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Abstract

A didactical revisitation of the so-called tumbling toast problem is presented
here. The numerical solution of the related Newton’s equations has been found
in the space domain, without resorting to the complete time-based law of
motion, with a considerable reduction of the mathematical complexity of the
problem. This could allow the effect of the different physical mechanisms ruling
the overall dynamics to be appreciated in a more transparent way, even by
undergraduates. Moreover, the availability from the literature of experimental
investigations carried out on tumbling toast allows us to propose different
theoretical models of growing complexity in order to show the corresponding
improvement of the agreement between theory and observation.

1. Introduction

The study of the so-called tumbling toast (TT) problem was first proposed in 1995 in a paper

by Matthews [1], which raised some questions about the interaction between Newton’s and

Murphy’s laws [2–5]. Six years after [1] appeared, Bacon et al [6] proposed an experimental

investigation of the TT problem in which the reproducibility features were guaranteed by the

use, in place of real bread-made toast, of a plywood board of comparable size. Moreover,

the use of software packages aimed at facilitating the analysis of video recordings and at

numerically solving complex (nonlinear) differential equations allowed the authors of [6] (i)

to experimentally determine the free-fall angular velocity of the board tumbling off the edge

of a table for different values of the overhang of the toast’s centre of mass (CM henceforth)

and (ii) to quantitatively compare their experiment with the time-domain numerical solution

of Newton’s equations. In particular, an important outcome of their investigation was that, in

order to explain in a correct way the butter-side up or down behaviour of the TT, it is mandatory

to take into account, in the theoretical model, the slipping of the toast surface with respect to

the edge of the table before leaving it. To this end, a theoretical model of the TT, in which

both the presence of static and kinetic frictions and the thickness of the board were taken into

account, was used by numerically solving the corresponding Newton’s equations in the time

domain [6].
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It is not so usual to find nontrivial problems of physics to allow undergraduate students to

grasp how subsequent refinements of a theoretical model improve agreement with observation.

Our opinion is that the TT problem, in the form presented in [6], could be one of them. In

fact, on one hand, there is the availability of accurate experimental measurements, and on

the other hand, there is the presence of several different physical mechanisms, all of which

contribute to the complex overall dynamics of the tumbling. This, in turn, could allow models

of growing complexity to be built up simply by sequentially including the effects of each of

the above-mentioned phenomena.

This paper aims to give a didactical presentation of this. In doing so, we keep the

analysis of the toast dynamics as simple as possible, in order to be grasped even by first-year

undergraduates. Moreover, we also wish to emphasize how quite often a complete solution of

Newton’s equations in the time domain is not required, but rather the overall mathematical

complexity (even of a nontrivial problem) can be considerably reduced by using some tricks

that should become part of the ‘box of tools’ [7] of any physics student. We start with the

analysis of the toast motion within the hypothesis that any kind of friction between the board

surface and the table edge could be neglected. Such an assumption, although rather unrealistic,

leads to a highly simplified theoretical model. At the same time, the extreme simplicity of

the model serves to introduce in a transparent way to students the mathematical techniques

employed to avoid resorting to the time-domain solution. We shall see that, despite the several

approximations, such a model is nevertheless able to provide theoretical predictions that,

although far from showing an acceptable quantitative agreement with the experimental results,

should allow the student to grasp the key point in the TT dynamics, i.e. the slipping of the

board over the table edge [6]. Equipped with the basic tools, such a simplified model will

then be subsequently refined, by adding sequentially the static and the dynamic friction at the

table edge, and showing from time to time the corresponding improvement of the agreement

with the experimental results, up to the most complete model which also includes the nonzero

thickness of the board. We believe that the approach pursued in this paper could also be used

to analyse other similar physical problems, for instance that addressed by Bacon regarding

balls rolling out from edges [8].

2. Theoretical analysis

2.1. The simplest model: dynamics in the absence of friction

We start our study with the simplest situation depicted in figure 1, in which the only forces

acting on the board are the weight Mg and the normal reaction at the table edge N. The toast

will be assumed to be an infinitely thin square of mass M and size L.

Newton’s law for the CM of the board reads

Mg + N = M aCM, (1)

where aCM denotes the CM acceleration. On introducing the polar coordinates of CM (r, ϕ),

equation (1) splits into the system of two scalar equations

g sin ϕ = r̈ − r ϕ̇2,

g cos ϕ − n = r ϕ̈ + 2 ṙ ϕ̇,
(2)

where dots denote temporal derivatives and n = N/M denotes the modulus of the edge reaction

normalized to the board mass1. The torque–angular momentum equation written with respect

1 This is equivalent to set M = 1 in suitable units.
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Figure 1. Geometry for the simplest model.

Figure 2. Energy conservation law.

to the axis passing through the CM and parallel to the table edge gives

N gr cos ϕ = L̇CM. (3)

Here, LCM denotes the z-component of the angular momentum with respect to the CM, which,

in the limit of an infinitely thin board, can be written as

LCM = M a2 ϕ̇, (4)

where a = L/2
√

3. On substituting equation (4) into equation (3), we have

n =
a2

r
ϕ̈. (5)

Equations (2) and (5) constitute a system with respect to the three unknowns of the problem,

namely r(t), ϕ(t) and the modulus of the reaction n(t), all of them thought of as functions

of the time t. In particular, on imposing the initial conditions r(0) = d, ṙ(0) = 0, ϕ(0) = 0,

and ϕ̇(0) = 0, the above differential system can be solved in the time domain, thus providing

the complete law of motion of the board. However, as mentioned in the introduction, for the

scope of the present problem such information turns out to be somewhat redundant. In fact, we

recall that the task is to estimate the angular velocity of the board after it left the table edge,

as a function of the initial overhang d, as experimentally reported in table I of [6]. Within the

present model, the total absence of friction suggests the use the energy conservation law that,

with reference to figure 2, should be written between state ‘1’ (corresponding to the board at
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rest in the initial horizontal position) and state ‘2’, corresponding to a typical position (r, ϕ).

On using König’s theorem, we shall first write the total kinetic energy of the board as follows:

1

2
ṙ2 +

1

2
(a2 + r2)ϕ̇2, (6)

so that, on assuming the initial total mechanical energy to be zero, the energy conservation

law gives

2 gr sin ϕ = ṙ2 + (a2 + r2) ϕ̇2. (7)

For simplicity, it is worth rewriting all equations that constitutes the final system:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

g sin ϕ = r̈ − r ϕ̇2,

g cos ϕ − n = r ϕ̈ + 2 ṙ ϕ̇,

nr = a2 ϕ̈,

2 gr sin ϕ = ṙ2 + (a2 + r2) ϕ̇2.

(8)

Since n has to vanish when the board leaves the table, we have from the third equation that the

condition ϕ̈ = 0 must be fulfilled. To avoid solving the whole system (8) in the time domain,

it is possible to use the trick employed by Sommerfeld to determine the shape of Keplerian

orbits [9]. Loosely speaking, since the temporal information about the board motion is not

required, what we have to do is to eliminate the variable t among the differential equations in

(8) before solving them. From a mere technical viewpoint, the use of polar coordinates helps

such an elimination, which can be easily achieved by using the ‘chain rule’ for derivative, i.e.

by letting2

d

dt
=

dϕ

dt

d

dϕ
= ϕ̇

d

dϕ
, (9)

from which it follows at once that

ṙ = r′ ϕ̇,

r̈ = r′ ϕ̈ + r′′ ϕ̇2,
(10)

and where now r is thought of as a function of ϕ, so that r′ and r′′ denotes the first derivative

and the second derivative of r with respect to ϕ, respectively. In other terms, we are going

to search for the CM trajectory in space. Substituting equation (10) into the first, second and

fourth equations of (8) leads to the following system:
⎧

⎪

⎨

⎪

⎩

g sin ϕ = r′ϕ̈ + (r′′ − r)ϕ̇2,

gr cos ϕ =
(

a2 + r2
)

ϕ̈ + 2 r r′ ϕ̇2,

2 gr sin ϕ =
(

a2 + r2 + r′2) ϕ̇2,

(11)

where equation (5) was used to eliminate n. Now we have to formally eliminate ϕ̇2 and ϕ̈

between the above equations in order to obtain a single differential equation for the function

r = r(ϕ), which gives the polar equation of the CM trajectory. From the third equation of

(11), we have

ϕ̇2 =
2 gr sin ϕ

a2 + r2 + r′2 , (12)

while from the first and second equations, e.g., on using Kramer rule,

ϕ̇2 = g
sin ϕ (a2 + r2) − rr′ cos ϕ

(a2 + r2)(r′′ − r) − 2rr′2 . (13)

2 Recently, the same trick was used to give a solution of the ‘boat time’ problem proposed in the Feynman Lectures

of Physics website (http://feynmanlectures.info/).
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Figure 3. Behaviour of the normalized quantity r/a as a function of ϕ for L = 102 mm and for an

overhang d = 100 mm. Friction is totally absent.

Finally, on comparing equations (12) and (13), after rearranging, the following nonlinear

differential equation for the function r = r(ϕ) is obtained:

r′′ =
3r

2
+

a2

2r
−

r′

2 tan ϕ

(

1 +
r′2

a2 + r2

)

+
r′2

2r

a2 + 5r2

a2 + r2
, (14)

which has to be solved together with the initial conditions

r(0) = d, r′(0) = 0. (15)

It must be appreciated that, although we have no hope to analytically solve the above Cauchy

problem, from a conceptual point of view the use of the energy conservation law and the

elimination of the time information have considerably reduced the mathematical complexity

of the problem. Once the CM trajectory has been obtained, the angle ϕd corresponding to the

board departure can be obtained by the second equation of (11), written for ϕ̈ = 0, together

with equation (12), which leads to the equation

tan ϕd =
a2 + r2

d + r′2
d

4rdr′
d

, (16)

where rd = r(ϕd ) and r′
d = r′(ϕd ). To give an example of practical implementation of the

above algorithm, consider the case of L = 102 mm and d = 100 mm. The size of the board

coincides with that used in the experiment of [6]. The differential equation (14) has been

solved with the numerical integrator implemented in the symbolic language Mathematica

through the standard command NDSOlve. Figure 3 shows the behaviour of the normalized

quantity r/a as a function of the angle ϕ. To determine the angle ϕd , figure 4 shows the rhs

(solid curve) and the lhs (dotted curve) of equation (16) as a function of the angle ϕ. The

abscissa of the intersection point gives ϕd . It could also be worth giving a pictorial description

of the CM trajectory in the real space. This is shown in figure 5 together with the initial and

final positions of the board (thick lines). Once the detach angle ϕd has been determined, the

corresponding angular velocity ϕ̇d can be directly obtained by using, for instance, equation

(12). It should be noted that the shape of the CM trajectory does not depend on the gravity

acceleration g and that a universal, dimensionless, version of it can be obtained on dividing

both members of equation (14) by a and using the normalized version d/a of the overhang.

Figure 6 shows a first comparison between the experimentally found values of the final angular
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Figure 4. Graphical solution of equation (16) for the case of figure 3. ϕd ≃ 0.713 rad.

Figure 5. Pictorial representation of the CM trajectory (dashed curve) for the case of figure 3. The

thick lines depict the thin board at the initial position and when it leaves the edge.

velocity ϕ̇d (black dots), extracted from table I of [6], together with the theoretical predictions

provided by the above-described simplest model. Although the agreement is far from being

perfect, nevertheless the model is able to follow the general behaviour of ϕ̇d versus d. This, in

turn, confirms that the slipping of the toast plays the key role in grasping the whole dynamics,

as pointed out in [6].

2.2. A first refinement of the model: dynamics in the presence of static friction

Consider now the first refinement of the model, according to which the toast dynamics is

separated into two steps: (i) a pure rotation around the edge table, due to the presence of a

static friction between the board and the edge and (ii) a rotation+slipping action analogous to

that treated in the above-described simplest model. In other terms, we add the static friction

at the beginning and continue to neglect the kinetic friction in the second part. In this way,

the whole analysis carried out in the previous section will survive and equation (14) will keep

its validity, provided that the initial conditions be replaced by new, more appropriate values

obtained by taking into account the presence of the static friction during the first pure rotational
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Figure 6. Experimental angular velocity ϕ̇d (black dots with error bars) versus the initial overhang

d for the tumbling board used in [6], together with the theoretical predictions (solid curve) provided

by the simplest model of an infinitely thin square board in the absence of any kind of friction.

phase. In particular, since the rotation of the board in the presence of static friction has already

been investigated in [1], we limit ourselves to give only the values of the angle ϕ0 and of the

angular velocity ϕ̇0 corresponding to the start of the slipping phase of the board, which turn

out to be [1]

ϕ0 = arctan

(

µS

1 + 3 δ2

)

, (17)

and

ϕ̇2
0 = g

2 d

a2 + d2
sin ϕ0, (18)

respectively, where µS denotes the coefficient of static friction3. After this pure rotational

phase, the board continues to rotate but at the same time slips on the table edge in the

presence of a kinetic friction. However, at least for the moment, we approximate by neglecting

the latter friction in order to study the rotational/slipping dynamics of the toast according to

the previously developed model. In particular, since during the first phase the total mechanical

energy was conserved (static friction does not make any mechanical work on the board),

equation (14) is still valid and can be (numerically) solved together with the initial conditions

of equation (15), with ϕ0 given by equation (17).4 Figure 7 is the same as figure 6 but with the

effects of the static friction included. The value of µS used to generate the theoretical curve

has been set to 0.32, according to the experimental results obtained in [6]. On comparing

figures 6 and 7, the improvement with respect to the no-friction model is evident, although

the quantitative agreement between theory and experiment is still not so good. This is due

to neglecting the presence of the kinetic friction during the rotational/slipping phase. The

inclusion of its effect on the final values of the angular velocity will be the task in the next

section.

3 Equations (17) and (18) can be formally derived directly from equations (7) and (4) of [1], respectively. This is left
as a simple exercise for students.
4 Equation (18) will be used later, when the kinetic friction will be added to the model.
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Figure 7. The same as figure 6 but including the effects of the static friction in the first rotational

phase of the toast dynamics. Black dots: experimental angular velocity ϕ̇d from [6]; solid curve:

theoretical predictions provided by the model of an infinitely thin square board in the presence of

an initial static friction µS = 0.32 (see [6]).

Figure 8. Free-body diagram in the presence of kinetic friction.

2.3. Further refinement: including kinetic friction

The most important consequence of including the kinetic friction in the model is that during

such phase the total mechanical energy is no longer conserved. The free-body diagram is

shown in figure 8, where the presence of the kinetic friction is represented by the vector Fd

whose modulus is given by Fd = µd N, with µd being the kinetic friction coefficient. The

presence of Fd modifies the first equation of Newton’s equations given in (2), which will

replaced by

g sin ϕ − µd n = r̈ − rϕ̇2, (19)



On the tumbling toast problem 1415

the other being the same, together with the torque–angular momentum equation (5).

Accordingly, on taking equation (10) into account, after straightforward algebra, it is possible

to eliminate ϕ̈ among the equations to obtain the 2 × 2 system
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

g sin ϕ =
(

µd +
r r′

a2

)

n + (r′′ − r) ϕ̇2,

g cos ϕ =
(

1 +
r2

a2

)

n + 2 r′ ϕ̇2,

(20)

and on expressing n as a function of ϕ̇2,

n = g cos ϕ
a2

a2 + r2
−

2 a2 r′

a2 + r2
ϕ̇2, (21)

with some work we arrive to the differential equation

g

[

sin ϕ −
(

µd +
r r′

a2

)

a2

a2 + r2
cos ϕ

]

= ϕ̇2

[

r′′ − r −
2a2 r′

a2 + r2

(

µd +
r r′

a2

)]

. (22)

Due to the presence of ϕ̇2, the above equation is not enough to solve our problem and we need

another independent relationship. In the absence of kinetic friction such further relation was

provided by the energy conservation law that, in the present case, must be suitably modified

in order to take into account the mechanical work of the kinetic friction Fd [10]. In particular,

since for an infinitesimal displacement, say dr, of the CM such work is given by −µd n dr or,

on using ϕ as an independent variable, by −µd n r′ dϕ, the corresponding energy conservation

law in equation (7) leads to the differential equation

d[(r′2 + a2 + r2) ϕ̇2 − 2 gr sin ϕ] = −2µd n r′ dϕ, (23)

which, on taking equation (21) into account, after some algebra becomes

d

dϕ
[(r′2 + a2 + r2) ϕ̇2 − 2 gr sin ϕ] = 2µd r′ a2

a2 + r2
(2r′ϕ̇2 − gcos ϕ). (24)

Equations (22) and (24) constitute the final system of two differential equations with respect

to the unknown r and ϕ̇2, which can be solved together with the following initial conditions:
⎧

⎪

⎨

⎪

⎩

r(ϕ0) = d,

r′(ϕ0) = 0,

ϕ̇2(ϕ0) = ϕ̇2
0 ,

(25)

with ϕ̇2
0 being given by equation (18). To find the detach angle ϕd , it is sufficient to put into

equation (21) the condition n = 0, which gives at once

gcos ϕd = 2 r′
d ϕ̇2

d . (26)

On using the same numerical techniques employed in the previous sections, we can easily

calculate the values of the final angular velocities ϕ̇d as functions of the initial overhang

d. Before showing the results, it is worth pointing out the fact that solving the system of

equations (22) and (24) present at least a pair of advantages with respect to work in the time

domain, namely the degree of the system, which is 2+1 instead of 2+2 for the time domain, and

that one of the two outcomes is just the (squared) angular velocity required for the comparison

with the experimental data. The results are presented in figure 9, which shows the same results

as figures 6 and 7 but including the effect of kinetic friction during the slipping phase of the

toast dynamics. In particular, the coefficient of kinetic friction has been set to µd ≃ 0.24,

according to [6]. Now the agreement with the experimental data is acceptable for overhangs

greater than 1 cm, whereas for smaller values the theoretical model still does not work properly.
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Figure 9. The same as figure 7 but also including the effect of kinetic friction during the slipping

phase of the toast dynamics. Black dots: experimental angular velocity ϕ̇d from [6]; solid curve:

theoretical predictions provided by the model of an infinitely thin square board in the presence of

an initial static friction µS = 0.32 and a kinetic friction µd = 0.24 during the slipping phase (see

[6] for the corresponding numerical values).
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Figure 10. The same as figure 9 but also including the effect of the nonzero thickness of the toast.

Black dots: experimental angular velocity ϕ̇d from [6]; solid curve: theoretical predictions provided

by the model of an infinitely thin square board in the presence of an initial static friction µS = 0.32

and a kinetic friction µd = 0.24 during the slipping phase, with the thickness of the board set

being b = 13 mm (see [6] for the corresponding numerical values).

As suggested in [6], this is because the thickness of the board has been neglected. To complete

our analysis, but at the same time to avoid an excessive growth of the mathematical complexity

of the paper, the inclusion of a nonzero thickness (13 mm from [6]) has been confined to the

appendix, while the corresponding theoretical predictions are reported in figure 10, which now

show a nearly perfect agreement with the experimental measurements within the whole range

of variability of the overhang.
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3. Conclusion

The problem of tumbling toast has been reconsidered here as a good example of what could

be called a ‘laboratory exercise’ for undergraduate courses in mechanics. The most attractive

feature, in our opinion, of such problem is that the overall dynamics of the toast (from the start

to the instant at which it leaves the edge table) is ruled by several physical mechanisms (static

friction and kinetic friction, board thickness, etc) whose effects on the global behaviour of the

toast can be sequentially incorporated into theoretical models of growing complexity, starting

from the simplest one, i.e. a frictionless slipping of an infinitely thin homogeneous square

on an ideal edge. To show the students how to reduce the mathematical complexity of the

problem, Newton’s equations have been numerically solved (via computational platforms now

commercially available) in the ‘space domain’ by first eliminating the time variable through the

use of the energy conservation law and of the derivative ‘chain rule’ in a suitably chosen polar

reference frame. Finally, for each model considered, the agreement between the theoretical

predictions obtained for the values of the angular velocity of the board when it leaves the

table edge and the experimental values obtained in [6] has been shown, and in particular, its

continuous improvement with respect to the subsequent refinements of the theoretical model

has been evidenced.
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Appendix. A thick board

Figure A1 shows the geometry for a thick board.

In this case, the new parameter of the model is the angle β that is given by

sin β =
b

2r
, (A.1)

where b denotes the board thickness, which of course depends on r.5 From a physical viewpoint,

the most important difference with respect to the case of an infinitely thin board is that the

velocity of rotation of the CM does not coincide with the velocity of rotation of the board

around its CM, which is that measured in the experiments of [6]. This can be appreciated from

figure A1. The angular momentum LCM thus becomes

LCM = M a2 α̇, (A.2)

where a is now defined through

a =
L

2
√

3

√

1 +
b2

L2
(A.3)

and the angle α is given by

α = ϕ + β. (A.4)

Accordingly, on taking equation (A.1) into account, after some algebra it is easy to show

that [6]

α̇ = A ϕ̇ (A.5)

and

α̈ = A ϕ̈ + B ϕ̇2, (A.6)

5 To facilitate the comparison with [6], we use the same notation.
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Figure A1. Geometry for a thick board.

where

A = 1 −
r′

r
tan β,

B = tan β

(

r′2

r2

1 + cos2 β

cos2 β
−

r′′

r

)

.

(A.7)

Newton’s second law, applied to the CM, gives

g sin ϕ + n (sin β − µd cos β) = r′ ϕ̈ + (r′′ − r) ϕ̇2,

g cos ϕ − n (cos β + µd sin β) = r ϕ̈ + 2 r′ ϕ̇2,
(A.8)

while the torque–angular momentum equation becomes

n r (cos β + µd sin β) = α̈, (A.9)

which, thanks to equation (A.6), leads to

n =
a2

r

A ϕ̈ + B ϕ̇2

cos β + µd sin β
. (A.10)

Now, we proceed to the formal elimination of ϕ̈ from our equations. To this end, substitution

of equation (A.10) into the second equation of (A.8) gives

ϕ̈ =
gr cos ϕ − (a2B + 2rr′)ϕ̇2

r2 + a2A
, (A.11)

which, once inserted into equation (A.10), after some algebra leads to

n =
a2

r2 + a2A

A g cos ϕ + (Br − 2Ar′) ϕ̇2

cos β + µd sin β
. (A.12)

Then, on substituting equations (A.11) and A.12 into equation (A.8), after long but

straightforward algebra, we obtain the differential equation

g

[

sin ϕ −
(

ηd A +
r r′

a2

)

a2

a2 A + r2
cos ϕ

]

= ϕ̇2

[

r′′ − r −
2a2 r′

a2 + r2

(

ηd A +
r r′

a2

)

+
a2 B

a2 A + r2
(ηd r − r′)

]

, (A.13)

where6

ηd =
µd cos β − sin β

µd sin β + cos β
. (A.14)

6 It is a trivial, but didactically useful, algebraic exercise to verify that equation (A.13), written in the limit of β → 0,
coincides with equation (22).
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Figure A2. Geometry for a thick board in the rotational phase.

As far as the energy conservation law is concerned, we start from the geometry of figure A1

and note that equation (23) keeps its validity provided that it is modified as follows:

d[(r′2 + a2 A2 + r2) ϕ̇2 − 2 gr sin ϕ] = −2 µd n d(r cos β), (A.15)

or, on dividing both sides by dϕ,

d

dϕ
[(r′2 + a2 A2 + r2)ϕ̇2 − 2 gr sin ϕ] = − 2 µd n

d

dϕ
(r cos β). (A.16)

Equations (A.13) and (A.16) generalize the system of ordinary differential equations which

has to be solved to find the final angular velocity. To establish the initial conditions, i.e. the

values of the angle ϕ0 and the angular velocity ϕ̇0 at which the board begins to slip, the initial

pure rotational phase must be studied. This is characterized by a constant value, say β0, of the

angle β and by the replacement of the kinetic friction force by the static friction force, say

Fs, as depicted in figure A2. Newton’s equations and the torque–momentum equation (written

now with respect to the z-axis) become
⎧

⎪

⎨

⎪

⎩

g sin ϕ + n sin β0 − fs cos β0 = −r0 ϕ̇2

g cos ϕ − n cos β0 − fs sin β0 = r0 ϕ̈,

gr0 cos ϕ =
(

a2 + r2
0

)

ϕ̈,

(A.17)

where r0 =
√

d2 + b2/4. The energy-conservation law instead reads
(

a2 + r2
0

)

ϕ̇2 = 2 gr0 (sin β0 + sin ϕ), (A.18)

and on imposing that for ϕ = ϕ0, fs = µS n, after some algebra, the following transcendental

equation for the angle ϕ0 is obtained:

η cos ϕ0 =
(

1 +
3r2

0

a2

)

sin ϕ0 +
2r2

0

a2
sin β0, (A.19)

where

η =
µS cos β0 − sin β0

µS sin β0 + cos β0

. (A.20)

Equation (A.19) can be analytically solved with respect to the initial angle ϕ0, so that the

angular velocity ϕ̇0 can be derived directly by substitution into equation (A.18), which gives

ϕ̇2
0 =

2gr0

r2
0
+ a2

(sin β0 + sin ϕ0). (A.21)

Finally, it must be stressed that, in the case of a thick board, the final angular velocity to be

compared with the experimental data of [6] is no longer ϕ̇, which is the angular velocity of

the CM, but rather α̇ = A ϕ̇, which is the angular velocity of the board itself.
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