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PREFACE

‘* Probability is the very guide of life.”

Cicero, De Natura

WV 7HEN we wish to decide whether to adopt a particular course of action,
our decision clearly depends on the values to us of the possible alterna-

tive consequences. A rational decision depends also on our degrees of belief
that each of the alternatives will occur. Probability, as it is understood here,
is the logic (rather than the psychology) of degrees of belief and of their possible
modification in the light of experience.

The aim of the present work is to provide a consistent theory of probability
that is mathematically simple, logically sound and adequate as a basis for
scientific induction, for statistics, and for ordinary reasoning. Probability is
treated as a subject in its own right, of comparable importance to the related
subjects of philosophy, statistics and mathematics. I hope there is not a dis-
proportionate stress on either the philosophical, statistical or mathematical
aspects.

_ Various authorities have attempted to eliminate the necessity for subjective
probability judgments by employing instructions that are outside the theory
adopted here. ‘These instructions are either imprecisely stated or, when they
are precise, apply only to ideal circumstances, so that they can be used only in
some unspecified approximate sense. The instructions occasionally contradict
one’s inner convictions. It is maintained here that judgments should be given
a recognised place from the start. These judgments are influenced by a free
discussion ofStandard instructions, but they are not bound by them.

The necessity for judgments occurs most conspicuously in connexion with
“initial probabilities” of hypotheses. When scientific memoir is concerned
with experimental evidence for a hypothesis, it is helpful if something is stated
about the subjective initial probability of the hypothesis. ‘To omit such a
statement gives only a superficial appearance of objectivity. The uninitiated
are liable to be misled into regarding the probability as higher than would be
claimed by the writer of the memoir.

The theory presented in the following pages follows precise rules, although
it uses subjective judgmentsas its raw material. In this respect it resembles any
other scientific theory. But the analogy with other scientific theories should
not be pressed too far, since probability is a part of reasoning andis therefore
_more fundamental than most theories.

Although probability cannot be defined entirely within the framework of
formal logic and pure mathematics it is possible to go some wayin this direction
by adopting the axiomatic method. This method makes it possible to prove
many mathematical theorems that are connected with probability, but it does
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PREFACE

not explain how these theorems are to be used. For this purpose some
philosophical interpretation of probability is required.

A condensedaccountis given in Chapter 1 of various theories of probability
which have been suggested in the past, together with some brief criticisms.
In Chapters 2 and 3 the axiomatic part of the present theory is developed.
Chapter 4 is more philosophical. It deals with the rules of application of the
abstract theory developed in Chapters 2 and 3. Some of the questions are
difficult and the answers are not entirely satisfactory, but other theories do not
seem to have given better answers. In this chapter the apparent dualism of
probability is attributed to the use of different kinds of propositions rather than
to different kinds of probability. This point of view is largely responsible for
the extreme simplicity of the formal apparatus, in spite of the generality of the
theory. Chapter 5 provides a background of elementary statistics and proba-
bility, sufficient for later use. A few important theorems are quoted without
proof. In Chapter.6 the intuitive idea of weighing evidence is given a simple
quantitative interpretation. For this purpose it is found convenient to use the
term “ plausibility” for the logarithm of odds. A gain of plausibility bears
about the same relation to an ‘‘ amount of evidence ”’ as a probability bears to a
‘“degree of belief”. The term is used in the discussion of statistics in the
last chapter.

The followingis a list of ordinary words that are generally used in this book
in a technical sense (roughly in order of their appearance): belief, you (this is
always a technical term), comparison, theory ofprobability, body of beliefs, reason-
ing, reasonable, contradiction (in a body of beliefs), probability, abstract theory,
rules, impossible, certain, almost, independence, theory (meaning ‘‘ hypothesis ”’ or
“scientific theory’ or an abbreviation for “theory of probability”), proper
theory, improper theory.

The use of the word “ reasonable as a technical term is intended to be
partly emotive—it involves a recommendation to usé the theory in practice.
Otherwise the theory would be tautological in the sense in which pure mathe-
matics is tautological.

I have of course been much influenced, directly and indirectly, by many
other writers, and, especially by F. P. Ramsey, H. Jeffreys, B. O. Koopman,
R. von Mises, J. M. Keynes and A. Kolmogoroff. I am indebted also to
Dr. A. M. Turing and Professor M. S. Bartlett with whom I have hadseveral
illuminating conversations. After reading the manuscript, Professor Bartlett
felt that the treatment was not always quite fair to the orthodoxstatistical theory
‘and I have attempted to rectify this. Dr. A. M. Turing, Professor M. H. A.
Newman and Mr. D. Michie were good enoughto read the first draft (written
in 1946) and I am mostgrateful for their numerous suggestions. I am grateful
also to the publishers who have been most helpful at every stage.

I. J. GOOD
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CHAPTER 1

THEORIES OF PROBABILITY

“I would rather feel compunction than understand the
definition thereof.” Tuomas A KeEmpis

1.1 Logical notation

Weshall not delve deeply into ordinary logic. The symbols E, F, G, H, E'
etc. will denote propositions. A proposition is defined ¢ to be a statement

for which it is meaningful to assert that it is true or that it is false. (The
meaning of “‘ meaning ”will not be discussed.[) A proposition may be simple

or complicated, it may refer to past, present or future and to a real or imaginary

world. It will not contain a reference to probability, at any rate not before

probability has been defined.

The negation of FE will be denoted by “ £”(read ‘not Z”’); the con-

junction of E and F by “E.F”(read “ FE and F”’), and the disjunction by

“Ev iF” (read “Eor fF”). ‘The disjunction is true if either E or F or both

are true. Thenotation may be extended to conjunctions and disjunctions of

more than two propositions.

1.2 Degrees of belief

Our theory of probability is concerned with those mental phenomenacalled

““ degrees of belief ”’ (i.e. “‘ states’ of more or less belief). Some people use

the word “ belief” in a sense which precludes the use of the phrase “ degree

of belief”. ‘They would say that they either believe so-and-so or that they

do not. That it is sensible, however, to talk about degrees of belief, at any rate

in some circumstances, can be shown by considering a simple example. My

belief that it will rain to-morrow is more intense than mybelief that the roof

above me will collapse. To say that the first degree of belief is greater than

the second is another way of saying the same thing. To prevent misunder-

standing it may be noticed further that to say that one degree of belief is more
intense than anotheris not intended to meanthat there is more emotion attached

to it. What is meantis sufficiently shown by the above example: a complete

definition can hardly be produced.
It will not be assumed at the outset that degrees of belief can be measured

t+ See Hilbert and Ackermann, 1946, 3. (The references are at the end of the book.)
{ It seems to the writer that there are ‘“‘ degrees of meaning ’’ and hence that there

are sentences for which it is difficult to decide* whether they are propositions. Such
“partial propositions ” often occur in the pioneering work on new scientific theories.

1



1.2 PROBABILITY AND WEIGHING OF EVIDENCE

numerically, in spite of the word “degree”. For short they will often be
called simply “beliefs”. A belief depends very roughly on three variables :

the proposition ‘ believed”’ (say E), the proposition assumed (say H),t and
the general state of mind (111) of the person whois doing the believing. This

person will be described as “-you”’. 2 depends on who “ you” are and on
the momentof believing. It will be convenient to use the symbol B(E | H : M1)

for this belief, and it may be read ‘‘ your (degreeof) belief in E if H is assumed,
when yourstate of mind is 1”. It will be written B(E | H) when 1 is taken
for granted. It is important to realise that H need not be knownto be true;
B(E | H: 1) is your estimate, when your state of mind is It, of what your

degree of belief in E would be if you knew A to betrue.

As an example suppose that H is deducible from ordinary logic (i.e. it is

an ‘“‘ analytic proposition’) and that E is an empirical proposition about the

material world. It is then by no means obvious that any meaning can be
attached to B(E| H: 1%). In order to feel convinced that B(E | H: IM) has
a meaning when FE is empirical most people would consider that H also should
involve a certain amount of empirical information. It will be assumed at any —

rate that B(E | H: 11) does sometimes mean something.

A belief BCE | H: 31) is subjective in the sense that it depends on 2.

Keynes and Jeffreys { assume that there is a “ reasonable ” (degree of) belief

which is independent of 11%. This may be called an “ objective” belief.§

They call it a probability and it depends only on E and H. Thenotation used
by Jeffreys is P(E | H). This meaning for “ probability ” is not quite the same

as the one that will be adopted here. It is true that a probability will soon
be defined roughly as a reasonable belief, but it will be maintained that reason-

ableness does not necessarily imply complete objectivity.

It is perhaps hardly necessary to admit that no precise definition will be

given of a belief. Instead it will be taken as a primitive notion. The present

work may be regarded as an analysis of properties of this notion rather than

as a definition.

It is possible for one of yourbeliefs B(E | H:: XY) at a given time to be more

intense than another one B(E’ | H’: I’) at some other time. This too will be

taken as a primitive notion and will be denoted by B(E | H: 11) > BCE’ | A’: M1’)
ot by B(E’ | A’: i’) < B(E|H:™). The symbols “>” and “<<” may

+ Loften asserts that an event has happened or will happen, while H is often regarded

as a hypothesis. But this is unnecessary : we regard E and H as arbitrary propositions.
t See Keynes, 1921, and, for example, Jeffreys, 1939.
§ The words ‘‘ subjective ” and ‘‘ objective ’’, when applied to theories of probability,

have often been used to mean theories that depend respectively on degrees of belief
and on the idea of frequency. ‘These words will not be used here in this way.

An objective degree of reasonable belief is called a ‘‘ credibility ’’ by Bertrand Russell
in Human Knowledge (London, 1948),

2



THEORIES OF PROBABILITY 1.3

be read “is more intense than” and “‘-is less intense than’, respectively. It
will. not be assumed that any two beliefs can be compared in this way, even
though they are both associated with the same person. Similarly if there are

examples of equal intensity the symbol ‘“‘ = ” will be used. An “‘ inequality ”

or “ equality ’”’ between beliefs will be called a comparison betweenbeliefs. Such
a comparison, unlike a single belief, is expressed bya sentence containing a

verb. There may be no objection to regarding it as a proposition, but the
point is not of immediate importance.

1.3. Purposes of a theory of probability

Ordinary logic seems to be inadequate by itself to cope with problems
involving beliefs. In addition a theory of probability is required. Such a
theory is defined here as a fixed method which, when combined with ordinary

logic, enables one to draw deductions from a set of comparisons between beliefs
and thereby to form new comparisons.t A set of comparisons betweenbeliefs

will be called a body of beliefs and will be denoted by a symbol such as “ 3”

or “‘%’”. Thus the immediate purpose [ of a theory of probability is to

enlarge 3. ‘ .
A fixed theory of probability together witha fixed theory of logic will be

called reasoning.

A reasonable 83 will be defined as one such that when it is submitted to the

processes of reasoning no contradiction emerges. By a “ contradiction” is

meant here a pair of comparisons that are formally contradictory when the

Y's are omitted, e.g.

BE | H: i) > B(E’| A’: ™,), BCE | H:%M!,) < B(E’ | H’: MM).

Observe that the meaning of “‘ reasonable ”’ depends on the system of reasoning

and in particular on the theory of probability that is used. The use of the

word may therefore be regarded as consistent with ordinary usage if and only

if the system of reasoningis itself reasonable in an ordinary sense. A necessary

condition for this is that the longest period of time between any pair of the

t's must not be too great. It is hardly to be expected that “ your ” judgments
would remain quite constant over a long period of time. But if the periods
which are involved are short, then the sort of consistency mentionedis a natural
requirement.

The beliefs involved in a reasonable 8 will be called probabilities § and

+ Cf. Koopman, 1940. The phrase “‘a theory of probability ’ will also be used
with its ordinary vague meaning, and which meaning is intended should be clear from
the context. .

t The question of how probability may be used as a guideto rational behaviour will
be considered in 5.2.

§ If there are any meaningless symbols B(E | H) the corresponding probabilities may
be given conventional meanings. ‘Thus a probability is a reasonable belief if there is one,-
and is otherwise something introduced for theoretical convenience.

3



13 PROBABILITY AND WEIGHING OF EVIDENCE.

the symbol B will be replacedby P. The symbol It will be omitted so that

we are back to Jeffreys’ notation P(E | H). The use of this notation does not

imply that a probability is independent of who “you” are. In any given ,
application ‘‘ you” are supposed to remain the same person throughout.

Whenit is desired to bring 8 into evidence Py (E | H) may be written instead
of P(E | H). The particular theory of probability will not be mentioned in

the notation.

Weshall assume that a ¥% is reasonable until it proves to be unreasonable.
So weshall always use the symbol P rather than B, though this notation is

strictly justified only for beliefs involved in a reasonable 3. If a contra-

diction is reached it may mean that @ has been too hastily formulated and

that it contains a comparison that can be crossed out.on more mature con-

sideration.

The comparisons in a body of beliefs are bound to be subjective judgments

if no theory of probability has been applied. They may becalled probability

judgments (if it is assumed that 3 is reasonable). ‘The possibility of probability
judgments of a more general type will be discussed in Section 4.12.

A probability theory, being a fixed procedure, lends a certain amount of

objectivity to your subjective beliefs. If comparisons can be deduced from a B

that is “‘ empty” (i.e. contains no comparisons) then the comparisons may be

described as objective.t Similarly an objective theory of probability is one that

is designed to work with empty bodies of belief, i.e. without using bodies of
belief at all. It seems unlikely to the present writer that a generally applicable

objective theory can be constructed,{ in spite of claims which others have

implicitly made. (It should perhaps be emphasised that the phrase “ theory

of probability” is here being used in the sense defined at the beginning of

this section.)
An analogy can be drawn with formal logic, in which new proposition$ can

be deduced from a given body of propositions. In geometry, new relations

between points, lines and planes can be deduced from a given set of such

relations. A similar property is possessed byall scientific theories.

In order to build up yourbeliefs it is theoretically sufficient to use reasoning

only, without collecting empirical information.§ But in practice this would

take too much time : you may beinterested in whether £ is true but not inter-

ested in P(E | H) until H becomes an observational fact.

ce a3+ Perhaps a better description would be constructibly objective.
{ It would first be necessary to invent a special language in which statements could

be made without any ambiguity of meaning. In ordinary language such statements are

rare and perhaps non-existent. (See also 4.11.)
§ But some experience of the real world may be requirediin order to understand the

meanings of EF and H.
4



THEORIES OF PROBABILITY 1.3A

1.34 The ‘‘ axiomatic ’’ method

It is advisable to digress for a momentin order to discuss what is meant by
the ‘‘ axiomatic’ method in mathematics. It consists in stating a number of
assumed relations between various things which are denoted by words or

symbols. ‘These relations are called “axioms”, and all the mathematical
results are deduced from them. In the course of these deductions nouse is
made of the meanings of the words or symbols; in fact, it is unnecessary to

assume that they have any meanings. The position is different when the

theory is applied to practical problems.
The method has been successful in all branches of mathematics and in

formal logic. Its advantages are that the mathematics depends only on
mathematical assumptions and that new assumptions, either mathematical or
non-mathematical,are prevented from creeping in. The axioms are often
born in someconcrete interpretation of the undefined words or symbols. But

the structure is strengthened by cutting it away from its origins, since the

number of assumptions is thereby decreased.
The method will be adopted here for the treatment of probability. The

development from the axioms alonewill be called the abstract theory. Besides
the axioms it is necessary to have a set of rules by which the abstract theory

may be applied. The word “ rulés ” will nearly always be used in this sense.
An axiomatic theory should always be supplementedby set of clearly stated
rules, if it is to be directly applicable. This condition has not often been

satisfied in the past.

The question arises how to select a suitable theory. It must belogically
consistent and, more generally, it must never force you into a position that

after mature consideration you regard as untenable. (This would happen if a
body of beliefs becameclassified as ‘‘ unreasonable ” while not containing any
judgments that could be conscientiously removed.) The theory should be
applicable to most of the practical problems concerning degreesof belief, and it
would be convenient for it to apply also to idealised problems.t

If the axiomatic method is used it is advisable that the axioms should be
simple and should involve a minimum of assumptions. In order to arrive at
a system of axiomsthe classical theories may be used as a guide, especially
as it is known that these theories have led to much the same general struc-
ture for the subject as a whole, though not always bystrictly logical steps.
Hence it will be convenient at this point to consider some well-known
theories.

+ This last condition will be partially sacrificed in order that the axioms should
involve fewer assumptions. (See the remarks about ‘‘ complete additivity ” in Sec-
tion 3.3, pages 22-3.)

5



1.4 PROBABILITY AND WEIGHING OF EVIDENCE

1.4 Some theories of probability

Theories of probability may be cross-classified in at least four ways :—

(a) The theory may or may not be dependent on a system of axioms.

(b) Each probability may or may not be defined, orf assumedto exist, objec-

tively, i.e. independently of the views of particular people.

(c) The emphasis may be on degrees of belief or on the frequency with

which things happen. In the latter case the theory is normally described as

a frequency or statistical theory.
(d) Probabilities may or may not be associated with numbers.

Several special theories will now be considered. There are manyothers,
but the ones outlined are fairly representative. My intention is to give a good

general picture rather than to mention all the important work. Theclassifica-

tions following each heading are supposed to be those which the adherents

of the theories would accept.
(i) The Venn limit.t (Classification: non-axiomatic, objective, statistical,

numerical.) Imagine that an experiment { or “trial” is repeated an infinite

numberof times. ‘Then the probability of a ‘‘ success ”’ is defined as the limit
of the proportion of successes in the first 2 trials when n> oo. It is assumed
that the limit exists. Of course the infinitude of experiments cannot actually
be carried out and has to be regarded as an unattainable ideal. When the

definition is restated in a finite form the superficial appearance of objectivity

becomes less convincing. This finite form is as follows. “‘ The probability of
the success of an experimentis p if, given e > 0 and 7 > 0, there exists n,
such that if 2, > m) the proportion of successes in x trials differs from p by

less than ¢ whenever my <n < n,, with probability greater than 1 — 7.” Notice

that the definition is now circular. 14 can be taken so small that the phrase
‘probability greater than 1 — 7” can be replaced for practical purposes by

“ certainty”’. This does not mean logical certainty but expresses an intense
degree of belief. A supporter of the theory does not need to refer explicitly

to degrees of belief. Instead, whenever he applies the.above theorem he can

make a definite prediction. But presumably he would not do this unless he
did have an intense degree of belief.

(ii) The “‘ irregular collective” of von Mises. (Axiomatic, objective, statis-

tical, numerical.) The theory proposed by von Mises § is similar to the Venn
limit but it avoids the difficulty of the definition being essentially circular by

using the axiomatic method. Like any form of the frequency approach it can

t Venn, 1888. In essence this theory dates back at least as far as the seventeenth
century. (See a quotation of Jacob Bernoulli’s in Uspensky, 1937, 106.)

jf The words ‘‘ experiment ”’ and “ trial ”’ will always be used in a very general sense.
§ R. von Mises, 1936 and 1945,

6



THEORIES OF PROBABILITY 14

be applied only to experiments that can be conceived as one of a large class of
similar experiments. von Mises deliberately restricts the theory of probability

to such experiments. A central position in his theory is occupied by the
“ irregular collective ’’ which will now be briefly described. Suppose that an

infinite sequence of experiments is performed, andlet “ successes ”’ be denoted

by 1 and “ failures”” by 0. The results may thus be represented by a sequence
of 0’s and 1’s such as 11010010 .... Such aninfinite sequenceis called
an irregular collective if it has the following properties :—

(x) The proportion of 1’s in the first m terms tends to a limit as n> oo.

The limit may be called the probability, p, of success.

(8) More generally, if any subsequence is selected by means of a well-
defined set of rules, such that the question whether the mth term is selected

is a function only of the previous m — 1 terms, then the proportion of 1’s in
this subsequencealso tends to p. (In von Mises’ formulation the “ function ”

is a function of m only and does not depend onthefirst m — 1 elements of the

collective. We prefer the present formulation since it expresses better “ the
impossibility of a gambling system ’’.)

Starting from these and similar assumptions it is possible to develop a

detailed abstract theory. The methodof applying this theory is to regard
long sequences of trials as ‘‘ approximately infinite”. This is equivalent to

a judgment depending on degrees of belief and has the disadvantage of not
being expressed in a precise form.

From the point of view of psychology any frequency approach has the

advantage of being to some extent related to conditioned reflexes. For example,

a dog will apparently regard a light signal as a probable indication of food

provided that the signal has been followed by food in a high proportion of

previous cases. .
(iii) The definition by equally probable cases, together with the ‘‘ principle of

t+ The question whether a sequence is an irregular collective depends on how the
set of rules is defined. If the rules are defined in an unsuitable manner there would
be no irregular collectives. For reasonable definitions we should expect irregular
collectives to “‘ exist’: but we should not want them to be mathematically constructible,

since they would thereby lose an essential intuitive property of ‘‘ randomness”. Some
of the alleged disproofs of the existence of irregular collectives are based on the assumption
that they are constructible. We add some further comments for the benefit of the reader
who is familiar with point-set theory. Consider those sequences of 0’s and 1’s in which
the proportion of 1’s in the first 2 terms tends to p. Then it can presumably be proved,
in the sense of Hausdorff fractional dimensions, that almost all of these sequences are
irregular collectives, provided that the numberof rules for determining subsequencesis

enumerable. ‘This enumerability is a natural requirement, since there are at most an

enumerable number of rules which can be laid down in a sentenceoffinite length using

an unambiguous language. (For the theory of fractional dimensions see, for example,
Hausdorff, Math. Annalen, 79 (1918), 157-79.) When p = 3, Lebesgue measure is
adequate. (See also Copeland, Trans. Am. Math. Soc., 43 (1937), 333, and Wald,
Ergeb. math. Kolloqu. Hamburg, 38 (1937), 38-72.)

7



1.4 PROBABILITY AND WEIGHING OF EVIDENCE

insufficient reason’? or “‘ the principle of cogent reason”’, (Non-axiomatic, objec-

tive, non-statistical, numerical.) Suppose that when somehypothesis H is true
there are exactly 2 equally probable “ alternatives’’ and that a proposition

E is necessarily true for m of them andnecessarily false for the remaining ones.
Then “the probability of E when H is assumed ”’ is defined as m/n. In order

to apply this definition it is necessary to be able to judge (or to know) that the
various alternatives are equally probable. For example, if the hypothesis H is
that we have a well-shuffled pack of playing cards and that the top card is drawn,

then we maypossibly judge that each of the 52 cards is equally likely to turn

up. Therefore the probability that the card is either the ace or the two or the

three of hearts is ;8;. A method of judging that two cases are equally probable
is by the “ principle of insufficient reason ’’, i.e. the two cases are equally

probable if there is no conceivable reason to expect one rather than the other.
Such a judgment is liable to be made when there is some sort of symmetry,

and the principle invoked is then more accurately described as “ the principle

of cogent reason’’.t But there will always be some difference between the

two cases in any practical example, and it will be necessary to decide that

the differences are unimportant. For example, it might be argued that a card
with more print on it is likely to be slightly heavier and that this upsets the

symmetry. The rules for deciding when such departures from symmetry are
important have never been clearly stated.

Several probability experiments have been made with theintention of

showing that the theories (i) and (iii) give the same results when they are both

applicable. Such experiments have usually given goodresults, but they cannot

prove anything.
The conflict between definitions (i) and (iii) is an old one. Those who

define probability in terms of equally probable cases say that the frequency
with which things happen cannot be fundamental since it can only modify

previously known probabilities. ‘Their opponents reply that these probabilities

could themselves have been based only on previous experience in any real

problem (since complete symmetry is unobtainable). ‘They may also say that

the principle of cogent reason is itself a generalisation from experience.

On the whole the frequency approach seems to be more popular among

physicists. But E. C. Kemble (1942) considers thatit is inadequate for problems

occurring in statistical mechanics, though justifiable in some circumstances.

(iv) Jeffreys’ theory. (Axiomatic, objective,t non-statistical, numerical
(essentially).) This is similar to theory (iii) but it uses the axiomatic method.
Nodefinite distinction is drawn between the axioms andthe rules of application
of the theory. Jeffreys considers that for a given proposition or “event” E

+ See A. Fisher, 1922.

} See classification (6) on page 6 and a footnote on page 2.
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and for given hypotheses H,there is only one reasonable degree of belief, and
that any two such degrees of belief are comparable. He obtains a numerical
theory and provides suggestions (rather than axioms) for obtaining the numerical
probability for a numberof problems. In all these problems it is necessary to

apply the principle of cogent reason, and therefore the criticism of definition(iii)
still applies. A comprehensive account is given by Jeffreys (1939).+

(v) The definition by point-set theory. (Axiomatic, numerical.) It is
possible to represent the results of most scientific experiments by a finite set

of measurements,i.e. by a point in a finite-dimensional space. The probability
that the result of the experiment will be a point belonging to a particular set
in this space can be taken as the “ measure” of this set, where the measure

may be interpreted inthe Lebesgue sense, or in any of a numberof other senses.
In this way it is possible to establish an abstract theory of probability. This

method wasfirst used by Kolmogoroff (1933). (See also Cramér (1937).) The
appropriate measure has to be decided upon before the theory can be applied,

and this choice of measureis equivalent to a judgment of equally probable cases.

This point is made by Jeffreys (1939), 302. If Lebesgue measureis invariably

used the theory becomes self-contradictory.{ Whether the method is an
axiomatic form of method(iii) depends on the rules given for its application.

(vi) Probability defined as a “‘ proportion of possible alternatives” .§  (Non-
axiomatic, objective, neither statistical nor dependent upon degrees of belief,
numerical.) This definition is ambiguous since there is no unique way of

defining the “ possible alternatives ”’, and different results are obtained accord-

ing to the method used. Suppose, for example, that it is known that of a set

of three billiard balls the two white ones are kept in one drawer and the red

ball in another drawer. One of the drawers is opened and ballis selected.
Whatis the probability that it is the red one? It might be said that there are
exactly three alternatives since there are three balls, so that the probability

is 3. Or it might be said that there are two alternatives since there are two

drawers that can be opened, and the drawer that is opened determines the
colour of the ball selected, so that it is unnecessary to split the alternatives up
any further. This would make the probability 4. (Cf. Jeffreys (1939), 301.)

t It may be mentioned in passing that what Jeffreys calls ‘‘ convention 2” really
amounts to an extra assumption. For it can be used to prove that a “‘ perfect ’’ seven-

sided die has less probability of giving a 6 than an ordinary die—a result not otherwise
deducible from his axioms. The trouble can be removed by replacing the equalities
in his axiom 4 by inequalities.

t The invariable use of Lebesgue measure would be equivalent to an uncritical use
of “ Bayes’ postulate’. (See 5.3.)

§ This is called the “finite frequency theory’ by Bertrand Russell, loc. cit., 368..

W. Kneale, in Probability and Induction (Oxford, 1949), expresses the opinion thatit is
only in terms of some such theory that objective probabilities can be considered to exist.
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1.4 PROBABILITY AND WEIGHING OF EVIDENCE

If the numberof alternatives is infinite the position is even worse, since it is
meaningless to talk about a proportion of an infinite number of things, unless
a definite limiting process is specified. The definition might be made applicable
if a set of rules could be given for deciding on a uniqueset of possible alterna-
tives for every example. But such a set of rules seems unlikely ever to be

produced.

(vii) Ramsey's theory.| (Axiomatic, not entirely objective, neitherstatistical
nor dependent only on degrees of belief, numerical.) In this theory expected
benefit is taken as a more fundamental idea than degrees of belief. Degrees

of belief are defined in terms of expected benefits instead of the other way
round as in most theories. (In any case a scale of values or “ utilities” must
be assumed.) It is not clear whether Ramsey’s method is always justifiable

in the applications to purely scientific problems. At least it suggests the
possibility of extending our “ body of beliefs’ so as to include judgments of
the type that one expected benefit is greater than another one.

(viii) Koopman’s theory.{ (Axiomatic, not objective, non-statistical, non-

numerical at first.) ‘The essence of this method is given byits classification.

It is not supposed to be applicable without using what we havecalled a “ body of
beliefs’. Koopman deduces a numerical theory for a class of problems, from
a more general non-numerical theory. He has been much influenced by the
work of J. M. Keynes (1921) whose theory may beclassified thus: axiomatic,

objective, non-statistical, non-numerical (in general). Keynes in his turn: was
influenced by W. E. Johnson’s lectures and conversations. In 1931 Keynes

admitted § that he no longer adhered to an objective theory. Butit is possible

to salvage the formal apparatus of his theory.

(ix) Orthodox statistical theories.|| (Axiomatic, objective, statistical, numeri-

cal.) Any theory with the classification shown may be called an orthodox
statistical theory. Hence this class of theories includes von Mises’ theory (ii)
as a special case. It also includes theory (v) if that theory is interpreted in
terms of what happens “in the long run”. There is a considerable choice in

the form of the axioms of an orthodoxstatistical theory, and it is not at all

necessary that they should depend on ideas akin to that of the irregular collec-

tive. But most of what weshall say would apply equally well to theory (ii).

Any orthodoxstatistical theory is a scientific theory in almost exactly the
same sense as geometry: there is a rigorous mathematical theory and a non-
rigorous technique for applying the theory. Degrees of belief are not a part

of the theory, but they are used when the theory is applied, just as they are used

+ F. P. Ramsey, 1931, Chapters 7 and 8.
} See Koopman, 1940.
§ Essays in Biography (London, 1933), 300.
|| See, for example, Bartlett, 1940, or Reichenbach, 1932.
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when any other scientific theory is applied. A probability in the theory is
regarded as something objective, like the distance between two points.

Bartlett’s view is that it is valuable to have two separate theories, one for
degrees of belief and the other for objective probabilities.t My view is that
if a single theory covers both the objective and subjective aspects so much the
better. Thus, while admitting the importance of the practical distinction
between objective probabilities and reasonable degrees of belief, I consider that

each objective probability is at the same time the only reasonable degree of

belief. (This is discussed in more detail in 4.9.) The advantage of two separate
theories is to emphasisethe distinction between the objective and subjective

aspects. But I find it philosophically more satisfying and more economical to
have a single theory. I consider that in the last resort one must define one’s

concepts in terms of one’s subjective experiences. (This does not necessitate

philosophical solipsism.) The opposite view is that degrees of belief can be

interpreted only by the methods of experimental psychology.

The orthodox statistical theories do not deal with the problem of scientific

induction, but rather they need to be justified by induction. This problem of

induction is a problem of whatto believe, and for it a theory of degrees of belief
is appropriate.

An important property of the theories(i) to (ix) is that they cannot be applied
without the use of judgment, so that really none of them is objective in any

absolute sense. An advantage of Koopman’s theoryis that it is made quite

clear what sort of judgments are to be used. The theory in the present book

is similar to Koopman’s, but the axioms and the development of the abstract
theory are simpler. In order to achieve this simplicity some sacrifice has to

be made. The sacrifice is that it is assumed in the axioms thatprobabilities
correspond to numbers; but this assumption is not completely used in the

applications. ‘The theory adopted has the classification: axiomatic, not neces-

sarily objective (though objectivity is not ruled out), non-statistical on the whole,
not entirely numerical.

For the benefit of those who are familiar with Jeffreys’ theory, a few remarks

showing the relation between his theory and ours will not be out of place.

Our theory resembles that of Jeffreys in the use of the symbol P(E | H). This

symbolis, however, given a double interpretation, only one of which is numerical.

(See 4.1.) The following are the main differences between the two theories :—
(a2) Our emphasis is on the comparisons between beliefs, thereby avoiding

the necessity of making judgments of exactly equal intensities of belief.

(b) The beliefs in any problem are regarded as depending on the individual

concerned..

+ This dualistic view is shared by Nagel, Carnap and Koopman. See, for example,
the excellent reviews by Koopman in Math. Rev., 7 (1946), 186-93.
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1.4 PROBABILITY AND WEIGHING OF EVIDENCE

(c) There is a splitting into axioms, rules and suggestions, as explained in
Chapter 4. This shows clearly what parts of the theory depend on pure

mathematics and logic only and what parts can be varied according to taste.
Given the primitive notion of a comparison between degreesof belief, the rules

of application are absolutely precise. This is not true of the “ suggestions”,

but these are not an essential part of the theory.

(d} There is no dependence on the principle of cogent reason. Any

apparent application of this principle is in reality a subjective judgment which
is made without direct reference to any central authority. Similarly there

will be subjective judgments that may appear to be concessionsto the frequency

definition, but which are really a result of a familiarity with a theorem corre-

sponding to this definition. Some such mixture of the two classical approaches

is the way in which most people have used probability for the last 300 years.

It is therefore claimed that our theory is more closely related to practice than

are most theories of probability.

12
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‘CHAPTER 2

THE ORTGTY OF THE AXIOMS

2.1 The purpose of this chapter)ts to show that the axiomsstated in Chapter3
are not chosen in a haphazard manner. The arguments will not be very rigorous.

The plan is to take theory (iii) of Section 1.4, the “ definition”’ by equally

probable cases, and to apply it to a class of problems in which it may well be

judged that various events are equally probable. Such problems are provided

by someidealised games of chance. Our methodis thus closely related to the
historical development.

It is equally possible to provide a rough justification by using theories

(i) or (v). The method chosen has the advantage of avoiding infinite sequences

of trials and advanced mathematics. The main result of the chapter will be

to suggest two axioms, known as the laws of addition and multiplication.

With theory (i) both laws would be simple theorems; by contrast, when

probabilities are interpreted as degrees of belief, attempts have been made to

show that these laws are mere conventions. (See, for example, Schrédinger,}
1947. But see also the footnote in 1.4 (iv) concerning Jeffreys’ “‘ convention

2”.)
Further remarks about the @ priori justification of the axioms will be found

in 4.1A.

Before carrying out the main plan of the chapter we shall consider how far

it is possible to go by relying only on what is intuitively “ obvious’.

‘2.2 Two “ obvious ”’ axioms

Let E,, H,, E, etc. be various propositions, and for short write p, for

Px(E, | H,), p, for Ps (E, | H,), etc. Here p, and p, do not represent numbers,

but are simply symbols for degrees of belief. Now it may happen that one of

the comparisons belonging to 3 is that p, is greater than p,,i.e. that the belief

in E,,*when H, is assumed, is more intense than the belief in FE, when H,is

assumed. In this case we may say for short that & includes “p, > p,”’.

Equally 3 may include “ p, > p,”. On the other hand, p, and p, may not be

comparable in 3.
There are now two axiomsthat are virtually forced upon us. Thefirst is

that “ p, > p,”’ and “‘ p, > p,”’ are not both parts of B,or if they are then &

+ Schrédinger’s argument depends largely on the very natural assumption that the
probability of the disjunction of a numberof mutually exclusive propositions is a function
of the separate probabilities. (See also Appendix III.)

13



2.3 PROBABILITY AND WEIGHING OF EVIDENCE

must be regarded as unreasonable.t The second is the “ transitive’ property

of the relation “‘ >”: if p; > p, and p, > p, are both parts of B, then p, > ps
may be added to & (if it is not already included).{ Like the first axiom this
may lead to a contradiction.

These two axiomsare notable in virtue of their obviousness. It does not
seem to be possible to develop a useful axiomatic theory of probability without

using some axioms that are less obvious than these two. In this respect
probability differs from classical formal logic. "

In the next section we shall talk about probabilities that are judged to be
‘equal’ (i.e. equally intense), This is not meant to imply that such judg-
ments are necessarily possible in practice (except between logical certainties
and impossibilities). It is merely part of the plan mentioned at the beginning

of the chapter.

For the rest of this chapter the word “ probability’ will be used in the
sense of the “ equally-probable-cases ’’ definition.

2.3. Definition of numerical probability by judgment of equally probable
alternatives

Two propositions A and JA’are said to be “ mutually exclusive given H ”
ot ‘‘ incompatible given H”if A.A’ is necessarily false on the assumption that

HT is true. A numberof propositions are said to be “ exhaustive given H”

if one of them must be true when is true.

Let A,, Ay, .. ., An be m propositions that are mutually exclusive and

exhaustive given H. Suppose further that they are judged to be equally

probable (given H). This judgment is of course part of the body of beliefs,
B. Let

E=A,VA,vV...VAn (O<m <n).

Then we define Pg(E|H) or P(E | H) as m/n. In words, “ the probability
of E given H is the proportion of equally probable alternatives in which EF is

true given 1”. Essentially this is a restatement of the definition of 1.4 (iii).
The possibilities m = 0 and m = n correspond to propositions E which are

respectively impossible or certain given H. In fact, if # is any proposition

which is impossible or certain given H, we can express E in the aboveform,

and thus show that its probability is 0 or 1. For we may take n = 1, A, = H,
m=0Q0, or m=n=1, A, = H=E respectively.

There are two immediate criticisms of the definition. The first is that

t+ This is essentially a repetition of a point made in Section 1.3.
t If 3 is enlarged in this way so as to become “transitive ”, then it may be regarded

as a “‘ partially ordered system’. See G. Birkhoff, Lattice theory (Amer. Math. Soc.,
1940), chapter 1. Partial ordering is an essential part of Keynes’s theory. Jeffreys,
in the preface to the second edition of Probability (1948), erroneously asserts that Keynes

withdrew the suggestion of partial ordering in his Essays in biography. (See 1.4, viii.)

14
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there may be no way in general of expressing any given proposition FE in the
required form. ‘The second is that there may be more than one way, and the

corresponding values of P(# | H) may not be equal. The answerto the first
criticism is that we are at present restricting our attention to those cases in
which the alternatives A,, Ag, .\Ay can be found. As regards the second

criticism, we propose to assume, merely as a plausible hypothesis, that Py(E | H)
cannot have two different values, provided that 3 is sound. This is of course

not an additional assumption if the A’s are unique.
It is impossible to prove that the definition is in any sense the right one.

It is a simple and natural method of correlating numbers with degrees of belief
in a class of ideal cases, and it is very nearly obvious that it has the effect of

assigning larger numbers to more intense rational degrees of belief. Any
monotonic function of m/n could be chosen instead and would have the same

property, but the effect would be to complicate the theory unnecessarily. This

possibility of choosing an arbitrary monotonic function is related to the question
of whether the definition is only a convention.

2.4 Example

In order to be convinced that the definition just given has any significance

it is advisable to consider an example.

Imagine an ordinary pack of playing cards that has been well shuffled
and placed face-downwards on the table. There is no special reason for

' supposing that, say, the three of hearts is more likely to be the top card than
the seven of spades. If there is such a reason for somereal pack of cards we

could imagine the pack to be replaced by a “ perfect’ pack in which there is
no such reason. Itis difficult to believethat this would force us into an unten-

able position. Suppose then that we are dealing with such a perfect pack.
The object here is not to obtain approximations for the probabilities in the °

case of a real pack, but merely to show that there are ideal circumstances in which

the definition of 2.3-can be applied.t

For simplicity suppose that the cards are numbered from 1 to 52. Let

A, be the proposition that the top card is number 7. Let H be a physical

description of how the experiment is carried out. The description must not

be too complete, since the very notion of probability depends on an assumption

of partial ignorance. (Weare ignoring here the insoluble problem of “ deter-
minism ” versus “indeterminism”’.) As it happens it is usually impracticable

to provide a description that is so complete as to make a precise prediction

t+ If the present chapter had been based on the frequency definition it would also
have been necessary to consider idealised problems, since this definition involves infinite
sequences of experiments. Which idealisation is regarded as more natural is a matter
of taste.
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possible. H may be thought of roughly as “the pack is very well shuffled ”’.
Let % consist ofthe assertion that 4,, Ay, . . ., Ase, areall equally probable givenH.

It can now bestated, for example, that the probability that the top card is’
black (given H) is 4.

The reader would have no difficulty in inventing other examples, using

perfect coins, dice or roulette wheels, in which the natural numbersof alterna-

tives are 2, 6 and 37 respectively.

2.5 The law of addition of probabilities

Suppose that with the assumptions of Section 2.3,
E=A,vA,vV ...VAn (0<m <n),
F=AniiVvVAmt2¥- ++ V Amer (mtr <n).

Clearly FE and F are mutually exclusive and P(E | H) = m/n, P(F | H) =r/n.
Moreover

EvF=A,vA,v...VAmVAmi1¥ . ++ VAmien

so that P/Ev F| H) = (m+ 1)/n, ice.

PEvVF|H)=PE|H)+PF|E). .. (D
This is called the law of addition of probabilities. It is essential that E and F
should be mutually exclusive (given H).

There is no difficulty in extending equation (1) to the disjunction of more
than two mutually exclusive propositions.

Exercise. When is it legitimate to put E = F in equation(1)?

Example. Consider the well-shuffled pack of cards already mentioned.

Whatis the probability that the top card will be either a diamondor the ace of
spades? These two events are mutually exclusive and have probabilities
+ and = respectively. Hence the required probability is the sum of these
numbers, i.e. 34. This may be at once verified from the original definition.
On the other hand, the probability that the top card will be a spade or an ace
is not } 75, for this time the events are not mutually exclusive.

2.6 The law of multiplication of probabilities .

Let E and F be any two propositions that are expressible as a disjunction of

the A’s, where the A’s and H are defined as before. Without loss of generality
it may be supposed that

E=A,vA,v...VAm (O<m<n),

F=A,VA,vV...VArpVAmy1V AmteV .. + VAmis (7 Sm, m+s <n).

(£ and F can be put in this form by renumbering the A’s if necessary.) Then

, E.F=A,vA,v... VA,
Therefore P(E.F|H)=r/n. Moreover P(E |H)=m/n and in order to
reach our objective, namely equations (2) below, it remains to prove that
16
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P(F| E.H)=r/m. Now A,, A, .-.., Am are equally probable given H,

and if in addition we know that E is true, i.e. that one of A,, Ag, . . .. Am is

true, then it is very natural to assume that A,, A,, . . ., Am remain equally

probable since the additional information is symmetrical with regard to these
propositions. In fact we shall suppose that part of 3 is that A,, Ay, ..., Am

are equally probable given E.H. Now A,, A,, . . ., Am are mutually exclusive
and exhaustive given LE.Ho Therefore Pa(F | E.H)=r/m, as asserted.

Thus
P(E.F | H)= P(E| H).P(F\ EA). . . (2)

This is the law of multiplication of probabilities.t If H is taken for granted
(a practice that is apt to be misleading) we could write { for short P(E.F)

= P(E). P(F | E), or, in words, “the probability of the conjunction of two
propositionsis the product of the probability of the first with that of the second

given the first”. It may happen that # and F are “‘ independent” § given H.

In this particular case the equation (2) takes the simpler form

P(E.F|H)=P(E|H).P(F| A). . . (2A)

Exercise. When is it legitimate to put E = F in this formula?

2.7 Example

Two “ perfect’? dice are thrown. What is the probability of obtaining
two sixes ?

Let us suppose that a beginner has a body of beliefs which includes the

following judgments.
(a) The six possible results of the first throw are equally probable.

(b) The 36 possible results of the pair of throws are equally probable.

(c) The probability of a 6 on the second throw is increased (or decreased)
by a knowledge that the first throw resulted in a 6.

The judgment (5) gives 5/g as the answer to the problem. On the other hand
the judgments(a) and(c), together with the law of multiplication of probabilities,
give a result that is either greater or less than =1;. Hence the body ofbeliefs is
inconsistent with a formal use of the law of multiplication.

2.8 Continuous probabilities

In the definition of 2.3 a probability was necessarily measured bya rational

number. Such probabilities may be sufficient for all applications to the real

world, but they are not sufficient for some types of idealised problems. Asa
simple example suppose that a decimal is chosen between 0 and 1 in such a

t+ The aboveproofs of the addition and multiplication laws may easily be generalised
to propositions E and F which do not imply Z.

t But see the second paragraph of 3.2.
§i.e. if one is assumed the probability of the other is unaffected.

17
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2.8 PROBABILITY AND WEIGHING OF EVIDENCE

way that each of its digits is judged to have an equal and independent f prob-
ability of being one of the numbers0, 1, 2, ..., 9. An infinite number of

choices must be imagined. Within the framework of any standard theory of
probability, this is equivalent to the selection of a*point P on a line AB of unit
length in such a way that for each fixed length the pointis equally likely to lie

in any interval of that length. (In these circumstances P is said to ‘‘ have a

uniform distribution of probability over AB”’.) It is then easily proved that
if CD is a sub-interval of positive rational length then the probability that P

- will lie in CD is equal to the length of CD. It is natural to supposethat this
applies even if CD is irrational.{ This showsthat it may be convenient to

allow irrational numbers to represent probabilities. Another peculiarity of this

problem is that the probability of P being exactly at the given point D is zero.
(This is the degenerate case in which C and D coincide.) Butit is not logically

impossible that this should happen. We therefore introduce a new definition.
If P(E | H) =0 we say that E is almost impossible. given H. Impossibility

implies almost impossibility but not conversely. Almost certain can be defined

in a similar way.§

Ideas of this sort occur frequently in problems in which probability depends
on position in space or time. In practice we can measure space and time only
to a finite number of places of. decimals, but it is often simpler to imagine that

the measurementsare capable of being equal to any real numberof units. If we

were satisfied to deal only with entirely practical problems it would hardly

be necessary to distinguish between impossible” and “ almost impossible ”’.

There are other types of problems in which these ideas are convenient,
namely when infinite sequences of trials are imagined. Some important

examples will occur in the sequel.

ce

tT i.e. not depending on a knowledge of any selection of the other digits.
} This can be formally proved by assuming axiom 1 and theorem 13 of Chapter 3.
§ These definitions are suggested by standard terminology in the theory of ‘‘ measure ”’,

and they have been used by previous writers.
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CHAPTER 3

THE ABSTRACT THEORY
SS

3.1 The axioms

The notation of 1.1 will be used, and it will be taken that the propositions
E, H etc. never involve probabilities or beliefs. A symbol H* is introduced
which is supposedto represent allthe usual basic assumptions of logic and pure

mathematics. (It is conceivable that H* is not expressible in a finite number
of words, but it will be regarded as a proposition.) Any proposition that is

implied by H* is called “logically true”’ or “certain”? and its negation is

called “ logically false” or “impossible”. A logically true propositionis also
known as an.“ analytic proposition”. There is a difference of opinion as to

the meaning of a “ proposition”, as to what should be included in H* and as
to the meaning of implication by H*. No attempt will be made here to decide

these questions : a different theory of probability will correspond to each possible

answer. For any two propositions E and F, “EF implies F” means that

Ev F is a logically true proposition.
Symbols of the form “ Pg(E| H)” = “ P(E | H)”are introduced. They

are read “‘ the probability of E given H (and assuming 3)” and are otherwise
undefined. Within the abstract theory the word “ probability” should not

be interpreted in termsof beliefs.

The axioms are numbered Al to A6.
Al P(E| #)is a non-negative real number.
A2 If P(E.F | H)=0, then P(Ev F| H) = P(E | H) + P(P| HA).
A3 P(E.F| H)= P(E| A). P(F | E.#A).
A4 If Eand F arelogically equivalent(i.e. if they imply one another) then

, P(E | H) = P| A) and P(A | E) = P(A | F) for any H.
A5 P(H*| H*) +0.
A6 P(E*| H*) =0 for some proposition E*,

Remarks

.. (i) When the definition by equally probable cases can be applied in order
to define (as a rational number) all the probabilities that occur, then, as in

Chapter 2, we can deduce axioms A2 and A3 together with 0 < P(E | H) <1,

P(H* | H*) = 1 and P(H* | H*)=0. Thelast three deductions clearly imply
Al, A5 arid A6, which are therefore preferable on grounds of economy. Finally

t Some variations of language will occur. For example, the words “‘ given”’ and
“assuming ’? may be interchanged,
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3.1 PROBABILITY AND WEIGHING OF EVIDENCE

A4 is suggested directly by the interpretation of probability as a reasonable
degree of belief.

The axioms are formally suggested but are not proved by Chapters 1 and 2.

There are perhaps less restrictions than before on the propositions E and H,

and the question of self-consistency is therefore more pressing now. This

question will be discussed in 3.4 and 4.14.

(ii) A4 enables us to write, for example, P(E | H.H*)= P(E|#H). It
would be wrong to regard A4 as entirely obvious when interpreted in terms

of reasonable beliefs. A possible modification of this axiom will be considered

in 4.13.
(iii) The “ obvious” axioms of 2.2 are automatically satisfied in a sense

to be described.

It will be seen in the next chapter that full use is never made of the assump-

tion that the probabilities of the abstract theory are numbers. But the

assumption has the great merit of simplicity. If one numerical probability is

greater than another one, say P(E | H) > P(E’ | H’), then in theapplications this

is interpreted in the natural way in terms of reasonable beliefs. It is in this

sense that the “ obvious” axioms aresatisfied. But this interpretation in

terms of beliefs does not belong to the abstract theory and further discussion

of it is postponed until the next chapter.

(iv) Chapter 2 suggests that logical certainty and impossibility shouldbe
represented by probabilities of 1 and 0 respectively. Accordingly it might
have been assumed that

(a) if H implies E then P(E | H)= 1,
(b) if H implies EF then P(E | H) = 0.

But these two axioms would lead to trouble. For they give P(E | £.£) = 0

and also P(E | E.E)=1.t It may be possible to avoid this contradiction by

insisting that in the expression P(E | H) the proposition H should neverbeself-

contradictory. A more formal method of avoiding the difficulty is provided

by the adoption of A5 and Aé6.

(v) In all this work the symbol ¥ is taken for granted. It may be thought of
as a set of inequalities and equalities between (numerical) probabilities, but its
exact form is unimportant as far as this chapter is concerned.

(vi) The developmentof the abstract theory must follow the rulesofordinary

logic and pure mathematics. Hence we could, at this stage, hardly allow the
propositions E, F, H, etc. to involve probabilities. This is the reason for the

convention at the beginning of the chapter. To what extent this restriction
may be relaxed is an interesting question. If it were entirely relaxed it would

enable us to write P(E | H.%) instead of Pg3(£|H), and this would at once
suggest an extension of the axioms. The resulting theory would have some

3 { The proposition E.E implies both E and E.0 :
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convenience, but it would also be confusing and might even be self-contradic-
tory. The question is mentioned again in 4.9.

(vii) The practical significance of the axioms will not appear until Chapter 4.
The whole of the abstract theory can be deduced from the axioms without

relying at all on any interpretation of probability.

(viii) The\ choice of axioms is related to the historical background of the

subject, but no\attempt will be madeto trace this aspect of the matter. Other
sets of axioms'can be used instead.t One such set will be given in 3.4.

(ix) The axioms are equally strongly suggested by a point-set approach.

(Cf. 1.4 (v).) For example, suppose that E is the proposition asserting that the
result of an experiment consists of a set of real numbers, which, regarded as a

point in n-dimensional space, belongs to a certain measurable set of points ©.
Define P(E) as the measure of the set © divided by the measure of the whole

space, assuming the denominatorto befinite. Define P(E | H)as P(E. H)/P(A)

if P(H) + 0. Let the set corresponding to H* be the whole space. All the
axioms can be proved with these definitions and restrictions. ‘This lends

support to the self-consistency of the axioms. In some idealised problemsit

may be convenient to allow the whole space to have infinite measure and to

define P(E) simply as the measure of ©. This leads to a slightly different

abstract theory in which certainty is represénted by infinity instead of by

unity. (Cf. Jeffreys (1939), 21 and 114.)

3.2 Definitions

The definitions, like the axioms, are suggested ‘in part by Chapter 2.

The symbol { P(Z) may be written as an abbreviation for P(E | H*) and
may be read “the probability of FE”. If P(E)=0, E is almost impossible

and if P(#) = 1, E is almost certain. +
If P(E.F | H)=0, E and F are almost mutually exclusive given H. If

P(E. F) = 0, E and F are almost mutually exclusive. If every pair of Fy, F,,

E,, . . . are almost mutually exclusive (given H), then E,, E,, Es, ... are

almost mutually exclusive (given H). —

If P(F| E.H)= P(F|H), then F is independent § of E given H. If
P(F | E) = P(F), F is independent of E. If each ofa finite set of propositions

E,, E,, E3, . . . is independent of the conjunction of any number of the

rest (given H) then E,, E,, Ey, . . . are independent (given H).

The object of these definitions is to make the statements of the theorems

+t See, for example, C. D. Broad, ‘‘ Hr. von Wright on the logic of induction (II) ”’,

Mind, 53, 1944, 97-119.
t This should not be confused with the ‘‘ misleading ” notation of 2.6, 5.1 and

elsewhere.
§ It might have been better to call this condition almost independence ”’ to dis-

tinguish it from other meanings of the word “‘ independence’. But the above definition

is unlikely to cause confusion.
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more concrete and therefore easier to grasp and to remember. But the phrase

“EF is almost impossible (given H)”’ will usually be avoided because its sys-
tematic use would be rather monotonous. The equation “ P(E | H)=0”

will be written instead, andit is left to the reader.to interpret this in accordance
with the definition of almost-impossibility if he wishes to do so. Similarly the
phrase ‘‘ almost certain” will often be avoided.

3.3. Theorems

The first eight theorems depend only on axioms Al to A4.

Tl If F is independent of EF given H, then
P(E.F | H) = P(E | A).P(F | A). (1)

This is an important special case of A3.
Tla If either P(E | H) = 0 or P(F | H) = 0 then the equation (1) holds

without the assumption of independence. (Proof by Al and A3.)

T2 If #,, E,, ..., E, are almost mutually exclusive given H, then

P(E, VE,v...VE,| H)=P(E,|H)+ P,|A)+...+ PE, | A,
and the two propositions E,v E,v ...v E,_1 and E, are almost mutually

exclusive.

’ The two parts can be proved simultaneously by induction. The theorem
is true when = 2, by A2. Suppose it is true when x» =m. Thenit is

sufficient to show that EF, vE,v...VE, and E,,; are almost mutually

exclusive given H. Now if i andjare less than m+ 1,

P{(E;. Em41) (Ej. Em+1) | A} = P(E; Ej. Em+1 | Hf), by A4,
= P(E;.2n41| A).P(E; | Ej-Em41.), by A3,
= 0,

since E; and £,,,1 are almost mutually exclusive given H. Therefore

P{(Ey. Emi) V (E-Emti)V «+ + V (Em. Em+1) | HY
= P(E,.Em41|H) + P(Ey-2mi1| H+... + P(Em.En+1|H);

by the inductive hypothesis, and each term of this sum is 0. Thus by A4,

P{(E,VE,V ... V Em). Ens | H} = 0
as required.

It is impossible to prove a result corresponding to T2, for an infinite number

of propositions. If such a result is required at must be assumed as an axiom.

If £ is the disjunction of an enumerable set of almost mutually exclusive

propositions E,, E,, E3, .. ., it is easy to prove, using T13, that

P(E | H) > P(E,|H)+ P(E,|H)4+ ..., if PA) +0.

The additional axiom would replace the inequality by an equality. Such a
new axiom is not essential but it has applications in some types of idealised

problems. As a matter of fact it is not required if it is assumed that

P(EnV EntiV¥ Entov...|H)—>0 as no.

This assumption would be a natural one in any application thatis likely to arise.
22
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The additional axiom maybecalled the axiom of complete additivity.t With
its help it can be proved for example that for any infinite sequence of proposi-
tions F,, Fy, Fs, . . .;

PF,VPF,VF,v ...)=limPv Pav... Vv Fn),
and ”

P(F,.F,.F,. ....) = lim P(P,. PF... . . Fn).
n

The axiom of complete additivity correspondsto a similar property of point-sets
that are measurable in the Lebesgue sense. Hence it could be introduced
without serious risk of inconsistency; but in the present book it will never be

used except as a mathematical convenience, and with the understanding that

its use could be avoided.

T3 If F is independent of E given H, then E is independent of F given H,
assuming that P(F | H) + 0..

Proor. P(E.F| H)= P(E| H).P(F|H) by Tl. But
P(E.F | H)= P(F | H).P(E| F.A) by A3.

Therefore by equating these two values of P(E.F'| H) we obtain
P(E | #.H) = P(E | A) if P| A) +0.

This theorem may bestated: “If F is independent of £ and F is not almost

impossible, then E and F are independent (given H in each case).” (See the
last definition of 3.2.)

T4 For any finite set of propositions E,, FE, Es, . .

P(E,.E,.E;. ... |) = P(E, | H).P(E,| £,.H).P(E,| E,.E,.H)...
(Proof by induction from A3.)

T5 If the finite set of propositions F,, E,, E5, . . . are independent given

HY, then

P(E,.E,.E,...|H) = P(E,| H).P(E,| H).P(E;|H)...
This is a special case of [4 or may be proved by induction from T1.

Example. Suppose that E and F are independent, F and are independent,

and Gand EF are independent (given Hineach case). Then it does not follow that
P(E.F.G|H) = P(E | H).P(F | H).P(G| H).

To see this intuitively let the propositions E, F, G be defined as follows :-——

E: Smith has green eyes.
F; The next man you meet will be Smith.
G: The next man you meet will have green eyes.

No attempt will be made to specify H and 3.

In this example E.F.G = F.G so that
P(E.F.G | H) = P(F.G| H)

= P(F | H).P(G| #).
This is not equal to P(E | H).P(F | H).P(G| A) in general.

t Cf. Fréchet, 1937, 22; Cramér, 1937, 9; Kolmogoroff, 1933, 13.
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3.3 PROBABILITY AND WEIGHING OF EVIDENCE

T5a The formula of T5 applies if any of P(Z,|H), P(E,|H),...
vanishes, without the assumption of independence. (Cf. T1a.)

T6 Bayes’ theorem. If E is a variable proposition and F and H are fixed,

then

P(E|F.H). .
PE} is proportional to P(F'| E.H),

assuming that P(E | H) + 0 and that P(F | H) + 0.

Proor. P(E | H).P(F| £.H)= PL.F | HA)
= P(F | H).P(E | F.H).

Therefore :
P(E|F.H)  P(F|E.H)
P(E|H)  P(F| A)’

assuming that P(E | H)+ 0, P(F| H)+ 0. The result follows at once.
There has been a great deal of dispute about the validity of this theorem

and about its applicability. If we think of the various E’s as being a set of

possible theories (or hypotheses) and F as a proposition describing the results

of some experiments, then we may regard P(E | #) as the initial or prior proba-

bility of the theory E and P(E | F.H)asits final or posterior probability.t The
theorem maythen bestated: ‘“‘ The ratio of the final to the initial probability
of a theory { is proportional to the probability (given FE and A) of the ‘observed
results of experiments.’ More will be said about Bayes’ theorem in other
chapters.

Before going on to theorem 7 the reader should consider what happens to

theorems1 to 6if His replaced by H*. He will find that theyall take a simpler

form in view of the definition of P(E).

T7 If E implies F and P(E) + 0, then P| £) = 1.
For P(F | E). P(E) = P(E.F) = P(E) by A4.
COROLLARIES
(i) P| A)=1 if P(X) +0.
(ii) If H* implies H then P(H) = 1, ie. if H is certain then it is almost

certain.

(iii) P(H*) = 1. (This sharpens A5.)

T8 If P(Z) = 0 then P(E | H) = 0 assuming that P(H) + 0.
For P(E | H).P(H) = P(E.) = P(E).P(A | E) = 0,ete.

T9 If A implies E then P(E| H) = 0 if P(A) +0. In particular if E
is ‘impossible’ then it is almost impossible. (The converse could hardly
be true. This is intuitively clear in virtue of Section 2.8.) .

 

+ See Jeffreys, 1939, 29, and von Mises, 1942, for discussions of the terminology.
ft In ordinary language a distinction is drawn between “‘ hypotheses ”’ and “ theories ”’ ;

hypotheses are improbable theories. This distinction is inconvenient for us and will
be dropped. (See ‘‘ Theory ”in the index.)
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Proor. £E.H is a logically false proposition, and so by the definition of
“implication” it follows that E.H implies any proposition. In particular
E.H implies E*. (See A6.) Now let us suppose that T9is false, i.e. for some

Eand H, P(E | H)+0. Then P(E.H) = P(E | H).P(H) +0. Therefore by
T7, P(E*|E.H)=1. But by A6 and T8, P(E* | E.H) = 0, and this is a ‘
contradiction. So P(E | H)=0.

, COROLLARIES
(i) If P(A) + 0 then P(E.£ | H) = 0 (for E.E is logically impossible). In

particular P(E.E)= 0.
(ii) Let the phrase“ E and F are mutually exclusive given H”’ mean (as

in 2.3) “ H implies the negation of E.F”. Then if E and F are mutually

exclusive given H,it follows that E and F are almost mutually exclusive given
Hy, assuming that P(H) + 0.

(iii) Corollary (ii) may be extended in the obvious wayto a finite set of
propositions FE, E,, E3,... Thus the word “almost ’’ may be omitted in

the statement of T2, if P(H) + 0.

T10 If P(H)+0 then P(EvE|H)=1. In particular P(E v £) = 1.
For H implies E v £, whatever H may be, and the theorem follows from T7,

Til If P(H)=+ 0 then P(E | H) + P(E| H)=1. In particular
P(E) + P(£) = 1.

Proor. By T10, P/Ev E|H)=1 and by T9, cor. (i), E and E are
almost mutually exclusive given H, so the theorem follows by the addition

law A2.

COROLLARIES
(i) If P(E|H)=0 then P(E|H)=1 and vice versa, assuming. that

P(H) + 0. .
(ii) If F is independent of EF given H and if P(E.H) + 0, then F is inde-

pendent of E given H. (The condition P(E. H) + 0 implies P(H) + 0, by A3.)

T12 If P(H)+0, then 0 < P(E | A) <1.
The first half of this inequality is simply Al. To prove the second half observe

that by T11, |
P(E| H)=1— P(#| A) <1,

by Al again. (The assumption P(E | H) > 0 has not previously been used.)

T13 Suppose that Z implies F. Then P(F | H) > P(E | H), assuming
that P(A) +0.

Proor. If P(E | H) = there would be nothing to prove. On the other

hand, if P(E | H) + 0 it may be shown,to begin with, that P(F'| H)=- 0. For
suppose PF | H)=0. Then

P(E | H)= P(E.F | H) by A4,
= P(F|H).P(E| F.A)
= 0, by Al,
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and this is a contradiction. Thus P(F|H)+ 0. Therefore
P(F.H) = P(H).P(F | H) by A3,

+ 0.
Therefore, by T12, P(E| F.H) <1. But

a P(E | H) = P(E.F | H) by A4,
= P(F | H).P(E | F.#).

Therefore P| H) > P(E | #).

Definition. Any finite set of propositions E,, E,, Es, . .. such that

P(E, V E,vE,;v...|H)=1 is called almost exhaustive given H. If H
implies E, v E,v E,v .. . then we say (as in 2.3) that Ey, Ep, By, . . . are

exhaustive given H. In this case they are almost exhaustive given H if P(H) + 0,
in virtue of T7.

T14 If the finite set of propositions E,, E,, E,, . . . are almost exhaustive

given H and almost mutually exclusive given H, then

P(E, |H)+ P(#,|H)+...=1.
This follows at once from T2.

T15 If E is equivalent to EF, vE,v ... VE, where E,, E,, .. ., E,are

n mutually exclusive, equally probable and exhaustive propositions given H,
where P(H) + 0, then P(E | H)=m/n. (This follows from T14 and T2.)

This theorem was to be expected in virtue of Section 2.3. Observe that it

does not prove the existence of probabilities other than 0 and 1. Thus the

possibility is left open that every proposition can be proved or disproved by

“pure thought”. (But see the second “ suggestion” in 4.3.)

T16 If P(A) + 0, then
PV F|H)+ PE.F| A)= P(E| A)4+ P| &).

Proor. Observe that Ev F is equivalent to Ev F.£,t so
P(Ev F| H)+ P(E.F | H) = P(Ev F.E| H)+ P(E.F| H) by A4,

= P(E|H)+ P#.E|H)+ P(E.F|H) by A2
and T9, ‘

= P(E| H)+ P(F.Ev F.E|H) by A2, T9 and
A4,

= P(E| H)+ P(F| A) by A4.
The above theorem is a generalisation of the addition law A2.

COROLLARIES

(i) If E and F are both almost certain given H, then E.F is almost certain
given H, if P(H)+0. (This follows neatly from T12 and T16.)

 

Tt We are using the convention with regard to the omission of brackets which is
analogous to that used in elementary algebra, a conjunction being the analogue of a
product.
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(ii) If E,, E,, . .., E, are almost certain given H, then so is their con-

junction, if P(H) = 0. (By induction from cor. (i).)

(iii) If all the numbers P(E, | H) are either 0 or 1, then the formula of TS
holds. (Follows from cor. (ii) and T5a.)

(iv) P(E, vE,v...vE,|H) <P(,|H)+ Pe,| W)+...+ P(En| A)
if P(H) +0. The case m = 2 is clear from T16 and the general result follows
by induction.

(7) P(Ey.By . . . Eq|H) > 1— P(E,| )— PB HW)... ~ PB, | H),
if P(H) + 0.

For P(E,.E,... |H)=1—P(EE,.~~~ | H) by TH,
—1—P(E,vE,v ... | H) by A4,
>1— P(E, | H) — P(E,| H)— . . . by cor.(iv).

T17 The probability of a disjunction. (Poincaré, 1912.) If Ej, E,, Bs,...

is any finite set of propositions and P(H) + 0 then

P(E, VE,VE,v...|H)

=D,P|) — D>,PesEs|H) + )'PE_E;.E;| H) —
r<s r<s<t

This theorem is a further generalisation of the addition law, and it can be

proved by mathematical induction from T16. It is often useful in difficult
calculations.

T18 The probability of a logical combination of propositions. Let E,, E,,

E;, . . ., Ey be m propositions that are independent given H where P(H) + 0,
and let P(E,|H)=p(r=1, 2,..., 2). Let E be any combination of

E,, E,, Es, . . ., En by means of conjunctions, disyunctions and negations.

Then P(E | H) can be expressed as a function of p,, py, . - -, Pn

Proor. Let F,; (s=1, 2, ..., 2”) represent the various conjunctions

similar toE,.£,.E;. . . . Ey, in which each term may or may not benegated.
It is an elementary theorem - in symbolic logic that E can be expressed as a

disjunction of someor all of the propositions f;. Now the propositions F

are mutually exclusive. Therefore P(E | H) can be expressed as a sum of
termsof the type P(F; | H), by T9,cor.(iii). Finally P(F; | H) can be expressed
as a product; for example,

P(E,.E,.E3... . E,| H) = p(1 — pe)(1 — ps) . - - Dn

If any of the factors p,, 1 — p,, 1 — ps, . . «5 pn is zero, this is an immediate

consequence of T5a. Otherwise it follows from T5 and T11. It is necessary
to know that E,, E,, £3, .. ., Ey, are independent given H. This may be
proved by an inductive argument, usingT'11 and its second corollary, together

with the assumption that none of the factors is zero.

t See for example Hilbert and Ackermann, 1946, 16.
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Example. To find P(E | H) where E = E,v (E,.E;). Here

E = {(E,.E,.2,) v (E,.Ey.E5) ¥ (Ey. 2,. Es) v (Ey. £2. 2,)} v ((E,. Ey. £5) _

v (£,.£,.E3)}
— (E,.E,.E;) v (E,.E,.E3) v (E,.E,.E) v (E,.£,.£,) v (E,.E,.£,).

Therefore

P(E | 1) = PiPobs + PrPo(l — bs) + Pi(l — Pa)Ps + Pi(l.— Po)(1 — Pa)
+ (1 — pi)po(l — ps)

= py + (1 — p:)p.(l — Ps).

The same result could be obtained by observing that F is equivalent to

E, v (E£,.E,.E5).

CoROLLARY. ‘The same methods may be applied even if Ej, Fy, ..., Ey,

are not independent, provided that their probabilities (on the given evidence)

are all 0 or 1.

To see this it is sufficient to use T16, cor. (iii), instead of TS.
This corollary may be used for the construction of “ truth tables ”’ in formal

logic. Thus, in the previous example the formula p, + (1 — p,)p.(1 — ps),
with p,, Ps, Ps all equal to 0 or 1, can be used to construct the truth table for
the logical expression E, v (E,.E;).

T19 Let Ey, Ey, . . ., E, be independent given H, where P(H) + 0, and

suppose that P(E, | H) = P(E, | H) = P(E,|H)= ... =p. Let F repre-
sent the proposition that exactly 7 of the E’s are true, the other (n — r) being

false. ‘Then

PE | H) = (")prl — pyr,

east

Proor. The proof is essentially the same as in the last theorem. F can

where () is the binomial coefficient

be expressed as the disjunction of (*) propositions of the form

Eym,-Emy- + + +» Em,-Em,..-Em,oye + = + Emrel 49"

where m,, ™g, ... Mm, is some permutation of the suffixes 1, 2,..., n.

These (") propositions are all mutually exclusive and the probability of each

of them, given H, is p"(1 — p)*"". The result follows from T9, cor. (iii).

T20 Let the infinite sequence of propositions (“trials”) E,, Ey, ... be
independent given H, where P(#) + 0, and suppose that P(E, | H) = P(E, | H)
=...=p. Let Fy». be the proposition that

lf, —pl <e, [fati—Ppl<e..., lfm —pl|<e,

where f, is the proportion of true propositions amongst E,, Ej, . . ., E, (with

28



THE ABSTRACT THEORY 3.3

similar definitions for f,,1 etc.). Then for any given positive’ numbers ¢ and

t, there exists m such that

P(Fame|H)>1—t

for all m > 1.

This theorem + corresponds to the frequency definition. An outline of the

proof will be given. Observe that, for sufficiently large n,

P(Fn,m,¢ | 1)

>Pilfp—p)<n-t. |fi4r—p)<(@+1)+....[fn—pl<m-?|

>1— D>,Pup — P| > y-#| H) by T16 cor. (v).

It can be shown, by using T19 together with some analysis,{ that

Pf, — P| >9-# | H) < Ky,
where K depends only on p. The theorem now follows at once.

If the axiom of complete additivity is assumed this theorem can be shown

to be ‘“‘ equivalent’ to a theorem due essentially to Borel,§ that it is almost
certain that the proportion of “‘ successes” in the first n “trials” tends to p as
n—> oo. Since an infinite numberof trials cannot be completed in practice
there is much to be said for T20 in spite of the complicated wording. This
exemplifies a point made above in connexion with the axiom of complete

additivity, namely that it is mathematically convenient but is not essential for

the applications.
A similar result to T20 could of course be proved corresponding to von

Mises’ assumption concerning subsequences. (See 1.4, ii.)

Summary. A fairly detailed theory has been deduced from six purely

formal axioms. Within this abstract theory there are results corresponding
(verbally) to the two classical definitions of probability. ‘The correctness of

the theoremsdoes not depend on any philosophical interpretation of probability.

+ There is a very similar theorem due to Cantelli. See Uspensky, 1937, 101. A
result usually known as “‘ Bernoulli’s theorem ”’ is the special case of T20 with m = n.

t Cf. M. Fréchet, 1937, 217-22. The analysis is not trivial. It depends on the

v

approximation of > (“era — p)’-? by means of an error function. (See 5.3.)

r=s8

Chapter 5 of Fréchet’s book contains an account of generalisations of T20 due to F. P.
Cantelli, A. Kolmogoroff, A. Khintchine and Paul Lévy. See also W. Feller, 1945.

§ See Fréchet, 1937, 216 and 228-31. Any two mathematical theorems are‘“‘ equiv-
alent.” in the sense of A4. Here we mean that the number of mathematical steps
required is not large.
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3.4 An alternative set of axioms

Consider the axioms:

Bl P(E) is a non-negative number,

B2 P(Ev F)= P(E) + P(F) if P(E.F) = 0,
B3 if E implies F then P(F) > P(£),

B4 P(H*) + 0,
B5 P(E£*) = 0 for some proposition E*,

together with the definition

P(E | H) = P(E.H)/P(H) if P(H) + 0.

These are all consequences of the previous abstract theory, and it is easyto see,

conversely, that they imply axioms Al to A6 if ‘‘ almost impossible’ proposi-

tions are not allowed to occur to the right of the vertical stroke.
The self-consistency of the axioms B1 to B5 is seen at once by imagining

all propositions to be true orfalse and calling their probabilities 1 or 0 respec-

tively. ‘This does not prove the self-consistency of the system of axioms

obtained by adding an axiom to the effect that there is at least one proposition

whose probability is not 0 or 1.

The new set of axioms is more economical than the old set. But Chapters 1

and 2 do not directly suggest the new axioms. The symbols P(E) etc. corre-
spond to those beliefs that are most liable to be regarded as meaningless,t

and the probabilities that are easier to interpret as reasonable beliefs are intro-

duced merely by way of a definition. It is for this reason that we preferred to

start from axioms Al to A6. Of course these axioms also involve numerical

values for symbols like P(E) where E is empirical. It may therefore befelt
that they achieve too much, for they attach a meaning to a probability that

may not correspondto a reasonable belief. But this does no harm; in fact it
is actually an advantage since the use of symbols like P(£) simplifies the calcula-
tions in some problems. (The reader should refer back to the modified defini-

tion of probability given in a footnote to 1.3. See also the remarks about

““unobservables ” in 4.4.)

+ Cf. 1.2.
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CHAPTER 4

THE THEORY AND TECHNIQUE OF PROBABILITY

** Tt is no paradox to say that in our most theoretical moods
we may be nearest to our most practical applications.”

A. N. WHITEHEAD

Tue abstract theory of the previous chapter is a branch of pure mathematics

in which it is unnecessary to attach any non-mathematical meaning to the word

“ probability’. Once an abstract theory has been developed there arises the

highly controversial question of how the theory is to be applied. This question

forms the subject-matter of the present chapter. It will be necessary to restore
the meaning of “ probability’ that was given in 1.3.

It will be convenient to distinguish between ‘‘ axioms”, ‘“‘ rules” and

“suggestions”. ‘The axioms are the assumptions of the abstract theory. The
“rules? connect this abstract theory with actual or hypothetical judgments
concerning degrees of belief. These rules are listed in 4.1. The deductions
from the combined axioms andrules constitute the ‘‘ theory of probability ”’.

Finally the “ suggestions ” are natural modes of procedure for forming bodies

of beliefs. Some of them are given in 4.3. There is no compulsion to accept
them in order to be able to use the theory. The consequences of accepting the
axioms, rules and suggestions may becalled the “ technique of probability ”’.
This technique will not be completely defined since no completelist of sugges-
tions will be given.

The suggestions emerge from a familiarity with the theory and applications

of probability. For example, any general theorem of the abstract theory may

influence what ‘you regard as correct to assert as your own B. It is therefore

impracticable to list all possible suggestions.
A drawback of some existing theories is that they are not “theories”’ in

the above sense; i.e. the axioms, rules and suggestions are not distinguished.
This makes it difficult to separate any large part as belonging entirely to the

realm of logic and mathematics. _

The trichotomy into axioms, rules and suggestions is perhaps the ideal form
for any scientific theory. ,

4.1 The ‘rules ”

(i) An expression of the form P(E | H) is given a double interpretation.
First it is regarded as a number subject to the axioms of the abstract theory,

and second as a reasonable belief in E when H is assumed, if this belief has
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any meaning. There is no necessity to insist that H should be known to be
true; in fact the applications would thereby be muchrestricted.

(ii) Relations like P(E|H)>P('|H), P(E| HA < PE|),
P(E| H) = P(E’| H’) also have two interpretations. They may be regarded
as ordinary arithmetical relations, or else as assertions that one reasonable

belief is (for example) more intense than another, provided that you consider
that both sides of the comparison have a meaning. (Cf. 1.2.) The possibility
is not ruled out that the theory will throw up some meaningless comparisons.

(iii) A body & of beliefs consists of a set of inequalities and equalities
between probabilities. Someor all of these may be written down by a person’s
direct intuitive judgment, or they may simply be assumed. Some ofthe judg-

ments may be “ laws of nature”. Generalisations of thisdefinition of 8 will

be discussed in 4.12.

(iv) Deductions may be drawn by using the abstract theory together with
%. Those deductions that are of the form of inequalities or equalities between

probabilities may have an intuitive significance.
(v) If a contradiction is reached, 8 is said to be inconsistent or un-

reasonable.
(vi) Rule (iv) may give rise to intuitive relations that are not already included

in 3. These may be added to 8, thereby forming a larger body of beliefs which

may also be denoted by 3.

(vii) Logically it would be better if we used two different symbols, say
P(E | H) and P(E | H), for the two different meanings. Then rule (ii) could
be expressed by saying that the inequality

P(E | H)> P(E’|B’)

implies and is implied by the comparison

P(E| H) > P(B'| HB)
ce ce

and so on. (The second sign >” means “is more intense than’”’.) But

a gain in logical rigour is not always a gain in clarity. Hence only one notation

will be used instead of two. This will enable the arguments to be expressed
more briefly.

(viii) If 3 contains no judgments, none can be deduced. ‘Thus the theory

cannot be applied without someintuitive interpretation of probability.t This
is again analogous to the applications of geometry or of any other abstract

science.

(ix) Notice that the theory can be applied-to any body of beliefs, but the
application is of practical importance only if the body of beliefs is accepted
by some individual.

+ This shows that our theory of probability is not an objective one in the sense of
Section 1.3 (i.e. “ constructibly objective ”’).
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4.1A The justification of the theory

The exposition of the foundations of the proposed “ theory” has now been
completed. It should be very carefully noticed that there is no claim that

reasonable beliefs can be measured in general—only that relations can be stated
between them. In fact, it seems to the writer that the theory involves about

as manyrelations as it is possible to state in a precise manner. No doubt

the theory can be supplemented by means of suggestions, but these are not
precise (and they belong to the “technique ”’ rather than to the ‘ theory ”’).

The question arises to what extent the theory can bejustified a priori, that
is, before making practical use of it. To this end the following exceedingly

crude argument is proposed.
Suppose first that it is always possible to apply to P(#'| H) the definition

by equally probable cases, at least as an arbitrarily good approximation,t and

assumingthat H is not impossible. It would be surprising if it were possible
to prove that this cannot be done. An inconsistency within the abstract

theory would amountto such a proof. Therefore the abstract theory is pre-

sumably consistent, even with the assumption that probabilities other than

0 or 1 occur. (Cf. 3.4.)

Nowit is natural, I think, to assume that any reasonable} 8B would be
consistent with the possibility that the definition by equally probable cases was

applicable, even though 8 may not be dependent upon this definition. Then
such a 3 cannot lead to a contradiction when combined with the theory; in

other words B must be “ reasonable’”’ in the technical sense. The fact that

no contradiction is obtained may not be regarded as sufficient justification for
accepting the theory. But suppose that when the theory is combined with a

reasonable % it leads to a “‘ comparison” of the form P(E | H) > P(E’| H’).
Then, since no contradiction can be obtained, we know that, in an enlarged §

RB, P(E| H) > P(E’ | A’) if P(E | A) and P(E’| H’) can be compared. It seems
natural from this to assert simply P(E | H) > P(E’ | H’) when this comparison
means anything. -(In order to be convinced of this last step the reader should

consider an example.) This is equivalent to accepting the theory.

4.2 Inaccurate language

In most applications of probability the propositions FE and H in the expres-

sion P(E | H) are in a form describing a physical situation. Accordingly we
shall often talk about the probability of an event when we meanthe probability

,t We are here implicitly taking a result like T13 for granted, and the ‘‘ approximation *
is supposed to be of the form that a probability lies in a narrow interval (with rational
end-points).

t The word ‘“‘ reasonable
§ See rule (vi) in 4.1.

> is used here in a non-technical sense for once.
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of a proposition asserting that the event will happen or has happened. Various

other rather inaccurate forms of language will be used without explanation.

This is necessary in order to save space and to avoid cumbersome phrases.

4.3 Some ‘“ suggestions ”’

Theclassification of the fundamentals of probability into axioms, rules and
suggestions has already been discussed. ‘The mathematical theory depends
only on the axioms. The rules are not purely mathematical, but they are
precisely stated in terms of the primitive notion of the comparison of pairs of

beliefs. They enable the mathematical theory to be applied to a given body

of beliefs. ‘The “‘ suggestions ”’ are liable to affect your body of beliefs without
directly using the theory, and the present section contains some examples of

this. It does not seem to be possible to formulate the suggestions with the
same precision as the axioms and rules. Non-mathematical words such as

“ honesty ” will be used.
Therejection of any of the suggestions would have no effect on what we

have called the ‘theory of probability’.

(i) Numerical probabilities. It will be recalled that the axioms were largely
derived by imagining perfect packs of cards. Having accepted the axioms
themselves it is natural to accept the notion of a perfect pack of,cards. This
provides a significance for all numerical probabilities that are rational numbers
between 0 and 1 (and therefore also for the irrational numbers). If real packs

of cards are preferred they serve the same purpose, but the probabilities are

then best regarded as in some sense good approximations. (See 4.6.)

If it is taken for granted that 3 containsall the obvious judgments concern-

ing packs of cards, then it becomesintelligible to accept as a probability judg-
ment any numerical statement such as } < P(E| H) <2 or P(E| H) =}.
Moreover, with practice it may be possible to make such judgments without

thinking of a concrete example of probabilities of } and 2. There is an analogy
with the judgment of distances. A very young child can judge that one line
is longer than another one before he can associate a distance with a number of

inches.

It is not obvious whetherit is ever reasonable to judge that a probability is
precisely equal toa definite number such as 4. But it may often be judged that
such an equality is a sufficiently good approximation for someparticular pur-
pose. In such cases we shal] say that the probability is 4, without troubling to

add that the judgmentis intended only as an approximation.
(ii) Empirical propositions. A particular case of numerical probabilities is

given by probabilities of 0 and 1. Now if E is an empirical proposition rather
than a logical one, is it possible to have P(E | H)=0 or 1 exactly? The
answer to this question is suggested by T8 and T11, cor. (i). These results
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show that if P(E | H) = 0 or 1 then no amountof additional evidence can change
the probability of £ unless the additional evidence is itself almost impossible,

given H.
The suggestion that emerges from this is that an empirical proposition cannot

be almost certain (in the technical sense of course) unless it is logically implied
by the evidence. If £ is logically implied by H then it is certain, assuming
H—not merely almost certain. Almost certainty that is not actual certainty
seems to occur only in purely mathematical examples. These may, however,
be convenient models of practical problems.

The suggestion that the probabilities of empirical propositions cannot have
the values 0 or 1 is taken as an axiom by Jeffreys. ‘This course has not been
followed here since the abstract theory can be built up satisfactorily from the
axioms given in Chapter 3.

(iti) The device of imaginary results. ‘The idea behind the previous sug-

gestion can be extendedinto a very useful technique for helping you to arrive at
inequalities for probabilities in difficult cases.

Suppose, for example, that you wish to estimate the initial probability +
that a man is capable of extra-sensory perception, in the form of telepathy.
You may imagine an experiment performed in which the man guesses 20 digits

(between 0 and 9) correctly. If you feel that this would cause the probability

that the man has telepathic powers to become greater than 4, then theinitial
probability must be assumed to be greater than 10-*°. (This follows by a
simple application of Bayes’ theorem: cf. 6.1.) Similarly, if three consecu-

tive correct guesses would leave the probability below 4, then the initial proba-

bility must be less than 10-8.

(iv) Honesty. A suggestion which.seems obvious enough is that in order

to avoid ultimate contradictions all probability judgments should be honestly
held, and should be arrived at unemotionally.

There is an apparent exception to this suggestion. You may sometimes
work with a simplified form of 3. Whenthis is done there should be a judg-

ment that it will lead to sufficiently good results for the purpose in hand. This
is an example of the usual scientific method of “ idealising”’ a problem. There

is no real dishonesty in the procedure, provided thatit is not claimed at the end

of the calculations that the results follow from the original unsimplified 3.
(v) The classical definitions. ‘Theorems T15 and T20 make both the

classical definitions { of probability relevant as a guide to probability judgments.
(See also paragraph (d) on page 12 and Sections 4.10 and 4.11.)

(vi) The design of experiments. The interpretation of the results of an
experiment always depends on the judging of probabilities. It is sometimes

tT i.e. the probability before some experiment is performed.

{ Namely the frequency definition and the definition by equally probable cases.
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possible to design an experiment so that the intervals in which the probabilities

are judged to lie are narrow rather than wide. Other things being equal, such
a design is to be recommended. For applications of this suggestion the reader
is referred to R. A. Fisher’s The design of experiments (5th edn., 1949).

4.4 A non-numerical theory

The assumption that P(E | H) is a number t+is largely for mathematical

convenience. There may be no way of deciding at all precisely what this

number is. This method of assuming the mathematical existence of “ unob-
servables ”’ is familiar in modern physics and in philosophy. (It was pointed
out in 1.4 (viii) that a theory can be constructed without the assumption

that probabilities can be represented by numbers.) The assumption of the
“existence ” of an unobservable means that all observable and all meaningful
deductions must be accepted. (Cf. 3.4.)

4.5 Practical difficulties

Difficulties arise in all applications of mathematics (and elsewhere) because

practical problems are usually very complicated. In the theory of probability
it often happens that you are interested in P(E | K) where K represents every-
thing you know. Inthis caseit is out of the question to list K as a collection of
precise statements, especially as your knowledge contains much that is half-
forgotten. Similarly it may be inconvenient to define E very precisely. For

example, if you are interested in the probability of rain, you do not usually

specify how much water mustfall before it is called rain. On the other hand,

all those judgments in 8 that are used in the course of any discussion can be
clearly stated in terms of the propositions E, K etc., even though these propo-

sitions are themselves not completely defined.
Usually most ofK is judged to be moreor less irrelevant. It may be possible

to state the relevant part, H, with a fair degree of precision. You may then

prefer to work with P(E | H) andto regard it as roughly | the same as P(E | K).
(It is precisely this process whichis used in law courts when “ hearsay evidence ”’

is ignored.) It is worth emphasising that such complications and approxima-
tions are inevitable in applied mathematics. Any discussion which does not
recognise them is simply incomplete. (See also 4.3 (iv).)

4.6 The principles of ‘‘ insufficient reason ’’ and ‘‘ cogent reason ”’

Let G be the proposition ‘‘ I have just spun a coin and allowed it to fall to
the ground.” Let H be the proposition that “ heads ” is uppermost. Can the

‘-+ The symbol ‘‘ P ” here has the meaning of ‘‘ P” rather than of ‘‘ P’’’. See rule
(vii) of 4.1.

} This approximate equality between P(E | H) and P(E | K)isa Probability judgment
belonging to 3.
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reader state a relation of equality or inequality between his degrees of belief
P(H | G) and P(!| G)? In accordance with the preceding section no precise

description will be given of how the coin was spun, but it may be assumedthat
there is no “catch”. The following replies (amongst others) may be given
by different readers.

(i) P(H | G) > P(A | G) by “ extra-sensory perception ”.
(ii) No opinion offered.
(iii) P(H | G) = P(A | G) because there is absolutely no reason to expect

one of H or A rather than the other. This is an application of the “‘ principle

of insufficient reason’, also known as the “ principle of indifference ”’.
(iv) P(H | G) = P(H | G) because the problem is physically symmetrical

with respect to heads or tails. This is an application of the “ principle of
cogent reason ”’.t

(v) P(H | G) is approximately equal to P(H | G), the approximation being
very close because the problem is very nearly symmetrical. .

(vi) More precisely the difference between P(H | G) and P(l | G) is less
than 1/1000.

Observe that (v) and (vi) make direct use of the numerical concept of proba-
bility. But it is possible to modify them little, so as to avoid this, by intro-
ducing a subsidiary eyent E which is very improbable on the evidence G.

E mightbe that I had lost the coin while spinning it and it could be judged that
(a) P(H.E| G) < P(A |G), and (6) P(E|G)is less than the probability of
selecting a specified card from a pack containing 1000 cards.

But in future such tedious interpretations will be avoided. Instead a bold
use will be made of numerical probabilities, both in the statement of B and
in the answers to problems. It is emphasised oncefor all that these numerical:

probabilities can be given at least a partial interpretation in terms of inequalities
between pure degrees of belief. Life is too short to give these interpretations
on every occasion. One simple way of supplying the interpretations when

required is by using packs of cards as in 4.3.
As regards the alternative judgments(i) to (vi), the theory gives no way of

deciding between them as they stand. My own preference is for alternative

(vi). Number(iv) may be more appropriate for the idealised problem in which
the real coin is replaced by a perfect one. And even for the real problem it is
more convenient to assert number (iv) and mean number(v) or (vi). Such
a policy will sometimes be adopted in future.

+ Russell (Human knowledge, 397) formalises the principle thus :

P{$(@) | H(a)} = P{ PO) | ¥@)},
where ¢ and ¥ are propositional functions not involving a or b. In the present theory
the principle hardly requires formalising because if the formalism were judged to be
(approximately) applicable, the probabilities would be judged to be (approximately) equal

without reference to the formalism.
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4.7 Simple examples

(i) m people are chosen ‘‘ at random’”’. Whatis the probability that no pair
of them will have the same birthday ? Assume for simplicity that there are
365 days in the year.

First we must say what is meant by selecting m people “at random”. It

means that out of some population, say the population of England at a given
time, each person in the population has an equal probability of being selected.
One method of making sucha selection is to construct a “‘ model” of the popu-

lation consisting of cards, one card for each person in the population. A selec-
tion of x cards may be madeby a process that is judged to be random.t The

people are then taken corresponding to the cards selected. The process of
taking m things at random outof a “ population ”’ is called “ taking a sample ”
or more precisely “ taking a random sample”. In our example the sample is
one ‘‘ without replacement” since it is specified that the m people are all
different.

Let us suppose that you know the numberof people born on each day of the

year in the entire population, and let the proportions of those born on theIst,

2nd, 3rd . . . days of the year be py, po, ps, - - -> Pgg5- By T15 these are the
probabilities of the first person selected being born on the Ist, 2nd, 3rd...

days of the year. If the population is large the probabilities for the second

person will be effectively the same even if you are told the first person’s birth-
day, and so on for all people. Hence by T5, the probability that the birthdays
of the Ist, 2nd, . . . persons are respectively on the 7,th, 7gth, . . . days is

Pr,-Pr, » +» Pr, Therefore the required probability is the sum of all such
expressions with unequal suffixes.[ This uses Tl or T9, cor. (iii), depending
on whethera definition is supplied for the birthday of a person born exactly at

midnight. (This type of hair-splitting will be ignored in future.)

It is not difficult to prove the (intuitively reasonable) fact that the probability
will be a maximum when p, = p,= ... = 1/365. Thus the required

probability is less than or equal to m! (26°)365—. With n = 23 the proba-

bility is less than 4. (The special case p; = pp =. . . = Pag; is mentioned by
H. S. M. Coxeter, Mathematical recreations and essays, 11th edn., 1940, Lon-

don, p. 45. He attributes the result to H. Davenport, who, however, disclaims

originality.)
(ii) Imperfect dice A and B are thrown twice and give scores a, a’ and 6,0’,

but these scores are not disclosed. Suppose that the probabilities of the

various scores are p;, Po, - - -, Pg for die A and q, gq, .. -, Gg for die B,

+ Complete randomness may be unobtainable.
t In otherwords,it is 2! times the elementary symmetric function of the nth degree

formed from the numbers 7, po, . . -; Pass:
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and let the natural assumptions about independence be made. Then it is
likelier that a = a’ and b = b’ than that a = band a’ = b’. (This is reasonable

intuitively, by a rough argument not involving a calculation. The result
follows from the Cauchy-Schwartz inequality 2'p?2'q? > [2'p, q]?.)

Observethat here the probabilities p,, g, etc. are given as part of the assumed

body of beliefs. Therefore, as far as we have gone, there is no need to show
how these probabilities could have been estimated. Theresult does not depend
on the values of p,, 9,, ...- but only on their existence. Hence the result

follows from a body of beliefs containing only the independence assumptions,
just as in example (i).

4.8 Certainty and the ‘‘ verification ’’ of the theory

If a nuinber of samples of ordinary air are taken, the proportions of oxygen

in them will notall be exactly the same, though the differences may be too small
to measure. There is an extremely small probability + that a large sampleof air
would contain no oxygen at all. It is theoretically possible that a man could
die of suffocation as a consequence of this. Or that a particular man should
win the Irish sweepstake every year for fifty successive years. In these cases

it would be natural to say that a miracle had happened,or that there had been
foul play. Under normal assumptions it would be virtually certain that they
would not happen. Thus in addition to (logical) certainty and “ almost cer-
tainty’ there is such a thing as practical certainty. There are many other
shades of meaning that are attached to the word “certain” in ordinary
conversation.

Theidea of practical certainty can be used in order to verify the theory of

probability, or rather in order to show that it works. (To demand more than
this would be like demanding a proof of a logical system.) A particular level
of probability, very close to one, is selected somewhatarbitrarily, say 1 — 10~?°.

Then if P(E | H) > 1 — 10-?° and if you know that H is true, you say { that
E will not be found to be false. In other words you make a definite prediction
about E. If EF is later found to be true you may say that the theory of proba-
bility has had someverification. If E is found to be false you look to see if B
can be modified, since it may have been written downcarelessly in the first place.

There is a small point connected with the idea of certainty that will now be

considered. Suppose that E is logically certain given H,i.e. that H implies E.
Then we know by T7 that P(E | H) = 1, provided that H is not almost impos-
sible. It could be assumed as a ‘convention that P(E | H)= 1, even if H

+ According to most theories of probability. Some people would assert that such
small probabilities are meaningless. On this view some small number must exist below
which probabilities may be regarded as zero. A similar view has been propounded for
numbers themselves. The view would lead to unpleasant complications.

yt At any rate most people would.
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is almost impossible + (and similarly that P(E | H)= 0). We knowthat this
would lead to contradictions if H were allowed to be strictly impossible (see
3.1 (iv)). But if H were almost impossible though not strictly impossible,

the convention would probably not lead to trouble. It would give usa little

more freedom in purely mathematical problems connected with ‘‘ geometrical
probabilities ’’.

In future it will be assumed, unless otherwise stated, that the “‘ given” pro-

position H 1s not almost impossible, in expressions of the form P(E | A).

¢

4.9 Deciding between alternative hypotheses or scientific theories

If it is desired to decide which of two or more alternative hypotheses is

likely to be correct in the light of experimental results, then the natural method
is to use Bayes’ theorem, 'T6. Objections have frequently been raised against

Bayes’ theorem on the groundsthat the initial probabilities of the hypotheses

cannot be estimated, or that they do not exist. The view held hereis that the

initial probabilities may always be assumedto exist within the abstract theory,.
but in some cases you may beable to judge only that they lie in rather wide

intervals. This does not prevent the application of Bayes’ theorem: it merely
makes it less effective than if the intervals are narrow.

It is hardly satisfactory to say that the probabilities do not exist when the

intervals are wide, while admitting that they do exist when the intervals are narrow.}
This is, however, quite a common practice even when theinterpretation is in

terms of degrees of belief. There may be some conveniencein thepractice, but

it is out of place in a discussion of fundamentals, and it will not be adopted here.
If, after the evidence is taken into account, it is found that a hypothesis H,

is more probable than another one, Ho, this by itself will not necessarily make

H, preferable to H,. It is important also to allow for the utilities of H, and

H,, at least in some circumstances. For suppose that H, is an elaboration of

H, so that it certainly implies H,. Then the final probability of H, exceeds

that of H, (though possibly by only little), but H, may be much moreuseful

and interesting. (‘This is particularly clear if H, happens to be H*.) If, on

the other hand, H, and H, are mutually exclusive, their utilities will not usually
enter so decisively into consideration.

The alternative hypotheses may bescientific theories, one of which is

assumed to be right.§ Bayes’ theorem is therefore available as a method for

ww

+ If H is almost impossible we have not even proved that P(#| H) < 1.
t It would be forgivable to define the “‘ meaningfulness ”’ of a probability by means

of the narrowness of the interval.
§ Often when it is said that a theory is “‘ right ’’ it is meant that it is in some sense

a good approximation, and for the application of Bayes’ theorem the sense must be defined.
This must be done in such a way that the theory has no exceptions, otherwise its final
probability will be zero. Remarks having some bearing on the initial probability of a
theory will be found in 5.4 and 7.5. , ,
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making advances in theoretical science. (It is the methodofscientific induction
in a numerical form.) But the question arises: what if the theories themselves
involve probability statements (and they very often do)? According to the
convention at the beginning of 3.1 such theories cannot be considered as
propositions. Let us call them “improper theories’, those that are expres-
sible as propositions being called “ proper theories”. (Similarly we can talk
about proper and improper hypotheses and propositions.) It is not imme-
diately clear how the theory of probability can be used for deciding between
improper theories. Perhaps the most obvious method would be to extend the
meaning of the word ‘ proposition ”’ so as to allow it to refer to probabilities,

but this course may lead to logical difficulties.t (See 3.1 (vi).)
Sometimes the difficulty can be avoided by .converting an improper theory

into a proper one. For example, in the Mendelian theory of heredity, proba-

bilities may be stated for an individual to have various characteristics, given

those of its ancestors. In this form the theory is an improper one and it might
contain a probability statement of the form P(H| H)=>p. But let U be the
proposition that animals or plants have chromosomes and genes. The chromo-

somes are assumed to occur in symmetrical pairs, and this symmetry leads

to the judgment that P(E |H.U) =p. This judgment can be regarded as
belonging to the body of beliefs, rather than to the theory of heredity. Thus
the theory can be converted into a proper theory, namely the proposition U.
This is really an over-simplification. It is possible that it would be judged
that there might be a bias against the survival of one rather than the other
form of a’gene. The technique for dealing with this complication would
be of the same kind as the one exemplified below in connexion with “ extra-
sensory perception”. If it is assumed that there is no “bias” then the

probabilities that occur are independent of any further experiments. Such
probabilities are described by the technical term chances. The meaning of the
term is made clearer by considering an unbiased coin to be spun a numberof
times. ‘The fact that the coin is described as unbiased means that you have

judgedthat its probability of coming down headsis 4, and that this probability

is a chance in the sense that it is independent of how manyheads andtails have
already been obtained.

The probabilities that occur in scientific theories are usually chances.
Another example is afforded by quantum theory, in which the probability of a

ce+ It may require a theory of types ”’, as in symbolic logic.
Another way in.which the difficulty arises is if you are interested in P(E | H) where

H consists of all known information, so that H must includethe fact that you are interested
in P(E | H). This point will be ignored in the present book. It is important, however,
when £ depends on your own volition or imagination. Consider, for example, the
probability that you will smoke within the next half-hour (given all known information).
A similar point arises in politics, when a public forecast of an event may affect the
probability of the event.
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particle appearing in a volumeof space is given by the integral over that volume

of the square of the modulus of the appropriate wave function.t Here there
is no method known of converting the theory into a proper theory. If it is
ever possible to do this it would mean that quantum theory could be stated as a
proposition U, where U asserts that the real universe is the same as some
hypothetical universe 11, whose relevant properties could be described without

reference to probability. Any probability statement in quantum theory, of the

form P(E | H) = p could they be replaced by P(E | H.U) = p, and it could
be transferred to 8. The problem ofethe truth or falsehood of quantum theory

would be replaced by that of U. Provisionally U may be regarded as the
proposition “ quantum theory is true”.{

In general, any improper theory can be formally converted into a proper

theory in this way, by introducing a symbol U whichis incompletely defined.
This artifice is not very satisfactory, but it seems to be adequate for the
applications.

It is often convenient to talk as if U were an objective description of some
aspect of the physical world, without actually completing the definition of U

and thereby expressing it as a proper theory. The only essential property of

U is that P(E | U.H) has knownvalues for some propositions or “ experiments ”
E, these values being the sameforall reasonable bodies of belief. A numberof
theories of probability have been proposed in which such objective probabilities

are the only admissible ones. Such theories are used by manyleadingstatis-
ticlans. (See heading ix of 1.4.) From our point of view these theories are

incomplete. They are essentially included in the present theory by the device
of using incompletely defined propositions.

An objective piobability, in the present theory, may also be described as
“ tautological”’, i.e. its numerical value is known (usually precisely) because
of the conventional manner of using incompletely defined propositions.§ When
a tautological probability P(E | U.H) is also a chance, then for all reasonable
bodies of belief, the proportion of successes will almost certainly tend to
P(E | U.H)in an infinite sequenceof trials, provided that U and H are true.
Hence such a probability may be described as a “ statistical probability ”’, and
is so described for example by Bartlett (1936 and 1940).

t+ This has been denied by Jeffreys, 1942.
t It is only in virtue of the above formalartifice that it is legitimate to regard “‘ quantum

theory is true’ as a proposition. The artifice can be avoided by the adoption of the
generalised meaning of a proposition, discussed in 3.1 (vi).

§ A probability which is deduced by means of the abstract theory from tautological
probabilities alone may also be called a “‘ tautological probability’. A probability may
of course be only partly tautological. Such a probability cannot occur in a dualistic
theory in which tautological and non-tautological probabilities are given different
notations, unless a third notation is introduced.
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-A chance can becross-classified in two ways : (i) the “ given ’’ propositions

may betrue or false, (ii) the chance may be tautological or non-tautological.
Thus there are four kinds of chances. It is usual to use the word “ chance ”’
for a true chance. A statistical probability is a tautological chance, not neces-

sarily a true one.

The above discussion is in no way restricted to scientific theories in the

ordinary sense. Suppose, for example, that you know that there are N adult
males in England, and let Uy denote the proposition that M of them are over

six feet high. Let E be the proposition that the next man selected will be over
six feet. Suppose that the men are selected at random (see 4.7). Then
P(E | H.Uy) = M/N, where H is a description of the method ofselection.
There are N + 1 possible theories concerning the value of M. A typical one
of these could be stated as an improper theory in the form “ P(E | H) = M/N”.
The proper theory corresponding to this is of course Uy. Notice that
P(E | H.Uy) is a chance if the sampling is with replacement. The equation
P(E | H) = M/Nis generally false even if Uy is true. This suggests that in
the general case it is quite essential to introduce U. For the probability state-

ments of the improper ‘theory are liable to contradict judgments already in

your body of beliefs. If Un, is true, P(E | H.U) may becalled “ the true
probability of E given H”’, but this mode of expression is misleading and is
best avoided. It may, however, becalled “ the (true) chance ” without serious
risk of confusion.

It is sometimes convenient to make assertions like “the probability is 4

that the chance of success is }”’. This assertion can be given a meaning in

the same way that an improper theory can be converted into a proper one. It
means “ the probability is + that H is true, where the chanceof success, given H,

is ¢ according to 8”. In fact the rest of the discussion of the present section
is really an attempt to attach a significance to the probability of a chance.

Let us consider in detail an example of the problem of deciding between
“alternative bodies of belief’’. This is of course the same in principle as
deciding between improper1theories.

Supposethat a coin is spun 1000 times and thatthe results are successively

guessed. Let E, mean that the guess of the mth spin is correct. Let 8,
consist of the following judgments :— .

(2) P(E, | H)= 4, where H is a description of how the experiment is
performed;

(b) E,, E,, . .. are independent given H.
Let 8, be the same as 8, except that,P(E, | H) = 4 is replaced by P(E, | H) = ?
Suppose that the number of successes is 497 out of 1000. Call this result E.
In virtue of T20 (with m = n) you may be temptedto say that B,is better than

%,or even that 8, is more probable than 8,. These statementsareillegitimate
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4.9 PROBABILITY AND WEIGHING OF EVIDENCE

since B, and B, are not propositions. But now let us introduce a new propo-

sition, K, which means that the man whois guessing has “‘ extra-sensory percep-

tion’ + (assumed permanently operating), and for 3 take the judgments :—
(a) P(E,|H.K)=4 where H is a description of the experiment and

includes a description of the man,

(6) P(En | H.K) = 3,
(c) Ey, E,, . . . are independent given H.K,i.e. the probabilities in (a) are

chances,

(d) Ey, E,, . . . are independent given H.K, i.e. the probabilities in (6)
are chances,

(e) 10-8° << P(K | H)<10-%. (See 4.3 (iii).)

From these judgments and from the abstract theory it is quite easy to calculate

P(K | E.#), the new probability of the man having extra-sensory perception in

virtue of the experiment FE. The calculation (based on more natural assump-
tions) will be given in 6.5 and 7.3. - The result may be regarded as the answer

to the original question of whether %, is better than By.
The assumptions are made more natural if it is supposed that K is the

disjunction of a large number, k, of different propositions K,, K,, ..., Kz
where

(a) P(E, | H.K,) = Kl + «/h),
(b) 10-°°/k < P(K,, | H) < 10-3/k,
(c) E,, E,, ... are independent given H.K, for each x. Instead of

using a large but finite numberof alternative hypotheses K,, we could work with
a continuous infinity of hypotheses. Either approach is an approximation to

the other, and which one is adopted is largely a matter of taste. The con-
tinuous method is more convenient if the infinitesimal calculus is to be em-

ployed. (See 6.5, example (i).)
It may be asked what exactly is meant by K,.? There is at present no com-

plete answer to this question, but fortunately this does not appear to matter

much. K, may be imagined to be the proposition that the man has some

particular physical characteristics. For example (very crudely), these charac-

teristics may be that the total weight of those parts of his brain that deal with
extra-sensory perception is some assigned function of x. For our purpose,
however, it is sufficient to assume merely that K, exists. But if K,, is not

described properly how can the necessary judgment concerning its initial
probability be obtained ? Any answer that may be given to this can be only a
suggestion. It has not been-claimed that strict rules can be provided for

+ Nothing in this book is deliberately directed either for or against a belief in ‘‘ ESP ”’.
In the above work it is assumed that conscious or unconscious cheatingis definitely ruled
out. An alternative to this somewhat far-fetched assumption is to redefine K as “ the
man has extra-sensory perception or else there is conscious or unconscious cheating ”.
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deciding on reasonable bodies of belief. But if you take a very longseries of
trials, you may hopetoarrive at a fairly objective view on whether the man has
“ ESP ”, provided that the initial probability judgments are not too prejudiced.

Prejudiced initial judgments may be partially avoided by using suggestion(iii)

of 4.3. Another suggestion f is that it would be unnatural to take theinitial
probabilities of say Ky, and K,, as wildly different from each other. To do so
would imply that you had a very detailed knowledge of the exact mechanism of
ESP. (Cf. the remarks on “ smoothness” in 7.5.)

A similar treatment could be provided for testing the amount of bias on a
coin. Here it would not be quite so difficult to define the propositions K,,

in detail (provided that a system of dynamical principles was assumed). The
difficulty is of the same type as that of defining U in the discussion of scientific
theories.

The ideas used in the above example can be applied to any type of experi-

ment in which the probabilities of the possible outcomes depend on the un-
known state of some organism or process. Examples are the effect of vaccina-

tion of rats, the measurement of intelligence of children, and the quality
control of industrial products.

There is one more point that arises in connexion with the example on
ESP. In order to make the assumptions correspond more closely with the way

in which it is natural to think, it would be necessary to admit the possibility
that the “‘ amount of extra-sensory perception’ could vary from onetrial to

‘the next. This would mean that « would vary throughout the sequence of
trials. For example, it could be held that « would decrease when the percipient
became tired. In order to take this into account, « would have to be regarded
as a function of n, and the probabilities of success at the various trials could

be represented by 4(1 + «,/k) where n = 1, 2, .. ., 1000. The proposition
K would be theassertion that x, = K,—= . . . = Kyg99 = 9, and K would be

the disjunction ofall other possibilities. 3 would consist of a set of inequalities
for the initial probabilities of every possible sequence x,, Ky, - . -; Kigo9- To
write out & in detail would be impracticable, and in fact it would be necessary

to be slightly dishonest. Actually it may be best to write down someof the

inequalities after looking at the results of the experiment. If, for example,

the results of the first 500 trials were much better than, the last 500, you might
consider that it would lead to sufficiently good results to consider sequences

like x, x, .. ., x, 0,0, ...,0. <A particular case of this is the assumption made

before that ky = Kp =... = Ki900 =*:

This “ dishonesty ” can be described more leniently as a very deep judgment
that the final probability of K would not be changed much if you wentto the

trouble of writing out 3 in detail. Any assertion such as “‘ it is highly probable

+ This is really less of a suggestion than a statement of -how people actually think.
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4.10 PROBABILITY AND WEIGHING OF EVIDENCE

3that one of the propositions Ky, Ky, . . ., Koo is true”’ must be taken with

a pinch of salt.
Analogous remarks apply to other types of experiments. Often a theory is

described as probable when what is meantis that it is probably substantially
right. Jt is unusual to give a precise definitionof ‘‘ substantially right ”’.

4.10 Connexions with the frequency theory

Borel’s theorem Tt provides a connexion between the axiomatic approach
and the frequency definition. This theorem can be generalised in an important
way.

In Borel’s theorem it was supposed that the probabilities of.success in a

sequence of trials were all equal to p. Problems of a similar type are very
often encountered where the probability of success at any given trial depends

on the results of previous trials. It is convenient to think in terms of the

example of the previous section, but we replace the hypotheses K,, by a continu-
ous infinity of hypotheses L,(0 <p <1) such that P(E,|H.L,) =p and
such that E,, E,, E3, . . . are independent given Ly. It is supposed that one
of the hypotheses Ly is true, say Ly, where q is initially unknown.{ Then it
follows from Borel’s theorem that the proportion of successes tn the first m trials

almost certainly tends to q as m tends to infinity. Let Ly,,), be the disjunction
of all L, for which p, <p <p. Ifit is assumed that P(L,,,y, | H) > 0 when-
ever 0 <p, < pp <1, then it can be proved by using Bayes’ theorem T6

that the probability of E,, given H together with the results of the first n — 1 trials,

almost certainly tends to g. (See also 7.2 and 7.3.) The twoitalicised state-
ments will be called the ‘fundamental theorem of probability”. It is of
course possible to restate them (as in 1.4 (i) or T20) so as to avoid infinite
processes. ,

The theorem is proved only under the assumptions stated. These assump-
tions may be more vaguely described by saying that the trials are performed
‘under the sameessential conditions”. ‘These essential conditions are H. Ly.

A knowledge of this theorem generally. causes you to judge that the proba-
bility, «, of success at the next trial can be estimated approximately as the pro-

portion y, of successes in a long’series of trials, without paying much attention

to the initial distribution § of the chance. It may seem to be more accurate

+ See the remarks following T20 in 3.3.
t q maybe called the ‘‘ true chance ” of a success. It is easy to see that all but an

enumerable number of the hypotheses Ly must be almost impossible. ‘Thus we are
allowing almost impossible hypotheses to occur to the right of the vertical stroke. This
can be avoided by complicating the above discussion. One method is to avoid the
symbols Ly and to work entirely in terms of the symbols Ly,,p, with p; < po.

§ It is assumed that the reader is familiar with the idea of a probability distribution.
A formal definition is given in chapter 5.

46



THEORY AND TECHNIQUE 4.11

to take the initial distribution into account, but this often entails considerable

extra work and may not be worth while.
It is quite legitimate to judge directly that | « — y | <6 where 6 is small,

provided that this does not contradict other judgments.| This shows how the.

frequency approach fits into our probability. technique. A contradiction of
other judgments is most liable to occur when the equally-probable-cases
approach is particularly appropriate. For example, suppose that a coin is
spun 1000 times and yields as many as 540 heads. Would you then be willing
to judge that the probability of a head at the next trial lies between 0-51 and
0-57? A careful discussion of this example would follow the lines of 4.9
and 6.5, and will be omitted.

Besides the theoretical connexions between different techniques of proba-
bility, there is also the practical connexion that adherents of different schools
tend to have somewhat similar judgments. But those whoaccept the frequency

approach often refuse to apply the word “ probability” to events that cannot
be indefinitely repeated. This is really a question of the use of language.

Presumably they do undergo states of more or less belief about such events.

4.11 - Relation to the objective theory

A theory in which P(E | H) always represents an objective degree of reason-
able belief has been brilliantly expounded by Jeffreys.{ It may be regarded
more or less as a special case of our theory with the various possible bodies of
belief replaced by a fixed objective one, B*. One of the purposes of the more
general theory is to avoid the assumption that B* exists. Even if 3* does
exist it is still necessary to fall back on subjective judgments in practice. A
juryman may estimate the probability of guilt of a prisoner at more than 0-99
without being able to trace back his opinion to the principle of cogent reason.

An objective theory of probability does not make the problems of section
4.9 any easier to answer.

A truly objective theory or technique which could always be applied in
practice, may be impossible of attainment. Such a theory might involve an
extensive 3* or possibly a “ complete ” list of rules and suggestions, so that no
¥% would be required at all. While this seems to be quite beyond our powers,
there does remain the possibility of adopting extra suggestions. Just as the
purposeof the theory is to introduce some measureof objectivity into our bodies
of beliefs, the purpose of introducing new suggestions would beto increase this
objectivity still further. An attempt to do this has been made by Jeffreys

+ The specification of 5 depends quite a lot on who “ you” are. Essentially what is
required is an honest judgment. The insistence on an exact rule originates in a respect
for science together with the misconception that in science there is no room for judgment.

t Jeffreys does not use the description “ objective”’. See 1.4 (iv), first footnote.
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(1946). In this paper Jeffreys suggests a plausible form of initial probability
distributions for a particular class of.cases. These distributions are not dedu-

cible from his technique, but they have someinvariant properties which suggest

that they can be accepted without fear of running into contradictions.

The phrase “the probability of EF given H” may make it seem that the
theory"in this book is an objective one. This would be a misunderstanding
based on the conventional use of the definite article. There are two reasons
whythis use is misleading : first.because P(E | H) may depend on whoyouare,

and second because the numerical value of P(E | H) may be “ unobservable ”’.
(See 4.4.) The position may be summarised as follows :— It sometimes makes
the language simpler to talk as if all the relevant probabilities were objective,
but this form of languageis strictly justified only for tautological probabilities.

In practice there is sometimes so large an accumulation of evidence that the
subjective judgments are obscured. This is why many people have thought
that subjective judgments play no part at all. Some adherents of objective
techniques are now at loggerheads because in small sample workin statistics the

rival objective procedures do not lead to identical results. The present theory

abandons the attempt to obtain unique results—it leaves a little freedom of

choice to the individual.
A new objective theory has been put forward in recent years by Carnap.

His theory involves two types of probability, one of which, called “ probability,”,

corresponds to reasonable and objective degrees of belief. Probability, is
explicitly defined for propositions of a particular kind in terms of the language

used. Different languages give rise to different probabilities. (See, for
example, Tintner, fourn. Roy. Stat. Soc., Ser. B, 1949 or 1950. In this paper

further references may be found.) It is conceivable that ‘‘ you ”’ could design

a language so as to make Carnap’s theory consistent with the one presented
in the present work. All probability judgments. would be pushed back into
the construction of the language. Something like Carnap’s theory would be
required if an electronic reasoning machine is ever’ built.

4.12 Generalisation of 3

So far it has been assumed for simplicity that 3 must be exhibited in a
standard form, before it can be combined with the theory of probability. This
standard form consists in a set of equalities and inequalities between degrees of

belief. But it is found that judgments of other types can very often be made.

One such type has been discussedin 4.3 (i) and in 4.6, namely the direct use

of numerical probabilities. Another type mentioned in 1.4 (vii) is a judgment
that one course of action is preferable to another one. A new and important
type is a direct judgment of “ weights of evidence”. (See Chapter 6.)

There is no reason why judgments of any sort should be prohibited. This
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leaves a wide scopefor intuition. Whatever form of judgmentis used it may be
expected to become more discriminating with practice.

With this generalised meaning of 3, the function of the theory of proba-
bility remains the same as before, namely to enlarge 3 and to check up onits
self-consistency. (Cf. 4.1, rules (iv), (v) and (vi).)

4.13 Degrees of belief concerning mathematical theorems

If E is a mathematical proposition of a type that is either provable or dis-

provable, then we knowthat either P(Z) = 1 or P(E) = 0, by T7,cor. (ii), and

T9. Asa trivial example let E be the proposition that the millionth figure of
zis a7. Then P(E)=1 or 0. But since the calculations have not been
carried out it is natural (at any rate for betting purposes) to assert that P(E)

is approximately 5. Unfortunately our theory of probability, in common

with most other theories, forces us to reject this judgment.

It may be asked whether the theory could be modified in such a way as to

allow judgments of this sort. One way of doing this is by replacing axiom

A4 by the following alternative axiom :—
A4’. Ifyou have seen that E and F are equivalent then P(E | H) = P(F| A)

and P(H| FE) = P(H F).
The theory can, I think, be developed in much the same wayas in Chapter 3,

with axiom A4’ replacing A4. Oneeffect of this is that when & givesrise to a
contradiction it becomes correct to say ‘‘ 3 is mow unreasonable ”’ instead of
‘““% is unreasonable”. Similarly T7, cor. (ii), becomes ‘‘ when you have
proved that H* implies H then P(H)=1”, and so on. This procedure
should have some appeal to the intuitionist school of mathematicians.

The question of degrees of belief in purely mathematical theorems is not

merely of academic interest. Very often in applied mathematics and chess-
playing, in order to save time, a theorem is assumedto be true simply because

it is considered to be very likely. One example is the common practice of

assuming that the mth term s, of a convergent sequence is close to the limit,

merely becauseSy, S,_, and s,_» are close together. (This type of assumption is
very frequentin the applications of probability itself.) The effect of the modified
axiom is therefore to make the techniqueof probability more widely applicable.

4.14 Development of the judgment by betting

Probability judgments can be sharpened by laying bets at suitable odds.
If people always felt obliged to back their opinions when challenged, we would
be spared a few of the “certain” predictions that are so freely made.

The Meteorological Office could set a good example by offering odds with
their weather forecasts, provided that some practicable way of doing this could
be arranged. Non-betting odds are already very roughly conveyed, otherwise
the forecasts would be mere conversation about the weather.
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CHAPTER 5

PROBABILITY DISTRIBUTIONS

In this chapter a number of familiar ideas of mathematical probability are

described.t This is done for the sake of completeness, and in some places in
order to show howtheseideas fit into the present theory. Most of the proofs

will be omitted.

5.1 Random variables and probability distributions

Suppose that an experiment is performed and that it is known in advance
that the result of the experiment will be a real number X. If H is the evidence,
assumed not to be almost impossible, let

F(x) = P(X < «| 4H).
F(«) “ exists’ for all x, by axiom Al. It is called the (probability) distribution
function of X (given H), and X is called a random variable. In order to save
writing, the ‘“‘ misleading notation ” of 2.6 will be adopted,i.e. H will be taken
for granted and omitted. For example, P(X < x) will mean P(X < x | H).
Clearly, by T9, cor. (iii),

F(%_) — F(a) = Pla < X < x),
so that F(«) is a non-decreasing function of x.

Although F(x) is assumed to exist it will often not be possible to state it

with much accuracy. % may contain a set of inequalities for P(a, << X < x),

P(x, < X < x2) and so on, for various values of x, and x,. These inequalities
will provide information about F(«). In any particular case it will be judged,{
I think, that P(x —e<X <x), P(X < — K), P(X > K) can be made arbi-
trarily small by choosing ¢ sufficiently small and K sufficiently large. If so,it
follows at once that

lim F(x) =1 lim F(x) = 0,
2-> oo i>~— 0

P(X = x) = lim {7(@) — F(x — e)} = F(x) — F(x — 0).

Thelast relation enables us to write down in terms of F the probability that X
belongs to any interval of values of x. For example,

P(x, <X < xg) = P(X = xy) + Play, << X < xg)— P(X = xy)
: = F(x, — 0) — F(x, — 0).

Suppose that X is a physical measurement obtained by reading a scale. It
will then be knowntolie in a finite interval and will be capable of taking only a

+ Anyone interested in the advanced mathematical theory should consult Cramér, 1947.
} These judgments would not be required if the axiom of complete additivity were

assumed.

50



PROBABILITY DISTRIBUTIONS 5.1

finite numberof values, corresponding to the divisions of the scale. Theresults
lim P(w—e<X <x)=0, lim P(X < — K)=0, lim P(X> K) =0,will
s—>0 K>o K>0

then be forced by T9. Nearly all variables that occur in practice take
only a finite number of values; but the notions of infinity and continuity are

convenient, since they make available the methods of analysis. Of course,

scale readings are often approximations in the sense that greater accuracy could
be obtained, but whether they are approximations to variables which are
“really ” continuous is unanswerable.

It is often convenient to think of F as a differentiable function with deri-
vative f(x), and then f(x) is called the (probability) density (function) of the
random variable X. If f exists it is a non-negative function, and assuming

only that it is integrable in every finite range,it has the property | f(x) dx = 1.

The function P(X = x) is called the (probability) point function of X. It is
suitable for determining the distribution function when the random variable is

capable of taking only a discrete set of values (e.g. all the integers).

Let X and Y be two random variables. P{(X <x).(Y < y)} is called the
distribution function of the pair of random variables X, Y. Denote it by

F(x, y). This may be called a two-dimensional distribution function. 'The

most appropriate mathematical tool for dealing with the general theory of such

functions is the two-dimensional Lebesgue-Stieltjes integral.+ If the readeris
not familiar with this he may besatisfied with accepting the next few remarks
in a formal spirit.

Let Z = €(X, Y) be a knownfunction of X and Y. It will have the dis-

tribution function J dF(x, y). In particular the distribution function of

C(2,y)<z

the sum X + Y is J dF(x, y).

BLY<Z

X and are called independent random variables if for-all x, and y, the

“events” X <x and Y < y are independent (at any rate when neither event
is almost impossible). Then, by T1, F(x, y) = F(x)G(y), where F and are

the distribution functions of X and Y separately. In particular the distribu-

tion function of the sum of two independent random variables is

| dF(x) dG(y)
LLY<zZ

= |ac — y) dG(y) = |"oe — x) dF(x).
t+ See, for example, Cramér, 1937.
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This function will be called the convolution of FandG. IfF and are differen-

tiable, the density function of X+ Y is

[fle —eoay = | ale — 9) foray
—@

a function which is called the Faltung or resultant of f and g.

5.2 Expectation

If X is a random variable with distribution function F, and if p(x) is an

arbitrary function of x, then | w(x) dF(x) is called the (mathematical) expec-

tation or expected value of w (with respect to the random variable X), assuming
of course that this integral exists. It is denoted by E(w) or E(y(X)). In par-
ticular suppose that F is differentiable everywhere and that f is the density

function. Then

By) =|" vayleyas
On the other hand, if X can take only a discrete set of values x1, %:, %3, ...

and if f is the point function, then E(y) = dD,ver) F(xr).
r

The expected value of w is not necessarily a value that the function can

equal. A partial justification for the name expected value” is to be found

in the following theorem, which will not be proved here.

T21 If Xy, X, X3, . . . are independent random variables, all with the

same distribution function, then it is almost certain that

ce

(X, 4+ Xy+ . 2. 4 Xy)—> E(X,) as n—> co.

Borel’s theorem, equivalent to T20, is the special case of this in which the
random variable is 1 or 0 according as a “trial” is successful or unsuccessful.

A more general theorem than T21 is the following.

T2la If X,, X5, X53, .. . are independent random variables for which

E(X?) is bounded, then it is almost certain that

A(X, + X,+...4X,) — + (BX) + E(X,) +... + E(X,)}0

as n—> oO.

CoROLLary. In particular the conclusion applies if all the random variables
ave restricted to a fixed finite interval.

Suppose that an experiment with result X is followed by a monetary gain

+ T21a is equivalent to a special case of the so-called strong law of large numbers,
itself generalised in an interesting manner by Kolmogoroff and Khintchine. For an
excellent introductory account of these and other generalisations see Feller, 1945.
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of amount y(X). Then E(y) is called the expected monetary benefit (of the
experiment). Similarly the expected gain of ‘utility’? can be defined.
“ Utility ” is the economist’s name for a “‘ reasonable’ measure of “‘ value ”’.t
Utilities may sometimes be subjectively compared in the same way as proba-

bilities. A utility is best regarded as depending on a “change of circum-
stances”’. This is not a concept that belongsto classical logic, so that it would
‘hardly be possible to build up an abstract theory of utility. But the analogues

of the ‘‘ obvious axioms” of 2.2 could hardly be disputed. ‘These can be
extended, just as for probabilities, by assuming that a utility is a real number
that vanishes when there are no changes of circumstances. In order to obtain

results of interest it is necessary to be able to judge the numerical value of a

ratio of two utilities. This ratio need be judged merely to lie in someinterval,
possibly a very wide one.

In virtue of T21 and T21a it is rational to behave in such a manneras to
maximise the expected ‘utility. In this way any theory of probability can be
taken as a guide to action. Perhaps all practical applications of probability
can be regarded from this point of view. In fact, as mentioned in 1.4 (vii),
Ramsey takes expected utility as a primitive notion and defines degrees of
belief in terms of it. It seems simpler and more natural to treat beliefs and
values as distinct subjective notions, but the direct judgment of expectedutilities
is permissible in the generalised form of our theory (see 4.12).

An insurance companyis willing to regard the utility of a monetary gain or
loss as proportional to the amount of money. This would not be true for
amounts that were large compared with thetotal capital of the company. Since

insurance companies usually have very large capitals, actuaries can work directly

with expected monetary benefits.
It seems rational to assume that as a general rule the utility of money is a

concave function of the total capital, when this is positive. A consequence
is that it is not worth taking a level bet if the probability of winningis only 4.
Onthe other hand an insurance policy can very well provide a positive expected
utility in spite of a negative expected monetary benefit. This remark applies
even, to life insurance, for reasons that the reader can think out for. himself.

Another example of expected utilities is provided by the “‘ Petersburg
problem ”’.

“A coin is spun an indefinite number of times and if there is a run of n
heads before the first tail there is a prize of 2"+1 units. How much

should be paid for the privilege of playing?”

Worked out in terms of expected monetary benefit the result is infinite. A

+ This ‘‘ value ” depends on ethics and on amounts of happiness. ‘The distinction
between utility for an individual and utility for a group of individuals will not be discussed
here.
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5.2 PROBABILITY AND WEIGHING OF EVIDENCE

finite value for the expected utility can be obtained by assuming that the utility
of a sum of moneyis proportional to the logarithm of the amount measured in
suitable units, as suggested by Daniel Bernoulli. (See Todhunter (1865),
220.) ‘This assumption is inadequate since it would still lead to an infinite
result for a slightly modified game, in which the amount 2”+1 is replaced by
22+1, Tn orderto geta finite result for all such modifications it must be assumed
that there is an upper bound for the amount of utility of money, where the
upper bound may depend onthe individual. If, for example, the utility is a

concave function of the amount and if this function is constant for amounts
of more than 27° units, then the game is not worth more than 21 units. The
proof is left to the reader. The entrance fee that is worth paying for m games
is not necessarily equal to times that for one game. (We have throughout
disregarded the utility of gambling itself.)

Supposethat it is assumed quite generally that utilities are bounded. Then
T21a cor., when expressedin a finite form (withoutthe useof limiting processes),
can be usedto provide a fairly complete justification of the principle of maximis-
ing expected utilities.

The idea of mathematical expectation is continually used in the study of
probability distributions. Examples are (i) the moments E(X) = yu, (r = 0,
1, 2, .. .), where wo = 1, and yj is the mean (value) of X, (ii) the moments
about the mean, E{(X— 3)"} = far, where fy = 1, 44 = 9, Ma = the variance = o?
where o > 0 andis called the standard deviation, (iii) the characteristic function
E(e**t), Unlike X, ¢ is an ordinary mathematical variable. ‘The integral for
the characteristic function always converges, but those for the moments may

not all converge. Underfairly general conditions a distribution is determined
by a knowledge of all the moments or of the characteristic function.

In fact if the characteristic function is g(t), then the point function at » is
. 1 7 .

— —iatp(x) = jim at|me dt,

and F can then be determined from:

1 rf Es .

Plas) — Flo = H{pla) — pln} + lim ge[ oleae | “etd
Ly

while at a point x at which there is a density function, it is
17

x) = lm — t) etdt,fe) tim-{ S
The moments may be formally deduced from the characteristic function by

expanding the exponential and integrating term by term. The characteristic
function of a convolution of two distributions 1s the product of the separate

characteristic functions.

The mean and standard deviation are good measuresof the “ typical value ”
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and “‘ spread’ of a distribution. There are other such measures, such as the

median value, yu, for which F(u) = 4, and the mean deviation E( |X — yu;| ).
These have some advantages for numerical work but are more difficult to deal
with in the mathematical theory.

5.3. Examples of distributions

Suppose that a random variable X, is knownto lie strictly between two

numbers a and 6. It is sometimes said that if nothing more is known about

X, then its density function must be i.e. constant throughout the
b—a

interval (a, 6). The distribution is said to be rectangular or uniform (cf. 2.8).
This is essentially an application of the principle of insufficient reason, or of
‘“‘ Bayes’ postulate’ (rather than ‘“‘ Bayes’ theorem”). But in practice there
is always some additional information about X, and the uniform distribution

occurs only as an approximation. We should sometimes judge that for some

specified constant A > 1,
P(x, << X < x) > Ply << X < %)

whenever ;

Xe — X, > Amy — x1), A< x <a <b, a<xy <img <b.

If A is close to 1 the numerical consequences of adopting these judgments would
be much the same as if Bayes’ postulate had been accepted.

Thestandard type of argument against Bayes’ postulate is that if all that is

known about X is that it lies between a and b, then all that is known about, say,

X100 is that it lies between a1and 51%; and Bayes’ postulate applied to the
random variables X and X14gives two quite different distributions for X.
Fortunately Bayes’ postulate is not required in the present theory. For if X
arose in a fairly natural way, say as a volume, it would beentirely artificial to
introduce the random variable X1°°, You would simply not judge honestly
that the distribution of X1° was anything like uniform.

Next suppose that X is known to lie in a closed interval, ic. a<X <6.

It was proposed by J. B. 5. Haldane and H.Jeffreys t that if nothing moreis
known,then a finite amount of the probability must be concentrated at a and b.
This shows how distributions can arise that are neither continuous nor

discrete.

If X is known only to be a real number, the assumption of a uniform dis-

tribution forces the use of infinite probability to represent certainty, with an
appropriate modification of the axioms. A reference to this has already been

+ See Jeffreys, 1939, 114 and Haldane, 1931. It would be quite rational to concen-
trate a finite amount of&probability at every ‘‘ computable ” value of x, the largest amounts
being concentrated at the simplest values. (Cf. 5.4.) It is possible to imagine this
done since the computable numbers form an enumerable set.
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made in 3.1 (ix). Similarly, if X is known to be positive, Haldane and Jeffreys

assume a uniform distribution for log X, i.e. a density function x for X. This

also involves infinite probabilities. In both these cases the use of infinite

probability can be avoided in practice by using known bounds for x (which
always exist). In the second case, one of the bounds is some small positive
number, and it may very well be judged that the distribution of log X is

approximately uniform over a finite range.

Three distributions which occur a great deal, as approximationsf at least,

in practical and theoretical work, are the binomial, the Poisson and the normal
distributions. Thefirst two are discrete distributions and have point functions

P=) = (7)o—pe (7¥=0,1,2,...”; 0O<p< J),

and P(X = r) = ea"/r! (y=0, 1, 2,...; a>0).

Thefirst of these was mentioned in T19. The normal distribution has density
function

 

The corresponding characteristic functions are respectively

(4p + 1—p), exp {a(e* — 1)}, exp (xote — $#%o?).

From these the moments may be deduced. In particular the meansare pn,a,

x, and the standard deviations are V/np(1 — p), Va, o. Another deduction
from the form of the characteristic functions is that the convolution of a number
of Poisson distributions is again a Poisson distribution, with a similar result for
normal distributions.

If n —> oo and p —> in such a waythat pn = a, a constant, then thefirst

characteristic function tends to the second one. This suggests (correctly) that
the point function for the binomial distribution may be approximated by that
for the Poisson distribution if n is large but pn is moderate.

If a distribution with characteristic function g(é) is expressed in terms of a

new variable (x — yj)/o it is said to be expressed in standard measure. In
terms of the new variable the mean is 0 and the standard’deviation is 1. The

new characteristic function is e-iveg(2) If the binomial, Poisson and

normal distributions are expressed in standard measure, the corresponding
characteristic functions of the first two tend to the last one. Hence it is not

+ A natural way of expressing the order of the approximation is by giving upper
and lower bounds for the proportional error at each value of x for the point or density
function, or in each interval (x1, x.) for Pv, << X <x,). Cf. the first paragraph of 5.3.
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surprising that the distributions themselves, in standard measure, tend f to

 e—it*, his is a special case of a result called the central limit theorem,
20
which states that under rather general conditions, the convolution, when

expressed in standard measure, of w independent distributions tends to
1 Ea

val ei? dt. (See also Appendix I.)
Tt —- © .

For a very much fuller discussion of the theory of general and special dis-
tributions the reader is referred to Kendall (1945), Wilks (1944), or Cramér
(1946).

Exercises

(i) Prove Tchebycheff’s inequality, that

P( |.« — pi | > Ao) <a?

whatever the distribution function.
(ii) A random variable X has a density function f(x), which is continuous

for allx. Let & be the rth digit of the fractional part of Xwhen X is expressed
as an infinite decimal. Show that P(€&,=7)—>0-1 as r—>oo. (Hint:
assume first that f(~) vanishes outside a finite interval and prove

P(E, = 6) — P(E, = 7) — 0, etc.)

(iii) A well-balanced wheel can be spun rapidly about its centre. The
wheel is divided into 10 equal sectors numbered 0,1, 2, .. .,9. (Cf. Kendall

(1945), 189.) The wheel is spun, starting from a known position, and is
allowed to rotate for a time. The numberof revolutions of the wheel is a
random variable. The digit opposite a fixed pointer at the end of the time is
another random variable. Discuss the connexion between this physical
experiment and the result of exercise (ii).

(iv) A form of Stirling’s formula is
6(¢)log t! = (¢ + 4) logit —t#+ 4 log 2x4 —=Typ

where # > 0,0 < @(t) <1. (See, for example, Jeffreys (1939), 371-2.) Using
this formula show that

1 2rr(n —mr) _ 4 toga +p,logf(An, Ar) —A log f(n, 7) =i log

where

flr, 1) = ("orc — pyr, A>,

+24“iz(n+ 75a)
+ This method of approximating the binomial distribution is what was required in

the proof of T20.
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5.3 PROBABILITY AND WEIGHING OF EVIDENCE

Hence show that

—1log p(n, Ar) = Alog y(n, 1) + =F log (14 rn)? ~ am) +p, 

  

pn

where

y(n, 7) =f(n, 7)/g(6, *),
_ 1 = __ AY _ y— pn

a9, n) ~~ o a 2°, C= Vnp(1 p); x= os.

Ifp = $ showthat w (5000, 3250) is about 0-027, given that log,, y (100, 65)
= — 0-0112.

(v) A sequence of digits each have chances po, py, . . -» Py of being 0,
1,...,9. These digits are added “ modulo 10 ”in blocks of N, thus produc-

ing a new sequence with chances 99, pi, . . -, pj. Show that
9

1 > .
Pr = 0 a {@(s)Wo,

where
9

w= e*/10 and g(s) = ) Pr w".
r=0

(Hint: first prove the special case tT N = land find a result analogous to the
multiplicative property of the characteristic function of the sum of independent
random variables.)

Deduce that
9 9

10S "(er — ae)? =D | ls) [2% < 92%,
r=0 s=1

where yu = aver| 10p, — 1.].
(vi) X-and Y are a pair of random variables with distribution function

2 ry
F(x, ¥) -| J f(t, u)dtdu.

The expectation of a function W(X, Y) is defined as

Bex, Y=] | vl, ») fem »)deay
Let the analoguesof inertial constants of a rigid body be defined by the equations

4 = E(x), v= Ely), 0? = EX(w — wi)*},
v= Et(y—)?},  otp = EX(x — way — %1)}-

(p is called the correlation coefficient between X and Y.) Show that the variance
of X + Y is o? + 1t?-+ 2otp. Show that the probability density of X alone

exists and equals F(x, y)dy.

+ Cf. Weyl, The theory of groups and quantum mechanics (London, 1931), 34.
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(vii) Let g(t) be a characteristic function of a distribution and let

! yt ey a wo
og y(t) = Dap assuming such an expansion is permissible. ,, Kg, Kg;

r=1

. are called the cumulants of the distribution. Show, at any rate formally,

that the cumulants for the sum of independent variables are equal to the sums
of the corresponding cumulants.

(viii) Prove that wi = Ky, fe = Kay= Kg, a = Ka + 3x. Hence show

that the mean, the variance and the third moment about the mean for the sum

of any numberof independent variables are equal to the sums of the individual

‘means, variances and third moments about the mean. The first of the three

results is true also for variables that are not independent. ‘The second part
may be compared with exercise (vi).

5.4 Statistical populations and frequency distributions

Imagine that the heights are knownto the nearest inch of all the men in Eng-

land. Let g(r) be the number of men ofheight 7 inches. ‘Let N = Dd,0
r=0

the total number of men. Let f(r) = y(r)/N. Let F(x) = df(s). Then
SE

F(«) is called the frequency distribution function of r. It is defined without
reference to probability, but it is equal to the probability distribution function

associated with the experiment of selecting men at random from the population.
(See 4.7 (i).) The obvious namefor f(r) is the “ (frequency) point function ”.
The mean, variance, etc. can be defined in the same way as for general distri-

bution functions. Ifthe population is regarded as large and the “‘ class interval ”’
(one inch) as small, then it may be convenient to approximate to F(x) by a
differentiable function of the height and to introduce a density function.

The usual statistical method of finding out properties of a “ population ”
is to take only a partial sample. This is more convenient than examining the

whole population. When the population is virtually infinite, as in dice-throw-

ing, it is impracticable to take more than a partial sample. The partial sample
can itself be regarded as a population,f and it will have its own frequency
distribution which can always be described without introducing probabilities.
But it would be useful to be able to deduce that the frequency distribution of

another sample would be approximately the same, provided that both samples
were reasonably large. No such deduction is possible without using the ideas

+ But this word is usually reserved for the whole population from which the sample
is drawn.
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of probability. This explains an essential connexion between statistics. and

probability. The question will be discussed again in the last chapter.
When, a sample is regarded as a population, with a frequency function, the

mean, variance,etc. of this function are called the sample mean, sample variance,

etc. These have somerelation to the mean, variance, etc. of the whole popu-

lation, but should not be confused with them.

When a frequency distribution is obtained from statistics, there is no

particular reason to suppose that it is expressible in a simple mathematical
form. But it is often possible to find a simple form that fits the frequency

distribution approximately. If this can be done it has the advantage of des-
cribing the results of the statistics briefly. In somecasesit is suggestive of the

causes that lie behind the results. But the main reason, in general, for looking
for a simple mathematical“ law ”+ of this type is thatif it is foundit is believed
to have predictive value. That is to say the simple law, if it is a very good
approximation to the distribution function F of the original sample, is likely
to describe the distribution function of another sample (or of the whole popula-
tion) even better than F would. 'This is partly because it is likely that there
are a few predominating causes lying behind thestatistics, even though these
causes areunknown.{ If there are such causes then it is natural to suppose that ©
any given simple law has a non-negligible initial probability of being a good
approximation. ‘This probability will change when thestatistics are taken
into account, and may becomeclose to oneif the sample is not too small. It
will be realised that these remarks are not intended to be precise. ‘They are

in the nature of “suggestions”’. ‘They are a special case of the general prin-

ciple of simplicity known as “‘ Occam’s razor”. (See, for example, Jeffreys
(1939), 277.)

Oneof the difficulties is how to decide on initial probabilities of laws. No
simple complete suggestions can be given, if only because it often happens in

statistical experiments that similar experiments have been done before and
this complicates the initial evidence a great deal. In particular the normal

law is often favoured because it is known to have occurred approximately §
in previous experiments, and because it is easy to treat mathematically.
A plausible formula for the initial probability of a-law containing  para-

meters is 2”, provided that there is no initial evidence at all. (See Jeffreys

+ In the remainderof this section the word “‘ law ”’ refers to the frequencydistribution
in the whole finite population. Most of the remarks would apply, with a little modi-
fication, to “‘ hypothetical infinite populations ” (see 7.2) and also to scientific laws in
general.

ft It is by no means necessary for the simplicity of a law that the number of pre-

dominating causes should be small.
§ The approximation often becomes rather poor, as a percentage, in the “tails ” of

the distribution, i.e. at more than a few o from the mean. (Cf. 5.3, exercise-{iv).)
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(1939), 96.) An objection to this is that there are several laws of different

forms with the same number of parameters. It seems therefore that in the
present state of the theory something must beleft to the individual judgment.

As regards theinitial distribution of the parameters, once the form of the law
has been decided, it may be natural to assume in somecases that the parameters

or their logarithms are approximately uniformly distributed.
The general problem of specifying probability distributions of frequency

distributions can be expressed in terms of the measurement of volume in a

“space of functions”. The problem is a difficult one if the number of para-

_meters in the frequency distributions is infinite.
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CHAPTER 6

WEIGHING EVIDENCE

‘* Mathematical reasoning and deductions are a fine
preparation for investigating the abstruse speculations of the
Jaw.” THOMAS JEFFERSON

6.1 Factors and likelihoods

The main purposeof the present chapteris to provide a quantitative descrip-

tion of the ordinary process of weighing evidence.t 'The discussion is closely

connected with Section 4.9, being based on Bayes’ theorem T6. If in that
theorem H is taken for granted, as in Chapter 5, it may be written

P(E | F)
P(E)

or after a change of notation,

P(H | E)
P(#f)

where E is fixed and H is variable. The reason for the new notation is that

for most of the applications H is considered as a hypothesis and E as (the
proposition asserting) the result of an experiment. The theorem is knownalso
as the principle of inverse probability.

P(E | H) may becalled the “kelihood of H given E. The term was intro-
duced by R. A. Fisher with the object of avozding the use of Bayes’ theorem.{

The theorem may be expressed ‘‘ The ratios of the final to the initial proba-

bilities of a set of hypotheses are proportional to their likelihoods ”’.

The simplest case is when there are only two hypotheses, which may then

be represented by H and H. Wethen find that

O(H | E) _ P(E | A)
O(H) ~~ -P(E| AY

where O(H | £) is defined as P(H | E)/{1 — P(A | E)}, andis called the odds
of H given EZ. It is natural to call O(H) the initial odds and O(H | E)the final

odds. In general, if p is any probability, the corresponding odds are defined
as o = p/(1 — p), so that p = o/(1+ 0). If 0 =-m/n itis often said that the
odds are “‘m to n on” or “n to m against”. These should not be confused
with betting odds. Odds of 1 are called “ evens”.

 oc P(F | E),

o P(E | H), 

+ A non-mathematical discussion of the subject is given in chapters XVI and XVII
of Venn, 1888.

t See 7.1, 7.4 and Fisher, 1938, 11 and 15.
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O(H | E)/O(#)is the factor by which the initial odds of H must be multi-
plied in order to obtain the final odds. Dr. A. M. Turing suggested in a
conversation in 1940 that the word “ factor” should be regarded as a technical
term in this connexion, and that it could be more fully described as the factor
in favour of the hypothesis H in virtue of the result of the experiment.

The ratio P(E | H)/P(E | H) is the ratio of the likelihoods ¢ of H and H
with respect to E. Theparticular case of Bayes’ theorem may accordingly be
stated as

T22 The factor in favour of a hypothesis H is equal to the ratio of the hkeli-
hoods of H and Hi.

Because of this theorem the word “factor” will be used indiscriminately

for O(H | E)/O(#) and for the ratio of the likelihoods. The reason for pre-

ferring the word “ factor”’ is that it is from our point of view the practical

significance of the ratio of the likelihoods. The factor in favour of a hypothesis

is equal to the final odds when the initial odds are evens. (It is therefore
equal to the numberthat Jeffreys denotes by “ K”’.) .

Turing suggested further that it would be convenient to take over from

acoustics and electrical engineering the notation of bels and decibels (db). In
acoustics, for example, the bel is the logarithm to base 10 of the ratio of two

intensities of sound. Similarly, iffis the factor in favour of a hypothesis, i.e. the
ratio of its final to its initial odds, then we say that the hypothesis has gained
logio f bels t or (10 log,, f) db. This may also be described as the weight of

evidence § or amount of information|| for H given E, and (10 log,) 0) db may be
called the plausibility J corresponding to odds 0. Thus T 22 maybeexpressed :

‘ Plausibility gained = weight of evidence ”’,

where the weight of evidenceis calculated in termsoftheratio ofthe likelihoods.

The use of the words “factor’, “‘ decibel” etc. receives particular signifi-
cance from the following simple theorem.

T23 Suppose that a series of experiments are performed, with results E,,

+ The phrase “‘ likelihood ratio’ is sometimes reserved, in statistical literature, for

the expression x/x’, « and x’ being the maxima of P(E | H) when H runs through two
sets, S and S”’, of hypotheses, S being a subset of SS’.

ft ‘“‘ Natural bels ” can be defined in a similar way by using natural logarithms instead
of common logarithms. A natural bel is then 4-343 db. In electrical engineering a
““neper ” is 8-686 db.

§ In 1936 Jeffreys had already appreciated the importance of the logarithm of the
factor and had suggested for it the name “‘ support”. (See References.)

|| The phrase “‘ amount of information ”’ is used in a different sense by Fisher.
(For yet another sense see 6,9.) ‘

{] The use of the term ‘“‘ plausibility’ in very nearly this way was suggested by
Professor J. B. S. Haldane, after he had kindly read a draft of the present chapter. He
suggests an “‘ octave ” for the weight of evidence corresponding to a factor of 2. I am
much indebted to him for some useful criticisms.
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E,, . » « En, and suppose that these are independent given H and independent

given H. Then the resulting factor is equal to the product of the individualfactors,
and therefore the resulting weight of evidence is equal to the sum of the individual
weights of evidence.

For

P(E,.E,. ... E,|H)  P(E,| A) P(E, | 4)

P(E,.E,....En|H)  P(E,| HH)’ °° P(E,| HY
because of the independence conditions, so that factors are multiplicative and
weights of evidence are additive.

Example. A die is selected at random from a hat containing ten homogene-

ous dice and one loaded one. The loaded one is assumed to have a chance of

4 of yielding a 6. The selected die is thrown nine times and comes down

6 eight times. What are the final odds that it is the loaded one?

The initial plausibility for the selected die’s being loaded is 10 log,75
= —10db. For each 6 the hypothesis gains a factor of 4/4, i.e. very nearly
3 db since logy) 2 = 0-301. For each non-six it loses a factor of 3/2,i.e. nearly
1 db. Hence the net gain is 23 db, the final plausibility is 13 db, and the final
odds are 20 (or “20 to 1 on”).

This example showsthat the decibels used here and those used in acoustics
and electrical engineering have similar advantages for mental work.

The decibel might be defined quite generally as ten times the logarithm to
base 10 of a ratio. It may be convenient in other connexions, apart from the

theory of probability, acoustics and transmission lines. For example, the ratio

of brightness of two stars differing by one magnitude is exactly 4 db. The

frequency ratio corresponding to a semitone in musicis very close to } db, since

there are twelve semitones in an octave.

 

6.2 ‘* Sequential tests ’’ of statistical hypotheses

In 1943 A. Wald f developed a technique for the quality control of goods

and for deciding between two courses of action. The technique was applied

in thousands of American factories during the war. The basic idea can be
expressed in termsoffactors and weightsof evidence, althoughthis terminology

was not used by Wald.

Suppose that somearticle is produced in wholesale quantities. The whole

collection of articles is called the “lot” and is supposed to be very numerous.
Someof the articles are selected at random, one by one, and put to sometest.

E represents the proposition that one article passes the test. There are two

hypotheses H and Af concerning thearticles. These two hypotheses are such

that P(E | H), P(E | H) have assigned values and are chances. An alternative
approach would be to define H and A as stating that two fixed proportions of

+ See Wald, 1945 (two references) or 1947 and Barnard, 1946,
64



WEIGHING EVIDENCE 6.2

the lot would pass the test. This approach would lead to nearly the sameresults
if the lot were assumed to be large compared with the sample.

The object of testing the goods is to decide between H and H. (The case
of more than two hypotheses will not be discussed here.) It may be too expen-
sive to test all the articles in the lot; for example, the test may be a destructive
one.

Whenever an article passes the test, the hypothesis H has a plausibility

gain of
10 logy, P(E | H) — 10 log,, P(E | H)db.

When anarticle fails to pass the test there is a loss of

10 logy) {1 — P(E | H)} — 10 log, {1 — P(E | H)} db.

Before the testing is beguna decision should be made as to how much
plausibility should be gained or lost by H before thelot is accepted or rejected.
The testing need be continued only until one of the levels is reached. This
means that the number of tests cannot be predicted, but the expected number
required is naturally less than if the method depended on a sample offixed size.
The technique is very easy to apply once the required levels of plausibility

gain and plausibility loss have been decided. The estimation of these levels

can be made to depend on estimates, possibly within wideintervals of

(i) the initial odds of H,

(ii) the utility gains and losses involved in accepting H when 4 is true or
false or in rejecting it when true or false,

(iii) the utility loss of one test (or the cost of one test).

Wald’s method of deciding on the required levels is different. It depends
on estimates of

(iv) the largest number « which can be tolerated for the probability of
rejecting H when H is true,

(v) the largest number # which can be tolerated for the probability of
accepting H when # is false.t

Wald is quite aware of the connexion of his technique with Bayes’ theorem,

but he adopts the second methodof estimating the required weights of evidence
because of the desire to use only objective probabilities. Our contention is
that the judgment of « and f is just as subjective as the judgment of O(#).
Wald’s method is easier to apply once the subjective judgments are made.

When « and are given, Wald proves that the technique leads approximately
to a smaller expected numberof tests than any other technique, whether H is

true or false. This result is hardly surprising since the factor obtained from

T See the definitions of “‘ errors of the first and second kinds ” in 7.4.
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the whole experimenttells us as much aboutthe probability ofH as it is possible
to deduce from the experiment. (See also 6.7.)

The sequential technique is clearly not restricted to the quality control of

goods. It can be used for deciding between any two “simple statistical
hypotheses ” (in a sense to be defined in 7.4).

6.3 Three hypotheses and legal applications

Whenthere are three possible hypotheses H, H’ and H”, it may still be
convenient to consider them in pairs. For example, it may be decided in the

first place to ignore H”, i.e. to take H” for granted. In order to simplify the

notation, H’’ may be absorbed into the ‘“‘ vague general information ” that is
left out of account. It then becomes only slightly misleading to denote H’

by H, and the languageof odds, factors etc. becomes available. If in this way

the evidence is such as to decide “ definitely”? between H and H’, then H”
may be reintroduced. There will again be only two hypotheses to take into
consideration and the technique for two hypotheses may be applied again.

This method corresponds to a natural way of thinking about legal cases.
There are often three hypotheses that .are worth. distinguishing: that the
evidence is fortuitous,t that a particular man is guilty, or that this man has
been “framed”. The last hypothesis will normally be left out of account

(together, perhaps, with others) until the choice betweenthe first two hypotheses
is fairly clear. Similarly in card-guessing experiments the results might be

due to chance, to extra-sensory perception or to conscious or unconscious

cheating. Here again the last possibility would often be ignored until the
second one had become more plausible than the first.

In general when there are more than two possible hypotheses it is often
convenient to ‘‘ take them for granted” in pairs, so that one of a paifcan be

regarded as the negation of the other. The method is commonly adopted in
statistics and some examples will be given in Chapter 7. In fact a great deal
of thinking in statistics, science and ordinary life consists in taking hypotheses
for granted in pairs. This often leads ultimately to very high odds for one of

the hypotheses, and it then becomes important to rememberthat there may

be other hypotheses to consider.
The technique of decibels may be used in an approximate way for legal

purposes. If for example a crime is committed in London,theinitial plausi-

bility of guilt of a particular Londoner is roughly — 70 db. Therefore 90 db
are needed in order to bring the odds up to 100 to 1 on. The various pieces
of evidence (in the ordinary sense) supply different weights of evidence and

+ We do not mean to imply that no crime was committedat all, but merely that the
suspect was involved in a non-causal manner; by happening to be near the scene of the

crime, for example.
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the results may be added, if the pieces of evidence are independent; otherwise

some allowance must be made for the degree of dependence. ‘The appropriate

numberof decibels to be allotted for any piece of evidence would be largely a
matter of experience and judgment. It seemslikely that the use of decibels
in this way would be of considerable value once it had becomea mental habit.

Many ordinary commonsense ideas would be given a rough numerical basis

and would therefore be made clearer. (Cf. 4.12.)
Consider why it is important to find a motive in a murder case.- The

reason is that it is much more probable that a man will commit murder with
a known motive than without one. The ratio of these probabilities therefore
supplies a large factor in favour of guilt. Similarly, in the case of theft, a man

with several convictions is more likely to be suspected. The correct factor

in favour of guilt in virtue of previous convictions could be obtained approxi-
mately by statistical methods. Without the statistics there is a danger that

the factor would be overestimated. This is why juries are not supposed to

take previous convictions into account. It is perhaps somewhat inconsistent
that the appearance of the accused man is allowed to influence the jury.

It is convenient to refer here to a principle stated by Sherlock Holmes. If
a hypothesis is initially very improbable but is the only one that explains the facts,

then it must be accepted. From the present point of view this is because the
hypothesis receives an infinite factor from the evidence. The principle is often

used in scientific work. It is liable, however, to be misleading. For if the

only hypothesis that seems to explain the facts has very small initial odds, then

this is itself evidence that some alternative hypothesis has been overlooked.

This too is an example of Bayes’ theorem !
A similar point can be exemplified by means of the hat containing eleven

dice, mentioned in 6.1. Suppose that the selected die had been thrown

60 times. What numberof 6’s would make it most convincing that the selected

die was the loaded one? Some people would reply that the best numberof6’s

would be 20 since this is the expected numberif the die is known to be loaded.
This would be an example of what may becalled “‘ the fallacy of typicalness ”’.

In fact the more 6’s that are obtained the more probable it is that the loaded
die has been selected. But in practice we could never know that the hat con-
tained eleven dice of the type mentioned—wecould regardit merely as highly
probable. Thus,if all 60 throws yielded a 6, we should get 600 log,, 3 = 286 db
in favour of the view that the loaded die had been surreptitiously replaced by

a “‘ completely loaded ” one; provided that there were no other hypothesis that

could be considered. A similar argumentarose in connexion with the Dreyfus
case, where there was so much circumstantial evidence as to suggest that
Dreyfus had been framed.
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6.4 Small probabilities in everyday life

In ordinary life you continually use Bayes’ theorem in some form. Some-

times the initial probabilities are very small but the factors are very large. For
example, if you meet a “random man” in France, the initial probability may
easily be as small as 10-1? that he is a particular Englishman with whom you
are acquainted. But if he happens to be the Englishman in question, it is
generally fairly easy to recognise him (though not as easy as when heis in his
normal environment). It follows that you can quickly observe enough charac-
teristics of the man so that the probability is less than 10~!* that another man,

selected at random in France, would have the same characteristics. (For a

factor of at least 101% is required.)

6.5 Composite hypotheses

In general, when there are more than two hypotheses, the natural procedure
is to work with the original form of Bayes’ theorem. But there is a case that

is in a sense intermediate between the cases of two hypotheses and of more

than two. Suppose in fact that you wish to know whether a hypothesis H is
true, the evidence being E (together with some evidence H’ whichis taken for _
granted). Suppose further that H can be expressed in a convenient way as the

disjunction of m mutually exclusive hypotheses Hy, H,, ..., Hy, Then H

may be described as a composite hypothesis. (See also 7.4.) .
If it were assumed that H,, H,,.. ., Hn were false the factor in favour of

H in virtue of E would be P(E | H,)/P(E|H). Denote this expression by f,
and let fo, fg, - - «>, be defined in a similar way. ‘These numbers are analogous
to the partial derivatives of a function of several variables.and may becalled
the partial factors in favour of H,, H,,..., Hy. Let P(H,|H)=p,. Then

the factor in favour ofH in virtue of E is equal to the “ weighted average” of the
partial factors, i.e. it is equal to d'p;f;.

r

The proof of this is simple. We have

— yer| APE | Ar)
aPifr = » P(E | H)

= S1Pele| HYPE | Het
 

 

P(E | #)
_ yet |H)  P(E.H|H)_ P(E|#A)

P(E | H) P(E|H) P(E| H)
CoroLtary. The factor in favour of H lies between min f, and max f,.

Tr r

Example (i). Imagine an experiment in ESP of the type discussed in 4.9..

Suppose that there are trials of which 7 are successful. Let H denote the

t Section 4.9 should be re-read at this point.
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hypothesis that the “ percipient’’ has powers of extra-sensory perception.

This hypothesis was called K in 4.9. Corresponding to K, of 4.9, let Hy be

the assertion that the probability is p that a given trial will be successful, and
that this probability is a chance. Worded in this way, Hp is an “ improper

theory’. The question of whether it could be converted into a proper theory

will not be reopened here. .
The hypotheses H, for different values of p are mutually exclusive. If

it is assumed that the amount of ESP remains constant, then H is the disjunction
of the continuousinfinity of propositions H, for valuesofp satisfying} <p < 1.

Let us assume that if H is given then there is a uniform distribution of proba-

bility for the variable p between $ and 1. (See 5.3.) Suppose further that
10-29 < O(H) < 1073.

What then are the final odds of H in virtue of the whole experiment E?
The “ partial factor” in favour of H, from each success is 2p and from

each failure is 2(1 — p). (The factor from failure is of course less than one.)
Hence the partial factor from the whole experiment is (2p)" {2(1 — p)}"-*.
Therefore by the theorem of the weighted average of partial factors,t the
factor for H is

[oyea = pyp-r2dp,
This could be evaluated by means of tables of the incomplete Beta function.

Or we may put p = 3(1 + x), and, if rs is small, obtain
. f (1b x(t ~ xyr-rde = {. (1 — (Te+ y"in

x”

= \ exp {— 4nx? + (2r — n)x} dx
0

 
1 ©

= Vaaur e—*y* dy,
n —8

where s = (r — 4n)/4Vn. Thisis the deviation above the mean, divided by the
standard deviation, assuming H. It may be called the “ o-age ” of the experi-

ment. If itis at all large (say s > 2), while - — 4is small, a good approximation

_ 2a stig os
for. the factor is Jele a plausibility gain of (2.175? + 4 — 5 log,, 2) db.

Thefinal plausibility therefore lies between (2.17s? — 196 — 5 log,,) db and

+ This theorem concerns only a finite number of alternatives, but it is adequate for
our purpose. For we could work with a large but finite numberof alternatives, as in

4.9. The summations to which this would give rise would be approximated by the
integrals used here.
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(2.17s? — 26 — 5 logy) n) db. For example, if nm = 10,000 a o-age of 10 would
be required (7 > 5500) in order that H should be at least evens.

Manystatisticians would be satisfied with a smaller score than this on the

grounds that a o-age of 5 or more is so very improbable on the assumption of
no ESP. What this means in effect is that they would take the initial odds

O(#) as at least 10-4. This is an application of the ‘“‘ device of imaginary
results’, described in 4.3 (iii).

In practice, however, if the number of successes in the first 10,000 experi-
ments really were 5250 it would be suggestive that the assumptions were wrong.

It might mean that there was something wrong with the design of the experi-
ment, or that the powersofthe percipient were variable. 'The second hypothesis
could be tested by means of the y? test, which will be described in the next
chapter. The test could be applied by breaking up the experiment into equal

blocks, e.g. 100 blocks each consisting of 100 successive trials, and then seeing
if the numbers of successes in the blocks were significantly variable. If no
significant variation could be detected and if no fault could be found with the
design of the experiment, then the obvious course would be to extend the

series of trials. For if the experiment had been worth starting whenthe proba-
bility of success was very low it would presumably be worth continuing when
this probability had increased.t ‘The natural time to stop theseries oftrials
would be when the probability had become close to 1, or else appreciably less

than it was before the first trial.
Example (2). The following figures were given as an example in a paper

on inverse probability by Haldane (1931).
A family of 400 Primula sinensis seedlings from the cross between a doubly

heterozygous plant and a double recessive contains 160 “ cross-overs”. Let

H be the hypothesis that the genes of the original plant lie in the same chromo-
some. The initial odds of Hare 11 tol against. Call a cross-over a “ failure ”’,
so that there are 240 successes out of 400 “trials”. If H is assumed the
probability of a success is 4, and assuming H, the probability has (approxi-
mately) a uniform prior distribution between 4 and 1. What are the final
odds of H?

It will be seen that the problem is mathematically identical with the one about

ESP which has been discussed above. Here nm = 400,7 = 240,06 = 4 Vi = 10,

s = 40/o = 4, so the plausibility gain is 80 log, e + 4 — 5 logy) 400 = 25-7 db.
The initial plausibility is — 10 log,, 11 = — 10-4 db, so thefinal plausibility

+ This argument can be used moregenerally. It provides some justification for the
view that the factor from an experiment is of immediate importance, without the direct
consideration of the probability of the hypothesis that is being tested. This is true
when the decision involved is whether to extend the experiment. It is not true in general
for other types of decisions.
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is 15-3 db. The fina] odds are therefore 34 to 1 on, agreeing with Haldane’s
figure of 0-028 for the final probability of A.

6.6 Relative factors and relative probabilities

Let H,, Hy, . . ., H, be a set of mutually exclusive and exhaustive hypo-

theses with probabilities p,, ~,, . . ., Py» Any set of numbers proportional
to these probabilities may be called the relative probabilities of the hypotheses.
If E is the result of an experiment, we know that

PH,| E)
P(H,)

Any set of numbers proportional to the likelihoods P(E | H,) may be called
the relative likehhoods. With the obvious definition of relative factors it is

a truism that the relative final probabilities may be obtained by multiplying the
relative initial probabilities by the relative factors. Moreoverthe relative factors
are equal to the relative likelihoods, by the above form of Bayes’ theorem, and

therefore, just as in 6.1, we shall regard the relative likelihoods as providing an

alternative definition of the relative factors. If this is done the above “ truism ”
becomes an important theorem.t

Relative factors have a multiplicative property corresponding to T23, when

several experiments are performed, provided that these experiments are inde-

pendent whichever of the hypotheses H, is assumed.
Whenthere are only two hypotheses H and H,the ordinary factor is equal

to the ratio of the two relative factors, in view of T22. If there are two
hypotheses, one of which is composite, the partial factors may be taken as
a set of relative factors.

Any sets of numbers of the forms a1+ log P(H,), 6 + log P(H,| £),
c + log P(E | H,), where a, 6, c are independent of 7, may becalled the relative
initial plausibilities, the relative final plausibilities and the relative weights of
evidence. The unit is the bel, the decibel or the natural bel, accordingas the

base of the logarithms is 10, 4/10 or e. Bayes’ theorem may be expressed in
the form

oc P(E | H;).

Relative final plausibilities = relative initial plausibilities
+ relative weights of evidence.

If there are only two hypotheses the theorem reduces to

Final plausibility = initial plausibility + weight of evidence.

This becomes clear when it is observed that if H is a hypothesis, the initial

plausibility ofH is equal to therelative initial plausibility of H minustherelative

+ Ihave now been informed by Dr. C. A. B. Smith that an almost identical formulation
of Bayes’ theorem is frequently used in population genetics.
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initial plausibility of H, with a similar equality forfinal plausibilities and weights

of evidence.

The notion of relative factors, etc. will be used in the next chapter.

6.7 Expected weight of evidence

There is a curious theorem which was pointed out by Dr. Turing, namely

that the expected factor for a wrong hypothesis in virtue of any experiment is equal

to1. For example,if an unbiased coin is spun once there is a probability 4 of
a factor 0 and also a probability 4 of a factor 2 in favour of the wrong hypothesis

that the coin is double-headed. Moregenerally, let the hypothesis be H and
suppose that an experiment is performed which must have one of the mutually

exclusive results E,, E,, . .., Ey. Imagine that A and B are two people. with

the same‘‘ body of beliefs ” but only 4 knows that His false. (Assumefurther
that A accepts the theory of probability and that he knows that B doesalso.)
From A’s point of view, the expected factor | which B will obtain from the

experiment is, by the PEL of expectation,

= PE, vE,v...vE,|H)=1.

Another slightly paradoxical possibility is provided by the example about
dice in 6.1. Suppose that the hypothesis H is that an unloaded die has been
selected, and suppose that, unknown to the experimenter, His false. ‘The die

is thrown once. Then, from the point of view of someone who knowsthat

H is false, there is a probability 3 that the experimenter’s degree of belief in
H will increase. In other words it is 2 to 1 on that a wrong hypothesis will
have its probability increased, in this example.

If, however, the die is thrown an infinite numberof times, the experimenter’s

degree of belief in H will almost certainly tend to 0. In fact, on each throw
the expected weight of evidence is much moreto the point than the expected
factor, because of the additive property of weights of evidence. ‘This property

enables T21 of 5.2 to be applied to weights of evidence in a significant manner.
The same would not be true for expected factors, since the sum of a number

of factors has no particular meaning. It is not surprising that the expected

weight ofevidencefor right hypotheses ispositive andfor wrong hypotheses is negative.

This result may be proved with the help of the following inequality, | by taking

Pr = P(E, | A), pf = P(Er| H). Suppose py > 0, fr > 0, XP, = 1, Lpf = 1.
Then 2'p, logfr < 0, d'p,f; logf, > 0. Equality occurs only if f, = 1 for all r.

+ The reader may suspect that this involves the probability of a proposition thatis
itself concerned with probability. This would contravenethe definition of a proposition.
But it is clear from the proof of the theorem that the suspicion is ill-founded.
- } Hardy, Littlewood and Pélya, Inequalities (Cambridge, 1934), theorem 9.

72



WEIGHING EVIDENCE 6.8

In a sequential test of a statistical hypothesis H, it is interesting to know
the expected number oftrials required for a given gain of plausibility if H
is true (or for a given loss of plausibility if H is false). The calculation may
be made to depend on the expected plausibility gain from onetrial. In fact,
a good enough approximation for most practical purposes can be obtained by
dividing the required gain of plausibility by the expected gain pertrial.

In order to obtain a more precise result, including the distribution func-
tions for the size of the sample, it may be observed that the problem is mathe-
matically the same as a problem of “‘ players’ ruin”. Twoplayers, who may be

identified with the acceptance or rejection of the lot, play a series of games in
which the stakes are equal to the plausibility gain and loss due to a success or

failure of the test. Their fortunes are equal to the required gain and loss of

plausibility and their probabilities of winning any game are P(E | H) and
P(E | H) if H is true, or P(E | H) and P(E | ) if H is false. The problem is
to find the probability of either players being ruined in a given number of
games. This problem is treated by Uspensky (1937), 143. See also Bartlett
(1946), where further references may be found.

6.8 Exercises

(i) Show thatif the odds against three independent events are 0,, 05, 03, then
the odds against all three events happening are (0, + 1)(0, + 1)(o,-++ 1) — 1.

(ii) A pack contains an unknown number WN of cards each with a different
picture on it. A random sample of 7 cards is taken with replacement, and is
found to contain s different pictures. Show that the N which receives from
this result the maximum relative factor (i.e. the “‘ maximum likelihood ” value
of N) is the largest N for which

: 5 1
log (1 — 5) > ~ rlog (1 — y)

(iii) With the conditions at the end of 6.7, if the factors f, are all close to 1,
show that the expected gain of plausibility for H assuming that it is true, is
roughly equal to the expected loss of plausibility assuming thatit is false. (I
am indebted to Dr. Turing for this result.)

(iv) Show that, from the point of view of an experimenter who does not |
know whether a hypothesis H is true or false, the expected final probability
after any experiment is equal to the initial probability. In the same circum-

stances it is not true in general that the expected final odds are equal to the
initial odds.

(v) Let H be thestatistical hypothesis concerning a random variable that

it is normally distributed with zero mean and unit variance. The only alterna-
tive hypothesis is that the distribution is uniform in the interval (— a, a) and

F 73



6.9 PROBABILITY AND WEIGHING OF EVIDENCE

vanishes outside this interval. It is decided to take m independent readings
and to accept7 if it does not lose more than & natural bels; where k may be

positive or negative. Show that, from the point of view of someone who knows

that A is false, the probability that the experimenter will incorrectly accept H
does not exceed

(nK)"
(aypT'(an + ty

2 .

where K = 2k -++ n log “< and is assumedto be positive. (Dirichlet’s integral

may be used. See Appendix JT.)
(vi) Let H mean that a particular man, known to belong to blood-group A,

has a (recessive) gene for blood-group O. Assume that P(H)= 4. His wife
belongs to group O and an expetiment F consists in testing the blood of their
six children and finding that they are all of group A. Assuming that
P(E | H) = 2-8, P(E| H)=1, prove that P(H|E)=7yts. (This can be
proved mentally in a few seconds.) There is some reason to believe the
hypothesis G that the father of the seventh child belongs to group O. It

turns out that this child belongs to group O, a result which would be certain
given G and would have probability 34; given G. This provides a factor of
386 in favour of G.

(vii) Ifin exercise (iii) there are only two possible experimentalresults, E and

E, showthat the expected gain of plausibility if H is true is equal to theexpected
loss if H is false, provided that P(E | H) = P(E| H). (It can be provedthat
the expected gain exceeds the expected loss only if P(E | H) < P(E | #).)

(viii) Let f be the factor in favour of H from an experiment. Show that
the expected value of f* given H equals the expected value of f*+1 given H.
Show also that if H is given, the probability does not exceed g that f does not

exceed g.

6.9 Entropy.

While the manuscript was with the publishers an article appeared + involving
ideas that are related in some ways to those of the present chapter.

Suppose that an event occurs whose probability on known evidence is p.
It is desired to introduce a simple numerical definition for the amount of
information that is thereby conveyed. Wehave already defined a measure for
the weight of evidence in favour of a particular hypothesis, but we are now

concerned with the amount of information as such, i.e. the amount from the

point of view of a person whois interested merely in collecting information,
without reference to any uncertain hypothesis. It is natural to make two

T Shannon, C.E., ‘“‘ A mathematical theory of communication ”’, Bell system technical
journal, 27 (July 1948), 379-423. -
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demandson the measure: (i) it should be a decreasing function ofp, and(ii) the
amount of information provided by two independent events shouldbe the sum
of the separate amounts. The only functions satisfying these conditions are

of the form — log p, where the units are natural bels ifthe base of the logarithms
ise. If the base is 2 then the unit maybecalled an “octave’’, a “ binary digit ”’
or (after J. Tukey) a “bit”. For example, if a coin is spun and comes down

heads then one bit of information is provided.

Now consider an experiment whose possible outcomeis one of a finite (or
enumerable) number of mutually exclusive events of probabilities p,, p., .. -

Then the expected amount of information from the experiment is

This is called by Shannon the entropy of the experiment, by analogy with

entropy as defined in statistical mechanics. (See, for example, J. C. Slater,

Introduction to chemical physics (New York, 1939), 33.)
For a discussion of the properties of the entropy of an experiment the reader

is referred to Shannon’s article. We content ourselves now with seven simple

remarks :—(i) Entropy as defined by Shannon is dimensionless, and the

analogous entity in statistical mechanics is, strictly speaking, ordinary entropy

divided by Boltzmann’s constant. (ii) Shannon refers to the entropy of an
“event”, but what he calls an “event” is what we call an ‘‘ experiment ”’.

(iii) ‘The distinction between an ‘‘ experiment ”’ and an “ event’ has madeit
possible to introduce entropy in a rather more direct manner than that used by

Shannon. (iv) The same units can be used for measuring weights of evidence

and entropy. (v) Norbert Wiener has pointed out in conversation that the
two sorts of entropy can be identified by introducing a “ Maxwell demon”.

(See Slater, 1c., 45.) (vi) As previously implied, Shannon is not concerned
with amounts of information relative to alternative hypotheses. But if we
consider such amounts of information wefind that, apart from sign, they form
a set of relative weights of evidence, in the terminology of page 71. (vii) The
weight of evidence in favour of a hypothesis H is equal to the amountof informa-
tion assuming H minus the amount assuming H. Hence the expected weight
of evidence is equal to the difference of the entropies assuming AH and H
respectively.
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CHAPTER 7

STATISTICS AND PROBABILITY

*“«, . the record of a month’s roulette playing at Monte
Carlo can afford us material for discussing the foundations
of knowledge.” Kari PEARSON

7.1 Introduction
*

Any practical statistical enquiry is concerned with the numbers of objects
of a specified set (‘‘individuals”’ of a specified “‘ population”’) having various

attributes. ‘The general methodsof analysis of the numerical information make

up the subject of theoretical statistics. This subject can be divided into a

“ descriptive’ part and a “ predictive”’ part. The first part is concerned with
such methods of characterising a sample as curve-fitting and the calculation of

means and higher moments. In predictive statistics forecasts are made of the
properties of a population, given a description of a sample. It is this part of

the subject that will be discussed in the present chapter. (Some examples
have already occurred in previous chapters.) ‘There is no question here of a

comprehensive treatment t—our object is merely to indicate by examples that

predictive statistics may be regarded as a branch of probability theory. If it
could not be so regarded, probability would have failed to cope with an
important class of problems concerning degrees of belief.

Even if predictive statistics is a branch of the theory of probability { it

is still often necessary to use somewhat arbitrary procedures in practical work.
For sometimesthe calculations involved in an exact treatment of a problem are

prohibitive. This type of difficulty occurs frequently in other branches of
science. For example, it is thought that quantum theory is adequate to explain
quite complicated chemical reactions, if only the mathematical equations could

be solved. Meanwhile chemists often use other less fundamental theories for
their predictions. The difficulty occurs even in pure mathematics. In several

good books on mathematical analysis there are topics that are not properly
referred back to the axioms. It is believed that rigour is possible but difficult, and
a provisional semi-intuitive discussion is felt to be adequate. What is forgivable
in pure mathematics is presumably forgivable in the theory of probability.

Manystatisticians deny that it is possible to reducestatistics to probability.

Their reason is usually connected with the rejection of Bayes’ theorem. For
example, Fisher considers that his famous principle § of accepting a hypothesis

t+ See the excellent treatises of Cramér, 1946, Kendall, 1945-6, and Wilks, 1944.
{ It must be emphasised that we are continuing to use the phrase “‘ theory of prob-

ability ”’ to mean the theory adopted in this book.

§ Considered by earlier writers, but not systematically.
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with maximum likelihood is not deducible from the theory of probability.
Neyman and E. S. Pearson, while avoiding the use of Bayes’ theorem, have
attempted to base statistics on probability by means of“errorsof thefirst and

second kinds ” and ‘‘ confidence intervals”. (See 6.2, 7.4 and 7.10.) These
methods of avoiding the use of initial distributions are valuable, but some
subjective judgment is normally required in practice. It is noteworthy that
E. S. Pearson + (1947) says in connexion with the 2 x 2 contingency table:
““’ . . ina problem of such apparent simplicity, starting from different premises,

it is possible to reach what may be very different numerical probability figures

by which to judge significance’’. Herefers also to the ‘‘ qualities of sound

judgment which are the characteristics of a well trained scientific mind”.
For us the “ different premises ” correspondto the different ways in which the
contingency table could arise and to the different™possible bodies of belief.

(Contingency tables will be discussed in 7.9.)
An attempt has been made to justify a numberof statistical procedures by

considering their asymptotic properties for large samples. The obvious dis-
advantage of the use of Bayes’ theorem, that the initial probabilities may be

“ known ”’ only to lie in wide intervals, is likewise overcome by the use of large
samples; for large samples produce narrow intervals for the final probabilities,
Therefore it seems that any theoretical justification of statistical rules should
if possible be based on the assumption of small samples. Otherwise it is not

convincing that these tests are better than the methods adopted here. The
question of a practical justification of the use of arbitrary procedures is entirely

another matter. It is a question of whether a technique that is theoretically
less satisfactory can be practically more convenient. Here the guiding prin-

ciple is the guiding principle of all science—to use enough common sense to
know when ordinary common sense does not apply. The sort of judgment

that can be made by commonsenseis that there are occasions whenit is better
to be lazy. (Cf. 4.3 (iv).) Such a judgment must be made whenever the
chi-squared test or confidence intervals are used. (See 7.8A, 7.8B and 7.10.)
The judgments can be expressed in terms of the expectedutilities associated
with the use of various methods, allowance being made for the gain of time in
ignoring some of the information.

7.2 Sampling of a single attribute

The simplest collection of statistics consists of a sample of 2 objects each
of which either has or has not someattribute. Suppose that m of the objects
have the attribute. The ratio m/n may becalled the sample frequency (ratio) or

T See also Barnard, 1947,
}t The necessity for judgment has never been denied by good statisticians, but it

has not often been explicitly emphasised. (But see, for example, Bartlett, 1933, p. 534.)
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proportion of the attribute. Weshall discuss the connexion between sample
frequencies and probabilities. The general conclusion will be that the sample
frequency is approximately equal to the probability of the attribute in most

cases when n is large. This conclusion is suggested by Borel’s theorem. The
case 7 = 1 showsthat it would be irrational to expect the sample frequency

to be exactly equal to the probability.

It is advisable to subdivide the problem accordingto the type of the sample.

(i) Suppose first that the sample consists of the whole population. In

this case there is no need to introduce probabilities into the discussion at all.

There are 2 objects of which m havethe attribute, and that is all that needs
to be said. But the sample frequency in this case is equal to the probability

of the attribute for objects selected at random from the population.

(ii) At the other extreme there are cases when you ‘“‘ know ”’ the probability
p before the sample is taken. These cases arise for example in games of chance.
More usually you have someinitial knowledge, but not sufficient to disregard
the value of m entirely. Even in games of chance, if m differed from pn by
very much, you would naturally suspect that you had made a mistake in your

original judgments. ‘The mistake would usually be that of assuming that some
empirical proposition was almost impossible, or that the “
cisely independent.

Whenthe probability p is known before the sampleis taken and is unaffected
by the results of the sampling, it is a “‘ chance” in the notation of 4.9. In this ~

case the sample can beconceived as having been drawn from a large or even

infinite hypothetical population. The chance is sometimescalled the ‘‘ (limit-
ing) frequency in the hypothetical (infinite) population”. This phrase has the

advantage of helping some people to gain an intuitive grasp of such problems.
The idea of a hypothetical infinite population can be used quite generally

as a method of avoiding talking about “chances”. For example, in the
remarks concerning quantum theory in 4.9, P(E | H.U) can becalled “the

chance of E given H and assuming that quantum theory is true ”or ‘“‘ the limit-

ing frequency of occurrences of E given H in a hypothetical infinite population

of trials, assuming that quantum theory is true”. The second description of
P(E | H.U) is sufficiently justified by the ‘“‘ fundamental theorem of proba-
bility’. (See 4.10.)

(iii) Next suppose that there is a finite population consisting of a known
number N of members, M of which have the given attribute. The number @
is unknown, but it is assumed to have an initial probability distribution. You

take a random sample with replacement f consisting of 2 members, of which m

trials’ were pre-

+ If N is large it does not make much difference to the numerical results whether
the sample is with or without replacement. It is assumed to be with replacement because
this case is slightly simpler mathematically.
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are found to have the attribute. What then is the final probability distribution
of M? And what is the probability that the next memberselected will have

the attribute? ‘The second question can be reduced to the first one in the

following way :—

Observe first that if the value of MM was known then the probability of
“success” at the next “ trial’? would be M/N. Moreover this probability
would be a chance t in the sense that it would not be affected by the results
of sampling. Now suppose that at any stage the probabilities of M = 0,
M=1,..., M=N are assumed. to be po, p, . . ., py. These numbers

define the probability distribution of the chance. The probability of success

at the next trial is

Pray + Bag + wee +Pw

by axioms A2 and A3. Hence

T24 When sampling with replacement, the probability of success at the next
trial (given evidence E) 1s equal to the mean value of the chance of success, the mean
value being calculated by using the probability distribution (given E) of the chance.

-A similar result applies for the probability of 4 successes in the next y trials,
and may be proved in a similar way.

Wereturn nowto the first question. Let Hy denote the hypothesis that
. M has a particular value also denoted by M. Let py, p,, . - -, pw be the

initial probabilities of Hj, H,, . . ., Hy. In virtue of each success the various

hypotheses receive relative factors of M/N, and in virtue of each failure they

receive relative factors of 1— M/N. Hencetherelative final probabilities are

meO-ay
To obtain the “ absolute” final probabilities we must divide the relative final
probabilities by their sum. It follows from T24 that the probability of success

at the next trial is

m+1 M n—m

d(x) (1-5)M=0
m n—-—m™m .

deu(x) (1-9)
M=0

If N is large it is mathematically convenient to imagine that it is infinite and
to replace the chance M/N by a continuous variable x. The point function
pm may then be replaced by a density function p(«) that determinestheinitial

 

+ It is a population “ frequency (ratio) ”: In the idealised case of an infinite popula-
tion it would be a “ limiting frequency ”’.
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probability distribution of the chance x. (More generally one could use a
distribution function that is not necessarily differentiable.) In terms of p(x)
the probability of success at the next trial is equal to

[209 xmt+1(] — x)n—m dx
0 ° 

|26) xm (1 — x)"—-™ dx

For example, if the distribution is uniform, so that p(x) = 1, the probability of
m+1

n+ 2

law of succession. (The cases n = 0, n = 1, and m =n are particularly inter-
esting.) It may be deduced that if m = n, there isa probability of 4 that the

next x + 1 trials will all be successful. For by A3 the probability is

n+in+2 2n +1:
abones Ime

In general, if m is large the function «(1 — x)"—™ has a very sharp peak at
x == m/n. It follows that the probability of success at the next trial is close to
m/n, provided that the graph of.p(x) has a moderate area in the neighbourhood
of x = m/n. In other words, if 7 is large the result is not sensitive with respect

to the assumed initial probability distribution of the chance. ‘This is just as

well because it is often artificial to give the initial distribution at all exactly.
(iv) Now suppose that the population is infinite. This case cannotreally

occur except as an idealisation, and.in this sense it has already been discussed

under heading (iii). It might be thought that infinite populations do occur in
‘such experiments as dice-throwing, but even here the dice would eventually get

worn out. It is necessary to fix the value of N in any such case in order to
bring it under heading(iii), but the value selected makes very little difference
provided that it is large. There is here no question of sampling with replace-

ment, so the previous discussion requires some modification. But the modifica-

tion presents no particular difficulty and will not be given here.
Instead of regarding this case as being included under heading (iii) it may

be more convenient to make direct judgments about theinitial distribution of
the chance. For example, if this distribution is uniform the sample frequency,
m/n, is the “most probable value” + of the chance. (Whatever the initial
distribution the sample frequency is the maximum likelihood value of the
chance.) ;

If x were large, adherents of the frequency approach would judge that the
chance x was approximately m/n. (They would not usually judge that the pro-
portional accuracy was good if m was small.) If they would define the degree

tT See the index.

success at the next trial reduces to This is sometimes called Laplace’s
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of the approximation then Bayes’ theorem (in reverse) could be used for

obtaining information about the initial probability distribution of the chance.
(v) Finally, suppose that N is unknown. As before you can use judgments

about the initial distribution of the chance. (Or you could work with the
distribution of N and the distribution of M for each N.)

7.3 Example

Consider the ESP experiment of 4.9 and 6.5. Here the alternative hypo-

theses are H,($ <p <1), where Hj is the same as H. Lettheinitial odds of

H be 1071° If there are m successesin 7 trials and if it is assumed that there

is a uniform initial distribution for p in the range 4 < p < 1, then therelative
final probabilities of the alternatives are

Pre (H | E) = 107°,

Pre (dp | E) = (2p) {211 — p)v-™dp (4 <p <1),
Pre (p = 1] E)= 0,

where some self-explanatory notations have been used. The last of these

equations may be denied on intuitive grounds, but it follows from the assump-
tion of a uniform initial distribution. It may be more natural to allow a very

small probability to the hypothesis that the man has perfect ESP, but it would
not introduce any new interest or difficulty into the calculations. It follows
from 6.5 that the final probability of H is large if 2-17s? — 5 log,, — 96 is’

large, where s = (m — 3n)/(4 +/n). Under the same circumstancesit is fairly
clear that the probability of success on the nexttrial will be close to m/n. If,
on the other hand, 2-175? — 5 log,) 2 — 96 is negative and numerically large,
then Hf will remain highly probable and the probability of success at the next
trial will be very close to }. In any case, provided that x is large, the proba-
bility of success at the next trial is close + to m/n. ‘This is an example of the
fundamental theorem of probability.

It should be noticed that if m is not large enough,then the probability of

success at the next attempt may be quite different from m/n. For example,
if m = n = 20, the probability is still close to 4, assuming that O(H) = 10729.

This ESP experiment exemplifies the important ideas of significance and
estimation. If is sufficiently far from 3” then ESPis probable and the experi-

ment is called significant. In this case it becomes interesting to know how
much ESP is present—that is, which of the hypotheses H, is true, where
p>.

The example is typical of many others, and it frequently happens, at any

rate as a sufficiently good approximation, that there is a finite amount of the

+ The reader may consider what modifications are required to allow for the possibility
that m is much smaller than 4n.
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initial probability concentrated at a particular value of a parameter, all other

values of the parameter being almost impossible. But in most cases the
probability that the parameter has the special value is not so near to 1. For
example, if you were investigating whether cosmic rays have any influence on

mutation rates of drosophila (flies), the initial probability could reasonably
be taken as lying between 0-01 and 0:99. There is no need for the parameter

to represent a chance. It might for example be a function (such as the mean
value) of the chance distribution of the increase in weight of guinea-pigs when —
injected with a particular drug.

7.4 Inverse probability versus ‘‘ precision ’’

Let us say that one probability is more precise than another oneif it is known
or judged to lie in a narrower interval, and that a probability is precise if the
interval reduces to a point. (See 4.3 (i).) Most tautological probabilities are
precise.

Let £ be the result of an experiment f (e.g. “heads” or “ tails”). If 7
is a hypothesis it sometimes happens that P(E | H) is precise whereas P(H | E)
and P(H) may not be. Suppose further that the experiment is merely oneof a
sequence of similar experiments (or trials) and that the probability of Z, given
H,is a chance in the sense that it is unaffected by a knowledgeof the results of

other experiments of the sequence. Then H is called a simple statistical hypo-
thesis. The whole sequence of trials may be regarded as a sample from an

infinite population, in which P(E | H) is the limiting frequency of results of
a particular “kind”. (In die-throwing there are six ‘‘ kinds” of results.)

If H is a disjunction of a set of mutually exclusive simple statistical hypo-
theses, then H is called a contposite statistical hypothesis.{ In 6.5, for example,

Hy, is simple for each p and H is composite. Another example of a simple
statistical hypothesis is the assertion that a chance distribution is normal with
zero mean and unit variance. ‘This would have been composite if the mean and

variance had not been specified.

With this terminology, the likelihood of a simple statistical hypothesis is
precise, although its initial and final probabilities may not be. The absolute
precision of the likelihoods is usually purchased at the expense of expressing
the hypothesis in the form of an incompletely defined proposition.

Given a set of statistical hypotheses, Fisher’s principle of maximum likeli-
hood tells you to select that hypothesis whose likelihood is greatest. If the
result is uniquethe procedure is a precise one and does not depend on a sub-

jective judgment of the initial probdbilities of the hypotheses. (Cf. 6.8,

j{ Or rather the proposition asserting what this result is. (See 4.2.)

{ These definitions are a little more general than those usually given. See, for
example, E, S. Pearson, 1942, 311.
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exercise (ii) and 7.2 (iv).) The principle of maximum likelihood is not the only
precise procedure that is possible. Another(trivial) one is that all hypotheses
should be rejected.

If the hypotheses depend on a single parameter the “ maximum likelihood
value of the parameter ” is equal to the most probable value, provided that the

parameter has a uniform initial distribution. If the maximum in’the final
distribution is “‘ sharp ”’, then the parameter has a high probability of being close

to the maximum likelihood value. Cases approximating to this are fairly
common, so that the practice of using maximum likelihood values can often be
justified in terms of the theory of probability.

Precise procedures are convenient and often time-saving. But a man’s

decisions are normally based on what he really believes, i.e. on the final

probabilities of the hypotheses. In economics and sociology the samples are
usually large and the-final probabilities are insensitive to the initial ones. But
in many biological experiments the samples are small and then the initial

probabilities should be taken into account. These experiments are usually
designed to test a plausible hypothesis. If the initial probability is judged to

be as high as 0-05, then a factor of 20 would be sufficient to make the hypothesis
“odds on”. But different biologists may naturally have different opinions
about the initial and therefore the final odds. One objective in using precise

procedures is to avoid these differences of opinion. We maybesure that this

objective will not be attained. For example, very few scientists would accept
a theory based on superstition, even if it received a factor of 1000 from the

first experiment. It may be argued that this sort of thing would not happen
very often. But in any given case what really matters is the final probability
of the theory. And besides, it is always possible, when there are far more people
engaged on medical and biological research, that it will be quite usual to test
hypotheses with very low initial probabilities. A correspondingly larger factor
would then be required before a hypothesis would become acceptable. This
shows how arbitrary is any rule that depends only on the likelihoods.

_ Another procedure that mayatfirst sight appear to be preciseis afforded by
thetechniqueof “ errors of the first and second kinds ” introduced by Neyman

in 1930. (See Neyman (1941) and Neyman and Pearson (1933, twice).) Let
E be “an experiment”’. Let H and H’ be mutually exclusive simple statis-

tical hypotheses. Suppose that no hypothesis other than H and H’ needs

consideration, i.e. it is judged to be adequate to suppose that H v H’is true.

Even if there are other plausible hypotheses it is often convenient to deal with

only two at a time. It is usually interesting to know the odds of H, but we
may have to besatisfied with the ratio of the probabilities of H and H’. By

regarding H v H’as given, the problem is in any case reduced to the considera-

tion of only two alternative hypotheses. This is convenient because it makes
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the language of odds and factors more appropriate. The probability of H’

is the same as the probability of A, if H v H’ is given. Weshall use the “ mis-
leading notation” of omitting H v H’ to the right of the vertical stroke. With
this understanding H can be written instead of H’. (Cf. 6.3.)

Now suppose that a precise procedure has been described for calculating a
“function” P(E) of the observations, whose possible values are the instruc-
tions ‘‘ reject H”or ‘accept H”. We say that an error of the first or second

kind (with respect of H) is committed if H is rejected when true or accepted
when false, respectively. (Clearly an error of the first kind with respect to

H is an error of the second kind with respect to H, and vice versa.) For the
given procedure P, the probability given AH of an error of the first kind, and
the probability given H of an error of the second kind, can be calculated exactly.
If it is decided that these probabilities must not exceed two values « and #,
a restriction will be provided on the possible procedures PD. For example,
in exercise (v) of 6.8, the probability of an error of the second kind (when
H is given) is less than f if

2
2 n 2

k< aren + vp in log

When « and f are given, P is a precise procedure. But the choice of
a and 6 depends on judgment. (Cf. 6.2.)

Other methods of avoiding the use of the initial probabilities of hypotheses
will be discussed in 7.8A, 7.8B and 7.9, in connexion with the chi-squared

test, and also in 7.10.

7.5 Sampling and the probabilities of chance distributions (curve-
fitting) :

Consider the heights to the nearest inch of a population of men. Suppose

for the moment that the heights of all the men in the population are known
and that a man is selected at random. ‘The chanceof his having any particular

height is known. (Wecall it a chance becauseit is independent of any sampling.)

Thus the chancedistribution of the heights is known, rather than the probability
distribution. Assuming next that only the size of the population is known

andthat no man can be more than 20 feet high, then the numberof possible
chance distributions is finite. Hence you can associate with each distribution

a finite probability which will depend on the evidence assumed. The set of
such probabilities defines what may becalled the probability distribution of the

chance distribution. "This distribution of distributions is known only vaguely
before a sample is taken. The question is how much can besaid aboutit
afterwards. This is a central type of problem in statistics. (Cf. 5.4.)

Weshall idealise the problem to the extent of assuming that the population
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is infinite as in 7.2 (iii) and (iv). This will have the effect of making the
chance distribution continuous rather than discrete. It may lead on to a

consideration of measure in function space, as mentioned in 5.4, but in practice
the chancedistribution is usually judged to be defined adequately by means of
only a finite number of parameters.

Since the population is assumed to be infinite it does not matter whether
the sample is with or without replacement, but for definiteness it may be

assumed to be without replacement.

Each particular numberof inches is an attribute. -Thus the problems that
arise are more complicated than before when there was only one attribute.

The previous discussion shows that the probability that the next man selected

will have a given height (to the nearest inch) is roughly equal to the sample
frequency, provided that the sample is large enough. ‘This showsthesimilarity

with the problem of sampling a single attribute. But there is a new considera-

tion that is roughly expressed by the idea of smoothness. This will be

explained by means of an example.

Suppose that the sample consists of 1000 men, the numbers in the various

groups being given by the following table :-—

Height in
inches 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

Numbers
ofmen 1 3 12 23 53 73 96 156 150 157 118 83 39 19 12 4 1

Tota NumBer oF MEN: 1000

Whatis the probability that the next man selected will have a height of
67”? The table, or a graph constructed from it, suggests that the probability
is greater than 0-150. You are influenced bya feeling that a graph of the chances
ought to be smooth,} i.e. that it should not have many “ bumps’”’.§ Thus
the probability is affected not only by the number of men of height 67”, but
also by all the other entries in the table, and especially by the entries under
66” and 68”. It may be asked where you get this belief in smoothness, and
whether rules can be given for deciding the probabilities more precisely.

These questions can hardly be answered completely since they depend on
probability judgments. Perhaps the main point involved is the principle of
simplicity. This asserts that a simple hypothesis has a higherinitial probability
than a complicated one. The question has already been discussed in 5.4.

Wereferred in 5.4 to the number of parameters involved in the analytic expres-
sion of a function, as a measure ofits simplicity. Another possible measure is

+ This device is sometimes used even when a sample consists of the whole of a
population. In this case it may be helpful to imagine that the population is itself merely
a sample of an infinite “ super-population ”’.

ft i.e. you associate higher initial probabilities with smooth chancedistributions.
§ E. S. Pearson, 1938, defines smoothness in terms of Legendre polynomials.
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the number ofpoints of inflexion, this being a natural measure of ‘‘ bumpiness ”’.

Thus in the present example a better fit to the observations could be obtained
by means of a ‘“ double-humped ”curve t (which has four points of inflexion),
but a single-humped curve may seem more probable. (It need have only two
points of inflexion.) Another reason for preferring the simpler curve is that
any given simple curveis found in practice to occur, as an approximation, more

often than any given complicated curve.
In particular, single-humped curves occur more often in connexion with

cases similar to the one under consideration, provided that the sampleis large.
Moreprecisely it is known by experience that small bumps tend to get smoothed
out when the size of the sample is increased, the class-interval being kept
constant. Thusthe statistics of statistics have some influence on youropinions.
(See also the last paragraph of this section.)

Besides the initial probabilities of the chance distributions you need to
consider the factors obtained from the sample. Suppose that a particular
chance distribution is assumed in which the chance of a height of 7 inches is
pr. Suppose further that the number of men of height 7 inches in the sample is

co

m,, where S m,—n. Then the relative factor in favour of this distribution

r=0

may be taken as

p,,

r=0

where 0° is defined as 1. (The multinomial coefficient is omitted since it is
the same for all distributions.)

As an example consider the chance distributions that are of the normal
form

1

oV 2x
 e— (®%#—2q)?/20° |

The chance of a height of 7 inches is then

 

" oV27 r—}t "

Thus the relative weights of evidence may be taken as

-_ +4
—n logo + m log | e—(@—2o)*/20" dx,dre |

r=0

+ The observations could be fitted exactly by means of a polynomial of the 16th
degree, but the result would be far too complicated to be regarded as a probable distribu-
tion of the chance.
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The derivative of this with respect to % is
ic t+$ +h
> me e—(f—29)"/20* (x — xy) dx/ | e— (%—24)"/20* deg,
o 4 r—} r—$ ,f=

The coefficient of m, is approximately Tt (r — *,). It follows that the maximum

likelihood value of x, is approximately <2vm;, the average height of the

men in the sample. In a similar way the maximum likelihood value of o? is

approximately { “EmAr — %9)?. For any assumed initial distribution of

x, and o the final distribution can be written down. The maximumlikelihood

values of x) and o will be close to their expected values under natural assump-
tions concerning the initial distributions, provided that 2 is not too small.
The combined distribution of x) and o defines the distribution of the chance

distribution. From this you can calculate the probability that the next man
selected will have any particular height, i.e. the final probability distribution
of the height of the next man to be selected. This is the sort of thing that
would normally be of most interest in such problems.

In order to save work you could assumethat this final result is sufficiently
well approximated by a normal distribution in which the parameters x) and o
are taken as equal to their expected values, or even to their maximumlikelihood
values. Using the latter method with the given figures, it is found that
%q = 67-00, o = 2-536, and the values of 1000p, are given in row (iii) of the

following table :-—

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 ='TOTAL
1 3 12 23 53 73 96 156 150 157 118 83 39 19 12 4 1 1000
03 34 10 28 46 79 4115 145 156 145 115 79 46 23 10 34 08 99
03 384 10 28 46 75 111 156 150 1857 110 75 46 28 10 34 08 99

~16-4 —148 49-4 —25-5 542 —22:8 —18-7

The meanings of the rows of this table are :—(i) Height in inches; (ii)
sample figures ; (iii) maximum likelihood-normal curve ; (iv) a double-humped
curve ; (v) plausibility gain of (iv) minus that of (iii), in db.

Row (iv) has been selected so as to fit the observations better than row(iii)
in the neighbourhood of the mean. Theideais to test the hypothesis that the
chance distribution is really double-humped. For this purpose it would be a
mistake to make row (iv) agree too well with row (ii) in the “tails”. The
double-humped curve is only 5:4 db “better” than the normal one, and is

therefore hardly to be preferred, after allowing for therelative initial probabilities.

t There is a lack of rigour here. The approximation is not good where | 7 — x» |/o
is greater than 2, but in our example m, is small for such values of +.

 t There are reasons for preferring the estimate Lim(r — xo)? for o%, (See,

for example, Wilks, 83.)
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7.6 PROBABILITY AND WEIGHING OF EVIDENCE

It is often found that the normal distribution or some other standard dis-
tribution is a good fit except in the tails. Such a modified result is simple

enough to have an appreciable initial probability and is useful, although it does
not enable you to estimate the probabilities of very rare events with much
proportional accuracy.

Besides the various standard distributions the possibility of using a linear

combination of them should always be borne in mind. This is especially sug-
gested if the population is considered initially to be likely to be composed of
two or more types. For example, the heights of all adults in England might
be expected to obey roughly a distribution equal to a linear combination of

two normal distributions corresponding separately to men and women.

Weconclude this section with another remark about smoothness. So far
we have attempted to justify the assumption of smoothnessin terms of simplicity
and past experience. There is another possible justification. It has been

found that the convolution of a large number of independent distributions
tends to be smooth, even though the original distributions are not. For a
treatment of such problemsthe readeris referred to Jessen and Wintner (1935).
Their results justify the assumption of smoothness in the same way that the
central limit theorem justifies the normal distribution, but rather more vaguely.
It seemslikely that there would be similar results even if the distributions that

were “ compounded” were not entirely independent.

7.6 Further remarks on curve-fitting

In this section we shall refer briefly to some standard methods of curve-

fitting. This will be done not in order to explain the methods,f but to indicate
roughly their relation to the theory of probability and to the remarks of the
previous section.

A system of curves was defined by Karl Pearson, depending on only four
parameters, and giving an adequate representation of many single-humped

curves as well as some J-shaped and U-shaped ones. The system is used a

great deal by statisticians, the usual method of fitting being by means of the
first four moments of the ‘‘ observed distribution ”’ (i.e. the frequency distri-

bution of the sample). ‘The system may be described as a simple one, partly
because there are only four parameters and partly because no curve of the

system can have more than two points of inflexion. The normal distribu-
tions are included together with other classes of curves that arise naturally from

a theoretical point of view. For these reasons the system may be considered
to have a moderate initial probability of applying approximately in any given
case. The system is used also because of its convenience. It often happens
that the approximation is not good over the whole range. This is hardly

+ See Kendall, 1945, and Elderton, 1938.
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surprising since smoothness of a curve does not imply simplicity of its analytic

expression. Aboveall, it is the smoothness of a distribution that seems to give
it an appreciable initial probability. It is often adequate to draw free-hand

curves instead of doing calculations. Another method is to fit parabolas to
different parts of the frequency curve; but the initial probability would pre-
sumably be taken as a rapidly decreasing function of the number of parabolas.
A theoretically correct method of carrying out this curve-fitting is to make

use of the relative factors as in 7.5 and to allow for the initial probabilities
of the possible curves. In practice it is necessary to simplify %, as in 4.3,
suggestion (iv), by making allowance only for a particular system of curves,

such as the Pearson system. In this case the initial distribution of the curves

is fixed by the initial distribution of the parameters. It may often be judged fF

that the method of maximum likelihood will give adequate results.

There are other standard methods of curve-fitting besides those already
mentioned. One of these is by expansion in Hermite functions ; another is
by the transformationof the variable so as to obtain approximately a normal

distribution of the new variable. Of these two methods the second seems to
have more justification from the point of view of the theory of probability.
The possibility of obtaining a rough initial justification of the type of curve

should not be overlooked. .

7.7 The combination of observations

In many physical experiments several measurements are made of what is

supposed to be the ‘‘ same” physical magnitude. It is usually supposed that

there isa true value, that the deviations from this are due to the accumulation

of unavoidable errors, and that these deviations obey a normal distribution. ¢

The assumption that there is a true value may be avoided by assuming merely
that the possible results of the experiment obey a normal distribution with

mean x, and variance o”. ‘The parameter x, takes the place of the so-called true
value. The problem of estimating x, and o is then mathematically as in 7.5.

Suppose that one of the readings is a long way from the rest of the observa-
tions. Is it justifiable to reject it when estimating x, and o? ‘The answer

depends on the probability of having made a mistake, i.e. an avoidable error.
In general, if the deviation from the average is greater than five times the

estimated value of o, it would probably be assumed that a mistake had been
made, becausethe factor in favour of a mistake would be large. Or the assump-

tion of a normal distribution might be suspected unless it was well supported
by the rest of the observations.

+ The judgment is one that can be expressed in terms of expected utilities in any
particular case. But the implicit courses of action themselves involve alternative prob-

ability techniques, so that the judgment is of a higher “‘ type”’ than usual.

t The mean need not be zero, i.e. there may be a bias.
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7.8 PROBABILITY AND WEIGHING OF EVIDENCE

The exact values of x, and o cannot be determined. -All that can be done

is to say something about their probability distributions, maximum likelihood
values and so on. For a detailed account of the subject see Brunt (1931).

Exercise. Only two theories are to be entertained regarding the value of a

physical magnitude: either it is equal to & or else to €’. Several experiments

are performed and readings x, «,, ¥3, . . . are obtained. Assuming a normal

law of error with standard deviation o, show that the first”theorygains

¢ ad(= _é§ + ~) natural bels.

7.8 Significance tests ‘

The general question of significance tests was raised in 7.3 and a simple

example will now be considered. Suppose that a die is thrown z times and that
it shows an r-face on m, occasions (7 = 1,2, . . ., 6). The question is whether
the die is loaded. The answer depends on the meaning of “loaded”. From

one point of view it is unnecessary to look at the statistics since it is obvious

that no die could be absolutely symmetrical.f It is possible that a similar

remark applies to all experiments—even to the ESP experiment, since there

may be no way of designing it so that the probabilities are exactly equal to 4.
In the caseofthe die let us supposethat it has chances fp, pg, . « ., Pg of showing

a1, 2,..., 6, these chances being initially unknown. Wecould say that the

die is loaded if for example
6

Dd, |Pr- 4] > xbo-
r=1

Suppose that there is an initial probability density of the chances, given by a
function @(P,, Po, - - +» Pg)- This is defined in such a way that if V is any

five-dimensional volume of the space Xp, = 1, the probability that (p,, p,,

  

. -» Pg) belongs to V is equal to | gy dt, where dt is an element of volume.a

The function wm depends on your body of beliefs and on your knowledge con-

cerning dice in general and on where the particular die was obtained. Itis
convenient to take the relative factors in such a way that the factor corresponding

to symmetry is 1. Then the relative factor for the set of chances Pv Pa + -

pe is | | (6p) =f say. ‘The final probability that the die is loaded is

[ote/|ese

where D is the space 2'p, = 1 and D,is the sub-space in which 2] p, — 4] > 73>.

t It would be no contradiction of 4.3 (ii) to say that the hypothesis that the die is
absolutely symmetrical is almost impossible. In fact, this hypothesis is an idealised
proposition rather than an empirical one.
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For any definite assumption concerning y, this probability has a numerical
value that may be difficult to calculate. In practice you have to besatisfied

with approximations.
If you were doing the problem rigorously you would half-define g by means

of inequalities, possibly rather vague, but not depending on n or m,, mg, . . ., Meg.

In order to obtain an approximate result you could take simplified assumptions

for m. These assumptions would depend ontheresults of the statistics. They
would depend also on the properties of the relative factor f. As a function of ,

m; m Me ;
Dis Pav - + +» Pg f has a maximum at p, =, Po= a +4 Pp=—. This

maximum is fairly sharp, so that the values of q at points far removed from the
maximum have little effect on the values of the integrals. An exception must

be madeof points where @ is especially large. Regarding the correct form of g,
it would beirrational to assume that it vanished at any point where 2'p, = 1,
But for an approximation you could regard zero values of m as admissible, and

change your mindif thestatistics suggested that you should. In particular,

if the sample were not too large, the density function in the sub-space
2 | pr —*&| <5 could be replaced by a point function vanishing at all
points except at p}) =p, =...=p,=%. The value of the point function

here is the initial probability that the die is unloaded. Call it 1—p. Let

q=\ q.fdt. Then j gp .fdt =q-+ 1—p, and the final probability that
D, D

the die is loaded is equal to g/(1— p+ q). Therefore the final odds are

 and the factor in favour of the die being loaded is

5a vfee,
Dy

qg
1—

?where y = = theinitial probability density of the chances given that. the

die is loaded. The formula j p.fdt could also have been deduced directly
D,

from the theorem of the weighted average of factors.
One consequenceis that the factor in favour of the die being loaded cannot

exceed max f= | | rr)” If it is assumed that om — 1 is small, for all
?

six values of 7, it follows easily that the weight of evidence does not exceed

fm, —™\

Wewrite the weight of evidence in this form in order to exhibit its connexion
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with the chi-squared test. (See 7.8A.)° It may be observed that this result
does not depend on y. Next we shall work out the factor for a particularly

simple assumption concerning y. It is hardly necessary to point out that the

results would be different with different bodies of beliefs.
In the first place suppose that if the die is loaded then it is loaded in such

a way as to make p, larger than any of pj, ps, . . -, P;- Assume, in fact, that

if the die is loaded then the chance of a 6 is uniformly distributed ¢ between
. aandb where b > a> 4%. Assumefurther that p,) = py = ps = Pa = P;, SO that

1 — peg> With these assumptions y =—where a < p, <8,each is equal to ba

and the factor is
1] b —_ Pe n—M., mn

ral. (6."*) (6p,6)™ apg.

If ” is small this can be calculated exactly. If is large and mg is not close to

n/6, then the die is obviously loaded andthe calculation is unnecessary. Finally,
n
G the factor can be calculated by meansif 2 is large and m, is not too far from

of the following rough argument.
The integrand has a maximum at pg = m,/n. In the neighbourhood of

the maximum the logarithm of the integrand is approximately equal to

oY — x), where ns =¢(1+y), p= “(1 +x). (The analysis is

straightforward.) It follows that the factor is approximately
, enu?/10 107

6b — aa a
For example, if b — a= the weight of evidence is

n 2

3 (m—5) 4 dice (i) natural bels,
5 dn 2 2n

and this may be compared with the approximate form of the maximum weight

of evidence. As an example of the present formula suppose that x = 600,
m, = 140 and theinitial odds are between 0-001 and 0-01; then the factoris

about 2000 and thefinal odds are between 20 to 1 on and 200 to 1 on that the
die is loaded. ‘This assumesthat none of the numbers m,, to, . . +, m, shows
any considerable deviation from 100. If the only large deviation were on,say,

m, instead of m,, then the factor would be the same, but the initial odds that

the die was loaded in this way.would be much smaller. If these odds were

between 0-0001 and 0-001 the final odds would be between 5 to 1 against and

t+ The possibility of p, being less than 4 could also be taken into account with only
slight modifications.
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2tolon. A similar adjustment could be made if m, had been far below the
mean instead of far above. Finally, if more than one of the numbers m,

showed a large deviation, it would be necessary to sharpen the argument. ‘The

weight of evidence would presumably come out as a sum of expressions resem-

bling the one given above.

7.84 The chi-squared test

So muchfor the solution of the problem based directly on Bayes’ theorem.

Many statisticians would have used the chi-squared test. ‘The idea of this

test is to take a particular function of thestatistics, a function that for this
particular problem + is

(mmr—— 4n)?

and to work out the probability that this random variable is greater than or
equal to the value actually attained (say y,”), onthe hypothesis that the die is

symmetrical. Let this probability be denoted by P(y,?).f If itis assumed that

the corresponding probability when the die is loaded is close to 1, then

P(y9") miay be regarded as the factor in favour of the die being symmetrical

in virtue of the knowledge that y > v7. This is not the same as the factor in
virtue of the whole experiment, since some of the evidence is ignored. The

true factor depends on all the numbers m,, m,, . . ., mg, whereas in the-chi-
squared test only the value of X(m, — 4n)? is used. Moreover the factor is
worked out on the evidence that y > yo, but really you know that ¥ = yp.
It might be suggested that the result of the experiment could just as well be
expressed as y < Yinstead of y > 7. But if y) was large so much evidence

would be thrown away by this alternative procedure that the resulting factor

would be close to 1. (In fact the likelihoods of the hypotheses “ loaded ”’ and

“unloaded”? would both be near 1.)
As already pointed out, you really know that y = y. Since y) can be

known only to a certain number of places of decimals, the factor worked out
by regarding 7 = y, as the result of the experiment is not of the “ indeter-
minate”’ form 0/0, though the numerator and denominator are both small.
As an approximation the distribution functions of y (or y?), on the two hypo-
theses ‘“‘ loaded ” (1) and “ unloaded ” (H), could be assumed to have density

functions. ‘The factor in favour of H is then theratio of these density functions

at 7). [he denominator would not usually be knownatall precisely. It could’
be estimated either by a direct judgmentor by calculations based on other judg-

ments. It might be assumed, for example, that, given H, the graph of the

t+ For a more general definition of x? see 7.8B.
{ This is admittedly a rather unsatisfactory notation in the present context.
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7.84 PROBABILITY AND WEIGHING OF EVIDENCE

distribution of y? is obtained approximately by averaging for all 2 between 0
and say + theresults obtained by shifting the graph of the y? distribution (given
Hf) through a distance An to the right.

It would often happen that the factor in favour of H obtained in some such
way would be in the region of three or four times P(79?).t From the present
point of view this is the main justification for using P(y)?) as a measure of the
significance of the experiment. Somestatisticians would say that the chi-

squared test has nothing to do with Bayes’ theorem andthat it simply seems

rational to estimate significance by calculating the probability of y being as
large as y) or larger. ‘This so-much-or-more idea is very arbitrary and easy

to criticise. An alternative justification of the chi-squared test is available by

means of the Neyman-Pearson techniqueof errors. of the first and second kind.

But, just as in the inverse probability method, this technique is applicable only
if something is assumed about the distributionsof y? given both the hypothesis
being tested and its negation.

A weakness of the chi-squared test, for the problem of the die, is that it
does not take into account the peculiar significance of the “6”’-face. We
should like to be able to give additional weight to the term (m, — }m)?/4n.
In more general problems it would be useful to know the distribution of any
linear form in the numbers analogous to (m, — 4n)?/4n, instead of only the

sum. As far as I know this problem has not been solved in a convenient
mathematical form.

In view of the difficulties of a strict application of Bayes’ theorem andin
view ofthe criticisms of the chi-squaredtest, perhapsthe best practical procedure

is something intermediate. For example, you could use the chi-squaredtest,

and take 1/4P(y,2) as the approximate factor in favour of a hypothesis to be
stated after seeing the statistics. ‘The initial probability of this theory could

then be judged subjectively. For example, if the main deviation were on the
1’s and the 3’s, you could take as your hypothesis that ‘‘ the die is loaded but
not with respect to 6’s” and perhaps judge that the initial probability lies
between 0-0001 and 0-001. Here it would not be right to. formulate the’
hypothesis in terms of 1’s and 3’s (which would decrease theinitial probability
still more) since in using the chi-squared test no credit is allowed for the fact
that the main deviations are with respect to these particular faces.

Another point about the chi-squared test is that if 2 is very large, the test

will probably give a significant result, because the chances, p,, Pz, . . ., Pg Can

+ There are two independent reasons why the factor in favour of H exceeds P(x,2).
The first is that to pretend that the result is y > x) when it is really x = x, is unfair
to H. The second is that P(y > x|H) <1, so that the factor from the evidence
rT x > Xo” is _

o4 P(x > xo} Z)/P(x > x01 2) > Plx > x0! Z) = P(x”).
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hardly be exactly equal. In fact, if x is very large the problem of estimation
of the chances would be more to the point than the problem of significance.
A similar remark applies to many other problemsandto othertests of signifi-.
cance. (Cf. the remarks at the beginning of 7.8 concerning the meaning of
“‘ loaded ”’.) .

The difficulties of this example are fairly typical in statistics. Serious
mistakes can be avoided only by having a familiarity with the principles of

probability.

A question that has been much discussed in recent years is whether it is

ever possible to test a hypothesis H by considering itslikelihood, but without
considering the likelihood of H. The chi-squared test in its ordinary form

does just this. It does not tell us anything immediate about the final odds of
H. Whatit doestell us is that if a statistician always uses the chi-squaredtest

and rejects H when y > y,, then he will reject true hypotheses in roughly a
proportion P(y,”) of cases, in the long run. In other words he will commit
errors of the first kind in this proportion of cases when H is true—always
assuming that the hypotheses that are tested are independent of one another.

If the statistician takes more evidence into account he may be expected
to get better results than if he relies on the chi-squared test. But this test
often saves time. The saving of time is worth while in any application that
is either urgent or not exceptionally important.

7.88 Additional note on the chi-squared test

Let a sample of n objects be classified in terms of p mutually exclusive
properties ; and let the objects fall into p cells, the numbersin the cells being
M1, My, .. ., m,. Let the (unknown) chances of falling into the cells be py,
Po - ++» Pp» Ona hypothesis A let p; = 7, pp = My, . . -» Pp =p, and on

the hypothesis H suppose that the distribution of the chances is uniform in

the space
Xpj=1, pp >0 (r=1, 2,..., p),

with the point p; = 7%, Py = %a, . - «+» Pp = 7%, removed. (The notation “ H”
‘is justifiable as in the third paragraph of 6.3 or the eighth paragraph of 7.4.)
The square of the ‘‘ volume ”of this space is p times the square of the volume
of the space

Lp <1, p= 90, pp >0, pp >d,..., p, >,
by a generalisation of Pythagoras’s theorem. (This can be expressed in purely
analytical terms, but it is intuitively simpler to use geometrical language.)

Hence the volume is Vp/(p — 1)!, so that the function analogous to » in 7.8
is (9 — 1)!/W/p. The factor in favour of AT is, as in 7.8,

| y. [T(G)"*
2Pr =1
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where dt is an element of the (p — 1)-dimensional volume. This can be
written

eo \f- ; { [1(2(See . Pe)"

PitDet... +Pp—,<1 r=1

 

0 — 1)!m,!m,! {

x Vodp,dpy. . «dbp1 — (2

—

Emilang! ss mol _
(n+ p — 1)!ary™s70™ . . 7050
 

as we may see by using Dirichlet’s integral. This expression for the factor

in favour of H is exact and can be calculated by meansoftables of factorials.
By using Stirling’s formula we can see that the approximate plausibility gained

by # is, in natural bels,

— —(n —

$y? + log {2a}(1,7... Tey) (p — 1-4 (1 4 p - *) +p ",

where

(my — Tey) 2

2 =

x Ttpt
t=1 .

The gain in plausibility may be difficult to calculate for other assumptions
about the distribution of the chances. In order to get round this difficulty

you could frame the body of beliefs in terms of the distribution of y? itself,
given H. The distribution of y2 given H is known,} and thus the factor in
favour of H could be obtained. It should be noticed that the distribution of

y? given H is effectively independent of n, whereas the distribution given H
does depend onz. Infact the expected valueofy? given H wouldbe an increas-
ing function of 2, and the probability density at a fixed value of y? would be a

decreasing function of m for large enough values of m. Thus the weight of
evidence in favour of H for a given value of y? is (for large ) a decreasing
function of n, just as it was before. In this respect the method of inverse
probability differs from the so-much-or-more method.

For some problemsit may not be easy to make a tolerably precise judgment,

concerning thedistribution of y? given H or concerning the distribution of the
chances given H. For example, suppose thata die has been boughtat a reputable
firm and that the spots have been painted on instead of being scooped out, in

order that the symmetry should be disturbed verylittle. It is decided to test
the hypothesis H that the die has been made with extremecare, i.e. that the

chancesare all ‘‘ exactly”? 4. The given information may cause youto select

+ The probability density of £ = x%, given H, is very nearly

2-4eHL-1/T'(h),
where vy = p— 1. The expected value of x? is »» (See any modern treatise on mathe-
matical statistics.)

96



STATISTICS AND PROBABILITY 7.9

for H a hypothesis different both from the previous one of the present section
(with p = 6) and from the one in section 7.8. Suppose that H is selected
in such a way that when it is given the chances are uniformly distributed in

a space S’ defined by

- 2pi = 1, 2'(pi ~~ $)? < R?,

for some & between 0-01 and 0-02. (A modification may bedesired if the sample

frequencies lie too far outside S’.) The arbitrary nature of 7 is justified by

the vagueness of the given information. Such vagueness is quite common in
the questions which arise in statistics, and this is one of the reasons for the
difficulties of the subject.

The “ volume ” of S’ is, as a matter offact, 87?k®/15, which is 64002 k5/4/6
times the volume of S (with p = 6). Theeffect is to increase the plausibility

gained by H, above the value obtained previously, by between 60 db and 75 db.

If nis equal to six million the plausibility gained by H is between

(2-174? — 75) db and (2-177? — 60) db.

If the initial odds of H are between 0-1 and 10,the final plausibility is between

(2:17? — 85) db and (2-17y¥? — 50) db.

In order to be able to deduce from this that the final odds of H areat least
100 to 1 on we need

2-174? — 85 > 20, ie. x2 > 48.
To deduce that the final odds of H are at least 100 to 1 on we need

2-174? — 50 << — 20, ie. y? < 14.

These results may be contrasted with the so-much-or-more method. For

instance, given H, the probability that y? > 15 is only 0-001, and such values

of y? would normally be regardedas sufficient to reject H. But the discrepancy

between the methods is not as large as it seems, since values of y* between
15 and 48 would not belikely to occur, given either H or H.

The above calculations could easily be modified in order to decide between

hypotheses H and H where H and ff are similar to the previous H but with

associated spaces defined by the inequalities -

2(pi— 3)? <A, and ky <2'(pj— $)? < hg (hy < hy < Ay).
This formulation of the problem corresponds closely to the practical meaning
of the question “‘ has the die been made with extreme care?” ‘The vagueness
of the question is matched by the fact that k,, k, and ky require to be given
definite values in order to get a definite answer.

7.9 Contingency tables

The necessity for relying on your own judgment is particularly clear in
connexion with the problem of independence in a contingency table. E. S.
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Pearson and G. A. Barnard have discussed the 2 x 2 contingency table from
this point of view, though not in terms of inverse probability. (See 7.1.)

We begin with a description of the problem.

Suppose that a population of individuals can be classified with respect to
two different properties A and B, e.g. colour of eyes and colour of hair. Let
the sub-classes corresponding to these classifications be A,, A>, . . ., A, and
B,, B, ..., Bs.

Suppose that a sample of the population is taken and it is found that there

are n; individuals in both the classes A; and Bj. ft Let»ny =I,»ni; = My,

3 %

 

 

> nj =n. These numbers, when arranged in a rectangular array, form a

tj

contingency table. (See diagram.) °

M1 Mo + + + Ms i,
No Mog + + -+ Nos L,

*,

Nyy Mpg + 6 + Nes L,

e

mM, My . . . Ms n   
 

A question that is often asked is whether the properties A and B are inde-

pendent, i.e. whether the chance.p;; of belonging to both the classes A; and

B; is expressible in the form p;g;, where X’'p; = 1,49) = 1. @ = 1,2, ..., 75

j=1,2,..., 5.)

Sometimes the interesting question is whether the properties A and B are
in some sense { approximately independent, but here we deal only with the

question of strict independence. For small samples we may expect the answer
to both questions to be about the same. For large samples it is usually more

reasonable to consider the ‘‘ degree of dependence ”’, so to speak—a problem

of estimation rather than significance.
There is no unique solution to the problem of dependence: the solution

must depend on the assumed body of beliefs. Three special bodies of belief
will be considered. For these it happens to be possible to ‘obtain a simple

exact formula for the factor in favour of dependence. In practice every

t i.e. in the class A,.B;. .
tf It is not customary to define this sense, so that the question asked is a vague one.

(Cf. the remarks concerning vagueness in 7.8B.)
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example should be treated on its merits, unless the statistician is short of time,

and then a rule of thumblike the chi-squared test may legitimately be applied.

The way in which this can be done will also be described.
Considerthe following six statistical hypotheses, in each of whichit is under-

stood that there is a uniform density for the chances within the Euclidean
spaces ¢defined. In all six cases H is supposed to represent the hypothesis

that the properties A and B are independent. The “ given” propositions,
which are not stated, would include descriptions of how the samples were

selected. These would probably be different for the three bodies of belief
B,, B, and B,. (It is immaterial whether B,, B, and B, are compatible with

one another, but if the six hypotheses were all given different symbols then
they could be regardedasstatistical hypotheses all belonging to the same body
of beliefs.)

31 H: Spy = 1.

H: pi = Pidj, dpi = 1, 24; =.

B,, H: Loy = i/n(@@=1, 2,..., 7)

° ; 7 \where the numbers J; are known.

A: py=pg, *XG=l, pi=h/n
B,, A: Xpy = m/n(j—1,2,... 8

° oe ulm ( ) \where the numbers m; are known.

H: pg = pig, 2Pi=1, Gs mj/n

It is not claimed that any of these bodies of belief is “right”. They
correspond roughly to the cases in which the sampling is done in such a way

that

(i) a knowledge either of the column totals only or of the row totals only is
_ felt to affect the probability of independence ;

(ii) a knowledge of the row totals is felt not to affect the probability of
independence;

(iii) a knowledge of the column totals is felt not to affect the probability
of independence.

Now with the help of the mathematical formula

N
N — 1)!LIn,!

Average|xir—ese
ty 0, Xt%y=1 nt

which is connected with Dirichlet’s integral, we can prove that the factor in
favour of H, corresponding to %,is f, say, where

__ (vs —1)!(a+r— 1) (a+ s5— 1)LIn,;!
(a+ rs — I(r — Is — ILL(Gl my
 

+ It will always be taken for granted that the numbers py are positive.
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and corresponding to %,it is

pa MtsD6=Tig!
IT(l; + s — 1)!LLm;!

The factor corresponding to 8, is similarly

brDG= ets!
p= IT(m; + r — 17!

Notice the check that f, f’ and f” all reduce to 1 if2=0 or n=1.7

The reader is recommended to compare these formulae, for the case

r = 5s = 2, with those given in standard textbooks on statistics. The factors
can all be calculated exactly, or approximated as in 7.8B by expressions involving

x?, where

oa yearkralyahs/n)?
lm;/n

Modifications could be made in the various bodies of belief, analogous to those

in 7.8B.

The standard method of applying the chi-squared test to a contingency
table is to argue as follows. ‘‘ If all the numbers J; and m; were knownthis
would provide very little evidence about independence. But if these numbers

are known and the frequencies J;/n and m,;/n are identified with p; and q;,
then (on the hypothesis of independence) the distribution of y? is the usual
x? distribution with (ry — 1)(s— 1) ‘degrees of freedom’. The appropriate
column in the y? tables can then be used in order to find the probability of
obtaining a y? exceeding the observed value.”

As in 7.8A the body of beliefs might be formulated in terms of the distribu-
tion of y? given H. The judgments made would depend a great deal on your

familiarity with such problems.

Our solutions are not offered in an authoritative spirit, but merely as con-

tributions to a difficult problem. The theoretical difficulties become less acute
‘for large samples. For if 7 and s are fixed, if m tends to infinity, and if the

ratios of 1;:m,:n are bounded for all 7 and 7, then it is easily seen that the
ratiosf: f’: f” are also bounded. Hencethealternative judgments will generally
all lead to the same decision as to dependence or independence when the sample

is very large. But on the chi-squared test the table will nearly always show a

' significant degree of dependenceif m is sufficiently large, for absolute independ-
ence is rare in real life. This is a theoretical objection to the chi-squaredtest:
you often ask whether the qualities A and B are independent when youreally
know all the time that they can hardly be absolutely independent. The trouble

with the chi-squaredtest is that it takes the question too literally. (Much the

same criticism of the chi-squared test has already been made in 7.8A.)

 

 

+ If row and column totals are all irrelevant the factor may reasonably be taken as

FOFAYES/P) = FF/F-
100
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One method of using f, f’, f” is to-calculate them and thento use the results

as a basis for further judgment. The calculation of f, f’ and f’’ is objective,
so that the methodis similar to the use ofthe chi-squared test. The results

at least serve as a check on thereliability of the chi-squared test.
The formulae for f, f’ and f’” bear a formal resemblance to the likelihoo

ratio ¢ A for the hypothesis of independence. A is easily seen to be f

4 MikTims
n” ITn;,ju

ij

This formal resemblance should not be taken to imply that 1 can be given an

interpretation similar to that of a factor. In fact 4 cannot exceed unity. A is

used by consideringits distribution on the assumption of independence, whereas
the factors can be interpreted directly.

7.10 Estimation problems

Weshall now consider the problemof the estimation of the values of a set
of unknown numbers. For simplicity, however, it will be supposed that there
is only one number c, though everything that will be said can be extended to
any finite set. Some examples of estimation have already been discussed.

The problem is to associate with c either a “‘ best’ value os a whole interval

of values. Here we shall deal only with the latter problem.
An important case is when c is the only parameter in a composite statistical

hypothesis H, so that H is the disjunction of simple statistical hypotheses H,
for someclass of real values of c. Let E be “‘ an experiment ”’, i.e. a collection
of statistics. (See the first footnote in 7.4.)

It is generally agreed that if the initial distribution of c is known then the
final distribution can be obtained, and the probability that ¢ will lie in a given

interval can be deduced ‘at once. But usually the initial distribution of c¢ is
not known precisely, being only partly defined by means of inequalities. ‘The
question arises then whether anything “ precise ’’ can be said about c, i.e. any-
thing that. does not depend ontheinitial distribution. In fact this can be done
in the following ingenious way.

Let ¢(#) and ¢(£) be numerical functions of E. Suppose that for all ¢
and somefixed a,

P{e(E) <e <&(E)| H.} =a.
Then the interval [¢(E), ¢(Z)] is called a confidence interval for c with confidence
coefficient a.

+ This is defined, for example, by S. S. Wilks, 1944,150. The likelihood ratio should
not be confused with theratio of the likelihoods used in the definition of afactor. Wilks’s
definition, slightly, generalised, is given in a footnote in our Section 6.1.

{ Wilks, in error, gives the value of A—1. (L.c., 220.)
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7.10 PROBABILITY AND WEIGHING OF EVIDENCE

_It should be carefully noticed that the “ given” evidence in the above
probability is H,, although in practice it is EK which is known and not H,,

Now suppose that the functions c(£) and ¢(£)are selected so that[¢(£), é(E)]
is a confidence interval with coefficient a, where « is near 1. Let us imagine
that the following instructionsare issued to all statisticians.

“ Carry out your experiment, calculate the confidence interval, and state

that c belongs to this interval. If you are asked whether you ‘ believe’ that ¢

belongs to the confidence interval’ you must refuse to answer. In the long run

your assertions, if independent of each other, will be right in approximately a

proportion a of cases.” (Cf. Neyman (1941), 132-3.)
The advantages and disadvantages of the procedure are similar to those of

the chi-squared test and hardly require additional comment. We remark

merely that if the procedure were consistently adopted it would occasionally
lead to ridiculous behaviour, because of its neglect of initial probabilities and
utilities.

A technique that bears some resemblance to that of confidence intervals is

that of “tolerance limits”. (See Wilks (1946).) Suppose that X is a con-
tinuous random variable with an unknown density furiction f(x). A sample
of n independent readings is selected and these are arranged in numerical order
hy hy Sy... Sm. Let Ly(%,, x, . ~ ., Xp), Lg(%y, %y, - . «, Xp) be

two functions of the sample values. These functions are called “‘1006% dis-
tribution-free tolerance limits at probability level «”’.if, whatever function f

Lig
may be,t (| f(x) dx > p) = q, assuming that the probability density of X

Ly
is {(X). In particular, Wilks shows that L, = x,, L, = x» are such tolerance

limits if .
npY-1 — (n — 1)6"=1—«a.

For example, if 2 = 473, it is 19 to 1 on that the interval [x,, x,] will include
at least 99 per cent of the population. But this is true only before the sample
is selected. Afterwardsit is likely to be more informative to takeall the readings
into account and to use a curve-fitting technique, even if the curve-fitting is

done by eye.
Thus the technique of tolerancelimits is liable to throw away evidencefor

the sake of objectivity. In this it again resembles the chi-squared test, and

like the chi-squared test its convenience depends partly on whether suitable
tables are available.

The importanceof these objective techniques should not be underestimated.

By ignoring subjective judgments they are incapable of giving information about
the final probabilities of the hypotheses, but they do give results that are indis-

putable and they often give them without much calculation.

+ Observe that the existence of f is assumed.
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STATISTICS AND PROBABILITY 7.10

The general conclusion is that in statistics it is useful to know a number

of different techniques, the basic one being the technique of probability.
Exercise. An “‘ unbiased estimate’ of a parameter c is a statistic whose

expected value, given c, isc. In asequence of m independenttrials with chances

p there are r successes. Show that an unbiased estimate of p* is r™/n™ where
s® = s(s —1)(s — 2). . .(s ~k+ 1). This actually vanishes if r< k <n.
Assuming that p has a uniform initial distribution show that the expected value

of p® is (r + kh)/(n + k + 1)™.
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APPENDICES

I. The error function

Several books on probability include tables of the “‘ error function”’. Here
we content ourselves with the following approximate formula for mental calcu-
lations :-—

— 10 logy, vm e—3” dt = 24x? + 4 + 10 log,, x,

with an etror less than 1 if 2<*< 14.

Q

I. Dirichlet’s multiple integral {

Xn,

mi. .

if. . fam 25s beynf(x) dx...

=of(x)xen1 dx,

where the region of integration in the multiple integral is defined by Xx <
x, >0,..., %, >0. The formula is not restricted to integral values of mn,
M», . . ., but these numbers mustbealgebraically large enough for the integrals
to exist.

It can be deduced that the volume of an n-dimensional unit sphere is
7"/(4n)!, a result which was used in 7.8B.

III. On the conventionality of the addition and product laws t{

Weshall show (but not quite rigorously, nor in detail) that the addition
law for mutually exclusive “events”? and the product law for independent
events are largely conventional. At first this appears to exhibit an essential
distinction between the non-frequency and frequency theories. But it should
be realised that in the frequency theory it is likewise only a convention to define
probability as the limit of a proportion of successes rather than as some mono-
tonic function of this limit.

Supposethat “ probability, ” (denoted for short by P4) has the properties—
(i) Pa(E.F) is a function of x = P,(E) and y = P4(F) where £ and F

are arbitrary independent events. (We are taking the “ given”’ proposition
for granted.)

(ii) P4(E v F) is a function of P4(#) and P,(F) where now F£ and F denote
mutually exclusive events.

Since F.F = F.E and E.(F.G) = (£.F).G, with similar results for dis-
junctions, it follows that the two functions mentionedsatisfy the commutative

t+ See, for example, Whittaker and Watson, Modern Analysis (4th edn., 1927), 258,
or Jeffreys and Jeffreys, Methods of mathematical physics (1946), 440.

t The following remarks arose out of a discussion on a paper by G. A. Barnard
(Four. Roy. Stat. Soc., Ser. B, 1949 or 1950) and many of the ideas are his. See also

“conventions ’’ in the Index, for references to Jeffreys and Schrédinger.
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and associative laws. It then follows from a theorem t+ due to Abel (and
published in his collected works) that the two functions are of the forms

PHP) + 900} vv) + pO)}.
Now define P;(E) as expy(P4E). Then Pg satisfies the product law and

a modified addition law of the form

a(t) = t(x) + Ay),
where x = P;(E), y = Pp(F) and t = t(x, vy) = P(EVF). Now

(E.F)v (E.G) = E.(F vG),

so the function i(x, y) satisfies the condition of homogeneity

t(Ax, Ay) = At(x, y)-

It can be deduced from these conditions that the function ¢ is of the form
(xk + yX)1/K, for some constant K. (This is not a trivial result. It is neces-
sary to assume at least that the function is measurable.) Now, at last, let
probability be defined by P(E) = (PsE)¥%. Then probability satisfies the
product Jaw and the ordinary addition law. Thusit is sufficient to assume
quite weak properties for probability, in order to establish the existence of a
probability which satisfies the addition and product laws. Moreover, proba-
bility is an increasing function of probability, since exponentials and Kth
powers are increasing functions. Therefore the partial ordering for probability
is the same as for probability,. This shows in what sense the addition and
product laws are conventional.

+ This theorem gives necessary and sufficient conditions for a function of two variables
to be calculable on a suitably calibrated slide-rule. The theorem has been rediscovered
several times. See, for example, J. Aczél, Bull. Soc. math. Fr., 76 (1948), 59-64.
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INDEX

A few definitions and remarks are included for the sake of clarity.
The references on pages 107-8 have not been indexed.
 

A

Al to A6, 19

AA’, 49

Abel, N. H., 105

abstract theory, 5, 19-30

acceptance, 65, 84

Ackermann, W., in, 27n

acoustics, 63, 64

actuarial work, 53

Aczél, J., 105n

addition law, 13, 16, 19(A2),104

generalised, 22—3, 26, 27

see additivity, complete

addition of random variables, see sum

additivity, complete, 5n, 23, 29, 50n

adultery, 74

almostcertain, 18, 21, 26, 27, 39, 46, 52

see certain

almost certain (or impossible) and empiri-
cal propositions, 35, 78

almost certain, and infinite successions of

trials, 29

almostimpossible, 18, 21

propositions “‘ given ”’, 30, 39-40, 46n

see impossible ; almost certain

almost mutually exclusive, 21

alternative hypotheses or theories, 40-6,
64-6, 99

alternatives, 14

and, 1

approximation, 33, 34, 36, 37n, 46, 49, 51,
56, 59, 60, 69, 81, 88, 90, 91, 92,

93, 98, 104

asymptotic properties, 77

attributes, 76, 77, 78, 85

authority, 12, 100

average = arithmetic mean. Not to be
- confused with “‘ mean ”

average, as a maximum likelihood value of

a normally distributed variable,

87

axiom, additional, see additivity, complete

axiom, alternative, 49

axiomatic method, 5

axioms, see Al, etc.

alternative set, 21, 30

“ obvious ”’, 13, 20, 53

of logic and mathematics, see H*

of utility, 53 -

origin of, 13-18

rules and suggestions, 12, 31, 34, 47

B

3, see body of beliefs

B*, 47

B(E | H), 2

Barnard, G. A., 64n, 77n, 98, 104n

Bartlett, M. S., 10n, 11, 42, 73, 77n

Bayes’ postulate, 9n, 55

see insufficient reason

Bayes’ theorem, 24, 40, 62, 63, 65, 67, 68,

71, 77, 94

see probability, inverse

Bayes’ theorem in reverse, 35, 81

see imaginary results, device of

bel, 63

natural, 63n

belief, see degrees ofbelief

beliefs, body of, see body of beliefs

benefit (expected), see utility

Bernoulli, Daniel, 54

Bernoulli, Jacob, 6n, 29n

** best ”’ value of a parameter, 101

betting, see gambling

bias, 41, 45, 89n

see dice, loaded ; unbiased estimate
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billiard balls, 9

binary digit, 75

biology, 83

see genetics

Birkhoff, G., 14n

birthdays, 38

* bit ” of information, 75

blood-groups, 74

body of beliefs—

alternative, 43, 99

augmentation, 32

definition, 3, 32

empty, 4

for a contingency table, 99, 100

generalisation of, 10, 48-9

taken for granted, 20

transitive, 14n

Boltzmann’s constant, 75

Borel’s theorem (perhaps better called the

Borel-Cantelli theorem), 29, 46,

78

brackets, 26n

Broad, C. D., 21n

Brunt, D., 90

* bumpiness ”’, 85, 86

Cc

calculation, see numerical work

Cantelli, F. P., 29n

see Borel

cards, 8, 34, 37, 38, 73

perfect, perfectly shuffled, 15, 16 34

Carnap, R., lin, 48

Cauchy-Schwartz inequality, 39

causes, 60

central limit theorem, 57, 88

certain(ty), 19, 21, 24(T7)

see almost certain

practical, 6, 39, 49

chance, 41, 78, 82, 84

and sampling, 78, 79

distribution of, 79-82, 84

expectation of, 79

games of, see games of chance

» maximum likelihood value, 80

110

chance, probability of, see probability of a
chance

true”, 43, 46n

chances,classification of, 43

characteristic function, 54, 59

discrete, 58

cheating, 44n

chemistry, 76

chess, 49

chi-squared test, 70, 77, 84, 92, 93-7

analogy with confidence intervals, 102

analogy with tolerance limits, 102

and contingency tables, 99, 100

formula for distribution, 96n

chromosomes, see genetics -

class interval, 59

classical definitions (of probability), 35

cogent reason, 8, 12, 37, 47 |

coin-spinning, 36-7, 43, 47, 53, 72, 75

collective, 7

common sense, 67, 77

comparable degrees of belief, 3, 9, 13

comparison between beliefs, 3, 11, 13-14,

32, 33, 37

complication, 36, 76

compounding of distributions, see con-

volution ; sum of random vari-

ables

computable numbers (for a definition see

Turing, Proc. London Math. Soc.,

1937), 55n

conditioned reflexes, 7

confidence coefficient, 101

confidence intervals, 77, 101-2

conjunction, 1

see multiplication law

consistency of the abstract theory, 5, 21, 30,
33

constructibility, 4n, 32n

contingency tables, 77, 97-101

continuity, see mathematical convenience

contradiction, 3, 20, 21

convenience, see mathematical convenience

conventions, 9n, 13, 15, 104

convolution, 52, 56, 57, 88
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Copeland, A. H., 7n

correlation coefficient, 58

cosmic rays, 82

Coxeter, H. S. M., 38

Cramér, H., 9, 23n, 50n, 51n, 57, 76n

credibility, 2n

crime, see law (legal)

cumulants, 59

curve-fitting, 84-9, 102

curves—

freehand, 89, 102

J- and U-shaped, 88

single and double humped, 86, 87, 88

see smoothness ; ‘‘ bumpiness ”

D

Davenport, H., 38

db, see decibel

decibel, 63-4

decimals, 17-18, 57, 93

definitions, 19, 21, 30

see under probability and other headings

degrees of belief, 1-3

concerning mathematical theorems, 49

sometimes meaningless, 2, 3n, 30, 32

see comparison; intensity; proba-

bility

degrees of dependence, 98

- degrees of freedom, 100

degrees of meaning, In, 40n

density function, 51, 54, 93

dependence, see independence

determinism, 15

dice (umperfect), 38, 59, 80, 96~7

loaded, 64, 67, 72, 90-4

perfect, 16, 17

digits, 58, 75

dimensions, 7n

see space, finite-dimensional

’ Dirichlet’s multiple integral, 74, 96, 99, 104

dishonesty, 45

see honesty

disjunction, 1

see addition law

distances, see geometry

distribution, 50-61

binomial, 28, 56, 57

-free, 102

frequency, 59-61

function, 50

neither continuous nor discrete, 55

normal, 56, 57, 60, 86-90, 104

“ observed ”, 88

of a chance, 79-82, 84

of a distribution, 84

Poisson, 56

rectangular, 18, 55, 56, 69, 70, 81, 95,

97

and contingency tables, 99

and Laplace’s law of succession,

80

and maximum likelihood, 83

two-dimensional, 51, 58 ~

distributions—

compoundingof, 51, 54, 88

linear combination of, 88

see curves

dogs, conditioning of, 7

Dreyfus, A., 67

Drosophila, 82

dualism, Preface, 11n, 42n

E

EB, 1, 2, 2n, 82

E*, 19

economics, 83

Elderton, W.P., 88n

electronic reasoning, 48

elementary symmetric function, 38n

entropy, 75

equally probable cases, 7-8, 13-18, 26, 33,

47

equivalence, 19, 29n

error, avoidable or unavoidable, 89

function, see distribution, normal

errors of the first and second kind, 65n, 77,

83, 84, 94, 95

ESP,see extra-sensory perception

estimation, 81, 95, 98, 101-3

ethics, 53n
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* evens ”, 62

event, 33-4

rare, 88

evidence—

circumstantial, 67

‘ignoring of, 36, 77, 93, 102

see weight of evidence ; information

exclusive, 14, 16, 22

exhaustive, 14, 26

expectation, 52-4, 58

For expected odds, etc., see under
separate headings '

experiment, 6, 6n, 8, 75

see E’; trials

experiments—

conceivably repeated, 7, 47

design of, 35-6

extra-sensory perception, 35, 37, 44-5, 66,

68-70, 81, 90

eye-colour, 23, 98

factor, 62-4

boundsfor, 68

expected, 72

infinite, 67

large, 68

maximum, 91

moments of, 74

partial, 68, 71

relative, 71, 79, 90

sometimes of importance apart from

the initial probability, 70n

used asa statistic, 100—1

see sequential tests

factors, weighted average, 68, 91

“* failure ’’, see ** success ”’

fallacy of typicalness, 67

Faltung, 52

Feller, W., 29n, 52n ;

final (probability), 24, 71-2, 83

finite-frequency theory, 9n

Fisher, Arne, 8n

Fisher, R. A., 36, 62, 63n, 76, 82

forecasting, 49

112.

fractional dimensions, 7n

Fréchet, M., 23n, 29n

frequency, 59-61, 77-8

limiting, 6, 29, 46, 78, 79n, 82

theory of probability, 6-7, 29, 46-7, 80
apparent concession to, 12

see finite-frequency theory

function space, 61, 85

future and past, 1, 2n

G

gambling (and betting), 49 (bis), 53-4, 73

impossibility of a systern, 7

games of chance (idealised), 13, 16, 78

see cards ; coin-spinning ; dice

Gaussian distribution, see distribution,
normal

genetics, 41, 70, 7in, 74, 82

geometrical language, 95

geometry, 4, 32

(distance), 11, 34 ~

*“ given ”? proposition unknown, 102

guessing, see extra-sensory perception

H

Hf, 1

H*, 19-20, 24

Haldane, J. B. S., 55, 56, 63n, 70

happiness, 53

see utility

Hardy, G. H., 72n

Hausdorff, F., 7n

hearsay evidence, 36

height of men, 43, 59, 84-8

heredity, see genetics

Hermite functions, 89

Hilbert, D., 1n, 27n ,

Holmes, S., 67

honesty, 35, 55

see dishonesty

hypotheses—

alternative, see under alternative

considered in pairs, 66, 83-4

three, 66
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hypothesis, 24, 40-6

acceptance andrejection, 84

composite, 68-70

plausible, 83

stated after making observations, 91,

94

statistical, 66, 73

statistical, composite, 82, 101

statistical, simple, 66, 82, 99, 101

hypothetical population, 60n, 78

se population ; super-population

I

ideal, unattainable, 6

idealised games of chance, see games of

chance

idealised problems, 5, 15n, 17-18, 35, 80

see additivity, complete ; probability,

infinite ; proposition, idealised

ignorance, 15

ignoring of information, see evidence,

ignoring of

imaginary results, device of, 35, 70

see Bayes’ theorem in reverse

imaginary universe or world, 1, 42

imagination, 41n

implication, 19

Weusually interpret this as “ logical

implication’. But all the theorems

can be extended to the case of

“material implication ” by regarding

as one of the “‘ given’ propositions

the proposition H** which asserts all

truelaws of nature. It will be found

convenient sometimes to take H** for

granted and omit it from the notation

importance versus urgency, 95

impossible, 14, 19, 24

see almost impossible ;

self-contradictory

improper theories, 41-3, 69

inaccurate language, 33-4

proposition,

incompatible, see mutually exclusive

inconsistent, see unreasonable ; consistency

independence, 17, 21-3, 67, 78, 95

in a contingency table, 98-100

independent random variables, 51

indeterminism, 15

indifference, principle of, 37

see insufficient reason

individuals, 76

’ induction, scientific, 11, 41

inequalities, 27, 38-9, 72

see comparison

inertial constants, analogues of, 58

infinite—

“* approximately ”’, 7

expectation, 53-4

factor, 67

number of hypotheses, 44, 46n, 69

number of parameters, 61

numberof propositions, 22

population, hypothetical, see hypo-

thetical population

probability, 21, 55-6

succession of trials, 6~7, 18, 29

infinity, see mathematical convenience

inflexion, points of, 86, 88

information—

amount of, 63, 74-5

half-forgotten, 36

vague, 66, 97, 98n

see evidence

distribution,
respect to, 80

initial probability, etc., 24, 35, 45, 46, 60,

62, 71-2, 83, 84, 101, 102

instructions to statisticians, 102

insufficient reason, 8, 37, 55

_seé cogent reason

initial insensitivity ‘with

insurance, 53

intensity of belief, 1-3, 32

seé comparison

intuition, 49, 78

intuitionism, 49

irregular collective, 7

J
Jeffreys, H., 2, 4, 8-9, 11-14, 21, 24n, 35,

42n, 47, 55-6, 60, 63, 104n
Jessen, B., 88
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Johnson, W. E., 10

judgment,48-9, 65, 77, 80-1, 84, 85, 89, 100

see probability judgments

jury, see law (legal)

justification (a priorz), 13, 33

see verification

K

Kemble, E. C., 8

Kendall, M. G., 57, 76n, 88n

Keynes, J. M., 2, 10, 14n

Khintchine, A., 29n, 52n

Kneale, W., 9n

Kollektiv, 7

Kolmogoroff, A., 9, 23n, 29n, 52n

Koopman,B. O., 3n, 10, 11

L

language—

design of, 4n, 48

geometrical, 95

inaccurate, 33-4

non-mathematical, 34

probability depending on, 48

Laplace’s law of succession, 80

law—

(frequency distribution), 60

(legal), 36, 47, 66-7
of large numbers, 52n

of nature, 32, 60n

see scientific theories

see addition law ; multiplication law

laziness, 77

Lebesgue, H. L., 7n, 9, 23, 51

see measure

legal applications of hypotheses, 66

Legendre polynomials, 85n

Lévy, Paul, 29n

likelihood, 62, 83

maximum, 73 (definition), 77, 80,

82-3, 87, 89

precise, 82

ratio, 63n, 101

likely = probable. But see likelihood

limit, see frequency, limiting

114

Littlewood, J. E., 72n
logic, 1, 2, 5, 19, 27

formal, a contrast with probability, 14

inadequacy of formal, 3

logical notation, 1 ,

logically true, and false, 19

“long run ”, 10

lot’, 64

M

qi, 2, 3, 4

mathematical convenience, 18, 36, 51, 60,

79, 88, 94, 102

see additivity, complete

mathematical theorems, beliefs concerning,

49

mathematics, pure, 19, 49, 76

maximum expected utility, 53

Maxwell demon, 75

mean (or mean value), see expectation

mean deviation, 55

mean value of a chance, 79

meaning, 1, 3n, 4n, 5, 40n

degrees of, 1, 40n

see under degrees of belief

measure, 7n, 9, 18n, 21, 23

see function-space

measurement, 50, 89-90

median, 55

medicine, 83

Mendel, G.J., 41

meteorology, 49

miracles, 39

Mises, R. von, 6—7, 10, 24n, 29

mistake, 89, 95

models, 38

moments, 54, 56, 58, 59, 88

money, 53-4

most probable value (a value of a para-
meter for which the point or

density function is a maximum),
80, 83

motive, 67

multiplication law, 13, 16-17, 19(A3), 22,
23, 24, 27(line 3), 104
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murder, 67

music, 64

mutation, 82

mutually exclusive, 14, 16, 22

N

Nagel, E., 11n

negation, 1, 25

neper, 63

Neyman,J., 77, 83, 94, 102

non-numerical theory, see

numerical

not, see negation

notation—

ambiguous, 32

logical, 1

“ misleading ’, 17, 21n, 50, 66, 84

numerical work, 55

probability,

O

O, o (should not be confused with the same

symbols used in pure mathe-

matics for orders of magnitude),

62

objective, constructibly, 4n, 32n

objective (and subjective) degrees ofbelief,

comparisons, probabilities and

theories of probability, 2, 4, 6-11,

42, 47-8

see precision

objectivity—

and the neglect of evidence, 102

degrees of, 4

superficial appearance of, 6

observations, combination of, 89-90

Occam’s razor, 60

octave, 63n, 64, 75

odds, 62, 73, 83

expected, 73

gambling, 49

opinion, differences of, 83

see public opinion

or, see disjunction

oxygen, 39

P

P and P’, 32, 36n

P(E), 21

see notation, “‘ misleading ”

P(E | Hy),etc., 2, 4, 19, 31

parabolas, 89

parameters in a law, 60-1, 85, 101

partial ordering, 14n

past and future, 1, 2n

Pearson, E. S., 77, 82n, 83, 85n, 94, 98

Pearson, K., 88-9

perfect coins, packs of cards, etc., see
games of chance (idealised);

cards, perfect

Petersburg problem, 53

philosophy—

independence of abstract theory from

philosophical interpretation of

probability, 29
solipsism, 11

see unobservables

physics, 36

see quantum theory

a, 49

plausibility, 63

gain or loss, see weight of evidence

levels, 65

relative, 71

players’ ruin, 73

Poincaré, H., 27

point function, see under probability

point-set theory, 7n, 9, 21, 23

Poisson distribution, 56

politics, 41n

Pélya, G., 72n

polynomials, see Legendre polynomials ;

parabolas

population(finite or infinite), 59-60, 76, 78,
80, 82, 84, 85n

posterior, see final

practical difficulties, 36, 76

practice, closeness of our theory to, 12

precision, 34, 42, 47n, 82-4, 90, 101
see probability intervals

prediction, 6, 39, 49, 60, 76
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primitive notions (beliefs and comparisons

between beliefs), 2

Primula sinensis, 70

prior, see initial

probability, 3, 14, 19, 31

The definition of 1.3 is finally com-

pleted in 4.1 where “ probability ” is

given a double meaning. In chapter 2
the word is used in a restricted sense

and in chapter 3 without any definite

meaning. (The word is also used
occasionally instead of “‘a theory of

probability ”’)

abstract theory of, 5, 19-30

ambiguous definition, 9-10

and language, see language

and statistics, 76-~103

. circular definition, 6

close to one, see certainty, practical

continuous or geometrical, 17-18, 40

definitions of, 6-12

density, 51, 54, 93

distribution(s), see distribution

equal, 14

expected, 73

experiments, 8

final, see final

fundamental theorem of, 46, 78, 81

geometrical, see probability, continu-_

ous

given all known information, 36, 41n

infinite, 21, 55-6

initial, see initial

intervals, 40, 82

see precision

inverse, 62, 70, 82-4

see Bayes’ theorem

irrational, 18, 34

judgments,3, 4, 12, 14, 49, 61, 67, 82,

94

see judgment

linguistic, 48

non-negative, 19(A1), 25

numerical, 6, 10, 14-15, 20, 34, 36, 37

objective, see objective
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probability of a chance, 43

see distribution of a chance

of a distribution, 84

of a logical combination of proposi-
‘tions, 27

of E given H, see P(E), P(E | H)

one, see almost certain

physical, see quantum theory ; objec-

tive (probabilities)

point function, 51, 54, 91

posterior, see final

precise, see precision

prior, see initial

relative, 71, 79

small, 39, 67, 68

See rare events

statements, 19, 20, 41, 42n

see proposition, definition of

statistical, 42

tautological, 42, 82

* technique ”’, 31, 33, 103

theories of, see theories of probability

theory of, see theory of probability

true, seé chance, “‘ true”’

zero, see almost impossible

probability,, 48

productrule, see multiplication law

proper and improper(theories), 41-3, 69

proportion of possible alternatives, 9

proposition—

analytic, 2, 19

definition of, 1, 3, 19, 20, 41, 42n, 72n

empirical, 2, 30, 34-5, 78, 90n

idealised, 90n

incompletely defined, 42, 82

involving probability, 1, 19, 20, 41,

42n, 72n

partial’, In

self-contradictory, 20

propositional functions, 37n

(A propositional function is a func-

tion whose values are propositions)

propositions, logical combination of, 27

psychology, 7, 11

public opinion surveys, 41n
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““ pure thought ”’, 26

Pythagoras’s theorem, generalisation, 95

Q
quality control, 64-6

quantum theory, 41—2, 76, 78

see unobservables

question,

refusal to answer, 102

taken too literally, 100

R

rain, 1, 36

Ramsey, F. P., 10,53

random—

at, 38

numbers, 57, 58

sample, 38, 78

variable, 50

rare events, 88

see probability, small

rational—

behaviour, 53

numbers, as probabilities, 17, 34

reasonable, Preface, 2,3, 9, 33

see rational behaviour

reasoning—

definition, 3 °

electronic, 48

recognition, 68

Reichenbach, H., 10n

rejection, see hypothesis, acceptance and

rejection ; “‘lot’’?; observations,

combination of

relevance, 36

resultant, 52

rigour, 76

roulette, 16

rules, 5, 31-2

see axioms, rules and suggestions

Russell, Bertrand, 2n, 9n, 37n

5
** same essential.conditions ”’, 46

sample, 60

sample, frequency, 59-60, 77-8

mean,etc., 60

size expected, 65, 73

small and large, 77, 83, 95, 98

sampling—

and chance distributions, 84-8

of a single attribute, 77-81
with and without replacement, 38,

78-9, 80, 85

scale readings, 50, 89-90

Schrédinger, E., 13, 104n

Schwartz, H. A., 39

scientific mind, 77 ;

scientific theories, Preface, 1n, 4, 10, 31,

40-6

see law of nature

self-consistency, see consistency

semitone, 64

sequential tests, 64-6, 73

Shannon, C. E., 74n, 75

o, see standard deviation

o-age, 69

significance, 81, 90-101

see sample, small and large

simplicity, 5, 11, 55n, 60, 85-6, 89

Slater, J. C., 75

slide-rule, generalised, 105n

Smith, C. A. B., 7in

smoking, 41n

smoothness, 45, 85, 88, 89

sociology, 83

solipsism, 11

so-much-or-more method, 93-4, 96, 97

space, finite-dimensional, 9, 90, 96-7, 99

see volume

space of functions, 61, 85

‘© spread 7, 55

standard deviation, 54

see variance

standard measure, 56

star magnitudes, 64

state of mind, 2

A numerical function of obser-
vations. ‘Thus the word“statis-

tics ’’ has two meanings

statistic.
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statistical—

hypothesis, see hypothesis,statistical

mechanics, 8, 75

theory of probability, 6, 10

statistics—

and probability, 59-61, 76-103

definition, 76

descriptive, 76

of statistics, 86

predictive, 76

Stieltjes, T. J., 51

Stirling’s formula, 57

subjective, see objective

subjectivity, see objectivity

substantially right, 46

* success *’, 6, 7, 29

suggestions, 34-6, 45, 60

see axioms, rules and suggestions

sum of random variables, 51-2, 58, 59

see convolution

super-population, 85n

superstition, 83

support, 63n

symmetric function, elementary, 38n

symmetry, 8, 17, 37, 41, 90, 96

T

T1, T2, ete., see theorems

tables, 102

see contingency tables

* tails ”, 60n, 87-8

tautology, Preface

see probability, tautological

Tchebycheff’s inequality, 57

telepathy, see extra-sensory perception

tests, see trials; sequential tests; signifi-
cance

theorem, central limit, 57

theorems—

T1 to T20, 22-8

T21, T21a, 52

T22, T23, 63

T24, 79

see mathematical theorems; Bayes’
theorem; probability, funda-
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mental theorem of; factors,

weighted average; Borel’s

theorem

theories of probability, classification, 6~12

see theory of probability

theories, scientific, see scientific theories;

see under hypotheses

theory, abstract, 5, 19-30

We use the word “theory” in

several senses ,

theory of probability, 1, 3, 31, 34, 76n

classification of our, 11~12

purposes of, 3, 48-9

see frequency theory of probability ;
statistical theory of probability

time, variations of beliefs with, 3

time-saving, 77, 95

Tintner, G., 48

Todhunter, I., 54

tolerance limits, 102

transitive body of beliefs, 14n

transmission lines, 64

trials, 6, 28, 73, 78

see experiment, etc.

expected numberof, 65, 73

true value of a physical magnitude, 89

truth tables, 28

Tukey, J., 75

Turing, A. M., 63, 72, 73

see computable numbers

types, theory of, 41n, 89n

typical value, 54

typicalness, fallacy of, 67

U
unbiased estimate, 103

universe, see under imaginary

unobservables, 30, 36, 48

unreasonable, 5, 14, 32, 49

see reasonable

urgency versus importance, 95

Uspensky, J. V., 6n, 29n, 73

utility, 53-4

and Ramsey, 10
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utility, and sequential tests, 65

judgmentof, 48

neglect of, 102

of alternative probability techniques,

89n

of approximate methods, 77

of gambling, 54

of scientific theories, 10, 40

V

vagueness, 66, 97, 98n

values, scale of, see utility

variable, random, 50

variance, 54, 60

Venn, J. A., 6, 62n

verification of the theory, 39-40

seé justification

volition, 41n

volume, 55, 61, 90, 95-7, 104

see function space

W

Wald, A., 7n, 64-6

Watson, G. N., 104n

wave function, 42

wearing out, 80

weather forecasts, 49

weighing evidence, 62-75

weight of evidence, 48, 63°

and chi-squared, 91-2

expected, 72, 73

relative, 71, 75

Weyl, H., 58n

wheel, rotation of a, 57

Whittaker, E. T., 104n

Wiener, N., 75

Wilks, S. S., 57, 76n, 87n, 101n, 102

Wintner, A., 88

Wright, G. H. von, 21n

Y

** You ”, Preface, 2
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