constant L, entails an identical response of 0.80 to all
questions of DL andanincreasing triplet of answers to DS—(A) 0.114 (e.,
0.80/7), (B) 0.20, (C) 0.80 (see the correct set of answers in Table 15.1). One
may, however, assume that the probability of success per drawer (unit) stays
unchanged. We label that assumption constant S. It entails an identical
response of 0.10 (i.e., So) to all the questions in DS and a decreasing triplet
of answers to DL—(A) 0.70, (B) 0.40, (C) 0.10 (cf. Table 15.1). The corre-
sponding predictions of responses to BL and BS under the two constancy
assumptions can beeasily obtained.
The responses of twelve subjects to the two forms were compatible with the

constant ZL assumption. Six subjects assumed constant S across both forms,
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and another 13 assumed constant L in answering one form and constant S in

the other. Amongthe remaining 30 subjects, 19 assumed constancyin only one

of the forms (6 constant L, and 13 constant S$). Overall, of the 122 forms

answered by 61 subjects, 81 (i.e., 66.4%) were based on constancy assump-

tions: 43 constant L, and 38 constant S.

The heuristic of adhering to one constant parameter of the setup (whether

Lo or So) reduces the complexity of the hope problems. But it mayalso reflect

subjects’ conception of probability as an unchanging propensity of the situa-

tion at hand. Kahneman and Tversky (1982) drawa distinction between two

loci to which uncertainty can be attributed: the external world or ourstate of

knowledge. Real-world systems are frequently perceived as having dispositions

to produce different events, and the probabilities of these events are judged by

assessing the strength of these dispositions. The propensity of the desk (or

drawer) to producethe missingletter (or, for that matter, of the transportation

system to producethe bus) may have been considered a fixed parameterofthe

setup by many of our subjects. This would explain why they refused to update

that parameter in light of the accumulating search results. They did not

interpret the question as addressing their state of knowledge, and were

consequently impervious to the effect of new evidence.

Subjects often explicitly expressed the idea that constant probability was a

characteristic disposition of the chance setup. The following statements were

made by subjects who responded invariably with an answer of 80% to all the

questions in numerical DL: “The probability that the letter is in the desk is

80%, and that’s it!” A deliberate attempt to ignore the information about

successive failures (as if the subject is wary of falling prey to the gambler’s

fallacy) is notable in another subject’s words: “Like the lottery, no matter how

manytimes you play or what numberyou use, you have the same probability

in winning. So each desk has an 80% chance of having theletter.” Similar

insistence on the irrelevance of the reported outcomesis found in: “Finding

empty drawers doesn’t change probability that letter is in desk,” and “The

letter is equally likely (80%) to be in any of the drawers—so the fact that x

number of drawers was checked does not lower the probability.”

The constancy of the long-run hopefor the arrival of the bus (Problem 2)

was justified by “I figure that the exact time between 11:30 and 12:00 (11:35,

11:45, 11:55) doesn’t really matter—since 60% of the buses operate this late

I think there is still a 60%chance that a bus will come.” However, the same

subject assumed constancy per unit when asked about short-term prob-

abilities: “Since there are 8 drawers andtheletter,if it is in any of the drawers,

is equally likely to be in any of the drawers, the probability that the letter is

in any one drawer is 10%. This doesn’t change if the letter is not in one or

more of the other drawers [italics added] .” Had this discussion taken place

in class, the teacher could have asked at that point, “and whatif the letter is

foundin the ith drawer, would youstill think the probability doesn’t change?”
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Assuming constant S when answering numerical BL, results in a decreasing

L function ((A) 50%, (B) 30%, (C) 10%). This was typically justified by

answers such as: “I estimated that since there was 60% chancethat the bus was

still running ... the chance ofit arriving decreased by 10%as each 5 minute
(of 6) passed.” Another subject’s explanation repeats the samerationale for

DL: “There is 80 percent chanceofletter in desk and 20%not. Checking one

drawer with an unsuccessful try drops your chancesofit being there by 10%,

to 70%, and so on.”

In terms of the issue of “Evidential Impact of Base Rates” (the title of a

paper by Tversky & Kahneman, 1982), an assumption of constant L represents
an extreme point of “conservatism” on the continuum ofuse versus neglect of
base-rate data. In fact, constant L is the reverse of the “base-rate fallacy”

according to which subjects typically ignore the base rate and consider only the

specific evidence about the case at hand (as in Tversky & Kahneman’s well-

known cab problem). The constant S$ assumption, although resulting in

exaggerated decrease of the Z function, keeps the base-rate unit unchanged

instead of duly increasing it in light of the evidence. In this sense, constant $

is conservative as well.

Our impression is that subjects’ conservatism, as revealed by the prevalence

of the constancy assumptions, is a consequence of their external attribution

of uncertainty (Kahneman & Tversky, 1982). The parameters Lo and/or So are

apparently perceived as properties that belong to the desk, like color, size and

texture. Subjects think of these parameters in terms of “the probabilities of the

desk”, whereas the Bayesian view would imply expressionslike “my probabil-

ity of the target event”. Thus, subjects fail to incorporate the additional

knowledge they acquire when given successive search results.

15.2.3. Other Strategies

Several subjects denied the presence of chance altogether and actedasif it were

certain that the letter was in the desk (the bus is going to come), and others

embraced the historic position of equal ignorance and responded with

“fifty—fifty,” in apparent disregard of the givens of the problem.

Eleven subjects relied on assumption of certainty in response to one of the

problems they answered. Another three subjects assumed certainty in both

problems. Most of the certainty-based responses were made by subjects

assuming either constant Z or constant S. Thus, for example, assuming initial

certainty and constant S when responding to numerical BL means that

So = 17% =§%, and that So is subtracted from the L function (starting with

Lo= 100%) for every five-minute interval in which the bus does notarrive.

This results in: (A) 83%, (B) 50%, (C) 17%. One subject justified this triplet

as follows: “I made a timetable of 30 minutes. I take a fraction of how much

time has elapsed, then divide by 100%, giving the answer.” Note that this
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subject was not disturbed bythe fact that probability of 83% following a five-

minute wait for the bus was higher than the given initial probability of 60%.

The double assumption of initial certainty and constant L means that

Lo = 100%stays unchanged. Thus, when answering numerical DS, these 100

percents are divided each time in equal shares among the remaining drawers,

resulting in (A) 14% =5, (B) 25%, (C) 100%. We quote one subject’s

elaborate justification of the abovetriplet: “If you didn’t eliminate drawers

and randomlypointed to any drawerthere would bestill § probability because

there is replacement. But here we don’t have replacement and each draweris

equally likely of containing the letter, so however many drawers you haveits

1/N probability.”
No less surprising than the responses that converted the initial probability

of 80% (or 60%) into certainty were those that assumed total ignorance and

concluded therefore that the target probability should be one half. Ten

subjects appeared to invoke the maxim of “insufficient reason” assigning

equal probabilities to the two possible outcomes. Consider the explanation of

a subject who gave a constant 50%answerto all three BS questions: “Because

since you don’t have any idea what time the bus arrives and you don’t even

know if the bus is coming, then it is equally likely to arrive at any time.”

Another subject, who responded similarly, wrote: “It doesn’t matter thatthe

bus didn’t arrive in the last 5 minutes. There is always a 50% chanceit will

come and a 50% chanceit will not come.” A uniform 50% response to the

three BL questions was explained by: “There is no T in probability it will come

because there’s only 5 min left—there’s still a 50/50 chance it will either come

or its doesn’t.” One subject’s “ingenious” reasoning with respect to BL

resulted in: (A) 41.6%, (B) 25%, (C) 8.3%. His telegraphic-style explanation

ran as follows:

6 5 min intervals from 11:30-12:00
—said it was =ly likely at 11:30 (50%)

50% :6 = 8.3
each 5 min interval decreases probability by 8.3%

Wesee here an interesting combination ofthe equal-ignorance and constant-S

heuristics.

The human tendency to remove chance from our considerations has been

observed in various judgmental contexts (several examples are reviewed by

Falk & Konold, 1992). The sameis true for people’s inclination to assume

equallikelihood once uncertainty is acknowledged. The tendency to identify

randomness with equiprobability and thus assign equal chances to the

available options has been widely documented in empirical investigations

(e.g., Konold et al., 1991; Shimojo & Ichikawa, 1989). The primacy of the

equiprobability intuition has been described in studies of the historical
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development of probability theory. Uniformity was the first presumption on

which probability calculations were based (Gigerenzer et al., 1989; Hacking,
1975, Chapter 14). Converging evidence thustestifies to the genuine power of

the intuitive bent toward symmetry (Falk, 1992; Zabell, 1988).

Paradoxically, subjects’ assumptions of certainty and of equal ignorance,

although diametrically at odds with each other, might be viewed as the two
Janus-faces of the same orientation. Konold (1989) has referred to that

orientation as the outcome approach. People reasoning via the outcome

approach tend to interpret a request for a probability of some event as a

request to predict whether or not that event will occur on the nexttrial.
Contrary to currentscientific thinking, these reasoners do not view probability

as a measure of one’s uncertainty, nor as answering the question about the

relative frequency of occurrence of the target event in many repeatedtrials.

According to Konold’s (1989) description, outcome-oriented subjects translate

probability values into yes/no decisions, transforming their probability
evaluations into certainty. Thus, a probability of 20% means “it won’r

happen,” a probability of 80% means “it wi// happen.” When they sense a

total lack of knowledge about the outcome, however, they express it by the

50/50 numerical probability, which means “it either will happen or won’t

happen—don’t know which.” Konold found in several studies that a certain

subgroup of the subjects (not necessarily a majority) was fairly consistent in

responding according to this outcome-oriented perspective.

Although we cannot predict whether an outcome-oriented subject would

convert the probabilities given in our problems into certainty or into equal

ignorance, it stands to reason that the former would occur more often when

the probabilities are close to 100% (or to zero) and the latter when the prob-

abilities are close to 50%. Our data show roughly this pattern. Of the 17 forms

which elicited certainty-based responses, 10 were desk problems (Lo = 80%)

and 7 bus problems (Lo = 60%). In contrast, of the 10 equally likely answers,

3 were given in response to the desk story and 7 to the bus. These include two

subjects who respondedbycertainty to the desk and by equal ignorance to the

bus. Overall, the conjecture that the outcome approach has played somerole

in answering the hope problems is weakly supported. It remains a possibility
that should be further explored.

15.2.4 Toward a Solution

It was somewhatsurprising that we did nor find amongthe explanationsof the

S problems an explication of the conflict between the diminishing long-term

hope and theincreasing immediate hope implied by the fewer remaining units.
One subject who produced a constant S function in response to directional BS  
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did describe another conflict: “The probability that the bus will arrive in any

given time slot is the same. Although myintuition would urge me to expect

to see the bus more (meaning—I would assume the probability would be

greater) as time elapsed, I believe that the ‘laws’ of probability would haveit

otherwise. But—as I think aboutit more,this could be argued against, saying

that the probability changes as each unknown 5-minute segment became

known.” Several subjects, who produced a decreasing L function in response

to directional versions (without giving numbers), gave a correct Bayesian-like

explanation (e.g. “Well, if it is not in a drawer, then it could fall in the 20%

zone and the more drawers you open without it being in there the lower the

probability that it’s in there’’).

Only one subject (No. 62), a precollege student enrolled at the Hebrew

University of Jerusalem, responded correctly to both problems, in this case to

numerical BL and directional DS. These were his explanations:

BL: At 11:30 the probability of the bus arriving by midnight was fy

and of not: ¥
At 11:35 the probability of the bus arriving by midnight was 2,

and of not: §
At 11:45 the probability of the bus arriving by midnight was 4,

and of not: $
At 11:55 the probability of the bus arriving by midnight was k,

and of not: ?
DS: At the beginningofthe search the letter could be in one of 10 “locations”:

8 drawers and 2 “others.” The 2 “others” stay in constant amount,

whereas the number of drawers keeps decreasing. Therefore, the chance

of finding theletter in the first drawer was only 10% (i.e., 1/10), in the

second 1/9, in the fifth 1/6 and in the eighth 1/3.

These considerations yielded the same results (for each i) as the Bayesian

computations. Note, however, that whenever several units are eliminated, the

posterior probability distribution over the remaining units (including the

imaginary “other” locations) stays uniform. That is why this subject’s

reasoning matched the Bayesian results. The same method would not work if

applied to problemslike that of the three prisoners, or Monty’s notorious TV

game “Let’s make a deal” (Falk, 1992).

Inspired by that subject’s method of solution, we devised a simplified

version of the desk problem. The main changein the modified version was the

addition of a concrete representation of the sample space that includes the two

“locations” out of the desk.
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15.3 THE HOPE PROBLEM—SIMPLIFIED

The simplified desk problem, presented below, is isomorphic to Problem |:

Problem 1R The Revised Desk Problem. (Revised-Desk-Long—RDL;

Revised-Desk-Short—RDS). The problem stem of both RDL and RDS reads

as follows:

Imagine that you are searching for an importantletter that you received some
time ago. Yourassistant always puts yourletters in the drawers of your desk
after you have read them.

There are ten drawers in your desk. You knowthattheletter is equally likely
to be in any of the ten drawers. You notice, however, that drawers #9 and
#10 are locked (see figure), and your assistant has gone home with the

keys. You realize the chances that theletter is in one of the unlocked drawers
is 80%. So you start a thorough and systematic search of the eight unlocked
drawers.

Figure 15.2 presents the drawing which appeared in each form. The three
questions in RDL were the sameas in DL of Problem 1, except they asked for
an evaluation of the probability that the letter is in one of the unlocked
drawers. RDS included exactly the same questions as DS of Problem 1. Only
numerical revised forms were prepared.

A pilot test was run at the University of Massachusetts, Amherst with 13
subjects (including graduate and postgraduate students). Each subject
responded to only one form: 6 to RDL and 7 to RDS.Three ofthe responses
to RDL and 6 of the responses to RDS were perfectly correct. Of the other
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3 RDLs, subjects gave 2 constant ZL responses and | constant S$ response. The

seventh RDS answer assumed constant L.

Based on the results of this pretest, we conducted larger-scale surveys. Our

aim was both to confirmthe indications that the revised versions facilitate

reaching the correct solution and to test whether subjects who succeed in

solving Problem IR would transfer the solution principle to the Standard Wait

Problem (Problem 2) as originally phrased.

Fifty four subjects—34 undergraduate psychology students from the

University of Massachusetts, Amherst and 20 senior high-schoolstudents from

Massachusetts—participated in the first survey. Each subject was asked to

answer two problems: either RDL and numerical BL, or RDS and numerical

BS. The revised desk problem was always givenfirst; 26 subjects received two

L versions and 28 received two § versions.

Eighteen of the 54 revised forms were answered correctly (9 RDLs, and 9

RDSs). Compared with no correct answers to numerical DL and DSin the

original group of 61 subjects, the rise to 33.3% correct represents a

“dramatic” improvement. The 36 incorrect responses to the revised forms

included 14 based on constancy assumptions (12 constant S and 2 constant L),

2 based on certainty and 1 on equal ignorance(i.e., 50/50).

Noneofthe 54 bus problems was answered correctly, indicating no transfer

of the solution strategy by those 18 subjects who have just solved a search

problem (desk). Incorrect responses included 26 constancy-based answers (20

constant S and 6 constant L), 10 certainty and 5 equal ignorance.

Correct answers to the revised desk problem were often accompanied by

lucid explanations of the underlying reasoning. Here is one example given in

response to RDL: “The probability that I gave is the number of unlocked

drawers remaining (unsearched) divided by the fofal number of drawers

remaining (unlocked + locked).”

Similar to the explanations of incorrect answers to Problem 1, a constant

80% answer to RDL wasjustified by: “The overall probability doesn’t change

no matter how many drawers are searched,” and, as maintained by another

subject: “regardless of whether I looked in them or not.” Some subjects who

responded 80% throughout seemed to work hard not to be swayed by the given

results: “It’s like the boy/girl baby problem, even if you get BBBBBBBBBG

the probability still remains at chance—50/50.” Constant S responses to RDL

were justified by, “I was almost fooled, but upon further thought | decided

that as drawers are searched and found empty the statistics of the problem do

not change. Sameas if weather person says 50% chance of rain & it rains.

Then is probability of rain 50% or 100%? It’s still 50%.” One subject, who

gave 50%answers to RDS, explained: “The possibility of finding the letter was

50%, just like yes or no.”

In a second survey, each subject received RDL and RDS, with order of

presentation counterbalanced, and a bus problem of the same range (L or S)
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as the second of the two revised problems. The 109 subjects were under-
graduate students of psychology or graduate students of education at the
Hebrew University of Jerusalem.Fifty three got RDS, RDL,BL,in that order,
and 56 got RDL, RDS,BS. Because of the extra length of this assignment
subjects were not asked to explain their reasoning.

Correct responses were given to 48 of the 109 RDLs (44%), and to 73 out
of 109 RDSs (67%), which is 56% correct overall. Every subject who correctly
solved RDLcorrectly solved RDS as well, but not vice versa, suggesting that
the revised short-term problem is more transparent. This makes sense if one
notes that answering the S versions involves adjustment of only the denomi-
nator (the total numberof remaining units) since the numeratoris alwaysone,
whereas answering the L versions requires adjustment of both numerator and
denominator. Assumptions of constancy, certainty, and equal ignorance were
observed among the incorrectly answered forms. However, the absence of
supporting explanations prevented a determination of subjects’ underlying
reasoning.
No single correct triplet of answers was given to any of the 109 bus

problems. This was true despite the high rate of correct solutions of the
immediately preceding revised desk problems. In particular, 58 of 109 subjects
solved their second revised desk problem but not the equivalent bus problem
of the samerange. In conclusion, while the revised desk problemselicited more
than half correct solutions, transfer of the method of solution to the bus
problem failed to occur.

15.4 DISCUSSION

On the whole, subjects were unable to solve the numerical long- and short-
term hope problemsthe way they wereoriginally presented. To summarize our
findings, welist several solution methods that subjects employed and beliefs
they expressed. To be sure, this list is not exhaustive.
The load ofprocessing the variousdetails given in Problems | and 2 is eased

if one of the givens (either Lo or So, which is inferred from Lo) is held
constant. Many subjects indeed based their answers on one of these constancy
assumptions, solving the problem by reducing the number of variables
involved. In so doing, they ignored one type of evidence, namely the search
results, and considered only the @ priori success probability and sometimes
also the numberof units.

Subjects’ choice of the type of evidence may be linked to an external attri-
bution of uncertainty. Manyofthe explanations cited above indicate that the
prior was viewed as an inherent and unalterable characteristic of the setup. It
may seem more “objective” than the information about the subsequent fruit-
less search (wait), and may therefore come to dominate subjects’ reasoning.  
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Somesubjects clearly resisted the urge to use epistemic considerations. The
burden of providing the required probability, theyinsisted, should lie with the
desk (bus system). We should notethat all subjects had had some kind of
introductory statistics course. Their cursorystatistical knowledge apparently
alerted them to the gambler’s fallacy. The first examples of random processes
usually given in class (successive coin tosses, childbirths, lotteries, etc.) are
typically characterized bystatistical independence. Students learn that they
should nor learn from experience since a coin has no memory. This lesson may
be overgeneralized to the case of the hope problems, where successive failures
do have a diagnostic value.

Those subjects who were awareof the need to consider the changes in their
state of knowledge usually sensed the direction of the hope functions but did

not know howto update their probabilities arithmetically. The concrete aid

offered in the revised desk problem helped many of these subjects to simul-

taneously see the whole sample space and the subspace in which success may

occur.

Failures in responding to the revised versions occurred when subjects were

strongly committed to constancy assumptions. Whoever believes that the

probability of finding the letter is 10% per drawer, regardless of how many

drawers have been searched, will fail to adjust for the changing total number

of drawers and will simply obtain the ZL function by multiplying 10% by the

number of unlocked drawers that have not yet been eliminated.

In addition, a certain subgroup of subjects who answered the original

problems, and the revised desk problem, was apparently outcome oriented.

They resorted either to certainty or to complete indifference, both of which

resulted in incorrect answers.

15.4.1 Why Didn’t the Transfer Work?

Wewere puzzled by the failure of all the subjects who had solved the revised

desk problem to transfer the solution’s rationale to the bus problem. However,

on second thought, and as a result of postexperimental discussions with some

of the subjects, we have one possible reason for this failure of transfer.

The solution in the revised version was suggested by extending the dimen-

sion along which the search was carried out: two units (drawers) were added

so that subjects could visualize the whole sample space and see the reason for

the @ priori Lo of 80%. As they eliminated drawers, they could see the

remaining “favorable” (unlocked) and “unfavorable” (locked) units of the

changing space. When facing the bus problem, however, one cannot apply

the sametrick without changing the nature of the story. Extending the units
of wait beyond midnight would not help to see the reason why Lois 60%. That

prior reflects the fact that 60% of the bus routes operate this late, and 40%

do not. A revision, equivalent to that of the desk problem, would have the bus
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certain to arrive sometime between 11:30 and 12:20, with equal probabilities

for all the 10 five-minute intervals. The tourists, however, decide to wait until

either the bus arrives or midnight, whichever happens first. Viewing the

original bus problem as isomorphic to the revised desk problem was

apparently too much to expect of subjects in an experimentalsituation.

The locked-drawers device can easily be applied to Dr Fischer’s bomb

situation (Example 2). Without loss of generality, we can change the story so

that there are 12 Christmas crackers: one contains a bombforsure, 11 contain

checks. Only six, however, are at the guests’ disposal for this party. The other

six are kept for the next party. It is now easy to see that Lo 1s 50%andto assess

the L and S probabilities of pulling the bomb throughout the game’s progress.

We didn’t pose this problem to our subjects. Our guess, however, is that

transfer from the revised desk problem to this particular problem would have

been within reach of some subjects.

15.4.2 Possible Extensions

Several subjects who viewed the search/wait process as analogous to coin

flipping, incidentally raised an interesting question: what if the search were to

be conducted with replacement? Suppose the man who comes homein the

darkness with two bunches of keys (Example 3) is drunk. He would notbe able

to remove keys that have failed to unlock the door(see Feller, 1957, page 46).

Or, imagine that an absent-minded professor is looking for a misplaced letter

through the drawers of her desk (Problem 1) while her mind is deeply engaged

in some other problem, thus forgetting instantaneously which drawers have

been already searched. A “with replacement search” thus describes the case in

which a key maybetried again after being found not to work or a drawer may

be searched again after being found empty.

Does it make sense to think of waiting for the bus “with replacement”?

Ennis (1985) describes a situation perfectly suited for our case. He imagines

waiting for a bus on a route whichoffers a “15-minute service”. Because of heavy

traffic, the buses do not arrive at exact 15-minute intervals but randomly. The

operators (Poisson Motor Services) do, however, provide a service which

averages out at 15 minutes between buses. (page 27)

We only need to change 15 to 30 minutes, add the qualification that the

chances are 60%that the bus is running that late, and Poisson Motor Services

provide us a wait problem with replacement.

The computation of the long-term (L') and the short-term (S') hope

functions for sampling with replacement requires a minor adjustment of
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formulas (15.1) and (15.2). One easily obtains, for the case of sampling with
replacement:

1 (n— 1)'Lo at
‘(n= 1)'Lo + n'(1 — Lo) (15.1)

siaty! a3 2')

1 yO “

In both formulas /=0, 1, 2,...,n-l,a,...

In contrast to the case of sampling without replacement, where the function

L; decreases with i and S; increases (Figure 15.1), in the case of sampling with

replacement, both Lj and S; decrease. The rate of their decline, however,is

slower than that of L;. Figure 15.3 presents the course of the functions Z/ and

S} compared with that of L; and S;, for the desk problem. In the limit, as /

grows indefinitely, both L} and S; tend to zero. This means that despair creeps

in justifiably in an extended fruitless search (wait) with replacement. In a

without-replacement search, the rising S function may boost our morale to

some degree. It is probably the short-range increase in hope that keeps most

of us going.

Another extension of the original probabilistic model is obtained if in

Problem 1 we allow for a less than perfect search. One may assume, for

instance, that the conditional probability of finding the Ictter in a drawer,

givenit is there, is always p (such that 0 < p < 1). This would, in fact, describe

more realistically the state of affairs in desks of people like ourselves. In
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addition to that, one may monitor the course of the hope functions while

searching within each drawer. This will amount to extending the problem from
the discrete to the continuous case.

Decisions of whether to continue or end a search (wait) depend not only on

the long- and short-term success probabilities. The considerations should
include the costs and benefits associated with each decision. These, however
may change as the search proceeds.

Note that our search and wait problems involved desirable outcomes. The

desirability of the target event makes no difference formally. It would be

interesting to see, however, whether people’s subjective functions, based on

the same objective statistics, differ in any way when viewing the target event

as “success” versus “failure.” Clearly, picking one of two bunches ofkeys

(Example 3) and trying them successively with or without replacement, is

isomorphic to picking one of two guns, knowing that there is a bullet in one

of them, and playing Russian Roulette with or without replacement. The

“target” event, however, is so dramatically different in these two cases, that

finding differences in probabilistic assessments would not be surprising.

Likewise, waiting for malignant symptoms to reappear during a five-year

period after treatment, although structurally equivalent to waiting for your

loved one to come to a date during five successive short-time intervals, may

be evaluated differently in probabilistic terms. Clearly, continued study of

these phenomenais required.
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