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ABSTRACT

Using an empirical data set, we investigated variation in factor model parameters across a contin-
uous moderator variable and demonstrated three modeling approaches: multiple-group mean and
covariance structure (MGMCS) analyses, local structural equation modeling (LSEM), and moderated
factor analysis (MFA). We focused on how to study variation in factor model parameters as a function
of continuous variables such as age, socioeconomic status, ability levels, acculturation, and so forth.
Specifically, we formalized the LSEM approach in detail as compared with previous work and inves-
tigated its statistical properties with an analytical derivation and a simulation study. We also provide
code for the easy implementation of LSEM. The illustration of methods was based on cross-sectional
cognitive ability data from individuals ranging in age from 4 to 23 years. Variations in factor loadings
across agewere examinedwith regard to the agedifferentiationhypothesis. LSEMandMFAconverged
with respect to the conclusions. When there was a broad age range within groups and varying rela-
tions between the indicator variables and the common factor across age, MGMCS produced distorted
parameter estimates.We discuss the pros of LSEM comparedwithMFA and recommend using the two
tools as complementary approaches for investigating moderation in factor model parameters.

Moderator variables are of great interest in the social
sciences. They have been broadly defined in the semi-
nal work by Baron and Kenny (1986) as “a third vari-
able that affects the zero-order correlation between two
other variables” (p. 1174). Moderators can be qualitative
(e.g., sex, self-reported categorical ethnicity) or quanti-
tative (e.g., age, socioeconomic status [as expressed, e.g.,
by the HISEI index], cognitive ability, or acculturation;
see Szapocznik, Scopetta, Kurtines, & Aranalde, 1978).
In several social science applications, quantitative mod-
erator variables have unfortunately been recorded as cat-
egorical variables and have been analyzed as such—for
example, age groups, high versus low socioeconomic sta-
tus, high versus low ability levels, group membership
based on social categories (e.g., “minorities,” “Asians”—
instead of as continuous measures of acculturation (e.g.,
Berry, 2003).

In structural equation modeling (SEM) as generally
used in empirical research, testing whether factor model
parameters vary according to group membership (the
moderator variable) is most commonly examined with
multiple-groupmean and covariance structure (MGMCS;
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e.g., Little, Card, Slegers, & Ledford, 2007) analyses. In
MGMCS analyses, SEMs are simultaneously computed
for several groups with parameters that are either set
to be equal for all groups or estimated freely. If the
overall model fit deteriorates significantly when param-
eters are constrained to equality, then the hypothesis that
those particular parameters are invariant is not supported.
MGMCS analysis is a widely used and accepted approach
for investigating factorial invariance across categorical
context variables (i.e., variables that define groups). How-
ever, often the context variable of interest is not categor-
ical per se but can and ought to be conceptualized as
a continuous variable. Because the number of observa-
tions for each measured value of a continuous variable
is usually too small for estimating separate factor models
that require large samples for each value of the continu-
ous moderator, the common procedure is to pool partici-
pants into larger groups. Thus, in substantive research, the
originally continuous variable is commonly treated as if it
were, in fact, categorical.

Methodological problems related to the categorization
of continuous variables are well known (for a review, see
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2 A. HILDEBRANDT ET AL.

MacCallum, Zhang, Preacher, & Rucker, 2002; Preacher,
Rucker, MacCallum, & Nicewander, 2005). However,
problems related to the categorization of continuous
context variables in MGMCS have not been sufficiently
evaluated. Obviously, some of the issues presented by
MacCallum et al., (2002) apply here as well—for example,
losing information about individual differences within
groups and an increased risk of overlooking nonlinear
relations. Among others, Hildebrandt, Wilhelm, and
Robitzsch (2009) criticized the use of cutoff scores on a
continuous moderator to build categories because those
cutoffs are inevitably arbitrary. Hildebrandt et al. argued
that categorization is problematic also because it exacer-
bates the detection of a change onset. When observations
that differ across the range of a continuous variable
are grouped, variation within those groups cannot be
detected. This is because within groups, observations are
treated as if they were equal regarding group differences
across variables of interest. Therefore, continuous mod-
erators should be treated as continuous variables, not as
categorical variables.

As alternatives to MGMCS analyses, several authors
(Curran et al., 2014; Hildebrandt et al., 2009; Liu,Magnus,
&Thissen, 2015;Merkle&Zeileis, 2013;Molenaar,Dolan,
Wicherts, & van derMaas, 2010; Tucker-Drob, 2009) have
proposed approaches that do not require the categoriza-
tion of continuousmoderator variables. In this article, two
of these approaches, local structural equation modeling
(LSEM; Hildebrandt et al., 2009; Hülür, Wilhelm, & Rob-
itzsch, 2011) and moderated factor analysis (MFA; Bauer
& Hussong, 2009; Curran et al., 2014) will be presented
in detail. We used empirical data to compare the two
approaches with each other and with MGMCS analyses.
The main aim was to illustrate the methods and provide
code that substantive researchers can use to implement
LSEM because such information has been lacking in the
available literature that introduced the LSEM approach.
With the empirical example, we investigated age-related
changes in intelligence. In addition, we conducted a small
simulation to investigate the statistical behavior of the
LSEM approach.

The age differentiation hypothesis: Introducing

the data example

We conducted the demonstration in the current artice
to test a theoretically and methodologically impor-
tant controversy in developmental psychology—Garrett’s
(1946) age differentiation hypothesis—which proposes
that the relations between cognitive abilities monoton-
ically decrease from childhood to young adulthood.
Thus, the age differentiation hypothesis postulates that
an increase in a cognitive specialization across childhood

may be caused by individual differences in noncognitive
factors, including motivation and interests. The rationale
behind the hypothesis is that children develop different
motivational levels for diverse aspects of cognition and
achieve different intellectual interests until young adult-
hood. Diverging motivations and interests thus lead to
differentiated aspects of cognition because they influence
the investments children make in one but not another
type of cognition. Different levels of investment and prac-
tice lead to higher efficiency in one as compared with
another cognitive domain, thus to the increasing indepen-
dence of cognitive ability factors.

We will describe analyses of cross-sectional data that
were collected from an age-heterogeneous subsample
from the normative sample of the Woodcock-Johnson
III (WJ-III) Tests of Cognitive Abilities (Woodcock,
McGrew, &Mather, 2001, 2007). We tested the differenti-
ation hypothesis by examining the variation in g, or the
common-factor saturation of cognitive abilities, across
age. Thus, in this example, agewas themoderator variable.

The WJ-III Tests of Cognitive Abilities (Woodcock,
McGrew, Schrank, &Mather, 2001, 2007) are conceptual-
ized on the basis of the Cattell-Horn-Carroll (CHC) the-
ory of cognitive abilities, which is a fusion of Cattell’s
(1941) and Horn’s (1965) theories of fluid and crystal-

lized intelligence and Carroll’s (1993) three-stratum theory

of cognitive abilities. CHC theory postulates a hierarchi-
cally organized structure of human intelligence. Numer-
ous narrow abilities are located on the lowest factor level
in this model; these abilities are then grouped into broad
second-order abilities. The broad abilities include, among
others, fluid and crystallized intelligence as the most
important intellectual capacities. Then, a common fac-
tor called general intelligence, or simply g, is postulated
to be located at the highest level (McGrew, Schrank, &
Woodcock, 2007). Consistent with earlier applications
(Tucker-Drob, 2009), all of our analyses were based on
composite variables representing second-order factors of
cognitive abilities from theWJ-III.With regard to the psy-
chological content, our main goal was to model the rela-
tions between these abilities and their common factor g.

The general model of interest, which we aimed to
approximate with three different analytical approaches
(MGMCS, LSEM, and MFA), is a one-dimensional com-
mon factor model (see Figure 1). However, please note
that all modeling approaches discussed here can be
applied to investigate more complex factor analytic struc-
tures, such asmultiple factor confirmatory factor analyses
(CFA), multifactorial SEMs, or hierarchical factor mod-
els (see Hildebrandt et al., 2009, for an example of LSEM
applied to a hierarchical structure model).

Molenaar, Dolan, and Verhelst (2010) investigated
differentiation in the higher order factor model and
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MULTIVARIATE BEHAVIORAL RESEARCH 3

Figure . Pathdiagramof the one-factormodel.ηa = common fac-
tor; λi(a) = factor loadings depending on age; Yi = indicators; εia
= residual variables depending on age;ψ i(a)= residual variances
depending on age.

identified five possible sources of differentiation: (a)
residual variances of the indicators, (b) loadings on the
first-order factor, (c) first-order factor residual variances,
(d) first-order factor loadings on the general factor, and
(e) variance of the general factor. In the current study, we
investigated differentiation in the one-factormodel, using
broad abilities as indicators. Thus, the possible sources of
differentiation consisted of the residual variances of the
scaled broad abilities, the factor loadings, and the factor
variance. For factor identification purposes, we standard-
ized the factor and freely estimated all factor loadings.
Thus, differentiation was explored on the level of factor
loadings and the residual variance of indicators. If het-
eroscedastic residuals were to occur, the conclusionwould
be that themeasurement precision of broad abilities varies
across age. If age-related changes in factor loadings were
to occur, the conclusion would concern the g-saturation
of indicators and thus the differentiation or dedifferentia-
tion of cognitive abilities as previously defined.

Introducing themodel to investigate age

differentiation

Assume for each person a vector of variables (A, Y1 …,Yi,
…, YI), whereA denotes a person’s age and Yi (i= 1,…, I)
the person’s performance for each of the first-order abili-
ties. In general, at the population level, we study the con-
ditional means µi(a) = E(Yi | A = a) and the conditional
covariances σii′(a) = Cov(Yi,Yi′|A = a) of the first-order
abilities, where a denotes specific age values. The condi-
tional covariance matrix �(a), including the conditional
variances and covariances σii′(a), should be represented

by a one-dimensional common factor model as follows:

�(a) = �(a)�(a)T + 	(a), (1)

where�(a) is a columnvector of loadings (at a specific age
point a) and 	(a) is an I × I matrix of age-conditional
error variances and covariances (usually assumed to be
diagonal). Note that the age differentiation hypothesis is a
hypothesis about the age-conditional covariances and that
restrictions are imposed only on the covariances and not
on the conditionalmeans. Please also note that age-related
mean changesmay be associated with age-related changes
in the covariance structure. The one-factormodel for each
indicator and for each age value a can thus be written as

Yia = νi(a) + λi(a) · ηa + εia, (2)

where υi(a) = E(Yia) are age-specific intercepts and εia
are age-specific residuals, which are assumed to be uncor-
related with the common factor ηa and with the age-
specific variancesψi(a) = Var(εia). Researchersmay also
specify that the residual variances vary across the moder-
ator. As we have outlined, in previous work, residuals have
also been considered a source of differentiation (Mole-
naar, Dolan, & Verhelst, 2010). The common factor ηa

is (locally) identified by setting its conditional mean to 0
and fixing its variance to 1:1 E(ηa) = 0 and Var(ηa) =
1. As pointed out before, in the present study, we were
interested in only the (age-conditional) covariance struc-
ture, and thus, the intercepts ν i(a) were not restricted. By
not restricting the intercepts, the mean structure of the
model in Equation (2) became saturated and was com-
pletely determined by the age trends in the indicator vari-
able Yia; that is, the indicator-specific means equal the
age-conditional means: ν i(a) = µi(a). Loadings on the
common factor quantify how much variance the broad
abilities share with each other. Therefore, if age differen-
tiation occurs, the factor loadings should systematically
vary with age in that they should be higher in childhood
and decrease monotonically with increasing age.

Thismodel should be estimated for each possible value
of the moderator variable, and the course of the parame-
ter estimates would be inspected. However, this is rarely
feasible because only a finite subset of all the possible val-
ues of the continuous context variable is usually available
in empirical research. In addition, a substantial part of
today’s research settings usually involve relatively small
sample sizes and sometimes broad ranges on continu-
ous moderators. It is uncommon and often unfeasible to
sample hundreds of observations for all different values
of a conceivable moderator variable such as age. Thus,
the model needs to be approximated for single values of

 Note that different ways of identifying the common factor are possible—for
example, by setting the loading of one indicator to  and specifying the inter-
cept to be  (Bollen, ).
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4 A. HILDEBRANDT ET AL.

themoderator.MGMCS, LSEM, andMFA are approaches
that can be used to approximate the model given in
Equation (2).

In his recent work, Molenaar (2015) set up a taxonomy
of latent trait models for continuous and categorical mod-
erator variables. This taxonomy is helpful for integrat-
ing the approaches discussed in the present article. If the
data contain continuous trait indicator variables, and the
moderator is an observed categorical one, the resulting
latent trait model that can be used to considermoderation
effects is a multiple-group factor model (see the MGMCS
analyses in the present article). For the same continuous
indicator variables, when entered in a factor model (note,
however, that the parametermay vary across a continuous
observed moderator), the resulting model is a moderated
factor model (see the MFA analyses in the present arti-
cle). An additional model category, again for continuous
factor indicators and a continuous latent moderator vari-
able, was introduced as the heteroscedastic factor model
by Molenaar (2015). Tucker-Drob (2009) proposed latent
interaction models (so-called latent moderated struc-
tures; Klein & Moosbrugger, 2000) for this category to
investigate the age- and ability-related differentiation–
dedifferentiation of intelligence. In our empirical exam-
ple, the moderator (age) was an observed variable. Thus,
we used MFA to illustrate factor-model-parameter varia-
tion across age. Furthermore, we will introduce a comple-
mentarymodeling approach toMFA, the so-called LSEM,
and propose it as a valuable exploratory method that
offers advantages over MFA and that can be used to study
variation in factor model parameters across a continuous
observed moderator variable.

Thus, the aim of this article is (a) to assess and dis-
cuss the pros and cons of three competing, but also in
some cases, as we will show, complementary, analytical
approaches (MGMCS, LSEM, and MFA); (b) to further
formalize LSEM as compared with descriptions in pre-
vious work (Hildebrandt et al., 2009) and investigate its
statistical properties using an analytical derivation and a
simulation study; and (c) to use three differentmethods to
investigate whether differentiation occurs in our empiri-
cal example. Furthermore, we provide code for the easy
implementation of LSEM.

Multiple-groupmean and covariance structure

analyses

In MGMCS analyses, the continuous moderator variable
age is collapsed into a set of discrete age groups. For each
group ag (g= 1,…,G), the common factor model is based
on the following decomposition of the age-group-specific
covariance matrix:

�(ag) = �(ag)�(ag)
T + 	(ag), (3)

where �(ag) is a column vector of age-group-specific
loadings for a specific age group ag and 	(ag) is an I × I

matrix of age-conditional error variances and covariances
(usually assumed to be diagonal). The one-factor model
for each indicator is then given for each age group ag as
follows:

Yiag = νi(ag) + λi(ag) · ηa + εiag, (4)

where the common factor η in the reference group is iden-
tified by setting the mean in each group to 0 and its vari-
ance to 1. The intercepts ν i(ag) and residual variances
ψi(ag) = Var(εiag ) are freely estimated in each group. In
addition, the residuals are assumed to be uncorrelated.
The age differentiation hypothesis can then be tested in a
two-step procedure (Little, 1997). In a first step, all model
parameters (intercepts, factor loadings, and residual vari-
ances) in MGMCS analyses are allowed to differ across
groups. A second step is applied to test whether themodel
fit deteriorates if all factor loadings are set to equality
across the G age groups; that is, �(a1) = . . . = �(ag) =
. . . = �(aG). This condition is known as weak factorial
invariance in the context of measurement invariance tests
(Meredith, 1993; Widaman, Ferrer, & Conger, 2010). By
fixing the loadings to be equivalent across groups, factor
variances can be freely estimated in all groups except for
the reference group (Little, 1997). Note that model test-
ing with MGMCS analyses is generally used as a test of
whether a parameter varies across the groups ag. However,
the MGMCS analysis framework is flexible enough to
implement cross-group constraints to investigate specific
parametric variations in factor model parameters across
groups (see Tucker-Drob & Salthouse, 2008).

It is important to note that if observed data are scarce
at single values of the moderator, researchers often col-
lapse observations into groups that span relatively wide
intervals of themoderator. Inmost cases, these categorical
boundaries are arbitrary. Because the observations within
a group are treated as equal with respect to the variance-
covariancematrix of the indicators, it is obvious that cate-
gorizationwill lead to a loss of information andmay result
in only a poor approximation of the model of interest
given in Equation (2).

Local structural equationmodels

Instead of grouping participants who fall within a given
range of the moderator as in MGMCS, in local structural
equation models (LSEMs), observations are weighted
around focal points (i.e., specific values of the continu-
ous moderator variable). For every focal point, SEMs are
sequentially estimated on the basis of weighted samples of
observations. Ideally, SEMs are estimated in steps that are
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MULTIVARIATE BEHAVIORAL RESEARCH 5

as narrow as possible on the scale of the continuous vari-
able. How narrow these steps can be depends on the avail-
able sample size but also on the weighting function that
is applied. In principle, there are many suitable weight-
ing functions (for examples, see Fox, 2000; Wu & Zhang,
2006). For example, in the present study, each whole
year—the granularity with which age was recorded—is an
appropriate focal point.

Why the sample size at target focal points has to be
considered before choosing theweighting function and its
bandwidth can be illustrated as follows: Consider a study
in which 15 observations were sampled at each focal age
point measured in years, ranging from 4 to 23. By using
weights for observations below and above the focal point,
the effective sample size (N at focal points, achieved by
weighting; see the following for elaborations) for LSEMs
may reach a number that is generally suitable for estimat-
ing SEMs. However, the available N at the focal points is
just one aspect to be considered.Decisions about hownar-
row the steps should be—if not restricted by the available
sample size—are also guided by the researcher’s consid-
erations of how smooth the estimations of the parameter
plots should be across the moderator.

A Gaussian kernel function can be used to weight
observations around focal points (Gasser, Gervini, &
Molinari, 2004; see also Hildebrandt et al., 2009; Hülür
et al., 2011). The assumption behind this weighting pro-
cedure is that observations that are close to each other on a
continuous scale are more similar than more distal obser-
vations. For every focal point (in our case, age in years),
participants with that specific focal value receive the high-
est weight, whereas observations farther away from the
focal point receive lower weights. Therefore, each esti-
matedmodel ismost strongly influenced by focal observa-
tions but is also influenced by observations near the focal
point and influenced less by observations farther from
the focal point. Repeating this procedure across the entire
range of the moderator variable provides an approxima-
tion of the results that would occur if separate SEMs were
fit to each focal point. As the name Gaussian suggests,
this weighting procedure is based on the standard nor-
mal density function. The resulting weights are normally
distributed around each focal point (see Figure 2). Obser-
vations at focal points receive a weight of 1 (see the focal
points for ages 10, 15, and 22 in Figure 2, represented by
small triangles, and the dashed vertical lines tracking the
sizes of those points’ weights). Observations with mod-
erator values higher or lower than the focal point values
receive weights smaller than 1. Because the normal den-
sity function has no limits on its lower and upper sides,
all observations enter all models at each focal point, but
observations that are far away from the focal points have
very small values (below 0.01) as shown in Figure 2.

Figure . Gaussian kernel weighting functions for three selected
focal agepoints used in LSEM. For the clarity of the illustration, only
the courses of the weights for focal ages , , and  are shown.
Focal age points are marked with small triangles along the x-axis,
and the size of the weighting at the focal points (see the value of 
on the y-axis) is tracked with straight dashed lines.

Computingweights for LSEM

Weights for LSEM are computed by the following
formulas. The bandwidth (bw) is calculated by the
formula

bw = h · SDA

5
√
N

, (5)

where h is the bandwidth factor; SDA denotes the stan-
dard deviation of the moderator variable (A for age in our
example); and N is the size of the total sample being ana-
lyzed. The bandwidth thus represents the standard devi-
ation of the normal density function around each focal
value of the moderator (denoted as a0 in our example that
uses age as amoderator). For example, if a bandwidth fac-
tor of h = 2 is chosen, observations farther than 2 times
the bandwidth from the focal point receive only very small
weights. Different bandwidth factors can be used: The fac-
tor h = 1.1 has been proposed in the nonparametric den-
sity estimation literature (e.g., Silverman, 1986), but sim-
ulation studies are needed to determine the optimal band-
width for the application of LSEM to data that are charac-
teristic of psychological research (see the simulation study
that follows).

For each observation, a z value is calculated:

z(a, a0) = a − a0

bw
. (6)

Weights are then calculated using the Gaussian kernel
function:

K(z) = exp(−z2/2). (7)
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6 A. HILDEBRANDT ET AL.

As z values increase, the resulting weights get smaller.
Focal observations receive the largest weight because they
will have z values of 0. At a z value of 0, the density func-
tion reaches its maximum of K(0) = 1. The weights that
vary between 0 and 1 are then calculated as follows:

W (a, a0) = K(z(a, a0)). (8)

In general, the larger the bandwidth is, the smoother
the resulting parameter function (the plot of the estimated
model parameter along age) will be.2 Thus, the bandwidth
is essentially a smoothing parameter.

It should be mentioned that the MGMCS analysis is
essentially based on a weighting scheme in which several
focal points along the scale of the moderator—as many
as are included in one group in the MGMCS analysis—
are fully weighted, and weights of 0 are allocated to all
other observations. Thus, the case in which MGMCS is
fit to all of a moderator’s focal points could be considered
a special case of LSEM.However, comprehensive data sets
that allow MGMCS modeling at all focal values of a con-
tinuously measured moderator are extremely rare. Thus,
MGMCS usually includes many values of a moderator in
one group and considers observations at different focal
points within one group to be equal.

In LSEM, because the Gaussian kernel function uti-
lizes the observations around a focal point, the number
of observations for that model is higher than it would be
if only the observations with that exact focal age value
were included (see Figure 2). This is beneficial if the num-
ber of observations that are available is small somewhere
in the distribution of the continuous moderator variable.
See Table 1 for an example of how a model’s sample size
changes as a function of its weights. Usually weights are
not standardized to the sumofN in nonparametric regres-
sion analyses and we follow the standard procedure prac-
ticed in this literature (e.g., Wu & Zhang, 2006). The
effectiveN provides an estimate on how informative is the
sample size at every focal point.

Note that focal points in the middle of the range of the
moderator receive substantial weights from both lower
and higher values, whereas focal values at the boundaries
of the range of the moderator receive weights that are
considerable in their magnitude only from either higher
or lower values (see the focal value of 22 at the right
boundary in Figure 2). This occurs because observations

 The reason for this is that as the bandwidth increases, the overlap between
the highly weighted observations increases. In each model, at a focal point,
the overlap between the sample and neighboring samples becomes larger,
and as a consequence, the parameter estimates of the different models
becomemore similar. If the bandwidth approximated infinity, then all obser-
vations would be fully weighted in every model. All parameter plots would
consequently show straight lines because the parameter estimates would be
identical in everymodel. By contrast, a bandwidth that approximates would
use a weighting function that gives full weight to observations at that partic-
ular focal point while giving all other observations a weight of .

Table . Calculation of the effective N at focal age  (h= ).

No. of observations
N= 

Age
SDA = .

Only weighting
focal observations

LSEM weights
based on Gaussian
kernel function

   .
   .
   
   
   .
   .
   .

Sum of observations= Effective N  .

Note. In traditional analyses, only focal observations would receive full weights
(see the third column of the table). In LSEM, based on the Gaussian kernel
function, proximal observations, albeit not fully weighted, are also included
in the model calculations at focal points. The sum of the weights equals the
effective sample used in LSEM; h= bandwidth factor.

are de facto not available to the left versus to the right of
the moderator values at the two boundaries, and conse-
quently, there is no observation to be weighted by. Thus,
the models estimated for focal points at the boundaries
of the range of the moderator incorporate observations
only with focal values that are either larger or smaller than
the focal value of interest. When observations are scarce
and LSEM is used to estimate local models, results at the
left and right edges of the parameter functions should
be interpreted with caution.

In our example, although not fully weighted, partic-
ipants whose ages differ from the focal age point are
entered into the models in an LSEM approach. As a
consequence, there is variance in age in each of the
estimated local models. When inspecting, for example,
weights around the focal age of 10 in the current sam-
ple (see Figure 2), it can be seen that observations 3
points below and above the focal age are weighted notably
above 0. However, if age-related changes in indicator
means are present, the loadings and residual variances
for an individual focal point will implicitly reflect these
age trends. As the model in Equation (2) is aimed at
modeling only the conditional covariance structure (con-
ditioned on age), estimates of factor loadings will be
distorted by indicator-specific age trends. The distortion
will be due to mean-induced covariation between indi-
cators and the moderator (Figure 3 shows the nonlinear
relations between age and two broad abilities chosen for
illustrative purposes).

Therefore, if such trends are present, all indicators
should be detrended with regard to the moderator (i.e.,
age) and potentially the squared value of the modera-
tor to control for linear and quadratic mean trends. The
detrending needs to be conducted locally (Fan & Gijbels,
1996), before the LSEM analyses, and at the level of the
observed data, using the same weighting function that
will subsequently be used for conducting LSEM. This
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MULTIVARIATE BEHAVIORAL RESEARCH 7

Figure . Boxplot showing the relations between two exemplary
broad abilities (Gc and Gf) and age.

detrending procedure is also known as local polynomial
smoothing (see Fan & Gijbels, 1996).

Following a reviewer’s suggestion, we provide an ana-
lytical derivation of the statistical behavior of LSEM using
techniques from nonparametric statistics. The Appendix
shows that LSEM estimates of loadings and residual
variances are asymptotically normally distributed if the
bandwidth factor h is chosen proportional to N−1/5. On
the basis of this finding, it can be concluded that esti-
mates are consistent and asymptotically unbiased. The
proof of asymptotic normality relies on two facts. First,

using nonparametric estimation techniques, a conditional
covariance matrix �̂(a) is calculated, and it is shown that
�̂(a) provides a consistent estimate of �(a) (Yin, Geng,
Li, & Wang, 2010). Second, �̂(a) is plugged into a con-
firmatory factor analysis from which the estimates of the
parameter functions (for loadings and residual variances)
are obtained. Using the implicit function theorem and
applying the delta method (Wasserman, 2004), one can
derive the asymptotic normality of the distribution for
these parameter functions.

Permutation test for assessing the significance of

parameter variations in LSEM

With LSEM, it is not possible to conduct a direct inferen-
tial test of the magnitude of variations in model param-
eters as in traditional model comparisons that are based
on the likelihood function in MGMCS. However, param-
eter variations can be tested for statistical significance by
implementing a permutation test (Good, 2005; see Briley,
Bates, Harden, & Tucker-Drob, 2015; Hülür et al., 2011;
Liu et al., 2015, for applications). More specifically, this is
the test of the null hypothesis that a parameter γ (e.g., fac-
tor loading, residual variance) is constant across values of
a continuous moderator variable.

For this test, first, a large number of permutation data
sets are generated. Each of these data sets contains all vari-
ables from the original data and a permuted version of
the original moderator variable. The permuted variable is
obtained by repeatedly and randomly allocating values of
the moderator variable to all observations. It can thus be
assumed that in each of the permutation data sets, there
is no systematic relation between the permuted version of
the moderator variable and any parameter from the esti-
mated SEM.

In a first step, for each of the permutation data sets,
the series of locally weighted models are estimated on
the basis of the permuted moderator variable. Then, in
the next step, the parameter estimates from each per-
mutation data set are used to test the null hypothesis
that the parameter γ is constant across the moderator.
Before calculating the test statistic, a weighted average for
the parameter function needs to be computed with the
formula

γ̄ =
∑

k

γ (ak) · w (ak) , (9)

where k runs across the set of defined focal values on
the moderator; γ (ak) is the parameter estimate at the
focal value ak of the moderator; and w (ak) is a vector of
weights that sum to 1. If there is equal weighting and 10
focal values on the moderator variable, the weights will
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8 A. HILDEBRANDT ET AL.

each take a value of 1/10. The test statistic of the permuta-
tion test now quantifies how strongly γ (ak) varies around
the average of the parameter function γ̄ , and iswritten as

SDγ =
√

∑

k

(γ (ak) − γ̄ )2 · w(ak). (10)

The distribution of SDγ across the permutations is
then used to test the null hypothesis that γ (a) is con-
stant across the continuousmoderator a (age in our case).
Given a certain significance level (e.g., α = .05), the null
hypothesis is rejected if the empirical value of SDγ is
greater than the corresponding percentile of the permu-
tation distribution (e.g., 95th percentile).

Alternatively, pointwise hypotheses can be tested. For
example, the hypothesis that a parameter γ at a specific
focal point ak does not deviate from the average of the
parameter function γ̄ could be tested by computing the
following test statistic:

Tγ (ak)
= γ (ak) − γ̄ . (11)

Again, the null hypothesis is rejected if the empir-
ical value of Tγ (ak) is greater than the corresponding
percentiles of the permutation distribution (e.g., 2.5th
and 97.5th percentiles). However, when testing sev-
eral pointwise hypotheses, researchers need to consider
the risk of an increase in the Type I error rate (e.g.,
Maxwell & Delaney, 2004). The test statistic of the
permutation test could also be adapted to test more
complex and informative hypotheses, including specific
contrasts.

Moderated factor analysis

Moderated Factor Analysis (MFA; e.g., Bauer & Hus-
song, 2009; Curran et al., 2014) is an alternative approach
that allows for the examination of factor model param-
eters along an observed continuous variable and is less
exploratory than LSEM. As mentioned previously, in the
taxonomy suggested byMolenaar (2015), latent traitmod-
els that aremoderated by an observed continuous variable
are subsumedunder the categoryMFA. LSEM, as has been
described, can be seen as a special, exploratory modeling
approach in the MFA model category.

The main idea of MFA is that the factor model param-
eters (loadings, intercepts, and residual variances) are
allowed to vary across a set of between-person covariates.
In our case, age is the between-person covariate, and each
parameter varies deterministically as a parametric func-
tion of age. To illustrate the use of MFA in our example
data, we allow each factor model parameter to vary as a
quadratic function of age. More specifically, in the factor

modelYia = νi(a) + λi(a) · ηa + εia, the factor loading of
an indicator is predicted by the following relation:

λi(a) = λi0 + λi1 · a + λi2 · a2, (12)

where the parameter λi1 represents the linear regression
weight of age (a); λi2 represents the quadratic regression
weight of age; and λi0 is the regression intercept. The
interpretation of the model parameters is similar to that
of a regression analysis involving quadratic terms (Cohen,
Cohen,West, &Aiken, 2003). Positive values indicate that
as age increases, the factor loadings for the broad abilities
also increase. As age was centered, the regression inter-
cept λi0 can be interpreted as the expected loading at the
mean of the variable age. Similarly, the intercepts of the
broad abilities also vary as a function of age:

νi(a) = νi0 + νi1 · a + νi2 · a2, (13)

where the parameters ν i0, ν i1, and ν i2 are the regres-
sion coefficients. In addition, the residual variances are
allowed to vary as a function of age:

ψi(a) = exp[ψi0 + ψi1 · a + ψi2 · a2], (14)

where the parametersψ i0,ψ i1, andψ i2 are the regression
coefficients of a log-linear relation given that the variances
are bounded by zero.

In the original formulation, the MFA model parame-
ters vary deterministically as a parametric function of the
moderator variable age. However, in a natural extension
of MFA, the variation that is explained by the modera-
tor variable is separated from the unexplained variation
for each model parameter. This can be done by including
a residual term in the regression equation for each fac-
tor model parameter. More specifically, for each loading,
intercept, and residual variance, Equations (12), (13), and
(14) are extended as follows:

λi(a) = λi0 + λi1 · a + λi2 · a2 + uλia (15)

νi(a) = νi0 + νi1 · a + νi2 · a2 + uνia (16)

ψi(a) = exp[ψi0 + ψi1 · a + ψi2 · a2 + uψ ia], (17)

where uλia, uν ia, and uψ ia are uncorrelated and normally
distributed residuals with zero means and indicator-
specific variances τ 2

λi, τ 2
νi, and τ 2

ψ i. The indicator-specific
residual variances describe the variation in a factor model
parameter that is not explained by themoderator variable.
For example, a large residual variance τ 2

λi for the load-
ing of indicator i implies that only a small part of the
variation in the factor loading of indicator i across age
can be attributed to the linear and quadratic effects of
age.

MFA can be considered a parametric version of the
nonparametric LSEM approach because MFA specifies
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MULTIVARIATE BEHAVIORAL RESEARCH 9

(parametric) regression equations to explain variation in
factor model parameters. In this respect, MFA is a more
confirmatory approach thanLSEMbecause the functional
relation between the factor model parameter and the
moderator needs to be specified.

Research question for the empirical illustration

The aim of the empirical illustration was to investigate
whether the three modeling approaches described, and
specifically LSEM, would lead to the same substantive
conclusions regarding themoderating effects of age on the
parameters of the one-factor measurement model of cog-
nitive abilities. We showed that the statistical model spec-
ified in Equation (2) can be approximated with MGMCS,
LSEM, or MFA. Throughout, we chose to use the vari-
able age as an example of a moderator variable because
age can be measured with varying levels of resolution and
because research applications with age as a moderator are
frequently found in the literature.

With our example, we aimed to illustrate a realistic
scenario that frequently occurs in empirical studies in
which data are rather scarcely sampled along a contin-
uous moderator. Specifically, we aimed to illustrate the
sensitivity of the three analytical approaches to detect
differentiation between cognitive abilities across child-
hood. Thus, we estimated the moderating effect of age
in MGMCS, MFA, and LSEM using a subset of the
available data (N = 1,087) from the normative sam-
ple of the Woodcock-Johnson III (WJ-III) Tests of Cog-
nitive Abilities (Woodcock, McGrew, & Mather, 2001,
2007).

In addition, we conducted a small simulation study
with two objectives. First, this study can be considered
a first step in evaluating the statistical properties of the
LSEM approach. Second, we use this study to provide
researchers with further guidance for selecting the band-
width factor h for calculating sample weights, a central
part of the LSEM approach.

Data example

Indicators

Figure 1 illustrates a general cognition factor indicated
by the seven broad cognitive abilities. Table 1S (in the
Supplementary Material) provides a summary descrip-
tion of the measures and ability scores. Comprehension-

knowledge and Fluid reasoning hereby correspond to
crystallized and fluid intelligence, respectively. Each of
the WJ-III second-stratum broad cognitive abilities is
a cluster score obtained by averaging two W-scaled

first-stratum cognitive ability tests (see Table 1S). Thus,
each of the two W scales contributes equally to the
cluster score. The W scale is a transformation of the
Rasch model (Woodcock, 1999), which provides a com-
mon scale for the ability of a person and the diffi-
culty of a task. The test’s W scales are each centered
on a value of 500, which constitutes the approximate
average performance of 10-year-olds (McGrew et al.,
2007).

Sample

The WJ-III normative sample consists of four cross-
sectional subsamples (preschool, school, college, and
adult subsamples) that are each representative of the U.S.
population (McGrew et al., 2007). For the age range of 4
to 23, the original data set comprised N = 5,475 partic-
ipants; 50.78% female; Mage = 11.75; SDage = 5.18. We
selected this age range because it is broad enough to detect
potential differentiation effects that would be expected
according to the age differentiation theory of cognitive
abilities. To illustrate a scenario that more frequently
occurs in empirical studies, we selected a smaller data set
from this original sample for our illustrative analyses. This
sample more closely reflects the prevalent sample sizes in
the field. Thus, we randomly selected 40%–60% (depend-
ing on the density of the sampling in the original sam-
ple) of the available observations at each focal age point
between 4 and 23 by completely excluding observations
withmissing values on any indicator. This resulted in focal
age samples with the following numbers of persons:NA=4

= 46;NA=5 = 49;NA=6 = 57;NA=7 = 63;NA=8 = 69;NA=9

= 67; NA=10 = 78; NA=11 = 72; NA=12 = 67; NA=13 = 64;
NA=14 = 64;NA=15 = 52;NA=16 = 67;NA=17 = 56;NA=18

= 53; NA=19 = 43; NA=20 = 47; NA=21 = 39; NA=22 = 29;
NA=23 = 30. It is obvious that the sample sizes at several
of the focal age values were too small to estimate a sep-
arate model for that focal age point, thus illustrating the
necessity of an LSEMapproach. For theMGMCS analysis,
we merged these samples into six groups with the follow-
ing age ranges: 4–6 (NA=4–6 = 152), 7–9 (NA=7–9 = 199),
10–12 (NA=10–12 = 217), 13–15 (NA=13–15 = 197), 16–18
(NA=16–18 = 176), and 19–23 (NA=19–23 = 188) years. We
applied MFA to the entire random sample of N = 1,129
participants.

Software andmodel estimation

The MGMCS and LSEM approaches were estimated in
R (R Development Core Team, 2008) using the struc-
tural equation modeling packages lavaan (Rosseel,
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10 A. HILDEBRANDT ET AL.

2012) and lavaan.survey (Oberski, 2014). For the
LSEM approach, we programmed a wrapper function
lsem.estimate (see the Supplementary Material)
in the sirt package (Robitzsch, 2015). This function
conducts all the data management and analysis steps
(e.g., calculation of weights, model estimation in lavaan,
management of output files, plots of parameter func-
tions). Thelavaan.surveypackage (Oberski, 2014) is
also applied in the lsem.estimate wrapper function
because the structural equation model in lavaan has to
be extended to weighted data when estimating LSEM. An
additional R function lsem.permutation performs
the permutation tests (see the SupplementaryMaterial for
the R code). The number of permutations for testing the
global and pointwise hypotheses was set to 1,000.

The parameters of the MFA were estimated using
a Bayesian approach. We used the WinBUGS software
(Windows version of Bayesian inference using Gibbs
sampling; Spiegelhalter, Thomas, Best, & Lunn, 2003;
see also Lunn, Jackson, Best, Thomas, & Spiegelhalter,
2012), which is a flexible program for Bayesian analy-
ses of statistical models (see the Supplementary Mate-
rial for the WinBUGS code). Diffuse or vague prior dis-
tributions were assigned to each model parameter. For
the coefficients of the regressions predicting the loadings,
intercepts, and residual variances, flat normal prior dis-
tributions with mean 0 and variance 1,000 were spec-
ified. Following recent recommendations for variance
parameters in Bayesian analyses of hierarchical models
(Gelman & Hill, 2007; Jackman, 2009), uniform distribu-
tions for standard deviations were used as prior distribu-
tions for the residual variation of the regressions. More
specifically, the standard deviations of the residuals of
the regressions were assumed to be uniformly distributed
across the range (0, 100). Given the standardized metric
of the W scales (M = 500, SD = 50), we think that the
assumption regarding the standard deviation of the resid-
uals that has been expected to be in the range 0 to 100,
provided no information that was relevant to the infer-
ence. InWinBUGS, Markov chainMonte Carlo (MCMC)
techniques are used to approximate the posterior distri-
butions of the model parameters. We specified anMCMC
chain of 5,000 iterationswith a burn-in period of 2,500. To
assess the convergence behavior of theMCMC algorithm,
we inspected the trace plots of the univariate chains for
each parameter. In addition, the Rhat statistic (Gelman &
Hill, 2007) was calculated by dividing the MCMC chain
into three subchains. The Rhat statistics of all parameters
were smaller than 1.05, thus indicating sufficient conver-
gence of the MCMC algorithm. The mean and standard
deviation of the posterior distribution were used as the
point and standard error estimates of the corresponding
model parameter. AWald test based on theMCMCoutput

was specified to conduct single- and multiple-parameter
tests.3

We decided to use theWinBUGS software andMCMC
techniques to estimate the parameters of the MFA model
for two reasons. First, theWinBUGS software is extremely
flexible in its model specification facilities, and the user
has complete control over the ability to define the param-
eter to be estimated. Second,WinBUGS andMCMC tech-
niques can generally be used with diffuse or noninforma-
tive priors, and in this case, the results can be expected
to be similar to those achieved by maximum likelihood
estimations (Gelman et al., 2014). However, the use of
MCMC techniques in a frequentist interpretation has the
great advantage of flexible model specification. In our
case, residual random effects for intercepts, loadings, and
variances could be easily added to the model (see Equa-
tions [15], [16], and [17]). Another advantage of imple-
menting MFA using WinBUGS is that WinBUGS is also
freely available and easily accessed via R. Please note that
the MFA model with age-specific residuals (see Equa-
tions [12], [13], and [14]) can be specified in widely used
latent variable software (Mplus, OpenMx) by using defini-
tion variables to define how factor model parameters are
moderated by a continuously measured observed variable
(see Cheung, Harden, & Tucker-Drob, 2015).

Results

We report unstandardized parameter estimates. This
facilitates comparisons between the three approaches.
Furthermore, the comparison of factor loadings needs
to be based on unstandardized parameters because stan-
dardization is influenced by variable (residual) variances.
The parameter functions obtained by applying MGMCS,
LSEM, and MFA for all broad abilities are displayed in
Figure 4.

Multiple-groupmean and covariance structure

analyses

In a first step, all model parameters (intercepts, factor
loadings, and residual variances) were allowed to differ
across the six age groups described. For this model, the
comparative fit index (CFI) was .98, and the root mean
square error of approximation (RMSEA) was .07. Browne
and Cudeck (1993) suggested that RMSEA values of less

 First, from the output of the MCMC chain, a k-dimensional estimate δ̂ and its
covariance matrix V can be calculated. For large sample sizes and noninfor-
mative prior distributions, statistical inference that is based on the posterior
distribution (obtained from theMCMC output) approximates maximum like-
lihood inference (Gelman et al., ; see alsoWalker, ). Using the asymp-

totic multivariate normality of δ̂, the chi-square statistic χ  = δTV−δ of the
Wald test for the null hypothesis δ =  is formed; it is asymptotically χ  dis-
tributed with k degrees of freedom.
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MULTIVARIATE BEHAVIORAL RESEARCH 11

Figure . Parameter functions comparing the LSEM, MFA, and MG(MCS) results. Panel A depicts the functions for factor loadings; Panel B
depicts the functions for residual variances of all investigated broad abilities.

than .05 should be considered to indicate good fit, and val-
ues between .05 and .08, fair fit. Hu and Bentler (1999)
proposed that CFI values higher than .95 should be con-
sidered to indicate good fit. The fit of the model was
χ2(84)= 155.76 (p< .001).We conductedmodel fit com-
parisons for factor loading variation in reference to this
model.We first set the factor loadings of all broad abilities
to equality across groups. As previously described, fixing
the loadings to equality across groups allows to freely esti-
mate the variance of g in all, but not the reference group.
Thus, the latent variable is standardized in the first group,
but it is freely estimated in all other groups (see Little,
1997). Fixing the loadings to equality and freely estimat-
ing the factor variances led to a significant deterioration
in model fit (�χ2 = 99.46, �df = 30, p < .001). If addi-
tionally the variance of g is kept to be equal across groups
in the model with invariant factor loadings, the likeli-
hood ratio test in comparison with the reference model
with invariant g variance across groups but different fac-
tor loadings, yielded the following result: �χ2 = 115.64,
�df = 35, p < .001. Testing the cross-group equivalence
of the g variance given equal loadings revealed that the
variance of g significantly differs across groups: �χ2 =
16.17,�df= 5, p< .001. Thus, constraining the model to

group-invariant loadings leads to differentiation that is
manifested in nonequivalent g variance.

We then successively set the factor loadings to equal-
ity across groups—only the loadings of one indicator at
a time—and compared each model separately with the
unrestricted one. The restrictions of the single factor load-
ings yielded five more degrees of freedom as compared
with the unrestricted model. Restricting the factor load-
ings led to a significant deterioration in model fit in all
cases (Comprehension-knowledge, Gc, �χ2 = 11.19, �df

= 5, p < .05; Processing speed, Gs, �χ2 = 45.58, �df = 5,
p< .05; Long-term retrieval, Glr,�χ2 = 24.76,�df= 5, p
< .05; and Auditory processing, Ga, �χ2 = 16.05, �df =
5, p < .05) with the exception of Visual-spatial thinking,
Gv (�χ2 = 1.05, �df = 5, p = .96), Fluid reasoning, Gf
(�χ2 = 5.45, �df = 5, p = .36), and Short-term memory,
Gsm (�χ2 = 9.97, �df = 5, p = .08).

Parameter functions for all broad abilities are shown in
Figure 4 by short dashed lines. Across age groups, a salient
systematic trend reflecting a decrease in the parameters
was triggered primarily by a decrease from Group 1 to
Group 2 (ages 4–6 to 7–9) for all broad abilities except
Comprehension-knowledge and Short-termmemory. Thus,
an MGMCS analysis would lead researchers to conclude
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12 A. HILDEBRANDT ET AL.

that differentiation in cognitive abilities occurs in child-
hood (i.e., before adolescence) for four out of seven broad
abilities.

Finally, as outlined earlier, differentiation could also
be expected on the level of residual variances (Mole-
naar, Dolan, Wicherts, & van der Maas, 2010). To investi-
gate differentiation in the residuals, pairwise models were
again tested one by one. Models with fixed loadings for
a given indicator were further restricted by introducing
equality in the residual variances of the same indicator
across groups. For each comparison, this again resulted
in a difference of five degrees of freedom as compared
with the model with only a fixed loading for a given indi-
cator. Restricting the residual variances led to a signif-
icant deterioration in model fit for the following vari-
ables: Fluid reasoning, Gf, �χ2 = 29.71, �df = 5, p
< .01; Processing speed, Gs, �χ2 = 20.95, �df = 5, p
< .01; Long-term retrieval, Glr, �χ2 = 25.62, �df =
5, p < .01; and Auditory processing, Ga, �χ2 = 13.05,
�df = 5, p < .05), but not for Comprehension knowl-

edge, Gc (�χ2 = 10.60, �df = 5, p = .06), Visual-
spatial thinking, Gv (�χ2 = 2.74, �df = 5, p = .74), or
Short-term memory, Gsm (�χ2 = 1.04, �df = 5, p =
.96).

Local structural equationmodels

The fit indices suggested a good fit for the locally esti-
mated models according to the recommended cutoff
scores mentioned previously. The average CFI value was
M = .958 (SD = .032, Min = .836, Max = .988); the
average RMSEA was M = .075 (SD = .024, Min = .044,
Max = .144); and the average SRMR was M = .031
(SD = .011, Min = .019, Max = .064). With increasing
age, a slight deterioration in model fit was suggested by
the CFI and SRMR.

The parameter functions of the factor loadings
depicted by straight solid lines in Figure 4 descriptively
showed four different overall patterns: (a) increase-
decrease—thus, dedifferentiation followed by differen-
tiation (factor loadings for Comprehension-knowledge);
(b) decrease-increase—thus, differentiation followed by
dedifferentiation (factor loadings for Auditory processing
and Processing speed); (c) straight-decrease—thus, stabil-
ity followed by differentiation (factor loadings for Fluid
reasoning and Short-term memory); and (d) straight—
thus, continuous stability (factor loadings for Long-term
retrieval and Visual-spatial thinking). As an inferential
test of these descriptive patterns, we report the results
of the permutation test for factor loadings as well as for
residual variances in Table 2.

Only for the factor loading of Comprehension-

knowledge did the permutation test reveal overall

significant variation across age as compared with the
weighted average Gc loading calculated with Equa-
tion (9) (M = 10.25, see Table 2). For the pointwise test
as calculated with Equation (11), a more conservative
significance criterion was applied (α = .01). The point-
wise tests showed that the estimated loadings at the focal
ages 14 to 17 were significantly above the average loading
(showing slight statistically significant dedifferentiation),
whereas beginning at the age of 22, the loading of Gc was
significantly lower than the average loading across age
(showing slight statistically significant differentiation).
The pointwise test for the variation in the Gc loadings
is visually represented in Figure 5 with a p-value curve
(see Silverman & Ramsay, 2005). Further pointwise tests
for all other broad ability parameters are provided in the
Supplementary Material.

Table 2 further shows that all other descriptively
detected factor loading variations were not statistically
significant overall or at specific age ranges or focal
age values. However, LSEM detected significant varia-
tion in residual variances for all but two (Visual-spatial
thinking and Auditory processing) broad abilities (see
Figure 4 and the last four columns of Table 2). As Mole-
naar et al. (2010) suggested, differentiation and dedif-
ferentiation may be detected in heteroscedastic resid-
uals, as was also the case in the present data exam-
ple. If the residual variances increase, the g-factor sat-
uration of the broad abilities decreases. Slight differen-
tiation then occurs as would be theoretically predicted
for the age range we analyzed in our empirical illus-
tration. Such an overall increase in residual variances,
as compared with the average residual variance calcu-
lated with Equation (9), was salient for Comprehen-

sion knowledge, Processing speed, and Long-term retrieval

(see Figure 4, Panel B). For Fluid reasoning and Short-

term memory, however, heteroscedastic residuals esti-
mated by LSEM revealed a slight dedifferentiation—
thus, the opposite of what was theoretically predicted by
the differentiation hypothesis for the age range that we
analyzed.

To illustrate how the LSEM results depend on the
selection of the bandwidth, we additionally provide an
estimated loading function for Comprehension knowledge

across age in Figure 6 with three different bandwidth fac-
tors (h) for calculating sample weights. Dotted lines track
the loading in the condition in which h = 3. This trajec-
tory is obviously very smooth and continuous, thus less
sensitive to detecting change onsets. Dashed lines show
the condition h= 1.1, which makes the loading functions
wavy and most sensitive to noise. The solid lines depict-
ing loading functions for h= 2 are not too smooth tomiss
change onsets in the plotted function but seem to smooth
out noise.
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MULTIVARIATE BEHAVIORAL RESEARCH 13

Table . Permutation test for LSEM (conducted with h= ).

Loadings Residual variances

M SD p(SD) Pointwise sign.
for age ranges

M SD p(SD) Pointwise sign.
for age ranges

Ga . . . — . . . 
Gc . . . –; – . . . –; –
Gf . . . — . . . –; –
Glr . . . — . . . –; –
Gs . . . — . . . –; –
Gsm . . . — . . . —
Gv . . . — . . . —

Note. Ga = Auditory processing; Gc = Comprehension-knowledge; Gf = Fluid reasoning; Glr = Long-term retrieval; Gs = Processing speed; Gsm = Short-term
memory; Gv= Visual-spatial thinking;M=weighted average of the parameter function of interest (see Equation []); SD= test statistic of the permutation test
(see Equation []); p(SD)= p value of the permutation test. For the pointwise tests, we set the significance level to .. The choice of the bandwidth factor (h= )
was justified by the results of the simulation study (see the section describing the simulation results).

Moderated factor analysis

Table 3 shows in detail the results obtained byMFA. Para-
metric functions estimated in MFA are depicted by long
dashed lines in Figure 4. In accordance with LSEM, the
factor loading of Comprehension-knowledge showed a lin-
ear increase and a quadratic decrease thereafter, with an
overall moderation effect of χ2 = 14.45 (df = 2, p < .01).
No further statistically significant moderation effects on
factor loadings were salient according to MFA. In MFA,
we also estimated the linear and quadratic moderation
effects of the residual variances. These are also listed in
Table 3. In line with LSEM, there was no overall modera-
tion effect of the residual variances of Auditory processing
and Visual-spatial thinking. One further moderation of a
residual variance that had been salient in LSEM remained

undetected by MFA—the parameter belonging to Short-

term memory (χ2 = 2.40, df = 2, p = .30). Four residual
variances linearly decreased across age (see also the long
dashed lines in Figure 4).Whereas the residual variance of
Fluid-reasoning decreased linearly, suggesting differentia-
tion, the residual variances of Comprehension-knowledge,

Long-term retrieval, and Processing speed increased lin-
early, suggesting dedifferentiation. These results agreed
with the LSEM results. However, their quadratic coun-
terparts, which became visible in the LSEM pointwise
significance test that was based on the permutation test,
remained undetected by MFA (see Table 3).

We will demonstrate how to interpret an MFA param-
eter (from Table 3) for the broad ability Comprehension-

knowledge. The value of 11.99 for the estimated intercept
is the expected loading of Comprehension-knowledge at

Figure . Pointwise p-value curves of estimated significance for parameter (loading—left; residual variance—right) variation across age
in LSEM. The figure shows the significance tests conducted for Gc (Comprehension-knowledge). The upper figure represents the course
of the test statistic across age on the basis of the permutation test calculated with Equation () for the factor loading of Gc. The lower
figure shows the pointwise significance (below p < ., see the y-axes in the figure) across age with solid triangles—the deviation of the
estimated factor loading of Gc from its weighted average functions is significant between the ages of  and  and above the age of 
(as also shown in Table ). Equivalent plots for all other broad abilities are presented in the Supplementary Material.
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14 A. HILDEBRANDT ET AL.

Figure . Estimated loading function for Comprehension-

knowledge (Gc) across age with three different bandwidth factors
for calculating sample weights.

a = 0 (i.e., a = MA because age is centered). The lin-
ear moderation effect, which is positive (0.01), shows an
increase in the loading for a 1-unit increase in age. The
quadratic decrease of –0.06 is expected for participants
who are older than 12 (see also Figure 4, Panel A). Table 3
also shows the residual variances of themoderation effects
of loadings and residual variances as formalized in Equa-
tions (15) and (17), along with their interval estimates
(2.5th and 97.5th percentiles of the posterior distribu-
tion).

Comparing the LSEM andMFA results

LSEM showed that the Comprehension-knowledge factor
loadings for focal ages 14 to 17 were significantly higher
than the average loading computed for the entire age
range and that the loading was significantly lower above
the focal age of 22. This parallels the MFA finding of a
positive but nonsignificant linear moderation effect of age
and the negative quadratic moderation shown in Table 3
forComprehension-knowledge. However, the analyses sug-
gest that LSEM is more sensitive to detecting the change
onsets due to the moderator.

MGMCS versus LSEM andMFA results

In MGMCS, restricting the factor loadings to equiva-
lence across age groups led to a significant deteriora-
tion in model fit for three out of seven loading parame-
ters. These results are different from the LSEM and MFA
results, which suggested moderation of the loadings for
only Comprehension-knowledge. However, the observed
decrease in factor loadings between the estimates (gener-
ally for the first two age groups) and the relative stability
thereafter (see Figure 4) were due to the indicator-specific
age trends shown in Figure 3. These trends are specific
for age-related changes in cognitive ability data in child-
hood. Because the MGMCS models are estimated for age
groups, which specify particular age ranges, any remain-
ing indicator-specific age trends within each age group
will distort parameter estimates that are diagnostic of dif-
ferentiation in the one-factor model, as presented in our
example. LSEM andMFA, however, are more flexible and
allow the researcher to control for these age trends across
the range of themoderator variable. The results presented
above emphasize the necessity of (a) studyingmean trends

Table . Results of the moderated factor analyses (MFA): Estimates with WinBUGS.

Intercept Linear trend Quadratic trend SD of residuals / credibility interval Test of moderating effects

Est. SE Est. SE Est. SE Est. Q Q χ  p

Loadings
Ga .∗ . − . . . . . . . . .
Gc .∗ . . . − .∗ . . . . .∗ .
Gf .∗ . − . . − . . . . . . .
Glr .∗ . − . . .∗ . . . . . .
Gs .∗ . − . . . . . . . . .
Gsm .∗ . − . . − . . . . . . .
Gv .∗ . − . . . . . . . . .
Residual variances
Ga .∗ . . . . . . . . . .
Gc .∗ . .∗ . . . . . . .∗ .
Gf .∗ . − .∗ . − . . . . . .∗ .
Glr .∗ . .∗ . − . . . . . .∗ .
Gs .∗ . .∗ . . . . . . .∗ .
Gsm .∗ . . . . . . . . . .
Gv .∗ . . . . . . . . . .

Note. Ga = Auditory processing; Gc = Comprehension-knowledge; Gf = Fluid reasoning; Glr = Long-term retrieval; Gs = Processing speed ; Gsm = Short-term
memory; Gv= Visual-spatial thinking; Est.= estimated parameter value; SE= standard error of the estimate; Q= % quantile; Q= % quantile. The χ  test
has two degrees of freedom because the test of themoderation effects (see last two columns) tested linear and quadratic moderation simultaneously; significant
effects (p< .) are presented with asterisks.
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MULTIVARIATE BEHAVIORAL RESEARCH 15

at the level of indicators before investigating covariance
structures because mean values may interact with a mod-
erator and (b) adapting the flexibility of the model to con-
trol for such effects if age trends are apparent.

Simulation study: Evaluation of the LSEM

approach

We conducted a simulation study to evaluate the statisti-
cal properties of the LSEM approach and to provide fur-
ther guidance for the selection of the bandwidth factor h
(see Equation [5]). The population model used to gen-
erate the data was the same as in the empirical example
(one-dimensional model with seven indicator variables
and a continuous moderator variable). We then slightly
modified the parameter estimates of the empirical exam-
ple to specify the parameters of the data-generatingmodel
(see the Supplementary Material, Tables 2S–5S, for a full
list of the parameters used in the simulation). The distri-
bution of the moderator variable (age) was fixed across
each replication. That is, for each age value ak, observed
indicators Yiak were generated by using Equation (2) and
the loadings, intercepts, and residual variances from the
empirical example. The sample sizes were manipulated to
N= 300, 600, and 1,000. For each of the three sample size
conditions, 1,000 data sets were generated. We analyzed
each data set using LSEMwith varying bandwidth factors
(h= 1.1, 1.3, 1.5, 1.75, 2, 2.3, and 3). Two criteria (bias and
root mean square error) were used to evaluate the statis-
tical behavior of the LSEM estimates of the loadings and
the residual variances. The pointwise (pw) bias for a factor
loading at a specific focal value of an indicator was esti-
mated as

pwBias(λ̂i(ak)) = ¯̂
λi(ak) − λi(ak), (18)

where
¯̂
λi(ak) is the mean parameter estimate for a focal

value ak across the 1,000 generated data sets, and λi(ak)

is the true population parameter. To assess the estimated
bias for a factor loading across the age distribution, a
weighted global (wg) bias was calculated as follows:

wg Bias(λ̂i) =
20

∑

k=1

|pw Bias(λ̂i(ak))| · w(ak), (19)

where w(ak) is a weight reflecting the fixed age distri-
bution. Thus, the absolute pointwise biases at each focal
value are averaged across the age distribution. The same
definitions were used to estimate the pointwise and global
biases for the residual variances. The pointwise mean
square error (MSE), which combines bias and variability
into an overall measure of accuracy, was estimated by tak-
ing the square of the mean square difference of the esti-
mate and the true parameter at each specific focal value.

Then the pointwise MSE estimates were averaged across
the age distribution, and finally, the square root was taken
to obtain a weighted global RMSE value.

Table 4 provides the estimated relative percentage
pointwise bias for a selected loading (i.e., the pointwise
bias was divided by the true pointwise parameter mul-
tiplied by 100). The percentage pointwise bias is shown
as a function of the bandwidth parameter (h = 1.1, 2,
and 3) and the sample size (N = 300, 600, and 1,000).
Overall, the estimated relative percentage pointwise bias
decreased when the sample size increased and the band-
width was small. For a small bandwidth parameter (h =
1.1), the pointwise bias was below 5% at all focal val-
ues, with the exception of the boundary value of age
= 23. Estimators with a relative percentage bias below
5% are often considered approximately unbiased (e.g.,
Boomsma, 2013). Thus, with a small bandwidth param-
eter and larger sample sizes, the LSEM approach provides
approximately unbiased estimates of the factor loadings
at specific focal points of the moderator. A similar pic-
ture emerged for the pointwise bias of the other six load-
ing parameters (see Tables 6S–11S in the Supplementary
Materials).

Table 5 provides the estimated weighted global bias
and RMSE for the LSEM estimates of the loadings and
residual variances for the small (N = 300) and large
(N= 1,000) sample size conditions. The results are shown
for LSEM estimates with bandwidth factors of h = 1.1
and 2. The column Optimal h indicates the bandwidth
factor that was optimal with respect to the estimated
weighted global bias or RMSE. The main results can be
summarized as follows: First, the estimated bias for most
parameters was small in magnitude. Using the (average)
true parameter to calculate a relative bias, the largest
estimated bias was observed for the residual variance of
Short-term memory (9.92), which corresponds to an esti-
mated relative percentage bias of 14%. Second, the esti-
mated bias decreased with increasing sample size. The
largest estimated bias for N = 1,000 was below 5% in rel-
ative terms. Third, the optimal bandwidth with respect to
the estimated bias decreased slightly as the sample size
increased. This indicates that a smaller bandwidth fac-
tor may be preferred in larger samples. A similar rela-
tion was observed for the estimated RMSE. Fourth, the
estimated bias and RMSE suggested different optimal
bandwidth factors. For minimizing bias, bandwidth fac-
tors between 1.1 and 1.5 seem to be optimal, particu-
larly with larger samples. However, the RMSE was clearly
reduced with a bandwidth factor between 2.5 and 3. Thus,
researchers are in a conflicting situation in that they can
either minimize bias by choosing a small bandwidth fac-
tor or increase the overall accuracy by selecting a larger
factor.
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16 A. HILDEBRANDT ET AL.

Table . Results of the simulation study: Relative percentage pointwise bias for a selected factor loading (comprehension knowledge) as
a function of the sample size and bandwidth factor.

h= . h=  h= 

Age N=  N=  N= , N=  N=  N= , N=  N=  N= ,

 . . . .∗ .∗ .∗ .∗ .∗ .∗

 . . . .∗ .∗ .∗ .∗ .∗ .∗

 − . . . . . . .∗ .∗ .∗

 − . − . − . . . . . . .
 − . − . − . − . . . . . .
 − . − . − . − . − . − . − . . .
 − . − . . − . − . . − . . .
 − . − . . − . . . − . − . .
 − . . . − . − . . − . − . − .
 − . − . . − . − . − . − . − . − .
 − . − . − . − . − . − . − .∗ − .∗ − .
 − . − . − . − .∗ − . − . − .∗ − .∗ − .∗

 − . − . − . − .∗ − . − . − .∗ − .∗ − .∗

 − . − . − . − .∗ − . − . − .∗ − .∗ − .∗

 − . − . − . − . − . − . − . − . − .
 − . . − . . . . . . .
 . . . .∗ .∗ .∗ .∗ .∗ .∗

 . . . .∗ .∗ .∗ .∗ .∗ .∗

 .∗ . . .∗ .∗ .∗ .∗ .∗ .∗

 .∗ .∗ .∗ .∗ .∗ .∗ .∗ .∗ .∗

Note. Pointwise bias estimates for all other broad abilities are provided in the Supplementary Material. Cells with absolute values larger than  are printed with
asterisks.

The accuracy–bias trade-off can be further illustrated
by inspecting the estimated pointwise bias and RMSE
for the loading function of the indicator Comprehension-

knowledge (see Figure 7). As can be seen, the estimated
bias was smallest for a bandwidth factor of 1.1. It is also
evident that for bandwidth factors of 1.1, 2, and 3, the
bias did not completely vanish for the largest sample size
of N = 1,000. Furthermore, the estimated RMSE clearly
decreased for larger sample sizes and was considerably
smaller with bandwidth factors of 2 and 3 than with a

factor of 1.1. In addition, a bandwidth factor of 2 pro-
duced slightly more accurate estimates than a bandwidth
factor of 3.

Discussion

Three approaches for testing the moderating effects of
a context variable on factor model parameters were
exemplified in this article withmeasures of cognitive abil-
ities across childhood and young adulthood. We argued

Table . Results of the simulation study:Weighted global bias and RMSE for the factor loadings as a function of sample size and bandwidth
factor.

N=  N= ,

True parameter wg Bias wg RMSE wg Bias wg RMSE

M SD h= . h=  Optimal h h= . h=  Optimal h h= . h=  Optimal h h= . h=  Optimal h

Loadings
Ga . . . .  . .  . . . . . 
Gc . . . . . . .  . . . . . .
Gf . . . . . . .  . . . . . .
Glr . . . . . . .  . . . . . 
Gs . . . . . . .  . . . . . 
Gsm . . . . . . .  . . . . . 
Gv . . . .  . .  . . . . . 

Residual variances
Ga . . . . . . .  . . . . . 
Gc . . . . . . .  . . . . . .
Gf . . . . . . . . . . . . . 
Glr . . . . . . . . . . . . . .
Gs . . . .  . .  . .  . . 
Gsm . . . . . . .  , . . . . .
Gv . . . . . . .  . . . . . .

Note. Gc = Comprehension-knowledge; Gv = Visual-spatial thinking; Gf = Fluid reasoning; Gs = Processing speed; Gsm = Short-term memory; Glr = Long-term
retrieval; Ga= Auditory processing; h= bandwidth factor; RMSE= root mean square error; wg=weighted.
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MULTIVARIATE BEHAVIORAL RESEARCH 17

Figure . Illustration of the accuracy-bias trade-off for the example of the factor loading functions of Comprehension-knowledge.

that preferably, a factor model would be estimated on
the basis of the conditional covariance structure at each
value of a continuous moderator variable. In such an
ideal case, the researcher can estimate the form of mod-
eration without introducing strong assumptions because
it is not necessary to specify whether the trend in the
moderating effect is linear, quadratic, or a higher order
polynomial. However, available data sets are often rel-
atively small without hundreds of observations at the
defined values of a continuous moderator variable. Thus,
in most practical applications, the covariance structure—
conditioned on the moderator variable—will have to be
approximated.

In the MGMCS approach, observations are often arbi-
trarily merged to create sample groups that are large
enough to estimate factor models simultaneously for
groups of a given range on the moderator variable. Thus,
the MGMCS approach is an approximation of a series
of models estimated for grouped values of the moder-
ator. We proposed LSEM as an extension of nonpara-
metric regression to the SEM context (Hildebrandt et al.,
2009). By weighting observations near the focal points of
the moderator, the effective N for each focal point can
be increased. The weighting scheme employed in LSEM
allows for the application of SEM estimation across the
entire range of the moderator. Finally, MFA approximates
effects of a continuousmoderator on factormodel param-
eters by introducing linear and quadratic (or even more
complex) effects that are fit to the whole range of themod-
erator variable in a single model.

In the present application, the results of MFA and
LSEM were generally in accordance. Both approaches
showed that the g-saturation of the first-order ability
Comprehension-knowledge factor increased between ages

4 and 15 and decreased thereafter. The increase in this
loading suggested dedifferentiation and was opposed to
the differentiation hypothesis formulated for childhood
age.However, the differentiation hypothesiswas proposed
for fluid abilities for which LSEM and MFA suggested
no differentiation in our empirical example. This finding
is in line with previous research (e.g., Molenaar, Dolan,
Wicherts, & van der Maas, 2010; Tucker-Drob, 2009).

Molenaar, Dolan, Wicherts, and van der Maas (2010)
investigated whether cognitive abilities could be differ-
entiated by age and ability in the higher order factor
model and identified five possible sources of differen-
tiation: (a) residual variances of ability indicators, (b)
loadings on the first-order factor (as also investigated by
Tucker-Drob, 2009), (c) first-order factor residual vari-
ances, (d) first-order factor loadings on g, and (e) g vari-
ance. However, they showed that (a), (c), and (e) were
statistically resolvable sources of differentiation. For this
reason, we showed how LSEM and MFA could be used
to investigate differentiation–dedifferentiation also at the
level of residual variances. Because we used first-order
abilities as indicators in the one-factor model, the present
source of differentiation is related to source (c) as dis-
cussed by Molenaar, Dolan, Wicherts, and van der Maas
(2010). The present results complement those findings
because we considered a broader age range than Mole-
naar,Dolan,Wicherts, and vanderMaas (2010) did.How-
ever, our findings are more heterogeneous than those
found by Molenaar, Dolan, Wicherts, and van der Maas
(2010), who reported no age differentiation. The LSEM
(and MFA) analyses in our study suggest differentia-
tion for three broad, first-order abilities (Comprehen-

sion knowledge, Processing speed, and Long-term retrieval)
and dedifferentiation for two others (Fluid reasoning and
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18 A. HILDEBRANDT ET AL.

Short-term memory), whereas no change across age was
detected for Auditory processing.

We showed that LSEM and MFA are complementary
approaches.We described LSEM as a nonparametric vari-
ant ofMFAand showedhowLSEMhas the advantage over
MFA at exploratorily detecting the onsets of changes in
parameter estimates across continuously observed mod-
erator variables. For example, LSEM and MFA detected
an increase in the factor loading of Comprehension-

knowledge until approximately the middle of the age
range we considered and a decrease thereafter. Although
MFA and its effect plots (see Figure 4) allowed the
user to visualize the symmetric bell-shaped function for
the Comprehension-knowledge loading across age, LSEM
revealed that the onset of the decrease was located specif-
ically around the age of 16.

Furthermore, we showed that the MGMCS procedure,
which groups cases across a broader age range arbitrarily,
can lead to different conclusions from LSEM andMFA. In
our empirical example, we were interested in whether the
relation between an observed and a latent variable (repre-
sented by a factor loading) in a one-factor model depends
on a third variable. The nature of a latent variable derived
through factor analysis is highly dependent on the man-
ifest variables that are included in the factor model. A
latent variable (g in our examples) represents shared vari-
ance across all indicators (the broad abilities in our exam-
ples). Because there are relations between age (the mod-
erator) and all WJ-III measures of cognitive ability, some
of the variance shared between these abilities could be
accounted for by age. However, in a factor analysis, the
same variance could also be accounted for by a common
factor. MFA takes into account the shared variance of the
indicators that is due to common age trends by regress-
ing the indicator intercepts on the moderator’s linear and
quadratic effects. Similarly, in LSEM, a detrending proce-
dure (local polynomial smoothing) is applied to the indi-
cators at the level of the observed data before the models
are computed at each focal value. As a consequence, in
both LSEM and MFA, the common factor, g, is derived
only out of the portion of the shared variance of the indi-
cators that is not due to age. This is different from the
usual application of MGMCS, which incorporates shared
variance that could be due to age by merging different age
groups into multiple groups.

Future research on LSEM

LSEM has not yet been extensively investigated. In the
present study, we included a first simulation study to
provide some guidelines for the optimal bandwidth that
should be chosen to calculate sample weights for LSEM.
This first study suggested that a bandwidth factor of 2

was the optimal solution for sample sizes above 1,000
across the entire age range. However, we investigated only
the bias and RMSE for the parameter estimates of LSEM.
Additional simulations are needed if these recommenda-
tions also hold for other aspects of statistical inference
(e.g., the Type I error rate and the power of hypothesis
tests). Likewise, in addition to the permutation test pre-
sented, alternative significance tests for the moderation
effects could also be explored.

There are a few data examples that have already sug-
gested that LSEMoffers advantages over other approaches
(Briley et al., 2015; Hildebrandt et al., 2009; Hildebrandt,
Sommer, Herzmann, &Wilhelm, 2010; Hülür et al., 2011;
Schroeders, Schipolowski, &Wilhelm, 2015). The present
work sheds further light on specific characteristics of
model estimation based on LSEM. In the Supplementary
Material, we provide R code implemented in the sirt pack-
age by Robitzsch (2015) to facilitate the use of LSEM.

Future research ought to more precisely investigate
the performance of LSEM compared with competing
approaches such as MFA. Simulation studies may be
designed to test the performance of LSEM under certain
circumstances—for example, for different sample sizes
at focal points, different distributions of the moderator
variable, or different effect size levels for the moderation
effect. MFA might be expected to have more power to
detect variation in factor model parameters if the form of
the variation is correctly specified.

One advantage of LSEM is the flexibility with which
it can be extended to assessing the effect of continuous
moderators in very complex factor models. For exam-
ple, LSEM can easily be adapted for binary, ordered-
category, or count data. Furthermore, it would be inter-
esting to apply LSEM to longitudinal or multilevel models
(see Wu & Zhang. 2006). Researchers could explore how
the variance decomposition of the longitudinal STARTS
model (stable trait, autoregressive trait, and state; Kenny&
Zautra, 2001) depends on a continuous moderator.

Conclusions and further applications

We presented two methods that can be applied to
examine variation in factor model parameters along
continuous variables—local structural equation model-
ing (LSEM) and moderated factor analysis (MFA)—
along with multiple-group mean and covariance struc-
ture (MGMCS) analyses.We illustrated the nature of these
analyses with the use of cognitive ability data, and we
examined variation in the factor loadings with respect
to the age differentiation hypothesis. The results of MFA
and LSEM were mostly in accordance with each other.
LSEM offers advantages for research questions regarding
the form of variation in factor model parameters across
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MULTIVARIATE BEHAVIORAL RESEARCH 19

a continuous moderator variable because LSEM does not
require a priori specification of the variation function of
the parameter estimates. If there are strong theoretical
assumptions about the form of parameter variation, MFA
is a reasonable choice because it allows traditional testing
of the form of variation. However, the presented analyses
showed that using both LSEM and MFA in conjunction
might be a fruitful way to generate and test hypotheses.

The presented example can easily be expanded to
include other potential continuous moderators of fac-
tor model parameters, such as socioeconomic status.
For example, it has been hypothesized that personality
traits are less correlated in high-ability than in low-ability
groups, aswell as at different levels of education (e.g.,Mot-
tus, Allik, & Pullmann, 2007; Rammstedt, Goldberg, &
Borg, 2010; Toomela, 2003). In fact, in a given data set,
it might be appropriate to use a broad variety of contex-
tual variables to illuminate the issues and problems asso-
ciated with the measurement instruments. The present
work demonstrated how LSEM can be used to investigate
such a hypothesis and provided code to facilitate the use
of this modeling approach.
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Appendix: Asymptotic normality of LSEM

estimates

In the followingAppendix, we provide a proof for the con-
sistency and asymptotic normality of the LSEM estimates.
The proof relies on two steps. First, asymptotic normal-
ity for the conditional covariance is based on result from
the literature. Second, the estimated covariance matrix is
plugged into the likelihood, and the delta method is used
to derive the asymptotic normality of the model parame-
ter estimates (i.e., loading and variance functions).

The term vech denotes the vectorization operator,
which stacks all nonduplicated entries of a symmetric
matrix � into a vector σ (i.e., σ = vech(�); see Harville,
2008). The corresponding inverse transformation avech

puts elements of a vector into a symmetric matrix, which
is formalized by � = avech(σ ).

In the first step, the LSEM approach removes the mean
structure with nonparametric estimation (e.g., polyno-
mial smoothing).More specifically, weights are calculated
for each case (depending on a bandwidth factor h). The
weights are then used as sample weights to calculate the
SEM for each focal point a. When the data are normally
distributed, instead of using each individual case, the non-
parametrically estimated covariancematrix �̂a (which is a
weighted covariance using sample weights specific to each
focal point a) is used in the likelihood function as input
data. Yin et al. (2010) showed that, if the bandwidth fac-
tor h is chosen proportional toN−1/5, whereN denotes the
sample size, the estimated covariance matrix �̂a is a con-
sistent estimator for the true age-conditional covariance
matrix �a. In addition, Yin et al. (2010) also derived the
asymptotic normality for the estimator σ̂a = vech(�̂a) of
the age-conditional covariance matrix σa = vech(�a):

√
Nh ·

(

σ̂a − σa − h2Ba

)

→ N(0,Va) (N → ∞),(A1)

whereBa andVa denote fixedmatrices that do not depend
on N and h. The matrix Ba is an asymptotic bias term,
andVa can be used to compute the asymptotic covariance
matrix of σ̂a.

In the second step of LSEM, the estimated covari-
ance matrix �̂a (or equivalently, the weighted observa-
tions using bandwidth factor h) is plugged into the likeli-
hood function. Let�∗

a be the restricted covariancematrix
implied by the structural model and �a be the unre-
stricted covariance. Then the likelihood can be written
as

l(�a, �
∗
a ) = log |�∗

a | − log |�a|
+ trace((�∗

a )
−1�a). (A2)

The likelihood function in Equation (A2) can be writ-
ten equivalently as a function of the corresponding vec-
torized parameters σa and σ ∗

a of the covariance matri-
ces. Themodel-implied covariance matrix σ ∗

a depends on
a structural parameter θa containing the unknown load-
ings and variances of the LSEM model. Using a known
function G (which maps the model parameters onto the
covariance matrix), this dependency can be expressed as
σ ∗
a = G(θa). The likelihood in Equation (A2) can now

be represented by a function F0 such that F0(σa, θa) =
l(�a, �

∗
a ). In LSEM, the estimated covariancematrix σ̂a is

plugged into F0, resulting in a function F0(σ̂a, θa), which
is maximized with respect to the structural parameters
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θa. This means that the derivatives of F0 with respect
to θa must be equal to zero. More generally, the deriva-
tives of F0 define a differentiable function F1(σa, θa) =
∂F0/∂θa(σa, θa), which for nonsingularmodels (i.e.,mod-
els with an invertible Fisher information matrix; see Rot-
nitzky, Cox, Bottai, & Robins, 2000) fulfills the assump-
tions of the implicit function theorem (Amann & Escher,
2008). Given that the LSEM model holds in the pop-
ulation, we have σa = G(θa), and thus F1(σa, θa) = 0.
Using the implicit function theorem, there exists a linear
approximation in the neighborhood of (σa, θa)with a dif-
ferentiable function gmapping the vector σa to the vector
θa such that

θ̂a − θa = g(σ̂a) − g(σa) ≈ Wa(σ̂a − σa), (A3)

where the matrixWa is defined by the derivative of gwith
respect to σa. According to the implicit function theorem,
it holds thatWa = (�F1 / �θa)

−1 (�F1 / �σ a), where the
derivatives are evaluated in (σa, θa). UsingEquation (A3),

we can approximate the distribution of θ̂a by
√
Nh · (θ̂a − θa) =

√
Nh ·Wa(σ̂a − σa − h2Ba)

+
√
Nh ·Wah

2Ba. (A4)

As the last term in Equation (A4) is a constant vector,
we obtain the following result by using Equation (A2) and
the delta method:

√
Nh · (θ̂a − θa − h2WaBa)

=
√
Nh ·Wa(σ̂a − σa − h2Ba)

→ N(0,WaVaW
T
a ) (N → ∞). (A5)

This result shows that the LSEM estimates θ̂a are
asymptotically normally distributed from which the con-
sistency of the estimates follows. Yin et al. (2010; see
Remark 3) argued that the magnitude of the bias of a
parameter estimate is comparable to its standard error for
an appropriately chosen bandwidth (h is proportional to
N−1/5).
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