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A B S T R A C T

Organisms play, explore, and mimic those around them. Is there a purpose to this behavior? Are organisms
just behaving, or are they trying to achieve goals? We believe this is a false dichotomy. To that end, to
understand organisms, we attempt to unify two approaches for understanding complex agents, whether evolved
or engineered. We argue that formalisms describing multiscale competencies and goal-directedness in biology
(e.g., TAME), and reinforcement learning (RL), can be combined in a symbiotic framework. While RL has
been largely focused on higher-level organisms and robots of high complexity, TAME is naturally capable of
describing lower-level organisms and minimal agents as well. We propose several novel questions that come
from using RL/TAME to understand biology as well as ones that come from using biology to formulate new
theory in AI. We hope that the research programs proposed in this piece shape future efforts to understand
biological organisms and also future efforts to build artificial agents.

1. Introduction

Nature offers many remarkable and inspiring examples of complex
structure and function. A paradigmatic example is developmental mor-
phogenesis: a single cell (the fertilized egg) reliably gives rise to a body
with exquisite multiscale anatomical order, ranging across body-plans
that includes trees, snakes, elephants, and so on. It is largely assumed
that this can be understood via the concept of emergent complexity:
simple rules governing the behavior of molecular pathways and cells,
when executed iteratively by large numbers of local agents, result in
complex outcomes (Furusawa and Kaneko, 2002; Halley et al., 2012)
such as the aforementioned trees, snakes, and elephants. This kind of
behavior is readily observed in cellular automata and other workhorse
conceptual tools of complexity science. Importantly, however, this
approach has largely not been able to fill two key gaps. First, the
inverse problem of deriving low-level interventions that implement a
desired system-level goal (Groetsch and Groetsch, 1993) strongly limits
advances in regenerative medicine and bioengineering — emergent
models make it very hard to know what to change at the level of sub-
units to get desirable outcomes in anatomy and behavior (Lobo et al.,
2014). Second, these formalisms do not address aspects of biological
regulation that pertain to flexible problem-solving: robustness, context-
sensitive plasticity, and top-down controls via anatomical homeostasis
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that are able to achieve their adaptive objectives despite changes of
composition and environment (Pezzulo and Levin, 2016; Birnbaum and
Alvarado, 2008; Levin, 2023b).

Many phenomena in biology are not simply feed-forward (open
loop) outcomes of emergence, but rather exhibit remarkable capacity
to adjust large-scale outcomes to novel circumstances. For example,
early mammalian embryos cut in half give rise to normal monozygotic
twins, as each half rebuilds its missing components. This is a special
case of a more general phenomenon of regeneration, in which some
species’ bodies are able to recognize missing structures and activate
rapid cell proliferation and remodeling until the correct structure is
complete. Salamanders can regenerate their eyes, jaws, limbs, tails
(including spinal cord) (McCusker and Gardiner, 2011), while planarian
flatworms regenerate any part of their body even from small frag-
ments (Saló et al., 2009). Crucially, the ability to recognize what is
missing, construct exactly the structures that are needed, and then
stop when the correct target morphology is complete, is a kind of
anatomical homeostasis. This efficient error minimization loop is still
not well-understood with respect to how the system measures complex
state and solves the means-ends problem to reduce distance from the
correct target morphology, although progress has been made with
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respect to the mechanisms that store the anatomical setpoint (Levin,
2023a). Another example is clearly shown by tadpoles, which have to
significantly rearrange their faces to become frogs. It was found that if
frog embryos are made with faces in a scrambled configuration (eyes,
jaws, mouth, etc., in incorrect starting positions), the resulting frogs
can be largely normal (Vandenberg et al., 2012) because the organs
move in novel, unnatural paths until they get to the correct places
and then they stop (Pinet and McLaughlin, 2019). Thus, the genetics
does not specify hardwired movements that turn standard tadpoles into
standard frogs — instead, it specifies cellular hardware that is able to
execute a flexible corrective scheme that implements a kind of means-
ends process relative to an anatomical setpoint (Harris, 2018; Levin
et al., 2019).

The ability of biological systems to respond to novel conditions goes
even deeper than subtractive injury or abnormal starting states. When
cells of the newt are artificially increased in size, the resulting animals
are normal, showing adjustment and rescaling of organs to a smaller
number of cells per structure. The most amazing aspect is the kidney
tubule, which in cross-section normally consists of 8 cells working to-
gether. When the cells are made bigger in experiments, fewer and fewer
cells cooperate to make the same diameter tubules, until the cells are
made extremely huge, at which point just one cell wraps around itself
to make a lumen of the correct size (Fankhauser, 1945). This example
shows that diverse molecular mechanisms (cell–cell communication vs.
cytoskeletal bending) can be called up in the service of a largescale
anatomical goal. But even the large-scale goals of living forms can
be altered on-the-fly, and it does not require changes of the genome.
Planarian flatworms can be turned into animals that always produce
two heads upon damage (Durant et al., 2017; Oviedo et al., 2010), or
indeed produce heads belonging to other species of worms (Emmons-
Bell et al., 2015), by a transient modification to the bioelectric memory
pattern that encodes their target morphology (Durant et al., 2016; Levin
et al., 2019), without transgenes or mutation. Similarly, wild-type skin
cells liberated from the instructive influence of their neighbors reboot
their multicellularity toward a new motile form: Xenobots (Kriegman
et al., 2020): proto-organisms which exhibit novel behaviors (including
kinematic self-replication (Kriegman et al., 2021)) and healing after
damage to their new Xenobot form.

All of these capacities have been suggested to be the results of
the collective intelligence of cellular swarms solving problems in mor-
phospace (Fields and Levin, 2022; Levin, 2022b). Indeed, the defini-
tion of intelligence by William James – ‘‘same ends through different
means’’– wisely focuses attention not on anatomical markers (such as
brains) or specific material implementations but on the functional in-
variant of all intelligent agency: goal-directed activity with some degree
of competency at handling novelty. And it is not only about anatomi-
cal morphospace. Life solves problems in numerous spaces–metabolic,
transcriptional, physiological, etc. in addition to the familiar behavioral
(3D) space in which conventional intelligences are readily recognized.
For example, planaria exposed to barium experience degeneration of
their heads, as the barium ion blocks potassium channels and poisons
cells. However, within a week or two of living in barium, planarian tails
regenerate new heads that are completely adapted to barium: transcrip-
tomic analysis shows that out of their large genomes, the cells have
identified just a handful of genes to up- and down-regulate to solve
their problem (Emmons-Bell et al., 2019). Planaria do not experience
barium in the wild (and thus do not have a specifically selected-for
response pathway), nor do their cells turn over fast enough to enable
a hill-climbing search by selection through immense numbers of cells
that try different solutions (the astronomical set of all possible gene
expression responses) and repopulate the head through differential
survival. This phenomenon illustrates the still poorly-understood ability
of cells to efficiently navigate the very high-dimensional transcriptional
space to solve novel physiological problems.

The examples discussed above reveal that evolution does not just
result in machines hardwired to address specific problems (solutions fit

to specific environments). Long periods of adaptation are not needed to
make normal frogs out of divergent tadpole facial configurations, make
kidney tubules with much larger cells, or create functional Xenobots.
Instead, what evolution makes is hardware that is able to deploy
degrees of intelligent problem-solving in a wide range of spaces and
novel contexts. This is a critical aspect of living material that, if
harnessed, would catapult biomedicine beyond the current limitations
of genomics, molecular biology, and stem cell approaches, which are
limited by their exclusive focus on the hardware of life. As is well-
known in computer science, programming at the level of rewiring the
hardware is just the beginning of what is possible.

Any of the examples described above would be considered transfor-
mative advances in intelligence if implemented as swarm robotics or
AI with such capacities. We propose that a focus on the intelligence
of biological systems, generalizing far beyond the familiar neural sub-
strates and behavior, can advance an exciting emerging field at the
intersection of the biological and information sciences (Lyon, 2015,
2006). Machine learning, particularly reinforcement learning, will be
enriched by new models of generalization and robust plasticity that
are not limited by neuromorphic ideas: learning from evolutionarily-
ancient problem-solving strategies that are more relevant to generalized
intelligence. Conversely, biology and regenerative medicine will be ad-
vanced by importing quantitative ideas from the field of AI, to enhance
the understanding of how evolution enables multiscale competency and
the search for efficient interventions that exert control over large-scale
growth and form in biomedical settings (Lagasse and Levin, 2023).

What is needed now are substrate-independent theoretical tools for
understanding multi-scale learning, with enough specificity to drive
constructive models (executable code). Here, we first provide a brief
introduction to a conceptual framework for thinking about multiscale
competencies in biology (TAME) and to reinforcement learning (RL).
We then argue that RL is an ideal toolkit for quantifying the key aspects
of the TAME framework, and is ready to be applied to problems in
multiscale biology. We intend this cross-fertilization of fields to occur
in a deep way — RL provides not only a tool for prediction and
data analysis, but a formalism for generating insights and actionable
algorithms that enable control of complex biological systems. While
RL is a powerful and vibrant field, we envision even more vistas of
application to, and inspiration from, biology (Neftci and Averbeck,
2019). At stake are better bio-inspired machine learning algorithms,
more effective biomedicine (by understanding how tissues can be con-
trolled by stimuli that alter learned responses, not micromanaged),
evolutionary methods for design of individual and swarm robotics, and
synthetic bioengineering. RL methods can help understand how biology
at all scales (pathways, cells, tissues, etc.) learns about itself and its
environment, greatly expanding our view of how extant forms arose,
and what else is possible via engineering and chimeric technologies in
the vast space of life-as-it-can-be (Clawson and Levin, 2022; Langton,
2019).

2. Background

2.1. Introduction to TAME

TAME (Technological Approach to Mind Everywhere) is a frame-
work (Levin, 2022b) designed to facilitate experimental approaches
to detecting, understanding, and functionally interacting with diverse
intelligences (natural and artificial). It is most well-developed currently
around the example of the collective intelligence of biological cells nav-
igating morphospace to solve anatomical tasks during embryogenesis,
regeneration, and cancer suppression (Levin, 2019). It focuses on the
scaling up of simple homeostatic functions of subcellular components
and cells into tissues, organs, and whole organisms via dynamics that
allow swarms of agents with small cognitive horizons to assemble into
larger-scale agents with larger goals in new problem spaces (Levin,
2019). Its fundamental features include:
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• Goal-directed behavior as the primary invariant of all intelli-
gent systems — a functionalist, cybernetic perspective (Rosen-
blueth et al., 1943) that avoids distinctions based on origin story
(evolved vs. engineered) or material composition (protoplasm,
silicon, etc.). TAME views such distinctions (e.g., using typical
brains as a marker) as the relics of past limitations of technology
and highly contingent frozen accidents of the evolutionary trajec-
tory on Earth; the utility of sharp distinctions will not survive the
coming decades as chimeric, synthetic, and biohybrid engineer-
ing technologies erase remaining distinctions between life and
machines.
• A focus on empirical, observer-dependent estimates of agency
of any given system based on the optimal efficiency of models
needed to predict and control that system by some observer,
which also includes the system itself (Bongard and Levin, 2023).
This view emphasizes experiments to determine where a system
is best placed on a continuum of persuadability (Fig. 1), not
philosophical preconceptions of how much cognition should be
attributed to a system based on its provenance or structure,
or privileged scales of observation (spatial or temporal) which
obscure agency in unfamiliar guises and problem spaces (Fields
and Levin, 2022).
• A commitment to a continuum of diverse cognitive sophistication;
because of gradual evolution and embryonic development, cogni-
tive beings with minds arise from a single cell. Thus, the journey
from physics to mind is continuous. Biology offers no support to
any bright line separating ‘‘true cognitive beings’’ from ‘‘machines
that are faking sentience’’. The ability to make chimeras inte-
grating living tissue, engineered electronics, and software in any
configuration means that the space of possible bodies and minds
is astronomically vast (Clawson and Levin, 2022), requiring us
to develop deep concepts that do not rely on artificial binary
categories and quantify the degree and kind of intelligence in
any given system. TAME is a framework that is ideally suited to
dealing with agents that change over time as it recognizes that
cognitive media (whether brains in metamorphosing insects, or
refactored digital hardware) can be altered on-the-fly, implying
that we need to understand not only the perspective of constant,
well-defined agents but also of ones that are splitting, merging,
and changing during the agent’s lifetime (Blackiston et al., 2015).
• A recognition that biological systems consist of nested modules
that are themselves goal-seeking agents. Bodies are made of or-
gans which are made of tissues which are made of cells which are
made of molecular networks; more important than the structural
modularity is the fact that each of these levels consists of active
agents that themselves have goals and are solving problems in
various spaces (physiological, metabolic, transcriptional, anatom-
ical, and behavioral). This multiscale competency architecture is
proposed to be the source of biology’s incredible robustness and
problem-solving ability.

In the TAME framework, an agent’s Self is determined by the system-
level goals it can pursue (Fig. 1). A Self is first and foremost the
subject of preferences (which may be as simple as the setpoint of a
homeostatic loop) and has the ability to take action in some problem
space (and expend energy) to reduce the delta between a current state
and a target goal state as is typical of a control theory (Kirk, 2004)
setup, though other capabilities can be included as well. An agent’s
degree of sophistication is the size, in space and time, of the biggest
goal states it can possibly represent and work toward; more generally,
an agent’s degree of sophistication is the modeling and behavioral
apparatus associated with the actions that it takes. This demarcates that
agent’s cognitive horizon; agents’ boundaries can shift (grow or shrink)
as the result of events that modify the agent’s goal space, and agents can
exist as nested (multi-scale) systems with cooperation and competition
within and across scales.

TAME has been applied to a wide variety of biological phenomena
and has made numerous predictions that are successfully guiding novel
work at the interaction of regenerative biology and cognitive science.
For example, it facilitates the use of techniques from behavioral neu-
roscience to understand and control morphogenesis as the behavior
of the collective intelligence of cellular swarms in anatomical mor-
phospace, as well as the processes during which normal morphogenesis
or morphostasis (integration of cells into a network that pursues organ-
level goals) falls apart into cancer (when individual cells disconnect
from the information network and allow their goals to recede back
to the evolutionarily ancient unicellular goals of metabolism and pro-
liferation) (Levin, 2023a; Pezzulo and Levin, 2015). However, TAME
v1.0 is largely qualitative. What is needed is rigorous development
of theory quantifying key dimensions of TAME, including the space
of goals, preferences, and algorithms by which the homeostatic loops
of individual agents are coupled to result in collectives capable of
pursuing much larger-scale goals.

Specifically, one open area is to understand how components work
together to allow the emergent higher-order agent to acquire memories
and skills, and work in a problem space, that belong to it, and not
to any of its parts. For example, once ‘‘a rat’’ has learned to press a
lever to get a reward, the associative memory belongs not to the skin
cells of the paw that interacted with the lever, nor to the gut cells
which received the nutritious reward, but to the collective since no
single cell ever had the experience of both events. Because learning
is observed across the web of life — from chemical networks (Biswas
et al., 2021; Watson et al., 2010) and microbes (Baluška and Levin,
2016; Boussard et al., 2019; Wolf et al., 2008; Yang et al., 2020) to
entire ecosystems (Power et al., 2015), this kind of credit assignment
among the parts is an essential aspect of understanding the origin
and function of composite, emergent agents (Watson et al., 2022).
Reinforcement learning (RL) (Sutton and Barto, 2018) is one powerful
tool to advance this set of questions.

Fundamental open questions include the algorithms guiding the
computations within the composite agent, and credit assignment
among diverse parts, all of which enables learning by collective intel-
ligences (Couzin, 2007; Solé et al., 2016). Here, we suggest that the
field of reinforcement learning provides computational tools to extend
TAME in the necessary ways, as well as itself benefiting from aspects of
this biological framework – such as the response to novel perturbations
of the environment – that have not yet received sufficient attention in
engineering.

2.2. Introduction to reinforcement learning: an ideal complement to TAME

Briefly, reinforcement learning (RL), a subfield of machine learning
(ML), is a mathematical formalization that can greatly assist the TAME
framework, and more broadly, efforts to recognize, manipulate, and
build agents in novel embodiments. Specifically, it provides a simple
mathematical formalization of the notion of a goal-directed agent.

The most common mathematical formulation is that of a Markov
Decision Process (MDP), in which the environment and agent and their
interaction are defined by a few quantities: the reward function 𝑟(𝑠, 𝑎)

that specifies how much reward the agent gets when the environment
is in state 𝑠 and the agent takes action 𝑎; the transition probabilities
𝑝(𝑠′|𝑠, 𝑎) that specifies how likely it is for the environment to transition
to state 𝑠′ when it is in state 𝑠 previously and when the agent takes
an action 𝑎; a discount factor 𝛾 that specifies how much less valued re-
wards are when they are not given immediately; and the agent’s action
policy, 𝜋(𝑎|𝑠), that specifies how likely it is for the agent to take action
𝑎 when the world is in state 𝑠. Other related frameworks also allow
for time delays and partial observations of the world state (Bertsekas,
2012; Katsikopoulos and Engelbrecht, 2003; Sawaya et al., 2023). A
reinforcement learning agent is any agent that attempts to ‘‘solve the
MDP’’, or maximize the total sum of discounted rewards over the course
of its lifetime, which could be arbitrarily long. Solving the MDP leads
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Fig. 1. The axis of persuadability. This is a visualization of a continuum of agency, framed from the perspective of an engineer (or a biological agent) seeking to control some
system. What kind of techniques provide optimal control for that system? Here are shown only a few representative waypoints. On the far left are the simplest physical systems,
e.g., mechanical clocks (A). These cannot be persuaded, argued with, or even rewarded/punished—only physical hardware-level ‘‘rewiring’’ is possible if one wants to change their
behavior. On the far right (D) are human beings (and perhaps others to be discovered) whose behavior can be radically changed by a communication that encodes a rational
argument that changes the motivation, planning, values, and commitment of the agent receiving this — it relies heavily on the high cognitive competency of the system. Between
these extremes lies a rich and diverse set of intermediate agents, such as simple homeostatic circuits (B) which have setpoints encoding goal states, and more complex systems
such as animals which can be controlled by signals, stimuli, training, etc., (C). They can have some degree of plasticity, memory (change of future behavior caused by past events),
various types of simple or complex learning, anticipation/prediction, etc.

Fig. 2. The reinforcement learning agent (organism) takes actions 𝑎 based on an action
policy 𝜋(𝑎|𝑠) and moves to new states 𝑠 of the environment, collecting rewards as it
moves. The environment changes states according to a transition probability 𝑝(𝑠′|𝑎, 𝑠),
which can be influenced by the actions of the agent. Its goal is to maximize a discounted
sum total of rewards collected over its lifetime.

to an action policy that maximizes the sum of discounted rewards. In
TAME, this could for example then lead to 𝑥(𝑡) matching the target �̂�(𝑡)
as well as possible, and this policy is called the ‘‘optimal action policy’’
(see Fig. 2).

The actions that the agent takes now affect the state that it is
in many timesteps later, and as a result, the agent must effectively
plan over long time horizons. Explicitly doing this results in a curse
of dimensionality: the agent must keep track of trajectories, the num-
ber of which increases exponentially with the number of timesteps.
Furthermore, rewards might be sparse, so the agent only receives a
reward at the end of its lifetime or at a few points during its lifetime,
e.g. number of viable children. This makes learning difficult over the
lifetime of the organism, but not over the span of many generations.
There are, however, canonical methods for solving the MDP that might
inform the TAME framework and, in a wider scope, provide inspiration
for ways to think about how biological agents are able to achieve
specific goals despite significant perturbations (robust problem-solving
in diverse spaces (Fields and Levin, 2022)).

RL researchers have identified two different approaches to solving
the MDP: model-free and model-based (Sutton and Barto, 2018). In
model-free approaches, there is no explicit model in the agent of
the environment, i.e. no explicit recognition of what the transition
probability 𝑝(𝑠′|𝑠, 𝑎) might be. Instead, the agent implicitly has a model
of the environment that it uses via dynamic programming to choose the
optimal action policy. Dynamic programming is a clever way of dealing
with a curse of dimensionality associated with the exponential increase
in the number of possible trajectories as one’s lifetime increases, recur-
sively relating the value of the current state to the value of the next
states. The details of this are a Bellman equation that allows one to
find a state–action value function that gives the ‘‘value’’ of taking an
action 𝑎 when the world is in state 𝑠. There are various ways of finding
this state–action value function, all with benefits and drawbacks, such
as Monte Carlo approaches, temporal difference learning, or the TD-𝜆
approaches that interpolate between the two. Model-based approaches
to finding the optimal action policy have an explicit model of the
environment that they use to simulate long trajectories of states and
actions, which they then use to choose the optimal action policy. The
newer successor representation (Gershman, 2018) sits between these
two extremes, and it is based on understanding the transitions from one
state to another state in the environment and using that to calculate the
value of a state.

One familiar touchstone for such approaches is the brain — an
uncontroversial example of a collection of cells that solves the credit
assignment problem for an emergent cognitive agent. There is evidence
for brains using model-free, model-based, and successor representation
approaches. Famously, there is evidence that dopaminergic signals are
related to temporal difference learning (Schultz et al., 1997), though
see Ref. Jeong et al. (2022). Serotonin is thought to be associated with
RL as well by modulating the learning rate (Iigaya et al., 2018). The
hippocampus has place cells that are thought to encode the successor
representation (Stachenfeld et al., 2017). Historically, research in RL
has seen benefits in drawing insights from cognitive biology. The field
has roots in early psychological experiments with reinforcements (Sut-
ton and Barto, 1981), and RL researchers often find ways in nature
to improve algorithms. For example, episodic memory allowed RL
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researchers to develop artificial agents with super-human performance
in complex board games, most impressively (Blundell et al., 2016).

Both the TAME framework and RL specify that the agent is reward-
seeking. For TAME, the reward is achieving a goal state, and thus
there is a direct map from Attribute 1 of the TAME framework to the
fundamental assumption of reinforcement learning. RL offers TAME
a mathematical formalization through MDPs and related generaliza-
tions: the reward function can be specified to be 0 until the goal
state is reached, at which point you get a reward of 1. These sparse
rewards are typically hard to deal with, but there are well-known
ways of approaching this problem from reinforcement learning, with
likely more techniques to discover as TAME is better understood. The
reinforcement learning agent might have intrinsic curiosity that drives
it to new parts of the state space that allow it to find that sparse
reward that comes from reaching the goal state, e.g. as in Ref. Pathak
et al. (2017); the reinforcement learning agent might be asked to solve
incremental tasks that lead it to solving the full task (Florensa et al.,
2018), essentially allowing for reaching of intermediate goal states first;
or the reinforcement learning agent might be asked to solve a different
task whose solution correlates with that of the original task (Riedmiller
et al., 2018). Conversely, Attributes 2–4 of TAME can constitute new
directions of research in reinforcement learning, as elaborated upon
subsequently in this manuscript.

3. Novel questions: from biology to RL and back

RL has its roots in psychology — in particular, in understanding
how reward and punishment could shape the weights of a network that
decided behavior in real biological experiments as part of the Rescorla-
Wagner model (Rescorla, 1988)– so perhaps it is no surprise that
thinking about biology gives us even more new directions for research
in RL. In this manuscript, we advocate for thinking about reinforcement
learning in lower-level organisms, too– not just the higher-level or-
ganisms that have preferentially populated the reinforcement learning
literature. This leads to frameworks that are not MDPs or even their
more complex variants.

Typically, when reinforcement learning researchers think about
biology, they think about higher-level organisms: mice, monkeys, hu-
mans. In these brains, they find model-free and model-based reinforce-
ment learning systems (Daw et al., 2011a). These brains have so many
neurons that they can essentially implement any calculation, in the
same way that neural networks with a large enough number of neurons
(and enough depth) can approximate any function (Hornik et al., 1989).
Any of the reinforcement learning algorithms that have been developed
can be implemented, although exactly how is a question for future
research.

However, lower-level organisms (or indeed, parts of organisms, such
as cells, tissues, and organs (Levin, 2019)) might also implement rein-
forcement learning algorithms. In Ref. Celani and Vergassola (2010),
it appears that bacteria are solving a slightly different reinforcement
learning-like objective function. In a space with many bacteria, any
chemoattractant gradient that is created quickly vanishes, as the bac-
teria swim up the gradient and consume the chemoattractant. This
amounts to each bacterium being in a worst-case scenario, in which
potential rewards quickly vanish. This is a slightly different objective
function than what is usually considered in reinforcement learning, but
it still falls under the heading of reinforcement learning— essentially,
the bacterium deals with a minimax objective, where the goal is to max-
imize reward in the worst-case environment. In Ref. Celani and Vergas-
sola (2010), they show that the bacteria’s response to chemoattractant
pasts is designed to optimize this minimax objective. Additional learn-
ing mechanisms (mediated by bioelectricity and other mechanisms)
have been reported in bacterial colonies (Ben-Jacob, 2009; Lee et al.,
2018; Yang et al., 2020). The variety of learning mechanisms does not
preclude RL from describing these colonies, as RL is more a statement
of the goal rather than how the goal is achieved.

Given that, might there be other lower-level organisms or other
biological subsystems that are reinforcement learners (Dexter et al.,
2019; Gershman et al., 2021)? Might asking how they learn lead to
new algorithms and novel questions?

For example, might bacteria actually also use reinforcement learn-
ing to solve the minimax objective? In humans, it is known that both
model-free and model-based reinforcement learning systems are used,
and the results combined. In bacteria, a model-based reinforcement
learning system would require prediction. They could do this using a
reservoir, from reservoir computing (Lukoševičius and Jaeger, 2009;
Schrauwen et al., 2007)– using a simple genetic regulatory circuit (Katz
and Springer, 2016; Katz et al., 2018). A new, and simple, computation
shows that the reservoir of mRNAs and proteins corresponding to a
simple genetic regulatory circuit can be used for prediction. The goal
of what follows is to suggest that complex computations (reservoir
computing) could exist in a simple unicellular organism, so that it
is not too far-fetched to think that lower-level organisms are solving
reinforcement learning problems.

As an example, E. coli is a model unicellular organism. E. coli’s
preferred food source is glucose, but if glucose is absent, E. coli is
able to consume other forms of sugar instead. In order to do this, it
needs to produce the protein lactase by transcribing its lac operon gene.
Ideally, the lac operon gene is only transcribed when glucose is absent
so that extra energy is not wasted on transcription. To optimize the
production of lactase, E. coli should predict its environment rather than
just respond to it.

Following a standard model of gene regulatory networks (Thattai
and Van Oudenaarden, 2001), the state of the genetic system can be
described at time t by the total number of mRNA molecules (𝑗) that
have been transcribed from the lac operon gene. The mRNA transcribe
at a rate of 𝛼 per mRNA and degrade at a rate of 𝛽 per mRNA. The
change in probability that there are 𝑗 mRNA at time 𝑡 (here, 𝑑𝑝∕𝑑𝑡)
can be described with four components:

• The probability that one timestep 𝑑𝑡 ago, there were 𝑗 − 1 mRNA
and one was transcribed, which is 𝛼𝑑𝑡;
• The probability that 𝑑𝑡 ago, there were 𝑗 + 1 mRNA and one
degraded, which is 𝛽(𝑗 + 1)𝑑𝑡

• The probability that in 𝑑𝑡, one more mRNA will be transcribed,
which is 𝛼𝑑𝑡;
• The probability that in 𝑑𝑡, one mRNA will degrade, which is 𝛽𝑗𝑑𝑡.

We set 𝛼 to be the intensity of the middle pixel of a naturalistic
video collected by a GoPro camera. As a result, the number of mRNAs
can contain information about the future intensities of the naturalistic
video’s middle pixel. This rate of mRNA transcription is described by
the van Oudenaarden equation:

𝑑

𝑑𝑡
𝑝 (𝑗, 𝑡) = 𝛼 ⋅𝑝 (𝑗 − 1, 𝑡)+𝛽 ⋅ (𝑗 + 1) ⋅𝑝 (𝑗 + 1, 𝑡)−𝛼 ⋅𝑝 (𝑗, 𝑡)−𝛽 ⋅ 𝑗 ⋅𝑝 (𝑗, 𝑡) (1)

This model of mRNA transcription in E. coli can be used to predict com-
plex stimuli, such as video input. Fig. 3 graphs the squared correlation
coefficient of the predicted video frame and the video frame itself with
a time lag given by that of the 𝑥-axis.

If a simple E. coli organism equipped with a simple genetic reg-
ulatory circuit can predict complex input like that of a GoPro video,
then even the simplest of organisms might be a reinforcement learner.
Indeed, it was recently shown that genetic regulatory networks ex-
hibit learning and memory (Biswas et al., 2021; Watson et al., 2010),
implying that any organism can be a reinforcement learner.

3.1. RL learners composed of many RL learners

Biological organisms are composed of parts, many of which used
to be independent organisms and have retained many computational
features needed for survival. Engineered agents are usually not mul-
tiscale in that sense (at least, not yet — swarm robotics is beginning
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Fig. 3. The squared correlation coefficient between the number of mRNAs and the
future intensity of the middle pixel of a naturalistic video captured by a GoPro camera,
separated by a time lag given by the 𝑥-axis, when these intensities are used as the
transcription rate of the gene. Standard errors are found by bootstrapping.

to exploit this multiscale competency architecture (Brambilla et al.,
2013)). Biological organisms currently have some advantages over
engineered agents as a result.

For example, individual bacteria are reinforcement learners, trying
to maximize reward in the worst-case environment (Celani and Vergas-
sola, 2010). When they coalesce to form a biofilm, they begin to act as
one goal-directed agent. The unification of this goal is evidenced by the
survival of the interior of the biofilm. If every bacterium acted selfishly
for its own survival, the bacteria on the ends would have the best access
to food while the bacteria in the center would suffer. But potassium
waves lead to electrical communication that synchronizes eating pat-
terns so that the bacteria in the center get enough food (Martinez-Corral
et al., 2019; Prindle et al., 2015). Hence, the biofilm acts as one single
organism, to the benefit of all bacteria.

Tumors are another example of a biological structure composed of
individual organisms. Tumors can eventually develop a resistance to
chemotherapy. It is thought that the tumor initially contains a few
cancer cells that have an innate resistance to chemotherapy (i.e., a
selectionist explanation of group resistance by differential survival
and repopulation (Gatenby and Brown, 2018)); but it is possible that
actually some cancer cells learn to become resistant to chemother-
apy. The ability of the individual cancer cells to learn to survive
then could enable the tumor to learn to survive. The ‘‘boundary of
the self’’ model (Levin, 2019) proposes that cancer arises when cells
disconnect from the electrical network that binds cells toward larger-
scale morphological goals and revert to their unicellular behavior: on
this view, they are not more selfish than normal cells, but instead
their ‘‘selves’’ are smaller (the boundaries between self and external
environment have shrunk back to the level of a single cell (Levin,
2021b)). In this context, the question of whether individual cells learn
and/or the community learns focuses attention on the scale of the Agent
and the credit assignment that needs to occur at different levels for RL
to occur (Watson et al., 2022).

The portion of RL literature devoted to understanding multi-agent
reinforcement learning is growing but relatively small (Hernandez-
Leal et al., 2019). Similarly, swarm robotics (in which there is a
swarm of robots that are often hand-designed for a task) is growing
rapidly, but still, there are open questions (Brambilla et al., 2013).
In multi-agent RL, there are four focuses of research (Hernandez-Leal
et al., 2019): analysis of emergent behaviors, meaning that we unravel
what actually happens when these agents are placed in the same
environment; learning communication, meaning that we understand
what happens when these learners can share information to cooperate;
learning cooperation, meaning that we understand how to get these
learners to cooperate without communication; and agents modeling

agents, meaning that we understand how these learners end up mod-
eling the other agents that are essentially part of their environment.
These concepts play into an understanding of how a composition of
organisms can be a more effective emergent organism, but further
insight is likely to be gained from biology.

For example, it is an open question how to design the agents in the
multi-agent RL scenario or the robots in the swarm so that they interact
to achieve the desired goal, especially given that the environment from
the individual agent’s perspective is nonstationary (Brambilla et al.,
2013). If one instead decides to set the agents to have some learning
strategy, some behavior emerges which may be difficult to model.
Biology (as you might have gathered from the examples above) has
found a way to fine-tune the ‘‘robots’’ in its swarm or the RL agents in
its multi-agent RL scenario so that the whole functions and survives.
When we understand how, we are likely to see major advances in
swarm robotics.

Also, one of the key questions that biophysicists like to ask in such
studies is how efficacy scales with various resources– here, the number
of cells in the multicellular organism and the rate of communication.
So we can ask, how does the efficacy of the multicellular organism
scale with the number of cells? In other words, are most robot swarms
too redundant and wasteful of their resources in an attempt to achieve
robustness? Without access to tight lower bounds on performance with
number of components, it is hard to understand how well one’s system
is scaling. With respect to mechanisms, like bioelectric signaling (Levin,
2021a), that bind individual cells into networks with larger-scale goals
in different problem spaces (thus enlarging their cognitive light cone),
it is still poorly understood how their computational capacities scale
with cell number and topological relationships.

Answering these questions would lead to advances in robotics to
engineer agents that compete and cooperate to more robustly achieve
some group objective, as well as better communication strategies with
cellular composite agents that could improve approaches in regenera-
tive medicine.

3.2. Environments with agency

Environments that contain multiple agents are complicated. The
environment might be: beneficial, in which part of the environment
(a mentor) trains the agent in question to succeed; benign, in which
the environment does not train the agent at all and instead lets the
agent learn how to succeed in the environment on their own; or
adversarial, in which the environment actively tries to make it hard to
succeed and survive (Celani and Vergassola, 2010). Environments with
agency (Fields and Levin, 2023) include the first and last examples,
whereas the second example shows little agency. The need to ascertain
degrees of agency ‘‘laterally’’ (within one’s level of organization) is
compounded by the possibility of agency above (is the agent a cog
in a much larger being with its own emergent agency?) and below
(are the agent’s own parts also agents, the behavior of which could
be manipulated via behavior-shaping signals). In all of these cases, it
is imperative for an agent to estimate how many agents exist in any
learning interaction: just one (the agent is driving ‘‘learning’’ from a
mechanical, uncaring world) or more (the agent is being ‘‘trained’’, by
other agents with agendas).

Biological organisms exist in all three types of environments,
whereas the reinforcement learners typically seen in the literature exist
in the second type of environment. For example, E. coli when in natural
ecological settings appear to exist in adversarial environments (Celani
and Vergassola, 2010). The objective function that they appear to
optimize is a minimax– a drive for maximum performance in the worst-
case environment– and comes from the existence of many other E. coli
in the same environment that chew away at chemoattractant gradients
the moment they appear. Meanwhile, monkeys in a cued task followed
by a reward (Schultz et al., 1997) show, in their dopaminergic activity,
an ability to code a typical model-free reinforcement learning algorithm
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called temporal difference learning. This would make sense for a benign
environment, in which the expected sum of discounted rewards is to be
maximized.

It is unclear how to choose the agent’s objective function to inter-
polate between these extremes in objective function, but in multi-agent
settings, this must be done in order to understand the individual agents
and how a full organism can fruitfully emerge from a combination of
individual organisms.

Note that environments are even more complicated than this, since
what we define as the reinforcement learning agent may be unintuitive
and may change over time. For instance, when talking about Planarian
regeneration as a reinforcement learning agent, one can fruitfully say
that the error correction module is part of the reinforcement learning
environment, while the part of the Planaria that acts to change electric
fields is the reinforcement learning agent.

The idea that an environment has agency (Fields and Levin, 2023)
brings up the important notion, central to our main point, that we can
ascribe agency to something that may not have what we would guess
to be its goal as its actual goal. And yet, it is a useful philosophical
construct to describe the environment as having agency with its im-
puted goal in mind, if we can describe its behavior accurately. This
idea applies to the organisms in question as well.

We believe that there is no need to claim that any particular goal
is the objectively correct goal for an agent (e.g., polycomputing (Bon-
gard and Levin, 2023; Levin, 2022b)). Goals are interpretation frames
assigned by observers, who make hypotheses about the behavior of
agents and use goal-directed frameworks to achieve prediction and
control. For complex agents, even the goals set by an engineer (or
evolution) may or may not be what they actually end up pursuing.
Importantly, complex agents have the ability to build internal models of
other agents’ goals, which they can apply to their own actions. In other
words (paralleling the work on confabulation in cognitive neuroscience,
and theories such as those in Ref. Chater (2018)), the agent itself is also
an observer with its own self-model of its goals.

3.3. How to perform well in fluctuating environments quickly

Organisms typically do not live in stationary environments. Station-
ary environments are those that do not materially change with time.
Indeed, cells are surrounded by other cells that naturally make the
environment of each cell nonstationary. (The environment of a cell
includes the environment of other learning cells.) More glaring exam-
ples of nonstationarity include transitions of the agent from caterpillar
to butterfly. As such, it is imperative to ask how agents perform in
fluctuating environments, not just in static ones.

As noted in Ref. Neftci and Averbeck (2019), this implies that
the heuristics used in biology might be useful while high-powered
reinforcement learning algorithms fail. Indeed, biological organisms
can still outperform engineered agents in adapting quickly to a new
environment. While AlphaGo was able to achieve super-human per-
formance, it was not data-efficient, requiring thousands of hours of
game-play to learn strategies that took adept humans a few games
to learn (Tsividis et al., 2017). Rats quickly learn to do a credit
assignment in experiments in which they are rewarded for maintaining
a temperature difference between their ears (how do the rats know they
were not rewarded for digesting well, or for taking only so many sips
of water? etc.) The same remarkable example of credit assignment is
also seen in human experiments with biofeedback (Vital et al., 2021;
Zimet, 1979) - as long as consistent reward is provided, the system is
able to bring even autonomic functions under control (using effectors of
which the system was previously unaware and crossing levels to control
physiological processes normally not accessible to behavioral control).
Engineered agents, if not told that temperature differentials were an
important variable to consider, might take much longer than the rats.

If one deals with a fluctuating environment, one must quickly learn
a new action policy. As we change jobs and move cities, we must

find a new favorite coffee shop, a new route to work, new friends at
work, and so on. How? There are many routes to doing this, but some
of them seem to fail. For example, in Ref. Marzen (2019), the policy
gradient method often fails to adapt to new environments. Trying to
find methods that quickly adapt to fluctuating environments while
retaining lessons of previous environments (metalearning Wang et al.,
2018) may lead to advances in reinforcement learning, and if we study
organisms that do manage to adapt quickly, this may give us inspiration
for artificial agents– episodic memory (Botvinick et al., 2019) being
only one of many possible methods.

3.4. Robustness: how to survive if someone kills half your intelligence

There are a number of beautiful examples of organisms losing major
parts of their brain and/or body and still surviving, regrowing, and
regaining their target morphologies. For example, planaria regenerate
if you cut them into pieces. Human embryos generate fully-functional
twins, not half-bodies, if the early embryo is split in half. During the
caterpillar to butterfly transition, the brain of the caterpillar gets taken
apart and put back together, but the butterfly remembers whatever
the caterpillar was trained to learn. Salamanders regenerate their eyes,
jaws, spinal cords, ovaries, and limbs. Ground squirrels need a lot of
memory for understanding a complex social structure, but when it gets
cold in the winter, the brain loses a third to a half of its mass because
the squirrels cannot get food; yet, brains inflate again in the spring with
no loss to memory of social information (see Blackiston et al. (2015)
and Levin (2022a) for reviews of these kinds of robustness examples in
morphological and behavioral spaces).

We are not always robust to every aspect of the environment that
might change. For instance, it is possible to achieve an above-average
IQ with much less brain volume than normal (Lorber, 1981), but hu-
mans have not evolved to do so despite the obvious survival advantages
of a smaller head size for human fetuses. Bioelectric signals can exert
significant control over form and function (reviewed in Ref. Levin
(2021a)), but organisms are robust to a remarkably wide variety of
conditions, such as different levels of ions in their aqueous medium.

The equivalent of this in reinforcement learning would be some
form of Dropout: at the time of testing, connections are dropped
randomly, nodes are killed randomly, and yet the neural network
performs as you have trained it to. The key here is that Dropout is a
regularization technique employed during training, while we ask: what
would happen if a stringent version of Dropout was to be used during
testing, and maybe even testing alone? Could we drop perhaps half
of the nodes in an artificial neural network that estimates the value
function and get similar performance? Could we develop a way of
training neural networks that achieves this level of robustness? That
is what certain biological organisms can do.

4. Novel research questions and programs in biology from
RL/TAME

As RL was birthed from psychology, RL has already been used
famously to interpret biological data, e.g. Ref. Schultz et al. (1997).
There may even be a way to interpret what biological organisms are
doing in terms of the most recent RL algorithms (Botvinick et al., 2019).
But it pays to look toward research questions and programs in biology
that are made possible by theoretical advances in TAME/RL.

The first and most fundamental question we have to answer before
we begin is: are biological organisms goal-directed agents? Do the
frameworks of TAME and RL even apply? It is always possible to infer
from behavior a reward function (Zhifei and Joo, 2012)– but how do
we know that it is right to infer a reward function in the first place?
The way to identify learning agents is empirical testing: can training
strategies (Abramson and Levin, 2021), applied to unconventional and
diverse embodied agents, afford efficient prediction and control? This
can uncover basal agency in surprising guises, such as in systems as
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simple as gene-regulatory networks (Biswas et al., 2021; Watson et al.,
2010) and in whole populations/ecosystems (Power et al., 2015).

To show that the organism is a reinforcement learner, one must
show that the organism’s action policy changes in a way that benefits
them as it moves to a new environment. Once this has been established,
the theoretical frameworks of TAME and RL can be brought to bear
on the behavior and neuronal or pre-neuronal correlates in biological
organisms.

4.1. Estimating cognitive capacity based on the action policy of the organism

Cognitive capacity is not a binary thing– does an organism have
it or not– but instead should be viewed as a continuum of degree and
kind (Levin, 2022b). Bacteria are likely to have little cognitive capacity,
while humans have a lot, but bacteria still have a little (Celani and
Vergassola, 2010; Ben-Jacob, 2009; Jacob et al., 2006) and can be given
more, including RL capability, by synthetic biology efforts (Racovita
et al., 2022).

Can we ascertain what this cognitive capacity is based on the action
policy of the organism?

The action policy of the organism, under the right conditions,
implies certain cognitive traits, such as look-ahead and planning. To
see these traits and to differentiate one learning strategy for an action
policy from another, one likely has to place the organisms in a new
environment and watch the organism learn.

There is currently no well-defined scale for cognitive capacity, but
looking at the changing action policies of organisms in fluctuating
environments may allow us to create such a scale. The question we have
to ask ourselves is: how quickly do organisms learn, and what cognitive
capacity is implied by such learning? This is likely to be correlated
with whether or not the organism in question is composed of organisms
itself.

It should be said that it may be dangerous to have such a scale,
as certain ethical restrictions are partly based on an intuitive un-
derstanding of such a scale. For instance, IRB regulations and how
much harm you can do to organisms of a particular type in service
of scientific progress depends partly on how much pain we think they
can feel (National Research Council et al., 2010). If we decide that an
animal has such a low cognitive capacity that we should not even worry
about its pain threshold in service of science, we could inadvertently
violate ethical principles.

4.2. Finding neuronal and pre-neuronal correlates of RL/TAME signals

Quantitative biology has ushered in a new era of measurement, in
which deep learning combined with microscopy can track in great de-
tail the exact pose of a fly over time, e.g. as in Ref. Günel et al. (2019),
and image aspects of the brain with varying degrees of spatiotemporal
resolution. Imagine that we can take detailed measurements of the
behavior of an organism, whether it be a Planaria or tadpole or sala-
mander or mouse, in novel environments. We might be able to better
determine what kind of reinforcement learner we are examining– a
policy gradient learner, or a Q-learner, or a SARSA learner, and so
on Daw et al. (2011b), or with modifications as in Ref. Ashwood et al.
(2020).

Perhaps more importantly, we might then be able to use our new
quantitative measurements of brain and other activity to ascertain
which neuromodulators and hormones and other molecules are car-
rying information about the corresponding reinforcement learning sig-
nals. Although brains are required to carry such signals, if lower-level
organisms are indeed reinforcement learners as well, we should ex-
pect to see neuronal and pre-neuronal architectures carrying these
signals as well. This could revolutionize understanding of the be-
havior and workings of various lower-level organisms. The ability
of planaria for example, converted to a 2-headed form by transient
physiological experience, to continue to form 2-headed animals on

future rounds of regeneration, may be modeled by RL algorithms that
use the bioelectric circuit. Similarly, salamander limbs eventually give
up regeneration following continued amputation (Bryant et al., 2017),
one reason for which could be learning on the part of the cellular
collective of the body. Could interventions be developed to retrain
planarian cells toward a different target morphology — to exploit the
built-in RL capacities of their hardware but provide a different target?
It is already known that planarian cells can build heads appropriate to
other species (Emmons-Bell et al., 2015), but we are only beginning to
develop approaches that manipulate morphogenesis top-down (using
the tools of behavioral sciences) to complement mainstream bottom-up
(molecular medicine) approaches.

4.3. Regenerative medicine

Birth defects, traumatic injury, cancer, aging, degenerative disease
— all of these pressing biomedical needs would be resolved if we per-
fected ways to control the anatomical structures toward which cellular
collectives build and repair. The biomedicine of the future will look less
like pathway rewiring and more like communication, biofeedback, and
training — a kind of somatic psychiatry (Pio-Lopez et al., 2022) that
parallels the move in computer science from programming via rewiring
the hardware to taking advantage of software learning capacities and
high-level control languages. Bottom-up approaches such as CRISPR
and genome editing will hit inevitable limitations (beyond low-hanging
fruit of single-gene diseases) because it is in general impossible to
compute what genes must be altered to achieve a desired complex
system-level effect (Lobo et al., 2014). Instead, it is imperative to learn
to take advantage of the causal structure of multiscale learning agents
to train them toward desired form and function (Mathews and Levin,
2018).

4.4. Synthetic biosciences

Moving forward from synthetic biology (reprogramming cells via
novel molecular circuits), we must enter the domain of synthetic mor-
phology: reprogramming large-scale form and function (Davies and
Levin, 2023; Glykofrydis et al., 2021). Since bioengineers, like evolu-
tion, work with an agential material (cells Davies and Levin, 2023), not
a passive one, the roadmap for this field is to begin to understand the
kinds of learning that cellular collectives are capable of, and develop
strategies to re-specify their goals in anatomical and behavioral spaces.
Along with the next-level task of actually increasing the RL capacity of
living tissues, these strategies will greatly potentiate the construction
of arbitrary desired synthetic living machines: going beyond restoring
standard morphologies (regenerative medicine) to complete control
over growth and form to create whatever novel structures are needed
for engineering uses.

5. Conclusion

TAME is a framework for understanding, and learning to manipu-
late, the robust functional capabilities of multiscale agents (whether
evolved, designed, or hybrid). RL promises to be its mathematical
instantiation. However, RL as it stands today, misses a few of TAME’s
attributes– in particular, its emphasis on the multi-agent setups that are
common in biology. As such, these attributes promise to deliver new
questions in reinforcement learning.

RL may not seem to be appropriate for addressing organism be-
havior because goal-directedness appears to violate causality, but this
has been refuted, for example in Ref. Heylighen (2023). Likewise,
determinism in physical rules does not imply a lack of agency because
the agent can still be the source of its actions (see Ref. Babcock
and McShea (2023)). Moreover, RL may appear to be a less useful
instantiation of TAME for studying organisms because so many learn-
ing modalities are involved (Corning et al., 2023) and so few actual
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rewards and punishments are meted out in real organisms. However,
RL is more about the goals and less about how they are achieved,
and so the plethora of learning modalities that exists in nature is
completely aligned with the possibility that RL algorithms could be
used to mathematically describe organism behavior. And, even if we
only receive rewards every so often, such as when we have children or
when we eat, ‘‘sparse rewards’’ are allowable within the RL framework.
One thing that we have not commented upon and that may be an
interesting future direction is to imagine that there are multiple reward
functions, e.g. one for sustenance, one for shelter, one for mating, and
so on, although perhaps organism behavior ultimately boils down to
maximization of the number of viable children, however one defines
‘‘viable’’.

RL also took much inspiration from biology and psychology, and
so many new research directions and advances in RL come from in-
corporating biological attributes. An example of this is Ref. Wang
et al. (2018), in which meta-learning is thought to be performed by
a recurrent neural network in the prefrontal cortex. This paper is an
example of exactly the kind of interdisciplinary research we hope to
foster with this piece. Indeed, one could view evolution as a meta-
learning mechanism for the lower level organisms that we have been
concerned with.

We suggest that several questions driven by the TAME framework
could advance the field of RL. For instance, many questions arose
from considering artificial agents that were composed of reinforcement
learners, and while some work has been done in this direction (on
multi-agent reinforcement learning), we would argue– not enough.
Also, little to no work has been done on quantifying the cognitive
capabilities of an RL agent with a scale, which would help quantify
the ways in which biological organisms exhibit degrees of intelligence
at multiple scales and in multiple problem spaces (Lyon, 2006). On the
other hand, the RL and TAME frameworks provide new insights into
biological organisms and on how to modify function at many levels in
regenerative medicine contexts by resetting the homeodynamic goals
toward which cells, tissues, and organs regulate (Lagasse and Levin,
2023). New quantitative measurements and interventional experiments
enable one to test these insights.

Thus, we believe that the interplay between RL algorithm devel-
opment in engineered systems and the study of biological agents via
the TAME framework will lead to advances in both biology and engi-
neering. Moreover, this is likely just one example of concepts and tools
that can be ported across fields in the study of natural and artificial
intelligence. RL is not the only mathematical instantiation of TAME
principles, and coexists naturally with other possible formalisms such
as the prediction-centric expected free energy principle of Friston and
colleagues (Smith et al., 2022). We believe it provides interesting and
practical insights into one of the most fascinating problems facing
science and philosophy — the deep principles of diverse intelligence.
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