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Abstract-The Stanford Cart was a remotely controlled TV-equipped 
mobile robot. A computer program was written which drove the Cart 
through cluttered spaces, gaining its knowledge of the world entirely 
from images broadcast by an on-board TV system_ The CMU Rover is 
a more capable, and nearly operational, robot being built to develop 
and extend the Stanford work and to explore new directions_ 

The Cart used several kinds of stereopsis to locate objects around it 
in three dimensions and to deduce its own motion. It planned an 
obstacle-avoiding path to a desired destination on the basis of a model 
built with this information. The plan changed as the Cart perceived 
new obstacles on its journey. 

The system was reliable for short runs, but slow. The Cart moved 
1 m every 10 to 15 min, in lurches. After rolling a meter it stopped, 
took some pictures, and thought about them for a long time. Then it 
planned a new path, executed a little of it, and paused again. It suc
cessfully drove the Cart through several 20-m courses (each taking 
about 5 h) complex enough to necessitate three or four avoiding swerves; 
it failed in other trials in revealing ways. 

The Rover system has been designed with maximum mechanical and 
control system flexibility to support a wide range of research in percep
tion and control. It features an omnidirectional steering system, a dozen 
on-board processors for essential real-time tasks, and a large remote 
computer to be helped by a high-speed digitizing/data playback unit 
and a high-performance array processor. Distributed high-level control 
software similar in organization to the Hearsay II speech-understanding 
system and the beginnings of a vision library are being readied. 

By analogy with the evolution of natural intelligence, we believe that 
incrementally solving the control and perception problems of an auton
omous mobile mechanism is one of the best ways of arriving at general 
artificial intelligence. 

INTRODUCTION 

EXPERIENCE with the Stanford Cart (8), (9), [11), a 

minimal computer-controlled mobile camera platform, 

suggested to me that, while maintaining such a complex 

piece of hardware was a demanding task, the effort could be 

worthwhile from the point of view of artificial intelligence and 

computer vision research. A roving robot is a source of copi

ous and varying visual and other sensory data which force the 

development of general techniques if the controlling programs 

are to be even minimally successful. By contrast, the (also 

important) work with disembodied data and fixed robot sys

tems often focuses on relatively restricted stimuli and small 

image sets, and improvements tend to be in the direction of 

specialization. Drawing an analogy with the natural world, I 

believe it is no mere coincidence that in all cases imaging eyes 
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Fig. 1. The Stanford Cart. 

Fig. 2. The Cart on an obstacle course. 

and large brains evolved in animals that first developed high 

mobility. 

THE STANFORD CART 

The Cart [10 I was a minimal remotely controlled TV

equipped mobile robot (Fig. I) which lived at the Stanford 

Artificial Intelligence Laboratory (SAIL). A computer pro

gram was written which drove the Cart through cluttered 

spaces, gaining its knowledge of the world entirely from 

images broadcast by the on-board TV system (Fig. 2). 

The Cart used several kinds of stereo vision to locate objects 

around it in three dimensions (3D) and to deduce its own mo

tion. It planned an obstacle-avoiding path to a desired destina

tion on the basis of a model built with this information. The 

plan changed as the Cart perceived new obstacles on its journey. 

The system was reliable for short runs, but slow. The Cart 

moved I m every 10 to 15 min, in lurches. After rolling a 

meter it stopped, took some pictures, and thought about them 

for a long time. Then it planned a new path, executed a little 

of it, and paused again. 

It successfully drove the Cart through several 20-m courses 

(each taking about 5 h) complex enough to necessitate three 

or four avoiding swerves. Some weaknesses and possible im-
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Fig. 3. A Cart's eye view of the calibration grid. The Cart camera's focal 
length and distortions were determined by parking the Cart a precise 
distance in front of, and aiming its camera at, a carefully painted array 
of spots pattern, and running a calibration program. The program 
located the spots in the image and fitted a 2 D, third·degree polyno
mial which converted actual positions in the image to coordinates in 
an ideal unity focal length camera. The picture presented here was 
obtained by running a corresponding grid in the unity focal length 
frame through the inverse function of the polynomial so obtained and 
superimposing it on the raw spot image. 

provements were suggested by these and other, less successful, 

runs. 

A CART RUN 

A run began with a calibration of the Cart's camera. The 

Cart was parked in a standard position in front of a wall of 

carefully painted spots. A calibration program noted the dis

parity in position of the spots in the image seen by the camera 

with their position predicted from an idealized model of the 

situation. It calculated a distortion correction polynomial 

which related these positions, and which was used in subse
quent ranging calculations (Fig. 3). 

The Cart was then manually driven to its obstacle course (lit

tered with large and small debris) and the obstacle-avoiding 

program was started. It began by asking for the Cart's destina

tion, relative to its current position and heading. After being 
told, say, 50 m forward and 20 to the right, it began its man

euvers. It activated a mechanism which moved the TV camera, 

and digitized nine pictures as the camera slid in precise steps 

from one side to the other along a 50-cm track. 

A subroutine called the Interest Operator was applied to one 

of these pictures. It picked out 30 or so particularly distinctive 

regions (features) in this picture. Another routine called the 

Correia tor looked for these same regions in the other frames 

(Fig. 4) . A program called the Camera Solver determined the 

3D position of the features with respect to the Cart from their 

apparent movement from image to image (Fig. 5). 

The Navigator planned a path to the destination which 

avoided all the perceived features by a large safety margin. The 

program then sent steering and drive commands to the Cart to 

move it about a meter along the planned path. The Cart 's re

sponse to such commands was not very precise. The camera 

was then operated as before, and nine new images were acquired. 

The control program used a version of the CorreIa tor to find as 

many of the features from the previous location as possible in 

the new pictures, and applied the camera solver. The program 

Fig. 4. Interest Operator and Correlator results. The upper picture 
shows points picked out by an application of the Interest Operator. 

The lower picture shows the Correlator's attempt to find the same 
points in an image of the same scene taken from a different point of 
view. 

then deduced the Cart's actual motion during the step from 

the apparent 3D shift of these features. Some of the features 

were pruned during this process, and the Interest Operator was 

invoked to add new ones. 

This repeated until the Cart arrived at its destination or until 

some disaster terminated the program. Figs. 6 and 7 docu

ment the Cart's internal world model at two points during a 

sample run. 

SOME DETAILS 

The Cart's vision code made extensive use of a reductions of 

each acquired image. Every digitized image was stored as the 

original picture accompanied by a pyramid of smaller versions 
of the image reduced in linear size by powers of two, each suc

cessive reduction obtained from the last by averaging four pix

els into one. 

CAMERA CALIBRATION 

The camera's focal length and geometric distortion were 

determined by parking the Cart a precise distance in front of a 

wall of many spots and one cross. A program digitized an 



Fig. 5. Slider stereo. A typical ranging. The nine pictures are from a 
slider scan. The Interest Operator chose the marked feature in the 
central image, and the Correlator found it in the other eight. The 
small curves at bottom are distance measurements of the feature made 
from pairs of the images. The large beaded curve is the sum of the 
measurements over all 36 pairings. The horizontal scale is linear in in· 
verse distance. 

image of the spot array, located the spots and the cross, and 

constructed a two-dimensional (20) polynomial that related 

the position of the spots in the image to their position in an 

ideal unity focal length camera, and another polynomial that 

converted points from the ideal camera to points in the im

age. These polynomials were used to correct the positions of 
perceived objects in later scenes (Fig. 3). 

The algorithm began by determining the array's approximate 

spacing and orientation. It reduced by averaging and trimmed 

the picture to 64 by 64, calculated the Fourier transform of 

the reduced image, and took its power spectrum, arriving at a 

20 transform symmetric about the origin, and having strong 

peaks at frequencies corresponding to the horizontal and ver

tical as well as half-diagonal spacings, with weaker peaks at the 

harmonics. It multiplied each point Ii, j] in this transform by 

point [-j, il and points [j - i, j + il and [i + j, j - iI, effectively 

folding the primary peaks onto one another. The strongest 

peak in the 90° wedge around the y axis gave the spacing and 

orientation information needed by the next part of the process. 

The Interest Operator described later was applied to roughly 

locate a spot near the center of the image. A special operator 

examined a window surrounding this position, generated a his

togram of intensity values within the window, decided a thresh

old for separating the black spot from the white background, 

and calculated the centroid and first and second moment of 

the spot. This operator was again applied at a displacement 

from the first centroid indicated by the orientation and spac-
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Fig. 6. A Cart obstacle run. This and the following diagram are plan 
views of the Cart's internal world model during a run of the obstacle
avoiding program. The grid cells are 2 m' , conceptually on the floor. 
The Cart's own position is indicated by the small heavy square, and 
by the graph, indicating height, calibrated in centimeters, to the left 
of the grid. Since the Cart never actually leaves or penetrates the floor, 
this graph provides an indiCation of the overall accuracy. The irregu
lar, tick marked, line behind the Cart's position is the past itinerary of 
the Cart as deduced by the program. Each tick mark represents a 
stopping place. The picture at top of the diagrams is the view seen by 
the TV camera. The two rays projecting forward from the Cart posi
tion show the horizontal boundaries of the camera's field of view (as 
deduced by the camera calibration program). The numbered circles 
in the plan view are features located and tracked by the program. 
The centers of the circles are the vertical projections of the feature 
positions onto the ground. The size of each circle is the uncertainty 
(caused by finite camera resolution) in the feature's position. The 
length of the 45° line projecting to the upper right, and terminated 
by an identifying number, is the height of the feature above the ground, 
to the same scale as the floor grid. The features are also marked in 
the camera view, as numbered boxes. The thin line projecting from 
each box to a lower blob is a stalk which just reaches the ground, in 
the spirit of the 45° lines in the plan view. The irregular line radiating 
forwards from the Cart is the planned future path. This changes from 
stop to stop, as the Cart fails to obey instructions properly, and as 
new obstacles are detected. The small ellipse a short distance ahead 
of the Cart along the planned path is the planned position of the next 
stop. 

ing of the grid, and so on, the region of found spots growing 

outward from the seed. 

A binary template for the expected appearance of the cross 

in the middle of the array was constructed from the orienta

tion/spacing data from the Fourier transform. The area around 

each of the found spots was thresholded on the basis of the 

expected cross area, and the resulting two-valued pattern was 

convolved with the cross template. The closest match in the 

central portion of the picture was declared to be the origin. 

Two least squares polynomials (one for X and one for Y) 

of third (or sometimes fourth) degree in two variables, relating 

the actual positions of the spots to the ideal positions in a unity 

focal length camera, were then generated and written into a 

file. The polynomials were used in the obstacle avoider to cor-
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Fig. 7. After the eleventh lurch the Cart has rounded the chair, the ico· 
sahedron, and is working on the cardboard tree. The world model has 
suffered some accumulated drift error, and the oldest acquired fea· 
tures are considerably misplaced. 

rect for camera roll, tilt, lens focal length, and long-term varia· 

tions in the vidicon geometry. 

INTEREST OPERATOR 

The Cart vision code dealt with localized image patches called 

features. A feature is conceptually a point in the 3D world, 

but it was found by examining localities larger than points in 

pictures. A feature was good if it could be located unambigu

ously in different views of a scene. A uniformly colored region 

or a simple edge is not good because its parts are indistinguish

able. Regions, such as corners, with high contrast in orthog· 

onal directions are best. 

New features in images were picked by a subroutine called 

the Interest Operator, which returned regions that were local 

maxima of a directional variance measure, defined below. The 

idea was to select a relatively uniform scattering of good fea

tures over the image, so that a few would likely be picked on 

every visible object while textureless areas and simple edges 

were avoided. 

Directional variance was measured over small square win· 

dows. Sums of squares of differences of pixels adjacent in 

each of four directions (horizontal, vertical, and two diagonals) 

over each window were calculated, and the window's interest 

measure was the minimum of these four sums. Features were 

chosen where the interest measure had local maxima. The 

chosen features were stored in an array, sorted in order of de

creasing interest measure (Fig. 4-top). 

Once a feature was chosen, its appearance was recorded as 

series of excerpts from the reduced image sequence. A 6 by 6 

window was excised around the feature's location from each 

of the variously reduced pictures. Only a tiny fraction of the 

area of the original (unreduced) image was extracted. Four 

times as much area (but the same number of pixels) of the 

X2 reduced image was stored, sixteen times as much of the 

X4 reduction, and so on, until at some level we had the whole 

image. The final result was a series of 6 by 6 pictures, begin· 

ning with a very blurry rendition of the whole picture, gradu

ally zooming in linear expansions of two, to a sharp closeup of 

the feature. 

CORRELATION 

Deducing the 3D location of features from their projections 

in 2D images requires that we know their position in two or 

more such images. The Co"elator was a subroutine that , given 

a feature description produced by the interest operator from 

one image, found the best match in a different, but similar, 

image. Its search area could be the entire new picture, or a 

rectangular subwindow. 

The search used a coarse to fine strategy that began in re

duced versions of the pictures. Typically, the first step took 

place at the X 16 (linear) reduction level. The 6 by 6 window 

at that level in the feature description, that covered about one 

seventh of the total area of the original picture, was convolved 

with the search area in the correspondingly reduced version of 

the second picture. The 6 by 6 description patch was moved 

pixel by pixel over the approximately 15 by 16 destination 

picture, and a correlation coefficient was calculated for each 

trial position. The position with the best rna tch was recorded. 

The 6 by 6 area it occupied in the second picture was mapped 

to the X 8 reduction level, where the corresponding region was 

12 pixels by 12. The 6 by 6 window in the X8 reduced level 

of the feature description was then convolved with this 12 by 

12 area, and the position of best match was recorded and used 

as a search area for the X4 level. The process continued, match

ing smaller and smaller, but more and more detailed windows, 

until a 6 by 6 area was selected in the unreduced picture (Fig. 

4- bottom). 

This "divide and conquer" strategy was, in general, able to 

search an entire picture for a match more quickly (because 
most of the searching was done at high reduction levels) and 

more reliably (because context up to and including the entire 

picture guided the search) than a straightforward convolution 

over even a very restricted search area. 

SLIDER STEREO 

At each pause on its computer·controlled itinerary, the Cart 

slid its camera from left to right on a 52-cm track, taking nine 

pictures at precise 6.5-cm intervals. Points were chosen in the 

fifth (middle) of these nine images, either by the Correlator to 

match features from previous positions, or by the Interest Op

erator. The camera slid parallel to the horizontal axis of the 

(distortion corrected) camera coordinate system, so the paral

lax-induced displacement of features in the nine pictures was 

purely horizontal. 

The CorreIa tor was applied eight times to look for the points 

chosen in the central image in each of other eight pictures. 

The search was restricted to a narrow horizontal band. This 

had little effect on the computation time, but it reduced 

the probability of incorrect matches. In the case of correct 

matches, the distance to the feature was inversely proportional 

to its displacement from one image to another. The uncertainty 

in such a measurement is the difference in distance a shift one 

pixel in the image would make. The uncertainty varies inversely 

with the physical separation of the camera positions where the 



pictures were taken (the stereo baseline). Long baselines give 

more accurate distance measurements. 

After the correlation step the program knew a feature's posi

tion in nine images. It considered each of the 36 (9 values 

taken 2 at a time) possible image pairings as a stereo baseline, 

and recorded the estimated (inverse) distance of the feature in 

a histogram. Each measurement added a little normal curve to 

the histogram, with mean at the estimated distance, and stan

dard deviation inversely proportional to the baseline, reflecting 

the uncertainty. The area under each curve was made propor

tional to the product of the goodness of the matches in the 

two images (in the central image this quantity is taken as unity), 

reflecting the confidence that the correlations were correct. 

The distance to the feature was indicated by the largest peak 

in the resulting histogram, if this peak was above a certain 

threshold. If below, the feature was forgotten (Fig. 5). 

The CorreIa tor sometimes matched features incorrectly. The 

distance measurements from incorrect matches in different 

pictures were not consistent. When the normal curves from 36 

pictures pairs are added up, the correct matches agree with 

each other, and build up a large peak in the histogram, while 

incorrect matches spread themselves more thinly. Two or three 

correct correlations out of the eight usually built a peak suffi

cient to offset a larger number of errors. In this way, eight 

applications of a mildly reliable Operator interacted to make a 

very reliable distance measurement. 

MOTION STEREO 

After having determined the 3D location of objects at one 

position, the computer drove the Cart about a meter forward. 

At the new position, it slid the camera and took nine pictures. 

The Correia tor was applied in an attempt to find all the features 

successfully located at the previous position. Feature descrip

tions extracted from the central image at the last position were 

searched for in the central image at the new stopping place. 

Slider Stereo then determined the distance of the features so 

found from the Cart's new position. The program now knew 

the 3D position of the features relative to its camera at the old 

and the new locations. Its own movement was deduced from 

3D coordinate transform that related the two. 

The program first eliminated mismatches in the correlations 

between the central images at the two positions. Although it 

did not yet have the coordinate transform between the old and 

new camera systems, the program knew the distance between 

pairs of feature positions should be the same in both. It made 

a matrix in which element [i, i] is the absolute value of the 

difference in distances between points i and i in the first and 

second coordinate systems divided by the expected error (based 
on the one pixel uncertainty of the ranging). Each row of this 

matrix was summed, giving an indication of how much each 

point disagreed with the other points. The idea is that while 

points in error disagree with virtually all points, correct posi

tions agree with all the other correct ones, and disagree only 

with the bad ones. The worst point was deleted, and its effect 

removed from the remaining points in the row sums. This 

pruning was repeated until the worst error was within the error 

expected from the ranging uncertainty. 

After the pruning, the program had a number of points, typi

cally 10 to 20, whose position error was small and pretty well 

known. The program trusted these, and recorded them in its 

world model, unless it had already done so at a previous posi

tion. The pruned points were forgotten forevermore. 

The 3D rotation and translation that related the old and new 
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Cart position was then calculated by a Newton's method itera

tion that minimized the sum of the squares of the distances 

between the transformed first coordinates and the raw coordi

nates of the corresponding points at the second position, with 

each term divided by the square of the expected uncertainty 

in the 3D position of the points involved. 

PATH PLANNING 

The Cart vision system modeled objects as simple clouds of 

features. If enough features are found on each nearby object, 

this model is adequate for planning a noncolliding path to a 

destination. The features in the Cart's 3D world model can be 

thought of as fuzzy ellipsoids, whose dimensions reflect the 

program's uncertainty of their position. Repeated applications 

of the Interest Operator as the Cart moves caused virtually all 

visible objects to be become modeled as clusters of overlapping 

ellipsoids. 

To simplify the problem, the ellipsoids were approximated 

by spheres. Those spheres sufficiently above the floor and 

below the Cart's maximum height were projected on the floor 

as circles. The l_m2 Cart itself was modeled as a 3-m circle. 

The path-finding problem then became one of maneuvering 

the Cart's 3-m circle between the ( usually smaller) circles of 

the potential obstacles to a desired location. It is convenient 

(and equivalent) to conceptually shrink the Cart to a point, 

and add its radius to each and every obstacle. An optimum 

path in this environment will consist of either a straight run 

between start and finish, or a series of tangential segments 

between the circles and contacting arcs (imagine loosely laying 

a string from start to finish between the circles, then pulling it 

tight). 

The program converted the problem to a shortest path in 

graph search. There are four possible paths between each pair 

of obstacles because each tangent can approach clockwise or 

counterclockwise. Each tangent point became a vertex in the 

graph, and the distance matrix of the graph (which had an en

try for each vertex pair) contained sums of tangential and arc 

paths, with infinities for blocked or impossible routes. The 

shortest distance in this space can be found with an algorithm 

whose running time is 0 (n 3 ) in the number of vertices, and 

the Cart program was occasionally run using this exact proce

dure. It was run more often with a faster approximation that 
made each obstacle into only two vertices (one for each direc

tion of circumnavigation). 

A few other considerations were essential in path planning. 

The charted routes consisted of straight lines connected by 

tangent arcs, and were thus plausible paths for the Cart, which 

steered like an automobile. This plausibility was not necessarily 

true of the start of the planned route, which, as presented thus 

far, did not take the initial heading of the Cart into account. 

The plan could, for instance, include an initial segment going 

off 90° from the direction in which the Cart pointed, and thus 

be impossible to execute. This was handled by including a pair 

of "phantom" obstacles along with the real perceived ones. 

The phantom obstacles had a radius equal to the Cart's mini

mum steering radius, and were placed, in the planning process, 

on either side of the Cart at such a distance that after their 

radius was augmented by the Cart's radius (as happened for all 

the obstacles), they just touched the Cart's centroid, and each 

other, with their common tangents being parallel to the direc

tion of the Cart's heading. They effectively blocked the area 

made inaccessible to the Cart by its maneuverability limitations 

(Fig. 6). 
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Lozano-Perez and Wesley [7] describe an independently 

developed, but very similar, approach to finding paths around 

polygonal obstacles. 

PATH EXECUTION 

After the path to the destination had been chosen, a portion 

of it had to be implemented as steering and motor commands 

and transmitted to the Cart. The control system was primitive. 

The drive motor and steering motors could be turned on and 

off at any time, but there existed no means to accurately deter

mine just how fast or how far they had gone. The program 

made the best of this bad situation by incorporating a model 

of the Cart that mimicked, as accurately as possible, the Cart's 

actual behavior. Under good conditions, as accurately as pos

sible means about 20 percent; the Cart was not very repeatable, 

and was affected by ground slope and texture, battery voltage, 

and other less obvious externals. 

The path executing routine began by excising the first 0.75 m 

of the planned path. This distance was chosen as a compromise 

between average Cart velocity, and continuity between picture 

sets. If the Cart moved too far between picture-digitizing ses

sions, the picture would change too much for reliable correla

tions. This is especially true if the Cart turns (steers) as it 

moves. The image seen by the camera then pans across the 

field of view. The Cart had a wide angle lens that covers 60° 

horizontally. The 0.75 m, combined with the turning radius 

limit (5 m) of the Cart resulted in a maximum shift in the field 

of view of 15°, one quarter of the entire image. 

The program examined the Cart's position and orientation at 

the end of the desired 0.75-m lurch, relative to the starting 

position and orientation. The displacement was characterized 

by three parameters; displacement forward, displacement to 

the right, and change in heading. In closed form, the program 

computed a path that accomplished this movement in two arcs 

of equal radius, but different lengths. The resulting trajectory 

had a general "8" shape. Rough motor timings were derived 

from these parameters. The program then used a simulation 

that took into account steering and drive motor response to 
iteratively refine the solution. 

CART EXPERIMENTS 

The system described above only incompletely fulfills some 

of the hopes I had when the work began many years ago. 

One of the most serious limitations was the excruciating 

slowness of the program. In spite of my best efforts, and many 

c011lPromises in the interest of speed, it took 10 to IS min of 

real time to acquire and consider the images at each meter long 

lurch, on a lightly loaded DEC KL-IO. This translated to an 

effective Cart velocity of 3 to 5 m an hour. Interesting obstacle 

courses (two or three major obstacles, spaced far enough apart 

to permit passage within the limits of the Cart's size and maneu

verability) were about 20 m long, so interesting Cart runs took 

5 h. 

The reliability of individual moves was high, as it had to be 

for a 20-lurch sequence to have any chance of succeeding, but 

the demanding nature of each full run and the limited amount 

of time available for testing (discussion of which is beyond the 

scope of this paper) after the bulk of the program was debugged, 

ensured that many potential improvements were left untried. 

Three full (about 20-m) runs were digitally recorded and filmed, 

two indoors and one outdoors. Two indoor false starts, aborted 

by failure of the program to perceive an obstacle, were also 

recorded. The two long indoor runs were nearly perfect. 

In the first long indoor run, the Cart successfully slalomed 

its way around a chair, a large cardboard icosahedron, and a 

cardboard tree then, at a distance of about 16 m, encountered 

a cluttered wall and backed up several times trying to find a 

way around it (Figs. 6 and 7 are snapshots from this run). 

The second long indoor run involved a more complicated set 

of obstacles, arranged primarily into two overlapping rows 

blocking the goal. I had set up the course hoping the Cart 

would take a long, picturesque (the runs were being filmed) 

"8" shaped path around the ends of the rows. To my chagrin, 

it instead tried for a tricky shortcut. The Cart backed up twice 

to negotiate the tight turn required to go around the first row, 

then executed several tedious steer forward/backup moves, 

lining itself up to go through a gap barely wide enough in the 

second row. This run had to be terminated, sadly, before the 

Cart had gone through the gap because of declining battery 

charge and increasing system load. 

The outdoor run was less successful. It began well; in the 

first few moves the program correctly perceived a chair directly 

in front of the camera, and a number of more distant cardboard 

obstacles and sundry debris. Unfortunately, the program's idea 

of the Cart's own position became increasingly wrong. At al

most every lurch, the position solver deduced a Cart motion 

considerably smaller than the actual move. By the time the 

Cart had rounded the foreground chair, its position model was 

so far off that the distant obstacles were replicated in different 

positions in the Cart's confused world model, because they 

had been seen early in the run and again later, to the point 

where the program thought an actually existing distant clear 

path was blocked. I restarted the program to clear out the 

world model when the planned path became too silly. At that 

time the Cart was 4 m in front of a cardboard icosahedron, 

and its planned path lead straight through it. The newly rein

carnated program failed to notice the obstacle, and the Cart 

collided with it. I manually moved the icosahedron out of the 

way, and allowed the run to continue. It did so uneventfully, 

though there were continued occasional slight errors in the self

position deductions. The Cart encountered a large cardboard 
tree towards the end of this journey and detected a portion of 

it only just in time to squeak by without colliding (Fig. 2 was 

a photograph taken during this run). 

The two short abortive indoor runs involved setups nearly 

identical to the two-row successful long run described one para

graph ago. The first row, about 3 m in front of the Cart's start

ing position contained a chair, a real tree (a small cypress in a 

planting pot), and a polygonal cardboard tree. The Cart saw 

the chair instantly and the real tree after the second move, but 

failed to see the cardboard tree ever. Its planned path around 

the two obstacles it did see put it on a collision course with 

the unseen one. Placing a chair just ahead of the cardboard 

tree fixed the problem, and resulted in a successful run. The 

finished program never had trouble with chairs. 

Problems 

These tests revealed some weaknesses in the program. The 

system did not see simple polygonal (bland and featureless) 

objects reliably, and its visual navigation was fragile under cer

tain conditions. Examination of the program's internal work

ings suggested some causes and possible solutions. 

The program sometimes failed to see obstacles lacking suffi

cient high contrast detail withiri their outlines. In this regard, 

the polygonal tree and rock obstacles I whimsically constructed 

to match diagrams from a 3D drawing program, were a terrible 



mistake. In none of the test runs did the programs ever fail to 

see a chair placed in front of the Cart, but half the time they 

did fail to see a pyramidal tree or an icosahedral rock made of 

clean white cardboard. These contrived obstacles were picked 

up reliably at a distance of 10 to 15m, silhouetted against a 

relatively unmoving (over slider travel and Cart lurches) back

ground, but were only rarely and sparsely seen at closer range, 

when their outlines were confused by a rapidly shifting back

ground, and their bland interiors provided no purchase for the 

interest operator or correia tor. Even when the artificial obsta

cles were correctly perceived, it was by virtue of only two to 

four features. In contrast, the program usually tracked five to 

ten features on nearby chairs. 

In the brightly sunlit outdoor run, the artificial obstacles had 

another problem. Their white coloration turned out to be 

much brighter than any "naturally" occurring extended object. 

These super bright, glaring, surfaces severely taxed the very 

limited dynamic range of the Cart's vidicon/digitizer combina

tion. When the icosahedron occupied 10 percent of the cam

era's field of view, the automatic target voltage circuit in the 

electronics turned down the gain to a point where the back

ground behind the icosahedron appeared nearly solid black. 

The second major problem exposed by the runs was glitches 

in the Cart's self-position model. This model was updated after 

a lurch by finding the 3D translation and rotation that best 

related the 3D position of the set of tracked features before 

and after the lurch. In spite of the extensive pruning that pre

ceded this step (and partly because of it, as is discussed later), 

small errors in the measured feature positions sometimes caused 

the solver to converge to the wrong transform, giving a position 

error beyond the expected uncertainty. Features placed into 

the world model before and after such a glitch were not in the 

correct relative positions. Often an object seen before was 

seen again after, now displaced, with the combination of old 

and new positions combining to block a path that was in actu

alityopen. 

This problem showed up mainly in the outdoor run. I had 

observed it indoors in the past, in simple mapping runs, before 

the entire obstacle avoider was assembled. There appear to be 

two major causes for it, and a wide range of supporting factors. 

Poor seeing, resulting in too few correct correlations between 

the pictures before and after a lurch, was one culprit. The 
highly redundant nine-eyed stereo ranging was very reliable, 

and caused few problems, but the nonredundant correlation 

necessary to relate the position of features before and after a 

lurch was error prone. Sometimes the mutual-distance invari

ance pruning that followed was overly aggressive, and left too 

few points for a stable least squares coordinate fit. 

The outdoor runs encountered another problem. The pro

gram ran so slowly that shadows moved significantly (up to a 

half meter) between lurches. Their high contrast boundaries 

were favorite points for tracking, enhancing the program's 

confusion. 

Quick Fixes 

Though elaborate (and thus far untried in our context) 

methods such as edge matching may greatly improve the qual

ity of automatic vision in the future, subsequent experiments 

with the program revealed some modest incremental improve

ments that would have solved most of the problems in the test 

runs. 

The issue of unseen cardboard obstacles turns out to be partly 

one of overconservatism on the program's part. In all cases 
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where the Cart collided with an obstacle it had correctly ranged 

a few features on the obstacle in the prior nine-eyed scan. The 

problem was that the much more fragile correlation between 

vehicle forward moves failed, and the points were rejected in 

the mutual distance test. Overall, the nine-eyed stereo pro

duced very few errors. If the path planning stage had used the 

prepruning features (still without incorporating them per

manently into the world model) the runs would have proceeded 

much more smoothly. All of the most vexing false negatives, 

in which the program failed to spot a real obstacle, would have 

been eliminated. There would have been a very few false posi

tives, in which nonexistent ghost obstacles would have been 

perceived. One or two of these might have caused an unneces

sary swerve or backup, but such ghosts would not pass the 

pruning stage, and the run would have recovered after the ini

tial, noncatastrophic, glitch. 

The self-position confusion problem is related, and in retro

spect may be considered a trivial bug. When the Path Planner 

computed a route for the Cart, another subroutine took a por

tion of this plan and implemented it as a sequence of com

mands to be transmitted to the Cart's steering and drive mo

tors. During this process, it ran a simulation that modeled the 

Cart acceleration, rate of turning, and so on, and which pro

vided a prediction of the Cart's position after the move. With 

the old hardware, the accuracy of this prediction was not great, 

but it nevertheless provided much a priori information about 

the Cart's new position. This information was used, appropri

ately weighted, in the least squares coordinate system solver 

that deduced the Cart's movement from the apparent motion 

in 3 D of tracked features. It was not used, however, in the 

mutual distance pruning step that preceeded this solving. 

When the majority of features had been correctly tracked, fail

ure to use this information did not hurt the pruning. But 

when the seeing was poor, it could make the difference between 

choosing a spuriously agreeing set of mistracked features and 

the small correctly matched set. Incorporating the prediction 

into pruning, by means of a heavily weighted point that the 

program treats like another tracked feature, removed almost 

all the positioning glitches when the program was fed the pic

tures from the outdoor run. 

More detail on all these areas can be found in [ 10 J. 

THE eMU ROYER 

The major impediments to serious extensions of the Cart 

work were limits to available computation, resulting in debili

tatingly long experimental times, and the very minimal nature 

of the robot hardware, which precluded inexpensive solutions 

for even most basic functions (like "roll a meter forward"). 

We are addressing these problems at CMU in an ambitious 

new effort centered around a new, small but sophisticated 

mobile robot dubbed the CMU Rover. The project so. far has 

been focused on developing a smoothly functional and highly 

capable vehicle and assoCiated support system which will serve 

a wide variety of fu ture research. 

The shape, size, steering arrangements, and on-board as well 

as external processing capabilities of the Rover system were 

chosen to maximize the flexibility of the system (naturally 

limited by present-day techniques). 

The robot is cylindrical, about a meter tall and 55 cm in 

diameter (Fig. 8) and has three individually steerable wheel 

assem blies which give it a full three degrees of freedom of 

mobility in the plane (Figs. 9 and 10). Initially it will carry a 
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Fig. 8. The eMU Rover. 

TV camera on a pan/tilt/slide mount, several short-range infra

red and long-range sonar proximity detectors, and contact 

switches. Our design calls for about a dozen on-board proces

sors (at least half of them powerful 16-bit MC68000's) for 

high-speed local decision making, servo control, and commu

nication (Fig. 13). 

Serious processing power, primarily for vision, is to be pro

vided at the other end of a remote-control link by a combina

tion of a host computer VAX 11/780 an ST-IOO array proces

sor (a new machine from a new company, Star Technologies 

Inc., which provides 100 million floating-point operations per 

second) and a specially designed high-performance analog data 

acquisition and generation device. The Stanford Cart used 

IS min of computer time to move a meter. With this new CMU 

hardware, and some improved algorithms, we hope to duplicate 

(and improve on) this performance in a system that runs at 

least ten times as fast, leaving room for future extensions. 

The IS min for each meter-long move in the Cart's obstacle

avoiding program came in three approximately equal chunks. 

The first 5 min were devoted to digitizing the nine pictures 

from a slider scan. Though the SAIL computer had a flash dig

itizer which sent its data through a disk channel into main 

memory at high speed, it was limited by a poor sync detector. 

Often the stored picture was missing scanlines, or had lost ver

tical sync, i.e., had rolled vertically. In addition, the image 

was quantized to only 4 bits per sample; 16 grey levels. To 

make one good picture the program digitized 30 raw images in 

rapid succession, intercompared them to find the largest sub

set of nearly alike pictures (on the theory that the nonspoiled 

ones would be similar, but the spoiled ones would differ even 

from each other) and averaged this "good" set to obtain a less 

noisy image with 6 bits per pixel. The new digitizing hardware, 

which can sample a raw analog waveform, and depends on soft

ware in the array processor to do sync detection, should cut 

the total time to under 1 s per picture. The next 5 min was 

Fig. 9. The Rover wheelbase. The steering angle and drive of each 
wheel pair is individually controlled. The rover's trajectory will be an 
arc about any point in the floor plane iflines through the axles of all 
three wheels intersect at the center of that arc. 

Fig. 10. The Rover wheel assembly. The steering motor is shown at
tached to the wheel assem bly, part of the drive motor is shown 
detached. 

spent doing the low-level vision; reducing the images, some

times filtering them, applying the interest operator, especially 

the correIa tor, and statistical pruning of the results. The array 

processor should be able to do all this nearly 100 times faster. 

The last 5 min were devoted to higher level tasks; maintaining 

the world model, path planning, and generating graphical doc

umentation of the program's thinking. Some steps in this sec

tion may be suitable for the array processor, but in any case 

we have found faster algorithms for much of it; for instance, a 

shortest path in graph algorithm which makes maximum use of 

the sparsity of the distance matrix produced during the path 

planning. 

We hope eventually to provide a manipulator on the Rover's 

topside, but there is no active work on this now. We chose the 

high steering flexibility of the current design partly to ease the 

requirements on a future arm. The weight and power needed 

can be reduced by using the mobility of the Rover to su bstitu te 

for the shoulder joint of the arm. Such a strategy works best 

if the Rover body is given a full three degrees of freedom (X, 



Shaft encoder 
r--:n:==~Mrn't=~ 

Drive Motor 

Shaft encoder CU:~!.....,IIJ,I;;::::.;;l.l-ll;;;:..:::;!:\W,.....l..-=+!, 

Steering Motor 

Fig. 11. Diagram of the Rover wheel assembly. 

Y, and angle} in the plane of the floor. Conventional steering 

arrangements, as in cars, give only two degrees at any instant. 

ROVER DETAILS 

Three degrees of freedom of mobility are achieved by mount

ing the chassis on three independently steerable wheel assem

blies (Figs. 9-12). The control algorithm for this arrangement 

at every instant orients the wheels so that lines througlt their 

axles meet at a common point. Properly orchestrated, this 

design permits unconstrained motion in any (2D) direction, 

and simultaneous independent control of the robot's rotation 

about its own vertical axis. An unexpected benefit of this agil

ity is the availability of a "reducing gear" effect. By turning 

about the vertical axis while moving forward the robot derives 

a mechanical advantage for its motors. For a given motor speed, 

the faster the Rover spins, the slower it travels forward, and 

the steeper the slope it can climb. (Visualization of this effect 

is left as an exercise for the reader.) 

To permit low-friction steering while the robot is stationary, 

each assembly has two parallel wheels connected by a differen

tial gear. The drive shaft of the differential goes straight up 

into the body of the robot. A concentric hollow shaft around 

this one connects to the housing of the differential (Fig. II). 

Turning the inner shaft causes the wheels to roll forwards or 

backwards, turning the outer one steers the assembly, with the 

two wheels rolling in a little circle. The assemblies were manu

factured for us by Summit Gear Corp. 

Each shaft is connected to a motor and a 4000-count/revolu

tion optical shaft encoder (Datametrics K3). The two motors 

and two encoders are stacked pancake fashion on the wheel 

assembly, speared by the shafts. There are no gears except for 

the ones in the differential. (Fig. II shows a schematic cross 

section of a complete motor/wheel-assembly structure, Fig. 10 

a partially assembled stack in the flesh.) 

The motors are brushless with samarium-cobalt permanent

magnet rotors and three-phase windings (Inland Motors BM-

3201). With the high-energy magnet material, this design has 

better performance when the coils are properly sequenced 
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Fig. 12. Rover brushless motor drive circuitry. Each samarium-cobalt 
brushless motor in the wheel assemblies is sequenced and servoed by 
its own microprocessor. A processor generates three bipolar logic sig
nals Pi, P2, andP3 which control the currents through the three phase 
motor windings Wi, W2, and W3 through the IR light-emitting diode 
(LED) phototransistor optical links A through F shown. Each photo
transistor controls a power field-effect transistor which switches power 
to the windings. The circuitry in the upper, optically isolated, portion 
of the diagram is contained within its motor's housing, on an annular 
circuit board, using the housing as heat sink. The LED's poke through 
holes in the cover. Motor direction is controlled by sequencing order; 
torque is adjusted by pulsewidth modulation. 

than a conventional rotating coil motor. The coils for each 

are energized by six power MOSFET's (Motorola MTP1224) 

mounted in the motor casing and switched by six optoisolators 

(to protect the controlling computers from switching noise) 

whose LED's are connected in bidirectional pairs in a delta 

configuration, and lit by three logic signals connected to the 

vertices of the delta (Fig. 12). 

The motor sequencing signals come directly from on-board 

microprocessors, one for each motor. These are CMOS (Motor

ola MCl46805 with Hitachi HM6116 RAM's) to keep power 

consumption low. Each processor pulsewidth modulates and 

phases its motor's windings, and observes its shaft encoder, to 

servo the motor to a desired motion (supplied by yet another 

processor, a Motorola 68000, the Conductor as a time param

eterized function). Though the servo loop works in its present 

form, several approximations were necessary in this real-time 

task because of the limited arithmetic capability of the 6805. 

We will be replacing the 6805 with the forthcoming MC68008, 

a compact 8-bit bus version of the 68000. 

The shaft encoder outputs and the torques from all the mo

tors, as estimated by the motor processors, are monitored by 

another processor, the Simulator, a Motorola MC68000 (with 

all CMOS support circuitry the power requirement for our 
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32K 68000 is under I W. The new high-performance 74HC 

series CMOS allows operation at full 10-MHz speed.), which 

maintains a dead-reckoned model of the robot's position from 

instant to instant. The results of this simulation (which repre

sents the robot's best position estimate) are compared with the 

desired position, produced by another 68000, the Controller, 

in the previously introduced the Conductor, which orchestrates 

the individual motor processors. The Conductor adjusts the 

rates and positions of the individual motors in an attempt to 

bring the Simulator in line with requests from the Controller, 

in what amounts to a highly nonlinear feedback loop. 

Other on-board processors are as follows: 

Communication A 68000 which maintains an error corrected 

and checked packet infrared link with a 

large controlling computer (a V AX 11/780 

helped out by an ST-IOO array processor 

and a custom high-speed digitizer) which 

will do the heavy thinking. Programs run 

in the Controller are obtained over this 

link. 

Sonar A 6805 which controls a number of Polar

oid sonar ranging devices around the body 

of the Rover. These will be used to main

tain a rough navigation and bump-avoidance 

model. All measurements and control 

functions of this processor and the follow

ing ones are available (on request over a 

Camera 

Proximity 

Utility 

serial link) to the Controller. 

A 6805 which controls the pan, tilt, and 

slide motors of the onboard TV camera. 

The compact camera broadcasts its image 

on a small UHF or microwave transmitter. 

The signal is received remotely and the 

video signal captured by a high-bandwidth 

digitizer system and then read by the re

mote V AX. There are tentative plans for a 

minimal vision system using a 68000 with 

about 256K of extra memory on-board the 

Rover, for small vision tasks when the 

Rover is out of communication with the 

base system. 

A 6805 which monitors several short-range 

modulated infrared proximity detectors 

which serve as a last line of defense against 

collision, and which sense any drop off in 

the floor, and contact switches. 

A 6805 which senses conditions such as 

battery voltage and motor temperature, 

and which controls the power to nonessen

tial but power-hungry systems like the TV 

camera and transmitter. 

Communication between processors is serial, via Harris CMOS 

UART's, at a maximum speec! of 256 kBd. The Conductor 

talks with the motor processors on a shared serial line and the 

Controller communicates with the Sonar, Camera, Proximity, 

Utility, and any other peripheral processors by a similar method. 

The processors live in a rack on the second storey of the 

robot structure (Figs. 8 and 13), between the motor and bat

tery assembly (first floor) and the camera plane (penthouse). 

Fig. 13 shows the initial interconnection. 

The Rover is powered by six sealed lead-acid batteries (Globe 

gel-cell 12230) with a total capacity of 60 A . hat 24 V. The 

Fig. 13. The Rover's on-board processors. 

motors are powered directly from these, the rest of the circuitry 

derives its power indirectly from them through switching dc/ 

dc converters (Kepco RMD-24-A-24 and Semiconductor Cir

cuits U717262). Each 6805 processor draws about one eighth 

of a watt, each 68000 board only 1 W. 

Physically, the robot is a meter tall and 55 cm in diameter. 

It weighs 90 kg. The maximum acceleration is one quarter g, 

and the top speed is 10 km/h. With appropriate on-board pro

gramming the motions should be very smooth. The great steer

ing flexibility will permit simulation of other steering systems 

such as those of cars, tanks, and boats and other robots by 

changes in programming. 



PROGRESS 

As of this writing (January 1983) the robot's major mechani

cal and electronic structures are complete, mostly tested, and 

being assembled. An instability in the servo control algorithms 

which had held us up for several months has finally been solved, 

and we expect baby's first "steps" early in 1983. The digitizer 

unit which will receive and generate video and other data for 

the robot is under construction. Its specifications include four 

channels each with 2 Mbytes of memory and two ports able to 

transfer data at 100 Mbytes/s. 

PROMISES 

The high-level control system has become very interesting. 

Initially, we had imagined a language in which to write scripts 

for the on-board Controller similar to the AL manipulator 

language developed at Stanford [6], from which the commer

cial languages VAL at Unimation [15] and the more sophisti

cated AML [14] at IBM were derived. Paper attempts at de

fining the structures and primitives required for the. mobile 

application revealed that the essentially linear control struc

ture of these state-of-the-art arm languages was inadequate for 

a rover. The essential difference is that a rover, in its wander

ings, is regularly "surprised" by events it cannot anticipate, 

but with which it must deal. This requires that routines for 

responding to various situations can be activated in arbitrary 

order, and run concurrently. 

We briefly examined a production system, as used in many 

"expert systems," as the framework for the requisite real-time 

concurrency, but have now settled on a structure similar to 

that developed for the CMU Hearsay II speech understanding 

project [5]. Independent processes will communicate via 

messages posted on a commonly accessible data structure we 

call a Blackboard. The individual processes, some of which will 

run under control of a spare real-time operating system on one 

or more of the onboard 68000's, others of which will exist at 

the other end of a radio link on the V AX, change their relative 

priority as a consequence of relevant messages on the black

board. For instance, a note from several touch sensors signal

ing a collision is taken as a cue by the avoidance routine to 

increase its running rate, and to post messages which trigger 

the motor coordinating routines to begin evasive actions. We 

plan to implement the multiple processes required for this task 

on each of several of the on-board 68000's with the aid of a 

compact (4K), efficient real-time operating system kernel called 

VRTX available from Hunter & Ready. A more detailed de

scription of the state of this work may be found in [4]. 

Other interesting preliminary thinking has resulted in a 

scheme by which a very simple arm with only three actuators 

will enable the robot, making heavy use of its great steering 

flexibility, to enter and leave through a closed standard office 

door (Fig. 14). 

Stepping into a more speCUlative realm, we are considering 

approaches to model-based vision [2] which would permit rec

ognition of certain classes of objects seen by the robot. Dis

cussions with the distributed sensor net crew here at CMU [13] 

has raised the possibility of equipping the robot with ears, so 

it could passively localize sound, and thus perhaps respond 

correctly, both semantically and geometrically, to a spoken 

command like "Come here!" (using, in addition, speech under

standing technology also developed at CMU [ 16] ). 

We are also toying with the idea of a phased array sonar with 
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about 100 transducers operating at 50 kHz which, in conjunc

tion with the high-speed analog conversion device mentioned 

above and the array processor, would be able to produce a 

modest resolution depth map (and additional information) of 

a full hemisphere in about 1 s, by sending out a single spherical 

pulse, then digitally combining the returned echoes from the 

individual transducers with different delay patterns to synthe

size narrow receiving beams. 

PHILOSOPHY 

It is my view that developing a responsive mobile entity is 

the surest way to approach the problem of general intelligence 

in machines. 

Though computers have been programmed to do creditable 

jobs in many intellectual domains, competent performance in 

instinctive domains like perception and common sense reason

ing is still elusive. I think this is because the instinctive skills 

are fundamentally much harder. While human beings learned 

most of the intellectual skills over a few thousand years, the 

instinctive skills were genetically honed for hundreds of mil

lions of years, and are associated with large, apparently effi

ciently organized, fractions of our brain; vision, for example, is 

done by a specialized 10 percent of our neurons. Many animals 

share our instinctive skills, and their evolutionary record pro

vides clues about the conditions that foster development of 

such skills. A universal feature that most impresses me in this 

context is that all animals that evolved perceptual and behav

ioral competence comparable to that of humans first adopted 

a mobile way of life. 

This is perhaps a moot point in the case of the vertebrates, 

which share so much of human evolutionary history, but it is 

dramatically confirmed among the invertebrates. Most mol

luscs are sessile shellfish whose behavior is governed by a ner

vous system of a few hundred neurons. Octopus and squid are 

molluscs that abandoned life in the shell for one of mobility; 

as a consequence, they developed imaging eyes, a large (annu

lar!) brain, dexterous manipulators, and an unmatched million

channel color display on their surfaces. By contrast, no sessile 

animal nor any plant shows any evidence of being even re

motely this near to the human behavioral competence. 

My conclusion is that solving the day to day problems of 

developing a mobile organism steers one in the direction of 

general intelligence, while working on the problems of a fixed 

entity is more likely to result in very specialized solutions. 

I believe our experience with the control language for the 

Rover vis a vis the languages adequate for a fixed arm, is a case 

in point. My experiences with computer vision during the Cart 

work reinforce this opinion; constantly testing a program against 

fresh real-world data is nothing at all like optimizing a program 

to work well with a limited set of stored data. The variable 

and unpredictable world encountered by a rover applies much 

more selection pressure for generality and robustness than the 

much narrower and more repetitive stimuli experienced by a 

fixed machine. Mobile robotics mayor may not be the fastest 

way to arrive at general human competence in machines, but I 

believe it is one of the surest roads. 

RELATED WORK 

Other groups have come to similar conclusions, and have 

done sophisticated mobile robot work in past [12), [17). The 

robotics group at Stanford has acquired a new, experimental, 
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(a) (b) 

(c) (d) 

(e) 

Fig. 14. The Rover goes through a closed door. Using a simple arm 
with only three powered actuators and two passive hinges, greatly 
helped by the wheel flexibility, the Rover deals with a self-closing of
fice door. The door and knob are vlsuaUy located, the Rover extends 
its arm, and approaches the door (a). The arm grasps the knob, twists 
it open, and the Rover backs up in an arc, partiaUy opening the door 
(b). The Rover rolls around the door edge, while retaining its grasp on 
the knob; passive hinges in the arm bend in response (c). The Rover 
body now props open the door; the arm releases and retracts, and the 
Rover rolls along the front of the door (d). The Rover moves in an 
arc outward, allowing door to close behind it (e). 



mobile robot from Unimation Inc., and plans research similar 

to ours [I]. This new Unimation rover [3] is very similar in 

size, shape, and mechanical capabilities to the machine we are 

building. It achieves a full three degrees of freedom of floor

plane mobility by use of three novel "omnidirectional" wheels 

which, by virtue of rollers in place of tires, can freely move in 

a direction broadside to the wheel plane as well as performing 

the usual wheel motion under motor control. 
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