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Abstract: In multivariate discrimination of several normal populations, the 

optimal classification procedure is based on quadratic discriminant functions. We 

compare expected error rates of the quadratic classification procedure if the covari- 

ance matrices are estimated under the following four models: (i) arbitrary covari- 

ance matrices, (ii) common principal components, (iii) proportional covariance 

matrices, and (iv) identical covariance matrices. Using Monte Carlo simulation to 

estimate expected error rates, we study the performance of the four discrimination 

procedures for five different parameter setups corresponding to "standard" situa- 

tions that have been used in the literature. The procedures are examined for sam- 

ple sizes ranging from 10 to 60, and for two to four groups. Our results quantify 

the extent to which a parsimonious method reduces error rates, and demonstrate 

that choosing a simple method of discrimination is often beneficial even if the 

underlying model assumptions ate wrong. 

Keywords: Common principal components; Linear I)iscriminant Function; Monte 

Carlo Simulation; Proportional Covariance Matrices 

1. Introduction 

Suppose the p-variate random vector X is measured in k populations, 

with density function 3~(x) and prior probability ni in the i-th group 

(i = 1 . . . . .  k). Discriminant analysis is concerned with finding a partition 

/R p = R l  u R 2  u . .  " u R t  such that an observation x with unknown group 

membership is classified into the i-th population if x e R i. If we choose the 

partition such as to minimize the total probability of  misclassification, each 

region of  classification Rj contains all points x r R p such that nj3~(x) is the 

maximum of all 7ti3~(x ), i = 1 . . . . .  k; see Anderson (1984, Theorem 6.7.1). 

For k multivariate normal populations with mean vectors Ill and nonsingular 

covariance matrices Vi, the classification region Rj is 

Rj = { x e / R P :  qj(x)> qi(x) V i = 1 . . . . .  k} 

where the classification functions qi(x) are quadratic and given by 

q i (x )  = x ' A i x  + b ' i x  + ci 

Here, 

1 
A i  = - v 7  

hi __ ~q/~-I ~t i 

1 1 
ci = log xi - ~- log det (~i) - ~ ltt'i ~71 ~ti 

(1.1) 

(1.2) 

In practical applications the parameters I1/ and u are estimated from training 

samples, and all parameters in (1.1) and (1.2) are then replaced by some 
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estimates ~i and ~i, which yields estimated classification regions/~i. Since 

these estimates are subject to sampling error, the resulting classification rule 

is no longer optimal, i.e., the total probability of misclassification based on 

R I . . . . .  Rk is not minimal. Evidently the performance of the classification 

procedure must depend on the precision of the estimates. 

Whenever a large number of parameters is to be estimated, the variabil- 

ity of the estimates can be reduced by imposing valid constraints on the 

parameter space, be it by equating certain parameters, or by setting parame- 

ters equal to known (hypothetical) values. In normal theory discriminant 

analysis the classical assumption is that all covadance matrices Wi are identi- 

cal, which means that the quadratic classification functions (1.1) become 

linear. It is well known (see Seber 1984, pp. 299-300) that linear discrimina- 

tion, whenever appropriate, outperforms quadratic discrimination with no 

constraints imposed on the covariance matrices. However, this is not the 

whole story: even in situations where linear discrimination is theoretically 

wrong, it may outperform the theoretically correct quadratic method in terms 

of expected error rates. This happens typically for small samples, and indi- 

cates that the gain in precision due to reducing the number of parameters is 

more important than the bias introduced by imposing theoretically wrong 

constraints. 

The performance of linear and quadratic discrimination rules has typi- 

cally been assessed by simulation studies (e.g., Marks and Dunn 1974, Wahl 

and Kronmal 1977). More recently, asymptotic expansions have been used to 

obtain approximate analytical results. O'Neill (1992a) gives an expansion for 

the mean vector of the linear discriminant function coefficients when in fact 

the covariance matrices are not equal, and studies it in greater detail in the 

special case of proportional covariance matrices. The same author (O'Neill 

1992b) studies asymptotic error rates of linear and quadratic discrimination 

rules and gives numerical results for the parameter configuration we call 

"O'Neill 's model" in section 5. In particular, O'Neill gives approximate 

minimal sample sizes needed for quadratic discrimination to outperform 

linear discrimination, and finds that the linear discrimination rule is "quite 

robust to departures from the equal variances assumption (1992b, p. 177)," a 

result that our simulations confirm. A related study by Wakaki (1990) gives 

approximate error rates for linear and quadratic discrimination rules when the 

covariance matrices are in fact proportional. 

What all the studies mentioned fail to do is suggest better methods of 

discrimination, i.e., methods that avoid both the overparameterization of the 

usual quadratic rule and the oversimplification of the linear rule. The present 

article is an attempt to fill the gap between linear and quadratic discrimina- 

tion by imposing constraints (other than equality) on the covariance matrices. 

Related approaches are discussed in section 7. 
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2. Four Methods of Discrimination 

We will now define four methods of discrimination, or rather, of esti- 

mation of the covariance matrices Vi. The estimates will then be substituted 

in (1.1) and (1.2) to obtain estimated classification regions. All four methods 

are based on samples of size Ni from the k populations, minl<i<k Ni > p. The 
mean vectors }ai will always be estimated by the sample mean vectors xi, and 

the prior probabilities will be assumed to be known. 

Method 1: Ordinary quadratic discrimination. The covariance matrices 

~i are estimated by Si, the sample covariance matrices in their usual unbiased 

form. 

Method 2: Common principal components. If the common principal com- 

ponent (CPC) model holds, all Vi have identical eigenvectors, i.e., there 

exists an orthogonal p x p  matrix 13 such that ~i = ~ Ai [~', i = 1 . . . . .  k, where 

Ai = diag (~.il . . . . .  ~.iv) (see Flury 1988, chapter 4). The classification pro- 

cedure obtained by replacing the Vi in (1.2) by their maximum likelihood 

estimates under the CPC model will be referred to as CPC discrimination. 

Method 3: Proportional covariance matrices. This method is based on the 

assumption that all ~i are proportional (with unknown proportionality fac- 

tors). Replacing the ~i in (1.2) by their maximum likelihood estimates under 

proportionality (see Hut), 1988, chapter 5) yields a classification procedure 

which we shall call proportional discrimination. 

Method 4: Linear discrimination. Assuming equality of all covariance 

matrices ~i, the common covariance matrix ~ is estimated by the pooled 

sample covariance matrix. 

We will sometimes refer to the four methods as (1) DIFF, (2) CPC, (3) 

PROP, and (4) EQU. The following table shows the number of functionally 

independent parameters to be estimated for covariance matrices under each of 

the four methods, for dimensionp and number of groups k: 

Method Number of parameters 

(1) DIFF kp(p - 1)/2 + kp 
(2) CPC p(p - 1)/2 + kp 
(3) PROP p(p - 1)/2 + p + k - 1 

(4) EQU p(p - 1)/2 + p 

For Methods 1 and 4, the number of parameters is evident. In Method 

3, proportional discrimination, k - 1 proportionality factors are estimated. In 
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Method 2, there are p(p - 1)/2 parameters for the single orthogonal matrix, 

plus p variances (i.e., eigenvalues) for each of the k groups. This indicates 

that using more parsimonious methods of discrimination than DIFF may be 

particularly beneficial if either p or k is large. Method 3, proportional 

discrimination, appears particularly attractive because only a single parame- 

ter is added for each additional group. We will later see that proportional 

discrimination is indeed a useful method. 

3. Some Theoretical Background 

Due to the fact that finding exact or approximate expressions for 

expected error rates for the intermediate procedures 2 and 3 appears 

mathematically intractable, this paper uses stochastic simulation methods. 

However, some limited theoretical results will be helpful to identify situa- 

tions in which a given method might be particularly successful. Asymptotic 

results comparing Methods 1 and 4 have been obtained, in a special parame- 

ter setup that we will discuss in section 5, by O'Neill (1984). Since it is 

assumed that "good estimation" will lead to small error rates, Flury and 

Schmid (1992) studied asymptotic variances of discriminant function 

coefficients under the same four methods as in the current paper, and for k = 2 

groups. We give here only a very short summary of a few results that seem 

most relevant for the choice of parameter configurations to be studied; for a 

more thorough discussion see Flury and Schmid (1992, pp. 251-260). 

(i) Assume the CPC model holds, then Methods 1 and 2 are theoreti- 

cally correct. The asymptotic variances indicate that Method 2 

does not necessarily yield discriminant function coefficients with 

smaller asymptotic variances than Method 1, depending on the 

eigenvalues (i.e., the diagonal elements of the A i - matrices). For 

instance, if ~,lh -~,lj  = ~,2j -~,2h for all (j,h), then CPC discrimi- 

nation and ordinary quadratic discrimination should do about 

equally well. On the other hand, if ~,~1 _ ~,~j = X~ - X~ for all 

(j,h), then some of the quadratic coeffmients have smaller asymp- 

totic variances if estimated by Method 2. 

(ii) If the ~i are proportional, then Methods 1 to 3 are theoretically 

correct. The asymptotic results indicate considerable potential 

advantages of proportional discrimination over both CPC - and 

ordinary quadratic discrimination, particularly if the dimension p 

is large. 

(iii) If ~gl = ~2, then linear discrimination is obviously best, and the 

advantage of using Method 4 over 1 or 2 increases with the 

dimension p. Interestingly, the variances of discriminant function 
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coefficients estimated under Method 3 approach those obtained in 

linear discrimination when p increases. In other words, for large 

dimension p we may expect proportional discrimination to do 

almost as well as linear discrimination. 

Evidently the asymptotic results leave some vital questions open, 

namely: 

(a) what is the advantage of using a (correc0 parsimonious 

method for small sample sizes? 

(b) What are the effects of using different methods of esti- 

mation if the number of groups (k) is larger than 2? 

(c) How do the constrained procedures 2 to 4 perform if 

they are applied to situations where they are theoreti- 

cally wrong? For instance, how does linear discrimina- 

tion perform if in fact the covariance matrices are pro- 

portional? 

These are the questions we wish to answer, to some extent, by the simulation 

study reported in this paper. 

4. Comparison of Classification Procedures and Computational Methods 

Given a set of classification functions ~i(x), i = 1 . . . . .  k, based on 

parameter estimates ~i and *i,  we can determine the classification regions R i. 

The total probability of misclassification can then be written as 

k 

F(/~) -- E ~i I/R,\/~, j~(x)dx. (4.1) 
i=1 

Following Lachenbruch (1975, p. 30), we call F(/~) the actual error rate. 

Different samples will yield different classification regions and thus 

different actual error rates. If we are interested in general properties of a 

classification procedure, and not just the performance of a given set of 

classification functions, the expected actual error rate, E[F(/~)], seems useful 

(see Lachenbruch 1975, p. 30). E(F(R)) is the expectation of F(R) under 

fixed distribution of populations and for fixed sample sizes. In this paper, we 

compare expected actual error rates of the Methods 1 - 4 under some specific 

parameter configurations. We will use simulation methods to determine these 

error rates because the mathematical difficulties seem prohibitive. 

A FORTRAN program to approximate expected error rates by Monte 

Carlo simulation is described in Schmid (1987, Sec. 5.1 and Appendix II). In 

the present paper we give only a short outline of computational methods. 
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For a given parameter configuration, and for fixed sample size, we 

repeatedly generate the sample statistics Si and ~i, using the Wishart variate 

generator of Smith and Hocking (1972) and a modified Box-Muller transfor- 

marion, respectively, which is described by Knuth (1969, p. 104). 

From Si we compute the appropriate estimators for ~i under all four 

methods, using the algorithms of Flury and Constantine (1985) for the CPC 

model and of Flury (1986) for the model of proportional covariance matrices. 

The actual error rates (4.1) are then computed for the four discrimination 

functions. The averages of repeatedly generated actual error rates serve as 

estimates for the expected error rates of the four discrimination methods. 

Standard errors of these means are computed for measuring the precision of 

the estimated expected error ra~s. 

The actual error rate F(R) for a given discriminant function is com- 

puted by two different methods, depencU^'ng on the number of groups. 

In the case of k = 2 groups, F(R) can be computed as the sum of two 

one-dimensional integrals: After some transformations, we can apply a 

slightly modified method of Imhof (1961) to compute the distribution of qua- 

dratic forms in normal variables. This method and the solution of some 

difficulties in finding appropriate integration bounds are described by Schmid 

(1987, Sec. 5.1.3). A similar extension of Imhof's work can be found in 

Davies (1973, 1980). 

In the case of k > 3 groups, F(/~) can be computed by Monte Carlo 

integration. To obtain reasonable precision of the integrals, this requires a 

much larger amount of computing than the method described for the case of 

two groups. 

In this paper we give results obtained for k = 2 and for k = 4 groups. 

Each of the "situations" or "designs" described in the next section is 

defined by two mean vectors IX1 and ~t2, and two covariance matrices ~l  and 

~2, corresponding to a two-group case. An associated four group case was 

generated by using the parameters (Ih ,~1), (~t2,~2), (~tl + ~ ,~ l ) ,  and 

(!12 + ~5, ~z) to define four multivariate normal models, where 8 is such that 

groups 3 and 4 are "totally separated" from 1 and 2. This means that the 

error rate is obtained entirely from the overlap of the densities of the first two 

groups, and the overlap of groups 3 and 4, which can be done using the 

numerical method of Imhof (1961) and Schmid (1987). In all calculations the 

numerical error of integration is strictly less than 10 -3 . 

5. Selection of Parameter Configurations 

We will now describe and justify five different parameter 

configurations, or "designs," for which the Monte Carlo experiment was run 
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to estimate expected error rams. 

teristics: 

All five designs share the following charac- 

�9 the analysis is done for k = 2 and k = 4 groups as described in sec- 

tion 4 

�9 the dimension of  all designs 0.e., the number of  variables) is p = 5 

�9 the sample sizes Ni are always equal, and range from Ni = 10 to 

Ni = 60 in steps of 5 

�9 for each sample size, 1000 simulations are performed 

�9 the prior probabilities are (if k = 2) and ~- (if k = 4). 

These choices reflect our experience from a larger number of  simula- 

tions performed. The designs selected for presentation seemed to be the most 

informative ones. Evidently, the number of parameters that can be varied is, 

for all practical purposes, without limits, and so we constrained ourselves to a 

presentation of  designs which have been described in the literature. 

A detailed description of the five designs follows, all of  them in terms 

of  two covariance matrices ~1 and xF2, and one mean vector ~ = ~q, assuming 

without loss of  generality that ~2 = 0. 

Design 1: Efron's standard model. 

Efron's (1975) standard model is a prototype for linear discrimination, 

defined by Vl = V2 = I5 (the identity matrix of dimension 5 x5) ,  and 

~t = (A,0,0,0,0)'. We chose A = 2.5, which is mostly arbitrary, but motivated 

by the idea that the four discrimination procedures should be compared in 

situations where good discrimination is possible but not trivial. The optimal 

error rate is E[R] = .  1056. This design serves mostly the purpose of  assessing 

the extent to which the four methods differ in an "optimal" situation. Note 

that optimal classification is based on the first variable alone; all other vari- 

ables are pure noise. 

Design 2: The proportional standard model. 

This model, inlloduced by Flury and Schmid (1992, pp. 259), is very 

similar to Effort's standard model, the parameters being ~ l  = I5, ~2 = TI5, 

and !1 = (A,0,0,0,0)', where "/> 0 is a constant of  proportionality. In the par- 

ticular numerical example we chose A = 3 and u = 4. The optimal error rate 

is E[R] = .076. 

Design 3: O'Neill 's model. 

This is a design based on a particular model studied by O'Neill (1984) 

for the purpose of comparing the performance of linear and (ordinary) qua- 

dratic classification rules. It is defined by the parameter setup Vl = Is, 
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V2 = diag( o2 ,1,1,1,1), and li = (A,0,0,0,0)'. Optimal classification is qua- 

dratic in the first variable, all other variables are just noise. In our particular 

numerical example we chose 6 = 3 and A = 4.5, yielding an optimal error rate 

of  gig] =.  107. 

O'Neill 's  model is interesting from two different points of  view. First, 

as O'Neill (1984, 1992b) noticed, it takes a surprisingly large sample size for 

quadratic discrimination to outperform linear discrimination, even if the vari- 

ances are quite different (such as (r 2 = 9 in our numerical example). Second, 

O'Neill 's  model is a special case of CPC, but not proportional. That is, both 

CPC and ordinary quadratic discrimination are theoretically correct. How- 

ever, as the asymptotic calculations of  Flury and Schmid (1992) show, CPC 

discrimination (at least in the case of  k = 2 groups) is not expected to do 

much better than ordinary quadratic discrimination. 

Design 4: A CPC model. 

This design is based on the remark made already in section 3, that CPC 

discrimination should be better than quadratic discrimination if  ~,~ -~,T~ = 

Z,~ -Z,~) for all (j,h). Thus design 4 should provide an indication of  the 

"max imum benefit" to be expected from using CPC rather than ordinary qua- 

dratic discrimination. Our (admittedly very arbitrary) parameteI setup for the 

numerical example is ~ l  = diag ~ , -~ ,  ~,  ; ,  i i 2 = diag ~-,1,2,5,1 , 

and I.t = (1,0,0,0,0)',  yielding an optimal error rate of E[R] = .067. 

Design 5: A model with "informative noise." 

Evidently there are zillions of  ways in which to generate situations 

where none of  the constrained Methods 2 to 4 is theoretically correct. We 

chose to present a situation where the parameter setup is similar to design 1, 

but now the "noise"  variables contain some information on discrimination 

due to differences in variability. At the same time, we wanted the CPC model 

to be "far from correct." A particular way to generate such models is to take 

[10] 
Vl = E4(p ' 

where E4(p) is the equicorrelation matrix of  dimension 4 by 4, with l ' s  on the 
1 

diagonal, and p ( - ~  < p <  1) in all off-diagonal entries. Defining 

V2 = diag(1,1 + 3p, 1 - p ,  1 - p ,  1 - p ) ,  we have a design where ~1 and ~2 

have identical eigenvalues, but different eigenvectors. This is a situation that 

both CPC and proportional discrimination were not meant to deal with, and it 
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will therefore be interesting to see if they 

quadratic discrimination. 

In our particular numerical example 

[i ~176 
1 .5 

~gl = .5 1 
.5 .5 
.5 .5 

offer any advantage over ordinary 

we chose 

~ .5 i , 

.5 

~g2 = diag(1,2.5,.5,.5,.5), and ~t = (2.5,0,0,0,0)'. This yields an optimal error 

rate of  E[R]  = .079 (which is about three quarters of  the optimal error rate in 

design 1). 

6. Results 

The numerical results obtained are summarized graphically for each of  

the five designs. There are two plots per design, one for k = 2 groups, and 

one for k = 4 groups. By construction (see section 4) of  the four-group setup, 

the curve for Method 1 (DIFF) should be identical, up to sampling error, for 

k = 2 and k = 4. Since the 2-group and the 4-group results were obtained 

from independent runs of the simulation algorithm, this provides an additional 

check for plausibility of  the results. 

Design 1: (Efron's standard model; see Figure 1). As expected, linear 

discrimination performs consistently best for all sample sizes and both the 2- 

sample and the 4-sample case. Proportional discrimination is only slightly 

worse. CPC and ordinary quadratic discrimination perform distinctly worse, 

with expected error rates typically about twice as far from the optimal error 

rate as the corresponding expected error rates for EQU and PROP. Even in 

the 4-sample case the advantage of  CPC over DIFF is only very slight. 

In summary, if  the assumption of  equality of covariance matrices holds 

true, then linear discrimination is best (as is clear from the fact that it is the 

most parsimonious method), but not much is lost if  proportional discrimina- 

tion is used. If CPC or ordinary quadratic discrimination are used, roughly 

twice as many observations are needed to obtain the same expected error rate. 

As for the numerical precision of  the results, the standard errors for 

mean error rates in 1000 simulations ranged from .0002 (Ni = 60, k = 4, 

Method EQU) to .0041 (Ni = 10, k = 4, Method CPC). Similar ranges of  

standard errors were found in the four other designs as well, and will not be 

reported. 
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Design 2: (Proportional standard model; see Figure 2). AU methods except 

EQU are theoretically correct, but clearly PROP performs much better than 

either CPC, or DIFF. CPC performs somewhat better than DIFF, especially in 

the four-sample case. Remarkably, linear discrimination does as well or 

better than CPC or DIFF for very small sample sizes (Ni = 10), thus giving a 

case where using a theoretically wrong but parsimonious method may be 

better than using a correct but overparameterized one. This is particularly 

remarkable in view of the relatively large constant of proportionality ('t = 4) 

between the two covariance matrices. The main message from this example 

is, however, that proportional discrimination may provide a substantial 

improvement over ordinary quadratic discrimination, whenever it is appropri- 

ate. 

Design 3: (O'Neill's model; see Figure 3). With the given numerical setup 

(i.e., a variance ratio of O 2 = 9 for the first variable), one would expect the 

two theoretically correct Methods CPC and DIFF to do considerably better 

than the "inappropriate" Methods EQU and PROP. Interestingly, all four 

methods behave very similarly, and only at sample sizes around Ni = 40 DIFF 

starts to perform better than EQU. CPC discrimination appears to have a 

noticeable advantage over DIFF, particularly in the four-sample case. 

Interestingly, PROP performs worse than EQU for all sample sizes. A possi- 

ble explanation for this somewhat unexpected phenomenon is that PROP 

introduces the "wrong" flexibility, compared to EQU. Proportional discrimi- 

nation forces the boundaries of the classification regions to be genuinely qua- 

dratic, which is undesirable in this case. 

O'Neill's model is the prototype of a situation where the direction of 

the mean difference vector in p-dimensional space is identical with the direc- 

tion of the difference in variance. More precisely, ttl - P 2  is proportional to 

the eigenvector of V~ 1 ~/2 associated with the single characteristic root which 

is different from 1. The slow convergence of error rates in Figure 3 seems to 

indicate that none of the four methods of discrimination is well suited to han- 

dle this situation. Asymptotically, of course, both CPC and DIFF will reach 

the optimal error rate. 

Design 4: (A CPC model; see Figure 4). Recall from section 5 that this 

design was "taylored" to favor CPC discrimination. Not surprisingly, CPC 

beats DIFF for all sample sizes, and by a larger margin for k = 4 groups than 

for k = 2 groups. The true surprise is the relatively good performance of pro- 

portional discrimination for all sample sizes. This is particularly astounding 
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Figure 5. Average Error Rate for Design 5. (a) k = 2 groups; (b) k = 4 groups. 
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in view of the fact that the variance ratios range from 1.25 (for the first vari- 

able) to 11.0 (for the fifth variable), meaning that the two covariance matrices 

are far from proportional, and it underlines the usefulness of proportional 

discrimination due to its flexibility while introducing only a single parameter 

for each additional group. 

Design 5: (A model with "informative noise"; see Figure 5). Recall that the 

parameters in this design were chosen such as to favor ordinary quadratic 

discrimination. All three constrained methods are theoretically wrong. For 

all sample sizes and both k = 2 and k = 4 groups, PROP and EQU discrimina- 

tion perform about identically. CPC discrimination performs about as well as 

DIFF for all sample sizes when k = 2, and beats DIFF for all sample sizes 

when k = 4. Of course asymptotically the single correct method (ordinary 

quadratic) will take over. Some calculations that are not reported in Figure 5 

indicate that up to sample sizes of 100 there will be no noticeable advantage 

of DIFF over CPC. 

All five designs reported here should be considered as "representa- 

fives" of interesting models, but the numerical values chosen for the parame- 

ters are somewhat arbitrary. We chose the parameter values such as to illus- 

trate as many (expected or unexpected) phenomena as possible on limited 

space. 

7. Discussion 

It is always diffacult to draw general conclusions from limited simula- 

tion studies. We try to make some recommendations anyway, based on the 

simulation results as well as the asymptotic results of Flury and Schmid 

(1992). 

. 

. 

Among competing and theoretically correct models, choose the 

most parsimonious one, i.e., the one which has the smallest number 

of functionally independent parameters to estimate. Note that this 

does not necessarily imply computational parsimony, because both 

the CPC and the PROP methods require iterafive computations for 

parameter estimation. 

Whenever the assumption of equality of covariance matrices seems 

questionable, consider proportional discrimination. In the worst 

case, it may perform slightly worse than linear discrimination 

(Designs 3 and 5). In more fortunate cases, it may perform much 

better than linear discrimination (Designs 2 and 4), and beat 

theoretically correct methods for finite sample sizes even when the 

covariance matrices are far from proportional (Design 4). This 
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confirms the suggestion made by the "Panel on Discriminant 

Analysis, Classification, and Clustering" (1987, p. 61), as well as 

empirical results obtained by Kirby et al (1991). 

3. CPC discrimination may in some situations reduce the expected 

error rates, but the improvement over ordinary quadratic discrimina- 

tion is typically not great. Together with the fact that CPC discrimi- 

nation is not scale-invariant, this indicates that it does not offer 

much advantage, except perhaps in cases where a CPC model is 

fitted to the data for its own intrinsic value. 

4. Ordinary quadratic discrimination should be avoided whenever pos- 

sible. 

For completeness we should mention that our proposed "intermediate" 

procedures CPC and PROP are not the only attempts to compromise between 

linear and quadratic discrimination. An interesting approach named "regu- 

larized discriminant analysis" (Friedman 1989, McLachlan 1992) consists of 

shrinking each sample covariance matrix Si towards the pooled covariance 

matrix S, using a single regularization parameter ~,,0 < ~, _< 1. The extreme 

cases ~, = 0 and ~, = 1 then yield exactly the ordinary quadratic and the linear 

classification rule, respectively. In addition, a shrinkage parameter 

~(0<~t< 1) is introduced to control shrinkage of each covariance matrix 

towards a multiple of the identity matrix, thereby counteracting the bias of the 

sample eigenvalues. For practical applications, the optimal values of ~, and ~, 

are determined by cross-validation. Green and Rayens (1989) and Rayens 

(1990) propose a similar technique, based on empirical Bayes estimates, to 

find a proper compromise between linear and quadratic discrimination. 

Another approach to reducing the "noise" introduced by parameter 

estimation is the so-called Euclidean distance classifier of Marco, Young, and 

Turner (1987). Their procedure is based on Euclidean distance to sample 

means, and therefore avoids estimation of variances and covariances alto- 

gether. This method is optimal when all covariance matrices are equal and 

proportional to the identity matrix. In our hierarchy of methods the Euclidean 

distance classifier would be number 5, following linear discrimination. Simi- 

larly, a discrimination method recently proposed by Chatterjee and Naray- 

anan (1992) avoids estimation of variances and covariances entirely by using 

Hausdorff distance. Yet another method that ranks in the hierarchy between 

levels 1 and 3 (and therefore competes directly with CPC discrimination) is 

based on estimating a common correlation matrix for all k groups, as in 

Manly and Rayner (1987). This method avoids the difficulty concerning lack 

of scale invariance of CPC mentioned in remark 3 above. The common 

correlation matrix method estimates exactly the same number of parameters 
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as CPC; we speculate therefore that it would not offer any great advantage 

over DIFF either. 

The obvious question addressed in the above mentioned paper of  Fried- 

man (1989), but left open here, is how to decide for a given method in a prac- 

tical situation. A simple answer is, use likelihood ratio tests or an informa- 

tion criterion (see Hury 1988, Chapter 7). However as Greene and Rayens 

(1989) point out, testing is usually not appropriate because a parsimonious 

but theoretically wrong method (LDA) often outperforms the correct method 

(DIFF) even when a test for equality of  covafiance matrices rejects the null 

hypothesis at a very small level. A cross-validatory choice based on a predic- 

tive criterion is clearly to be preferred. This is even more evident in view of  

the fact that non-normality of  the distributions may be as important as 

differences between covariance matrices. All calculations reported in this 

article are based on multivariate normality and may not be valid i f  the nor- 

mality assumptions are severely violated. Nevertheless, just as in regularized 

discriminant analysis, a cross-validation based choice of  one of  the four 

methods of  discrimination does not depend on the correctness of  the model 

assumptions. 
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