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Abstract: Bayesian quadrature treats the problem of numerical integration as one of statistical inference. 

A prior Gaussian process distribution is assumed for the integrand, observations arise from evaluating 

the integrand at selected points, and a posterior distribution is derived for the integrand and the integral. 

Methods are developed for quadrature in IRP. A particular application is integrating the posterior densi- 

ty arising from some other Bayesian analysis. 

Simulation results are presented, to show that the resulting Bayes-Hermite quadrature rules may per- 

form better than the conventional Gauss-Hermite rules for this application. A key result is derived for 

product designs, which makes Bayesian quadrature practically useful for integrating in several dimen- 

sions. Although the method does not at present provide a solution to the more difficult problem of 

quadrature in high dimensions, it does seem to offer real improvements over existing methods in relative- 

ly low dimensions. 
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1. Introduction 

The problem of quadrature, or numerical integration, is simple and well known. 

We are interested in the value of an integral, such as 

k = f(x) dx, 

but cannot obtain it 

- ), say f(x,), f(xz), . . . , f(x,,). 

The essence of the present paper is that quadrature is a statistical problem. There 

is an unknown quantity, k, 
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from some population of functions. To assert a distribution for f(. ) is then to 

describe the characteristics of the population. In a Bayesian approach, f( . ) is ran- 

dom simply because it is numerically unknown. It has a known algebraic expression, 

but we do not know the numerical value off(x) for any x until1 we actually calculate 

it. A distribution forf(. ) then expresses the investigator’s personal beliefs about it. 

We will adopt the Bayesian approach because of its simplicity. Specifically, we in- 

corporate the observations f(xi), . . . , f(x,J by conditioning the prior distribution of 

f( . ) on these n values which are now known. This is the posterior distribution of 

f(. ), from which the posterior distribution of k is derived. 
Diaconis (1988) traces the origins of this Bayesian approach to quadrature as far 

back as Poincare (1896), and presents a useful review. More references are to be 

found in Sacks, Welch, Mitchell and Wynn (1989) and Ylvisaker (1987). The diversi- 

ty of work in this area reflects to some extent the many varied uses of quadrature. 

Prior information about f(. ) is very dependent on context, which results in dif- 

ferent variations of the basic approach in different applications. 

Our primary concern in this paper is to develop and apply Bayesian quadrature 

techniques in a specific context, which is itself strongly motivated by Bayesian 

statistics. Bayes’ theorem asserts that the posterior density f( . ) is proportional to 

the product of a prior density and a likelihood function, and a primary task of the 

Bayesian analysis will be to find its integral, the inverse of the proportionality con- 

stant. The integral will often not be determinable analytically, and quadrature tech- 

niques are necessary. There is another substantial literature on applying various 

non-Bayesian quadrature techniques to this fundamentally Bayesian problem. See 

Shaw (1988) and many references therein. To avoid confusion with our main sub- 

ject, namely the Bayesian analysis of the quadrature problem, its application in in- 

tegrating the posterior density arising in some other Bayesian problem will be 

refered to as ‘the Bayesian application’. 

It is important to stress that no single quadrature technique is appropriate to every 

kind of problem. Even within the restricted field of the Bayesian application, where 

f(. ) is proportional to a density function in R p, different approaches are used 

depending upon the number of dimensions p. The major conventional technique for 

multiple integrals in up to about six or seven dimensions is to use Cartesian products 

of one-dimensional rules. Specifically, Smith, Skene, Shaw, Naylor and Dransfield 

(1985) advocate products of Gauss-Hermite rules. Whereas product rules are prac- 

tical in low dimensions, the number of function evaluations required rapidly 

escalates so that they become unrealistic to use in high dimensions. In the Bayesian 

application, a frequently used technique for integrating high dimensional posterior 

densities is Monte Carlo. When the integrand is a posterior density, it can generally 

be evaluated quickly and cheaply, but in contrast Sacks et al. (1989) describe other 

applications where evaluation of the function at a single point may require hours 

of time on a Cray supercomputer. They do no consider integration, but nevertheless 

use the same models as we present in this paper. The general technique of Bayesian 

quadrature is designed to make the fullest possible use of every function evaluation, 
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and so would be ideal when such evaluations are costly. However, we do not pursue 

those applications here. 

There is one other quadrature technique in common use that recognises the 

statistical nature of the quadrature problem. This is the Monte Carlo method. 

However, O’Hagan (1987) criticises the underlying philosophy of Monte Carlo 

quadrature. 

In Section 2 we present the general theory of Bayesian quadrature. Section 3 

derives Bayes-Hermite quadrature as the Bayesian quadrature analogue of Gauss- 

Hermite rules for integration over IR p. Simulation results suggest that Bayes- 

Hermite quadrature can be more accurate than Gauss-Hermite for the Bayesian 

application in one dimension. Section 4 is concerned with higher dimensional in- 

tegrals. We present a general result on product rules, which facilitates the develop- 

ment of Bayes-Hermite product rules. Practical implementation of Bayesian 

quadrature is discussed in Section 5. 

2. Bayesian quadrature 

2.1. Model 

Rewrite the basic integral as 

k = f(x) dG(x), 
I 

(2.1) 
.X 

where G( . ) is a measure over X. We could regard k-‘f( . ) as density with respect 

to underlying measure G(. ). We prior beliefs about ) via 

f(x) h(x)Tp + e(x), 

where h( .) is vector of known 

e( . ) that it a stationary, 

) is a monotone decreasing correlation function on If?+ with c(0) = 1, and 

I/x-x’/1 denotes any distance measure on X. Then o2 is the variance of each e(x). 

We will assume that c(. ) is known, but the question of unknown c(. ) is con- 

sidered briefly in Section 4.5. The variance a2 is unknown. Conditional on j? and 

o*, the prior distribution of f(. ) is a Gaussian process 

f(+ Ko2-N(N),u(~,.)), (2.5) 
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where m(x) =?z(~)~fi. The prior model is completed by a prior distribution for p 

and 02. It would be simple to develop the theory with a proper, conjugate prior 

distribution at this stage, but prior information about /3 and o2 will typically be 

weak and difficult to elicit accurately. We therefore assume weak prior information, 

represented by the improper prior density 

p(P, a2) fx o-2. (2.6) 

The basic model (2.2) with e(. ) defined by (2.3) and (2.4) is used in a similar con- 

text by Sacks et al. (1989), but its use in regression analysis goes back at least to 

Blight and Ott (1975). Essentially the same model underlies the method of kriging, 

see Cressie (1988), which is widely used by geologists. The localised regression model 

of O’Hagan (1978) is similar but incorporates h( . ) into o(. , . ), so that the errors 

are no longer stationary. 

For greater generality, we replace (2.1) by 

k= Wf(x) Wx), (2.7) 
X 

where r(. ) is a known vector of p functions of x. Thus k is a p-vector whose i-th 

element is ix ri(x)f(x) dG(x). We will continue to use the symbol k in the sense of 

(2.1), or of (2.7) in the case T(X)= (1). 

2.2. Posterior distributions 

We now obtain data comprising the value of f(. ) at n ‘design points’ 

X1,X2, .*.,X,9 yielding the observation vector 

f = (f(xd,f(x2)Y~vf(%))T. (2.8) 

Posterior distributions are easily obtained. First, the posterior distribution of f( . ) 

given /3 and a2 is the Gaussian process 

f(e) If,Aa2 - N(m’( . ), u’( . , . )), (2.9) 

where 

m’(x) = h(X)T/3+t(X)TA-‘(f-H/3), (2.10) 

I4llxn-x*II) 4kx2II) 1 J 
u’(x,x’) = 02{c(~~x-xq)-t(X)TA-‘t(X~)). (2.11) 
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Posterior distributions of fi and IS* derive simply from the fact that 

f I Lb* - N(HB, o*A), 

and we find 

SI_La* - N(fi, a2(HTA-1H)-1), 

a* 1 f -dx& 

where 

(2.12) 

(2.13) 

has a familiar generalised least squares form, and 

d = fT{A-l-A-‘H(HTA-lH)plHTA-l}f. (2.14) 

We have assumed that H has rank q. Otherwise the posterior distribution of fl would 

be improper. 

Now the integral (2.7) is a linear functional of f(. ), and we immediately have 

from (2.9) that its posterior distribution given B and a2 is 

k jf,P,a* - N(m’, a* U’), (2.15) 

where 

m’= r(x)&(x) dG(x) = R/3 + TA -’ (f - Hj?), (2.16) 
X 

R= 4WWT Wx), (2.17) 
X 

T= WWT Wx), 
X 

u’= ,‘J- TA-lTT 

(2.18) 

(I= c(~~x-x’~~)r(x)r(~‘)~ dG(x) dG(x’). (2.19) 

Notice that the corresponding prior distribution is 

kjAa* - N(Rfi, a*U) 

and we assume that both R and (I exist, i.e. the integrals (2.17) and (2.19) converge. 

Otherwise there would be a non-zero prior probability that k itself did not exist. 

Combining (2.15) with (2.12) yields 

klf,a* -N&, a*V), (2.20) 
with 

k^ = R/i?+ TA-‘(f - H/j), (2.21) 

V= U-TA-‘TT+(R- TA-‘H)(HTA-‘H)-‘(R- TA-lH)T. (2.22) 
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Finally, when we combine (2.20) with (2.13), the marginal posterior distribution of 

k is a multivariate t, which we express as 

k 1 f-t,-,&dV). (2.23) 

Its posterior mean and variance are 

E(k 1 f) = 6 

Var(k ( f) = (n-q - 2))‘dV. (2.24) 

provided n > q + 2. Notice that the estimate k is a linear function of the observation 

vector f. Specifically, k= Wf, where 

w= TK’+(R- TA-‘H)(HTA-‘H)-‘HTA-‘. (2.25) 

2.3. Saturated designs 

One special case of the estimate k arises when the number of observations equals 

q. Then H is square and nonsingular, /?=H-'f, and the posterior mean of f(. ) 
which is given in general by 

E(f(x) I f) =h(X)Tp^+t(X)TA-l(f-HP^) (2.26) 

reduces to hope, the fitted regression line. Then the estimate of k is just the in- 

tegral of Y(X) times the fitted line. Most conventional deterministic quadrature rules 

(including Gaussian rules where n<q) may be derived in this way; see O’Hagan 

(1988). However, the data in these cases can provide no information about 02. The 

posterior distribution (2.23) has zero degrees of freedom, and is therefore improper. 

Our interest lies instead in the case n > q, where the Bayesian quadrature approach 

yields novel integration rules. 

2.4. Optimal rules 

The design points x1,x2, . . . , x, may be chosen to optimise an appropriate 

criterion. One obvious set of criteria are the posterior variances of individual 

elements of k, i.e. the diagonal elements of Var(k 1 f). From (2.24), 

Var(k I f)= e2V, (2.27) 

where e2 = (n -q - 2)-‘d is the posterior mean of 02. Y is a matrix given in (2.22), 

depending on the design but not on the data. Before the data are observed, e2 is 

unknown, and the design criterion must depend on the prior expectation of (2.27). 

It is easy to show that E(d 1 a2) =n-q, independent of the design, so the design 

criterion is to minimize the appropriate diagonal element of V. In the case r(x) = (l), 
optimality reduces to minimizing u, the single element of V=(u). 
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3. Bayes-Hermite quadrature 

3. I. Applying Bayesian quadrature 

In the application of estimate (2.21) we must first evaluate R and T, which are 

themselves defined as integrals in (2.17) and (2.18). Unless these can be done 

analytically in closed form, there is the danger of Bayesian quadrature degenerating 

into infinite regress. In practice, G(. ) will generally be a standard, well-known 

probability distribution over X, and both Y( . ) and h( . ) will comprise simple func- 

tions such as polynomials. It will therefore usually be straightforward to derive R. 
However, the existence of a closed form for Twill depend critically on the correla- 

tion function c( . ). Another practical problem lies in the inverse of the matrix A in 

(2.21). A is an n x n matrix, and if its inverse is not known analytically then to invert 

it numerically is an order n3 operation. If the number of design points is at all 

large, numerical inversion is not practical. 

Notice, however, that to apply Gaussian quadrature methods does not require 

lengthy computations only because tables of design points and weights are readily 

available. The same can be provided for Bayesian quadrature. The Bayesian 

quadrature estimate is k^= Wf, where Wis given by (2.25) and depends on the design 

points x,, x2, . . . , x, at which f( . ) is to be ‘observed’. For given c( . ), h( . ) and Y( . ), 

and given design points, this matrix of weights need only be computed once and 

tabulated for future use. This would be done particularly for optimal designs. In 

Section 4.2 we tabulate some optimal Bayesian quadrature rules. 

The real impact of the practical problems discussed above is in the degree of com- 

putation needed to find optimal designs. Unless we can find analytical or otherwise 

efficient ways of calculating R, T and A-l, it may not be possible to derive optimal 

rules, particularly rules with many design points. 

3.2. Bayes-Hermite formulation 

We now consider a particular case in which the integrals R and T are available 

analytically. The quadrature problems for which Gauss-Hermite rules are ad- 

vocated are those in which X= RP with the density f( .) dG(. ) being at least 

roughly approximated by a multivariate normal density, or by such a density 

multiplied by a polynomial. We develop here a Bayesian quadrature solution for this 

context, which we call Bayes-Hermite quadrature. 

So let X= RP and without loss of generality let G( . ) be the standard p-dimen- 

sional normal distribution N(0, I): 

dG(x) = (2~t)~” exp(-+xTx) dx. (3.1) 

We will suppose that the elements of Y( . ) and h( . ) are any functions for which the 

integral (2.17) may be performed analytically. In particular, the strict analogue of 

Gauss-Hermite quadrature is obtained when elements of h( . ) are of the form 
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fl;xy. Finally, we propose that the correlation function also has a Gaussian form: 

c(I/x-~‘11) = exp{ -b(x-x’)T(x-x’)}. (3.2) 

:. c( IIx -x’ II) dG(x) = exp( - &x’~x’) dG’(x), (3.3) 

where a = (1 + 2b))’ and G’( . ) is the multivariate normal distribution N(2abx’, al). 
Now (2.18) may also be performed analytically, and a second such operation also 
yields a closed form for (2.19). 

Sacks et al. (1989) consider a more general class of correlation functions 

c(IJx--'II) = exp c-b C Ixi-x'l") , 
C i I 

where (3.2) is the case I = 2. It is possible also to evaluate T for the case A = 1, in 
terms of the univariate standard normal distribution function Q(s), but inter- 
mediate values of 1 are not tractable. (Sacks et al. (1989) did not require T because 
their objective was not integration but interpolation.) Our chaise of A = 2 reflects 
a belief in f( . ) having a high degree of smoothness, which is appropriate in par- 
ticular to the Bayesian application. The choice accords with the discussion of 1 in 
Sacks et al. (1989) and is reinforced by some simulations which have found that 
A =2 produces more accurate integration than A = 1. Further details are given in 
O’Hagan (1988). 

3.3. One-dimensional rules 

Consider the case of one-dimensional quadrature, p = 1. Let r(x) = (1) and either 
h(x) = (l), q = 1, or h(x) = (1, x, x~)~, q = 3. Explicit formulae for Bayes-Hermite 
quadrature are now easily obtained. Optimal Bayes-Hermite rules (minimizing the 
variance u, as in Section 2.4) were derived for n = 3,4,5 or 6 points, for q = 1 or 3, 
and for various b. It is interesting to look at the three point designs, which have the 
form (-x, 0, x). Table 1 shows values of x for various b and q. 

Notice that as b decreases, corresponding to an increasingly smooth function 
f( . ), the design points spread further out. It would appear that as b -+ 0, both for 
q = 1 and q = 3, the rules are tending to the three point Gauss-Hermite rule which 
sets x= fi= 1.732. Unfortunately, for small b the A matrix is very ill-conditioned, 
and numerically reliable figures could not be obtained for b less than 0.01. We con- 

Table 1 

Three point rules for varying b and q 

4 b 

1 0.1 0.01 

1 1.152 1.599 1.716 

3 1.369 1.645 1.722 
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jecture that for any q (in), the n-point Bayes-Hermite rules tends to the n-point 

Gauss-Hermite rule as b + 0. 

The Bayes-Hermite rules are more conservative than Gauss-Hermite in the sense 

that they place design points nearer to the origin. The Gauss-Hermite rules are op- 

timised for the case when f( .) is exactly a polynomial. The Bayesian quadrature 

model adds a random disturbance to S(. ), and uncertainty about f(x) for values of 

x close to the origin contributes most to uncertainty about k. 

3.4. A random normal mixture 

Any attempt to compare objectively the performance of different quadrature 

rules is doomed to failure. Quadrature rules are applied in many different contexts, 

and may perform very differently in each, so that comparisons made only in specific 

contexts can prove to be misleading. Nevertheless, the gradual accumulation of such 

experience is vital if users are to make good choices of rules in practice. 

Motivated by our interest in the Bayesian application, we attempted to assess the 

performance of Bayes-Hermite rules in integrating the kind of density functions 

that typically arise in practical Bayesian statistics. Densities were generated random- 

ly from the class of mixture distributions which can be written formally as 

y = (1 -a)N(O, l)+aN(p,0.3). (3.4) 

The two variables a and ,u were given independent uniform distributions over (0.2, 

0.6) and (0,2) respectively. The density functions generated by this scheme are 

typical of those met with in Bayesian applications. Many are nearly normal in shape, 

but others show marked skewness or bimodality. With g( .) defined by (3.1) with 

p = 1, the function f( . ) is 

f(x) = y(x)/g(x) = 1 - (II + ~~(0.3))“~ exp[ - 4 {10(x - p)2 - 3x2}]. 

Of course, (3.4) generates proper probability density functions, so that the true 

value of the basic integral is always 

mm 
‘OD k= 

I\ 
f(x) dG(x) = 

(/ 
y(x)&= 1. 

-m -m 

Table 2 

Root mean squared errors for 5 point rules 

4 

1.0 

b 

0.5 0.1 

1 0.0101 0.0086 0.0217 

3 0.0237 0.0124 0.023 1 
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Gauss-Hermite rules were compared with the Bayes-Hermite rules with q = 1 or 

3 and b = 1, 0.5, or 0.1, for n = 3,4,5 or 6 points, using 500 random selections from 

(3.4). The root mean squared error (RMSE) of k^ was calculated for each rule. Every 

Bayes-Hermite rule gave smaller RMSE than the Gauss-Hermite rule with the same 

number of points. Therefore, Bayes-Hermite integration seems to be superior to 

Gauss-Hermite over a range of values of q and b, for the kinds of integration pro- 

blem represented by this simulation. For instance, Table 2 shows the RMSEs for the 

six five-point Bayes-Hermite rules. The RMSE for the five-point Gauss-Hermite 

rule was 0.0338. 

Table 2 also shows a general finding in this simulation, that the rules which per- 

formed best were the Bayes-Hermite rules with b = 0.5 and q = 1. 

4. Higher dimensions 

4. I, Product designs 

Higher-dimensional problems will demand increasing numbers of design points in 

order to achieve satisfactory quadrature. Inverting the resulting large A matrix 

numerically, makes it impractical to develop optimal designs in general. However, 

an important simplification arises with product designs. We first derive this result 

for general Bayesian quadrature. 

Suppose that X is a Cartesian product Y x Z, and we can write x E X as (y, z) with 

y E Y and z E Z. Suppose also that the n design points (x1, x2, . . . , x,) in X form a 

grid (i.e. Cartesian product) of nynz points xi= (yj,Zk), comprising all combina- 

tions of nrpoints (y1,y2,..., y,,) in Y and n, points (zl,z2, . . . ,z,,,) in 2. Suppose 

finally that the correlation function satisfies 

C(ll(Y,Z)-(Y’,Z’)ll) = ~~~llY-Y’llr~~z~llz-z’llz~. (4.1) 

Then we can write the correlation matrix of the design points as the Kronecker pro- 

duct A =A &A, of the two separate correlation matrices. For instance, the (i, j)th 

element of A, is cy(lIyi-y,I)r). (We have assumed the sequence of design points 

{Xi} to take points row-wise across the grid, so that the rows and columns of A will 

be properly arranged for this Kronecker product.) Then 

A-’ = A,‘@A~‘. (4.2) 

This result makes it possible to invert the large n x n matrix A using only the 

nyxny and nZxnZ inversions of AY and A,. If this is coupled with the ability to 

obtain R and T analytically, as in Bayes-Hermite formulations, it becomes possible 

to explore quadrature designs in higher dimensions. Designs may be obtained which 

are optimal within the class of product designs. 

Calculation of R and T is simplified in general if we add some further reasonable 

assumptions. Let G be such that we can write 
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I f(x) Wx) = 
bX !’ Ii f(_w) dGz(z) dWy). 

Y z 1 
That is, G is the product of independent measures GY and 

the q functions h( .) comprise all the qyqz products of qy 

255 

(4.3) 

GZ. Next assume that 

functions of y and qz 

functions of z. We can then write (arranging the functions in h( .) in the appropriate 

sequence) 

H= H,@H,, (4.4) 

with H, and Hz defined in the obvious way. Furthermore, the two Kronecker pro- 

duct forms are conformable. For instance 

(HTA-lH)p’ = (H;z4;1Hy)-1@(H&4~1HZ)-1. 

We need H to have rank q for this inverse to exist, in which case HY has rank qy 

and Hz has rank qz, and the two inverses on the right-hand side will also exist. In 

particular, qYsny and qzsnz. 

Finally, suppose that the elements of r( .) also comprise all the products of a set 

of functions of y and another set of functions of z. (Provided each element of Y( . ) 

is such a product, we can always add further elements so that it comprises ail pro- 

ducts of the functions originally appearing.) Then we can arrange Y( . ) and define 

Ty and T, in the obvious way to achieve 

T= Ty@Tz. 

Putting (4.2), (4.4) and (4.5) into the results of Section 

Kronecker product expressions. Of particular interest is 

W = (7’,A ;‘)@(T,A,‘) 

(4.5) 

2 produces various other 

(2.25) which becomes 

+ {Ry(HTA ;lHy)-lHFA;l} @ {Rz(H~A~‘Hz)-‘HEAP’} 

- (TyA~lHy(H~A~‘Hy)plH~A~l} 

@{TzA~1Hz(H&4~1Hz)~‘HzTAZ’). (4.6) 

In the case of a saturated design, i.e. q=n which in turn implies qy=ny and 

qz = n,, the first and third terms in (4.6) cancel and the second simplifies to 

W= RH-’ + (RyH,‘)@(RZH;‘), (4.7) 

and Wis itself a Kronecker product. This result corresponds to one of the standard 

approaches to multidimensional integrals in conventional quadrature theory. A pro- 

duct rule for integrating over X combines two separate rules for integrating over Y 

and Z. The design points consist of the Cartesian product of the two sets of points 

for the component rules. Conventional rules invariably address the case Y(X) = (1) 

(which automatically satisfies our assumption about r(. ) above), in which case W 

reduces to a vector of weights. In the conventional product rule the weight vector 

is the Kronecker product of the weight vectors for the two component rules. The 
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usual justification for such rules is that if each component rule integrates exactly 

a certain set of functions of y or Z, then the product rule integrates exactly the set 

of all products of such functions. This corresponds to our assumption about h( .) 

above. (4.7) expresses conventional product rules as special cases of Bayesian 

quadrature. 

In Bayesian quadrature generally, however, we obtain this simple product rule 

form only with saturated designs. Otherwise, W is not a Kronecker product but a 

linear combination of three Kronecker products. Nevertheless, (4.6) allows Bayesian 

quadrature to be applied to multidimensional integrals using large numbers of 

points. The problem of inverting the large n x n matrix A is reduced by (4.2) to 

smaller integrals. 

4.2. Bayes-Hermite product rules 

Application to the Bayes-Hermite case is immediate. The correlation function 

(3.2) satisfies (4.1), and furthermore satisfies the more general expression 

C(ljX-X’lj) = fi Cj(lXi-X:1) = j, exP(-b(xi-Xi’>2>. 
i=l 

Similarly, the p-dimensional normal measure (3.1) not only satisfies (4.3), but is a 

product of p independent one-dimensional measures. We can therefore consider 

designs in lRp consisting of p-fold Cartesian products of one-dimensional designs. 

The simplest rules to use in practice will be products of identical one-dimensional 

rules. Using an no-point one-dimensional rule in this way produces a p-dimensional 

power rule with n = n{ points. 

Consider for instance the optimal three-point design in one dimension for the case 

b=0.5, q= 1. This sets points at x=(-1.321,0, 1.321)T. The corresponding weight 

vector for the basic integral k, is (0.2444,0.5112,0.2444). The product of this 

design with itself produces a nine-point design in two dimensions. Using (4.6) we 

obtain the appropriate weight vector for ki. The four corner points, such as 

(- 1.321,- 1.321), have weights 0.0624, whereas 0.24442 = 0.0597. The center point 

(0,O) has weight 0.2595, whereas 0.51122=0.2613. The other four points have 

weight 0.1227, compared with 0.2444x0.5112=0.1249. 
However, this is not the optimal 32 rule. Taking the case Y(X) = (l), and applying 

(4.2), (4.4) and (4.5) to (2.22) for a general power rule, the posterior variance of k is 

u = z.$- (&4;‘t#‘+ {ro(H~A~lHo)-lro}P 

- 2{r,T(HoTAo1Ho)-‘HoTAolto)P 

+ (toTAo’HO(HOTAO’HO)-‘HOTAO1t~}P, (4.8) 

where uO, to, A,, rO and HO are the appropriate quantities from the one-dimensional 

design. (to and r. are the first rows of To and R,.) 

Minimizing (4.8) shows that the optimal 3’ design is actually the square of the 
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Table 3 

Optimal power designs (-x,O,x)P for b =OS, q= 1 

P 1 2 3 4 5 6 7 8 9 10 

x 1.321 1.334 1.342 1.347 1.350 1.351 1.351 1.351 1.350 1.348 

P 15 25 50 100 200 

X 1.339 1.319 1.298 1.295 1.295 

design (-1.334, 0, 1.334). The difference is not great, and indeed the optimal 3P 

designs for a range of p given in Table 3 show that it is not really necessary to 

tabulate a different three-point design to be used for each p. The p-th powers of 

a single design like (- 1.345, 0, 1.345) will be adequate over all potentially useful p. 

The same has been found for the 4p and 5p designs. 

Table 4 gives three-, four- and five-point designs recommended for general use 

in Bayes-Hermite integration, and particularly for the Bayesian application. The 

table gives all the data necessary to implement 3p, 4p or 5p rules, for the basic in- 

tegral k. Three weight vectors are given for each rule, corresponding to the three 

terms in (4.6). The first row is &A,‘, the second is Ro(H~A~lHO))‘H~A~’ and the 

third is T,A,‘H,(H~~,‘H,)-‘H,TA,‘, except that in each case the result is a vector 

because Y(X) = (1) (so that both T, and R, are row vectors). 
The rules tabulated here are sub-optimal for various reasons. First, we have ap- 

proximated the slightly differing rules for different p (as in Table 3) by a single rule. 

Second, the rules are only optimal within a restricted class of designs. We have only 

searched among designs that place points symmetrically around the origin. It is 

possible that optimal rules do not always do this, although a few exhaustive searches 

Table 4 

Designs and weights for recommended power rules 

no=3 Design ~ 1.345 

Weights 0.234067 0.517635 0.234067 

0.422807 0.154386 0.422807 

0.416790 0.152189 0.416790 

no=4 Design - 1.780 0.564 0.564 1.780 

Weights 0.109864 0.388122 0.388122 0.109864 

0.341081 0.158919 0.158919 0.341081 

0.339707 0.158279 0.158279 0.339707 

?I,=5 Design ~ 2.167 - 1.027 0 1.027 2.167 

Weights 0.048419 0.249079 0.403860 0.249079 0.048419 

0.327462 0.040800 0.263456 0.040800 0.327462 

0.327088 0.040753 0.263175 0.040753 0.327088 

0 1.345 
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a product rule, and it is also the case that the 

optimal product rule will not typically be a power rule. These remarks are based on 

computations reported in O’Hagan (1989) and have the effect of emphasising the 

power of the Bayesian quadrature approach. The conventional method using 

Gauss-Hermite product rules employs powers of a common no-point rule for every 

p. A Bayes-Hermite rule which merely mimics this technique may be expected to 

provide improvements for every p in the same way as has been demonstrated for 

p = 1. To do so requires no more computation than Gauss-Hermite and refers only 

to a short table such as Table 4 for its implementation. The above remarks, 

however, show that further improvements may be available. Rules that are optimal 

within the full class of product rules may be computed, will be just as simple to apply 

and will require only more extensive tables. If a means can be found to compute 

rules for large numbers of points with non-Cartesian product configurations then 

further improvements may be achieved. 

5. Applications and future research 

5. I, Applying Bayes-Hermite quadrature 

Application of Bayes-Hermite quadrature requires the specification of r(. ), h( .) 

and b. Unless there are reasons to believe that f( . ) approximates to the underlying 

G( . ) times a regression model h( . )T/l wherein h( . ) takes a specific form, the 

results of Section 3.4 suggest simply setting h(x) = (1). Unlike standard regression 

models, where adding regressor variables will always improve the fit, it seems better 

to allow the very general error term e( .) to smooth out the data than to add irrele- 

vant regressor terms. The choice of b is more difficult. It is possible in principle to 

estimate b from the data, as is done by Sacks et al. (1989) in a different context. 

In the quadrature problem, their maximum likelihood estimation method would 

entail iteratively inverting A matrices numerically. A full Bayesian solution would 

require even heavier computation. We recommend b = 0.5 for the Bayesian applica- 

tion. Suitable values for other problems will perhaps also be found through simula- 

tion. 

Bayes-Hermite integration implies a choice of scale, through the simplifying 

assumption that G( .) is the standard normal distribution. The scale chosen for the 

simulated mixtures (3.4) was such that these distributions are not absurdly far from 

N(0, 1). We can expect poor results if we simulate distributions which are very far 

from normal, or whose mean and variance are far from 0 and 1 respectively. Two 

methods of choosing the scale can be mentioned. The Naylor-Smith iterative ap- 

proach is described in Smith et al. (1985). Starting from an arbitrary scale, apply 

the quadrature rule (they use Gauss-Hermite) and estimate the mean and variance 

matrix of the distribution represented byf( .) dG( . ). Use these to define a new rule, 
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and repeat until convergence. This procedure seems to work well in practice, 

although Shaw (1988) shows that convergence properties can be bad, even in nice- 

looking problems. Alternatively, whenf( . ) is differentiable we can approximate the 

mean by the mode of the densityf( . ) dG( . ), and the variance by minus the inverse 

of the second derivative of logf( . ) dG( .) at the mode. The resulting scale could be 

refined by applying one or two iterations of the Naylor-Smith scheme. 
In order to implement the Naylor-Smith iteration we require estimates of the 

mean fir and variance p2 of the distribution being integrated. In one dimension we 

can let Y(X) = (l,x,~~)~, so that k = (k,, k2, k3)T, ,D~ = k2/kl and p2 = (kj/k,) - (k2/k,j2. 
In higher dimensions Y(X) must contain all terms Xi, x;’ and XiXj. Formulae for 

posterior inference about ratios of integrals are given in O’Hagan (1989). 

5.2. Future research 

There is much scope for further research in Bayesian quadrature. We have 

remarked that the real problems in quadrature lie in high dimensions, where product 

rules become impractical. It may be possible to identify more efficient patterns of 

points in high dimensions for which Bayesian quadrature is computationally 

feasible. 

The choice of covariance structure in the Bayes-Hermite formulation is somewhat 

arbitrary. The relationship between the interpolant in such models and splines is 

well-established; see Kimeldorf and Wahba (1970). The literature in splines and 

elsewhere contains a variety of alternative formulations. A related point is that all 

such structures will have a parameter like 6, representing the degree of smoothness. 

Although the Bayes-Hermite estimate k^ is accurate for a range of values of 6, the 

posterior variance of k is typically very sensitive to 6. The Bayesian quadrature 

method offers, in principle, not just an estimate k^ but a whole posterior distribu- 

tion; in practice this will be of little value if it is too sensitive to prior assumptions. 

In the Bayesian application, assuming a normal G( . ) implies a strong prior belief 

that the tails off( .) are thin. In practice, heavier tails are quite common. Work is 

in progress on adapting Bayesian quadrature to such problems. 
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