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How greedy are the rich? In Graham Greene's
novel "Doctor Fischer of Geneva or The Bomb
Party"1 this is a question that fascinates the
despicable Doctor Fischer. He invites wealthy
guests to a series of parties where he derives
huge amusement from observing that they
appear consistently willing to suffer all manner
of indignities in order to receive expensive
presents that they, being so rich, could easily
afford to buy for themselves. For his final party
he has contrived a macabre experimental test of
his theory—extreme even by his disgusting
standards.

When they are all gathered he shows his six
guests a barrel of bran in a corner of the garden
in which are six Christmas crackers. Five of the
crackers, he explains, each contain a cheque for
two million Swiss francs. The sixth contains
enough explosive so primed as to end the life of
the person who pulls the cracker. One guest,
Monsieur Belmont, shocked by what he has
been told, says that if anyone were to be killed
then it would be murder. But Doctor Fischer
refutes this suggestion by explaining that it
would not be murder, or even suicide, but more
like Russian roulette. He adds that anyone who
does not wish to play must leave at once. At this
point another guest, Mr. Kips, announces he will
not play and gets up to leave. In spite of Doctor
Fischer telling him that there are five chances to
one in his favour Mr. Kips departs saying he
considers gambling for money highly immoral.

Then one of the five remaining guests stands
and, while pausing to gather courage to
approach the barrel, is beaten to it by another,
Mrs. Montgomery, who runs to the barrel first.

The story continues: "...Perhaps she had
calculated that the odds would never be as
favourable again.

Belmont had probably been thinking along the
same lines, for he protested, "We should have
drawn for turns" (p. 124).
© The Institute of Mathematics and its Applications 1987

When she pulls her cracker there is a small
pop and a cheque for two million francs falls out.
Belmont then pulls his cracker and also wins a
cheque.

The story continues: "What about you,
Jones?" Doctor Fischer said, "The odds are
narrowing."

"I prefer to watch your damned experiment to
the end. Greed is winning, isn't it?"

"If you watch you must eventually play—or
leave like Mr. Kips."

"Oh I'll play, I promise you that. I'll bet on
the last cracker. That gives better odds to the
Divisionaire" (p. 125). (Jones has been con-
templating suicide for several days and pities the
Divisionaire, who, despite his high military rank,
has never heard a shot fired in anger and has
been taunted by Doctor Fischer for having no
record of any act of bravery.)

Then the third cracker, which also turns out to
contain two million francs is pulled by another
guest. This leaves three crackers and two guests,
Jones and the Divisionaire, who is realising that
he is too afraia1—too cowardly—to take the risk:

"I haven't the courage. I should have gone to
the tub first, when the odds were better..." (p.
126).

The comments of the characters at the bomb
party imply that the longer you wait your turn to
pull a CTacker the more dangerous the risk
becomes. But is this correct reasoning? Is there
anything you can do in this situation to maximise
the possibility of obtaining two million francs
while at the same time minimising the possibility
of being blown to pieces?

Perhaps the first thing to notice is that while
Doctor Fischer is correct when he says the odds
on winning are narrowing after the first two
crackers are pulled, this is conditional on neither
of them containing the bomb; if the bomb had
been detonated by the first guest to take the risk,
the others could have (and no doubt gleefully
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would have) pulled the remaining crackers
secure in the knowledge that they would benefit
financially rather than be exploded. So, the
longer you wait your turn the odds on survival
shorten providing the bomb cracker is not pulled;
but a direct corollary is that the longer you wait
the more likely it is that someone else will pull
the bomb before you.

Perhaps if Doctor Fischer and his guests had
taken this factor into account their reasoning
might have been somewhat different. It is
tempting to suppose that an intermediate
position in the order, by taking some advantage
of both tendencies, might provide the optimal
solution. However, actual computation of the
probabilities shows that the chances of being
blown up are equal in each serial position; there
is therefore no advantage (or disadvantage) to
be gained by risking to be first to the barrel or
waiting till the end or by choosing any other
turn. The calculation is quite straightforward.
The first guest obviously has a 1 in 6 chance of
pulling the lethal cracker and 5 chances in 6 of
surviving. The second guest has a 1 in 5 chance if
the first guest does not blow up; the probability
of the second guest blowing up is therefore

- X - which is - . Similarly the third guest blows
5 6 6
up with a probability of - I - x - x - ) , and

6 \4 5 6/
on. In fact, for any number of guests drawing
any number of crackers in which any number
of bombs have been concealed, the position of
a guest in the queue does not affect his
probability of being blown up.

There is, however, one complication that we
have not yet considered. In the story Mrs.
Montgomery, before pulling the first cracker,
accuses Doctor Fischer of joking about the
presence of the bomb. Doctor Fischer responds
by teasing his guests about the possibility of him
bluffing them. Although he gives them his word
that the cheques are there, of the possibility that
he is only joking about the presence of the bomb
he says: "Perhaps I am. You will know by the
end of the party whether I am or not. Isn't the
gamble worth while?..." (p. 121). Now, the fact
of the bomb's existence has been made
uncertain. Under these circumstances perhaps it
pays a guest at a bomb party to think again
about when to pull a cracker. This is because if
we entertain any degree of doubt concerning the
presence of a bomb in any of the crackers then
that doubt will be fuelled the more crackers that
are pulled without a bomb exploding.

so

It is possible to represent degrees of doubt or
belief as probabilities—subjective probabilities—
which can then be incorporated in the
calculations we can perform to work out the
likelihood of surviving or blowing up at the
bomb party. For instance, suppose that we
suspect Doctor Fischer is bluffing about the
presence of a bomb but, knowing him as we do
as a man whose sense of humour is rather
abominably cruel, we are not really very sure. If
our belief in the presence of a bomb was rather
uncertain we might say the odds were even, or \.
This means that we think the chances of being
blown up are half what they would be if we were
absolutely certain that one of the crackers
contained a bomb. So the chances of the first

guest blowing up are - x - or —. But what

about the chances of the second and subsequent
guests blowing up?

Imagine you are an observer, at a whole series
of bomb parties of which half turn out to be
hoaxes. At any one party, as time goes by and
guests pull crackers without exploding, you
would start to get more confident that you are
witnessing a hoax. If we are not at a hoax bomb
party we would expect the bomb to explode

before the last cracker is pulled - of the time
6

(only - of the time will the last cracker contain
\ 6
the bomb) . But at hoax parties there is never a

bomb so while there are fewer real bomb parties
that keep you in suspense till the end, all the
hoax parties do. This means that the relative
proportion of occasions at which we witness a
bomb party and ultimately discover it to be a
hoax will increase as a function of the number of
innocuous crackers that have been pulled.

So how do we calculate the probabilities for
each guest being blown up? Implausible as it may
sound a posthumously published theorem derived
by the Reverend Thomas Bayes, a pastor who
preached at Tunbridge Wells in the eighteenth
century, provides the wherewithall to complete
the task. Bayes' theorem allows us to compute
probabilities for hypotheses (such as the likeli-
hood that we are at a real or a hoax bomb party)
providing we can state an initial belief in these hy-
potheses and the likelihood under each hypothesis
of events occurring (such as the pulling of explo-
sive or non-explosive crackers). Using Bayes'
theorem at the bomb party would tell us that our
degree of belief in the hypothesis that we are at
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a real, rather than a hoax, bomb party after one
cracker is pulled and fails to explode is reduced

from - to — (see Appendix for calculations).

After two fail to explode Bayes tells us that the
4

probability goes down to —. After three it is

3 2 1
- , after four - and after five - .
" 8 7

The probability of the second guest blowing
up can now be calculated. If there really is a
bomb in one of the crackers and // the first guest
does not blow up then the probability is

- (under these two conditions there would be

five crackers left and one will contain a bomb).
So to take these uncertainties into account we

must multiply that - by the probability that there

really is a bomb in one of the crackers and by the
probability that the first guest does not blow up.
Obviously if the first guest blows up all the others
know they are safe. Remember the Reverend
Bayes' theorem tells us that if the first guest fails
to explode, this should be considered sufficient
evidence to reduce belief in the likelihood of

of a bomb 1
tothe existence

—. - x — = — so the second guest should feel

from -

11 5 11 11
1

that there is a — chance of being exploded—if

the first guest does not explode. Remember we
said the chances of the first guest blowing up

were —, so the chances of the first guest
12

surviving must ^ . If we multiply

— by — we get the true likelihood of the second
1 1

 L, • 1 1 1 1
guest blowing up. — x — = —, the same
probability as the first guest!

By now it may not be so astonishing to discover
that all the guests have the same chance of being
destroyed. Using the same reasoning as before,
and combining the probabilities for the relevant
conditions (that of the crackers left you will pull
one containing the bomb, that the whole party is
not a hoax and that an earlier guest has not
already detonated the bomb) the chances always
work out the same So guest number three's

1 1 0 4 1 , ,
chances are - x — x — = — . Guest four s

4 12 11) 12

1 9 3 1
chances are - x — x - = —. Guest five's are

Guest six's are 1 x — x - =
12 7

1 8 2 1
- x — x - = —.
2 12 8 12

—. On the basis of probability then there is no

rationale for a preference for going in any
particular position in the order.

Perhaps it is not altogether surprising that the
characters in the story misunderstand the
probabilities at the bomb party. After all, it is
not immediately obvious that the probabilities
are as they turn out on closer consideration to
be. However, it is intriguing to note that the
author, Graham Greene, has experience of
something rather akin to the situation in which
Doctor Fischer placed his guests. In his
autobiographical book "A Sort of Life"2 Greene
records that in the autumn of 1923 he had been
reading a book which described how the White
Russian officers, condemned to inaction in
southern Russia at the tail-end of the counter-
revolutionary war, invented the game now
known as Russian roulette with which to escape
boredom. One man would place a bullet in one
of the six chambers of a revolver and turn the
chambers at random before passing the gun to a
companion who would put it to his head and pull
the trigger. Greene notes that the chances here
are 5 to 1 in favour of life (just as Doctor Fischer
had reminded Mr. Kips before he left the bomb
party).

Greene describes how, having read about
Russian roulette, he found a revolver together
with some bullets that belonged to his elder
brother. Without hesitation he took it and
walked across the local common to a remote
spot where having loaded it with one bullet he
put the muzzle into his right ear and pulled the
trigger. He describes the intense jubilation that
was provoked by the tiny click that signalled his
survival of this experience—looking at the
chamber he saw that the bullet had now moved
into the firing position, "I was out by one" (p.
94). He played Russian roulette on several other
occasions but the thrill gradually diminished:

"It was back in Berkhamsted during the
Christmas of 1923 that I paid a permanent
farewell to the drug. As I inserted my fifth dose,
which corresponded in my mind to the odds
against death, it occurred to me that I was not
even excited: I was beginning to pull the trigger
as casually as I might take an aspirin tablet. I
decided to give the revolver—since it was
six-chambered—a sixth and last chance. I twirled
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the chambers round and put the muzzle to my
ear for a second time, then heard the familiar
empty click as the chambers shifted." (p. 95)

Of course, on each separate game of Russian

roulette the chances of surviving are - .
6

However, the chances of surviving six games
(providing the chamber is spun randomly after
each game—otherwise there is no chance) are

15 625(D which is 46 656
which is just a little over

1

Russian roulette, as played by Graham
Greene, is a little different from Doctor Fischer's
bomb party even though, initially at least, the
odds "are 5 to 1 in favour of life" in both cases.
The bomb party is a case of sampling without
replacement; the guests either blow up or keep
their prize; but they do not replace the crackers
they remove. This means that as the party
progresses, providing no-one blows up (and we
have seen how significant this qualification is),
the chances of survival do indeed narrow.
Russian roulette on the other hand is a case of
sampling with replacement; here the chamber is
spun afresh each time the game is played—at
least in the version played by Green it was—and
if the gun did go off another bullet would have to
be placed in the gun before anyone could play
again. So if a group of people sat down to
play Russian roulette in this fashion we would
imagine there would be no particular preference
for going first—although, as we have shown,
there is no rational basis for going first at a bomb
party.

There are other examples of literary mention
of probability concepts being introduced by
writers with first-hand experience to advise
them. Fyodor Dostoyevsky was a Russian with a
passion for roulette. His novel "The Gambler"3

describes the absurd and desperate straits that
befall compulsive gamblers. The inspiration for
this work undoubtedly came from his own rather
traumatic episodes at various casinos throughout
Europe. The first time he played he managed to
come away from the tables with some profit.
However, after that, the usual pattern was that
he would lose every penny, pawn anything of
value and, being unable to pay his hotel bill or
buy meals, write to his wife to ask for money to
rescue him from destitution. When she sent it he
would, after settling his bills, stop off at the
roulette tables on his way to the train and again

lose everything so that he would not even be
able to pay for the ticket home.

In spite of his experiences, however, (or
maybe this explains them) he, and the characters
he describes in "The Gambler" entertain some
misconceptions about the nature of chance. In
1863, after his first, winning acquaintance with
roulette he wrote to his sister-in-law saying:
"Please don't think I am so pleased with myself
for not losing that I am showing off when I say
that I do know the secret of how not to lose but
win. I really do know the secret; it is terribly silly
and simple and consists of keeping one's head
the whole time, whatever the state of the game,
and not getting excited. That is all, and it makes
losing simply impossible and winning a cer-
tainty" (Ibid p. 11). These comments seem
rather more like symptoms of the psychopathol-
ogy of gambling than helpful prescriptive advice
to roulette players.

In the novel the narrator, Alexis Ivanovich,
attempts to advise "Grandmamma" how to stake
at roulette: "Grandmamma, zero has only just
turned up," I said, "so now it won't turn up
again for a long time. You'll lose a lot of stakes;
wait a little while." (p. 90). Of course, there is
nothing to be gained by waiting; roulette wheels
have no memory so the chances of any outcome
occurring are unaffected by the recency with
which it last occurred. As it turns out zero turns
up on two of the next three plays and
Grandmamma wins a fortune and, tragically, is
convinced that she can win again.

Although examples of fallacious reasoning are
evident throughout the book we can give
Dostoyevsky some credit for spotting fallacious
reasoning himself: "Two days earlier I had been
told that the previous week red had won
twenty-two times running; nobody could re-
member such a thing happening in roulette, and
people were talking about it with amazement. Of
course, in such a case everybody immediately
stops staking on red, and after it has come up
say ten successive times, hardly anybody at all
risks a stake on it. But at such times no
experienced player will stake on the opposite
colour, black, either. Experienced players know
the meaning of such "freakish chances." One
might suppose, for example, that after red has
come up sixteen times, on the seventeenth it will
inevitably be black that does so. Novices rush to
this conclusion in crowds, double and treble
their stakes, and lose heavily" (p. 132).

Although somewhat loosely defined this is an
account of what is now widely known as the
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"gambler's fallacy"—that is the erroneous belief
that long runs of one particular outcome must be
balanced out by a consequently stronger
tendency for the alternative outcome(s) to occur.

Reasoning with chance is notoriously perilous
and there are many cases of eminent and
respected intellects having been conned by their
own vulnerable intuitions into making mistakes.
Novelists, who have often been credited with
having greater insight than psychologists into the
motives that govern people's choices in a largely
uncertain world, can provide a useful source of
convincing and vivid descriptive accounts of
human reasoning. But, when it comes to
deciding what you ought to think, rather than

what people do seem to think, do not trust them
either.

We wish to thank Robin Iwanek and A. R.
Jonckheere for encouragement and face-saving
statistical advice during the preparation of this
paper.
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From Bayes theorem we know that:

Appendix

explode are:

x

p(H2/D) p(H2) p(D/H2)If the first cracker is pulled and does not
explode then, substituting the likelihoods and

prior beliefs ( - I gives

p(real bomb party/
first cracker fails to explode)

p(hoax bomb party/
first cracker fails to explode)

0.5

5
6

As we are either at a real or a hoax party then
the numerator and the denominator on the
left-hand side of the equation must add to one.
Thus the probability that we are at a real bomb
party given that the first cracker does not

explode is —.

Similarly, the probabilities that we are at a
real bomb party if the later crackers do not

4 3 2

i O ' 9 ' 8

1
7
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