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Too cool for school? 
Signalling and countersignalling 
Nick Feltovich* 

Richmond Harbaugh** 

and 

Ted To*** 

In signalling environments ranging from consumption to education, high-quality senders often 
shun the standard signals that should separate them from lower-quality senders. We find that 
allowing for additional, noisy information on sender quality permits equilibria where medium 
types signal to separate themselves from low types, but high types then choose to not signal, 
or countersignal. High types not only save costs by relying on the additional information to 
stochastically separate them from low types, but countersignalling itself is a signal of confidence 
that separates high types from medium types. Experimental results confirm that subjects can learn 
to countersignal. 

For Nash to deviate from convention is not as shocking as you might think. They were all prima donnas. If a mathematician 
was mediocre he had to toe the line and be conventional. If he was good, anything went. 

Z. Levinson, from A Beautiful Mind 
(Nasar, 1998, p. 144) 

1. Introduction 
* Following in the tradition of Veblen's (1899) analysis of conspicuous consumption and 
Akerlof's (1970) model of adverse selection, Spence's (1973a, 1974) signalling model of overe- 
ducation showed how seemingly wasteful actions can be valued as evidence of unobservable 
quality. Signalling models have since been applied to economic phenomena from advertising 
(Nelson, 1974) to financial structure (Ross, 1977), social phenomena from courtship (Spence, 
1973b) to gift exchange (Camerer, 1988), and biological phenomena from a peacock's plumage 

* University of Houston; nfelt@bayou.uh.edu. 
** Claremont McKenna College; rick.harbaugh@claremontmckenna.edu. 

* U.S. Bureau of Labor Statistics; toAt@bls.gov. 
We thank Chris Avery, Bruno Broseta, William Hamilton, Robin Hanson, John Hardman-Moore, John Kagel, Barry 

Nalebuff, Al Roth, Karl Schlag, seminar participants at various conferences and departments, two anonymous referees, 
and the Editor Lars Stole. All remaining errors are a signal of our quality. Harbaugh thanks the Yale School of Management 
for postdoctoral support. 

630 Copyright ?) 2002, RAND. 

This content downloaded from 194.29.185.25 on Sun, 22 Jun 2014 01:15:28 AM
All use subject to JSTOR Terms and Conditions



FELTOVICH, HARBAUGH, AND TO / 631 

(Zahavi, 1975) to a tree's autumn foliage (Brown and Hamilton, 1996). These models conclude 
that in a separating equilibrium, "high" types (high in productivity, wealth, fecundity, or some 
other valued attribute) send a costly signal to differentiate themselves from lower types. 

Contrary to this standard implication, high types sometimes avoid the signals that should 
separate them from lower types, while intermediate types often appear the most anxious to send the 
"right" signals. The nouveau riche flaunt their wealth, but the old rich scorn such gauche displays. 
Minor officials prove their status with petty displays of authority, while the truly powerful show 
their strength through gestures of magnanimity. People of average education show off the studied 
regularity of their script, but the well educated often scribble illegibly. Mediocre students answer a 
teacher's easy questions, but the best students are embarrassed to prove their knowledge of trivial 
points. Acquaintances show their good intentions by politely ignoring one's flaws, while close 
friends show intimacy by teasingly highlighting them. People of moderate ability seek formal 
credentials to impress employers and society, but the talented often downplay their credentials 
even if they have bothered to obtain them. A person of average reputation defensively refutes 
accusations against his character, while a highly respected person finds it demeaning to dignify 
accusations with a response. 

How can high types be so understated in their signals without diminishing their perceived 
quality? Most signalling models assume that the only information available on types is the signal, 
implying that high types will be confused with lower types if they do not signal. But in many cases 
other information is also available. For instance, wealth is inferred not just from conspicuous 
consumption, but also from information about occupation and family background. This extra 
information is likely to be noisy in that the sender cannot be sure what the receiver has learned, 
implying that medium-quality types may still feel compelled to signal to separate themselves from 
low types. But even noisy information will often be sufficient to adequately separate high types 
from low types, leaving high types more concerned with separating themselves from medium 
types. Since medium types are signalling to differentiate themselves from low types, high types 
may choose to not signal, or "countersignal," to differentiate themselves from medium types. 

We investigate such countersignalling behavior formally with a model that incorporates extra, 
noisy information on type into a signalling game. We find that countersignalling can emerge as 
part of a standard perfect Bayesian equilibrium in which all players are forming rational beliefs 
and are acting rationally given these beliefs. Countersignalling is naturally interpreted as a sign 
of confidence.' While signalling proves the sender is not a low type, it can also reveal the sender's 
insecurity. Since medium types have good reason to fear that the extra information on type will 
not differentiate them from low types, they must signal to clearly separate themselves. In contrast, 
high types can demonstrate by countersignalling that they are confident of not being confused 
with low types. This possibility arises because in a countersignalling equilibrium, the sender's 
expectation over the receiver's beliefs about her type depends on both the signal and her type, not 
just on the signal. 

The extra information on type in our model can be seen as a second signal following the 
literature on multidimensional signals (Quinzii and Rochet, 1985; Engers, 1987). This literature 
is concerned primarily with whether such signals can ensure complete separation when sender 
type varies in multiple dimensions. We assume that sender type varies in only one dimension 
and concentrate instead on the opposite problem of how the extra information can encourage 
partial pooling rather than complete separation.2 Given the noisy nature of the extra information, 
it might seem that high types should signal to further emphasize their quality. Instead, we find that 
the information asymmetry arising from the noisy extra information can give perverse incentives. 
Pooling with low types can become a signal in itself-a way for high types to show their confidence 

1 This point was made by Confucius (13:26, The Analects): "The Superior Man is self-confident without being 
arrogant. The inferior man is arrogant and lacks self-confidence." 

2 Hertzendorf (1993) also allows for two signals, one of which is noisy, but considers only two types of senders, 
precluding the possibility of countersignalling. 

C) RAND 2002. 

This content downloaded from 194.29.185.25 on Sun, 22 Jun 2014 01:15:28 AM
All use subject to JSTOR Terms and Conditions



632 / THE RAND JOURNAL OF ECONOMICS 

that the extra information is favorable to them by taking an action that is too risky for medium 
types. 

Because countersignalling serves as a signal of confidence, we show that it is more than 
just the absence of signalling by types whose high quality is already evident and who wish to 
save costs. First, when the extra information sufficiently differentiates high types from low types, 
signalling can actually lower a high sender's estimated type. Countersignalling can therefore arise 
even when signalling is a desirable activity that high types would pursue in a perfect information 
environment. Second, countersignalling reduces the efficiency of receiver estimates of sender 
quality. Since countersignalling depends on the existence of additional information on sender 
quality, eliminating this information can actually increase estimate efficiency. Third, when there 
is a range of possible signals, high types not only choose a cheaper signal than medium types, 
but choose the same cheap signal being sent by low types. Only by pooling with low types can 
high types successfully discourage medium types from mimicking their behavior. Fourth, low 
signalling costs can paradoxically reduce signalling by encouraging high types to countersignal. 
In an educational context, an increase in the difficulty of an assignment can therefore "challenge" 
high-ability students to stop countersignalling and to send the signal of completing it. Finally, 
standard refinements do not predict a unique equilibrium but allow for multiple equilibria, in- 
cluding mixed-strategy equilibria in which some high types signal while others countersignal and 
" counter-countersignalling" equilibria in which very high types differentiate themselves from 
countersignalling high types by signalling. 

The idea that signalling-like behavior need not be monotonically increasing in quality has 
appeared in several areas. Teoh and Hwang (1991) develop a model in which firms decide whether 
to immediately disclose favorable earnings information or wait for the information to be revealed 
by other sources. Waiting makes higher-quality firms look bad at first but eventually separates them 
from lower-quality firms, which face more immediate pressure to prove themselves. Bhattacharyya 
(1998) considers how large a dividend firms should declare and finds that a screening model 
predicts that, conditioned on earnings, higher-quality managers will declare lower dividends since 
they can use funds more efficiently than lower-quality managers. Fremling and Posner (1999) 
discuss how those with already high status may have lower marginal returns from signalling than 
those who are not so well regarded.3 Hvide (1999) examines a labor market model in which 
education serves partly to inform workers of their true abilities and finds that only average types 
will choose to become educated. We differ from these analyses in following a standard signalling 
model exactly, with the sole exception of allowing for the presence of additional information on 
sender type. This added realism is sufficient to significantly expand the set of equilibria from 
a standard signalling game, allowing for nonmonotonic equilibria that are robust to standard 
refinements. 

Countersignalling theory takes the intuition of signalling and shows how it can lead to quite 
different behavior than normally supposed, offering insight into phenomena that appear inconsis- 
tent with the standard signalling model. Of course, countersignalling is somewhat complex, and 
there remains the issue of whether economic agents are capable of such behavior. To help answer 
this question, we report results of an experimental test conducted in the fall of 1995. The experi- 
ments involved two games with three types of senders, high, medium, and low quality, and a binary 
signal. The first game is isomorphic to a standard signalling game and has a unique equilibrium 
in which high and medium types signal. The second game is identical to the first game, except 
extra, noisy information on types leads to the unique equilibrium involving countersignalling by 
high types. Experimental results tend to support the theory's predictions. From almost identical 
initial play in the two games, subject behavior diverged to a large amount of countersignalling by 
high types in the latter game and almost none in the former game. 

3 Our model supports such an argument in that high types benefit less from signalling because they are already 
partially separated from low types. 

?) RAND 2002. 
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2. A simple example 
* Continuing the signalling literature's traditional emphasis on education, consider the follow- 
ing stylized example. A prospective employee who had good grades in high school is considering 
whether to mention her grades in a job interview. Because grading standards are weak, both 
medium- and high-productivity employees (Highs and Mediums) are known to have good grades, 
while only low-productivity employees (Lows) are known to have poor grades. Since lying about 
grades involves the chance of getting caught, the signal of mentioning good grades is costly to 
Lows but free to Mediums and Highs. In addition to this signal, the interviewer will receive from 
a former boss a recommendation regarding the prospective employee's abilities. Lows expect to 
receive bad recommendations from their old boss and Highs expect to receive good recommen- 
dations, while Mediums receive good or bad recommendations with equal probability. 

What should an interviewee do? Without the recommendation, Mediums and Highs should 
clearly mention their good grades, since it costs them nothing and since the grades differentiate 
them from Lows. With the addition of the extra information as embodied by the recommendation, 
the situation is less obvious. Consider if the interviewer believes that only Mediums mention their 
grades. Then if Mediums don't mention their grades, they take the chance of either receiving a 
good recommendation and being thought of as a High or receiving a bad recommendation and 
being thought of as a Low. If Lows are sufficiently unproductive relative to Mediums and Highs, 
not mentioning grades is too risky. Highs face a different situation because they expect to receive 
a good recommendation. Since they need not worry about being perceived as a Low, they face 
a clear choice between being perceived as a Medium if they mention their grades and a High if 
they do not. Since receiver beliefs are consistent with sender strategies and sender strategies make 
sense given receiver beliefs, a countersignalling equilibrium exists in which Highs show off their 
confidence by not mentioning their grades.4 

A numerical example may help illuminate this case. Assume that productivity is 400,700, and 
900 for Lows, Mediums, and Highs respectively, and that Lows and Highs are equally prevalent 
in the population. Given the interviewer's beliefs, Mediums can choose to receive either 700 by 
mentioning their grades or (400 + 900)/2 = 650 by deviating from the equilibrium and mimicking 
the Lows and Highs. Meanwhile, Highs are perfectly separated from Lows so they receive 900 
by countersignalling versus only 700 by deviating and looking like a Medium. Finally, as long as 
lying about grades costs Lows at least 300, Lows do not gain from mimicking the Mediums, so a 
countersignalling equilibrium exists. 

For simplicity, this example assumes that the signal of "bragging" about one's grades is free 
for both Mediums and Highs, but the results do not depend on this assumption. Hence this model 
would still apply if we were looking not just at the decision to report grades, but at the potentially 
costly choice of whether to get good grades in the first place. Countersignalling would still be an 
equilibrium even if signalling cost Mediums as much as 50 and cost Highs as little as negative 
200, meaning that Highs would prefer to get good grades in a full-information environment. Note 
that countersignalling can break down not just if signalling is too attractive for Highs, but also if 
signalling is too expensive for Mediums, e.g., the grading standard makes it difficult for Mediums 
to get good grades. When signalling by Mediums becomes too expensive and they stop signalling 
in equilibrium, Highs can no longer separate themselves from Mediums by not signalling and 
must instead signal in order to differentiate themselves. Therefore an increase in signalling costs 
can actually induce Highs to start signalling. 

Regarding the extra information embodied by the former boss's recommendation, the ex- 
tremely dichotomous information structure simplifies the problem, but noisier information can 
still support a countersignalling equilibrium. In this example, even if Lows receive a good rec- 
ommendation 25% of the time and Highs receive a bad recommendation 25% of the time, a 

4 A partial-pooling equilibrium is still possible in which both Mediums and Highs are believed to signal, but if 
Lows are sufficiently unproductive relative to Mediums and Highs and if the recommendations completely separate Lows 
and Highs, the equilibrium does not survive the Intuitive Criterion (Cho and Kreps, 1987). Refinements are discussed 
further in Section 3. 
C RAND 2002. 
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countersignalling equilibrium still exists. For an interviewee who doesn't mention grades, if a bad 
recommendation is observed the expected quality of the interviewee is (3/4)400+(1/4)900 = 525, 
while if a good recommendation is observed the expected quality is (1/4)400 + (3/4)900 = 775. 
Since Mediums expect good and bad recommendations with equal probability, they still expect to 
receive 650 if they countersignal versus 700 if they signal. Lows expect to receive a bad recom- 
mendation 3/4 of the time and to receive a good recommendation 1/4 of the time, so they expect to 
receive (3/4)525 + (1/4)775 = 587.5 by not signalling, giving them even less incentive to deviate 
than in the previous case. For Highs, quality will be estimated at (1/4)525 + (3/4)775 = 712.5 if 
they countersignal, so deviating is unprofitable and the countersignalling equilibrium still stands. 
Depending on the exact model parameters, even a little bit of extra information can disrupt the 
standard result that signals are nondecreasing in type. 

In this example, interviewees faced a simple binary choice of mentioning their grades or not. 
While signalling decisions are often binary, in many cases a wider range of signals is available, 
e.g., how expensive a car one buys. In such cases it is less obvious that Highs will be willing 
to pool with Lows, since they have the extra option of breaking off and sending a higher signal 
that is not worthwhile for Mediums to mimic. The following section develops the theory for this 
case, showing that Highs can still choose to countersignal by pooling with Lows. In Section 4 we 
return to the simplest case of a binary signal with three types to report on an experimental test of 
countersignalling. 

3. A theory of countersignalling 
* In this sender-receiver game, we allow for three sources of receiver information. First, 
there is common knowledge about the distribution of types that incorporates all the background 
information that both senders and receivers know. For instance, if it is common knowledge that all 
senders are in a certain age group, then the distribution of types is conditioned on this knowledge. 
Continuing to assume that there are "Low," "Medium," and "High" types, let the set of types be 
Q = {L, M, H} C R+, where 0 < L < M < H and where types are distributed according to 
the probability distribution f (q). 

Second, the sender sends a signal s in the set S c IR+ that is observed by the receiver. The 
receiver observes this signal noiselessly but does not know which type sent the signal. This signal 
costs the sender c(s, q), where c is increasing and convex in s and decreasing in q. To ensure 
there is some signal that everyone would be willing to send, we assume that 0 C S and c satisfies 
c(O, q) = 0. Further, we assume the standard single-crossing property that cs(s, q) > cs(s, q') for 
q < q', i.e., not only is it less costly for higher types to send any given signal than it is for lower 
types, but the marginal cost of that signal is also less. The assumption that the marginal cost of 
signalling is always positive will be relaxed later. 

Finally, and this is the unique aspect of the model, the receiver has extra, noisy information 
about the sender's type. This information is sent at no cost to the sender and is exogenous in the 
sense that sender actions cannot at this stage affect it. The sender knows that the receiver has this 
information but is unaware of exactly what the receiver knows. We model this information as a 
noisy exogenous signal, x C X, distributed according to the conditional probability distribution 
g(x I q). Assume that g has full support over X for any q.5 The conditional distribution of the 
exogenous signal is common knowledge, but the actual value of x is not known to the sender at 
the time of sending the endogenous signal. In general, the exogenous signal can be thought of as 
a summary measure of all the other noisy information that the receiver will have about the sender 
at the time of making the signalling choice. To reduce confusion with the signal, s, we will refer 
to the noisy exogenous signal, x, as just "extra information." 

The structure of the game is as follows. First, a sender is drawn randomly from the distribution 
of types. The sender then sends the endogenous signal without knowing what was or will be the 

5The assumption of full support simplifies the discussion of out-of-equilibrium beliefs. When the support of g 
is less than full, extreme information structures can yield unique Intuitive Criterion countersignalling equilibria as in the 
simple example given in Section 2 and used in the experimental test in Section 4. 

?C RAND 2002. 

This content downloaded from 194.29.185.25 on Sun, 22 Jun 2014 01:15:28 AM
All use subject to JSTOR Terms and Conditions



FELTOVICH, HARBAUGH, AND TO / 635 

realized value of the extra information. Finally, the receiver observes both the extra information 
and the sender's signal. Given this information and her beliefs about sender signalling strategies, 
the receiver rewards the sender with the sender's expected quality.6 This can be thought of as a 
reduced form of a game in which senders are workers and receivers are firms that simultaneously 
make wage offers. 

Regarding the timing of signals, if all the available extra information is embodied in x and 
is known to both the sender and the receiver prior to sending the endogenous signal, then the 
model reduces to the standard signalling framework, where the distribution of types is given by 
f (q) = g(x I q)f (q)/ Lq',Q g(x I q')f (q'). Our assumption that the sender chooses s without 
knowing the realized value of x is therefore necessary for a countersignalling equilibrium. We 
believe this assumption to be innocuous in the sense that regardless of what is known prior to the 
choice of s, there is always some information that is unknown to the sender. For example, suppose 
that extra information, x, is observed by the sender and receiver prior to the sender's choice over 
s, but extra information y is unobserved by the sender. Given x, if y is informative about q, then 
y plays the exact same role as x in our model. 

Except for a brief discussion of mixed-strategy equilibria later in this section, we consider 
only pure-strategy Nash equilibria, so a strategy is a mapping between types and signals. Let sq 
represent the pure strategy of a sender of type q, and let the function pc(q I s, x) be a probability 
distribution representing receiver beliefs about which types q send observed signal s and infor- 
mation x. Receiver expectations of sender quality, given receiver beliefs and the observed signals, 
are 

j q'Ic(q' I s, x). 
q'EQ 

Assuming sender risk neutrality for simplicity, the gross of costs expected payoff to type q of 
sending signal s is the sender's expected perceived quality, 

E,[q' s, q] =T (Y, q'Ic(q' Is, x)) g(x Iq)dx. (1) 

Definition 1. A pure-strategy perfect Bayesian equilibrium is given by a type-contingent strategy 
profile sq and receiver beliefs gt(q I s, x), where 

(i) Eljq' I Sq q] - c(Sq, q) > Eljq' I s', q] - c(s', q) for any s' E S and 
(ii) for any s C S, pc(q I s, x) is such that if {q' I Sq' = s} I& 0, then 

gt(q I sx ) g(x i q')f(q') (2) 

{q' sq =S} 

Condition (i) requires that agents choose signals as a best response to the receiver's beliefs. 
Condition (ii) requires that for any information set that can be reached on the equilibrium path, 
the receiver's beliefs are consistent with Bayes' rule and the equilibrium sender strategy.7 

We follow the convention of calling a perfect Bayesian equilibrium a signalling equilibrium if 
5q is strictly increasing in the sender's type. Any equilibrium in which Sq is strictly nonmonotonic 
will be called a countersignalling equilibrium. Note that in the initial motivating example (Section 
2) and the later experimental test (Section 4), we use a binary signal so that the alternative to 
countersignalling is a weak signalling equilibrium in which Sq is weakly increasing in the sender's 

6 The signals are thereby assumed to play a purely informational role, having no effect on the sender's productivity 
or other valued attributes. 

7 Note that if g has less than full support, (ii) would have to be modified to read"... such that if there exists a 
q C{q' I Sq,=s}suchthatg(x |q) >O~then..." 
? RAND 2002. 
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type and strictly increasing at only one point. Weak signalling equilibria can also survive in the 
richer signalling space we use in this theory section, but for a clear comparison with the signalling 
literature we restrict our attention to signalling equilibria and countersignalling equilibria. 

As mentioned earlier, we require that the extra information, x, should be in some sense 
informative. First note that for x to have any information content in equilibrium, at least two 
types must send the same signal. Otherwise, with perfect separation, the extra information plays 
no role. A sender must believe that if she pools with senders of lower type, she will be rewarded 
more, on average, than them. That is, the sender may do worse than lower types ex post once the 
receiver has observed the available information, but the information is correct on average so that 
ex ante the sender does better in expectation. 

To define this notion more precisely, we need to first provide some additional notation. Since 
we are only interested in pure-strategy equilibria, this assumption will be defined in terms of sets 
of agents, A C Q, who pool together.8 For any nonempty A, let 4A(q) be a sender of type q's 
gross expected payoff, given that the receiver uses Bayes' rule and believes her to be of some type 
belonging to A. That is, 

qA(q)=A (f ( 
q g(x I q')f(q') ) g(x I q)dx. (3) EX q1LA g(x Iq")f (q) 

q"/EA 

The term within the parentheses is the receiver's Bayesian estimate of the sender's quality having 
observed x. Integrating over all x C X yields a type-q sender's ex ante expected payoff from 
pooling with the agents in A. It is easy to see that if A = {q'} for q' C Q (i.e., it is a singleton), 
then q1A(q) = q' for any q C Q. That is, if q' is the only type sending some signal s, then upon 
observing s the receiver must believe that the sender is of type q'. 

We will consider the conditional distribution, g, to be informative if and only if for any 
I A 1> 2 and for any q, q' C Q, whenever q < q', then qA(q) < 4A(q'). A sufficient condition 
for this to hold is that x and q are affiliated or, equivalently, that g(x I q) satisfies the monotone 
likelihood ratio property. Note that types sending the same endogenous signal are imperfectly 
separated by the extra information, since g has full support. This implies that min A < qA(q) < 
max A for all q C Q and I A J> 2. 

E Equilibria. In a signalling equilibrium, s = (SL, SM, SH), perfect separation implies that 
each type's expected payoff is equal to her quality, El. [q' I Sq, q] = q for q C Q. The distribution 
of the extra information, g(x I q), therefore plays no role in equilibrium, so the standard result 
for signalling games with cost functions satisfying the single-crossing property still applies. 

Proposition 1. Signalling equilibria always exist. 

Note that the payoffs and signals in a signalling equilibrium are independent of the distribution 
of the extra information, g(x I q). As we will see, this distribution plays a significant role in the 
partial pooling that occurs in a countersignalling equilibrium. 

With only three types, a countersignalling equilibrium must have Lows and Highs pooling, 
so there are two candidate classes of pure-strategy countersignalling equilibria: u-shaped equi- 
libria and hump-shaped equilibria. Since the former class can be ruled out by our informational 
assumptions,9 all countersignalling equilibria must be in the latter class. Suppose that senders 

8 That is, suppose the receiver only knows that the agent belongs to the set A with priors based on f and may 
subsequently adjust those priors based on new information (i.e., x). 

9 Suppose s* = (s* 4, s*) is a countersignalling equilibrium where s* > SM. Since s* is an equilibrium, then 
both q{L,H}(L) - M > c(s*, L) - c(s, L) and q{LH}(M) - M < c(s*, M) - c(s4, M). Furthermore, since the 
cost function for Mediums is flatter than that for Lows (the single-crossing property), s* > St implies that c(s*, L) - 
c(sM, L) > c(s*, M) - c(s, M). However, this means that q{L, H}(L) - M > q{L, H}(M) - M, a contradiction since 
q{LH} (L) < q{L, H} (M). 

?C RAND 2002. 
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play strategy s* = (s*, s*, s*) where s* < SM. Let pc describe beliefs that are Bayes consistent 
with playing s*. Then the expected gross payoff to sender q from signal s* is 

E1[q' I s*J, q] = M 

and the expected gross payoff to sender q from signal s* is 

EJq' I s*, q] = (1(L I s*, x)L + It(H I s*, x)H)g(x I q)dx. 

Since Lows and Highs send the same signal s* and since pc is Bayes consistent, ElAq' | s* q] = 
q{LH}(q). Therefore, by assumption, El, [q' I s*, L] < Elj[q' I s*, M] < El/,[q' I s*, H]. 

In a standard signalling model the difference in the gross returns from sending signals s* 
and s*, namely M - El,[q' I s*, q], is unaffected by the sender type because El_,[q' I s*, q] 
Elj[q' I s*]. Since signalling costs are falling in the quality of the sender, if Mediums found 
it advantageous to send signal s*, then so would Highs. In our framework, on the other hand, 
M -El,[q' I s*, q] is falling in quality. Since the gains from signalling are lower for Highs than 
Mediums, Highs may choose to not signal, even though signalling costs are also lower. 

Proposition 2. A countersignalling equilibrium exists if q{L,H}(L) and q{LH}(M) are sufficiently 
small and q{LH}(H) is sufficiently large. 

Proof. All proofs are in the Appendix. 

In other words, the extra information must be such that Mediums will tend to look like Lows 
if they do not signal, but Highs will still tend to look like Highs if they do not signal. If Lows 
and Mediums are insufficiently separated, the single-crossing property ensures that Mediums can 
always find a signal that Lows do not want to mimic but that costs less than M - 4{L H}(M), so 
Mediums will signal. And if Highs and Lows are sufficiently separated by the extra information, 
then Highs are better off not signalling than appearing to be Mediums. These restrictions on the 
extra information are illustrated more concretely in the following proposition. As long as the 
distributions g(x I L) and g(x i M) are sufficiently similar and the distributions g(x L) and 
g(x I H) are sufficiently dissimilar, a countersignalling equilibrium exists. 

Proposition 3. A countersignalling equilibrium exists if fXEX g(x I L) - g(x I M) dx and 
hEx g(x I L)g(x I H)dx are sufficiently small. 

Figure 1 illustrates the countersignalling equilibrium (0, s*, 0). Level sets represent sender 
indifference between various payoff/signal combinations, where utility increases in a northwest- 
erly direction. Following the single-crossing property, the sets are flattest for Highs and steepest 
for Lows, ensuring that the indifference curves of different types cross only once. The intercepts 
represent the utility payoffs of each indifference curve. Thus in this equilibrium, Highs get the 
greatest payoff, q{LH}(H), while Lows get the least, q{LH}(L). According to level set X, Lows 
are just indifferent between sending signal s* (pretending to be a Medium) and sending the equi- 
librium signal of zero (pooling with Highs). That is, s* is the minimum signal that Mediums can 
send and deter Lows from mimicking them. The level set h represents the utility received by a 
High from playing according to equilibrium and not signalling. Highs are willing to pool with 
Lows as long as they get a greater payoff than from sending signal s* and pretending to be a 
Medium, q{L,H}(H) > M - c(s*, H)). This is true in our case, since indifference curve h is 
higher than h. Finally, Mediums must prefer to send signal s* to sending s = 0 and pretending to 
belong to A = {L, H}. This holds because the intercept of m (her equilibrium payoff) is greater 
than 4{L,H}(M)- 

As with the standard signalling model, ours is subject to multiple equilibria. A substantial 
literature has developed in an effort to "refine" away "undesirable" equilibria in signalling models 
(Banks and Sobel, 1987; Cho and Kreps, 1987; Cho and Sobel, 1990). Contrary to the standard 
e RAND 2002. 
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FIGURE 1 

PARETO-DOMINANT COUNTERSIGNALLING EQUILIBRIUM 
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signalling framework, refinements such as the Intuitive Criterion, DI and D2 are unable to rule 
out pooling and partial-pooling equilibria.10 This can be seen from the simplest two-type model. 
Without extra information, Highs are indistinguishable from Lows in a pooling equilibrium, so 
they always have an incentive to break away and send a signal that Lows would never mimic, 
thereby implying that pooling cannot survive the Intuitive Criterion. With the extra information 
this is no longer true. Highs are stochastically separated from Lows even as they pool with them, 
so they are less willing to bear the cost of sending the minimum signal that Lows would never 
mimic. Moreover, the stochastic separation means that Lows gain less from pooling than when 
there is no extra information. This implies that if we consider the set of signals that Lows could 
never gain by sending, the minimum of this set is larger than when there is no extra information. 
Since extra information makes breaking the pooling equilibrium both less rewarding and more 
costly, a pooling equilibrium can survive the Intuitive Criterion if the stochastic separation is 
sufficient. 

This same logic of pooling by Highs and Lows applies to our three-type case, except that it 
is even more costly for Highs to send a sufficiently large signal that Mediums would never mimic. 
As a result, we find that under conditions qualitatively similar to those given in Propositions 2 
and 3, countersignalling equilibria continue to exist under the Intuitive Criterion, DI and D2.11 In 
particular, the conditions for the existence of the Pareto-dominant countersignalling equilibrium 
are qualitatively similar. Such countersignalling equilibria might be, in terms of welfare, more 
appealing than any signalling equilibrium. This is demonstrated formally for the Intuitive Criterion 
as follows. 

10 Given that the standard refinements cannot eliminate signalling equilibria under the standard model, such re- 
finements will not eliminate signalling equilibria in our augmented framework, since such equilibria do not depend on 
any of the distributional information. 

1l Proofs are available at http://www.theo.to/counter/ or from the authors upon request. Note that the value of 
q{L, H} (H) as shown in Figure 1 is the smallest such value for which the countersignalling equilibrium depicted survives 
the Intuitive Criterion, DI and D2. 

d? RAND 2002. 
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Proposition 4. If the Pareto-dominant countersignalling equilibrium survives the Intuitive Cri- 
terion, it Pareto dominates all signalling equilibria. In particular, every type of sender is strictly 
better off under the Pareto-dominant countersignalling equilibrium. 

The argument is roughly as follows. Suppose that the Pareto-dominant countersignalling 
equilibrium does not Pareto dominate the Pareto-dominant signalling equilibrium (the Riley 
(1975) equilibrium). Since Lows benefit from pooling with Highs, and since Mediums can then 
send a lower signal to successfully ward off Lows, it must be the Highs who are worse off. However, 
suppose that Highs deviate and send their equilibrium signal from the Riley equilibrium. With 
probability 1 they would be thought to be Highs, since Mediums would never be willing to send 
this signal. Since their signalling payoff is greater than their countersignalling payoff, Highs 
have an incentive to deviate from the countersignalling equilibrium by playing according to the 
signalling equilibrium. So if the countersignalling equilibrium does not Pareto dominate the Riley 
equilibrium, it must not pass the Intuitive Criterion. 

This can be understood with the help of Figure 1. First notice that Lows are better off under 
the Pareto-dominant countersignalling equilibrium because q{LH}(L) > L. It then follows that 
Mediums are also better off because a signal sufficient to deter Lows from imitating does not 
need to be as high as under the Riley equilibrium (s* < SM). Finally, note that signal s** is the 
minimal signal that a High could send that would deter a Medium from imitating but would yet 
be sufficient to convince the receiver that the sender is indeed a High. It is straightforward to see 
that s** < SH so that it must be the case that Highs are strictly better off under countersignalling 
than under signalling. In other words, all senders get a higher payoff under the Pareto-dominant 
countersignalling equilibrium than they do under the Riley equilibrium. 

Although a countersignalling equilibrium that survives the Intuitive Criterion must Pareto 
dominate the Riley equilibrium, the converse does not hold. That is, a Pareto-dominant countersig- 
nalling equilibrium that Pareto dominates the Riley equilibrium does not necessarily survive the 
Intuitive Criterion. To see this, consider again Figure 1. Note that {L H}(H) in the figure is the 
minimum level such that the countersignalling equilibrium survives the Intuitive Criterion-if it 
were any lower, under the best possible beliefs, Mediums would have an incentive to send sig- 
nal s**. Suppose that 4{L H}(H) is slightly lower. The countersignalling equilibrium still Pareto 
dominates the Riley equilibrium. But since a signal slightly higher than s** would be sufficient 
for a Medium to convince the receiver that she is an H, it does not survive the Intuitive Criterion. 

In practice, Proposition 4 might overstate the efficiency of countersignalling. We have as- 

sumed the receiver is risk neutral, but if the receiver is risk averse or benefits from matching 
senders to particular jobs based on their quality, the loss in information to the sender in the 
countersignalling equilibrium might exceed any cost savings to the senders. As discussed below, 
inefficiencies can also result if signalling is to some extent a desirable activity. 

o Extensions. In the first three of the following subsections, let s = (0, SM, SH) and s* = 

(0,s s, 0) represent the Riley equilibrium and the Pareto-dominant countersignalling equilibrium. 

Productive signalling. Although the literature often emphasizes the wasteful nature of signalling, 
many forms of signalling are, in moderation, productive or otherwise desirable. For instance, 
while education may be excessive in a signalling equilibrium, it is often a preferred activity in 
moderation.12 When signalling is to some extent desirable, countersignalling by Highs might be 

inefficient because of insufficient signalling. This is the case with the binary signal model used 
in the experiment. 

To illustrate the point with a continuous signal, suppose we relax the condition that signalling 
costs are strictly increasing in the signal. In particular, assume that costs initially decrease from 

zero for Highs but eventually increase. For Lows and Mediums the cost structure is unchanged. If 
signalling costs do not decrease too rapidly for Highs, the equilibrium (0, s*, 0) still exists even 

12 Even in excess there might be positive externalities to education and other signalling activities that make more 
signalling socially efficient. 

t RND 2002. 
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though in a perfect-information environment Highs would choose a strictly positive signal. In other 
words, whereas information asymmetry leads to wasteful behavior in a signalling equilibrium, 
information asymmetry can lead to wasteful avoidance of desirable behavior in a countersignalling 
equilibrium. 

Bounded signals. So far we have assumed that the signalling range has no upper bound. Although 
in many cases this might be quite reasonable, it might be more realistic in other cases to include an 
upper bound on the highest signal that can be sent, e.g., the best signal that a high school student 
can send is to get straight A's. Consider if there is some maximum signal s so that S = [0, f]. If 
S < SH, then the signalling equilibrium cannot exist. But if S > s* , then the countersignalling 
equilibrium still exists. Thus, by eliminating the possibility for a signalling equilibrium, putting 
an upper limit on the signal can be considered conducive to countersignalling. Highs cannot 
signal their capabilities relative to Mediums by sending a higher signal, so the only alternatives 
are countersignalling equilibria and other partial-pooling or pooling equilibria. 

Alternative equilibria. Real-world signalling behavior may be more complicated than the pure- 
strategy equilibria we have derived in our simple three-type example. For instance, even in situ- 
ations conducive to countersignalling, some high types may be observed to be countersignalling 
while others may be observed to be signalling. Three means of getting more complicated sig- 
nalling behavior are (i) to add more types, (ii) to look at mixed-strategy equilibria, or (iii) to add 
a slightly more complicated information structure. We briefly consider each of these possibilities 
in turn. 

Suppose there is a fourth type, H' > H. for which signalling is completely costless. This 
modification can yield a "counter-countersignalling" equilibrium where L, M, and H types play 
according to s* and type-H+ agents send an arbitrarily large signal. The presence of H+ types 
has no effect on equilibrium beliefs over L, M, and H types, but a sufficiently large signal, s*+, 
will deter imitation by any type even under beliefs that survive the Intuitive Criterion, D I and D2. 
Obviously, less-extreme cost structures will yield yet other types of counter-countersignalling 
behavior. For example, it may be that rather than sending a higher signal, there may be equilibria 
where H+ types pool with M's. 

Returning to the three-type example, now consider the possibility that senders play mixed 
strategies or that some proportion of each type plays different strategies. In particular, consider 
the mixed-strategy profile where Lows and Mediums and 1 - A of the Highs play according 
to s* = (0, s*, 0) and the remaining A of the Highs send a signal, S*, at which they get H 
and are indifferent between sending 0 and SH. Given that it is more costly for Mediums to 
signal, they will be unwilling to send signal S*. Since fewer high types are now pooling with 
the low types, this will have the effect of reducing 4{L,(1-A)H}(q) for all q C Q. Provided that 
4{L,(1_A)H}(H) > M - c(s* , H) and 4{L,(1-A)H}(M) < M - c(s* , M), this strategy profile is 
clearly an equilibrium. Furthermore, if 4{L (I -A)H}(H) is sufficiently large, s* survives the Intuitive 
Criterion, DI and D2. Notice that when pure-strategy countersignalling equilibria exist, there is 
in general a continuum of A/'s with equilibria where some Highs signal and some countersignal. 

Finally, note that more complicated signalling patterns can also arise when there are multiple 
sources of extra information. Suppose, as discussed earlier, that there are two sources of extra 
information, x and y. The former is observed by both the sender and receiver and the latter is 
observed only by the receiver. In this case, for each x G X, the distribution of types is f (q) = 
g(x I q)f (q)/ Lq'EQ g(x I q')f (q') and y plays the role of the extra information in our model. 
In other words, for each realization of x, a different game is played, so that the same type q might 
signal or countersignal depending on the realization of x and on the particular equilibria in the 
game corresponding to that realization of x. 13 

Countersignalling with a continuum of types. When types form a continuum and signals are 
continuous, nonmonotonicities could arise in a variety of forms. We present a simple example in 

13 The role of fully observed information in allowing for different equilibria conditional on the information is 
analyzed by Spence (1 973a) in the context of a regular signalling game. 
? RAND 2002. 
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which types of highest and lowest quality send a zero signal while types within an intermediate 
range send the same signals as in the fully separating Riley equilibrium.'4 In particular, assume 
that types are distributed uniformly over the unit interval, Q = [0, 1], and that X = IR and x = q +8, 
where E is a random variable distributed normally with zero mean and standard deviation 1/4. 
Consistent with the single-crossing property, let the cost function be c(q, s) = s/q3. 

In a separating equilibrium each type is believed to send a unique signal and the extra 
information has no impact. Representing this mapping from signals to receiver inferences of 
type by q(s), the return to a signal is then q(s) - s/q3. Maximizing with respect to s gives 
dq(s)/ds = l/q3. In equilibrium, beliefs are consistent with actions, so q(s) = q, implying 
q3dq = ds. Integrating gives the family of solutions s = q4/4 + K. The worst that the receiver 
can believe about a type sending a 0 signal is that they are of type q = 0, so type q = 0 never 
benefits from sending a positive signal. Therefore the Riley equilibrium s = q4/4 is the only 
perfect Bayesian separating equilibrium. 

We are interested in a countersignalling equilibrium where there are two types 0 < qa < 

qb < 1 such that s* = q4/4 for q C [q, qb] and sq* = 0 for q < qa and q > qb. Since the 
distribution of types is a continuum, let ,u(q I s, x) represent a probability measure in this section 
rather than a density function. Bayes-consistent receiver beliefs for s = 0 and x are therefore 

dlut(q I0, x)= 4(4(q -x)) 

fo q=(4(q'-x))dq' + fqb 4(4(q' - x))dq' 

where q(.) represents the probability density function of a standard normal distribution. For 
s G (0, 1/4] we assume ,u((4s)1/4 1 s, x) = 1, just as in the Riley equilibrium. Since not all signals 
in this range are actually sent in the countersignalling equilibrium, we are thereby assuming that 
if a signal is observed that would not be sent in the countersignalling equilibrium, the receiver 
believes it was sent by the type that would have sent it in the Riley equilibrium. Finally, for 
s > 1/4, let ,t(1 s, x) = 1. Given these beliefs, the expected gross payoff to sender q from 
signal s = 0 is 

00 /bqa 1 

E,,[q' 0 ?, q] = J ( q'dlu(q' I 0, x)dq' + f q'dlu(q' I 0, x)dq' 4(4(x - q))dx. 
-00 O b 

The conditions for the marginal types to be indifferent are 

Ellq' 0 O,q]-c(O,q)=q-c(q4/4,q) forq =qa,qb. 

Solving numerically, one solution is qa 1 0.521 and qb , 0.961. Further calculations confirm 
types q < qa and q > qb prefer s = 0 to s = q4/4, and types qa < q < qb prefer s = q4/4 to 
s = 0. The signal level stays at zero for q < qa but then jumps up to track the Riley equilibrium 
over the range [qa, qb ] before falling back to zero for q > qb. Note that the payoff from signalling, 
q - c(q4/4, q) = 3q/4, and the payoff from not signalling, E,,[q' I 0, q], are both increasing in 
type. For low q the payoff from signalling approaches zero, while the payoff from not signalling is 
always strictly positive because low types are partially pooling with higher types. As q increases 
toward qa, the payoff from signalling keeps rising at a constant rate, while the payoff from not 
signalling rises only slowly because most of the nonsignallers are low types. Within the signalling 
range [qa, qb] the payoff from signalling continues to increase steadily, but the gains from not 
signalling start to accelerate because the chance of being confused with a low type falls. For types 
q > qb the odds of such a mistake are sufficiently small that they choose to countersignal. High 
types not only save costs by countersignalling, but since Ei,(q I 0, qb) 1 .728 > qa, they are, in 
expectation, estimated to be of higher quality than many types sending a strictly positive signal. 

14 This example is based on a suggestion by Barry Nalebuff. 

?C RAND 2002. 
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4. A test of countersignalling 
* To investigate whether agents can countersignal, we ran a simple experiment with two cells, 
one corresponding to a standard signalling game (the S cell) and the other to a countersignalling 
game (the C cell). We use a three-type model closely related to the example in Section 2. 

u Description of the game. Both the S and C cells share the same basic structure. We 
motivated the game to the subjects as an education model in which students signal their skill 
levels to firms. There are three types of student: High, Medium, and Low skill level. They signal 
in two ways: by grades, which they choose, and by test scores, which are exogenous and have 
a random component. After students have signalled, they are hired by competitive risk-neutral 
firms, so each student receives a wage equal to his expected productivity, conditional on his grade 
and test score. The role of the firms is suppressed in our experiment; their role is played by 
computer rather than by human subjects.15 

The parameters used in the game are shown in Table 1. The population of students consists 
of 4 Highs, 8 Mediums, and 4 Lows.'6 Grade is a binary choice, either G (good) or B (bad). A 
bad grade is costless, while the cost of a good grade varies inversely with skill level and in the 
case of Highs is negative, i.e., Highs actually receive a direct benefit from signalling. Test scores 
are also binary, either P (pass) or F (fail). Test scores do not depend directly on grades. In the C 
cell the probability of passing is increasing in skill level, while in the S cell the probability is .5, 
irrespective of skill level. 

Even though the exogenous signal is still present in the S cell, it is completely uninformative; 
there is no difference-even probabilistically-in the extra information sent by the different types 
of student. This game thus reduces to a standard signalling model in which higher-quality types 
signal to distinguish themselves from lower-quality types; the unique Nash equilibrium outcome 
of the S cell has all Highs and Mediums choosing a good grade and none of the Lows doing so. 
In contrast, the extra information in the C cell makes this a countersignalling environment. Lows 
always fail the exam and Mediums expect to fail the exam half the time, so Mediums can use good 
grades to differentiate themselves from Lows. Highs need not distinguish themselves from Lows, 
since Highs always pass and Lows always fail. Instead, they are concerned with being mistaken 
for those Mediums who pass. Since Mediums earn good grades, Highs react by earning bad grades 
even though they would prefer a good grade in a complete-information environment. In the unique 
equilibrium, Mediums choose good grades while Highs and Lows choose bad grades. 

Our design makes the test of countersignalling difficult in two ways. First, we test for coun- 
tersignalling when Highs have negative signalling costs, i.e., they receive a bonus for signalling, 
implying they would always signal in a perfect-information environment. Second, we give the 
games a somewhat normative context in which signalling is described as getting a "good grade" 
and not signalling as getting a "bad grade." 

El Experimental procedures. The experiment consisted of four S sessions and four C sessions. 
Subjects were mostly undergraduates at the University of Pittsburgh. Sessions lasted for roughly 
90 minutes and consisted of 1 practice round and 12 rounds, except for one S session that, due 
to time constraints, consisted of 1 practice round and 10 rounds.17 Subjects were not told how 
many rounds would be played, though they probably had some idea of when they were close to 
the end of the game because they were told the experiment would last no longer than 90 minutes. 
The experiment was conducted with pen and paper. Instructions were read aloud to subjects, and 
a table similar to Table 1 (but with only the information concerning the cell they were in) was 

15 This simplification saves costs and reduces strategic uncertainty for the senders. A disadvantage is that our 
experiment tests whether senders countersignal, but not whether receivers recognize countersignalling. Note that the 
appropriate equilibrium concept is now Nash equilibrium, since all players are choosing simultaneously. 

16 Since the only decision-making agents will be the students, we use "student" and "player" interchangeably. 
17 Keeping the number of rounds small has the advantages that subjects have time to think about their decisions 

and that payoffs per decision are relatively high. 
C) RAND 2002. 
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TABLE 1 Characteristics of Player Types 

% Passing Test 
Player Type Number Cost of g 

(Skill Level) of Type Good Grade S Cell C Cell Productivity 

High 4 -25 50 100 900 
Medium 8 +25 50 50 700 
Low 4 +350 50 0 400 

written at the front of the room. Subjects were given record sheets with spaces to write for each 
round their skill level, grade, test score, salary (called "gross payoff"), cost of earning a good 
grade,18 and net payoff. In each round, each subject drew 1 of 16 slips of paper, on which was 
printed a skill level and test score, and a space for subjects to write their choice of grade. The 
slips of paper were prepared in advance and were repeatedly folded and sealed so that test scores 
could not be seen without breaking the seal. Skill levels and test scores were block-randomly 
assigned to the slips of paper, so that, in the S cell for example, in each round there were exactly 
four Mediums who passed the test, two Lows who failed the test, and so on. 

In each round, each subject copied her skill level onto her record sheet, chose her grade, and 
wrote this grade on her record sheet and on the slip of paper. After this was done, a monitor came 
to the subject's desk and watched her break the seal, revealing her test score. The subject wrote 
her test score on her record sheet and the monitor collected the slip of paper. When all the slips 
had been collected, the distribution of skill levels and the salary, rounded up to the next dollar, 
corresponding to each (grade, test-score) pair were posted at the front of the room. Examples of 
this posted information are given in Table 2. Subjects then wrote their salaries on their record 
sheets and calculated and recorded their net payoffs. The next round then began. The posted 
information remained posted until it was replaced by information from the following round. 

At the end of the session, one of the nonpractice rounds was randomly selected from those 
played, and subjects were paid in cash their net payoffs from that round at the exchange rate of 
100 points/$1.00, in addition to a $5.00 participation fee. Average earnings were approximately 
$11.00. 

D Experimental results. Figures 2 and 3 show the relative frequencies of good grades in 
the two cells.19 Early-round play is very similar in the two cells, but that play begins to diverge 
thereafter as Highs choose good grades less and less frequently in the countersignalling cell. 
Mediums in the signalling cell increase the frequency of choosing a good grade somewhat, with 
no such increase in the countersignalling cell. Lows also appear to choose good grades less and 
less frequently in the countersignalling cell, but this difference is slight. 

Table 3 reports the frequency with which players in the two cells chose G in early and in 
late rounds.20'2' Thus, at least in early rounds, players do not seem to behave in accordance with 
the equilibrium predictions. However, some aspects of play in later rounds are consistent with 

18 Because Highs have a negative "cost" of earning a good grade, we used the phrase "bonus or penalty" in the 
experiment. 

19 The raw data and instructions from the experiment are available at http:llwww.theo.to/counter/ or from the 
authors upon request. 

20 Play is remarkably similar across the four S sessions and, for the most part, is similar across C sessions. The one 
exception is Highs in the C cell: the frequency of good grades is 58.3%, 68.8%, 79.2%, and 95.8% in the four C sessions, 
while no other type in either cell has a range of 20 percentage points or more. According to one-tailed permutation tests 
(Siegel and Castellan, 1988) on the session-level data, there are no significant differences (at even the 10% level) in 
early-round frequencies of G between the S and C cells. 

21 We use the permutation test because, unlike the commonly used Wilcoxon-Mann-Whitney test, it makes no 
auxiliary assumptions about underlying population distributions that could lead to rejection of the null hypothesis based 
on differences in variances or other higher moments. Siegel and Castellan (1988) discuss this issue further and describe 
the nonparametric tests we use. 

C RAND 2002. 

This content downloaded from 194.29.185.25 on Sun, 22 Jun 2014 01:15:28 AM
All use subject to JSTOR Terms and Conditions



644 / THE RAND JOURNAL OF ECONOMICS 

TABLE 2 Sample of Post-Round Information Given to Subjects 

Grade 

G B 

Panel A: Signalling Cell 

Test score 
P Number High 2 Number High 0 

Number Medium 4 Number Medium 0 
Number Low 0 Number Low 2 
Salary 767 Salary 400 

F Number High 2 Number High 0 
Number Medium 4 Number Medium 0 
Number Low 0 Number Low 2 
Salary 767 Salary 400 

Panel B: Countersignalling Cell 

Test score 
P Number High 0 Number High 4 

Number Medium 4 Number Medium 0 
Number Low 0 Number Low 0 
Salary 700 Salary 900 

F Number High 0 Number High 0 
Number Medium 4 Number Medium 0 
Number Low 0 Number Low 4 
Salary 700 Salary 400 

the theory's predictions. Recall that the Nash equilibrium predicts Highs should choose G more 
often in the S cell than in the C cell, while play of Mediums and Lows should be the same in both 
cells. In rounds 10-12 Highs are far more likely to play G in the S cell than in the C cell, and 
this difference is significant (permutation test, p < .05) However, Mediums and Lows also play 
G significantly more often in the S cell than in the C cell (permutation test, p < .05).22 

Because not only Highs but also Mediums choose G more often in the C cell than in the S 
cell, differences between the play of Highs and that of Mediums in the C cell are smaller than one 
would hope, even in late rounds of the experiment. (Differences in the S cell are even smaller, 
but that is exactly the equilibrium prediction.) A x2 test of the difference between the play of 
Highs and that of Mediums in round 12, using the individual-level data, gives a p-value of about 
.12, which is suggestive but not significant at standard levels. A robust rank-order test, using the 
individual-level data from rounds 10-12, gives a p-value of .0643.23 Using session-level data, 
rather than individual-level data, yields no significant differences between the play of Mediums 
and that of Highs in the C cell. 

z Discussion. The only difference between our S and C cells is that in the S cell the extra 
information is uninformative, while in the C cell it is informative. There is no difference in 

22 Lower choices of G by Mediums and Lows in the C cell may reflect expected-payoff differences. For Mediums, 
G and B earn 742 and 500 (respectively) in the S cell, and 675 and 660 in the C cell, so the incentive to choose G is much 
higher in the former. Similarly, for Lows, G and B earn 365 and 400 in the S cell, and 290 and 400 in the C cell. 

23 To implement this test, as well as to eliminate one possible source of dependence among data points, play over 
each player and type was averaged. Specifically, if the player with ID# 6 was a Medium type in rounds 11 and 12, and 
played G in 11 and B in 12, she was listed as having chosen G with relative frequency .5. If the player with ID# 7 was a 
Medium type in only round 10, and played B, he was listed as having chosen G with relative frequency 0. 
C) RAND 2002. 
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FIGURE 2 

PLOT OF RELATIVE SIGNALLING FREQUENCY: SIGNALLING CELL 
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early-round play between the cells, but eventually differences emerge in the direction predicted by 
countersignalling theory, though not always significant at standard levels. The patterns of behavior 
observed can best be described with the following "learning" story. In the S cell, bad grades are 
a dominant strategy for Lows; by choosing bad grades, they earn at least 400, while good grades 
earn them at most 384.24 Indeed, we see that Lows, for the most part, quickly learn to get bad 
grades. Once most Lows are choosing bad grades, Mediums and Highs do best by earning good 
grades, and they learn this quickly, too. Play thus moves quickly toward the equilibrium.25 

In the C cell, bad grades are again dominant for Lows, and the payoff differential is even 
larger-now, good grades earn them at most 290. Again, they quickly learn to choose bad grades. 
Once most of the Lows are choosing bad grades, good grades become a best response for Mediums, 
and they indeed tend to choose good grades. Once Mediums are choosing good grades, Highs 
do better by choosing bad grades. While the experiment never reaches the point where all Highs 
choose bad grades, by the final round slightly more than half of them do so, while hardly any 
Highs in the S cell ever choose bad grades. 

One reason for the slow convergence of play in the C cell to the countersignalling equilibrium 
may be the incentives Highs face when play is not in equilibrium. As shown in Figure 3, Highs 
begin the session by choosing good grades. Given the belief that the other three Highs are going 
to continue choosing good grades, the fourth High should choose bad grades only if at least seven 
of the Mediums choose to earn good grades, but the fraction of Mediums choosing good grades 
in the C cell is rarely this high (only in 18 rounds out of 48). But as soon as one High is choosing 
bad grades, the incentive for the remaining Highs to also countersignal is stronger.26 

5. Conclusion 
* Addition of noisy information about type to a standard signalling model allows for equilibria 
in which medium types signal to distinguish themselves from low types but high types do not. 

24 This can happen if it is the only Low choosing G and passing the test. If all Highs choose G and all Mediums 
choose B, then this Low will be grouped with two Highs and no Mediums and will thus receive a salary of 734. 

25 The small but consistent proportion of G choices by Lows may reflect failure to consider the effect of their own 
behavior. While a Low optimally chooses B, earning a net payoff of 400, the salary of 767 to the group choosing G may 
be tempting. However, switching to G reduces that group's salary to 715 and the net payoff to 365. 

26 This "positive feedback" might explain the higher variance across sessions in play of the Highs in the C cell. 

C) RAND 2002. 
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FIGURE 3 

PLOT OF RELATIVE SIGNALLING FREQUENCY: COUNTERSIGNALLING CELL 
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Such countersignalling by high types can be seen as a sign of confidence. Signalling proves the 
sender is not a low type but also reveals the sender's insecurity that she would be perceived as such 
if she did not signal. In contrast, countersignalling indicates the sender's faith that whatever other 
information the receiver has on her will probably be consistent with her being of high quality. 

Countersignalling captures the intuition that many of the highest-quality senders may be 
understated rather than overstated in their signalling behavior. As a result, countersignalling 
equilibria can invert a number of the main implications of signalling models. Whereas signalling 
equilibria can be inefficient because of excessive signalling, countersignalling equilibria may be 
inefficient because of inadequate signalling. While signalling equilibria can play an informational 
role in increasing the efficiency of receiver estimates of type, countersignalling equilibria may 
lower the efficiency of these estimates. And while higher costs tend to reduce signalling in a 

TABLE 3 Aggregate Early- and Late-Round Frequency 
of Signalling 

C Sessions S Sessions 

High Medium Low High Medium Low 

Round 1 15/16 24/32 2/16 16/16 25/32 3/16 
(.938) (.750) (.125) (1.000) (.781) (.188) 

Rounds 1-3 47/48 77/96 6/48 47/48 74/96 12/48 
(.979) (.802) (.125) (.979) (.771) (.250) 

Rounds 10-12 27/48 72/96 2/48 38/40 76/80 9/40 
(.562) (.750) (.042) (.950) (.950) (.225) 

Round 12 7/16 23/32 1/16 11/12 23/24 3/12 
(.438) (.719) (.062) (.917) (.958) (.250) 

Equilibrium 
prediction .000 1.000 .000 1.000 1.000 .000 

(C RAND 2002. 
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signalling model, a limited increase in costs can lead to more signalling in a countersignalling 
model. 

The extra information in a countersignalling model can allow a wide range of pooling and 
partial-pooling equilibria to survive standard refinements that leave only a unique, separating 
equilibrium in a signalling model. Both signalling and countersignalling equilibria may coexist, 
along with mixed-strategy equilibria where some high types signal and others countersignal. 
When there are more than three types, counter-countersignalling equilibria are also possible in 
which the very highest types signal to separate themselves from countersignalling high types. 

Since countersignalling is more complicated behavior than signalling, the question of whether 
economic agents can countersignal was tested with a two-cell experiment in which extra informa- 
tion on sender type was available. In one cell the extra information was completely uninformative 
and signalling by medium and high types was the unique Nash equilibrium. In the other cell the 
extra information was partially informative and the unique Nash equilibrium involved countersig- 
nalling by high types even though high types had a negative cost to signalling. The experimental 
results confirm that adding noisy exogenous information on types to signalling games can affect 
behavior in directions consistent with the predictions of countersignalling theory. Countersig- 
nalling by high types was rare in the signalling cell but was the most common choice by the last 
period of the countersignalling cell. 

Appendix 

* Proofs of Propositions 2, 3, and 4 follow. 

Recall that q{L, H} (q) = E4 [q' | s*, q ] is the expected gross payoff of a type-q individual whom the receiver believes 
to belong to {L, H}. Let L solve q{L, H}(L)-c(sL, L) = L. Since q{LH}(L) > L, AL > ?- Now for s* > 0 let )(s*) 

and 3*(s*) solve q{LH}(L) - c(s*, L) = M - c( , L) and M - c(3,(s*), M) = q{L H}(M) - c(s*, M). Note that 
S*(s*) is the minimum signal required to deter Lows from imitating the Mediums and 9L and 31(s*) are the maximum 
signals that Lows and Mediums are willing to send before they would prefer to send some alternative signal. 

Lemma Al. A countersignalling equilibrium exists if and only if there is an s* and an s4 such that s* E [0, 9*], 
Se E [P4(s*), 3*(s*)], and q{L,H}(H) - c(s*, H) > M - c(s*, H). 

Proof. (=) For any x E X, let beliefs be given by [t(L I s, x) = 1 whenever s 0 {s*, s* }. Let [t(L I s*, x) = g(x | 
L)f (L)/(g(x I L)f (L) + g(x I H)f (H)), ft(H I s*, x) = 1 - ,i(L I s*, x) and ,i(M I s*, x) = 1. These beliefs clearly 
satisfy (ii) of the definition of a PBE. Thus we need to show that each agent's best response is to follow his prescribed 
strategy. Obviously no type has an incentive to choose s X {s*, s* }, since he would receive a payoff of L - c(s, q), 
which is no greater than the payoff L he would get by choosing s = 0. 

Now, since s* < 9, Et, [q' s*, L] - c(s*, L) > q{LH} (L) - c(g*, q) = L, it is individually rational for a type-L 
player to choose s*. Since s * > Si(s*), it follows that El, [q' I s, L- c(s*, L) = M - c(s*(s*), L) > M - c(sM, L), 
so no L-type individual has an incentive to choose s = sM. 

Since s* < (s*), M - c(s*, M) > M - c(g*(s*), M) = q{LH}(M) - c(s*, M), no type-M individual has an 
incentive to choose s = s*. 

Finally, in order for Highs to be willing to send signal s *, they must get at least as much as they would if they imitated 
the Mediums (i.e., q{L, H}(H) - c(s*, H) > M - c(s4, H)). 

(=t) Follows by reversing the previous arguments. Q.E.D. 

Proof of Proposition 2. We already know the interval [0, 9L] is nonempty, so it remains to be shown that if q{L H}(L) 

and q{LM}(M) are sufficiently small, then [?* (s*), &*(s*)] is nonempty, and if q{LM}(H) is sufficiently large, then 

q{LH}(H) - c(s*, H) > M - c(s*, H). 
First, note that S*(s*) > 0 exists if and only if 4{LH}(L) - c(s*, L) < M. This is true if and only if q{L H}(L) is 

sufficiently small. 
Next, since we are only looking for sufficient conditions, take s* = 0. By definition, S*(O) and 3M(O) satisfy 

c(S*(0), L) = M - [{L, H}(L) - c(0, L)] and c(3*(0), M) = M - Vi{L,H}(M) - c(0, M)]. If g is such that q{L,H}(M) 

is "close" to q{LH}(L), then c(?*(0), L) - 
c(3*(0), M). Since c(s, M) < c(s, L), it follows that S*(0) < &M(0). That 

is, when q{LH}(M) is sufficiently small (i.e., close to q{LH}(L)), the interval [S*(0), 3M(s*)] is nonempty. 
Finally, given some s* E [S*(0), 3M(0)], it is clear that when q{LH}(H) is sufficiently close to H, q{LH}(H)- 

c(O, H) > M - c(s*, H). Q.E.D. 

Proof of Proposition 3. Let g(x |L)g(x H)dx <81 and | g(x |M) -g(x L) dx <82. 
? RAND 2002. 
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From the proof of Proposition 2, first we need to show that 4i{L H} (L) is sufficiently small. 

q{LH}(L) - L = I ( g(x L)f(L) L + g H)f(H) H) g(x L)d -L 
Jex \g(x IL)f (L) + g(x IH)f (H) g(x IL)f (L) + g(x H)f (H))d-L 

(Al) 

J g(x I H)f(H)g(x L) (H-L)dx (A2) 
xEX g(x I L)f(L) + g(x I H)f(H) 

< 
I Vg(x I H)f(H)g(x I L)f(L) (H-L)dx (A3) 

f (L) Ex C 2 

(H-L) x g(x I L)g(x H)dx (A4) 2 f()exX 

1 f(H) ( L) g(x I L)g(x H)dx (A5) 
2 f (L) ex 

f(H) (H -L) (A6) 
f (L) 2 

where (A3) follows from the fact that ab/(a + b) < ab/2 for a, b > 0, (A5) follows from Schwarz's inequality, and 
(A6) follows by assumption. Hence q{L, H}(L) - L can be made arbitrarily small by choice of 8E. 

Next we need to show that q{L H}(M) is sufficiently close to q{L H}(L). 

- = j" ( 
~~~~~g(x IL)f (L) 

L+ g (x IH) f(H) 

{ (){LH 
J JX (L)= I g(x L)f(L) + g(x H)f(H) g(x L)f(L) + g(x H)f(H) ) 

x (g(x M) - g(x I L)) dx 

< g(x I L)f(L) L + g(x I H)f(H) H 
Jxex \g(x L)f(L) + g(x I H)f(H) g(x L)f(L) + g(x I H)f(H) I 

x lg(x I M)-g(x I L)Idx 

< H f g(x I M)-g(x I L)Idx 

< He2. 

Hence q{L,H}(M) -q{L,H}(L) can be made arbitrarily small by choice of 2. 
Finally, we need to show that H -q {LH} (H) is sufficiently small. Following the same logic as in the first step 

above, 

H - q{LH}(H) < f; (H L) 

so H - q{L, H}(H) can be made arbitrarily small by choice of ?1. Q.E.D. 

Proof of Proposition 4. Let the Pareto-dominant signalling equilibrium be (0, SM, SH). The Pareto-dominant countersig- 
nalling equilibrium is that involving the least signalling, or (0, s*, 0), where s* solves q{LH}(L) = M - c(s* , L). 
Since 4{LH}(L) > L, it is clear that Lows are strictly better off. It is less costly to deter Lows from imitating, so 
it follows that s* < sm and therefore Mediums are also strictly better off. So if any type is not strictly better off 
it must be Highs, i.e., q{LH}(H) < H - C(SH, H). Since (0, SM, SH) is the Pareto-dominant signalling equilibrium, 
M - C(SM, M) = H - C(SH, M). Since s7 < sm, M - c(s* , M) > H - C(SH, M). This implies that beliefs which 
satisfy the Intuitive Criterion must put probability zero on the event that a signal s in an open neighborhood of SH was 
sent by a Medium. Similarly, Lows would never send such a signal. But since qjL, H}(H) < H - C(SH, H), Highs would 
have an incentive to deviate from the equilibrium with any signal s C N(SH, ?), where s < SH. Therefore (0, s*, 0) fails 
the Intuitive Criterion. Finally, receivers are indifferent between any equilibria of the model. 
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