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Table 2 Acute Toxicity of Di-n-butyl Phthalate to Four Species of

Fish
Temperature TLgo* (ng/1.)
Species (@] 24 h 48 h 9% h

Fathead minnow

(Pimephales promelas) 17 — 1,490 1,300
Bluegill

(Lepomis macrochirus) 17 1,230 731 731
Channe! catfish

(Ictalurus punctatus) 17 3,720 2,910 2910
Rainbow trout

(Salmo gairdneri) 12 — — 6,470

Toxicity was measured by standard static bioassay.

*The tolerance limit is the concentration in which 50%; of fish
survive for a specified time.

centration (0.1 pg/l.), respectively, within 14 days. Only 6%
of residual di-2-ethylhexyl phthalate remained in the scud
after 10 days in fresh water.

Di-2-ethylhexyl phthalate was examined for reproductive
effects in zebra fish (Brachydanio rerio) and guppies (Poecilia
reticulata) by dietary exposure. Zebra fish were fed diets con-
taining 50 and 100 pg/g of food and guppies were fed 100 pg/g.
Up to 88.59%; of the zebra fish fry died before foraging began as
compared with a 50%; mortality in control fish, All the dying
fry exposed to di-2-ethylhexyl phthalate died in tetany, which
suggests that this compound may alter normal calcium metabol-
ism. However, tetany did not occur in the dying controls.
Intraperitoneal injections of di-2-ethylhexyl phthalate (3 pg/kg)
increased serum calcium, decreased serum potassium, but did
not affect serum sodium and chloride in coho salmon (Oncorhyn-
chus kisutch). All of the adult guppies fed di-2-ethylhexyl
phthalate became lethargic after 2 months of exposure and an
89 incidence of abortions was noted in this group. Continuous
exposure of waterfleas (Daphnia magna) to 3 ug/l. of di-2-
cthylhexyl phthalate significantly (P« 0.05) reduced reproduc-
tion by 609, Details of these studies will be published
separately.

The incidence of phthalate esters in fish seemed to be greater
in aquatic areas associated with industrial and heavily popu-
lated regions, although hatchery and farmed fish fed diets
contaminated with the esters also contained residues. Dietary
contamination was probably a consequence of the use of
contaminated fish products in feeds. Residues of phthalate
esters previously reported in milk® and bovine tissues®* may
have resulted from dietary intake of phthalate esters. Phthalate
esters have also been found in deep sea jellyfish!* and soil2.
The actual amounts and distribution of these pollutants in
the environment have not been fully investigated, but a recent
report of 100 mg/l. phthalate esters in a water sample from
the Ohio River, West Virginia, was not anticipated (R.
Sandridge, personal communication).

The acute toxicity of phthalate esters seems relatively
insignificant, but there are indications that these compounds
can be detrimental to aquatic organisms at low chronic con-
centrations. They are produced in large amounts, they are in
wide use as plasticizers, and, by some means, they are entering
aquatic ecosystems. Thus, these compounds should be con-
sidered as environmental pollutants and a more detailed
evaluation of toxicological effects of phthalate esters is essential
to elucidate their impact on these systems.
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GENERAL

Will a Large Complex System
be Stable?

Gardner and Ashby?® have suggested that large complex systems
which are assembled (connected) at random may be expected
to be stable up to a certain critical level of connectance, and
then, as this increases, to suddenly become unstable. Their
conclusions were based on the trend of computer studies of
systems with 4, 7 and 10 variables.

Here 1 complement Gardner and Ashby’s work with an
analytical investigation of such systems in the limit when the
number of variables is large. The sharp transition from
stability to instability which was the essential feature of their
paper is confirmed, and I go further to see how this critical
transition point scales with the number of variables # in the
system, and with the average connectance C and interaction
magnitude o between the various variables. The object is
to clarify the relation between stability and complexity in
ecological systems with many interacting species, and some
conclusions bearing on this question are drawn from the model.
But, just as in Gardner and Ashby’s work, the formal develop-
ment of the problem is a general one, and thus applies to the
wide range of contexts spelled out by these authors.

Specifically, consider a system with » variables (in an
ecological application these are the populations of the =
interacting species) which in general may obey some quite
nonlinear set of first-order differential equations. The stability
of the possible equilibrium or time-independent configurations
of such a system may be studied by Taylor-expanding in the
neighbourhood of the equilibrium point, so that the stability
of the possible equilibrium is characterized by the equation

dx/d¢=Ax (1)

Here in an ecological context x is the nx 1 column vector of
the disturbed populations x;, and the n x n interaction matrix
A has elements a@;, which characterize the effect of species &
on species j near equilibrium?3. A diagram of the trophic
web immediately determines which a;, are zero (no web link),
and the type of interaction determines the sign and magnitude
of ay.

Following Gardner and Ashby, suppose that each of the »
species would by itself have a density dependent or otherwise
stabilized form, so that if disturbed from equilibrium it would
return with some characteristic damping time. To set a time-
scale, these damping times are all chosen to be unity: a;;= —1.
Next the interactions are “switched on”, and it is assumed
that each such interaction element is equally likely to be
positive or negative, having an absolute magnitude chosen
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from some statistical distribution. That is, each of these
matrix clements is assigned from a distribution of random
numbers, and this distribution has mean value zero and mean
square value o. (For a fuller account of such a formulation,
see refs. 2 and 3.) o may be thought of as expressing the
average interaction “strength”, which average is for simplicity
common to all interactions. In short,

A=B-I @

where B is a random matrix, and I the unit matrix. Thus we
have an unbounded ensemble of models, one for each specific
choice of the interaction matrix elements drawn individually
from the random number distribution.

It is important to note that randomness only enters in the
initial choice of the coefficients a;,, which then define a parti-
cular model. Once the dice have been rolled to get a specific
system, the subsequent analysis is purely deterministic.

The system (1) is stable if, and only if, all the eigenvalues of
A have negative real parts. For a specified system size n and
average interaction strength ¢, it may be asked what is the
probability P(n,a) that a particular matrix drawn from the
ensemble will correspond to a stable system. For large n,
analytic techniques developed for treating large random
matrices may be used to show * that such a matrix will be
almost certainly stable (P—1) if

a<(m~t"? (3
and almost certainly unstable (P—0) if
o> (n)—l 2 ( 4)

The transition from stability to instability as o increases from
the regime (3) into the regime (4) is very sharp for r>1;
indeed the relative width of the transition region scales as
n-2[3_

Such a precise answer for any model in the ensemble in the
limit 731 is a consequence of the familiar statistical fact that,
although individual matrix elements are liable to have any
value, by the time one has an # x n matrix with #? such statis-
tical elements, the total system has relatively well defined
properties.

Next we introduce Gardner and Ashby’s connectance, C,
which expresses the probability that any pair of species will
interact. Itis measured as the percentage of non-zero elements
in the matrix, or as the ratio of actual links to topologically
possible links in the trophic web. The matrix elements in B
now either, with probability C, are drawn from the previous
random number distribution, or, with probability 1— C, are
zero. Thus each member of the ensemble of matrices A
corresponds to a system of individually stable parts, connected
so that each part is affected directly by a fraction C of the
other parts. For large n, 02 C plays the role previously played
by a?, and we find the system (1) is almost certainly stable
(P(n, a, C)—1) if

a<(nC)-1? (5)
and almost certainly unstable (P—0) if

o> nC)-12 6)

* From equation (2) it is obvious that the eigenvalues of A are
A-1, where A are those of B. The “semi-circle law™ distribution for
the eigenvalues of a particular random matrix ensemble was first
obtained by Wigner®, and subsequently generalized by him to a
very wide class of random matrices whose elements all have the
same mean square value®, Although the matrix B does not in
general possess the hermiticity property required for most of these
results to be directly applicable, the present results for the largest
eigenvalue and its neighbourhood can be obtained by using Wigner’s*
original style of argument on (B)N(BT)N where N is very large.
Indirectly relevant is Mehta® and Ginibre®.
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It is interesting to compare the analytical results with
Gardner and Ashby’s computer results for smallish n. (Their
choice of A differs slightly from ours, but in essence they
have the fixed value a? = 1/3, and diagonal elements intrinsically
—0.55 rather than —1.) Although our methods are based on
the assumption that » is large, and are therefore only approxi-
mations when applied to n=4, 7, 10, the two approaches in
fact agree well when compared, being not more than 30%,
discrepant even for n=4.

The central feature of the above results for large systems
is the very sharp transition from stable to unstable behaviour
as the complexity (as measured by the connectance and the
average interaction strength) exceeds a critical value. This
accords with Gardner and Ashby’s conjecture.

Applied in an ecological context, this ensemble of very
general mathematical models of multi-species communities, in
which the population of each species would by itself be stable,
displays the property that too rich a web connectance (too
large a C) or too large an average interaction strength (too
large an ) leads to instability. The larger the number of
species, the more pronounced the effect.

Two corollaries are worth noting, although they should not
be taken to have more than qualitative significance.

First, notice that two different systems of this kind, with
average interaction strengths and connectances a;, C; and
a,, C, respectively, have similar stability character if

af C1 =~ ag Cz (7)

Roughly speaking, this suggests that within a web species
which interact with many others (large C) should do so weakly
(small «), and conversely those which interact strongly should
do so with but a few species. This is indeed a tendency in
many natural ecosystems, as noted, for example, by Margalef”:
“From empirical evidence it seems that species that interact
feebly with others do so with a great number of other species.
Conversely, species with strong interactions are often part of
a system with a small number of species. . . .”

A second feature of the models may be illustrated by using
Gardner and Ashby’s computations (which are for a particular
o) to see, for example, that 12-species communities with 15%
connectance have probability essentially zero of being stable,
whereas if the interactions be organized into three separate
4 x 4 blocks of 4-species communities, each with a consequent
45%, connectance, the “organized” 12-species models will be
stable with probability 35%. That is, of the infinite ensemble
of these particular 12-species models, essentially none of the
general ones are stable, whereas 35% of those arranged into
three “blocks” are stable. Such examples suggest that our
model multi-species communities, for given average interaction
strength and web connectance, will do better if the interactions
tend to be arranged in “blocks”—again a feature observed in
many natural ecosystems.
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