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PREFACE

‘“ Probability is the very guide of hfe.”
Cicero, De Natura

WHEN we wish to decide whether to adopt a particular course of action,
our decision clearly depends on the values to us of the possible alterna-
tive consequences. A rational decision depends also on our degrees of belief
that each of the alternatives will occur. Probability, as it is understood here,
is the logic (rather than the psychology) of degrees of belief and of their possible
modification in the light of experience.

The aim of the present work is to provide a consistent theory of probability
that is mathematically simple, logically sound and adequate as a basis for
scientific induction, for statistics, and for ordinary reasoning. Probability is
treated as a subject in its own right, of comparable importance to the related
subjects of philosophy, statistics and mathematics. I hope there is not a dis-
proportionate stress on either the philosophical, statistical or mathematical
aspects,

~ Various authorities have attempted to eliminate the necessity for subjective

probability judgments by employing instructions that are outside the theory
adopted here. These instructions are either imprecisely stated or, when they
are precise, apply only to ideal circumstances, so that they can be used only in
some unspecified approximate sense. The instructions occasionally contradict
one’s inner convictions. It is maintained here that judgments should be given
a recognised plgcl:e from the start. These judgments are influenced by a free
discussion of/~s/tandard instructions, but they are not bound by them.

The necessity for judgments occurs most conspicuously in connexion with
*“ initial probabilities ”’ of hypotheses. When a scientific memoir is concerned
with experimental evidence for a hypothesis, it is helpful if something is stated
about the subjective initial probability of the hypothesis. To omit such a
statement gives only a superficial appearance of objectivity. The uninitiated
are liable to be misled into regarding the probability as higher than would be
claimed by the writer of the memoir.

The theory presented in the following pages follows precise rules, although
it uses subjective judgments as its raw material. In this respect it resembles any
other scientific theory. But the analogy with other scientific theories should
not be pressed too far, since probability is a part of reasoning and is therefore

_more fundamental than most theories.

Although probability cannot be defined entirely within the framework of
formal logic and pure mathematics it is possible to go some way in this direction
by adopting the axiomatic method. This method makes it possible to prove

many mathematical theorems that are connected with probability, but it does
v



PREFACE

not explain how these theorems are to be used. For this purpose some
philosophical interpretation of probability is required.

A condensed account is given in Chapter 1 of various theories of probability
which have been suggested in the past, together with some brief criticisms.
In Chapters 2 and 3 the axiomatic part of the present theory is developed.
Chapter 4 is more philosophical. It deals with the rules of application of the
abstract theory developed in Chapters 2 and 3. Some of the questions are
difficult and the answers are not entirely satisfactory, but other theories do not
seem to have given better answers. In this chapter the apparent dualism of
probability is attributed to the use of different kinds of propositions rather than
to different kinds of pirobability. This point of view is largely responsible for
the extreme simplicity of the formal apparatus, in spite of the generality of the
theory. Chapter 5 provides a background of elementary statistics and proba-
bility, sufficient for later use. A few important theorems are quoted without
proof. In Chapter-6 the intuitive idea of weighing evidence is given a simple
quantitative interpretation. For this purpose it is found convenient to use the
term ‘‘ plausibility ” for the logarithm of odds. A gain of plausibility bears
about the same relation to an ““ amount of evidence ™ as a probability bears to a
‘“ degree of belief ”. The term is used in the discussion of statistics in the
last chapter.

The following is a list of ordinary words that are generally used in this book
in a technical sense (roughly in order of their appearance) : belief, you (this is
always a technical term), comparison, theory of probability, body of beliefs, reason-
ing, reasonable, contradiction (in a body of beliefs), probability, abstract theory,
rules, impossible, certain, almost, independence, theory (meaning ““ hypothesis ™ or
“ scientific theory ” or an abbreviation for * theory of probability ™), proper
theory, improper theory.

The use of the word ““ reasonable ™ as a technical term is intended to be
partly emotive—it involves a recommendation to use the theory in practice.
Otherwise the theory would be tautological in the sense in which pure mathe-
matics is tautological.

I have of course been much influenced, directly and indirectly, by many
other writers, and. especially by F. P. Ramsey, H. Jeffreys, B. O. Koopman,
R. von Mises, J. M. Keynes and A. Kolmogoroff. I am indebted also to
Dr. A. M. Turing and Professor M. S. Bartlett with whom I have had several
illuminating conversations. After reading the manuscript, Professor Bartlett
felt that the treatment was not always quite fair to the orthodox statistical theory
-and I have attempted to rectify this. Dr. A. M. Turing, Professor M. H. A.
Newman and Mr. D. Michie were good enough to read the first draft (written
in 1946) and I am most grateful for their numerous suggestions. I am grateful
also to the publishers who have been most helpful at every stage.

L. J. GOOD
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CHAPTER 1
THEORIES OF PROBABILITY

“ I would rather feel compunction than understand the
definition thereof.” TraoMas A KeEMPIs

1.1 Logical notation

We shall not delve deeply into ordinary logic. 'The symbols E, F, G, H, E’
etc. will denote propositions. A proposition is defined T to be a statement
for which it is meaningful to assert that it is true or that it is false. (The
meaning of “‘ meaning ”’ will not be discussed.]) A proposition may be simple
or complicated, it may refer to past, present or future and to a real or imaginary
world. It will not contain a reference to probability, at any rate not before

_probability has been defined. _

The negation of E will be denoted by  E” (read “not E”); the con-
junction of E and F by “E.F” (read “ E and F”), and the disjunction by
“EVF?” (read “ E or F”). The disjunction is true if either E or F or both
are true. The notation may be extended to conjunctions and disjunctions of
more than two propositions.

1.2 Degrees of belief

Our theory of probability is concerned with those mental phenomena called
“ degrees of belief ” (i.e. ““ states ” of more or less belief). Some people use
the word “ belief ”” in a sense which precludes the use of the phrase ““ degree
of belief ”. 'They would say that they either believe so-and-so or that they
do not. That it is sensible, however, to talk about degrees of belief, at any rate
in some circumstances, can be shown by considering a simple example. My
belief that it will rain to-morrow is more intense than my belief that the roof
above me will collapse. To say that the first degree of belief is greater than
the second is another way of saying the same thing. To prevent misunder-
standing it may be noticed further that to say that one degree of belief is more
intense than another is not intended to mean tliat there is more emotion attached
to it. 'What is meant is sufficiently shown by the above example : a complete
definition can hardly be produced.

It will not be assumed at the outset that degrees of belief can be measured

+ See Hilbert and Ackermann, 1946, 3. (The references are at the end of the book.)
T It seems to the writer that there are ““ degrees of meaning > and hence that there
are sentences for which it is difficult to decide whether they are propositions. Such
““ partial propositions ”’ often occur in the pioneering work on new scientific theories.
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1.2 PROBABILITY AND WEIGHING OF EVIDENCE

numerically, in spite of the word ‘ degree”. For short they will often be
called simply ““ beliefs ”’. A belief depends very roughly on three variables :
the proposition “ believed ”’ (say E), the proposition assumed (say H),t and
the general state of mind (117) of the person who is doing the believing. This
person will be described as “ you . 1T depends on who ““ you” are and on
the moment of believing. It will be convenient to use the symbol B(E | H : IIT)
for this belief, and it may be read * your (degree of) belief in E if H is assumed,
when your state of mind is 11T ”. It will be written B(E | H) when 111 is taken
for granted. It is important to realise that A need not be known to be true;
B(E | H: 1) is your estimate, when your state of mind is 11T, of what your
degree of belief in E would be if you knew H to be true.

As an example suppose that H is deducible from ordinary logic (i.e. it is
an ‘‘ analytic proposition ) and that E is an empirical proposition about the
material world. It is then by no means obvious that any meaning can be
attached to B(E | H:1M). In order to feel convinced that B(E | H : 1) has
a meaning when E is empirical most people would consider that H also should
involve a certain amount of empirical information. It will be assumed at any -
rate that B(E | H : 1) does sometimes mean something.

A belief B(E | H: 1) is subjective in the sense that it depends on 1.
Keynes and Jeffreys | assume that there is a “ reasonable ”’ (degree of) belief
which is independent of MT. This may be called an “ objective ” belief.§
They call it a probability and it depends only on E and H. The notation used
by Jeffreys is P(E | H). This meaning for “ probability ”” is not quite the same
as the one that will be adopted here. It is true that a probability will soon
be defined roughly as a reasonable belief, but it will be maintained that reason-
ableness does not necessarily imply complete objectivity.

It is perhaps hardly necessary to admit that no precise definition will be
given of a belief. Instead it will be taken as a primitive notion. The present
work may be regarded as an analysis of properties of this notion rather than
as a definition.

It is possible for one of your beliefs B(E | H-: 1) at a given time to be more
intense than another one B(E' | H' : IT’) at some other time. This too will be
taken as a primitive notion and will be denoted by B(E | H : 1) > B(E' | H' : NV")
or by B(E' | H' : W) < B(E| H:U1). The symbols “>" and “ < may

+ F often asserts that an event has happened or will happen, while H is often regarded
as a hypothesis. But this is unnecessary : we regard E and H as arbitrary propositions.

1 See Keynes, 1921, and, for example, Jeffreys, 1939.

§ The words ‘ subjective >’ and ‘‘ objective ”’, when applied to theories of probability,
have often been used to mean theories that depend respectively on degrees of belief
and on the idea of frequency. These words will not be used here in this way.

An objective degree of reasonable belief is called a * credibility ’ by Bertrand Russell
in Human Knowledge (London, 1948).

2



THEORIES OF PROBABILITY 1.3

be read ‘‘ is more intense than

and “-is less intense than ", respectively. It
will not be assumed that any two beliefs can be compared in this way, even
though they are both associated with the same person. Similarly if there are
examples of equal intensity the symbol “ = * will be used. An “ inequality ”
or ““ equality ”’ between beliefs will be called a comparison between beliefs. Such
a comparison, unlike a single belief, is expressed by a sentence containing a
verb. There may be no objection to regarding it as a proposition, but the
point is not of immediate importance.

1.3 Purposes of a theory of prdbabih’ty

Ordinary logic seems to be inadequate by itself to cope with problems
involving beliefs. In addition a theory of probability is required. Such a
theory is defined here as a fixed method which, when combined with ordinary
logic, enables one to draw deductions from a set of comparisons between beliefs
and thereby to form new comparisons.t A set of comparisons between beliefs
will be called a \b{)fl}v of beliefs and will be denoted by a symbol such as “ 28"
or “B’”. Thus the immediate purpose I of a theory of probability is to
enlarge 2B. { _

A fixed theory of probability together with-a fixed theory of logic will be
called reasoning.

A reasonable B will be defined as one such that when it is submitted to the
processes of reasoning no comtradiction emerges. By a ‘‘ contradiction ” is
meant here a pair of comparisons that are formally contradictory when the
UTUs are omitted, e.g.

B(E| H:01,) > B(E'|H' : M), ‘B(E| H:03) < B(E' | H' : M).
Observe that the meaning of ““ reasonable ”’ depends on the system of reasoning
and in particular on the theory of probability that is used. The use of the
word may therefore be regarded as consistent with ordinary usage if and only
if the system of reasoning is itself reasonable in an ordinary sense. A necessary
condition for this is that the longest period of time between any pair of the
NTs must not be too great. It is hardly to be expected that *“ your " judgments
would remain quite constant over a long period of time. But if the periods
which are involved are short, then the sort of consistency mentioned is a natural
requirement.

The beliefs involved in a reasonable B will be called probabilities § and

+ Cf. Koopman, 1940. The phrase ‘“ a theory of probability >’ will also be used

with its ordinary vague meaning, and which meaning is intended should be clear from
the context. o

I The question of how probability may be used as a guide to rational behaviour will
be considered in 5.2.

§ If there are any meaningless symbols B(E | H) the corresponding probabilities may
be given conventional meanings. Thus a probability is a reasonable belief if there is one,-
and is otherwise something introduced for theoretical convenience.

3



1.3 PROBABILITY AND WEIGHING OF EVIDENCE

the symbol B will be replaced by P. The symbol 1T will be omitted so that
we are back to Jeffreys’ notation P(E | H). The use of this notation does not
imply that a probability is independent of who “you” are. In any given .
application ‘‘ you’ aré supposed to remain the same person throughout.
When it is desired to bring B into evidence Py (E | H) may be written instead
of P(E|H). The particular theory of probability will not be mentioned in
the notation.

We shall assume that a 3 is reasonable until it proves to be unreasonable.
So we shall always use the symbol P rather than B, though this notation is
strictly justified only for beliefs involved in a reasonable 8. If a contra-
diction is reached it may mean that B has been too hastily formulated and
that it contains a comparison that can be crossed out on more mature con-
sideration.

The comparisons in a body of beliefs are bound to be subjective judgments
if no theory of probability has been applied. They may be called probability
judgments (if it is assumed that 3 is reasonable). The possibility of probability
judgments of a more general type will be discussed in Section 4.12.

A probability theory, being a fixed procedure, lends a certain amount of
objectivity to your subjective beliefs. If comparisons can be deduced from a 3
that is * empty * (i.e. contains no comparisons) then the comparisons may be
described as objective.+ Similarly an objective theory of probabilityis one that
is designed to work with empty bodies of belief, i.e. without using bodies of
belief at all. It seems unlikely to the present writer that a generally applicable
objective theory can be constructed,} in spite of claims which others have
implicitly made. (It should perhaps be emphasised that the phrase ‘ theory
of probability ” is here being used in the sense defined at the beginning of
this section.)

An analogy can be drawn with formal logic, in which new proposition§ can
be deduced from a given body of propositions. In geometry, new relations
between points, lines and planes can be deduced from a given set of such
relations. A similar property is possessed by all scientific theories.

In order to build up your beliefs it is theoretically sufficient to use reasoning
only, without collecting empirical information.§ But in practice this would
take too much time : you may be interested in whether E is true but not inter-
ested in P(E | H) until H becomes an observational fact.

« ”»

1 Perhaps a better description would be *‘ constructibly ”’ objective.

1 It would first be necessary to invent a special language in which statements could
be made without any ambiguity of meaning. In ordinary language such statements are
rare and perhaps non-existent. (See also 4.11.)

§ But some experience of the real world may be requlred in order to understand the
meanings of E and H.
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THEORIES OF PROBABILITY 1.3A

1.3A The ‘‘ axiomatic ’ method

It is advisable to digress for a moment in order to discuss what is meant by
the “ axiomatic ” method in mathematics. It consists in stating a number of
assumed relations between various things which are denoted by words or
symbols. These relations are called ““axioms”, and all the mathematical
results are deduced from them. In the course of these deductions no use is
made of the meanings of the words or symbols; in fact, it is unnecessary to
assume that they have any meanings. The position is different when the
theory is applied to practical problems.

The method has been successful in all branches of mathematics and in
formal logic. Its advantages are that the mathematics depends only on
mathematical assimptions and that new assumptions, either mathematical or
non-mathematical, are prevented from creeping in. The axioms are often
born in some concrete interpretation of the undefined words or symbols. But
the structure is strengthened by cutting it away from its origins, since the
number of assumptions is thereby decreased.

The method will be adopted here for the treatment of probability. The
development from the axioms alone will be called the abstract theory. Besides
the axioms it is necessary to have a set of rules by which the abstract theory
may be applied. The word ‘‘ rulés ” will nearly always be used in this sense.
An axiomatic theory should always be supplemented by a set of clearly stated
rules, if it is to be directly applicable. This condition has not often been
satisfied in the past.

The question arises how to select a suitable theory. It must be logically
consistent and, more generally, it must never force you into a position that
after mature consideration you regard as untenable. (This would happen if a
body of beliefs became classified as ‘‘ unreasonable ” while not containing any
judgments that could be conscientiously removed.) The theory should be
applicable to most of the practical problems concerning degrees of belief, and it
would be convenient for it to apply also to idealised problemsT

If the axiomatic method is used it is advisable that the axioms should be
simple and should involve a minimum of assumptions. In order to arrive at
a system of axioms the classical theories may be used as a guide, especially
as it is known that these theories have led to much the same general struc-
ture for the subject as a whole, though not always by strictly logical steps.
Hence it will be convenient at this point to consider some well-known
theories.

1 This last condition will be partially sacrificed in order that the axioms should
involve fewer assumptions. (See the remarks about ¢ complete additivity ”” in Sec-
tion 3.3, pages 22-3.)
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1.4 PROBABILITY AND WEIGHING OF EVIDENCE

1.4 Some theories of probability
Theories of probability may be cross-classified in at least four ways :—

(a4) The theory may or may not be dependent on a system of axioms.

(6) Each probability may or may not be defined, or assumed to exist, objec-
tively, i.e. independently of the views of particular people.

(¢) The emphasis may be on degrees of belief or on the frequency with
which things happen. In the latter case the theory is normally described as
a frequency or statistical theory.

(d) Probabilities may or may not be associated with numbers.

Several special theories will now be considered. There are many others,
but the ones outlined are fairly representative. My intention is to give a good
general picture rather than to mention all the important work. The classifica-
tions following each heading are supposed to be those which the adherents
of the theories would accept.

(i) The Venn limit.t (Classification : non-axiomatic, objective, statistical,
numerical.) Imagine that an experiment I or “ trial ” is repeated an infinite
number of times. Then the probability of a ““ success ”’ is defined as the limit
of the proportion of successes in the first # trials when #n = co. It is assumed
that the limit exists. Of course the infinitude of experiments cannot actually
be carried out and has to be regarded as an unattainable ideal. When the
definition is restated in a finite form the superficial appearance of objectivity
becomes less convincing. This finite form is as follows. “ The probability of
the success of an experiment is p if, given ¢ > 0 and % > 0, there exists n,
such that if #;, > n, the proportion of successes in # trials differs from p by
less than & whenever ny, < n < n,, with probability greater than 1 — 7.” Notice
that the definition is now circular. 7 can be taken so small that the phrase
‘ probability greater than 1 — %’ can be replaced for practical purposes by
“ certainty ”’. This does not mean logical certainty but expresses an intense
degree of belief. A supporter of the theory does not need to refer explicitly
to degrees of belief. Instead, whenever he applies the.above theorem he can
make a definite prediction. But presumably he would not do this unless he
did have an intense degree of belief.

(i) The “ irregular collective ” of von Mises. (Axiomatic, objective, statis-
tical, numerical.) The theory proposed by von Mises § is similar to the Venn
limit but it avoids the difficulty of the definition being essentially circular by
using the axiomatic method. Like any form of the frequency approach it can

+ Venn, 1888. In essence this theory dates back at least as far as the seventeenth
century. (See a quotation of Jacob Bemoulli’s in Uspensky, 1937, 106.)

1 The words ‘‘ experiment > and ‘ trial > will always be used in a very general sense.

§ R. von Mises, 1936 and 1945.
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THEORIES OF PROBABILITY 1.4

be applied only to experiments that can be conceived as one of a large class of
similar experiments. von Mises deliberately restricts the theory of probability
to such experiments. A central position in his theory is occupied by the
“ irregular collective ”” which will now be briefly described. Suppose that an
infinite sequence of experiments is performed, and let *“ successes ”’ be denoted
by 1 and “ failures ” by 0. The results may thus be represented by a sequence
of 0’s and 1’s such as 11010010 . . . . Such an infinite sequence is called
an irregular collective if it has the following properties :—

(«) The proportion of 1's in the first # terms tends to a limit as # — co.
The limit may be called the probability, p, of success.

(B) More generally, if any subsequence is selected by means of a well-
defined set of rules,} such that the question whether the mth term is selected
is a function Ol‘llj} of the previous m — 1 terms, then the proportion of 1’s in
this subsequence also tends to p. (In von Mises’ formulation the ““ function
is a function of 7 only and does not depend on the first m — 1 elements of the
collective. We prefer the present formulatien since it expresses better *“ the
impossibility of a gambling system *’.)

Starting from these and similar assumptions it is possible to develop a
detailed abstract theory. The method of applying this theory is to regard
long sequences of trials as “ approximately infinite ”. This is equivalent to
a judgment depending on degrees of belief and has the disadvantage of not
being expressed in a precise form.

From the point of view of psychology any frequency approach has the
advantage of being to some extent related to conditioned reflexes. For example,
a dog will apparently regard a light signal as a probable indication of food
provided that the signal has been followed by food in a high proportion of
previous cases. .

(iii) The definition by equally probable cases, together with the “ principle of

T The question whether a sequence is an irregular collective depends on how the
set of rules is defined. If the rules are defined in an unsuitable manner there would
be no irregular collectives. For reasonable definitions we should expect irregular
collectives to ‘ exist ” : but we should not want them to be mathematically constructible,
since they would thereby lose an essential intuitive property of ‘ randomness . Some
of the alleged disproofs of the existence of irregular collectives are based on the assumption
that they are constructible. We add some further comments for the benefit of the reader
who is familiar with point-set theory. Consider those sequences of 0’s and 1’s in which
the proportion of 1’s in the first # terms tends to p. Then it can presumably be proved,
in the sense of Hausdorff fractional dimensions, that almost all of these sequences are
irregular collectives, provided that the number of rules for determining subsequences is
enumerable. This enumerability is a natural requirement, since there are at most an
enumerable number of rules which can be laid down in a sentence of finite length using
an unambiguous language. (For the theory of fractional dimensions see, for example,
Hausdorff, Math. Annalen, 79 (1918), 157-79.) When p = }, Lebesgue measure is
adequate. (See also Copeland, Trans. Am. Math. Soc., 43 (1937), 333, and Wald,
Ergeb. math. Kollogu. Hamburg, 38 (1937), 38-72.)

7



1.4 PROBABILITY AND WEIGHING OF EVIDENCE

insufficient reason” or * the principle of cogent reason . (Non-axiomatic, objec-
tive, non-statistical, numerical.) Suppose that when some hypothesis H is true
there are exactly n equally probable “ alternatives” and that a proposition
E is necessarily true for 7 of them and necessarily false for the remaining ones.
Then “ the probability of E when H is assumed " is defined as m/n. In order
to apply this definition it is necessary to be able to judge (or to know) that the
various alternatives are equally probable. For example, if the hypothesis H is
that we have a well-shuffled pack of playing cards and that the top card is drawn,
then we may possibly judge that each of the 52 cards is equally likely to turn
up. Therefore the probability that the card is either the ace or the two or the
three of hearts is ¢%. A method of judging that two cases are equally probable
is by the “ principle of insufficient reason”, i.e. the two cases are equally
probable if there is no conceivable reason to expect one rather than the other.
Such a judgment is liable to be made when there is some sort of symmetry,
and the principle invoked is then more accurately described as  the principle
of cogent reason .1 But there will always be some difference between the
two cases in any practical example, and it will be necessary to decide that
the differences are unimportant. For example, it might be argued that a card
with more print on it is likely to be slightly heavier and that this upsets the
symmetry. 'The rules for deciding when such departures from symmetry are
important have never been clearly stated.

Several probability experiments have been made with the intention of
showing that the theories (i) and (iii) give the same results when they are both
applicable. Such experiments have usually given good results, but they cannot
prove anything.

The conflict between definitions (i) and (iii) is an old one. Those who
define probability in terms of equally probable cases say that the frequency
with which things happen cannot be fundamental since it can only modify
previously known probabilities. Their opponents reply that these probabilities
could themselves have been based only on previous experience in any real
problem (since complete symmetry is unobtainable). They may also say that
the principle of cogent reason is itself a generalisation from experience.

On the whole the frequency approach seems to be more popular among
physicists. But E. C. Kemble (1942) considers that it is inadequate for problems
occurring in statistical mechanics, though justifiable in some circumstances.

(iv) Feffreys’ theory. (Axiomatic, objective,] non-statistical, numerical
(essentially).) This is similar to theory (iii) but it uses the axiomatic method.
No definite distinction is drawn between the axioms and the rules of application
of the theory. Jeffreys considers that for a given proposition or “ event” E

+ See A. Fisher, 1922.
I See classification (b) on page 6 and a footnote on page 2.
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and for given hypotheses H, there is only one reasonable degree of belief, and
that any two such degrees of belief are comparable. He obtains a numerical
theory and provides suggestions (rather than axioms) for obtaining the numerical
probability for a number of problems. In all these problems it is necessary to
apply the principle of cogent reason, and therefore the criticism of definition (iii)
still applies. A comprehensive account is given by Jeffreys (1939).1

(v) The definition by point-set theory. (Axiomatic, numerical.) It is
possible to represent the results of most scientific experiments by a finite set
of measurements, i.e. by a point in a finite-dimensional space. The probability
that the result of the experiment will be a point belonging to a particular set
in this space can be taken as the ““ measure ” of this set, where the measure
may be interpreted i the Lebesgue sense, or in any of a number of other senses.
In this way it is possible to establish an abstract theory of probability. This
method was first used by Kolmogoroff (1933). (See also Cramér (1937).) The
appropriate measure has to be decided upon before the theory can be applied,
and this choice of measure is equivalent to a judgment of equally probable cases.
This point is made by Jeffreys (1939), 302. If Lebesgue measure is invariably
used the theory becomes self-contradictory.] Whether the method is an
axiomatic form of method (iii) depends on the rules given for its application.

(vi) Probability defined as a * proportion of possible alternatives”.§ (Non-
axiomatic, objective, neither statistical nor dependent upon degrees of belief,
numerical.) This definition is ambiguous since there is no unique way of
defining the * possible alternatives ”, and different results are obtained accord-
ing to the method used. Suppose, for example, that it is known that of a set
of three billiard balls the two white ones are kept in one drawer and the red
ball in another drawer. One of the drawers is opened and a ball is selected.
What is the probability that it is the red one ? It might be said that there are
exactly three alternatives since there are three balls, so that the probability
is 4. Or it might be said that there are two alternatives since there are two
drawers that can be opened, and the drawer that is opened determines the
colour of the ball selected, so that it is unnecessary to split the alternatives up
any further. This would make the probability 4. (Cf. Jeffreys (1939), 301.)

T It may be mentioned in passing that what Jeffreys calls ““ convention 2 * really

amounts to an extra assumption. For it can be used to prove that a * perfect ”’ seven-
sided die has less probability of giving a 6 than an ordinary die—a result not otherwise
deducible from his axioms. The trouble can be removed by replacing the equalities
in his axiom 4 by inequalities.

I The invariable use of Lebesgue measure would be equivalent to an uncritical use
of ““ Bayes’ postulate . (See 5.3.)

§ This is called the  finite frequency theory ** by Bertrand Russell, loc. cit., 368.
W. Kneale, in Probability and Induction (Oxford, 1949), expresses the opinion that it is
only in terms of some such theory that objective probabilities can be considered to exist.
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14 PROBABILITY AND WEIGHING OF EVIDENCE

If the number of alternatives is infinite the position is even worse, since it is
meaningless to talk about a proportion of an infinite number of things, unless
a definite limiting process is specified. The definition might be made applicable
if a set of rules could be given for deciding on a unique set of possible alterna-
tives for every example. But such a set of rules seems unlikely ever to be
produced.

(vii) Ramsey’s theory.t (Axiomatic, not entirely objective, neither statistical
nor dependent only on degrees of belief, numerical.) In this theory expected
benefit is taken as a more fundamental idea than degrees of belief. Degrees
of belief are defined in terms of expected benefits instead of the other way
round as in most theories. (In any case a scale of values or * utilities ”’ must
be assumed.) It is not clear whether Ramsey’s method is always justifiable
in the applications to purely scientific problems. At least it suggests the
possibility of extending our “ body of beliefs ’ so as to include judgments of
the type that one expected benefit is greater than another one.

(viit) Koopman’s theory.f (Axiomatic, not objective, non-statistical, non-
numerical at first.) The essence of this method is given by its classification.
It is not supposed to be applicable without using what we have called a *“ body of
beliefs . Koopman deduces a numerical theory for a class of problems, from
a more general non-numerical theory. He has been much influenced by the
work of J. M. Keynes (1921) whose theory may be classified thus : axiomatic,
objective, non-statistical, non-numerical (in general). Keynes in his turn- was
influenced by W. E. Johnson’s lectures and conversations. In 1931 Keynes
admitted § that he no longer adhered to an objective theory. But it is possible
to salvage the formal apparatus of his theory.

(ix) Orthodox statistical theories.| (Axiomatic, objective, statistical, numeri-
cal.) Any theory with the classification shown may be called an orthodox
statistical theory. Hence this class of theories includes von Mises’ theory (ii)
as a special case. It also includes theory (v) if that theory is interpreted in
terms of what happens ““in the long run ”. There is a considerable choice in
the form of the axioms of an orthodox statistical theory, and it is not at all
necessary that they should depend on ideas akin to that of the irregular collec-
tive. But most of what we shall say would apply equally well to theory (ii).

Any orthodox statistical theory is a scientific theory in almost exactly the
same sense as geometry : there is a rigorous mathematical theory and a non-
rigorous technique for applying the theory. Degrees of belief are not a part
of the theory, but they are used when the theory is applied, just as they are used

+ F. P. Ramsey, 1931, Chapters 7 and 8.

1 See Koopman, 1940.

§ Essays in Biography (London, 1933), 300.

|| See, for example, Bartlett, 1940, or Reichenbach, 1932.
10
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when any other scientific theory is applied. A probability in the theory is
regarded as something objective, like the distance between two points.

Bartlett’s view is that it is valuable to have two separate theories, one for
degrees of belief and the other for objective probabilities.} My view is that
if a single theory covers both the objective and subjective aspects so much the
better. Thus, while admitting the importance of the practical distinction
between objective probabilities and reasonable degrees of belief, I consider that
each objective probability is at the same time the only reasonable degree of
belief. (This is discussed in more detail in 4.9.) 'The advantage of two separate
theories is to emphasise the distinction between the objective and subjective
aspects. But I find it philosophically more satisfying and more economical to
have a single theory. 1 consider that in the last resort one must define one’s
concepts in terms of one’s subjective experiences. (This does not necessitate
philosophical solipsism.) The opposite view is that degrees of belief can be
interpreted only by the methods of experimental psychology.

The orthodox statistical theories do not deal with the problem of scientific
induction, but rather they need to be justified by induction. This problem of
induction is a problem of what to believe, and for it a theory of degrees of belief
is appropriate.

An important property of the theories (i) to (ix) is that they cannot be applied
without the use of judgment, so that really none of them is objective in any
absolute sense. An advantage of Koopman’s theoi'y is that it is made quite
clear what sort of judgments are to be used. The theory in the present book
is similar to Koopman’s, but the axioms and the development of the abstract
theory are simpler. In order to achieve this simplicity some sacrifice has to
be made. The sacrifice is that it is assumed in the axioms that probabilities
correspond to numbers; but this assumption is not completely used in the
applications. The theory adopted has the classification : axiomatic, not neces-
sarily objective (though objectivity is not ruled out), non-statistical on the whole,
not entirely numerical.

For the benefit of those who are familiar with Jeffreys’ theory, a few remarks
showing the relation between his theory and ours will not be out of place.
Our theory resembles that of Jeffreys in the use of the symbol P(E | H). This
symbol is, however, given a double interpretation, only one of which is numerical.
(See 4.1.) The following are the main differences between the two theories :—

(@) Our emphasis is on the comparisons between beliefs, thereby avoiding
the necessity of making judgments of exactly equal intensities of belief.

(b) The beliefs in any problem are regarded as depending on the individual
concerned. .

+ This dualistic view is shared by Nagel, Carnap and Koopman. See, for example,
the excellent reviews by Koopman in Math. Rev., 7 (1946), 186-93.

11



14 PROBABILITY AND WEIGHING OF EVIDENCE

(¢) There is a splitting into axioms, rules and suggestions, as explained in
Chapter 4. This shows clearly what parts of the theory depend on pure
mathematics and logic only and what parts can be varied according to taste.
Given the primitive notion of a comparison between degrees of belief, the rules
of application are absolutely precise. This is not true of the “ suggestions ”,
but these are not an essential part of the theory.

(dY There is no dependence on the principle of cogent reason. Any
apparent application of this principle is in reality a subjective judgment which
is made without direct reference to any central authority. Similarly there
will be subjective judgments that may appear to be concessions to the frequency
definition, but which are really a result of a familiarity with a theorem corre-
sponding to this definition. Some such mixture of the two classical approaches
is the way in which most people have used probability for the last 300 years.
It is therefore claimed that our theory is more closely related to practice than
are most theories of probability.

12
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‘CHAPTER 2
THE ORIGIl\g OF THE AXIOMS

2.1 The purpose of this chapter;js to show that the axioms stated in Chapter 3
are not chosen in a haphazard manher. The arguments will not be very rigorous.
The plan is to take theory (iii) of Section 1.4, the * definition ” by equally
probable cases, and to apply it to a class of problems in which it may well be
judged that various events are equally probable. Such problems are provided
by some idealised games of chance. Our method is thus closely related to the
historical development.

It is equally possible to provide a rough justification by using theories
(i) or (v). The method chosen has the advantage of avoiding infinite sequences
of trials and advanced mathematics. The main result of the chapter will be
to suggest two axioms, known as the laws of addition and multiplication.
With theory (i) both laws would be simple theorems; by contrast, when
probabilities are interpreted as degrees of belief, attempts have been made to
show that these laws are mere conventions. (See, for example, Schrédinger,t
1947. But see also the footnote in 1.4 (iv) concerning Jeffreys’ ‘‘ convention
27)

Further remarks about the a priori justification of the axioms will be found
in 4.1A. ) .

Before carrying out the main plan of the chapter we shall consider how far
it is possible to go by relying only on what is intuitively ““ obvious ”.

'2.2 Two ‘ obvious ”’ axioms

Let E,, H,, E, etc. be various propositions, and for short write p, for
Py (E, | Hy), p, for Pg(E, | H,), etc. Here p, and p, do not represent numbers,
but are simply symbols for degrees of belief. Now it may happen that one of
the comparisons belonging to B is that p; is greater than p,, i.e. that the belief
in E},*when H, is assumed, is more intense than the belief in £, when H, is
assumed. In this case we may say for short that B includes “p, > p,”.
Equally 8 may include “ p, > p; ’. On the other hand, p, and p, may not be
comparable in 3.

There are now two axioms that are virtually forced upon us. The first is
that “ p;, > p, ” and ““ p, > p, ” are not both parts of B, or if they are then B

T Schrédinger’s argument depends largely on the very natural assumpﬁon that the
probability of the disjunction of a number of mutually exclusive propositions is a function
of the separate probabilities. (See also Appendix III.)

: 13



23 PROBABILITY AND WEIGHING OF EVIDENCE

must be regarded as unreasonable.f The second is the * transitive *’ property
of the relation “ > "' : if p; > p, and p, > p; are both parts of B, then p; > p,
may be added to B (if it is not already included).f Like the first axiom this
may lead to a contradiction.

These two axioms are notable in virtue of their obviousness. It does not
seem to be possible to develop a useful axiomatic theory of probability without
using some axioms that are less obvious than these two. In this respect
probability differs from classical formal logic. ’

In the next section we shall talk about probabilities that are judged to be
‘““equal ” (i.e. equally intense). This is not meant to imply that such judg-
ments are necessarily possible in practice (except between logical certainties
and impossibilities). It is merely part of the plan mentioned at the beginning
of the chapter.

For the rest of this chapter the word * probability ” will be used in the
sense of the  equally-probable-cases ” definition.

2.3 Definition of numerical probability by judgment of equally probable
alternatives

Two propositions 4 and A’ are said to be * mutually exclusive given H ”
or “ incompatible given H " if A. A’ is necessarily false on the assumption that
H is true. A number of propositions are said to be * exhaustive given H”
if one of them must be true when H is true.

Let 4,, Ay, . . ., A, be n propositions that are mutually exclusive and
exhaustive given H. Suppose further that they are judged to be equally
probable (given H). This judgment is of course part of the body of beliefs,
B. Let

E=A4,vA,v ... vA4, 0O<m<n).
Then we define Pg(E | H) or P(E | H) as m/n. In words, “ the probability
of E given H is the proportion of equally probable alternatives in which E is
true given H . Essentially this is a restatement of the definition of 1.4 (iii).

The possibilities m = 0 and m = » correspond to propositions E which are
respectively impossible or certain given H. In fact, if £ is any proposition
which is impossible or certain given H, we can express E in the above form,
and thus show that its probability is 0 or 1. For we may take n = 1, 4, = H,
m=0, or m=n=1, 4, = H = E respectively. ’

There are two immediate criticisms of the definition. The first is that

1 This is essentially a repetition of a point made in Section 1.3.

T If B is enlarged in this way so as to become “ transitive ”’, then it may be regarded
as a ‘‘ partially ordered system ”. See G. Birkhoff, Lattice theory (Amer. Math. Soc.,
1940), chapter 1. Partial ordering is an essential part of Keynes’s theory. Jeffreys,

in the preface to the second edition of Probability (1948), erroneously asserts that Keynes
withdrew the suggestion of partial ordering in his Essays in biography. (See 1.4, viii.)

14



. ORIGIN OF THE AXIOMS 2.4

there may be no way in general of expressing any given proposition E in the
required form. The second is that there may be more than one way, and the
corresponding values of P(E | H) may not be equal. The answer to the first
criticism is that we are at present restricting our attention to those cases in
which the alternatives 4,, 4,, ., A, can be found. As regards the second
criticism, we propose to assume, merely as a plausible hypothesis, that Pg(E | H)
cannot have two different values, provided that 3 is sound. This is of course
not an additional assumption if the A’s are unique.

It is impossible to prove that the definition is in any sense the right one.
It is a simple and natural method of correlating numbers with degrees of belief
in a class of ideal cases, and it is very nearly obvious that it has the effect of
assigning larger numbers to more intense rational degrees of belief. Any
monotonic function of m/n could be chosen instead and would have the same
property, but the effect would be to complicate the theory unnecessarily. This
possibility of choosing an arbitrary monotonic function is related to the question
of whether the definition is only a convention.

2.4 Example

In order to be convinced that the definition just given has any significance
it is advisable to consider an example.
Imagine an ordinary pack of playing cards that has been well shuffled
and placed face-downwards on the table. There is no special reason for
" supposing that, say, the three of hearts is more likely to be the top card than
the seven of spades. If there is such a reason for some real pack of cards we
could imagine the pack to be replaced by a “ perfect ” pack in which there is
no such reason. It is difficult to believe that this would force us into an unten-
able position. Suppose then that we are dealing with such a perfect pack.
The object here is not to obtain approximations for the probabilities in the -
case of a real pack, but merely to show that there are ideal circumstances in which
the definition of 2.3 can be applied.t
For simplicity suppose that the cards are numbered from 1 to 52. Let
A, be the proposition .that the top card is number ». Let H be a physical
description of how the experiment is carried out. The description must not
be too complete, since the very notion of probability depends on an assumption
of partial ignorance. (We are ignoring here the insoluble problem of “ deter-
minism ” versus ““ indeterminism ".) As it happens it is usually impracticable
to provide a description that is so complete as to make a precise prediction

+ If the present chapter had been based on the frequency definition it would also
have been necessary to consider idealised problems, since this definition involves infinite
sequences of experiments. Which idealisation is regarded as more natural is a matter
of taste.

15



2.5 PROBABILITY AND WEIGHING OF EVIDENCE

possible. H may be thought of roughly as “ the pack is very well shuffled ”.
Let B consist of the assertion that Ay, 4,, . . ., A, areall equally probable given H.
It can now be stated, for example, that the probability that the top card is’
black (given H) is }.
The reader would have no difficulty in inventing other examples, using
perfect coins, dice or roulette wheels, in which the natural numbers of alterna-
tives are 2, 6 and 37 respectively.

2.5 The law of addition of probabilities

Suppose that with the assumptions of Section 2.3,
E=A4A,vA,v ... vA, (0<m<n),
F=A4n11VApt2v « - .V Apyr (m+1r <n).
Clearly E and F are mutually exclusive and P(E | H) = m/n, P(F | H) = r/n.
Moreover ‘
EvF=A,vA,v .. . VAuV A1V . o . VApyy,
so that P(EvF|H)= (m +r)/n, ie.
PEvVF|H)=PE|H)+ P(F|H) . . M
This is called the law of addition of probabilities. If is essential that E and F
should be mutually exclusive (given H).
There is no difficulty in extending equation (1) to the disjunction of more
than two mutually exclusive propositions.

Exercise. 'When is it legitimate to put E = F in equation (1)?

Example. Consider the well-shuffled pack of cards already mentioned.
What is the probability that the top card will be either a diamond or the ace of
spades ? These two events are mutually exclusive and have probabilities
% and 3% respectively. Hence the required probability is the sum of these
numbers, i.e. 3%. This may be at once verified from the original definition.
On the other hand, the probability that the top card will be a spade or an ace
is not 4 &, for this time the events are not mutually exclusive.

2.6 The law of multiplication of probabilities .

Let E and F be any two propositions that are expressible as a disjunction of
the A’s, where the A’s and H are defined as before. Without loss of generality
it may be supposed that
E=4,vA,v ... vA, (0 <m <n),

F=A4,vAyv ... vAvAu1VvAnrev . . YAy, (r <mm-s <n).
(E and F can be put in this form by renumbering the A’s if necessary.) Then
EF=A4,vA4,v...VvA,.

Therefore P(E.F|H)=r/n. Moreover P(E|H)=m/n and in order to
reach our objective, namely equations (2) below, it remains to prove that

16



ORIGIN OF THE AXIOMS 28

P(F|E.H)=r7r/m. Now A,, A, ... A are equally probable given H,
and if in addition we know that E is true, i.e. that one of 4, A,, . . ., Ay is
true, then it is very natural to assume that 4,, 4,, . . ., A, remain equally
probable since the additional information is symmetrical with regard to these
propositions. In fact we shall suppose that part of 8 is that 4,, 4,, . . ., An
are equally probable given E.H. Now A4;, 4,, . . ., Ay are mutually exclusive
and exhaustive given _E.H” Therefore Pa(F|E.H)=r/m, as asserted.
Thus

PE.F|H)=PE|H).P(F|E.H) . . .2
This is the law of multiplication of probabilities.t If H is taken for granted
(a practice that is apt to be misleading) we could write I for short P(E.F)
= P(E).P(F | E), or, in words, “the probability of the conjunction of two
propositions is the product of the probability of the first with that of the second
given the first”’. It may happen that E and F are * independent ”’ § given H.
In this particular case the equation (2) takes the simpler form

PE.F|Hy=PE|H).PF|H) . . . (24)

Exercise. When is it legitimate to put E = F in this formula ?

2.7 Example

Two  perfect” dice are thrown. What is the probability of obtaining
two sixes ?

Let us suppose that a beginner has a body of beliefs which includes the
following judgments.

(a) The six possible results of the first throw are equally probable.

(b) The 36 possible results of the pair of throws are equally probable.

(c) The probability of a 6 on the second throw is increased (or decreased)
by a knowledge that the first throw resulted in a 6.

The judgment (b} gives 3¢ as the answer to the problem. On the other hand
the judgments (@) and (c), together with the law of multiplication of probabilities,
give a result that is either greater or less than 5. Hence the body of beliefs is
inconsistent with a formal use of the law of multiplication.

2.8 Continuous probabilities

In the definition of 2.3 a probability was necessarily measured by a rational
number. Such probabilities may be sufficient for all applications to the real
world, but they are not sufficient for some types of idealised problems. As a
simple example suppose that a decimal is chosen between 0 and 1 in such a

+ The above proofs of the addition and multiplication laws may easily be generalised
to propositions E and F which do not imply H.

T But see the second paragraph of 3.2.

§i.e. if one is assumed the probability of the other is unaffected.
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2.8 PROBABILITY AND WEIGHING OF EVIDENCE

way that each of its digits is judged to have an equal and independent t prob-
ability of being one of the numbers 0, 1, 2, . . ., 9. An infinite number of
choices must be imagined. Within the framework of any standard theory of
probability, this is equivalent to the selection of a*point P on 2 line AB of unit
length in such a way that for each fixed length the point is equally likely to lie
in any interval of that length. (In these circumstances P is said to * have a
uniform distribution of probability over AB ”.) It is then easily proved that
if CD is a sub-interval of positive rational length then the probability that P
-will lie in CD is equal to the length of CD. It is natural to suppose that this
applies even if CD is irrational.] This shows that it may be convenient to
allow irrational numbers to represent probabilities. Another peculiarity of this
problem is that the probability of P being exactly at the given point D is zero.:
(This is the degenerate case in which C and D coincide.) But it is not logically
impossible that this should happen. We therefore introduce a new definition.
If P(E|H)=0 we say that E is almost impossible given H. TImpossibility
implies almost impossibility but not conversely. A#hnost certain can be defined
in a similar way.§

Ideas of this sort occur frequently in problems in which probability depends
on position in space or time. In practice we can measure space and time only
to a finite number of places of decimals, but it is often simpler to imagine that
the measurements are capable of being equal to any real number of units. If we
were satisfied to deal only with entirely practical problems it would hardly
be necessary to distinguish between ‘‘ impossible ”’ and “‘ almost impossible .

There are other types of problems in which these ideas are cogpvenient,
namely when infinite sequences of trials are imagined. Some important
examples will occur in the sequel.

+ i.e. not depending on a knowledge of any selection of the other digits.

I This can be formally proved by assuming axiom 1 and theorem 13 of Chapter 3.

§ These definitions are suggested by standard terminology in the theory of ‘ measure ”,
and they have been used by previous writers.
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CHAPTER 3

THE ABSTRACT THEORY
e

3.1 The axioms

The notation of 1.1 will be used, and it will be taken that the propositions
E, H etc. never involve probabilities or beliefs. A symbol H* is introduced
which is supposed to represent all the usual basic assumptions of logic and pure
mathematics. (It is conceivable that H* is not expressible in a finite number
of words, but it will be regarded as a proposition.) Any proposition that is
implied by H* is called “logically true” or ‘‘ certain’ and its negation is
called “ logically false ”” or ““ impossible ”. A logically true proposition is also
known as an.* analytic proposition . There is a difference of opirion as to
the meaning of a * proposition ”, as to what should be included in H* and as
to the meaning of implication by H*. No attempt will be made here to decide
these questions : a different theory of probability will correspond to each possible
answer. For any two propositions E and F, “E implies F'” means that
E v F is a logically true proposition.

Symbols of the form “ Py (E | H)” = “ P(E | H) ” are introduced. They
are read ““ the probability of E given H (and assuming 3) > and are otherwise
undefined.t .Within the abstract theory the word ‘ probability ” should not
be interpreted in terms of beliefs.

The axioms are numbered Al to A6.

Al P(E|H) is a non-negative real number.

A2 If P(E.F|H)=0, then P(EvF|H)= P(E[H)—|—P(F|H).

A3 P(E.F|H)=P(E|H).P(F|E.H).

A4 If E and F are logically equivalent (i.e. if they 1mply one another) then
. P(E|H)= P(F|H) and P(H|E)= P(H | F) for any H.

A5 P(H*| H*) 0.

A6 P(E*| H*) =0 for some proposition E¥,

Remarks

-, (i) When the definition by equally probable cases can be applied in order
to define (as a rational number) all the probabilities that occur, then, as in
Chapter 2, we can deduce axioms A2 and A3 together with 0 < P(E | H) < 1,
P(H* | H¥) = 1 and P(fI* | H*) = 0. 'The last three deductions clearly imply
Al, A5 and A6, which are therefore preferable on grounds of economy, Finally

t Some variations of language will occur. For example, the words *‘ given ”” and
“ assuming >’ may be interchanged.
19
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A4 1s suggested directly by the interpretation of probability as a reasonable
degree of belief. .

The axioms are formally suggested but are not proved by Chapters 1 and 2.
There are perhaps less restrictions than before on the propositions E and H,
and the question of self-consistency is therefore more pressing now. This
question will be discussed in 3.4 and 4.1A.

(ii) A4 enables us to write, for example, P(E| H.H*)= P(E| H). It
would be wrong to regard A4 as entirely obvious when interpreted in terms
of reasonable beliefs. A possible modification of this axiom will be considered
in 4.13.

(iii) The ‘“ obvious ” axioms of 2.2 are automatically satisfied in a sense
to be described. .

It will be seen in the next chapter that full use is never made of the assump-
tion that the probabilities of the abstract theory are numbers. But the
assumption has the great merit of simplicity. If one numerical probability is
greater than another one, say P(E | H) > P(E’ | H'), then in the applications this
is interpreted in the natural way in terms of reasonable beliefs. It is in this
sense that the “ obvious” axioms are satisfied. But this interpretation in
terms of beliefs does not belong to the abstract theory and further discussion
of it is postponed until the next chapter.

(iv) Chapter 2 suggests that logical certainty and impossibility should be
represented by probabilities of 1 and 0 respectively. Accordingly it might
have been assumed that

(a) if H implies E then P(E| H) =1,

(b) if H implies E then P(E|H)= 0.
But these two axioms would lead to trouble. For they give P(E |E.E) =0
and also P(E | E.E) = 1.t It may be possible to avoid this contradiction by
insisting that in the expression P(E | H) the proposition H should never be self-
contradictory. A more formal method of avoiding the difficulty is provided
by the adoption of A5 and A6.

(v} In all this work the symbol B is taken for granted. It may be thought of
as a set of inequalities and equalities between (numerical) probabilities, but its
exact form is unimportant as far as this chapter is concerned.

(vi) The development of the abstract theory must follow the rules of ordinary
logic and pure mathematics. Hence we could, at this stage, hardly allow the
propositions E, F, H, etc. to involve probabilities. This is the reason for the
convention at the beginning of the chapter. To what extent this restriction
may be relaxed is an interesting question. If it were entirely relaxed it would
enable us to write P(E | H.8) instead of Pg(E | H), and this would at once
suggest an extension of the axioms. The resulting theory would have some
" + The proposition E.E implies both E and E
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convenience, but it would also be confusing and might even be self-contradic-
tory. The question is mentioned again in 4.9.

(vii) The practical significance of the axioms will not appear until Chapter 4.
The whole of the abstract theory can be deduced from the axioms without
relying at all on any interpretation of probability.

(viii) The\choice of axioms is related to the historical background of the
subject, but nolattempt will be made to trace this aspect of the matter. Other
sets of axioms'can be used instead.+ One such set will be given in 3.4.

(ix) The axioms are equally strongly suggested by a point-set approach.
(Cf. 1.4 (v).) For example, suppose that E is the proposition asserting that the
result of an experiment consists of a set of z real numbers, which, regarded as a
point in #-dimensional space, belongs to a certain measurable set of points ®.
Define P(E) as the measure of the set & divided by the measure of the whole
space, assuming the denominator to be finite. Define P(E | H)as P(E.H)/P(H)
if P(H) = 0. Let the set corresponding to H* be the whole space. All the
axioms can be proved with these definitions and restrictions. This lends
support to the self-consistency of the axioms. In some idealised problems it
may be convenient to allow the whole space to have infinite measure and to
define P(E) simply as the measure of &. This leads to a slightly different
abstract theory in which certainty is represénted by infinity instead of by
unity. (Cf. Jeffreys (1939), 21 and 114.)

3.2 Definitions

The definitions, like the axioms, are suggested in part by Chapter 2.

The symbol I P(E) may be written as an abbreviation for P(E | H*) and
may be read “the probability of E”. If P(E)=0, E is almost impossible
and if P(E) =1, E is almost certain. »

If P(E.F|H)=0, E and F are almost mutually exclusive given H. If
P(E.F)= 0, E and F are almost mutually exclusive. If every pair of E,, E,,
E,, . . . are almost mutually exclusive (given H), then E,, E,, E,, . . . are
almost mutually exclusive (given H).

If P(F|E.H)= P(F|H), then F is independent§ of E given H. If
P(F | E) = P(F), F is independent of E. 1If each of a finite set of propositions
E,, E,, E; . . . is independent of the conjunction of any number of the
rest (given H) then Ei, E,, E,, . . . are independent (given H).

The object of these definitions is to make the statements of the theorems

+ See, for example, C. D. Broad, ‘“ Hr. von Wright on the logic of induction (II) ”,
Mind, 53, 1944, 97-119.

1 This should not be confused with the ¢ misleading >’ notation of 2.6, 5.1 and
elsewhere.

§ It might have been better to call this condition ‘‘ almost independence ”’ to dis-
tinguish it from other meanings of the word ‘ independence ”’. But the above definition
is unlikely to cause confusion.
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more concrete and therefore easier to grasp and to remember. But the phrase
“ E is almost impossible (given H)” will usually be avoided because its sys-
tematic use would be rather monotonous. The equation “ P(E|H)=0"
will be written instead, and it is left to the reader-to interpret this in accordance
with the definition of almost-impossibility if he wishes to do so. Similarly the
phrase “ almost certain ”” will often be avoided.

3.3 Theorems

The first eight theorems depend only on axioms Al to A4.
T1 If F is independent of E given H, then
P(E.F|Hy= P(E | H).P(F| H). 0]
This is an important special case of A3.
Tla If either P(E | H) = 0 or P(¥ | H) = 0 then the equation (1) holds
without the assumption of independence. (Proof by Al and A3.)

T2 1If E,, E,, . . ., E, are almost mutually exclusive given H, then
P(E,VE,v ...VvE,|H)=PE,|H)+ PE,|H)+ ...+ PE,| H),
and the two propositions E; vE,v . . . v E,_; and E, are almost mutually

exclusive.

" The two parts can be proved simultaneously by induction. The theorem
is true when n =2, by A2. Suppose it is true when # = m. Then it is
sufficient to show that E,vE,v ... VvE, and E,.; are almost mutually
exclusive given H. Now if 7 and j are less than m } 1,

P{(E:. En11).(Ey. Eyys) | H} = P(E;.Ey. Ep i | H), by Ad,

= P(E;.E,, 1| H).P(E; | E;.E,,.1.H), by A3,
—0,
since E; and £, are almost mutually exclusive given H. 'Therefore
PUE,.Ep 1) V(Ey.Epr1)V o o o V(Ep . Epnyy) | H}
=PE,.Eyi1|H)+ PELE, | H)+ ... + P(En.Epny1 | H),
by the inductive hypothesis, and each term of this sum is 0. Thus by A4,
P{E,VE,v ... VE.).Ey 1 |H} =0
as required.
It is impossible to prove a result corresponding to T2, for an infinite number
of propositions. If such a result is required it must be assumed as an axiom.
If E is the disjunction of an enumerable set of almost mutually exclusive
propositions E,, E,, Ej, . . ., it is easy to prove, using T13, that
P(E| H) > P(E, | H) + P(E, | H) + . . ., if P(H)+ 0.
The additional axiom would replace the inequality by an equality. Such a
new axiom is not essential but it has applications in some types of idealised
problems. As a matter of fact it is not required if it is assumed that
PEVE, 1 VE,ov ... |H)—0 as n—> 0.
This assumption would be a natural one in any application that is likely to arise.
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The additional axiom may be called the axiom of complete additivity.t With
its help it can be proved for example that for any infinite sequence of proposi-
tions Fy, Fy, F5, . . .,

PEvVF,vF;v .. )=lmPF vFE,v...vF),
and " '
P(F,.F,.F;. ... y=HimP(F.F,. ... Fp).
n

The axiom of complete additivity corresponds to a similar property of point-sets
that are measurable in the Lebesgue sense. Hence it could be introduced
without serious risk of inconsistency; but in the present book it will never be
used except as a mathematical convenience, and with the understanding that
its use could be avoided.

T3 If Fisindependent of E given H, then E is independent of F given H,
assuming that P(F | H) = 0.

Proor. P(E.F|H)= P(E|H).P(F|H) by T1. But

P(E.F|H)= P(F|H).P(E|F.H) by A3.
Therefore by equating these two values of P(E.F | H) we obtain
P(E|F.H)y=P(E|H) if P(F|H)=+0.

This theorem may be stated : ““ If F is independent of E and F is not almost
impossible, then E and F are independent (given H in each case).” (See the
last definition of 3.2.)

T4 For any finite set of propositions E;, E,, E;, . . .

P(E,.E,.E;. ... |H)=P(E,|H).P(E,| E,.H).P(E, | E, .E,.H) . . .
(Proof by induction from A3.)

T5 If the finite set of propositions E,, E,, E,, . . . are independent given
H, then

P(E,.E,.E; ... |H) = PE,|H).P(E,|H).P(E, |H) . ..

This is a special case of T4 or may be proved by induction from T1.

Example. Suppose that E and F are independent, F and G are independent,
and G and E areindependent (given H in each case). Then it does not follow that

P(E.F.G|H)= PE | H).P(F|H).P(G| H).

To see this infuitively let the propositions E, F, G be defined as follows :—

E: Smith has green eyes.

F: The next man you meet will be Smith.

G : The next man you meet will have green eyes.
No attempt will be made to specify H and 3.

In this example £.F.G = F.G so that

P(E.F.G|H)= P(F.G|H)
= P(F | H).P(G | H).
This is not equal to P(E | H).P(F | H).P(G | H) in general.
t Cf. Fréchet, 1937, 22; Cramér, 1937, 9; Kolmogoroff, 1933, 13.
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T5a The formula of TS5 applies if any of P(E,|H), P(E,| H), . . .
vanishes, without the assumption of independence. (Cf. T1a.)

T6 Bayes’ theorem. If E is a variable proposition and ¥ and H are fixed,

then

P(E|F.H) . .
PE[H) is proportional to P(F | E.H),

assuming that P(E | H) == 0 and that P(F| H) = 0.
Proor. P(E|H).P(F|E.H)= P(E.F|H)
= P(F|H).P(E|F.H).
Therefore ‘
PE|F.H) P(F|E.H)
P(E|H)  PF|H)’
assuming that P(E | H) <= 0, P(F | H) == 0. The result follows at once.
There has been a great deal of dispute about the validity of this theorem
and about its applicability. If we think of the various E’s as being a set of
possible theories (or hypotheses) and F as a proposition describing the results
of some experiments, then we may regard P(E | H) as the initial or prior proba-
bility of the theory E and P(E | F.H) as its final or posterior probability.} The
theorem may then be stated : “ The ratio of the final to the initial probability
of a theory 1 is proportional to the probability (given F and H) of theobserved
results of experiments.”” More will be said about Bayes’ theorem in other
chapters. A
Before going on to theorem 7 the reader should consider what happens to
theorems 1 to 6 if H is replaced by H*. He will find that they all take a simpler
form in view of the definition of P(E).
T7 1If E implies F and P(E) & 0, then P(F | E) = 1.
For P(F|E).P(E)= P(E.F)= P(E) by A4.
COROLLARIES
(i) P(H|H)=1if P(H) 0.
(ii) If H* implies H then P(H) = 1, i.e. if H is certain then it is almost
certain.
(iii) P(H*)= 1. (This sharpens AS.)
T8 If P(E)= 0 then P(E|H) =0 assuming that P(H) < 0.
For P(E|H).P(H)= P(E.H)= P(E).P(H | E)=0, etc.
T9 If H implies £ then P(E|H) =0 if P(H)=='0. In particular if E
is “‘ impossible ”’ then it is almost impossible. (The converse could hardly
be true. This is intuitively clear in virtue of Section 2.8.) '

1 See Jeffreys, 1939, 29, and von Mises, 1942, for discussions of the terminology.
I In ordinary language a distinction is drawn between ‘‘ hypotheses >’ and *‘ theories ” ;
hypotheses are improbable theories. This distinction is inconvenient for us and will
be dropped. (See “ Theory ” in the index.)
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Proor. E.H is a logically false proposition, and so by the definition of
“ implication " it follows that E.H implies any proposition. In particular
E.H implies E*. (See A6.) Now let us suppose that T9 is false, i.e. for some
Eand H, P(E|H)=+0. Then P(E.H)= P(E|H).P(H)= 0. Therefore by
T7, P(E* |E.H)=1. But by A6 and T8, P(E* | E.H) = 0; and this is a °
contradiction. So P(E|H)=0.

. COROLLARIES

(i) If P(H) 5 0 then P(E.E | H) = 0 (for E.E is logically impossible). In
particular P(E.E) = 0.

(ii) Let the phrase “ E and F are mutually exclusive given H ”’ mean (as
in 2.3) “ H implies the negation of E.F”. Then if E and F are mutually
exclusive given H, it follows that E and F are almost mutually exclusive given
H, assuming that P(H) = 0.

(iif) Corollary (ii) may be extended in the obvious way to a finite set of
propositions E,, E,, E;, . . . Thus the word ““almost” may be omitted in
the statement of T2, if P(H) == 0.

T10 1If P(H)+ 0 then P(EvE|H)=1. In particular P(EvE) = 1.

For H implies E v E, whatever H may be, and the theorem follows from T7.

T11 If P(H)= 0 then P(E | H)+ P(E|H)=1. In particular

P(E) + P(E) = 1.

Proor. By T10, P(EvE|H)=1 and by T9, cor. (i), E and E are
almost mutually exclusive given H, so the theorem follows by the addition
law A2.

COROLLARIES

() If P(E|H)=0 then P(E|H)=1 and vice versa, assuming. that
P(H) =+ 0. .

(ii) If F is independent of E given H and if P(E.H) = 0, then F is inde-
pendent of E given H. (The condition P(E.H) = 0 implies P(H) == 0, by A3.)

T12 If P(H)= 0, then 0 < P(E|H) < 1.

The first half of this inequality is simply Al. To prove the second half observe
that by T11, '

PE|H)=1—PE|H) <1,
by Al again. (The assumption P(E | H) > 0 has not previously been used.)

T13 Suppose that E implies F. Then P(F|H) > P(E | H), assuming
that P(H)<0.

Proor. If P(E | H) = 0 there would be nothing to prove. On thé other
hand, if P(E | H) = 0 it may be shown, to begin with, that P(F | H) 4= 0. For
suppose P(F | H) = 0. Then

P(E|H)= P(E.F | H) by A4,
= P(F|H).P(E|F.H)
=0, by Al,
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and this is a contradiction. Thus P(F|H) = 0. Therefore
P(F.H)= P(H).P(F | H) by A3,
£ 0.
Therefore, by T12, P(E| F.H) < 1. But
P(E|H)= PE.F|H) by A4,
= P(F|H).P(E|F.H).
Therefore P(F | H) > P(E | H).

Definition. Any finite set of propositions E;, E,, E; ... such that
P(E,vE,vE;v ... |H)=1 is called almost exhaustive given H. 1f H
implies Ey v E, v E;v . . . then we say (as in 2.3) that E;, E,, E;, . . . are

exhaustive given H. In this case they are almost exhaustive given H if P(H) & 0,
in virtue of T7.

T14 1If the finite set of propositions E;, E,, E,, . . . are almost exhaustive
given H and almost mutually exclusive given H, then
P(E, | H) + P(Ey | H) + . . . = L.

This follows at once from T2.

T15 If E is equivalent to E; vE,v . . . v E, where E,, E,, . . ., E, are
n mutually exclusive, equally probable and exhaustive propositions given H,
where P(H) == 0, then P(E | H) = m/n. (This follows from T14 and T2.)

This theorem was to be expected in virtue of Section 2.3. Observe that it
does not prove the existence of probabilities -other than 0 and 1. Thus the
possibility is left open that every proposition can be proved or disproved by
‘“ pure thought”. (But see the second “ suggestion ” in 4.3.)

T16 If P(H) =0, then
P(EvVF|H)y+ PE.F|H)= PE|H)+ P(F|H).
Proor. Observe that Ev F is equivalent to E vF.E,t so
PEvF|H)+ P(E.F|H)y=PEvF.E|H)+ P(E.F | H) by A4,
=PE|H)+ P(F.E|H)+ P(E.F|H) by A2
and T9, )
— P(E|H)+ P(F.EvF.E|H) by A2, T9 and
A4,
= P(E{H)+ P(F| H) by A4.
The above theorem is a generalisation of the addition law A2.
COROLLARIES )
(i) If E and F are both almost certain given H, then E.F is almost certain
given H, if P(H)=£ 0. (This follows neatly from T12 and T16.)

1+ We are using the convention with regard to the omission of brackets which is
analogous -to that used in elementary algebra, a conjunction being the analogue of a
product.
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(if) If Ey, E,, . . ., E, are almost certain given H, then so is their con-
junction, if P(H) < 0. (By induction from cor. (i).)

(iii) If all the numbers P(E, | H) are either 0 or 1, then the formula of 'T'5
holds. (Follows from cor. (ii) and T5a.)

(V) P(E,VE,v...VE,|H)<P(E,|H)+ P(E,|H)+ ...+ PE,| H)
if P(H)==0. The case n = 2 is clear from T'16 and the general result follows
by induction.

(v) P(E\.E, . . . E,|H)>1— P(E,|H)— P(E, | H) . . . — P(E, | H),
if P(H) < 0.
For P(E,.E, . . . |H)=1— P(E;E, . | H) by T,
C 1 —PE,vE,v . .. |H) by A4,
>1—PE, |H)— P(E,|H)— . . . by cor. (iv).

T17 The probability of a disjunction. (Poincaré, 1912.) IfE, E, E,, ...
is any finite set of propositions and P(H) 3= 0 then

PE,vE,vE,v. . .|H)j
= ZP(E,]H) — D P(E.E|H)+ D PE.E.E|H)—. ..

r<s r<s<t

This theorem is a further generalisation of the addition law, and it can be
proved by mathematical induction from T16. It is often useful in difficult
calculations.

T18 The probability of a logical combination of propositions. Let E,, E,,
E; . . ., E, be n propositions that are independent given H where P(H) = 0,
and let P(E,|H)=p{r=1, 2, ..., n). Let E be any combination of
E, E, E; ... E, by means of conjunctions, disjunctions and negations.
Then P(E | H) can be expressed as a function of py, py, . . ., Pa.

Proor. Let F, (s=1, 2, ... 2" represent the various conjunctions
similar to Ey.E,. E;. . . . E,, in which each term may or may not be negated.
It is an elementary theorem t in symbolic logic that E can be expressed as a
disjunction of some or all of the propositions F;. Now the propositions F
are mutually exclusive. Therefore P(E | H) can be expressed as a sum of
terms of the type P(¥F; | H), by T'9, cor. (iii). Finally P(F, | H) can be expressed
as a product; for example, .

P(Ey.Ey.Ey. . . . Eg|Hy=p(1 —po)(1 —p3) - - - Pue
If any of the factors p;, 1 — py, 1 — ps, . . ., Py is zero, this is an immediate
consequence of T5a. Otherwise it follows from T5 and T11. It is necessary
to know that E,, E,, E,, . . ., E, are independent given H. This may be
proved by an inductive argument, using*T11 and its second corollary, together
with the assumption that none of the factors is zero.

t See for example Hilbert and Ackermann, 1946, 16.
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Example. To find P(E| H) where E = E, v (E,.E;). Here
E = {(E,.E,.E)) v (E,.E,.E5) v (E,.E, . E}) v (E,.E, . E})} v {(E,.E,. Ey) _

. v (E;.E,.Ey)}

= (E,.E,.E;)) v (E, .Ey.E) v (E,.E,.E;) v (E,.E,.E,) v (E,.E,.E,).
Therefore
P(E| H) = p1paps + 1ol — pg) + Po(1 — pa)ps + po(1.— po)(1 — 1)

+ (1 — p)peo(1 — pg)
= p1 + (1 — pi)pa(1 — py).
The same result could be obtained by observing that E is equivalent to
E,v(E,.E,.E,).

CoroLLARY. The same methods may be applied even if £}, E,, . . ., E,
are not independent, provided that their probabilities (on the given evidence)
are all 0 or 1.

To see this it is sufficient to use T16, cor. (iii), instead of T5.

This corollary may be used for the construction of ‘‘ truth tables ” in formal
logic. Thus, in the previous example the formula p; 4 (1 — py)pa(1 — ps),
with p,, P, P5 all equal to 0 or 1, can be used to construct the truth table for
the logical expression E, v (E,.E;).

T19 Let Ey, E,, . . ., E, be independent given H, where P(H) = 0, and
suppose that P(Ey | H) = P(E, | H)= P(E;|H)= ... =p. Let F repre-
sent the proposition that exactly 7 of the E’s are true, the other (n — 7) being
false. Then

pE| H) = (")t — py,
n!
r(n — )l

Proor. The proof is essentially the same as in the last theorem. F can

where (ﬁ) is the binomial coefficient

be expressed as the disjunction of (’:) propositions of the form

Ep, Ep,. . .. Emr.E'm'H.EmrM. o Bn,
where my, My, . . . m, is some permutation of the suffixes 1, 2, .. ., =
These (Z) propositions are all mumally exclusive and the probability of each
of them, given H, is p"(1 — p)»". The result follows from T9, cor. (iii).

T20 Let the infinite sequence of propositions (““ trials ) Ey, E,, . . . be
independent given H, where P(H) <= 0, and suppose that P(E, | H) = P(E, | H)

= ...=p. LetF,,,. be the proposition that
o2l <& |farn—2[<& ... |fu—p[<e
where f,, is the proportion of true propositions amongst E;, E,, . . ., E, (with
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similar definitions for f,, 1 etc.). Then for any given positive' numbers ¢ and
7, there exists # such that

Py me | H)>1—7
for all m > n.

This theorem 1 corresponds to the frequency definition. An outline of the
proof will be given. Observe that, for sufficiently large =,

P(Fp,m,s | H)
>P{|fa—pl<ni. Jfuri—pl <@+ D7 .| fa—pl<m~t[H}

>1— ZP(If,,—p| >y—1| H) by T16 cor. (v).

y=n

It can be shown, by using T19 together with some analysis,] that
P(f, — pl ==t | H) < Kv2,

where K depends only on p. The theorem now follows at once.

If the axiom of complete additivity is assumed this theorem can be shown
to be “ equivalent” to a theorem due essentially to Borel,§ that i is abmost
certain that the proportion of “ successes” in the first n * trigls ” tends to p as
n—> o0. Since an infinite number of trials cannot be completed in practice
there is much to be said for T20 in spite of the complicated wording. This
exemplifies a point made above in connexion with the axiom of complete
additivity, namely that it is mathematically convenient but is not essential for
the applications.

A similar result to T20 could of course be proved corresponding to von
Mises’ assumption concerning subsequences. (See 1.4, ii.)

Summary. A fairly detailed theory has been deduced from six purely
formal axioms. Within this abstract theory there are results corresponding
(verbally) to the two classical definitions of probability. The correctness of
the theorems does not depend on any philosophical interpretation of probability.

1 There is a very similar theorem due to Cantelli. See Uspensky, 1937, 101. A
result usually known as “ Bernoulli’s theorem ’’ is the special case of T20 with m = n.
1 Cf. M. Fréchet, 1937, 217-22. 'The analysis is not trivial. It depends on the

approximation of E ()p"(l — p)*~7 by means of an error function. (See 5.3.)

Chapter 5 of Fréchet s book contains an account of generalisations of T20 due to F. P,
Cantelli, A. Kolmogoroff, A. Khintchine and Paul Lévy. See also W. Feller, 1945.
§ See Fréchet, 1937, 216 and 228-31. Any two mathematical theorems are ‘‘ equiv-
alent.” in the sense of A4. Here we mean that the number of mathematical steps
required is not large.
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3.4 An alterhative set of axioms

Consider the axioms :

Bl P(E) is a non-negative number,

B2 P(EvF)= P(E)-} P(F)if P[E.F)=0,

B3 if E implies F then P(F) > P(E),

B4 P(H*) <=0,

B5 P(E*)=0 for some proposition E*,
together with the definition

P(E|H)= P(E.H)/P(H) if P(H)+0.
These are all consequences of the previous abstract theory, and it is easy to see,
conversely, that they imply axioms Al to A6 if *“ almost impossible ”’ proposi-
tions are not allowed to occur to the right of the vertical stroke.

The self-consistency of the axioms Bl to B5 is seen at once by imagining
all propositions to be true or false and calling their probabilities 1 or 0 respec-
tively. This does not prove the self-consistency of the system of axioms
obtained by adding an axiom to the effect that there is at least one proposition
whose probability is not 0 or 1.

The new set of axioms is more economical than the old set. But Chapters 1
and 2 do not directly suggest the new axioms. The symbols P(F) etc. corre-
spond to those beliefs that are most liable to be regarded as meaningless,t
and the probabilities that are easier to interpret as reasonable beliefs are intro-
duced merely by way of a definition. It is for this reason that we preferred to
start from axioms Al to A6. Of course these axioms also involve numerical
values for symbols like P(E) where E is empirical. It may therefore be felt
that they achieve too much, for they attach a meaning to a probability that
may not correspond to a reasonable belief. But this does no harm; in fact it
is actually an advantage since the use of symbols like P(E) simplifies the calcula-
tions in some problems. (The reader should refer back to the modified defini-
tion of probability given in a footnote to 1.3. See also the remarks about
““ unobservables ”’ in 4.4.)

1 Cf. 1.2.
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CHAPTER 4
THE THEORY AND TECHNIQUE OF PROBABILITY

““ Itis no paradox to say that in our most theoretical moods
we may be nearest to our most practical applications.”
A. N. WHITEHEAD

THE abstract theory of the previous chapter is a branch of pure mathematics
in which it is unnecessary to attach any non-mathematical meaning to the word
“ probability ’.  Once an abstract theory has been developed there arises the
highly controversial question of how the theory is to be applied. This question
forms the subject-matter of the present chapter. It will be necessary to restore
the meaning of * probability ”’ that was given in 1.3.

It will be convenient to distinguish between ‘‘axioms”, ““rules” and
‘“ suggestions . 'The axioms are the assumptions of the abstract theory. The
“rules ” connect this abstract theory with actual or hypothetical judgments
concerning degrees of belief. These rules are listed in 4.1. 'The deductions
from the combined axioms and rules constitute the ‘‘ theory of probability .
Finally the ““ suggestions ” are natural modes of procedure for forming bodies
of beliefs. Some of them are given in 4.3. There is no compulsion to accept
them in order to be able to use the theory. The consequences of accepting the
axioms, rules and suggestionis may be called the * technique of probability .
This technique will not be completely defined since no complete list of sugges-
tions will be given.

The suggestions emerge from a familiarity with the theory and applications
of probability. For example, any general theovem of the abstract theory may
influence what you vegard as correct to assert as your own B. It is therefore
impracticable to list all possible suggestions.

A drawback of some existing theories is that they are not ‘ theories ” in
the above sense; i.e. the axioms, rules and suggestions are not distinguished.
This makes it difficult to separate any large part as belonging entirely to the
realm of logic and mathematics.

The trichotomy into axioms, rules and suggestions is perhaps the ideal form
for any scientific theory. '

4.1 The “rules”

(i) An expression of the form P(E| H) is given a double interpretation.
First it is regarded as a number subject to the axioms of the abstract theory,
and second as a reasonable belief in E when H is assumed, if this belief has

31



4.1 PROBABILITY AND WEIGHING OF EVIDENCE

any meaning. There is no necessity to insist that H should be known to be
true; in fact the applications would thereby be much restricted.

(i) Relations like P(E|H)>P(E'|H'), PE|H)<PE |H),
P(E|H)= P(E'| H') also have two interpretations. 'They may be regarded
as ordinary arithmetical relations, or else as assertions that one reasonable
belief is (for example) more intense than another, provided that you consider
that both sides of the comparison have a meaning. (Cf. 1.2.) The possibility
is not ruled out that the theory will throw up some meaningless comparisons.

(iti) A body B of beliefs consists of a set of inequalities and equalities
between probabilities. Some or all of these may be written down by a person’s
direct intuitive judgment, or they may simply be assumed. Some of the judg-
ments may be “ laws of nature ”. Generalisations of this definition of B will
be discussed in 4.12.

(iv) Deductions may be drawn by using the abstract theory together with
B. Those deductions that are of the form of inequalities or equalities between
probabilities may have an intuitive significance.

(v) If a contradiction is reached, B is said to be inconsistent or un-
reasonable.

(vi) Rule (iv) may give rise to intuitive relations that are not already included
in B. These may be added to B, thereby forming a larger body of beliefs which
may also be denoted by B.

(vii) Logically it would be better if we used two different symbols, say
P(E | H) and P'(E | H), for the two different meanings. Then rule (ii) could
be expressed by saying that the inequality

PE|H) > P(E | H)
implies and is implied by the comparison

P(E|H)> P'(E'|H")
and so on. (The second sign ““ > " means ““ is more intense than ) But
a gain in logical rigour is not always a gain in clarity. Hence only one notation
will be used instead of two. This will enable the arguments to be expressed
more briefly.

(viii) If B contains no judgments, none can be deduced. Thus the theory
cannot be applied without some intuitive interpretation of probability.t This
is again analogous to the applications of geometry or of any other abstract
science.

(ix) Notice that the theory can be applied-to any body of beliefs, but the
application is of practical importance only if the body of beliefs is accepted
by some individual.

1 This shows that our theory of probability is not an objective one in the sense of
Section 1.3 (i.e. “ constructibly objective ).
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4.1A The justification of the theory

The exposition of the foundations of the proposed ““ theory ” has now been
completed. It should be very carefully noticed that there is no claim that
reasonable beliefs can be measured in general—only that relations can be stated
between them. In fact, it seems to the writer that the theory involves about
as many relations as it is possible to state in a precise manner. No doubt
the theory can be supplemented by means of suggestions, but these are not
precise (and they belong to the “ technique ” rather than to the * theory ).

The question arises to what extent the theory can be justified a priori, that
is, before making practical use of it. To this end the following exceedingly
crude argument is proposed.

Suppose first that it is always possible to apply to P(E | H) the definition
by equally probable cases, at least as an arbitrarily good approximation,t and
assuming, that H is not impossible. It would be surprising if it were possible
to prove that this cannot be done. An inconsistency within the abstract
theory would amount to such a proof. Therefore the abstract theory is pre-
sumably consistent, even with the assumption that probabilities other than
0 or 1 occur. (Cf. 3.4.)

Now it is natural, T think, to assume that any reasonable] 8B would be
consistent with the possibility that the definition by equally probable cases was
applicable, even though 3 may not be dependent upon this definition. Then
such a B cannot lead to a contradiction when combined with the theory; in
other words B must be * reasonable ”’ in the technical sense. The fact that
no contradiction is obtained may not be regarded as sufficient justification for
accepting the theory. But suppose that when the theory is combined with a
reasonable B it leads to a “ comparison ”’ of the form P(E | H) > P(E' | H').
Then, since no contradiction can be obtained, we know that, in an enlarged §
B,PE|H)> PE|H)if P(E|H)and P(E' | H') can be compared. It seems
natural from this to assert simply P(E | H) > P(E’ | H’) when this comparison
means anything. - (In order to be convinced of this last step the reader should
consider an example.) This is equivalent to accepting the theory.

4.2 Inaccurate language

In most applications of probability the propositions E and H in the expres-
sion P(E| H) are in a form describing a physical situation. Accordingly we
shall often talk about the probability of an event when we mean the probability

>

+ We are here implicitly taking a result like T'13 for granted, and the ‘‘ approximation "
is supposed to be of the form that a probability lies in a narrow interval (with rational
end-points).

1 The word ‘‘ reasonable

§ See rule (vi) in 4.1.

» is used here in a non-technical sense for once.
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of a proposition asserting that the event will happen or has happened. Various
other rather inaccurate forms of language will be used without explanation.
This is necessary in order to save space and to avoid cumbersome phrases.

4.3 Some ‘‘suggestions »’

The classification of the fundamentals of probability into axioms, rules and
suggestions has already been discussed. The mathematical theory depends
only on the axioms. The rules are not purely mathematical, but they are
precisely stated in terms of the primitive notion of the comparison of pairs of
beliefs. They enable the mathematical theory to be applied to a given body
of beliefs. The ‘‘ suggestions ”’ are liable to affect your body of beliefs without
directly using the theory, and the present section contains some examples of
this. It does not seem to be possible to formulate the suggestions with the
same precision as the axioms and rules. Non-mathematical words such as
“ honesty ”’ will be used. '

The rejection of any of the suggestions would have no effect on what we
have called the “ theory of probability .

(1) Numerical probabilities. It will be recalled that the axioms were largely
derived by imagining perfect packs of cards. Having accepted the axioms
themselves it is natural to accept the notion of a perfect pack of cards. This
provides a significance for all numerical probabilities that are rational numbers
between 0 and 1 (and therefore also for the irrational numbers). If real packs
of cards are preferred they serve the same purpose, but the probabilities are
then best regarded as in some sense good approximations. (See 4.6.)

If it is taken for granted that B contains all the obvious judgments concern-
ing packs of cards, then it becomes intelligible to accept as a probability judg-
ment any numerical statement such as ¥ < P(E|H) < or P(E|H)=}.
Moreover, with practice it may be possible to make such judgments without
thinking of a concrete example of probabilities of + and §. There is an analogy
with the judgment of distances. A very young child can judge that one line
is longer than another one before he can associate a distance with a number of
inches. ’

It is not obvious whether it is ever reasonable to judge that a probability is
precisely equal to a definite number such as §. But it may often be judged that
such an equality is a sufficiently good approximation for some particular pur-
pose. In such cases we shall say that the probability is }, without troubling to
add that the judgment is intended only as an approximation.

(ii) Empirical propositions. A particular case of numerical probabilities is
given by probabilities of 0 and 1. Now if E is an empirical proposition rather
than a logical one, is it possible to have P(E | H)= 0 or 1 exactly? The
answer to this question is suggested by T8 and T11, cor. (i). These results
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show that if P(E ]'H ) = 0 or 1 then no amount of additional evidence can change
the probability of E unless the additional evidence is itself almost impossible,
given H.

The suggestion that emerges from this is that an empirical proposition cannot
be almost certain (in the technical sense of course) unless it is logically implied
by the evidence. If E is logically implied by H then it is certain, assuming
H—not merely almost certain. Almost certainty that is not actual certainty
seems to occur only in purely mathematical examples. These may, however,
be convenient models of practical problems.

The suggestion that the probabilities of empirical propositions cannot have
the values 0 or 1 is taken as an axiom by Jeffreys. This course has not been
followed here since the abstract theory can be built up satisfactorily from the
axioms given in Chapter 3.

(iii) The device of imaginary vesults. 'The idea behind the previous sug-
gestion can be extended into a very useful technique for helping you to arrive at
inequalities for probabilities in difficult cases.

Suppose, for example, that you wish to estimate the initial probability
that a man is capable of extra-sensory perception, in the form of telepathy.
You may imagine an experiment performed in which the man guesses 20 digits
(between 0 and 9) correctly. If you feel that this would cause the probability
that the man has telepathic powers to become greater than }, then the initial
probability must be assumed to be greater than 10-%. (This follows by a
simple application of Bayes’ theorem : cf. 6.1.) Similarly, if three consecu-
tive correct guesses would leave the probability below %, then the initial proba-
bility must be less than 10-3.

(iv) Honesty. A suggestion which.seems obvious enough is that in order
to avoid ultimate contradictions all probability judgments should be honestly
held, and should be atrived at unemotionally.

There is an apparent exception to this suggestion. You may sometimes
work with a simplified form of 8. When this is done there should be a judg-
ment that it will lead to sufficiently good results for the purpose in hand. This
is an example of the usual scientific method of “ idealising "’ a problem. There
is no real dishonesty in the procedure, provided that it is not claimed at the end
of the calculations that the results follow from the original unsimplified 3.

(v) The classical definitions. Theorems T15 and T20 make both the
classical definitions } of probability relevant as a guide to probability judgments.
(See also paragraph (d) on page 12 and Sections 4.10 and 4.11.)

(vi) The design of experiments. The interpretation of the results of an
experiment always depends on the judging of probabilities. It is sometimes

t i.e. the probability before some experiment is performed.

T Namely the frequency definition and the definition by equally probable cases.
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possible to design an experiment so that the intervals in which the probabilities
are judged to lie are narrow rather than wide. Other things being equal, such
a design is to be recommended. For applications of this suggestion the reader
is referred to R. A. Fisher’s The design of experiments (5th edn., 1949).

4.4 A non-numerical theory

The assumption that P(E | H) is a number 1 is largely for mathematical
convenience. There may be no way of deciding at all precisely what this
number is. This method of assuming the mathematical existence of ‘‘ unob-
servables ”’ is familiar in modern physics and in philosophy. (It was pointed
out in 1.4 (viii) that a theory can be constructed without the assumption
that probabilities can be represented by numbers.) The assumption of the
“ existence ”’ of an unobservable means that all observable and all meaningful
deductions must be accepted. (Cf. 3.4.)

4.5 Practical difficulties

Difficulties arise in all applications of mathematics (and elsewhere) because
practical problems are usually very complicated. In the theory of probability
it often happens that you are interested in P(E | K) where K represents every-
thing you know. In this case it is out of the question to list K as a collection of
precise statements, especially as your knowledge contains much that is half-
forgotten. Similarly it may be inconvenient to define E very premsely For
example, if you are interested in the probability of rain, you do not usually
specify how much water must fall before it is called rain. On the other hand,
all those judgments in 23 that are used in the course of any discussion can be
clearly stated in terms of the propositions E, K etc., even though these propo-
sitions are themselves not completely defined.

Usually most of K is judged to be more or less irrelevant. It may be possible
to state the relevant part, H, with a fair degree of precision. You may then
prefer to work with P(E | H) and to regard it as roughly ] the same as P(E | K).
(It is precisely this process which is used in law courts when ““ hearsay evidence ”
is ignored.) It is worth emphasising that such complications and approxima-
tions are inevitable in applied mathematics. Any discussion which does not
recognise them is simply incomplete. (See also 4.3 (iv).)

4.6 The principles of ‘‘ insufficient reason ’’ and ‘‘ cogent reason ”’

Let G be the proposition “ I have just spun a coin and allowed it to fall to
the ground.” Let H be the proposition that ““ heads ” is uppermost. Can the

+ The symbol *“ P ” here has the meaning of ‘‘ P’ rather than of *“ P’”’. See rule
(vii) of 4.1.

I This approximate equality between P(E | H) and P(E | K)is a probablhty judgment
belonging to B.
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reader state a relation of equality or inequality between his degrees of belief
P(H|G)and P(I | G)? In accordance with the preceding section no precise
description will be given of how the coin was spun, but it may be assumed that
there is no ““ catch”. 'The following replies (amongst others) may be given
by different readers.

(i) P(H| G)> P(H|G) by * extra-sensory perception ”.

(if) No opinion offered.

(iii) P(H | G) = P(H | G) beeause there is absolutely no reason to expect
one of H or H rather than the other. This is an application of the ‘ principle
of insufficient reason ”, also known as the “ principle of indifference .

(iv) P(H | G) = P(H | G) because the problem is physically symmetrical
with respect to heads or tails. This is an application of the ‘ principle of
cogent reason .}

(v) P(H | G) is approximately equal to P(H | G), the approximation being
very close because the problem is very nearly symmetrical. '

(vi) More precisely the difference between P(H | G) and P(A | G) is less
than 1/1000.

Observe that (v) and (vi) make direct use of the numerical concept of proba-
bility. But it is possible to modify them a little, so as to avoid this, by intro-
ducing a subsidiary event E which is very improbable on the evidence G.
E might be that I had lost the coin while spinning it and it could be judged that
(a) P(H.E|G) < P(H|G), and (b) P(E|G) is less than the probability of
selecting a specified card from a pack containing 1000 cards.

But in future such tedious interpretations will be avoided. Instead a bold
use will be made of numerical probabilities, both in the statement of 3 and
in the answers to problems. It is emphasised once for all that these numerical
probabilities can be given at least a partial interpretation in terms of inequalities
between pure degrees of belief. Life is too short to give these interpretations
on every occasion. One simple way of supplying the interpretations when
required is by using packs of cards as in 4.3.

As regards the alternative judgments (i) to (vi), the theory gives no way of
deciding between them as they stand. My own preference is for alternative
(vi). Number (iv) may be more appropriate for the idealised problem in which
the real coin is replaced by a perfect one. And even for the real problem it is
more convenient to assert number (iv) and mean number (v) or (vi). Such
a policy will sometimes be adopted in future.

1 Russell (Human knowledge, 397) formalises the principle thus:

P{$(a) [ (@)} = P{¢() | ¥},

where ¢ and ¢ are propositional functions not involving a or b. In the present theory
the principle hardly requires formalising because if the formalismn were judged to be
(approximately) applicable, the probabilities would be judged to be -(approximately) equal
without reference to the formalism.
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4.7 Simple examples

(i) n people are chosen “ at random . 'What is the probability that no pair
of them will have the same birthday ? Assume for simplicity that there are
365 days in the year.

First we must say what is meant by selecting # people “ at random . It
means that out of some population, say the population of England at a given
time, each person in the population has an equal probability of being selected.
One method of making such a selection is to construct a “ model ” of the popu-
lation consisting of cards, one card for each person in the population. A selec-
tion of # cards may be made by a process that is judged to be random.} The
people are then taken corresponding to the cards selected. The process of
taking # things at random out of a ** population ”* is called * taking a sample
or more precisely  taking a random sample”. In our example the sample is
one ‘‘ without replacement ” since it is specified that the n people are all
different.

Let us suppose that you know the number of people born on each day of the
year in the entire population, and let the proportions of those born on the 1st,
2nd, 3rd . . . days of the year be py, py, P3, - - -, Pgg5- By T15 these are the
probabilities of the first person selected being born on the 1st, 2nd, 3rd . . .
days of the year. If the population is large the probabilities for the second
person will be effectively the same even if you are told the first person’s birth-
day, and so on for all z people. Hence by 'T'5, the probability that the birthdays
of the 1st, 2nd, . . . persons are respectively on the »;th, 7,th, . . . days is
Dr,-Dr, - - - Py, Therefore the required probability is ‘the sum of all such
expressions with unequal suffixes.] This uses T1 or T9, cor. (iii), depending
on whether a definition is supplied for the birthday of a person born exactly at
midnight. (This type of hair-splitting will be ignored in future.)

Tt is not difficult to prove the (intuitively reasonable) fact that the probability
will be a maximum when p, =p,= ... =1/365. Thus the required

probability is less than or equal to #! (325>365—‘". With n = 23 the proba-

bility is less than §. (The special case p; = p, = . . . = Py is mentioned by
H. S. M. Coxeter, Mathematical recreations and essays, 11th edn., 1940, Lon-
don, p. 45. He attributes the result to H. Davenport, who, however, disclaims
originality.)

(ii) Imperfect dice 4 and B are thrown twice and give scores a, a’ and b, ¥,
but these scores are not disclosed. Suppose that the probabilities of the
various scores are p;, Ps, - - ., pg for die 4 and ¢y, ¢p, . . ., g¢ for die B,

+ Complete randomness may be unobtainable.
I In other words, it is n! times the elementary symmetric function of the nth degree
formed from the numbers p;, Py, . . ., Pags:
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and let the natural assumptions about independence be made. Then it is
likelier that @ = a’ and b = &’ than that @ = band @’ = &'. (This is reasonable
intuitively, by a rough argument not involving a calculation. The result
follows from the Cauchy-Schwartz inequality X'p2X¢? > [Zp,q,]%)

Observe that here the probabilities p,, ¢; etc. are given as part of the assumed
body of beliefs. Therefore, as far as we have gdne, there is no need to show
how these probabilities could have been estimated. The result does not depend
on the values.of p;, ¢;, . . . but only on their existence. Hence the result
follows from a body of beliefs containing only the independence assumptions,
just as in example (i).

4.8 Certainty and the ¢ verification '’ of the theory

If a nuiber of samples of ordinary air are taken, the proportions of oxygen
in them will not all be exactly the same, though the differences may be too small
to measure. There is an extremely small probability 1 that a large sample of air
would contain no oxygen at all. It is theoretically possible that a man could
die of suffocation as a consequence of this. Or that a particular man should
win the Irish sweepstake every year for fifty successive years. In these cases
it would be natural to say that a miracle had happened, or that there had been
foul play. Under normal assumptions it would be virtually certain that they
would not happen. Thus in addition to (logical) certainty and ““ almost cer-
tainty *’ there is such a thing as practical certainty. There are many other
shades of meaning that are attached to the word ‘ certain” in ordinary
conversation.

The idea of practical certainty can be used in order to verify the theory of
probability, or rather in order to show that it works. (To demand more than
this would be like demanding a proof of a logical system.) A particular level
of probability, very close to one, is selected somewhat arbitrarily, say 1 — 1020,
Then if P(E | H) > 1 — 1072° and if you know that H is true, you say T that
E will not be found to be false. In other words you make a definite prediction
about E. If E is later found to be true you may say that the theory of proba-
bility has had some verification. If E is found to be false you look to see if B
can be modified, since it may have been written down carelessly in the first place.

There is a small point connected with the idea of certainty that will now be
considered. Suppose that E is logically certain given H, i.e. that H implies E.
Then we know by T7 that P(E | H) = 1, provided that H is not almost impos-
sible. It could be assumed as a ‘convention that P(E | H) =1, even if H

t According to most theories of probability. Some people would assert that such
small probabilities are meaningless. On this view some small number must exist below
which probabilities may be regarded as zero. A similar view has been propounded for
numbers themselves. The view would lead to unpleasant complications.

1 At any rate most people would.
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is almost impossible t+ (and similarly that P(E | H) = 0). We know that this
would lead to contradictions if H were allowed to be strictly impossible (see
3.1 (iv)). But if H were almost impossible though not strictly impossible,
the convention would probably not lead to trouble. It would give us a little
more freedom in purely mathematical problems connected with * geometrical
probabilities .

In future it will be assumed, unless otherwise stated, that the ‘‘ given” pro-
position H is not almost impossible, in expressions of the form P(E | H).

<

4.9 Deciding between alternative hypotheses or scientific theories

If it is desired to decide which of two or more alternative hypotheses is
likely to be correct in the light of experimental results, then the natural method
is to use Bayes’ theorem, T'6. Objections have frequently been raised against
Bayes’ theorem on the grounds that the initial probabilities of the hypotheses
cannot be estimated, or that they do not exist. The view held here is that the
initial probabilities may always be assumed to exist within the abstract theory, .
but in some cases you may be able to judge only that they lie in rather wide
intervals. This does not prevent the application of Bayes’ theorem : it merely
makes it less effective than if the intervals are narrow.

It is hardly satisfactory to say that the probabilities do not exist when the
tntervals are wide, while admitting that they do exist when the intervals are narrow.}
This is, however, quite a common practice even when the interpretation is in
terms of degrees of belief. There may be some convenience in the practice, but
it is out of place in a discussion of fundamentals, and it will not be adopted here.

If, after the evidence is taken into account, it is found that a hypothesis H;
is more probable than another one, H,, this by itself will not necessarily make
H, preferable to H,. It is important also to allow for the utilities of H; and
H,, at least in some circumstances. For suppose that H, is an elaboration of
H; so that it certainly implies H;. Then the final probability of H; exceeds
that of H, (though possibly by only a little), but H, may be much more useful
and interesting. (This is particularly clear if H, happens to be H*.) 1If, on
the other hand, H; and H, are mutually exclusive, their utilities will not usually
enter so decisively into consideration.

The alternative hypotheses may be scientific theories, one of which is
assumed to be right.§ Bayes’ theorem is therefore available as a method for

—

1 If H is almost impossible we have not even proved that P(E | H) < 1.

T It would be forgivable to define the ‘ meaningfulness >’ of a probability by means
of the narrowness of the interval.

§ Often when it is said that a theory is ‘‘ right ” it is meant that it is in some sense
a good approximation, and for the application of Bayes’ theorem the sense must be defined.
This must be done in such a way that the theory has no exceptions, otherwise its final
probability will be zero. Remarks having some bearing on the initial probability of a
theory will be found in 5.4 and 7.5. ' ’
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making advances in theoretical science. (It is the method of scientific induction
in a numerical form.) But the question arises : what if the theories themselves
involve probability statements (and they very often do)? According to the
convention at the beginning of 3.1 such theories cannot be considered as
propositions. Let us call them “ improper theories ”, those that are expres-
sible as propositions being called ‘‘ proper theories . (Similarly we can talk
about proper and improper hypotheses and propositions.) It is not imme-
diately clear how the theory of probability can be used for deciding between
improper theories. Perhaps the most obyvious method would be to extend the
meaning of the word * proposition ”” so as to allow it to refer to probabilities,
but this course may lead to logical difficulties.} (See 3.1 (vi).)

Sometimes the difficulty can be avoided by.converting an improper theory
into a proper one. For example, in the Mendelian theory of heredity, proba-
bilities may be stated for an individual to have various characteristics, given
those of its ancestors. In this form the theory is an improper one and it might
contain a probability statement of the form P(E | H) = p. But let U be the
proposition that animals or plants have chromosomes and genes. The chromo-
somes are assumed to occur in symmetrical pairs, and this symmetry leads
to the judgment that P(E | H.U) = p. This judgment can be regarded as
belonging to the body of beliefs, rather than to the theory of heredity. Thus
the theory can be converted into a proper theory, namely the proposition U.
This is really an over-simplification. It is possible that it would be judged
that there might be a bias against the survival of one rather than the other
form of a gene. The technique for dealing with this complication would
be of the same kind as the one exemplified below in connexion with * extra-
sensory perception . If it is assumed that there is no ‘‘bias” then the
probabilities that occur are independent of any further experiments. Such
probabilities are described by the technical term chances. The meaning of the
term is made clearer by considering an unbiased coin to be spun a number of
times. The fact that the coin is described as unbiased means that you have
judged that its probability of coming down heads is %, and that this probability
is a chance in the sense that it is independent of how many heads and tails have
already been obtained.

The probabilities that occur in scientific theories are usually chances.
Another example is afforded by quantum theory, in which the probability of a

113

1 It may require a ‘‘ theory of types ”, as in symbolic logic.

Another way in.which the difficulty arises is if you are interested in P(E | H) where
H consists of all known information, so that H must include the fact that you are interested
in P(E | H). This point will be ignored in the present book. It is important, however,
when E depends on your own volition or imagination. Consider, for example, the
probability that you will smoke within the next half-hour (given all known information).
A similar point arises in politics, when a public forecast of an event may affect the
probability of the event.
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particle appearing in a volume of space is given by the integral over that volume
of the square of the modulus of the appropriate wave function.} Here there
is no method known of converting the theory into a proper theory. If it is
ever possible to do this it would mean that quantum theory could be stated as a
proposition U, where U asserts that the real universe is the same as some
hypothetical universe 11, whose relevant properties could be described without
reference to probability. Any probability statement in quantum theory, of the
form P(E | H) = p could then be replaced by P(E | H.U) = p, and it could
be transferred to 8. The problem ofsthe truth or falsehood of quantum theory
would be replaced by that of U. Provisionally U may be regarded as the
proposition “ quantum theory is true”.1

In general, any improper theory can be formally converted into a proper
theory in this way, by introducing a symbol U which is incompletely defined.
This artifice is not very satisfactory, but it seems to be adequate for the
applications.

It is often convenient to talk as if U were an objective description of some
aspect of the physical world, without actually completing the definition of U
and thereby expressing it as a proper theory. The only essential property of
U is that P(E | U.H) has known values for some propositions or *“ experiments ”
E, these values being the same for all reasonable bodies of belief. A number of
theories of probability have been proposed in which such objective probabilities
are the only admissible ones. Such theories are used by many leading statis-
ticians. (See heading ix of 1.4.) From our point of view these theories are
incomplete. They are essentially included in the present theory by the device
of using incompletely defined propositions.

An objective piobability, in the present theory, may also be described as
“ tautological ”’, i.e. its numerical value is known (usually precisely) because
of the conventional manner of using incompletely defined propositions.§ When
a tautological probability P(E | U.H) is also a chance, then for all reasonable
bodiés of belief, the proportion of successes will almost certainly tend to
P(E | U.H) in an infinite sequence of trials, provided that U and H are true.
Hence such a probability may be described as a “ statistical probability ”, and
is so described for example by Bartlett (1936 and 1940).

+ This has been denied by Jeffreys, 1942.

T Itis only in virtue of the above formal artifice that it is legitimate to regard “ quantum
theory is true > as a proposition. The artifice can be avoided by the adoption of the
generalised meaning of a proposition, discussed in 3.1 (vi).

§ A probability which is deduced by means of the abstract theory from tautological
probabilities alone may also be called a ‘‘ tautological probability ”’. A probability may
of course be only partly tautological. Such a probability cannot occur in a dualistic
theory in which tautological and non-tautological probabilities are given different
notations, unless a third notation is introduced.
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-A chance can be cross-classified in two ways : (i) the  given *’ propositions
may be true or false, (ii) the chance may be tautological or non-tautological.
Thus there are four kinds of chances. It is usual to use the word * chance ”
for a Zrue chance. A statistical probability is a tautological chance, not neces-
sarily a true one.

The above discussion is in no way restricted to scientific theories in the
ordinary sense. Suppose, for example, that you know that there are N adult
males in England, and let Uy denote the proposition that M of them are over
six feet high. Let E be the proposition that the next man selected will be over
six feet. Suppose that the men are selected at random (see 4.7). Then
P(E | H.Uy) = M/N, where H is a description of the method of selection.
There are N + 1 possible theories concerning the value of M. A typical one
of these could be stated as an improper theory in the form “ P(E | H) = M/.
The proper theory corresponding to this is of course Uy. Notice that
P(E| H.Uy) is a chance if the sampling is with replacement. The equation
P(E| H)y= M/N is generally false even if Uy is true. This suggests that in
the general case it is quite essential to introduce U. For the probability state-
ments of the improper "theory are liable to contradict judgments already in
your body of beliefs. If Uy is true, P(E | H.Uy) may be called “ the true
probability of E given H ”, but this mode of expression is misleading and is
best avoided. It may, however, be called *“ the (true) chance ” without serious
risk of confusion.

It is sometimes convenient to make assertions like the probability is }
that the chance of success is 1 . This assertion can be given a meaning in
the same way that an improper theory can be converted into a proper one. It
means ‘ the probability is 1 that H is true, where the chance of success, given H,
is 1 according to B ”. In fact the rest of the discussion of the present section
is really an attempt to attach a significance to the probability of a chance.

Let us consider in detail an example of the problem of deciding between
““ alternative bodies of belief . This is of course the same in principle as
deciding between i improper theorles

Suppose that a coin is spun 1000 times and that the results are successwely
guessed. Let E, mean that the guess of the mth spin is correct. Let B,
consist of the following judgments :— '

(@) P(E,| H)=1, where H is a description of how the experiment is
performed ;

(0) E,, E,, . .. are independent given H.

Let B, be the same as B, except that P(E, | H) = 1 is replaced by P(E, | H) = £.
Suppose that the number of successes is 497 out of 1000. Call this result E.
In virtue of T20 (with 7 = n) you may be tempted to say that B, is better than
B, or even that B, is more probable than B,. These statements are illegitimate
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4.9 PROBABILITY AND WEIGHING OF EVIDENCE

since B, and B, are not propositions. But now let us introduce a new propo-
sition, K, which means that the man who is guessing has ‘ extra-sensory percep-
tion ” 1 (assumed permanently operating), and for B take the judgments :—

(a) P(E,|H.K)=% where H is a description of the experiment and
includes a description of the man,

(b) P(E, | H.K) = 4, )

(c) Ey, E,, . . . are independent given H. K, i.e. the probabilities in (a) are
chances,

(d) E,, E,, . . . are independent given H.K, i.e. the probabilities in (b)
are chances,

(e) 1072° < P(K | H) < 1073. (See 4.3 (iii).)

From these judgments and from the abstract theory it is quite easy to calculate
P(K | E.H), the new probability of the man having extra-sensory perception in
virtue of the experiment E. ‘'The calculation (based on more natural assump-
tions) will be given in 6.5 and 7.3. - The result may be regarded as the answer
to the original question of whether 3, is better than 3,.

The assumptions are made more natural if it is supposed that K is the
disjunction of a large number, &, of different propositions K;, K,, . .. Ki
where

(@) P(E, | H.K,) = }(1 + /),

(6) 10728/k < P(K, | H) < 1073/k,

(c) Ey, E, .. are independent given H.K, for each «x. Instead of
using a large but finite number of alternative hypotheses K, we could work with
a continuous infinity of hypotheses. Either approach is an approximation to
the other, and which one is adopted is largely a matter of taste. The con-
tinuous method is more convenient if the infinitesimal calculus is to be em-
ployed. (See 6.5, example (i).)

It may be asked what exactly is meant by K, ? 'There is at present no com-
plete answer to this question, but fortunately this does not appear to matter
much. K, may be imagined to be the proposition that the man has some
particular physical characteristics. For example (very crudely), these charac-
teristics may be that the total weight of those parts of his brain that deal with
extra-sensory perception is some assigned function of «. For our purpose,
however, it is sufficient to assume merely that K, exists. But if K, is not
described properly how can the necessary judgment concerning its initial
probability be obtained ? Any answer that may be given to this can be only a
suggestion. It has not been-claimed that strict rules can be provided for

1 Nothing in this book is deliberately directed either for or against a beliefin “ ESP ”.
In the above work it is assumed that conscious or unconscious cheating is definitely ruled
out. An alternative to this somewhat far-fetched assumption is to redefine K as * the
man has extra-sensory perception or else there is conscious or unconscious cheating .
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deciding on reasonable bodies of belief. But if you take a very long series of
trials, you may hope to arrive at a fairly objective view on whether the man has
“ ESP ”, provided that the initial probability judgments are not too prejudiced.
Prejudiced initial judgments may be partially avoided by using suggestion (iii)
of 4.3. Another suggestion 1 is that it would be unnatural to take the initial
probabilities of say K,, and K,; as wildly different from each other. To do so
would imply that you had a very detailed knowledge of the exact mechanism of
ESP. (Cf. the remarks on * smoothness” in 7.5.)

A similar treatment could be provided for testing the amount of bias on a
coin. Here it would not be quite so difficult to define the propositions K,
in detail (provided that a system of dynamical principles was assumed). The
difficulty is of the same type as that of defining U in the discussion of scientific
theories.

The ideas used in the above example can be applied to any type of experi-
ment in which the probabilities of the possible outcomes depend on the un-
known state of some organism or process. Examples are the effect of vaccina-
tion of rats, the measurement of intelligence of children, and the quality
control of industrial products.

There is one more point that arises in connexion with the example on
ESP. In order to make the assumptions correspond more closely with the way
in which it is natural to think, it would be necessary to admit the possibility
that the “ amount of extra-sensory perception”’ could vary from one trial to
" the next. This would mean that « would vary throughout the sequence of
trials. . For example, it could be held that « would decrease when the percipient
became tired. In order to take this into account, « would have to be regarded
as a function of n, and the probabilities of success at the various trials could
be represented by #(1 4 x,/k) where n =1, 2, . . ., 1000. The proposition
K would be the assertion that r; = ky = . . . = Kyg9 = 0, and K would be
the disjunction of all other possibilities. 8 would consist of a set of inequalities
for the initial probabilities of every possible sequence «y, , . . ., kiggo- 1O
write out B in detail would be impracticable, and in fact it would be necessary
to be slightly dishonest. Actually it may be best to write down some of the
inequalities after looking at the results of the experiment. If, for example,
the results of the first 500 trials were much better than the last 500, you might
consider that it would lead to sufficiently good results to consider sequences
like k, 5, . . ., %, 0,0, . . ., 0. A particular case of this is the assumption made
before that x; = kg = . . . = Kygp9 = K. _

This ““ dishonesty ”’ can be described more leniently as a very deep judgment
that the final probability of K would not be changed much if you went to the
trouble of writing out B in detail. Any assertion such as *“ it is highly probable

+ This is really less of a suggestion than a statement of how people actually think.
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4.10 PROBABILITY AND WEIGHING OF EVIDENCE

that one of the propositions Ky, Ky, . . ., Ky is true ” must be taken with
a pinch of salt.

Analogous remarks apply to other types of experiments. Often a theory is
described as probable when what is meant is that it is probably substantially
right. It is unusual to give a precise definition' of * substantially right ”.

4.10 Connexions with the frequency theory

Borel’s theorem 1 provides a connexion between the axiomatic approach
and the frequency definition. This theorem can be generalised in an important
way.

In Borel's theorem it was supposed that the probabilities of.success in a
sequence of trials were all equal to p. Problems of a similar type are very
often encountered where the probability of success at any given trial depends
on the results of previous trials. It is convenient to think in terms of the
example of the previous section, but we replace the hypotheses K, by a continu-
ous infinity of hypotheses L,(0 < p < 1) such that P(E,|H.L,)=p and
such that E}, E,, E;, . . . are independent given L,. It is supposed that one
of the hypotheses L, is true, say L, where ¢ is initially unknown.] Then it
follows from Borel’s theorem that the proportion of successes in the first m trials
almost certainly tends to q as m tends to infinity. Let Ly, be the disjunction
of all L, for which p; <p < p,. Ifitis assumed that P(L,,,,, | H) > 0 when-
ever 0 < p; << p, < 1, then it can be proved by using Bayes’ theorem T6
that the probability of E,, given H together with the results of the first n — 1 trials,
almost certainly tends to q. (See also 7.2 and 7.3.) The two italicised state-
ments will be called the ‘ fundamental theorem of probability ”. It is of
course possible to restate them (as in 1.4 (i) or T20) so as to avoid infinite
processes. '

The theorem is proved only under the assumptions stated. These assump-
tions may be more vaguely described by saying that the trials are performed
“ under the same essential conditions ”. These essential conditions are H.L,.

A knowledge of this theorem generally causes you to judge that the proba-
bility, , of success at the next trial can be estimated approximately as the pro-
portion ¥, of successes in a long 'series of trials, without paying much attention
to the initial distribution § of the chance. It may seem to be more accurate

1 See the remarks following T20 in 3.3.

1 ¢ may be called the “ true chance ’ of a success. It is easy to see that all but an
enumerable number of the hypotheses Ly must be almost impossible. Thus we are
allowing almost impossible hypotheses to occur to the right of the vertical stroke. This
can be avoided by complicating the above discussion. One method is to avoid the
symbols Ly and to work entirely in terms of the symbols Ly, ,p, with p; < p,.

§ It is assumed that the reader is familiar with the idea of a probability distribution.
A formal definition is given in chapter 5.
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to take the initial distribution into account, but this often entails considerable
extra work and may not be worth while.

It is quite legitimate to judge directly that | x — y | < J where ¢ is small,
provided that this does not contradict other judgments.t This shows how the
frequency approach fits into our probability. technique. A contradiction of
other judgments is most liable to occur when the equally-probable-cases
approach is particularly appropriate. For example, suppose that a coin is
spun 1000 times and yields as many as 540 heads. Would you then be willing
to judge that the probability of a head at the next trial lies between 0-51 and
0572 A careful discussion of this example would follow the lines of 4.9
and 6.5, and will be omitted.

Besides the theoretical connexions between different techniques of proba-
bility, there is also the practical connexion that adherents of different schools
tend to have somewhat similar judgments. But those who accept the frequency
approach often refuse to apply the word “ probability ” to events that cannot
be indefinitely repeated. This is really a question of the use of language.
Presumably they do undergo states of more or less belief about such events.

4.11 - Relation to the objective theory

A theory in which P(E | H) always represents an objective degree of reason-
able belief has been brilliantly expounded by Jeffreys.] It may be regarded
more or less as a special case of our theory with the various possible bodies of
belief replaced by a fixed objective one, BZ*. One of the purposes of the more
general theory is to avoid the assumption that B* exists. Even if 8% does
exist it is still necessary to fall back on subjective judgments in practice. A
juryman may estimate the probability of guilt of a prisoner at more than 0-99
without being able to trace back his opinion to the principle of cogent reason.

An objective theory of probability does not make the problems of section
4.9 any easier to answer.

A truly objective theory or technique which could always be applied in
practice, may be impossible of attainment. Such a theory might involve an
extensive B* or possibly a ““ complete ”’ list of rules and suggestions, so that no
B would be required at all. While this seems to be quite beyond our powers,
there does remain the possibility of adopting extra suggestions. Just as the
purpose of the theory is to introduce some measure of objectivity into our bodies
of beliefs, the purpose of introducing new suggestions would be to increase this
objectivity still further. An attempt to do this has been made by Jeffreys

+ The specification of § depends quite a lot on who *‘ you ”” are. Essentially what is
required is an honest judgment. The insistence on an exact rule originates in a respect
for science together with the misconception that in science there is no room for judgment.

I Jeffreys does not use the description  objective . See 1.4 (iv), first footnote.
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(1946). In this paper Jeffreys suggests a plausible form of initial probability
distributions for a particular class of cases. These distributions are not dedu-
cible from his technique, but they have some invariant properties which suggest
that they can be accepted without fear of running into contradictions.

The phrase “ the probability of E given H” may make it seem that the
theory~in this book is an objective one. This would be a misunderstanding
based on the conventional use of the definite article. There are two reasons
why this use is misleading : first.because P(E | H) may depend on who you are,
and second because the numerical value of P(E | H) may be * unobservable .
(See 4.4.) The position may be summarised as follows :— It sometimes makes
the language simpler to-talk as if all the relevant probabilities were objective,
but this form of language is strictly justified only for tautological probabilities.

In practice there is sometimes so large an accumulation of evidence that the
subjective judgments are obscured. 'This is why many people have thought
that subjective judgments play no part at all. Some adherents of objective
techniques are now at loggerheads because in small sample work in statistics the
rival objective procedures do not lead to identical results. The present theory
abandons the attempt to obtain unique results—it leaves a little freedom of
choice to the individual.

A new objective theory has been put forward in recent years by Carnap.
His theory involves two types of probability, one of which, called “ probability;”,
corresponds to reasonable and objective degrees of belief. Probability, is
explicitly defined for propositions of a particular kind in terms of the language
used. Different languages give rise to different probabilities. (See, for
example, Tintner, Journ. Roy. Stat. Soc., Ser. B, 1949 or 1950. In this paper
further references may be found.) It is conceivable that *“ you  could design
a language so as to make Carnap’s theory consistent with the one presented
in the present work. All probability judgments. would be pushed back into
the construction of the language. Something like ‘Carnap’s theory would be
required if an electronic reasoning machine is ever built.

4.12 Generalisation of B

So far it has been assumed for simplicity that 8 must be exhibited in a
standard form, before it can be combined with the theory of probability. This
standard form consists in a set of equalities and inequalities between degrees of
belief. But it is found that judgments of other types can very often be made.
One such type has been discussed in 4.3 (i) and in 4.6, namely the direct use
of numerical probabilities. Another type mentioned in 1.4 (vii) is a judgment
that one course of action is preferable to another one. A new and important
type is a direct judgment of “ weights of evidence ”. (See Chapter 6.)

There is no reason why judgments of any sort should be prohibited. This
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leaves a wide scope for intuition. Whatever form of judgment is used it may be
expected to become more discriminating with practice.

With this generalised meaning of 3B, the function of the theory of proba-
bility remains the same as before, namely to enlarge B and to check up on its
self-consistency. (Cf. 4.1, rules (iv), (v) and (vi).)

4.13 Degrees of belief concerning mathematical theorems

If E is a mathematical proposition of a type that is either provable or dis-
provable, then we know that either P(E) = 1 or P(E) = 0, by T7, cor. (ii), and
T9. As a trivial example let E be the proposition that the millionth figure of
mis a7 Then P(E)=1 or 0. But since the calculations have not been
carried out it is natural (at any rate for betting purposes) to assert that P(E)
is approximately . Unfortunately our theory of probability, in common
with most other theories, forces us to reject this judgment.

It may be asked whether the theory could be modified in such a way as to
allow judgments of this sort. One way of doing this is by replacing axiom
A4 by the following alternative axiom :—

A4, If you have seen that E and F are equivalent then P(E | H) = P(F | H)
and P(H | E)= P(H | F).

The theory can, I think, be developed in much the same way as in Chapter 3,
with axiom A4’ replacing A4. One effect of this is that when 3 gives rise to a
contradiction it becomes correct to say ““ 8B is now unreasonable ” instead of
“ B is unreasonable ”. Similarly T7, cor. (ii), becomes * when you have
proved that H* implies H then P(H)=1”, and so on. This procedure
should have some appeal to the intuitionist school of mathematicians.

The question of degrees of belief in purely mathematical theorems is not
merely of academic interest. Very often in applied mathematics and chess-
playing, in order to save time, a theorem is assumed to be true simply because
it is considered to be very likely. One example is the common practice of
assuming that the nth term s, of a convergent sequence is close to the limit,
merely because s, 5,_; and s,_, are close together. (This type of assumption is
very frequent in the applications of probability itself.) The effect of the modified
axiom is therefore to make the technique of probability more widely applicable.

4.14 Development of the judgment by betting

Probability judgments can be sharpened by laying bets at suitable odds.
If people always felt obliged to back their opinions when challenged, we would
be spared a few of the “ certain ” predictions that are so freely made.

The Meteorological Office could set a good example by offering odds with
their weather forecasts, provided that some practicable way of doing this could
be arranged. Non-betting odds are already very roughly conveyed, otherwise

the forecasts would be mere conversation about the weather.
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CHAPTER 5
PROBABILITY DISTRIBUTIONS

IN this chapter a number of familiar ideas of mathematical probability are
described.t This is done for the sake of completeness, and in some places in
order to show how these ideas fit into the present theory. Most of the proofs
will be omitted.

5.1 Random variables and probability distributions

Suppose that an experiment is performed and that it is known in advance
that the result of the experiment will be a real number X. If H is the evidence,
assumed not to be almost impossible, let

Fx)=PX < x| H).
F(x) “ exists ’ for all x, by axiom Al. It is called the (probability) distribution
Sunction of X (given H), and X is called a random variable. 1In order to save
writing, the *“ misleading notation " of 2.6 will be adopted, i.e. H will be taken
for granted and omitted. For example, P(X < x) will mean P(X < x| H).
Clearly, by T9, cor. (iii),
Flxg) — F(xy) = Py < X < ),

so that F(x) is a non-decreasing function of x.

Although F(x) is assumed to exist it will often not be possible to state it
with much accuracy. 8B may contain a set of inequalities for P(x; < X < «,),
P(x, < X < x,) and so on, for various values of #; and x,. These inequalities
will provide information about F(x). In any particular case it will be judged,}
I think, that P(x — ¢ < X < x), P(X < — K), P(X > K) can be made arbi-
trarily small by choosing ¢ sufficiently small and K sufficiently large. If so, it
follows at once that :

limFlx) =1  lim F(x) =0,
> 00 P> — ©
P(X = %) = lim {F(x) — F(x — &)} = F(x) — F(x — 0).

The last relation enables us to write down in terms of F the probability that X
belongs to any interval of values of x. For example,
Py <X < 2p) = P(X = 1) + Py < X < ) — P(X = y)
L = F(xy — 0) — F(x; — 0).
Suppose that X is a physical measurement obtained by reading a scale. It
will then be known to lie in a finite interval and will be capable of taking only a
+ Anyone interested in the advanced mathematical theory should consult Cramér, 1947.

I These judgments would not be required if the axiom of complete additivity were
assumed.
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finite number of values, corresponding to the divisions of the scale. The results
lIimPx —e <X <x)=0, imPX < —K)=0, limP(X>K) =0, will
e>0 K—>»© K-»w©
then be forced by T9. Nearly all variables that occur in practice take
only a finite number of values; but the notions of infinity and continuity are
convenient, since they make available the methods of analysis. Of course,
scale readings are often approximations in the sense that greater accuracy could
be obtained, but whether they are approximations to variables which are
“really ” continuous is unanswerable.

It is often convenient to think of F as a differentiable function with deri-
vative f(x), and then f(x) is called the (probability) density (function) of the
random variable X. If f exists it is a non-negative function, and assuming

only that it is integrable in every finite range, it has the property j flxydx =1,
—

The function P(X = x) is called the (probability) point function of X. It is
suitable for determining the distribution function when the random variable is
capable of taking only a discrete set of values (e.g. all the integers).

Let X and Y be two random variables. P{(X < x).(Y < y)}is called the
distribution function of the pair of random variables X, Y. Denote it by
F(x, y). This may be called a two-dimensional distribution function. The
most appropriate mathematical tool for dealing with the general theory of such
functions is the two-dimensional Lebesgue-Stieltjes integral.t If the reader is
not familiar with this he may be satisfied with accepting the next few remarks
in a formal spirit.

Let Z = {(X, Y) be a known function of X and Y. It will have the dis-

tribution function jj dF(x, y). In particular the distribution function of

Uzy)<z

the sum X 4 Y is J.j' dF(x, y).
z+y<z
X and Y are called independent random variables if for all x, and y, the
“events” X < x and Y < y are independent (at any rate when neither event
is almost impossible). Then, by T1, F(x, ¥) = F(x)G(y), where F and G are
the distribution functions of X and Y separately. In particular the distribu-
tion function of the sum of two independent random variables is

j j dF(x) dG(y)
z+y<z
= j':oF(z — )dG(y) = J‘:G(z — x)dF(x).

T See, for example, Cramér, 1937.
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This function will be called the convolution of Fand G. If F and G are differen-
tiable, the density function of X + Y is

| fe=nenar =" ge—nio)a,
a function which is called the Faltung or resultant of f and g.

5.2 Expectation
If X is a random variable with distribution function F, and if y(x) is an

=]
arbitrary function of x, then J. w(x) dF(x) is called the (mathematical) expec-
<o)

tation or expected value of y (with respect to the random variable X), assuming
of course that this integral exists. It is denoted by E(y) or E(p(X)). In par-
ticular suppose that F is differentiable everywhere and that f is the density
function. Then

) = |y as

On the other hand, if X can take only a discrete set of values x,, &,, %3, . . .
and if f is the point function, then E(p) = E w(oey) fxr).
r

The expected value of i is not necessarily a value that the function can
equal. A partial justification for the name “ expected value ” is to be found
in the following theorem, which will not be proved here.

T21 If X, X,, X,, . . . are independent random variables, all with the
same distribution function, then it is almost certain that

’—11(X1+X2+ o+ X)) = E(X)) as n—> 0.

Borel’s theorem, equivalent to T20, is the special case of this in which the
random variable is 1 or 0 according as a *‘ trial  is successful or unsuccessful.
A more general theorem than T21 is the following.
T21a If Xy, X, X,, . . . are independent vandom variables for which
E(X}) is bounded, then it is almost certain that

7—11(X1+ Xo4+ ..o+ X)) ——}I{E(Xl) +EX)+ - .. +EX)}—0
as n— oo.
CoROLLARY. [In particular the conclusion applies if all the random variables
are vestricted to a fixed finite interval .}
Suppose that an experiment with result X is followed by a monetary gain

+ T21A is equivalent to a special case of the so-called strong law of large numbers,
itself generalised in an interesting manner by Kolmogoroff and Khintchine. For an
excellent introductory account of these and other generalisations see Feller, 1945.
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of amount y(X). Then E(y) is called the expected monetary benefit (of the
experiment). Similarly the expected gain of “utility” can be defined.
¢ Utility ” is the economist’s name for a *‘ reasonable ”’ measure of *“ value .t
Utilities may sometimes be subjectively compared in the same way as proba-
bilities. A utility is best regarded as depending on a ‘‘ change of circum-
stances . This is not a concept that belongs to classical logic, so that it would
“hardly be possible to build up an abstract theory of utility. But the analogues
of the “ obvious axioms” of 2.2 could hardly be disputed. These can be
extended, just as for probabilities, by assuming that a utility is a real number
that vanishes when there are no changes of circumstances. In order to obtain
results of interest it is necessary to be able to judge the numerical value of a
ratio of two utilities. This ratio need be judged merely to lie in some interval,
possibly a very wide one.

In virtue of T21 and T214 it is rational to behave in such a manner as to
maximise the expected utility. In this way any theory of probability can be
taken as a guide to action. Perhaps all practical applications of probability
can be regarded from this point of view. In fact, as mentioned in 1.4 (vii),
Ramsey takes expected utility as a primitive notion and defines degrees of
belief in terms of it. It seems simpler and moré natural to treat beliefs and
values as distinct subjective notions, but the direct judgment of expected utilities
is permissible in the generalised form of our theory (see 4.12).

An insurance company is willing to regard the utility of a monetary gain or
loss as proportional to the amount of money. This would not be true for
amounts that were large compared with the total capital of the company. Since
insurance companies usually have very large capitals, actuaries can work directly
with expected monetary benefits.

It seems rational to assume that as a general rule the utility of money is a
concave function of the total capital, when this is positive. A consequence
is that it is not worth taking a level bet if the probability of winning is only 3-
On the other hand an insurance policy can very well provide a positive expected
utility in spite of a negative expected monetary benefit. This remark applies
even to life insurance, for reasons that the reader can think out for himself.
Another example of expected utilities is provided by the  Petersburg
problem ”.

¢“A coin is spun an indefinite number of times and if there is a run of n
heads before the first tail there is a prize of 2#+1 units. How much
should be paid for the privilege of playing?”

Worked out in terms of expected monetary benefit the result is infinite. A

+ This “ value ” depends on ethics and on amounts of happiness. The distinction
between utility for an individual and utility for a group of individuals will not be discussed
here. ’
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finite value for the expected utility can be obtained by assuming that the utility
of a sum of money is proportional to the logarithm of the amount measured in
suitable units, as suggested by Daniel Bernoulli, (See Todhunter (1865),
220.) This assumption is inadequate since it would still lead to an infinite
result for a slightly modified game, in which the amount 2#+1 is replaced by
22n+1, TIn order to get a finite result for all such modifications it must be assumed
that there is an upper bound for the amount of utility of money, where the
upper bound may depend on the individual. If, for example, the utility is a
concave function of the amount and if this function is constant for amounts
of more than 220 units, then the game is not worth more than 21 units. The
proof is left to the reader. The entrance fee that is worth paying for # games
is not necessarily equal to » times that for one game. (We have throughout
disregarded the utility of gambling itself.)

Suppose that it is assumed quite generally that utilities are bounded. Then
T21a cor., when expressed in a finite form (without the use of limiting processes),
can be used to provide a fairly complete justification of the principle of maximis-
ing expected utilities.

The idea of mathematical expectation is continually used in the study of
probability distributions. Examples are (i) the moments E(X") = u, (r =0,
1,2, ...), where uo = 1, and yj is the mean (value) of X, (ii) the moments
about the mean, E{(X — p1)"} = pr, where ug =1, u; = 0, u, = the variance = ¢*
where ¢ > 0 and is called the standard deviation, (iii) the characteristic function
E(e*%%). Unlike X, ¢ is an ordinary mathematical variable. The integral for
the characteristic function always converges, but those for the moments may
not all converge. Under fairly general conditions a distribution is determined
by a knowledge of all the moments or of the characteristic function.

In fact if the characteristic function is ¢(#), then the point function at x is

. 1 (T )
_— —izt
px) = }unw ZTI_Tw(t)e dt,
and F can then be determined from -

1 X 1T T2 ;
Fx,) — Foy = ${p(x5) — ploey) } + z}illw EJ_Tc;o(t) dtj e~ dy ;

Ly

while at a point x at which there is a density function, it is
1T
x) = lim ~— t)e— it dt,
f( ) T>on an_T(p( ) \

The moments may be formally deduced from the characteristic function by
expanding the exponential and integrating term by term. The characteristic
function of a convolution of two distributions is the product of the separate
characteristic functions.

The mean and standard deviation are good measures of the * typical value ”’
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and “ spread ” of a distribution. There are other such measures, such as the
median value, u, for which F(u) = %, and the mean deviation E( | X — gz | ).
These have some advantages for numerical work but are more difficult to deal
with in the mathematical theory.

5.3 Examples of distributions

Suppose that a random variable X is known to lie strictly between two
numbers a and 4. It is sometimes said that if nothing more is known about

X, then its density function must be

= i.e. constant throughout the

interval (@, b). The distribution is said to be rectangular or uniform (cf. 2.8).
This is essentially an application of the principle of insufficient reason, or of
‘“ Bayes’ postulate * (rather than * Bayes’ theorem ). But in practice there
is always some additional information about X, and the uniform distribution
occurs only as an approximation. We should sometimes judge that for some
specified constant 4 > 1,
Px, < X <) > Py < X < x3)

whenever ‘

Xy — %y > Mowg — 1), a<w <x,<b, a<x <axg<b.
If A is close to 1 the numerical consequences of adopting these judgments would
be much the same as if Bayes’ postulate had been accepted.

The standard type of argument against Bayes’ postulate is that if all that is
known about X is that it lies between a and b, then all that is known about, say,
X190 js'that it lies between a%° and 5190 ; and Bayes’ postulate applied to the
random variables X and X% gives two quite different distributions for X.
Fortunately Bayes’ postulate is not required in the present theory. For if X
arose in a fairly natural way, say as a volume, it would be entirely artificial to
introduce the random variable X1%. You would simply not judge honestly
that the distribution of X% was anything like uniform.

Next suppose that X is known to lie in a closed interval, i.e. a < X <b.
It was proposed by J. B. S. Haldane and H. Jeffreys { that if nothing more is
known, then a finite amount of the probability must be concentrated at a and 5.
This shows how distributions can arise that are neither continuous nor
discrete.

If X is known only to be a real number, the assumption of a uniform dis-
tribution forces the use of infinite probability to represent certainty, with an
appropriate modification of the axioms. A reference to this has already been

T See Jeffreys, 1939, 114 and Haldane, 1931. It would be quite rational to concen-
trate a finite amount ofsprobability at every “ computable *’ value of x, the largest amounts
being concentrated at the simplest values, (Cf. 5.4) It is possible to imagine this
done since the computable numbers form an enumerable set. '
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53 PROBABILITY AND WEIGHING OF EVIDENCE
made in 3.1 (ix). Similarly, if X is known to be positive, Haldane and Jeffreys
assume a uniform distribution for log X, i.e. a density function p for X. 'This

also involves infinite probabilities. In both these cases the use of infinite
probability can be avoided in practice by using known bounds for x (which
always exist). In the second case; one of the bounds is some small positive
number, and it may very well be judged that the distribution of log X is
approximately uniform over a finife range.

Three distributions which occur a great deal, as approximations | at least,
in practical and theoretical work, are the binomial, the Poisson and the normal
distributions. 'The first two are discrete distributions and have point functions

P(X=7)=(j>pe-(1—p)n—r r=01,2...n; 0<p<1),

and P(X = r) = e %7 /r! r=0,1,2...; a>0)
The first of these was mentioned in T'19. The normal distribution has density
function

The corresponding characteristic functions are respectively

(e®p +1— p)r, exp {a(e® — 1)}, exp (xyti — $2202).
From these the moments may be deduced. In particular the means are pn, «,
%, and the standard deviations are Vap(1 — p), Va, 6. Another deduction
from the form of the characteristic functions is that the convolution of a number
of Poisson distributions is again a Poisson distribution, with a similar result for
normal distributions.

If n—> o0 and p —> 0 in such a way that pn = q, a constant, then the first
characteristic function tends to the second one. This suggests (correctly) that
the point function for the binomial distribution may be approximated by that
for the Poisson distribution if # is large but pn is moderate.

If a distribution with characteristic function ¢(¢) is expressed in terms of a
new variable (x — p1)/o it is said to be expressed in standard measure. In
terms of the new variable the mean is 0 and the standard deviation is 1. The

.- . . v t . . .
new characteristic function is e‘Ztl‘l/f’q;(E). If the binomial, Poisson and

normal distributions are expressed in standard measure, the corresponding
characteristic functions of the first two tend to the last one. Hence it is not

T A natural way of expressing the order of the approximation is by giving upper
and lower bounds for the proportional error at each value of x for the point or density
function, or in each interval (xq, x,) for P(x; < X < x,). Cf. the first paragraph of 5.3.
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surprising that the distributions themselves, in standard measure, tend T to

e—#" This is a special case of a result called the central limit theorem,

Vn

which states that under rather general conditions, the convolution, when
expressed in standard measure, of # independent distributions tends to

T
% -we“it“_dt. (See also Appendix I.)

For a very much fuller discussion of the theory of general and special dis-
tributions the reader is referred to Kendall (1945), Wilks (1944), or Cramér
(1946).

Exercises
(i) Prove Tchebycheft’s inequality, that
P(|x—pi|> o) <273,
whatever the distribution function.

(i) A random variable X has a density function f(x), which is continuous
for all x. Let & be the rth digit of the fractional part of X when X is expressed
as an infinite decimal. Show that P(§, =7)—>0-1 as r —>oco0. (Hint:
assume first that f(x) vanishes outside a finite interval and prove

PE =6)— P, =T7)—0, etc.)

(iii) A well-balanced wheel can be spun rapidly about its centre. The
wheel is divided into 10 equal sectors numbered 0, 1, 2, . . ., 9. (Cf. Kendall
(1945), 189.) The wheel is spun, starting from a known position, and is
allowed to rotate for a time. The pumber of revolutions of the wheel is a
random variable. The digit opposite a fixed pointer at the end of the time is
another random variable. Discuss the connexion between this physical
experiment and the result of exercise (ii).

(iv) A form of Stirling’s formula is )

ot

logt! = (t+ ¥)logt — ¢ + } log 27 -} == 127

where £ > 0,0 < 0(¢) < 1. (See, for example, Jeffreys (1939), 371-2.) Using
this formula show that

log f(An, Ar) —2 log f(n, r) = A ; 1 log an(tl_ 7)

— % logd+p,
where

fin, 7) = (”)pr(l — Py, A1,
+o

i)

+ This method of approximating the binomial distribution is what was required in
the proof of T20.
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Hence show that

A—1 x0 x0

where
1/)(”! 7‘) :‘f(n’ r)/g(o‘, x);

_ S AT xl P
g(a: n)"‘avz—ne 2a%, a_\/np(l P)’ W-T
If p = % show that y (5000, 3250) is about 0-027, given that log,, v (100, 65)
= — 0-0112.
(v) A sequence of digits each have chances py, Py, . . ., Py of being 0,
1, . . ., 9. These digits are added ‘“ modulo 10 ” in blocks of N, thus produc-
ing a new sequence with chances pﬁ, DL v - DS Show that
102 fp)pre,
8=0
where

w = e/10 and g(s) = Z‘ Pr @’
r=0

(Hint : first prove the special caset N = 1and find a result analogous to the
multiplicative property of the characteristic function of the sum of independent
random variables.)

Deduce that

102@» )2—Zl<p(s)l”

where y = aver | 10p, — 1.|.
(vi) X-and Y are a pair of random variables with distribution function

z (Y
F(x, ») =j j f(¢, wydtdu.
The expectation of a function 'l,D(X, Y) is defined as

X, )= [ |7 vt 9 10 D)avay.

Let the analogues of inertial constants of a rigid body be defined by the equations
p—EE,  —=E), o= E{x— ),
©* = E{(y — )’} otp = E{(x — p1)(y — v}
(p is called the correlation coefficient between X and Y.) Show that the variance
of X+ Y is 6% + 7% + 207p. Show that the probability density of X alone

exists and equals j Sf(x, ¥)dy.

+ Cf. Weyl, The theory of groups and quantum mechanics (London, 1931), 34.
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(vii) Let ¢(#) be a characteristic function of a distribution and let

| N (i) . . .
og p(t) = Zkr—r'—" assuming such an expansion is permissible. &y, kg, &g,
r=1

. are called the cumulants of the distribution. Show, at any rate formally,
that the cumulants for the sum of independent variables are equal to the sums
of the corresponding cumulants.

(viii) Prove that wj = xy, s = Ky, s = Ky, by = k4 + 3x3. Hence show
that the mean, the variance and the third moment about the mean for the sum
of any number of independent variables are equal to the sums of the individual
‘means, variances and third moments about the mean. The first of the three
results is true also for variables that are not independent. The second part
may be compared with exercise (vi).

5.4 Statistical populations and frequency distributions

Imagine that the heights are known to the nearest inch of all the men in Eng-

0
land. Let @(r) be the number of men of height 7 inches. Let N = Z’(p(r),
=0

the total number of men. Let f(r) = @(r)/N. Let F(x) = Zf (s). Then

<z

F(x) is called the frequency distribution function of ». It is defined without
reference to probability, but it is equal to the probability distribution function
associated with the experiment of selecting men at random from the population.
(See 4.7 (i).) The obvious name for f(7) is the “ (frequency) point function .
The mean, variance, etc. can be defined in the same way as for general distri-
bution functions. If the population is regarded as large and the “ class interval ”
(one inch) as small, then it may be convenient to approximate to F(x) by a
differentiable function of the height and to introduce a density function.

The usual statistical method of finding out properties of a * population
is to take only a partial sample. This is more convenient than examining the
whole population. When the population is virtually infinite, as in dice-throw-
ing, it is impracticable to take more than a partial sample. The partial sample
can itself be regarded as a population,} and it will have its own frequency
distribution which can always be described without introducing probabilities.
But it would be useful to be able to deduce that the frequency distribution of
another sample would be approximately the same, provided that both samples
were reasonably large. No such deduction is possible without using the ideas

1 But this word is usually reserved for the whole population from which the sample
is drawn.
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5.4 PROBABILITY AND WEIGHING OF EVIDENCE

of probability. This explains an essential connexion between statistics: and
probability. The question will be discussed again in the last chapter.

When a sample is regarded as a population, with a frequency function, the
mean, variance, etc. of this function are called the sample mean, sample variance,
etc. These have some relation to the mean, variance, etc. of the whole popu-
lation, but should not be confused with them.

When a frequency distribution is obtained from statistics, there is no
particular reason to suppose that it is expressible in a simple mathematical
form. But it is often possible to find a simple form that fits the frequency
distribution approximately. If this can be done it has the advantage of des-
cribing the results of the statistics briefly. In some cases it is suggestive of the
causes that lie behind the results. But the main reason, in general, for looking
for a simple mathematical “ law ” + of this type is that if it is found it is believed
to have predictive value. That is to say the simple law, if it is a very good
approximation to the distribution function F of the original sample, is likely
to describe the distribution function of another sample (or of the whole popula-
tion) even better than F would. This is partly because it is likely that there
are a few predominating causes lying behind the statistics, even though these
causes are unknown. [ If there are such causes then it is natural to suppose that -
any given simple law has a non-negligible initial probability of being a good
approximation. This probability will change when the statistics are taken
into account, and may become close to one if the sample is not too small. It
will be realised that these remarks are not intended to be precise. They are
in the nature of * suggestions . 'They are a special case of the general prin-
ciple of simplicity known as ‘“ Occam’s razor ”. (See, for example, Jeffreys
(1939), 277.) '

One of the difficulties is how to decide on initial probabilities of laws. No
simple complete suggestions can be given, if only because it often happens in
statistical experiments that similar experiments have been done before and
this complicates the initial evidence a great deal. In particular the normal
law is often favoured because it is known to have occurred approximately §
in previous experiments, and because it is easy to treat mathematically.

A plausible formula for the initial probability of a law containing # para-
meters is 27, provided that there is no initial evidence at all. (See Jeffreys

1 In the remainder of this section the word ‘‘ law ’ refers to the frequency distribution
in the whole finite population. Most of the remarks would apply, with a little modi-
fication, to ‘‘ hypothetical infinite populations ” (see 7.2) and also to scientific laws in
general.

1 It is by no means necessary for the simplicity of a law that the number of pre-
dominating causes should be small,

§ The approximation often becomes rather poor, as a percentage, in the  tails > of
the distribution, i.e. at more than a few ¢ from the mean. (Cf. 5.3, exercise(iv).)
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(1939), 96.) An objection to this is that there are several laws of different
forms with the same number of parameters. It seems therefore that in the
present state of the theory something must be left to the individual judgment.
As regards the initial distribution of the parameters, once the form of the law
has been decided, it may be natural to assume in some cases that the parameters
or their logarithms are approximately uniformly distributed.

The general problem of specifying probability distributions of frequency
distributions can be expressed in terms of the measurement of volume in a
“ space of functions ”. The problem is a difficult one if the number of para-

_meters in the frequency distributions is infinite.
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CHAPTER 6
WEIGHING EVIDENCE

‘“ Mathematical reasoning and deductions are a fine
preparation for investigating the abstruse speculations of the
law.” THOMAS JEFFERSON

6.1 Factors and likelihoods

The main purpose of the present chapter is to provide a quantitative descrip-
tion of the ordinary process of weighing evidence.t The discussion is closely
connected with Section 4.9, being based on Bayes’ theorem T6. If in that
theorem H is taken for granted, as in Chapter 5, it may be written

or after a change of notation,
P(H | E)
P(H)

where E is fixed and H is variable. = The reason for the new notation is that
for most of the applications H is considered as a hypothesis and E as (the
proposition asserting) the result of an experiment. The theorem is known also
as the principle of inverse probability.

P(E | H) may be called the likelihood of H given E. The term was intro-
duced by R. A. Fisher with the object of avoiding the use of Bayes’ theorem.}

The theorem may be expressed * The ratios of the final to the initial proba-
bilities of a set of hypotheses are proportional to their likelihoods .

The simplest case is when there are only two hypotheses, which may then
be represented by H and A. We then find that

OH |E) P(E|H)
OH) PE|HY

where O(H | E) is defined as P(H | E)/{1 — P(H | E)}, and is called the odds
of H given E. Tt is natural to call O(H) the initial odds and O(H | E) the final
odds. In general, if p is any probability, the corresponding odds are defined
as 0 = p/(1 — p), so that p = o/(1 4 0). If o =m/n it is often said that the
odds are “m to n on ™ or “n to m against ”. 'These should not be confused
with betting odds. Odds of 1 are called “evens”.

+ A non-mathematical discussion of the subject is given in thapters XVI and XVII
of Venn, 1888.

I See 7.1, 7.4 and Fisher, 1938, 11 and 15.
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O(H | E)/O(H) is the factor by which the initial odds of H must be multi-
plied in order to obtain the final odds. Dr. A. M. Turing suggested in a
conversation in 1940 that the word * factor ”’ should be regarded as a technical
term in this connexion, and that it could be more fully described as the factor
in favour of the hypothesis H in virtue of the result of the experiment.

The ratio P(E | H)/P(E | H) is the ratio of the likelihoods + of H and H
with respect to E. The particular case of Bayes’ theorem may accordingly be
stated as

T22 The factor in favour of a hypothesis H is equal to the ratio of the Likeli-
hoods of H and H.

Because of this theorem the word * factor ”” will be used indiscriminately
for O(H | E)/O(H) and for the ratio of the likelihoods. The reason for pre-
ferring the word “ factor ” is that it is from our point of view the practical
significance of the ratio of the likelihoods. The factor in favour of a hypothesis
is equal to the final odds when the initial odds are evens. (It is therefore
equal to the number that Jeffreys denotes by “ K ".) '

Turing suggested further that it would be convenient to take over from
acoustics and electrical engineering the notation of bels and decibels (db). In
acoustics, for example, the bel is the logarithm to base 10 of the ratio of two
intensities of sound. Similarly, if fis the factor in favour of a hypothesis, i.e. the
ratio of its final to its initial odds, then we say that the hypothesis has gained
logyo f bels I or (10 logy, f) db. ‘This may also be described as the weight of
evidence § or amount of information || for H given E, and (10 log,, 0) db may be
called the plausibility q corresponding to odds 0. 'Thus T 22 may be expressed :

“ Plausibility gained = weight of evidence ”,
where the weight of evidence is calculated in terms of the ratio of the likelihoods.

The use of the words “ factor 7, *“ decibel ”’ etc. receives particular signifi-

cance from the following simple theorem.

T23  Suppose that a series of experiments are performed, with results E,,

1 The phrase ‘‘ likelihood ratio ’ is sometimes reserved, in statistical literature, for
the expression x/x’, ¥ and x’ being the maxima of P(E | H) when H runs through two
sets, S and S’, of hypotheses, S being a subset of S’.

T *“ Natural bels *’ can be defined in a similar way by using natural logarithms instead
of common logarithms. A natural bel is then 4-343 db. In electrical engineering a
“neper ”’ is 8-686 db.

§ In 1936 Jeffreys had already appreciated the importance of the logarithm of the
factor and had suggested for it the name ‘‘ support . (See References.)

|| The phrase ‘ amount of information ” is used in a different sense by Fisher.
(For yet another sense see 6.9.) ’

9l The use of the term ° plausibility >’ in very nearly this way was suggested by
Professor J. B. S. Haldane, after he had kindly read a draft of the present chapter. He
suggests an ‘‘ octave *’ for the weight of evidence corresponding to a factor of 2. I am
much indebted to him for some useful criticisms.
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E,, . . ., E, and suppose that these are independent given H and independent
given H. Then the resulting factor is equal to the product of the individual factors,
and therefore the resulting weight of evidence is equal to the sum of the individual
weights of evidence.

For

P(E,.E,. . .. En[H)=P(E1|H) P(E, | H)

P(E,.E,. .E,|H) PE|H ' PE,|H
because of the 1ndependence conditions, so that factors are multiplicative and
weights of evidence are additive.

Example. A die is selected at random from a hat containing ten homogene-
ous dice and one loaded one. The loaded one is assumed to have a chance of
4 of yielding a 6. The selected die is thrown nine times and comes down
6 eight times. What are the final odds that it is the loaded one?

The initial plausibility for the selected die’s being loaded is 10 logy, {5
= — 10 db. For each 6 the hypothesis gains a factor of }/%, i.e. very nearly
3 db since logy, 2 = 0-301. For each non-six it loses a factor of £/2, i.e. nearly
1 db. Hence the net gain is 23 db, the final plausibility is 13 db, and the final
odds are 20 (or “20 to'1 on™).

This example shows that the decibels used here and those used in acoustics
and electrical engineering have similar advantages for mental work.

The decibel might be defined quite generally as ten times the logarithm to
base 10 of a ratio. It may be convenient in other connexions, apart from the
theory of probability, acoustics and transmission lines. For example, the ratio
of brightness of two stars differing by one magnitude is exactly 4 db. The
frequency ratio corresponding to a semitone in music is very close to % db, since
there are twelve semitones in an octave.

6.2 ‘‘ Sequential tests ’’ of statistical hypotheses

In 1943 A. Wald 1 developed a technique for the quality control of goods
and for deciding between two courses of action. The technique was applied
in thousands of American factories during the war. 'The basi¢ idea can be
expressed in terms of factors and weights of evidence, although this terminology
was not used by Wald.

Suppose that some article is produced in wholesale quantities. The whole
collection of articles is called the ““lot ” and is supposed to be very numerous.
Some of the articles are selected at random, one by one, and put to some test.
E represents the proposition that one article passes the test. There are two
hypotheses H and H concerning the articles. These two hypotheses are such
that P(E | H), P(E | H) have assigned values and are chances. An alternative
approach would be to define H and H as stating that two fixed proportions of

+ See Wald, 1945 (two references) or 1947 and Barnard, 1946.
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the lot would pass the test. 'This approach would lead to nearly the same results
if the lot were assumed to be large compared with the sample.

The object of testing the goods is to decide between H and H. (The case
of more than two hypotheses will not be discussed here.) It may be too expen-
sive to test all the articles in the lot; for example, the test may be a destructive
one.

Whenever an article passes the test, the hypothesis H has a plausibility
gain of

10 logyy P(E | H) — 10 log,, P(E | H) db.
When an article fails to pass the test there is a loss of
10 log,y {1 — P(E | H)} — 10logy, {1 — P(E | H)} db.

Before the testing is begun a decision should be made as to how much
plausibility should be gained or lost by H before the lot is accepted or rejected.
The testing need be continued only until one of the levels is reached. This
means that the number of tests cannot be predicted, but the expected number
required is naturally less than if the method depended on a sample of fixed size.
The technique is very easy to apply once the required levels of plausibility
gain and plausibility loss have been decided. The estimation of these levels
can be made to depend on estimates, possibly within wide intervals of

(i) the initial odds of H,

(ii) the utility gains and losses involved in accepting H when H is true or
false or in rejecting it when true or false,

(iii) the utility loss of one test (or the cost of one test).

Wald’s method of deciding on the required levels is different. It depends
on estimates of

(iv) the largest number oo which can be tolerated for the probability of
rejecting H when H is true,

(v) the largest number § which can be tolerated for the probability of
accepting H when H is false.}

Wald is quite aware of the connexion of his technique with Bayes’ theorem,
but he adopts the second method of estimating the required weights of evidence
because of the desire to use only objective probabilities. Our contention is
that the judgment of « and f is just as subjective as the judgment of O(H).
Wald’s method is easier to apply once the subjective judgments are made.

When « and § are given, Wald proves that the technique leads approximately
to a smaller expected number of tests than any other technique, whether H is
true or false. This result is hardly surprising since the factor obtained from

T See the definitions of ““ errors of the first and second kinds ” in 7.4.
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the whole experiment tells us as much about the probability of H as it is possible
to deduce from the experiment. (See also 6.7.)

The sequential technique is clearly not restricted to the quality control of
goods. It can be used for deciding between any two ‘‘simple statistical
hypotheses ” (in a sense to be deﬁqed in 7.4).

6.3 Three hypotheses and legal applications

When there are three possible hypotheses H, H' and H", it may still be
convenient to consider them in pairs. For example, it may be decided in the
first place to ignore H”, i.e. to take H" for granted. In order to simplify the
notation, ' may be absorbed into the * vague general information ” that is
left out of account. It then becomes only slightly misleading to denote H’
by H, and the language of odds, factors etc. becomes available. If in this way
the evidence is such as to decide ‘‘ definitely ” between H and H’, then H”
may be reintroduced. There will again be only two hypotheses to take into
consideration and the technique for two hypotheses may be applied again.

This method corresponds to a natural way of thinking about legal cases.
There are often three hypotheses that .are worth distinguishing: that the
evidence is fortuitous,} that a particular man is guilty, or that this man has
been “framed ”. The last hypothesis will normally be left out of account
(together, perhaps, with others) until the choice between the first two hypotheses
is fairly clear. Similarly in card-guessing experiments the results might be
due to chance, to extra-sensory perception or to conscious or unconscious
cheating. Here again the last possibility would often be ignored until the
second one had become more plausible than the first.

In general when there are more than two possible hypotheses it is often
convenient to “ take them for granted ” in pairs, so that one of a pait“can be
regarded as the negation of the other. The method is commonly adopted in
statistics and some examples will be given in Chapter 7. In fact a great deal
of thinking in statistics, science and ordinary life consists in taking hypotheses
for granted in pairs. This often leads ultimately to very high odds for one of
the hypotheses, and it then becomes important to remember that there may
be other hypotheses to consider.

The technique of decibels may be used in an approximate way for legal
purposes. If for example a crime is committed in London, the initial plausi-
bility of guilt of a particular Londoner is roughly — 70 db. 'Therefore 90 db
are needed in order to bring the odds up to 100 to 1 on. The various pieces
of evidence (in the ordinary sense) supply different weights of evidence and

1 We do not mean to imply that no crime was committed at all, but merely that the
suspect was involved in a non-causal manner ; by happening to be near the scene of the

crime, for example.
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the results may be added, if the pieces of evidence are independent; otherwise
some allowance must be made for the degree of dependence. The appropriate
number of decibels to be allotted for any piece of evidence would be largely a
matter of experience and judgment. It seems likely that the use of decibels
in this way would be of considerable value once it had become a mental habit.
Many ordinary commonsense ideas would be given a rough numerical basis
and would therefore be made clearer. (Cf. 4.12))

Consider why it is important to find a motive in a murder case.- The
reason is that it is much more probable that a man will commit murder with
a known motive than without one. The ratio of these probabilities therefore
supplies a large factor in favour of guilt. Similarly, in the case of theft, 2 man
with several convictions is more likely to be suspected. The correct factor
in favour of guilt in virtue of previous convictions could be obtained approxi-
mately by statistical methods. Without the statistics there is a danger that
the factor would be overestimated. This is why juries are not supposed to
take previous convictions into account. It is perhaps somewhat inconsistent
that the appearance of the accused man is allowed to influence the jury.

It is convenient to refer here to a principle stated by Sherlock Holmes. If
a hypothesis is initially very improbable but is the only one that explains the facts,
then it must be accepted. From the present point of view this is because the
hypothesis receives an infinite factor from the evidence. The principle is often
used in scientific work. It is liable, however, to be misleading. For if the
only hypothesis that seems to explain the facts has very small initial odds, then
this is itself evidence that some alternative hypothesis has been overlooked.
This too is an example of Bayes’ theorem !

A similar point can be exemplified by means of the hat containing eleven
dice, mentioned in 6.1. Suppose that the selected die had been thrown
60 times. What number of 6’s would make it most convincing that the selected
die was the loaded one ? Some people would reply that the best number of 6’s
would be 20 since this is the expected number if the die is known to be loaded.
This would be an example of what may be called ‘ the fallacy of typicalness ”.
In fact the more 6’s that are obtained the more probable it is that the loaded
die has been selected. But in practice we could never know that the hat con-
tained eleven dice of the type mentioned—we could regard it merely as highly
probable. 'Thus, if all 60 throws yielded a 6, we should get 600 log,, 3 = 286 db
in favour of the view that the loaded die had been surreptitiously replaced by
a “ completely loaded ” one; provided that there were no other hypothesis that
could be considered. A similar argument arose in connexion with the Dreyfus

case, where there was so much circumstantial evidence as to suggest that
Dreyfus had been framed.
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6.4 Small probabillties in everyday life

In ordinary life you continually use Bayes’ theorem in some form. Some-
times the initial probabilities are very small but the factors are very large. For
example, if you meet a ““ random man ” in France, the initial probability may
easily be as small as 10712 that he is a particular Englishman with whom you
are acquainted. But if he happens to be the Englishman in question, it is
generally fairly easy to recognise him (though not as easy as when he is in his
normal environment). It follows that you can quickly observe enough charac-
teristics of the man so that the probability is less than 10~12 that another man,
selected at random in France, would have the same characteristics. (For a
factor of at least 10?2 is required.)

6.5 Composite hypotheses

In general, when there are more than two hypotheses, the natural procedure
is to work with the original form of Bayes’ theorem. But there is a case that
is in a sense intermediate between the cases of two hypotheses and of more
than two. Suppose in fact that you wish to know whether a hypothesis H is
true, the evidence being E (together with some evidence H’ which is taken for _
granted). Suppose further that H can be expressed in a convenient way as the
disjunction of # mutually exclusive hypotheses Hy, H,, . . ., H,., Then H
may be described as a composite hypothesis. (See also 7.4.) .

If it were assumed that H,, H,, . . ., H, were false the factor in favour of
H in virtue of E would be P(E | H;)/P(E | H). Denote this expression by f;
and let f,, f3, . . ., fu be defined in a similar way. These numbers are analogous
to the partial derivatives of a function of several variables.and may be called
the partial factors in favour of Hy, H,, . . ., H,. Let P(H,|H)=p,. Then
the factor in favour of H in virtue of E is equal to the ‘‘ weighted average ” of the
partial factors, i.e. it is equal to X'p,f,.

7

The proof of this is simple. We have

_ NP H)P(E | Hy)
Z bofr = Z PE[H)

_ 3P | PE| B
P(E | H)
_ ZP(E.HT | H) _PE.H | H) _PE | H)
PE|H)  PE[H) PEH)
CoroLLarY. The factor in favour of H lies between mm fr and max fr-

Example (7). Imagine an experiment in ESP of the type dlscussed in 4 9.1 .
Suppose that there are % trials of which r are successful. Let H denote the

1 Section 4.9 should be re-read at this point.
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hypothesis that the “ percipient’ has powers of extra-sensory perception.
This hypothesis was called K in'4.9. Corresponding to K, of 4.9, let H, be
the assertion that the probability is p that a given trial will be successful, and
that this probability is"a chance. Worded in this way, H, is an “ improper
theory ”.  The question of whether it could be converted into a proper theory
will not be reopened here. .

The hypotheses H, for different values of p are mutually exclusive. If
it is assumed that the amount of ESP remains constant, then H is the disjunction
of the continuous infinity of propositions H, for values of p satisfying 3 < p < 1.
Let us assume that if H is given then there is a uniform distribution of proba-
bility for the variable p between } and 1. (See 5.3.) Suppose further that

10-20 < O(H) < 1073,
What then are the final odds of H in virtue of the whole experiment E ?

The “ partial factor ” in favour of H, from each success is 2p and from
each failure is 2(1 — p). (The factor from a failure is of course less than one.)
Hence the partial factor from the whole experiment is (2p) {2(1 — p)}»—.
Therefore by the theorem of the weighted average of partial factors,} the
factor for H is

L @0y 21 — p)}—+24p.

This could be evaluated by means of tables of the incomplete Beta function.

Or we may put p = (1 + «), and, if z—% is small, obtain

. j:(l + &y (1 — x)p—rde = j 1— x2)%n(1 + x)

x
= J exp {— 3nx? ++ (2r — n)x}dx
= 78*“2-“ e—¥° dy,

n —s

where s = (r — in)/% V/n. Thisis the deviation above the mean, divided by the
standard deviation, assuming 7. It may be called the “ g-age ”” of the experi-

ment. Ifitisatalllarge (say s > 2), while 7—2 — % is small, a good approximation

for. the factor is J 2776.3%3“, a plausibility gain of (2.17s% 4 4 — 5 logy, n) db.
The final plausibility therefore lies between (2.17s2 — 196 — 5 log;, #) db and

1 This theorem concerns only a finite number of alternatives, but it is adequate for
our purpose. For we could work with a large but finite number of alternatives, as in
4.9. The summations to which this would give rise would be approximated by the
integrals used here.
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6.5 PROBABILITY AND WEIGHING OF EVIDENCE

(2.17s* — 26 — 5logyym) db. For example, if n = 10,000 a o-age of 10 would
be required (r > 5500) in order that H should be at least evens.

Many statisticians would be satisfied with a smaller score than this on the
grounds that a o-age of 5 or more is so very improbable on the assumption of
no ESP. What this means in effect is that they would take the initial odds
O(H) as at least 1074, This is an application of the ‘ device of imaginary
results ”’, described in 4.3 (iii).

In practice, however, if the number of successes in the first 10,000 experi-
ments really were 5250 it would be suggestive that the assumptions were wrong.
It might mean that there was something wrong with the design of the experi-
ment, or that the powers of the percipient were variable. The second hypothesis
could be tested by means of the x2 test, which will be described in the next
chapter. The test could be applied by breaking up the experiment into equal
blocks, e.g. 100 blocks each consisting of 100 successive trials, and then seeing
if the numbers of successes in the blocks were significantly variable. If no
significant variation could be detected and if no fault could be found with the
design of the experiment, then the obvious course would be to extend the
series of trials. For if the experiment had been worth starting when. the proba-
bility of success was very low it would presumably be worth continuing when
this probability had increased.t The natural time to stop the series of trials
would be when the probability had become close to 1, or else appreciably less
than it was before the first trial.

Example (iZ). The following figures were given as an example in a paper
on inverse probability by Haldane (1931).

A family of 400 Primula sinensis seedlings from the cross between a doubly
heterozygous plant and a double recessive contains 160 *“ cross-overs . Let
H be the hypothesis that the genes of the original plant lie in the same chromo-
some. Theinitial odds of H are 11 to 1 against. Call a cross-over a ¢ failure ”,
so that there are 240 successes out of 400 “trials”. If H is assumed the
probability of a success is 4, and assuming H, the probability has (approxi-
mately) a uniform prior distribution between } and 1. What are the final
odds of H?

It will be seen that the problem is mathematically identical with the one about
ESP which has been discussed above. Here # = 400,7 = 240,06 = } Vi = 10,
§ = 40/0 = 4, so the plausibility gain is 80 log;y ¢ |+ 4 — 5 logy, 400 = 25-7 db.
The initial plausibility is — 10 log;y 11 = — 10-4 db, so the final plausibility

+ This argument can be used more generally. It provides some justification for the
view that the factor from an experiment is of immediate importance, without the direct
consideration of the probability of the hypothesis that is being tested. This is true
when the decision involved is whether to extend the experiment. It is not true in general
for other types of decisions.
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is 153 db. The final odds are therefore 34 to 1 on, agreeing Wlth Haldane’s
figure of 0-028 for the final probability of .

6.6 Relative factors and relative probabilities

Let H,, H,, . . ., H, be a set of mutually exclusive and exhaustive hypo-
theses with probabilities p;, Py, - - ., pn. Any set of numbers proportional
to these probabilities may be called the relative probabilities of the hypotheses.
If E is the result of an experiment, we know that

P(H, | E)

P(H,)

Any set of numbers proportional to the likelihoods P(E | H,) may be called
the relative Likelihoods. With the obvious definition of relative factors it is
a truism that the relative final probabilities may be obtained by multiplying the
relative initial probabilities by the relative factors. Moreover the relative factors
are equal to the relative likelihoods, by the above form of Bayes’ theorem, and
therefore, just as in 6.1, we shall regard the relative likelihoods as providing an
alternative definition of the relative factors. If this is done the above *“ truism ”
becomes an important theorem.}

Relative factors have a multiplicative property corresponding to T23, when
several experiments are performed, provided that these experiments are inde-
pendent whichever of the hypotheses H, is assumed.

When there are only two hypotheses H and H, the ordinary factor is equal
to the ratio of the two relative factors, in view of T22. If there are two
hypotheses, one of which is comp051te the partial factors may be taken as
a set of relative factors.

Any sets of numbers of the forms a + log P(H,), b+ log P(H, | E),
¢ + log P(E | H,), where a, b, ¢ are independent of 7, may be called the relative
initial plausibilities, the relative final plausibilities and the relative weights of
evidence. The unit is the bel, the decibel or the natural bel, according as the
base of the logarithms is 10, 4/10 or e. Bayes’ theorem may be expressed in
the form

o P(E | H).

Relative final plausibilities = relative initial plausibilities
-+ relative weights of evidence.
If there are only two hypotheses the theorem reduces to
Final plausibility = initial plausibility + weight of evidence.
This becomes clear when it is observed that if H is a hypothesis, the initial
plausibility of H is equal to the relative initial plausibility of H minus the relative

+ I have now beén informed by Dr. C. A. B. Smith that an almost identical formulation
of Bayes’ theorem is frequently used in population genetics.,
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initial plausibility of H, with a similar equality for final plausibilities and weights

of evidence.
The notion of relative factors, etc. w111 be used in the next chapter.

6.7 Expected weight of evidence

There is a curious theorem which was pointed out by Dr. Turing, namely
that the expected factor for a wrong hypothesis in virtue of any experiment is equal
to 1. For example, if an unbiased coin is spun once there is a probability } of
a factor 0 and also a probability £ of a factor 2 in favour of the wrong hypothesis
that the coin is double-headed. More generally, let the hypothesis be H and
suppose that an experiment is performed which must have one of the mutually
exclusive results E, E,, . . ., E,. Imagine that 4 and B are two people with
the same ‘‘ body of beliefs ”* but only 4 knows that H is false. (Assume further
that 4 accepts the theory of probability and that he knows that B does also.)
From A’s point of view, the expected factor + which B will obtain from the
experiment is, by the deﬁnition of expectation,

ZP(E, | H). PEE’ I| I;g D P(E | H)

=PE,vE,v...VE,|H)=1.

Another slightly paradoxical possibility is provided by the example about
dice in 6.1. Suppose that the hypothesis H is that an unloaded die has been
selected, and suppose that, unknown to the experimenter, H is false. The die
is thrown once. Then, from the point of view of someone who knows that
H is false, there is a probability £ that the experimenter’s degree of belief in
H will increase. In other words it is 2 to 1 on that a wrong hypothesis will
have its probability increased, in this example.

If, however, the die is thrown an infinite number of times, the experimenter’s
degree of belief in H will almost certainly tend to 0. In fact, on each throw
the expected weight of evidence is much more to the point than the expected
factor, because of the additive property of weights of evidence. This property
enables T21 of 5.2 to be applied to weights of evidence in a significant manner.
The same would not be true for expected factors, since the sum of a number
of factors has no particular meaning. It is not surprising that the expected
weight of evidence for right hypotheses is positive and for wrong hypotheses is negative.
This result may be proved with the help of the following inequality, ] by taking

b= P(E, | B), pf, — P(E, | H). Suppose p,> 0, > 0,Zp, — 1, Zpfo — 1.
Then Xpplog fr < 0, Xp,filog fr > 0. Equality occurs only if f, =1 for all r.

1 The reader may suspect that this involves the probability of a proposition thatis

itself concerned with probability. This would contravene the definition of a proposition.

But it is clear from the proof of the theorem that the suspicion is ill-founded.
- ] Hardy, Littlewood and Pdlya, Inequalities (Cambridge, 1934), theorem 9.
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In a sequential test of a statistical hypothesis H, it is interesting to know
the expected number of trials required for a given gain of plausibility if H
is true (or for a given loss of plausibility if H is false). The calculation may
be made to depend on the expected plausibility gain from one trial. In fact,
a good enough approximation for most practical purposes can be obtained by
dividing the required gain of plausibility by the expected gain per trial.

In order to obtain a more precise result, including the distribution func-
tions for the size of the sample, it may be observed that the problem is mathe-
matically the same as a problem of * players’ ruin . 'T'wo players, who may be
identified with the acceptance or rejection of the lot, play a series of games in
which the stakes are equal to the plausibility gain and loss due to a success or
failure of the test. Their fortunes are equal to the required gain and loss of
plausibility and their probabilities of winning any game are P(E|H) and
P(E | H) if H is true, or P(E | H) and P(E | H) if H is false. The problem is
to find the probability of either players being ruined in a given number of
games. This problem is treated by Uspensky (1937), 143. See also Bartlett
(1946), where further references may be found.

6.8 Exercises

(i) Show that if the odds against three independent events are o0y, 0y, 05, then
the odds against all three events happening are (o, + 1)(0y + 1)(05 + 1) — 1.

(ii) A pack contains an unknown number N of cards each with a different
picture on it. A random sample of » cards is taken with replacement, and is
found to contain s different pictures. Show that the N which receives from
this result the maximum relative factor (i.e. the ““ maximum likelihood " value
of N) is the largest N for which

) s 1
-log(l—]v>>—rlog(1—]v>.

(iii) With the conditions at the end of 6.7, if the factors f, are all close to 1,
show that the expected gain of plausibility for H assuming that it is true, is
roughly equal to the expected loss of plausibility assuming that it is false. (I
am indebted to Dr. Turing for this result.)

(iv) Show that, from the point of view of an experimenter who does not .
know whether a hypothesis H is true or false, the expected final probability
after any experiment is equal to the initial probability. In the same circum-
stances it is not true in general that the expected final odds are equal to the
initial odds.

(v) Let H be the statistical hypothesis concerning a random variable that
it is normally distributed with zero mean and unit variance. The only alterna-
tive hypothesis is that the distribution is uniform in the interval (— a, @) and
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6.9 PROBABILITY AND WEIGHING OF EVIDENCE

vanishes outside this interval. It is decided to take # independent readings
and to accept-H if it does not lose more than % natural bels; where & may be
positive or negative. Show that, from the point of view of someone who knows
that H is false, the probability that the experimenter will mcorrectly accept H
does not exceed
(K
QapIGn 517

2 .
where K = 2k + nlog ?% and is assumed to be positive. (Dirichlet’s integral

may be used. See Appendix II.)

(vi) Let H mean that a particular man, known to belong to blood-group A4,
has a (recessive) gene for blood-group O. Assume that P(H) = }. His wife
belongs to group O and an experiment E consists in testing the blood of their
six children and finding that they are all of group 4. Assuming that
P(E|H)=2"% PE|H)=1, prove that P(H|E)= 1&5. (This can be
proved mentally in a few seconds.) There is some reason to believe the
hypothesis G that the father of the seventh child belongs to group O. It
turns out that this child belongs to group O, a result which would be certain
given G and would have probability w3 given G. This provides a factor of
386 in favour of G.

(vii) Ifin exercise (iii) there are only two possible experimental results, E and
E, show that the expected gain of plausibility if H is true is equal to the expected
loss if H is false, provided that P(E | H) = P(E | H). (It can be proved that
the expected gain exceeds the expected loss only if P(E | H) < P(E | H).)

(viii) Let f be the factor in favour of H from an experiment. Show that
the expected value of f* given H equals the expected value of fo+1 given .
Show also that 1f H is given, the probability does not exceed g that f does not
exceed g.

6.9 Entropy -

While the manuscript was with the publishers an article appeared  involving
ideas that are related in some ways to those of the present chapter.

Suppose that an event occurs whose probability on known evidence is p.
It is desired to introduce a simple numerical definition for the amount of
information that is thereby conveyed. We have already defined a measure for
the weight of evidence in favour of a particular hypothesis, but we are now
concerned with the amount of information as such, i.e. the amount from the
point of view of a person who is interested merely in collecting information,
without reference to any uncertain hypothesis. It is natural to make two

T Shannon, C. E., “ A mathematical theory of communication °, Bell system technical
Journal, 27 (July 1948), 379—423 -
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demands on the measure : (i) it should be a decreasing function of p, and (ii) the
amount of information provided by two independent events should be the sum
of the separate amounts. The only functions satisfying these conditions are
of the form — log p, where the units are natural bels ifthe base of the logarithms
ise. If the base is 2 then the unit may be called an “octave”, a ‘ binary digit "
or (after J. Tukey) a “ bit”. For example, if a coin is spun and comes down
heads then one bit of information is provided.

Now consider an experiment whose possible outcome is one of a finite (or
enumerable) number of mutually exclusive events of probabilities py, py, - - -
Then the expected amount of information from the experiment is

— sz IOg Pi-
This is called by Shannon the entropy of the experiment, by analogy with
entropy as defined in statistical mechanics. (See, for example, J. C. Slater,
Introduction to chemical physics (New York, 1939), 33.)

For a discussion of the properties of the entropy of an experiment the reader
is referred to Shannon’s article. We content ourselves now with seven simple
remarks :—(i) Entropy as defined by Shannon is dimensionless, and the
analogous entity in statistical mechanics is, strictly speaking, ordinary entropy
divided by Boltzmann’s constant. (ii) Shannon refers to the entropy of an
“event 7, but what he calls an “ event ” is what we call an “‘ experiment .
(iii) The distinction between an *‘ experiment > and an “‘ event "’ has made it
possible to introduce entropy in a rather more direct manner than that used by
Shannon. (iv) The same units can be used for measuring weights of evidence
and entropy. (v) Norbert Wiener has pointed out in conversation that the
two sorts of entropy can be identified by introducing a ““ Maxwell demon .
(See Slater, lc., 45.) (vi) As previously implied, Shannon is not concerned
with amounts of information relative to alternative hypotheses. But if we
consider such amounts of information we find that, apart from sign, they form
a set of relative weights of evidence, in the terminology of page 71. (vii) The
weight of evidence in favour of a hypothesis H is equal to the amount of informa-
tion assuming A minus the amount assuming H. Hence the expected weight
of evidence is equal to the difference of the entropies assuming A and H
respectively.
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CHAPTER 7
STATISTICS AND PROBABILITY

‘. . . the record of a month’s roulette playing at Monte

Carlo can afford us material for discussing the foundations
of knowledge.” KarL PeEarsoN

7.1 Introduction

-

Any practical statistical enquiry is concerned with the numbers of objects
of a specified set (‘‘individuals” of a specified * population’) having various
attributes. The general methods of analysis of the numerical information make
up the subject of theoretical statistics. 'This subject can be divided into a
““ descriptive ”’ part and a ‘‘ predictive ”’ part. The first part is concerned with
such methods of characterising a sample as curve-fitting and the calculation of
means and higher moments. In predictive statistics forecasts are made of the
properties of a population, given a description of a sample. It is this part of
the subject that will be discussed in the present chapter. (Some examples
have already occurred in previous chapters.) There is no question here of a
comprehensive treatment T—our object is merely to indicate by examples that
predictive statistics may be regarded as a branch of probability theory. If it
could not be so regarded, probability would have failed to cope with an
important class of problems concerning degrees of belief.

Even if predictive statistics is a branch of the theory of probability it
is still often necessary to use somewhat arbitrary procedures in practical work.
For sometimes the calculations involved in an exact treatment of a problem are
prohibitive. This type of difficulty occurs frequently in other branches of
science. For example, it is thought that quantum theory is adequate to explain
quite complicated chemical reactions, if only the mathematical equations could
be solved. Meanwhile chemists often use other less fundamental theories for
their predictions. The difficulty occurs even in pure mathematics. In several
good books on mathematical analysis there are topics that are not properly
referred back to the axioms. Itis believed that rigour is possible but difficult, and
a provisional semi-intuitive discussion is felt to be adequate. What is forgivable
in pure mathematics is presumably forgivable in the theory of probability.

Many statisticians deny that it is possible to reduce statistics to probability.
Their reason is usually connected with the rejection of Bayes’ theorem. For
example, Fisher considers that his famous principle § of accepting a hypothesis

+ See the excellent treatises of Cramér, 1946, Kendall, 1945-6, and Wilks, 1944.

T It must be emphasised that we are continuing to use the phrase “ theory of prob-

ability ”’ to mean the theory adopted in this book.
§ Considered by earlier writers, but not systematically.
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with maximum likelihood is not deducible from the theory of probability.
Neyman and E. S. Pearson, while avoiding the use of Bayes’ theorem, have
attempted to base statistics on probability by means of ““ errors of the first and
second kinds " and “ confidence intervals ”’. (See 6.2, 7.4 and 7.10.) These
methods of avoiding the use of initial distributions are valuable, but some
subjective judgment is normally required in practice. It is noteworthy that
E. S. Pearson 1 (1947) says in connexion with the 2 X 2 contingency table :
. . . in a problem of such apparent simplicity, starting from different premises,
it is possible to reach what may be very different numerical probability figures
by which to judge significance ’. He refers also to the ‘‘ qualities of sound
judgment which are the characteristics of a well trained scientific mind ™.}
For us the “ different premises ” correspond to the different ways in which the
contingency table could arise and to the diﬂ'erentmpossible bodies of belief.
(Contingency tables will be discussed in 7.9.)

An attempt has been made to justify a number of statistical procedures by
considering their asymptotic properties for large samples. The obvious dis-
advantage of the use of Bayes’ theorem, that the initial probabilities may be
“known ” only to lie in wide intervals, is likewise overcome by the use of large
samples ; for large samples produce narrow intervals for the final probabilities.
Therefore it seems that any theoretical justification of statistical rules should
if possible be based on the assumption of small samples. Otherwise it is not
convincing that these tests are better than the methods adopted here. The
question of a practical justification of the use of arbitrary procedures is entirely
another matter. It is a question of whether a technique that is theoretically
less satisfactory can be practically more convenient. Here the guiding prin-
ciple is the guiding principle of all science—to use enough common sense to
know when ordinary common sense does not apply. The sort of judgment
that can be made by common sense is that there are occasions when it is better
to be lazy. (Cf. 4.3 (iv).) Such a judgment must be made whenever the
chi-squared test or confidence intervals are used. (See 7.8, 7.8B and 7.10.)
The judgments can be expressed in terms of the expected utilities associated
with the use of various methods, allowance being made for the gain of time in
ignoring some of the information.

7.2 Sampling of a single attribute

The simplest collection of statistics consists of a sample of # objects each
of which either has or has not some attribute. Suppose that m of the objects
have the attribute. The ratio m/z may be called the sample frequency (ratio) or

1 See also famard, 1947,
1 The necessity for judgment has never been denied by good statisticians, but it
has not often been explicitly emphasised. (But see, for example, Bartlett, 1933, p. 534.)
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proportion of the attribute. We shall discuss the connexion between sample
frequencies and probabilities. The general conclusion will be that the sample
frequency is approximately equal to the probability of the attribute in most
cases when 7 is large. 'This conclusion is suggested by Borel’s theorem. The
case # = | shows that it would be irrational to expect the sample frequency
to be exactly equal to the probability.

It is advisable to subdivide the problem according to the type of the sample.

(1) Suppose first that the sample consists of the whole population. In
this case there is no need to introduce probabilities into the discussion at all.
There are n objects of which m have the attribute, and that is all that needs
to be said. But the sample frequency in this case is equal to the probability
of the attribute for objects selected at random from the population.

(ii) At the other extreme there are cases when you ‘‘ know ” the probability
p before the sample is taken. These cases arise for example in games of chance.
More usually you have some initial knowledge, but not sufficient to disregard
the value of m entirely. Even in games of chance, if m differed from pn by
very much, you would naturally suspect that you had made a mistake in your
original judgments. The mistake would usually be that of assuming that some
empirical proposition was almost impossible, or.that the “ trials ” were pre-
cisely independent.

When the probability p is known before the sample is taken and is unaffected
by the results of the sampling, it is a * chance " in the notation of 4.9. In this -
case the sample can be conceived as having been drawn from a large or even
infinite hypothetical population. The chance is sometimes called the ‘‘ (limit-
ing) frequency in the hypothetical (infinite) population . This phrase has the
advantage of helping some people to gain an intuitive grasp of such problems.

The idea of a hypothetical infinite population can be used quite generally
as a method of avoiding talking about ‘‘chances”. For example, in the
remarks concerning quantum theory in 4.9, P(E | H.U) can be called “ the
chance of E given H and assuming that quantum theory is true ” or * the limit-
ing frequency of occurrences of E given H in a hypothetical infinite population
of trials, assuming that quantum theory is true . The second description of
P(E | H.U) is sufliciently justified by the ‘ fundamental theorem of proba-
bility . (See 4.10.)

(iii) Next suppose that there is a finite population consisting of a known
number N of members, M of which have the given attribute. The number M
is unknown, but it is assumed to have an initial probability distribution. You
take a random sample with replacement 1 consisting of # members, of which m

1 If N is large it does not make much difference to the numerical results whether
the sample is with or without replacement. It is assumed to be with replacement because
this case is slightly simpler mathematically.
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are found to have the attribute. What then is the final probability distribution
of M? And what is the probability that the next member selected will have
the attribute ? The second question can be reduced to the first one in the
following way :—

Observe first that if the value of M was known then the probability of
“success ” at the next ““trial ” would be M/N. Moreover this probability
would be a chance T in the sense that it would not be affected by the results
of sampling. Now suppose that at any stage the probabilities of M = 0,
M=1,... M=N are assumed to be p,, p; . . ., py. These numbers
define the probability distribution of the chance. The probability of success
at the next trial is

Prg b mt o,
by axioms A2 and A3. Hence

T24 When sampling with replacement, the probability of success at the next
trial (given evidence E) is equal to the mean value of the chance of success, the mean
value being calculated by using the probability distribution (given E) of the chance.

- A similar result applies for the probability of ¢ successes in the next v trials,
and may be proved in a similar way.

We return now to the first question. Let Hy denote the hypothesis that
. M has a particular value also denoted by M. Let py, p1, . . ., pw be the
initial probabilities of Hy, Hy, - . ., Hy. In virtue of each success the various
hypotheses receive relative factors of M/N, and in virtue of each failure they
receive relative factors of 1 — M/N. Hence the relative final probabilities are

(-

To obtain the “ absolute ™ final probabilities we must divide the relative final
probabilities by their sum. It follows from T24 that the probability of success

at the next trial is
N m+1 n—m
2w (%)
M=o
N m n—m :
2m(5) (%)
M=o

If N is large it is mathematically convenient to imagine that it is infinite and
to replace the chance M/N by a continuous variable x. The point function
pur may then be replaced by a density function p(x) that determines the initial

+ It is 2 population “ frequency (ratio) ”: In the idealised case of an infinjte popula-
tion it would be a ‘‘ limiting frequency .
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probability distribution of the chance x. (More generally one could use a
distribution function that is not necessarily differentiable.) In terms of p(x)
the probability of success at the next trial is equal to

jl p(x)amt1(1l — x)n—mdx
0 -

jlp(x) am (1l — xyr—mdx
0

For cxé.mple, if the distribution is uniform, so that p(x) = 1, the probability of
m+1
n4 2
law of succession. (The cases n =0, n =1, and m = n are particularly inter-
esting.) It may be deduced that if m = #, there is-a probability of § that the
next # + 1 trials will all be successful. For by A3 the probability is

n+1n+2 2n+ 1

n+2n+3 "7 2042

In general, if n is large the function #®(1 — x)*—™ has a very sharp peak at
x = m/n. It follows that the probability of success at the next trial is close to
m/n, provided that the graph of p(x) has a moderate area in the neighbourhood
of x = m/n. In other words, if # is large the result is not sensitive with respect
to the assumed initial probability distribution of the chance. This is just as
well because it is often artificial to give the initial distribution at all exactly.

(iv) Now suppose that the population is infinite. This case cannot really
occur except as an idealisation, and in this sense it has already been discussed
under heading (iii). It might be thought that infinite populations do occur in
'such experiments as dice-throwing, but even here the dice would eventually get
worn out. It is necessary to fix the value of N in any such case in order to
bring it under heading (iii), but the value selected makes very little difference
provided that it is large. There is here no question of sampling with replace-
ment, so the previous discussion requires some modification. But the modifica-
tion presents no particular difficulty and will not be given here.

Instead of regarding this case as being included under heading (iii) it may
be more convenient to make direct judgments about the initial distribution of
the chance. For example, if this distribution is uniform the sample frequency,
m/n, is the “ most probable value ” 4 of the chance. (Whatever the initial
distribution the sample frequency is the maximum likelihood value of the
chance.) )

If n were large, adherents of the frequency approach would judge that the
chance x was approximately m/n. (They would not usually judge that the pro-
portional accuracy was good if m was small.) If they would define the degree

t See the index.

success at the next trial reduces to This is sometimes called Laplace’s
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of the approximation then Bayes’ theorem (in reverse) could be used for
obtaining information about the initial probability distribution of the chance.

(v) Finally, suppose that N is unknown. As before you can use judgments
about the initial distribution of the chance. (Or you could work with the
distribution of N and the distribution of M for each N.)

7.3 Example

Consider the ESP experiment of 4.9 and 6.5. Here the alternative hypo-
theses are H,(} < p < 1), where H, is the same as /1. Let the initial odds of
H be 10710, If there are m successes in # trials and if it is assumed that there
is a uniform initial distribution for p in the range 1 << p < 1, then the relative
final probabilities of the alternatives are

P (H | E) = 1070,

Pra(dp| E) = (2py" {21 —p)}»—mdp (3 <p <1),

Pa(p=1]|E)=0,
where some self-explanatory notations have been used. The last of these
equations may be denied on intuitive grounds, but it follows from the assump-
tion of a uniform initial distribution. It may be more natural to allow a very
small probability to the hypothesis that the man has perfect ESP, but it would
not introduce any new interest or difficulty into the calculations. It follows
from 6.5 that the final probability of H is large if 2:17s2 — 5 log;y 7 — 96 is-
large, where s = (m — 4n)/( /7). Under the same circumstances it is fairly
clear that the probability of success on the next trial will be close to m/a. If,
on the other hand, 2-17s% — 5 log;y # — 96 is negative and numerically large,
then /7 will remain highly probable and the probability of success at the next
trial will be very close to 4. In any case, provided that » is large, the proba-
bility of success at the next trial is close 1 to m/n. This is an example of the
fundamental theorem of probability.

It should be noticed that if # is not large enough, then the probability of
success at the next attempt may be quite different from m/n. For example,
if m = n = 20, the probability is still close to §, assuming that O(H) = 10710,

This ESP experiment exemplifies the important ideas of significance and
estimation. If m is sufficiently far from 4z then ESP is probable and the experi-
ment is called significant. In this case it becomes interesting to know how
much ESP is present—that is, which of the hypotheses H, is true, where
p> 1L

The example is typical of many others, and it frequently happens, at any
rate as a sufficiently good approximation, that there is a finite amount of the

+ The reader may consider what modifications are required to allow for the possibility

that m is much smaller than #n.
m
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initial probability concentrated at a particular value of a parameter, all other
values of the parameter being almost impossible. But in most cases the
probability that the parameter has the special value is not so near to 1. For
example, if you were investigating whether cosmic rays have any influence on
mutation rates of drosophila (flies), the initial probability could reasonably
be taken as lying between 0-01 and 0-99. There is no need for the parameter
to represent a chance. It might for example be a function (such as the mean
value) of the chance distribution of the increase in weight of guinea-pigs when -
injected with a particular drug.

7.4 Inverse probability versus ‘‘ precision *’

Let us say that one probability is more precise than another one if it is knowt
or judged to lie in a narrower interval, and that a probability is precise if the
interval reduces to a point. (See 4.3 (i).) Most tautological probabilities are
precise.

Let E be the result of an experiment + (e.g. “heads” or “tails ”). If H
is a hypothesis it sometimes happens that P(E | H) is precise whereas P(H | E)
and P(H) may not be. Suppose further that the experiment is merely one of a
sequence of similar experiments (or trials) and that the probability of E, given
H, is a chance in the sense that it is unaffected by a knowledge of the results of
other experiments of the sequence. Then H is called a simple statistical hypo-
thesis. 'The whole sequence of trials may be regarded as a sample from an
infinite population, in which P(E | H) is the limiting frequency of results of
a particular “kind . (In die-throwing there are six “kinds” of results.)

If H is a disjunction of a set of mutually exclusive simple statistical hypo-
theses, then H is called a composite statistical hypothesis.{ In 6.5, for example,
H, is simple for each p and H is composite. Another example of a simple
statistical hypothesis is the assertion that a chance distribution is normal with
zero mean and unit variance. 'This would have been composite if the mean and
variance had not been specified.

With this terminology, the likelihood of a simple statistical hypothesis is
precise, although its initial and final probabilities may not be. The absolute
precision of the likelihoods is usually purchased at the expense of expressing
the hypothesis in the form of an incompletely defined proposition.

Given a set of statistical hypotheses, Fisher’s principle of maximum likeli-
hood tells you to select that hypothesis whose likelihood is greatest. If the
result is unique the procedure is a precise one and does not depend on a sub-
jective judgment of the initial probdbilities of the hypotheses. (Cf. 6.8,

+ Or rather the proposition asserting what this result is. (See 4.2.)
1 These definitions are a little more general than those usually given. See, for
example, E. S. Pearson, 1942, 311.
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exercise (ii) and 7.2 (iv).) The principle of maximum likelihood is not the only
precise procedure that is possible. Another (trivial) one is that all hypotheses
should be rejected.

If the hypotheses depend on a single parameter the ‘ maximum likelihood
value of the parameter ” is equal to the most probable value, provided that the
parameter has a uniform initial “distribution. If the maximum in’the final
distribution is *“ sharp ”, then the parameter has a high probability of being close
to the maximum likelihood value. Cases approximating to this are fairly
common, so that the practice of using maximum likelihood values can often be
justified in terms of the theory of probability.

Precise procedures are convenient and often time-saving. But a man’s
decisions are normally based on what he really believes, i.e. on the final
probabilities of the hypotheses. In economics and sociology the samples are
usually large and the final probabilities are insensitive to the initial ones. But
in many biological experiments the samples dre small and then the initial
probabilities -should be taken into account. 'These experiments are usually
designed to test a plausible hypothesis. If the initial probability is judged to
be as high as 0-05, then a factor of 20 would be sufficient to make the hypothesis
“odds on”. But different biologists may naturally have different opinions
about the initial and therefore the final odds. One objective in using precise
procedures is to avoid these differences of opinion. We may be sure that this
objective will not be attained. For example, very few scientists would accept
a theory based on superstition, even if it received a factor of 1000 from the
first experiment. It may be argued that this sort of thing would not happen
very often. But in any given case what really matters is the final probability
of the theory. And besides, it is always possible, when there are far more people
engaged on medical and biological research, that it will be quite usual to test
hypotheses with very low initial probabilities. A correspondingly larger factor
would then be required before a hypothesis would become acceptable. This
shows how arbitrary is any rule that depends only on the likelihoods.

_Another procedure that may at first sight appear to be precise is afforded by
the technique of “ errors of the first and second kinds " introduced by Neyman
in 1930. .(See Neyman (1941) and Neyman and Pearson (1933, twice).) Let
E be “ an experiment ”. Let H and H' be mutually exclusive simple statis-
tical hypotheses. Suppose that no hypothesis other than H and H’ needs
consideration, i.e. it is judged to be adequate to suppose that H v H' is true.
Even if there are other plausible hypotheses it is often convenient to deal with
only two at a time. It is usually interesting to know the odds of H, but we
may have to be satisfied with the ratio of the probabilities of H and H'. By
regarding H v H' as given, the problem is in any case reduced to the considera-
tion of only two alternative hypotheses. This is convenient because it makes
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the language of odds and factors more appropriate. The probability of H'
is the same as the probability of [, if Hv H’ is given. We shall use the  mis-
leading notation ” of omitting H v H' to the right of the vertical stroke. With
this understanding H can be written instead of H'. (Cf. 6.3.)

Now suppose that a precise procedure has been described for calculating a
“ function ” P(F) of the observations, whose possible values are the instruc-
tions ““ reject H” or “ accept H”. We say that an error of the first or second
kind (with respect of H) is committed if H is rejected when true or accepted
when false, respectively. (Clearly an error of the first kind with respect to
H is an error of the second kind with respect to H, and vice versa.) For the
given procedure P, the probability given H of an error of the first kind; and
the probability given H of an error of the second kind, can be calculated exactly.
If it is decided that these probabilities must not exceed two values a and f,
a restriction will be provided on the possible procedures P. For example,
in exercise (v) of 6.8, the probability of an error of the second kind (when
H is given) is less than f if

2
2 n 2
k< Zni{F(én + 1)[3} — in log 22

Wheén « and § are given, D is a precise procedure. But the choice of
o and § depends on judgment. (Cf. 6.2.)

Other methods of avoiding the use of the initial probabilities of hypotheses
will be discussed in 7.8A, 7.8B and 7.9, in connexion with the chi-squared
test, and also in 7.10.

7.5 Sampling and the probabilities of chance distributions (curve-
fitting)

Consider the heights to the nearest inch of a population of men. Suppose
for the moment that the heights of all the men in the population are known
and that a man is selected at random. The chance of his having any particular
height is known. (We call it a chance because it is independent of any sampling.)
Thus the chance distribution of the heights is known, rather than the probability
distribution. Assuming next that only the size of the population is known
and that no man can be more than 20 feet high, then the number of possible
chance distributions is finite. Hence you can associate with each distribution
a finite probability which will depend on the evidence assumed. The set of
such probabilities defines what may be called the probability distribution of the
chance distribution. 'This distribution of distributions is known only vaguely
before a sample is taken. The question is how much can be said about it
afterwards. This is a central type of problem in statistics. (Cf. 5.4.)

We shall idealise the problem to the extent of assuming that the population
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is infinite + as in 7.2 (iii) and (iv). This will have the effect of making the
chance distribution continuous rather than discrete. It may lead on to a
consideration of measure in function space, as mentioned in 5.4, but in practice
the chance distribution is usually judged to be defined adequately by means of
only a finite number of parameters.

Since the population is assumed to be infinite it does not matter whether
the sample is with or without replacement, but for definiteness it may be
assumed to be without replacement.

Each particular number of inches is an attribute. ~Thus the problems that
arise are more complicated than before when there was only one attribute.
The previous discussion shows that the probability that the next man selected
will have a given height (to the nearest inch) is roughly equal to the sample
frequency, provided that the sample is large enough. This shows the similarity
with the problem of sampling a single attribute. But there is a new considera-
tion that is roughly expressed by the idea of smoothness. This will be
explained by means of an example.

Suppose that the sample consists of 1000 men, the numbers in the various
groups being given by the following table :—

Height in
inches 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
Numbers

ofmen 1 3 12 23 53 73 96 156 150 157 118 83 39 19 12 4 1
ToraL NuMmBER OoF MEN : 1000

What is the probability that the next man selected will have a height of
67" ? The table, or a graph constructed from it, suggests that the probability
is greater than 0-150. You are influeénced by a feeling that a graph of the chances
ought to be smooth,} i.e. that it should not have many ‘ bumps ”.§ Thus
the probability is affected not only by the number of men of height 67", but
also by all the other entries in the table, and especially by the entries under
66" and 68”. It may be asked where you get this belief in smoothness, and
whether rules can be given for deciding the probabilities more precisely.

These questions can hardly be answered completely since they depend on
probability judgments. Perhaps the main point involved is the principle of
simplicity. This asserts that a simple hypothesis has a higher initial probability
than a complicated one. The question has already been discussed in 5.4.
We referred in 5.4 to the number of parameters involved in the analytic expres-
sion of a function, as a measure of its simplicity. Another possible measure is

+ This device is sometimes used even when a sample consists of the whole of a
population. In this case it may be helpful to imagine that the population is itself merely
a sample of an infinite ‘‘ super-population .

I i.e. you associate higher initial probabilities with smooth chance distributions.

§ E. S. Pearson, 1938, defines smoothness in terms of Legendre polynomials.
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the number of points of inflexion, this being a natural measure of “ bumpiness *.
Thus in the present example a better fit to the observations could be obtained
by means of a ‘‘ double-humped ” curve + (which has four points of inflexion),
but a single-humped curve may seem more probable. (It need have only two
points of inflexion.) Another reason for preferring the simpler curve is that
any given simple curve is found in practice to occur, as an approximation, more
often than any given complicated curve.

In particular, single-humped curves occur more often in connexion with
cases similar to the one under consideration, provided that the sample is large.
More precisely it is known by experience that small bumps tend to get smoothed
out when the size of the sample is increased, the class-interval being kept
constant. Thus the statistics of statistics have some influence on your opinions.
(See also the last paragraph of this section.)

Besides the initial probabilities of the chance distributions you need to
consider the factors obtained from the sample. Suppose that a particular
chance distribution is assumed in which the chance of a height of 7 inches is
pr.  Suppose further that the number of men of height 7 inches in the sample is

@
my, where E m, = n. Then the relative factor in favour of this distribution
=0
may be taken as

me"
7=0
where 0° is defined as 1. (The multinomial coefficient is omitted since it is
the same for all distributions.)
As an example consider the chance distributions that are of the normal
form

1
oV 2x

e—(@—20)%/20",

The chance of a height of 7 inches is then

+3
1 e—(B—%0)/20%

PT:O'V 27 b,-_;_

Thus the relative weights of evidence may be taken as

0

: +3
—n log o+ Z‘mr Iogf e—(Z—20)*/20% .
r—%

r=0

+ The observations could be fitted exactly by means of a polynomial of the 16th
degree, but the result would be far too complicated to be regarded as a probable distribu-
tion of the chance.
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The derivative of this with respect to ¥, is

1 w T+ r+3
— m"j e—(z—%,)%/20% (x - xo) dx/j e—(@—20)*/20° dx}.
o r=0 r—% r—% )

The coefficient of m, isapproximately T (r — #,). It follows that the maximum
likelihood value of x, is approximately %2 rm,, the average height of the
men in the sample. In a similar way the maximum likelihood value of ¢2 is
approximately | %2 mr — %,)2. For any assumed initial distribution of

X, and o the final distribution can be written down. The maximum likelihood
values of x, and o will be close to their expected values under natural assump-
tions concerning the initial distributions, provided that #z is not too small.
The combined distribution of x, and ¢ defines the distribution of the chance
distribution. From this you can calculate the probability that the next man
selected will have any particular height, i.e. the final probability distribution
of the height of the next man to be selected. This is the sort of thing that
would normally be of most interest in such problems.

In order to save work you could assume that this final result is sufficiently
well approximated by a normal distribution in which the parameters x, and ¢
are taken as equal to their expected values, or even to their maximum likelihood
values. Using the latter method with the given figures, it is found that
%y = 67-00, 0 = 2-536, and the values of 1000p, are given in row (iii) of the
following table :—

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 76  TorAL
1 3 12 23 53 73 96 156 150 167 118 83 39 19 12 4 1 1000
03 34 10 23 46 79 115 145 156 145 115 79 46 23 10 34 03 9994
03 34 10 23 46 75 111 156 150 157 110 76 46 23 10 34 03 9994

—16-4 —14-8 494 —25-5 542 —22:8 —187 54

The meanings of the rows of this table are :—(i) Height in inches; (ii)
sample figures ; (iii) maximum likelihood.normal curve ; (iv) a double-humped
curve ; (v) plausibility gain of (iv) minus that of (iii), in db.

Row (iv) has been selected so as to fit the observations better than row (iii)
in the neighbourhood of the mean. The idea is to test the hypothesis that the
chance distribution is really double-humped. For this purpose it would be a
mistake to make row (iv) agree too well with row (ii) in the ““ tails”. The
double-humped curve is only 5-4 db “ better” than the normal one, and is
therefore hardly to be preferred, after allowing for the relative initial probabilities.

1 There is a lack of rigour here. The approximation is not good where | 7 — %, |/o
is greater than 2, but in our example m, is small for such values of 7.

1 There are reasons for preferring the estimate Zmp(r — x0)® for o2 (See,

for example, Wilks, 83.)

n—;l
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It is often found that the normal distribution or some other standard dis-
tribution is a good fit except in the tails. Such a modified result is simple
enough to have an appreciable initial probability and is useful, although it does
not enable you to estimate the probabilities of very rare events with much
proportional accuracy.

Besides the various standard distributions the possibility of using a linear
combination of them should always be borne in mind. This is especially sug-
gested if the population is considered initially to be likely to be composed of
two or more types. For example, the heights of all adults in England might
be expected to obey roughly a distribution equal to a linear combination of
two normal distributions corresponding separately to men and women.

We conclude this section with another remark about smoothness. So far
we have attempted to justify the assumption of smoothness in terms of simplicity
and past experience. There is another possible justification. It has been
found that the convolution of a large number of independent distributions
tends to be smooth, even though the original distributions are not. For a
treatment of such problems the reader is referred to Jessen and Wintner (1935).
Their results justify the assumption of smoothness in the same way that the
central limit theorem justifies the normal distribution, but rather more vaguely.
It seems likely that there would be similar results even if the distributions that
were “ compounded” were not entirely independent.

7.6 Further remarks on curve-fitting

In this section we shall refer briefly to some standard methods of curve-
fitting. This will be done not in order to explain the methods,} but to indicate
roughly their relation to the theory of probability and to the remarks of the
previous section.

A system of curves was defined by Karl Pearson, depending on only four
parameters, and giving an adequate representation of many single-humped
curves as well as some )-shaped and U-shaped ones. The system is used a
great deal by statisticians, the usual method of fitting being by means of the
first four moments of the “ observed distribution > (i.e. the frequency distri-
bution of the sample). The system may be described as a simple one, partly
because there are only four parameters and partly because no curve of the
system can have more than two points of inflexion. The normal distribu-
tions are included together with other classes of curves that arise naturally from
a theoretical point of view. For these reasons the system may be considered
to have a moderate initial probability of applying approximately in any given
case. The system is used also because of its convenience. It often happens
that the approximation is not good over the whole range. This is hardly

1+ See Kendall, 1945, and Elderton, 1938.
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surprising since smoothness of a curve does not imply simplicity of its analytic
expression. Above all, it is the smoothness of a distribution that seems to give
it an appreciable initial probability. It is often adequate to draw free-hand
curves instead of doing calculations. Another method is to fit parabolas to
different parts of the frequency curve ; but the initial probability would pre-
sumably be taken as a rapidly decreasing function of the number of parabolas.

A theoretically correct method of carrying out this curve-fitting is to make
use of the relative factors as in 7.5 and to allow for the initial probabilities
of the possible curves. In practice it is necessary to simplify B, as in 4.3,
suggestion (iv), by making allowance only for a particular system of curves,
such as the Pearson system. In this case the initial distribution of the curves
is fixed by the initial distribution of the parameters. It may often be judged ¢
that the method of maximum likelihood will give adequate results.

There are other standard methods of curve-fitting besides those already
mentioned. One of these is by expansion in Hermite functions ; another is
by the transformation of the variable so as to obtain approximately a normal
distribution of the new variable. Of these two methods the second seems to
have more justification from the point of view of the theory of probability.
The possibility of obtaining a rough initial justification of the type of curve
should not be overlooked. '

7.7 The combination of observations

In many physical experiments several measurements are made of what is
supposed to be the ‘‘ same ” physical magnitude. It is usually supposed that
there is'a true value, that the deviations from this are due to the accumnulation
of unavoidable errors, and that these deviations obey a normal distribution. |
The assumption that there is a true value may be avoided by assuming merely
that the possible results of the experiment obey a normal distribution with
mean x, and variance 2. ‘The parameter , takes the place of the so-called true
value. The problem of estimating x, and o is then mathematically as in 7.5.

Suppose that one of the readings is a long way from the rest of the observa-
tions. Is it justifiable to reject it when estimating %, and ¢ ? The answer
depends on the probability of having made a mistake, i.e. an avoidable error.
In general, if the deviation from the average is greater than five times the
estimated value of o, it would probably be assumed that a mistake had been
made, because the factor in favour of a mistake would be large. Or the assump-
tion of a normal distribution might be suspected unless it was well supported
by the rest of the observations.

1 The judgment is one that can be expressed in terms of expected utilities in any
particular case. But the implicit courses of action themselves involve alternative prob=-

ability techniques, so that the judgment is of a higher ‘‘ type ” than usual.
I The mean need not be zero, i.e. there may be a bias.
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The exact values of x, and ¢ cannot be determined. .All that can be done
is to say something about their probability distributions, maximum likelihood
values and so on. For a detailed account of the subject see Brunt (1931).

Exercise. Only two theories are to be entertained regarding the value of a
physical magnitude : either it is equal to £ or else to £&. Several experiments
are performed and readings x,, %,, 3, . . . are obtained. Assuming a normal
law of error with standard deviation ¢, show that the first theory gains

£ ;f’zr' (xr _£ —2'_ §’> natural bels.

7.8 Significance tests

The general question of significance tests was raised in 7.3 and a simple
example will now be considered. Suppose that a die is thrown # times and that
it shows an #-face on m, occasions (r = 1,2, . . ., 6). The question is whether
the die is loaded. The answer depends on the meaning of “‘ loaded . From
one point of view it is unnecessary to look at the statistics since it is obvious
.that no die could be absolutely symmetrical.t It is possible that a similar
remark applies to all experiments—even to the ESP experiment, since there
may be no way of designing it so that the probabilities are exactly equal to 3.
In the case of the die let us suppose that it has chances p;, p,, . . ., pg of showing
al, 2, ... 6,these chances being initially unknown. We could say that the
die is loaded if for example

(]
D —%1> ks
r=1

Suppose that there is an initial probability density of the chances, given by a
function @(py, Py, - - -, Pe)- This is defined in such a way that if V is any
five-dimensional volume of the space X'p, = 1, the probability that (p,, p,,

. . ., Dg) belongs to V is equal toj @ dt, where dv is an element of volume.
, e

The function ¢ depends on your body of beliefs and on your knowledge con-
cerning dice in general and on where the particular die was obtained. It is
convenient to take the relative factors in such a way that the factor corresponding
to symmetry is 1. Then the relative factor for the set of cﬁ\lances P Pay - -

Pe 18 l l (6p )" = f say. The final probability that the die is loaded is

L)l(p. fdr / L o.fdr,

where D is the space X p, = 1 and D, is the sub-space in which X' | p, — % | > 135.

"y

+ It would be no contradiction of 4.3 (ii) to say that the hypothesis that the die is
absolutely symmetrical is almost impossible. In fact, this hypothesis is an idealised
proposition rather than an empirical one.
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For any definite assumption concerning ¢, this probability has a numerical
value that may be difficult to calculate. In practice you have to be satisfied
with approximations.

If you were doing the problem rigorously you would half-define ¢ by means
of inequalities, possibly rather vague, but not depending on# or m,, m,, . . ., m,.
In order to obtain an approximate result you could take simplified assumptions
for . These assumptions would depend on the results of the statistics. They
would depend also on the properties of the relative factor f. As a function of
My
-
maximum is fairly sharp, so that the values of ¢ at points far removed from the
maximum have little effect on the values of the integrals. An exception must
be made of points where ¢ is especially large. Regarding the correct form of @,
it would be irrational to assume that it vanished at any point where 2'p, = 1,
But for an approximation you could regard zero values of ¢ as admissible, and
change your mind if the statistics suggested that you should. In particular,
if the sample were not too large, the density function in the sub-space
2| pr—%| <1 could be replaced by a point function vanishing at all
points except at p; = p,=. . .= pg = %. The value of the point function
here is the initial probability that the die is unloaded. Call it 1 — p. Let

. m m .
P1 Par - + o Doy f has a maximum at p, = 71, Po= e Pe= 76 This

¢=| gfar. Then j ¢.fdv—q+ 1 — p, and the final probability that
D, D
the die is loaded is equal to g/(1 — p + ¢). Therefore the final odds are
l_q_A and the factor in favour of the die being loaded is «
1% =\ w.fdr,

D,

where p = ;—5 = the initial probability density of the chances given that. the

die is loaded. The formula | .fdv could also have been deduced directly
D,
from the theorem of the weighted average of factors.

One consequence is that the factor in favour of the die being loaded cannot

exceed max f= l l (6%")% If it is assumed that 6%“ — 1 is small, for all
r

six values of #, it follows easily that the weight of evidence does not exceed

6 _1_1 2

We write the weight of evidence in this form in order to exhibit its connexion
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with the chi-squared test. (See 7.8A.) It may be observed that this result
does not depend on . Next we shall work out the factor for a particularly
simple assumption concerning . It is hardly necessary to point out that the
results would be different with different bodies of beliefs.

In the first place suppose that if the die is loaded then it is loaded in such
a way as to make pg larger than any of py, ps, - - ., p5- Assume, in fact, that
if the die is loaded then the chance of a 6 is uniformly distributed } between
. aand b whereb > a > }. Assume further that p;, = p, = p; = p, = p;, so that

Pe.

each is equal to 1;—

1 b 1 — n—me
= (6~ = ) (6pey™dps.

a
If # is small this can be calculated exactly. If # is large and m, is not close to
/6, then the die is obviously loaded and the calculation is unnecessary. Finally,
n

6

With these assumptions y = b—ic—z where a < pg < b,

and the factor is

if » is large and mg is not too far from - the factor can be calculated by means

of the following rough argument.
The integrand has a maximum at pg = mg/n. In the neighbourhood of
the maximum the logarithm of the integrand is approximately equal to

i%(/,ﬁ — x2), where %‘ =41 4w, pe= %‘(1 + x). (The analysis is

straightforward.) It follows that the factor is approximately
’ enu?/10 m
66 —an w

For example, if b — a'= } the weight of evidence is

n\ 2
§‘<me - §)_ N 1 log (5_75) natural bels,
5 in 2 2n
and this may be compared with the approximate form of the maximum weight
of evidence. As an example of the present formula suppose that z» = 600,
mg = 140 and the initial odds are between 0-001 and 0-01 ; then the factor is
about 2000 and the final odds are between 20 to 1 on and 200 to 1 on that the
die is loaded. ‘This assumes that none of the numbers m,, m,, . . ., mg shows
any considerable deviation from 100. If the only large deviation were on, say,
m, instead of mg, then the factor would be the same, but the initial odds that
the die was loaded in this way would be much smaller. If these odds were
between 0-0001 and 0-001 the final odds would be between 5 to 1 against and

T The possibility of pg being less than 4 could also be taken into account with only
slight modifications.
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2to 1 on. A similar adjustment could be made if m4 had been far below the
mean instead of far above. Finally, if more than one of the numbers e,
showed a large deviation, it would be necessary to sharpen the argument. The
weight of evidence would presumably come out as a sum of expressions resem-
bling the one given above.

7.8a The chi-squared test

So much for the solution of the problem based directly on Bayes’ theorem.
Many statisticians would have used the chi-squared test. The idea of this
test is to take a particular function of the statistics, a function that for this

particqla.r p{oblem T is
6 .
kz - Z’ (my — m)*
r=1 %n ’

and to work out the probability that this random variable is greater than or
equal to the value actually attained (say y,2), on"the hypothesis that the die is
symmetrical. Let this probability be denoted by P(y,?).] If itisassumed that
the corrésponding probability when the die is loaded is close to 1, then
P(y,%) may be regarded as the factor in favour of the die being symmetrical
in virtue of the knowledge that 4 >> #,. This is not the same as the factor in
virtue of the whole experiment, since some of the evidence is ignored. The
true factor depends on all the numbers my, m,, . . ., mg, whereas in the-chi-
squared test only the value of X'(m, — 4n)? is used. Moreover the factor is
worked out on the evidence that y >> y,, but really you know that y = y,.
It might be suggested that the result of the experiment could just as well be
expressed as y <C y, instead of y > y,. But if y, was large so much evidence
would be thrown away by this alternative procedure that the resulting factor
would be close to 1. (In fact the likelihoods of the hypotheses ‘‘ loaded * and
“ unloaded ” would both be near 1.)

As already pointed out, you really know that y = 4,. Since y, can be
known only to a certain number of places of decimals, the factor worked out
by regarding y = y, as the result of the experiment is not of the * indeter-
minate ”’ form 0/0, though the numerator and denominator are both small.
As an approximation the distribution functions of y (or y2), on the two hypo-
theses “ loaded ” (H) and ““ unloaded ” (H), could be assumed to have density
functions. 'The factor in favour of H is then the ratio of these density functions
at yo. 'The denominator would not usually be known at all precisely. It could"
be estimated either by a direct judgment or by calculations based on other judg-
ments. It might be assumed, for example, that, given H, the graph of the

T For a more general definition of x? see 7.8B.
I This is admittedly a rather unsatisfactory notation in the present context.
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distribution of y42% is obtained approximately by averaging for all A between 0
and say % the results obtained by shifting the graph of the y? distribution (given
H) through a distance Az to the right.

It would often happen that the factor in favour of H obtained in some such
way would be in the region of three or four times P(yy2).7 From the present
point of view this is the main justification for using P(y,2) as a measure of the
significance of the experiment. Some statisticians would say that the chi-
squared test has nothing to do with Bayes’ theorem and that it simply seems
rational to estimate significance by calculating the probability of y being as
large as g, or larger. This so-much-or-more idea is very arbitrary and easy
to criticise. An alternative justification of the chi-squared test is available by
means of the Neyman-Pearson technique of errors. of the first and second kind.
But, just as in the inverse probability method, this technique is applicable only
if something is assumed about the distributions of 42 given both the hypothesis
being tested and its negation.

A weakness of the chi-squared test, for the problem of the die, is that it
does not take into account the peculiar significance of the ““ 6 ”-face. We
should like to be able to give additional weight to the term (mg — $n)2/3n.
In more general problems it would be useful to know the distribution of any
linear form in the numbers analogous to (m, — 3#)%/4n, instead of only the
sum. As far as I know this problem has not been solved in a convenient
mathematical form.

In view of the difficulties of a strict application of Bayes’ theorem and in
view of the criticisms of the chi-squared test, perhaps the best practical procedure
is something intermediate. For example, you could use the chi-squared test,
and take 1/4P(y,?) as the approximate factor in favour of a hypothesis to be
stated after seeing the siatistics. 'The initial probability of this theory could
then be judged subjectively. For example, if the main deviation were on the
1I’s and the 3’s, you could take as your hypothesis that ‘ the die is loaded but
not with respect to 6’s” and perhaps judge that the initial probability lies
between 0-0001 and 0-001. Here it would not be right to. formulate the
hypothesis in terms of 1’s and 3’s (which would decrease the initial probability
still more) since in using the chi-squared test no credit is allowed for the fact
that the main deviations are with respect to these particular faces.

Another point about the chi-squared test is that if z is very large, the test
will probably give a significant result, because the chances, p,, p,, . . ., Pg Can

+ There are two independent reasons why the factor in favour of H exceeds P(xo?).
The first is that to preténd that the result is x > x, when it is really x = y, is unfair
to H. The second is that P(x > x, | H) < 1, so that the factor from the evidence
€ x > xo)) is
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hardly be exactly equal. In fact, if # is very large the problem of estimation
of the chances would be more to the point than the problem of significance.
A similar remark applies to many other problems and to other tests of signifi--
cance. (Cf. the remarks at the beginning of 7.8 concerning the meaning of
“ loaded ”.) ’

The difficulties of this example are fairly typical in statistics. Serious
mistakes can be avoided only by having a familiarity with the principles of
probability.

A question that has been much discussed in recent years is whether it is
ever possible to test a hypothesis H by considering its likelihood, but without
considering the likelihood of H. The chi-squared test in its ordinary form
does just this. It does not tell us anything immediate about the final odds of
H. _What it does tell us is that if a statistician always uses the chi-squared test
and rejects H when y > y;, then he will reject true hypotheses in roughly a
proportion P(y,2) of cases, in the long run. In other words he will commit
errors of the first kind in this proportion of cases when H is true—always
assuming that the hypotheses that are tested are independent of one another.

If the statistician takes more evidence into account he may be expected
to get better results than if he relies on the chi-squared test. But this test
often saves time. The saving of time is worth while in any application that
is either urgent or not exceptionally important.

7.8 Additional note on the chi-squared test

Let a sample of n objects be classified in terms of p mutually exclusive
properties; and let the objects fall into p cells, the numbers in the cells being
my, My, . . ., M, Let the (unknown) chances of falling into the cells be p,,
Do - - Pp- On a hypothesis H let p; =m0y, py =7, . . ., p, =7, and on
the hypothesis A suppose that the distribution of the chances is uniform in
the space

2op=1, p >0 (r=1,2,... p),
with the point p;, = 7,, py = 7y, . . ., p, = 7, removed. (The notation “ H
is justifiable as in the third paragraph of 6.3 or the eighth paragraph of 7.4.)
The square of the *“ volume " of this space is p times the square of the volume
of the space

pr<lx P1=0: P2>O, P3>O, D) PP>Oy

by a generalisation of Pythagoras’s theorem. (This can be expressed in purely
analytical terms, but it is intuitively simpler to use geometrical language.)
Hence the volume is Vp/(p — 1)}, so that the function analogous to v in 7.8
is (p — 1)l/Vp. The factor in favour of H is, as in 7.8,

[T

Zpy=1
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where dt is an element of the (p — 1)-dimensional volume. This can be
written

50 ([ TG Corrs ey

P1tHPat .. +Pp_1<1 r=1

— NV {
% Vodpydpy. . . dpy_y = P Dmilmel . oml

n+p— Dimgmug,m . 7w,
P P

as we may see by using Dirichlet’s integral. This expression for the factor
in favour of H is exact and can be calculated by means of tables of factorials.
By using Stitling’s formula we can see that the approximate plausibility gained
by H is, in natural bels,

y* + log {(27”)%" mi(mm, ... w)t (p — 1)t (1 +2 ; 1)_(”‘“’—1')}’

where

=1 (m, — T,m)2

© = Z TN

r=1

The gain in plausibility may be difficult to calculate for other assumptions
about the distribution of the chances. In order to get round this difficulty
you could frame the body of beliefs in terms of the distribution of y?2 itself,
given H. The distribution of 4% given H is known,t and thus the factor in
favour of H could be obtained. It should be noticed that the distribution of
x? given H is effectively independent of 7, whereas the distribution given T
does depend on 7.  In fact the expected value of ¥2 given H would be an increas-
ing function of #, and the probability density at a fixed value of y* would be a
decreasing function of n for large enough values of #. Thus the weight of
evidence in favour of H for a given value of y2 is (for large #) a decreasing
function of #, just as it was before. In this respect the method of inverse
probability differs from the so-much-or-more method.

For some problems it may not be easy to make a tolerably precise judgment,
concerning the distribution of y2 given I or concerning the distribution of the
chances given /1.  For example, suppose that a die has been bought at a reputable
firm and that the spots have been painted on instead of being scooped out, in
order that the symmetry should be disturbed very little. It is decided to test
the hypothesis H that the die has been made with extreme care, i.e. that the
chances are all “ exactly ” §. The given information may cause you to select

+ The probability density of { = x%, given H, is very neatly
2=k~ b-1/T'(Y),
where v = p — 1. The expected value of x*is ». (See any modern treatise on mathe-
matical statistics.)
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for H a hypothesis different both from the previous one of the present section
(with p = 6) and from the one in section 7.8. Suppose that H is selected
in such a way that when it is given the chances are uniformly distributed in
a space S’ defined by

. 2pi=1, X(pi— 3?2 <k

for some % between 0-01 and 0-02. (A modification may be desired if the sample
frequencies lie too far outside S’.) The arbitrary nature of H is justified by
the vagueness -of the given information. Such vagueness is quite common in
the queéstions which arise in statistics, and this is one of the reasons for the
difficulties of the subject.

The “ volume ” of S’ is, as a matter of fact, 872k%/15, which is 6472 k3/4/6
times the volume of S (with p = 6). The effect is to increase the plausibility
gained by H, above the value obtained previously, by between 60 db and 75 db.

If # is equal to six million the plausibility gained by H is between

(21742 — 75) db and (2-17x% — 60) db.
If the initial odds of & are between 0-1 and 10, the final plausibility is between
(21742 — 85) db and (2-17y4% — 50) db.
In order to be able to deduce from this that the final odds of H are at least
100 to 1 on we need
2172 — 85 > 20, ie y2>48.
To deduce that the final odds of H are at least 100 to 1 on we need
2:179% — 50 << — 20, ie. y2 <<14.

These results may be contrasted with the so-much-or-more method. For
instance, given H, the probability that y2 > 15 is only 0-001, and such values
of %2 would normally be regarded as sufficient to reject H. But the discrepancy
between the methods is not as large as it seems, since values of y2 between
15 and 48 would not be likely to occur, given either H or H.

The above calculations could easily be modified in order to decide between
hypotheses H and H where H and H are similar to the previous H but with
associated spaces defined by the inequalities -

Z(pi— 8P <k and Ry <Z(pi— §)2 <hy (ky <hy <hy).
This formulation of the problem corresponds closely to the practical meaning
of the question “ has the die been made with extreme care ? ” The vagueness
of the question is matched by the fact that &, k, and kg require to be given
definite values in order to get a definite answer,

7.9 Contingency tables

The necessity for relying on your own judgment is particularly clear in
connexion with the problem of independence in a contingency table. E. S.
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Pearson and G. A. Barnard have discussed the 2 X 2 contingency table from
this point of view, though not in terms of inverse probability. (See 7.1.)

We begin with a description of the problem.

Suppose that a population of individuals can be classified with respect to
two different properties 4 and B, e.g. colour of eyes and colour of hair. Let
the sub-classes corresponding to these classifications be 4,, A, . . ., 4, and
B, B,, ... B,

Suppose that a sample of the population is taken and it is found that there
are n; individualsin both the classes 4; and B;. ¢ Let ij =1, Zn,;j = mj,

j i
Zn;j =n. These numbers, when arranged in a rectangular array, form a
i

contingency table. (See diagram.) °
Py P - . . By L
Moy Map « « - Mg A
o
fpy Mpg + o« o Nypg A
L]
m o my . . . M n

A question that is often asked is whether the properties 4 and B are inde-
pendent, i.e. whether the chance.py of belonging to both the classes 4; and
B;is expressible in the form pyg;, where X'p; = 1,2X¢;=1. (i=1,2, ... r;
=12 ...,5)

Sometimes the interesting question is whether the properties 4 and B are
in some sense  approximately independent, but here we deal only with the
question of strict independence. For small samples we may expect the answer
to both questions to be about the same. For large samples it is usually more
reasonable to consider the “ degree of dependence ”, so to speak—a problem
of estimation rather than significance.

There is no unique solution to the problem of dependence : the solution
must depend on the assumed body of beliefs. Three special bodies of belief
will be considered. For these it happens to be possible to ‘obtain a simple
exact formula for the factor in favour of dependence. In practice every

tie. in the class 4;.B;. -
I It is not customary to define this sense, so that the question asked is a vague one.
(Cf. the remarks concerning vagueness in 7.8B.)
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example should be treated on its merits, unless the statistician is short of time,
and then a rule of thumb like the chi-squared test may legitimately be applied.
The way in which this can be done will also be described.

Consider the following six statistical hypotheses, in each of which it is under-
stood that there is a uniform density for the chances within the Euclidean
spaces  defined. In all six cases H is supposed to represent the hypothesis
that the properties 4 and B are independent. The “ given > propositions,
which are not stated, would include descriptions of how the samples were
selected. These would probably be different for the three bodies of belief
B, Byand B,. (It is immaterial whether B,, B, and B, are compatible with
one another, but if the six hypotheses were all given different symbols then
they could be regarded as statistical hypotheses all belonging to the same body
of beliefs.)

Bl’ H:Zpij = 1.
.Ii:pij = Diqj, ZP-,, =1, Z%‘ = 1.
B, H:2p; =bL/mn(i=12...7r
: j P /n ) }where the numbers ; are known.
H:py=pg; 2¢=1 pi=1I/mn

By H:Zps=m/n(j=1,2, ... s
3 e i/ ) }where the numbers m; are known.
H:p;=pig;, 2Zpi=1, g =mi/n

It is not claimed that any of these bodies of belief is ‘‘ right ”. They
correspond roughly to the cases in which the sampling is done in such a way
that

(i) a knowledge either of the column totals only or of the row totals only is
_ felt to affect the probability of independence ;

(ii) a knowledge of the row totals is felt not to affect the probability of

independence;;

(iii) a knowledge of the colum.n totals is felt not to affect the probability

of independence.

Now with the help of the mathematical formula

N
(N — Din,)
7y
Averagg_l ] HEWN—T+Zn)

r=1
z,> 0, Sz,=1

which is connected with Dirichlet’s integral, we can prove that the factor in
favour of H, corresponding to B, is f, say, where

(= Dl(n4r = Dl(n 4 s — D)l IIn;!

T (A s — DI — Di(s — DUT(GImyly

T It will always be taken for granted that the numbers py; are positive.
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and corresponding to B, it is
o s DL = Dy g
II(l; 4- s — 1)11Im;!
The factor corresponding to B; is similarly
(n + 7 — DU — D= tlIn!
Jr= I (m; 4+ r — DL
Notice the check that f, f* and f all reduce to 1 if z=0 or = 1.}
The reader is recommended to compare these formulae, for the case
7 = § = 2, with those given in standard textbooks on statistics. The factors
can all be calculated exactly, or approximated as in 7.8B by expressions involving

Z(m, — I m,/n) _
Limj/n

Modifications could be made in the various bodies of behef analogous to those
in 7.8B.

The standard method of applying the chi-squared test to a contingency
table is to argue as follows. ‘“If all the numbers L and m; were known this
would provide very little evidence about independence. But if these numbers
are known and the frequencies /;/n and m;/n are identified with p; and gj,
then (on the hypothesis of independence) the distribution of y2 is the usual
x? distribution with (r — 1)(s— 1) ‘ degrees of freedom’. The appropriate
column in the y2? tables can then be used in order to find the probability of
obtaining a y2 exceeding the observed value.”

As in 7.8A the body of beliefs might be formulated in terms of the distribu-
tion of 42 given H. The judgments made would depend a great deal on your
familiarity with such problems.

Our solutions are not offered in an authoritative spirit, but merely as con-
tributions to a difficult problem. The theoretical difficulties become less acute
“for large samples. For if 7 and s are fixed, if # tends to infinity, and if the
ratios of I; : m; :n are bounded for all 7 and j, then it is easily seen that the
ratios f : f : f"/ are also bounded. Hence the alternative judgments will generally
all lead to the same decision as to dependence or independence when the sample
is very large. But on the chi-squared test the table will nearly always show a
" significant degree of dependence if # is sufficiently large, for absolute independ-
ence is rare in real life. 'This is a theoretical objection to the chi-squared test :
you often ask whether the qualities 4 and B are independent when you really
know all the time that they can hardly be absolutely independent. 'The trouble
with the chi-squared test is that it takes the question too literally. (Much the
same criticism of the chi-squared test has already been made in 7.8A.)

%2, where

+ If row and column totals are all irrelevant the factor may reasonably be taken as
FSE DS =Ff7/f
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One method of using f, /', /" is to-calculate them and then to use the results
as a basis for further judgment. The calculation of f, f* and f' is objective,
so that the method is similar to the use of ‘the chi-squared test. The results
at least serve as a check on the reliability of the chi-squared test.

The formulae for f, f' and f”’ bear a formal resemblance to the likelihoo
ratio + A for the hypothesis of independence. 1 is easily seen to be f

5 A Imms
nn ITng
4
This formal resemblance should not be taken to imply that 1 can be given an
interpretation similar to that of a factor. In fact A cannot exceed unity. 1 is
used by considering its distribution on the assumption of independence, whereas
the factors can be interpreted directly.

7.10 Estimation problems

We shall now consider the problem of the estimation of the values of a set
of unknown numbers. For simplicity, however, it will be supposed that there
is only one number ¢, though everything that will be said can be extended to
any finite set. Some examples of estimation have already been discussed.
The problem is to associate with ¢ either a ““ best ”” value or a whole interval
of values. " Here we shall deal only with the latter problem.

An important case is when ¢ is the only parameter in a composite statistical
hypothesis H, so that H is the disjunction of simple statistical hypotheses H,
for some class 'of real values of c. Let E be ‘‘ an experiment ”, i.e. a collection
of statistics. (See the first footnote in 7.4.)

It is generally agreed that if the initial distribution of ¢ is known then the
final distribution can be obtained, and the probability that ¢ will lie in a given
interval can be deduced at once. But usually the initial distribution of ¢ is
not known precisely, being only partly defined by means of inequalities. The
question arises then whether anything * precise ’ can be said about c, i.e. any-
thing that does not depend on the initial distribution. In fact this can be done
in the following ingenious way.

Let ¢(E) and é(E) be numerical functions of E. Suppose that for all ¢
and some fixed «,

P{(E) <c¢ <E(E)|H} = a.
Then the interval [¢(E), &(E)] is called a confidence interval for ¢ with confidence
coefficient o.

+ This is defined, for example, by S. S. Wilks, 1944, 150. The likelihood ratio should
not be confused with the ratio of the likelihoods used in the definition of a factor. Wilks’s
definition, slightly generalised, is given in a footnote in our Section 6.1.

I Wilks, in error, gives the value of A~'. (L.c., 220.)
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It should be carefully noticed that the ‘ given” evidence in the above
probability is H,, although in practice it is £ which is known and not H,.

Now suppose that the functions ¢(E) and £(E) are selected so that [¢(E), (E)]
is a confidence interval with coefficient &, where « is near 1. Let us imagine
that the following instructions. are issued to all statisticians.

“ Carry out your experiment, calculate the confidence interval, and state
that ¢ belongs to this interval. If you are asked whether you ‘ believe ’ that ¢
belongs to the confidence interval you must refuse to answer. In the long run
your assertions, if independent of each other, will be right in approximately a
proportion o« of cases.” (Cf. Neyman (1941), 132-3.)

The advantages and disadvantages of the procedure are similar to those of
the chi-squared test and hardly require additional comment. We remark
merely that if the procedure were consistently adopted it would occasionally
lead to ridiculous behaviour, because of its neglect of initial probabilities and
utilities.

A technique that bears some resemblance to that of confidence intervals is
that of *‘ tolerance limits”. (See Wilks (1946).) Suppose that X is a con-
tinuous random variable with an unknown density furnction f(x). A sample
of n independent readings is selected and these are arranged in numerical order
X <L xy <y < ... <y Let Ly(xg, %o o o oy &), Lo(y, %5 . . ., %,) be
two functions of the sample values. These functions are called ““ 10089, dis-
tribution-free tolerance limits at probability level « ”’.if, whatever function f

Ly
may be,} P(j- J(x)dz > ﬁ) = o, assuming that the probability density of X
A

is f(X). In particular, Wilks shows that L, = x,, L, = x, are such to]erg.nce

limits if

npr=l—(n— 1)pr=1—a.
For example, if n = 473, it is 19 to 1 on that the interval [x,, x,] will include
at least 99 per cent of the population. But this is true only before the sample
is selected. Afterwards it islikely to be more informative to take all the readings
into account and to use a curve-fitting technique, even if the curve-fitting is
done by eye.

Thus the technique of tolerance limits is liable to throw away evidence for
the sake of objectivity. In this it again resembles the chi-squared test, and
like the chi-squared test its convenience depends partly on whether suitable
tables are available.

The importance of these objective techniques should not be underestimated.
By ignoring subjective judgments they are incapable of giving information about
the final probabilities of the hypotheses, but they do give results that are indis-
putable and they often give them without much calculation.

T Observe that the existence of f is assumed.
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The general conclusion is that in statistics it is useful to know a number
of different techniques, the basic one being the technique of probability.

Exercise. An “ unbiased estimate *’ of a parameter ¢ is a statistic whose
expected value, given ¢, is c. In a sequence of # independent trials with chances
p there are r successes. Show that an unbiased estimate of p* is #® /n® where
s® =g(s —1)}(s —2) . . .(s— k4 1). This actually vanishes if » < &k < n.
Assuming that p has a uniform initial distribution show that the expected value

of pt is (r + k)®/(n 4 &k 4 1)®,
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APPENDICES

I. The error function

Several books on probability include tables of the ““ error function . Here
we content ourselves with the following approximate formula for mental calcu-
lations :—

— 10 logy, \/_,[ e~ ¥4t = 2kx? + 4 4 10 logy, x,

with an error less than 1 if 2 < & < 14.

I. Dirichlet’s multiple integral

jj . j-’ﬁml coL X f(Zx)drey ... dxy

ml ... TmAn—1
(Zm i l)' f(x)x dx,
where the region of integration in the multiple integral is deﬁned by Xx <

%, >0,... % >0. The formula is not restricted to integral values of ml,
my, . . ., but these numbers must be algebraically large enough for the integrals
to exist.

It can be deduced that the volume of an n-dimensional unit sphere is
stn/(4n)!, a result which was used in 7.8s.

III. On the conventionality of the addition and product laws }

We shall show (but not quite rigorously, nor in detail) that the addition
law for mutually exclusive ‘“events” and the product law for independent
events are largely conventional. At first this appears to exhibit an essential
distinction between the non-frequency and frequency theories. But it should
be realised that in the frequency theory it is likewise only a convention to define
probability as the limit of a proportion of successes rather than as some mono-
tonic function of this limit.

Suppose that ‘ probability, >’ (denoted for short by P4) has the properties—

(i) P4(E.F) is a function of x = P4(E) and y = P4(F) where E and F
are arbitrary independent events. (We are taking the ‘ given” proposition
for granted.)

(ii) Po(E v F)is a function of P4(E) and P,(F) where now E and F denote
mutually exclusive events.

Since E.F = F.E and E.(F.G) = (E.F).G, with similar results for dis-
junctions, it follows that the two functions mentioned satisfy the commutative

+ See, for example, Whittaker and Watson, Modern Analysis (4th edn., 1927), 258,
or Jeffreys and Jeffreys, Methods of mathematical physics (1946), 440.

I The following remarks arose out of a discussion on a paper by G. A. Barnard
(Jour. Roy. Stat. Soc., Ser. B, 1949 or 1950) and many of the ideas are his. See also
‘“ conventions ” in the Index, for references to Jeffreys and Schrédinger.

H 105



APPENDICES
and associative laws. It then follows from a theorem |t due to Abel (and
published in his collected works) that the two functions are of the forms

P H{p(®) + @)} v Hp() + ()}
Now define P3(E) as exp ¢ (P4E). Then Pg satisfies the product law and
a modified addition law of the form

7(2) = (%) + (),

where x = Pg(E), y = Pp(F) and- ¢ = t(x, y) = Pg(Ev F). Now
(E.F)v(E.G)=E.(FvG),

so the function #(x, y) satisfies the condition of homogeneity

t(0x, ly) = At(x, ).
It can be deduced from these conditions that the function # is of the form
(xE + yEY/E, for some constant K. (This is not a trivial result. It is neces-
sary to assume at least that the function is measurable.) Now, at last, let
probability be defined by P(E)= (PgE)E. Then probability satisfies the
product law and the ordinary addition law. Thus it is sufficient to assume
quite weak properties for probability, in order to establish the existence of a
probability which satisfies the addition and product laws. Moreover, proba-
bility is an increasing function of probability, since exponentials and Kth
powers are increasing functions. Therefore the partial ordering for probability
is the same as for probability,. This shows in what sense the addition and
product laws are conventional.

+ This theorem gives necessary and sufficient conditions for a function of two variables
to be calculable on a suitably calibrated slide-rule. The theorem has been rediscovered
several times. See, for example, J. Aczél, Bull. Soc. math. Fr., 76 (1948), 59-64.
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A few definitions and remarks are included for the sake of clarity.
The references on pages 107-8 have not been indexed.

A
Al to A6, 19
A4, 49
Abel, N. H., 105
abstract theory, 5, 19-30
acceptance, 65, 84
Ackermann, W., 1n, 27n
acoustics, 63, 64
actuarial worlk, 53
Aczél, J., 105n
addition law, 13, 16, 19(A2), 104
generalised, 22-3, 26, 27
see additivity, complete
addition of random variables, see sum
additivity, complete, 5n, 23, 29, 50n
adultery, 74
almost certain, 18, 21, 26, 27, 39, 46, 52
see certain
almost certain (or impossible) and empiri-
cal propositions, 35, 78
almost certain, and infinite successions of
trials, 29
almost.impc.nssible, 18, 21
propositions *“ given ’, 30, 39—40, 46n
see impossible ; almost certain
almost mutually exclusive, 21
alternative hypotheses or theories, 40-6,
64-6, 99
alternatives, 14
and, 1
approximation, 33, 34, 36, 37n, 46, 49, 51,
56, 59, 60, 69, 81, 88, 90, 91, 92,
. 93, 98, 104
asymptotic properties, 77
attributes, 76, 77, 78, 85
authority, 12, 100
average = arithmetic mean. Not to be
: - confused with ““ mean

average, as a maximum likelihood value of
a normally distributed variable,
87
axiom, additional, see additivity, complete
axiom, alternative, 49
axiomatic method, 5
axioms, see Al, etc.
alternative set, 21, 30
““ obvious ”, 13, 20, 53
of logic and mathematics, see H*
of utility, 53 .
origin of, 13-18
rules and suggestions, 12, 31, 34, 47

B
B, see body of beliefs
B*, 47
B(E|H),2

Barnard, G. A., 64n, 77n, 98, 104n
Bartlett, M. S., 10n, 11, 42, 73, 77n
Bayes’ postulate, 9n, 55
see insufficient reason
Bayes’ theorem, 24, 40, 62, 63, 65, 67, 68,
71,77, 94
see probability, inverse
Béyes’ theorem in reverse, 35, 81
see imaginary results, device of
bel, 63
natural, 63n
belief, see degrees of belief
beliefs, body of, see body of beliefs
benefit (expected), see utility
Bernoulli, Daniel, 54
Bernoulli, Jacob, 6n, 29n
‘“ best ”’ value of a parameter, 101
betting, see gambling
bias, 41, 45, 89n
see dice, loaded ; unbiased estimate
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billiard balls, 9
binary digit, 75
biology, 83
see genetics
Birkhoff, G., 14n
birthdays, 38
““ bit ”’ of information, 75
blood-groups, 74
body of beliefs—
alternative, 43, 99
augmentation, 32
definition, 3, 32
empty, 4
for a contingency table, 99, 100
generalisation of, 10, 48-9
taken for granted, 20
transitive, 14n
Boltzmann’s constant, 75
Borel’s theorem (perhaps better called the

Borel-Cantelli theorem), 29, 46,
78

brackets, 26n

Broad, C. D., 21n
Brunt, D., 90

““ bumpiness ”’, 85, 86

C
calculation, see numerical work
Cantelli, F. P., 29n
see Borel
cards, 8, 34, 37, 38, 73
perfect, perfectly shuffled, 15, 16 34
Carnap, R., 11n, 48
Cauchy-Schwartz inequality, 39
causes, 60
central limit theorem, 57, 88
certain(ty), 19, 21, 24('T7)
see almost certain
practical, 6, 39, 49
chance, 41, 78, 82, 84
and sampling, 78, 79
distribution of, 79-82, 84
expectation of, 79
games of, see games of chance
- maximum likelihood value, 80
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chance, probability of, see probability of a
chance
‘“true ”, 43, 46n
chances, classification of, 43
characteristic function, 54, 59
discrete, 58
cheating, 44n
chemistry, 76
chess, 49
chi-squared test, 70, 77, 84, 92, 93-7
analogy with confidence intervals, 102
analogy with tolerance limits, 102
and contingency tables, 99, 100
formula for distribution, 96n
chromosomes, see genetics .
class interval, 59
classical definitions (of probability), 35
cogent reason, 8, 12, 37, 47
coin-spinning, 36-7, 43, 47, 53, 72, 75
collective, 7
common sense, 67, 77
comparable degrees of belief, 3, 9, 13
comparison between beliefs, 3, 11, 13-14,
32, 33,37
complication, 36, 76
compounding of distributions, see con-
volution ; sum of random vari-
ables
computable numbers (for a definition see
Turing, Proc. London Math. Soc.,
1937), 55n
conditioned reflexes, 7
confidence coefficient, 101
confidence intervals, 77, 101-2
conjunction, 1
see multiplication law

consistency of the abstract theory, 5, 21, 30,
33

constructibility, 4n, 32n

contingency tables, 77, 97-101

continuity, see mathematical convenience
contradiction, 3, 20, 21

convenience, see mathematical convenience
conventions, 9n, 13, 15, 104

convolution, 52, 56, 57, 88
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Copeland, A. H., 7n
correlation coefficient, 58
cosmic rays, 82
Coxeter, H. S. M., 38
Cramér, H., 9, 23n, 50n, 51n, 57, 76n
credibility, 2n
crime, see law (legal)
cumulants, 59
curve-fitting, 84-9, 102
curves—
freehand, 89, 102
J- and U-shaped, 88
single and double humped, 86, 87, 88
see smoothness ; ‘‘ bumpiness

D
Davenport, H., 38
db, see decibel
decibel, 634
decimals, 17-18, 57, 93
definitions, 19, 21, 30
see under probability and other headings
degrees of belief, 1-3
concerning mathematical theorems, 49
sometimes meaningless, 2, 3n, 30, 32
see comparison ; intensity; proba-
bility
degrees of dependence, 98
- degrees of freedom, 100
degrees of meaning, 1n, 40n
density function, 51, 54, 93
dependence, see independence
determinism, 15
dice (1imperfect), 38, 59, 80, 96~7
loaded, 64, 67, 72, 904
perfect, 16, 17
digits, 58, 75
dimensions, 7n
see space, finite-dimensional
*Dirichlet’s multiple integral, 74, 96, 99, 104
dishonesty, 45
see honesty
disjunction, 1
see addition law
distances, see geometry

distribution, 50-61
binomial, 28, 56, 57
~free, 102
frequency, 59-61
function, 50
neither continuous nor discrete, 55
normal, 56, 57, 60, 86-90, 104
‘“ observed ’, 88
of a chance, 79-82, 84
of a distribution, 84
Poisson, 56
rectangular, 18, 55, 56, 69, 70, 81, 95,
97
and contingency tables, 99
and Laplace’s law of succession,
80
and maximum likelihood, 83
two-dimensional, 51, 58 ~
distributions—
compounding of, 51, 54, 88
linear combination of, 88
see curves
dogs, conditioning of, 7
Dreyfus, A., 67
Drosophila, 82
dualism, Preface, 11n, 42n

E
E, 1,2, 2n,82
E* 19
economics, 83
Elderton, W. P., 88n
electronic reasoning, 48
elementary symmetric function, 38n
entropy, 75
equally probable cases, 7-8, 13-18, 26, 33,
47
equivalence, 19, 29n
error, avoidable or unavoidable, 89
function, see distribution, normal
errors of the first and second kind, 65n, 77,
83, 84, 94, 95
ESP, see extra-sensory perception
estimation, 81, 95, 98,101-3
ethics, 53n
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‘“evens ”, 62
event, 334
rare, 88
evidence—
circumstantial, 67
-ignoring of, 36, 77, 93, 102
see weight of evidence ; information
exclusive, 14, 16, 22
exhaustive, 14, 26
expectation, 524, 58
For expected odds, etc., see under
separate headings - '
experiment, 6, 6n, 8, 75
see E ; trials
experiments—
conceivably repeated, 7, 47
design of, 35-6
extra-sensory perception, 35, 37, 44-5, 66,
68-70, 81, 90
eye-colour, 23, 98

factor, 62—4

bounds for, 68

expected, 72

infinite, 67

large, 68

maximum, 91

moments of, 74

partial, 68, 71

relative, 71, 79, 90

sometimes of importance apart from

the initial probability, 70n
used as a statistic, 1001
see sequential tests

factors, weighted average, 68, 91
“ failure »’, see *‘ success
fallacy of typicalness, 67
Faltung, 52
Feller, W., 29n, 52n .
final (probability), 24, 71-2, 83
finite-frequency theory, 9n
Fisher, Arne, 8n
Fisher, R. A., 36, 62, 63n, 76, 82
forecasting, 49
112

fractional dimensions, 7n
Fréchet, M., 23n, 29n
frequency, 59-61, 77-8
limiting, 6, 29, 46, 78, 79n, 82
theory of probability, 6-7, 29, 46-7, 80
apparent concession to, 12
see finite-frequency theory
function space, 61, 85
future and past, 1, 2n

G |
gambling (and betting), 49 (bis), 534, 73
impossibility of a system, 7
games of chance (idealised), 13, 16, 78
see cards ; coin-spinning ; dice
Gaussian distribution, see distribution,
normal
genetics, 41, 70, 71n, 74, 82
geometrical language, 95
geometry, 4, 32
(distance), 11, 34 ~
““ given ’ proposition unknown, 102
guessing, see extra-sensory perception

H
H, 1
H* 19-20, 24
Haldane, J. B. S., 55, 56, 63n, 70
happiness, 53
see utility
Hardy, G. H., 72n
Hausdotff, F., 7n
hearsay evidence, 36
height of men, 43, 59, 84-8
heredity, see genetics
Hermite functions, 89
Hilbert, D., 1n, 27n ,
Holmes, S., 67
honesty, 35, 55
see dishonesty
hypotheses—
alternative, see under alternative
considered in pairs, 66, 83—4
three, 66
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hypothesis, 24, 40-6
acceptance and rejection, 84
composite, 68-70
plausible, 83
stated after making observations, 91,
94
statistical, 66, 73
statistical, composite, 82, 101
statistical, simple, 66, 82, 99, 101
hypothetical population, 60n, 78
see population ; super-population

I
ideal, unattainable, 6
idealised games of chance, see games of
chance
idealised problems, 5, 15n, 17-18, 35, 80
see additivity, complete ; probability,
infinite ; proposition, idealised
ignorance, 15
ignoring of information,
ignoring of
imaginary results, device of, 35, 70
see Bayes’ theorem in reverse
imaginary universe or world, 1, 42
imagination, 41n
implication, 19
‘We usually interpret this as ‘ logical
implication . But all the theorems
can be extended to the case of
““ material implication >’ by regarding
as one of the ‘“ given > propositions
the proposition H** which asserts all
true'laws of nature. It will be found
convenient sometimes to take H** for
granted and omit it from the notation
importance versus urgency, 95
impossible, 14, 19, 24
see almost impossible ;
self-contradictory
improper theories, 41-3, 69
inaccurate language, 334
incompatible, see mutually exclusive

see evidence,

proposition,

inconsistent, see unreasonable ; consistency
independence, 17, 21-3, 67, 78, 95
in a contingency table, 98-100

independent random variables, 51
indeterminism, 15
indifference, principle of, 37

see insufficient reason
individuals, 76

" induction, scientific, 11, 41

inequalities, 27, 38-9, 72
see comparison
inertial constants, analogues of, 58
infinite—
“ approximately ’, 7
expectation, 534
factor, 67
number of hypotheses, 44, 46n, 69
number of parameters, 61
number of propositions, 22
population, hypothetical, see hypo-
thetical population
probability, 21, 55-6
succession of trials, 67, 18, 29
infinity, see mathematical convenience
inflexion, points of, 86, 88
information—
amount of, 63, 74-5
half-forgotten, 36
vague, 66, 97, 98n
see evidence
initial  distribution,
respect to, 80
initial probability, etc., 24, 35, 45, 46, 60,
62, 71-2, 83, 84, 101, 102
instructions to statisticians, 102
insufficient reason, 8, 37, 55
.See cogent reason

insensitivity with

insurance, 53

intensity of belief, 1-3, 32
see comparison

intuition, 49, 78

intuitionism, 49

irregular cqllective, 7

J :
Jeffreys, H., 2, 4, 8-9, 11-14, 21, 24n, 35,
42n, 47, 55-6, 60, 63, 104n
Jessen, B., 88
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Johnson, W. E., 10

judgment, 48-9, 65,77, 80-1, 84, 85, 89,100
see probability judgments

jury, see law (legal)

justification (a priori), 13, 33
see verification

K
Kemble, E. C., 8
Kendall, M. G., 57, 76n, 88n
Keynes, J. M., 2, 10, 14n
Khintchine, A., 29n, 52n
Kneale, W., 9n
Kollektiv, 7
Kolmogoroff, A., 9, 23n, 29n, 52n
Koopman, B. O., 3n, 10, 11

L

language—

design of, 4n, 48

geometrical, 95

inaccurate, 33—4

non-mathematical, 34

probability depending on, 48
Laplace’s law of succession, 80
law—

(frequency distribution), 60

Uegal), 36, 47, 66-7

of large numbers, 52n

of nature, 32, 60n

see scientific theories

see addition law ; multiplication law
laziness, 77
Lebesgue, H. L., 7n, 9, 23, 51

see measure
legal applications of hypotheses, 66
Legendre polynomials, 85n
Lévy, Paul, 29n
likelihood, 62, 83

maximum, 73 (definition), 77, 80,
82-3, 87, 89
precise, 82
ratio, 63n, 101
likely = probable. But see likelihood

limit, see frequency, limiting
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Littlewood, J. E., 72n

logic, 1, 2, 5, 19, 27
formal, a contrast with probability, 14
inadequacy of formal, 3

logical notation, 1 ’

logically true, and false, 19

‘“long run ”’, 10

“lot ”’, 64
M
u, 2,34
mathematical convenience, 18, 36, 51, 60,
79, 88, 94, 102

see additivity, complete
mathematical theorems, beliefs concerning,
49
mathematics, pure, 19, 49, 76
maximum expected utility, 53
Maxwell demon, 75
mean (or mean value), see expectation
mean deviation, 55
mean value of a chance, 79
meaning, 1, 3n, 4n, 5, 40n
degrees of, 1, 40n
see under degrees of belief
measure, 7n, 9, 18n, 21, 23
see function-space
measurement, 50, §9-90
median, 55
medicine, 83
Mendel, G. J., 41
meteorology, 49
miracles, 39
Mises, R. von, 6-7, 10, 24n, 29
mistake, 89, 95
models, 38
moments, 54, 56, 58, 59, 88
money, 53—4
most probable value (a value of a para-
meter for which the point or
density function is a maximum),
80, 83
motive, 67
multiplication law, 13, 16-17, 19(A3), 22,
23, 24, 27(line 3), 104
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murder, 67

music, 64

mutation, 82

mutually exclusive, 14, 16, 22

) N
Nagel, E., 11n
negation, 1, 25
neper, 63
Neyman, J., 77, 83, 94, 102
non-numerical theory, see

numerical

not, see negation
notation—

ambiguous, 32

logical, 1

“ misleading »’, 17, 21n, 50, 66, 84
numerical work, 55

probability,

0]

O, o (should not be confused with the same
symbols used in pure mathe-

matics for orders of magnitude),
62

objective, constructibly, 4n, 32n
objective (and subjective) degrees of belief,

comparisons, probabilities and
theories of probability, 2, 4, 6-11,
42, 47-8
see precision
objectivity—

and the neglect of evidence, 102
degrees of, 4
superficial appearance of, 6
observations, combination of, 8§9-90
Occam’s razor, 60
octave, 63n, 64, 75
odds, 62, 73, 83
expected, 73
gambling, 49
opinion, differences of, 83
see public opinion
or, see disjunction
oxygen, 39

P
P and P/, 32, 36n
P(E), 21
see notation, ‘‘ misleading
P(E | H), etc., 2, 4,19, 31
parabolas, 89 )
parameters in a law, 60-1, 85, 101
partial ordering, 14n
past and future, 1, 2n
Pearson, E. S., 77, 82n, 83, 85n, 94, 98
Pearson, K., 88-9
perfect coins, packs of cards, etc., see
games of chance (idealised);
cards, perfect
Petersburg problem, 53
philosophy—
independence of abstract theory from
philosophical interpretation of
probability, 29
solipsism, 11
see unobservables
physics, 36
see quantum theory
-, 49
plausibility, 63
gain or loss, see weight of evidence
levels, 65
relative, 71
players’ ruin, 73
Poincaré, H., 27
point function, see under probability
point-set theory, 7n, 9, 21, 23
Poisson distribution, 56
politics, 41n
Pélya, G., 72n
polynomials, see Legendre polynomials;
parabolas
population (finite or infinite), 5960, 76, 78,
80, 82, 84, 85n
posterior, see final
practical difficulties, 36, 76
practice, closeness of our theory to, 12
precision, 34, 42, 47n, 824, 90, 101
see probability intervals
prediction, 6, 39, 49, 60, 76
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primitive notions (beliefs and cornparisons
between beliefs), 2

Primula sinensis, 70

prior, see initial

probability, 3, 14, 19, 31

The definition of 1.3 is finally com-
pleted in 4.1 where * probability ” is
given a double meaning. In chapter 2
the word is used in a restricted sense
and in chapter 3 without any definite
meaning. (The word is also used
occasionally instead of ““a theory of
probability )
abstract theory of, 5, 19-30
ambiguous definition, 9-10
and language, see language
and statistics, 76-103
. circular definition, 6

close to one, see certainty, practical
continuous or geometrical, 17-18, 40
definitions of, 6—12
density, 51, 54, 93
distribution(s), see distribution
equal, 14
expected, 73
experiments, 8
final, see final
fundamental theorem of, 46, 78, 81

geometrical, see probability, continu-

ous
given all known inf'ormatiqn, 36, 41n
infinite, 21, 55-6
initial, see initial
intervals, 40, 82
see precision
inverse, 62, 70, 82—4
see Bayes’ theorem
irrational, 18, 34
judgments, 3, 4, 12, 14, 49, 61, 67, 82,
94
see judgment
linguistic, 48
non-negative, 19(A1), 25
numerical, 6, 10, 14-15, 20, 34, 36, 37
objective, see objective
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probability of a chance, 43
see distribution of a chance
of a distribution, 84
of a logical combination of proposi-
‘tions, 27
of E given H, see P(E), P(E | H)
one, see almost certain
physical, see quantum theory ; objec-
tive (probabilities)
point function, 51, 54, 91
posterior, see final
precise, see precision
prior, see initial
relative, 71, 79
small, 39, 67, 68
see rare events
statements, 19, 20, 41, 42n
see proposition, definition of
statistical, 42’
tautological, 42, 82
‘“ technique ”, 31, 33, 103
theories of, see theories of probability
theory of, see theory of probability
true, se¢ chance, ¢ true
zero, see almost impossible
probability,, 48
product rule, see multiplication law
proper and improper (theories), 41-3, 69
proportion of possible alternatives, 9
proposition—
analytic, 2, 19
definition of, 1, 3, 19, 20, 41, 42n, 72n
empirical, 2, 30, 34-5, 78, 90n
idealised, 90n .
incompletely defined, 42, 82
involving probability, 1, 19, 20, 41,
42n, 72n
‘“ partial ’, 1n
self-contradictory, 20
propositional functions, 37n
(A propositional function is a func-
tion whose values are propositions)
propositions, logical combination of, 27
psychology, 7, 11
public opinion surveys, 41n
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““ pure thought ”*, 26
Pythagoras’s theorem, generalisation, 95

Q
quality control, 64-6
quantum theory, 41-2, 76, 78
see unobservables
question,
refusal to answer, 102
taken too literally, 100

R
rain, 1, 36
Ramsey, F. P., 10,53
random—
at, 38

numbers, 57, 58
sample, 38, 78
variable, 50
rare events, 88
see probability, small
rational—
behaviour, 53
numbers, as probabilities, 17, 34
reasonable, Preface, 2, 3,9, 33
see rational behaviour
reasoning—
definition, 3 °
electronic, 48
recognition, 68
Reichenbach, H., 10n
rejection, see hypothesis, acceptance and
rejection ; ““lot ”’; observations,
combination of
relevance, 36
resultant, 52
rigour, 76
roulette, 16
rules, 5, 31-2
see axioms, rules and suggestions
Russell, Bertrand, 2n, 9n, 37n

S

‘“ same essential.conditions ”’, 46
sample, 60

sample, frequency, 5960, 77-8
mean, etc., 60
size expected, 65, 73
small and large, 77, 83, 95, 98
sampling—
and chance distributions, 848
of a single attribute, 77-81
with and without replacement, 38,
78-9, 80, 85
scale readings, 50, 89-90
Schrédinger, E., 13, 104n
Schwartz, H. A., 39
scientific mind, 77
scientific theories, Preface, 1n, 4, 10, 31,
40-6
see law of nature
self-consistency, see consistency
semitone, 64
sequential tests, 64—6, 73
Shannon, C. E., 74n, 75
o, see standard deviation
g-age, 69
significance, 81, 90-101
see sample, small and large
simplicity, 5, 11, 55n, 60, 85-6, 89
Slater, J. C., 75
slide-rule, generalised, 105n
Smith, C. A. B,, 71n
smoking, 41n
smoothness, 45, 85, 88, 89
sociology, 83
solipsism, 11
so-much-or-more method, 93—4, 96, 97
space, finite-dimensional, 9, 90, 96-7, 99
see volume
space of functions, 61, 85
““ spread »’, 55
standard deviation, 54
see variance
standard measure, 56
star magnitudes, 64
state of mind, 2
A numerical function of obser-
vations. Thus the word ‘‘ statis-
tics ”* has two meanings

statistic.

117



INDEX

statistical—
hypothesis, see hypothesis, statistical
mechanics, 8, 75
theory of probability, 6, 10
statistics—
and probability, 59-61, 76-103
definition, 76
descriptive, 76
of statistics, 86
predictive, 76
Stieltjes, T. J., 51
Stirling’s formula, 57
subjective, see objective
subjectivity, see objectivity
substantially right, 46
“ success ”’, 6, 7, 29
suggestions, 346, 45, 60
see axioms, rules and suggestions
sum of random variables, 51-2, 58, 59
see convolution
super-population, 85n
superstition, 83
support, 63n
symmetric function, elementary, 38n
symmetry, 8, 17, 37, 41, 90, 96

T

T1, T2, etc., see theorems
tables, 102

see contingency tables
“ tails ”, 60n, 87-8
tautology, Preface

see probability, tautological
Tchebycheff’s inequality, 57
telepathy, see extra-sensory perception
tests, see trials ; sequential tests; signifi-

cance

theorem, central limit, 57
theorems—

T1 to T20, 22-8

T21, T21a, 52

T22,'T23, 63

T24, 79
see mathematical theorems; Bayes’
theorem ; probability, funda-

118

mental theorem of; factors,
weighted average ; Borel’s
theorem

theories of probability, classification, 612
see theory of probability
theories, scientific, see scientific theories ;
see under hypotheses
theory, abstract, 5, 19-30
We use the word ‘‘theory” in
several senses '
theory of probability, 1, 3, 31, 34, 76n
classification of our, 11-12
purposes of, 3, 48-9
see frequency theory of probability ;
statistical theory of probability
time, variations of beliefs with, 3
time-saving, 77, 95
Tintner, G., 48
Todhunter, 1., 54
tolerance limits, 102
transitive body of beliefs, 14n
transmission lines, 64
trials, 6, 28, 73, 78
see experiment, etc.
expected number of, 65, 73
true value of a physical magnitude, 89
truth tables, 28
Tukey, J., 75
Turing, A. M., 63, 72, 73
see computable numbers
types, theory of, 41n, 89n
typical value, 54
typicalness, fallacy of, 67

U

unbiased estimate, 103
universe, see under imaginary
unobservables, 30, 36, 48
unreasonable, 5, 14, 32, 49
see reasonable
urgency versus importance, 95
Uspensky, J. V., 6n, 29n, 73
utility, 534
and Ramsey, 10
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utility, and sequential tests, 65
judgment of, 48
neglect of, 102
of alternative probability techniques,
89n
of approximate methods, 77
of gambling, 54
of scientific theories, 10, 40

v
vagueness, 66, 97, 98n
values, scale of, see utility
variable, random, 50
variance, 54, 60
Venn, J. A., 6, 62n
verification of the theory, 3940
see justification

volition, 41n

volume, 55, 61, 90, 95-7, 104
see function space

W
Wald, A., 7n, 64-6
Watson, G. N., 104n
wave function, 42
wearing out, 80
weather forecasts, 49
weighing evidence, 62-75
weight of evidence, 48, 63°
and chi-squared, 91-2
expected, 72, 73
relative, 71, 75
Weyl, H., 58n
wheel, rotation of a, 57
Whittaker, E. T, 104n
Wiener, N., 75
Wilks, S. S., 57, 76n, 87n, 101n, 102
Wintner, A., 88
Wright, G. H. von, 21n

Y
‘“You ”, Preface, 2
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