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SUMMARY

Humans possess an exceptional aptitude to efficiently make decisions from high-dimensional sensory obser-

vations. However, it is unknown how the brain compactly represents the current state of the environment to

guide this process. The deep Q-network (DQN) achieves this by capturing highly nonlinear mappings from

multivariate inputs to the values of potential actions. We deployed DQN as a model of brain activity and

behavior in participants playing three Atari video games during fMRI. Hidden layers of DQN exhibited a striking

resemblance to voxel activity in a distributed sensorimotor network, extending throughout the dorsal visual

pathway into posterior parietal cortex. Neural state-space representations emerged from nonlinear transfor-

mations of the pixel space bridging perception to action and reward. These transformations reshape axes to

reflect relevant high-level features and strip away information about task-irrelevant sensory features. Our find-

ings shed light on the neural encoding of task representations for decision-making in real-world situations.

INTRODUCTION

The framework of reinforcement learning (RL) has illuminated

how agents learn to make adaptive choices from trial and error

feedback (Niv and Langdon, 2016). Efficient algorithmic strate-

gies have been identified for learning which actions to take in a

given state of the world (Sutton and Barto, 2018; Watkins and

Dayan, 1992), which in turn has helped reveal neural substrates

for these processes (O’Doherty et al., 2004; Schultz, 1998;

Schultz et al., 1997; Steinberg et al., 2013).

To date, most research has been on learning and value repre-

sentations, divorced from the perceptual systems coupled to

these mechanisms in the real world. In a typical neuroscience

study, state-spaces are low dimensional and discrete, charac-

terized by a small set of distinctive stimuli and actions. Yet, in

more naturalistic environments, the brain faces a continuous

stream of high-dimensional input and has to efficiently identify

relevant states from this complex input stream by constructing

a lower-dimensional state-space internally (Botvinick et al.,

2020; Niv, 2019). Actions can then be selected with even novel

sensory inputs by generalizing from past experience given

what previously worked well in similar states in this space. The

goal of the present study is to probe how the human brain can

solve this state-space representation problem.

This computational problem was a major barrier to progress in

artificial intelligence, until the recent emergence of deep RL. The

marriage of RL and deep learning provides an end-to-end frame-

work for solving the task representation problem by linking sen-

sory processing to action selection. For instance, the deep Q-

network (DQN) is capable of learning high-dimensional tasks

like Atari video games with human-level performance (Mnih

et al., 2015). Here, we explore the possibility that the human brain

may utilize similar computational principles in dynamic decision-

making environments.

To address this question, we scanned human participants with

fMRI while they played three different classic Atari video games:

Pong, Enduro, and Space Invaders.We usedDQNas amodel for

how the brain might solve the state representation and action

evaluation problems humans face when mapping high-dimen-

sional pixel inputs to actions.

We first tested whether DQN converges on a similar behavioral

policy to that used by human participants during gameplay. We

next examined the relationship between the features encoded in

the hidden layers of the DQN agent and patterns of activity in the

human brain while human participants played the Atari games.

This enabled us to test whether the human brain utilizes similar

mechanisms for encoding state-space representations as DQN.

Additionally, comparing the neural predictivity of various con-

trol models and different features within DQN helped reveal

which computational principles the brain uses to encode a

compact state-space representation and how this representa-

tion changes between regions. We reasoned that abstract
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state-space representations should only encode sensory infor-

mation relevant for gameplay behavior by encoding the most

important high-level features and ignoring irrelevant low-level

nuisance variables. The richness of Space Invaders and Enduro

also enabled us to determine that abstract features that gener-

alize across perceptually different inputs are mapped to poste-

rior parietal cortex (PPC).

RESULTS

We used three Atari tasks of varied complexity (Figure 1A). The

relatively simple game of Pong involves getting the ball past

your opponent’s paddle while avoiding being scored against.

Enduro is a driving game where a player needs to drive as fast

as possible while avoiding other cars, and Space Invaders is a

fixed shooter game where a player shoots enemy spaceships.

The trained DQN reaches human-level performance on all three

games (Mnih et al., 2015; Table S1). Therefore, we hypothesized

that the DQN agent could be utilized as an end-to-end model for

how the brain maps high-dimensional inputs to actions and that

its hidden layers could serve as a model for state-space repre-

sentation (Figure 1B).

We acquired fMRI data from six participants, each completing

4.5 h of gameplay (1.5 h on each game). Rather than testing a

large group of participants for a short time, as is typical in group

A

B

Figure 1. Atari game setup and DQN

(A) Participants played Atari games in the fMRI

scanner (Pong, Enduro, and Space Invaders). A

button box was used as a controller.

(B) DQN is used as amodel for how the brain maps

high-dimensional inputs to actions. SeeMnih et al.

(2015) and STAR methods for more details.

fMRI studies, we obtained sufficiently

large amounts of data in a small set of

participants to robustly establish the rela-

tionship between each participant’s data

and DQN representations (see Kay et al.,

2008 for a similar approach). For our ana-

lyses, we ran the frames from human

gameplay data through DQN models

trained independently from human data.

This yielded Q-value outputs and a large

set of nonlinear stimulus features repre-

sented by the activations in the hidden

layers.

DQN state-space representations

resemble human state-space

representations

Since DQN training was independent of

human behavior, it is unclear whether its

state-space representations or policy

would resemble that of humans. The dis-

tribution of human actions appeared to

diverge from the DQN’s when fed human

gameplay frames (Figure S1A). However,

these differences are largely trivial due to an increased propen-

sity for humans to take NOOP actions (meaning no operation

or no action) and a reduced tendency for action combinations.

This is expected, since unlike DQN, humans encounter a meta-

bolic cost for taking actions, and physical constraints limit rapid

switching from one action to another. Consequently, we focused

on DQN action values when human participants take a ‘‘move

left’’ or ‘‘move right’’ action (or any combination with fire or

brake). Across all games, DQN action values were significantly

higher for the corresponding human action (Figure 2A). For

example, when a human participant moves left to avoid hitting

a car in Enduro, DQN also values moving left more than right.

This suggests that the DQN mirrors human policies at these

crucial decision points.

The DQN’s state-space is encoded not by the output action

value layer but rather in the internal representations of the four

preceding hidden layers. Therefore, we tested if these represen-

tations are predictive of human actions. Using a linear decoder,

human actions (move left versus move right) could be reliably

predicted from the hidden representations in all games, demon-

strating that DQN encodes stimulus features that can be used to

model human actions (average accuracy: Enduro = 84.3, Pong =

75.0%, Space Invaders = 67.9%; cross-validated by run; chance

level accuracy = 50%; p < 0.001, block permutation test; Fig-

ure 2B). We also isolated contributions from different layers by
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averaging the absolute value of the coefficients across a layer

(Figure S1B). For Enduro and Space Invaders, features from

the last two hidden layers were most useful for predicting ac-

tions. For the simplest game, Pong, layers 1 and 2 contributed

more, and the contribution of each layer was more varied across

participants.

Encoding model reveals a distributed network

representing a state-space

After validating the use of DQN hidden layers as a model for hu-

man state-space representation that could predict behavior, we

next aimed to localize brain regions involved in encoding this

state-space. We employed an encoding model to create a linear

mapping of neural network activations to voxel responses, as

done previously (G€uçl€u and van Gerven, 2015; Yamins et al.,

2014). Neural network activations from all hidden layers were

used to model and predict the response of individual voxels

with ridge regression (Figure 3A).

Across games, DQN significantly predicted voxel responses

throughout the dorsal visual stream and PPC (cross-validated

by run; p < 0.001, false discovery rate [FDR] corrected; block

permutation tests; Figures 3B–3E and S2). Prediction accuracies

were higher in the dorsal visual stream extending into parietal

cortex than in the ventral stream extending into temporal cortex,

suggesting a specific role for the dorsal visual pathway in state-

space representation for naturalistic visuomotor tasks (two-sam-

ple t test, p < 1e-10; Figure S3A). The encoding model also

captured responses in motor and premotor cortex, supplemen-

tary motor area (SMA), and superior frontal gyrus in all games.

Outside of primary sensory and motor areas, additional regions

of PPC were mapped to DQN hidden layers, including the supe-

rior parietal lobule, supramarginal gyrus, and precuneus.

To determine whether early visual regions prefer early DQN

layers and more anterior regions prefer later layers (a represen-

tational gradient), we examined coefficients in each layer. No

clear gradient was identified for Enduro and Pong (Figure S3B).

For Space Invaders, coefficients for layers 1 and 2 were lower

in PPC, motor, and frontal regions than in early visual regions.

For all games, every region had very high-magnitude coefficients

for the last convolutional layer (layer 3).

A

B

Figure 2. Predicting human behavior using DQN hidden layers

(A) DQN action values are higher for actions that participants chose. DQN action values depicted for ‘‘left’’ and ‘‘right’’ actions for frames where human par-

ticipants took either a ‘‘left’’ or ‘‘right’’ action of any combination with fire or brake. Action values correspond to normalized action advantages (see STAR

methods).

(B) Human actions are linearly decodable from the features in DQN hidden layers. Logistic regression models were trained to predict left versus right actions in all

games. Features in the model included 100 principal components (PCs) of each DQN layer. Graphs depict cross-validated classification accuracy. Error bars

depict SE across 11 cross-validation folds. Dashed lines correspond to themax andmin accuracies of null distributions computed with block permutation tests of

1,000 shuffles.
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A

C

E

B

D

Figure 3. Encoding model: DQN hidden layers mapped to distributed network across the brain, including dorsal stream

(A) Visualization of encodingmodel analysis. Human gameplay frameswere run through a trainedDQN to extract neural network activations in the hidden layers at

every time point in an fMRI run. Voxel responses were modeled using ridge regression. The explanatory features included the first 100 PCs from each DQN

hidden layer.

(B) Voxels mapped to hidden layers for Pong. Cross-validated prediction accuracy uses Pearson correlation between the predicted and actual voxel responses.

Whole-brain threshold at p < 0.001 or p < 0.0001 FDR corrected. Thresholds are determined via cross-validated prediction accuracy against the null distribution

using block permutation testing on a subset of voxels. Data are from two participants; others are shown in Figure S2A.

(C) Same as in (B), but for Enduro.

(D) Same as in (B), but for Space Invaders.

(E) Percentage of voxels in a region of interest that are significant in the respective thresholds in (B)–(D). ROIs are noted as V1/V2, V3/V4, LOC Inf. (inferior lateral

occipital cortex), MTG (middle temporal gyrus), IT (inferior temporal lobe), LOC Sup. (superior lateral occipital cortex), SPL (superior parietal lobule), SMG (su-

pramarginal gyrus), PREC (precuneus), MC (motor cortex), SMA (supplementary motor area), and SFG (superior frontal gyrus). Plots for individual participants are

shown in Figure S2B.
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Control analyses

An alternative explanation for the encoding model results is that

they reflect basic visual features and not information related to

reward or action evaluation. To test this, we performed control

analyses with feature representations of variable complexity.

We usedmotor regressors as a basic motor control and principal

components (PCs) of the pixel space to control for low-level vi-

sual properties. We also included two deep neural network

(DNN) controls: a DQN agent trained on a separate game, and

a variational autoencoder (VAE) (Kingma and Welling, 2014), an

unsupervised representation learning method used previously

to extract state representations (Ha and Schmidhuber, 2018;

Higgins et al., 2018b; Watter et al., 2015) (see STAR methods

and Figure S4A for examples of VAE outputs). Since the VAE

does not encode value or action information, this allows us to

test whether this information is needed to reach the prediction

accuracies of the DQN encoding model.

DQN outperformed all control models (p < 1e-10, paired t test

across voxels) across games except in one participant (Figures

4A and S4B). Furthermore, DQN was best in all regions of inter-

est (ROIs) (except in one participant), especially in PPC (Figures

4B and S5A). The relative performance of different feature sets

reveals the computational principles accounting for DQN’s abil-

ity to explain neural activity. Nonlinear feature representations

outperformed linear ones, as both the DQN trained on another

game and the VAE consistently showed higher prediction accu-

racies than a linear principal-component analysis (PCA) model.

Additionally, the original DQN surpasses the other two DNN

models by linking perception to action and reward.

We next examined whether neural to DQN feature correlations

aremaintainedwhen all models are included in the same analysis

to compete for variance. This reveals whether DQN offers unique

predictive information even after controlling for basic visual and

motor activity and alternative sensory models. For this, we con-

structed a general linear model with the first 10 PCs of the most

relevant models (DQN layers 1–4, VAE, and PCA) and other re-

gressors of no interest such as game events.

We found that many voxels within each ROI are significantly

modulated by unique variance in each model, particularly DQN

layers 3 and 4 (p < 0.001 family-wise error rate [FWER] corrected,

cluster level, F-test; Figure 4C). In Figure 4C, the results show the

proportion of voxels per ROI correlating with a given model

above and beyond variance explained by every other model. Af-

ter controlling for both VAE and PCA, all DQN layers still explain

significant variance in a substantial proportion of the voxels per

ROI. Additionally, VAE and PCA models explain significant vari-

ance after controlling for the effects of the DQN layers. Since

early visual and motor regions encode features in DQN layers 3

and 4 when controlling for the other models, this suggests that

even these primary sensory regions process more complex

sensorimotor features than in conventional visual and motor

models.

Representational geometry of DQN’s internal

representations

The highly distributed representation and numerous parameters

within a DNN make its representation rather opaque. To shed

light on what DQN is encoding, we utilized representational sim-

ilarity analysis (RSA). RSA allows comparison of the representa-

tional space of many different data types and models of varying

dimensionality (e.g., deep network, fMRI patterns, and hand-

drawn features), helping to illustrate how a model’s representa-

tion changes throughout a task as well as aiding comparison

across models (Haxby et al., 2014; Kriegeskorte et al., 2008).

We first examined Pong, which can be fully characterized with

a few high-level features that we manually annotated frame by

frame: the positions of the two paddles, the ball position (X

and Y), and the ball’s velocity (X and Y). A useful and compact

state-space should encode this information in some form. An

exemplar dissimilarity matrix (DSM; see STAR methods) for

these hand-drawn features is illustrated in Figure 5A alongside

the DSM of the last convolutional layer in DQN (layer 3) for the

same game frames. Similarity is high between two time points

when feature vectors in those time points are close in a distance

metric (i.e., Euclidean). The representational geometry of DQN

resembles the hand-drawn feature DSM, suggesting that it

may encode these game-relevant features directly.

To quantify similarities among different DQN layers, hand-

drawn features, and other models, we correlated the model

DSMs with each other. In Pong, the internal representations in

DQN start to become highly similar to hand-drawn features in

layers 3 and 4 (Figure 5B; Spearman r = 0.53, 0.55, respectively),

suggesting that DQN constructs a compact state-space repre-

sentation by realigning its axes to code for these high-level fea-

tures in later layers. Although this object information is present

in the input pixels, they share a relatively low correlation with

the pixel space (r = 0.058), suggesting some form of nonlinear

transformation is required to disentangle this information from

the input (DiCarlo and Cox, 2007; Higgins et al., 2018a). Addition-

ally, the first layer of DQN in Pong is highly similar to the pixel

space and PCAmodel (r = 0.9; r = 0.78), suggesting that the input

data are not yet highly compressed in the first layer of DQN. In

contrast, the later layers become increasingly dissimilar to the

pixel and PCA representation as they start encoding a lower-

dimensional subspace for game-relevant features. A similar

pattern is seen in Space Invaders, where the first DQN layer is

highly correlated to the pixel space and PCA model (r = 0.91;

r = 0.69) but the last layer is highly dissimilar (r = �0.16; r =

0.04). In Enduro, representations in all four layers are highly similar

to each other, suggesting that differences between themmight be

more subtle, raising the possibility that there may be more inter-

esting variance within a layer rather than between layers. In all

games, the VAE representations are moderately similar to the

DQN’s, especially for the first three DQN layers.

The brain’s state-space representation in Pong encodes

the spatial information about objects

Next, we tested whether the brain similarly encodes the spatial

positions of the objects in Pong by computing DSMs from voxel

activity and correlating these DSMs with a hand-drawn feature

DSM (downsampled to fMRI resolution). For all subjects, the

hand-drawn feature DSM was significantly correlated to all brain

areas in the sensorimotor pathway previously identified in the en-

codingmodel analyses (Figures 5C and S6 for individual subjects;

block permutation tests, p < 0.01, FWER corrected for multiple

comparisons). This suggests that similarly to DQN, the brain’s
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state-space representation in Pong involves coding for high-level

features tracking the spatial positions of the relevant objects.

Additionally, brain DSMs are significantly correlated to DQN

layers 3 and 4 for all subjects in early visual, PPC, and motor/

frontal ROIs (and to DQN layer 2 for early visual regions). Repre-

sentations in early visual areas are already highly correlated to

hand-drawn features, which may explain why these regions pre-

fer DQN layers 3 and 4 rather than earlier layers.

Action values encoded in motor and premotor areas

DQN hidden layers encode a state-space to compute Q-values

in the output of the network for action evaluation. To identify

A

B

C

Figure 4. Control models

(A) Encoding analysis control models: motor regressors, PCA on the input pixels, DQN trained on one of the other games, and a VAE. Bar plots show prediction

accuracies for the 90th percentile of prediction accuracies across the whole brain for eachmodel (averaged across six participants with each participant’s values

shown). Boxplots for distribution of scores in the upper 20th percentile for each model and participant shown in Figure S4B.

(B) T-scores by region of interest comparing DQN prediction accuracies to prediction accuracies from control models. T-values reflect average T-scores across

participants with each participant’s T-scores shown. Plots for individual participants are depicted in Figure S5A.

(C) Percentage of significant voxels for each ROI in a GLM where all DQN layers, VAE model, and PCA model compete for variance (p < 0.001 FWER corrected,

cluster level, F-test across 10 PCs representing a model’s regressors).
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A

B

C

Figure 5. Representational similarity analysis

(A) Illustrations of what dissimilarity matrices (DSMs) look like for Pong. DSMs represent pairwise comparisons of model representations across time, depicted

here for the first 1,000 frames in an example Pong run. The DSM on the left represents the DSM for DQN layer 3 and the DSM on the right represents the DSM for

the hand-drawn features in Pong: the positions of the two paddles, the ball position, and the ball’s velocity.

(B) Representational similarity analysis on DQN. Correlations of all the model DSMs for all games and also the hand-drawn features (HDFs) for Pong. The internal

representations in Pong become more dissimilar to the pixel space and PCA model and more similar to the hand-drawn features from DQN layers 1–4. DQN

representations in later layers also become more dissimilar to the input space in Space Invaders.

(C) Representational similarity analysis on fMRI data for Pong. fMRI DSMs for three ROIs were correlated with model DSMs including HDFs, each layer of DQN,

PCA, and VAE. Asterisks (*) above bars indicate significance in six out of six subjects (block permutation tests, p < 0.01, FWER corrected for multiple com-

parisons). Dotted lines above bars indicate significant differences betweenmodels in six out of six subjects (block permutation tests, p < 0.01, FWER corrected for

multiple comparisons). All brain areas in all subjects were significantly correlated to the HDF DSM and DQN layers 3 and 4. See Figure S6 for individual sub-

ject plots.
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whether similar action value computations occur in the brain, we

implemented a computational model-based general linear

model (GLM) analysis (O’Doherty et al., 2007) using the DQN

output as the computational model.

The action value regressor identifies regions encoding contin-

uous values for the chosen DQN action as a function of the state

the participant sees (action advantages used; see STAR

methods). Significant encoding of action values was found in

premotor, SMA, and primary visual andmotor cortex in all games

(Figures 6B and S7). Significant clusters at p < 0.001 (FWER cor-

rected, cluster level) are located in motor or SMA/premotor re-

gions for all participants in Enduro, five out of six participants

in Pong (six out of six at uncorrected p < 0.001), and three out

of six participants in Space Invaders. These results indicate

that action values are computed in SMA and premotor cortex

during Atari gameplay.

A

B

Figure 6. Action value results

(A) Depiction of action value GLMs. Human

gameplay frames were run through DQN to eval-

uate action/chosen values. Traces were then

downsampled to 10 Hz and convolved with a he-

modynamic response function to reveal GLM re-

gressors for action values.

(B) Neural encoding of action value in premotor/

SMA areas. Whole-brain maps were thresholded

at p < 0.001 (FWER corrected, cluster level). Sig-

nificant representation of action value was also

found in primary visual and motor cortex. Other

participants are shown in Figure S7.

Convolutional filter analyses

Thus far, we have shown that a brain-like

representation emerges most notably in

DQN layers 3 and 4. We see that all

ROIs, even early visual regions, prefer

these last two DQN layers, suggesting

multiple nonlinear transformations of the

input pixels are necessary to derive fea-

tures most predictive of cortical re-

sponses during Atari gameplay. Howev-

er, even though the last two layers best

predict voxels across the brain, different

regions might prefer different artificial

neurons or features within these layers.

If so, could we leverage this variability to

further shed insight into the features the

brain is encoding and how the brain’s in-

ternal representations transform from

one region to another?

We test this by retraining the encoding

model on each convolutional filter in the

last convolutional layer separately (layer

3, 64 filters; DQN architecture illustrated

in Figure 1B). The convolutional filter of a

convolutional neural network (CNN) repre-

sents a feature the network is looking to

detect in the input, and this feature can

besomewhat visualizedwithguidedback-

propagation/deconvolution (Springenberg et al., 2015; Zeiler and

Fergus, 2013) (Figure 7E). For example, early layers in a typical

CNN encode low-level features such as edges and contours.

We then estimated how well each filter predicted voxel re-

sponses by averaging prediction accuracies across voxels in our

ROIs, a metric we term ‘‘neural predictivity.’’ This quantifies how

well each filter explains neural responses in general and enables

us to testwhetherneural predictivity changesacrossdifferentROIs.

The RSA results in Pong suggested that the shared represen-

tation between the brain and DQN in Pong corresponds to a

mutual encoding of the spatial positions of objects. We tested

this explicitly with our neural predictivity metric, as convolutional

filters containing more information about high-level features may

better explain brain responses. To quantify this, we calculate the

degree to which a layer 3 filter encodes the Pong hand-drawn

features with a mutual information metric.
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A

B

C

D

E

Figure 7. Filter analyses on brain activity

(A) Neurally predictive filters in Pong encode the spatial positions of objects. Encoding models were run separately on each layer 3 filter to estimate filter neural

predictivity. Separately, each filter was assessed on how much it encoded the hand labeled features in Pong. Significant correlations were found between the

filter neural predictivity scores and the metric about how much information the filters encoded about the hand-labeled features in every participant (p < 0.0001).

The average scores and correlations across participants are plotted.

(B) Correlations in filter neural predictivity scores across regions. Neural predictivity scores were correlated across regions to estimate whether the same filters

are useful for predicting all neural responses or whether the mapping is more heterogeneous. In both Enduro and Space Invaders, more clustering occurs

separating visual, parietal, and motor networks.

(C) Filter scores are correlated across participants. There are high correlations across all participants and nearly perfect correlations for Pong.

(D) Correlations between neural predictivity and behavioral predictivity. Axes represent normalized scores with worst filter at 0 and best filter at 1. Data

aggregated across participants are depicted.

(E) Visualization of two example filters using guided backpropagation in Neon. Images to the right of each example represent an image from the human gameplay

data that activate the filter themost. Gray images to the left of each example represent which parts of the pixel space affect the activation of the filter themost from

this input image. Red, green, and blue reflect pixels that changed across the frames in the input. Five randomly selected filters for each game are also visualized in

Figure S8A.
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We found that filters with higher neural predictivity encode

more information about the hand-drawn features. These correla-

tions are significant for ball position, ball velocity, and paddle po-

sitions in every participant (p < 0.0001; Figure 7A), indicating that

the nature of the DQN to brain mapping in Pong lies at the repre-

sentation of the high-level features.

Filter neural predictivity across regions

To estimate whether different regions prefer different filters, we

averaged prediction accuracies for each filter across each ROI.

We then computed correlations between the 64 filter scores

across regions. For Pong, high correlations between filter scores

were found across all regions, suggesting that the same filters

are useful for explaining responses uniformly across the brain

(Figure 7B).

However, in Enduro and Space Invaders, different ROIs only

have partially overlapping sets of filters mapped to them, sug-

gesting a more heterogeneous representation across regions

(Figure 7B). We found visual, parietal, and motor clusters of filter

encoding with high correlations within cluster and moderate cor-

relations between cluster. These patterns may differ from the

more homogeneous filter selectivity in Pong because of the

increased complexity of these games.

Neurally predictive filters generalize across participants

and can predict behavior

To investigate if all our participants converge on similar useful

representations for solving the task, we correlated each filter’s

neural predictivity score across participants. We observed high

correlations between all participants in all games (Figure 7C),

meaning the same filters were mapped to the brain across

participants.

This result also suggests that some filters in the network are

universally useful for explaining neural responses and some are

universally useless. Enduro layer 3 filter 40 was one of the best-

fitting filters for explaining brain activity in every participant.

Through guided backpropagation (Springenberg et al., 2015),

we could see that the filter detects cars and the sides of the

road, which are useful features for acting in the game (Fig-

ure 7E). By contrast, Enduro layer 3 filter 56 was one of the

worst-fitting filters for explaining brain activity in five out of six

participants. This filter detects the score at the bottom of the

screen, which is correlative of reward, since the score board

changes when reward is received, but not causally related to

reward.

A sample of filter deconvolutions for five random filters in each

game is also plotted in Figure S8A.

Next, we evaluated how well each filter modeled human

behavior by retraining the decoding human behavior model (Fig-

ure 2B) on every filter in layer 3 separately. Similar to the neural

predictivity analysis, this allows us to probe how useful every layer

3 filter is for predicting human actions. We found correlations be-

tween howwell a filter explains voxel activity (the neural predictiv-

ity score) andhowwell a filter explainshumanbehavior (Figure7D).

This correlation was most pronounced for Enduro and Pong (p <

0.05 in six out of six participants in Enduro and six out of six par-

ticipants in Pong but only two out of six participants in Space In-

vaders). Thus, the brain encodes the features most relevant for

behavior, and DQN encodes features that not only are brain-like

in a universal way across participants but also predict human

actions.

State-space representations are nuisance invariant

in PPC

An abstract state-space representation should ideally be

pruned of sensory features not necessary for learning or

behavior. For Pong, this involves encoding high-level features

about the relevant objects in the game. However, the other

two games are more complex and involve a large number of

features that are difficult to hand label. Thus, rather than

isolating relevant high-level features in these games, we next

identify irrelevant features that an abstract state-space should

ignore.

Wewanted to find brain regions where the state-space encod-

ing is insensitive to sensory information irrelevant for task perfor-

mance, a pattern known as nuisance invariance (Lenc and Ve-

daldi, 2015). For Enduro, one nuisance variable is the weather

and time of day. Driving gameplay starts off during the day and

gradually becomes nighttime with various weather patterns.

The colors of the pixels and visual input dramatically change,

while the overall gameplay remains mostly the same. Formally,

this weather variable had no relationship with the participant’s

actions in an information-theoretic sense (see STAR methods).

A good state-space representation should localize objects inde-

pendently of colors in the game. Thus, it should often project in-

puts that are very far away in the pixel space to similar regions of

the latent state-space if an agent should act similarly across

them (illustrated in Figure 8A). In contrast, even small changes

in pixel space may necessitate opposite actions. For example,

in Figure 8A, an agent should move left or right depending on

the location of the car in front of it, even though the two pairs

of frames are perceptually similar.

For Space Invaders, the number of on-screen invaders ex-

plains a lot of variance in the pixel space but has amarginal effect

on what actions participants take (see STAR methods). This is

because as an agent kills more invaders, the screen becomes

more and more black. This information does not heavily impact

which actions an agent should take, because the relative posi-

tions of the invaders above an agent matter the most.

To estimate whether ROI representations are nuisance

invariant, we quantified the mutual information between a filter

and the nuisances identified for Enduro and Space Invaders, giv-

ing each filter a metric for how insensitive it was to the nuisances

(see STAR methods). We computed the correlation between

each filter’s nuisance invariance, and its neural predictivity in a

ROI, which we define as a nuisance invariance score for each re-

gion (normalized across voxels; see STARmethods). Simply put,

this score estimates how each region prefers the filters that are

nuisance invariant.

Regions in PPC and in the late dorsal visual stream (i.e., lateral

occipital cortex [LOC]) were more insensitive to nuisances than

early visual cortex regions V1–V4 (Figures 8B, 8C, S8B, and

S8C) in both games. Early visual cortex regions exhibited the

lowest nuisance invariance scores in both games, suggesting

that filters mapped to these regions still encoded the low-level

nuisance variables. Additionally, LOC, which is later in the dorsal
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visual pathway, had a higher nuisance invariance score than

these earlier visual regions. For Enduro, a PPC region exhibited

the highest or second highest score of any region in every partic-

ipant. In five out of six participants in Space Invaders, premotor/

prefrontal cortex regions also exhibited high nuisance invariance

scores.

These results suggest that irrelevant visual input is stripped

from the neural code as information passes through the dorsal

visual stream to the PPC. This leads to a lower-dimensional,

compressed, and abstract representation that projects similar

game situations to the same part of the state-space as depicted

in Figure 8A.

DISCUSSION

One of the major unresolved questions in decision neuroscience

is how relevant sensory features are identified and structured to

aid action evaluation and selection in real-world scenarios. Here,

we addressed this question by having humans play complex

Atari games (Pong, Enduro, and Space Invaders) in an fMRI

scanner. Taking our cue from advances in artificial intelligence

(Mnih et al., 2015), we utilized a deep RL algorithm as a model

for how to solve the task representation problem inherent in

these tasks. We demonstrate that representations in DQN

show a remarkable similarity to those used by humans. Features

A

B C

Figure 8. Representations become more insensitive to nuisances in posterior parietal cortex

(A) Illustration of what a useful representation would do in Enduro.

The sky color changes frequently, but these changes have no effect on human actions. The input space on the left depicts how situations are clustered by

perceptual features such as color in the pixel space. Within each night/day cluster, there are examples of a car in front of an agent on both the right and left.

Therefore, onemust take opposite actions in each scenario to avoid a collision. A good state-space localizes the positions of the relevant objects independently of

visual nuisances. The resulting state-space representation on the right clusters together perceptually dissimilar situations if they share the same underlying

semantic meaning for the policy.

(B) Nuisance invariance to weather/time of day in Enduro. We calculate a nuisance invariance score in every region. This score is defined as the correlation of a

filter’s neural predictivity in a region and that filter’s nuisance invariance to weather. The motor area ROI includes both the primary motor cortex and premotor

cortex.

(C) Nuisance invariance to number of invaders on the screen in Space Invaders. We similarly calculate a nuisance invariance score for every region as defined in

(B). For the game Space Invaders, the proxy nuisance variable was the number of invaders on the screen.
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in DQN hidden layers predict human actions and fMRI activity in

a distributed sensorimotor network extending from the dorsal vi-

sual stream and PPC to premotor areas. Not only does the DQN

model significantly outperform control models of varying levels

of complexity, but DQN features also explain unique variance

in these ROIs when controlling for the other models. These re-

sults suggest that these regions do not simply encode low-level

sensory information but produce a state representation that links

sensory information to reward and action selection. Further vali-

dating our approach, we found an encoding of the action value

output of DQN in premotor cortex/SMA, along with primary vi-

sual and motor cortex. In alignment with a traditional trial-based

study (Wunderlich et al., 2009), our results support a role for SMA

in action valuation while generalizing these findings to an envi-

ronment with high-dimensional state dynamics.

Our findings build on a growing catalog of intriguing similarities

between DNNs and the brain (Eickenberg et al., 2017; G€uçl€u and

vanGerven, 2015; Iigaya et al., 2020; Khaligh-Razavi and Kriege-

skorte, 2014; Wang et al., 2018; Wen et al., 2018; Yamins et al.,

2014; Yamins and DiCarlo, 2016). Unlike some studies, we did

not find a gradient of abstraction mapping early layers to early vi-

sual regions and later layers to later regions. All ROIs consistently

preferred DQN layers 3 and 4. By examining the representational

geometry of different DQN layers, we could identify principles

accounting for this pattern. For Pong and Space Invaders espe-

cially, the internal representation is not dissimilar to the pixel

space until DQN layers 3 and 4, whereas the information reach-

ing early visual cortex may already be heavily compressed. Prior

research suggests considerable compression and nonlinear pro-

cessing of visual inputs occurs before the cortex, via the retina,

lateral geniculate nucleus (LGN), eye movements, and feedback

connections (Gollisch and Meister, 2010; Hayhoe and Ballard,

2005; Hosoya et al., 2005; Kietzmann et al., 2019). For Pong,

both the brain and later layers of DQN represent high-level fea-

tures about the spatial positions of the ball and paddles. Early vi-

sual regions may have more similarity to layers 3 and 4, because

DQN only disentangles these features from the pixel space in

later layers. Additionally, many of the DNNs used in visual neuro-

science have eight or more layers, with layers 2–4 often consti-

tuting the most similarity to early visual cortex rather than layer

1 (Khaligh-Razavi and Kriegeskorte, 2014; Seeliger et al., 2018;

Wen et al., 2018). If the network had more layers, representa-

tional gradients at the layer level might emerge, perhaps with

early visual regions still preferring layers 3 and 4 but more ante-

rior regions mapping to deeper layers. Yet, for our purposes,

DQNprovides a satisfactory account of both behavior and neural

data, with relevant variance for explaining cortical activity

packed into layers 3 and 4. Thus, we analyzed how different fea-

tures within layer 3 (the last convolutional layer) explain activity

across the brain.

To do so, we retrained separate encoding models on stimulus

features from the convolutional filters in DQN layer 3. This anal-

ysis showed that filters most predictive of voxel activity are also

predictive of human behavior, suggesting that these features are

used by the brain to guide behavior. Filter selectivity is highly

correlated between participants, indicating a common task rep-

resentation across individuals. For Pong, the filter analysis pro-

vided more evidence that this common state-space represents

high-level features such as the spatial positions of the relevant

objects. This is in line with a recent proposal that the dorsal

stream and PPC encode spatial positions of objects by projec-

ting high-dimensional inputs onto a low-dimensional manifold

of physical space (Summerfield et al., 2020).

For Enduro and Space Invaders, the mapping of DQN features

to the brain was more heterogeneous between regions, suggest-

ing that different regions prefer different underlying features in the

network. PPC areas encoded features that aremore generalizable

and nuisance invariant than early visual regions. Thus, PPC is able

to ignore and abstract away information from the sensory stream

that is not relevant for behavioral performance, such as changing

colors and backgrounds in Enduro. This suggests that PPC may

be a central nexus for isolating behaviorally relevant stimuli by

integrating visual, cognitive, and motor information (Freedman

and Ibos, 2018). A substantial literature in motor neuroscience

also implicates PPC in sensorimotor transformations, linking

perception to decision-making and action (Andersen and Buneo,

2002; Andersen and Cui, 2009; Gold and Shadlen, 2007). The

present work suggests that these past findings and proposed

theories can be integrated into a broader conceptualization of

PPC as encoding abstract state-space features linking percep-

tion to learning and action selection.

Overall, our results point toward key properties fostering an

effective state-space for tasks of real-world complexity. Initially,

compression to a lower-dimensional space takes place to avoid

the curse of dimensionality, where learning complexity scales

exponentially with the number of states to learn about. However,

exploiting the raw statistical properties of the input data, as in un-

supervised learning techniques, is not enough; it must also

disentangle a purely sensory manifold into appropriate axes

linked to rewards and the actions that deliver them (DiCarlo

and Cox, 2007; Higgins et al., 2018a). For Pong, these axes

code for relevant data-generating factors, the spatial positions

of the ball and paddles. In addition, a state-space would likely

benefit from being invariant to nuisances irrelevant for task per-

formance (Lenc and Vedaldi, 2015). This property further re-

duces state-space dimensionality by only transmitting useful

signals through an information bottleneck (Achille and Soatto,

2018; Shwartz-Ziv and Tishby, 2017). This added compression

helps protect against overfitting by shaping an abstract task rep-

resentation orthogonal to low-level sensory properties that can

change in future settings. Humans are clearly equipped with ab-

stract representations with this property (Behrens et al., 2018),

as they can seamlessly adapt to novel circumstances, such as

driving on new roads without having to relearn the driving

process.

It should be noted that the DQN objective does not explicitly

promote the learning of nuisance-invariant representations,

and most filters still retain information about the nuisances we

highlighted. Additionally, DQN performance is not robust to vi-

sual changes (such as in image contrast) during testing if the

change was not in the training distribution. Most deep RL algo-

rithms are not explicitly trained to learn a representation but

are trained to approximate value-based and policy-based func-

tions and thereby learn a task representation as a side effect.

These approaches suffer sample efficiency and generalization

issues (Kaiser et al., 2020; Lake et al., 2016). Therefore, deep
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RL algorithms likely would benefit from explicitly learning a rep-

resentation with the principles we previously outlined, alongside

other inductive biases humans possess about the structure of

the world (Botvinick et al., 2019). Methods for accomplishing

this goal are being developed in the emerging field of state rep-

resentation learning (Anand et al., 2019; Higgins et al., 2018b; Ja-

derberg et al., 2016; Lesort et al., 2018; van denOord et al., 2019;

Srinivas et al., 2020; Zhang et al., 2020). We also espouse more

cross-talk between decision neuroscientists and artificial intelli-

gence researchers at the level of representations for a RL sys-

tem; thus far, most of the interaction between these fields has

occurred at the level of learning signals (Botvinick et al., 2020;

Dabney et al., 2020; Niv and Langdon, 2016; Wang et al., 2018).

The present findings suggest that even with notable architec-

tural differences between the human brain and deep RL models,

DQN still does remarkably well in capturing variance in both hu-

man behavior and brain activity throughout the dorsal visual

stream and the parietal and premotor cortices in high-dimen-

sional decision-making contexts. These findings further help to

establish the deep and sustained relationship between progress

in artificial intelligence and in computational neuroscience. Our

results suggest that this interdisciplinary interplay is continuing

to evolve and that in particular, a synergy between deep RL

and decision neuroscience offers the continuing prospect to

yield rich insights about the internal representations of intelligent

systems.
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G€uçl€u, U., and van Gerven, M.A.J. (2015). Deep neural networks reveal a

gradient in the complexity of neural representations across the ventral stream.

J. Neurosci. 35, 10005–10014.

Ha, D., and Schmidhuber, J. (2018). World models. arXiv, 1803.10122 https://

arxiv.org/abs/1803.10122.

Hanke, M., Halchenko, Y.O., Sederberg, P.B., Hanson, S.J., Haxby, J.V., and

Pollmann, S. (2009). PyMVPA: A python toolbox for multivariate pattern anal-

ysis of fMRI data. Neuroinformatics 7, 37–53.

Haxby, J.V., Connolly, A.C., and Guntupalli, J.S. (2014). Decoding neural

representational spaces using multivariate pattern analysis. Annu. Rev.

Neurosci. 37, 435–456.

Hayhoe,M., and Ballard, D. (2005). Eyemovements in natural behavior. Trends

Cogn. Sci. 9, 188–194.

Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., and

Lerchner, A. (2018a). Towards a definition of disentangled representations.

arXiv, 1812.02230 https://arxiv.org/abs/1812.02230.

Higgins, I., Pal, A., Rusu, A.A., Matthey, L., Burgess, C.P., Pritzel, A., Botvinick,

M., Blundell, C., and Lerchner, A. (2018b). DARLA: improving zero-shot trans-

fer in reinforcement learning. Proceedings of the 34th International Conference

on Machine Learning 70, 1480–1490.

Hosoya, T., Baccus, S.A., and Meister, M. (2005). Dynamic predictive coding

by the retina. Nature 436, 71–77.

Iigaya, K., Yi, S., Wahle, I.A., Tanwisuth, K., and O’Doherty, J.P. (2020).

Aesthetic preference for art emerges from a weighted integration over hierar-

chically structured visual features in the brain. bioRxiv. https://doi.org/10.

1101/2020.

Jaderberg, M., Mnih, V., Czarnecki, W.M., Schaul, T., Leibo, J.Z., Silver, D.,

and Kavukcuoglu, K. (2016). Reinforcement learning with unsupervised auxil-

iary tasks. arXiv, 1611.05397 https://arxiv.org/abs/1611.05397.

Kaiser, L., Babaeizadeh, M., Milos, P., Osinski, B., Campbell, R.H.,

Czechowski, K., Erhan, D., Finn, C., Kozakowski, P., Levine, S., et al. (2020).

Model-based reinforcement learning for Atari. arXiv, 1903.00374 https://

arxiv.org/abs/1903.00374.

Kay, K.N., Naselaris, T., Prenger, R.J., and Gallant, J.L. (2008). Identifying nat-

ural images from human brain activity. Nature 452, 352–355.

Khaligh-Razavi, S.-M., and Kriegeskorte, N. (2014). Deep supervised, but not

unsupervised, models may explain IT cortical representation. PLoS Comput.

Biol. 10, e1003915.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Any additional information and requests for resources or data should be directed to and will be fulfilled by the Lead Contact, Logan

Cross at lcross@caltech.edu.

Materials availability

This study did not generate new unique materials.

Data and code availability

Due to Conte Center NIH funding, the fMRI data will be uploaded to the NIH database in the near future.

The code for this project is available upon request from the corresponding authors. The most fundamental parts of our code base

will be released on GitHub (https://github.com/locross93/Atari-Project).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We recruited six healthy participants from the Caltech and Pasadena community (4 male and 2 females, age 26 ± 3.4). All participants

performed the tasks over the course of four separate days and received a participation fee of $40 a day. The Caltech Institutional

Review Board approved the protocol, and all participants gave their informed consent on each day of the experiment.

METHOD DETAILS

Experimental paradigm/Atari gameplay

Across the four days of the experiment, each participant went through 33 runs of gameplay. The runs were 10 minutes in duration,

with 8minutes of gameplay in between aminute of rest and a fixation cross before and after gameplay. Eyetracking was recorded, but

not analyzed for this paper. Each participant played the games Space Invaders, Pong, and Enduro 11 times each. On day 1, each

game was played twice, in random order with the one constraint of never playing the same game twice in a row. The six runs

were then followed by anatomical scans on day 1. On days 2-4, each game was played three times, in random order with the

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

fMRI Data This paper TBD when uploaded to NIH database

Software and Algorithms

MATLAB_R2019a MathWorks https://www.mathworks.com/

SPM12 Penny et al., 2011 https://www.fil.ion.ucl.ac.uk/spm/

software/spm12/

FSLv5.0 Smith et al. 2004 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

Advanced Normalization Tools (ANTs) v1.9 Avants et al., 2009 http://stnava.github.io/ANTs/

Python 2.7 and Python 3.5 Python https://www.python.org/

PyMVPA Version 2.6.0 Hanke et al., 2009 http://www.pymvpa.org/index.html

Simple DQN Tambet Matiisen https://github.com/tambetm/simple_dqn

Tensorflow 2.1 Tensorflow https://www.tensorflow.org/

Arcade Learning Environment Bellemare et al., 2013 https://github.com/mgbellemare/Arcade-

Learning-Environment#:~:text=The%

20Arcade%20Learning%20Environment%

20(ALE)%20is%20a%20simple%20object

%2D,of%20emulation%20from%20agent

%20design.

Custom code This paper https://github.com/locross93/Atari-Project
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same constraint of never playing the same game twice in a row. Before scanning on the first day, each participant went through a

training session to become familiar with each game by playing each game for 5 minutes on a laptop.

The Atari games were presented through the Arcade Learning Environment (Bellemare et al., 2013), with modified code to log ac-

tions, rewards, MRI pulses, and frames with proper timestamps. A button box with four buttons was used as an Atari controller (Fig-

ure 1A). Participants held the button box with two hands, using their left thumb to press the 1 and 2 buttons corresponding to move

left and move right respectively, and using their right thumb to press the 3 and 4 buttons to hit brake and fire respectively. Brake is

only used in Enduro, and fire is only used in Enduro and Space Invaders.

In Enduro, participants control a race car that must move as fast as possible while avoiding other cars on the road. Participants get

a reward of 1 for every car they pass, and the main objective is to pass a certain number of cars before the end of the day (200 cars in

level 1 and 300 cars in level 2). The sky and weather patterns change throughout the gameplay to simulate the passing of time in the

day (‘sunny’, ‘snow’, ‘blue dusk’, ‘red dusk’, ‘night’, ‘fog’, ‘sunrise’), with the sky eventually becoming black and the sun beginning to

rise before time runs out after 13312 frames.

In Pong, points are awarded to a player when the white ball moves past their opponent’s paddle. Participants control the green

paddle on the right side of the screen and try to defend their goal and score on their opponent’s goal by moving their paddle up

and down in the white ball’s path.

In Space Invaders, participants control a green ship that can move from left to right at the bottom of the screen. The objective is to

destroy enemy ships to get reward and avoid being hit by missiles from the enemy ships while having 3 lives before the game ends.

fMRI data acquisition

We collected two datasets on two separate scanners at the Caltech Brain Imaging Center (Pasadena, CA). The first dataset included

two participants and was collected using a 3T Siemens Magneto TrioTim scanner. After an upgrade to a Siemens Prisma, a second

dataset was collected with four participants. Both datasets used a 32-channel radio frequency coil. These parameters were shared

across the two sequences: whole-brain BOLD signal acquired using multiband acceleration of 4, 56 slices, voxel size = 2.5mm

isotropic, TR = 1,000 ms, TE = 30 ms, FA = 60�, FOV = 200mm x 200mm. At the end of the first day of scanning, T1 and T2 weighted

anatomical high-resolution scans were collected with 0.9mm isotropic resolution.

QUANTIFICATION AND STATISTICAL ANALYSIS

fMRI preprocessing

Data was preprocessed using a standard pipeline for preprocessing of multiband data. Using FSL (Smith et al., 2004), images were

brain extracted, realigned, high-pass filtered (100 s threshold), and unwarped. Images were denoised by ICA component removal.

Components were extracted using FSL’s Melodic, classified into signal or noise with a classifier trained on separate datasets for the

first dataset, andmanually classified for the second dataset since the scanner was different from the one used in the classifier training

set. T2 images were aligned to T1 images with FSL FLIRT, and then both were normalized to standard space using ANTs (using

CIT168 high resolution T1 and T2 templates (Avants et al., 2009; Tyszka and Pauli, 2016)). The functional data was first co-registered

to anatomical images using FSL’s FLIRT, then registered to the normalized T2 using ANTs. For GLMs in SPM 12 (Penny et al., 2011)

(encodingmodel control GLMand action value analysis) the datawas spatially smoothed in FSLwith a 5-mmFWHMGaussian kernel.

Smoothing was not initially applied to the fMRI images for the voxelwise encoding model analyses to preserve fine-grained detail at

the voxel level but was applied with a 5-mm kernel for visualization.

Deep Q-network training

Deep Q-networks were trained separately for each of the three games using the Neon deep learning library, by making modifications

to open source code (https://github.com/tambetm/simple_dqn). As in the original paper (Mnih et al., 2015), DQN takes a tensor of

four input frames as input, has three convolutional layers (Layer 1: 32 filters of 8x8 with stride of 4; Layer 2: 64 filters of 4x4 with stride

of 2; Layer 3: 64 filters of 3x3 with stride of 1) followed by one fully connected layer (512 units), and outputs Q-values for every avail-

able action. DQN takes the action with the highest Q-value. Convolutional layers are locally connected with each neuron having a

receptive field. Convolutional filters learn visual features which are then convolved across the input to detect the presence of that

feature. Fully connected layers do not have this local connectivity as every neuron is connected to every neuron in the previous layer.

The Arcade Learning Environment was used as the Atari environment during training (Bellemare et al., 2013). The training consisted

of 100 epochs of 250,000 steps in each epoch for each game. One modification was made for Pong by restricting the action set to

noop, up, and down, since the default available action set for this game includes redundant actions up/right, and down/left.

To output Q-values and hidden unit activations that are used for all analyses, the human gameplay frames were run through the

trained network. Since the input to DQN is a tensor of four consecutive images, a frame from the human data is concatenated

with its three preceding frames. Thus, the fourth frame in a run is the first one put through DQN. In Enduro, each level is won after

passing 200 cars in the first level and 300 cars in the second level, signified by flags appearing on the scoreboard.When this happens,

the game engine no longer gives reward until the day ends/clock stops even though the participant is still tasked with controlling the

car and trying to avoid other cars. Thus, the network would detect the flags and predict 0 reward when this happened, resulting in

meaningless Q-value traces. This would happen occasionally in a participant’s run andwould last a couple of minutes. To ensure that
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the activations andQ-values we extracted from the network were useful, we altered the images from Enduro human gameplay before

they were put through DQN so that the scoreboard would never change. Specifically, the scoreboard from a reference imagemidway

through a run was copied into every frame.

Human actions analyses

To analyze the human state-space in relation to the DQN’s state space, we analyzed the actions participants took and how these

compare to the actions DQN selects when fed the human gameplay data. This initially involved plotting the distributions for the ac-

tions executed by DQN and human participants (Figure S1A). To analyze DQN’s action values with respect to human actions, the Q-

values for every participant were included after downsampling by 10 and removing the first 100 frames in a run. Action values were

computed with an action advantage function by subtracting the average Q-value as an action-independent baseline (Sutton and

Barto, 2018). This allows us to isolate action related variance from state value related variance. Action values/advantages were

then LOWESS smoothed across frames (using the Statsmodels python package with the ‘‘frac’’ parameter = 0.005) and normalized

with sklearn’s StandardScaler. All the frames involving a ‘‘move-left’’ or ‘‘move-right’’ human action were selected, including com-

bination actions (ie. ‘‘fire left’’). Then average action values for the corresponding frames are computed across a human action cate-

gory. For Enduro and Space Invaders that have combination actions, themaximumQ-value for a ‘‘move’’ action was taken (ie. for the

‘‘move left’’ Q-value in a frame in Enduro, we take the max between ‘‘move left,’’ ‘‘brake left,’’ and ‘‘fire left’’). To test for significance,

we test the interaction term in the linear model Action Value�C(DQN Action Value) + C(Human Action) + C(DQN Action Value):C(Hu-

man Action) with Statsmodels.

For decoding human actions, we model human actions with the hidden layers of DQN using LASSO logistic regression (L1 regu-

larization) using scikit learn functions and custom python code. Each hidden layer was projected to a dimensionality of 100 using

PCA, giving a concatenated feature set of 400. Time points were downsampled by a factor of 10 to ease computation. The PCA trans-

formation matrices were estimated using the frames for Sub001. These transformation matrices were used in every participant, to

ensure that the PCs of every participant would be in the same space. LASSO logistic regression classifiers were then trained to pre-

dict left versus right actions, after frames where no action or other actions occurred were removed. The time points when other ac-

tions were selected in combination with left versus right were also included. Decoding accuracy was determined by cross-validating

across runs. Optimal regularization parameters were found through grid search andwere fixed across participants per game. Decod-

ing accuracies were tested against a null distribution created from permutation tests of 1000 permutations. To maintain the autocor-

relation of action trajectories, the cross validated data was shuffled in blocks of 40 time points (Wen et al., 2018). The predicted re-

sponses from the model were then compared against these shuffled datasets. The accuracy of every model in every participant

exceeded the accuracy of the maximum value in the null distributions. To determine which layers were most useful for decoding ac-

tions, the model was trained on all runs (no cross-validation) and coefficients were absolute valued and averaged by layer.

Encoding model

To map hidden representations in DQN to voxels in the brain, we performed deep learning based encoding model analyses (G€uçl€u

and van Gerven, 2015). All analyses were run in custom python code using functions from PyMVPA (Hanke et al., 2009) and scikit

learn. First, image frames from the participant’s gameplay data were run through the trained DQNs in order to generate neural

network activations in every layer at every time point. As done in the decoding human actions analysis, PCA is used to reduce the

dimensionality to 400 (100 PCs per layer). To downsample from the video game framerate to the TR of 1 Hz, each feature’s values

are averaged over a second. Then, copied time courses are shifted by both 5 s and 6 s to account for the hemodynamic delay of the

fMRI signal. These two shifted time courses are concatenated into a feature set of 800. Next, voxelwise ridge regression (L2 regu-

larization) is performed to predict each voxel’s responses as a linear combination of this feature set. Optimal regularization param-

eters were found using grid search. Voxels are preprocessed as described above without spatial smoothing. Each voxel’s response

is z-scored to ensure every voxel is on the same scale. Accuracy is estimated using cross-validation across runs and calculating the

Pearson correlation between predicted and actual time courses.

Statistical significance was quantified through permutation tests (since fMRI data may not be normally distributed) methods similar

to previous approaches where 100,000 permutation tests are performed on 14 random voxels (Eickenberg et al., 2017). In each per-

mutation, the time course of the held-out validation set was shuffled in a blockwise manner of blocks of 40 TRs to keep autocorre-

lation intact (Wen et al., 2018). The Pearson correlation between the shuffled time course and the predicted responses from themodel

were then computed. These permuted distributions are then concatenated, and voxel accuracy scores are compared to this concat-

enated null distribution to obtain one-sided p values for every voxel. Rather than selecting 14 completely random voxels to estimate a

global null hypothesis for all brain voxels, we took amore conservative approach and selected 14 random voxels whowere in the 90th

percentile or above of scores in the encoding model analysis. This condition ensured that voxels with strong signal were selected.

Voxels were then multiple comparisons corrected using FDR and plotted at the corrected threshold as indicated. Maps are trans-

formed to standard space and spatially smoothed (5mm kernel) for visualization. To estimate layer selectivity, the coefficients

from the models were absolute valued, averaged across layer, and then averaged across region. Average coefficients across par-

ticipants are shown in Figure S3B.
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Regions of interest and atlases

To define regions of interests for visualization and further analyses, we used the Harvard-Oxford Atlas. To distinguish V1, V2, V3, and

V4 in the visual cortex, we used the Juelich Histological Atlas. Both atlases were accessed with FSLview. The early visual ROI con-

sists of V1-V4; PPC includes LOC superior, superior parietal lobule, supramarginal gyrus, precuneus; Motor/Frontal includes motor

and premotor cortex, SMA, and superior frontal gyrus.

Encoding model control analyses

Various control models were tested in the encodingmodel to help identify what computational principles play a role in the DQNmodel

explaining neural responses. In an identical pipeline as the DQN encoding model analysis, these control feature sets were down-

sampled and time shifted by 5 s and 6 s (other than motor regressors where this preprocessing has already taken place) before

cross-validated ridge regression was performed to compute prediction accuracies for every voxel.

Motor

Two motor regressors corresponding to making responses with the left and right hands were used. These regressors were taken

directly from the GLMs in SPM for action value that are described below.

PCA

To construct a control model for basic visual features that represented the statistical structure of the images, the 84x84x4 pixel tensor

was linearly projected to dimensionality 100 with principal component analysis using scikit learn. Although the DQN encoding model

includes 400 features and we match this dimensionality with the cross game DQN and VAE control models, using 100 principal com-

ponents outperformed using 400. This linear projection of the input uncovers features that explain the low-level statistical structure in

the input that vary the most during gameplay without any representation of reward. Similar approaches have been used to explain

neural responses to a remarkable degree throughout the visual pathway (Chang and Tsao, 2017; Olshausen and Field, 1996). Addi-

tionally, since we perform PCA on the tensor of 4 consecutive frames that are input into DQN, the principal components uncover sta-

tistical properties of motion and change detection that are appropriate to model the dorsal visual pathway. As with the other PCA

analyses, transformation matrices were estimated using sub001’s data and used across participants to project every all data to

the same space.

These principal components were also used to estimate their representation of the nuisance variables. Scikit learn’s ‘mutual_in-

fo_classif’ function was used to calculate the mutual information between the first principal component and the nuisance variables.

Cross game DQN

We also compared our encodingmodel results with a DQN trained on a different game. The Space Invaders network was used as this

control for Enduro, Enduro for Pong, and Pong for Space Invaders. Other than shifting the networks, the regressors were constructed

identically to the original encoding model.

VAE

To compare DQN with another state of the art method for state representation learning using a deep neural network (Higgins et al.,

2018b;Mohamed andRezende, 2015;Watter et al., 2015), we trained variational autoencoders in Tensorflow for each game bymodi-

fying an existing template (https://github.com/tensorflow/docs/blob/master/site/en/tutorials/generative/cvae.ipynb). The architec-

ture we used was designed to be as similar as possible to DQN.

This consisted of an encoder of three convolutional layers (Layer 1: 32 filters of 8x8 with stride of 4; Layer 2: 64 filters of 4x4 with

stride of 2; Layer 3: 64 filters of 3x3 with stride of 1), followed by a fully connected layer to output the set of mean and log-variance

parameters for the latent representation of dimensionality 400. The decoder architecture consisted of a fully connected layer followed

by four convolution transpose layers (Layer 1: 64 filters of 4x4 with stride of 1; Layer 2: 64 filters of 4x4 with stride of 2; Layer 3: 32

filters of 8x8with stride of 2; Layer 4: 1 filter of 8x8with stride of 1). All activation functions are rectified linear units (ReLU). The network

was trained on each game separately by maximizing the evidence lower bound (ELBO) on the marginal log-likelihood of the training

data. Data frames of the first 8 runs of the first participant were used as the training set, and frames from the last 3 runs were used as

the test set for tracking generalization (training sets and test sets were downsampled by 5 to ease computation). Training included

1000 epochs over the entire training set, but converged well before that for every game (training loss for first 500 epochs plotted in

Figure 4A). After training, performance on the test set was nearly equivalent to performance on training set.

The human frames from every participant were then run through the trained encoder to map them to the latent distribution, which

outputs 400means and log-variances for the latent dimensions. Themeans were then used as a 400 dimensional stimulus feature set

for the control encoding model, and preprocessed with downsampling and time lags identically to the other feature sets used for

encoding models.

General linear model (GLM) control analysis

In order to test for whether brain responses could still be predicted by DQN when controlling for the other models and game events,

we constructedGLMs in SPM12 similarly to previous approaches (Iigaya et al., 2020). The first 10 principal components for each DQN
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layer, VAE, and PCA models were added as parametric modulators to the same onset at the temporal resolution of the 1 Hz TR after

averaging across volumes. Orthogonalization was turned off. Other regressors of no interest included all of the regressors described

in the computational model-based GLM section below, including regressors for motor responses, reward/punishment, and action

values. To quantify a voxel’s correlation to the unique variance in each of the six models (four DQN layers, VAE, PCA) F-tests

were computed on the betas for the 10 PCs in each model, which tests whether a voxel is significantly modulated by at least one

principal component in a model. The percentage of significant voxels in a region of interest for each model is reported in Figure 4C.

Control region analysis

To rule out the possibility that our analyses are picking up on artifacts such as headmotion that affect the entire properties of the fMRI

images, we completed a control region analysis with one subject (sub001). A control region was represented by two spheres of air

drawn directly in front of the brain. The encoding model was then run on every voxel within those spheres and the distribution of pre-

diction accuracies were plotted alongside comparison ROIs (V1 and superior parietal lobule) in Figure S5B. No voxels in these

spheres had significant prediction accuracies and the whole distribution of scores were very close to zero.

Representational similarity analysis

We performed representational similarity analyses (RSA) to examine how the representations transform throughout the DQN layers.

Dissimilarity matrices (DSMs) were constructed at the frame level for DQN layers 1-4, VAE, PCA, the pixel space, and the hand drawn

features for Pong. Each model was first downsampled by 20 and data was concatenated across runs within subject. DSMs were

constructed by computing pairwise comparisons across frames for each model with pyMVPA. Within day comparisons were

removed to avoid potential confounds due to similarity being driven by patterns being in the same run or day. For the pixel space,

the 84x84x4 tensor of images that are fed to DQN were reshaped into a 28224 dimensional response vector. For the PCA model,

weights fit to the data of sub001 were again used to transform the pixel space into a 100 dimensional space. In Pong, each hand

drawn feature (the positions of the two paddles, the ball position X and Y, and the ball’s velocity X and Y) was z-scored and input

into one response vector. Euclidean distance was used as the distance metric for the Pong hand drawn features, and correlation

distance was used for every other model. Every DSMwas rank-ordered to compare model DSMs without assuming a linear relation-

ship betweenmodels. Models were then compared with Spearman correlations (the Pearson correlation on the rank-ordered DSMs).

For comparing model DSMs and fMRI DSMs in Pong, each DSMwas created at the TR level. This involved using the same feature

sets that were used in the encoding model, where responses were averaged across volumes to downsample to TR resolution (1 Hz)

and shifted by 6 s to account for hemodynamic delay. Again, correlation distance was used for every model except the hand drawn

features (Euclidean) and DSMs were rank-ordered.

For fMRI data, DSMs for three brain areas were constructed, early visual, posterior parietal cortex (PPC), and motor/frontal. Early

visual regions included all visual cortex ROIs. PPC included superior lateral occipital cortex, superior parietal lobule, supramarginal

gyrus, and precuneus. Motor/frontal included motor and premotor cortex, SMA, and superior frontal gyrus.

To test for significance we performed block permutation tests for every model, since the data may not be normally distributed.

Similarly to the encoding model permutation tests, fMRI data volumes were shuffled blockwise in blocks of 40 TRs to keep autocor-

relation intact (Wen et al., 2018), then DSMs were reconstructed and correlated to the non shuffled model DSMs. Then, to test if the

correlation in amodel was significantly different than zero, the correlation score had to be greater than themaximum correlation in the

permutation test distribution (one-sided). To test if the differences between models were significant, this difference was tested (two-

sided) against a distribution based on computing the differences between themodels in every permutation. All scores were corrected

for multiple comparisons.

Computational model-based GLMs

To localize the neural correlates of action value computations, we conducted computational model-based generalized linear model

(GLM) analyses (O’Doherty et al., 2007). This novel analysis differs from previous approaches in two ways: a deep neural network is

used to approximate the value function that is used to construct regressors, and the model is trained independently of any human

behavioral data.

All univariate GLMs were conducted using SPM12 software. Initially the image frames from the human gameplay data were run

through the trained DQN to output Q-values at every frame in a run as described above. Next, the Q-values were decomposed

into action advantages/values to separate action related variance from reward related variance. Taking inspiration from actor critic

approaches to isolate action advantages (Sutton and Barto, 2018), we define state value (V(s), s = state) as the average of all Q-

values, and action advantages (A(s,a), s = state, a = action) as the difference between an actions Q-value and the state value.

Aðs; aÞ = Qðs; aÞ � VðsÞ

VðsÞ =
1

jAj

X

a0

Qðs; a0Þ
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Similar to the analysis in a previous study (Wunderlich et al., 2009), the action value regressor here is computed as the chosen value

(the maximum) between move left value and move right value. Chosen value is then LOWESS smoothed across frames, and down-

sampled to 10 Hz for every volume (TR = 1 s). The regressor is then z-scored and entered into a GLM where it is convolved with a

hemodynamic response function. Across the games, other covariates included left and right hand motor responses, parametric re-

gressors for both positive reward and negative reward, game presentation (8 minutes of gameplay per run with one minute of rest

before and after), run, and day. Losing a life was included as the negative reward regressor in Space Invaders, although the Atari

engine does not explicitly deliver negative reward for loss of life, and the negative ramifications are reflected in the opportunity

cost of gaining more points. Additional regressors for Space Invaders also included fire action value and the number of invaders

left on the screen. For Enduro, the action value for the brake action was also included (which simultaneously approximates the

anti-correlated fire action value, thus the fire action value was not also included).

Filter analyses

To further interpret the encoding model results, we wanted to identify which filters were useful for modeling neural responses, and

whether this varied between regions of interest. To do this, we retrained the encoding model on each filter in layer 3 (the last convolu-

tional layer) on each voxel that was significant in the encoding model analyses. This layer had 64 filters of 7x7 receptive field size. We

use cross-validated prediction accuracy of a voxel response using a convolutional filter’s explanatory features to quantify that filter’s

Neural Predictivity. This Neural Predictivity score was averaged across a region to estimate howwell that filter predicted responses in

a region. With 64 Neural Predictivity scores per region, correlations of these scores across regions were computed to evaluate the

variability of filter selectivity between regions and to construct a similarity matrix (Figure 7B). This similarity matrix reflects the average

similarity matrix across the six participants. A similar procedure was used to compute correlations of Neural Predictivity across par-

ticipants, where in this case filter scores were averaged across all voxels in all ROIs in a participant rather than by region (Figure 7C).

For computing a filter score for decoding human actions (Figure 7D), we similarly retrain the model from ‘‘Decoding Human Actions’’

on each filter separately in layer 3. These filter scores were then rescaled with min-max normalization for subsequent correlation an-

alyses and visualizations. Thus, the best filter has a score of 1 and the worst filter has a score of 0.

To visualize the features encoded by the filters (Figure 7E), we use Neon’s deconvolution visualization function and modified code

from (https://github.com/tambetm/simple_dqn). This procedure finds frames from the human gameplay data that activate a filter the

most (which is depicted on the right side), then uses guided backpropagation to identify parts of the image that led to this activation

(left side). The colors reflect changes and motion across the image tensor of three frames, meaning the filter detects motion in this

location.

We annotate six high-level features in Pong using custom python code that localizes the corresponding objects in the pixel space:

ball X position, ball Y position, ball X velocity, ball Y velocity, left paddle position, and right paddle position. To assess howmuch each

filter encodes each feature, we use scikit learn’s ‘mutual_info_regression’ function to calculate themutual information between a filter

and these continuous variables. The mutual information scores were averaged across ball X and Y positions to get one score for ball

position.We similarly averaged across the ball X and Y velocity and the left and right paddle position to get scores for ball velocity and

the paddle positions respectively. This outputs a MI score for each of the 7x7 receptive fields in a filter, which were then averaged to

get one metric per filter for each high-level feature. These metrics are then correlated with each filter’s Neural Predictivity across the

whole brain in Pong (Figure 7A).

Nuisance invariance scores

We completed additional analyses to identify how the regions of interest encode sensory information that is irrelevant for task per-

formance. To uncover this, we utilized a concept from the machine-learning sub-field of representation learning: nuisance invariance

(Lenc and Vedaldi, 2015). A nuisance variable is any variable in the input that is irrelevant to the task, and ismathematically defined as

any variable where the mutual information between it and the task output is zero (I(y;n) = 0), where y is a task label and n is a nuisance

variable). Common examples include translation and illumination invariance in object recognition, as the location of an object on an

image and the overall brightness of a picture are usually unrelated to classifying it correctly. Thus, nuisance invariance in neural net-

works suggests that a compressed and abstract representation has been learned.

The game Enduro has a unique feature that we leveraged to study nuisance invariance in the gameplay environment. The colors on

the screen constantly change as the weather and time of day in the game frequently changes. These stages include sunny, snowy,

foggy, dusk, and night-time. Therefore, the pixel space changes dramatically while the overall gameplay dynamics are stable. In fact,

we calculated that the mutual information between human left and right actions and the weather/time of day variable equals zero

using scikit-learns ‘mutual_info_classif’ function (I(time of day; actions) = 0), which indicates that weather/time of day is a nuisance

variable. This metric can only be zero if and only if two random variables are independent. To put this in perspective, the mutual in-

formation between weather/time of day and the first principal component of the pixel space is 1.70 (I(time of day; PC 1) = 1.70), and

themutual information of weather/time of day with itself is 1.81. This shows that a large amount of variance in the pixel space is due to

these changing weather patterns as the first principal component codes for these conditions.

Although there was no factor that is as obviously a nuisance variable in Space Invaders as the changing colors on the screen was in

Enduro, the total number of invader ships on the screen explains a lot of variance in the visual pixel space, and has a high mutual

information with the first principal component of the pixel space (I(num. invaders; PC 1) = 1.52). However, in this game the relative
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positions of the invaders above an agent matter more than their absolute position and the global features, as the invaders above an

agent will be in the agent’s line of fire and the agent will be in the invader’s line of fire. One exception is when there is one invader left

and it starts to speed up faster than usual. To quantify this pattern, we calculated that the mutual information between the number of

invaders on the screen and left and right actions is relatively low (I(num. invaders; action) = 0.07).

To compute a nuisance invariance score for each filter, we again use scikit learn’s ‘mutual_info_classif’ function to calculate the

mutual information between a filter and a nuisance variable (weather/time of day for Enduro, number of invaders on the screen for

Space Invaders - calculated with downsampled data from sub001 to ease computation).This function outputs a MI score for each

of the 7x7 receptive fields, thus these scores were averaged to get a single score per filter. This score was multiplied by �1 to

get the inverse of this MI metric, to denote insensitivity of the nuisance rather than encoding of the nuisance. Next, the 64 filter

nuisance invariance scores are Pearson correlated with the 64 Neural Predictivity scores in a region. Intuitively, this analysis esti-

mates whether a region prefers filters that are more insensitive to the nuisances (positive correlation) or filters that code for the

nuisance (negative correlation). To increase interpretability and enhance the variability across regions that we are most interested

in assessing, we z-score this metric across voxels in a participant. Thus, a nuisance invariance score of 0 is average with respect

to the other voxels in a participant and the magnitude of the score reflects how many standard deviations it is from the mean.
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