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Controlled by neurons, muscles are actuated to do mechanical work by 

converting chemical energy into mechanical power. Throughout history, humans have 

benefited from the muscle power of larger animals for farming, transportation and 

industry, the backbones of civilization. Although insects possess much higher muscle 

force to body mass compared to most large domesticated mammals, their direct 

locomotive uses have not been exploited reliably and reproducibly because of various 

challenges. This dissertation introduces the concept of Insect Machine Interfaces 

(IMI), a combination of microtechnology and neuroengineering, to control insect 

locomotion in a “biobotic” manner through the neuromuscular system.  

Early Metamorphosis Insertion Technology (EMIT) is a novel neurotechno-

logical pathway for integrating microelectronic sensing and actuation platforms on 

insects during metamorphosis. Metamorphic development not only provides an 

elegant and effective method of mechanically affixing artificial systems in or on an 

insect, but also enables a reliable bioelectrical interface without any observable short 

term adverse effect on insect flight behavior.  

As an application of biobotic control of insect locomotion, the first results 

towards flight navigation in moths were established in this research. We were able to 

demonstrate on-demand wing actuation and flight direction control using microprobes 

inserted through the EMIT procedure, with the goal of insect navigation and 

domestication. Using this procedure, we were able to alter and control the flight of 

tobacco hawkmoth Manduca sexta by actuating its flight muscles on tethered setups. 

Successful locomotion control for both land and air was also demonstrated for the first 



 

time with remotely transmitted radio signals through electrodes inserted in the 

antennal lobe and neck muscles of the insect following an EMIT procedure. Initiation 

and cessation of flight and walk, as well as yaw actuation were obtained on freely 

flying and walking lift assisted moths through joystick manipulation on a conventional 

model airplane remote controller. The concept of lift assisted flight allows for 

transporting tens of grams while potentially increasing the flight duration of the insect 

biobots, enabling a vast number of engineering applications in which such biobots can 

be deployed ranging from ecological monitoring to search-and-rescue missions during 

natural disasters.. 
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CHAPTER 1 

INTRODUCTION 

 1.1 Technology Development for Domestication of Insects  

As early as 15,000 BCE, humankind has partnered with several animal species 

through domestication [Mor 06], where different animal populations were brought 

under control for a wide range of reasons, primarily as beasts of burden.  Through 

animal domestication technologies using man-made devices such as horseshoes, 

whips, eye covers and genetic selection, equids, bovids and proboscideans could then 

be used for pack animals because of their large muscle volume and low resistance to 

domestication. Successful domestication is believed to be the basis for civilized 

societies, for domesticated animals allowed a stable agricultural society in which 

water could be pumped and the earth could be dug, thus supplanting the hunter-

gatherer lifestyle [Dia 97].  

Out of the many millions of animal species that could have been domesticated, 

only a few have been successfully used for their muscle power [Dia 02]. Interestingly, 

insects possess much higher muscle-force to body-mass compared to that of most 

large domesticated mammals. The insects’ larger muscle cross-sectional area with 

respect to muscle volume allows them to carry payloads equivalent or greater than 

their body weight, whereas the larger domesticated species can carry loads that are, at 

most, half of their body weight [Vog 01]. On the other hand, it is relatively difficult to 

control insect behavior by training the insects as lack of learning related components 

in their behavioral complexity and underlying neural substrates. In particular, insects 

lack the necessary experience-dependent memory storage installed [Men 07]. 

Therefore, the insect population has been domesticated only for producing valuable 

commodities and food such as silk and honey, in which domestication involves 
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understanding the social or physiological behavior of the population as a whole, rather 

than training individuals. As a result, their direct locomotive uses have not been 

exploited reliably and reproducibly.  

Furthermore, navigating large animals has been facilitated historically by man-

made devices such as horseshoes, reins and blinders. Until recently, navigation 

technology needed for smaller animals did not exist. Hence there is a lack of pathways 

to utilize insects for their load carrying capacities. Historically, insect-scale 

transportable payloads have also been hard to manufacture. Nevertheless, with 

continued miniaturization of information sensing, computing, processing and 

communication technologies, it now seems likely that insects can be navigated and be 

useful as mobile information gatherers.  In this sense, modern microelectronics and 

micro and nano electromechanical systems can provide the building blocks of insect 

domestication technology. This technology also allows for payloads with minuscule 

weights containing a dense amount of information storage and processing capacity and 

functional ability. However, using insects as “beasts of burden” has still not been an 

easy task, for mounting a payload to an insect is a challenging operation due to the  

insect’s size and surface morphology making the load attachment difficult. Moreover, 

navigating the insect to carry the payload from one specific point to another is even 

more challenging [Gub 45].  

1.2 Insect Machine Interfaces (IMI) 

Developments in micromachining technology have shifted the notion of 

implantable neuromotor prosthetics from science fiction to reality [Leb 06]. Tiny 

silicon and  polymer based neural electrodes have improved target localization by high 

density probing, enabling complex brain machine interfaces (BMIs). The highly 

miniaturized CMOS electronics on these micromachined probes have made possible a 
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number of complicated neurophysiological studies by coupling the state of art signal 

processing technologies to initiate and record advanced brain function [Naj 97, Wis 

05]. This technology provides techniques and tools that allow us to understand and 

generate robust electronically controlled muscle movement. Restoring impaired motor 

function has been possible in vertebrates like rabbits, cats, monkeys, and will 

eventually be useful for humans, by controlling their motor function using either 

external operator commands or the output of the subject’s own brain [Sco 06, Konig 

02]. Remarkably, these systems are already at the size scale (~5 mm3) to fit on an 

insect to build insect-machine-interfaces (IMI).  

For a reliable IMI, hybrid bio-electronic structures with insects need to be 

formed through which CMOS devices and MEMS structures are coupled with the 

insect’s natural sensors and actuators. Such interfaces may provide access for neural 

engineers to the neuromuscular system of the insect to study and thus control its 

sensory and behavioral physiology. These studies can eventually lead to solving many 

engineering challenges by understanding and manipulating the communication, and 

automatic navigation control systems of insects. One such cybernetic challenge is to 

control insect locomotion for carrying electronic payloads, as stated earlier. 

To achieve this, electrical excitation of neuromuscular systems can be used to 

guide insects to perform particular tasks using either routine-operant conditioning or 

classical conditioning techniques. Through implanted payloads and electrodes, 

individual insects can be exposed to remotely generated exterioceptive inputs so that 

behavioral responses can be produced. Furthermore, proprioceptive inputs can also be 

applied directly to the central or peripheral nervous system through artificial 

processors that are inserted in the tissue to generate motor output. These concepts have 

the potential to control insect’s behavior and benefit from their muscle power in a 
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“biobotic” manner by using artificial electronic systems in order to tap into the 

nervous and neuromuscular system of the insect [Woo 00]. 

1.3 An Application: Insect Based Micro-Air-Vehicles 

When centimeter scale Micro-Air-Vehicles (MAVs) or tiny fliers are 

considered, the power source required to fly them has limited their mission time and 

autonomy within the constraints of generating lift, powering flight control sensors and 

actuators, and avoiding collisions [Woo 00]. The design and manufactur ing of small-

scale moving parts and control algorithms to provide lift and sustainable flight control 

with collision avoidance ability are also prohibitively challenging for realizing reliable 

flight.  

For many decades, insect flight has fascinated robotic engineers who have 

confronted challenges in realizing human-made centimeter-scale flying machines. 

Researchers have greatly benefited from the study of these naturally occurring fliers 

by designing individual biomimetic structures as MAV parts [Tau 00]. Several 

technical approaches have been explored in order to combine these man-made 

propulsion and power components as a complete insect-mimetic small scale 

autonomous flying machine [Ell 99]. However, it has not been possible to reach the 

long mission duration and aerodynamic performance and maneuverability of insects 

because the artificial flight actuators are not sufficiently efficient, and the power and 

energy density of power sources are inadequate for insect- like flight [Ell 99, Wo 00]. 

The motivation behind this research has been the alternative idea of directly 

taming and domesticating insect locomotion in a “biobotic” manner to build hybrid 

bio-electro-mechanical MAVs by electrically controlling the  insect’s neuromuscular 

system through IMI [Tau 00]. Insects are self-powered. They operate with highly 

efficient flight muscle actuators and carry on-board flight control sensors as well as 
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collision avoidance systems to perform exquisite acrobatics. Therefore, the specific 

methodology developed in this study has broad implications not only for studying the 

insect-machine- interface, but also for the future use of navigated insects as hybrid 

MAVs. An application of such a hybrid platform is to convert insects into mobile 

environmental sensing systems. When instrumented with equipment to gather 

information for environmental sensing, such working animals can potentially assist 

humans to monitor the ecosystems that we share with them. 

1.4 Outline of the Dissertation 

A summary of the subsequent chapters is presented below as an outline of the 

presented work: Chapter 2 presents a novel surgical procedure, Early Metamorphosis 

Insertion Technology (EMIT), in which artificial implants are inserted in insects in the 

early stages of metamorphosis. Here, the implants are integrated within the structure 

and function of the insect body as a result of metamorphic development. The inserted 

microprobes emerge with the insect where the development of tissue around the 

electronics during pupal development allows mechanically stable and electrically 

reliable structures to couple to the insect.  Remarkably, the insects do not react 

adversely or otherwise to the inserted electronics in the pupal stage, as is true when the 

electrodes are inserted in the adult stages. Details of the metamorphosis formed 

bioelectric interface are also discussed. The electrical and mechanical characteristics 

of this novel bio-electronic interface are reported, which we believe would be adopted 

by many investigators exploring biological behavior in insects with negligible or 

minimal traumatic effects compared to those encountered when the probes are inserted 

in the adult stages. 

In Chapter 3, the anatomical, physiological and behavioral basics of the 

biological flight control system on insects are presented with a particular focus on 
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order Lepidoptera since the Manduca sexta was selected as the model insect. The key 

parts on the insect’s anatomy that can be actuated to direct the locomotion of the insect 

are highlighted. 

The development of the implantable electronic backpack, presented in Chapter 

4, is the key step to overcome the technological bottleneck towards the concept of 

insect cyborgs. The mechanical flexibility of the inserted electrodes is shown as an 

important variable  for reliability of the bio-electrical interface, and design rules on the 

flexibility of the inserted microsystem are presented. Novel methodologies to obtain 

low-cost electrodes are discussed. Also presented is an investigation of tissue-

microprobe biological and electrical compatibility. 

Chapter 5 reports various efforts towards the direct control of insect flight by 

manipulating various parts of the locomotory physiology via microprobes and 

electronics introduced through the Early Metamorphosis Insertion Technology 

(EMIT).  Moreover, the control of flight and gait were demonstrated for the first time 

with a radio controlled, lift-assisted, electrode- instrumented Manduca sexta by altering 

the direction of turn through applied neuromuscular pulses. Electrical pulsing of the 

targeted locations created flight and gait initiation, cessation and yaw maneuver on the 

insects whose locomotion was supported by the lifting force of helium balloons. 
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CHAPTER 2 

DEVELOPMENT OF SURGICAL TECHNIQUES 

2.1 Surgical Challenges with Adult Insects  

Previous researchers have attempted to attach electronic systems to insects for 

telemetric recording applications to understand how neural systems function during 

natural flight [Tau 00, Sho 04]. All of these attempts to attach or implant artificial 

systems in insects have posed many challenges involving the potential to disturb the 

natural flight of the insect. Superficially attached or surgically inserted artificial 

platforms on the adult insect are not reliable, for the inserted devices at this stage can 

shift, create mass imbalance, and damage tissue, especially when the inserted 

electronic probes and systems are rigid. Superficially attached or surgically inserted 

interface payloads also have the potential to be rejected both physiologically and 

behaviorally because they are perceived as foreign objects by the insect. Payloads can 

also move because of body induced inertial and stress forces, potentially causing tissue 

damage and experimental variability.  Moreover, the surgery required to precisely 

place electronics onto or into adult tissue accurately is challenging because the insect 

tissue and organ feature dimensions are comparable to the electronic neural or 

muscular probe dimensions. The exoskeleton is covered with the readily shed-able 

scales and piles that interfere with the surgical innervations. The hard outer cuticle is 

often difficult to penetrate without significant collateral tissue and probe damage. All 

these factors can make a surgical or superficial implantation operation of artificial 

structures to the insect a challenging and delicate task. Therefore, it is a challenge to 

implant electronic systems readily and reliably to modulate the insect’s flight without 

disturbing the insect’s own efficient flight mechanism.  
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Figure 1: Life Cycle of Manduca sexta 

2.2 Metamorphosis Based Surgery 

In order to solve the issues involved in externally attaching control and 

recording electronics to the insects, a novel implant insertion pathway based on 

metamorphic development will be described in this section. During metamorphic 

growth, holometabolic insects are transformed from the larval (or nymph) stage into 

an adult insect after passing through a pupal stage (Figure 1). In each of these steps, 

the insects undergo an extensive programmed degeneration and remodeling to be 

transformed from a slow crawling caterpillar to an adult with many complex 

behavioral capabilities [Duc 00, Lev 95]. It has been shown that insects can survive 

extreme parabiotic surgeries performed during the pupal stage, where surgery related 

wounds are rapidly repaired through histogenesis [Wil 48, Wil 61].  In light of this 

fact, a surgical procedure has been developed in which an electronic payload is 

inserted in the insect in the early stages of metamorphosis (Figure 2). As the 

developing tissue forms around it, the payload adoption by the body not only ensures a 

secure attachment to the insect, but it also enables a highly predictable electronic 
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interface to the insect’s sensorial, neural or muscular systems ; this procedure is known 

as “Early Metamorphosis Insertion Technology” (EMIT). Structures inserted in the 

pupae in the early stages of metamorphosis emerge as a part of the insect’s body; thus, 

by taking advantage of the rebuilding of the entire tissue system, insect cyborgs with a 

reliable biointerface are created. This hybrid structure enables a platform in which 

CMOS and MEMS can be used as sensors and actuators not only for insect flight 

control, but also for biological and environmental sensing. Using these techniques, it 

may be possible to control an insect’s flight actuators by the various excitable points 

on the insect’s neurophysiological system described in Chapter 3.  

  

 

Figure 2: The life-span of Manduca sexta during metamorphic development and the 
results of insertions done at various stages of metamorphosis 

2.3 Manduca sexta as a Model Insect 

EMIT can be applied to any insect/animal that undergoes metamorphic 

development (moths, butterflies, beetles, etc.) to create insect cyborgs with different 

locomotion capabilities. In this thesis, the Manduca sexta (tobacco hawkmoth) was 
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selected as the model insect. The Manduca sexta has a variety of traits that make such 

a wide range of applications for the inserted devices possible. 

Manduca sexta belongs to the family group of Sphingidae under the order 

Lepidoptera.  Easy to rear and maintain under laboratory conditions, Manduca sexta is 

known as the “lab rat” of insect physiology, where, both its neurophysiology and  

flight behavior dynamics have been well studied. When Manduca sexta goes through 

its complete metamorphosis, an extensive programmed degeneration and remodeling 

transforms it from a terrestrial pupae to an aerial adult (Figure 1). As will be described 

later, this metamorphic transformation is a required part of the EMIT procedure.  

The short duration of the pupal stage is a critical concern in obtaining a rapid 

experimental outcome. Manduca sexta has a relatively short pupal stage of three 

weeks. Therefore, a relatively shorter wait-time is required to obtain the emerged 

adults for further experimentation, compared to other insects undergoing complete 

metamorphosis. Manduca sexta has an adult lifetime of 2−3 weeks. With 

approximately 10cm of wing span, Manduca sexta can carry up to 1.5 grams of 

payload and fly miles without stopping. The relatively large size of the insect is also 

advantageous for easier target localization during the surgical insertion process. All 

these properties make Manduca sexta an ideal candidate for becoming an insect 

cyborg with implanted electronic payloads both to manipulate flight and to gather, 

store and transmit environmental information. Therefore, all the methodologies in this 

thesis will be described in considering the anatomical, physiological and behavioral 

properties of the Manduca sexta.  

2.3.1 Metamorphosis of Cuticle and Flight Muscles in Manduca sexta 

During metamorphic growth, the larval body goes through the intermediate 

stages of pupal development in which two layers of cuticle are formed. The epidermal 
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cells secrete the first set of cuticle (outer exocuticle) during molting, followed by the 

secretion of two more adjacent inner layers of cuticles: the endocuticle in the middle 

and in the innermost epicuticle. Later, the epicuticle is separated from the exocuticle 

by digestion of the endocuticle. The hardened epicuticle forms the exoskele ton and 

wings of the adult insect while the exocuticle goes through a complete transformation 

to form a hard shell around the pupa. Some of these exocuticle features are linear 

depressions that serve as mechanical stress points, where the exocuticle fractures 

during eclosion (emergence from the pupa). These features are known as the ecdysial 

lines in which the exocuticle is much thinner. These lines are mechanically 

programmed to split during eclosion, and can be visually easily differentiated from an 

external view. After fracture, the exocuticle is shed by means of peristaltic and partial 

rotary movements of the abdomen. An eclosion is triggered by the release of an 

eclosion hormone when the end cuticle is sufficiently digested [Klo 02]. 

The development of the cuticle is a key process of metamorphic growth in the 

EMIT design procedure. Although both cuticle layers are penetrated during the 

insertion process, the micro-implants are anchored to the body for mechanical stability 

at the epicuticle. This layer cannot be observed externally until the emergence of the 

adult insect from the pupa as it sheds its exocuticle. However, body parts such as 

wings, antenna and regions of the thorax (pro-, meso-, and metathorax) can be 

differentiated visually by means of the conformational overlays and intersegmental 

folds of the exocuticle during pupal development. Therefore, the first step of EMIT 

involves mapping the target location visually through observation of the structural 

conformations that form the exocuticle surface topology. For example, the surface 

features on the mesothoracic exocuticle provide target localization for insertions in the 

pupal flight muscles. Although the size of the insect larva changes dramatically before 

molting, the pupal stage growth is negligible because of scleratization of the inner and 
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outer cuticle.  Therefore, any shifting of the targeted location in the body secondary to 

metamorphic growth is not a concern. 

In lepidopteran metamorphosis, neuromuscular development occurs inside the 

thoracic body as the cuticle develops on the outside. The entire musculature system of 

the larva is degenerated and formed de novo in order to support newly emerging adult 

behaviors. Larval neurons required for adult behavior are retained and respecified 

throughout the metamorphosis process through the formation of new dendritic 

morphologies, whereas those lacking such adult functions are removed by 

programmed cell death [Lev 95]. During this intermediate stage between larva and 

adult, the aerodynamic body shape and appropriate sensory equipment are also formed 

to support adult aerial behaviors.  

The metamorphosis of Manduca sexta’s motor neuro-muscular system for 

flight starts with a molting process which is triggered by the secretion of ecdysteroids 

by larval prothoracic glands. This process retracts the terminals of motoneurons from 

the larval thoracic body wall muscles that will form specialized flight muscles after 

complete degeneration. The fibers of these degenerated muscles form the templates of 

thoracic flight muscles and the myoblasts start to migrate to these templates. The flight 

muscles continue to develop as they accumulate myoblasts on the fiber templates in 

which the number of accumulating myoblasts determines the eventual size of the adult 

muscle. After the onset of muscle formation, motoneuron terminals start to develop: 

first, the central dendrites are formed, followed by allometric growth of the finer 

branches in the periphery, in which new synaptic contacts are built with predetermined 

muscle fibers [Bay 01]. The proliferation of flight muscle motoneuron dendrites 

occurs during the last two thirds of the pupal stage [Duc 00]. 
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2.3.2 Results of Insertion of Various Structures to Thorax 

To describe the EMIT procedure and demonstrate its efficacy, four different 

structures were surgically implanted in the insect thorax at different stages of pupal 

development (Figure 3).  First, rectangular shaped dummy structures made out of 

silicon and polyimide substrate were inserted in the pupae (Figure 4, 5). The resulting 

emergence outcomes were analyzed as well as the surgical dissections (Figure 3). 

After the dummy structures were inserted, probes with electrically active pads were 

etched on these two substrates (silicon and polyimide) and inserted in the flight 

muscles of the insect (Figure 6, 7). In addition to the microfabrication based devices, 

standard wire electrodes were also inserted in the insect brain (Figure 8), for wire 

based actuation is the standard method to study invertebrate neural systems. Detailed 

information about the design and fabrication of these electrodes can be found in 

Chapter 4.     

 

Figure 3: Dissection planes performed on the insect (X: Lateral, Y: Longitudinal, Z: 
Transverse) 

 

For all the experiments in this study, Manduca sexta were obtained from a 

colony at Boyce Thompson Institute (Ithaca, New York), where they were reared on 

an artificial diet under a 17:7 hr light/dark cycle regimen at 26ºC and ~60% humidity. 

More information about the rearing protocol can be found in the Appendix. Both 

chronological and morphological criteria were used to record the developmental stage 
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for probe insertion. Different visual patterns on the pupal wings and thorax indicate 

the stage of metamorphic growth.   

 

 

Figure 4: A rectangular shaped dummy polyimide piece was inserted into pupae (A) 
and it emerged successfully with the adult (B). The longitudinal (E) and transverse (C) 
cross-sections show no sign of scarring or disturbance in the tissue. The scales were 
moved from the cuticle at the point of insertion (D) to observe the healing of the 
cuticle around the insert. 

For the surgical insertions, the insect pupae at various stages of metamorphic 

development were anesthetized through cold treatment (4ºC) for 10−15 minutes.  

Subsequently, mesothoracic incisions matching the size of the implant were made with 

a scalpel on the thoracic tergum (both on the epicuticle and exocuticle) of each insect. 

The implants were pushed into the muscle tissue through these incisions. Pupae were 

returned to the rearing incubator after the surgery to undergo normal metamorphic 

growth.  The insects with implanted structures were supported from the left and right 

body sides for at least 24 hours to prevent pupae rotatory movement, which could have  

shifted the probes before sealing occurred. No adhesive was used to seal the incisions.  

Instead, the cuticle was allowed to heal naturally, creating a biological seal. It had 

been discovered that artificial glues adhered the exocuticle to the epicuticle and 

prevented successful eclosion. All surgeries and dissections were performed according 

to high standards of ethical behavior. 
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Figure 5: A rectangular shaped dummy silicon piece was inserted into the pupae (A) 
and emerged successfully with the adult (B). The longitudinal (E) and  transverse (C) 
cross-sections show no sign of scarring or disturbance in the tissue. In (C) the silicon 
structure was pulled to see the tissue formed around the insert. The scales were moved 
from the cuticle at the point of insertion (D) to observe the healing of the cuticle 
around the insert. 

 

 

Figure 6: The flexible polyimide probe (see Chapter 4 for details) was inserted into 
pupae (A) and emerged with the adult successfully (B). The vertical (C) and transverse 
(D) cross-sections show no sign of scar or disturbance in the tissue. In (C), tissue 
growth was observed through the holes at the tip. The scales were moved from the 
cuticle at the point of insertion (E) to observe the healing of cuticle around the insert. 
The pictures were taken with SEM. (F) is the zoomed in version of dotted part in (E) 
where cuticle healing around the insert is shown.   
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Figure 7: Silicon probes (see Chapter 4 for details) were also inserted into the pupae 
(A) and emerged successfully with the adult (B). No dissections were performed due 
to the fragility of silicon probes. 
 

The optimal time for surgical insertion (Figure 2) was found to be seven days 

before emergence (Table 1).  For insertions earlier than seven days, the fluidity of the 

muscle precursor tissue prevented adequate sealing around the insert and decreased the 

survival rate when the tissue started leaking out.  When inserted later, very close to 

eclosion, the preformation of epicuticle and muscle fibers resulted in incomplete 

attachment and inefficient anchoring of the insert to the tissue.  In this case, the 

tethered implants detached easily during the experiments.  The insertion process also 

suffered in the buckling of the flexible microprobe when it was inserted in the stiffer 

muscle tissue.  Moreover, failure of the bioelectrical interface was more frequent with 

these late inserted probes because of similar failure mechanisms observed with the 

adult inserted microprobes. 

 

Table 1:  The Observed Survival Rates of the Surgeries for Different Stages of 
Insertions 

 

To increase the number of successful emergences during eclosion, an 

additional cracking procedure was found to be effective. This procedure involved 
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cracking the pupae 24 hours before emergence at a time when the exocuticle is quite 

brittle. At the end of the pupal stage, the cuticle cracks along the line formed by the 

surgical incisions and the insects eclode naturally with the implanted structures. The 

inserted structures can easily slip out following these cracks during eclosion and 

prevent possible blockages and obstructions on their way. Otherwise, inserted 

structures may pin the insect to the exocuticle, preventing successful emergence 

(Figure 9). In this way, the successful emergence rate was increased from an average  

of 17% to 90% for all the structures in which all of the moths had fully inflated wings.  

 

 

Figure 8:  Arrows indicating insertion points of the probe in the pupal stage (A) and on 
emerged adult insect (B). Probe adoption by the brain tissue (C) revealed with the 
removal of the vertex (front part of the head)  
 

The rectangular silicon and polyimide structures (Figure 4, 5) demonstrated 

similar surgical and emergence results. In the case of the shaped probes, the silicon 

substrate (Figure 7) caused a lower yield  of approximately 20% because of the 

fragility caused by its geometry (Figure 34). The breakage of the electrodes during 

insertion, emergence or flight control experiments resulted in unsuccessful 

experimental attempts. The rigid silicon structure also created a strain mismatch with 

the softer tissue surrounding it. As a result, silicon was not pursued further as a 

substrate material for this research. 
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Figure 9: An example of unsuccessful emergence where the insert avoided complete 
release of the cuticle 

2.3.3 Post-emergence Analysis of the Surgical Implants 

Potential probe compatibility failures for the emerged adults were inspected to 

improve the reliability of the implantation technology. These are described below in a 

chronic timeline. Post-experimental dissections were performed on the implanted 

insects (Figure 3), and the tissue response to the persistent presence of the probes was 

inspected. The immunoglobulins that mediate immune reactions in vertebrates are not 

actually present in insects. Instead, insects utilize humoral mechanisms to identify and 

fight with foreign objects [Cha 82]. Hemolymph penoloxidases were activated at the 

site of cuticular injury, and the proteins around the injury site were sclerotized to avoid 

invasion of microorganisms. Antibacterial hemolymph proteins such as hemolin were 

simultaneously produced to initiate an immune response against any possible 

infection. As a result, no inflammation or tissue disturbance was observed at the site of 

the dissection in any of the insects (Figure 4, 5, 6, 7, 8). 

Adverse tissue reactions to the microprobe insertion were not observed 

visually, probably because the microprobes were inserted in the soft gel- like pupal 

muscle tissue prior to the formation of flight muscle fibers.  The body flexure- induced 

strain mismatch between the probe and muscle tissue was also minimized because of 

the flexibility of the substrate when polyimide was used. Force was applied to the 

insect via a tether cable, which was sustained successfully at the hardened cuticle-
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microprobe interface as a result of the rigid matrix that was formed by cross- linked 

cuticular protein molecules around the implant (Figure 4D, 5D, 6E, 8C). Figure 6F 

shows how protein formation around the probe at the insertion points healed the 

cuticle, thereby sealing the points. Tissue adhesion to the microprobe and growth of 

muscle tissue through the holes at the tip further improved mechanical anchoring 

(Figure 6C). All these are indications of structural integration with the body tissue 

during metamorphosis.    

When the probes were extracted, as explained in the next section, a 

considerable amount of tissue was removed with the pupae- inserted probes, which 

indicates good anchoring and adoption of the tissue (Figure 10, 11).  In contrast, when 

probes were removed from the moths that had been implanted in the adult stage, very 

little tissue remained on the probe, indicating a weaker biomechanical interface and 

highlighting a key advantage of early pupae insertion. 

2.4 Comparison of the Mechanical Coupling In Vivo 

The extraction force of the probes was measured when the insect was 

anesthetized in order to assure the inertial movement handling of the added payloads 

by the mechanical coupling of the tissue-probe interface. After the successful 

emergence of the adult insect, the implants were pulled by a force transducer attached 

to a micromanipulator (Figure 10). The micromanipulator was programmed to pull the 

probe at a speed of 100µm/s. The increased force required for EMIT inserted probes 

indicates that the formation of tissue around the probe increases the reliability of the 

insert against the stresses encountered during flight. 
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Figure 10: Experimental set-up where implanted flexible probe was pulled from the 
insect using a force transducer connected to a computer for recording 

 

The typical force curve of the probe extraction from the insect can be seen in 

Figure 11. An average of approximately 2N was measured on this set-up as the 

required force for extracting the implant from the insect body, which indicates that an 

inertial acceleration of around 1000m/s2 (or ~200 g for an upside down flight) would 

need to be applied to the attached payload during flight as a result of sudden flight 

maneuvers.   

 

 
 

Figure 11: Typical force created with the pulling of the probe from the tissue. Pulling 
speed was 100µm/s. EMIT based insertion of probes provides a stronger mechanical 
attachment to the insect versus the adult stage insertion. 
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2.5 Comparison of Electrical Coupling In Vivo 

As shown in the previous section, implanting the stimulation electrodes during 

the pupal stages of metamorphosis improves the mechanical coupling with the insect, 

which allows the implants to “fuse” with its neuromechanical system. The goal for 

such a neuromuscular stimulation system is to induce local potential in the muscular 

tissue of the insect in order to evoke a biomechanical outcome towards controlling 

locomotion. To achieve this, collection of electrons temporally shaped into pulse 

streams are injected into the neuromuscular tissue through coupled metal electrodes. 

At the interface where electrodes meet tissue, the electronic current is converted into a 

current of charged ions in the electrolyte. This conversion is a sensitive 

electrochemical process that limits the ability to form a stable interface with the  

neuromuscular system of the insect. Furthermore, in the case of vertebrates, the 

reactive response of the cells and tissue has been hypothesized to be an underlying 

mechanism for inconsistent electrical interface performance [Sza 03]. Therefore, it is 

necessary to analyze the electrical performance of electrodes implanted in insects to 

obtain a stable interface which can be further optimized to achieve a maximal 

biomechanical outcome with a minimal amount of injected charge. 

2.5.1 In Vivo Electrochemical Characterization 

Electrochemical measurements enable real time monitoring of the implanted 

electrodes to follow the tissue-electrode interface in vivo as a function of time {Wei 

00]. This technique has the potential to shed light on the mechanisms at the insect 

tissue-electrode interface so that the charge transport for an enhanced biomechanical 

response can be facilitated. Below, electrochemical measurement methods were 

benefited from to monitor the tissue-electrode interface formed with the insect’s 

neuromuscular tissue. Specifically, the improvement in charge injection capability was 
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investigated when implantations were done during the pupal stages of metamorphosis 

following Early Metamorphosis Insertion Technology (EMIT) as explained earlier. 

The obtained results indicate enhancements in the bioelectrical coupling formed with 

the tissue in pupal insertions, in parallel to improvements in the biomechanical 

coupling as explained in the previous section. 

 To characterize the electrochemical properties of the insect tissue-electrode 

interface, a three-electrode measurement system was formed with the insect. For this, 

four 75 µm thick PEDOT-PSS coated gold wire electrodes were soldered on a printed 

circuit board. The wires were cut at the tip at an angle of approximately 60º with the 

axis of the electrode exposing a 75x140 µm2 elliptical gold surface. Details of the 

electrode preparation can be found in Chapter 4. To obtain a three-electrode 

measurement system, in addition to the PEDOT-PSS coated electrodes, a second PCB 

was prepared holding reference and counter electrodes (Figure 12). Both electrodes 

were constructed from 75 µm platinum wires. The reference electrode was coated with 

65 µm Teflon with 500 µm exposed at the tip and on the counter electrode was an 

uncoated bare wire. 

A Gamry Femtostat (FAS2) System was used for all the electrochemical 

characterizations. The impedance amplitude and phase were recorded through the 

electrochemical impedance spectroscopy (EIS) to characterize the charge transport 

mechanism. An alternating sinusoidal current with 25mV amplitude and zero bias 

voltage was used as the input signal. The impedance was recorded between 10Hz and 

100kHz at 10 discrete frequencies per decade. 

A cyclic voltammetry (CV) analysis was also performed to characterize the 

ability of the interface to store charge. A scan rate of 500mV/s was used to sweep the 

range between -0.6 and 0.7V vs. Pt to remain within the safe potential limits 

associated with hydrogen and oxygen evolution through electrolysis of water (water 
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window). The area under the CV curve was calculated as a qualitative indication of the 

amount of stored charge in the water window without any gas evolution.  

 

 

 

Figure 12: (A) Wire electrodes inserted to the pupae with exposed PCBs. Left-hand 
side PCB holds the four working electrodes whereas right-hand side PCB is for 
platinum reference and counter electrodes. (B) The post-metamorphosis emerged adult 
insect with the electrodes, (C) The reconstruction of the micro-computed tomography 
images reveal the relative locations of the electrodes in the insect where the tissue is 
semi-transparent. (D) shows the relative positions of the isolated electrodes from these 
reconstructions with electrode types as indicated. (F) Tip of the gold working 
electrodes are coated with PEDOT-PSS.  

 

To study how much of this charge was actually injected into the tissue through 

biphasic current pulses, voltage excursion studies were run in addition to the 

impedance and potentiodynamic studies explained above. Studying the  voltage 
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transients through the balanced biphasic pulse excursions allows one, in principle, to 

address the electrically safe charge injection limitations to keep the operation in the 

range in which no harmful reactant is released to the tissue. To generate charge 

balanced, cathodic first, biphasic pulse currents, a programmable stimulator was used 

(Multichannel Systems STG2008). Pulses of 2ms pulse width, 2% duty cycle and 

varying degrees of charges (between 0.2 and 20mC/cm2) were sent to the electrodes in 

vivo. The resulting waveforms were recorded using an oscilloscope and then post-

processed to calculate the actual voltage drop across the interface. This voltage was 

used to determine the maximum amount of charge that can be safely injected. The 

maximum permissible voltage drop across the interface was accepted to be -0.6V and 

0.7V, which is the limit for hydrolysis.      

2.5.2 Day by Day Change at the Interface 

The neuromuscular tissue of invertebrates, particularly insects, undergoes 

extensive change dur ing metamorphic growth as described in the previous chapter. 

During the metamorphosis, the entire musculature system is degenerated and formed 

de novo to be able to support newly emerging adult behaviors. When the 

neurostimulating electrodes are implanted in the insect during the pupal stages of 

metamorphosis, this change is also hypothetically projected to the interface formed 

between the tissue and electrode. 

To characterize this change, the measurements electrodes were implanted into 

the developing dorsolongitunal flight muscles of the pupae seven days before the 

emergence and emerged with the adult insects following the completion of the 

metamorphosis (Figure 12). A typical X-ray micro-CT (computed-tomography) image 

of the electrodes in the muscle tissue can also be seen in Figure 12. During this time, 

the changes occurring at the tissue-electrode interface were characterized through EIS 
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and compared to the interfaces formed as a result of the surgery in the adult stage. The 

initial impedance curves observed right after the implantation changed noticeably over 

time for both pupal and adult stage insertions during the course of the measurements. 

A representative data set for one electrode is provided (Figure 13), exhibiting the 

change in both magnitude and phase spectra at the right after the insertion and  the 

tenth day after the emergence of the adult insect. While the general shapes of the 

magnitude and phase curves look similar qualitatively, an upward shift was observed 

over time in the magnitude plots. The adult stage insertions caused an overall higher 

magnitude plot right after insertion, resulting in an average impedance magnitude of 

11.6 kΩ at 1kHz, compared to 4.1 kΩ for pupal stage insertion. The magnitude shift 

over time was also larger with these adult stage implanted electrodes, especially at the 

higher frequencies, which is indicative of a larger resistive change. On the other hand, 

the nonlinear trend of the change over frequency for the pupal stage inserted 

electrodes indicates a resistive-capacitive (RC) effect introduced to the system after 

implantation, which manifests itself over the time course of development. 

In vivo cyclic voltammetry allowed a qualitative assessment of the 

potentiodynamic charge storage behavior of the electrodes during the course of 

development. The CV data corresponding to the days presented in the EIS data are 

shown in Figure 13. The area under the CV curve, thus the value of store charged 

(Qstored), decreased by time, while the shape of the CV data hardly changed. Qstored 

values were decreased from 81 mC/cm2 to 51 mC/cm2 for pupal stage insertions, and 

from 50 mC/cm2 to 38 mC/cm2 for adult stage insertions. Hence, the change in CV 

can be correlated, especially with the increase in the low-frequency impedance, for the 

slower ramp waveform of CV concentrates more on the lower-frequency range. The 

CV data were supplemented by the voltage excursion studies comparing the degree of 

charge actually injected through the biphasic current pulses during development and 
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after emergence for both pupal and adult stage insertions (Figure 13). The voltage 

excursion data were in agreement with the CV data. 

 

 
 

Figure 13: Representative data comparing pupal and adult stage inserted electrodes 
one day after the surgery and 10th day after emergence. The top graphs shows the 
magnitude and phase plots obtained through Electrochemical Impedance 
Spectroscopy. The graphs in the middle display the cyclic voltammetry results. The 
voltage excursion obtained by sending biphasic current pulses to the pupal stage 
inserted electrodes is displayed on the bottom. A similar waveform was obtained for 
adult stage insertions (not displayed). The 0.6V polarization voltage was selected as 
the level to determine the safely injectable amount of charge (Qinj) as provided in the 
bottom right for both insertions. 
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To gain further insight into the change in the interface, day-by-day data of all 

the electrodes were presented starting 6 days before emergence until the 10th day after 

emergence (Figure 14). In neurophysiological experiments, it is a tradition to measure 

the impedance magnitude at 1kHz in order to set a quantitative standard for 

comparison across different electrodes and subjects as well as published literature 

because 1kHz is almost the fundamental frequency for action potentials. Therefore, the 

1kHz electrochemical impedance magnitude change during this time course can be 

seen in Figure 14. Over the course of the pupal stage development, a monotonic 

increase was observed in the average impedance magnitude at 1kHz. The degree of 

increase was much less than that when the insect emerged. The variation of values 

about the mean also decreased during emergence. Implanting the electrode during the 

adult stage caused a higher average 1kHz impedance which followed a similar trend of 

change with pupal stage electrodes after the emergence of the insect.  

The day-by-day changes in the amount of charge stored at the interface 

(Qstored) were extracted by using the area under the cyclic voltammetry curve and 

presented in Figure 14. The Qstored plots also exhibited a dramatic decrease over time 

in metamorphic development and emergence for implanted electrodes in both pupal 

and adult stages. The average charge storage was higher for pupal stage implants over 

the entire course by the final day of measurement with respect to the adult implants. 

Similar to the stored charge, the degree of charge injected through the charge-balanced 

biphasic pulses in the water window also decreased over time for both kinds of 

implantations while the pupal stage inserted electrodes were able to inject more 

charges into the tissue (Figure 14).   
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Figure 14: The averaged day by day data indicating the changes in the 1kHz 
impedance acquired through EIS (top), the amount of charge stored at the interface 
(Qstored) from CV plots and amount of safely injected charges (Q injected) with biphasic 
pulses obtained via voltage excursion studies. For all the graphs, the emergence occurs 
at the 6th day for both pupal and adult stage insertions.  

2.5.3 Modeling the Interface 

The day-by-day changes in the electrochemical analysis can be further 

analyzed by fitting them to an equivalent circuit model, and the extracted circuit 

parameters can be used to develop a coherent analytical progression between charge 

injection capability of electrodes and the metamorphic development of the insect. 
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These results potentially help us to explain the time course of the bioelectrical changes 

occurring at the interface and why pupal stage inserted electrodes consistently perform 

better.   

The equivalent circuit model (Figure 15) consists of two parts connected in 

series representing the pathway in which charge travels from the stimulation electrode 

to the ground electrode. The first part is the bioelectrical interface between the 

electrode and the tissue. The ability of the interface to transfer a charge to the tissue is 

represented by a resistive component (Rct). More charges are transferred to the tissue 

for given voltage as Rct decreases.  Some charges that are collected at the interface 

cannot be transferred to the tissue due to the limitations imposed by the 

electrochemical interactions, and this is represented by a double layer capacitance 

(Cdl). Because the porous surface of the electrode consists of conformations that are a 

nonuniform mixture of these two effects, a constant phase element is also added to the 

circuit that represents this nonideality. Once transferred to the tissue, the charge 

follows a pathway either through the cell bodies or through the extracellular fluid 

surrounding the cells. The cumulative influences of these two mediums (cell 

membrane and the intra/extra cellular fluid) can be modeled as a parallel RC 

component. We also added an intermediate resistive component between the tissue-

electrode interface and the tissue in order to model any encapsulation around the 

electrode formed by extracellular proteins. The additional resistances due to the  

interconnections are also embedded in this resistance. 

To provide further insights into the developmental mechanism responsible for 

the improvement in the pupal stage insertions, we analyzed how the equivalent circuit 

parameters evolve over time (Figure 16). The charge transfer resistance Rct 

consistently increased during metamorphic development. However, the degree of 

increase was reduced dramatically after emergence. The adult stage inserted electrodes 
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also underwent a similar increase during the subsequent days after emergence, but the 

initial resistance is much higher when compared to the pupal stage inserted electrodes.  

 

Figure 15: Cartoon illustration of the tissue penetration into the micro and nano scale 
indentations on the electrode for both pupal (top) and adult (bottom left) stage 
insertions. The equivalent circuit model representing the electrode-tissue interface, 
possible reactive responses of the tissue and the cumulative effect of extra/intra 
cellular resistances and cell membrane capacitances (bottom right) 
 

This may be due to the penetration of the extracellular fluid and cell bodies deep into 

the perforations and indentations on the electrode (Figure 15). During pupal 

development, the unformed flight muscle of the insect demonstrates a gel- like, thin 

fluidic structure. The viscosity of the metamorphic tissue-preform increases over time, 

finally forming the solid fibrous flight muscles which have a similar structure to the 

skeletal muscles of vertebrates [Duc 00].  When the electrodes are implanted during 

the early pupal stages, due to its low viscosity, unformed tissue can easily reach into 

the micro and nanometer sized gaps and voids on the surface of the microelectrode, 

thereby increasing the contact area. The surface area directly in contact with electrodes 

decreases as the developmental formation of the solid muscle tissue progresses; 

however, a larger area results compared to the adult stage inserted electrodes in the 
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already developed tissue. Consequently, in parallel to the increase in Rct,  Cdl also 

exhibits a noticeable decrease until emergence, which stabilizes with a negligible 

change after emergence. The adult stage surgeries, on the other hand, resulted in a 

lower Cdl.  Hypothetically, this may be because the  already formed tissue was not able 

to penetrate into the electrode as efficiently, which potentially caused pupal stage 

inserted electrodes to store and inject higher amount of charges with respect to the 

adult insertions.   

Figure 16 also illustrates that Rtissue (the resistance of the tissue and the 

extracellular fluid to charge flow) increased over time during metamorphic 

development, becoming well established after the insects emerged. A similar 

resistance value was observed after the surgical insertion in the adult stages, where the 

resistance value, again, stabilized around a constant value after emergence. This is 

consistent with the fact that the soft fluidic metamorphic tissue gets harder and more 

structured during pupal stage development. As the viscosity and the fibrosity of the 

tissue increases, the charge flowing from one electrode to the other experiences a more 

resistive pathway. This is because the fibrous tissue made of fatty acids and proteins 

has much higher resistance than the electrolytic interstitial fluid. Throughout this time, 

a gradual increase in Ctissue was also observed, which can be explained by the 

formation of new cell and muscle fiber membranes each consecutive day during 

development. The complete formation of the tissue caused the stability around a 

constant value of this parameter when emergence occurred. Pupal and adult stage 

values also followed a similar trend in this case.  
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Figure 16: The averaged day by day change in the equivalent circuit parameters: 
charge transfer resistance (Rct), double layer capacitance (Cdl), tissue related 
resistances capacitances (Rtissue, Ctissue) and resistance caused by the potential reactive 
response of the tissue and the cabling of the electrodes (Rencap). The emergence 
occurred at the 6th day for all the graphs for both pupal and adult stage insertions.  

 

Extensive studies in the literature demonstrate that an encapsulating tissue 

sheath forms surrounding implantations to the vertebrate brain, thereby affecting the 

electrochemical characteristics of the electrode-tissue coupling [Gri 94]. However, in 

the case of the invertebrate muscle tissue, the expected tissue reaction is less because 

the immunoglobulins and astroglia that mediate immune reactions in the vertebrate 

brain are not present in insects. Instead, humoral mechanisms  are utilized to identify 

and fight with foreign objects [Cha 82]. In accordance with this, we were not able to 

observe any inflammation or tissue disturbance at the sites of post experimental 

dissections in the persistent presence of the implanted electrodes as presented 

previously in Chapter 2. This observation was also confirmed with the extracted Rencap 
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values of adult stage insertions in this study (Figure 16), where the change in average 

values was negligible with respect to the orders of magnitude of higher values of 

change observed with vertebrate implantations [Gri 94, Joh 04]. The pupal stage 

insertions, on the other hand, caused a relatively lower Rencap where the surgery related 

tissue reactions were further minimized since the fluidic metamorphic tissue-preform 

was not disturbed mechanically by electrode insertions.  

As suggested in the literature [Bui 98], we also made the fundamental 

assumption during the fitting procedure that the constant phase element was an 

electrode property and did not change significantly over time due to metamorphic 

development. This assumption was also supported by the consistency of the parameter 

estimation results obtained at the end of each fitting exercise. It should also be noted 

that we have not observed an important difference in the spatial distribution of the 

electrochemical measurements within the given tissue segment of dorsolongitudinal 

muscles, which suggests that the factors causing the change were uniform in this tissue 

segment.    
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CHAPTER 3 

NEUROMUSCULAR SYSTEM OF LEPIDOPTERA 

Insects demonstrate stereotypical behaviors triggered by environmental stimuli 

during their daily activities of finding food, reproducing, and escaping from enemies. 

Various signals are detected by their olfactory chemoreceptors, mechanoreceptors and 

visual receptors that are distributed from the tip of the antenna to the base of the wing 

and converted into orderly contractions of specialized muscle groups. These 

genetically programmed actions are established through the sensor to muscle neural 

pathways directly hardwired by the genes to each other during metamorphosis [Klo 

02]. This hard wired sensorimotor reflex system acts like an autopilot inside the insect 

and helps it to obtain stable locomotion behavior (Figure 17). Therefore, control of 

certain behaviors, particularly locomotion, is possible and more straightforward with 

respect to the larger animals. Electronic systems can be implanted in insects to study 

and control their flight by actuating individual sensory, neural or muscular systems or 

combinations and also recording them (Figure 17). In this study, only the order of the  

Lepidoptera will be considered since Manduca sexta was chosen to be the model 

insect. However, the methodologies presented here could also be easily applied to 

other orders of invertebrates.  

3.1 Anatomy and Function of Lepidoptera Flight Muscles  

Unlike birds, insects do not have any built in muscles on the ir wings to 

maintain aerial locomotion. Instead, their specialized thoracic muscles move their 

wings, which function as passive airfoils. Sensory feedback is extensively used for 

both spatial orientation and flight stabilization by directly contracting the flight 

muscles. This contraction moves the wing through the movement of the thoracic 
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Figure 17: Functional and anatomical organization of insect’s autonomous flight 
control system 
 

exoskeleton and axillary sclerites, which are a number of mechanical joints at the 

points of articulation with the wing [Eat 71]. As a result, the aerodynamic forces 

creating propulsion are obtained. To modulate the flight maneuvers of the insect 

externally, these forces can be altered by manipulating the insect’s motor system, 

which may be possible by applying either exterioceptive inputs to the sensor organs or 

proprioceptive inputs to various muscle groups (Figure 17). In the context of this 

study, only specific muscles in the insect will be focused on, as outlined below. 

3.1.1 Indirect Flight Muscles 

Occupying most of the space in the thorax, the flight muscles alone can 

comprise as much as 65% of the total body mass in most flying insects [Cha 82] 

(Figure 18). The basic wing beat is realized by the morphological arrangement of the 

main flight powering dorsolongitudinal (dl) and the dorsoventral (dv) muscles, and 

their interaction with the wing articulation geometry [Eat 71]. The insertion of 

muscles in the exoskeleton can be seen in Figure 19. The small movement of 
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articulation at the proximal end of the wing is transformed into flapping in which the 

wings act like a lever and are pulled by dl and dv muscles.  

The contraction of the dl muscles changes the conformation of the thorax, causing the 

tergum to elevate and produce a downstroke by depressing the wing (Figure 20). 

When the dv muscles pull the tergum down, the wing is elevated to produce an 

upstroke. During straight flight, the dl and dv muscles contract approximately 180º out 

of phase. When turning, the dv muscles on the turning direction side are activated 

earlier with respect to the other side, which causes a reduction of thrust in that 

direction. Contraction of other smaller muscles that are attached directly into axillary 

sclerites, twist and rotate the wing to increase steering precision, as will be described 

later. However, the normal wing beats for turning and tilting can also be achieved by 

stimulating only the dl and dv muscles, without requiring actuation of other smaller 

flight muscle groups [Wen 02]. 

 

 

 

Figure 18: Dissection (A) of Manduca sexta thorax to identify dorsoventral (dv) and 
dorsolongitudinal (dl) flight power muscles as illustrated in (B). These muscles power 
and modulate the up- and down-stroke of Manduca sexta both for lift and steering. 
Dissection plane is in C.  
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Figure 19: Muscle fibers are connected to the thorax to pull the wings by changing the 
conformation of the thorax.  

 

Figure 20: The up and downstroke of the wings are obtained with out-of-phase 
contraction of the dl and dv muscle groups. 

3.1.2 Direct Flight Muscles 

The indirect flight muscles are attached to the exoskeleton, which changes the 

conformation of the thorax so the wings can be moved up and down, whereas the 

direct flight muscles are attached to the base of the wings to bend them directly. 

Turning behavior is obtained by asymmetric alterations in the angle of attack, wing 

movements and deformation of the wings created by these direct flight muscles in 

which the four motions of the wings required for complex maneuvers during flight are 

created: promotion, retraction, pronation and supination.  



 

38 

The most important and functional direct flight muscle is  the “third axillary 

muscle” connected to the third axillary sclerite (Figure 21). The contraction of these 

muscles causes the wings to bend independent ly of elevation and depression status as 

well as the remotion of the contralateral wing. This muscle group has three subunits 

(upper, middle, lower) located in the mesothorax, each innervated by a single 

motoneuron.  

 

 

Figure 21:  The third axillary sclerite of Manduca sexta in the wing base (A) with the 
relative position with respect to other axillary sclerites (B). Three subunits are attached 
to this sclerite forming third axillary muscles.    

The third axillary muscles were studied in the literature in terms of their effect 

in turning flight, especially the relationship of the phase differences with indirect 

flight muscles [Rhe 87, Kam 71, And 04, Wen 93, Bha 74]. It was found that the 

phase difference between the upper unit of the third axillary muscle and dv muscle 

retracts the wing during both up and down strokes [Rhe 87, Kam 71, Wen 93]. The 

third axillary muscle phase was also found to have a correlation with the pitch angle  

[And 04] by modulating the appropriate upstroke movement of the wing. Because the 
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stroke plane follows the pitch angle of the body, the generated force by indirect flight 

muscles propels the insect in the direction affected by the third axillary muscle.  

When turning towards the left, the left third axillary muscle is activated just 

before the dl muscle, creating a remotion. When making a right turn, on the other 

hand, the left third axillary muscle fires with the dl muscle. A similar phase relation 

was also observed symmetrically in the right third axillary muscle during a right and a 

left turn. The phase differences between the axillary muscles and  the indirect flight 

muscles also occurred in decapitated animals, and this suggests that the phase control 

is independent from the signals coming from the brain [Kam 71]. 

3.2 Physiology of Lepidoptera Flight Muscles 

The flight muscles of the Manduca sexta have a similar morphology with other 

skeletal muscles of invertebrates and vertebrates [Smi 84]. They are composed of 

muscle cells (fibers) that are made up of a number of myofibrils extending from one 

end to the other. Myofibrils contract through their molecular filaments that act like 

contractile machinery. Having two subgroups (thick filaments myosin and thin 

filaments actin), these filaments are highly ordered polymerized assemblies of protein 

molecules. In a typical myofibril, one can find repeated banded structures called 

sarcomeres, each of which is formed by overlapping myosin and actin filaments 

(Figure 22). 

All these structures are located in a kind of plasma known as sarcoplasm, 

which is similar to the cytoplasm of the cells. In the flight muscles of insects, each 

myosin filament is surrounded by six actin elements with an overall ratio of three to 

one (Figure 23). This muscle is different from the other skeletal muscles of the insect 

body in which 12 actin elements surround each myosin with a ratio of six to one [Smi 

84].  
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Figure 22: The longitudinal cross section of the skeletal muscle where the repeating 
bands of the sarcomere are indicated 

  

 

Figure 23: The transverse cross-section of Manduca sexta indirect flight muscles 
 

Muscle contractions occur as a result of the actin and myosin filaments sliding 

past each other, shortening the “I” and “H” bands to increase their area of overlap (see 

Figure 22 for band descriptions). When energized with ATP, the myosin forms a 

cross-bridge as it attaches to the actin (Figure 24). With an additional supply of ATP, 

the head of the myosin molecule undergoes a conformational change that propels  the 

actin-filament. The action ends with the detachment of the cross-bridge. This cycle 
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repeats many times during a regular contraction, each cycle resulting in a movement 

of 10nm for each head. With an average head number of 300 for each filament and a 

cycle speed of 5 times per second, filaments can be moved at a velocity of 15µm/s. 

Therefore, the myofibrils given in Figure 22 can be transformed from a fully extended 

to a fully contracted state in about one-tenth of a second [Cha 98, Guy 96].  The 

contraction action requires the existence of calcium (Ca++) as a catalyst to form the 

cross-bridge. Therefore, it is not enough to have ATP molecules present near the 

filaments. The contraction happens as a result of a necessary Ca++ supply which is 

triggered by the nerve innervations.  

 

 

Figure 24: The molecular elements of the cross-bridge structure propelling the 
filaments of the myofibril 

 

The sequential events that cause a muscle contraction can be summarized as 

follows [Sie 00]: the action potential coming from the axon reaches the terminal and 

innervates the muscle cell. At the neuromuscular junction between the neuron and the 

muscle cell, acetylcholine (ACh) is secreted as a result of the action potential. The 

secreted ACh travels to the muscle membrane and binds to the proteins that turn on 

the ACh-gated ion channels that let sodium (Na+) ions in. The voltage change caused 

by an in-flush of Na+ ions triggers an action potential which not only travels along the 

myofibril membrane (with similar mechanisms to nerve membrane conduction) but 
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that also travels deeply into the myofibril, prompting the sarcoplasmic reticulum to 

release the Ca++ that it stores. With the presence of ATP, Ca++ triggers the formation 

of cross-bridges where the myosin head propels actin molecules. The Ca++ is rapidly 

pumped back to the sarcoplasmic reticulum via special Ca++ pumps that detach the 

cross-bridge, ending one cycle of the molecular machinery. 

This event series causes a twitch contraction on the muscle (Figure 25). The 

twitch contraction starts with a delay when Ca++ ions are released with the incoming 

action potentials to the neuromuscular junction. This duration takes 2−3ms. During 

this period, the contractile molecular machinery starts to operate, increasing tension 

whose increase continues until the Ca++ ions are pumped back to the sarcoplasmic 

reticulum, decreasing the number of formed cross-bridges. As a result, the generated 

tension decreases by time and the generated contractile activity is fully terminated, 

eventually.  

There are two ways to increase the created tension; first is spatial summation. 

Some nerve ends terminate more than one muscle fiber. In this case, the generated 

tensions from each fiber are summed up spatially and a larger tension is obtained. In 

the second case, each muscle fiber is excited rapidly before the preceding contraction 

is over. As a result, the next contraction is temporally added to the previous one, 

thereby increasing the generated force. As the frequency of the applied impulses 

increases, the contraction takes place in a smooth and continuous manner. This 

contraction is known as tetanus. The generated force saturates when all the actin-

myosin cross-bridges are formed (Figure 26). The time course of a twitch muscle 

contraction of a Manduca sexta flight muscle was studied by Tu et al. [Tu 04], which 

is shown in Figure 25. According to this graph, the application of pulses faster than 25 

Hz will cause temporal summation, and tetanus contraction will result in for 

frequencies in the order of 70Hz and faster.  
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Figure 25: Natural twitch response of the Manduca sexta dl muscle with incoming 
neuromuscular spikes (from [Tu 04]).   

 

 

Figure 26: The summation of twitch responses with increasing frequency where 
tetanus is observed with higher frequency spikes  

 

The tension obtained from the contraction is a function of the sarcomere 

length, for the strength of the contraction depends on the overlap area between the 

actin and myosin filaments. Maximum tension occurs when all the myosin heads are 

employed to form cross-bridges. This is demonstrated in Figure 27. When the 

myofibril is fully extended, the sarcomere is at its maximum length, and the actin-

myosin overlap is minimal. When a contraction begins, more overlap occurs, which 

results in greater tension. After all the myosin heads are deployed, the tension does not 

increase any more and stays constant. With additional contractions, as the sarcomere 
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length shortens, the “H” band (see Figure 22) disappears and two adjacent actin 

filaments start to overlap, breaking some of the pre-formed cross-bridges, which 

results in a decrease in the tension that was obtained, which decreases even more as a 

result of more jamming up of the adjacent actin filaments.  

 

 

Figure 27: Tension developed with contraction and relaxation of sarcomeres. Relative 
positions of actin and myosin filaments are given for different parts of the curve (A-D) 

 

The tension- length curve for a single muscle fiber can be seen in Figure 27. 

The whole muscle contains some connective tissue in addition to the many individual 

myofibrils; and there may be a slight time difference between myofibril contractions at 

different parts of the muscle. Despite these additional factors, the whole muscle 

exhibits a similar shape to the tension- length curve of the single myofibril with an 

expected increase in the dimensions.  

The tension length curve of Manduca sexta was characterized by Tu et al. [Tu 

04]. In their study, with the help of force transducers and translation stages, the 

researchers plotted the twitch length-tension curve of dl muscle in intact Manduca 

sexta. Their result shows that dl muscle has a steep and narrow shape more similar to 

vertebrate cardiac-muscle than to vertebrate skeletal muscle (Figure 28). The study 
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predicts several underlying mechanisms for this difference in function, one of which is 

the change in function of the troponin protein. Being connected to the actin filaments, 

troponin plays a role in the formation of an actin-myosin cross-bridge on the onset of 

the contraction. The other potential reason suggested in this study is the local 

extracellular concentration change around the muscle fibers. Regardless of the 

underlying factor, this property of the Manduca dl muscles allows large amplitude 

strains that can accommodate transient increases in wing stroke amplitude during 

turning behavior. The smaller basalar and axillary direct flight muscles change the 

conformation of the wing during rotation, which in turn creates a conformational 

change in the thorax, thereby affecting the strain of the  dl muscle (under normal 

conditions, during turning behavior, the dl muscle follows a firing pattern similar to 

non-turning behavior) . The dl muscle can easily restore the muscle length changes to 

their steady state value and absorb the turning behavior induced changes in the strain. 

This regulatory property for stabilizing movement in response to perturbations is 

supplied by trading off maximum power generation, for the dl operates on the 

ascending region of the tension- length curve, rather than the maximum point.  

 

 

Figure 28: The tension length curve of Manduca sexta dl muscle in comparison to the 
curves of vertebrate skeletal and cardiac muscle (modified from [Tu 04]) 
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3.3 Thermoregulation in Metamorphic Insects 

Muscle actuation in insects is most efficient at a muscle temperature of 39°C 

as the catalyst driven biochemical pathways for sugar breakdown are optimized in this 

temperature range. The elevated in-flight thoracic temperature results in higher 

contraction frequency and power output per stroke required for take-off and flight. 

Therefore, a precursor heat is produced by the “shivering” of the insects, depending on 

the external temperature. The insect temperature quickly reaches thermal equilibrium 

according to the environment, for these insects are heterothermic endotherms [Hei 74, 

May 79]. In order to warm up, moths generate heat by shivering, vibrating their wings 

through small angles of 5−20°. The thoracic-temperature increases at a rate of 

3−4°C/min by in-phase contraction of the flight muscles working against each other 

(Figure 29). In contrast, these muscles activate 180° out  of phase during flight, 

resulting in lift. The rest of the body stays close to the ambient temperature at all times 

[Hei 71]. Thoracic heat production is not regulated during the warm-up period and is 

turned on completely to minimize the duration when the moving insect can be easily 

detected by predators but are not yet able to fly [Hei 71].  

 

Figure 29: Illustrated action potentials and muscle twitch force at the flight power 
muscles and the resulting motor output at the wings. Compare preflight warm-up 
waveform here with flight at waveforms in Figure 20. Shivering and flight occur as a 
result of the phase difference between dl and dv. 
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3.4 Sensorimotor System of the Lepidoptera 

As described at the beginning of this chapter, a moth’s flight control system 

consists of sensory organs (antenna, eyes, hair cell, campaniform sensilla, and so on) 

connected either directly to the brain or to the ganglia distributed along the body 

(Figure 17). Environmental signals received through these sensors are converted into 

actions through the neuromuscular system after having being processed by the ganglia. 

The antennal and optical lobes are two of the most significant parts of the flight 

control systems during natural flight. It is well established that during natural flight, 

moths sense various chemical stimuli through their antennal lobe  that are released 

from food sources, host plants or the opposite sex [Klo 97], and they maneuver 

towards targeted locations [Wil 91]. Using their compound eyes, they detect visual 

cues and use the related visual information to find and recognize these targets to direct 

their locomotion.  

Moths feed by locating flowers and hovering in front of them, both of which 

are guided by visual cues and colors. It has been found that Lepidoptera can sense 

three colors (blue, green and ultraviolet) with the pigments in their eyes. Moreover, 

nocturnal moths can also use color in addition to achromatic, intensity related cues for 

detecting flowers at intensities as low as the starlight level [Cut 95]. The color vision 

of the insect is integrated into its functional flight control algorithms in order to 

achieve a stable flight through different steps of neuromuscular processing. The 

detected and perceived optical signals are evaluated via the sensory-motor integration 

centers which give commands to flight actuators to modulate the kinematics of flight. 

[Kel 03] 



 

48 

 

Figure 30: The anatomical description of Manduca sexta head-neck anatomy 
 

The eyes of the insect are part of the exoskeleton. They can only be moved 

with the head to stabilize the retinal image of the target. During yaw, for example, the 

contraction of wing muscles is preceded by the rotation of the head towards the aimed 

direction through the neck muscles. Therefore, the neck muscles are directly involved 

in motion directivity [Mil 92] by controlling the motion of the compound eyes. In 

conclusion, the antennal and optical lobes (thus the neck muscles) are the two key 

sensory systems used to control locomotion in the hawkmoth Manduca sexta (Figure 

30). 
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CHAPTER 4 

DEVELOPMENT OF IMPLANTABLE TECHNOLOGIES 

Developing the technological platforms to be embedded on the insect proposes 

important engineering challenges. These platforms can be analyzed under two 

categories: the probes that are implanted in the insect tissue to form an electrochemical 

bridge between the insect’s biological processes and the electronic control systems, 

and the backpack holding the electronic communications and control systems that will 

form a bridge between the probes and the external world. For the aforementioned 

categories, the most important engineering challenges are (1) the efficient injection of 

the charges in the insect’s tissue to obtain a biomechanical output and (2) the low-

power and low-weight systems payloads that will operate for an extended duration 

with minimal loading effects on locomotion performance that result from the induced 

weight.   

4.1 Microprobe Design and Fabrication  

The microprobe is the interface between the neuromuscular system of the 

insect and the control electronics that couple the two media to each other. Stimulating 

probes are composed of three layers: substrate, metal and insulation. The choice of 

each of these materials can be optimized considering three criteria: biocompatibility, 

electrode tissue impedance and ease/cost of microfabrication. The geometrical design 

of the stimulation probe along with the material selection for the actuation pads and 

the substrate material are the most important concerns in the design and manufacturing 

process. In this chapter, different materials were analyzed and compared for optimal 

operation. The geometrical properties of the probes were determined according to the 

tissue segment targeted.     
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4.1.1 Selection of the Electrode Material  

The optimized selection of the electrode metal for stimulation is an important 

criterion in the design process. In the selection process, factors such as charge 

injection capacity, electrochemical stability and mechanical strength should be 

considered. The metal selected for the electrode should be able to deliver current at 

high charge densities without corroding or dissolving in saline solution.  

The interface between the electrode metal and the tissue (considered to be an 

electrolyte in this case) is critical in terms of stimulation performance. The electrode-

solution interface and related interfacial processes can be modeled using electrical 

equivalent circuit elements, which can be characterized using Electronic Impedance 

Spectroscopy (EIS) [Fra 05, McA 95] as will be described later in more detail. Cyclic 

Voltammetry (CV) traces can also be used to measure the amount of charge 

transferred during oxidation-reduction reactions as the electrode potential is swept.  

In a simplified and generalized model [Fra 05], the processes occurring at the 

electrode-electrolyte surface involve a double layer capacitance on the interface, 

charge transfer resistance, diffusion layer impedance and the resistance of the solution 

(Figure 31). This model may vary slightly depending on the electrode and electrolyte 

properties.  The double layer capacitance is formed as a result of the electrostatic 

interactions among the surface metal atoms and the electrolyte ions through the 

intermediate adsorbed polar molecules attached to the surface metal atoms. The 

amount of injected charge is a strong function of this capacitance. The  charge transfer 

resistance is caused by the electrochemical reactions that form the electrons that are 

injected in the electrolyte solution. The resistance depends on the reaction kinetics as 

well as the speed with which reactants and products diffuse towards and away from 

the electrode. The diffusion of ions in this way causes an impedance known as the  

Wardburg impedance [War 01], which can be modeled as a constant phase shift 
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element. This specific impedance is low for higher frequencies because ion 

concentration changes occur very quickly and diffusion is not as significant. However, 

when the applied frequency is low, diffusion is more effective, for the reactants and 

products diffuse further. Finally, the charge transfer from anode to cathode through the 

solution creates an electrolyte resistance. Depending on how bad a conductor the 

electrolyte is, this electrolyte resistance becomes more significant. A reference 

electrode located very close to the double layer capacitance can be used to measure 

and compensate for this parasitic resistance.  

 

 

Figure 31: Electrical model of the electrode-electrolyte interface with the physical 
components of the model indicated.  

 

The operation of the electrode-electrolyte interface and charge transfer is 

electrochemical and highly dependent on the applied voltage (Figure 32). Until a limit 

potential is reached, the interface acts capacitively and applied voltage only collects 

more ions in the interface (no electrochemical reactions are observed). The double 

layer capacitance is parallel to the charge injection resistance which is in series with 

the Wardburg impedance (Figure 31). When no Faradic current is present, the charge 

injection resistance becomes infinite and the double layer capacitance dominates. 

When the voltages go beyond the limit of Faradic current, the double layer capacitance 
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becomes infinite and the charges are transferred from the metal to the solution.  This 

electrical current results from electrochemical reactions. If the reaction is not 

reversible, the current causes metal electrode corrosion, so the performance is 

adversely affected; hence, it is unsafe to operate outside the capacitive region for 

corroding electrodes such as iron. Ideally, to solve this problem, non-corroding metals 

should be used for stimulation purposes like Au, Pt and IrOx (Table 2).  

 

 

 

Figure 32: Diagram illustrating the concept of capacitive and charge injection regions 
for varying electrode voltages 

 

 

Table 2: Charge Injection Capacities for Different Metals in the Literature 
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Gold electrodes have been used initially for the experiments presented here 

because it is easily accessible and is a soft/flexible metal. Being a noble metal,  the 

following reactions were listed for the gold in electrochemical equilibrium in aqueous 

media [Pou 66].    

2Au+3H2O ⇔ Au2O3+6H++6e- Eo=1.457V 

Au2O3+H2O ⇔  2AuO2+2H++2e- Eo=2.630V 

where both products and reactants are solids. Therefore, the redox reaction has a 

reversible behavior. 

It has been shown that other chemically inert metals like Pt, Ti, Ir or their 

compounds (such as IrOx) have a higher charge injection capacity with respect to Au 

(Table 2). Although the deposition of Au over the copper is easier, and an integrated 

part of the processing technology for flexible printed circuit technology (as will be 

explained in the next section), these noble metals can also be electroplated over gold 

for performance comparison, which will be discussed in Section 4.1.4. Beyond in vitro 

characterization, an in vivo electrochemical analysis should also be performed to 

quantify the injected charges for these materials because in vivo processes [Car 92] 

such as fluid circulation inside the insect may improve performance.  

4.1.2 Wire Electrodes  

Wire electrodes have been used for a long time to stimulate and record from 

the neuromuscular system of invertebrates before the semiconductor micromachining 

became a convenient methodology for fabricating microscale electrodes. For the 

studies done for this dissertation, these probes were also used due to the easy 

availability and low fabrication cost. Silver and gold were used as the electrode 

materials because of low flexural rigidity, proven biocompatibility, low cost and 

commercial availability [Rou 01]. Although their chemical stability that prevents 
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electrolytic corrosion is not as good as some other noble  metals (such as titanium or 

iridium), silver and gold were more advantageous because the softness and flexibility 

of the wires were required to match the forces encountered mechanically during the 

mechanical motion of the insect’s body parts.  

 

 

Figure 33: Wire electrodes soldered on a PCB (A) and bent into a three-dimensional 
shape 

 

To build the wire probes, either gold or silver (typical diameter 200µm, A-M 

Systems, Inc.) was soldered on a miniature FR-4 board (typical size 4x5mm2) and the 

wires were bent to a three-dimensional shape depending on the targeted location 

(Figure 33). The shaping of the wire electrodes for the antennal lobe and the neck 

muscle insertion, for example, can be seen in Figure 8. Printed-circuit-board 

fabrication techniques were used to manufacture the stimulation probe body seen in 

this figure. The copper traces (200µm) on the probe body match a FFC (Flat Flex 

Cable) connector (Figure 61). This connector joins the control electronics to the wire 

electrodes through the PCB body of the stimulation probe. The probe was designed to 

be surgically inserted in the insect during the pupal stage, where the wire electrodes 

are located in the tissue and the FR-4 board body is exposed outside (Figure 8). The 

control electronics are connected to the probe after the adult insect emerges (Figure 

73). Therefore, the same control electronics can be re-used several times for different 
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insects. The actual probes, though, are disposed with the insects when they complete 

their adult life cycle. The typical weight of the manufactured probe with soldered wire 

electrodes was in the order of 30–50mg.  

4.1.3 Microfabricated Electrodes 

In the last fifteen years, micromachining technology enhanced neuroprosthetics 

research by providing tiny electrical probes that can be implanted into neural tissue  

and thus create and measure evoked functions. Moreover, recent advancements in 

silicon technology, in particular CMOS based electronics, have enabled large amounts 

of information processing and storage capability to fit into mm3  volumes. Combined 

together, these technological achievements in micromachining and CMOS have great 

potential to study insect locomotion in a more detailed way with respect to the wire 

electrodes.   

In order to electrically excite the neuromuscular cells at the targeted locations, 

all-silicon rigid microprobes were initially fabricated. These microprobes provide 

higher resolution stimulation by scaling electrode size (down to hundreds of 

nanometers) enabling higher density probing. A sample probe can be seen in Figure 34 

for targeting the indirect flight muscles located in the dorsal thorax of the Manduca 

sexta (Figure 35) As explained in Chapter 2, these probes failed either during insertion 

or during the actual experiments because of their inherent fragility, yielding around 

10% successful insertions.  

Therefore, probe flexibility is a required design property for wider probe 

geometries, for the probe has the potential to affect the biomechanics of muscle 

contraction. Conversely, muscle contraction can cause impact and high strain damage 

to the probe. Moreover, the fragility of the probes, while handling during insertion and 

throughout the experiments, is less of a concern with a flexible probe. Polyimide was 
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chosen as the base material instead of silicon because the mechanical flexibility of 

polyimide could be approximated to the flexural rigidity of the insect muscles, thereby 

minimizing the relative stress between the implant and the tissue. For an all-silicon 

probe with a similar stiffness to the flexible probe, a silicon thickness of 30 µm would 

be required. Furthermore, polyimide is a proven biocompatible material for long term 

chronic neuroprosthetic applications [Rou 01].  

 

 

Figure 34: The flexible polyimide probe (A) and silicon probe (B). The close-up view 
of the tip in (C) with the hole for muscle growth, and the flexibility of the probe (D) 
are also given.  

 

Polyimide based microelectrodes can be fabricated through conventional 

cleanroom processing, and a typical process flow can be found in Rou et al. [Rou 01]. 

However, a novel way of fabricating polyimide based electrodes is described in the 

next section. All the polyimide based microprobes used in the context of this study 

were fabricated following this novel procedure.  
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4.1.4 Flexible Printed Circuit Board based Electrodes 

EMIT surgical procedure may benefit extensively from metamorphic 

development to couple electrically active microelectrodes into the electrically 

responsive tissue of the insect to enable an automated mass production line as 

mentioned earlier in Chapter 2. The cost of microfabricating the metamorphosis-

implanted electrodes on this production line is an important concern, especially for the 

biobotic applications in which a large number of insects would be employed.  

 

 

Figure 35:  Cross-section (A) and illustrated diagram (B) of the flight muscles 
powering the up- and down-stroke of Manduca sexta wings.  The tips of the flexible 
probe in (A) target the flight powering muscles dl and dv (B).  SEM image of the 
flexible-probe tip with expanded image of the ground and actuation pads can be seen 
in (C).  The hole at the tip is opened for muscle growth. 

 

Nevertheless, the design constraints of these invertebrate microelectrodes can 

be relaxed with respect to vertebrate microelectrodes, potentially enabling a reduction 

in the cost of fabrication. The vertebrate implantable microelectrodes are often 

designed to be used in chronic long term applications. Hence, the endurance of these 
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devices is an important design criterion during the implantation process and against 

the long term reactions from the biochemical agents that exist in biological tissue. In 

addition, higher sensitivity and specificity are required to obtain a successful outcome 

from the sophisticated vertebrate motor control system. Therefore, implantable 

stimulating microelectrodes are often produced following high-cost conventional thin-

film processing technologies derived from semiconductor fabrication techniques 

[Wise 05]. And even then, the lifetime and reliability of microelectrodes is limited in 

vertebrate systems. On the other hand, immunoreaction is less of an issue for  

invertebrates, and the lifespan of the electrodes in tissue is relatively unimportant due 

to the shorter lifespan of insects. Moreover, depending on the electrical actuation and 

movement control scheme, lower spatial resolution for site specificity can be tolerated 

due to the relatively less intricate insect motor control system of the insect. This 

difference allows the use of larger pad areas with further inter-pad distance. These 

features provide the opportunity to fabricate implantable electrodes for invertebrates 

using highly standardized and commonly available flexible printed circuit board (flex-

PCB) technologies where the production cost is optimized for high volume markets. 

Polyimide, the most common substrate for flex-PCB production, is a biocompatible 

material [Rou 01]. Polyimide substrates are often covered with copper as a conductive 

layer, which can easily be further coated with gold for biocompatibility as a standard 

part of the flex-PCB production line. In addition to these, the electrode size (50 to 

100µm on each side) and density (50 to 100µm pitch size) obtained with conventional 

flex-PCB technologies can be successfully accommodated for insect-biobot 

applications. Using this manufacturing technology, the circuit components for control 

and data handling can also be directly assembled on the non-rigid microelectrode 

substrate, which is beneficial for reducing the size, power, and noise of the electronics.  
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So far, the use of flex-PCB technology in neural engineering research has been 

limited to manufacturing flexible interconnects between silicon-based microelectrode 

arrays and control microelectronics [Nor 02]. This technology also has been 

incorporated in in-vitro culture dishes to “record” the electrical activity of cultured 

cardiac-cells [Gio 06]. The fabrication and use of implantable in-vivo flex-PCB 

“stimulation” electrodes, however, require further analysis and modification.  

The study described below reports on the improvement of electrical and 

electrochemical behavior of flex-PCB probes that will be used as implantable insect 

tissue stimulation microelectrodes. We present the in vitro characterization of 

morphological, electrical, and electrochemical properties of these surface 

modifications through scanning electron microscopy, cyclic voltammetry, 

electrochemical impedance spectroscopy, and current-pulse induced voltage 

excursions in phosphate buffered saline solutions. 

4.1.4.1 Flexible Printed Circuit Board Fabrication.  

The design layout  of the stimulation electrodes were prepared using 

Target3001 software (Ing.-Buero FRIEDRICH, Germany) and the generated Gerber 

files were submitted to Hughes Circuits, Inc. (San Marcos, CA, USA) for production. 

For the substrate, 100µm (~4-mil) thick Kapton® polyimide film (AP8545, DuPontTM
, 

DE, USA) was used, which was laminated with 17µm (0.5oz/ft2) thick copper on one 

side only. The thinnest available material was 50µm (2-mil) thick polyimide (AP7156, 

DuPontTM) with 0.25oz/ft2 of copper. The patterned traces on the copper layer were 

coated with 20µm of liquid photo imageable (LPI) soldermask (PSR 900 FXT, Taiyo, 

Inc., NV, USA) for insulation. The minimum allowable width of the traces was 75µm 

(~3-mil) with a line-to- line spacing of 75µm. Next, openings were made in the 

insulation through laser etching where the stimulation pads are desired. The laser 

etching of LPI enables insulation openings in the order of 75µm (3-mil) on each side.  
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The outer shape of the electrodes was defined using laser milling to fit into a FFC 

(flat-flex-connector). The copper pads were coated using both electroplated (1.5µm 

thick, ASTM B 488 type III Grade A) and electroless nickel - immersion gold (ENIG) 

(125nm and 2.5µm thickness respectively) for biocompability. We used pads of two 

sizes: 75×150µm2 and 100×100µm2. The fabrication layers can be seen in Figure 36. 

In some probes, we used orifices that had been opened at the tip with laser drilling. 

The tissue growing through these orifices provides mechanical anchoring in in-vivo 

setups, but that is outside the scope of this dissertation. 

 

 

Figure 36: Cross-section diagram of the one- layer flexible circuit board electrode 
(*immersion gold, ** electroplated gold). Nickel-phosphorus layer is only for 
immersion plating (ENIG).  

4.1.4.2 Cleaning of the Laser Ablation.  

Laser drilling and milling have been widely used to define miniature structures 

on flex PCB substrates. Carbon rich debris has been known to occur as a result of 

photothermal and photochemical mechanisms leading to the ablation of the polymer 

[Cou 98]. To remove the laser ablation debris, we cleaned the received probes 

ultrasonically by soaking them in acetone and then isopropyl alcohol (IPA) baths, each 

for 10 minutes. Acetone and IPA are known to affect the molecular orientation of the 

polyimide; meanwhile, the ultrasonic pulsing has the potential to irritate the deposited 

gold surface, so we performed an electrochemical analysis to characterize the effect of 

the probe cleaning procedure. 
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After the flex-PCB was manufactured, the electrodes had an extensive amount 

of surface debris, especially at the laser patterned tips as a result of carbonization and 

charring of the ablated organic material (Figure 37). It is very likely that such 

contamination adversely affects the biocompatibility of the substrate and the 

electrochemical quality of the formed tissue-electrode coupling; therefore, it needs to 

be removed before tissue implantation. We were only able to “partia lly” remove the 

debris by just wiping the electrodes with acetone/alcohol or leaving the electrodes in 

acetone and alcohol overnight without applying any ultrasound, both of which are the 

most common cleaning techniques when implanting micromachined probes into 

tissue.  It has been reported in the literature that it is possible to dry-clean the debris 

through applying relatively weak laser pulses or plasma-ashing [Kor 88]. Because it is 

costly to have access to the required laser and plasma etcher, and both methods can 

deform the patterned shapes, wet-cleaning was used to clean the debris. The 

contaminated and cleaned probe tips after ultrasonic acetone and IPA cleaning can be 

seen in Figure 37. The EIS and CV measurements revealed that the ultrasonic cleaning 

process had an insignificant amount of degradation in the electrochemical 

performance of the gold surface (Figure 37). Therefore, it is safe and necessary to 

incorporate a final ultrasonic cleaning step in the production of the flex-PCB 

microelectrodes in order to use them as neuromuscular stimulation probes.  

It may also be possible to use the same laser for ablation to remove the debris. 

However, this requires adjusting the intensity of the laser pulses to be reapplied for 

cleaning after the ablation process, for it is often difficult to have access to and be able 

to modify the tools in the commercial foundries for research purposes; this option was 

not considered in the scope of this dissertation. 
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Figure 37: (a) Ablation debris caused by laser milling and drilling, scale bar: 100µm 
(b) SEM of contaminated gold pads (c,d) removal of the debris with ultrasonic 
cleaning. The stored charge and impedance at 1kHz is given at the bottom for pre- and 
post cleaning.  

4.1.4.3 Electrochemical Analysis Methods.  

The coatings on the electrodes were visually analyzed through optical 

microscopy (Olympus BHMLJ) and scanning electron microscopy (SEM, Zeiss 

Supra). The roughness parameters (roughness average and surface curtosis) were 

obtained using a Wyko NT9100 Optical Profiling System. The body of the electrodes 

was shaped to fit into an FFC connector, enabling external electrical connection for 

both electrochemical deposition and characterization. Gamry Femtostat (FAS2) was 

used for all the electrochemical characterizations where a 0.1M PBS buffer was used 

as the electrolyte. We used a 2.5×2.5 cm2 platinum sheet as the counter electrode and 

an Ag|AgCl electrode as the reference. The complex impedance was recorded through 

electrochemical impedance spectroscopy (EIS) to characterize the charge transport 

mechanism. An alternating sinusoidal current with a 25mV amplitude and zero bias 
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voltage was used as the input signal. The impedance was recorded between 10 Hz and 

100 kHz at 10 discrete frequencies per decade. The obtained graphs were fit to the 

equivalent circuit parameters for further analysis in which the circuit parameters were 

initially estimated using graphical cues. Then, EIS300 software (Gamry Instruments) 

was used to fit the impedance values iteratively to the equivalent circuit models to 

refine the circuit parameter estimates until a 1 to 10% difference was obtained 

between the measured and calculated impedances. 

The cyclic voltammetry (CV) curve reveals the ability of the interface to store 

the charge. A scan rate of 500mV/s was used to sweep the range between -0.6 and 

0.7V vs. Ag|AgCl to remain within the water window. The water window is defined 

through the safe potential limits associated with the hydrogen and oxygen evolution in 

electrolysis of water. The area under the CV curve was calculated as an indication of 

the amount of stored/injectable charge in the water window without any gas evolution.  

To be considered biocompatible, the charge needs to be transferred to the 

tissue either through reversible Faradic reactions or capacitive discharge where no new 

substance that may harm the tissue is produced. This situation limits the amount of 

voltage that can be created across the interface. Otherwise, electrical failure of the 

implant occurs either because of electrochemical damage to the electrode itself or 

because of the biological damage to the surrounding tissue caused by these 

electrochemical reaction products. Typically, a balanced charge biphasic waveform is 

used to prevent tissue damage at the electrode/tissue interface induced by irreversible 

electrochemical reactions. In this paradigm, the current is first passed in one direction, 

followed immediately by a second pulse which passes the current in the opposite 

direction using an equal amount of charge. It is difficult to extrapolate the results 

studied with slow potential sweep methods of cyclic voltammetry to the time scale of 

these pulsed potentials. On the other hand, studying the voltage transients through the 
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pulse excursions allows one, in principle, to address the electrically safe charge 

injection limitations to keep the operation in a range where no harmful reactant is 

released to the tissue. 

To generate charge balanced, cathodic first, biphasic pulse currents, a 

programmable stimulator was used (Multichannel Systems STG2008). Pulses with 

2ms pulse width, 2% duty cycle and charges between 0.2 and 20mC/cm2 were sent to 

the electrodes in the saline solution. The resulting waveforms were recorded using an 

oscilloscope and then post-processed to fit to the equivalent circuit parameters.  

4.1.4.4 Comparison of Gold Plating Techniques.  

Gold is the most common finish-coating for flex-PCBs for passivating the 

underlying copper pads to improve soldering or wire bonding performance. However, 

in this study, gold plating was required for biocompatibility in covering the copper, 

which is poisonous for tissue [Bre 10]. During flex-PCB production, the deposition of 

gold is generally achieved either through electrochemical (electroplating) or chemical 

(electroless or immersion plating) means. The electroplating of gold requires extra 

traces on the substrate to raise the potential of the pads during the deposition. These 

traces are preferably removed during the release of the microelectrodes. Therefore, 

electroless or immersion plating methods lead to simpler layouts and production 

because the voltage application is not necessary during deposition.  

On the other hand, one of the foremost concerns in electrically stimulating the 

neuro-muscular system is the injection of charges from electronically-conductive 

metal electrode into ionically conductive tissue. Therefore, a comparison is required of 

the electrochemical properties of these surfaces in order to evaluate charge injection 

efficiency. Electroplated gold was found to have more surface roughness and thus a 

larger electroactive surface area with respect to the immersion plated gold (Figure 38) 

probably due to the electrical field effects during the deposition. We also compared 
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these surfaces with the gold directly sputtered on the polyimide surface to compare the 

flex-PCB fabrication with conventional microfabrication methods. The directly 

sputtered gold had negligible roughness when compared to the flex-PCB based gold 

surfaces (Figure 38). We obtained the electrochemical impedance and cyclic 

voltammetry curves to characterize the effect of these surface topologies on the 

interfacial charge transfer characteristics for neural stimulation applications.  

One important point that needs to be mentioned is the poorness of the step 

coverage for the immersion plating method. Although the sidewalls of the copper pads 

were successfully covered with gold through electroplating, the side surfaces partially 

remained uncoated in the case of immersion plating (see the arrow in Figure 38). To 

solve this issue, the metal traces were designed to be larger than the 100×100µm2  

insulation openings covering them (Figure 39). By using this method, the corners were 

kept under the insulation and partial deposition was avoided at the cost of larger 

traces.  Moreover, copper traces can be patterned more precisely (down to 1µm 

resolution) with respect to the insulation openings (10-30µm resolution). Therefore, 

the variation in the pad size is more controllable when the insulation holes are wider 

than the metal traces, as in the case of electroplated gold (Figure 39). Another 

advantage for electroplating is that any desired thickness for the gold can be obtained, 

allowing for several microns of thickness for a safe coverage of the underlying copper. 

In contrast, immersion plating results in a difficult-to-control final thickness in the 

range of 100 to 200nm. 
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Figure 38: SEM and profilometer images of the sputtered (left), electroplated (middle) 
and immersion plated (right) gold surfaces; arrow indicating the partial plating at the 
corner of immersion plating.  The scale bars on the SEM indicate 20µm and bottom 
edge of the each profilometer image is 30µm. The bottom color bar for the 
profilometer shows the range of 0 to 3µm for right and middle images and 0 to 300nm 
for left image. The roughness average (in nm) and surface kurtosis, respectively, are 
provided for each image. 

 

 

Figure 39: Immersion gold plated electrodes with insulation openings larger (left) and 
smaller (right) than the underlying traces to avoid partial coverage of the corners. 
Scale bar shows 25µm.   

The analysis of the CV curves reveals that the plated gold, in both the 

immersion and electroplating processes, had a much higher number of stored charges 

available for injection than the sputtered gold (Figure 40). Furthermore, the 

electroplated gold had 1.3 times more charge with respect to the immersion plated 

gold. The EIS curves can be used to interpret these differences. For this purpose, the 

obtained EIS curves were satisfactorily fit to the equivalent circuit models in Figure 
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41 (Table 3). In the case of sputtered gold, the impedance was formed by the 

resistance of the electrolyte solution (Rs) and a series double layer capacitor (Cdl) 

formed at the relatively smooth gold-saline solution interface. The electroplating of 

gold over copper resulted in a similar equivalent circuit, but with a constant phase 

element (CPE) in parallel to the double layer capacitance. This CPE represents the 

non- ideality of the surface caused by increased roughness due to the underlying 

copper and the effects of the electrical fields during electroplating. In the case of 

immersion plating, covering the corners with an insulating layer introduced a 

capacitance (Cins) in series to the CPE, despite the fact that it solved the step coverage 

related problems. We also needed to add a parallel charge transfer resistance (Rct) to 

Cins to have a satisfactory model fit. This ohmic representation, modeled as resistance, 

can be interpreted as the leakage from the copper to the electrolyte solution as a result 

of the poorly coated parts of the copper surface with a relatively thinner gold layer. 

The similarities of recorded Rs values for all the surfaces validate the models. The 

higher roughness of electroplated gold causes a higher capacitance, and a smoother 

sputtered gold surface results in lower capacitance. The CPE has an impedance 

defined as (Yo(jw)n)-1 where lowness of Yo means more non-ideality. As n gets closer 

to 1, the non- ideality begins to demonstrate a more capacitive behavior. The increased 

roughness of the electroplated gold also matches the lower Yo value, where the non-

ideality is more capacitive with respect to the more resistive leaky immersion plated 

gold surface.  

The above analysis shows that the maximum amount of charge that can be 

capacitively discharged from the gold coated copper pads of flex-PCB probes is 3 to 4 

mC/cm2 in the water window. To obtain a higher amount of charge for neural 

stimulation, one needs to exceed the water window, which causes oxygen reduction, 

where the free radical products of oxygen are known to be harmful to the cellular 
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function in the long term [Mor 94]. Higher voltages also potentially expose poisonous 

copper to the tissue by dissolving/delaminating the gold coating. Therefore, direct use 

of flex-PCB as a stable and long-term stimulation electrode is not feasible for 

applications requiring more than 3 to 4 mC/cm2 to initiate a biomechanical response. 

 

 

Figure 40: Averaged amplitude and phase plots obtained through EIS (left) and 
averaged CV plots (right) for 100×100µm2 gold pads deposited through sputtering, 
electroplating and immersion plating. Inner table shows the area under each CV curve 
indicating the stored/injectable charge for each material. 

 

 

 

 

Figure 41: Equivalent circuit models for the electrolyte-metal interface on gold pads 
deposited through sputtering, electroplating and immersion plating 
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Table 3: The Averaged Values of the Model Parameters Extracted through Curve 
Fitting 

 
 

4.1.4.5 Improvement with Iridium Oxide and PEDOT Coating.  

To enhance the electrochemical properties of the flex-PCB electrodes, we 

electrodeposited iridium oxide and electropolymerized Poly(3,4-

ethylenedioxythiophene) poly(styrene-sulfonate) (PEDOT-PSS) over the gold coated 

electrodes to facilitate extra charge transfer across the interface. For the deposition of 

iridium oxide, we followed a recipe similar to [Yam 89]. Seventy-five milligrams of 

iridium(IV) chloride hydrate was dissolved in 50ml of deionized water by stirring for 

30 minutes at room temperature, which formed a black colored solution. Then, 0.5ml 

of 30% hydrogen peroxide solution were added to the solution and stirred for 10 

minutes, which turned the color of the solution to yellow. Adding 250mg of oxalic 

acid dihydrate turned the color of the solution blue, and that was stirred for another 10 

minutes. Small amounts of anhydrous potassium carbonate were slowly added to the 

solution, until a pH of 10.9 was obtained. The solution was kept at room temperature 

for 2 days to reach equilibrium before the deposition.  

PEDOT-PSS monomer solution was prepared by stirring 35mg of 3,4-

ethylenedioxythiophene (EDOT) with 250mg poly(styrenesulfonic acid sodium salt) 

in 25ml of deionized water for 2 hours until all of the globules of EDOT that had 

formed were dissolved [Cui 07]. All the chemicals for both solutions were purchased 

from Sigma Aldrich, Inc.  
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In both cases, flex-PCB electrodes were immersed in the solution to act as 

anodic working electrodes. The cathodic counter electrode was a 2.5×2.5cm2 platinum 

sheet. Galvonastatic charges of 40 and 100µA/mm2 were applied for 60 and 120 

seconds for iridium oxide and PEDOT-PSS respectively. The electrodes were rinsed 

with DI water and nitrogen-dried.  

Because the flex-PCB electrodes were manufactured using a commercial 

process and received as finished products, we were only able to pursue the use of wet 

deposition techniques that require no masks to coat the surface. For the coating 

material, we studied iridium oxide and PEDOT which are currently considered as the 

best performing conductive thin films to improve the charge transport efficiency from 

metal stimulating electrodes into the aqueous media [Cui 07]. Coating the electrodes 

with either material required a gold coated surface, rather than bare copper. The 

immersion gold was problematic during the coating of either material when there were 

poorly coated regions; therefore, electroplated gold was used for the starting surface.  

The optical and SEM images of the bare and coated surfaces can be found in 

Figure 42. The PEDOT-PSS facilitated a significant decrease in the impedance curve, 

much greater than the decrease achieved with iridium oxide (Figure 43). The decrease 

in the impedance indicates a lower charge transfer resistance and thus a more efficient 

electrical signal transduction from metal to the electrolyte. This result is also matched 

with a much higher number of injectable charges for PEDOT-PSS with respect to the 

iridium oxide as characterized by the cyclic voltammetry (Figure 43).  
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Figure 42: Electrodeposited iridium oxide (middle column) and electropolymerized 
PEDOT-PSS (right column) over the electroplated gold pad (left column) at three 
different scales. The top row shows the optical image of the pad (scale-bar:25µm) with 
a magnified view in the middle squares (each side 25µm). The higher resolution image 
was obtained through SEM as presented at the bottom (scale-bar: 2µm). 

 

 
 

Figure 43: Average improvements in the impedance and charge injection capacity with 
the deposition of iridium oxide and PEDOT-PSS over electroplated gold as 
characterized through EIS (left) and CV (right). Inner table shows the area under each 
CV curve indicating the stored/injectable charge for each material. 
 

The central feature of the improvement with PEDOT-PSS deposition was the 

introduction of ionic dopants with extra available mobile charge carriers, causing an 

enhanced charge transport into the electrolyte solution [Cui 07]. In the case of the 

iridium oxide coating, the electrochemical reaction involved a reversible conversion 

between redox states of Ir+3 and Ir+4 where the produced or dissipated charge was 
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balanced by the counterions in the electrolyte through a Faradic charge transfer 

mechanism [Mey 01]. The charge applied to the electronically conductive electrode 

developed a voltage at the interface and this forced iridium oxide to transfer to a 

higher valance by ejecting protons into the ionically conductive solution, which was 

reversed when the charge was removed from the surface towards the electrode. Also, 

for either material, additional surface irregularities are formed, increasing the 

roughness or porosity to alter the impedance properties [Cui 07, Mey 01]. 

Although the electrochemical properties were improved, exceeding the water 

window still causes irreversible reactions, where gas formation and soluble dissolution 

products occur. These products diffuse away to the tissue, promoting tissue damage, 

and cannot be converted back to the corresponding reactants. The voltage excursion 

studies of the sent biphasic pulses revealed that the amount of charge that can be 

safely injected to the tissue was in the order of 10mC/cm2 for PEDOT-PSS, whereas 

this charge was approximately 1mC/cm2 for iridium oxide and around 0.1mC/cm2 for 

the gold surface (Figure 44). More than these values, the charges caused a polarization 

voltage (Vp) higher than -0.6V, pushing the operation to unsafe regions outside the 

water window.  The polarization voltage was calculated by subtracting the voltage 

drop due to the solution resistance (Id×Rs where Id is induced drive current and Rs is 

the solution resistance) from the overall drive voltage (Vd) recorded at the electrode 

(Figure 45). PEDOT-PSS also caused a smaller residual voltage, which was an 

indication of the irreversible reactions occurring due to the non- ideality of the system. 

Ideally, the residual voltage should return to 0V at the end of the second pulse of the 

biphasic sequence. The residual, drive and polarization voltages (Figure 45) that were 

recorded for different injected charges are presented in Figure 46. 
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Figure 44: Voltage excursions obtained by passing biphasic current pulses (top) to the 
electode-electrolyte junction. The bottom graph demonstrates the drive voltage with 
the obtained -0.6V polarization voltage across each material. The required currents to 
obtain this voltage are given next to each material.  

 

 

 

 

 

Figure 45: (a) Equivalent circuit model used for fitting the voltage excursions (b) 
definitions of the polarization, drive and residual volt age on the voltage transient curve 
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Figure 46: Polarization, drive and residual voltages obtained for different biphasic 
current amplitudes applied to gold, iridium oxide and PEDOT-PSS surfaces.  

 

The voltage transients for these three surfaces can be thoroughly characterized 

and compared by fitting them into the equivalent circuit models (Figure 44), thus 

allowing formulation of general insights into the behavior of electrodes under pulsed 

conditions (Table 4). For PEDOT-PSS coating, the introduced ionic dopants with 

extra mobile charge carriers, in addition to the improved surface topology obtained 

during electropolymerization, provided more charge storage (higher Cdl) and an easier 

and more efficient charge transport (lower Rct) with respect to the additional reversible 

Faradic reactions introduced with the deposition of iridium oxide. For the given 

electrode size, the lower impedance obtained with the PEDOT-PSS at the metal 

electrolyte enables a lower stimulus voltage that will induce sufficient current to 

initiate a biomechanical response during neuromuscular stimulation applications. The 
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reduced stimulus voltage in turn decreases the size, supply voltage and power 

consumption of the electronic circuitry providing the stimulus pulses.  

 

Table 4: The Averaged Values of the Model Parameters Extracted from Voltage 
Excursion Curves 

 
 

In addition to this important advantage, the aqueous monomer solution for 

electropolymerization of PEDOT-PSS is much easier to prepare, can be stored longer 

and requires less expensive chemicals with respect to the electrodeposition solution of 

iridium oxide. Iridium oxide also required a narrow range of current to be applied 

during the electrodeposition, and was less tolerant to the deviations in these values. 

The deviations from the required value caused poor adherence to the underlying 

substrate where delamination was observed during later voltage or current pulsing, a 

phenomenon reported previously in the literature [Mey 01]. 

4.1.4.6 Characterization of Water Permeability.  

The long term stability of the electrodes against water permeability was 

evaluated under both charge injected and non- injected conditions. The electrodes were 

dipped into a saline solution for 40 days while the impedance at 1kHz and injectable 
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charge amount (through current pulsed voltage excursion analysis) were recorded on a 

daily basis. The electrodes were monitored in the absence and presence of charge 

transfer between the metal pad and the electrolyte solution. The charge was applied as 

cathodic first, charge balanced biphasic current pulses (150uC/cm2 for gold and 

2mC/cm2 and 10mC/cm2 for PEDOT-PSS) with 2ms of pulse width and 2% duty 

cycle.   

While PEDOT-PSS coating results in a much improved electrochemical 

performance, the lifetime of this inherently conductive polymer for neural recording 

and stimulation applications is still under investigation. Absorption of water by 

polyimide is also known to cause delamination between metal and polyimide as a 

result of the associated mechanical stresses [Xu 06]. The potential of PEDOT-PSS 

coated flex-PCB electrodes for neuromuscular stimulation was assessed with a 40-day 

saline solution dip test. When immersed in the saline solution, the average 1kHz 

impedance of the electrodeposited gold pads decreased from 21kΩ to 5kΩ in 5 days 

and were stabilized afterwards. The average injected charge to cause a polarization 

voltage of -0.6V was 150uC/cm2 on the first day and increased to 510uC/cm2 during 

the first 15 days and stabilized afterwards (Figure 47). The gold pads continuously 

pulsed with 150uC/cm2 biphasic pulses and followed a similar trend with nonpulsed 

pads but with a higher standard deviation. We also had some of the pads completely 

covered with polyimide as the insulation layer, thus without any insulation openings. 

The impedance of these pads was “open” during the course of the measurement and 

did not change at all. Therefore, the penetration of water through the polyimide 

insulation was not an issue for water dipped flex-PCB electrodes during the duration 

of the test. This may indicate that the improvement in the impedance and injectable 

charge by time was caused by the penetration of water into the exposed metal pads at 

nano- and micro-scales which potentially facilitated the charge transport mechanism.   
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The average impedance of the nonpulsed PEDOT-PSS coated electrodes also 

followed a decreasing trend (from 1.6 to 1.1 kΩ) which was stabilized around the 10th 

day. In the meantime, the injectable charge rose to 14.2 from 10 mC/cm2 in 4 day 

period (Figure 48). The continuously pulsed electrodes (with pulse amplitude of 2 

mC/cm2) followed a similar trend. We also observed this trend with the electrodes 

pulsed with 10 mC/cm2 pulses, however just until the 17th day, then, increasing the 

number of failed pads with each additional day. By the 40th day, all the pads (both 

pulsed and non-pulsed) had delaminated spots on the PEDOT-PSS coating where the 

average impedance was around 80 and 85kΩ and the average injectable charge was 

0.5 and 0.3 mC/cm2 for nonpulsed and pulsed pads, respectively (Figure 48).   

 

 

Figure 47: Average impedance amplitude at 1 kHz and injectable amount of charge 
recorded over 40 days in saline solution. The bottom graph shows voltage pulsed gold-
electrolyte interface and nonpulsed interface presented at the top. 
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Figure 48: Average impedance amplitude at 1 kHz (left) and injectable amount of 
charge (right) for high (bottom) and low (middle) current density pulsed and 
nonpulsed (top) PEDOT-PSS surfaces in saline solution recorded over 40 days. The 
inner graphs are the magnified and linear version of the impedance data for the first 26 
and 17 days for nonpulsed and pulsed interfaces respectively. Arrows emphasize the 
data on the last two days.  

 

During the 40-day tests, we observed that the change in the electrochemical 

properties of PEDOT-PSS was much lower compared to change in the gold electrodes; 

therefore, PEDOT PSS provided a more stable interface during the first 4-weeks after 

having been dipped in the saline solution. The pulsing of the gold did not change the 

average electrochemical performance of the stimulation electrodes but caused a higher 
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variation due to the possible surface degradation with continuous charge transfer. In 

the case of PEDOT-PSS, a similar result was observed during the first 17 days of the 

operation. Then, the high density current pulsing caused an earlier delamination of the 

PEDOT-PSS. While the nonpulsed and low density current pulsed PEDOT-PSS 

electrodes survived the first 4 weeks, one needs to be cautious about the applications 

that require continuous pulsing of the pads with higher current densities.  

The four-week lifetime of these electrodes in water allows us to hypothesize a 

stable operation during the aforementioned neuromuscular stimulation applications in 

insects, for many relevant insects’, such as moths’, lifespan is usually less than a 

month. It also should be mentioned here that under in-vivo conditions, having tissue 

mechanically adhere to the probe surface may eliminate/reduce the delamination 

further increasing the stable operation duration.    

This study presents a good starting point for further extending the deposition of 

other emerging conductors such as carbon nanotubes, graphene or other inherently 

conductive polymers. These can improve the electrochemical properties of the flex-

PCB electrodes for neural stimulation applications.   

4.1.5 Selection of the Substrate Materials  

As the substrate material, polyimide and silicon were used until the present for 

the scope of the study. Because of the fragility of the probes, silicon is only used for 

experimental setups in which the insect body and thorax was mechanically fixed. 

Polymer based flexible materials were considered for general use to provide strain 

relief against the potential motion between the implanted material and the tissue. As 

the flexible biocompatible material [Ric 93], polyimide was selected because it is the 

most common material used in commercial flexible circuit manufacturing. One 

concern about this fabrication process is that the minimum producible feature size is 
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75µm with a line-pitch of 75µm. This feature limits the capability of fabricating 

probes with multiple pads (in the order of 10 to 20) providing denser probing for more 

advanced studies. In this case, standard cleanroom processing can be utilized. During 

the cleanroom fabrication, Parylene™ can be considered as an alternative to polyimide 

as the substrate material. A typical process flow for parylene based probes can be 

found in Figure 49, allowing a higher number of channels (by means of thinner 

conductive lines) and improved flexibility (thinner substrate). Parylene has similar 

mechanical (Young’s modulus for parylene 3.2GPa, polyimide 2.5GPa) and 

biocompatibility properties to polyimide [Sch 88].  

 

 

 

Figure 49: Cross-section and the layers of the proposed parylene-based microprobe 
 

An issue of using flexible polymers as a substrate is their water absorption in 

the long run. However, as explained in the previous section, because insects have an 
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average life time of 3–4 weeks, water absorption is not an issue for biobotic insect 

applications.  

4.1.6 Actuation of the Third Axillary Muscles  

As a direct flight muscle, the third axillary muscle plays an important role in 

turning flight, as described in Chapter 3. Although it is possible to induce rotating 

motor output by stimulating only indirect flight muscles dl and dv, actuating direct 

flight muscles may create a more pronounced affect. The third axillary muscles will 

not be studied in the scope of this thesis; however, two alternatives will be presented 

for reaching the third axillary muscle s through pupal EMIT based implantations. The 

third axillary muscles are located under the wings, and these muscles are difficult to 

reach directly because the wings are wrapped around the body just above the muscles 

(Figure 18, 21) during metamorphic growth. One method is to build extended arms to 

the dl and dv targeting probes and to wait for the  insect to emerge without inserting the 

3rd axillary probes (Figure 50). After emergence, the insect can be anesthetized, and 

probes can be inserted and fixed using biocompatible glues.  

 

 

 
 

Figure 50: Flexible polyimide probe with extended arms to be inserted under the 
wings after emergence   
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Another potential method is to build probes that will reach these muscles from 

inside, and this allows complete pupal stage insertion. A layout for such a probe can 

be seen in Figure 51. This probe requires a tilting action after the insertion, which may 

damage some of the preformed tissue. Therefore, the pupal implantations must be 

done in the early stages of metamorphosis. 

 

 

Figure 51: Probes designed to target third axillary muscle alone (left), with dv muscle 
(middle) and with dl muscle (right). Blue lines show the conductor metal and the 
brown line is the outline of the polyimide substrate. See Figure 21 for the location of 
the third axillary muscle.   

4.1.7 Optimization of Probe Geometry and Metal Pad Allocation 

The motor response can be improved enormously by bioelectrically mapping 

the flight muscles of the Manduca sexta because stimulation performance depends on 

the distance to the closest neuron intervening the flight muscles. The actuation of the 

nerves requires smaller voltages with respect to muscle fibers, for multiple muscle 

fibers can contract with the actuation of a single nerve. Nonetheless, targeting the 

nerves directly is difficult as it requires a more detailed surgical operation to localize 

nerves during EMIT based surgical insertions. On the other hand, by increasing the 
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inter-pad distances, the probability of covering the regions where the nerves are 

located can be increased. Moreover, the increased inter-pad distances also increase the 

direct recruitment of a higher number of muscle fibers. In both cases, the location of 

pads in the flight muscle is critical in order to create the desired motor output. This 

electrical mapping requires the testing of different actuation pad locations and inter-

pad distances. The optimization of these geometrical parameters is required for an 

ideal simulation probe but is beyond the scope of this dissertation. Such optimization 

can be achieved by micromachining microprobes with multiple numbers of actuation 

pads (>20) and actuating the different combinations of the pads while observing the 

motor output.    

4.1.8 Thermal Electrodes (Thermodes) 

Microfabricated polyimide based flexible “thermal” microprobes were also 

developed for the artificial endogenous heating of the insect thorax to decrease the 

preflight warm up duration. Each probe was designed to be used with Flexible-Flat-

Cable (FFC) connectors. The connectors can be joined with flexible wires for tethered 

experiments, or they can be joined to a battery-powered tiny printed circuit board for 

untethered experimental setups (Figure 52). Upilex®-S type polyimide film (25µm 

thick) with electrodeposited copper (125µm-wide and 35µm-thick) was wet-etched to 

define the conductive traces. Commercially available 0201 size surface mount 

thermodes (50-100Ω) and surface mount thermistors (100Ω) were solder-assembled 

on the probes for heating and temperature recording in different geometries (Figure 

53). The height, width and length of the surface mount components were 230, 300 and 

600µm. The probes were coated with 10µm-thick Parylene-CTM using a PDS-2010 

deposition system (Speciality Coating Systems, Inc.) for bio-compatibility and 

electrical isolation from the tissue. 
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Figure 52: Polyimide flexible thermal probe (D) with attached thermistors (E) for 
recording via flexible-wires connected through an FFC connector (B). The wires also 
function as a tether. Flexibility of the probe is demonstrated in (F). The tiny PCB (A) 
with a slide switch, LED indicator, FFC connector and watch battery (at the backside 
of the board as shown in C) is attached to the insect easily without anesthesia (G) for 
untethered heating. The overall system (G) weighs 350mg where payload capacity is 
more than a gram. The scale-bar (G) represents 5mm. 
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Figure 53: Thermal probes holding different number of thermodes (probe numbers 1, 2 
and 3) at various geometries for heating the tissue and the probe (numbered as 4) with 
three thermistors to record the temperature at three different locations. The reported 
temperatures were calculated by averaging the temperatures recorded by these three 
thermistors. 

4.2 Tethered Experimental Platforms 

The experimental protocols presented in Chapter 5 consist of tethered insects 

in which the insect neuromuscular system is actuated through the flexible wires, as 

well as non-tethered setups in which there are no attached wires, and the free-flight of 

the insect can be realized. The microprobes described in the previous section can work 

with both tethered and untether setups (Figure 34). For tethered muscle excitation 

experiments, a flexible cable can be connected to the external probe body in which the 

cable can used both for signal delivery and mechanical suspension (Figure 70). 

Tethered wires give experimental design flexibility and can be replaced with radio 

frequency controlled microsystems for specific applications. 
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The polarity of the applied pulse through the tethered wires is an important 

point affecting the electrical stimulation efficiency of the neuromuscular system. 

During the stimulation process, the charge collected during an applied monophasic 

pulse in the capacitive region leaks away very slowly. Therefore, if the inter-pulse 

duration is not wide enough, charges build up and push the operating curve outside the 

capacitive region (Figure 32). Even for non-corroding noble metals, this region is not 

preferred, for it causes uncontrolled charge injection. To solve this problem, balanced 

biphasic pulses are generally used where an opposite polarity pulse is sent after an 

applied monophasic pulse (Figure 54). For a balanced charge stimulation, A1×D1 

must be equal to A2×D2. Different responses were reported in the literature for mono 

and biphasic pulses [Fie 03]. The pulse parameters (amplitude, duty cycle and 

frequency) can be changed to alter motor output. In particular, response to different 

frequencies is important, for the motor output can be tailored with a spectrum of 

responses from single twitches to complete tetanus [Guy 96].      

 

Figure 54: Biphasic pulse waveform where A denotes the amplitude and D denotes the 
duration of the stimulation 

4.3 Backpacks for Tetherless Locomotion Control 

The wireless insect neuro-muscular stimulator platform consists of two layers 

that are connected to the microprobes on the insect: the control electronics and the 

power unit (Figure 55). The control electronics part consists of a microcontroller with 
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or without a radio-receiver connection.  In the following sections, the details of these 

subsystems will be presented.  

 

Figure 55: Layers of the wireless micro-stimulation platform: power (top), probe 
(middle) and control electronics (bottom) 

4.3.1 Microcontroller-based Operation 

For some applications in highly controlled environments, a predetermined 

pulse streams may be sent to the probes for controlled navigation. In this case, a 

preprogrammed microcontroller may be used to store the pulse streams, and send them 

sequentially. In this case, the control electronics layer of the microsystem consists of 

only a microcontroller. Such a system can be seen on the insect in Figure 56 and 57. In 

this system, the control layer is an 8×8 mm2 PCB holding the microcontroller (Atmel 

Tiny13V) and an LED. The  microcontroller was electrically connected to the PCB via 

flip-chip bonding. Wire-bonding was used to connect the PCB to the probe layer. The 

power layer is comprised of two coin batteries and a slide-switch (weight: 30mg) 

positioned on a printed circuit board (PCB). Coin batteries (SR516SW, Maxell) can 

supply enough current to power the microcontroller (240µA active, 0.1µA stand-by). 

Each battery has an energy capacity of 8mAh and weighs 120mg. Conductive 

adhesive was used to attach the batteries to the platform, and the micro probe is 
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sandwiched between these two layers. The overall system has dimensions of 8×7 mm2  

and a total weight of 500 milligrams including the batteries (Table 5).  

 

 

Figure 56: The microsystem including microprocessor (A), flexible probe (B), and 
battery unit for power (C). The assembled system is given in (D). 

 
Table 5: Weights and Sizes of the Microcontroller Based Stimulator Parts 

 
 
 

 

Figure 57:  Pupal stage insertion (A) and successful emergence (B). The microsystem 
platform on (ii) is held with tweezers to show wing opening of the moth.  
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4.3.2. Super-regenerative Based Radio 

In most applications, a radio link will be required to transmit dynamically 

changing neuromuscular excitation pulse streams to the insect. In this case, the control 

electronics layer should also include a radio in addition to the microcontroller. In this 

case, super-regenerative based architecture would be very advantageous and require 

fewer electrical components, thereby weighing less and consuming minimal power as 

a result of the self-oscillatory and self-quenching advantages of the “super-

regeneration” principle [Sha 99]. The super-regenerative detector located in the center 

of this radio architecture (Figure 58) acts like an amplifier with automatic gain control 

to provide self-mixing RF detection, eliminating extra components for local oscillator, 

frequency mixer and tuned amplifier in traditional superheterodyne topologies [Sha 

99]. A typical circuit diagram is presented in Figure 59. 

 

 

 

Figure 58: Super-regenerative receiver architecture. Super-regenerative detector 
realizes self-oscillation and -quenching as the result of automatic gain controlled 
bandpass positive feedback. 
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Figure 59: A typical circuit diagram with component values for a super-regenerative 
based receiver 

  

Commercially available (Futaba, Inc.) two-joystick 3 channels 72MHz AM 

transmitters (Figure 60) were used for the radio  to transmit PPM (Pulse-Position-

Modulation) pulses remotely to the insect neuromuscular system. These transmitters 

are widely used in remote controlled (RC) systems to control the flight of micro-air-

vehicles, model airplanes, helicopters, etc.   

 

 

 

Figure 60: Pulse shaping at transmitter and receiver sides of the radio frequency 
remote controlling system (Vdd=3.5V) 
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As the receiver part of the radio, a super-regenerative based architecture was 

custom built on a FR-4 PCB (Figure 61), to receive and demodulate the transmitted 

PPM stream by the transmitter. A microcontroller (PIC12F615) was also connected to 

the receiver output to separate the PPM stream into different channels. The electronics 

board that holds the receiver and microcontroller weighs only 70mg and consumes 

less than 1 mW of power (~ 750 µWatts static, ~1 mW dynamic). The FFC connectors 

are added to the board to be joined to the stimulation probes as well as the power 

source. FFC connectors allows the batteries to be detached and attached easily to turn 

the system on and off.  A Li-Po battery (3.6volts, 8.5mAh) was used as a power 

source; this  battery weighs 300mg, one of the smallest batteries in terms of 

size/energy criteria for given supply voltage [Buc 99]. The overall system weighs 750 

mg (including batteries, Table 6 shows the weight of the each part on the board) and 

consumes 750µWatts static and 1 mW dynamic power. Even with continuous pulsing,  

the batteries last more than 5 hours. The line-of-sight transmission distance between 

the transmitter and receiver was measured at around 50m.  

 

 

Figure 61: Front side of the assembled radio (A) holding the microcontroller and the 
receiver. The FFC/FPC connectors for the battery (C) and the probe can be seen on the 
backside (B). Magnets are also added for attachment of the helium balloon.   
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Table 6: Weights and Sizes of the Radio Controlled Stimulator Parts 

 
 

The operation principle of the wireless remote controlled system can be 

summarized as follows (Figure 61): The position of the joysticks on the transmitter are 

converted into electronic signals and mixed into a PPM (Pulse Position Modulation) 

stream to be transmitted as AM radio signal at 72MHz. In PPM, the analog 

information is coded along the distance between the two positive edges of the pulses. 

On the receiver side, the super-regenerative receiver demodulates the AM signal into 

PPM code, which is then separated into different channels through the microcontroller 

and converted to pulse width modulated (PWM) waveforms to be applied to the tissue. 

As a result, the position of the joystick on the transmitter determines the duty cycle of 

the PWM pulses and so the amount of charge injected into the tissue.  

4.3.3 System-on-Chip Solution 

Combining silicon and system based expertise; recent developments in the 

system-on-chip technologies (SoC) have provided a number of capabilities by 

integrating process with function. The ability to fuse multiple systems on a single 

silicon chip has not only increased product functionality, but has also further enhanced 

quality and performance while cutting the development cycle.   

Several SoC systems have been proposed to combine analog, digital and 

mixed-signal with radio-frequency functions on a single substrate level, especially for 
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embedded systems applications. A typical SoC consists a microcontroller, various 

memory blocks (ROM, RAM, EEPROM and flash), oscillators and phase- locked-

loops as timing sources; ADCs and DACs as analog-digital interfaces; and voltage 

regulators with power management circuits.  Some of these systems are tailored on the 

software level to fit in with high level communication protocols and standards such as 

Zigbee or IEEE 802.15.4 and thus enable small, low-power digital radios.   

A backpack was also developed using system-on-chip technology as an 

alternative to the System-on-PCB backpack with surface-mount-components as 

described in the previous section. For this, a single chip solution from Texas 

Instruments (TI) was used. CC2530 from TI combines an 8051 microcontroller with a 

high performance RF transceiver, while providing 8KB of RAM and up to 256KB of 

flash memory. Optimizing the power budget of the intended application is also 

possible with its four flexible power modes. This single-chip system is an ideal 

solution for the insect backpack with its 21 general-purpose I/O pins and 8 channel 12-

Bit ADC. The block-diagram of this system can be seen in Figure 62.  

As the external components, CC2530 only requires a crystal oscillator with 

two loading capacitors, a bias resistor and a decoupling capacitor. All the required 

resistive and capacitive components are available in 0201 surface mount technology 

sizes (0.6 mm × 0.3 mm) to reduce the weight- loading and the overall circuit size. For 

the crystal oscillator, a quartz solution was used with a size of 1.6 mm × 1.2 mm. The 

circuit diagram of the backpack can be seen in Figure 63. The weight of the assembled 

backpack (Figure 64) is around 200 mg and has dimensions of 8×17×1 mm3.  A line-

of-sight reception range of more than 50 m was obtained. Including the batteries, the 

complete system is around 400 mg. The system connected to an insect through probes 

inserted in the dorsal thorax can be seen in Figure 65.  
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Figure 62: Block diagram of the CC2530 (modified from the datasheet) describing 
how different parts of the systems function and communicate on a hardware/circuit 
level 
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Figure 63: Circuit diagram of the SoC based backpack demonstrating the values and 
connections of the external components. An LED was added on the backpack to 
indicate that the system is turned on. 

 

 

 

 
 

Figure 64: Assembled SoC based backpack with FFC connectors added for battery and  
probe connections 
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Figure 65: The Li-Po battery powered SoC based backpack is connected to the probe 
inserted in the dorsal thorax of the insect: (A) top view (B) side view. 

4.3.4 Lift Assisted Backpack Technology 

The payload capacity of most insects is limited to subgram weights, which 

restricts the application space of aerial and terrestrial insect biobots. Manduca sexta 

can carry up to 1-gram of payload. However, as the payload weight increases, the 

flight distance decreases from kilometers for 0g to approximately 5m for 1g and flight 

duration from hours for 0g to around 50s for 1g [unpublished observations]. To 

overcome this problem, balloon-assisted insect flight is introduced here to reduce the 

effective weight lifted by insect flight. For this purpose, a helium filled latex balloon 

was attached to the electronics board using two tiny magnets, one glued to the balloon 

side and the other to the printed circuit board holding the radio (Figure 66). Magnets 

provide on demand attaching/detaching. The lifting force of the balloon (~1g/L) was 

balanced with the weight of the insect and the electronic payload (~3g). Assistance 

with the lifting potentially increases the mission duration by conserving biological 

energy and also allows for adding other electronic components such as sensors and 
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actuators for further detailed analysis and control of insect flight. Experimental results 

are provided in Chapter 5.  

 

 

Figure 66: Description (B) of the balloon assisted flight setup (C). The details of the 
balloon to circuit connection can be seen in (A). 

4.3.5 Discussion: Future Systems 

Various technological platforms for locomotion control of the insect have been 

described throughout the preceding sections. It is possible to enrich these platforms 

with additional systems with different functions to increase the precision of remote 

navigation by localizing the insect’s location more precisely. For this, MEMS based 

sensors can be embedded on the backpack to function as an accelerometer, a compass 

or GPS tracking. For the indoor locomotion control applications, the proposed lift-

assistance mechanism in the previous sections would help the insect to carry 

additional weight due to these sensors and related electronic circuitry. The size, weight 

and power consumption of these systems decrease day by day, and adding these 

systems on the insect for outdoor applications will be more practical in the near future.  
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One concern with the described platforms is the requirement for charging the 

battery powering the backpack electronics for extended experimentation periods. 

Although the given Li-Po batteries can operate for days with the optimization of the 

power budget, for autonomous applications that require weeks of operation, the 

batteries need to be charged. One solution is inductively transmitting RF waves to 

charge the batteries while the insect is resting. It would be possible to scavenge some 

power piezoelectrically from the insect’s own motion [Akt 08], [Rei 08]. Another 

solution and a more feasible one is embedding renewable energy storage on the system 

to benefit from available light sources by integrating photovoltaic devices on the 

insect. All these ideas are promising for increasing the mission duration of the hybrid 

insect-machine platform, while their deployment depends on the weight- loading they 

induce on the insect’s locomotion performance.  
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CHAPTER 5 

BIOBOTIC INSECT CONTROL 

Navigating and domesticating insects such as Manduca sexta require the 

ability to elicit reproducible flight maneuvers. Different stimulation schemes need to 

be developed for each maneuver, and these maneuvers should be combined to obtain 

more precise and complex locomotion behavior. Different parts of the insect’s 

locomotion control physiology could be tapped with an EMIT surgical procedure and 

various external stimulation methods could be applied to alter its locomotion. Below, 

experimental results obtained through electrical, thermal and optomotor stimulation of 

the insect’s physiology are presented. 

5.1 Electrical Stimulation of the Locomotory System 

Injecting charge packets in the neuromuscular systems of the insect is the most 

straightforward and well-studied means to induce biomechanical output. The 

stimulation process of the various parts of the insect’s locomotory anatomy is 

presented below.  

5.1.1 Actuation of the Flight Muscles 

As explained in Chapter 3, using the indirect flight muscles of Manduca sexta 

is one way to possibly control its locomotion.  These main flight powering muscles are 

located in the dorsal-thorax of the Manduca sexta in which electronic implants can be 

located (Figure 35). The dorsovental and dorsolongitudinal muscle groups move the 

wings by changing the conformation of the thorax, which supplies the mechanical 

power for up and down strokes. The alternating relaxation and contraction of these 

muscles create the alternating up and down strokes, hence flight. Therefore, 

controlling flight by targeting and actuating these muscle groups may be possible. As 
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a starting point, to evoke a yawing maneuver, flight muscles dl and dv of a tethered 

Manduca sexta were stimulated by applying electrical pulses via indwelling probes, 

while motor nerve activity and wing movement were monitored (Figure 6). 

5.1.1.1 Results of the Surgical Insertions.  

The details of the post-surgical analysis obtained through dissections can be 

found in Chapter 2. Post-experimental X-ray and CT imaging were also performed to 

assess the success rate of the microprobe geometry for localizing the targeted flight 

muscles (Figure 67).  A success rate of 98% was measured in more than 100 

insertions. The few placement errors that occurred resulted from bending the probe in 

the muscle tissue during the insertion process.  

 

Figure 67: The X-ray image of the thorax shows probe localization to the targeted 
muscle groups with an explanatory schematic of thoracic flight muscles. 

5.1.1.2 Rapid Inspection of the Bioelectrical Coupling  

Flexible microprobes were designed and fabricated following standard 

micromachining procedures for flexible circuit technology, as described in Chapter 4. 

Twenty percent of the tested pads on late-pupae inserted probes did not actuate the 

flight mechanism due to the failed interface between the gold actuation pad and the 

muscle tissue. No systematic study was conducted to assess the failure mode. The 
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electrical coupling between the probe and the tissue was rapidly inspected before 

actuating the wing muscles using two methods: (a) measuring I-V curves across the 

different probes in a tethered flight setup and (b) recording the muscle potentials when 

the wings were flapping. The failed pads can easily be identified via pre-experiment I-

V curve measurements. Typical I-V curves of satisfactory coupling and a failed probe 

can be seen in Figure 68. I-V measurements were performed on a visually quiescent 

moth using a Keithley-4200 I-V Characterization System. The interface between the 

probe pads and the actuated muscle fibers can be modeled with a simplified equivalent 

circuit. The detailed version of the model and the applied analysis can be found in 

Chapter 2.  In this simplified model, RM denotes the resistance of intra- and 

extracellular fluids of muscle fibers, whereas RI and CI are the resistance and 

capacitance at the metal- tissue interface. Other elements such as the resistance of the 

metal trace and the capacitance of the insulator between the metal trace of the 

electrode and the conducting interstitial fluid were omitted because they are 

negligible. Lines were fitted to the I-V curves at DC in order to give the approximate 

addition of RI and RM. The obtained resistivity sum from this analysis (ρ; see Table 7) 

for the satisfactory probe-tissue interface is in good agreement with the reported 

skeletal muscle resistivity (300-500 Ω⋅cm) [Zhe 84, Spe 61, Spe 91] and the metal-

tissue interface resistance measured in 0.9% saline solution (75 Ω⋅cm). Failed probes, 

however, give abnormally reduced resistivity values, as indicated in Table 7. 

 

Table 7: Lines Fitted to I-V Curves in Figure 68 to Calculate Resistivities (Channel 4 
with Poor Electrical Coupling)  
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Figure 68: I-V curves of each electrical pad (C) and a simple RC network (A) 
modeling the muscle between the pads. The pad diagram is given in (C).  In this 
example, Channel 4 (shown separately in 4th quadrant) has poor bio-electrical 
coupling. 

 

The implanted probes can also be used to record electrophysiological signals 

during natural flight in order to study locomotive behavior (Figure 69). A good muscle 

potential recording was regarded as an indication of the integrity of the probe 

operation. The observed inter-spike duration is consistent with the wing flapping rate 

of moths (20–25Hz). Further feedback studies of insect muscle can be conducted to 

optimize flight control by recording and analyzing the phase difference between dl and 

dv muscle and altering this difference through these recordings. Such an analysis is 

beyond the scope of this dissertation, but the recording capability was used solely to 

assess the success of bioelectrical coupling. Probes and insects that failed in any of 

these tests were not tested any further. Working intramuscular electrodes were capable 

of efficiently exciting the motor neurons arborized within the muscles in which they 

were implanted. These electrodes were used to control the muscle motion.   
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Figure 69: Actuation probes were also used to record muscle potentials as an 
indication of efficient tissue-probe coupling. Potentials recorded from the 
dorsolongitudinal muscles (multiple-cell recording with 50-100 times amplification) 
have spiking frequency similar to wing-flapping rate (~23Hz). Observed spikes 
disappeared immediately when wing flapping stopped. 

5.1.1.3 Neuromuscular Stimulation of a Resting Insect  

The phased actuation of the dl and dv muscles with biphasic pulses allowed us 

to control wing motion in a highly selective manner.  The outputs of the stimulation 

outcome were simultaneously monitored at motor output level. When the moth was 

resting in a quiescent state, stimulating the dl muscle on one side of the insect caused 

the wing on that side to move downward, whereas stimulation of the dv muscle caused 

the wing to move upward.  The depression and elevation of the wing persisted as long 

as the stimulation was continued and both bilateral and unilateral wing actuation were 

demonstrated reproducibly. Following stimulation cessation, the wing rebounded 

passively to its resting position as a result of thorax elasticity (Figure 70). A wing 

rebound time of around 250ms was measured using a high speed camera.  Upstroke 

and downstroke actuation on “one” or both wings were demonstrated with power 

consumption as low as 10 microWatts (V=2.5V, I=4µA). An even lower stimulation 

current was required for longer stimulus pulse width to create similar wing actuations. 

Pulse application frequency ranges were swept between 1 and 10 Hz to separate the 

effect of contracting dv and dl muscles visually and temporally. The wings followed a 
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similar flapping frequency with the applied pulses. The wing actuation and flight 

direction can be seen best in a visual movie format (see appendix). 

5.1.1.4 Neuromuscular Stimulation of a Naturally Flying Insect  

When a unilateral stimulation pulse was applied to a tethered insect flying 

naturally in a straight direction, the most striking effect was a yawing maneuver 

towards the stimulated side.  A backward shift of the wings occurred on the stimulated 

side, whereas the wings on the opposite side were drawn forward (Figure 70). Flight 

stopped immediately when these two muscles contracted simultaneously with high 

frequency pulses (70-100Hz). When the dl and dv muscles were activated together, 

they opposed each other, stopping the wing flapping altogether (Figure 71). These 

initial results prove the concept of steering an insect by applying external stimuli 

through implanted structures.   

5.1.1.5 Discussion: Characterization of the Motor Output 

Being beyond the scope of this dissertation, quantitative parameters can be set 

to evaluate the output of motor response obtained from the insect’s wings. For this 

process, a mechanical model of the wing can be built to evaluate the related model 

parameters. The indirect flight muscles of Manduca sexta can be modeled using a 

damped mass-spring system (Figure 72). The muscle itself acts like a spring having an 

origin in a fixed, more proximal part and an insertion in a distal, movable part. The 

cross-bridges formed by the muscle fibers are modeled as a force generator (fm) 

connected in series with elastic spring elements of the muscle (km) and the connective 

tissue joining muscles to the cuticle. The wing and air resistance is the load (mw) 

suspended from these springs. The antagonistic muscles are also represented as 

resistance to movement. This model can be embedded in another larger scale model 

that represents the relationship between the neural input and the produced motion 

output. 
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Figure 70: Evoked up- and downstroke of a “single” wing (A-D) obtained by applying 
5V pulses to the indirect flight muscles (snapshots from the recorded movie). Under 
natural conditions, moths flap both wings together. Illustrated responses to pulse 
application to the wings during natural flight (E-G).  

 
 

 

Figure 71: Contraction of dl and dv together during natural flight (A) with high 
frequency pulses stops flight (B). Flight continues as the induced contraction is 
removed. 
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Figure 72: The dv muscle of Manduca sexta modeled as a mass-spring system where 
Fm denotes the force driving the system, km is the spring constant of muscle, kc is the 
spring constant of the connective tissue and ba is the damping caused by the 
antagonistic muscle group (dl).  

5.1.2 Actuation of Antennal Lobe and Neck Muscles 

After the flight muscles, antennal lobe and neck muscles of Manduca sexta 

were stimulated for locomotion control on both land and air. Physiological details can 

be found in Chapter 2 (Figure 30). In this study, the concept of lift-assistance was 

utilized, as explained in Chapter 4, to help the insect carry the payload. 

5.1.2.1 Results of the Surgical Insertions 

As in the previous experiments, the metamorphosis based surgical insertions of 

artificial structures in the insect were the key strategy here to enable a hybrid 

biological and technological pathway towards obtaining remote controlled insect 

biobots/cyborgs. Therefore, the wire electrodes described in Chapter 4 (Figure 33) 

were inserted in the insect following the EMIT procedure. These electrodes can 

possibly be replaces by their counterparts fabricated through the flex-PCB fabrication 

techniques (Figure 74). The adult insects emerged from pupae 5–7 days after the 

surgical insertions (Figure 8) with an average weight of 2.2g. The successful 

emergence rate was 84% (N=30) and 80% of these adults were able to inflate their 

wings successfully. The successful target localization obtained through Micro-CT 
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imaging (with a success rate of 100%) can be seen in Figure 73.  The healing and 

tissue-growth around the inserted probe provided a secure payload attachment to the 

insect, as a result of the EMIT procedure that eliminated the need for synthetic 

adhesives (Figure 8). After emergence, the control electronics and power layers were 

connected to the probe body through the FFC connector in 5-10 seconds without 

requiring any anesthesia (Figure 73).   

 

 
 

Figure 73: Reconstruction of the X-ray images (E) of the insect reveals the location of 
the metal-wires in the thorax and brain (metal wires lighter color). The radio-
controlled stimulation system is assembled on the adult insect (D).  

 
 

 

Figure 74:  Flex-PCB based electrodes to replace the wire electrodes targeting 
antennal lobe described in Figure 33: (A) top view of electrodes before bending (B) 
side view of electrodes after bending. 
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5.1.2.2 Aerial Control of Lift Assisted Locomotion 

The two major side-effects of the weight-loading on the insect were a delay in 

flight initiation through an extended shivering process and a diminished cruising 

height, as explained in Chapter 4. Under natural conditions, these insects warm up 

their thoracic muscles before flight through shivering by contracting their elevator and 

depressor muscles at the same time, as explained in Chapter 2. This process takes 

about 5 minutes and increases the lifting force of each wing-beat from 50 to 300 

mg/cm2 [Hei 74]. Therefore, an extension of this process is required to lift larger 

weights. Up to 8 minutes shivering time was observed on the loaded insects. Even 

with an extension of this period, moths were not able to lift themselves up more than 

5–10cm over the ground with the addition of 750 mg weight. On the other hand, the 

shivering process does not always result in flight initiation under natural 

circumstances. The rate of shivering-without-flight for the insect increased from 30% 

to 85% with the added payload.  

The helium balloon with around 3 liters of volume (diameter approximately 13 

cm) was able to lift the insect with the added electronics. In addition to increasing the 

payload capacity, lift provided by the helium (1g/L) helped the insect to conserve the 

energy used for lifting its own body weight, thereby potentially increasing the duration 

of the mission. This approach also allows for adding other electronic components, 

such as extra power sources for extended mission duration, sensors for environmental 

sensing, cameras for surveillance or actuators for further detailed control of insect 

flight.  

For aerial locomotion direction, two sets of experiments were performed on 

Manduca sexta. In the first set, insect locomotion was restrained for a close-up camera 

investigation by introducing a restricting annular ring around the stick-connector 

connecting the radio to the balloon in the aerial case (Figure 75). Behavioral changes 
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with the applied pulses were observed and video recorded during balloon assisted free-

flight in order to digitize the data for further analysis in a computer environment. The 

actuation of the targeted regions with electrical pulses sent from the transmitter to the 

antennal lobe caused wing flapping on a resting moth, indicating successful electrical 

coupling. A typical DC resistance in the order of 3MΩ/cm was measured between the 

wire electrodes, as a quick inspection of the interface. In the restrained setup, natural 

flight was initiated with pulses sent to the antennal lobe (3.5Vpp–20Hz–50% duty 

cycle) (Figure 76). After flight was initiated, actuation of the neck muscles with 

similar pulses elicited controlled yawing of the insect (~60–80º/s) (Figure 76). Flight 

ceased immediately when the antennal lobe was stimulated with high frequency pulses 

(3.5Vpp–50Hz–50% duty cycle). Unrestrained free flight was successfully enabled by 

removing the annular ring in which a three-task mission of lifting-off, yawing and 

landing was demonstrated with freely flying insects. A typical trajectory of insect 

position obtained during this mission can be seen in Figure 77. To exhibit 

reproducibility, the same mission was repeated three consecutive times on three 

different trials. All of these results can be best seen in movie format (see appendix).  

By feedback controlled learning of yaw motion obtained in various insects, it is 

plausible to ascertain the best positions for probe placement and optimized pulse 

sequences.  

 

Figure 75: Description of balloon assisted flight and walk setup with retaining rings 
inserted for stable recording purposes 
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Figure 76: Snapshots of the video demonstrating the results of the RC actuation 
experiments. Pulsing of the brain initiates flight (B) on a resting moth and stops flight 
(A) when the moth flies. The screen captures the insect’s yaw (C-G) obtained through 
joystick manipulation. 

 

 

Figure 77: Digitized flight track of the moth as a result of applied stimulation pulses. 
Circular flight control is demonstrated by the red circular trajectories. 

 

5.1.2.3 Terrestrial Control of Lift Assisted Locomotion.  

For the terrestrial experiments, adult insects were anesthetized and the wings 

were removed using surgical scissors. No behavioral disturbance of the insect was 
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observed due to wing removal, as expected, since the wings are passive cuticular 

airfoils.  Two sets of experiments were performed on these wing-removed Manduca 

sexta for terrestrial locomotion direction. In the first set, the insect was placed on a 

low friction foam ball, which acted like a two-dimensional treadmill to restrain the 

locomotion for a close-up camera investigation (Figure 75). Later, these restrainers 

were removed and behavioral changes from the applied pulses were observed and 

video recorded during the balloon assisted free-walk. 

Similar pulses to the aerial control were applied to the wing-removed insect for 

terrestrial control. On the two-dimensional treadmill, actuation of each side caused 

rotation of the ball towards the opposite direction (~360º/s) simulating the turning of 

the insect towards the actuated side. When the insect was released for a free-walk, the 

continuous actuation of one side caused the insect to follow a circular path in that 

direction. A mission of following consecutive “8” shaped routes was demonstrated 

with these freely moving insects (typical trajectory in Figure 78) (see the appendix for 

the movie information). 

 

Figure 78: Digitized walking track of the moth as a result of applied stimulation pulses 
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5.2 Thermally Induced Flight Control 

If one is to realize hybrid- insect flyer with tissue embedded electronics for 

flight control, the thermoregulation paradigm presented in Chapter 2 makes the take-

off period of hybrid flyer a strong function of the environment. A slow take-off period 

would reduce the bandwidth with which flight operations could be controlled. 

Experimentally, a pre-take off warm-up duration of 5–10 minutes is required to deploy 

a hybrid insect system under room temperature conditions. To mitigate this potential 

show stopper for stable flight control, micro thermal-heaters are reported in this 

section to be inserted into the dorsal thorax of the tobacco-hawkmoth Manduca sexta 

in the pupal stage. When the adult emerges, artificial heating of the muscles can be 

used to enable faster flight initiation and flight control. In addition to flight control, 

these probes allow one to study thermodynamics of muscle actuation in insects, 

possibly translating to design principles of other biohybrid systems. 

5.2.1 Results of the Surgical Insertions 

The thermal-probes (Figure 52, 53) were inserted at the center of the thorax of 

male-pupae seven-days before eclosion using the EMIT surgical procedure (Figure 

79). A successful emergence-rate of 75% was obtained with the implanted thermal 

probes where the remaining 25% of the insects did emerge  but with deformed wings 

due to hitherto unknown reasons. Post-experimental dissections demonstrated 

successful localization in the center of the thorax (Figure 79). The probes were 

integrated in the tissue and no encapsulation around the probes was observed. The 

cuticle around the probe had healed and tightly sealed the probes to the body, which 

prevented any mechanical movement of the probe within the tissue. 
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Figure 79: Double probes for heating (probe 1, 2 or 3 on Figure 53) and recording 
(probe 4) inserted to the center of pupal thorax (A) with a distance of 2mm and 
successful emergence (B). Double probes were deployed via the flex-wire tether (C) 
connected to the data acquisition system and power supply electronics. Post-
experimental dissection (D) of thorax showing the location and biocompability of the 
thermal probe. The symmetrical probe targets both sides of the thoracic musculature 
(see the symmetry axis as the dotted red line). When the marked square on (D) is 
zoomed-in (E) dl and dv muscles can be distinguished easily (see Figure 18 for dl, dv). 
The scale-bar (B) represents 5mm. 

5.2.2 Thermal Recording and Modeling 

The implanted probes were connected to a semiconductor characterization 

system (Keithley  4200) after the emergence of adult insects in which the  

temperature was read by converting the voltage into temperature using a calibration 

table. First, natural temperature trends were recorded through the thermistors during 

preflight warm-up and flight activity of the moth. Then, heat was applied to the 

thermodes of quiescent insects at laboratory temperature (20ºC) while induced 

temperature on implanted thermistors was also recorded as a function of time and 

applied power in order to determine thermode values and the geometry required to 

obtain thoracic-temperatures similar to the natural trend. Finally, the preflight warm 



 

114 

up duration of the insect cyborg was measured while heat was applied to the thorax of 

the insects at the same time that the internal temperature was monitored through 

implanted thermistors.  

The insect thorax can be simply modeled as a thermal capacitance, where 

stored heat can escape to the environment through thermal resistances (Figure 80). The 

net heat flow depends on heat sources and thermal resistances and can be expressed in 

terms of the system’s state variables: the temperature of the thermal capacitances. The 

state variable model for this system is  
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The temperature response of the muscle to a unit step function in heat input is an 

exponentially increasing temperature that saturates to a steady state value.   

 

Figure 80: Thoracic cross-section modeled as a thermal system with the indicated 
thermal model parameters (heater and sensor elements are illustrated as probe 1 and 
probe 4 in Figure 53, respectively) 

5.2.3 Endogenous Heating of the Thorax and Behavioral Results 

The recorded natural temperature trend of an insect performing pre-flight 

warm up and flight behaviors can be seen in Figure 81. An average of 7 minutes was 
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required for Manduca sexta to reach 39ºC at room temperature (20ºC) before taking 

off. Next, 50mW of power were applied to each thermode in parallel on each probe 

and the average thoracic temperature was recorded us ing the thermistors (Figure 82). 

Larger numbers of heaters provided more uniform and faster heating as expected.  

 

 

 

Figure 81: Temperature of the thorax measured during warm-up, flight and post- flight 
quiescence periods for natural and artificially heated conditions. The heat was kept on 
throughout the entire experiment. Data are given as mean +/- SEM of 3 moths. 
 

The recorded values for each thermistor were fitted to equation (1) in order to 

calculate the heat capacity and thermal conductivity to match the values reported in 

the literature (Figure 82). The calculated values are in good agreement with the range 

reported for skeletal muscle in the literature (0.2–0.6 W/mºK for κ and 2–4 J/gºK for 

C) [Nga 98, Pon 91, Lan 95]. 
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Figure 82: Change in the thoracic temperature of 3 tethered insects when 50mW was 
applied to each resistor on the probes in parallel (see Figure 53 for probe numbers). 
Table shows the specific heat capacity and thermal conductivity obtained from the 
curve-fit. Data are given as mean +/- SEM.  

 

Subsequently, the time required to reach a thoracic temperature of 39ºC was 

measured for each probe for different powers (Figure 83). The time predicted by the 

model for each probe is also provided. Throughout these recordings, the insect was in 

a non-shivering quiescent state. After these measurements, 50mW of power were 

applied to Probe 3 in Figure 79 and the flight behaviors of the three insects were 

observed and videotaped. Preflight warm-up duration was decreased to 58 seconds, 

from the natural average of 7 minutes, in a room temperature environment on the 

tethered setup (Figure 81).  
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Figure 83: Time required for each probe to induce 40°C in the tissue as measured on 
probe 4 (probe numbers given in Figure 53) and provided by the model in Figure 80. 
Data are given as mean +/- SEM of 3 insects. 

 

An average preflight warm-up duration of 62 seconds was obtained when the 

untethered battery powered printed circuit board was used (Figure 52). Standard 8 

mAh capacity watch batteries can supply this power for 4800 s (75 times the required 

duration). A temperature drop was observed on the heated thorax during the post- flight 

quiescence period (although the heat was still on), due to circulatory cooling and  the 

cessation of muscle actuation. Natural shivering behavior was also observed during 

the last 10 seconds of the artificially heated warm-up period. 

5.3 Optomotor Flight Control 

To observe the capability of locomotion control through exteroceptive input 

applied to the optical lobe, a visual simulator was built to identify the relevant 

parameters of the optic- flow motor-output coupling (Figure 84). Similar setups, first 

samples being patterned on rotating cylindrical drums on motors, have been used for a 

long time [Van 50]. The cylindrical LED-arena was programmed to create a virtual 

rotating environment around the vertical body axis of the moth. Green was used as the 

LED color because 75% of the visual receptors are green-sensitive [Cut 95]. The moth 
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is free to rotate around itself through the ball-bearing to which it is attached. The 

attachment is achieved through a wire loop and an “EZ-hook” (Figure 85).  In this 

setup, the experienced optical flow depends on the moth’s own actions similar to free-

flight.  

The Manduca sexta demonstrates object- fixation behavior which is gated in 

the visuomotor pathway (see appendix for the movie result). During flight in the 

optical simulator, the visual system of the moth experiences continuous retinal images 

changes. While turning to one side, the entire retinal image shifts in the opposite 

direction. This shifting is called the optical flow. The rotation related optical flow is 

independent of the distances of the objects in the visual surround. The Manduca sexta 

processes optical flow to create optomotor responses to stabilize the retinal images 

[Mil 87]. In the cylindrical LED arena, the fixation can only be achieved as an effect 

of turning flight. As a result, visually motivated right-left yaw was obtained and 

video-captured. This fixation based yawing action can be characterized for different 

locations, sizes, speeds and intensities of the light stripes in order to find the limits and 

delay of tracking.     

 

Figure 84: Computer controlled “LED Arena” for frame of reference perception 
induced motion illusion. Computer runs LabView™ code through the control 
electronics to turn on some of the 630 LEDs in the arena.  
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Figure 85: Ball bearing set-up with developed “easy-hook” method for limiting the 
degree of freedom to “yawing” only (A). The metal wire loops for attachment are 
inserted in the insect through the EMIT process. Insect is located in the middle of the 
LED arena with this tool to obtain right and left yaw (B).   

 

The LED arena is controlled by a LabView™ (National Instruments, Inc.) code 

generating rotating bright stripes. The intensity, rotation speed and direction are all 

adjustable. This flexible virtual environment can be used as a “test-bed”  to investigate 

the responses of indirect flight muscles and direct steering muscles to oscillatory left-

right optical flow through the EMIT surgical procedure implanted microprobes. In this 

way, a minimal model of neuromuscular signals obtained from the probe related to 

visually guided rotation behavior can be identified. Similar electrophysiological 

signals obtained from the model can be reapplied to study the obtained motor 

response.  

The same simulator can be rotated 90o to create a rotational background around 

the horizontal body axis to induce pitch angle change. For this setup, the insect also 

needs to be tethered in the horizontal plane to a similar circular ball bearing. In this 

rotated simulator, if a linear ball bearing is used instead of a circular one, induced lift 

and thrust can also be achieved with proper LED light rotation [Fry 01]. All of the six 
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degrees of freedom can be studied by rotating the LED Arena to an appropriate angle 

and using linear or rotational ball bearings. 

 

Figure 86: Implantable miniature LED arena (old version with 2 LEDs on the left and 
bigger version with 12 LEDs on the right) for optomotor steering of the insect.  

 

Furthermore, the LED arena can be miniaturized in order to be implanted on 

the insect to study its free flight response to the rotating light. The visio-motor reflexes 

to rotating light have the potential to be used to steer the insect through a radio 

controlled miniature LED arena embedded on the insect in an untethered setup (Figure 

86). 
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CHAPTER 6 

CONCLUSION 

Controlled by neurons, muscles are actuated to do mechanical work by 

converting chemical energy into mechanical power. Throughout history, humans have 

benefited from the muscle power of animals for farming, transportation and industry, 

the backbones of civilization. These achievements were possible through the 

domestication process, mainly selective breeding of different species that are trainable 

by humans. With recent developments in micro- and nanotechnology and 

neuroengineering, it may be possible to achieve this goal through direct “biobotic” 

control of the neuromuscular system. Insects are especially promising candidates in 

this regard because of the relative simplicity of their locomotion control system. This 

dissertation described methodologies involved with developing neuromuscular 

microsystems to control and domesticate insect locomotion.   

Early Metamorphosis Insertion Technology (EMIT) is a novel 

neurotechnological pathway for integrating microelectronic sensing and actuation 

platforms on insects during metamorphosis to enable IMI (Insect Machine Interfaces). 

Inserting the probes at an early pupal stage ensures that the tissue grows around the 

probes for a highly natural implant. The muscle tissue develops around the inserted 

probes during pupal to adult metamorphosis, increasing the mechanical stability and 

integrity of the structure on the insect. The metamorphic development not only 

provides an elegant and effective method of mechanically affixing artificial systems in 

or on an insect, but also enables a reliable bioelectrical interface without any 

observable adverse effect on insect flight behavior. The experiments presented here 

show that a reliable bioelectronic interface has been realized for recording and 

controlling the motor function of insect muscles. 
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The EMIT procedure has opened a window for neuro-engineers to explore the 

details of insect flight neurodynamics and its control by allowing the implantation of 

various micro-devices through a simple surgery that results in little or no tissue 

damage. Following our initial demonstrations, other groups have also presented 

similar achievements by stimulating the abdomen of moths on tethered setups [Tsa 08] 

and the brain and the wing muscles of beetles [Sat 09]. 

Insects demonstrate genetically programmed stereotypical behaviors triggered 

by environmental stimuli. Therefore, as shown in this dissertation, direct control of 

insect locomotion behavior through electronics is more straightforward than for larger 

animals, e.g., rats and monkeys. Based on the initial results presented here, more 

advanced electrical neuromuscular control strategies can be developed to instruct 

insects to navigate and to learn particular tasks using routine-operant conditioning 

techniques. In the experiments done within the context of this dissertation, motor 

output was generated by applying proprioceptive inputs directly to the peripheral 

neuro-muscular systems. However, to stimulate behavioral responses, additional 

payloads can be implanted with the surgical procedure presented here to provide 

exteroceptive inputs to the insect’s chemical, mechanical and visual receptors. These 

concepts have significant potential for training individual insects remotely to control 

their behavior. 

As an application, the first results towards flight navigation in moths were 

established here. We were able to demonstrate on-demand wing actuation and flight 

direction control using microprobes inserted through the EMIT procedure, with the 

goal of insect navigation and domestication. Inserted probes were adopted by the 

developing muscle tissue as a result of metamorphic growth in which the surgical 

method was completed in less than a minute to embed the excitation electrodes 

directly into the indirect flight muscle groups. The muscle tissue developing around 
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the inserted probes increased the mechanical stability and integrity of the structure on 

the insect. Separate down- and up-stroke actuation of each wing was shown, through 

which the flight direction of Manduca sexta was affected. Using this procedure, we 

were able to alter and control the flight of tobacco hawkmoth Manduca sexta by 

actuating its flight muscles on tethered setups. 

Successful locomotion control for both land and air was also demonstrated for 

the first time with remotely transmitted radio signals  through electrodes inserted in the 

antennal lobe and neck muscles of the insect following an EMIT procedure. Initiation 

and cessation of flight and walk, as well as yaw actuation were obtained on freely 

flying and walking lift assisted moths through joystick manipulation on a conventional 

model airplane remote controller. Super-regenerative receiver based architecture was 

used to receive transmitted signals from a remote controller to stimulate the insect, 

where the overall circuitry weighed only 650 milligrams and consumed 750 

microwatts. By feedback controlled learning of yaw and rotation motion obtained in 

various insects, it is plausible to ascertain the best positions for probe placement and 

optimized pulse sequences for improved precision. 

The concept of lift assisted flight allows for transporting tens of grams while 

potentially increasing the flight duration of the insect biobots, enabling a vast number 

of engineering applications where such biobots can be deployed. Helium balloons 

were also used to assist the insect to lift the payloads. In our ongoing effort to control 

insect flight reliably with pupae- inserted electronics, the demonstration of using heat 

was realized to control insect flight initiation or take-off from a standing position. For 

this, a tissue embedded micro heater was used to decrease the preflight warm-up 

duration of hybrid electronic insect micro-air-vehicles. The EMIT procedure was 

followed for the surgical implantations. The biological takeoff-time at room 

temperature of 5–10 minutes was reduced to 58 seconds by thorax heating. 
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Minimizing takeoff-time will enable higher bandwidth and reliable control for 

repeated takeoff and landing applications. The thermal probes implanted in the pupal 

stage not only decrease the time required to deploy the insect-cyborgs, but they also 

have the potential to extend the insect cyborgs’ mission time, for the biochemical 

energy expended for thoracic warming is conserved. Artificial heating used to 

overheat the thorax also may increase the payload capacity, since wing-stroke power 

dramatically depends on thoracic temperature. Thermal probe technology may also 

enable temperature control of individual muscle groups for flight control. All of this 

progress paves the way for future engineering approaches to understand insect flight in 

more detail and also to facilitate insect-based biobotic systems as centimeter scale 

micro-air-vehicles.   

Hence, we can validate a prototypical technology using insect muscle for 

controlled insect locomotion, which could lead to domesticating insects to be modern 

“beasts of burden,” to carry information processing electronics and sensors. Moreover, 

electronics can be used for biological and environmental sensing by tapping into the 

sensory systems of the insects and using their own natural receptors. Controlling 

motor function of invertebrates while simultaneously recording from its natural 

sensors enables a vast number of applications for various scientific and engineering 

studies. The simplicity of the optimized surgical procedure presented here allows for 

batch insertions to the insect for automatic and mass production of such hybrid insect-

machine platforms. Therefore, this bio-electronic interface and hybrid insect-machine 

platform enables multi-disciplinary scientific and engineering studies not only to 

investigate the details of insect behavioral physiology but also to explore 

methodologies to control such physiology more precisely. When instrumented with 

equipment to gather information for environmental sensing, such insect based 

platforms can potentially assist humanity to monitor the ecosystems that we share with 
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them for a sustainable future, by creating low-cost and biodegradable sensing 

platforms. 
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APPENDIX A 

MOVIE DESCRIPTIONS 

Movie #1 
Description: Wing actuation through electrical stimulation of flight muscles 
File name: wingactuation.wmv 
HTTP Location: http://www.alperbozkurt.info/thesismovies/wingactuation.wmv 
Duration: 84 s 
File size: 3.56 MB 
Content:  uni- an bilateral wing actuation, induced up- and downstroke, induced right 
and left yaw, induced wing flapping cessations 
Movie caption: Figure 70 
 
Movie #2 
Description: Balloon assisted flight control through electrical stimulation 
File name: balloonflight.wmv 
HTTP Location: http://www.alperbozkurt.info/thesismovies/balloonflight.wmv 
Duration: 163 s 
Content: flight initiation and stopping on the bench-top setup , induced yaw at the 
bench-top setup, balloon assisted flight control: inititation of flight, yaw maneuver, 
landing 
Movie caption: Figure 75 
Movie #3 
Description: Balloon assisted gait control through electrical stimulation 
File name: balloongait.wmv 
HTTP Location: http://www.alperbozkurt.info/thesismovies/balloongait.wmv 
Duration: 323 sec 
Content: right and lrft turn on the bench-top setup, following several 8 shaped routes 
on the ground  
Movie caption: Figure 75 
 
Movie #4 
Description: visuomotor reflex induced yaw maneuvers  
File name: LEDarena.wmv 
HTTP Location: http://www.alperbozkurt.info/thesismovies/LEDarena.wmv 
Duration: 29 s 
Content: several yaw maneuvers to follow rotating light stripes  
Movie caption: Figure 85 
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APPENDIX B 

PUBLICATIONS  

Publications produced from the content of this dissertation: 

 
Journal Papers: 
 
1. A. Bozkurt, R. Gilmour, A. Sinha, D. Stern D, A. Lal, “Insect Machine Interface 
Based Neuro Cybernetics,” IEEE Transactions on Biomedical Engineering, 56:6, pp. 
1727-33, 2009. 
2.  A. Bozkurt, R. Gilmour, A. Lal,  “Balloon Assisted Flight of Radio Controlled 
Insect Biobots,” IEEE Transactions on Biomedical Engineering, 56:9, pp. 2304-7, 
2009.  
3.  A. Bozkurt, A. Lal, “ In vivo Electrochemical Characterization of Tissue-Electrode 
Interface During Metamorphic Growth,” in preparation to be submitted to Journal of 
Neural Engineering. 
4. A. Bozkurt, R. Gilmour, A. Lal, “Low-Cost Flexible Printed Circuit Technology 
based Microelectrode Array for Extracellular Stimulation of Invertebrate Locomotory 
System,” to be submitted to Sensors and Actuators A. 
 
Conference Abstracts: 
 
1. A. Bozkurt, A. Paul,  S. Pulla, A. Ramkumar, B. Blossey, J. Ewer, R. Gilmour, A. 
Lal, “Microprobe Microsystem Platform Inserted During Early Metamorphosis to 
Actuate Insect Flight Muscle,” 20th IEEE International Conference on Micro Electro 

Mechanical Systems (MEMS 2007), Kobe, JAPAN, pp. 405-408, January 2007,.  
2. A. Bozkurt, R. Gilmour, D. Stern, A. Lal, “MEMS based Bioelectronic 
Neuromuscular Interfaces for Insect Cyborg Flight Control,,”  21st IEEE International 

Conference on Micro Electro Mechanical Systems (MEMS 2008), Tucson, AZ, pp. 
160-163, January 2008.  
3. A. Bozkurt, A. Lal, R. Gilmour, “Electrical Endogenous Heating of Insect Muscles 
for Flight Control,” 30th International Conference of the IEEE Engineering in 

Medicine and Biology Society (EMBC’08), Vancouver, Canada, 2008.  
4. A. Bozkurt , A. Lal, R. Gilmour, “Radio Control of Insects for Biobotic 
Domestication,” 4th International Conference of the IEEE Neural Engineering 

(NER’09), Antalya, Turkey, 2009. 
5. A. Bozkurt, A. Lal , R. Gilmour,  “Aerial And Terrestrial Locomotion Control of 
Lift Assisted Insect Biobots,” 31th International Conference of the IEEE Engineering 

in Medicine and Biology Society (EMBC’09), Minneapolis, MN, 2009. 

 

 

 



 

128 

APPENDIX C 

MANDUCA SEXTA REARING PROTOCOL 

(With the courtesy of Katherine Renwick, Marjolein Schat and Janice Beal of Boyce 
Thompson Institute in Ithaca, NY) 

I.   Eggs 

1.  Place a tobacco plant in the adult tent cage overnight. 

2.  Remove the plant from the cage the following morning.  Cut off the leaves and 
gently roll the eggs into a small glass dish lined with a paper towel.  Freeze the plant 
and any remaining eggs overnight before discarding. 

3.  Surface sterilize the eggs by placing them in a small strainer set in a dish of 5% 
bleach solution.   Swirl the eggs for one minute, then rinse in deionized water.  Spread 
on a paper towel under the laminar flow hood and allow to dry thoroughly.   

4.  Transfer the dry eggs to a clean glass dish lined with a paper towel, cover tightly, 
label with the date, and place in the 25°C incubator (16L:8D photoperiod, 60% 
relative humidity) for three days. 

5.  Transfer the eggs and the label to one or more hatching trays lined with paper 
towels.  There should be no more than 150 eggs per tray.  Add 6 thin slices of diet, 
cover, and return to the incubator.  Placing a board over the cover helps reduce 
condensation inside the tray. 

6.  The eggs will begin to hatch the following day. 

II.  Larvae 

1.  One week after the eggs were collected, just after the larvae have molted to the 2nd 
instar, transfer them to glass tubes. 

2.  Prepare the glass tubes as follows: 

      a.   Place a foam stopper in one end of each tube.  Tubes are arranged vertically in 
racks. 

      b.   Remove caps containing artificial diet from the refrigerator and allow to reach 
room temperature.  Keep covered so the diet does not dry out. 

      c.   Insert a plastic stick vertically into each cap of diet. 

3.  Using soft forceps, remove each larva from the hatching tray and place on a stick, 
near the diet.  Insert the stick into the glass tube so the cap rests on top.  Label the rack 
with the date the eggs were collected.  Place in the 25°C incubator (16L:8D 
photoperiod, 60% relative humidity). 

4.  When the larvae have molted to the 5th instar and resumed feeding (approximately 
10 days later), replace the caps with fresh diet. Begin emptying the frass from the 
tubes daily.  Place boards over the tubes in the incubator to hold the caps in place so 
the larvae cannot escape. 
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III.  Prepupae 

1.  Check the tubes daily and remove all larvae that have become prepupae.  Place 
them in a plastic tray with paper towels so they can “wander” for a few minutes. 

2.  Transfer prepupae to wooden blocks.  Attach a pre-made label and record today’s 
date and the date the eggs were collected.  Cover with a board kept in place with 
rubber bands.  Place in the old incubator (no lights, 25°C, 60% RH). 

IV.  Pupae 

1.  Prepupae will molt to pupae in 5 days.  They should remain in the blocks for an 
additional 2 days so the cuticle can become sufficiently hardened. 

2.  Remove each pupa from the block with a metal scoop and record its sex on the 
label (transfer it later to the Excel spreadsheet).   Weigh the pupa using the balance 
with Winwedge software (so the weight is recorded directly onto the Excel 
spreadsheet).  Replace the pupa in the block, and after all pupae are sexed and 
weighed, place the block back in the old incubator. 

3.  When all pupae from a cohort (reared from the same group of eggs) have been 
weighed, choose the largest 12 males and 12 females to set aside in a plastic tray for 
the colony.  Return to the old incubator until they are ready to emerge.  The remaining 
pupae can be distributed to researchers or used for experiments. 

V.  Adults 

1.  Several days before emergence (the developing wings begin to show dark 
pigmentation), place the pupae in an emergence tray in the large tent cage in room 
B19. 
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