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Fig. 1. Our framework identifies the set of physical variables and viscosity parameters from example videos capturing fluid flows in the real world (left) by

approximating the flows with viscous fluid simulation (middle). The identified physical values and parameters can then be used to simulate viscous fluids in a

new scenario, preserving the style of the fluid flows in the example videos (right).

In physically-based simulation, it is essential to choose appropriate material

parameters to generate desirable simulation results. In many cases, however,

choosing appropriate material parameters is very challenging, and often

tedious trial-and-error parameter tuning steps are inevitable. In this paper,

we propose a real-to-virtual parameter transfer framework that identifies

material parameters of viscous fluids with example video data captured from

real-world phenomena. Our method first extracts positional data of fluids

and then uses the extracted data as a reference to identify the viscosity

parameters, combining forward viscous fluid simulations and parameter

optimization in an iterative process. We evaluate our method with a range

of synthetic and real-world example data, and demonstrate that our method

can identify the hidden physical variables and viscosity parameters. This set

of recovered physical variables and parameters can then be effectively used

in novel scenarios to generate viscous fluid behaviors visually consistent

with the example videos.
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1 INTRODUCTION

Fluids are ubiquitous and common ś encountered in various aspects

of our everyday lives. Examples of these materials include water,
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milk, honey, machinery oil, molten chocolate, paint, and shampoo.

These liquids have different properties and exhibit distinct behaviors.

One key factor that determines fluid properties and behaviors is

viscosity, as this can be realized from the Reynolds number, which

consists of viscosity parameters and characterizes flow patterns of

fluids. For example, fluids with low viscosity values flow vividly

generating turbulence and splashes, whereas highly viscous fluids

exhibit damped motions and characteristic rotational behaviors,

such as buckling phenomena. While many of previous works have

focused on inviscid fluids, several researchers have attempted to

more accurately simulate the dynamics of highly viscous fluids and

improved the visual fidelity with physically-based viscosity models

[Batty and Bridson 2008; Batty et al. 2012; Bergou et al. 2010; Carlson

et al. 2002; Larionov et al. 2017; Zhu et al. 2015].

While physically-based approaches can effectively simulate vis-

cous fluids based on the physical properties of fluids, one known

challenge is that it can be very difficult, time-consuming, and tedious

to choose appropriate parameters to generate desirable fluid behav-

iors, e.g., approximating behaviors of viscous fluids observed in the

real world. If physical parameters are not ideal, these approaches

would generate visually disconcerting results, which negatively im-

pact our sense and recognition of the fluid materials and dampen

our experience in various applications, such as video games, movies,

and virtual reality. Even worse, such parameters would cause sim-

ulation failure leading to unpredictable results. Consequently, it

is necessary to manually tune parameters through laborious trial-

and-error processes until satisfactory visual results are obtained. In

practice, fluid simulation can take several hours or more, requiring

many hours of waiting time to check intermediate results. Thus,

such manual parameter-tuning is beyond practical.

One possibility to select appropriate parameters for fluid simula-

tion is to adopt material parameters listed in a book or measured in

the real world (e.g., using a viscometer and a rheometer). In general,

however, viscosity values of most of fluid materials are not available

at hand, and such instruments are not widely available for personal

use, as mentioned in [Nagasawa et al. 2019]. In addition, fluid simu-

lation is one way to approximate the behaviors of real complex fluid
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flows using a simplified mathematical model of physics to make the

simulation tractable, and it is known that different fluid simulation

methods often lead to distinct simulation results even though the

same governing equations are solved under the same simulation

setting and physical parameters [Um et al. 2017]. As such, there is

no guarantee that fluid simulation with the viscosity values found

in a handbook or measured with a viscometer can generate fluid

behaviors similar to those observed in the real world, except for few

limited, ideal situations. Furthermore, since some fluid simulation

methods are devised to improve the efficiency, robustness, and ca-

pability based on heuristics, these methods may not have physical

parameters corresponding to their counterparts in the real world.

From a viewpoint of artists, physical parameters are not necessarily

intuitive enough to generate their conceived fluid effects because

changes in physical parameters modify fluid flows in a complex and

unpredictable way, and the same material parameters can lead to

different behaviors depending on simulation scales. Instead, one

possible approach is to use examples of desired fluid behaviors to

infer appropriate parameters based on the given observed examples.

In this paper, we propose a new material parameter optimization

framework for facilitating parameter identification for fluids with

example videos captured in the real world. Our framework takes

as input a video capturing real fluid flows and extracts positional

information of fluids from the example video for a reference. Then,

we identify the set of physical values and viscosity parameters by

minimizing the differences between the example video and fluids

simulated with our viscous fluid solver in an iterative process. Since

it is challenging to accurately reconstruct 3D fluid information

from 2D videos, we measure the differences of the example data

and our simulation results in the 2D screen space by projecting

our 3D simulation results onto the screen space. Because of the

3D simulation analysis in the iterative process, the results of the

forward simulation with the identified parameters allow us to infer

hidden physical quantities of fluids in the videos. Furthermore, the

identified parameters can be used in completely new scenarios while

preserving the styles of the fluid behaviors in the example videos. To

show the effectiveness of our framework, we validate the identified

parameters in various scenarios, infer hidden physical quantities,

and demonstrate the parameter transfer from the real world to

virtual environments.

In summary, our main contributions and key results include:

• A parameter optimization framework that identifies the

viscosity parameters for fluids based on example videos cap-

tured from real-world fluid phenomena, inferring hidden

physical quantities of fluids.

• Screen-space evaluation that allows for measuring differ-

ences between the example data and simulation results with-

out reconstructing 3D data.

• Parameter transfer from real to virtual environments.

It introduces a new data-driven approach for fluid animation

and enables us to reproduce fluid behaviors in the virtual

environment, preserving the observed fluid properties in the

real world.

To the best of our knowledge, our framework is the first method

for identifying material parameters of Newtonian fluids with a

single-view video, and Figure 1 demonstrates the effectiveness of

our framework.

2 RELATED WORK

Fluid simulation has been a major research topic of significant in-

terest in computer graphics, and various techniques have been pro-

posed. In this section, we focus our discussion on previous works

closely related to our method. Later, we also discuss several works

on material parameter estimation.

2.1 Viscous Fluid Simulation

Viscous fluids exhibit behaviors different from inviscid fluids, and

reproducing their characteristic behaviors has been required over

years for various applications. In the Eulerian approach, Stam [1999]

developed a stable fluid method using implicit integration with the

Laplacian form of viscosity for fluids without free surfaces. Later,

Carlson et al. [2002] extended the method with implicit viscosity

integration for fluids with free surfaces, compromising the accurate

handling of rotational motions at the free surfaces. Rasmussen et

al. [2004] augmented the implicit Laplacian-based formulation with

explicitly integrated off-diagonal components to account for the

rotational behaviors while sacrificing the robustness of their solver.

Batty and Bridson [2008] proposed a fully implicit viscosity integra-

tion scheme for the full form of viscosity to improve the simulation

accuracy in the free surface handling, and this approach was ex-

tended for adaptive tetrahedral meshes [Batty and Houston 2011]

and octree data structures [Goldade et al. 2019], and for two-way

solid-fluid coupling [Takahashi and Lin 2019]. Larionov et al. [2017]

proposed a pressure-viscosity coupled solver to further improve the

accuracy in the free surface handling. Recently, Kim et al. [2019]

proposed an efficient deep-learning-based framework to interpolate

simulation results using different viscosity values. Unlike these ap-

proaches for 3D volumes, Vantzos et al. [2018] proposed an efficient

two-dimensional approach to simulating viscous thin films.

To simulate more general fluids, e.g., viscoelastic fluids and non-

Newtonian fluids, various approaches have been also proposed.

Goktekin et al. [2004] presented a method for simulating viscoelastic

fluids with extra elastic forces. To handle fluids with a variety of

properties in a unifiedway, material point methods have beenwidely

adopted with some specialized extensions for snow [Stomakhin et al.

2013], foams [Yue et al. 2015], melting solids [Stomakhin et al. 2014],

elastoplastic solids [Fang et al. 2019; Gao et al. 2017], and granular

materials [Daviet and Bertails-Descoubes 2016; Klár et al. 2016; Yue

et al. 2018]. While these approaches allow us to simulate a wider

range of materials, the computational cost is generally higher than

those for purely Newtonian fluids, and the optimization requires

more iterations due to the larger number of optimizable variables

in the constitutive laws. Although these simulation methods can

be adopted in our framework, in this paper, we focus on purely

Newtonian viscous fluids.

In the Lagrangian setting, one commonly used approach to simu-

lating viscous fluids is based on Smoothed Particle Hydrodynamics

(SPH), and various approaches have been proposed to improve the ef-

ficiency and robustness. Takahashi et al. [2015] proposed an implicit

viscosity integration to improve the robustness compared to explicit
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integration, adopting the method of [Batty and Bridson 2008]. To

further improve the efficiency, Peer et al. [2015] presented a different

implicit viscosity integration model with prescribed gradient, com-

promising the physical consistency, and this approach was extended

to improve the diffusivity of the vorticity [Peer and Teschner 2017]

and to support a wider range of viscous fluid behaviors [Bender

and Koschier 2016]. Recently, Weiler et al. [2018] presented a robust

and efficient implicit viscosity formulation while achieving physical

consistency. To handle fluids with various properties in a unified

way, Barreiro et al. [2017] proposed using conformation constraints

within the position-based dynamics framework.

Unlike these approaches based on SPH, some works simulated vis-

cous fluids by formulating particle interactions using spring forces

between particles [Clavet et al. 2005; Takahashi et al. 2014]. Tak-

ing advantages of Lagrangian discretization, several specialized

techniques based on simplicial complexes have been proposed to

simulate viscous threads and sheets [Batty et al. 2012; Bergou et al.

2010; Zhu et al. 2015].

In the fluid simulation literature, a variety of simulation meth-

ods have been proposed to simulate viscous fluids. However, few

research has been conducted to select appropriate parameters for

fluid simulation. Recently, Nagasawa et al. [2019] proposed a pa-

rameter blending scheme for the method of [Yue et al. 2015]. Their

method optimized coefficients based on the data measured from

the real fluids using a viscometer to better approximate the behav-

iors of blended fluid materials. Although their work and ours share

the similar goal of finding appropriate parameters to generate vi-

sually plausible results, these approaches are orthogonal. In their

work, material parameters are determined based on the mixture

ratio of fluid materials and the blending model whose coefficients

are precomputed with the measured viscosity values. In contrast,

our framework identifies material parameters using a single-view

example video captured from real-world fluid phenomena, through

the iterative inversion.

2.2 Fluid Capturing

Capturing fluids has been a challenging problem over the decades.

One reason is that fluids do not have their rest shapes, and this fact

makes it unreasonable to assume predefined shapes or deformations

from specific shapes, which can be effectively used in capturing the

dynamics of rigid bodies [Monszpart et al. 2016] and deformable

objects [Wang et al. 2015]. In addition, the appearance of fluids can

be easily and significantly affected by surrounding environments,

e.g., due to light scattering, absorption, reflection, and refraction,

making fluid capturing even more challenging.

An early work to model fluid volumes was proposed by Ihrke

and Magnor [2004] and Hasinoff and Kutulakos [2007]. They re-

constructed fluid volumes by solving a least squares problem, pe-

nalizing differences between numerically computed pixel intensity

and observed intensity. These approaches were extended to avoid

blurry, reconstructed volumes by transferring the appearance of

fluid volumes [Okabe et al. 2015]. For the dynamic 3D volume recon-

struction, several researchers made use of volume representations,

similar to tomography. Atcheson et al. [2008] modeled dynamic

gaseous volumes based on information captured with multiple cam-

eras. Gregson et al. [2012] focused on fluid mixing based on dye

concentrations. A similar minimization approach was employed to

reconstruct 3D liquid surfaces, but not volumes, with submerged

checker board patterns [Morris and Kutulakos 2011]. The main fo-

cus of these works are on modeling fluid geometry, and velocities of

the fluids are not inferred or roughly estimated with an assumption

on the rotational symmetry.

To compute more accurate velocity fields based on data captured

from real-world phenomena, e.g., videos, several researchers have

proposed methods that combine fluid simulation with iterative in-

version. Wang et al. [2009] reconstructed not only fluid volumes but

fluid velocities from fluid videos, which were captured using syn-

chronized stereo cameras with dyed fluids. Li et al. [2013] recovered

water surfaces and their velocities by combining the shallow water

simulation with water surfaces reconstructed using a shape recon-

struction method based on shading. Gregson et al. [2014] proposed a

velocity reconstruction framework based on an optical flow method

with physics regularizer terms similar to [Chen et al. 2016; Cor-

petti et al. 2002], combining tomographic 3D volume information

captured with the method of [Gregson et al. 2012], and this frame-

work was augmented to achieve the velocity reconstruction from a

single-view video [Eckert et al. 2018]. Recently, Zang et al. [2019]

proposed a tomographic reconstruction algorithm for time-varying

deforming objects, capturing both of the volumes and deformation

fields.

In the physics literature, researchers often utilized sophisticated

hardware to directly capture the fluid volumes or velocity fields.

One popular approach is Particle Image Velocimetry (PIV), and a

good overview for PIV is given in [Grant 1997]. PIV injects tiny

particles into fluids, illuminates the particles with a sheet of laser

light, and then estimates the particle movements and fluid velocities.

In the graphics literature, Xiong et al. [2017] proposed a new PIV

algorithm that colors particles based on their depth to track 3D

velocity fields with a single camera.

While various algorithms have been proposed for fluid capturing,

these algorithms typically require a sophisticated setup, such as

synchronized cameras, dyed fluids, and laser device. Thus, in our

framework, we avoid such setup and use a commonly available

device, smartphone, for fluid capturing. However, we note that

these capturing techniques are orthogonal to our goal and can be

easily incorporated into our framework.

2.3 Material Parameter Estimation

In physically-based simulations, choosing simulation parameters is

one of the most critical steps to generate visually plausible results

or even to perform stable simulations. Because of the importance

and difficulty in tuning physical parameters, various researchers

have attempted to facilitate this process.

One commonly used approach for material parameter estimation

is to find optimal parameters that generate behaviors close to ex-

ample data, e.g., captured in the real world, and this approach has

been extensively adopted in the literature, especially for deformable

solids [Gerlach and Matzenmiller 2007]. Pai et al. [2001] proposed a

method for acquiring material parameters from interactions with
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Fig. 2. Overview of our parameter identification framework. Our framework consists of two stages: reference preparation and parameter identification. In the

reference preparation stage, we capture a video of real fluid flows and preprocess the video to extract positional information of the fluid. In the parameter

identification stage, we iteratively perform fluid simulation, project simulated fluids onto the screen space, and evaluate objective functions with the extracted

fluid data. Finally, our framework outputs identified viscosity values.

deformable objects via robotic measurement facility. Becker and

Teschner [2007] proposed a framework to optimize elasticity pa-

rameters with linear Finite Element Method based on the relation

between the initial undeformed geometry and applied forces. Lee

and Lin [2012] also presented a framework to identify material

parameters using FEM simulation by minimizing the distances be-

tween surface nodes from the simulation and reference. Bickel et

al. [2009] proposed a method for optimizing the material proper-

ties of deformable objects with deformation measurements taken

from real-world experiments. Later, Bickel et al. [2010] used their

techniques to fabricate deformable objects that have their desirable

properties. These material parameter optimization techniques were

further extended using model reduction to improve the efficiency

[Xu et al. 2015]. Xu and Barbič [2017] presented an optimization

framework for damping coefficients to improve the behaviors of

deformable objects. Yan et al. [2018] presented an inexact descent

approach to accelerating the parameter optimization of elastic ma-

terials. Deformation measured in the real world was also used for

the parameter identification for clothing [Clyde et al. 2017; Miguel

et al. 2012; Wang et al. 2011] and human body [Pai et al. 2018]. In

sound rendering, sound captured from various materials was also

used as reference data to optimize the audio material parameters

[Ren et al. 2013].

While some approaches take example data from the real world for

references, these references can be prepared by users. Twigg et al.

[2011] proposed an optimization method that finds a user-specified

shape under gravity. A similar optimization approach was employed

and extended to handle frictional contact for hair [Derouet-Jourdan

et al. 2013] and shells [Ly et al. 2018]. Li et al. [2014] presented a

space-time optimization framework that simultaneously optimizes

the dynamics and material parameters of subspace deformable ob-

jects.

Several researchers also proposed material parameter identifica-

tion methods based on images and videos to avoid using specialized

equipment to estimate deformations and forces. Wang et al. [2015]

proposed a material parameter optimization approach by combin-

ing expectation maximization method and Nelder-Mead method.

Yang and Lin [2016] identified material properties for deformable

objects from a few images with the particle swarm method. These

material parameter optimization techniques with videos taken in

the real world are also applied to cloth [Bhat et al. 2003; Yang et al.

2016, 2017], hair [Hu et al. 2017] and rigid bodies [Bhat et al. 2002;

Monszpart et al. 2016].

Although various attempts have been made to facilitate the pa-

rameter tuning and selection, little research has been conducted for

fluids. In this paper, we address this problem, and propose perhaps

the first method for identifying the material parameters for fluids

using captured video data.

3 OVERVIEW

Our goal is to identify material parameters of fluids, with which

a viscous fluid simulator can generate fluid behaviors as close as

possible to the example data captured from real-world phenomena.

Figure 2 illustrates our material parameter identification framework.

Our framework consists of two stages: reference preparation stage

and parameter identification stage. In the reference preparation

stage, our framework takes as input example videos captured from

real-world fluid phenomena. Then, we preprocess the videos and

extract positional data of the fluid so that these data are amenable

in the following parameter identification stage. The parameter iden-

tification stage is an iterative process and takes initial or refined

material parameters as input. In this stage, we first perform forward

fluid simulations with the material parameters to obtain simulation

results. Next, we project the simulation results onto the screen space

with the camera parameters used to capture the example videos, and

then evaluate our objective functions, whichmeasure the differences

between the example data and projected simulation results. Our

framework iteratively refines the material parameters and finally

outputs identified material parameters.

In our framework, a viscous fluid solver is iteratively used within

the parameter identification stage, and the identified material param-

eters (which can be used in different scenarios) are for the viscous

fluid solver. While our framework is not restricted to a specific fluid

solver, for self-containedness, we first briefly review our viscous

fluid solver in ğ 4. The details of our material parameter identifica-

tion framework are described in ğ 5.
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4 VISCOUS FLUID SOLVER

The dynamics of viscous fluids can be described by the incompress-

ible Navier-Stokes equations given by

Du

Dt
= −

1

ρ
∇p +

1

ρ
∇ · s +

1

ρ
f, (1)

s = η
(

∇u + (∇u)T
)

, (2)

∇ · u = 0, (3)

where t denotes time, D
Dt material derivative, u velocity, ρ density,

p pressure, s symmetric viscous stress tensor, f external force, and η

dynamic viscosity. We include the gravity force and surface tension

force based on the standard ghost fluid method [Bridson 2015]

(we set the surface tension coefficient as 0.1 kg/s2 based on our

experiments) as external forces. To advance the simulation step,

we first address the advection term with the affine particle-in-cell

(APIC) approach [Jiang et al. 2015], add external forces, and then

handle pressure and viscosity terms simultaneously.

We address the pressure and viscosity terms in a unified and

implicit manner as

ut+1 − u∗

∆t
= −

1

ρ
∇p +

1

ρ
∇ · st+1, (4)

st+1 = η

(

∇ut+1 +
(

∇ut+1
)T

)

, (5)

∇ · ut+1 = 0, (6)

where u∗ denotes intermediate velocity after advection and external

force steps, and ∆t time step size. To solve the unified pressure-

viscosity problem, we discretize it based on the variational principle

[Larionov et al. 2017] using the volume computation method de-

scribed in [Takahashi and Lin 2019].

While the dynamic viscosity η can be spatially and temporally

varying, in this paper, we focus on the single viscosity value η as

most of real Newtonian fluids hold a uniform property over the fluid

volume, and this makes the parameter identification and validation

of the identification results tractable. In the next section, we aim to

identify the viscosity parameter η based on a given example video.

5 VISCOSITY PARAMETER IDENTIFICATION

Our method identifies the viscosity parameters of fluids by minimiz-

ing the differences between example data captured from real-world

phenomena and fluids simulated with our viscous fluid solver. While

multiple formulations can be considered for this parameter identi-

fication problem, e.g., with soft constraints, to invalidate physics

violations and undesirable local minima [Yan et al. 2018], we formu-

late the problem with hard constraints as the following constrained

space-time optimization problem:

η = argmin
0 ≤ η

E, (7)

E =
∑

f

ωf Ef subject to Qf +1 = F (Qf ), (8)

where E denotes an objective function, which measures the differ-

ences between example data and the simulated fluids, ω weighting

coefficients for each frame (we set ω 0 or 1 to exclude some specific

frames), Q a state variable for fluids, F a function for the forward

simulation, and frame index f = 0 . . .N − 1, where N denotes the

number of frames considered in the optimization.

5.1 Objective Function

To use videos as a reference for the parameter identification, it

is necessary to extract some information on fluids, such as fluid

geometry, that can be compared with results of 3D fluid simulations.

In the literature, some works attempted to reconstruct 3D fluid

geometry and velocity from videos, e.g., [Li et al. 2013; Okabe et al.

2015; Wang et al. 2009]. However, these approaches typically require

a complex equipment setup, such as synchronized multiple cameras,

depth sensors, and/or dyed liquid; or they need to restrict fluid

motions because it is very challenging to reconstruct 3D fluid data

from videos which include 2D information only (i.e., 3D information

is already lost). Since there are multiple 3D fluid configurations,

which lead to similar 2D fluid configurations on the screen, the 3D

data reconstruction from 2D videos is ambiguous, i.e., this problem is

under-determined. Additionally, fluids generally have no preferred

shape, and thus it is not reasonable to consider the rest shape or

deformations from the rest shape, making it difficult to capture the

fluid geometry, unlike rigid and deformable bodies. Furthermore,

the appearance of fluids can be easily and significantly changed due

to the optical properties of fluid surfaces, e.g., with light scattering,

absorption, reflection, and refraction, and thus it is very difficult to

obtain the reliable 3D fluid data from videos.

Therefore, we eschew reconstructing 3D fluid data and instead

measure the differences between the example data and results of 3D

simulation on the 2D screen space (with the same size as example

videos). In our framework, we evaluate the differences in terms of

the fluid geometry in the 2D space (i.e., as a silhouette) and define

our objective function for frame index f as

Ef =
1

2M
(gf − ĝf )

TCf (gf − ĝf ) (9)

whereM denotes the total count of pixels in the screen space, C a

diagonal coefficient matrix (we set entries in C as 0 or 1 to exclude

specific domains in the screen space), g and ĝ denote silhouette

obtained from simulation results and extracted from the example

videos, respectively. We use binary values for g and ĝ, and define

them at each pixel in the 2D screen space.

5.2 Fluid Video Capturing

For the reference silhouette ĝ, we first capture example fluid videos.

While there are various ways to capture the fluid videos, it is im-

portant to adopt a setup, which can be easily prepared and used to

capture different viscous fluid materials while minimizing sources of

errors (e.g., human interventions and gaps between the simulation

and real fluid flows) as much as possible. Although one intuitive

setup would be to pour liquids from a container, we found that liquid

pouring is not ideal because it requires some human interventions

(i.e., manipulations of the container) and forms very thin fluid sheets

near the edge of the container, causing too strong surface tension

forces which dominate viscosity forces. Given these, we prepare a

simple setup, where viscous fluids flow from the hole at the bottom
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Fig. 3. Setup for capturing a single-view video for behaviors of viscous fluids.

Viscous fluids flow out from the hole at the bottom of the container due to

the gravity, and the fluid flow is captured with a smartphone fixed using a

stand.

Fig. 4. (Top) from left to right, example fluid video, and simulation result.

(Bottom) Extracted silhouette from the example video, projections of fluid

surfaces from the simulation, and the differences between the silhouette

from the example data and simulation result.

of the container due to the gravity, as shown in Figure 3 (for more

details, please see the supplementary video).

In our work, we use a normal smartphone, iPhone 8, and capture

the fluid flows with the resolution of 1280 × 720 at 30 fps from a

single view. We fix the camera positions, calibrate the camera to

obtain intrinsic parameters in advance, and use these parameters to

obtain extrinsic parameters. An image of a captured fluid video is

given in Figure 4 (top left).

5.3 Fluid Data Extraction from Video

To compute the silhouette for the reference, we extract positional

data from the 2D example fluid videos. To this end, we use the

standard background subtraction method based on Gaussian mix-

ture modeling [Zivkovic 2004]. Then, we separate the extracted

silhouette, i.e., foreground from the background with a threshold-

ing method. Finally, we perform the morphological, closing and

opening operations for the extracted foreground at the pixel level

to remove some noisy estimates. We define the foreground as 1 and

background as 0 for g. The extracted silhouette is shown in Figure

4 (bottom left).

5.4 Screen Space Evaluation

To evaluate the objective function, we compute g, silhouette of

simulated fluids on the 2D screen space at each frame through the

forward simulations. Since geometry of fluids is represented by a

set of particles, we first construct fluid surfaces to approximate the

surfaces of the real fluid flows, and then project the surfaces onto

the 2D screen space using the camera parameters which are used to

capture the example videos.

To construct fluid surfaces, we take a standard approach. First, we

generate implicit functions from the set of particles, construct sur-

faces using the marching cubes algorithm, and then perform several

smoothing operations to better approximate the real fluid surfaces.

In our work, we represent the surfaces with a set of triangles for

the ease of projections onto the screen space.

Next, in the projection step, we form the silhouette of the fluid

surfaces as a union of all the projected triangles on the screen space.

To project each triangle, first, we independently project the three

vertices of the triangle in the same way as the camera does. The

projection operation can be written as

x = KAX, (10)

where X and x denote the homogeneous coordinates of the vertex

before and after projection, respectively, K and A intrinsic and

extrinsic parameters, respectively, which can be computed with

a camera calibration technique. After the projection of the three

vertices, we can form a new triangle on the screen space. To compute

gt , silhouette formed by a triangle t , we perform the inside/outside

check for the center of each pixel, and we assign 1 to gt ,i if the

center of pixel i is inside of the silhouette, otherwise 0. Finally, we

assemble all the silhouettes from the triangle to form the silhouette

of the fluid surfaces, i.e.,

g =
⋃

t

gt . (11)

Figure 4 (bottom, middle) shows a computed silhouette from the

simulation (top, middle), and the silhouette difference is given in

Figure 4 (bottom, right). After the projections of all the triangles,

we can straightforwardly compute the objective function E.

5.5 Parameter Optimization

Our objective function is formulated with example data captured in

the real world, which generally include some noise, and involves

multiple discontinuous operations, such as background subtraction

and morphological operations, liquid domain computation and sur-

face reconstruction from a set of particles, and projections of the 3D

fluid surfaces onto the 2D screen space over multiple steps. Conse-

quently, our objective function is discontinuous and nonlinear with

many unacceptable local minima. Since evaluating analytical gra-

dient is not practical for such discontinuous functions [McNamara

et al. 2004], it is preferable to employ optimization methods based

on sampling which can be used without evaluating the gradient an-

alytically, as done in [Hu et al. 2017; Wang et al. 2015; Yang and Lin

2016]. In addition, sampling-based approaches can naturally satisfy

the hard constraint for the physics in the constrained optimization

problem (8) by performing forward simulations.
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Fig. 5. Plots of the objective functions with different optimizers for the

honey shown in Figure 8.

In our framework, we use a derivative-free optimizer, CMA-ES

[Hansen and Kern 2004], which is known as robust to noise and

efficient compared to other derivative-free optimization methods,

such as the particle swarm method and Nelder-Mead method. In

the optimization, to enforce 0 ≤ η, we resample viscosity values if

sampled viscosity values are smaller than 0.

While we have tested multiple gradient-based optimizers using

finite difference approximations, such as L-BFGS, nonlinear con-

jugate gradient, and gradient descent with momentum, we found

that these approaches almost always got stuck at suboptimal lo-

cal minima because of the inaccurate estimates of the gradient for

the noisy objective functions, and the computational cost for the

convergence was higher than CMA-ES in most of our experiments.

Figure 5 compares the convergence behaviors for CMA-ES, L-BFGS,

nonlinear conjugate gradient, and gradient descent with momentum

optimizers.

6 VALIDATIONS AND DISCUSSIONS

We implemented our framework in C++. For the parameter iden-

tification, we typically formulate the objective function with up

to 100 video frames of high resolutions to make the optimization

tractable (i.e., N ≤ 100). We usually perform up to 80 iterations

for CMA-ES optimization with an initial value between 0.0 and

3.0 × 102 kg/(s ·m) and standard deviation between 1.0 × 101 and

3.0 × 102 kg/(s ·m). The overall computation time varies and de-

pends on the video resolution, the number of video frames, the

number of optimization iterations, the scale of fluid simulation, and

the computational complexity of the (viscous) fluid solver. We used

blender cycles renderer for Figure 4 and Figure 8 (first and second

rows) and mitsuba renderer for the others.

We tested our framework in a wide range of scenarios. First, we

validate the reliability of our algorithm with synthetic examples,

and then we evaluate our framework with example videos captured

in the real world.

6.1 Validation with Synthetic Videos

To test our framework, we generated several videos using our vis-

cous fluid solver, and used the videos as input for our framework.

The purpose of this experiment is to validate that our algorithm

Table 1. Viscosity parameter identification results with synthetic videos.

η̂ denotes reference fluid viscosity (kg/(s ·m)), Re Reynolds number, η

identified viscosity value (kg/(s ·m)), ϵη , ϵv , and ϵp relative errors for the

viscosity (%), pressure (%), and velocity (%), respectively. The error for the

viscosity is relatively small and up to around 5%.

η̂ Re η ϵη ϵp ϵv

1.0 × 100 1.25 × 102 1.06 × 100 5.85 14.1 1.21

3.0 × 100 3.67 × 101 2.94 × 100 1.93 6.60 0.57

1.0 × 101 9.50 × 100 0.98 × 101 1.52 8.28 0.56

3.0 × 101 2.67 × 100 3.02 × 101 0.80 4.34 0.32

1.0 × 102 6.01 × 10−1 1.01 × 102 1.35 3.34 0.74

3.0 × 102 1.52 × 10−1 3.10 × 102 3.23 15.6 0.87

can identify viscosity parameters which are used to generate the

synthetic videos, only with 2D data in the screen space.

We chose a scenario, where a viscous fluid flows from the hole at

the bottom of a container, as shown in Figure 6 (top). In this scene,

we tested with multiple viscosity values, 1.0 × 100, 3.0 × 100, 1.0 ×

101, 3.0×101, 1.0×102, and 3.0×102 kg/(s ·m), and simulations are

executed with the grid resolution of 2563 and up to 913.6k particles.

The simulation parameters and identification results are summarized

in Table 1, and we note that this experiment covers a sufficiently

wide range of Reynolds numbers for viscous fluids and thus fluid

behaviors. A plot for the objective function is given in Figure 7.

The second row of Figure 6 demonstrates simulation results in the

same scenario with the identified parameters, and in general, visual

differences between the reference and the simulated videos are

indiscernible.

One advantage of our framework with iterative inversion using

the full 3D simulation is that we can infer hidden physical variables

which are not available from the video data, e.g., velocity of fluid

flows and pressure distributions. Figure 6 visualizes the pressure and

velocity distributions for the input example (third and fifth rows)

and simulation results with the identified parameters (fourth and

sixth rows). Similar to the comparison with the surface rendering,

differences for the pressure distributions and velocity fields between

real and virtual fluids are generally indiscernible.

In these experiments, we used the same solver for synthetic ex-

ample generation and parameter identification, and thus resulting

fluid behaviors are same if the same viscosity values are used. How-

ever, we note that the example data include only rendered fluid

surfaces generated by 3D fluid simulations, i.e., projected onto the

2D screen space (losing full 3D information which can be perfectly

matched), and positional data are extracted with image processing

algorithms, introducing some errors. Consequently, it is not guar-

anteed that our algorithm finds the ground truth, and the value of

the objective function is 0. Nonetheless, our framework can identify

viscosity parameters with up to around 5% relative errors, only with

the 2D information, and the inferred pressure and velocity values

are within 20% and 2% of relative errors, respectively (see Table 1).

The plot in Figure 7 also demonstrates that the good local minimum

is very close to the ground truth viscosity values while the objective

function increases as viscosity values deviate from the ground truth.
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Fig. 6. Validation results with synthetic videos for the scenario of flowing fluids. (First row) from left to right, simulated video as input, with viscosity parameters

η = 1.0 × 100, 3.0 × 100, 1.0 × 101, 3.0 × 101, 1.0 × 102, and 3.0 × 102 kg/(s ·m). (Second row) recovered results using our framework with identified viscosity

parameters, η = 1.06 × 100, 2.94 × 100, 0.98 × 101, 3.02 × 101, 1.01 × 102, and 3.10 × 102 kg/(s ·m). The relative errors are 5.85%, 1.93%, 1.52%, 0.80%, 1.35%,

and 3.23%, respectively. Cutaway particle visualization for pressure profiles for the input (third row) and simulation with the identified parameters (fourth

row). Cutaway particle visualization using rainbow colors for velocity profiles as the input (fifth row) and simulation with the identified parameters (sixth row).

6.2 Identification with Real World Captured Data

We also tested our framework with example videos captured from

real world fluid phenomena. In this study, we experimented with

(HERSHEY’s) Caramel Syrup, red (Equaline Antibacterial) Hand

Soap, (HERSHEY’s) Chocolate Syrup, purple (Softsoap) Liquid Hand

Soap, blue (Dove Men+Care) Body and Face Wash, and (Gunter’s)

Pure Clover Honey under the room temperature of 22.2 ◦C, and

used a cylindrical container (radius is 4.3 cm) with a hole at the

bottom (hole radius is 0.9 cm), and fluid volumes of 170 cm3 for each

experiment. To perform the parameter optimization, we setup the

simulation scenarios as close as possible to the scene for the real

experiments, and simulations are executed with the grid resolution

of 1603 and up to 1,168.7k particles. The captured videos and sim-

ulation results with identified viscosity parameters are shown in

Figure 8. A plot for the objective function with different viscosity

value (we normalized objective functions such that the minimum

and maximum values are 0 and 1, respectively, for visualization

purposes), and a plot for the convergence behaviors are given in

Figure 9. Statistics and performance are summarized in Table 2.

Since the ground truth of viscosity parameters are not available

for viscous fluids in our examples, it is not possible to validate the ac-

curacy of the identified parameters. However, Figure 8 demonstrates

that the behaviors of the simulated viscous materials with the iden-

tified parameters are visually in close agreement with the fluids in

the example videos. In addition, we note that the range of viscosity
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Fig. 7. Plots of the objective functions with different viscosity values for

Figures 6. Good local minima are located close to the ground truth (vertical

dot lines).

Table 2. Viscosity parameter identification results with example videos cap-

tured from real world fluid flows. Re denotes Reynolds number, η identified

viscosity value (kg/(s ·m)), t average time in minutes for each iteration,

T total time in hours for the parameter identification, and v̂ and v (cm/s)

average flow speed of the fluids estimated from the video and computed

from the simulation, respectively.

Materials Re η t T v̂ v

Caramel 3.16 × 101 0.19 26.3 10.8 6.1 6.7

Red hand soap 2.72 × 101 0.22 14.3 13.9 5.2 5.8

Chocolate syrup 4.80 × 100 1.25 15.2 7.7 4.5 5.3

Purple body soap 6.33 × 10−1 4.74 19.4 11.7 1.7 1.5

Blue liquid soap 5.15 × 10−1 5.82 8.6 8.0 1.1 1.3

Honey 2.67 × 10−1 7.86 7.5 9.0 0.6 0.6

values for honey is known as between 2.0 and 10.0 kg/(s ·m), and

our identified viscosity value for the honey is 7.86 kg/(s ·m) and

is within the range, which further validates the reliability of our

framework. Furthermore, we note that our framework can identify

the viscosity parameters for fluids exhibiting the coiling behaviors,

reproducing the buckling phenomena for the blue soap and honey.

Similar to the case for the synthetic videos, one advantage of the

iterative inversion using the 3D simulation is that we can estimate

hidden variables for the real fluid flows, e.g., pressure and velocity

profiles (which are not available in the example videos), as shown

in Figure 8 (third and fourth rows). To validate the accuracy of the

simulation with the identified parameters, we compare the flow

speed of the fluids on the ground, which can be estimated from the

example videos. Results are summarized in Table 2, and the average

relative errors are up to around 10% in our experiments.

6.3 Real-to-Virtual Parameter Transfer

The identified viscosity parameters can be used in novel scenarios.

Figure 10 demonstrates a chocolate coating for a cake with the iden-

tified viscosity parameter for the ganache, simulated with the grid

resolution of 1283 and up to 351.0k particles. Figure 11 shows a

honey pouring onto a honey dipper with the identified parameter

of the honey, simulated with the grid resolution of 2563 and up to

1,175.0k particles. Figure 12 demonstrates a pouring of magenta

hand soap, light-lavender body soap, and aqua-green shampoo onto

a hand with the identified parameters, simulated with the grid reso-

lution of 2563 and up to 1,600.0k particles. Note that the differences

in fluid behaviors in the example videos are sufficiently reflected in

this scene, generating distinct fluid flows. Thus, we believe that it

is undesirable to randomly choose viscosity parameters from the

range of typical viscosity values for soap materials, even if such data

are available. Figure 1 (right) demonstrates a scene with simulated

donuts covered by chocolate syrup, caramel, and honey with the

identified parameters, simulated with the grid resolution of 2563

and up to 1,840.0k particles. In this scene, we also clearly observe

that caramel, chocolate syrup, and honey behave very differently

according to their material properties.

6.4 Discussions

Our framework can identify material parameters effectively as

demonstrated. However, it is not guaranteed that the resulting pa-

rameters are close to the measured parameters unless the experi-

ments are conducted under relatively ideal, controlled conditions.

There are some factors for this discrepancy. First, fluid simulation

is a numerical approximation of the complex fluid flows with a

simplified model derived based on various assumptions (e.g., no

slip boundary condition and uniformly distributed fluid particles),

which might not hold in some cases. In addition, while our focus is

on purely Newtonian fluids, some real-world materials exhibit non-

Newtonian properties as well, and thus simulation results would

deviate from the real fluid behaviors. Given the relatively coarse

simulation resolution, it is not possible to accurately capture the

small scale details of fluids and solid boundaries, and their resulting

influence to the simulation (e.g., neglected boundary details and

strong surface tension due to thin fluid sheets).

One factor that affects our optimization results is numerical vis-

cosity. When viscosity values are low, the numerical viscosity can

dominate the effect of real viscosity, and the optimizer could erro-

neously identify the viscosity parameter based on the numerical

viscosity.

While our framework can benefit common scenarios as demon-

strated, some liquids may not be easily accessible even for video

capturing, e.g., lava, blood, molten gold, because of the danger, ethics,

and cost.

7 CONCLUSIONS AND FUTURE WORK

We proposed perhaps the first parameter identification framework

to facilitate the parameter-tuning for fluid simulation with a single-

view example video captured from real-world fluid phenomena.

Our framework takes example fluid videos as a reference and min-

imizes the differences between the reference and simulated fluids

(using our solver) to identify material parameters. For the difference

measurement with example videos, we presented a screen space

evaluation method, which compares the reference and simulation

results on the 2D screen space, avoiding erroneous and ambiguous

3D reconstruction of fluid data. We validated our parameter identifi-

cation framework with a range of synthetic and real-world data and

demonstrated that identified material parameters can be effectively

used to infer hidden physical variables of real fluids and to simulate
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Fig. 8. Parameter identification results with example videos from the real-world fluid phenomena. (Top) from left to right, caramel, red hand soap, chocolate

syrup, purple soap, honey, and blue body soap. (Bottom) simulation results with identified viscosity parameters, η = 0.19, 0.22, 1.25, 4.74, 5.82, and

7.86 kg/(s ·m).
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Fig. 9. Plots of the objective functions with different viscosity values (left) and convergence plot for the parameter identification (right), for Figure 8.

Fig. 10. Simulated chocolate ganache poured onto a cake with the identified

viscosity parameter η = 1.25 kg/(s ·m).

Fig. 11. Virtual honey dripped onto a honey dipper with the identified

viscosity parameter η = 7.86 kg/(s ·m).
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Fig. 12. From left to right, magenta hand soap, light-lavender body soap, and aqua-green shampoo poured onto a hand with the identified viscosity parameters

η = 0.22, 4.74, and 5.82 kg/(s ·m), respectively.

viscous fluids in novel scenarios, generating fluid behaviors visually

consistent to the example data.

There are several promising future research directions. In the real

world, there are many different types of fluid-like materials, such as

non-Newtonian fluids and granular materials, which require more

complex constitutive laws to simulate. In addition, material parame-

ters for fluids can spatially and temporally vary, e.g., due to heat and

stress. It would be interesting to develop a parameter identification

framework that can take into account more sophisticated physics

and property change. Another important work is to simultaneously

identify multiple physical parameters, such as the dynamic viscosity

and surface tension coefficient, and this is a challenging problem

because the influences of the physical parameters to the fluid be-

haviors are not necessarily orthogonal, thus making it difficult to

individually identify these parameters. While we found that the

identification is still possible with the increased computational cost

according to our early experiments, it is difficult to quantitatively

evaluate the efficacy, and we leave this issue as our future work.

In general, it is difficult to obtain meaningful and reliable fluid

data with simple computer vision techniques, such as background

subtraction, from normal videos available in public. Thus, it would

be necessary to explore some descriptors for fluids which can be

reliably used for the difference measurements. We would also like to

investigate advanced computer vision techniques and deep learning,

to extract fluid information. Along this direction, we believe that

learning-based approaches for video analysis and processing are

promising.
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