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'Fisher’s contributions to statistics are surveyed. His background,

skills, temperament, and style of thought and writing are sketched. His
mathematical and methodological contributions are outlined. More atten-

tion is given to the technical concepts he introduced or emphasized, such
as consistency, sufficiency, efficiency, information, and maximumlikeli-

hood. Still more attention is given to his conception and concepts of

probability and inference, including likelihood, the fiducial argument, and
hypothesis testing. Fisher is at once very near to and very far from modern

statistical thought generally.|

1. Introduction.

1.1. Why this essay? Of course an R. A. Fisher Memorial Lecture need not

be about R. A. Fisher himself, but the invitation to lecture in his honor set me

so to thinking of Fisher’s influence on my ownstatistical education that I could

not tear myself away from the project of a somewhat personal review of his

work.

Mystatistical mentors, Milton Friedman and W. Allen Wallis, held that

Fisher’s Statistical Methods for Research Workers (RW, 1925) was the serious
 

1 This is a written version of an R. A. Fisher Memorial Lecture given in Detroit on 29 Decem-

ber 1970 underthe auspices of the American Statistical Association, the Institute of Mathematical

Statistics, and the Biometric Society. The author’s untimely death on 1 November 1971 occurred
before he had finished work on the paper. The editor for publication was John W.Pratt. The
author’s work on the lecture and his subsequent paper and the editor’s work were supported in

part by the Army, Navy, Air Force, and NASA undera contract administered by the Office of
Naval Research. Reproduction in whole or in part is permitted for any purpose of the United

States Government.

2 Savage had drafted all the text given here, except the abstract. In the manuscript, the text
through § 2.5 is thoroughly revised in his handwriting and the remaindernotatall, though it may

be a second draft through Section 4.3, where the typing changes, and first draft thereafter. He
left the references incomplete through § 2.5 and almost completely absent thereafter. He indi-
cated where he intended to quote Fisher, but specified what he intended to quote only in § 1.1.
The editor therefore had to provide a majority of the references and all but the first quotation.

All comments in parentheses with references and all footnotes were also added bythe editor.
These additions are not flagged in the printed text, nor are minor changes of no substance, in-
cluding a few relocations of material. All other alterations of even minor substanceare identi-

fied as Tinsertions! or ‘changes). The changes usually replace material of similar length and

(continued on next page)

AMS 1970 subject classifications. Primary 62A99; Secondary 62-03.
Key words and phrases. Statistical inference, R. A. Fisher, R. A. Fisher’s contributions to

statistics, estimation, consistency,sufficiency,efficiency, information, maximumlikelihood,like-

lihood function, likelihood principle, hypothesis testing, fiducial probability, ancillary statistics,
design of experiments, randomization,statistic, induction, inductive behavior, inverse probabili-

ty, probability definition, reference set, Bayes’ rule, sampling distributions, Fisher consistency,

Behrens-Fisher problem, k-statistics, probit, randomization tests, Karl Pearson, Edgeworth.
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442 LEONARD J. SAVAGE

man’s introduction to statistics. They shared that idea with their own admired

teacher, Harold Hotelling. They and someothers, though of course notall, gave

the same advice: ‘“‘To becomea statistician, practice statistics and mull Fisher

over with patience, respect, and skepticism.”

 

topic. The only deletion of any length or substance (in § 4.2) is footnoted. Most alterations of
the text are for clarity or to bring in relevant ideas expressed elsewhere by Savage. A few amend
or go beyondhis intentions, but only on relatively objective matters where the evidence seems
clear. The editor hastried to keep his personal views on controversial issues to the footnotes.

Complete, unambiguous documentation would, however, have required excessive fussiness and

footnoting. Those concerned with the nature and purposeofthe editorialalterations will usually

be able to deduce them, more easily than this description may suggest. Those who wantall evi-
dence on Savage’s thought would need to consult the original materials in any case.
Material prepared by Savagein addition to the manuscript include about 200 index cards, some

with more than one entry; about 50 handwritten pages, which the editor has had typed, of some-

times fascinating ‘‘random notes”’ on many worksby Fisher and a few by others; Savage’s personal

copies, which he sometimes marked, of most of these works and quite a few more; and about 25

other pages of notes, mostly references and lists of topics. A tape of the original lecture was

available and has been transcribed. All these materials were useful in the editing, especially for
filling in references, but they by no meansresolved all problems. They and Savage’s otherscien-
tific papers, including correspondence,are available, excellently indexed, in archives at Sterling

Memorial Library, Yale University.

The editor is grateful for help, especially with references not by Fisher, to the discussants,

most of whom sent separate commentsfor editorial use; and in addition to the following, with

apologies to anyone inadvertently omitted: F. J. Anscombe, G. A. Barnard, M.S. Bartlett,

J. H. Bennett, R. J. Buehler, H. Chernoff, W. G. Cochran, A.P. Dempster, A. W. F. Edwards,

D. J. Finney, J. Gurland, J. A. Hartigan, B. M. Hill, D. G. Kendall, M. G. Kendall, W. H.

Kruskal, E. E. Leamer, L. Le Cam, E. L. Lehmann, F. Mosteller, E. S. Pearson, G.-C. Rota,

I. R. Savage, H. Scheffé, E. L. Scott, and D. L. Wallace. That so many should have responded

so generously is a tribute to Savagein itself. Of course this implicates them in no way.

Citations without dates, in the footnotes, are to these responses. Many interesting reactions

could not be used, however. Eisenhart and Pearson, in particular, each wrote many pages of

commentary of great interest, historical as well as substantive. All the responses are available

in the archives.

Savage would obviously have revised his paper, especially the latter portions, considerably for

Style and somefor substance. After circulating it for reaction, he would presumably have revised
it further. In particular, offense would have been eliminated where he did not intend it but some

now find it. An editor cannot know how he would have madeanyofthese kindsofrevisions,

however, and any attemptrisks distorting his meaning. Richard Savage and I therefore decided

in the end to let the text stand even where it clearly presents a problem unless a resolution was

also clear. Wetrust readers will make appropriate allowancefor the unfinished state of the man-

uscript. Jimmie Savage once wrote (1954 vii):

One whosoairs his opinions has serious misgivings that (as may be judged from

other prefaces) he often tries to communicate along with his book. First, he longs

to know, for reasons that are not altogether noble, whether he is really making a
valuable contribution: --
Again, what he has written is far from perfect, even to his biased eye. He has

stopped revising and called the book finished, because one must soonerorlater.
Finally he fears that he himself, and still more such public as he has, will forget

that the book is tentative, that an author’s most recent word need not be his last

word.
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In my first years as a teacher ofstatistics, I used Fisher’s Statistical Methods

for Research Workers several times as a textbook for an introductory graduate

level course and also taught the theory of design from his Design of Experiments

(DOE, 1935). It seems unlikely that Fisher’s books will ever again be used as

introductory textbooks, and even 20 years ago there was muchto besaid against

it, but the experience was by no meansall bad either for me or for the students.

The volume of Fisher’s papers Contributions to Mathematical Statistics (CMS,

1950) appeared during the period of my most active work on The Foundations of

Statistics (1954), upon whichit had a great influence. Beginning aboutthat time,

I occasionally had the privilege of exchanging letters with Fisher, and much

more rarely of talking with him.

Only figuratively can my preparation for this essay be referred to as rereading

R. A. Fisher. I have long ago read considerably in the three books already men-

tioned, in Fisher’s much morerecent Statistical Methods and Scientific Inference

(SI, 1956), and in a few other papers by him as well as in the extremely edu-

cational introduction to Statistical Tables for Biological, Agricultural and Medical

Research (ST, Fisher and Yates, 1938). But I cannot pretend even now to have

read all of his work or even to have read all that I explicitly refer to. His statis-

tical corpusis so large and diverse that scarcely anyone but Fisher himself would

be in a position to read even the papers in the 1950 collection (CMS) with com-

prehension, let alone all his Collected Papers (CP) and books.|

There are many ways in which sucha rich body of writing might be reviewed.

My aim here is to convey to you Fisher’s main beliefs and attitudes—his view-

point aboutstatistics. There isa world of R. A. Fisher at once very near to

and very far from the world of modernstatisticians generally, and I hope to

provide you with a rough mapofit.

But what can be donefor youin this that you cannot do for yourselves? Those

whohave already read in Fisher will agree that understanding him deeply is not

easy, and they may be glad to hear the views of another. Some who have too
long deferred plunging into Fisher will, I hope, find this essay a stimulating

invitation.

As background, something will first be said about Fisher’s interests and tech-

nical achievements, his manner andhis relations with other statisticians. This

will make more meaningful the review of his major ideas aboutstatistical infer-

ence with special reference to the unusual, the unclear, and the controversial.

So many slippery topics must be touched onthat no oneis likely to agree with

all my judgements, and at least a few objective errors are sure to resist eradica-

tion. If you find many doubts and few unequivocal answers do not be unduly

disappointed. Fisher said once, in a sentence not characteristic of his writing|:

I am still too often confronted by problems, even in my

own research, to which I cannotconfidently offer a solu-

tion, ever to be tempted to imply that finality has been
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reached (or to take very seriously this claim when made

by others!). (CMS, Preface)

1.2. Sources of information. The following pages consist largely of judgments

and impressions. Nothing can convert these subjective reactions completely into

objective facts, but it has been an invaluable discipline for me to support each

of them byspecific citations with reasonable thoroughness. These citations will

also be useful to anyone who wants to reach his own conclusions aboutparticular

points, and I hope that they will not interfere with smooth reading of the text.*

To M. G. Kendall (1963) [and Bennett and Cornish (CP)! we owe a very

complete bibliography of Fisher. That it is very long is no surprise, but its

diversity may have surprised even Fisher’s closest friends. [Statistical Methods

for Research Workers also containsa list of his statistical publications and some

others.|

Among valuable works about Fisher are: Barnard 1963; Bartlett 1965, 1968;

Hotelling 1951; M. G. Kendall 1963; Mahalanobis 1938; Neyman 1951, 1961,

1967; Pearson 1968, 1974; Yates and Mather 1963; and a forthcoming biography

by his daughter, Joan Box. There is material of great value for biographical

study of both Fisher and “Student” in a circulated, but not commercially pub-

lished, collection of letters mainly from “Student” to Fisher (Gosset 1962).

2. Silhouette.

2.1. Beginning before the beginning. My central object is to delineate Fisher’s

outlook onstatistics, but much of its importance and meaning would be lost

were it not preceded by account of the man, his work, and style. Looking be-

hind the scenes and reading between the lines are only human. Theseactivities

are both valuable and dangerous. Fisher himself illustrates excess in this sort

of thing when he denigrates “mathematicians” as unfit because of their mathe-

matical minds and training to comprehend the existence of nondeductive reason-

ing or the role of genetics in evolution (1932 257; 1935b 39; 1935f 155; 1936a

248-9; 1958a 261; he often stresses need for or lack of contact with Natural

Sciences: RW ix; DOE 44; 1938; 1939d 5-6; 1941 c 141; 1948 219; 1955 69;

1958a 274; 1960 9; SI 102). Ironically, Karl Pearson, who was the mostsinister

of Fisher’s ‘““mathematicians” (1936a 248-9; 1937a esp. 302a) was actually far

less a mathematician than Fisher himself (1922a 311; 1937b esp. 311; SI 3; see

also §§ 2.4 and 2.6). Again, George Polya—a mathematician whose great work

on combinatorics (1937) might greatly have enriched Fisher’s own combinatoric

work (1942c, 1950a) had Fisher known of it—has been actively interested for

 

3 Where manycitations are possible, Savage may haveintendedto be selective. In citing Fisher,
rather than impose my ownselection, I have tended to be overinclusive. In citing others than
Fisher, on statistical topics generally, I have aimed to give a few helpful references, but notto
be definitive. To minimize interference with smooth reading, I have used the most compact
feasible style of citation. In particular, the same nameapplies to a string of dates until another

name appears.
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decades (1941, 1962-5) in the vital role of induction in mathematical activity.

Noless flagrant examples of misspent intellectualism [than this of Fisher’s! can

be found in many authors, including Fisher’s critics.

2.2. Background and skills. Of course Fisher was not specifically trained to

be a statistician. Only after Fisher was a great statistician, and largely because

of the vision of statistics to which his activities gave rise, wasstatistical training

inaugurated in a few universities.‘
Fisher was a Cambridge-trained mathematician (see references in § 1.2), and

despite what sometimes seemsscorn for mathematicians, he was a very good one

(Neyman 1951; 1961 147; 1967) with an extraordinary commandofspecial func-

tions (1915, 1921 a, 1922c, 1925b, 1925c, 1928a, 1931 b), combinatorics (1942 b,

1942c, 1945a, 1950a, DOE, ST), and truly geometric n-dimensional geometry

(1913, 1915, 1929b, 1940a; see also 1922a, 1922b, 1924a, 1928b, 1929a, 1930a,

1939b). Indeed, my recent reading reveals Fisher as much more of a mathema-

tician than I had previously recognized. I had been misled by his ownattitude

toward mathematicians, especially by his lack of comprehension of, and con-

tempt for, modern abstract tendencies in mathematics (1958a; see also § 2.1;

yet see 1942b esp. 340a; 1945a; DOE § 45.1). Seeing Fisher ignorant of those

parts of mathematics in which I was best trained, I long suspected that his mas-

tery of other parts had been exaggerated, but it now seemsto methatstatistics

has never been served by a mathematician stronger in certain directions than

Fisher was. No complete statistician is merely a mathematician, and Fisher—

like other statisticians of his time—wasa skilled and energetic desk calculator

(RW examples; ST), tabulator (ST; see Index at “Tables” in RW and CMSor

CP), and grapher (RW Ch. 2; 1922a § 10; 1924c; 1928d). He early became a

widely experienced and resourceful applied statistician, mainly in the fields of

agronomy and laboratory biology (see his bibliography; the examples in RW

and DOE;practical suggestions in 1926a; in RW Ch.2; and in DOE § 10 par.

2, § 12, § 25, § 29, end of § 60).

In addition to Fisher’s illustrious career as a statistician he had one almost

as illustrious as a population geneticist, so that quite apart from his work in

statistics he was a famous, creative, and controversial geneticist (see references

in § 1.2). Even today, I occasionally meet geneticists who ask me whetherit is

true that the great geneticist R. A. Fisher was also an importantstatistician.

Fisher held twochairsin genetics, first at University College, London, and then

at Cambridge, but was never a professorofstatistics.

2.3. Temperament. Fisher burned even more thantherest of us, it seems to

me, to be original, right, important, famous, and respected. And in enormous

 

* Advancedtraining in theoretical statistics and its application has been available at University
College, Londonsince the 1890’s (Pearson 1974), but Savage’s statementis surely correct in spirit,
and technically as well if ‘‘training’’ means at the doctoral level and ‘‘a few’? means more than
one or two.
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measure, he achievedall of that, though never enough to bring him peace. Not

unnaturally, he was often involved in quarrels, and [though he sometimes dis-

agreed politely (1929f; 1929g; 1930c 204a; 1932 260-1; 1933a; 1936c; 1941 b),

he| sometimes published insults that only a saint could entirely forgive (1922a 329;

1922b 86a; 1935 f; 1937b 302a-318; 1939a 173a; 1941 c 143; 1960 2, 4; SI3, 76-

7, 88, 91, 96, 100-2, 120, 141, 162-3). It is not evident that Fisher always struck

the first blow in these quarrels (K. Pearson, presumably, in Soper et al. 1917 353;

Bowley 1935 55-7; see also E. S. Pearson 1968; Eisenhart 1974), though their

actual roots would bedifficult if not impossible to trace (1922b 91; 1923b), nor

did he always emerge the undisputed champion in bad manners? (K. Pearson 1936;

Neyman 1951). On one occasion, Fisher (1954) struck out blindly against a

young lady who had been anything but offensive or incompetent. His conclu-

sion was that had the lady known what she was about she would have solved a

certain problem in a certain fashion; he was right about that but failed to notice

that she had solved it in just that fashion. Of course, Fisher was by no means

without friends and admirers too. [!Indeed, weareall his admirers. (Yet he

has few articulate partisans in controversies on the foundations ofstatistical

inference, the closest, perhaps, being Barnard (e.g. 1963) and Rao(e.g. 1961).)1

The main point for us in Fisher’s touchiness and involvement in quarrels is

their impediment to communication (van Dantzig 1957; Yates 1962; Yates and

Mather 1963; see also § 2.4). Thosegreatstatisticians who had the most to gain

from understanding him, whether to some extent through their own tactlessness

or otherwise, received the greatest psychological provocationto close their minds

to him. Also, it is hard for a man so driven and so involved in polemic as Fisher

was to recognize in himself and announcea frank changeof opinion except when

he is the first to see the need for it (1922a 326). For example, when Fishersays,

“It has been proposed that...” (SI.172), and then proceeds to smash that proposal

to smithereens, would it occur to you that the proposer wasFisher himself (1935c

395)? Yet specific, technical mistakes he can admit openly (1940b 423) and

even gracefully (1930c 205), and he often mentions weaknesses ofhis earlier

attempts which he later improved on (1922a 308a; 1922b 86a; 1925a 699a;

1930b 527a; 1930c 204a; SI 54, 56, 142).1

J am surely not alone in having suspected that some of Fisher’s major views

were adopted simply to avoid agreeing with his opponents (Neyman 1961 148-

9). One of the most valuable lessons of my rereading is the conclusion that

while conflict may sometimes have somewhatdistorted Fisher’s presentation of

his views® (Yates 1962 1152), the views themselves display a steady and coherent

development (Barnard 1963 164; Fisher 1920, 1922a, 1924a, 1925a, 1935b;

 

5 There is good reason to think that Savage would have modified such bad mannersof his own,
but there is no way to eliminate them editorially without danger of distorting his intentions.

6 Fisher says (SI 31) ‘‘[Chrystal’s] case as well as Venn’s illustrates the truth that the best causes

tend to attract to their support the worst arguments, which seemsto be equally true in the in-
tellectual and in the moral sense.”’
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1926a, 1929d, DOE; Author’s Notes in CMS on these and 1922b, 1922c).
Ideas that I had consistently tuned out until the present reading are to be found
in some of his earliest papers. (See individual topics below for references; see
also 1928b, RW 8 57.)

As in the works of other mathematicians, research for the fun of it is abundant
and beautiful in Fisher’s writings, though he usually apologizes for it’ (1929c;

1942a 305a; 1953a; DOE § 35).

2.4. Predecessors and contemporaries. Fisher had a broad general culture and
was well read in the statistical literature of his past and of his youth (GT; DOE

xv; SI v; 1950b; 1958c; see also the rest of this subsection and the next). To

begin with the oldest, the famous essay by Thomas Bayes (1763) seems to have

been more stimulating to Fisher than to many who,like myself, are called

Bayesians. Recognition of this was slow to come to me because of Fisher’s rejec-

tion of Bayes’ rule and other ‘conventional’ prior distributions (1921a 17; 1922a

311, 324-6; 1930b 528-31; 1932 257-9; 1934a 285-7; RW §5; DOE8 3; SI

Ch. 2), and because he certainly was not a Bayesian in any ordinary sense. His

admiration for Bayes is to be inferred more from Fisher’s attitude to inductive

inference, which he sometimes explicitly links to Bayes (1930b 531; 1934a 285-

6; 1936a 245-7; 1960 2-3, DOE§ 3) and which will be discussedlater, especially

in Section 4.4, than by certain explicit words of praise (RW § 5; DOE 3; SI

8-17; 1934a 285-6; 1936a 245-7. He urged the 1958 reprinting of Bayes (1763);

see p. 295.).

Intellectually, Fisher was a grandson of Francis Galton, whom he greatly

admired (1948 218; SI 1-2; yet DOE § 19 points out a serious error made by

Galton), and a son of Karl Pearson, who was always before Fisher’s eyes as an

inspiration and a challenge (RW § 5; SI 2-4, 141; 1933b 893-4; see also § 2.1

and § 2.6 and Eisenhart 1974), so that Freud too might have called Pearson a

father to Fisher.

Fisher always refers to “Student,” William Sealy Gosset, with respect (1915

507-8; 1922a 315; 1922c 608; 1923a 655; 1924b 807-8; 1936a 252; 1938 16;

1939d; RW § 5; DOE 33; S14, 80-1; he disagrees politely in 1929f, less politely

in 1936c), and their mutual admiration and enduring friendshipis reflected in

the collection of letters from “Student” to Fisher (Gosset 1962), which has
the benefit of some annotation by Fisher.

Some of Fisher’s important ideas about likelihood are anticipated in a long

and obscure paper by Edgeworth (1908-9 esp. 506-7, 662, and most especially

82-5). When this was publicly pointed out to Fisher (Bowley 1935) he replied

that there was nothing of value in Edgeworth’s paper that was notinstill older

papers that Fisher was glad to acknowledge (1935b 77). Fisher seems to me to

have underestimated the pertinent elements of Edgeworth’s paper. I doubt that

 

" Nevertheless, the difficulty of documenting this assertion indicates that only a tiny fraction

of Fisher’s work is mathematical research for the fun of it.
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Fisher ever read it all closely, either before or after the connection was pointed

out, first because it is human to turn away from long and difficult papers Tap-

parently| based on what one takes to be ridiculous premises—inthis case, Bayes’

rule and inverse probability—then later perhaps becauseit is hard to seek dili-

gently for the unwelcome. Rao (1961 209-11) stresses that Fisher’s contribu-

tions to the idea of maximum-likelihood estimation go far beyond those ofall
of his predecessors.°

In science,it is hostility rather than familiarity that breeds contempt, andall

of Fisher’s castigation of the Neyman—Pearson school (1934a 296; 1935¢ 393;

1935f; 1939a 173a, 180; 1945b 130; 1955; 1960; SI) shows that he never had

sufficient respect for the work of that school to read it attentively, as will be

brought out frequently in this essay. And membersof that schoolin referring

to Fisher were likely to read their own ideas impatiently into his lines. This

too will be documented by implication during this essay. An interesting study

on the breakdown in communication between the twosides might be based

merely on the discussion following (Neyman1935); and it might well begin with
careful pursuit of the last complete paragraph on page 172 of that discussion.
(See also references in § 2.3 and § 2.5.)

2.5. Style. Fisher’s writing has a characteristic flavor, at once polished and
awkward. It is not pleasant to my taste but is fascinating and can beinspiring.
He has a tendency to be aphoristic and cryptic.* Sometimes things are plainly
said—when you go back and check—butin such a wayasto go unperceived or
even undeciphered whenfirst seen.

Mathematicsis ruthlessly omitted from Fisher’s didactic works, Statistical Meth-
odsfor Research Workers and The Design ofExperiments. In modern mathematical
education there is great repugnanceto transmitting a mathematical fact without
its demonstration. The disciplinary valueofthis practice is clear, but, especially
in the mathematical education of nonmathematicians, it can be abused. Many
a high school boy knows more biology, chemistry, and physics, than a dozen men
could demonstrate in a lifetime. Is it not then appropriate for him also to know
more mathematics than he himself can demonstrate? Giving perhaps too affir-
mative a response (RW x, § 4), Fisher freely pours out mathematical facts in
his didactic works without even a bowin the direction of demonstration. I have
encountered relatively unmathematical scholars of intelligence and perseverance
whoare able to learn much from these books, but for most people, time out for
some mathematical demonstrations seems indispensable to mastery (Hotelling
1951 45-6).

* Scraps of other drafts of this paragraph were nearby in Savage’s manuscript. My contribu-
tion following this paper further describes and assesses Edgeworth’s paper.

* Examples culled from Savage’s notes include 1915; 1920 761; 1921 b 119, 122; 1922c 598, 600;
1923b §2; 1924a; 1924 b 807, 810; 1928b; 1930b; 1934a 297; 1935 b 42, 47; RW §57; see also
van Dantzig (1957), Hotelling (1951 38, 45-6), and for his own view and excuses, Fisher (1922 b
86a; 1926a 511; see also § 2.3) and Mahalanobis (1938 265-6).
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Fisher is not one to confine himself to technicalities. He sometimes sermon-

izes, "on statistics proper and more broadly.! Here are a few examples both

good and bad;classification I leave as an exercise to the reader (DOE §§ 4, 16,

37, 66 par. 2; 1914; 1938; 1948; 1950b; 1958a; 1958b; 1960). He sometimes

enters upon the history of ideas, usually not very well in my opinion (RW 8 5;

DOE 8§ 2-3; SI Ch. 1-2; 1922a; 1930b; 1936a; 1936d; 1948; 1953c; 1958a).

Like some other great men, he does not hesitate to castigate as childish the work

of equally great men not only within but also outside areas of his competence

(see § 2.3).

2.6. Just what did Fisher do in statistics? It would be more economicalto list

the few statistical topics in which he displayed no interest than those in which

he did. To discuss his achievements with any thoroughness would require a

long paperin itself. My object here is merely to say enough about them to set

the stage for the discussion of Fisher’s statistical point of view, which is the

ultimate object of this paper. I shall often say, for simplicity of language, that

Fisher was the innovator of various topics in statistics. I shall of course not do

so where definitely know that he had predecessors. At the same time, searching

for predecessorsis difficult if not all but impossible.
In the art of calculating explicit sampling distributions, Fisher led statistics

out of its infancy (1915; 1921a; 1922c; 1924b), and he may never have been

excelled in this skill (Neyman 1961 147). “Student” (1908) conjectured the distri-

bution of ‘“Student’s” t; Fisher proved it Fexplicitly and in detail for one-sample

t (1923a; see also 1939d) and extended it to r/(1 — r’)! (1915 518) and standard-

ized coefficients in multiple regression (1922c).1 Fisher discovered the distri-

bution of F ‘and of its logarithm z (1921a; 1922c; 1924b relates the various

problems). (Actually, "the symbol! F was introduced by Snedecor (1934; 1937

§ 10.5) in honor of Fisher, for which officiousness Fisher seemsneverto havefor-

given him.) A very sophisticated achievementof this sort was his early compu-

tation of the distribution of the sample correlation coefficient for correlated

variables (1915), Ta late one his treatment of dispersion on a sphere (1953a).!

It stands to reason that he would not have investigated noncentral distribu-

tions, because their raison d’étre is the power function, a concept on which

Fisher turned his back (see § 4.7). So much the worse for reason; Fisher was

the first to give formulas for the important noncentral distributions, chi-squared,

t, and ‘singly noncentral’ F (1928a; 1931b).

 

10 This attitude has not been found expressed in Fisher’s writing, and Finney wrote,‘‘I thought

he always had considerable affection for Snedecor,’’ yet Savage’s statement seems from some

comments received to reflect an oral tradition. Though Fisher tabulated F (ST) and used it in

exposition (DOE § 23), he personally preferred z becauseits distribution varies more regularly

and is more nearly normal, facilitating interpolation and tabulation (RW §41, DOE §23, ST 2).

According to Eisenhart, he also consideredits scale better for expressing departure from the null

hypothesis, and its near normality helpful in combining independent analyses. His incidental

remark (1924 b 808) that z = log s:/sz has modelog oi/a2 piqued Savage.



450 LEONARD J. SAVAGE

Fisher is the undisputed creator (Cochran 1976; Yates and Mather 1963 107-

113; see also Hotelling 1951 42-3; Mahalanobis 1938 271; Neyman 1951 407;

1961 146-7; 1967 1458-9) of the modern field that statisticians call the design

of experiments, both in the broad sense of keeping statistical considerations in

mind in the planning of experiments and in the narrow sense of exploiting

combinatorial patterns in the layout of experiments. [His book Design of Experi-

ments is full of wonderful ideas, many already clearly presented or present in

(1926a).1 I shall mention quite a few of these, discussing one or twoa little,

but am in danger of leaving out several of your favorite ones by oversight. He

preached effectively against the maxim of varying one factor at a time (1926a

511-2; DOE Ch.6 esp. §§ 37, 39). He taught how to make many comparisons

while basing each on relatively homogeneous material by meansofpartial repli-

cation™ (1926a 513; 1929d 209-12; DOE Ch. 7-8). He taught what should be

obvious but always demandsa second thought from me: if an experimentis laid

out to diminish the variance of comparisons, as by using matched pairs (which

can be very useful), or by adopting a Knut Vik square (which presumably can-

not be made very useful), the variance eliminated from the comparisons shows

up in the estimate of this variance (unless care is taken to eliminate it) so that

as actual precision is gained perceived precision can belost (1926a 506-7; 1939d

7; DOE 8§ 27, 33, 34). Randomized design, and perhaps even the notion of a

rigorously random sample, seems to originate with Fisher (1925a 700-1; 1926a;

RW § 48; DOE §§ 5, 6, 9, 10, 20 (which seems to claim priority), 22, 31;

Cochran 1975; Neyman 1951), though this technique is so fundamental to mod-

ern statistics that to credit Fisher with it sounds like attributing the introduction

of the wheel to Mr. So-and-So. Some combinatorial designs are so natural as to

be unavoidable andstill others, illustrated by the Knut Vik square, were familiar

in agronomy when Fisher began work in the field, but he inaugurated the sys-

tematic study of combinatorial designs (1934c; DOE § 35), and introduced the

main sophisticated categories of them (1926a 513; 1929d; DOE Ch. 7-8). The

analysis of variance and the analysis of covariance are his terms and, admitting

that everything has antecedents, presumably his inventions (1918 134, 424, 433;

1921b 110-11, 119-22; 1922c 600; 1923c 315-9; 1924b 810-13; RW Ch. 7-8;

DOEsee Index). Along with the analysis of variance goes the F-test—orz-test,

as Fisher would prefer.

The design of experiments suggests an interesting digression illustrating how

two great statisticians may movein entirely different worlds. Wald mentioned

in his Statistical Decision Functions (1950) that since choosing what experiment

to do is a decision, the theory of design is a topic under the general theory of

 

11 Savage may have chosen these words to avoid more specific terms and keep the meaning

general. As usual, the references are no clue as he did not supply them. ‘‘Confounding’’ or

‘‘partial confounding’? would also make sense, especially if the previous sentence is taken to
cover fractional factorial design. ‘‘Fractional replication’? would make less sense and was in-

vented by Finney, not Fisher.
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that book, and this remark of Wald’s was perhaps too ostentatiously repeated

in publicity for the book, such as the jacket. To Fisher (1955 70), this claim

was incomprehensible because Wald’s book does not ‘discuss elements of design

such as replication, control, and randomization.’

Fisher must have been thefirst to have that very broad vision of regression—

or the linear model— whichis one of the most fertile insights of modernstatis-

tics (1921 b; 1922c; RW §§ 25-9). In his day, the day of the desk calculator,

it was natural to emphasize shortcuts in the calculations associated with regres-

sion? (RW §§ 26-9), so it is natural that Fisher does not greatly emphasize the

study of residuals. Yet, he does sometimes study residuals, and I imagine that

he is an originator here too (1921 b 122-6; 1922a 322; 1924c 108-10; RW § 28.1

par. 1).
Fisher with Tippett (1928c) opened the field of the asymptotic distribution of

extreme values (Gumbel 1958 3). Watson and Galton (1874) are commonly

considered the fathers of the study of branching processes, but it was Fisher

who brought generating functions to bear on this topic and thereby put it on

the mathematical map”®(1930c).

Fisher invented and vigorously pursued k-statistics, unbiased estimators of

cumulants (1929a; 1930a; 1931a; 1937a). This seems strange for a man who

had no use for unbiasedness as a criterion in estimation (1915 520; 1935b 42;

SI 140), but I would not hasten to preclude that he had a reason perfectly con-

sistent with his philosophy.“ ‘Fisher helped work out the maximum likelihood

analysis of the probit model (1935d; ST) along with Bliss (1935; 1938) who

originated the name (1934). (The modelitself is old (Fechner 1860) and was

first used in biological assay by Gaddum (1933) and Bliss (1934; 1935); see

Finney (1952 § 14).)’

From two early controversies, Fisher has emerged completely victorious.

There used to be some confusion, and I infer, outright disagreement (described

by Yates and Mather 1963 101), about how to count the degrees of freedom in

a contingency table. !Fisher’s view (1922b; 1923b; 1924a; RW 8§§ 5, 20) has

prevailed over Karl Pearson’s.! Likewise, it was difficult to convince Karl

Pearson (1900; 1936) and presumably others, that moments mightbe inefficient

 

12 This also explains Fisher’s attention to grouping (1922a 317-21, 359-63; 1937 b 306-14; RW

see Index at ‘“‘grouping”’ and ‘‘Sheppard’s adjustment’’; DOE endof § 21).

13 One of Savage’s 3 x 5 cards indicates that he intended to check this, and he would surely

have changedit if he hadreceived,as I did, a letter from D. G. Kendall including the following

information. The basic problem andall three cases of the criticality theorem were stated by

Bienaymé (1845) in a paper rediscovered by Heyde and Seneta (1972). Watson did use generating

functions, but made anerrorin the supercritical case. In genetics, Haldane (1927) has a careful,

accurate statementof all three cases. For further history, see D. G. Kendall (1966, 1975).

14 The reason heusually gives is that using population cumulantsand their unbiased estimators

greatly simplifies the equations which connect the momentfunctionsof the sampling distributions

of momentstatistics with the moment functions of the population (1929a 198 a, 203, 204, 237;

1930a 15a; 1937a 4-5).
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statistics for estimating the parameters of certain distributions, such as those in

the Pearson family. !Here too Fisher’s view (1922a 321-2, 332-56; 1937b;

RW §§ 13, 56) has prevailed.|

It has long been recognized that the name “Cramér—Rao Inequality”is histori-

cally unjust (Savage 1954 238). Though I have beeninterested in the history of

this beautiful inequality, it had never even been suggested to me that Fisher had

played a role in that history, yet I find..-.”

[Despite his preference for parametric methods (1925a 701; 1929f; 1936a 250;

1943 end of par. 3; DOE § 17 par. 2, § 23 last par.),! Fisher was a pioneer in

nonparametric statistics on the basis of his introduction of the sign test in lieu

of a certain application of the t-test (RW § 24 Ex. 19) andstill more his intro-

duction of what he called exact tests to escape from the hypothesis of normality

in many applications of t and F-tests (DOE § 21, 23 last par.; see also 1929f;

1936b). [lHe also touched on runs (1926c) and on orderstatistics as fiducial

limits for population percentiles (1939d 4-5; 1945b 131; SI 81-2) and tabulated

normal scores (expected order statistics) and their sums of squares for use in

two-sample tests and analysis of variance based on ranks (ST Introduction and

Tables XX and XXjJ). |

Fisher seems to have been almost a nonparticipant in sequential analysis for

no particular reason that I can discern. But even in this field he was an inno-

vator (1922a§ 12; 1941a; 1952a). 'He also developed, apparently independently

(Barnard 1963 163), the idea of a minimax, randomized strategy while “solving”

(as we would now say) the game of le Her (1934d). |

I have deliberately refrained from the discussion of certain original and far-

reaching ideas of Fisher in the field of estimation and inference because discus-

sion of these is part of my main object to which everything thus far has been

an extended preamble.

3. Basic technical concepts. By reviewing certain technical concepts intro-

duced by Fisher, or at any rate of central importance to him, we can obtain

some ideasof his statistical outlook while remaining on relatively solid ground.

This will prepare us both technically and mentally to study his more subtle and

controversial positions.

Fisher coined the term “‘statistic” for [a function of the data designed (usually,

sometimes inexplicitly or unnecessarily) to estimate a parameter (1922a 313;
 

15 Savage left this incomplete and may have changed his mind. Fisher (1925a) comestanta-

lizingly close, but Savage’s notes on §7 thereof say ‘“‘Cramér-Rao would be a big help but not

available.’’ His3 x 5 cards on Cramér-Raoagree with this and also say, “‘I was confusing with

Koopman-Pitman,”’ and “‘Late and little’? with a reference to SI 145 ff. Perhaps he merely in-

tended to mention the ‘‘rediscovery of a faint version’’ he mentions in par. 4 from the end of §3

below. Anothercard says that Fisher (1934 a) ‘‘scooped’’ Pitman-Koopman (on families of distri-

butions admitting sufficient statistics). It is conceivable that Savage intended to refer to this

instead, or even to use it to relate Fisher to the Cramér-Rao bound by wayofthe fact that the

Pitman-Koopman families are the only regular ones achieving it. My contribution following

this paper sketches anotherrelationship.
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1925a 701; RW § 11; see also CMS Index and 1922a esp. 309-10, 316-7, 329-

31; RW §§ 1-3, 53-6). In its current meaning,! an arbitrary function of the

data, not necessarily real-valued, the concept is extremely familiar today and

recognized to be invaluable. The term for it is not necessarily the best imagi-

nable, though it by now seemsineradicable.

Estimates are of central importance to Fisher, but I doubt that he attempted

any precise definition of the concept. Perhaps we cansafely say that an estimate

is a statistic, especially a real-valued one, intended to estimate something. Some-

times in the writings of Fisher and otherstatisticians ‘“‘estimate”’ is seen from the

context to mean a sequence of estimates, one associated with each sample size

(1922a; 1925a; 1935b; RW 88§ 3, 53, 55, 56). When this is done,it is in a con-

text in which the asymptotic behavior of the sequence of estimates has the stage.

As Fisher came to feel, not only is this ellipsis excessive, but such asymptotic

considerations lack a uniformity of control necessary for practical conclusions

(SI 144-5). For example, if X, is asymptotically virtuous, then the sequence of

estimates that are identically zero for n < 10” and equal to ¥, elsewhere has

the same asymptotic virtues as X, and the samepractical lack ofvirtue as using

0 for the estimate regardless of the data.

By “estimation,” Fisher normally means whatis ordinarily called point esti-

mation (see CMS or CP Index at “estimation”; RW § 2, Ch. 9; DOE § 66; SI

Ch. 6). In particular, he does not refer to fiducial intervals as estimates (1935b

51). The term “point estimation” made Fisher nervous, because he associatedit

with estimation without regard for accuracy, which he regarded as ridiculous

and seemed to believe that some people advocated (1935b 79; SI 141); this

apprehension seems to me symptomatic of Fisher’s isolation from other modern

theoretical statisticians” (§ 2.4).

The idea and terminology of a sufficient statistic or a set of sufficient statistics

was introduced by Fisher in its current form (1920 768-9; 1922a 316-7, 331;

1925a 713-4; the latter two include factorization. See also Stigler 1973.). Whether

a sufficient statistic deserved the term used to be controversial but Fisher has

won hands down. I know of no disagreement that when an experiment admits

a given statistic as sufficient then observation of that statistic is tantamountfor

all purposes to observation ofall the data of the experiment.

Intimately associated with sufficient statistics is the concept of the likelihood

of an experiment depending on a parameter, possibly multidimensional. The

most fruitful, and for Fisher, the usual, definition of the likelihood associated

with an observation is the probability or density of the observation as a function

of the parameter, modulo a multiplicative constant; that is, the likelihood associ-

ated with an observation is the class of functions of the parameter proportional
 

16 Nevertheless, his objection (SI 140-1) to commoncriteria of point and interval estimation

because they lack invariance under single-valued transformationsis justified in the sense that

such criteria will draw distinctions among estimates which are equally informative in his sense

(see below) and commonsense.
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to the probability of the observation given the parameter (1922a 310, 326-7,

331; 1925a 707; though not a probability, it may measure relative degree of

rational belief: 1930b 532; 1932 259; 1934a 287; SI 66-73, 126-31; see also

§ 4.4). The likelihood of independent observations is the product of the likeli-

hoods of each observation, and for this reason, it is often convenient to work

with the logarithm of the likelihood (SI 71, 148).

The likelihood is a minimal sufficient statistic. That is, the likelihood of the

data, regarded as a random object(in this case, a random function on parameter

space), is sufficient for the data, and the likelihood can be recovered from any

sufficient statistic. Fisher seems to have been the discoverer of this important

fact, and he was very appreciative of it (1925a 699 b; 1934a 287, 289, 294, 306;

SI 49-50, 151).

‘Usually consistent estimation is defined’ to mean a sequence of estimates, one

for each sample size, that converges in probability to the parameter beingesti-

mated. ‘Fisher gave a different definition, now usually called Fisher consistency.

(1922a 309, 316; 1924a 444; SI 142, 144. Anentry to currentliterature is Norden

1972-3.) He tended for some time to treat the usual definition as interchange-

able with his (1924a 444; 1925a 702-3; 1935b 41-2; RW 883, 53) but ultimately

rejected it (SI 144).’ A Fisher-consistent estimate is mathematically a functional

defined on distributions that coincides with the parameter to be estimated on the

family of distributions governed by the parameter. Employed as an estimate,

this functional is applied to the empirical distribution of a sample of n independ-

ent drawings from an unknowndistribution of the family.” Though motivation

can be seen for this definition, it has drawbacks. Many functions commonly

thought to be excellent estimates are not consistent under this definition because

they are not really functions of the empirical distribution. Certain favorite

estimates of Fisher’s such as the k-statistics (for k > 1) of which the ordinary

estimate of the variance is the most important are not, strictly speaking, func-

tions of the empirical distribution but of the empirical distribution and the sample

size. Fisher does not seem to have mentioned this and would undoubtedly regard

it as mathematical nitpicking.* On the other hand, I suspect that Fisher would

have seen it as an advantage of this definition that it rendered “inconsistent”’

certain examples (J. L. Hodges, Jr., see Le Cam 1953 280) that had been invented

 

17 Conceivably there are other ways of making Fisher’s definition precise, but to improve on

this one would be hard. Von Mises (1964 Ch. 12 and references therein) used the term ‘‘statis-

tical functions” and investigated their continuity, differentiability, laws of large numbers, and

asymptotic distributions. Savage planned to ‘“‘say somewhere why Fisher consistency tends to

promise ordinary consistency.’’ The reason is, of course, that the empirical distribution con-

verges (in probabilistic senses) to the true distribution, and hence, if a functional is appropriately

smooth, its empirical value will convergeto its true value.

18 Here in the manuscript Savage had a note to himself saying, ‘‘Quote him about the Nile at

least.”’ Fisher’s ‘‘problem of the Nile’’ (1936a 258, 244a; see also CP Index; SI 119, 163)is

equivalent to a previously formulated and partially solved problem of similar regions according
to Neyman (1961 148 footnote).
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to show the mathematical inadequacy of Fisher’s definition ofefficiency. A par-

ticularly grave inadequacy of this definition of consistency is its inapplicability

to any form ofstatistical data other than repeated samples from the samedistri-

bution. Thus,it is not directly applicable to observation of a stochastic process

such as a normally distributed time series.”

Fisher (1922a 323-6) introduced the term “maximum likelihood estimate,”

which is now so familiar to us all. He credits Gauss with early introduction of

the method itself (1930b 531; 1936a 249; RW 21; perhaps his concern to dis-

tinguish the method from “inverse probability” explains why he does not mention

Gauss in earlier papers discussing or using it: 1912; 1915 520; 1921a 4; 1922a;

1925a; M. G. Kendall (1961) traces the method to Bernoulli (1778) and Sheynin

(1966 1004; 1971 § 3.2) to Lambert (1760). See also Edwards (1974).). Thereis

general agreement today that maximum likelihood estimates are often excellent

and that under certain circumstances they can act up. For example, the likeli-

hood may be unboundedin the neighborhood of a point that is not an attractive

estimate (Hill 1963). Or maximum likelihood may be very inappropriate when

the numberof parameters is not small compared with the numberofobservations

(Neyman and Scott 1948).”

Fisher often confines his discussion, whether explicitly or implicitly, to appli-

cations of maximum likelihood in which the probabilities or densities are regular

in the parameter, though he does sometimesalso explore cases in whichit is not.”

 

19 It also excludes most admissible estimates for more-than-three-dimensional parameters, as

Le Cam mentioned in correspondence. But see footnote 16.

20 In the talk, Savage mentioned that Fisher might ‘‘cheat a little bit,’’ somewhatas follows.

In multiparameter situations, if the ordinary maximum likelihood estimate of an individual

parameter has a distribution depending only on that parameter, its likelihood can in turn be

formed and maximized to produce a ‘“‘second-stage’’? maximum likelihood estimate, typically

different from the first. For o? in normal models, for instance, the first has denominator n while

the second is the usual unbiased estimate and avoids the Neyman-Scott pathology. Fisher does

not refer to or recommend the two-stage procedure in general (1922.a 323-4; SI 152), but he oc-

casionally practices something like it without noting the difference (1915 520 for 0; 1922c 600

for o?). He may well be referring to this difference whenhe says, to clear up a point which ‘‘has

been the cause of some confusion,” mentioning just these examples: ‘‘---it isnot surprising that

certain small corrections should appear, or not, according as the other parameters of the hypo-

thetical surface are or are not deemed relevant.’ (1922a 313. This does not explain how one

would comeinitially to consider r or s in the latter case. See also 1912 157-9.) The difference

for o seems to have confused K. Pearson and perhaps contributed to his break with Fisher

(Eisenhart 1974 456) while that for o? puzzled ‘‘Student’’ (E. S. Pearson 1968 446-8). Edgeworth

(1908 393-4) discusses the latter in the framework of inverse probability.
21 In a long discussion of Pearson curves, Fisher (1922 a 332-55) gives a little attention to the

irregular effects of unknown endpoints on estimation of location, especially for Type III (gamma

or chi square with location and scale parameters), but he ignores the repercussions for scale and

shape. (In the irregular region he thus obtains smaller asymptotic variances for maximum likeli-
hood estimates of scale and shape with location unknownthan he would with location known.)

He also discusses the double exponential density with unknownlocation (1925a 716-7; 1934a 297-
300), where the irregularity causes no first-order problem but has an interesting second-order

effect. I have not found any otherirregular cases explored by Fisher.
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Of course, the behavior of maximum likelihood estimation cannot be expected

to be the same in regular andin irregular situations. (For further discussion and

references, see below and § 4.2.)

The differential, or Fisher, information associated with a parameteris a func-

tion to which Fisher, quite properly, attached great importance (1922a 308a,

310, 329, 367; 1924a 445; 1925a 699a, 708-25; 1934a 298-306; 1935b 42-8;

1936a 249-50; 1938 17; RW §§ 55, 57.2, 57.3, 58; DOE § 60, Ch. 9; SI Ch. 6).

In this, he was to some extent anticipated (Edgeworth 1908-9 esp. 502, 507-8,

662, 677-8, 82—5 and references he cites including Pearson and Filon 1898, also

cited by Fisher), but Fisher’s role in exploring this concept should not be under-

rated. The Fisher information plays a crucial role in what has been called the

Cramér—Rao inequality, about which Fisher may have been completely ignorant,

except for the rediscovery of a faint version of it (SI 145-6). Thereis, of course,

a multivariate extension of the Fisher information, which Fisher knew and under-

stood (1922a 332-6, 339; SI 152-5 with a spectacular mistake about matrices in

eq. (169)).

Important properties of Fisher information to which Fisher called attention

are that it is additive for independent observations (1925a 710; 1934a 298;

1935 b 47; SI 149) and that it can only become smaller if the data are groupedor

otherwise summarized (1925a 717; 1935b 44, 47; RW § 55; DOE § 73; SI 150-2).

In particular, a statistic fails to lose information if and only if it is a sufficient

statistic (1925a 699a, 717-8; 1935b 47; DOE § 74; SI 151).

Fisher recognized very early a formal connection between Fisher information

and entropy (1935b 47). We knowtodaythatit is closely related to the entropy-

like concept of Shannon—Wiener information as is explained, for example, in

Kullback (1959 Ch. 1-2), Kullback and Leibler (1951), Savage (1954 § 15.6),

M. G. Kendall (1973).

What is Fisher information good for? In the case of large samples, the recip-

rocal of the information tells with good accuracy the mean-squared deviation

that can be achieved by good estimates, /in particular, the maximum likelihood

estimate, | over a reasonable range of the parameters, [and in this connection

Fisher often called it intrinsic accuracy (1922a; 1925a; 1935b; 1936a).1 The

exact mathematical facts are delicate; some references are Cramer (1946), Le Cam

(1953), Hajek (1972). Fisher felt that his measure of information had a deeper

and not purely asymptotic significance, and that is the first of the controversial

points discussed in the next section.

4. Points of controversy.

4.1. The small-sample interpretation of information. The large-sample inter-

pretation of Fisher information has just been reviewed and is very well known.

Despite the delicacy of certain theorems concerning it, it makes sense and is

extremely valuable to the practicing statistician. A dramatic way to put the

asymptotic conclusion, of which Fisher was very fond (1920 762; RW 8§ 3, 49,
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55; DOE § 60; see also 1922a 316; 1925a 704; 1938 17) is that statistics losing

a fraction of the information lose that fraction of the work done to gather the

data. This seems basically correct to me, and it is not so intimately bound up

with variance as the measureof the inaccuracy of an estimate as might be thought

from my description so far.

From my ownpoint of view, the Fisher information is typically the reciprocal

of the variance of a normaldistribution which is a good approximation, in large

experiments, of the posterior distribution of the parameter (under almost any

prior). This asymptotic variance is an appropriate index of the width of the

posterior distribution for almost any practical loss function.
But Fisher insisted that to lose information was tantamount to losing a cor-

responding numberof observations even in small samples (1922.a 338-9, 350-1;

1925a 669a,709, 712, 714-22; 1934a 300; SI 152; see also below). Atfirst, he

seemed to expect this to speak for itself, but it met with doubt and even derision

(Bowley 1935) so Fisher eventually developed what he called a two-story argu-

ment to justify his nomenclature and idea. If a large number of small experi-

ments were done and the data from each replaced by somestatistic of smaller

information than the original experiment, then the many small experiments

taken together would constitute a large experiment with n times the information

of a component experiment and the n statistics taken together would constitute

a large experiment with a fraction, say a, of that information. This would

indeed represent a waste of (1 — a) x n of the n small experiments (1935b 41,

46-7; SI 157). As an argument for saying that an estimate in a given small

experiment wastes the fraction (1 — a) of the total information in that experi-

ment, I myself regard this more as a ploy than as a real move. (See also SI 159.)

It does give a practical counsel in case one is determined to summarize each of

a large number of small experiments in terms of one or few numbers, but this

is not likely to be an applicable model to somebody who proposes to use the

median, rather than the mean, of a sample of size 5 (of presumably guaranteed

normality). But the argument does at least deserve to be known,andI,for

one, foundit a surprise on rereading Fisher.

4.2. Properties of maximum likelihood estimation. Are maximum likelihood

estimates typically Fisher consistent? Fisher said they were (1935b 45-6; SI

148; see also 1922a 328 and references below on efficiency, which implicitly

requires consistency) and with considerable justification. Consider first, as

Fisher did, a multinomial experiment, that is a number of independenttrials

each of which ranges over the samefinite set of possible outcomes with the same

distribution depending on the unknown,possibly multivariate, parameter 6. As

Fisher emphasized, there is in principle no loss in generality in confiningall

discussions of statistics to experiments with finite numbers of outcomesand,
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therefore, all discussions of repeated trials to multinomial experiments.” To

my mind, this is an important lesson, thoughit can be carried too far, as I shall

soon have occasion to illustrate. If f(i) is the frequency of occurrences of ‘out-

come’ i in n trials of a multinomial experiment with probabilities P(i |@), then

the likelihood is expressible in terms of the empirical distribution; in fact, the

log likelihood satisfies

log L(O| f) o ¥ A log P(i| 0),

where coc denotes proportionality. Thus the maximum likelihood estimate can

fairly be said to be a function of the empirical distribution with the remark that

it may be an incompletely defined function insofar as there may be distributions

for which the maximumis notattained or is attained for more than one @. If

in the logarithm ofthe likelihood f(i)/n is replaced by P(i|6,) for some value 4,

of the parameter, then, according to a well-known inequality made popular by

modern information theory (see references in § 3, next-to-last par.) the expres-

sion attains an absolute maximum when @ is 6,. Moreover, this maximum is

unique if the parameteris (in a terminology not Fisher’s) identified, that is, if

P(i|@) is not the same function of i for two different values of 6. Thus, with

only the most reasonable qualification, maximum likelihood can be said to be

Fisher consistent in multinomial experiments, and these have a good claim to

being for all practical purposes the most general experiments to which the notion

of Fisher consistency would be applicable.
Since the ‘qualification’ is a natural one in connection with ‘consistency’ and

since every practical sequenceof repeated trials can be adequately approximated

by a multinomial experiment, this would perhaps seem to settle the whole matter

for the practical statistician, but there is a snare in that argument, which J men-

tion hereto illustrate how the ubiquity of multinomial experiments can be mis-

leading. The relatively easy theorems about the multinomial experiment depend

on the possibility of choosing n so large that all of the f(i) will have high prob-

ability of being within a small fraction of a per cent of n x P(i|@). This can

indeed be done, but for many natural multinomial experiments and,in particular,

some natural multinomial approximations of typical continuous-variable experi-

ments, the necessary value of n for this condition to be satisfied might well be,

say, 10°, in which case the result gives no practical assurance whatsoever. There

is at least hope that other lines of demonstration would be more reassuring.

With a little inventiveness, it seems possible to view the logarithm ofa likeli-

hoodas a function of the empirical distribution which has a meaning for other
 

22 | haven’t found this point emphasized in Fisher’s writing. Sometimes he mentionsit (SI 50
and perhaps 143-4) or assumes without commentthat considering a finite numberofclasses is

sufficiently general (1925a 700-1, 718; 1935 b 45; SI 142, 145). Eisenhart reports that in a 1951

conversation, Fisher said that he madethe point in 1922a, but all Eisenhart found was the second

sentence of §12. The only reference I found in Savage’s notesis 1924 a; all I see thereis that classes

are used, but they are required for chi square (and similarly in 1928 b).
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distributions (possibly taking on the value —oo) which would make Fisher

consistency of the maximum likelihood estimate true in very great generality.

Whether there is real use, or only a certain satisfaction of the sense of magic,

in knowing that maximum likelihood estimation can be said to be Fisher con-

sistent, I cannotsay.

Fisher of course expected maximumlikelihood estimates to be consistent in

the sense of convergence in probability also (see references on consistency in

§ 3 above). Certain kinds of exceptions he would have regarded as mathemat-

ical caviling. Indeed, this might be the case for any exceptions thus far known,

Tconceivably even Bahadur’s (1958).1 Knowing Fisher, I am not surprised at

my inability to find discussions of counterexamples, nor would I be surprised if

some discussion were turned up somewhere. A mathematically satisfactory

account of consistency in probability of maximum likelihood estimates has had

a painful evolution and may not yet be complete. (See for example Wald 1949,

Perlman 1972. Norden 1972-3 surveys various properties of maximum likeli-

hood estimates, with a few idiosyncratic, neo-Fisherian touches.)

In smooth andcivilized repeated trials, and many other kinds of large exper!-

ments, maximum likelihood estimation is not only consistent but efficient, that

is, the distribution of the maximum likelihood estimate is approximately normal

around @ with the variance of the approximating distribution being the reciprocal

of the Fisher information. (This does not mean that the variance of the estimate

itself is that small or even finite (Savage 1954 242-3). But that is not the sort

of distinction that I would expect Fisher to make or even countenance.) The

tendency of maximum likelihood estimates to be efficient was appreciated by

Edgeworth (1908-9) and later by Fisher (1922a 331-2, 367; 1922c 598; 1924a

445; 1925a 707, 710-11; 1932 260; 1935b 44-6; RW 8§3, 46, 55, 58; SI 148).

Neither succeeded in demonstrating the phenomenon with much generality from

a modern mathematical point of view, though Fisher went inestimably further

than Edgeworth. (See also § 2.4 and the end of § 3.)

Fisher asserted/conjectured that the maximum likelihood estimate alone among

Fisher-consistent estimates has any chance of being a sufficientstatistic [(1922a

331; 1925a 714; 1932 259), and atfirst that it is always sufficient (1922a 323,

330, 367), later that it is sufficient whenever there exists a sufficient estimate

(1922a 308a; 1935b 53, 82) or statistic (1922a 331; 1925a 714, 718; 1932 259;

RW § 3; SI. 151; he may mean a Fisher-consistent estimate in every case).! For

me, it is not the business of an estimate to be sufficient, so I regard the question

as somewhat distorted. Academic though the situation is, I have sought, and

offer below, a counterexample.

Fisher also conjectured that no other Fisher-consistent estimate (or perhaps

even more general kind of estimate) loses so little information as the maximum

likelihood estimate (1925a 699a, 720-1, 723; 1932 260; 1935b 53; 1936a 249,

250-1, 256; SI 157). This point too is academic but curiosity provoking. The

conjecture is false as stated, though there may be somewayto reconstrueit that
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makes it true. A counterexample based on repeatedtosses of a pair of not neces-
sarily fair coins, one of whichrolls out of sight with knownpositive probability,
is spelled out below. It avoids thetriviality of counterexamples involving re-
Stricting the natural range of a parameter, such as a normal distribution with
mean knownto be positive, or a normal, random-effects model.1 Readers un-
interested in the details may skip to § 4.3.

Let

PO, j|@) = gl + i) + j@)
for i= —1,0,1, for j= —1,1, and for —1<@<1. This is, for each 6, a
probability measure on the six values of the pair (i, j) and thus defines a multi-
nomial process.

0 4 i J )—. log L(A — )>\., fli, a

—‘ 9g) — 9—1)?
1+ 6 1—@

for —1 < 6 < 1, Twhere 9(1) is the total frequency of 1’s and g(—1) of —1’s.
(Thus g(k) = 2f(k, k) + f(k, —k) + f(0,k) + f(—k, k) for k = —1, 1.)! The
maximum likelihood estimate of @ is therefore

fy — 9) — 9(—1)
WD Gt) at)

whichis defined for all possible f with 1) f(i, /) =n and n > 0, andit lies in
the range of 6, [—1, 1]. (The sole purpose of the j-coin is to keep the denomi-
nator of 6(f) positive.)

The maximum likelihood estimate 6 is not sufficient (for ‘any n), because 6
can ‘be +1’ without determining ‘both g(1) and g(—1), which constitute a
minimalsufficient statistic. Therefore # loses some Fisher information.
For each probability distribution P defined on the domain off, namely i =

—1,0,1 andj = —1,1, let

S(P) = E(x**?4| P)

= Luis PG fn”? ,

where z is a transcendental numberlarger than 1. Then S(f/n) is a sufficient
Statistic for @, since f/n can be reconstructed from S(f/n) because of the tran-
scendentality of z.

Let

 

 

 

O(7) = S(P|9)
= E(n'"710)
= E(a"| @)E(x?" | 8)

= o(Lit + 8 Di ia'\(Di m4 + OY),jn).
On [—1, 1], Q is the product of two positive and strictly inceasing functions
of @, so the inverse function Q-! is well defined there.
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Finally, Q-*(S(f/n)) is a Fisher-consistent (and also in-probability consistent)

estimate of 0, which unlike the maximum likelihood estimate @ is sufficient and

therefore loses no Fisher information.

The estimate Q-(S(f/n)) does not have mean squared error as small as that

of 6, at least for large n. Cana cleverer example achieve even that ?”8

4.3. What is probability? Fisher, as everybody knows, was frequentist, yet

I—whoprofess to interest in such things—was somewhat taken aback in my

rereading to find how vehemently he denies that probability is a limiting fre-

quencyin an indefinite sequence of repeated actualtrials, whichis the position

that frequentists ordinarily take* (1935b 81; 1958a; 1960 5-7; SI 109-10; see

also 1922a 312-3; 1925a 700-1; DOE §§ 3, 6; SI 14, 32-3, 44, 114-6).

For Fisher, a probability is the fraction of a set, having no distinguishable

subsets, that satisfies a given condition (SI 32-3, 55-7, 109-10; 1958a; 1960

5-6; see also 1922a 312-3; 1925a 700-1; 1935b 78; 1945b 129; 1955 75; 196la

3, 7). For example, in showing the cards of a well-shuffled deck one at a time,

exactly one-quarter of the showings will result in hearts—there can be no ques-

tion about that. And there are no distinguishable subsets; that means that no

particular subset of showings, suchasthefirst thirteen or either of the alternate

sets of twenty-six, can be expected to be richer in hearts than others. This is a

notion that not everyonewill find clear and acceptable, but let us at least allow

Fisher to describe it in his own terms:

Forthe validity of probability statements about the real

world there are I believe only three necessary andsufficient

requirements. (i) As Kolmogoroff rightly insisted now

 

23 A page of Savage’s text is omitted here. It begins, ‘‘According to Fisher, the maximum
likelihood estimate is the only Fisher-consistent estimate that is determined by a linear equation
in the frequencies (19 ; ). There seems to be no truth in this at all---.’? Fisher states and

showsthis for estimates which are efficient, not merely consistent; that is, in current termi-

nology, he shows that the only efficient M-estimator is the maximum likelihood estimator

(1928 b 97-8; 1935 b 45-6; SI 148. Edgeworth did much the same: see my contribution following

this paper.). The nearest I have found to Savage’s version is one sentence (SI 157) where Fisher

doesn’t clearly impose either restriction and has just mentioned consistency but is concerned
with distinguishing among‘‘the different possible Efficient estimates’’ (SI 156). In view of this
context and the earlier references, I think Savage’s version is a misreading of Fisher which would
have been caughtbefore publication.

24 ““Actual’’ has been inserted, at the risk of misrepresenting frequentists, because in early
papers Fisher defines probability as a proportion in an “‘infinite hypothetical population”’ of
what seem to be repeated trials under the original conditions, where ‘‘the word infinite is to be
taken in its proper mathematical sense as denoting the limiting conditions approached byin-
creasing a finite numberindefinitely.”’ (1925 a 700; see also 1922.a 312.) Later he says, ‘‘An im-
agined process of sampling: --may be usedto illustrate---. Rather unsatisfactory attempts have
been madeto define the probability by reference to the supposed limit of such a random sampling
process---. The clarity of the subject has suffered from attempts to conceive of the ‘limit’ of
some physical process to be repeated indefinitely in time, instead of the ordinary mathematical
limit of an expression of which some elementis to be made increasingly great.”’ (SI 110.)
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many years ago every statement of mathematical probabil-

ity implies a mathematically well-defined Reference Set of

possibilities, which must be measurable at least so far that

members of the Set, comprising a knownfraction P of the

whole, possess some characteristic which is absent from the

remainder. (ii) The subject, or particular entity about

which the probability statement is asserted, must be a

memberof this Set. (iii) No sub-set may be recognizable

_ having a fraction possessing the characteristic differing

from the fraction P of the whole. (1960 5)

In a statement of probability the predicand, which may

be conceived as an object, as an event, or as a proposition,

is asserted to be one of a set of a number, howeverlarge,

of like entities of which a knownproportion, P, have some

relevant characteristic, not possessed by the remainder. It

is further asserted that no subset of the entire set, having a

different proportion, can be recognized. (SI 109)

The reference set, as Fisher calls it, may well be infinite, where an infinite set

is conceived of by Fisher as a sort of limit of finite sets (1925a 700-1; SI 110).

Such a notion is hard to formulate mathematically, and indeed Fisher’s concept

of probability remained very unclear, which must have contributedto his isola-

tion from manyotherstatistical theorists. (See also §§ 2.3-2.5 and references
there.)

4.4. Statistical inference. An important current of thinking in modernstatis-

tics, established by Neyman (1938; see also 1934 623), takes the point of view

that a logic of the uncertain such as is suggested by the phrase “statistical in-

ference”is illusory, but Fisher deplored that direction (SI 7, 100; see also 28-

30, 34 and RW § 2 last par.; DOE § 2 first par.; 1930b 531; 1934a 287; 1935b

39-40; 1960 2-4), and always soughtfervently to establish a 'genuine! theory of

statistical inference. According to Fisher, this valid goal was clearly and ad-

mirably established by Thomas Bayes, whom Fisher greatly admired, ‘notleast

for perceiving the weakness in ‘Bayes’ rule,” that is, resort to conventional

prior distributions, such as the uniform distribution for an unknown frequency,

which he severely condemns (for references, see par. 1 of §2.4).’ Fisher’s

approach might well be called “‘inductive logic” (a term he sometimes used: 1955
69; 1960 2; see also 1935b title and 39-41; 1958a 261) to contrast it with the
phrase “inductive behavior” by which Neyman soughtto suggest that the dilem-
mas of inductive inference could be solved by casting the problems of induction
in the framework of Robinson Crusoe economics(see § 4.5).

Genuinestatistical inference must, according to Fisher, issue with a definite,
clear, and objective conclusion about the uncertain (DOE § 2; 1935b 39_-40,
54; 1936a; 1960 2-4; see also 1921a 3; 1922a 311; 1930b 531; 1934a 285-7;
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1939a 175; 1955 77; SI 2, 37, 106-10). For example,it might be expressed in

terms of the probabilities of events, as is surely appropriate in those cases where

there is an undisputed prior distribution (1922a 324; 1930b 530; 1932 257-8;

1934a 286; 1957 205; 1958a 272; S111, 17, 35, 111). This probability might

be fiducial probability. I shall try to say more aboutfiducial probability later

(§ 4.6). For the moment, I am content to explain that Fisher at first tried to

introduce a different kind of probability applicable in some cases in which

ordinary probability was not (1930b 532-5), but later came to hold that these

probabilities were ordinary probabilities, serving the purpose of posterior prob-

abilities in a Bayesian calculation, though arrived at by extra-Bayesian means

(SI S1, 56; 1960 5; see also § 4.6).

But the conclusion ofa statistical inference might be something other than a

probability (1930b 532; 1934a 284a; 1955 76-7; 1960 4; SI 35, 131-6, Ch. 3.).

For example, it might be a likelihood (1912 160; 1921 a 24; 1922a 326-7; 1925a

707; 1930b 532; 1932; 1935b 40-1, 53, 82; SI 66-73, 126-31; see also §§ 3 and

4.8). Because likelihoods are intimately associated with probabilities, it has

been suggested that the whole concept is superfluous (van Dantzig 1957 190).

Yet, a likelihood function of a parameter, which might rightly be called a set

of likelihood ratios, is evidently not a probability distribution for the parameter.

Thus we can see why one who,like Fisher, believes that a likelihood function

constitutes a statistical inference, would see here an example ofa statistical

inference that is not expressed in terms of probabilities, more exactly, in terms

of a probability distribution of the unknown parameters.

Fisher often refers to exact tests (see § 4.7), so tests would seem to be for him

a form of exact non-Bayesian inference issuing in tail areas which are neither

likelihoods nor parameter distributions.

If nothing else can be said about induction, there will be general agreement

that induction differs from deduction in this. Anything that can be deduced

from part of the information at hand can be deduced from all of it, but in

induction account must be taken of all of the data. Fisher is very fond ofthis

point (1935b 54; 1935c¢ 392-3; 1936a 254-5; 1937c¢ 370; 1945b 129; 1955 75,

76; 1958a 268, 272; 1960 4, 10; SI55, 109) though he lapses a bit on atleast

one occasion.”

Fisher seemsto think the ignoring of pertinent information anessential feature

of Neyman-—Pearsonstatistics (1935c 393; 1955 76; SI 101; 1960 4, 7; see also

below). There is at least one rather clear case in point. It has been suggested

by Bartlett and followed up by Scheffé that to test whether two sets of n numbers

have the same mean, though possibly different variances, the elements of the

25 Anywhere that Fisher countenances the use of less than fully informativeorefficientstatis-

tics could be considered an example, but presumably Savage had something more specific in

mind. Unfortunately, the only possible reference I found in his notes (1939a 175) doesn’t seem

to be it. Eisenhart thinks Savage is probably referring to Fisher’s use of orderstatistics as fidu-

cial limits for population percentiles (§ 2.6 above.).
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two sets might be [randomly! paired and then the n differences be subjected to
a t-test. !(Bartlett never advocated this test in practice, and Scheffé, if he did,
does not now. See Bartlett 1965 and Scheffé 1970 for later views and earlier
references.)! “What,” Fisher once asked meorally, “would the proponent of
such

a

test say if it turned out to be significant at the 99% point, but if his
assistant later discovered that hardly any pairing other than the one accidentally
chosen resulted in so extremea significance level?” (See also 1937c 375: RW
§ 24.1 Ex. 21; SI 96-9.) Choosing one amongthe manypossible pairings at
random and ignoring the results of those not examined but available for exami-
nation does constitute a sort of exclusion of pertinent evidence. However, there
seems to me to be

a

very similar fault in all those applications of randomization
that Fisher so vigorously advocated. Whenever we choose a design or a sample
at random, we ordinarily are able to see what design or what sample we have
chosen, and it is not fully appropriate to analyze the data as though we lacked
this information, though Fisher in effect recommendsthat.

It should in fairness be mentioned that, when randomization leads to a bad-
looking experiment or sample, "Fisher said that] the experimenter should, with
discretion and judgment, put the sample aside and draw another. He speculated,
for example, that a more complicated theory might makeit possible to choose
Latin squares at random from amongthe acceptable Latin squares. A few refer-
ences harmoniouswith this point of view are® (Grundy and Healy 1950; Youden
1956-72; for further discussion and references, see Savage 1962 33-4, 88-9).

4.5. Inductive behavior. As already indicated, Fisher thought an economic
approach to statistics no substitute for statistical inference (1955 69-70, 73-5,
77; ST1, 4-5, 75-8, 99-103; see also par. 1 of § 4.4). In later works, he hinted
that it might have its mundane applications for the slaves of Wall Street and the
Kremlin (1955 70) but not for a free scientist in search of truth.

*° | first thought Savage intendedto refer to Fisher here, but I have found nothing, and Yates
and Mather (1963 112) say that Fisher never faced up to the problem. The nearest hint I have
found in Savage’s notes is the comment ‘‘Chooses a Square at random but not quite,’’ refer-
ring to (1926a 510) where he has marked the following passage: ‘‘Consequently,the term Latin
Square should only be applied to a process of randomization by which oneis selected at random
out of the total number of Latin Squarespossible; or at least, to specify the agricultural require-
ment morestrictly, out of a number of Latin Squares in the aggregate, of which every pair of
plots, not in the same row or column,belongs equally frequently to the same treatment.’ The
context gives no suggestion that what Fisher has in mind here is bad randomizations, and re-
stricting randomization to one standard square or one transformation set seems more likely to
me. My impression of his writing generally is of a hard-line view. Indeed, in the same paper,
the last paragraph of the previous section and the last sentence of the following page (both also
noted by Savage), distinctly suggest this, though conceivably Fisher’s only concern in these
passagesis his frequent oneof systematic arrangements(see § 2.6). In a 1952 conversation, how-
ever, when Savage asked Fisher what he would do if he happened to draw a Knut Vik square
at random, Fisher ‘‘said he thought he would draw again andthat, ideally, a theory explicitly
excluding regular squares should be developed” (Savage 1962 88). Perhaps Fisher took a softer
line privately than he felt appropriate for public exposition.
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It is important that the scientific worker introduces no

cost functions for faulty decisions, as it is reasonable and

often necessary to do with an Acceptance Procedure. To

do so would imply that the purposes to which new knowl-

edge was to be put were known and capable of evaluation.

If, however, scientific findings are communicated for the

enlightenment of other free minds, they may be put sooner

or later to the service of a number of purposes, of which

we can know nothing. The contribution to the improve-

ment of Natural Knowledge, which research may accom-

plish, is disseminated in the hope and faith that, as more

becomes known, or more surely known,a great variety of

purposes by a great variety of men, and groups of men,

will be facilitated. No one, happily, is in a position to

censor these in advance. As workers in Science we aim,

in fact, at methods of inference which shall be equally

convincing to all freely reasoning minds, entirely inde-

pendently of any intentions that might be furthered by

utilizing the knowledge inferred. (SI 102-3)

-.-I am casting no contempt on acceptance procedures,

and I am thankful, whenever I travel by air, that the high

level of precision and reliability required can really be

achieved by such means. Butthe logical differences between

such an operation and the workofscientific discovery by

physical or biological experimentation seem to me so wide

that the analogy between them is not helpful, and the

identification of the two sorts of operation is decidedly

misleading. (1955 69-70)

For my ownpart, it seems likely that any principles so general as to apply to

all that could be called business should apply to scientific activity too—at least

as arough model. However, in the view of a personalistic Bayesian like me, the

contrast between behavior and inference is less vivid than in other views. For

in this view, all uncertainties are measured by meansof probabilities, and these

probabilities, together with utilities, guide economic behavior, but the proba-

bility of an event for a person (in this theory) does not depend on the economic

opportunities of the person.

Fisher’s hostility to inductive behavior seems somewhatinconsistent with his

other views. For he is very much interested in diminishing the costs of experi-

ments (1929d esp. 206; DOE generally, and specifically §§ 9 end, 12 end, 25, 31,

37 end, 55 par. 5, 60, 71 end), and writes about the cash objectives of agronomy

as something important and not apart from his otherstatistical interests (1952a

186-7). Also, almost in the same breath with criticism of ‘purely mathematical
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statisticians whose theories refer to economics or decision functions,’ Fisher

warns that if his methods are ignored and their methods used a lot of guided

missiles and other valuable things will cometo grief (1958a 274).

4.6. The fiducial argument. The expressions “fiducial probability” and “fidu-

cial argument” are Fisher’s. Nobody knows just what they mean, because Fisher

(SI 56, 172) repudiated his most explicit, but definitely faulty, definition and

ultimately replaced it only with a few examples (cited below; for definitions,

see 1930 b 532-5; 1935 391-5; SI 51-60, 117-9, 169-73; Barnard 1963 166; also

Fisher, DOE §§ 62 end, 63 end, and examples; 1936a 252-3, 255; 1945 b 130-2;

1955 76-7; 1958a 271-3; 1960 5, 9-10). There still seem to be serious attempts

to make something systematic out of Fisher’s fiducial ideas (Dempster 1968;

Fraser 1961, 1968; see also references in Savage 1954, 2nd ed. (1972) 262).

In a word, Fisher hopes by means of some process—the fiducial argument—

to arrive at the equivalent of posterior distributions ina Bayesian argument with-

out the introduction of prior distributions (see reference to definitions above

and, especially explicitly, 1939a177; 1945b 132; RW § 23 last par.; SI 51, 56,

80, 120, 125). The kind of attempt,its futility, and Fisher’s dogged blindness

aboutit all seem to me very clear in the following passage:

The objection has been raised that since any statement

of probability to be objective must be verifiable as a pre-

diction of frequency, the calculations set out above cannot

lead to a true probability statement referring to a particular

value of T [observed], for the data do not provide the means

of calculating this. This seems to assume that no valid

probability statement can be made except by the use of

Bayes’ theorem. However, the aggregate of cases of which

the particular experimental case is one, for which the rela-

tive frequency of satisfying the inequality statement is

knownto be P, and to whichall values of T are admissible,

could certainly be sampled indefinitely to demonstrate the

correct frequency. In the absence of a prior distribution

of population values there is no meaning to be attached to

the demand for calculating the results of random sampling

among populations, and it is just this absence which com-

pletes the demonstration that samples giving a particular

value T, arising from a particular but unknownvalue of 6,

do not constitute a distinguishable sub-aggregate to which

a different probability should be assigned. Probabilities

obtained by a fiducial argument are objectively verifiable
in exactly the same sense as are the probabilities assigned

in games of chance. (SI 58-9)

Notable features of this passage are Fisher’s expectation of and belief in purely
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logical paths that lead to objective inference. Notwithstanding Bayes’ own

failure, which Fisher so clearly recognizes, Fisher holdsthis goal to be absolutely

necessary to the advance of science (see § 4.4). This is why he regardsits aban-

donmentas “rather like an acknowledgment of bankruptcy” (1955 75).

All in all, there are a modest handful of fiducial distributions explicitly ad-

duced by Fisher '(for a single normal sample, those of #, o individually and

jointly (1933a 346-7; 1935c 391-2, 395; 1936a 251-2; 1939d 4; 1941 ¢ 142-5;

1945b 130; 1955 75; RW § 23; DOE 8§62, 63; SI 80, 119-20), » + ao with a

given (1941 c¢ 146; SI 121-3), and the mean andstandard deviation of a future

sample (1935c¢ 393-5; SI 115-17); for a bivariate normal sample, of o (1930b

533-4; 1955 76), all parameters (SI 169-73), and y,/~, (1954); for matchedpairs,

of ,/u, (RW xiv, § 26.2; DOE § 62.1); for two independent normal samples, of

u,, 0,, and o, when yp, = pw, (1961a 5-8; 1961b), wv, — vw, when o, ¥ a, (1935¢

396-7; 1937c; 1939a; 1941 c; 1945b 132; 1961 a 3-4; SI 94-6), and w,, uw, when

n, =n, = 6,=06,=1and yp, pu, are unrestricted or lie on a line or half-line

(1955 77; SI 132-4); for other normal models, of regression coefficients (SI 84;

DOE 64, 201-2) and intersections (RW § 26.2) and of components of variance

(1935c¢ 397-8); for the exponential model, of the parameter (SI 52-4) and the

total of a future sample (SI 113-4); in general, of the parameter of any mono-

tonic, one-parameter model admitting a single sufficient statistic (1930b 532-4;

1934a 292-3; SI 69-70) and of the fractions of an arbitrary continuous popula-

tion exceeded bythe orderstatistics (1939d 4-5; 1945b 131; SI 81-2); see also

below).! The most conspicuous and important of these coincide with Bayesian

posterior distributions from standard priors. For example, the fiducial distribu-

tions of the mean and variance of a normaldistribution, after repeated measure-

ments, are those adduced from a uniform prior distribution on the mean and

the logarithm of the variance. Fisher emphasizes that not all of his fiducial

distributions coincide with posterior distributions (1930b 534-5; 1933a 347-8;

SI 55).

Closely associated with, but I think of more lasting importance than, fiducial

probability is what Fisher called ancillary statistics. An ancillary statistic is

one the distribution of which does not depend on a parameter about which an

inference is to be made. !Most of Fisher’s later discussions seem to require

independence of all unknown parameters (SI 134-5, 160-1, 166, 168; 1960 10;

1961 a 6; in 1936a 256 this requirementis also mentioned, but seemsnotto be part

of the definition). A definition of particular interest below appearsin 1935b 48:

ancillary statistics ‘““‘by themselves supply no information on the point at issue.”

Other, especially earlier, discussions give no explicit requirement and concern

recovery of information lost in estimation, including the “true weight” or ‘“ap-

parent precision” (1925a 699a, 724; 1932 260; 1934a 300, 307; 1935b 48; 1936a

256; 1955 72; SI 158-9).

For example, in some study to determine the regression of a length as a func-

tion of temperature, it might well be that lengths are distributed normally about
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a linear function of temperature regardless of what chance or purposive processes

may lead to the temperatures. In this case, the whole set of temperaturesis

ancillary. Though the distribution of an ancillary statistic, such as the tem-

peratures in the example, does not depend on the parameter of interest, it may

be, as the example clearly shows,vital in making inferences about the parameter

(SI 84-5).

Fisher believes, and most of us with him, that if the statistic is ancillary,

inference can be made from the conditional distribution of the data, given the

parameters of interest and the ancillary statistic (1934a 300-1, 305; 1935b 48;

1936a 257; 1955 71-2; SI 84-5, 161, 167). That, for example, is how everyone

ordinarily studies the regression coefficient even if the sample is drawn from a

bivariate normaldistribution. Many of us, in learning statistics, have caught

Ourselves saying that the regression coefficient in this case has a certain /-distri-

bution. Then there comesa realization that this ¢-distribution depends on the

variance of the ‘‘temperature.” Observing that, one is perhaps tempted to try

to calculate the ‘marginal’ distribution of the regression coefficient, but ‘the

conclusion’ of statisticians of all persuasions has seemed to be that the con-

ditional distribution of the regression coefficient given the values of the tem-

peratures is ‘appropriate’ for inference.

As a personalistic Bayesian, I see the situation thus. From the temperatures,

I would ordinarily have no new information about the ‘population! regression

coefficient. The reason is that given the population [mean and! variance of the

temperatures, the distribution of the actual temperatures, including their sample

variance, is literally independent of the !population’ regression coefficient, and

ordinarily, the ‘population mean and’ variance of the temperatures will in my

personal judgmentbeirrelevant to the regression coefficient. This latter condi-

tion, which is not automatic, is sometimes overlooked by non-Bayesians, because

they do not have easy ways to express it. These conditions imply that when I

am given the temperatures, my opinion about the regression coefficient is un-

affected, so that I can, without any real difference, study the effect of the rest

of the data on my opinion about the regression coefficient, regarding the tem-

peratures as given.

An important moral is that if the /population mean and! variance of the tem-

peratures were actually given, then the temperatures would indeed be ancillary

in the !most restrictive! technical sense, but when we regard the temperatures

as ancillary to the regression coefficient in a bivariate normal distribution, our

argument depends in part on how we choose to organize the parameters of the

distribution and is not so objective as it may seem.”

 

27 This relates to the ambiguity of ‘“‘does not depend”’ in thefirst (less restrictive) definition of
“ancillary” four paragraphs back. Specifically, we are interested in the parametersof the regres-
sion of x2 on x;, and in the residual variance, and if we choose y; and oa; as the nuisance parame-

ters, then the distribution of x, does not depend on the parametersofinterest, i.e., it depends
(continued on next page)
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In what I infer is Fisher’s last major discussion of fiducial probability, he

combines the notion of ancillary statistics with his very first notion of fiducial

probability ina clever way (SI 159-69; see also 1935 b 51-4). By regarding certain

statistics as ancillary for a single parameter yp, it may be that the whole experiment

can be regarded as a ‘measure of 4 by meansofa single sufficient statistic x de-

scribable by a family of cumulative distributions F(x| 4). Now,if this function

happens to be monotonein p (as it is in x) and if, for each x, it ranges over the

interval from 0 to 1, then it can be regarded as a probability distribution in yp.

Thisis the fiducial distribution and is of course closely akin to the example quoted

above. In sucha case, at least if no ancillary statistics are invoked, this process

is so similar to a familiar one for obtaining confidence intervals that it has given

rise to the misconception that confidence intervals and fiducial intervals are two

words for the same thing. This has been the source of much misunderstanding

(as pointed out in 1935c; 1937c; 1939c; 1955 74-7; 1960 4; SI 60, 64-5; Bartlett

1939; Neyman 1941; 1956 291-3; 1961 149).

[Fisher applies this process explicitly to two independent normal observations

having means y,, 4, restricted to lie on a circle, with the observed distance from

the center ancillary (SI 134-5); to the bivariate density exp{—6x — y/@}, with

U = (>; x;)*(>) y,)? ancillary (SI 163-9; the generalization 6*+' exp{— 6x — @*y}

for any given s is also mentioned); to arbitrary location or location-and-scale

models, with the “configuration” or “complexion” of the sample ancillary (SI

160-2; see also 1934a 284a, 300-6; 1936a 256-7); and to a dilution-series model,

with another kind of configuration ancillary (1935 b 51-4, 78). He also derives

fiducial inequalities fora 2 x 2 table taking the marginsas ancillary (1935 b 38a,

50-1, 79; but compare 1955 77; SI 62-6, 70).

The most famous of Fisher’s applications of fiducial probability is to the

Behrens—Fisher problem. The problem is not necessarily of great practical

 

only on the nuisance parameters. This is not the case, however, if we choose “; and a as the

nuisance parameters. The formerallows xX;, s; to be ancillary, the latter r (perhaps—see below).
The meaning of ‘‘does not depend on certain variables (or parameters)’’ depends on howthe

remaining variables (parameters) are chosen. A Bayesian definition would include the condition
that the distribution of ancillary statistics depends only on nuisance parameters which are also

judged to be a priori independent of the parameters of interest. This helps prevent a contradic-

tory multiplicity of ancillary statistics. Any definition should also require, I believe, that the

distribution of the observations given the ancillary statistics depend only on the parameters of

interest, i.e., that the ancillary statistics be sufficient for the nuisance parameters when the pa-

rameters of interest are known (Kendall and Stuart 1961 217). This holds trivially for the more
restrictive definition and may be implicit in Savage’s discussion. If it is required, then neither

xX; nor s norr is individually ancillary, but x; and s, still are jointly. Though this requirement

obviously reduces multiplicity, it by no means resolves all problems of conditional inference.
As Savage (1962 20) says, ‘‘For a striking, if academic, example, suppose x and y are normal
about 0 with variance 1 and correlation ». Then x and y are each by themselves irrelevant to
p, and each is an ancillary statistic for the total observation (x, y) by any criterion known to

me.’’ See also Birnbaum (1962 esp. 279), Cox (1958 esp. 359-63), Dawid (1975), Hajek (1967 esp.

150-4).
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importance (RW § 24.1 par. before Ex. 20; SI 93; see also 1935c¢ 395; 1939a 180;

1941c 149), but it vividly illustrates a difference in conclusion between Fisher

and frequentists of the Neyman-—Pearson school. The problem is to estimate the

difference between the means of two normaldistributions of not necessarily equal

variance. Thefiducial distribution of each meanis that of the sample meanplus

a t-like variable times the sample standard deviation and these two population

meansare fiducially independent. Therefore, their differenceis fiducially distri-

buted like the difference between the two sample meansplus a linear combina-

tion of two independent t-like variables (references eight paragraphs above).

The fiducial intervals thus adduced are known not to be confidence intervals,”

and they command norespect from adherents of the Neyman—Pearson school

(Bartlett 1965 § 3; Scheffé 1970 footnote 4). For Jeffreys, who accepts uniform

priors for the unknown means and for the logarithms of the variances, what

Fisher calls the fiducial distribution of the difference of the two meansis simply

its posterior distribution. Indeed, Jeffreys claims to have preceded !Fisher! in

the discovery of this answer, and apparently with justice.”

4.7. Hypothesis testing. Hypothesis testing was extremely importantto Fisher,

and his ideas aboutit do not coincide with those that are now most widely known

through the influence of the Neyman-—Pearson school. Let him speak for himself

 

28 This means (presumably) that there exist mm, mz, 01/02, and a for which the coverage prob-

ability of the fiducial intervals is less than 1 — a. Fisher writes as if this couldn’t happen (1939 a

173 a; 1960 8; SI 96). To demonstrate that it can, there is apparently only one published exam-

ple, one of three coverage probabilities calculated by E. L. Scott and given by Neyman (1941,

table near end of § 4; according to Scott, the headings should be corrected to read n = 7, n’ = 13,

and p2). This example is, however, in contradiction with a table of Wang (1971 Table 5) for the

same a (two-tailed .05) and degrees of freedom (6 and 12), where the error rate is given for vari-

ance ratios 1/32 to 32 by factors of 2, is everywhere < .05, and varies far too smoothly to be

compatible with Scott’s value (.066 at a variance ratio of 10. According to D. L. Wallace, who

drew myattention to her paper, Wang’s values are within .0002 except at a variance ratio of 32,

wherethe correct errorrate is .0491, not .0499.). Furthermore,calculations by Geoffrey Robinson

(1976) show one-tailed error rates less than a fora = .1, .05, .025, .01, .005, .001, .0005, 0001; m1, nz =

2(1)8(2)14, 18, 24, 32, 50, 100, 00; and o12Me/o22m1 OF o2?m/o12n2 = 1, 1.5, 2, 3, 5, 10, 30, 100, 1000,

which he considers sufficient ‘‘to infer with reasonable certainty’’ that even the one-tailed pro-

cedure is conservative. Mehta and Srinivasan (1970) and Lee and Gurland (1975) found some

(one-tailed) error rates above a at variance ratios near 0 and oo for a second-order asymptotic

approximation to the fiducial procedure. Elsewhere their values are appreciably below a. The

fiducial procedure has error rate exactly a at ratios 0 and oo. This suggests that adjusting their

values to apply to the exactfiducial procedure would give error rates everywhere below a in the
cases they calculate also.

29 Savage left space for references after ‘‘claims’’ and ‘‘justice,’’ but no such claim has been

found, and it is absent from two notable discussions of the problem by Jeffreys (1939 §5.42;

1940). In the one-sample problem Jeffreys (1931 69; 1932) preceded and indeedinstigated Fisher’s

(1933 a) paper.

Incidentally, D. J. Finney notes that Fisher himself insisted on referring to the Behrensdistri-

bution and test and disliked ‘‘Behrens-Fisher,’’ and especially ‘‘Fisher-Behrens,’’ even asking

Finney to correct a misuse of his. Fisher’s writing is consistent with this, and he states (SI 94)

that his (1935 c) paper ‘‘confirmed and somewhat extended Behrens’ theory.”’
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on several important points:

..-it is convenient to draw the line at about the level at

which we can say: “Either there is somethingin thetreat-

ment, or a coincidence has occurred such as does not occur

more than once in twentytrials.”

If one in twenty does not seem high enough odds, we

may, if we prefer it, draw the line at onein fifty (the 2 per

Cent point), or one in a hundred (the | per cent point).

' Personally, the writer prefers to set a low standard of sig-

nificance at the 5 per cent point, and ignore entirely all

results whichfail to reach this level. A scientific fact should

be regarded as experimentally: established only if a prop-

erly designed experimentrarely fails to give this level of

significance. (1926a 504)

Our examination of the possible results of the experiment

has therefore led us to a statistical test of significance, by

which these results are divided into two classes with op-

posed interpretations.--- The two classes of results which

are distinguished by ourtest of significance are, on the one

hand, those which show significant discrepancy from a

certain hypothesis; - - -and on the other hand, results which

show nosignificant discrepancy from this hypothesis..-- In

relation to any experiment we mayspeak ofthis hypothesis

as the “null hypothesis,” and it should be noted that the

null hypothesis is never proved or established, but is pos-

sibly disproved, in the course of experimentation. Every

experiment may be said to exist only in orderto give the

facts a chance of disproving the null hypothesis.

---It is evident that the null hypothesis must be exact,

that is free from vagueness and ambiguity, because it must

supply the basis of the “problem of distribution,” of which

the test of significance is the solution. A null hypothesis

may, indeed, contain arbitrary elements, and in more com-

plicated cases often does so: ‘as, for example, if it should

assert that the death-rates of two groups of animals are

equal, without specifying what these death-rates actually

are. In such cases it is evidently the equality rather than
any particular values of the death-rates that the experiment
is designed to test, and possibly to disprove.

In cases involvingstatistical “estimation” these ideas may
be extended to the simultaneous consideration of a series

of hypothetical possibilities. The notion of an error of the
so-called “second kind,” due to accepting the null hypothesis
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“when it is false” may then be given a meaningin reference

to the quantity to be estimated. It has no meaning with

respect to simple tests of significance, in which the only

available expectations are those which flow from the null
hypothesis being true. (DOE § 8)

The attempts that have been madeto explain the cogency

of tests of significance in scientific research, by reference

to hypothetical frequencies of possible statements, based

on them, being right or wrong, thus seem to miss the es-

sential nature of such tests. A man who“rejects’’a hypothesis

provisionally, as a matter of habitual practice, when the

significance is at the 1 % level or higher, will certainly be

mistaken in not more than 1% of such decisions. For

when the hypothesis is correct he will be mistaken in just

1% of these cases, and whenit is incorrect he will never

be mistaken in rejection. This inequality statement can

therefore be made. However, the calculation is absurdly

academic, for in fact no scientific worker has a fixed

level of significance at which from yearto year, andin all

circumstances, he rejects hypotheses; he rather gives his

mind to each particular case in the light of his evidence and

his ideas. Further, the calculation is based solely on a

hypothesis, which,in the light of the evidence, is often not

believed to be true at all, so that the actual probability of er-

roneousdecision, supposing such a phrase to have any mean-

ing, may be muchless than the frequency specifiying the

level of significance. To a practical man, also, whorejects

a hypothesis, it is, of course, a matter of indifference with

what probability he might be led to accept the hypothesis

falsely, for in his case he is not accepting it. (SI 41-2)

Though recognizable as a psychological condition ofre-

luctance, or resistance to the acceptance of a proposition,

the feeling induced bya test of significance has an objec-

tive basis in that the probability statement on whichit is

based is a fact communicable to, and verifiable by, other

rational minds. The level of significance in such cases ful-

fils the conditions of a measure of the rational groundsfor

the disbelief it engenders. It is more primitive, or elemental

than, and does not justify, any exact probability statement

about the proposition. (SI 43)

There are many unusual features here. The importanceof the power function

and error of the second kind is vehemently denied (further references below),



ON REREADING R. A. FISHER 473

as is the possibility of testing any hypothesis other than a sharpone, that is, one

that postulates a specific value for a parameter [or a function of parameters| (but

see also below and SI 46, 89-92). Apparently there have beenstatisticians who

recommended actually picking a level before an experiment and then rejecting

or not according as that level was obtained. I do not have the impression that

any professionalstatisticians make that recommendation today, thoughit is still

often heard among those who are supposedto be served bystatistics, but Fisher’s

strong rejection of the notion is noteworthy (SI 43; but compare 1926a 504,

DOE §§ 7, 61). Though the importance, or even the existence, of power func-

tions is sometimes! denied, Fisher says that sometests are ‘more sensitive’ than

others, and I cannot help suspecting that that comes to very muchthe same thing

as thinking about the power function. (DOE §§ 8, 11, 12, 61; SI 21, 42, 47-8;

see also RW § 2 footnote, § 18 Ex. 5, § 24 Ex. 19; 1926a 504; 1934a 294-6.

Fisher argues that failure to reject the null hypothesis does not establish it and

hence is not an “error”: 1935e; 1955 73; see also DOE §§ 8, 61.)

Thelogic of “something unusual” is very puzzling, because of course in almost

any experiment, whatever happens will have astronomically small probability

under any hypothesis. If, for example, we flipped a coin 100 timesto investigate

whether the coin is fair, all sequences have the extremely small probability of

2-™if the coin is fair, so something unusual is bound to happen. Once when

J asked Fisher about this point in a small group, he said, “Savage, you can see

the wool you are trying to pull over our eyes. What makes youthink we can’t

see it too?” At any rate, the doctrine of “something unusual” does not work if

taken very literally, and this, of course, is why Fisher had recourse to tail areas,

grouping outcomes as more or less antagonistic to a given null hypothesis (DOE

§§ 7, 8; see also 1926a 504; 1936a 251-2; and references below).

For Fisher, it was very importantthat tests be “exact” (DOE § 17 par. 2; 1936a

251, 252; 1939a 174; 1939d 2, 5-6; see also § 4.4). For this, it would be enough

that they be exact given appropriate ancillaries, as I have illustrated in the dis-

cussion of regression. Often, “exact” seems to mean having a given size in the

Neyman-Pearson sense (1960 8; DOE §§ 7, 8, 61; SI 37-9, 87, 96; see also ref-

erences below). This, however, does not serve to explain Fisher’s use of the

Behrens—Fisherdistribution in testing whether two meansare equalin the pres-

ence of possibly unequal variances (1935 397; 1939a; 1945b; 1960 8; 1961a;

SI 94-6; he argues that ‘“‘ repeated sampling from the same population” is mis-

leading and other reference sets are appropriate, without fully explaining his

reference set in the Behrens—Fisher problem, even in 196la, and in general

without fully reflecting the fact that the expectations of conditional levels are

unconditional levels: 1939a 173a—b; 1945b 130, 132; 1945c; 1955 70-2 but

compare 73; 1960 6-7; 1961a; SI 39-44, 75-103).

4.8. The likelihood principle. The likelihood principle is a doctrine that seems

in retrospect very appropriate to Fisher’s outlook, though it does not seem to
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have been plainly stated by him until his last book (SI 70-1, 72-3, 136; see also

1932 259; 1934a 287; 1935b 40-1; 1936a 249). Indeed, the first formal state-

ment of the likelihood principle known to meis not by Fisher but by Barnard®

(1947, 1949). The principle is still controversial, but I believe that it will come

to be generally accepted. That the likelihood is a minimal sufficient statistic is

an objective technical fact (see § 3). That such a statistic is as useful as the

whole data for any statistical purpose is never really denied. (A seeming denial

sometimes arises whencritics point out that in practice specific statistical models

can never be wholly trusted so that a statistic sufficient on the hypothesis of a

given modelis not sufficient under the wider hypothesis that that model may not

actually obtain.) Thus, no one doubtsthat the likelihood function together with

a statement of the distribution of this function for each value of the unknown

parameter would constitute all that is relevant about an experiment bearing on

the parameter. The likelihood principle goes farther, however: it says that the

likelihood function for the datum that happens to occur is alone an adequate

description of an experiment without any statement of the probability that this

or another likelihood function would arise under various values of the pa-

rameter.

In a certain passage (SI 72-3), Fisher seems pretty forthrightly to advocate

the likelihood principle. It could be argued that he means to apply it only to

“statistical evidence of types too weak to supply true probability statements”’

(SI 70).

Fisher does sometimes depart from the likelihood principle. For example,

‘tail probabilities and hence significance tests do so.** More disturbingly, a

Poisson process admits a fiducial inference if the numberof arrivals is fixed (SI

52-4) but not if the total time is fixed, despite identical likelihoods. This and!

‘another, similar example’? are given in (Anscombe 1957).

According to Fisher, when other devices, such as Bayes’ theorem and the

fiducial argument, are not available, the likelihood constitutes in itself an exact

statistical inference (see § 4.4). Late in his work (SI 71), Fisher suggests a sort

of test which is not a tail area test but consists simply in reporting the ratio of

the maximum ofthe likelihood under the null hypothesis to its maximum under

the alternate hypothesis.”

 
f

80 Barnard writes that Fisher’s statement (RW §2 last par., already in Ist ed.) is as formal.

Savage’s “‘random note”’ on Fisher (1936 a 249) says, ‘‘Full likelihood principle clear here if not

earlier,’ buta 3 x 5 card questions this. In earlier works Savage says that it was “‘first put for-

ward,”’ and ‘‘emphasized to statisticians’ by Barnard (1947) and Fisher (SI), and gives further

discussion (1962 17-20) and references (1954 2nd (1972) ed. iv), including one to Birnbaum (1962),

whocertainly gives a formal statement.

*! Savage noted that the likelihood principle is ‘in effect denied’? by Fisher (1922a 314 last
par. 2nd sentence).

82 Savage’s manuscript unfortunately breaks off here. He intended to add a section onerrors

and inconsistencies, but drafted no further text. What notes heleft suggest that he intended to

(continued on next page)
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DISCUSSION

B. EFRON

Stanford University

This paper makes me happy to be statistician. Savage, and John Pratt, give

us a virtuoso display of high grade unobtrusive scholarship. Fisher comes across

as a genius Of the first rank, perhaps the most original mathematical scientist of

the century. A difficult genius though, one in whom brilliance usually outdis-

tances clarity. Savage deservesspecial credit for his deft pulling together of the

variousstrings of Fisher’s thought. This paper will make rereading Fishereasier

for those of us raised in different statistical traditions.

My paper [1] is mainly devoted to understanding one of Fisher’s inspired
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guesses: that the maximumlikelihood estimator is moreefficient than other BAN
estimators, and that the Fisher information measures variance of the MLE toa
surprisingly high order of accuracy. Rao calls this first property of the MLE
“second orderefficiency.” The discussion following [1] contains some interesting
comments on thereality or unreality of second order efficiency. All of this stems
from two pages in Fisher’s 1925 paper (1925a). There are big issues at stake
here. Fisher believes that the MLE is optimum as an information gathering
statistic in finite samples, not just asymptotically. This belief is based on a deep

geometric understanding of the estimation problem in parameterized subsets of

high dimensional multinomial families. At this time, 50 years after the 1925

paper, nobody has successfully disputed Fisher’s claim, but the principle isn’t

universally accepted, either. As Savage shows, you can find counterexamples to

its strict interpretation (see the discussion following [1] for another one), but

even these are surprisingly technical.

Fisher wrong can bejust as interesing as Fisher right. It is hard to accept

Fisher’s endorsementofthe likelihood principle. Bad experience with estimating

the mean vector of a multivariate normal distribution has destroyed confidence

in the “invariance principle,” but this principle is itself just a weak consequence

of the strict likelihood principle. Stein [2] has given a forceful counterexample.

On the other hand, the likelihood principle is remarkably useful, or at least

convenient, for dealing with problemsin sequential analysis, and doesn’t seem

to lead to disasters when applied to standard situations involving just a few

parameters. Once again Fisher seems to have had a deepif notinfallible insight

into the nature ofstatistical inference.

Savage’s remarkable paper shows that “deep” beats “infallible” every time.

We are badly in need of morestatistical philosophers of the Fisher-Savage

calibre.
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CHURCHILL EISENHART

National Bureau of Standards

Jimmie’s Fisher Memorial Lecture “On Rereading R. A. Fisher” wasthefinest

talk I ever heard on anyaspectof statistics. His presentation held me spellbound

throughoutits entirety, and manyfriends to whom I have mentioned this tell me

that they were equally entranced. Now that his wisdom andinsight on Fisher

has reachedthe printed page, I am sure that most of those who heardthe original

presentation and many others too will refer to it again and again in years to

come.
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BRUNO DE FINETTI

University of Rome

1. Disconcerting inconsistencies. It has been a great pleasure, for me, to

receive and read this paper: it seemed almostlike listening to the typical con-

versations of L.J.S. in which the subject under discussion becamesteadily broader

and deeper owing to series of little valuable discoveries (an example, a counter-

example, a singular case, an analogy, a possible extension or a paradoxical one)

that occurred to him, and wereintroduced into the discourse often following a

short pause and a long “Ooooh.-.-”. Of course, this pleasure was intimately

mingled with the painful remembrance that the possibility of renewing such

exciting meetings has been suddenly interrupted by his death.

Concerning R. A. Fisher in particular, I am indebted to Savagefor all of the

little understanding I have been able to attain about his viewpoint. Outside the

difficulty (for me) of Fisher’s English, I was disconcerted by the alternation, in

his writings, of assertions and remarks, some completely in agreement and some

completely in disagreement with each one of the possible viewpoints about sta-

tistics, and in particular with my own viewpoint.

My uneasiness about understanding Fisher’s position has, perhaps, been defi-

nitely removed only by this posthumous message from Savage, particularly by the

remarks about Fisher’s inconsistencies, explained (§§ 4.4—4.6, and elsewhere) by

the conflict between his convictions about the necessity for conclusionsin the

form of “posterior probabilities” of a Bayes-like kind, and his preconception

against admitting subjective prior probabilities, as well as his rejection (rightly)

of “conventional” ones (like the uniform distribution in Bayes’ own approach

for “repeated trials,” and similar choices, e.g. of “conjugate priors,” if done

merely ‘for mathematical convenience’’). It is but as an attempt—or a subter-

fuge—to escape such an inescapable dilemma, that he resorts to inventing an

undefined name like “fiducial probability” or to suggesting the use of “‘likeli-

hoods” as ersatz probabilities. This is, indeed, a wrong answerto the rightly

perceived “absolute necessity to the advanceof science”of attaining Bayes’ goal,

whose abandonment he regards as “rather like an acknowledgment of bank-

ruptcy” (§ 4.6).

Let me mention here a remark by L. J.S. (§ 4.6) concerning a more general

impoverishmentofstatistical thinking which occurs when the Bayesian outlook

is lost sight of: relevant circumstances are “sometimes overlooked by non-

Bayesians, because they do not have easy ways to express (them).” Their lan-

guage is too one-sided, hence poor and distorting.

2. Preliminary personal impressions. Fundamentally—it seemsto me(ifit is

not too bold to judge a great man on a very limited knowledge)—Fisher had a

strong intuitive insight into the many special problemsheinvestigated, and mas-

tery in dealing with them, but his unifying aims were limited to attempts at

connecting fragmentary results rather than oriented toward the acquisition of a
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general consistent view about probability and its use (as are the two opposed

ones, of objectivists following the Neyman-Pearson school and of subjectivists

like L.J. Savage).

One point has been especially surprising to me (as well as, it seems, to Savage

himself: see § 4.3). Fisher was not a frequentist in the usual sense, but sub-

scribed to a somewhatsophisticated andrefined version of the so-called “classical”

definition: the version where the set of N equally likely cases (M favorable, with

M/N = p) is supposed countless (N very large, practically infinite). The worst

absurdity of the frequentist “definition” is so avoided: in a succession of draw-

ings all sequences are possible (if p = 4, with equal probability) and thefre-

quency is no way obliged to tend to p, nor to any limit whatsoever. This view

is not contradictory, provided one avoidsreally infinite sets where it would be

meaningless to speak of a “ratio” p = M/N = oo/oo (maybe “‘denumerable”’/“de-

numerable”?). Of course, for a subjectivist (in particular, for myself) this view

is tenable only ifp is previously adopted as the evaluation of the probability con-

cerned, and the N cases are chosen so as to be considered subjectively equally

likely.

The fundamental inconsistency (with many ramifications) is, however, the one

mentioned previously, and it deserves to be discussed in more detail and depth.

3. Critical diagnosis of the inconsistencies. The fundamental dilemma,

mentioned in Section 1 and related to conflicts between some of Fisher’s con-

victions and preconceptions, even if perhaps unique in its essence, has naturally

many connections with features of scientific thinking on oneside and with prac-

tical aspects and applications on the other. Let us add some summary remarks

and some more comments.

The broadest picture of the issue may be presented by the contrast existing

—in Fisher’s mind—between inductive reasoning (as a purely scientific method of
thinking), and inductive behavior (as a practical guide for action, particularly for

economic decisions). This is in full opposition to the views of both subjectivists

and objectivists (of the Neyman-Pearson school), who agree in considering the

two notions as but the theoretical and applied side of the same thing. To deny

this appears as strange as maintaining that addition requires different operations
if concerned with pure numbers or amounts of money.

Fisher’s attitude is, moreover, contradictory in itself: while denying indig-
nantly that methods based on optimization of economic results are therefore
optimal per se, in a scientific context also, he insists conversely that his own
“scientific” methods ought to be applied to practical decisions in order to avoid
undue costs and losses. How can one maintain that whatis best for A is also
best for B, but not conversely?

Moreover, the economic approach seems(if not rejected owingto aristocratic
or puritanic taboos) the only device apt to distinguish neatly whatis or is not
contradictory in the logic of uncertainty (or probability theory). That is the
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fundamental lesson supplied by Wald’s notion of “admissibility,” formally iden-

tical to that of “coherence” in the Bayesian-subjectivistic approach: probability

theory and decision theory are but two versions (theoretical and practical) of

the study of the same subject: uncertainty. It seems therefore an underassess-

ment of theories of “inductive behavior” to deny (as Neyman does) that they

embraceall of the theory of “inductive logic” too.

4. Incommunicability and isolation. Personal factors are relevant to under-

standing some of Fisher’s preconceptions; so the “silhouette” of Fisher painted

by L. J. S. (§ 2) is not only delightful but essential as aid to understanding some

more or less strange fixed ideas and some contradictory attitudes in identical

situations. For example: criticizing in a single case the application of random-

ization (that he so vigorously advocated) because (as always) the sample could

be “bad-looking” (§ 4.4); being nervous about the term ‘‘point estimation,”

properly specifying something he wassteadily employing (§ 3); hostility to in-

ductive behavior, and to other views, which seemsoften to be “adopted simply

to avoid agreeing with his opponents” (§ 2.3); aversion toward Wald’s remark

that the choice of what experiment to do is a “decision” (§ 2.6); emphasizing

as a success that notall his so-called ‘‘fiducial distributions” coincide with “‘pos-

terior distributions” (instead of recognizing this case as nonsensical) (§ 4.6);

recourseto the “very puzzling” (L. J. S.) logic of “something unusual”since (as

L. J. S. remarked) that happens in almost any experiment(e.g., when anyindivi-

dual case, one of which must happen,has probability 2~™) (§ 4.7). Even more

puzzling seems(at least to me) the answer (just an empty witticism) of Fisher

to L.J.S. about such “logic of something unusual”; was he unable to explain

reasonably his ownattitude? Or did the reasons seem to him so obvious that

the question wasidle, perhaps wasitself (for him) an empty witticism?

Some polemicalattitudes—e.g., against “mathematicians” (§ 2.1)—were prob-

ably excessive, even if limitation to strictly deductive reasoningis often no less

excessive. Fisher seemsto be right, however, in maintaining (§ 2.5) that math-

ematical education should be, in part, also informative and illustrative, not

restricted to the part that is prescribed to be transmitted rigorously by proofs.

Finally, and incidentally (since seemingly unrelated to Fisher), a remark by

L. J. S. (obvious, but perhaps not usually emphasized as it should be): sufficiency,

for a statistic, is a property which can hold on the hypothesis of a given model;

it is alwaysrelative (in this sense), never absolute (§ 4.8).

5. Utility of further discussions. The main utility of Savage’s paper on R. A.

Fisher consists—it seems to me—in presenting a synthetical but penetrating view

of the controversial questions arising from his work. And the conclusion seems

to be—no matter whether one is moreorless inclined to prize or deny Fisher’s

ideas and contributions—that many such questions are still open or, if not,

deserve attention for clarification of fundamental or secondary questions about

Statistical thinking andstatistical practice.
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L.J.S. justifies his writing saying that: Those who have already read in Fisher

will agree that understanding him deeply is not easy, and they may be glad to hear

the views of another (§ 1.1). That was surely true for me in reading him, and I

am sure it would be so for me and manyothers in reading other opinionstoo.

L.J.S. says: The following pages consist largely of judgments and impressions:

nothing can convert these subjective reactions completely into objective facts...

(§ 1.2). But the same holds for every other, so that the comparison may improve

and probably approach suchpersuasions.

L.J.S. adds that, however: ---it has heen an invaluable discipline for me to

support each of them by specific citations with reasonable thoroughness (§ 1.2). Un-

fortunately, this seach was not completed before his death; some valuable work

has been devoted by John W.Pratt; it would be highly welcomedif statisticians

familiar with Fisher’s work could recall, find, and communicate additional

quotations.

Let us hope that this paper by L. J. S. about Fisher maygiverise to clarifying

discussions about the foundations and the applications ofstatistics: a field about

which very much has been said and will be said maybe for ever and ever, but

where we mayat any rate attain some progress by concentrating efforts on such

a wide butspecific range of questions.

D. A. S. FRASER

University of Toronto

We owe Professor Jimmie Savage deep appreciation for his thorough and

detailed review of R. A. Fisher’s statistical research and publications. And we

also owe Professor John W.Pratt substantial thanks for his painstaking job of

editing the original manuscript into final form for the Annals and assembling

the extensive references needed for the manuscript.

Certainly Professor Savage’s statistical viewpoint, the Bayesian viewpoint,is

very different from the R. A. Fisher veiwpoint. On occasions we are reminded

of this by parenthetical references in the review, and indeed Professor Savage

makes reference to ‘‘a somewhat personal review.” I feel that much additional

credit goes to Professor Savage for the waythe difference in viewpoint has not

affected the assessment of the many contributions made by R.A.Fisher.

In Section 4.8 Professor Savage discusses the likelihood principle and notes

that “..-it does not seem to have been plainly stated by him [Fisher] until his

last book [Statistical Methods and Scientific Inference].”” I have not had the im-

pression that Fisher’s writings supported the likelihood principle and indeed the

specific references made to his last book do not leave me with a feeling that

Fisher in any considered way supported the principle. The likelihood principle

was a prominent topic at statistics meetings around 1962,largely as a result of

Allan Birnbaum’s research interests. At that time it was reported that Fisher

had been asked concerning the likelihood principle, that Fisher had enquired
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whatthe likelihood principle was and then thoughtfully replied that he did not

support it. Perhaps others can comment more authoritatively on this.

Professor Savage remarksthat the likelihood “principle is still controversial,

but [he believes] that it will come to be generally accepted.” Certainly from

the Bayesian viewpoint there are no grounds for doubting the principle. And in

general we have lacked examples with any force against the principle. Professor

Mervyn Stone (1976) in a very recent paper discusses some Bayesian complica-

tions found with two examples. Thefirst of these is an elaboration on Problem

11 in Lehmann (1959 24). This example has strong implications beyond the

Bayesian viewpoint: it can be presented as a powerful example against the likeli-

hood principle. Readers of the review of R. A. Fisher’s work will want to

consider this example in Stone (1976).

Professor Savage refers to ‘““many doubts and few unequivocal answers” in

Fisher’s work. He also quotes Fisher: “I am still too often confronted by

problems: -- to which I cannot confidently offer a solution, ever to be tempted

to imply that finality has been reached..-.” I think that this has several impli-

cations concerning Fisher’s research and deserves further comment. One impor-

tant characteristic of Fisher was his ability to move into new areasofstatistics,

suggesting concepts and methods and deriving results. In a larger sense this

avoided premature crystalization and conceptualization and left the theory open

to modification and development. Often however he was taken at face value

on some technical issue and the issue pursued meticulously. For example, the

likelihood function as used in Fisher in contrast to the common and incorrect

definition in moststatistics texts. And the concept of sufficiency as used in Fisher

in contrast to the extensive mathematical analyses of sufficiency most of which

became superfluous with the general recognition around 1960 ofthe likelihood

function statistic, a recognition that was in fact in Fisher’s earliest papers on

sufficiency. In retrospect the openendedness of Fisher’s exploratory work de-

serves more positive than negative credits.

Professor Savage notes that “It would be more economical to list the few

statistical topics in which he displayed no interest than those in which he did.“

If we examine present daystatistics, the fruitful, basic, and scientifically useful

parts of present daystatistics, and then assess which concepts and methods were

proposed or developed by Fisher, we would obtain a clearer picture of the magni-

tude of his contributions. In some measure the concepts and methods mentioned

in the review do this. But an overview showsthat Fisher’s contributions con-

stitute the central material of present daystatistics.
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V. P. GODAMBE

University of Waterloo

This paper by the late Professor Savage will, I believe, provide valuable sug-

gestions for rereading Fisher to many, as indeed it did to me. The paper does

touch upon most of the important aspects of Fisher’s work. The presentation

throughout is admirably “balanced”and “objective.” Of courseit is not possible

to aim at completeness in such a short paper. I would therefore restrict my

comments to a couple ofdetails.

At the end of Section 4.4, “randomisation” is discussed. Concerning this

topic I find the following two statements by Fisher difficult to reconcile. In his

earlier paper (1936b 58, 59) Fisher says: “The simplest way of understanding

quite rigorously, yet without mathematics, what the calculations of the test of

significance amountto, is to consider what would happen if our two hundred

actual measurements were written on cards, shuffled without regard to nation-

ality, and divided at random into two new groups ofa hundred each. --- Actually

the statistician does not carry out this very simple and very tedious process, but

his conclusions have nojustification beyond the fact that they agree with those

which could have been arrived at by this elementary method.” On the other

hand in Statistical Methods and Scientific Inference (SI 98) Fisher says, “---and

whereas planned randomisation (1935-1953) is widely recognized as essential

in the selection and allocation of experimental material, it has no useful part to

play in the formation of opinion, and consequently in the tests of significance

designed to aid the formation of opinion in the Natural Sciences.” [The refer-

ences in the quotation are to his Design of Experiments.|

Nowthe latter statement above is made by Fisherin relation to Bartlett’s test

and other tests which introduce a deliberate random elementto arrive at conclu-

sions. Such randomisation, I agree with Professor Savage (last but one paragraph

of Section 4.4) “does constitute a sort of exclusion of pertinent evidence.” But

Savage further says: “However, there seems to meto be a very similar fault in

all those applications of randomisation that Fisher so vigorously advocated.”

At least the type of randomisation mentionedin the first quotation of Fisher in

the last paragraph seems to be free from this “fault.”’ Briefly, it seems to assert

that the significance level obtained on the basis of randomisation frequency

would be nearly the sameas that obtained on the assumption of normality, when

the assumption (model) is valid. A paper demonstrating this more elaborately

is due to Eden and Yates (1933). The randomisation here surely does not imply

“exclusion of any pertinent evidence.’ A restatement and extension of the above

logic underlying randomisation, in my opinion, is as follows. For testing some

hypothesis we construct a test-statistic which is appropriate with respect to the

underlying model or assumptions (e.g. independence, normality, etc.). Now

when the hypothesis is true and the modelis valid, the test-statistic has a specified

probability distribution. A suitable randomisation can generateforthe test-statistic
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a frequency distribution which numerically (approximately) agrees with the prob-

ability distribution just mentioned. Now if the modelis valid the randomisation

is obviously superfluous for inference. But if the model is not valid—and only

then—the frequency distribution generated by the randomisation can provide

some “inference.” Usually the experimenter will postulate some model based

on his background knowedge. (Naturally he would not like to foregoall his

knowledge.) At the same time he cannot be very sure about the validity ofthis

model. Under these conditions it is necessary that the inference based on the

probability distribution obtained from the model agrees with the inference based

on the frequency distribution generated by the randomisation. Obviously there

cannot be anyloss of “pertinent evidence” due to such a use of randomisation.

In the above considerations, the “model” can also include a prior distribution.

Thus appropriate randomisation can enable an experimenter to use a model of

uncertain validity. This uncertainty often more realistically concerns some

aspect of (not the entire) model. Only that randomisation which corresponds

to this aspect is justified above. For details, I would like to refer to two papers

(1971, 1973) by Thompson and myself.

There is another purpose (not entirely unrelated with the one discussed above)

for which Fisher recommended randomisation; and that is to establish ‘‘causa-

tion.” This is the situation in design of experiments. Here, even though find

Fisher’s recommendation scientifically convincing, at a deeper philosophical

level, I agree with Professor Savage that some “pertinent evidence” is lost by

randomisation. (In the above, I owe a reference to Professor Sprott.)

In Section 4.2 Professor Savage comments on Fisher’s conjecture that among

all Fisher consistent estimates, the maximum likelihood estimate loses the least

information (SI 157). Here Savage says, “The conjecture is false as stated,

though there may be some way to reconstrue it that makes it true.” In this

connection it is of interest to note that Fisher earlier (1935 b 45, 46; also SI 142,

143) put forward the concept of linear estimating equations to define Fisher

consistency. With a generalisation removinglinearity, if one attempts to obtain

the optimum (in terms of variance and/or amount of information) estimating

equation instead of estimate, simple mathematics yields the optimality/efficiency

of the m.l. equation for finite samples. The relevant references in this connec-
tion are Godambe (1960) and Bhapkar(1972).
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0. I shall number the sections of my comments to agree with Savage’s

numbers. The reader will often need to refer back to see the relevance of my

comments.

1. True history of science would depend on letters, lectures and other oral

communication as well as on publications, as in recent work on the early history

of quantum mechanics. The pretence that nothing exists if it is not publishedis

unfortunate, for it discourages people from talking about their work. Perhaps

one day the history ofstatistics in this century will be properly discussed, and

Savage’s essay is a substantial contribution to such a treatment.

Good mathematicians have always used scientific induction in their work; for

example, Gauss “discovered”the prime numbertheorem and quadratic reciprocity

and never proved the former. Polya uses probability only qualitatively in his

writings on plausible inference in pure mathematics. I think it can be regarded

as quantitative, though usually imprecise, and can be combined with the prin-

ciple of rationality (maximization of expected utility). It involves a modification

of the axioms of probability (Good, 1950 49), and a dynamic interpretation of

probability which is useful both for the philosphy of science (Good, 1968a,

1971a, 1973) and for computer chess (Good, 1967a, 1976). Dynamic partially

ordered probability resolves the controversies between Fisherian and Bayesian

statistics.

2.3. In 1951, I met Fisher in Cambridge, and he mentioned that he thought

the best contribution he was then likely to make to genetics would be to teach

it to Cambridge mathematical students, partly because he thought they were

exceptionally capable. He went on to say that most of his clients were not in

the same class. (See § 4.4 below.)

In a colloquium in Cambridge in November 1954, R. B. Braithwaite gave a

talk on the minimax method and its implications for moral philosophy. In the

discussion I said that the minimax method suffered from the disadvantage ofall

objectivistic methods, including those used in Fisherian statistics, namely that

they necessarily ignore information so as to achieve apparent objectivity. There-

upon Fisher rose furiously, with a white face, and asked me to address my com-

ments to the contents of the lecture. After the meeting he told Henry Daniels

I was an “upstart” though previously he had told Donald Michie that he liked
my 1950 book.

George Barnard told me a few years ago that Fisher was well aware ofhis

own tendencyto lose his temper, and that he regardedit as the bane ofhislife.
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I felt better disposed to Fisher after that, although 8. Vajda told me Fisher once

referred to an influential school of American statisticians as ““Americans with

foreign sounding names.”

2.4. Allowing for the cases mentioned by Savage, and for others, Fisher was

to various extents anticipated regarding likelihood, measure of amountofinfor-

mation, the use of generating functions in branching processes, and the analysis

of variance (by Lexis and others: see RW § 20 and Heiss, 1968), yet his contri-

bution was great. To be partly anticipated should detract little from solid con-

tributions.

WasFisher a Bayesian? See § 4.6 below.

2.5. Some faults in Fisher’s style were (i) ambiguous use of pronouns; (ii) the

annoying but comically incorrect use of the expression “dependent from”; (ill)

covering up. For example, in RW (7th ed. at least) he describes his “exacttest”’

for 2 by 2 contingencytables, and omits to mention that it assumes the marginal

totals convey no information about independence. Yet in his (1935b 48), he

states this assumption. (Whenhesays “If it be admitted,” he in effect is saying

that it is a matter of judgment.)

Fisher’s style might have been better if he had circulated his manuscripts for

suggestions as Savage did with his 1954 book.

2.6. Fisher was a Galton Professor in London, and an admirer of Galton. In

GT 252 Fisher says that Galton “was aware that among these [titled families]

the extinction of the title took place with surprising frequency,” but in that book

he refers only to Galton’s Hereditary Genius and not to Natural Inheritance where

Watson’s work appeared. So Fisher may not have been aware of Watson’s

work. The use of generating functions in branching processes was discovered

independently by Bienayme (1845), Watson (1873), Woodward (1948), and my-

self (1948), so there is no reason to suppose that it was too difficult for Fisher!

The notion of interactions in multidimensional contingency tables seems to

start with a personal communication from Fisherto Bartlett, regarding 2 x 2 x 2

tables, as acknowledged in Bartlett (1935). This notion, together perhaps with

the semi-Bayesian approach to two-dimensional tables of Good (1956, rejected

in 1953 in its original form), and Woolf (1955), was part of the prehistory of

the loglinear model. The interactions were given a further philosophical boost

when they were related to maximum entropy (Good, 1963).
The Wishart distribution should perhaps be called the Fisher—-Wishart distri-

bution, since the bivariate form was essentially due to Fisher (1915).

3. (i) Someone once said at a meeting of the RSS that the only sufficient

statistic is the complete set of observations, because no model is certain.

(ii) When the number of parameters is not merely large but infinite, as in

nonparametric estimation of a continuous density, ML is certainly inappropriate,

but maximum “penalized likelihood” makes good sense, where the penalty de-

pends on “roughness” (Good, 1971 b, Good and Gaskins, 1971, 1972). This can
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be interpreted both in a non-Bayesian manner, and also as maximum posterior

density in the shape of density functions.

4.1. Savage says “asymptotic variance is an appropriate index of the width

of the posterior distribution for almost any practical loss function.” For an

invariant generalization of Fisher’s information, allowing for loss functions,

with an application, see Good (1968b, 1969, 1971a) and Good and Gaskins

(1971, 1972).

4.4. In DOE § 27, the reference to bad judgment makes it clear that one of

the purposes of randomization is to protect the experimenter against his own

bad judgment (cf. my § 2.3). The objectivity and precision apparently ob-

tained by randomization can be achieved by the device of a Statistician’s Stooge

who alone knows the random design selected and whois shot if he reveals it

(for example, Good, 1974 124).

4.6. First Fisher thought the fiducial argument could produce probabilities

out of nothing. Then Jeffreys (1939) showed that in a few cases the results were

the same as would be obtained by assuming (improper) priors. In SI 56, Fisher

seems to say that the argument is essentially Bayesian. In Good (1965 81), I

showedthat the argument was incompatible with Bayesian methods, and in Good

(1971a 139), I pinpointed the precise step where Fisher had broughtin a hidden

assumption. He had slipped up because he never used a notation for conditional
probability.

4.7. By 1956 I think Fisher had movedclose to a compromise with a Bayesian
position. Such a compromiseis possible because of a loose relationship between
tail-area probabilities and Bayes factors (Good, 1950 94; 1967b; and Good and

Crook, 1974). Re SI 71, the ratio is the Maximum Bayes Factor.

4.8. Inc. 1941, I said to Barnard that, given two simplestatistical hypotheses,
the likelihood ratio obviously exhausted all the information because it is equal
to the Bayes factor on the odds, and that we were using its logarithm, the weight
of evidence, for sequential testing of hypotheses, the idea being due to Turing

(who won the war). Barnard told me that he was curiously enough also using
a similar method for quality control, but he did not agree that it exhausted all
the information, because of the possibility of an incorrect model.

Postscript. I agree that Fisher should be read more, and scissors-and-paste
booksless.
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O. KEMPTHORNE
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The Fisher Memorial Lecture of L. J. Savage wasthefinest statistical lecture

I have heard in my whole life. There is no suggestion or requirementthat Fisher

lectures should be addressed to Fisher’s own work, and this lecture was a sur-

prise for many. It consisted of a review of the main thrusts of Fisher’s life done

with deep respect and reflected a tremendouseffort to understand and place

Fisher’s contributions in the history of statistical ideas. It is tragic that Savage

could not complete his oral presentation for publication. Thestatistical profes-

sion is deeply indebted to J. W. Pratt for a remarkable effort.
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As Savage said, to read the whole of Fisher’s work with some semblance of

partial understanding is a huge task, one on which many have spent years. I

surmise that the breadth and depth of that work will not be adequately appreciated

for decades. I suggest that no individual of this century contributed fundamen-

tally to so wide a variety of areas. I have always been impressed by Fisher’s

ability as a working mathematician. It seems that Fisher could tackle success-

fully and with deep originality almost any problem involving classical analysis,

numerical analysis, probability calculus, or combinatorics. I regard him as a

mathematician ofthe very highest order particularly in the dimensionofcreativity.

Curiously enough, it seems that Fisher did nothing on strong asymptotic laws.

Fisher’s ability in distribution theory was surely remarkable in the context of

the times, and almostall of the distributional theory he worked out has become

part of the intermediate knowledge of mathematicalstatistics. Savage communi-

cated in his presentation the marvel of this effort. Fisher also became deeply

fascinated by any combinatoric problem, and his work on experimental designs

and in mathematical genetics in this direction boggles the mind. Fisher was

highly original in multivariate analysis.

One aspect of Fisher’s work which was touched on only briefly by Savage

was Fisher’s genetical effort. This would involve a lecture of similar dimensions

to the present one. It is noteworthy, however, that Fisher wasalso the first to

attack discrete stochastic processes by meansof diffusion approximations via the

Fokker-Planck differential equation (even though the first effort contained a

foolish mistake).

The mysteries of Fisher’s thought arise as soon as one turns away from the

purely mathematical work which has stood the test of time except for a small

number of minorerrors.

It seems quite clear that Fisher never succeeded in communicating to anyone

his idea of the nature of probability in spite of many efforts. I now find his 1956

book (SI) almost a total mystery. Fisher really did think that one could develop

by logical reasoning a probability distribution for one’s knowledge of a physical

constant. It is clear, I think, that Fisher did not support any idea of belief prob-

abilities of the type that Savage himself developed and presented so forcefully.

The fiducial argument was to lead to some sort of logical probability which

Fisher claimed could be verified, though he never gave an understandable idea

of what he meant by verification, and specifically excluded the possibility of

repeated measurements of the unknownconstant.

Savage alluded, appropriately, to obscurity on what Fisher meant by “esti-

mation.” My guess is that he meant the replacement of the data by a scalar

statistic T for the scalar parameter 6 which contained as much aspossible of the

(Fisherian) information on @ in the data. But what one should do with an

obtained 7 was not clear, though Fisher was obviously not averse at times to

regarding T as an estimator of @. It is interesting, as Savage noted, that Fisher

was the first to formulate the idea of exponential families in this connection.
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Here, also, the fascinating question of ancillaries arises, and on this Fisher was

most obscure. To some extent Fisher must be regarded as the initiator ofesti-

mation as a decision theory process, even though other writings suggest that he

found this view offensive. I imagine that withoutfiducial inference Fisher would

have found his views incoherent.

The work of Fisher abounds in curiosities. One which has struck me forcibly

is the absence of any discussion of the relationship of Fisher’s ideas on experi-

mentation (DOE)to his general ideas on inference (SI). The latter book contains

no discussion of ideas of randomization (except for the irrelevant topic oftest

randomization) which made DOEsointeresting and compelling to investigators

in noisy experimental sciences. Can the ideas on randomization and on parame-

tric likelihood theory be fused intoa coherent whole? I think not. In DOE Fisher

convincesus of the desirability of randomization and unbiased (over randomiza-

tions) estimation of error, but then proceedsto the so-called analysis of covari-

ance in which the unbiased estimation of error cannot be achieved.

I note that Savage applauded Fisher on factorial design, examining the rele-

vant experimental factors simultaneously. But the prescriptions of Fisher work

well only if interaction is small and lack of interaction is rare. With interaction,

Fisher’s analyses of variance lose muchoftheir force. Fisher did not appreciate

the role of nonadditivity and this came out in the 1935 Neymandiscussion.

Savage discussed Fisher’s ideas onstatistical tests and was not able to obtain

a coherent picture of Fisher’s approach. It is important that the obscurities be

recognized. Clearly Fisher regarded statistical tests as evidential in nature, but

to say this is, perhaps, merely to replace one obscure idea by another no less

obscure.

As regardslikelihood, the origins in Fisher’s own writing are quite obscure.

In the early days it was a tool for point estimation but later it was elevated toa

principle, again with deep mystery.

On fiducial inference, Fisher’s early writings had a superficial transparency

which convinced many ofits correctness, and was thought to be the answer to

the age-old problem of induction. But, obviously, Fisher was unable to convey

his ideas to anyone, and, further, Fisher did not attach weight to the fact that

fiducial calculations were possible only in a very limited set of conditions, quite

inadequate for the broad purposesof science.

The upshotof all this can only be feelings of wonderment and puzzlement
which Savage conveyed effectively, with respect, openness, and a highly sincere

attempt to understand.

Will the statistical profession ever reach the status of nearly absolute accept-

ance or rejection of any of Fisher’s ideas on inference? Or is the profession to

retain forever a psychosis of not understanding Fisher and suspecting thatit is
stupid on that account ?

The profession will be grateful for the indefinite future that L. J. Savage made

such a fine effort to help.
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The youngest generation of mathematical statisticians may consider Savage’s

essay on Fisher a delightful introduction to the work of one of the great men of

our profession, and older generations, including several veterans of the twentieth-

century revolution in statistics, may find it a provocative reminder of battles

not forgotten. But the essay poses a challenge to a historian ofstatistics.

In his discussion of Fisher’s beliefs and attitudes about statistics, Savage im-

plicitly raises a question: What was Fisher’s place, his role, in the development

of modern mathematicalstatistics? We may now be entering an erasufficiently

distant from the time of Fisher’s greatest works (and their attendant controver-

sies) that a proper answer to this question will become feasible. Indeed, Savage

hints at some possible answers, but a correct assessment of Fisher’s work will

not comeeasily. In part, this is because the development ofstatistics before

Fisher’s time is not really well understood, and in part it is because the proper

placementof Fisher’s works, particularly his researches in the design of experi-

ments and in genetics, will not be accomplished without a deep and extensive

study of nearly the entire range of a century of science, from Astronomy to

Zoology, from Laplace to Weldon and Bateson.

While an answer to the question raised must be deferred to another time, I

would like to make one point not mentioned by Savage, which,as far as I am

aware, has not been noted by any other commentator on Fisher. The point is

that it is to Fisher that we owe the introduction of parametric statistical infer-

ence (and thus nonparametric inference). While there are other interpretations

under which this statement can be defended, I meanit literally—Fisher was

principally responsible for the introduction of the word “‘parameter” into present

statistical terminology!

The use of the term “parameter”in its present sense seemsto date from Fisher’s

1922 paper on the foundations of statistics. At the turn of the century, the

term was in occasional usage in mathematics and physics, butin statistical litera-

ture published before 1922 its absence is nearly total. In mathematics, one speci-

fic meaning ofparameter was(see the Oxford English Dictionary) the latus rectum

of a conic section; that is, if y = (x — 5)?/p represents a parabola, p was called

the parameter of the curve. Thusit is natural to expect, comparing this expres-
sion with the exponent in a normaldensity, that the term would appear in the

statistical literature, if only in this restricted sense. Such appearances exist, but

they are rare. I’ve found only a single instance of the word “parameter”in the

works of Karl Pearson (once in 1894, in this restricted sense), and none in

Student’s works or even in Fisher’s pre-1922 papers. Edgeworth used the term,

but only rarely, and then to describe a scale factor (e.g. p*), usually assumed

known. (When discussing scale parameters of normal distributions, he preferred

the term‘‘modulus”; he credited both terms to Bravais (1846 257).) I have
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searched for “parameter” in texts on the theory of errors, a wide selection of

Biometrika papers, the volumes of J. R.S.S. and J. A.S. A. for 1921, and the

cited references in Fisher (1922a), and only found three instances of its use (by

Edgeworth (1921), ina footnote, in his usual restricted sense; by Sheppard (1899),

where the term is used for the scale parameter of a normal distribution, in a

sense even morerestrictive and closer to the strict geometrical meaning than

Edgeworth’s; and by Yule, once in 1920, referring to a dummyvariable ofinte-

gration). And yet, in 1922a, Fisher used “parameter” a total of 57 times, in the

general, modern sense!

While the introduction of a term may strike some as of minor or no impor-

tance to statistics, in this instance Fisher’s prolific use of “parameter”is symbolic

of a subtle but important development of his predecessors’ concepts of families

of probability distributions. Early workers in mathematicalstatistics had limited

their attention to families of distributions where only location or scale parame-

ters were unknown; these families were either too restricted to require, or the

functional form of the density not sufficiently specified to permit, the full force

of Fisher’s general theory of parametric inference. Later, Karl Pearson’s and

Edgeworth’s general families of distributions were in fact too generalto make

concepts such as sufficiency and efficient estimation meaningful.

Fisher’s step, his narrowing of the focusof his attention to general parametric

families of distributions where the dependence of the distribution upon a small

number of parameters was smooth and regular, held the key to manyofhis
greatest achievements. To cite just two examples: (1) The recognition of par-

ticular cases of the concepts of sufficiency can be found in the worksofat least

three men (Laplace, Simon Newcomb, Edgeworth)in the century before Fisher’s

discovery, but the isolation and abstraction of the concept was impossible as

long as statisticians followed Pearson and considered families of distributions

that permitted different forms for different values of the defining constants;it

required Fisher’s conceptual step, symbolized by the replacement of the “fre-

quency constants” and “quaesita” of Pearson and Edgeworth by “‘parameters.”

(2) It was Fisher’s understanding of parametric families of frequency curves

that made possible both his formulation of the efficient method of maximum

likelihood, and his correction of Karl Pearson’s errors on the degrees of freedom

of y?. (See Stigler (1973, 1975).)

Savage’s essay provides us with a much-needed road map of Fisher’s statistical

contributions, but fora measure of Fisher’s influence on our field we need look

no further than the latest issue of any statistical journal, and notwe the ubiqui-

tous “parameter.” Fisher’s concepts so permeate modernstatistics, that we tend

to overlook one of the most fundamental!
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