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The Elasticity of Science†

By Kyle Myers*

This paper identifies the degree to which scientists are willing to 
change the direction of their work in exchange for resources. Data 
from the National Institutes of Health are used to estimate how scien-
tists respond to targeted funding opportunities. Inducing a scientist 
to change their direction by a small amount—to work on marginally 
different topics—requires a substantial amount of funding in expec-
tation. The switching costs of science are large. The productivity of 
grants is also estimated, and it appears the additional costs of tar-
geted research may be more than offset by more productive scientists 
pursuing these grants. (JEL H51, I10, I23, O31, O33)

The efficiency of any market hinges on the ability of its actors to redirect their 
resources to new opportunities. In the market for science, these opportunities 

may come in the form of technological breakthroughs, demand for new knowledge, 
or, as is the focus of this paper, government intervention. Given that scientists are 
a key source of ideas that drive economic growth (Stephan 1996), it is important 
to know how costly it is to incentivize changes in the direction of their work—the 
elasticity of science. This paper provides the first estimates of these costs based on 
a novel administrative dataset of targeted funding at the world’s largest scientific 
agency, the US National Institutes of Health (NIH).

While the rationale for the public support of science has been appreciated (see 
Nelson 1959, Arrow 1962), it is often assumed that when governments direct funds 
to certain pursuits, scientists will simply follow. But how costly, for example, would 
it be to incentivize a scientist studying one disease to pursue another? And how 
would this redirection affect their productivity? Quantifying these parameters is 
necessary for predicting the value of research policies. But empirical challenges 
have limited progress despite it being more than 50 years since economists set 
their sights on understanding the rate and direction of inventive activity (NBER 
1962). Identification issues abound since new opportunities arise endogenously and 

* Harvard Business School, Soldiers Field, Boston, MA 02163 (email: kmyers@hbs.edu). Seema Jayachandran 
was coeditor for this article. I am grateful to Matt Grennan, David Hsu, Ashley Swanson, and Dan Levinthal for 
their insights and support in developing  this paper as a part of my dissertation. I also received many helpful com-
ments from Ashish Arora, Pierre Azoulay, Kevin Boudreau, Amitabh Chandra, Barton Hamilton, Josh Krieger, 
Mark Pauly, David Popp, Bhaven Sampat, Scott Stern, Heidi Williams, and many seminar participants. This project 
would not have been possible without Misty Heggeness as well as the rest of the staff of NIH’s Office of Extramural 
Research. I am indebted to W. John Wilbur for taking the time to reconfigure his software. The views and opinions 
expressed in this paper do not necessarily reflect those of the NIH or any  other federal agencies. Funding  from the 
Kauffman Foundation and the NBER program on the Value of Medical Research is gratefully acknowledged. All 
mistakes are my own.

† Go to https://doi.org/10.1257/app.20180518 to visit the article page for additional materials and author  
disclosure statement(s) or to comment in the online discussion forum.



104 AMERICAN ECONOMIC JOURNAL: APPLIED ECONOMICS OCTOBER 2020

 scientists  self-select their pursuits. Accounting for these factors is compounded by 
the difficulty of quantifying a scientist’s “direction.”

This paper overcomes these challenges by examining targeted grant opportunities 
at the NIH—which request particular types of science—and a validated algorithm 
that measures the “scientific similarity” between two abstracts—i.e., how similar a 
scientist’s publications are to the science requested by the NIH. By evaluating scien-
tists’ decisions to pursue certain opportunities as a function of the amount of funds 
made available and how similar the opportunity is to their expertise, I can shed light 
on the elasticity of scientists’ direction.

The NIH awards the majority of grants through  so-called  investigator-initiated 
competitions, which cater to all types of biomedical research. But routinely, the 
NIH sets aside funds for  one-time competitions, which request proposals on spe-
cific diseases, populations, and/or methodologies. These are termed Requests 
For Applications (RFAs) and usually look to award $2 to $3 million. Consider 
this remark by NIH Director Francis Collins from a March 7, 2016 NIH ME/CFS 
Advocacy Call :

[The NIH] is working to define the strategic areas of research that would 
form the basis for a request for applications [RFA]  … We’re quite serious 
about looking for opportunities to expand our research in this area and to 
recruit new investigators into the field, bringing new eyes and new brains 
into the issue.1

Clearly, the NIH believes it can steer researchers to certain topics. However, there 
is no evidence on how costly it is to bring “new brains” into a field or whether these 
new brains can contribute.2 To get an initial sense of the importance of scientific 
similarity and fund availability, see Figure 1. Figure 1, panel A shows that scientists 
are much more likely to enter an RFA when the research objectives of that RFA are 
more similar to their prior work. Figure 1, panel B shows that scientists prefer to 
enter RFAs with more funds available. Both results are intuitive, but this is the first 
clear illustration of these facts.

With these data in hand, I first show that it is possible to induce scientists to 
shift their research focus, but incentivizing these redirections requires a substantial 
amount of funds. By revealed preference, it appears these sort of adjustment costs 
are very large. I then show that in equilibrium, even given the large number of sci-
entists in play, RFAs must make more funds available to attract the same number 
of applications as the  investigator-initiated mechanism. Finally, I compare the pro-
ductivity of grants awarded via these two mechanisms to shed light on the net costs 
and benefits.

This setting is well suited, as it allows me to quantify typically unobservable 
variables (i.e., redirections and payoffs) for a large, diverse set of  real-world compe-
titions and, essentially, the universe of potential competitors. Given the large costs 

1 Source: https://goo.gl/32Dmr9, accessed July 12, 2017.
2 Economists have appreciated the adjustment costs of changing input levels (cf. Oi 1962); but only recently 

has work identified directional adjustment costs of research and development (R&D) activities, most of which has 
focused on private firms in the energy sector (i.e., Aghion et al. 2016).
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of modern science, this is a useful, practical alternative to a randomized experiment. 
Furthermore, it allows me to test whether the funds directed by the NIH are actually 
used as intended.3

My results complement a long line of sociological studies that emphasize the 
role of  nonpecuniary forces in science (i.e., Crane 1969, Kuhn 1970, Merton 1973). 
More recently, Stern (2004) identifies a large wage premium associated with the 
right to publish, indicating scientists have strong preferences over their broad career 
direction. Closely related is Azoulay,  Fons-Rosen, and Graff Zivin (2019), which 
also studies how scientists choose which topics pursue. They find that, following 
the unexpected deaths of preeminent scientists, individuals from outside fields are 
more likely to enter and succeed; superstars create barriers to entry.4 I build on this 
work in identifying how pecuniary incentives can shape a scientist’s direction given 
the cumulative role of preferences, perceived barriers, and any other constraint. The 
costs I identify do not directly imply any frictions. But it is rather surprising that 
virtually zero funds from any major scientific funding agency in the world explicitly 
subsidize  field-to-field transitions.5

The paper proceeds as follows. First, Section I describes the data and policy vari-
ation used, paying attention to the potential endogeneity of RFAs. In Section II, I 
focus on scientists’ decisions to enter RFAs depending on the funds made avail-
able and how similar the RFA is to their prior work. The analyses illustrate which 
scientists are most responsive to RFAs and allow me to infer that there are large 

3 Recall that Nelson (1959) and Arrow’s (1962) conclusion is not to simply fund “science” generally speaking 
but to subsidize the specific activities with the largest wedge between the marginal social and private returns. In 
other words, policymakers need an effective mechanism for selectively targeting funds, such as RFAs.

4 See also Moser, Voena, and Waldinger (2014) and Borjas and Doran (2015), which examine similar shocks to 
inventors and mathematicians.

5 To my knowledge, such an award does not exist for the National Science Foundation, the European Commission, 
or the Medical Research Council. The NIH has one grant mechanism with related objectives, the “K18,” but these 
grants prespecify the destination field and are rarely used.

Figure 1. Probability of RFA Entry per Similarity and Funding

Notes: The figure shows binned scatterplots of entry probabilities per panel A, similarity of scientists’ prior pub-
lications to the research objectives of the RFA (larger scores indicate greater overlap), and panel B, the amount of 
funds made available in the RFA. The figure is based on approximately 110,000 scientists and 390 RFAs. Note the 
log scale of the  y-axis.
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 directional adjustment costs facing scientists more generally. These costs are esti-
mated using an econometric approach to handle the endogeneity of competition that 
might bias  reduced-form estimates.6

Given the large adjustment costs identified, Section III evaluates to what extent 
they give rise to any “RFA premium.” Since it is clear that the adjustments needed to 
enter RFAs are costly for most scientists, this may require RFAs to use more funds 
to attract researchers than the alternative  investigator-initiated grants (where scien-
tists choose their own direction). However, the pool of scientists that consider NIH 
grants is large and diverse, so the equilibrium outcome is unclear. I find that RFAs 
do in fact require more funds to attract new applications, and the size of this pre-
mium is about what would be expected given the elasticities identified in Section II.

Then, in Section IV, I use an instrumental variable (IV) to estimate the produc-
tivity of RFA and  investigator-initiated grants. The results indicate that RFAs are 
more productive on a  per-grant and  per-dollar basis. But this appears to be driven 
by the different composition of scientists and projects, as the productivity gap can 
be eliminated with a comprehensive set of covariates. Focusing on RFAs, I find that 
they do induce scientists to move their work closer to the objectives of the RFA, but 
it appears to be only temporary. Section V concludes.

I. Setting and Data

A. NIH Overview

Broadly speaking, the NIH’s priority is to award roughly $28 billion each year in 
grants to scientists based at universities, medical centers, and other research institu-
tions. The key mechanism through which the NIH attempts to steer these funds, and 
thus the direction of science, is RFAs. Including all major types of research grants, 
RFA awards have grown as a share of the budget from less than 5 percent in the 
1980s to roughly 30 percent as of 2015.

To clarify the role of the NIH in the scientific funding landscape, it is, by a large 
margin, most scientists’ preferred funding source. NIH grants are commonly viewed 
as a signal of quality (e.g., awards are displayed on individuals’ CVs). Scientists 
take great care to stay abreast of the NIH and commit extensive time to grant pur-
suits. Application decisions are not taken lightly.

The grants I study provide funds for “projects.” Applications for these grants 
propose a  self-contained research idea. Funds can be used to buy inputs (e.g., equip-
ment, materials), pay for travel, or subsidize salaries.7 I examine the most com-
mon research grant type awarded, the R01, which accounts for about 60 percent 
of all grant awards (70 percent of funds). These are “award[s] made to support a  

6 If strategic interactions are unaccounted for, then I would underestimate scientists’ valuation of these funds, 
since with each funding increase comes additional competition and, therefore, a reduced chance of winning those 
funds. Thus, I must effectively hold each scientist’s chance of winning fixed.

7 Awards have two components: direct and indirect costs. Direct costs depend on the specifics of each project 
and are managed at the discretion of the scientist. Indirect costs are based on  institution-NIH negotiated rates to 
support overhead. Because indirect costs reflect institutional differences, I focus on direct costs. Robustness tests in 
online Appendix F show the main results hold when examining total costs.
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discrete, specified, circumscribed project.” In my sample, the average R01 awards 
roughly $285,000 in the first year and lasts for 4.2 years.

When seeking funding at the NIH, scientists have two major options: RFAs and 
the “ investigator-initiated”—or, for brevity, what I will refer to as “open”—grants. 
Online Appendix A outlines the application process in detail. In brief, all applica-
tions are submitted, peer reviewed by panels with similar expertise, and sorted by 
review scores for funding priority. These processes occur separately for RFA and 
open applications and at much different scales and timing. In the open mechanism, 
scientists submit proposals that compete in very large, recurring competitions. In 
contrast, in an RFA, funds from one or more NIH Institutes are set aside for a single, 
 one-time competition related to a predefined area of science.8

The key differences between RFA and open grant competitions are as follows. 
Each open competition is roughly 20 times larger than an RFA in terms of the total 
funds and eventual awards. While one  peer review panel is convened specifically for 
each RFA, applications in an open competition include submissions from 65 differ-
ent  peer review panels on average (drawn from the roughly 175 standing peer review 
panels); the breadth of science is much larger in open competitions. Open appli-
cations have a win probability of 16.3 percent with an average size of $275,000, 
whereas RFA applications have a win probability of 19.4 percent with an average 
size of $339,000.  First-time RFA applications are both more likely to win and, con-
ditional on winning, are larger. Section III focuses on this apparent wedge to iden-
tify how much of it is due to the costs facing scientists when adjusting the direction 
of their work.

B. Data Sources

NIH Applications and Awards.—Data on all grant applications to the NIH from 
fiscal years 2002 to 2009 were obtained from the NIH’s administrative database. The 
full data contain the following: application and applicant identifiers,  peer-review 
grouping and score, funding decision and award size, and institute and fiscal year. 
For applications submitted in or after 2006, the data also contain the abstract and 
title of the proposed research project for both funded and nonfunded applications. 
Only “new” applications are included in all analyses. These are proposals that are 
being submitted to the NIH for the first time and are not directly tied to any ongoing 
NIH projects the investigators may have at the time of application.9

RFA Details.—The research objectives, funds allotted, and timing of each RFA 
announced between fiscal years 2002 and 2009 are scraped from the NIH announce-
ment website and manually reviewed to ensure accuracy.10 A total of 1,125 RFAs are 
scraped. I restrict the sample of RFAs to include only those that solicit R01 grants 

8 In both cases, there are 20–25 unique competitions of either type available at any given time, although it is 
always the same group of open competitions, which are organized according to the NIH’s institutes.

9 The NIH has complicated processes for resubmissions of rejected applications as well as the extension of fund-
ing for ongoing grants. I was not able to access data on these sorts of applications. Regardless, the new applications 
I focus on are clearly a  policy-relevant subset.

10 Available at https://goo.gl/LuaBOQ, accessed July 12, 2017.
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(686), were not released as a part of the American Reinvestment and Recovery Act 
(678), and do not request “renewal” grant applications (537).11 In the entry model, 
I focus on 394 RFAs, excluding those that do not explicitly state the amount of 
funds expected to be allotted. In the premium analysis, I examine 453 RFAs released 
between 2006 and 2009 because this approach requires the applications’ abstract 
data, which are only available in applications 2006 onward.12

Publications.—Each scientist’s publication record (regardless of funding) prior 
to 2009 is constructed using the disambiguated version of the PubMed scien-
tific article database developed by Torvik and Smalheiser (2009). PubMed is the 
National Library of Medicine’s database of publications and is considered the gold 
standard library of biomedical research. Torvik and Smalheiser (2009) develops an 
algorithm for computing clusters of articles that belong to the same inferred author, 
which has shown to be extremely precise for  NIH-funded scientists in particular 
(Lerchenmueller and Sorenson 2016).

C. RFA Generation and Endogeneity Tests

It is important to clarify how RFAs are generated and the extent to which the 
objective function of NIH staff should influence the interpretation of the results. In 
short, RFAs are generated in response to political forces, NIH’s programmatic pref-
erences, and other events such as budget shocks.13 This is relevant to two aspects 
of this study: (i) identification: are scientists responding to the NIH’s funds or other 
correlated events?; and (ii) generalizability: how representative are scientific topics 
targeted by RFAs of the full spectrum of science?

The question then is to what extent do these motivations select particular types of 
science at particular points in time? to test for any kind of differences between the 
“types” treated by RFAs, I must first discretely classify scientific topics. Thankfully, 
the National Library of Medicine (NLM) maintains a comprehensive dictionary of 
scientific terms called Medical Subject Headings (MeSH). The NLM systematically 
assigns a set of relevant MeSH terms to every publication in PubMed and has made 
the natural language processing tool underlying this process publicly available. 
Using this tool, I generate a panel dataset that describes, in each time period, how 
many PubMed publications and NIH applications are related to a particular MeSH 
term as well as whether or not an RFA targeted that MeSH term in that period.14

Online Appendix B provides further details about sample construction and dis-
plays the  cross-sectional distribution of treated and control terms. In the  cross sec-
tion,  RFA-treated terms occur in publications and applications at about a 30 percent 

11 Renewal applications come from previously awarded projects that have reached funding expiration.
12 The premium analyses include RFAs that do not explicitly state the amount of funds expected to be allotted 

because only realized award magnitudes are relevant for the analyses.
13 Online Appendix A outlines these motivations in further detail based on interviews with NIH staff.
14 Using the count of abstracts associated with specific MeSH terms follows the same logic as prior work that 

proxies for the scientific importance of particular genes with the number of publications related to each gene (e.g., 
Williams 2013).
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larger rate than the control terms. RFAs tend to focus on topics more popular than 
average.15 Still, the coverage of  RFA-treated subjects is substantial.

To examine the potential for policy endogeneity, I assume that if RFAs are indeed 
endogenously created in response to prior events, then I should observe scientists 
pursuing  RFA-treated MeSH terms at an increasing rate prior to the RFA; there will 
be “ pretrends.”16 To empirically test for these trends, I use event study regressions 
to estimate the number of abstracts  N  associated with MeSH term  m  at time  t  in a 
conditional Poisson model:

(1)  E [ N mt   |  RFA mτ  ;  β τ  ,  δ m  ,  γ t  ]  = exp (  ∑ 
τ=t−  s 

¯
  
  

t+ s – 

    β τ   × 𝟏 { RFA mτ  }  +  δ m   +  γ t  ) , 

where  E  is the expectation operator;   δ m    and   γ t    are MeSH and time fixed effects, 
respectively; and  𝟏 { RFA mt  }   equals one when MeSH term  m  is associated with at 
least one RFA at time  t .17 As in standard event study regressions, the coefficients of 
interest,   β τ   , describe the rate of the dependent variable for time periods spanning    s 

¯
    

periods prior to  t  and   s –   periods after  t . In all models,   β τ    is estimated for four years 
prior to  t  and two years post  t , which corresponds to (   s 

¯
   ,   s –  ) = (4, 2) for the PubMed 

data given annual observations and (   s 
¯
   ,   s –  ) = (12, 6) for the NIH data given three 

observations per year.18 Thus,   β τ=t    estimates the relative change in term occurrence 
in the period solicited by an RFA. Figure 2 plots the   β τ    estimates for three samples: 
PubMed publications, all NIH applications, and successful applications. The results 
clearly show that, conditional on the fixed effects, there are no significant  pretrends.

Focusing on the NIH data, there is a sharp increase in applications using targeted 
MeSH terms at the time of the RFA (  β RFA   = 10  percent) and awards (  β RFA   = 20  
percent).19 RFAs appear to induce and fund applications that would not otherwise 
have been funded. Of note is the lack of any persistent  post-RFA treatment effect. 
This suggests the response observed is due to RFAs specifically and not any spill-
overs.20 These event studies support the main identification assumption of this 
paper: scientists value RFAs in and of themselves.21

15 What this means for generalizability will depend on whether the costs of incentivizing scientists to pursue topics 
varies across this distribution. On one hand, the costs of pursuing  low-rate subjects may be higher if the low rate is 
indicative of the low net value associated with those topics. On the other hand, pursuing the high-rate subjects may 
be more costly, as they are already concentrated with scientists and the marginal contribution may be more difficult.

16 It is useful to note that the impetus for any RFA typically begins at the beginning of each fiscal year for budget 
purposes, if not sooner. Thus, if RFAs are responding to endogenous events, those events likely occurred in the years 
prior. And while, in general, such  pretrends are neither necessary nor sufficient for arguing exogeneity of an event, 
this setting is one where it is very likely that differential trends would appear if RFAs were in fact endogenous to 
other unobserved events.

17 Estimating this Poisson formulation handles the count nature of the data appropriately and the fact that certain 
MeSH terms have greater variance in the outcome simply because, for example, they are broad terms that encom-
pass larger ideas. For example, “Neoplasms” and “Large Granular Lymphocytic Leukemia” are MeSH terms that 
describe any cancer and a very specific type of cancer, respectively.

18 These three observations correspond to the three annual application rounds the NIH holds.
19 The lack of a treatment effect in the PubMed data is likely due to both the much larger scale of publications 

compared to applications (average MeSH rate of 322 compared to 4) and the slow variable process by which NIH 
awards eventually give rise to new publications. Section IV’s analyses focus more specifically on this question of 
whether RFA awards do in fact lead to new science.

20 For instance, if RFAs were a strong signal of future funding opportunities at the NIH, then we would have 
expected to observe significant  posttrends.

21 While empirically useful, the lack of an apparent correlation between the supply/demand of the topics that 
are targeted by RFAs has interesting implications for the overall efficiency of these mechanisms. Discussing these 
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D. Quantifying Direction with Similarity: The pmra Algorithm

Fundamental to the notion of redirecting scientists is “how much” their course of 
work is adjusted. The task of moving a scientist from working on topic  A  to topic  B  
will depend largely on the scientific similarity between  A  and  B . Do they make use 
of the same knowledge? Do experiments use the same inputs, such as chemicals or 
organisms?

Here, scientific similarity is defined as the overlap in scientific terminol-
ogy between two sets of text. Depending on the analyses, I compare two of the 
three following sources: publication abstracts, NIH application abstracts, and the 
“research objectives” section  of RFAs. To estimate this similarity, I employ the 
most widely used similarity estimation algorithm for the biomedical sciences: the 
PubMed related articles (  pmra) algorithm, developed by Lin and Wilbur (2007).22 
Online Appendix C outlines the algorithm in more detail and provides examples for 

and other welfare issues surrounding absolute magnitudes (e.g., “which types of science should be targeted by 
RFAs?” or “how large should the total NIH budget be?”) is beyond the scope of this paper.

22 pmra is the algorithm underlying the “Similar articles” feature of PubMed and has become a benchmark 
within the field of bioinformatics for measuring similarity.

Figure 2. Event Study of  RFA-Targeted Subjects

Notes: This figure plots the   β τ    coefficients estimated using equation (1).  Ninety-five percent confidence intervals 
(based on standard errors clustered at the MeSH term level) are plotted as bars.

C
h

a
n

g
e

 i
n

 P
u

b
M

e
d

p
u

b
lic

a
ti
o

n
s
 (

p
e

rc
e

n
t)

Panel A. PubMed publications

Panel C. NIH awards

Panel B. NIH applications

Year

C
h

a
n

g
e

 i
n

 N
IH

a
p

p
lic

a
ti
o

n
s
 (

p
e

rc
e

n
t)

0

−10

10

20

30

0

−10

10

20

30

0

−10

10

20

30

C
h

a
n

g
e

 i
n

 N
IH

a
w

a
rd

s
 (

p
e

rc
e

n
t)

t −
 4

t −
 3

t −
 4

t −
 3

t −
 2

t −
 2

t −
 1

t −
 1

R
FA

t +
 1

t +
 1

t +
 2

t +
 2

Year

R
FA

t −
 4

t −
 3

t −
 2

t −
 1

t +
 1

t +
 2

R
FA

Year



VOL. 12 NO. 4 111MYERS: THE ELASTICITY OF SCIENCE

 qualitative  interpretation. The intuition behind the algorithm is that if two abstracts 
both use the same scientific terminology, it is likely the underlying science is more 
similar, especially if the overlapping terms rarely occur in general.23

The pmra algorithm requires PubMed publication abstracts as inputs, so I must 
assume that each scientist’s knowledge base is embodied within the articles they 
have published previously. Indeed, the purpose of publication is to disclose gen-
erated knowledge. Thus, the number of similarity scores for each  scientist-RFA or 
 scientist-application pair equals the number of prior publications. To simplify this 
vector to a single value per scientist, I use the maximum.24 The logic is that if pub-
lications define the boundary of each scientist’s knowledge, the maximum captures 
the shortest proximity between the new science and the scientist. Given the like-
lihood of a general drift in scientists’ pursuits, I use each scientist’s publications 
within the most recent five years.25

Although qualitative interpretations of these similarity score changes are diffi-
cult, online Appendix C uses two examples from a set of biomedical and economics 
publications to make clear that changes in similarity scores observed in this sample 
are not dramatic in a qualitative sense. For example, one standard deviation in these 
data does not describe an biologist deciding between a new career as an economist 
or a piano player but rather a virologist deciding which of two closely related viruses 
to study for their next project.26

II. Entry Decisions and Elasticity Estimates

A. Empirical Model

The goal of this section is to understand the extent to which larger NIH invest-
ments can lead to more project proposals. And more generally, I am interested in 
quantifying the costs facing scientists looking to adjust their research direction. 
Understanding these  field-to-field switching costs is important for devising optimal 
research policies.27 The analyses use scientists’ observed entry decisions to infer 

23 This algorithm has been used in similar work by Azoulay,  Fons-Rosen, and Graff Zivin (2019). A novel fea-
ture of my implementation of the pmra software is that I can generate similarity scores between published journal 
articles and  user-defined text. The code for my implementation of pmra was very kindly developed by W. John 
Wilbur of Lin and Wilbur (2007).

24 For any applications listed with  co-principal investigators (i.e., two or more scientists are project leads), I use 
the maximum of the two scientists’ scores.

25 Certainly, the density of one’s knowledge may vary within these boundaries, but using the maximum ensures 
the measure captures only variation in similarity information rather than its depth (or quality). Robustness checks 
reported in online Appendix F using other transformations (i.e., mean, median), including the full set of prior pub-
lications or controlling for the number of publications, show no qualitative differences in the results.

26 Purely for illustration purposes, the example in online Appendix C using economics publications shows that 
a 50 percent change in similarity scores amounts to the study of marginally different aspects of the pharmaceutical 
R&D industry (i.e., studying how firms use alliances in their R&D strategies versus studying how Medicare Part D 
impacted firms’ R&D investments).

27 For instance, in directed technical change models (e.g., Acemoglu 2002), a key parameter that determines 
the value of policy intervention (conditional on market size and prices) is “state dependence.” This describes the 
extent to which prior  factor-specific investments differentially influence current productivity. This parameter is 
partly based on the presence of  across-factor switching costs. For instance, the optimal energy policies developed 
by Aghion et al. (2016) depend on how costly is it for firms working on “dirty” energy technologies to switch 
into working on “clean” energy technologies given the technological difference between those two pursuits. The 
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their preferences for more (or less) grant funds and less (or more) of a change in the 
nature of their work.

Motivated by the pattern in Figure 1, panel A, I estimate the probability that sci-
entist  i  enters RFA  j  per

(2)  𝟏 { Entry ij  }  = F ( Similarity ij  )  + G ( Purse j  )  + γ  𝐗 j   +  α i   +  ϵ ij  , 

where  𝟏 { Entry ij  }   equals one if scientist  i  submitted an application to RFA  j  and zero 
otherwise, Similarity    ij    is the  pmra  score between  i  and  j , Purse    j    is the amount of 
funds made available in the RFA  j ,  𝐗  is a vector of other  RFA-specific characteris-
tics,28  α  are scientist fixed effects, and  ϵ  is a mean zero error term.

Under the assumption that the Purse and Similarity variables are orthogonal to the 
error term (conditional on  𝐗  and  α ), estimating this model identifies the marginal 
costs (to the NIH) of attracting additional applicants to an RFA. And the findings 
of Section IC support this assumption. These cost estimates are relevant for NIH 
officials debating the costs and benefits of intervening in the allocation of public 
research funds.

Furthermore, some portion of these costs will be driven by the elasticity of sci-
ence. In fact, if equation (2) is interpreted as a structural model of scientists’ pay-
offs, then the ratio of  G′  to  F′  (i.e., the coefficients on the Purse and Similarity 
variables) can be used to solve for this elasticity (ignoring subscripts and abbreviat-
ing Similarity and Purse to S and P, respectively):29

(3)    G′ __ 
F′

   ·   P _ 
S
   =   

∂ Pr (𝟏 {Entry}  = 1) /∂ P
  _____________________  

∂ Pr (𝟏 {Entry}  = 1) /∂ S
   ·   P _ 

S
   =   ∂ S _ 

∂ P
   ·   P _ 

S
  , 

where the final elasticity term indicates how much a scientist can be incentivized to 
change their direction given some expectation of funds. However, the  G′  recovered 
from estimating equation (2) as is would not directly reflect scientists’ preferences 
for grant funds per se. The issue is competition. Larger purses—the sort of variation 
used to identify  G′ —will likely lead scientists to have higher expectations about 
the number of competitors they will face. If this is the case, then the relative weight 
scientists will appear to place on these funds will be biased downward to zero.30

To identify these more general switching costs of science, I must control for 
competitive expectations. To do so, I implement a method for estimating static stra-
tegic interactions outlined by Bajari et al. (2010), which builds on the “ two-step” 
method of estimating games pioneered by Aguirregabiria and  Mira (2007). This 
approach amounts to first estimating the probability that each scientist enters each 
RFA using the exogenous covariates. Then these entry probabilities—often referred 

 elasticity I estimate captures the same force—how costly is it for scientists to change the direction of their work 
given the magnitude of that change.

28 These include the year the RFA expired (typically six to eight months post announcement), the lead NIH 
Institute responsible for the RFA, whether  non-R01 applications were permitted, and whether the RFA specifically 
requested “collaborative” research be proposed. All of these covariates enter as fixed effects (i.e., year and NIH 
Institute dummies, etc.).

29 See online Appendix D for a more specific discussion.
30 The magnitude of this bias depends on the specific nature of competition in these RFAs.
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to as  conditional choice probabilities—are used to construct a measure of compet-
itive expectations, which is included as an additional covariate in the entry model.

For simplicity and tractability given the large sample, though at some costs dis-
cussed below, I perform these two steps using the following linear regression models:

(4a)  1 ( Entry ij  )  =  F ̃   ( Similarity ij  )  +  G ̃   ( Purse j  )  +  γ ̃   X j   +   α ̃   i   +   ϵ ̃   ij   ,

(4b)  1 ( Entry ij  )  = F ( Similarity ij  )  + G ( Purse j  )  + δ  n ̃   ij   + γ X j   +  α i   +  ϵ ij   .

Estimates of the parameters in equation (4a) (  F ̃  ,  G ̃  ,  γ ̃  ,   α ̃   i   ) are used to predict the 
entry probabilities, which are in turn used to construct the competitive expectations 
variable denoted by    n ̃   ij   .

31 This variable describes the number of competitors scien-
tist  i  expects to face in RFA  j . Online Appendix D outlines the procedure in further 
detail.

Identification of this class of models rests on the  so-called “strategic exclusion 
restriction.” The instrumental variables that influence each scientists’ entry decisions 
directly—here, similarity and the  scientist-specific intercepts—must only influence 
other scientists’ decisions indirectly via their competitive expectations (   n ̃   ij   ). If this 
assumption holds, then conditioning on this covariate (as in equation (4b)) serves 
the very useful purpose of holding competition fixed. With competition fixed, varia-
tion in entry decisions driven by purse sizes reflects scientists’ preferences for grant 
funds per se, and the elasticity of science can be estimated.

The implications that stem from this assumption and the structure of equations 
(4a) and (4b) are not trivial. Namely, I assume that all scientists are fully aware 
of all other scientists and their similarities to each RFA. And I do not allow for 
any heterogeneity in the responses to different types of competition; all scientists 
respond to competition from all other scientists in the same way (as captured by the 
linear term  δ  in equation (4b)). While these are strong assumptions, they allow me 
to adjust for competitive expectations in a clear way. Since the goal of this analysis 
is not to estimate any sort of counterfactual with a fully specified model, the costs of 
these strong assumptions seem worth the extra insight they provide.32

I explore alternative functional forms for  F  and  G . In many specifications, I 
replace  F (Similarity    ij   ) with   ∑ b  

 
    β b   (𝟏 {bin ( Similarity ij  )  = b} )  , where  𝟏 { · }   is the 

indicator function and the bins  b  are discretized groups of the  pmra  similarity score. 
And to explore heterogeneity with respect to the effect of purse sizes on different 
scientists, I also estimate a version of the model where purse size is interacted with 

31    n ̃   ij   =  ∑ i′≠i  
N    Pr ̃   (𝟏 { Entry i′j  }  = 1)  , where  N  is the total number of potential entrants, and the term encom-

passed by   Pr ̃    is the predicted entry probabilities based on the estimates from equation (4a).
32 This research design resembles studies of firm entry where certain variables, such as geographic distance, 

generate exogenous variation in entry (e.g., Krasnokutskaya and Seim 2011). Here, although the pmra algorithm 
provides an estimate of scientific distance, it is unclear whether scientists must actually travel the entirety of the 
distance since the bounds of an RFA are not explicit. In online Appendix C, I outline a process that adjusts the 
raw  RFA-scientist similarity estimates to account for this fact. Robustness tests of the main results show no qual-
itative changes without this adjustment. The adjusted  pmra  is preferred because it more accurately captures the 
real changes to be expected by entrants, and it permits a straightforward comparison to the effects identified in 
Section III, where realized changes in similarity are examined.
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these similarity score bins. This informs how the costs of attracting scientists may 
depend on how “close” they are to a particular RFA.

B. Data Construction and Summary Statistics

Estimating this model requires a dataset composed of  scientist-RFA pairs con-
taining (i) all potential entrants, (ii)  RFA-level data on purse size and research 
objectives, and (iii) each potential entrant’s scientific similarity to the research 
objectives. To arrive at a close approximation to the full set of potential entrants, 
I first include any individual that applied to the NIH from 2002 to 2015, totaling 
142,745 scientists. I then pair each scientist (and their publication history) with each 
of the RFA announcements between 2002 and 2009 that solicit R01 research grants 
and for which details on the timing, administration, research objectives, and purse 
were available. Dropping scientists that receive  pmra  scores of zero for all RFAs 
results in a 118,127  ×  386 observation dataset of  RFA-scientist pairs and is the data 
underlying Figure 1.

But as illustrated in Figure 1, panel A, there is virtually no meaningful change 
in entry probabilities below the median similarity value. From the median to the  
seventy-fif  th  percentiles, there is minimal change, but afterward there begins a very 
sharp increase. Based on this pattern, I first trim the data to exclude all scientists 
from below the median similarity score. This eliminates roughly 15 percent of appli-
cants (roughly 1,800 out of 13,000). However, the focus of this analysis is under-
standing how the majority of scientists make directional decisions. The fact that 
these particular applicants appear to be extreme outliers, coming from regions far 
outside where the average applicant comes from, suggests that the loss in informa-
tion from excluding them from the analysis is worth the gains in precision when 
focusing on the upper half of the full distribution.

The construction of the similarity bins  b  used to flexibly approximate  F  is also 
informed by Figure 1, panel A. I set the reference group of  scientist-RFA pairs to be 
those within the  fiftieth to seventy-fif      th percentiles of the full distribution and then 
create 25 one-percentile bins for the remainder of the observations. Thus, the   β b    
coefficients will capture the relative change in entry probability for  scientist-RFA 
pairs in the bth percentile ( b ∈ [76, 100] ) of similarity scores relative to those in the 
fiftieth to seventy-fifth percentile.

In this final sample, the average RFA has a  first-year total purse size of $2.89 mil-
lion (standard deviation (SD) = 2.65), attracts 28.7 entrants (SD = 24.4), and awards 
a total of 6.5 grants (SD = 5.5), with  first-year direct costs totaling $2.65 million 
(SD = 3.01).

I lack an identification strategy that allows me to conduct a detailed analysis 
of differences in how scientists compete conditional on entry.33 However, to get a 
sense as to the competitiveness of scientists whose prior work is more or less aligned 
with the RFA objectives, Figure 3 plots the similarity distributions for winners and 
losers. Winners are more likely to be more similar to the RFA, but the shift in the 

33 This would require a second instrument, as the  pmra  scores are likely predictive of entry both based on the 
fixed costs of entry and the expected benefits conditional on entry.



VOL. 12 NO. 4 115MYERS: THE ELASTICITY OF SCIENCE

distribution is not substantial. Unreported regressions suggest this difference is on 
the order of only 2 to 5 percent. Conditional on entry (which likely includes expecta-
tions about success), there does not appear to be a dramatic difference in scientists’ 
ability to compete.

C. Results

Table 1 presents the main results from estimating variants of equation (2). The 
reported coefficients are based on standardized transformations of the independent 
variables, so all can be interpreted as the change in entry probability associated with 
a one standard deviation increase in the variable. The first three columns control for 
the  scientist-RFA similarity using the flexible bin structure and focus on the role 
of the purse size. Across the specifications, where varying degrees of RFA- and 
 scientist-level controls are included, the estimates indicate that a one standard devi-
ation ($3 million) increase in funds allocated to an RFA would increase the proba-
bility that each scientist enters that RFA by about 40 percent relative to the mean.

These coefficients imply that the marginal costs, in terms of purse size, of attract-
ing one additional application from this sample are roughly $ 110,000–120,000. 
Given that purse sizes are measured only as a single year of funding that typically 
lasts four years, this implies net costs of roughly $450,000, which is nearly 40 per-
cent of the lifetime size of the average R01 grant.

In a perfectly competitive market of RFAs with no frictions, adjustment costs, or 
any other constraint, it would be expected that the marginal cost of inducing an addi-
tional application would be equivalent to the expected value of entry. The expected 
value of entry is simply the probability of winning times the expected award size. 
Unfortunately, I cannot identify win probabilities for marginal applications within 

Figure 3. Similarity Distributions Conditional on Entry

Note: This figure plots the adjusted  pmra  similarity scores between each scientist and the RFA applied to, splitting 
the sample by winners (received a grant) and losers.
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RFAs. I do not have an instrument that influences entry but is orthogonal to win 
probabilities. Still, the average win probability of entrants in the sample is 21 per-
cent. If I perform an  RFA-level regression of the total number of awards on the 
total number of applications, marginal applicants across RFAs win 14 percent of 
the time.34 Using 14 percent as the most reasonable and conservative estimate I can 
infer from the data, it would appear that the expected value of entry for marginal 
entrants is closer to $150,000, about 3 times less than the implied costs of soliciting 
additional applicants ($450,000). This suggests there are sizable costs keeping sci-
entists from changing their direction and entering RFAs.

To get an initial sense of the relative importance of funding versus the scientific 
similarity of a scientist’s prior work, column 4 includes a simple linear term and 
indicates that a one standard deviation increase in  scientist-RFA similarity increases 
entry probabilities by more than 40 percent. Next, I take a more flexible approach 
to specifying the role of similarity and purse sizes ( F  and  G ). I use the similarity 
percentile bins described previously to estimate the relative effects of similarity, and  
I also interact these bins with the purse variable to explore how fund responsiveness 
varies across the similarity distribution:

(5)  𝟏 { Entry ij  }  =  ∑ 
b

      β b   (𝟏 {bin ( Similarity ij  )  = b} )  

 +  ∑ 
b

     δ b   (𝟏 {bin ( Similarity ij  )  = b} )  ×  Purse j   

 + δ  n ̃   ij   + γ 𝐗 j   +  α i   +  ϵ ij  , 

34 In these scenarios, there is often concern that marginal entrants are “worse” than average entrants. But one 
feature to reiterate about this setting is that the size of RFAs is very small relative to the full pool of scientists—there 
are roughly 28 applicants per RFA out of more than 100,000 scientists. So it seems reasonable to assume that the 
difference between average and marginal entrants here is likely not dramatic.

Table 1—Determinants of RFA Entry

 𝟏 { Entry ij  }  

(1) (2) (3) (4) (5)

Purse    j   2.14 2.20 2.25 2.32 4.07
(0.557) (0.515) (0.519) (0.551) (0.503)

Similarity    ij   2.33 2.55
(0.911) (0.964)

Competitive Expectations    ij   −4.37
     (0.271)

Includes similarity bins Y Y Y
RFA controls Y Y Y Y
Scientist fixed effects Y Y Y

Notes: All models include 20,221,541 scientist-RFA (ij  ) pair observations, where the mean 
entry probability is 5.47 ×   10   −4  . Independent variables are standardized in regression, so 
coefficients indicate the change in entry probability associated with a one standard deviation 
increase in the variable; all coefficients are scaled by   10   −4  .
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where the scientist fixed effects (  α i   ) and competitive expectations term (   n ̃   ij   ) are 
included only in some models. Figure 4 plots the   β b    and   δ b    coefficients recovered 
from this regression. The estimates in Figure 4, panel A indicate relative changes 
in entry probabilities for scientists in the  bth  similarity percentile relative to those 
in the fiftieth to seventy-fifth percentile. The estimates in Figure 4, panel B indicate 
absolute changes in entry probabilities when purse size increases by one standard 
deviation for scientists in the bth similarity percentile.

Focusing on Figure 4, panel A, the importance of similarity in scientists entry 
decisions is clear. The effect of being in the top percentile of similarity (approxi-
mately 10,000 individuals) is roughly 100 times larger than being at the eightieth 
percentile. This pattern holds across all specifications.

These results suggest that relative changes in similarity are much more important 
than fund availability. But as outlined previously, taking this pattern to indicate the 
presence of high switching costs ignores the potential role of strategic interactions. 
Column 5 implements the Bajari et al. (2010) algorithm to construct an estimate 
of competitive expectations (the number of entrants each scientists expects) and 
includes this term in the regression. Controlling for these strategic interactions leads 
to a larger coefficient on the purse term; it nearly doubles. This is to be expected 
since increases in fund availability should endogenously lead to increased competi-
tion, which mutes the responsiveness of scientists to these funds.

Figure 4, panel B illustrates how scientists’ responsiveness to funds varies across 
the similarity distribution. For scientists outside the top 5 percent of similarity, there 
appears to be a relatively constant effect of purse size on entry decisions—consistent 
with Table 1, a 1 standard deviation increase in fund availability leads to a 40–80 
percent increase in entry probability. However, it appears that scientists in the top 

Figure 4. RFA Entry Coefficient Estimates

Notes: Panel A plots the coefficients on the similarity percentile bins representing the relative change in entry prob-
ability for  scientist-RFA pairs in each percentile relative to those in the fiftieth to seventy-fifth percentiles. Panel B 
plots the coefficients on the standardized purse size interacted with each of the seventy-sixth to one hundredth per-
centile similarity bin indicators. All estimates are from one of three specifications indicated by the markers. Hollow 
markers indicate estimates where zero is included in 95 percent confidence intervals.
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5 percent of similarity are significantly more responsive to funds. For these individ-
uals, that same change in funding increases entry probabilities by two- to  threefold. 
These patterns indicate that the scientists most responsive to RFAs are likely to be 
already operating in the area of science targeted. Still, distant individuals do exhibit 
some degree of responsiveness.

A number of robustness tests are reported in online Appendix F. I estimate equa-
tion (2) using unadjusted  pmra  scores; the max, median, and average of  pmra  scores 
based on the full set of scientists prior publications; and log transformations of the key 
independent variables. All results are very similar to the main results reported here.35

I can make more precise statements about the elasticity of scientists’ direction 
if I interpret the similarity scores as cardinal measures of scientific space that sci-
entists must traverse. Figure 5, panels A and B recreates Figure 4, panels A and B 
but converts the coefficient estimates into elasticities that indicate the percentage 
change in entry probability caused by a percentage change in similarity and purse 
size, respectively. For all but the most distant scientists, relative changes in similar-
ity scores have much larger effects than relative changes in purse sizes, even when 
competition is held fixed. But both exhibit a pattern very similar to the RFA where 
responsiveness is particularly larger for scientists.

As outlined above, the ratio of these two elasticities describes the increase in 
funding necessary to induce a relative change in direction—the elasticity of science. 
Focusing on the specification that conditions on competitive expectations, Figure 5, 
panel C plots the ratio of these elasticities. Across the similarity distribution, I find 
the ratio of these two effects to be between around 0.1, which suggests that a 10 per-
cent change in funding is necessary to induce a scientist to undertake a 1 percent 
change in their direction. Despite the nonlinearities documented in Figure 5 pan-
els A and B, this elasticity is relatively consistent across the similarity distribution. 
I take this as evidence that the ratio of these two forces—similarity and funds—
does in fact capture the underlying presence of directional adjustment costs facing 
scientists.

To convert this estimate into a more  policy-relevant number, I do the following. 
First, I scale purse sizes by four since they describe only the first year’s worth of 
funds and the average R01 lasts roughly four years. Second, I use the conserva-
tive estimate of win probabilities of 14 percent to convert purse sizes into expected 
values. Using these two adjustments, Figure 5, panel D plots the amount of grant 
funds needed in expectation to induce a scientist to undertake varying degrees of 
adjustment to their direction. I use the mean elasticity of science (approximately 
0.1) to make the main estimates (the center line) and bound these estimates (with 
the shaded area) using the minimum and maximum elasticities.

For a reference point, a one standard deviation redirection in this sample corre-
sponds to a 27 percent change in similarity. That is to say, relative to the mean sim-
ilarity between scientists’ prior work and an RFA, scientists who are one standard 
deviation closer to the RFA had 27 percent larger similarity scores. The results imply 
that incentivizing a scientist to undertake this level of redirection would require a 

35 Unreported results using a fourth-order polynomial expansions of the competitive expectations term are also 
very similar to the main results.
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total of about $3.7 million in expectation, nearly three R01s worth of funds. In 
the full sample of  pmra  scores, one standard deviation corresponds to a 50 percent 
change in similarity. Extrapolating my estimates suggests that inducing this degree 
of change would require approximately $6.8 million in expectation.

Certainly, it is easy to find examples of scientists making large changes in their 
direction. The problem with inferring the costs of these movements is that scientists 
follow the most promising new opportunities. The estimates from these analyses, 
which hold fixed these opportunities, indicate that the costs of incentivizing mar-
ginal directional changes are very large relative to the amount of funds scientists can 
ever expect from a single NIH grant.

III. Is There an RFA Premium?

The goal of this section is to investigate whether the costs of redirections iden-
tified in the prior section  affect the equilibrium size of grants. If it is costly for 

Figure 5. Implied Elasticities and Inducement Costs

Notes: Panels A and B plot the implied percentage change in entry probability given a 1 percent change in similarity 
or fund availability at the sample means; note the log scale of the  y-axes. Panel C plots the ratio of these elasticities 
to give the implied percentage change in similarity that can be induced by a 1 percent change in funding. All esti-
mates are from one of three specifications indicated by the markers. Hollow markers indicate estimates where zero 
is included in 95 percent confidence intervals. Panel D projects the implied redirection costs as described in the text.
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scientists to adjust the direction of their work, and RFAs require larger adjustments 
relative to the open grants, then the expected value of RFAs could be larger. Figure 6 
illustrates that, compared to open applications, RFA applications are 25 percent less 
similar to the scientist’s prior work, on average.36 Just as compensating differentials 
arise when occupations have undesirable attributes, so too may RFAs be larger than 
open grants as they require scientists to undertake costly redirections.37

The main conditions underlying this argument are that competition reduces the 
expected value of applying and marginal applicants are indifferent between the costs 
and benefits of applying to RFAs or open grants—the market is in equilibrium. To 
the point of competition, NIH policies make clear that the division of funds takes 

36 Online Appendix C shows the full distribution of RFA similarity scores, which is shifted to the left (less 
similar) compared to open applications.

37 Online Appendix E provides a simple, formal treatment of this argument, which is a discrete version of the 
experiment from the previous section. Instead of choosing from RFAs that each require a different degree of redi-
rection, scientists now only choose between two options: RFAs or open grants.

Figure 6. Trends in Outcomes—RFA versus Open Applications

Notes: RFA-open correlations are 0.97 for similarity, 0.90 for win probability, and 0.92 for award size. The lack of 
abstract text for  pre-2007 restricts the set of applications for which similarity scores can be calculated.

0

15

30

45

2002 2004 2006 2008 2010

0

0.1

0.2

0.3

2002 2004 2006 2008 2010

0

$150

$450

Panel C. Award size (thousands)

Panel A. Similarity Panel B. Win probability

$300

2002 2004 2006 2008 2010

Open applications

RFA applications



VOL. 12 NO. 4 121MYERS: THE ELASTICITY OF SCIENCE

into account the number and quality of applications.38 More competition should 
reduce expectations about award size. And as evidenced in Figure 6, the expected 
payoff of RFA and open grants trend together very closely over time. This sug-
gests that, each year, applicants evaluate the costs and benefits of pursuing particular 
grants and choose the option with the largest payoff.

The goal of the following regressions will be to identify whether these differences 
are causally due to RFAs or if they are an artifact of selection bias (e.g., scientists 
with  high-quality ideas are more willing to redirect, are more likely to win, and win 
larger awards). Furthermore, if RFAs cause marginal scientists to change the direc-
tion of their work and in turn have a larger expected value, I can use the elasticity 
estimates from the previous section to explore how much of this RFA premium can 
plausibly be explained by scientists’ (un)willingness to switch topics.

A. Empirical Model

As a first pass, I could regress the three outcomes  y = { scientific similarity, win 
probability, award size }  for application  j  submitted by scientist  i  on an indicator for 
whether the application was submitted to an RFA ( 𝟏 { RFA j  }  ) as follows:

(6)   y ij   = α + β 𝟏 { RFA j  }  +  ϵ ij  . 

From these regressions, the  β  coefficient can be used to describe the RFA redirection 
effect (change in similarity) and premium (change in expected value).39 But this 
simple difference suffers from two drawbacks: (i) it is unclear that the average open 
application is the appropriate counterfactual for RFA applications, as is implied by 
equation (6); and (ii) scientists likely have expectations about their potential out-
comes in either competition, which could generate a selection bias.

To the first point, I introduce scientist fixed effects to remove any variation driven 
by stable differences across individuals. I also use the funding channels and  peer 
review groupings described in online Appendix A to group all applications (RFA 
and open) into highly detailed sets of research areas. This process generates roughly 
400 different research areas, denoted  s , each with an average of 40 applications per 
year. Furthermore, I interact these research areas with time fixed effects to generate 
a rigorous set of research area–time fixed effects. Including these fixed effects in 
the most saturated (and therefore conservative) model assumes that, conditional on 
submitting an RFA (or open) application, the most similar outcome for that individ-
ual would have been to compete within the open (or RFA) competition of the same 
research area that same year.

38 Case in point is this language that appears in virtually all RFAs in some way or another: “The total amount 
awarded and the number of awards will depend upon the mechanism numbers, quality, duration, and costs of the appli-
cations received.” This particular quote is from the following RFA: https://goo.gl/wZPmij (accessed July 12, 2017).

39 The redirection effect will be directly estimated as   β Similarity   . I combine the  β  coefficients from the win prob-
ability and award-size regressions in a rational expectation framework where the expected value of entry is the 
product of the two. Letting   w –    and   a –    denote the average win rate and award size in open grants, respectively, the shift 
in expected value is then simply of the form   ( w –   +  β Win  )  ×  ( a –  +  β Award  ) / ( w –   ×  a – )  .
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To control for the possibility of selection bias beyond the fixed effects, I con-
dition on the peer application’s review score and the amount of funds requested, 
which plays a large part in determining the size of the award. Controlling for these 
variables accounts for scenarios where, for example, scientists may be more willing 
to undertake costly redirections into RFAs if they believe they have a  high-quality 
proposal that is more likely to be funded. Conditioning outcomes on the amount 
of funds requested is also useful because it ensures that applications of equivalent 
scope/scale are compared to one another.40

Rewriting equation (6) to include the fixed effects for individuals ( i ) and 
 time-variant research areas ( st ) and the covariates ( 𝐗 ), the main estimating equation 
is

(7)   y ijst   =  α i   + β 𝟏 { RFA j  }  + γ 𝐗 ij   +  τ st   +  ϵ ijst  . 

Equation (7) is estimated using ordinary least squares (OLS) for the three outcomes: 
 log-transformed similarity scores, a binary win indicator, and  log-transformed 
 first-year direct costs.41

B. Summary Statistics and Results

For the focal sample of applications included in this analysis, the average appli-
cation is successful 23 percent of time, with an average  first-year award size of 
$298,000. At its largest, the sample includes 26,734 unique scientists and 39,756 
applications, with each scientists submitting an average of 1.5 applications (2.5 for 
those with greater than one application).

To investigate how much RFAs induce scientists to adjust the trajectory of their 
research relative to open grants, Table 2, panel A reports the results of estimating 
equation (7) with the  pmra  similarity score as the dependent variable. In all speci-
fications, there is a persistent difference in the degree to which each scientist’s new 
application resembles their prior work; RFA applications are less similar. The mag-
nitude of this difference declines upon the inclusion of the controls, mostly driven 
by the individual and research area fixed effects, suggesting that there are important 
underlying differences across scientists and fields of research with respect to how 
individuals’ research trajectories evolve. Overall, the evidence indicates that RFAs 
do force scientists to pursue a topic for funding that is less similar on average than 
what they would have otherwise pursued with an open grant. The models with sci-
entist fixed effects suggest this difference is roughly 10 to 15 percent.

Table  2, panels B and C present estimates of the win probability and award-
size differences. Across all specifications, RFA applications are more likely to be 
awarded funds and, conditional on winning, are likely to receive a larger amount of 
funds. Combining these two effects, the magnitudes indicate an RFA premium of 

40 Including this as a control means that estimated differences in award size are, with respect to the “surplus” of 
award funds, relative to the amount requested.

41 Online Appendix F includes results using alternative independent variable transformations and versions of 
award size (i.e., total costs).
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roughly 65 percent relative to the expected payoff of open applications. This implies 
that scientists are indifferent between approximately $270,000 (in  first-year funds) 
awarded via an open grant and $445,000 awarded via an RFA.

At first glance, this seems like a large premium to place on RFAs. But given the 
magnitude of redirection they appear to require, this plausibly could be explained by 
the (in)elasticity of science identified in the prior section. To explore this possibility, 
I must assume that the entirety of the RFA premium is due to this redirection effect. 
If that were the case, then these results imply that scientists are indifferent between 
a 10 percent redirection to more similar work and a 65 percent increase in expected 
grant funds. These magnitudes imply an elasticity of direction with respect to grant 
funds of about 0.15 (= 0.1/0.65). For comparison, the average elasticity identified 
with the entry model was approximately 0.11.

These two estimates are quite similar, suggesting that a significant portion of 
the RFA premium could be explained by the switching costs facing scientists con-
sidering these mechanisms. There are two caveats to this suggestive finding. The 
first is that I cannot perfectly attribute the RFA premium described by the results 
in Table 2, panels B and C to the redirection effect in panel A and not to any other 
 RFA-specific factors that scientists may value positively or negatively.42

42 As described earlier, the two funding channels differ in the nature of competition, with open competitions 
being much larger and broader in scope. Furthermore, the NIH allows scientists to attempt to extend the duration of 
a grant beyond its initial timeline, a process referred to as “competitive renewal,” and anecdotal evidence indicates 

Table 2—RFA versus Open Applications

(1) (2) (3) (4) (5)

Panel A.  log ( Similarity ijst  )  

 1 { RFA j  }  –0.236 −0.242 −0.153 −0.110 −0.101
(0.0089) (0.0089) (0.0093) (0.0157) (0.0185)

  N Applications   39,741 39,731 21,495 36,237 18,582
  N Scientists   26,723 26,716 8,480 24,864 7,408
mean(Similarity    open   ) 33.5 33.5 34.3 33.4 34.3

Panel B.   1 {    Win  ijst    }      

 1 { RFA j  }  0.111 0.0749 0.0706 0.121 0.0883
(0.0065) (0.0050) (0.0087) (0.0096) (0.0182)

  N Applications   39,756 39,746 21,502 36,250 18,588
  N Scientists   26,734 26,727 8,483 24,874 7,411

mean( 1   {Win}  open   )
0.22 0.22 0.21 0.22 0.21

Panel C.  log ( Award$ ijst  )  

 1 { RFA j  }  0.240 0.199 0.197 0.0587 0.167
(0.0149) (0.0112) (0.0229) (0.0235) (0.0504)

  N Applications   9,743 9,738 1,944 8,447 1,182
  N Scientists   8,698 8,693 899 7,605 555

mean(Award$    open   ) 270,646 270,670 288,053 271,693 284,237

Application controls Y Y Y Y
Scientist fixed effects Y Y
Research area–time fixed effects Y Y

 Notes : Application controls include peer review score and funds requested. Standard errors are clustered within sci-
entists. Award$ refers to first-year direct costs of the grant.
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Second, the elasticity identified by the entry model includes (essentially) all 
potential applicants, while the analysis in this section examine outcomes only for 
applicants. Are these the same marginal applicants? It is reasonable to assume that 
if individuals are on the margin for participating in an RFA, then they would also 
consider participation in an open mechanism, and vice versa. And the inclusion of 
the scientist fixed effects removes stable, unobservable variation across scientists. 
However, it is possible that scientists who do apply for an NIH grant are doing so at 
particular times in their careers when their demand for NIH funds is higher. Perhaps 
a prior grant has expired, perhaps their institution has implemented budget cuts, 
etc. To this point, it is not surprising, then, that I find applicants to be slightly more 
elastic than the larger pool of potential applicants on average. Still, I take this as new 
evidence that the adjustment costs facing scientists can have a  first-order effect on 
the equilibrium size of grants awarded by the NIH.

IV. Grant Productivity

The results of Sections II and III are based on the information contained within 
scientists’ grant applications, their intentions. But it is by no means guaranteed that, 
if awarded, grants ultimately influence the rate or direction of scientists’ work.43 
Furthermore, the efficiency of RFAs will depend on whether the productivity of grants 
differs between the RFA and open mechanisms. This analysis builds on Azoulay et al. 
(2019) and Jacob and Lefgren (2011), which examine the science- and  scientist-level 
impact of NIH funding. My focus is on comparing the  scientist-level effect of open 
and RFA grants. RFAs may lead to fewer publications than open grants if, for exam-
ple, winners who are inexperienced in the specific area targeted by the RFA are not 
able to deliver on what they propose. Conversely, if RFAs encourage work in “hot” 
areas, or if the fresh perspective of being a new entrant to the field increases produc-
tivity, RFAs may in fact lead to more publications per grant (or dollar).

The following empirical approach is closer to Jacob and Lefgren (2011), which 
focuses only on the open mechanism and uses a fuzzy regression discontinuity 
design. In short, they use the imperfect  rank-order funding process whereby the NIH 
sorts applications per their  peer reviewed quality and (probabilistically) funds appli-
cations from top to bottom per their budget constraints. Because this process is not 
perfectly due to rank order, the authors must generate  pseudodiscontinuities to gen-
erate identifying variation in awards.44 However, this imperfection in the  rank-order 
award process is largely due to the potentially nonrandom preferences of the NIH 
administrators, complicating the interpretation of this variation. Instead, I exploit 
the fact that I can observe the budget requests of each application, which are both 

that this option is much easier for open grants compared to RFA grants. I lack data on these renewal grants, so I 
cannot test for any differences.

43 The key issues are that (i) NIH grant funds are relatively fungible across projects, so it is possible that the 
funds awarded in an RFA on topic  A  are in fact used for future research on topic  B ; and (ii) the market for grant 
funding of the top scientists may be competitive enough that losers at the NIH can still secure funding elsewhere.

44 See Jacob and Lefgren (2011, 1171) for more. Note their footnote 10, which states: “Ideally, one would like 
to create the theoretical cutoff score taking into account the amount of funding associated with each application,” 
which motivated the research design implemented here.
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plausibly uncorrelated with NIH managers’ preferences and, as will be shown, play 
a large role in determining whether other applications are awarded grants.

A. Data and Dependent Variables

Publication Rate.—I again use the Torvik and Smalheiser (2009) PubMed data-
base to identify the set of publications each applicant is responsible for both before 
and after the award decisions, focusing on publications within five years of the award 
decision since most NIH grants last about four years. I identify publications where 
the scientist was a primary investigator by proxying for this role based on whether 
that scientist is listed as the first or last author on a publication. In the biomedical 
sciences, this is a very strong signal that an individual is the head of the laboratory 
or chiefly responsible for the design of the study.45

Publication Direction.—To assess changes in the direction of each scientist’s 
publications—for the RFA grants only—I use the  pmra  algorithm to score the simi-
larity between the applicant’s publications (before and after award) and the research 
objectives of the RFA applied to. Again, larger scores indicate that the publication is 
more similar to the research objectives of the RFA.

B. Empirical Model, Identification, and Covariate Selection

A simplified overview of the award process is as follows: first, applications 
receive quality scores from peer review panels; second, applications are sorted 
based on these scores within their respective funding group;46 finally, funds are 
awarded in imperfect rank order at the discretion of NIH staff until the budget con-
straint binds.47 As just discussed, this discretion in the award process prevents clear 
discontinuities from existing in the data.

However, budgets are constrained, and so the goal of the following exercise is to 
separate the  budget constraint effect from any  NIH-preference effect.48 I do so by 
leveraging the fact that I can observe the budget requests of each application and 
thus can calculate how “far away” from the  best-ranked application each other appli-
cation is. The logic is that, conditional on an application’s  peer review score, which 
mechanically determines its rank, the sum of budget requests for  better-ranked 
applications is orthogonal to any feature of the focal application. However, this sum 
of budgets does influence the degree to which the budget constraint is binding. And 

45 To proxy for quality, I also explore specifications examining the average journal impact factor (JIF) of publi-
cations. The impact factor of a journal is the number of citations received in a given year of articles published in the 
journal in the two preceding years divided by the total number of articles published in that journal during the two 
preceding years. It is thus a noisy, but publicly available, measure of citations.

46 For RFAs, this is simply within the RFA itself. For the open mechanism, each fiscal year applications are 
ranked within the institutes/centers they applied to for funding.

47 Online Appendix A details the NIH award policies in further detail.
48 Note that NIH preferences are not necessarily positively correlated with publication potential, since they do 

publicly commit to spreading funds to scientists across a wide range of geographical and institutional environments 
given the political context they operate in.
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since this measure is based on funds requested but not necessarily awarded, it is not 
influenced by NIH staff in any way.

Consider two perfectly equivalent applications  j =  {1, 2}   that happen to 
be in different funding groups. If the budget requests of the other better-ranked 
 applications in  j = 2 ’s funding group were much larger than those in  j = 1 ’s  
group, then  j = 2  would be less likely to receive an award. This is simply because 
managers evaluating application  j = 1  would face a weaker budget constraint.

I calculate a scaled version of this  budget-distance metric  z  for each application  
 j  in each RFA/open-funding group  k , where  k  identifies each unique RFA or insti-
tute/center fiscal year grouping, as follows:

(8)   z jk   =  { 
0,

  
if ran k jk   = 1;

    
  
 ∑   j –

 k  
 
   $Reques t   j –

 k   __________ 
$Reques t k  

  ,
  

otherwise, 
    

where    j 
–
   denotes the applications in group  k  that are better (lower) ranked than appli-

cation  j , and  $Reques t k    is the total amount of funds requested in the group  k . This 
scaling is done to account for the fact that the number of applications, and thus total 
amounts requested, are endogenous to the budget constraint of each grouping. Being 
$10 million away from the top application is very different in a small RFA compared 
to a large open grouping, but being 10 percent of the total amount requested away 
is more equivalent.49

In all of the models that use this instrument, I always include controls for the 
quality of the applications as judged by peer review. This is because lower-quality 
applications will, by construction, always be “further” from the top of the funding 
group. The goal of this instrument is to leverage variation in awards among appli-
cations that received equal marks by their peer reviewers. However, there are not 
any straightforward ways of providing strong empirical evidence that the exclusion 
restriction holds in this case. So some caution should be taken when interpreting the 
absolute magnitude of these coefficients and implied effects.

I estimate variants of equation (9), a  two-stage least squares (2SLS) equation 
determining whether an applicant receives a grant ( 𝟏 { Win jk  }  =  {0, 1}  ), as well as 
the postdecision publication output of that same applicant (  y jk   ):

(9a) 1  { Win jk  }   =   a k    + δ  z jk    +   f 1     ( score jk  ,  rank jk  ,  X j  )   +   v jk   ,

(9b)   y jk    =   α k    + β 1  { Win jk  }   +   f 2     ( score jk  ,  rank jk  ,  X j  )   +   ν jk   ,

where the score and rank variables capture the quality of the application based on 
its  peer review score and ordinal ranking within its funding group,   𝐗 j    is a vector of 
application/ applicant-specific characteristics,50   z jk    is the instrumental variable, and 

49 I use the funds requested, and not those actually awarded, because realized award amounts are obviously 
influenced by NIH preferences and may reflect strategic withholding of awards from  better-ranked applications to 
fund  more-preferred but  lower-ranked applications.

50 These other covariates include: funds requested by the focal application; whether the project is flagged as 
involving animals, humans, or children; whether the applicant is a “new investigator” per NIH’s definition; whether 
the applicant has a PhD, MD, or other degree; whether the applicant has ever received an NIH research grant; the 
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the error terms are denoted by   v jk    and   ν jk   . In the simplest specifications,   a k    and   α k    
represent  institute-year fixed effects intended to capture secular changes in the use 
of open and RFA mechanisms.51 In more stringent specifications, these fixed effects 
will be at the level of funding groups, which will only identify the productivity 
effect based on differences between winners and losers in the same RFA or open 
competitions.

I allow the focal productivity parameter,  β , to vary by RFA and open awards, 
interacting   z jk    with an RFA/open dummy to generate the necessary identifying vari-
ation. To handle the skewed nature of the outcomes while retaining zeros, I trans-
form dependent variables using the inverse hyperbolic sine transformation and then 
transform the coefficients to report approximate  semielasticities.52

To minimize parametric assumptions about the role of application quality (score 
and rank) and other covariates ( 𝐗 ), I use the  LASSO -based variable selection and 
estimation routine described by Chernozhukov, Hansen, and  Spindler (2015).53 I 
separate these covariates into three categories: (i) the quality variables score and 
rank, (ii) a set of “project”  𝐗  variables specific to the application, and (iii) a set of 
“people”  𝐗  variables specific to the applicant. Within each of these categories, I gen-
erate fourth-order polynomial expansions of the variables and interact all of the linear 
terms. I then vary the degree to which the project and people controls and the funding 
group fixed effects are included in the model to investigate whether any differences 
between RFA and open grant productivity is driven by certain selection patterns.

C. Summary Statistics and Results

I evaluate outcomes for scientists who applied to the NIH between 2000 and 
2006 and receive a  peer review score. The sample includes only funding groups that 
award at least one grant and receive at least five applications, which removes the 
smallest 1 percent of groups. The final sample includes a set of 211 open funding 
groups, 334 RFAs, and 22,856 scientists who submitted 34,437 applications, about 
15 percent of which went to RFAs. Online Appendix F includes a table with detailed 
summary statistics for this sample.

Figure 7 graphically depicts the  first-stage relationship after controlling for the 
LASSO selected application quality variables and  institute-year fixed effects. The 
instrument is expressed in terms of standard deviations. The relationship suggests 
that in both RFAs and open groupings, being one standard deviation further from the 
 best-ranked application in the group leads to a roughly 20 percentage point decline 

years since the applicant’s first NIH grant of any kind and R01 grant; and the count of the applicant’s publications 
including interactions for those as first/last author, the JIF weights, and whether the publication is flagged as receiv-
ing support from the US government. In the  RFA-only similarity analyses, I also include a vector of  preapplication 
publication similarity scores.

51 The data is  right-censored, with only half of the sample observed for the full five years postdecision. So if 
certain institutes relied on RFAs more in later years, then RFAs would appear less productive by construction.

52 See Bellemare and Wichman (forthcoming) for more.
53 These methods are implemented using the authors’ lassopack Stata module.
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in funding probability. The budget constraint appears to gradually bind in a linear 
fashion, which motivates the choice of not transforming the instrument any further.54

Table 3 presents the results of estimating equation (9). Column 1 is a simple OLS 
version of the regression with only the  institute-year fixed effects. This regression sug-
gests that on average, RFA grants are roughly three times as productive as open grants. 
This difference could be attributed to higher quality applications being  submitted to 
RFAs, more productive scientists—conditional on their  peer review scores—selecting 
into RFAs, or the NIH selecting more promising areas of science for RFAs.

To hold application quality fixed and identify estimates closer to the causal effect 
of the grants themselves, column 2 uses the IV and still finds RFAs to be roughly 
three times as productive as open grants. But by relying on the IV, I can be more 
confident that this is not due to differences in the quality of marginal RFA and open 
submissions and that the absolute magnitudes identified reflect the impact of the 
grants themselves. The absolute productivity levels are larger than the OLS esti-
mates, which may be due to preferences of the NIH for project- or  people-specific 
characteristics aside from publication potential or some other feature unique to the 
compliers of this instrument (i.e., the local average treatment effect per this IV may 
be smaller than the true average treatment effect).

54 The first-stage relationship plotted in Figure 7 corresponds to the IV model in Table 3, column 2. In online 
Appendix F, I present regression tables of the first-stage relationships for the five IV models in Table 3, columns 
2–5. The results are very similar across the models, with different controls for projects, people, and other fixed 
effects. In all cases, for both RFA and open groupings, a one standard deviation increase in the instrument leads to 
a roughly 17 to 24 percentage point decline in funding probability, conditional on the application quality metrics. 
And the  F-statistics of the instruments are all on the order of 100 to 200 for open applications and 50 for RFA 
applications.

Figure 7.  First-Stage Relationship—Residuals

Notes: This figure plots win probabilities and the funding instrument for each application, conditioning out 
 LASSO-selected application quality and  institute-year fixed effects. The  F-statistics are 226.7 and 51.3 for open 
and RFA applications, respectively.
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Columns 3–6 investigate what may be leading to this productivity difference. 
First, column 3 introduces the vector of project covariates (i.e., budget size, whether 
the project involves human subjects) to remove some variation in the types of sci-
ence proposed. The estimates are virtually unchanged. Column 4 includes only the 
 people-specific covariates (i.e., publication and grant histories), and the productivity 
difference declines by nearly 60 percent, relatively speaking. This suggests that a 
large reason why RFAs appear more productive is that highly productive scientists, 
whose future productivity is not captured in the  peer review score, select into these 
mechanisms.

Can the rest of the difference be attributed to the types of science targeted by 
RFAs? The inclusion of the funding group fixed effects in column 5 identifies RFA 
and open award  semielasticities that are not significantly different from each other 
or zero. This indicates that a sizable portion of the  RFA-open difference could plau-
sibly be attributed to NIH program managers identifying research areas that have 
high publication potential. Although this model suggests grant receipt does not have 
a clear effect on publication counts, this does not imply that RFAs are ineffective. 
Rather, it suggests that RFAs may be able to identify research directions with  high 
potential that scientists would not have taken otherwise.55 And part of this effect 
may be due to scientists applying and losing but continuing to work on the targeted 
topic for some time.

55 Furthermore, this is not necessarily at odds with the RFA endogeneity tests in Section IC, since the argu-
ment for RFA exogeneity hinges on the NIH not responding to shocks that scientists themselves were also 
responding to. And this result suggests the NIH may be able to respond to (future) shocks that scientists would 
not have responded to.

Table 3—Grant Productivity—Publication Rates

IHS(Publication Count    jk   )

(1) (2) (3) (4) (5) (6)

 𝟏 { Win, open jk  }  0.0578 0.224 0.250 0.268 0.0657 0.129
(0.0206) (0.0752) (0.0781) (0.0767) (0.0565) (0.0477)

 𝟏 { Win, RFA jk  }  0.134 0.620 0.628 0.451 0.0938 0.133
(0.0362) (0.142) (0.144) (0.163) (0.0599) (0.0452)

Semielasticity open 0.059 0.247 0.280 0.304 0.066 0.137
Semielasticity RFA 0.142 0.841 0.854 0.550 0.096 0.141
 p -value difference 0.07 <0.01 <0.01 0.24 0.63 0.93

Observations 34,437 34,437 34,437 34,437 34,437 34,437
IV Y Y Y Y Y
F-statistic 122.7 121.1 115.7 79.7 54.3
Project  𝐗 Y Y
People  𝐗 Y Y
Funding group fixed effects Y Y
 LASSO  var    sel/poss   5/9 14/31 27/256 5/9 34/287

Notes: This table reports 2SLS estimates from equation (9). The average applicant published 6.24 articles postdeci-
sion. Project and People  𝐗  indicate whether covariates specific to the application (i.e., funds requested) and/or the 
applicant (i.e., publication history) are included.  LASSO  var    sel/poss    reports the number of  LASSO  selected and pos-
sible covariates. All regressions include institute-year fixed effects, except for columns 5 and 6, given the funding 
group fixed effects, which are within institute years. Standard errors clustered at funding groups are in parentheses.
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In the fully saturated specification of column 6, the productivity difference is no 
longer statistically or economically meaningful. Both grants lead to about 14 percent 
more publications, and the  p -value for the test of difference between the coefficients 
is 0.93.56 This is rather intuitive since there is not any clear difference between the 
two grant mechanisms after removing variation in the types of applicants, applica-
tions, and scientific fields involved.57

Finally, I focus on RFAs and the question as to whether these grants actually gen-
erate new studies on the topics targeted. Table 4 presents estimates from another set 
of productivity equations using the  pmra -based similarity outcome. I only use speci-
fications that include both the funding group (= RFA) fixed effects and  measures of 
the scientists’ similarity to the RFA prior to applying. This is because there is some 
(unknowable) amount of variation in similarity scores across scientists and RFAs that 
is purely due to differences in how each RFA and publication was written and evalu-
ated by the  pmra  algorithm. Always using these fixed effects and covariates prevents 
an  in-depth investigation into selection patterns, but it ensures that the identifying 
variation in similarity scores is not mechanically related to differences in text usage.

Column 1 presents the OLS estimate, and columns  2–3 use the funding dis-
tance instrument. As before, the IV estimates are larger than the OLS estimate. In 
the IV specifications, regardless of whether the project and people covariates are 
included, the instrumented grants induce a roughly 37 percent increase in the simi-
larity between scientists’ publications and the RFA’s objectives. In this sample, this 

56 For comparison, Jacob and Lefgren’s (2011) headline finding, using a specification most closely aligned with 
Table 3, column 6, is a 7 percent increase in publications. The difference in our results can plausibly be explained 
by our alternative identification strategies.

57 Results in online Appendix F using the JIF measure reveal a somewhat similar pattern of relative magnitudes 
between the RFA and open  semielasticities. Although, the absolute magnitudes are closer to zero, and the people 
covariates alone can plausibly explain the small  RFA-open quality difference.

Table 4—Grant Productivity—Publication Similarity

IHS(Publication-RFA Similarity    jk   )

(1) (2) (3)

 𝟏 { Win, RFA jk  }  0.131 0.334 0.317
(0.0328) (0.166) (0.136)

Semielasticity RFA 0.140 0.378 0.361

Observations 4,949 4,949 4,949
IV Y Y
F-statistic 57.5 58.2
Project, people  𝐗 Y
Funding group fixed effects Y Y Y
 pmra  controls Y Y Y
 LASSO  var    sel/poss   3/21 6/21 12/350

Notes: This table reports estimates from equation (9) using the  pmra -based scientist-RFA 
similarity measure. Project and people  𝐗  indicates whether covariates specific to the appli-
cation (i.e., funds requested) and/or the applicant (i.e., publication history) are included.  
 LASSO  var    sel/poss    reports the number of  LASSO  selected and possible covariates. Standard 
errors clustered at funding groups  are in parentheses. 
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 magnitude corresponds to approximately one-third of a standard deviation in simi-
larity scores, suggesting this effect is meaningful in a scientific sense.

Online Appendix F contains  time-specific estimates of the instrumented grant 
effects. The publication rate effects appear to be concentrated in the first three years 
postdecision, with the estimates being indistinguishable from zero by the fifth year. 
This likely reflects the average four-year lifespan of the grants in this sample. For 
RFA grants, the impact on similarity appears to be almost entirely concentrated in the 
first year postdecision. Whether this is due to the losers becoming more similar to the 
winners (and the RFA) or the winners returning to their  loser-like trajectory is difficult 
to discern without a second control group. But the raw data can shed some light: the 
average  pmra  similarity scores for both winners and losers of RFAs decline by about 
30 percent from the first to fifth year post decision. This suggests that the latter story 
of winners returning to their original trajectories once their grant expires is most likely.

D.  Back-of-the-Envelope Cost Effectiveness

To recap, the analyses in Section III indicated that RFA awards are approximately 
16 to 20 percent larger, which corresponds to roughly an additional $200,000 over 
the lifespan of the average grant. A conservative use of the estimates from Table 3 
implies that RFAs can produce at least 1.8 more publications per grant than the open 
channels (3.1 versus 1.3).58 Since the average lifetime size of an R01 in my data is 
about $865,000, these effects imply that the average cost per publication is about 
$344,000 for RFA grants and $665,000 for open grants. RFAs appear to be signifi-
cantly more  cost effective at generating new publications.

But this does not immediately imply that the RFA program should be expanded; 
two caveats are in order. First, this productivity difference appears to be driven by 
the different types of scientists or projects that RFAs fund. So it is not clear how 
scaling the RFA programs beyond current levels would change this composition. If 
this composition effect is eliminated (as in Table 3, column 6), and the RFA pre-
mium remains, then policymakers will face a more difficult  trade-off between the 
two mechanisms.

Second, the time trends of similarity effects illustrated in online Appendix F indi-
cate that scientists’ focus on the  RFA-targeted topics does not appear to be per-
sistent, so only a fraction of these additional publications are directly in line with 
the NIH’s objectives. It appears that larger or more sustained funding would be 
necessary to make changes to the  long-run direction of scientists.

More generally, I cannot extend these results to considerations of “moonshot”-style 
policies such as Nixon’s “War on Cancer” that most certainly have the potential to 
create larger changes in the general equilibrium. While I cannot speak to the absolute 
welfare impacts of these grants (i.e., how large should the total RFA plus open budget 
be?), these estimates still provide some guidance to policymakers debating the merits 
of using RFAs at current levels to steer scientists toward topics they value.

58 This is based on taking the average difference in the RFA and open grant  semielasticities across Table 3, 
columns 2–6.
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V. Conclusion

The preceding trio of analyses finds the following: The scientists most responsive 
to RFAs are already operating relatively close to the topics that are targeted. The gen-
eral costs of changing directions implied by scientists’ RFA entry decisions appear 
very large. And these adjustment costs can plausibly explain the RFA premium, 
whereby RFA grants tend to be larger that their open counterparts. Irrespective of 
content, RFA grants lead to more publications than open grants, but this difference 
appears to be due to the different types of science and scientists that RFAs fund. 
Finally, RFAs generate new publications that are in line with the original objectives, 
but recipients appear to eventually revert to their original research directions.

Focusing on the large adjustment costs, the welfare implications of this constraint 
are not immediately obvious. For instance, although it may appear that the inelas-
ticity I identify could prevent scientists from choosing an efficient direction from 
society’s view, they may in fact be a source of diversity that counterbalances other 
distortions arising from market dynamics (Acemoglu 2012) or racing incentives 
(Stephan 1996). Still, the magnitudes suggest that these costs are a  first-order force 
in determining the allocation of scientists.

In the context of research funding mechanisms, these results are relevant to 
the ongoing “people versus projects” debate on the optimal structure of grants.59 
Traditionally, and at the NIH especially, research grants are awarded for “projects.” 
However, based on a growing body of theoretical (Manso 2011) and empirical evi-
dence (Azoulay, Graff Zivin, and Manso 2011), calls have grown for more flexible 
funding arrangements that leave more discretion to the scientist. A frequent critique 
of  project-centered arrangements is that they reduce incentives to be “creative.”

The large switching costs I identify provide another potential limitation of 
 project-based funding regimes: if researchers can only successfully compete for 
 project-based grants by demonstrating their ability to produce publications, then 
they will not propose projects that require large adjustments, because they would 
appear to be unproductive in the short term (as funds would be spent on these 
switching costs, e.g., purchasing new tools, and not directly on production, e.g., 
labor). However, I am unable to speak directly to any of the mechanisms underlying 
the apparent reluctance of scientists to change their work. Disentangling forces such 
as information barriers, risk preferences, and tangible costs would be useful for 
informing policies.

Since Oi (1962) first emphasized the notion of labor as a  quasi-fixed factor, “the 
hypothesis that employment adjusts slowly and with a speed that is inversely related 
to skill, [has] entered the central corpus of economic knowledge” (Hamermesh 1990, 
94). Likewise, since at least Schmookler (1966), demand’s ability to “pull” invention 
has been appreciated. Here, instead of examining the costs of and motivations for 
adjusting the rate of production, as has most Oi- and  Schmookler-inspired work, I use 
RFAs to understand the costs of incentivizing adjustments to the direction of work for 

59 See, for example, https://goo.gl/TEQ7W8, accessed July 12, 2017.
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one of the most skilled sets of the economy, biomedical scientists. My results show 
that at least in this setting, these costs are likely of  first-order relevance.

Understanding this elasticity is essential for policymakers and managers alike 
since the vast majority of scientists at public and  nonprofit institutions choose 
their own pursuits with minimal oversight. This system has arisen for good reason: 
uninformed funders are willing to relinquish control to leverage scientists’ private 
information (Aghion, Dewatripont, and Stein 2008). However, it is not clear that 
the allocation of funds decided by scientists themselves will be socially optimal 
(Dasgupta and David 1994).60 To resolve such concerns, Aghion, Dewatripont, and 
Stein (2008) suggests the use of mechanisms analogous to the RFAs I study here.

An obvious next question is how these costs influence the optimal allocation 
of research funds. A few theoretical models study this question (e.g., Lichtenberg 
2001), but none reckon with the type of costs emphasized here. Future work on this 
topic should be worthwhile.
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