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Planning chemical syntheses with deep 
neural networks and symbolic AI
marwin h. S. Segler1,2, mike Preuss3 & mark P. Waller4

Retrosynthetic analysis is the canonical technique used to plan the 
synthesis of small organic molecules1,2. In retrosynthesis, a search tree 
is built by ‘working backwards’, analysing molecules recursively and 
transforming them into simpler precursors until one obtains a set of 
known or commercially available building-block molecules (Fig. 1)3,4. 
Given that transformations are formally reversed chemical reactions, 
the plan can be then carried out in the laboratory in the forward direc-
tion to synthesize the target compound3,4. Transformations are derived 
from successfully conducted series of similar reactions with analogous 
starting materials, and are often named after their discoverers (‘named 
reactions’)5. At each retrosynthetic step, a small set out of hundreds of 
thousands of transformations known in modern chemistry has to be 
selected. In a pattern recognition process, chemists intuitively prioritise 
the most promising transformations, which they then consider, with-
out actively thinking about the less promising ones6. However, when 
a transformation is applied to a new molecule, there is no guarantee 
that the corresponding reaction will proceed in the expected way7.  
A molecule failing to react as predicted is called ‘out of scope’. This 
can be due to steric or electronic effects, an incomplete understanding 
of the reaction mechanism, or conflicting reactivity in the molecular 
context. Predicting which molecules are ‘in scope’ can be challenging 
even for the best human chemists4,7.

Computer-assisted synthesis planning (CASP) could help chemists  
to find better routes faster, and is a missing component in virtual  
de novo design and robot systems performing molecular design– 
synthesis–test cycles8–10. To perform CASP, the knowledge that humans 
gain must be transferred into an executable program11–16. Despite 
60 years of research, attempts to formalize chemistry by manual encod-
ing by experts have not convinced synthetic chemists, and it does not 
scale to exponentially growing knowledge15–19. Methods of algorith-
mically extracting transformations from reaction datasets20–22 have 
been criticized for high noise and lack of ‘chemical intelligence’13,14. 
However, we recently showed that deep neural networks can learn to 
rank extracted symbolic transformations, and to avoid reactivity con-
flicts, which mimics the expert’s intuitive decision-making23. To guide 
the search in promising directions, heuristic best first search (BFS) has 
been employed, in which hand-designed heuristic functions determine 

position values13. Unfortunately, unlike in chess, it is difficult to define 
strong heuristics in chemistry for three reasons. First, chemists tend 
to disagree on what constitutes a good position24,25. Second, although 
it is generally desirable to simplify the molecules, it can be tactically 
beneficial to temporarily increase complexity by the use of protecting 
or directing groups. Finally, the position value depends highly on the 
availability of suitable precursors13,15. Even complex molecules can be 
made in a few steps if precursors are readily available. Therefore, one 
cannot reliably estimate the value of a synthetic position without com-
pletely ‘playing the molecules until the end of the game’.

Monte Carlo tree search (MCTS) has emerged as a general search 
technique for sequential decision problems with large branching 
factors without strong heuristics, such as games or automated theo-
rem proving26–28. MCTS uses rollouts to determine position values. 
Rollouts are Monte Carlo simulations, in which random search steps 
are performed without branching until a solution has been found or 
a maximum depth is reached. These random steps can be sampled 
from machine-learned policies p(t|s)29, which predict the probability 
of taking the move (applying the transformation) t in position s, and 
are trained to predict the winning move by using human games or 
self-play30–35.

In this work, we combine three different neural networks together 
with MCTS to perform chemical synthesis planning (3N-MCTS). 
The first neural network (the expansion policy) guides the search in 
promising directions by proposing a restricted number of automati-
cally extracted transformations. A second neural network then predicts 
whether the proposed reactions are actually feasible (in scope). Finally, 
to estimate the position value, transformations are sampled from a third 
neural network during the rollout phase. The neural networks were 
trained on essentially all reactions published in the history of organic 
chemistry.

Training the expansion and rollout policies
We extracted transformation rules from 12.4 million single-step reac-
tions from the Reaxys36 chemistry database23. Two sets of rules were 
extracted. The rollout set comprises rules that contain the atoms and 
bonds that changed in the course of the reaction (the reaction centre), 
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and the first-degree neighbouring atoms. Only rules that occurred at 
least 50 times in reactions published before 2015 were kept. For the 
expansion rules, a more general rule definition was employed. Here, only 
the reaction centre was extracted. Rules occurring at least three times 
were kept. The two sets encompass 17,134 and 301,671 rules, and cover 
52% and 79% of all chemical reactions from 2015 and after, respectively.

Rule extraction associates each reaction, and thus each product, 
with a transformation rule. This allows us to train neural networks 
as policies to predict the best transformations given the product, or 
in other words, the best reactions with which to make the product23. 
Importantly, such neural networks also learn about the context in which 
the reactions can occur (functional group tolerance)23. For the expan-
sion policy, we employed a deep highway network37 with exponential 
linear unit nonlinearities38. To assess its ability to generalize, we per-
formed a time-split strategy39. For training, only reactions published 
before 2015 were used, whereas for validation and testing, data from 
2015 and later were selected.

Extended Data Table 1 shows the metrics for the expansion pol-
icy. The neural network predicts the correct solution out of 301,671 
transformations with an accuracy of 31%, which is reasonable. It has 
to be noted that there are almost always many feasible ways to make a 
molecule. The top 10 and top 50 accuracies of 63.3% and 72.5% indicate 
that the correct transformations are generally ranked highly. Beyond 
the top 50 predicted results, the accuracy increases only marginally. 
This observation allows us to reduce the branching factor drastically, 
which is 46,175 when rules are applied exhaustively. During search 
tree expansion, we restrict the possible transformations to a maximum 
of 50. Additionally, we sum the probabilities of the predicted actions, 
starting from the highest-ranked transformation. When the cumula-
tive probability reaches 0.995, we stop further expansion, even if fewer 
than 50 actions have been expanded. This allows the system to focus 
on highly likely transformations when only a few good options exist, 
for example in the synthesis of acyl chlorides or Grignard reagents. We 
observed that the reactions in this reduced top 50 are almost always 
reasonable and are often variations of the correct prediction. For exam-
ple, a Heck reaction can often be conducted with bromide, iodide or 
triflate as the leaving group.

The rollout policy network, which is a neural network with one hid-
den layer, is trained in the same way as the expansion policy. It uses a set 
of 17,134 rules, which implies a lower coverage than the expansion pol-
icy, yet it needs just 10 ms to make a prediction, in contrast to 90 ms for 
the expansion policy, owing to the smaller output layer (see Extended 
Data Table 1). The rationale for using two different rule sets is to use a 
powerful but slow policy to select the best candidate transformations 
for expansion, and a fast rollout policy to estimate the position values35.

Prediction with the in-scope filter network
After the search space has been narrowed down by the expansion policy 
to the most promising transformations, we need to predict whether 
the corresponding reactions will actually work for a particular mole-
cule. We trained a deep neural network as a binary classifier to predict 
whether the reactions corresponding to the transformations selected by 
the policy network are actually feasible40. The classifier has to be trained 
on successful and failed reactions. Unfortunately, failed reactions are 
rarely reported and not contained in reaction databases. However, 
published reactions contain implicit information about reactions that 
do not occur. For a high-yielding reaction A + B → C, we can assume 
that hypothetical products D, E,... are not formed. By applying reaction 
rules in the forward direction to the reactants of reported reactions, 
negative reactions, for example, with incorrect regio- and chemoselec-
tivity, can then be generated41,42. Here we used the same rule set as for 
the expansion policy. Additionally, we generated negative examples by 
shuffling the associated pairs of products and corresponding reactions 
(see Methods for details). Using these data augmentation strategies, 
we generated 100 million negative reactions from reactions published 
before 2015 for training and 10 million published in and after 2015 
for testing. As positive cases, all reported reactions from these periods 
were used. On the test set, the classifier achieves an area under the 
receiver operation characteristic curve of 0.99, and an area under the 
precision-recall curve of 0.94, which indicates good performance (see 
Extended Data Fig. 1)43. The false positive rate of the filter (that is, 
incorrect reactions passing the filter) is 1.5%, whereas the false negative 
rate (that is, real reactions being filtered out) is 14%. Interestingly, the 
in-scope filter correlates with basic electronic properties (Hammond 
parameters and lowest unoccupied molecular orbital (LUMO) ener-
gies), even though it is not explicitly trained to do so (see Methods and 
Extended Data Fig. 5).

Integrating neural networks and MCTS
The expansion policy network and the in-scope filter network are com-
bined into a pipeline (Fig. 2b). When a position si is to be analysed, each 
molecule of the position is fed into the policy network. Then, the trans-
formations with the highest scores are applied to the molecule, which 
yields the possible precursors and thus full reactions. These reactions 
are submitted to the in-scope filter, where only transformations and 
precursors corresponding to positively classified reactions are kept. 
They represent the ‘legal moves’ available in position si.

The expansion procedure and the rollout policy are then 
incorporated in the respective phases of an MCTS algorithm to  
form 3N-MCTS. The four MCTS phases are then iterated to build 
the search tree.
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Figure 1 | Translation of the traditional chemists’ retrosynthetic route 
representation to the search tree representation. a, The traditional 
chemists’ retrosynthetic route representation (conditions omitted)50. 
b, The search tree representation. The nodes in the tree represent the 
synthetic position, and contain all precursors needed to make the 
molecules of the preceding positions all the way down to the tree’s 

root, which contains the target. Branches in the search tree correspond 
to complete routes. Calculating the value of branches through task-
dependent scoring functions allows us to compare and rank different 
routes. The target molecule can be solved if it can be deconstructed to a  
set of readily available building blocks (marked red). Ph, phenyl; Boc,  
tert-butyloxycarbonyl; TBS, tert-butyldimethylsilyl.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



ArticlereSeArcH

6 0 6  |  N A T U R E  |  V O L  5 5 5  |  2 9  m A R c h  2 0 1 8

(1) Selection. In the first 3N-MCTS phase, starting at the root node 
(the target molecule) of the search tree, the algorithm sequentially 
selects the most promising next position within the tree until a leaf 
node is reached (Fig. 2a). The algorithm balances the selection of high-
value positions and unexplored positions. If a leaf node is visited for 
the first time, it is directly evaluated by a rollout. If it is visited for the 
second time, it is expanded by processing via the expansion policy.

(2) Expansion. Now, the possible transformations determining the 
follow-up positions of the current position are selected by applying the 
expansion procedure. The predicted follow-up positions are added to 
the tree as children of the leaf node, and the most promising position 
is selected for rollout.

(3) Rollout. This phase starts with checking the status of the position. 
If it is already solved, the algorithm directly receives a reward greater 
than 1 to encourage exploitation. Non-terminal states are subjected to 
a rollout, where actions are sampled from the rollout network recur-
sively, until the state has been deconstructed into building blocks or a 
maximal depth is reached.

(4) Update. If a solution has been found during rollout, a reward 
of 1 is received. Partial rewards are given if some, but not all, mole-
cules in the state are solved. If no solution was found, a reward of –1 
is received. Here, bespoke scoring functions for the problem at hand, 

such as process chemistry or small-scale medicinal chemistry, can also 
be supplied. Eventually, the tree is updated to incorporate the achieved 
reward by updating the position values.

These four phases of 3N-MCTS are iterated until a time budget or 
maximal iteration count is exceeded. Finally, to obtain the synthesis 
plan, we repeatedly select the retrosynthetic step with the highest 
value until a solved position is reached, or a maximum depth has been 
exceeded, in which case the problem is unsolved.

Evaluating the performance characteristics of 3N-MCTS
To evaluate the performance of 3N-MCTS, we compare our algorithm 
to the state-of-the-art search method, which is BFS with the hand-
coded SMILES3/2 heuristic cost function (‘heuristic BFS’)13. This func-
tion assigns the lowest cost to steps that split up the molecule into 
equally sized parts. Additionally, we perform BFS with the cost cal-
culated by the policy network (‘neural BFS’). All algorithms use the 
same set of automatically extracted transformations. The evaluation is 
again time-split, as follows. Models were trained only on data published 
before 2015. As test data, only molecules first reported in or after 2015 
were considered (which were not contained in the training dataset). 
Provided with the target molecules, the algorithms then had to find a 
synthesis route to given building blocks.
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Figure 2 | Schematic of MCTS methodology. a, MCTS searches by 
iterating over four phases. In the selection phase (1), the most urgent 
node for analysis is chosen on the basis of the current position values. 
In phase (2) this node may be expanded by processing the molecules of 
the position A with the expansion procedure (b), which leads to new 
positions B and C, which are added to the tree. Then, the most promising 
new position is chosen, and a rollout phase (3) is performed by randomly 
sampling transformations from the rollout policy until all molecules 
are solved or a certain depth is exceeded. In the update phase (4), the 
position values are updated in the current branch to reflect the result of the 

rollout. b, Expansion procedure. First, the molecule (A) to retroanalyse is 
converted to a fingerprint and fed into the policy network, which returns a 
probability distribution over all possible transformations (T1 to Tn). Then, 
only the k most probable transformations are applied to molecule A. This 
yields the reactants necessary to make A, and thus complete reactions R1 
to Rk. For each reaction, the reaction prediction is performed using the 
in-scope filter, returning a probablity score. Improbable reactions are then 
filtered out, which leads to the list of admissible actions and corresponding 
precursor positions B and C.
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Figure 3 shows an exemplary six-step route for an intermediate of 
a drug candidate synthesis reported in 2015, which was found by our 
algorithm in 5.4 s. It matches the published route44. Several hundred 
additional exemplary retrosynthetic routes found by the MCTS algo-
rithm for molecules first synthesized in or after 2015 are deposited in 
Supplementary Information (see also Extended Data Fig. 2).

Quantitative evaluation
Surprisingly, in the past, neither hand-coded nor automatically extracted 
retrosynthetic systems have been validated at scale in a statistical way. 
We quantitatively assessed the performance characteristics of the differ-
ent search algorithms by finding synthesis routes for 497 diverse mole-
cules first reported in or after 2015 to known building blocks (see Fig. 4).

MCTS already solves more than 80% of the test set with a time limit 
of 5 s per target molecule, compared to 40% with neural BFS and 0% 
for heuristic BFS. MCTS solved 92% of the test set with a limit of 60 s 
per molecule, whereas neural BFS solved 71%, and heuristic BFS solved 
4%. Even at much longer runtimes of 20 min per molecule, heuristic 
and neural BFS are not able to compete with MCTS. Provided with 
infinite runtime, however, the algorithms will converge to the same 
performance. The molecules that MCTS failed to solve could not be 
solved by the BFS algorithms either. When looking beyond the first 
(top 1) retrieved route, MCTS and BFS find similar alternative routes, 
and do not differ much in terms of route diversity (see Supplementary 
Information section 2).

To determine which MCTS components are responsible for its 
superior performance, we compared MCTS against several related 
search algorithms (see Table 1) at a runtime limit of 3 × 300 s (three 
restarts). MCTS in conjunction with the expansion policy network 
solved the highest number of retrosynthetic targets. On average, 
MCTS required the least amount of time per molecule to find a  
solution (entry 1). Plain Monte Carlo search randomly selects trans-
formations using the expansion policy network, without building a 
tree. The Monte Carlo search (entry 2) solved 89.54% of the test set. 
UCT is an MCTS variant that uses the expansion policy network only 
to narrow down the possible transformations, but not to guide the 

search via the predicted probability of the transformation28. In this 
way, 87.12% of the test set is solved. BFS using a cost function based 
on the expansion policy network solved only 84.24%, highlighting the 
importance of rollouts. The traditional approach, BFS with a hand-de-
signed heuristic cost function, solves only 45.6% of the test set, and 
needs 433.4 s on average to find a solution. These results suggest that 
all components of 3N-MCTS (building a tree, reducing the branching 
factor via the expansion policy, guiding the search with the expansion 
policy, and using rollouts) contribute to its superior performance. We 
also found 3N-MCTS to be robust towards the choice of the MCTS 
parameters (see Supplementary Information section 1).

Assessing route quality via double-blind AB tests
The central criticism of retrosynthesis systems has been that the pro-
posed routes often contain what chemists immediately recognize 
as chemically unreasonable steps. Therefore, to assess the quality of 
the solutions we conducted two AB tests, in which 45 graduate-level 
organic chemists from two world-leading organic chemistry institutes 
in China and Germany had to choose one of two routes leading to 
the same molecule on the basis of personal preference and synthetic 
plausibility. The tests were double-blind, meaning that neither the  
participants nor the conductors were aware of the origin of the routes. 
The test molecules were selected randomly from a set of drug-like com-
pounds first published in or after 2015 (see Supplementary Information 
for the entire list of the targets and routes).

In the first test, the participants had the choice between a route 
reported by expert chemists in the literature, and a route generated 
by our 3N-MCTS algorithm for the same target molecule. Routes to 
nine different target molecules were offered. Routes towards the same 
molecule were required to have the same number of steps.

Here, one might expect the participants to clearly identify the routes 
suggested by the machine as inferior. Surprisingly, this is not the case. 
We found that the experts did not significantly (P = 0.26) prefer the 
literature route (43.0%) over our program’s route (57.0%). Figure 5a 
shows the preference ratios for the individual routes. Here, the prefer-
ence is generally balanced, with a slight trend towards MCTS. In some 
cases, the participants have clear preferences (see Fig. 5c and Extended 
Data Fig. 3 for examples where MCTS was not preferred).
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Table 1 |  Experimental results

Entry
Search 
method Policy*

Percentage  
solved

Time (seconds 
per molecule)

1 MCTS Neural 95.24 ± 0.09 13.0
2 MC Neural 89.54 ± 0.59 275.7
3 UCT Neural 87.12 ± 0.29 30.4
4 BFS Neural 84.24 ± 0.09 39.1
5 BFS SMILES3/2 55.53 ± 2.02 422.1

The time budget was 300 s and 100,000 iterations for MCTS or 300 s and 100,000 expansions 
for BFS, per molecule. Three restarts were carried out.  
*In the BFS, this is the cost function.
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In the second test, the participants had to report their prefer-
ences for either routes found by 3N-MCTS or routes generated by 
a baseline system, which uses heuristic BFS and the same transfor-
mation rules as 3N-MCTS. However, it lacks a policy network to 

preselect promising transformations and an in-scope filter to exclude 
unlikely steps. Here, the participants significantly (P = 0.01) pre-
ferred the routes generated by the MCTS algorithm (68.2%) over 
the baseline system (31.8%). We attribute the preference towards the 
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Figure 5 | Double-blind AB testing of MCTS-derived routes against 
literature and BFS routes. a, Chemists did not significantly prefer 
literature routes over routes found by MCTS (Wilcoxon signed-rank test, 
P = 0.26). b, Chemists significantly prefer routes found by 3N-MCTS 
over routes generated by heuristic BFS without a policy network and an 
in-scope filter (Wilcoxon signed-rank test, P = 0.01). A ratio above 0.5 
indicates that more than 50% of participants preferred the MCTS solution. 
c, In this AB example (task 1 of test a), the chemists preferred the literature 
route proceeding via a Grignard reaction, in contrast to the MCTS route, 

which was proposed to proceed via Seyferth–Gilbert homologation with 
the Ohira–Bestmann reagent. Although the MCTS route is chemically 
reasonable, it uses less-conventional chemistry in this case. The 
subsequent key steps to build the annulated cycle are the same for both 
MCTS and the literature. d, Without applying the expansion policy and 
the in-scope filter to select the best reactions, heuristic BFS produces the 
typical errors traditionally criticized in retrosynthetic systems. That is, the 
expert system tries to apply rules that are overgeneral and will not work in 
this molecular context.
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3N-MCTS-generated routes to lower frequencies of unreasonable 
steps (see Fig. 5b and d).

Discussion
We have shown that MCTS combined with deep neural networks and 
symbolic rules can be used effectively to perform chemical synthesis 
planning. In contrast to earlier work, our purely data-driven approach 
can be initially set up within a few days without the need for tedious 
and biased expert encoding or curation, and is applicable to disci-
pline-scale datasets. Our approach solves more problems and is faster 
than established search methods. Furthermore, it also performs better 
qualitatively. In the past, retrosynthetic systems have been criticized for 
producing more noise than signal. We observed that traditional heuris-
tic BFS without neural network guiding did lead to many unreasonable 
steps being proposed in the routes, while the 3N-MCTS approach pro-
posed more reasonable routes. This is supported by double-blind AB 
experiments, where the participating organic chemists showed clear 
preference towards 3N-MCTS over the traditional approach. Finally, 
our double-blind AB tests suggest that, for the first time, organic chem-
ists should consider the quality of retrosynthetic routes generated by 
a machine to be on par with reported routes for molecules of practical 
relevance.

Limitations and frontiers
Nevertheless, it would be premature to consider computer-aided syn-
thesis a solved problem, as challenges remain. First, natural product 
synthesis is currently beyond the capabilities of our method. The spar-
sity of the training data in this area remains a fundamental challenge for 
deep learning approaches45. However, natural products are also chal-
lenging for the best human chemists, as they can behave unpredictably, 
and often require intense methodology development46. Natural product 
synthesis may be solvable by stronger, but slower-reasoning, algorithms 
that could be used to invent reactions41,47.

Another important challenge is the reliable prediction of stereo-
chemical outcomes. While our approach is able to treat stereo-
information, the most important part, predicting enantiomeric or 
diastereomeric ratios quantitatively, remains an open challenge. 
Convincing global approaches for the quantitative prediction of 
enantiomeric or diastereomeric ratios over a wide range of differ-
ent reactions without recourse to expensive quantum-mechanical  
calculations48 have not been reported. However, they could be 
addressed with stereochemistry-aware descriptors. Furthermore, 
our system currently does not take reaction mechanisms, equilibria 
between different forms, such as tautomers, or three-dimensional 
structures into account, which can be crucial in natural product 
synthesis. Also, we do not at present perform reaction condition 
prediction49.

Outlook
For the past 60 years, experts have been trying to dictate the rules of 
chemistry to computers via hand-coded heuristics. Instead, we antici-
pate that equipping machines with strong, general planning algorithms, 
symbolic representations, and the means to learn autonomously from 
the rich history of chemistry will be crucial to allowing the machine to 
become accepted as a valuable assistant in chemical synthesis, which 
is central to solving humanity’s most pressing problems in agriculture, 
healthcare and material science.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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METhOdS
Chemistry. Molecules are stored in the search tree as canonical SMILES strings. If 
stereoinformation is desired, molecules are stored as canonical, isomeric SMILES. 
For processing, molecules are translated from SMILES into molecular graphs, 
which are vertex-labelled and edge-labelled graphs m = (A, B), with atoms a ∈ A 
as vertices and bonds b ∈ B as edges. Retrosynthetic transformation rules are pro-
ductions on graphs51. In chemical terminology, transformations are also referred 
to as ‘named reactions’. The Chemistry Development Kit (CDK)52 and RDKit53 
chemoinformatics libraries were used for the implementation.
Retrosynthesis as a Markov decision process. Markov decision processes (MDPs) 
model sequential decision processes of an agent in an environment29. An MDP is 
a tuple S A T R( , , , ), with states (positions) ∈ Ss , actions (transformations) ∈Aa , 
a transition model ′T s a s( , , ) determining the probability Pr(s′|a, s) of reaching state 
s′ when taking action a in state s, and a reward function ′R s a s( , , ), which returns 
the reward when transitioning to s′ via action a in state s. A policy π(a|s) is a prob-
ability distribution over all actions given state s.

Unlike in games, such as chess or Go, where it is trivial to write down the ground 
truth rules (the model) of the game, querying the ‘chemical environment’ to find 
out whether an action actually leads to the desired successor state is expensive. 
Either a wet-laboratory experiment has to be conducted or a quantum-chemical 
calculation on a high level of theory has to be run, which usually takes longer than 
running the laboratory experiment. Learning from millions of episodes of self-play 
can therefore not be employed.

To avoid these expensive interactions, we therefore need to learn or construct 
a model of the environment to perform planning. As elaborated in the introduc-
tion, this model will be inaccurate29,54. Even the best human chemists’ predictions 
can and do fail, which implies that humans also perform synthesis planning with 
inaccurate mental models of the chemical environment. Here, we use automatic 
rule extraction to determine the action set (the transformations) and the in-scope 
filter network to learn a transition model (which is applied in a binary way). The 
expansion policy network serves as a prior policy.

In this Article, a state (position) ∈ Ss  is a set of molecules s = {mi, mj, ...}. The 
initial state s0 = {m0} contains only the target molecule m0. Actions are then trans-
formations (rules or productions on graphs51) applied to one of the molecules  
m in a state s. When applying a legal action al to a state si = {ma, mb, mc}, it will 
produce a new state, for example, sj = {md, me, mb, mc}.

Given a set of building-block molecules B  (specified before the start of the 
search), state sk is solved if all molecules mi in sk are building blocks ∈Bmi . A state 
is terminal either if it is solved or if no legal actions are available. Ideally, it should 
be possible to provide the set of building blocks B dynamically before the search 
is started. Otherwise, the system could not adapt, for example, when a building 
block runs out of stock. Also, a researcher may choose different sets of building 
blocks for each search, for example, by first trying to find the solution to a problem 
with molecules that are in stock in the laboratory, and afterwards considering 
additional molecules from chemical suppliers. This makes it challenging to define 
or learn value functions, because a changed set of building blocks changes the 
terminality of states and the reward function, which entails a change of the value 
function29. A further challenge is that the initial state (the target molecule) changes. 
In most games, the reward function is always the same (the rules never change, 
and a terminal state is always terminal).

The size of the state space can only be roughly estimated. The number of drug-
like molecules, which contain a restricted set of elements and functional groups, 
might already exceed 1060 molecules55. However, this number excludes synthetic 
intermediates and organometallic and organo-main group chemistry, which add 
orders of magnitude to the state space size. The action space is formed by the trans-
formations available to the system, and the legal actions are those actions that can 
be applied to the molecules in a state via subgraph isomorphism. Unlike for other 
game artificial intelligence problems, in retrosynthesis we can limit the depth of 
the tree to a relatively small number (here, 25) and abort the simulation as failed if 
a viable route cannot be found within this limit. Our trees are thus wider and less 
deep than for other applications.
MCTS. MCTS is a reinforcement learning approach that combines tree search 
with learning from simulated episodes of experience, which are obtained from 
interacting with a model of the environment28,29. MCTS has been successfully 
applied in problems of sequential decision making in many domains, such as games 
or automated theorem proving28,56. MCTS has several desirable features, which 
makes it particularly well suited for retrosynthesis. It allows the calculation of value 
functions focused on a particular initial state on the fly54, and therefore does not 
depend strongly on heuristics. Each edge (s, a) in the search tree stores the action 
value Q(s, a), the visit count N(s, a) and a prior probability P(s, a) received from 
the expansion policy network.
Selection. In the first MCTS phase, starting at the root node, the tree policy 
(equation (1)) is used to select actions. The simulation descends the tree step by 

step. At each step t, the next action at is selected from all available actions A s( )t  
in st by equation (1), where N(st−1, at−1) is the visit count of the state-action pair 
that led to the current state, and c the exploration constant.
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The inclusion of the prior probability P(s, a) in the second term of equation (1) 
allows the system to explore the most promising lines of analysis first57. With 
repeated visits this term decays, allowing for the exploration of other options. 
Additionally, this allows one to take into account the confidence in the evaluation 
obtained via the rollout, which is expected to be noisy.

The tree policy is applied until a leaf node or a terminal node is found. If a leaf 
node is visited for the second time, it is expanded. Then, all non-building-block 
molecules mi ∈ st are processed by means of the expansion procedure. The resulting 
state-action pairs are added to the tree as children of the leaf node, and the most 
probable action according to the policy network is selected for rollout.
Expansion. During expansion, the state is processed once via the expansion pro-
cedure, and the reduced top 50 successor states are directly added to the tree. This 
trick can be applied because retrosynthesis is a single-player game, and we do not 
have to fear overlooking ‘killer’ moves (trap moves in which a small mistake will 
be exploited directly by the opponent) as much as in two-player games. Using only 
the reduced top 50 entails that the NP-complete subgraph isomorphism problem, 
which determines whether the corresponding rule can be applied to a molecule and 
yields the next molecule(s), needs only to be solved for at most 50 rules, instead of 
for all rules in the transformation rule set.
Evaluation by rollout. Before starting the rollout, the state is first checked for 
being terminal. A state can be terminal if it is solved. States within the tree that are 
already solved are called ‘proved’58. States can also be terminal if no legal actions 
are available in that state. Terminal states are directly evaluated with the reward 
function. If the state is non-terminal, a rollout is started. During rollout, actions 
are sampled recursively for each molecule in the state from the top 10 actions of 
the rollout policy until it has been deconstructed into building blocks or a maximal 
recursive function call depth of dr is exceeded. For the sake of simplicity, rollouts 
that completely solve the molecule are currently not stored.

The reward function r(s) returns z > 1 if the state is proved to encourage 
exploitation, a reward ∈ [0,1] depending on the ratio of molecules solved during 
rollout, and −1 if the state is terminal and unproven, or unsolved during rollout. 
Learned value functions are a possible, future alternative to rollouts. Investigations 
to learn value functions are currently ongoing in our laboratory.
Update. In the update phase, the action values Q(s, a) and visit counts N(s, a) of 
the edges traversed in the branch from st to the root node are updated. The edges 
gather the mean action value as in equation (2), where the indicator function Ii(s, a)  
is 1 if the edge was played during the ith simulation and zi is the reward received 
during rollout.
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Here, it is also possible to inject custom objective functions R→W b( )i  that might 
assign higher rewards, for example, to shorter, convergent, atom-economic or 
confident branches bi. In this work, we adjust the reward by using
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where J = length(·) denotes the length of a branch, P(sj, aj) is the probability of the 
jth action in the branch obtained from the expansion policy, k = 0.99 is a damp-
ing factor, and the maximal branch length Lmax = 25. Here, inclusion of the prior 
policy P(sj, aj) allows us to bias the reward also towards more confident branches. 
An interesting scoring function to investigate further is similarity to reported 
reactions59,60.

After either the time or the iteration step budget has been exhausted, the  
synthesis plan is selected, starting at the root node, by greedily choosing the 
action with the highest action value until a terminal solved state is reached, or 
a maximum depth has been exceeded, in which case the problem is unsolved. 
A maximal rollout depth of 5, an exploration constant of 3 and a reward, when 
proved, of 10 were employed as the MCTS parameters in the quantitative and 
qualitative experiments.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Automatic transformation rule extraction. Formalizing chemical knowledge by 
hand has been attempted. Even though it sounds simple to write down the rules 
of chemistry, it takes years to formalize only humble knowledge bases, it is error-
prone and biased towards the knowledge of the encoding experts, and in many 
cases chemical systems are too complex or just not well enough understood to 
formally write down their limitations and scope. Like rule-based common-sense 
reasoning19, this approach is considered to have exhausted its potential15,17,18. 
Additionally, given the exponential growth of chemical knowledge (it doubles 
roughly every 15 years), manual encoding is a hopeless endeavour.

Following our previously reported procedure23, and building on previous 
work20–22, transformation rules were therefore extracted automatically. The rules 
are stored using the RDKit reaction SMARTS format53. A very general rule defini-
tion was employed for the expansion rule set, where only the atoms of the reaction 
centre (including implicit hydrogen atoms and neighbouring-atom count) were 
extracted. The rules in the rollout set contain the reaction centre atoms (with 
implicit hydrogen atoms and neighbouring-atom count) and additionally the 
directly neighbouring atoms of the atoms in the reaction centre with their implicit 
hydrogen atom count. Rules were extracted only from single-step reactions with 
one, two or three reactants and a single product. As this work is a proof-of-concept 
study with the intent to radically avoid expert encoding and curation, we chose not 
to exclude reactions based on low yield or extreme reaction conditions, as these are 
quite subjective criteria. For example, a yield of just a few per cent can be sufficient 
if the aim is to obtain only a few milligrams of a compound for biological testing, 
while 90% yield is clearly unsatisfying if quantitative alternatives are available. In 
the future, more sophisticated approaches based on reaction classification could 
be employed to extract rules, for example, by grouping together similar leaving 
groups into a single rule21,61,62. Also, further investigation of directly translating 
from products to reactants using neural networks is called for63.

The general advantages and limitations of automatic rule extraction have been 
discussed in detail elsewhere13–15,20,21,23. Its main disadvantages (defining the scope 
of reactions and competing reactivity, incorporating mechanistically needed/acti-
vating functional groups, and deciding which rules to apply first) can be addressed 
by learning supervised policies to predict which rules to apply23.

The use of symbolic rules has the great advantage that it is deeply rooted in 
chemists’ language. This makes it easy for the model to communicate its results to 
the human user. Furthermore, because the transformations were extracted from 
the literature, we can link back directly to literature precedents, which is of crucial 
importance for chemists.

We note that even when taking all pre-2015 rules without count restriction 
into account, only 82% of the reactions published in and after 2015 are covered. 
The missing 18% are novel reaction types. This highlights the success of chemists 
inventing novel methodologies, but also implies that eventually a retrosynthesis 
system should also be able to discover novel reactions on its own23.
Policy networks. The neural policy networks were trained by minimizing the neg-
ative log-likelihood of selecting the transformation a that was used in the literature 
to make molecule m. This is essentially supervised multi-class classification. To 
evaluate the accuracy, reactions that are not covered in the rule set are excluded. 
Training was carried out using stochastic gradient descent (ADAM optimizer64) 
within 1–2 days on a single NVIDIA K80 graphics processing unit. The Keras 
neural network framework was employed, using Theano as the backend65,66.
Expansion policy network. Molecules are represented by real vectors in the form 
of counted extended-connectivity fingerprints (ECFP4)67, which are first modulo- 
folded to 1,000,000 dimensions, and then +xln( 1)-preprocessed. After that,  
a variance threshold is applied to remove rare features, leaving 32,681 dimensions. 
For the machine-learning model, we used a 1+5-layer highway network with  
exponential linear unit (ELU) nonlinearities37,38. A dropout ratio of 0.3 was applied 
after the first affine transformation to 512 dimensions, and a dropout ratio of  
0.1 was applied after each of the five highway layers. The last layer of the neural 
networks is a softmax, which outputs a probability distribution over all actions 
(transformations) p(a|m), which forms the policy (see Extended Data Fig. 4).
Rollout policy network. For rollout, molecules are represented by counted ECFP4 
fingerprints67, modulo-folded to 8,192 dimensions, and then +xln( 1)-preprocessed. 
As the rollout policy, a neural network with a single hidden dense layer with a 
dimensionality of 512, and ELU nonlinearity and dropout of 0.4 was used.
In-scope filter. The function of the in-scope classifier is to rapidly filter out the 
nonsensical reactions that plague rule-based systems, such as incorrect regioiso-
mers in electrophilic aromatic substitutions. For this purpose, we chose a binary 
classifier, which is fast to evaluate. The investigation of more sophisticated, but 
slower, reaction prediction approaches is left to future work18,23,41,42,68–70. For the 
same reason, only the product and the reaction fingerprint serve as inputs to the 
classifier, although the exclusion of conditions makes the classifier underdeter-
mined41,42. Reactions can selectively lead to different products under different 

conditions. However, the inclusion of reaction conditions as another input feature 
would require additional search in condition space at each step, which is not feasi-
ble given the time constraints we imposed here. In tasks where search time is not 
a constraint, such as in process development, reaction condition prediction could 
be performed at each step of the search, or be performed in a second sweep. One 
way to predict reaction conditions might be via reaction similarity search, which 
is related to how chemists use reaction databases.

Our classifier is a neural network with two branches (see Extended Data  
Fig. 4). The first branch embeds the reaction ri, represented as a counted ECFP4 
reaction fingerprint40,59,71–73 ρi modulo-folded to 2,048 dimensions, via a single 
dense ELU layer. The second branch embeds the product, represented as a counted 
ECFP4 fingerprint ϕi, modulo-folded to 16,384 dimensions and +xln( 1)- 
preprocessed, through a 5-layer ELU-highway network. The cosine proximity of 
these embeddings is then fed into a sigmoid unit to predict the probability that the 
reaction gives rise to the expected product. 

We used two strategies to obtain negative data, as follows. First, 30 million incor-
rect reactions were obtained by the application of reaction rules to the reactants 
of reported reactions, using the same rule set as for the expansion policy41,42,74. 
Here we make the assumption that the reactants can only react in the reported way. 
Any product generated by rule application not matching the reported product is 
considered to be a failed product. With this approach, for example, wrong regi-
oisomers can be generated. We note that these ‘negative’ reactions generated in 
this way capture the cases where a naive, contextless rule-based system would fail. 
Furthermore, 70 million negative training data points were generated by perturb-
ing tuples (ρi, φi) to (ρi, φj), where i ≠ j, by random sampling. Random sampling 
gives a small performance boost of 0.0025 score points in the area under the 
receiver operation characteristic curve (AUROC) and 0.0072 points in the area 
under the precision-recall curve. Training data were generated only from reac-
tions published before 2015, while test data were generated from data published 
in or after 2015. The classifier was trained by minimizing negative log-likelihood 
using the ADAM optimizer. Extended Data Fig. 1 shows the receiver operation 
characteristic curve of the classifier. A value of 0.9 was selected as the decision 
threshold for our classifier. Here, the classifier has a false negative rate of 14% and 
a false positive rate of 1.5%

Given that the in-scope filter learns to embed molecules in a vector space close 
to the reactions that were used to make them, it would be interesting to investigate if 
this can be directly used for nearest-neighbour search of molecules in reaction-rule  
space, which can also be described as label embedding.
Rediscovering electronic properties. To study what the in-scope filter has learned, 
we conducted two experiments. First, we studied Diels–Alder reactions of cyclo-
pentadiene with various dienophiles. The reactions were submitted to the in-scope 
filter, and the raw logit scores (the output of the neural network before applying 
the final sigmoid function) were calculated. As a comparison, the structures of 
the dienophiles were optimized and the energies of the LUMO were calculated via 
density functional theory (BP86-D3BJ/def2-SVP) to capture the qualitative trend,  
using the ORCA3 software75. Extended Data Fig. 5a shows the correlation of the 
LUMO energy with the logit score, which has an r2 = 0.74. Additionally, para- 
brominations via electrophilic aromatic substitution were studied (Extended Data 
Fig. 5b). Here, the logit scores were correlated to Hammond electronic parameters, 
and an r2 = 0.78 was found. This indicates that the in-scope filter correlates with 
basic electronic properties, following the expected behaviour of the respective reac-
tion mechanisms. This is remarkable, as its input features (ECFP4-based molecular 
and reaction fingerprints) do not contain electronic information.
Performance evaluation studies. Baselines. In BFS, each branch is added to a 
priority queue, which is sorted by cost. In heuristic BFS, this cost function is the 
SMILES3/2 heuristic, which is used as reported13. In neural BFS, the cost is calcu-
lated as =∑ − |=

∈f b P a s( ) (1 ( ))i
s b

i i0 , where P(ai|si) is the probability of that trans-
formation calculated by the expansion policy. Evaluation studies were performed 
using the central processing unit of a 24-core commodity cluster node using a 
single search thread. To provide a more meaningful comparison no graphical pro-
cessing unit was used for the evaluation studies.
Building block and test molecule selection. The building blocks have to be selected 
before the search is started, and could be molecules on stock in the laboratory, 
known in the literature, or commercially available chemicals. Here we use a set of 
423,731 molecules, containing 84,253 building blocks from three major chemical 
suppliers (SigmaAldrich, AlfaAesar and Acros), obtained from the ZINC database 
(http://zinc15.docking.org/) and 339,478 molecules from the Reaxys database, 
which have been used as reactants at least five times before 2015. To obtain a set of 
target molecules for the quantitative evaluation that contains different scaffolds, 
first all molecules reported after 2014 were clustered using the ECFP6-based Butina 
algorithm76. Then, 497 target molecules were randomly selected from amongst the 
82,673 different cluster cores.
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AB testing. The participants in the AB tests were 45 postgraduate students who 
had specialized in organic chemistry at the Institute of Organic Chemistry at 
Westfälische Wilhelms-Universität Münster and Shanghai Institute of Organic 
Chemistry. The study was conducted in a double-blind setup. During the test, 
neither the participants nor the conductors were aware of the origin of the route. 
Statistical significance was tested via the Wilcoxon signed-rank test.
3N-MCTS versus literature. In the comparison of 3N-MCTS with the literature, 
the expectation would be that experts prefer the literature option. In 128 AB tests, 
the experts preferred the literature route in 43.0% and MCTS in 57.0% (Wilcoxon 
signed-rank test on paired data, P = 0.26). The null hypothesis that both datasets 
stem from the same source cannot be rejected.
3N-MCTS versus heuristic BFS. Here, 68.2% of the participants preferred 3N-MCTS 
generated solutions, whereas only 31.8% preferred heuristic-BFS-generated  
solutions in 129 submitted tests. The experts strongly favour MCTS, the null 
hypothesis of indistinguishable sources (50% preference for each) can clearly be 
rejected (Wilcoxon signed-rank test on paired data, P = 0.01277).
Data availability. The reaction dataset used in this study is provided by Elsevier 
Information Systems GmbH under licence.
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Extended Data Figure 1 | Receiver operation characteristic curve for the in-scope filter. The area under the curve is 0.99.
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Extended Data Figure 2 | An exemplary 10-step synthesis route for a complex intermediate in a drug synthesis. It resembles the published route77 
(with intermediates A and B) and was found by our algorithm autonomously within 30 s. The target was not contained in the training set.
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Extended Data Figure 3 | Example of reaction used in the AB testing, where the MCTS-derived route was less favoured. In this task, the participants 
preferred the literature solution, as its key step was presumably perceived to be more convergent.
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Extended Data Figure 4 | Architectures of the employed neural networks. (‘dim’, dimensions.)
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b) para-Bromination of benzenesa) Diels-Alder reactions with Cyclopentadiene

Extended Data Figure 5 | Rediscovering physicochemical properties 
with the in-scope filter. The output logit score of the neural network 
correlates surprisingly well with calculated quantum-mechanical 
properties (LUMO energies, in Hartree) in Diels–Alder reactions 

(r2 = 0.74) (a) and with empirically measured Hammond parameters in 
electrophilic brominations (r2 = 0.78) (b), even though the input features 
(ECFP4 fingerprints) do not contain electronic information.
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Extended data Table 1 | Metrics for the supervised neural network policies

Policy ab top10Acc a top50Acc a

Expansion
Rollout

Accuracy# rules Coverage Matching rules/mol
301,671 0.79 46,175 0.310 0.633 0.725
17,134 0.52 321 0.501 0.891 0.964

Top10Acc/top50Acc is the ratio of correct/incorrect predictions if we allow the system to make 10 or 50 predictions.
aAccuracy is calculated on the molecules covered by the respective rulebase.
bMatching rules/mol corresponds to the branching factor.
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