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It is remarkable to consider that the 100-trillion-connection 
human brain is a product of evolution, a natural process without 
intelligent oversight or forethought. Although artificial neural 

networks have seen great progress in recent years, they remain dis-
tant shadows of the great cognitive masterpiece of natural evolution. 
How do we get from where we are to what is called artificial general 
intelligence (AGI), which roughly means artificial intelligence (AI) 
as smart as humans?

Current neural network research is largely focused on the fields of 
‘deep learning’1,2 and ‘deep reinforcement learning’3,4. In these fields, 
the dominant method for training neural networks is backpropaga-
tion5, an efficient algorithm for calculating the loss function’s gradi-
ent, which when combined with stochastic gradient descent (SGD) 
can modify each neural network weight to greedily reduce loss. This 
method has proven remarkably effective for supervised learning, 
and has also produced impressive reinforcement learning results.

An alternative approach, which draws inspiration from the bio-
logical process that produced the human brain, is to train neural 
networks with evolutionary algorithms. This field is called neu-
roevolution (although not all work combining neural networks 
and evolutionary computation was called neuroevolution histori-
cally, we use the term here broadly to encompass all such efforts) 
and enables important capabilities that are typically unavailable to 
gradient-based approaches. Such capabilities for neural networks 
include learning their building blocks (for example activation func-
tions), hyperparameters (for example learning rates), architectures 
(for example the number of neurons per layer, how many layers 
there are, and which layers connect to which) and even the rules for 
learning themselves. Neuroevolution has other fundamental dif-
ferences from traditional approaches, for example that it maintains 
a population of solutions during search, which grants it interest-
ingly distinct benefits and drawbacks. Finally, because neuroevo-
lution research has (until recently) developed largely in isolation 

from gradient-based neural network research, the range of unique, 
interesting and powerful techniques invented by the neuroevolu-
tion community can provide an exciting resource for inspiration 
and hybridization to the deep learning, deep reinforcement learn-
ing and machine learning communities. There has also been a 
surge of interest lately in hybridizing ideas from neuroevolution 
and mainstream machine learning, and to highlight this emerging 
direction we describe a few such efforts. We conclude with promis-
ing future research directions that advance and harness ideas from 
neuroevolution, including in combination with deep learning and 
deep reinforcement learning, that could catalyse progress towards 
the ambitious goal of creating AGI.

Our goal is to share with the broader machine intelligence com-
munity work from the neuroevolution community. Each of us has 
spent many years in this field, and this Review naturally reflects 
our experience and the interests that we have developed over this 
long period. Thus, rather than a dispassionate historical account of 
all work in this area, this Review is an exposition of our particular 
passions—the areas where we have concentrated because we think 
they are essential, and where we believe innovation will and should 
continue. Many great researchers have contributed to this field, and 
although we hope to have captured the key contributions of as many 
as possible, the entire field’s results and ideas are greater than we can 
do justice to here.

Classic neuroevolution
A major inspiration for the investigation of neuroevolution is the 
evolution of brains in nature. By the 1980s, the notion of an artifi-
cial neural network was well established, and researchers began to 
ask whether these rough abstractions of brains themselves might 
be evolved artificially through evolutionary algorithms. Such algo-
rithms, also well established by that time, borrow inspiration from 
evolution in nature to breed fitter (for example higher-scoring) 
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candidates in a population over many generations6. Through muta-
tion and crossover, the population gradually evolves to increasing 
levels of fitness. Researchers saw in such algorithms an opportu-
nity to optimize neural networks. To some extent, researchers 
were intrigued by the potential for an alternative to backpropaga-
tion, but they were also motivated by nature’s own achievements 
through evolution, which remain unmatched by artificial systems. 
Although at first researchers focused on evolving only the weights 
of small, fixed-topology networks (as an alternative to backpropaga-
tion), interest quickly turned to more ambitious possibilities such 
as evolving the topology (the architecture) of neural networks7,8, 
and even the dynamics of intra-life learning (that is, evolved rules 
for updating weights as an alternative to backpropagation-based 
reinforcement learning)9,10. Early algorithms for evolving network 
topology simply mutated weights stored in connection matrices11, 
but the focus turned quickly to more sophisticated encodings for 
describing and manipulating graphs12. Indirect encodings also 
became popular, where the genome is a formula for generating a 
network rather than a direct (weight-by-weight) description of the 
network itself13,14. New representations gained popularity, such as 
the graphical programs in Cartesian genetic programming15,16 and 
the implicit encoding of connectivity in analogue genetic encod-
ing17, which is inspired by genetic regulatory networks.

As the scope of attributes to evolve broadened, so did the need 
for algorithmic advancements to support the more ambitious ends. 
For example, the shift from evolving fixed topologies to increasingly 
complex ones created new challenges like crossing over structures 
(that is, combining the structures of two parent networks to create a 
parsimonious offspring network) with different topologies and pro-
tecting more complex structures from dying out of the population 
before allowing enough time for their weights to be optimized to 
reveal their true potential.

One approach that gained considerable traction by addressing 
these challenges is the NeuroEvolution of Augmenting Topologies 
(NEAT) algorithm18. It addressed the problem of crossing over vari-
able topologies through historical marking (which tells the crossover 
operator which parts of two neural networks are similar and can thus 
be swapped) and prevented premature extinction of augmented struc-
tures through a mechanism called speciation. Solving these problems 
made evolving increasingly complex topologies more effective.

The early successes in the field often concerned evolving neural 
network controllers for robots, known as evolutionary robotics19,20. 
One prominent success was to produce the first running gait for 
the Sony Aibo robot21. Another was evolving the neural networks 
and morphologies of robots that were 3D-printed and could move 
around in the real world22. Notable accomplishments outside of evo-
lutionary robotics include helping to discover through NEAT the 
most accurate measurement yet of the mass of the top quark, which 
was achieved at the Tevatron particle collider23. Neuroevolution 
also enabled some innovative video game concepts, such as evolv-
ing new content in real time while the game is played24 or allowing 
the player to train non-player characters as part of the game through 
neuroevolution25. Neuroevolution has also been used to study open 
questions in evolutionary biology, such as the origins of the regular-
ity, modularity and hierarchy found in biological networks like the 
neural networks in animal brains26,27.

Although impressive, especially in their day, all of these success-
ful applications involved tiny neural networks by modern standards, 
composed of hundreds or thousands of connections instead of the 
millions of connections commonly seen in modern deep neural net-
work (DNN) research. A natural question is whether evolution is 
up to the task of evolving such large DNNs, which we address next.

the new era of neuroevolution at scale
An intriguing historical pattern is that many classic machine learn-
ing algorithms perform qualitatively different, and far better, once 

they are scaled to take advantage of the vast computing resources 
now available. The best-known example is that of deep learning. 
The algorithms and ideas for how to train neural networks, namely 
backpropagation5 coupled with optimization tricks (for example 
momentum28,29) and important architectural motifs (for example 
convolution30 or long short-term memory units (LSTMs)31), have 
been known for decades1. Before about 2012, these algorithms did 
not perform well for neural networks with more than a few layers1,2. 
However, once combined with faster, modern computers, includ-
ing the speedups provided by graphics processing units (GPUs), 
and paired with large datasets, these algorithms produced great 
improvements in performance, which have generated most of the 
recent excitement about, and investment in, AI1,2,32–34.

Research in recent years has similarly shown that neuroevolution 
algorithms also perform far better when scaled to take advantage 
of modern computing resources. As described next, scientists have 
found that neuroevolution is a competitive alternative to gradient-
based methods for training deep neural networks for reinforcement 
learning problems. These results are important because they also 
foreshadow the potential for neuroevolution to make an impact 
across the spectrum of neural network optimization problems, but 
now at modern scale, including cases such as architecture search 
where differentiation (as used in most conventional deep learning) 
is not a clear solution.

Reinforcement learning involves AI agents learning by trial and 
error in an environment without direct supervision. Instead, they 
try different action sequences, receive infrequent rewards for those 
actions and must learn from this sparse feedback which future 
actions will maximize reward4. This type of learning is more chal-
lenging than supervised learning, in which the correct output for 
each input is given during training, and the main challenge is learn-
ing that mapping in a way that generalizes. Reinforcement learning, 
in contrast, requires exploring the environment to try to discover 
the optimal actions to take, including figuring out which actions 
lead to rewarding events, sometimes when the relevant actions and 
the rewards that they generate are separated by long time horizons, 
which is known as the credit-assignment problem4. Although algo-
rithms have existed for decades to train reinforcement learning 
agents in problems with low-dimensional input spaces4, there has 
recently been a surge of progress and interest in deep reinforce-
ment learning, which involves DNNs that learn to sense and act in 
high-dimensional state spaces (for example raw visual streams that 
involve thousands or more pixel values per frame of video). The 
results that have had particularly large impact are that deep rein-
forcement learning algorithms can learn to play many different Atari 
video games3 and learn how to make simulated robots walk35–37.

In a surprise to many, Salimans et al.38 showed that a recent form 
of evolution strategy (a classic evolutionary algorithm)39 called a 
natural evolutionary strategy (NES)40 performs competitively with 
the best deep reinforcement learning algorithms, including deep 
Q-networks (DQN)3 and policy gradient methods (for example 
A3C)41. The NES in ref. 38 directly evolves the weights of a DNN 
of the same size as that used in the DQN and A3C Atari work 
(with over four million weight parameters that must be learned). 
The surprise was that an evolutionary algorithm could compete 
with gradient-based methods in such high-dimensional parameter 
spaces. However, because NES can be interpreted as a gradient-
based method (it estimates a gradient in parameter space and takes 
a step in that direction), many did not conclude from this work 
that a pure (gradient-free) evolutionary algorithm can operate 
at DNN scale. That changed with the result that a simple genetic 
algorithm was also competitive with DQN and A3C (and evolution 
strategy) on Atari games and outperformed them on many games42. 
Moreover, on a subset of games, the genetic algorithm even out-
performed later, more powerful versions of these algorithms43,44. 
The genetic algorithm is entirely gradient-free in that it contains 
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a population of agents (each a DNN parameter vector) that are 
independently mutated, and that reproduce more if their perfor-
mance is better relative to others in the population. Both Salimans 
et al.38 and Such et al.42 additionally showed that these neuroevolu-
tion algorithms can be run more quickly than the original DQN 
and A3C algorithms because they are more parallelizable if one has 
sufficient computing resources38,42. In some cases, and compared 
to some algorithms (for example DQN, but not A3C42), evolution-
ary algorithms can be less sample efficient, but because they are 
extremely parallelizable, they can run far faster in real (wall clock) 
time (for example hours instead of days), albeit at the cost of requir-
ing more computing resources38,42.

Both ref. 38 and ref. 42 also show that directly evolving the weights 
of neural networks can solve the continuous control problem of 
robots learning to walk. Specifically, Salimans et al.38 showed that 
NES performs well at enabling a humanoid robot controlled by a 
two-layer neural network to walk, and again did so faster in terms 
of wall clock time than competing reinforcement learning algo-
rithms owing to evolution allowing better parallellization. Such et 
al.42 showed that a GA can also perform well on this task, although 
with worse sample complexity. Mania et al.45 showed that a simpli-
fied neuroevolution variant of evolution strategies, training a single-
layer neural network (that is, learning a linear mapping from states 
to actions), produces state-of-the-art results on these simulated 
robot control tasks, outperforming complex, modern versions of 
policy gradient methods (for example trust region policy optimiza-
tion36, proximal policy optimization37 and deep deterministic policy 
gradients35). That neuroevolution performs well for controlling 
robots is not surprising, given its long history of success in the field 
of evolutionary robotics19–21,46,47.

Interest is also growing in ways to hybridize the gradient-based 
methods of deep learning with neuroevolution. Lehman et al.48 
recently introduced safe mutations through output gradients. It is 
based on the insight that evaluating a policy is often expensive (run-
ning an entire episode in a physics simulator or video game to see 
how it performs on a task, for example), but evaluating the outputs 
of a neural network is often inexpensive (one need only conduct 
‘forward passes’ of the network in a few saved reference situations). 
In neuroevolution, random mutations are made to the policy (the 
mapping from inputs to actions, here represented by a DNN). Some 
of these mutations may have no effect on the behaviour (policy) of 
the network, and others might have major (and thus usually cata-
strophic) consequences on the policy (for example always outputting 
the same action). The insight behind safe mutations is that we can 
keep a reference library of states and actions, and (incurring only the 
slight cost of a forward and backward pass) use gradient information 
to scale the per-weight magnitude of mutations to make changes 
to the policy on the reference set that are neither too large nor too 
small. Lehman et al.48 show that this approach improves the perfor-
mance of evolutionary algorithms, including enabling the success-
ful evolution of the weights of networks with over a hundred layers, 
which is unprecedented. Another hybridization that has been pro-
posed runs variants of gradient-based reinforcement learning as the 
engine behind crossover and mutation operators within a neuroevo-
lution algorithm49. Still another direction, which has been shown to 
perform well, combines the style of evolutionary algorithms (which 
search directly in the space of neural network parameters) with the 
style of policy gradient and Q-learning algorithms (which search in 
the space of actions and then change neural network parameters via 
backpropagation to make profitable actions more likely) by creat-
ing random parameter perturbations to drive consistent explora-
tion (like evolutionary algorithms), but then reinforcing successful 
actions into weight parameters via backpropagation50,51.

What is exciting about the successes described so far is that they 
were achieved with simple neuroevolution algorithms. However, 
the neuroevolution community has invented many sophisticated 

techniques that can greatly improve the performance of these sim-
ple algorithms. Many are based on the observation that evolution, 
both in its natural and computational instantiations, is an exciting 
engine of innovation52, and these more modern techniques attempt 
to recreate that creativity algorithmically to search for better neu-
ral networks. As we discuss below, work has already begun that 
ports many of these ideas, including those that encourage diver-
sity, novelty and intrinsic motivation42,53,54, and these enhancements 
are improving performance. Other important ideas covered in this 
article include indirect encoding, a method for encoding very large 
structures55, and the evolution of architectures56,57 for networks 
trained by gradient descent.

Continuing to test the best ideas from the neuroevolution com-
munity at the scale of deep neural networks with modern amounts 
of computing power and data is likely to yield considerable addi-
tional advances. Moreover, combining such ideas with those from 
deep learning and deep reinforcement learning is a research area 
that should continue to deliver many breakthroughs. Each of the 
next sections describes what we consider to be the most exciting 
ideas from the neuroevolution community in the hope of encour-
aging researchers to experiment with them at DNN scales and to 
blend them with ideas from traditional machine learning.

Novelty and behavioural diversity
A hallmark of natural evolution is the amazing diversity of com-
plex, functional organisms it has produced—from the intricate 
machinery of single-cell life to the massive collaborative union of 
cells that form animals of all sorts, including humans. In addition 
to being interesting in its own right, this massive parallel explora-
tion of ways of life was probably critical for the evolution of human 
intelligence, because diversity is what makes innovation possible58,59. 
Thus a similar drive towards diversity is important when consider-
ing neuroevolution as a possible route to human-level AI. For these 
reasons, neuroevolution (and evolutionary computation as a whole) 
have long focused on diversity60,61. Indeed, by adapting a population 
of solutions, evolutionary algorithms are naturally suited to parallel 
exploration of diverse solutions.

Most initial work on diversity in neuroevolution focused on 
encouraging diversity in the ‘genetic space’—that is, the space of 
parameters—with the goal of circumventing local optima. The idea 
is that if search has converged to a local optimum, then encour-
aging exploration away from that optimum may be enough to 
uncover a new promising gradient of improvement. Representative 
approaches include crowding62, in which a new individual replaces 
the one most genetically similar to it, and explicit fitness-sharing60, 
in which individuals are clustered by genetic distance and are pun-
ished by how many members are in their cluster.

Although sometimes effective, such parameter-space diversity 
often fails to produce a wide diversity of different behaviours63, 
because there are infinite ways to set neural network weights that 
instantiate the same behaviour, owing to function-preserving res-
caling of weights64, permuting nodes65 or redundant mappings (for 
example, many different weight settings can cause a robot to fall 
down immediately). In other words, while it is trivial to generate 
diverse (but similarly behaving) parameter vectors, escaping from 
local optima often requires exploration of diverse behaviours63, 
as biological evolution does, and as is important in animal66 and 
human problem solving67.

As a result of this limitation to genetic diversity, more recent 
approaches directly reward a diversity of behaviours63,68, and further 
research has led to related ideas such as directly evolving for desired 
qualities such as curiosity54, evolvability69 or generating surprise70. 
A representative approach68 involves a multi-objective evolutionary 
algorithm71,72 that rewards individuals both for increasing their fit-
ness and for diverging from other individuals in experimenter-spec-
ified characterizations of behaviour in the domain. In this way, the 
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search can organically push different individuals in the population 
towards different trade-offs between exploring in relevant behav-
ioural dimensions and optimizing performance.

One helpful step in developing new algorithms that explore 
the breadth of potential diversification techniques is to break out 
of the box wherein evolution is viewed mainly as an optimizer. 
Biological evolution is unlike optimization in the sense that it 
does not strive towards any particular organism. Indeed, one of its 
fundamental mechanisms is an accumulation of diverse novelty, 
bringing into question whether optimizing for a single optimal 
individual captures what enables evolution to discover rich and 
complex behaviour.

This alternate point of view recognizes that diversity is the pre-
mier product of evolution63. A popular neuroevolution algorithm 
that adopts this perspective, called ‘novelty search’63, rewards neural 
networks only for behaving in a way that is novel relative to indi-
viduals produced earlier in search. In other words, the search algo-
rithm includes no pressure towards greater improvement according 
to a traditional fitness or performance measure. The idea is that as 
a whole, the population will spread over generations of evolution to 
span a wide range of behaviours. Although the gradient of diver-
gence in the genetic space can be uninformative (because many 
different genomes can produce the same uninteresting behaviour), 
the gradient of behavioural novelty often contains useful domain 
information. In other words, to do something new often requires 
learning skills that respect the constraints of a domain; for exam-
ple, learning to perform a new skateboard trick requires the bal-
ance and coordination that might be gained just by riding around. 
Indeed, in some reinforcement learning domains, searching only for 
behavioural novelty outperforms goal-directed search53,63. Although 
first applied to small networks, novelty search has recently been 
demonstrated to scale to high-dimensional reinforcement learning 
problems, where it improves performance42,53, providing another 
example of how ideas from the neuroevolution community too can 
benefit from modern amounts of computation.

Building on the results from novelty search and the general 
perspective of evolution as diversity-driven, a new and expanding 
area of neuroevolution research explores ‘quality diversity’ algo-
rithms73. In quality diversity, an algorithm is designed to illuminate 
the diversity of possible high-quality solutions to a problem—just 
as evolution has uncovered well-adapted organisms across count-
less environmental niches. For example, in this kind of search, if 
the quality objective is an creature’s speed, discovering a fast chee-
tah would not preclude discovering a fast ant: both may locomote 
quickly relative to creatures with similar morphologies.

Examples of early quality diversity algorithms include novelty 
search with local competition (NSLC74) and the multi-dimensional 
archive of phenotypic elites (MAP-Elites75), which provide differ-
ent ways to integrate a pressure to perform well within a diver-
sifying search. NSLC modifies a multi-objective evolutionary 
algorithm, enabling optimizing a population for both diverse and 
locally optimal individuals (individuals that are well-performing 
relative to similar strategies). MAP-Elites is a simple but power-
ful algorithm that subdivides a space of possible behaviours into 
discrete niches, each containing a single champion that is the 
highest-performing agent of that type found so far. Competition is 
enforced only locally, but mutation to a parent from one niche can 
produce a new champion in another niche, enabling exaptation-
like effects: that is, becoming high-performing in one niche may be 
a stepping stone to success in another. The product of such algo-
rithms is often called a repertoire: that is, a collection of diverse yet 
effective options rather than a single optimal solution. In a result 
published in Nature, MAP-Elites was applied to discover such a 
diverse repertoire of high-performing walking gaits, so that after 
being damaged a robot could quickly recover by searching for the 
best of these champion gaits that worked despite the damage47.  

The space of quality diversity algorithms continues to expand76–80 
and is an exciting area of current research.

Although much progress has been made in diversity-driven neu-
roevolution algorithms, there remains a considerable qualitative gap 
between the complexity of what nature discovers and the current 
products of evolutionary algorithms. Such a gap hints that there are 
breakthroughs in this area yet to be made.

indirect encoding
With about 100 trillion connections and 100 billion neurons81, the 
human brain far exceeds the size of any modern neural network. 
Situated within its expanse is an intricate architecture of modules 
and patterns of connectivity that underpin human intelligence. A 
fascinating question is how this astronomical structure is encapsu-
lated within our DNA-based genetic code, whose capacity is only 
about 30,000 genes (or 3 billion base pairs)82. Learning, of course, 
is a critical part of the story, but there is still a tremendous amount 
of information encoded by the genome regarding the overall archi-
tecture (how many neurons there are, their modular components, 
which modules are wired to which other modules and so on)83. The 
rules that govern how learning occurs is also part of the specifica-
tion. The need to encode all these components requires regularity 
(that is, the reuse of structural motifs) and the compression that it 
enables, so that the genome can be reasonably compact.

Interestingly, regularity provides powerful computational advan-
tages for neural structures as well. For example, the power of regu-
lar structure is familiar to anyone with experience in deep learning 
through the success of convolution30. Convolution is a particular 
regular pattern of connectivity, wherein the same feature detector 
is situated at many locations in the same layer. Convolution was 
designed by hand as a heuristic solution to the problem of capturing 
translation-invariant features at different levels of hierarchy2. This 
simple regularity has proven so powerful as to become nearly ubiqui-
tous across the successful modern architectures of deep learning2,84.

However, neuroevolution raises the prospect that the identi-
fication of powerful regularities need not fall ultimately to the 
hands of human designers. This prospect connects naturally also 
to the potential of compressed encoding to describe vast archi-
tectures composed of extensive regularities beyond convolution. 
For example, a larger palette of regularities could include various 
symmetries (bilateral or radial, for instance) as well as gradients 
along which filters vary according to a regular principle (such as 
becoming smaller towards the periphery). Ultimately it would be 
ideal if machine learning could discover such patterns, including 
convolution, on its own, without requiring (and being limited by) 
the cleverness of a designer or the reverse-engineering capabilities 
of a neuroscientist.

‘Indirect encoding’ in neuroevolution addresses this prospect 
by investigating the potential for artificial genetic encodings that 
can compactly capture regularities such as symmetries in struc-
ture. Motivated by the compression of DNA in nature, research 
in indirect encoding stretches back decades to experiments85,86 in 
pattern formation. Later researchers explored evolvable encodings 
for a wide range of structures from blobs of artificial cells to robot 
morphologies to neural networks55, including influential work by 
Gruau7, Bongard and Pfeifer87, and Hornby and Pollack88.

A popular modern indirect encoding in neuroevolution is com-
positional pattern-producing networks (CPPNs89). CPPNs function 
similarly to neural networks, but their inspiration comes instead 
from developmental biology, where structure is situated and built 
within a geometric space. For example, early in the development of 
the embryo, chemical gradients help to define axes from head to tail, 
front to back, and left to right90. That way, structures such as arms 
and legs can be situated in their correct positions. Furthermore, 
within such structures are substructures, such as the fingers of the 
hand which themselves must be placed within the local coordinate 
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system of the hand. All of this configuration happens in biological 
systems through cells producing and reacting to diffusing chemi-
cals called morphogens, which would be extremely computationally 
expensive to simulate.

CPPNs abstract this process into a simple network of function 
compositions that can be represented as a graph. At the input layer, 
the primary axes (for example x and y for a two-dimensional struc-
ture) are input into the network, serving as the base coordinate sys-
tem. From there, a small set of activation functions that abstract 
common structural motifs within developing embryos is composed 
to yield more complex patterns For example, a Gaussian function 
elicits the equivalent of a symmetric chemical gradient, a sigmoid 
generates an asymmetric one, and a sine wave recalls segmenta-
tion. When such functions are composed with each other within a 
weighted network (like a special kind of neural network; Fig. 1a,b), 
they can yield surprisingly complex structures with very few nodes 
and connections by modern standards. For example, the CPPN in 
Fig. 1b produces the ‘skull’ image from Picbreeder (Fig. 1c; ref. 91). 
Traditionally CPPNs are evolved with the NEAT18 algorithm, which 
allows architectures of increasing complexity to evolve starting from 
a very simple initial form.

It is important to note that composing simple functions does not 
yield simple patterns. For example, while a sine wave encodes strict 
repetition, a sine composed with the square of a variable, sin(x2), 
yields repetition with variation, a powerful and ubiquitous con-
cept seen across biology. Thus a network of such functions quickly 
becomes complex, in part explaining how the composition of 
chemical gradients in a hierarchy in real organisms yields structures 
(including the brain) of such complexity.

CPPNs have been used in a wide range of applications that 
benefit from their tendency towards regular structure, from gen-
erating pictures91 to creating three-dimensional objects92, including 
the forms of soft robots93. They are also the method behind recent 
widely discussed results showing that some images (including those 
generated by CPPNs) can easily fool otherwise highly accurate 
DNNs94. Their ease of implementation and rich resultant struc-
tural spaces have furthermore inspired research on how to encour-
age creative innovation through evolution80 and into the source of 
canalization (the tendency of indirect encoding in nature to yield 
robust, easily adaptable developmental pathways) in evolution95. 
They have even inspired fixes to some of the limitations of convolu-
tion in DNNs based on the idea of providing a coordinate space as 
inputs to DNNs96.

Beyond these applications, perhaps the most important role of 
CPPNs is to generate the patterns of weights in neural networks 
themselves in an approach called HyperNEAT (hypercube-based 
NEAT97,98). The main idea is to generate the pattern of weights as a 
function of the geometry of the inputs and outputs of the domain. 
For example, if the input is a two-dimensional visual field, then the 
weights projecting from that field are generated as a function of the 
position of the source (input) neuron within that field. In short, 
if both the source field and target field are two-dimensional, then 
the weight of a connection between two neurons in them can be 
expressed as a function f (encoded as a CPPN) of the positions (x1,y1) 
and (x2,y2) of the source and target neurons, respectively, at either 
end of that weight: =→w f x y x y( , , , )x y x y, , 1 1 2 21 1 2 2

 (Fig. 1d). To see how 
this formalism can enable regular connectivity patterns, consider 
that a simple symmetric function of x2, for example |x2|, which can 
be input as f(x1,y1,|x2|,y2), causes the weights projecting from each 
source neuron to have patterns of weights to their targets symmet-
ric about x2 =  0. Interestingly, adding inputs x1 −  x2 and y1 −  y2 (or 
inputting only those) can induce a generalized convolutional con-
nectivity pattern. There are many ways to extend the CPPN-based 
encoding to different neural architectures; for example, if there are 
multiple layers then their respective connectivity patterns can be 
generated by separate CPPN outputs.

Encoding connectivity as a function of geometry is in effect a 
means of conveying critical problem structure to the neuroevolu-
tion algorithm. For example, if there should be a correlation between 
weights of nearby neurons, then that can only be learned as a general 
pattern if the positions of the neurons are known. Convolution30, 
perhaps the most ubiquitous heuristic in modern deep neural net-
works, is itself a repeated pattern across the geometry of the neural 
structure, and in fact recent variants of HyperNEAT-based neuro-
evolution that combine neuroevolution and indirect encoding with 
SGD have indeed discovered convolutional patterns on their own 
(without explicitly inputting a convolutional coordinate frame), in 
effect reinventing the idea99. Ha et al.100 recently also introduced 
hypernetworks, which adapt the HyperNEAT indirect encoding to 
train weights entirely through SGD. In ref. 100, hypernetworks help 
to enhance the performance of LSTMs in language modelling and 
other tasks, providing an example of how ideas from neuroevolu-
tion are being fruitfully hybridized with ideas from the traditional 
machine learning community.

What makes HyperNEAT interesting is that convolution is not 
the only conceivable regular pattern of connectivity that could be 
important. HyperNEAT-evolved neural networks can in principle 
discover any such pattern and thereby exploit different kinds of 
regularities not accessible to conventional neural network learning 
algorithms. For example, the positions of sensor and motor neurons 
within a quadruped body can be exploited to efficiently evolve regu-
lar gait patterns46, which require regular connectivity patterns unre-
lated to convolution. Another example is that HyperNEAT can create 
repeated architectural motifs, such as a repeated modular design27.

Another great benefit of HyperNEAT and indirect encoding in 
general is that they enable very large neural networks to be evolved 
through compact encoding (which connects back to the inspira-
tion from DNA). For example, HyperNEAT can generate functional 
neural networks with millions of connections that are encoded 
by CPPNs with only dozens of connections98. This potential for 
extreme compression inspired researchers who subsequently devel-
oped other indirect encodings that generate patterns over network 
geometry, such as the weight compression-based indirect encoding 
of Steenkiste et al.101 and Koutnik et al.102, which is among the first 
systems to approach reinforcement learning directly from pixels to 
actions. Interestingly, although the work of DeepMind3 had a strong 
impact on the field of reinforcement learning for learning to play 
Atari directly from pixels, HyperNEAT was the first system for 
which direct pixel-to-action Atari results were reported103. Research 
also continues on other indirect encodings for neural networks, 
such as Cartesian genetic programming15,16,104.

Today’s increasingly powerful computation presents great oppor-
tunities for indirect encoding. Not only can increasingly large neu-
ral networks be held in memory, but the decoding step wherein the 
CPPN generates the weights of the neural network (the analogue 
of embryogeny in nature) can also be accelerated and parallelized. 
Newfound computational capacity also opens up more sophisticated 
uses of indirect encoding that nudge neuroevolution even closer to 
natural brain-like evolution, such as using the CPPN to generate 
patterns of coefficients of plasticity instead of static weights, as in 
‘adaptive HyperNEAT’105. There are also variants of HyperNEAT 
that can encode and thus learn neural network architectures and 
their weights at arbitrary resolutions, such as ES-HyperNEAT106.

Evolving neural networks that can learn over their lifetime opens 
up broad new opportunities for powerful meta-learning (discussed 
next), moving the field closer to the kind automatic design of entire 
learning systems that could fundamentally alter the landscape of 
deep learning.

Meta-learning and architecture search
While meta-learning107, or ‘learning how to learn’, is currently expe-
riencing a surge of interest within deep learning108–111, it has long 
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attracted the attention of researchers in neuroevolution. Natural 
evolution, after all, is intrinsically a powerful meta-learning algo-
rithm. Evolution can be viewed as an outer loop search algorithm 
that produced organisms (including humans) with extraordinarily 
sophisticated learning capabilities of their own—that is, they can 
be seen as running their own inner loop search. Thus, it is natural 
that researchers inspired by evolution in nature have explored the 
potential for a similar nested loop of meta-learning within artifi-
cial systems. Perhaps that way, brain-like structures with powerful 
learning capabilities could arise on their own.

Much of the meta-learning work within neuroevolution has 
focused on synaptic plasticity, which is a key mechanism behind 
neural learning in nature10. Early experiments112,113 explored 
the potential to evolve local learning rules that dictate how the 
weights of connections should change in response to the activa-
tion levels of their source and target nodes. The most famous such 
rule is the Hebbian rule114, which, roughly, implements synaptic 
strengthening when the source and target neurons fire together. 
Although the Hebbian rule can be expressed in a variety of forms, 
the simple expression Δ wi→j =  ηxixj describing the change in the 
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 Skull pattern  HyperNEAT: 4D CPPN generates NN weights 
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Fig. 1 | Compositional pattern-producing networks and hyperNeat. CPPNs are networks of heterogeneous activation functions that produce a geometric 
pattern. a, The network shown here is a two-dimensional (2D) CPPN (because it takes x and y) that also takes the input d, which is the distance of (x,y) 
from the image centre. When queried at many points, its output is interpreted as an image or pattern in space. b,c, The CPPN shown in b is the actual 
architecture that produces the skull pattern shown in c, which was interactively evolved through the Picbreeder online picture-breeding service91. The 
colours in b distinguish components of the evolved network responsible for key parts of the image in c based on an analysis of function, and the small 
images within the nodes are the activation patterns computed by those specific nodes in (x,y), which are ultimately combined by the network to produce 
the final image in c. d, In HyperNEAT, CPPNs leverage their pattern-generating capabilities to output a weight (blue arrow) for every source and target 
node location (green arrows) in a neural network. e, An example HyperNEAT neural network evolved to make a quadruped robot run rapidly46, viewed 
with either the input neurons (orange spheres) or output neurons (blue spheres) in front. Pink spheres are hidden neurons. Green (red) connections are 
excitatory (inhibitory), and their thickness indicates connection strength. Note the complex, regular, geometric weight patterns (for example, outgoing 
connections from inputs are inhibitory to upper hidden nodes and excitatory towards lower hidden nodes) and regularity with variation (such as the 
diffusion of inhibitory connections into output nodes, which varies across both the x and y axes).
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weight from neuron i to neuron j as a function of their activations 
(xi and xj) is sufficient to show where there is room for evolution 
to decide the dynamics of the network: the coefficient η for each 
connection can be evolved such that the degree of plasticity of 
each connection is optimized.

Various local learning rules are possible. In effect, any conceiv-
able function can determine the dynamics of a synapse. In fact, it 
is even possible for an indirect encoding to generate a pattern of 
learning rules as a function of the geometry of network connectiv-
ity, as mentioned above with adaptive HyperNEAT105. Furthermore, 
the plasticity of connections themselves can be made to vary over 
the lifetime of the agent through the mechanism of neuromodu-
lation: that is, a special neuromodulatory signal can increase or 
decrease plasticity in individual connections. This capability is pow-
erful because it assists a kind of reward-mediated learning (similar 
to reinforcement learning), for example by locking in weights (by 
turning off plasticity) when they yield high rewards, or increas-
ing plasticity when expected reward does not materialize. All these 
mechanisms can unfold in concert with recurrence inside the net-
work, providing evolution with a rich playground for designing 
complex plastic systems that can learn. Soltoggio et al.115 pioneered 
evolving neuromodulatory plasticity, and others have followed up, 
including showing the benefits of combining plasticity with indirect 
encoding116,117 (see ref. 10 for a comprehensive review of this bur-
geoning research area and its achievements so far).

One exciting opportunity that neuromodulation enables is the 
mitigation of ‘catastrophic forgetting’, which is a grand challenge in 
machine learning that must be solved to create AGI. Natural animals 
are able to learn a variety of different tasks across their lifetimes 
and remember how to perform an already learned task even if they 
have not done it for a long while118. In sharp contrast, when artificial 
neural networks learn new skills, they do so by erasing what they 
have learned about previous skills, meaning they forget catastrophi-
cally119. Neuromodulation offers the tantalizing prospect of turning 
plasticity on only in the subset of neural weights relevant for the 
task currently being performed, meaning that knowledge stored 
in other weights about different tasks is left untouched. Ellefsen et 
al.120 showed that combining neuromodulation with techniques that 
promote functional modularity in neural networks26 (meaning that 
different tasks are performed in different modules within a neural 
network) mitigates catastrophic forgetting.

However, the effect was limited because the neuromodulation in 
ref. 120 was encoded separately for each connection, making it a chal-
lenging optimization problem for evolution to learn to shut off all of 
the connections in each task-specific module when that task is being 
performed. Velez et al.121 introduced the idea of diffusion-based 
neuromodulation, which enables evolution to instead increase or 
decrease plasticity in different geometric regions of the neural net-
work. The addition of this ability to easily upregulate or downregu-
late plasticity in entire geometric regions enabled evolution to create 
neural networks that entirely eliminate catastrophic forgetting, albeit 
in simple neural networks solving simple problems. Testing this 
technique at the scale of DNNs is an exciting area of future work, 
and yet another example where neuroevolution could benefit from 
modern computation. Additionally, although promising work has 
appeared recently in deep learning to combat catastrophic forget-
ting122,123, diffusion-based neuromodulation is an entirely different 
approach to the problem that can be divorced from neuroevolution 
and coupled instead to SGD, providing another potential example of 
porting ideas from the neuroevolution community to deep learning.

Even with indirect encoding, much of the work so far on evolv-
ing learning mechanisms through synaptic plasticity has focused 
on relatively small neural networks solving relatively simple prob-
lems (such as using plastic connections to remember where food 
is within a simple maze115), but the recent results showing neu-
roevolution algorithms optimizing millions of weights38,42,53 hint 

that much larger plastic systems could now be possible to evolve. 
The full capabilities of such complex dynamic systems are yet to 
be explored, setting up an exciting near-future opportunity. Aside 
from plasticity, another aspect of learning to learn is discovering the 
right architecture for learning. Much work in neuroevolution has 
also focused on this challenge of architecture search. Network archi-
tectures have become so complex that it is difficult to design them 
by hand—and such complexity matters. While NEAT represents an 
early advance in evolving network architecture (along with weights) 
at small scales, recent work has focused on evolving deep neural 
networks56,57,124. They evolve the network architectures and optimize 
their weights with gradient descent, in effect optimizing large-scale 
networks for the purpose of gradient descent. Many methods are 
inspired by NEAT’s ability to increase complexity over generations, 
but do so by adding layers instead of individual neurons. Such opti-
mization has already led to architectures that improve the state of 
the art in several deep learning benchmarks, including those in 
vision, language and multitask learning.

Many of the greatest achievements in deep learning have been in 
the visual domain—in image processing tasks such as classification, 
segmentation or object detection. Neural networks have come to 
dominate computer vision and have led to substantial performance 
improvements in these different domains1. Often innovations 
within a computer vision domain come from the discovery of differ-
ent, better architectures, and each type of computer vision problem 
tends to require its own specialized architecture125–127. The result has 
been a proliferation of neural network architectures for image pro-
cessing. These architectures are complex and varied enough to raise 
the question of whether better architectures could be discovered 
automatically. Recent results are showing that they can be.

A particularly successful approach128 took inspiration from 
NEAT and evolved DNNs by starting small and adding complexity 
through mutations that added entire layers of neurons, achieving 
impressive performance on the popular CIFAR image classification 
dataset. A variant of the approach57 further improved performance 
by evolving small neural network modules that are repeatedly used 
in a larger hand-coded blueprint. The blueprint129 was inspired by 
the idea of repeatedly stacking the same layer modules to make a 
DNN, an idea that has proved successful in the high-performing 
Inception127, DenseNet126, and ResNet130 architectures. For efficiency 
reasons, these modules were evolved on a computationally cheaper 
task that can be solved with a smaller blueprint and were then trans-
ferred (with no further evolution) to build a larger network to solve 
the target, more computationally expensive tasks of image classifi-
cation on the CIFAR and ImageNet datasets. Despite massive efforts 
by armies of researchers over years to hand-design architectures for 
these famous computer vision benchmarks, this method and its 
evolved architectures produced state of the art at its time of publica-
tion on CIFAR (it has since been slightly surpassed131) and currently 
holds the state of the art on ImageNet57.

Language processing is another area where deep learning has had 
a large impact. The architectural needs, however, differ from those of 
vision. Whereas convolutional filters are the key architectural motif 
in vision, in language the most common motifs are gated recurrent 
networks, such as the LSTM31. A node in such networks is more 
complex than in other neural networks. Instead of a weighted sum 
followed by a nonlinearity, it typically includes a memory cell and 
connections for write, read and forget gates. Such a structure makes 
it easier to retain activation values indefinitely (improving gradient 
flow through the network), and makes it possible to perform well on 
various sequence processing tasks. Even though these ideas origi-
nated in the 1990s, it was not until the computation was available 
to scale them up to tens of millions of parameters and train them 
at length on large datasets that they started to work well enough to 
make a difference in real-world applications such as speech recogni-
tion, language understanding and language translation132.
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Interestingly, the structure of the LSTM node has remained rela-
tively constant since its inception 25 years ago. The variations that 
have been proposed do not significantly improve on the standard 
LSTM133,134. In the past few years, however, it has become possible 
to search automatically for better gated recurrent network designs, 
using, for example, reinforcement learning and evolution124,135.

A fruitful approach is to encode the structure of the gated recur-
rent node as a program that is evolved through genetic program-
ming—representing the genes that describe the network in the form 
of a program56. Given a search space with multiple memory cells, 
reusable inputs, different activation functions and the ability to con-
struct multiple linear and nonlinear paths through the node, evolu-
tion came up with complex structures that are several times larger 
than the standard LSTM. These nodes can then be put together into 
layered networks and trained in, for example, the language model-
ling task, which is a machine learning benchmark of predicting the 
next word in a large corpus of text136. Even when the total number 
of adjustable parameters is the same (20 million), the evolved nodes 
perform 15% better than standard LSTM nodes56. Remarkably, 
when the same node design is used in another task such as music 
prediction, it does not improve over standard LSTMs—but if the 
node structure is evolved again in music prediction itself, perfor-
mance improves by 12%56. In other words, neuroevolution discov-
ers complexity that is customized to, and improves performance on, 
each task.

Another promising application of architecture evolution is 
multitask learning. It has long been known that training a neural 
network on multiple tasks at once can make learning each task 
easier137. The requirements and data from each task help to shape 

internal representations that are more general and generalize bet-
ter to new inputs. More generally, recent work has shown, theo-
retically and in practice, that combining gradients from each task 
improves learning138.

But how should the requirements of the different tasks be best 
combined? The architecture of the multitask learning network can 
make a large difference, and therefore it is a good opportunity for 
architecture search. The most straightforward approach would be 
to evolve a single shared architecture with separate decoders (out-
put layers) for each task. An alternate, promising method is CMTR 
(coevolution of modules and task routing139), which is based on 
three principles: (1) evolve custom network topologies for each 
task, (2) construct these topologies from modules whose training 
is shared across tasks and (3) evolve the structure of these modules. 
This method allows evolution to discover general modules and task-
specific topologies.

The Omniglot task—recognizing characters in 50 differ-
ent alphabets with few examples per class—has recently emerged 
as a standard benchmark in multitask learning. The CMTR 
approach improved the state of the art by 32% in this benchmark. 
Demonstrating the benefit of multitask training, on average the per-
formance in each alphabet was 14% better than training a network 
with a similar size on each alphabet alone. Modules with very dif-
ferent topologies were discovered and used (Fig. 2). The topologies 
varied a lot between alphabets, but remarkably, topologies were con-
sistent across multiple runs, and similar topologies were discovered 
for visually similar alphabets. These result suggest that the approach 
discovers useful common representations and specialized ways of 
using them in each task.
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Fig. 2 | Sample evolved topologies of modules for the Omniglot multitask learning benchmark. Neuroevolution discovers both a set of common building 
blocks (the modules, not shown but identified by number) and a differentiation between tasks, making it possible to perform better in each task even with 
limited training data139. a,b, The topologies for each task that combine these modules represent a range from simple (a) to complex (b); similar alphabets 
(Gurmukhi, left, and Mujarati, right) have similar topologies, and the structure is consistently found in different independent evolutionary runs. Related 
neuroevolution techniques similarly improve state of the art in various vision and language machine learning benchmarks. Such useful task-specific 
architectural specialization would be difficult and expensive to discover by hand, demonstrating the power of evolution in designing complex systems.
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There are several alternate approaches for architecture optimi-
zation in neural networks besides evolution, including optimizing 
some part of the network design using gradient descent, reinforce-
ment learning or Bayesian parameter optimization140. However, 
evolution is a promising method for exploring neural network 
structures most broadly because it does not require explicit gra-
dients. Additionally, it can straightforwardly be augmented with 
novelty search, quality diversity, indirect encoding and other ideas 
discussed above, which could further improve results above those 
just discussed, which were all accomplished with simple evolution-
ary algorithms.

The prospect of combining the ability to evolve both neuro-
modulated plasticity and network architectures yields a unique 
new research opportunity that begins to resemble the evolution of 
brains. What this kind of technology can produce at scale, and when 
combined with gradient descent, remains largely unexplored.

Looking forward
Although neuroevolution has long existed as an independent 
research area, a trend is emerging wherein the line between neu-
roevolution and deep learning, both of which concern neural net-
works, gradually blurs. Ideas from neuroevolution infuse deep 
learning, both through hybridization of evolution and gradient 
descent, and through conceptual insights transferring from one 
paradigm to the other. This trend is likely to accelerate especially as 
computational resources expand, opening up evolutionary experi-
ments that once focused on small models to large-scale discovery. 
Just as evolution and neural networks proved a potent combination 
in nature, so does neuroevolution offer an intriguing path to reca-
pitulating some of the fruits of evolving brains.

The trend towards hybridization between neuroevolution and 
gradient-based methods encompasses many of the ideas in meta-
learning, such as architecture search for gradient descent, but also 
manifests other unique and original forms49,141–143. One example is 
where the hyperparameters of gradient-descent based learning are 
evolved online in a population of different learners144,145. Another 
example is PathNet141, an evolutionary algorithm that evolves path-
ways online that are trained by gradient descent, enabling automatic 
discovery of shared features for transfer learning; evolved policy 
gradients142 evolves the loss function for a policy gradients algo-
rithm, enabling the discovery of internal reward signals that accel-
erate learning on new tasks (just as evolution endows us with innate 
desires, such as enjoying eating, and intrinsic motivation, such 
as curiosity, that improve our ability to learn and survive). Other 
methods instantiate evolution with gradient-descent-based muta-
tion and recombination operators through policy gradients49 or in 
GAN training143. Gradient descent can also boost the performance 
of evolution, such as in the gradient-based ‘safe mutation’ opera-
tors introduced in ref. 48, which avoid overly disruptive mutations 
by estimating the sensitivity of individual weights to perturbation 
through a gradient computation.

The other side of the convergence between neuroevolution and 
deep learning is the importation of conceptual approaches from 
neuroevolution into gradient-based implementations51,100,110,146 
without using any evolution. For example, plastic neural networks, 
that is, neural networks that encode their own online learning rules 
such that weights change (without gradient descent) in response 
to experience, have long been studied within artificial life and 
neuroevolution9,113,115, but only recently have similar plastic net-
works been reformulated such that they can be learned by gradient 
descent (which also enables their impact to be explored on a much 
larger scale than before)110,147; as mentioned above, a similar trans-
lation has occurred with HyperNEAT100 and CPPNs96,99,148. What 
drives this trend is probably that evolution is an open playground 
for testing and proving ideas, as it imposes few limitations on imag-
inable models (for example, it does not require that a model be 

differentiable), but ultimately, if it is possible to translate such ideas 
into gradient descent, then the effort may result in greater scalabil-
ity and efficiency.

Neuroevolutionary ideas have also inspired progress in other 
areas of deep reinforcement learning. For example, the ‘diversity 
is all you need’ approach146 mirrors similar insights from novelty 
search63. In other cases, older ideas from evolutionary computa-
tion are being reinvented independently in deep learning, offering 
an opportunity for diversity, cross-pollination and deeper under-
standing. An example is the recent, exciting self-play results149,150, 
which resemble investigations in the subfield of coevolution151–154. 
We believe that such previous evolutionary work will continue 
to be a source of synergistic inspiration for future deep learning 
research. Additionally, the ideas developed in neuroevolution can 
be, and in some cases already have been155, ported to improve 
subfields that optimize other sorts of networks, such as genetic 
regulatory networks.

A final critical opportunity for neuroevolution is to lead the 
effort to construct ‘open-ended’ algorithms. The main challenge in 
open-endedness is to create algorithms that produce interesting and 
increasingly complex discoveries indefinitely. The inspiration for 
open-endedness is evolution in nature, where all of life on Earth 
was discovered in a single run that has continued to produce new 
forms for over a billion years. If we can learn how to program algo-
rithms that are similarly perpetually interesting, we could capture a 
profoundly powerful aspect of the creativity of nature, and direct it 
for our own purposes. While a straightforward application of open-
endedness is to generate new artefacts such as buildings, clothing 
and architectures without bound, a more intriguing possibility is 
that because of its complexity, AGI itself is only possible to discover 
through an open-ended process that generates more and more com-
plex brain-like structures indefinitely. Furthermore, open-ended-
ness may require more than only neural networks to evolve—brains 
and bodies evolve together in nature, and so can morphologies 
evolve along with neural networks in artificial systems156, provid-
ing a form of embodiment13,157,158. In the long run, open-endedness 
could be the fuel for generating the architectures and learning algo-
rithms that ultimately reach human-level intelligence. The race is 
on now in neuroevolution research to develop the mechanisms of 
open-endedness that can innovate without boundaries, which we 
consider a grand challenge of scientific enquiry159.

Many of the ideas discussed herein were invented at a time in 
which the available computation made it difficult to try them in 
anything but tiny neural networks. However, as with computer 
vision a few years ago, the computation is now becoming available 
to see these original ideas, and modern improvements on them, 
finally take off and achieve the grand ambitions we have long had 
for them. Just as evolution did in the natural evolution of intelli-
gence, we expect that neuroevolution will play an important role in 
our collective quest to create human-level AI and algorithms that 
endlessly innovate.
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