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A General Dichotomy of Evolutionary

Algorithms on Monotone Functions
Johannes Lengler

Abstract—It is known that the (1 + 1)-EA with mutation rate
c/n optimizes every monotone function efficiently if c < 1, and
needs exponential time on some monotone functions (HOTTOPIC

functions) if c ≥ 2.2. We study the same question for a large vari-
ety of algorithms, particularly for the (1 + λ)-EA, (µ + 1)-EA,
(µ + 1)-GA, their “fast” counterparts, and for the (1 + (λ, λ))-
GA. We find that all considered mutation-based algorithms show
a similar dichotomy for HOTTOPIC functions, or even for all
monotone functions. For the (1 + (λ, λ))-GA, this dichotomy
is in the parameter cγ , which is the expected number of bit
flips in an individual after mutation and crossover, neglecting
selection. For the fast algorithms, the dichotomy is in m2/m1,
where m1 and m2 are the first and second falling moment of the
number of bit flips. Surprisingly, the range of efficient param-
eters is not affected by either population size µ nor by the
offspring population size λ. The picture changes completely if
crossover is allowed. The genetic algorithms (µ + 1)-GA and
(µ+1)-fGA are efficient for arbitrary mutations strengths if µ is
large enough.

Index Terms—Computational and artificial intelligence, evolu-
tionary computation, genetic algorithms.

I. INTRODUCTION

F
OR EVOLUTIONARY algorithms (EAs), choosing a

good mutation strength is a delicate matter that is subject

to conflicting goals. For example, consider a pseudo-Boolean

fitness function f : {0, 1}n → R and an EA with standard bit

mutation, i.e., all bits are flipped independently. On the one

hand, if the mutation strength is too low then the progress

is also slow, and the algorithm will be susceptible to local

optima. On the other hand, if the mutation rate is too high

and the parent is close to a global optimum then typically

the offspring, even if it has a “good” mutation in it, will also

have a large number of detrimental mutations. A well-known

example of this tradeoff are linear functions (e.g., ONEMAX),

for which there is an optimal mutation rate 1/n: this rate

minimizes the expected runtime, i.e., the expected number

of function evaluations before the optimum is found, up to

minor order terms [1], [32]. Any deviation from this muta-

tion rate by a constant factor to either direction decreases

the performance.
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A different, more extreme example are (strictly) monotone

pseudo-Boolean functions.1 A function f : {0, 1}n → R is

strictly monotone if, for every x, y ∈ {0, 1}n with x �= y and

such that xi ≥ yi for all 1 ≤ i ≤ n, it holds that f (x) > f (y).

In particular, every monotone function has a unique global

optimum at (1 . . . 1). Moreover, every such function is effi-

ciently optimized by random local search (RLS), which is the

(1+1)-type algorithm that flips in each round exactly one bit,

chosen uniformly at random. From any starting point, RLS

finds the optimum with at most n improving steps, and by a

coupon collector argument it optimizes any monotone func-

tion in O(n log n) steps. Thus, monotone functions may be

considered trivial to optimize, and we might expect every EA

to solve them efficiently.

However, this is not so. Doerr et al. [9], [10] showed

that even the (1 + 1) EA (1 + 1)-EA, which flips each bit

independently with static mutation rate c/n, may have prob-

lems. More precisely, for small mutation rate, c < 1, the

(1 + 1)-EA has expected runtime O(n log n) as desired,2 but

for large mutation rate, c > 16, there are monotone func-

tions for which the (1 + 1)-EA needs exponential time. The

construction in [9] and [10] was based on exponentially long

paths in {0, 1}n. Lengler and Steger [22] gave a simpler

construction of such “hard” monotone functions, which we

call HOTTOPIC (they did not provide a name), and which

yield exponential runtime for c ≥ c0 := 2.13692 . . . The

basic idea of this construction is that there is some subset

of bits which form a “hot topic,” i.e., the algorithm consid-

ers them much more important than the other bits. This hot

topic is different for different regions of the search space,

and thus the hot topic changes when the algorithms moves

into a new region of the search space. An algorithm with

a large mutation rate that focuses too much on the current

hot topic tends to deteriorate the quality of the remain-

ing bits. If the hot topic changes often, then the algorithm

stagnates.

Since both low and high mutation rates have their disadvan-

tages, many different strategies have been developed to gain

the best of two worlds. In this paper, we pick a collection of

either traditional or particularly promising methods, and ana-

lyze whether they can overcome the detrimental effect of the

1We will be sloppy and drop the term “strictly,” but throughout this paper,
we always mean strictly monotone functions.

2This result was already implicit in [18], and in a very recent preprint
by Lengler et al. it was shown that there is ε > 0 such that the runtime is

O(n log2 n) for all c ≤ 1 + ε [21].
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HOTTOPIC functions.3 In particular, we consider (for constant

µ, λ, and for static parameters) the classical (1 + λ)-EA,

(µ + 1)-EA, and (µ + 1)-GA, the (1 + (λ, λ))-GA by Doerr,

Doerr, and Ebel [8], and the recently proposed “fast (1 + λ)-

EA,” “fast (µ+1)-EA,” and “fast (µ+1)-GA” [12], which we

denote by (1 + 1)-fEA, (1 +λ)-fEA and (µ+ 1)-fGA, respec-

tively. Surprisingly, for mutation-based algorithms neither µ

nor λ have any effect on the results. While we do obtain a

fine-grained landscape of results (see below), one major trend

is prevailing: crossover helps!

An extended abstract of this paper has been presented at

the 15th International Conference on Parallel Problem Solving

from Nature (PPSN’18) [20]. Some parts had to be omitted

from the print version, including the full proof of Theorem 5.

They can be found it in the online supplementary material.

A. Results

In this section, we collect our results for the different algo-

rithms. An overview can be found in Table I. Note that,

unless explicitly otherwise stated, we always assume that the

parameters µ, λ, c, γ of the algorithms are constant.

1) Classical EAs: For the classical EA (1+λ)-EA, we show

a dichotomy: if the mutation parameter c is sufficiently small,

then the algorithms optimize all monotone functions in time

O(n log n), while for large c the algorithm needs exponential

time on some HOTTOPIC functions. The interesting question

is: how does the threshold for c depend on the parameters

λ? It may seem that a large λ bears some similarity with an

increased mutation rate. After all, the total number of muta-

tions in each generation is increased by a factor of λ. Thus, we

might expect that the (1+λ)-EA has difficulties with monotone

functions for even smaller values of c. However, this is not so.

The bounds on the mutation rate, c < 1, and c > c0 = 2.13 . . .

do not depend on λ. In fact, for the HOTTOPIC functions we

can show that this is tight: if c < c0 then the (1 + λ)-EA

and the (µ+1)-GA optimize all HOTTOPIC functions in time

O(n log n), while for c > c0 it is exponentially slow on some

HOTTOPIC instances.

For the (µ+1)-EA we get the same result on HOTTOPIC. In

particular, the threshold on c is also independent of µ. For the

(µ+1)-EA, we could not show an upper runtime bound for all

monotone functions in the case c < 1, so currently we cannot

exclude that the situation might get even worse for larger µ, as

there might still be other monotone functions which are hard

for the (µ + 1)-EA with c < 1.

2) (µ + 1)-GA: It has been observed before that some algo-

rithms may be sped up by crossover, e.g., if we switch from

the (µ+ 1)-EA to the (µ+ 1)-GA. In particular, Sudholt [31]

and Corus and Oliveto [2] showed that the (µ+1)-GA is by a

constant factor faster than the (µ + 1)-EA on ONEMAX. For

monotone functions we also observe a change, but in extremis.

We show that for the HOTTOPIC functions crossover extends

the range of mutation rate arbitrarily. For every c > 0, if µ

is a sufficiently large constant then the (µ + 1)-GA finds the

optimum of HOTTOPIC in time O(n log n). At present, there

3Other methods include parameter control, i.e., dynamic or adaptive choice
of parameters. We will discuss them briefly in Section I-B. In this paper, we
are mostly concerned with static parameters.

are no monotone functions known on which the (µ + 1)-GA

with arbitrary c and large µ = µ(c) is slow. It remains an

intriguing open question whether the (µ + 1)-GA with large

µ is fast on every monotone function.

3) (1 + (λ, λ))-GA: This algorithm creates λ offspring, and

uses the best of them to perform λ biased crossovers with the

parent, see Section II-B. The best crossover offspring is then

compared with the parent. This algorithm has been derived

by Doerr et al. [7], [8] from a theoretical understanding of

so-called black-box complexity, and has been intensively stud-

ied thereafter [3]–[6]. Most remarkably, it gives an asymptotic

improvement on the runtime of the most intensively stud-

ied test function ONEMAX, on which it can achieve runtime

roughly n
√

log n for static settings (up to log log n terms), and

linear runtime O(n) for dynamic parameter settings. These run-

times are achieved with a nonconstant λ = λ(n). Apart from

some highly artificial constructions, the (1+ (λ, λ))-GA is the

only known unbiased EA that can optimize ONEMAX faster

than �(n log n).

The algorithm comes with three parameters: the offspring

population size λ, the mutation rate c/n by which the offspring

are created, and a crossover bias γ , which is the probability

to take the offspring’s genes in the crossover. Again we find

a dichotomy between weak and strong mutation, but this time

not in c, but rather in the product cγ . In [6], it is suggested

to choose c, γ such that cγ = 1. Note that this makes sense,

because cγ is (up to possible biases by the selection process)

the expected number of mutations in the crossover child. Thus,

it is plausible that it plays a similar role as the parameter c

in classical algorithms. Indeed we find that for cγ < 1 the

runtime is small for every monotone function, while for cγ >

c0 = 2.13 . . . it is exponential on HOTTOPIC functions. As

before, the bound is tight for HOTTOPIC, i.e., for cγ < c0 the

(1+(λ, λ))-GA needs time O(n log n) to optimize HOTTOPIC.

Notably, the runtime benefits on ONEMAX carry over to

the HOTTOPIC function. Since the benefits on ONEMAX in

previous work have been achieved for nonconstant parame-

ter choices, we relax our assumption on constant parameters

for the (1 + (λ, λ))-GA. More precisely, we show that if

ε < cγ < 1 − ε for a constant ε > 0, then for

any choice of c, γ, λ (including nonconstant and/or adaptive

choices), the (1+ (λ, λ))-GA optimizes every monotone func-

tion in O(n log n) generations. Moreover, we show that for

the optimal static parameter and adaptive parameter settings

in [6], the algorithm achieves the same asymptotic runtime on

HOTTOPIC as on ONEMAX, in particular runtime O(n) in the

adaptive setup.4

Unfortunately, it seems unlikely that the runtimes of

o(n log n) for ONEMAX carry over to arbitrary monotone func-

tions, because they are achieved by increasing c and λ with

n (although cγ is left constant). For ONEMAX, if there is

a zero-bit that is flipped in one of the mutations, then at

4Strictly speaking, the adaptive parameter choice is not natural for
HOTTOPIC, since the parameters must be chosen as a function of the remain-
ing zero-bits in the search points. For HOTTOPIC, or for general monotone
functions, this information is not naturally available. However, in [6] it was
shown that the same effect can be achieved for the (1 + (λ, λ))-GA by an
adaptive (self-adjusting) setup using the one-fifth rule, which is applicable for
monotone functions.
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TABLE I
OVERVIEW OVER THE RESULTS OF THIS PAPER. THE DEFINITION OF c0 = 2.13692 . . . CAN BE FOUND IN THEOREM 6. EACH ENTRY GIVES A

SUFFICIENT CONDITION FOR THE RUNTIME STATEMENT OF THE CORRESPONDING COLUMN. IF SEVERAL LINES ARE IN ONE CELL, THEN,
EACH LINE IS A SUFFICIENT CONDITION. UNLESS OTHERWISE STATED, c, λ, µ = �(1). ALL RESULTS EXCEPT FOR THE (1 + 1)-EA

ARE PROVEN IN THIS PAPER. THE RESULTS OF THE FIRST COLUMN ARE IN THEOREMS 3 AND 4, THE OTHER RESULTS ARE

IN THEOREM 6, EXCEPT THAT REMARK C IS IN THEOREM 3

least one such mutation is present in the best mutant, and

is thus available for crossover. In the most relevant regime,

where the expected number of flipped zero-bits in any muta-

tion is small (say, at most one), the probability to be selected

increases by a factor of �(λ) [from 1/λ to �(1)] if a

zero-bit is flipped. For monotone functions we do show that

the probability of being selected can only increase with the

number of flipped zero-bits. However, there is no apparent

reason that it should increase by a factor of �(λ), or by

any significant factor at all. In fact, it is not hard to see

that for the linear function BINVAL it only increases by a

constant factor.

4) Fast (1 + 1)-EA, Fast (1 + λ)-EA, Fast (µ + 1)-

EA: These algorithms, which we abbreviate by (1 + 1)-fEA,

(1 + λ)-fEA, and (µ + 1)-fEA have recently been proposed

by Doerr et al. [12], and they have immediately attracted

considerable attention (e.g., [14], [15], and [23]). The idea

is to replace the standard bit mutation, in which each bit is

flipped independently, by a heavy-tailed distribution D. That

is, in each round we draw a number s from some heavy-

tailed distribution (for example, a power-law distribution with

Pr [s = k] ∼ k−κ for some κ > 1, also called Zipf distribu-

tion). Then, the mutant is generated from the parent by flipping

exactly s bits, chosen uniformly at random. In this way, most

mutations are generated by flipping only a small number of

bits, but there is a substantially increased probability to flip

many bits. This approach has given some hope to unify the

best of the two worlds: 1) small mutation rate and 2) large

mutation rate.

For monotone functions, our results are rather discourag-

ing. This is not completely unexpected since the algorithms

build on the very idea of increasing the probability of large

mutation rates. We show a dichotomy for the (1+1)-fEA with

respect to m2/m1, where m1 := E [s] and m2 := E [s(s − 1)]

are the first and second falling moment of the distribu-

tion D, although the results are subject to some technical

conditions.5 As before, if m2/m1 < 1 then the runtime is

O(n log n) for all monotone functions. On the other hand, if

m2/m1 > 1 and additionally p1 := Pr [D = 1] is sufficiently

small then the runtime on some HOTTOPIC instances is

exponential. As for the other algorithms, we get a sharp

threshold for the parameter regime that is efficient on

HOTTOPIC, so we can decide for each distribution whether

it leads to fast or to exponential runtimes on HOTTOPIC.

Due to a correction term related to p1 (17), it is possible to

construct heavy-tail distributions which are efficient on all

HOTTOPIC functions, but they must be chosen with great

care. For example, no power-law distribution with exponent

κ ∈ (1, 2) is efficient, which includes the choice κ = 1.5 that

is used for experiments in [12] and [23]. Also, no distribution

with p1 < (4/9) Pr [D = 3] is efficient on HOTTOPIC. In

general, our findings contrast the results in [12], where larger

tails (smaller κ) lead to faster runtimes.

As before, larger values of λ and µ do not seem to have any

influence as long as crossover is not allowed. For the (1 +λ)-

fEA and (µ + 1)-fEA, we show exactly the same results as

for the (1 + 1)-fEA, except that we could not show runtime

bounds for all monotone functions if m2/m1 < 1. Rather, we

only show them for HOTTOPIC. Thus, we cannot exclude the

possibility that larger values of λ,µ make things even worse.

5) Fast (µ + 1)-GA: As for the classical algorithms,

crossover tremendously improves the situation. For every dis-

tribution D with Pr [D = 1] = �(1), if µ is a sufficiently

large constant then the (µ + 1)-fGA optimizes HOTTOPIC in

time O(n log n). As for the (µ+1)-GA, it is an open question

whether the same result carries over to all monotone functions.

Further Results: For all algorithms, the regime of expo-

nential runtime does not just mean that it is hard to find the

optimum, but rather the algorithms do not even come close.

5Note that a heavy tail generally increases m2 much stronger than m1, so
it increases the quotient m2/m1.
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More precisely, in all these cases there is an ε > 0 (depending

only on c or on the other dichotomy parameters) such that the

probability that any of the EAs or GAs finds a search point

with at least (1 − ε)n correct bits within a subexponential

time is exponentially small as n → ∞. The size of ε can

be quite considerable if the parameter c is much larger than

c0 = 2.13 . . . For example, simulations suggest for the (1+1)-

EA that ε ≈ 0.15 for c = 4 and ε ≈ 0.09 for c = 3.6 On the

other hand, starting close to the optimum does not help either:

for every ε > 0 there are monotone function such that if the

EAs or GAs are initialized with random search points with εn

incorrect bits, then still the algorithms need exponential time

to find the optimum.

Summary: It appears that increasing the number of offspring

λ or the population size µ does not help at all to overcome

the detrimental effects of large mutation rate in EAs. All EAs

are highly vulnerable even to a very moderate increase of the

mutation rate. This puts the HOTTOPIC functions in sharp

contrast to other benchmarks like TSP, SAT, and mixed integer

programs, in which parameters have a much more moderate

effect on the performance [28].7 Using heavy tails as in the

fEAs seems to make things even worse, although the picture

gets more complicated. On the other hand, using crossover can

remedy the effect of large mutation rates, and can extend the

range of good mutation rates arbitrarily.

B. Intuition on HotTopic

Now, we give an intuition why the HOTTOPIC functions are

hard to optimize for large mutation rates. Note that a mono-

tone function, by its very definition, has a local “gradient”

that always points into the same corner of the hypercube,

in the sense that for each bit individually, in all situations

we prefer a one-bit over a zero-bit. The construction by

Lengler and Steger [22] distorts the gradient by assigning

different positive weights to the components. Such a distor-

tion cannot alter the direction of the gradient by too much. In

particular, following the gradient will always decrease the dis-

tance from the optimum. This is why algorithms with small

mutation rate may find the optimum; they follow the gradi-

ent relatively closely. However, the weights in [22] are chosen

such that there is always a hot topic, i.e., a subdirection of the

gradient which is highly preferred over all other directions.

Focusing too much on this hot topic will lead to a behavior

that is very good at optimizing this particular aspect—but all

other aspects will deteriorate a little because they are out of

focus. Thus, if the hot topic is sufficiently narrow and changes

often, then advances in this aspect will be overcompensated

by a decline in the neglected parts, which leads overall to

stagnation.

This last sentence is not merely a pessimistic allegory on

scientific progress, but it also happens for EAs with large

mutation rates. They will put the currently preferred direc-

tion above everything else, and will accept any mutation that

makes progress in that direction, regardless of the harm that

such a mutation may cause on other bits. This may lead in

total to a drift away from the optimum, since random walk

6Details can be found in the online supplementary material.
7The configuration landscape could still be unimodal as in [28], but for

exponential regimes this question is far less important.

steps naturally tend to increase the distance from the opti-

mum. For the fEAs or fGAs, this effect is amplified if the

algorithm is close to the optimum. In this case, the probability

to find any improvement at all is very small, and we typically

find an improvement in an aggressive step in which many bits

are flipped. Then, the same step also typically causes a lot

of errors among the low-priority bits. For the same reason, an

adaptive choice of the mutation strength c may be harmful if it

increases the mutation parameter in phases of stagnation: close

to the optimum, most steps are stagnating, and increasing the

mutation parameter indeed increases the probability to find a

better search point in the hot topic direction (though not the

probability to make any improvement). This may fatally lead

to a large mutation parameter. We leave the rigorous study of

adaptive parameter choices to future work.

II. PRELIMINARIES AND DEFINITIONS

A. Notation

Throughout this paper, we will assume that f : {0, 1}n → R

is a monotone function, i.e., for every x, y ∈ {0, 1}n with x �= y

and such that xi ≥ yi for all 1 ≤ i ≤ n it holds f (x) > f (y).8

We will consider algorithms that try to maximize f , and we

will mostly focus on the runtime of an algorithm, which we

define as the number of function evaluations until the first

evaluation of the global maximum of f .

We say that an EA or GA is elitist [13] if the selection

operator greedily chooses the fittest individuals to form the

next generation. We call an EA or GA unbiased, [19] if

the mutation and crossover operators are invariant under the

isomorphisms of {0, 1}n, i.e., if mutation and crossover are

symmetric with respect to the ordering of the bits, and with

respect to exchange of the values 0 and 1. All algorithms

considered in this paper are unbiased.

For n ∈ N, we denote [n] := {1, . . . , n}. We use the notation

x = y ± z to abbreviate x ∈ [y − z, y + z]. For a search point x,

we write OM(x) for the ONEMAX potential, i.e., the number

of one-bits in x. For x ∈ {0, 1}n and ∅ �= I ⊆ [n], we denote

by d(I, x) := |{i ∈ I|xi = 0}|/|I| the density of zero bits in I.

In particular, d([n], x) = 1 − OM(x)/n.

All Landau notation O(n), o(n), . . . is with respect to

n → ∞. For example, λ = O(1) means that there is a

constant C > 0, independent of n, such that λ = λ(n) ≤ C

for all n ∈ N. We say that an event E = E(n) holds with high

probability or whp if Pr [E(n)] → 1 for n → ∞. We say that

E(n) is exponentially unlikely if Pr [E(n)] = e−�(n), and that

is exponentially likely if Pr [E(n)] = 1 − e−�(n).

For an event E , we let I[E] be the indicator variable which

is one if E occurs, and zero otherwise. For a distribution D,

by abuse of notation write Pr [D = x] for Pr [X = x|X ∼ D].

Throughout this paper, we will be slightly sloppy about con-

ditional probabilities Pr [A|B] and expectation, and we will

ignore cases in which Pr [B] = 0. We use the term increas-

ing function as equivalent to the term nondecreasing function,

and likewise for decreasing function. The only exception is for

the term monotone, as monotone functions are automatically

assumed to be strictly monotone.

8Note that this property might more correctly be called strictly monotone,
but in this paper we will stick with the term monotone for brevity.
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Finally, throughout this paper, we will use n for the dimen-

sion of the search space, µ and λ for the population size

and offspring population size, respectively, c for the mutation

parameter, γ for the crossover parameter of the (1 + (λ, λ))-

GA, and D, m1, m2 for the bit flip distribution of the fast EAs

and GAs and its first and second falling moment E [s|s ∼ D]

and E [s(s − 1)|s ∼ D], respectively. Unless otherwise stated,

we will assume that µ, λ, c, γ = �(1) and m1 = �(1).

B. Algorithms

Most algorithms that we consider fall into the class of

(µ + λ) EAs, (µ + λ)-EAs, or (µ + λ) genetic algorithms,

(µ + λ)-GAs. They can be described by the framework in

Algorithm 1. In a nutshell, they maintain a population of

size µ. In each generation, λ additional offspring are cre-

ated by mutation and possibly crossover, and the µ search

points of highest fitness among the µ+λ individuals form the

next generation. Thus, we use an elitist selection scheme. In

EAs, the offspring are only created by mutation, in GAs they

are either created by mutation or by crossover. For mutation

we use standard bit mutation as a default, in which each bit

is independently flipped with probability c/n, where c is the

mutation parameter. The only exception are the fast EAs and

GAs, in which first the number s of bit mutations is drawn

from some distribution D = D(n), and then exactly s bits are

flipped, chosen uniformly at random. In particular, we may

write m1 = E [s] and m2 = E [s(s − 1)], since we defined

m1 and m2 to be the first and second falling moment of D,

respectively. We will always assume that µ, λ, c = �(1).9

An exception to the above scheme is the (1+(λ, λ))-GA [7].

Here, the population consists of a single search point x. Then

in each round, we pick s ∼ BIN(n, c/n), and create λ off-

spring from x by flipping exactly s bits in x uniformly at

random. Then, we select the fittest offspring y among them,

and we perform λ independent biased crossover between x and

y, where for each bit we take the parent gene from y with prob-

ability γ , and the gene from x otherwise. If the best of these

crossover offspring is at least as fit as x, then it replaces x.

We will usually assume that λ, c, γ = �(1), unless otherwise

mentioned.

C. Hard Monotone Functions: HotTopic

In this section, we give the construction of hard mono-

tone functions by Lengler and Steger [22], following closely

their exposition. The functions come with four parameters α,

β, ρ, and ε, and they are given by a randomized construc-

tion. We call the corresponding function HOTTOPICα,β,ρ,ε =
HTα,β,ρ,ε = HT. The hard regime of the parameters is

1 > α ≫ ε ≫ β ≫ ρ > 0 (1)

by which we mean that α ∈ (0, 1) is a constant, ε = ε(α) is a

sufficiently small constant, β = β(α, ε) is a sufficiently small

constant, and ρ = ρ(α, ε, β) is a sufficiently small constant.

9There are many variants of the algorithms that we use here. For example,
for GAs it is not important that the probability for crossover is exactly 1/2.
In fact, it is also common in GAs to create each offspring by a crossover and
a mutation. The proofs and results of this paper carry over to these variants.

Algorithm 1: (µ + λ)-EA or (µ + λ)-GA With Mutation

Parameter c for Maximizing an Unknown Fitness Function

f : {0, 1}n → R. The EA-Algorithms Do Not Crossover.

X Is a Multiset, i.e., It May Contain Search Points Several

Times

1 Initialization:

2 X ← ∅;

3 for i = 1, . . . , µ do

4 Sample x(i) uniformly at random from {0, 1}n;

5 X ← X ∪ {x(i)};
6 Optimization: for t = 1, 2, 3, . . . do

7 for i = 1, 2, . . . λ do

8 For GA, flip a fair coin to do either a mutation or

a crossover; for EA, always do a mutation.

9 if mutation then

10 Choose x ∈ X uniformly at random;

11 Create y(j) by flipping each bit in x

independently with probability c/n;

12 if crossover then

13 Choose x, x′ ∈ X independently uniformly at

random;

14 Create y(j) by setting y
(j)
i to either xi or x′

i,

each with probability 1/2, independently for

all bits;

15 Selection:

16 Set X ← X ∪ {y(1), . . . , y(λ)};
17 for i = 1, . . . , λ do

18 Select x ∈ arg min{f (x)|x ∈ X} (break ties

randomly) and update X ← X \ {x};

Now, we come to the construction. For 1 ≤ i ≤ eρn we

choose sets Ai ⊆ [n] of size αn independently and uniformly at

random, and we choose subsets Bi ⊆ Ai of size βn uniformly

at random. We define the level ℓ(x) of a search point x ∈
{0, 1}n by

ℓ(x) := max{ℓ′ ∈ [eρn] : |{j ∈ Bℓ′ : xj = 0}| ≤ εβn} (2)

where we set ℓ(x) = 0, if no such ℓ′ exists). Then, we define

f : {0, 1}n → R as follows:

HT(x) := ℓ(x) · n2 +
∑

i∈Aℓ(x)+1

xi · n +
∑

i �∈Aℓ(x)+1

xi (3)

where for ℓ = eρn we set Aℓ+1 := Bℓ+1 := ∅.

So the set Aℓ+1 defines the hot topic while the algorithm

is at level ℓ, where the level is determined by the sets Bi. It

was shown in [22] that whp10 the (1+1)-EA with mutation

parameter c > c0 needs exponential time to find the optimum.

One easily checks that this function is monotone. Indeed,

assume that x is dominated by y, i.e., xi ≤ yi for all 1 ≤ i ≤ n.

Then, ℓ(x) ≤ ℓ(y). If ℓ(x) = ℓ(y) then it is obvious that

f (x) ≤ f (y), and the inequality is strict if x �= y. On the other

hand, if ℓ(x) < ℓ(y) then f (x) < ℓ(x)n2 + n2 ≤ ℓ(y)n2 ≤ f (y),

as desired.

10With high probability, i.e., with probability tending to one as n → ∞.
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D. Tools

We will make frequent use of standard drift theorems for

multiplicative drift [11], and of tail bounds for positive addi-

tive drift and for negative drift [24], [25], [29]. We use the

formulation from [22]. The exact formulations can be found

in the online supplementary material.

We will also repeatedly use Chebyshev’s sum inequal-

ity [16], also know as rearrangement inequality.

Theorem 1 (Chebyshev’s Sum Inequality): Let (ai)i∈[n],

(bi)i∈[n] be sequences in R, and let (ci)i∈[n] be a sequence

in R
+
0 with

∑n
i=1 cibi > 0.

1) If (an) and (bn) are both increasing, then
∑n

i=1 ciai
∑n

i=1 ci

≤
∑n

i=1 ciaibi
∑n

i=1 cibi

. (4)

2) If (an) is increasing and (bn) is decreasing, then
∑n

i=1 ciai
∑n

i=1 ci

≥
∑n

i=1 ciaibi
∑n

i=1 cibi

. (5)

The theorem also holds for infinite sequences if all sums

converge.

III. UPPER BOUNDS FOR GENERAL

MONOTONE FUNCTIONS

In this section, we will give a generic proof for strong

dichotomies, i.e., for showing that under certain circum-

stances an algorithm will optimize every monotone func-

tion in time O(n log n). The proof follows loosely proofs

from [10] and [22].

Theorem 2 (Generic Easiness Proof): Consider an elitist

algorithm A with population size one that in each round gen-

erates an offspring by an arbitrary method, and replaces the

parent if and only if the offspring has at least the same fitness.

Let s01 denote the number of zero-bits in the parent that are

one-bits in the offspring, and vice versa for s10. Assume that

there is a constant δ > 0 such that for all x ∈ {0, 1}n

E [s10|parent = x and s01 > 0] ≤ 1 − δ (6)

and

Pr [s01 > 0|parent = x] = �( 1
n
(n − OM(x))). (7)

Then, A finds the optimum of every strictly monotone func-

tions in O(n log n) rounds, with high probability and in

expectation.

Before we prove the theorem, we remark that the (1 + λ)-

EA, the (1 + 1)-fEA, and the (1 + (λ, λ))-GA all fit the

generic description in Theorem 2, modulo condition (6). For

the (1+(λ, λ))-GA, note that the procedure to generate the off-

spring is rather complicated, and involves several intermediate

mutation and crossover steps. Nevertheless, the procedure ulti-

mately produces a single offspring (the fittest of the crossover

offspring) which competes with the parent.

Proof of Theorem 2: Let Xt := n − OM(x(t)), where x(t) is

the t-th search point of A, and let y be the offspring of x(t).

First note that if s01 = 0 and x �= y, then by monotonicity

f (x) > f (y). Therefore, x(t+1) = x(t) and Xt+1 = Xt if s01 = 0.

This also holds in the trivial case s01 = 0 and x = y.

If s01 > 0 and s10 = 0, then again by monotonicity f (y) >

f (x). Thus, x(t+1) = y(t) and Xt+1 ≤ Xt − 1 = Xt − 1 + s10.

Finally, if s01 > 0 and s10 > 0 then we have two cases.

Either y(t) is accepted, in which case Xt+1 = Xt − s01 + s10 ≤
Xt − 1 + s10. Or y(t) is rejected, in which case the same

inequality follows from Xt+1 = Xt ≤ Xt − 1 + s10.

Summarizing, we see that Xt does not change for s01 = 0,

and that for s01 > 0 we have in all cases Xt+1 ≤ Xt − 1 + s10.

Therefore, Xt has a drift of at least

E [Xt − Xt+1|x(t)] ≥ Pr [s01 > 0] · E [1 − s10|s01 > 0, x(t)]

(6),(7)= �(δ/n · Xt).

The claim thus follows from the multiplicative drift

theorem.

From, Theorem 2, it will follow that the (1 + λ)-EA with

c < 1, the (1 + 1)-fEA with m2/m1 < 1, and the (1 +
(λ, λ))-GA with cγ < 1 have runtime O(n log n), since we

will show that these settings satisfy (6). For the (1 + (λ, λ))-

GA with cγ < 1 and nonconstant parameters we cannot apply

Theorem 2 directly. However, we will see that the conditional

expectation in (6) is still the crucial object to study.

Theorem 3: Let δ > 0. For any strictly monotone func-

tion, with high probability the following algorithms find the

optimum in O(n log n) generations.

1) The (1 + λ)-EA with c ≤ 1 − δ and c = �(1).

2) The (1 + 1)-fEA with m2/m1 ≤ 1 − δ and m1 = �(1).

3) The (1 + (λ, λ))-GA with cγ ≤ 1 − δ and cγ = �(1).

Moreover, if the (1 + (λ, λ))-GA with cγ < 1 − δ uses the

optimal static or adaptive parameter choice from [6],11 then

with high probability the runtime on HOTTOPIC is up to a

factor �(1) the same as the runtime for ONEMAX.

We remark that the optimal runtime of the (1 + (λ, λ))-

GA on ONEMAX is O(n
√

log(n) log log log(n)/ log log n) for

static parameters and O(n) for adaptive parameter choices [6].

Proof of Theorem 3: First consider the (1+λ)-EA. Assume

that the current search point is x. We create the λ offspring by

two consecutive steps. For each j ∈ [λ], first we flip every zero-

bit in x independently with probability c/n, and call the result

z(j). Then, for every one-bit in x, we flip the corresponding bit

in z(j) independently with probability c/n, and call the result

y(j). Thus, y(j) follows exactly the right distribution: each bit

has been flipped independently with probability c/n. Let k ∈
[λ] be the random variable that denotes the index of the fittest

of the y(j) (breaking ties randomly). Moreover, fix some index

i ∈ [n] for which xi = 1.

Note that for every fixed j, we have Pr [y
(j)
i = 0] = c/n.

Intuitively, we need to show that the probability does not

increase by the selection process. For all j ∈ [λ], let pj :=
Pr [k = j|z(1), . . . , z(λ)]. By monotonicity, if a search point y(j)

with y
(j)
i = 0 is the fittest of the offspring, then replacing

y
(j)
i = 0 by y

(j)
i = 1 can only increase the fitness. Therefore,

conditioning on y
(j)
i = 0 can only decrease the probability that

11In fact, the suggested parameter choice in [6] and [8] satisfies cγ = 1
instead of cγ < 1. However, the runtime analysis in [8] only changes by
constant factors if γ is decreased by constant factors. Thus, Theorem 3 applies
to the parameter choices from [6] and [8], except that γ is smaller by a
constant factor.
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k = j, in formula

Pr
[

k = j and y
(j)
i = 0 | z(1), . . . , z(λ)

]

≤ pj · Pr
[

y
(j)
i = 0

]

(8)

where we note that the latter probability is independent of

z(1), . . . , z(λ). Let s
(j)

01 be the number of zero-bits in which x

and z(j) differ, i.e., the number of bits that have been flipped

from zero to one. Let J := {j ∈ [λ]|s(j)

01 > 0}. Then, by (8)

Pr
[

y
(k)
i = 0|s(k)

01 > 0; z(1), . . . , z(λ)
]

≤

∑

j∈J pj · Pr
[

y
(j)
i = 0

]

∑

j∈J pj

= c/n.

Summing over all i ∈ [n] with xi = 1, and averaging over all

possible values of z(1), . . . , z(λ), we obtain

E

[

|
{

i ∈ [n] : xi = 1, y
(k)
i = 0

}

||s(k)
01 > 0

]

≤ c ≤ 1 − δ. (9)

Thus, condition (6) in Theorem 2 is satisfied. Note that so far

we have not used c = �(1). We only need this assumption

to verify condition (7), which indeed follows immediately. So

the statement for the (1 + λ)-EA follows from Theorem 2.

Next we turn to the (1 + 1)-fEA. As before, let x be the

current search point, and let y be the offspring. For all s > 0,

let ps be the probability to flip exactly s bits. Then, we have

2 · Pr[1 ≤ s ≤ 2] ≥ m1 −
∞
∑

s=3

pss ≥ m1 −
1

2

∞
∑

s=3

pss(s − 1)

≥ m1 −
m2

2
≥

m1

2
(10)

so Pr [1 ≤ s ≤ 2] ≥ m1/4. In particular, this expression is

in �(1), which implies condition (7) in Theorem 2. Note for

later reference that (10) also implies m1 ≤ 4.

It remains to check (6). For this, let s01 and s10 denote the

number of bit flips from 0 to 1 and from 1 to 0, respectively.

We observe that

E[s10|s01 > 0] =
∑

s≥1 ps Pr[s01 > 0|s]E[s10|s; s01 > 0]
∑

s≥1 ps Pr[s01 > 0|s]

≤
∑

s≥1 ps Pr[s01 > 0|s] · (s − 1)
∑

s≥1 ps Pr[s01 > 0|s]
. (11)

To estimate the term above, we note that since the term

s − 1 is increasing, for every nondecreasing sequence αs, by

Chebyshev’s sum inequality we may bound

(11) ≤
∑

s≥1 ps Pr[s01 > 0|s] · αs · (s − 1)
∑

s≥1 ps Pr[s01 > 0|s] · αs

. (12)

We will use αs := s/ Pr [s01 > 0|s], so we need to show that

α−1
s = Pr [s01 > 0|s]/s is a nonincreasing sequence. We regard

the process where we draw the s bit positions one after another,

and consider for the ith round the probability qi that a zero

bit is drawn for the first time in this round. This probability

is decreasing, and thus

1

s
Pr[s01 > 0|s] =

1

s

s
∑

i=1

qi ≤
1

s − 1

s−1
∑

i=1

qi

=
1

s − 1
Pr[s01 > 0|s − 1]

as desired. Plugging αs into (12) yields

E[s10|s01 > 0] ≤
m2

m1
≤ 1 − δ (13)

so condition (6) in Theorem 2 is satisfied, and the statement

follows from Theorem 2. For later reference, we note that the

first inequality in (13) holds for any distribution D, regardless

whether (m2/m1) ≤ 1 − δ.

Finally, let us turn to the (1 + (λ, λ))-GA. Let x be the cur-

rent search point. In the first step an integer s ∼ BIN(n, c/n)

is chosen, and λ offspring y(1), . . . , y(λ) are created from x

by flipping exactly s bits. As for the (1 + λ)-EA, let s
(j)

01 and

s
(j)

10 = s−s
(j)

01 be the number of zero-bits and one-bits that were

flipped in the creation of y(j), respectively, and let k ∈ [λ] be

the fittest among the y(j), breaking ties randomly. Note that

for a fixed j, the offspring y(j) has the same distribution as

for the (1 + λ)-EA. (The difference is that the offspring are

not independent.) Therefore, for every fixed j ∈ [λ] and all

r, r′ ∈ N

Pr
[

s
(j)

10 ≥ r|s(j)

01 ≥ r′
]

= Pr
[

BIN(OM(x), c/n) ≥ r
]

. (14)

In particular, E [s
(j)

10|s
(j)

01 ≥ r′] ≤ c.

Now, we show that E [s
(j)

10|s
(j)

01 ≥ r′] can only decrease by

the selection process. Fix any values of s, s
(1)
01 , . . . , s

(λ)
01 , and

let pj := Pr [k = j|s, s
(1)
01 , . . . , s

(λ)
01 ]. Thus, we condition on

the number of zero-bits and one-bits that we flip, but not on

their location. Note that for fixed s we can create a random

offspring with s
(j)

01 = σ (i.e., with σ flips of zero-bits and s−σ

flips of one-bits of x) by starting with a random search point

with s
(j)

01 = σ − 1, reverting a random flip of a one-bit, and

adding a random flip of a zero-bit of x. Since this operation

strictly increases the fitness, it can only increase pj. Hence, pj

is an increasing function in s
(j)

01. By symmetry of the selection

operator, this implies in particular that pi ≤ pj if s
(i)
01 ≤ s

(j)

01
for all indices i, j ∈ [λ]. On the other hand, the indicator

function I[x ≤ s − r] is trivially decreasing in x. Therefore,

using the index set J := {j ∈ [λ]|s(j)

01 ≥ r′}, the sequences

aj := I[s
(j)

10 ≥ r] and bj := pj, where j ∈ J, are oppositely

sorted. So we may use Chebyshev’s sum inequality (5) (with

cj := 1 for all j ∈ J), and obtain for any r ∈ N

Pr
[

s
(k)
10 ≥ r|s, s

(1)
01 , . . . , s

(λ)
01 and s

(k)
01 ≥ r′

]

=

∑

j∈J pj · I
[

s
(j)

10 ≥ r
]

∑

j∈J pj

=

∑

j∈J pj · I
[

s
(j)

01 ≤ s − r
]

∑

j∈J pj

≤
1

|J|
∑

j∈J

I

[

s
(j)

01 ≤ s − r
]

=
1

|J|
∑

j∈J

I

[

s
(j)

10 ≥ r
]

.

Note that the latter term just counts which fraction of those j

with s
(j)

01 ≥ r′ also satisfy s
(j)

10 ≥ r. This is directly related to the

definition of conditional probability. In particular, averaging

over all possible values of s, s
(1)
01 , . . . , s

(λ)
01 , we get for every

fixed j ∈ [λ]

Pr
[

s
(k)
10 ≥ r|s(k)

01 ≥ r′
]

≤ Pr
[

s
(j)

10 ≥ r|s(j)

01 ≥ r′
]

. (15)

In other words, s
(k)
10 is stochastically dominated by s

(j)

10 if we

condition on s01 ≥ r′. Recall that the latter one is a binomial
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distribution by (14), and in particular E [s
(k)
10 |s(k)

01 ≥ r′] ≤ c. By

an analogous argument, the selection process can only increase

how many zero-bits of x are flipped, i.e., s
(k)
01 stochastically

dominates s
(j)

01 if we condition on s01 ≥ r′.
In the second step of the (1 + (λ, λ))-GA, the algorithm

produces λ biased crossovers z(1), . . . , z(λ) between x and y(k),

choosing the bits from y(k) with probability γ . Then, it com-

pares the fittest crossover offspring z(ℓ) with x. Similarly as

before, we let t
(j)

01 be the number of bits that are zero in x and

one in z(j), and vice versa for t
(j)

10 . To estimate E [t
(j)

10|t(j)01 > 0],

we define the following three terms:

Aσ := Pr
[

t
(j)

01 > 0|s(k)
01 = σ

]

/ Pr
[

t
(j)

01 > 0
]

Bσ := Pr
[

s
(k)
01 = σ

]

Cσ := E

[

t
(j)

10|t(j)01 > 0 and s
(k)
01 = σ

]

.

We observe that Aσ is increasing in σ with A0 = 0, and that
∑∞

σ=0 Bσ =
∑∞

σ=0 Aσ Bσ = 1. For convenience, we also set

A−1 := 0. Moreover, observe that conditioned on s
(k)
01 = σ ,

the term t
(j)

10 is independent of the event t
(j)

01 > 0, since the

crossover treats bits independently. Thus, we may equivalently

write Cσ = E [t
(j)

10|s(k)
01 = σ ]. Consequently, for every σ ≥ 0,

using (15) and the sentences thereafter in the last step

∞
∑

r=σ

BrCr = Pr
[

s
(k)
01 ≥ σ

]

E

[

t
(j)

10 |s(k)
01 ≥ σ

]

= Pr
[

s
(k)
01 ≥ σ

]

· γ E

[

s
(k)
10 |s(k)

01 ≥ σ
]

≤ cγ Pr
[

s
(k)
01 ≥ σ

]

= cγ

∞
∑

r=σ

Br.

Using summation by parts (discrete partial integration) on the

two functions g1(σ ) = Aσ and g2(σ ) =
∑∞

r=σ BrCr [and

backwards for g̃2(σ ) =
∑∞

r=σ Br], we thus conclude that

∞
∑

σ=0

Aσ Bσ Cσ =
∞
∑

σ=0

(Aσ − Aσ−1)
︸ ︷︷ ︸

≥0

∞
∑

r=σ

BrCr

︸ ︷︷ ︸

≤cγ
∑

Br

≤ cγ

∞
∑

σ=0

(Aσ − Aσ−1)

∞
∑

r=σ

Br

= cγ

∞
∑

σ=0

Aσ Bσ = cγ.

Indeed we have computed a term of interest

E

[

t
(j)

10 |t(j)01 > 0
]

=
∞
∑

σ=0

Pr
[

s
(k)
01 = σ |t(j)01 > 0

]

· Cσ

=
∞
∑

σ=0

Aσ Bσ Cσ ≤ cγ < 1 − δ.

It remains to show that the second selection process, picking

the fittest among the z(1), . . . , z(λ), does not increase the term

E [t
(j)

10|t(j)01 > 0], i.e.,

E

[

t
(ℓ)
10 |t(ℓ)01 > 0

]

≤ E

[

t
(j)

10|t(j)01 > 0
]

≤ cγ ≤ 1 − δ.

The argument is again the same as before: it suffices to observe

that the probability that z(j) is the fittest crossover offspring

is decreasing in t
(j)

01 , and the claim follows from Chebyshev’s

sum inequality. We skip the details. This proves condition (6)

in Theorem 2. For condition (7), we fix any j ∈ [λ], and note

that E [s
(j)

01] = (c/n)(n−OM(x)). Since the probability to select

y(j) is increasing in s
(j)

01, we have E [s
(k)
01 ] ≥ E [s

(j)

01] = (c/n)(n−
OM(x)). In particular, each crossover mutation satisfies

E

[

t
(j)

01

]

= γ E

[

s
(k)
01

]

≥
cγ

n
(n − OM(x)).

As before, the probability to select z(j) in the second selection

step is increasing in t
(j)

01 . Thus, E [t
(ℓ)
01 ] ≥ (cγ /n)(n − OM(x)),

and condition (7) follows since cγ = �(1). Note that this is

the only step in the proof where we use cγ = �(1). This con-

cludes the proof of the first statement for the (1 + (λ, λ))-GA.

We come to the second statement on the (1+(λ, λ))-GA, on

HOTTOPIC for the optimal parameter choices in [6] and [8].

The crucial observation is that by the negative drift theorem the

number of zero bits will drop below εβn in O(n) generations.

In particular, in the set Bi there are at most εβn zero bits, which

means that the level has reached its maximum. This phase

needs runtime O(λn), since 2λ search points are created in

each generation. In both the adaptive and the nonadaptive case,

this number matches asymptotically the runtime bound for the

(1 + (λ, λ))-GA on ONEMAX proven in [6] and [8], respec-

tively. [For the static parameter setting we have a runtime

of �(λn) for the optimal λ =
√

log n log log n/ log log log n,

for the adaptive setting we have λ ≤
√

1/(εβ) = O(1) in

this region of the search space, so O(λn) = O(n).] Moreover,

again by the negative drift theorem, once the number of zero-

bits has dropped below, say, εβn/4, whp it will not increase

again to more than εβn/2 zero-bits for ω(n log n) rounds. So

let us assume that the number of zero-bits stays below εβn/2.

Again inspecting the choice of λ in [6] and [8], we see that

λ = O(
√

n) throughout the process, so whp no offspring will

ever leave the range of at most εβn zero-bits. However, in

this range the HOTTOPIC function is up to an additive constant

equal to the ONEMAX function, so the remaining optimization

time for HOTTOPIC and for ONEMAX coincides. This proves

the theorem.

Our next theorem gives upper bounds on the runtime of

the (1 + λ)-fEA on any monotone function, provided that

m2/m1 < 1, where m1 and m2 are the first and second falling

moments of the flip number distribution D. We need to make

the assumption that the algorithm starts at most in distance

εn to the optimum. It is unclear whether this assumption is

necessary, or merely an artifact of our proof.

Theorem 4: Let δ > 0 be a constant, let λ = O(1), and

consider the (1 + λ)-fEA with distribution D = D(n), whose

falling moments m1 and m2 satisfy m2/m1 ≤ 1 − δ and

m1 = �(1). Then, there is ε > 0 such that the (1 + λ)-

fEA starting with any search point with at most εn zero-bits

finds the optimum of every strictly monotone functions in time

O(n log n) with high probability.

Proof: We set ε := δ/(96C), where C is some constant

upper bound on λ. Let x denote the current search point.

Assume for now that d([n], x) ≤ 2ε, i.e., that x contains at

most 2εn zero-bits. We will justify this assumption at the end
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of the proof. Let y(1), . . . , y(λ) be the offspring of x, and let

k ∈ [λ] be the index of the fittest offspring. For any fixed

j ∈ [λ], let s
(j)

01 and s
(j)

10 be the number of zero-bits and one-bits

that were flipped in the creation of y(j), respectively. Moreover,

let J := {j ∈ [λ]|s(j)

01 > 0}.
Our first step is to bound E [|J||J �= ∅]. Observe that

m1 ≤ 4 by (10). Therefore, E [s
(j)

01] ≤ 8ε for all j ∈ [λ],

and Pr [s
(j)

01 > 0] ≤ 8ε by Markov’s inequality. Since the

offspring are generated independently, |J| follows a bino-

mial distribution with expectation E [|J|] ≤ 8ελ, and hence

Pr [|J| ≥ r|J �= ∅] ≤ (8ελ)r−1 for all r ∈ N. Thus, since

ε ≤ 1/(16λ)

E
[

|J||J �= ∅
]

≤
∞
∑

r=1

r · Pr
[

|J| ≥ r|J �= ∅
]

≤ 1 + 8ελ

∞
∑

r=2

r(8ελ)r−2

≤ 1 + 8ελ

∞
∑

r=2

r(1/2)r−2 = 1 + 48ελ ≤ 1 +
δ

2
.

Now, we are ready to bound E [s
(k)
10 |s(k)

01 > 0]. For a fixed

j ∈ [λ], by (13) we have E [s
(j)

10|s
(j)

01 > 0] ≤ 1 − δ. Therefore,

bounding generously

E

[

s
(k)
10 |s(k)

01 > 0
]

≤ E

⎡

⎣

∑

j∈J

s
(j)

10|J �= ∅

⎤

⎦

= E
[

|J||J �= ∅
]

· E
[

s
(j)

10|s
(j)

01 > 0
]

≤ (1 + δ/2) · (1 − δ) ≤ 1 −
δ

2
. (16)

Therefore, condition (6) from Theorem 2 is satisfied. As

before, condition (7) is easy to check. So Theorem 2 would

imply the statement if we would know that no search point

has more than 2εn zero-bits in the first O(n log n) rounds. So

it only remains to show that whp this is the case. Due to space

restriction, we omit the argument in the printed version. It can

be found in the online supplementary material.

IV. GENERIC RESULT FOR HOTTOPIC

In this section, we analyze the behavior of a generic algo-

rithm on HOTTOPIC, which will later serve as basis for all of

our results on HOTTOPIC for concrete algorithms. The generic

algorithm uses population size one, but we will show that,

surprisingly, (µ + 1) algorithm can be described by the same

framework.

Theorem 5 (HotTopic, Generic Runtime): Let 0 < α < 1.

Consider an elitist, unbiased optimization algorithm A with

population size one that starts with a random search point x

and in each round generates an offspring y by an arbitrary

(unbiased) method, and replaces the parent x by y if HT(y) >

HT(x). For equal fitness, it may decide arbitrarily whether it

replaces the parent. Let s be the random variable that denotes

the total number of bits in which parent and offspring differ,

and note that the distribution of s may depend on the parent.

For parent x, we define

�(x) :=
E
[

s(s − 1)(1 − α)s−1
]

E
[

s(1 − α)s−1
] −

1−α
α

Pr[s = 1]

E
[

s(1 − α)s−1
] . (17)

1) If there are constants ζ, ζ ′ > 0 such that for all x ∈
{0, 1}n with at most ζn zero-bits

�(x) ≥ 1 + ζ ′ (18)

then with high probability A needs an exponen-

tial number of steps to find the global optimum of

HOTTOPICα,β,ρ,ε with parameters β, ρ, ε as in (1).

2) If there are constants ζ, ζ ′ > 0 such that for all x ∈
{0, 1}n with at most ζn zero-bits

�(x) ≤ 1 − ζ ′ (19)

and if moreover Pr [s = 1] ≥ ζ and E [s(s − 1)] ≤
1/ζ for all parents x, then with high probability A

needs O(n log n) steps to find the global optimum of

HOTTOPICα,β,ρ,ε with parameters β, ρ, ε as in (1).

3) The statements in 1) and 2) remain true for algorithms

that are only unbiased conditioned on an improving

step,12 if in 2) we also have Pr [improving step] ≥
ζ · d([n], x). Moreover, the statement in 2) remains true

for algorithms that are only unbiased if x has more than

ζn zero-bits, and possibly biased for at most ζn zero

bits, if we replace (19) by the condition E [s|HT(y) >

HT(x)] ≤ 2 − ζ .

Finally, there is a constant η = η(ζ ′, α) > 0 independent of ζ

such that 1)–3) remain true in the presence of the following

adversary A. Whenever an offspring x′ is created from x that

satisfies f (x′) > f (x) then A flips a coin. With probability 1−η,

she does nothing. Otherwise, she draws an integer τ ∈ N with

expectation O(1) and with tail bound Pr [τ ≥ τ ′] = e−�(τ ′)

and she may change up to τ bits in the current search point.

We remark that 2) and 3) require parameters as in (1), and

thus do not exclude a large runtime on HOTTOPIC for atypical

parameters, e.g., for large ε.

Proof of Theorem 5: In the print version, we only sketch

the main idea, which is taken from [22]. The full proof can

be found in the online supplementary material. Let δ > 0 be

a suitable constant to be defined later. In the following, we

do not hide any of the constants β, ρ, ε, δ in the O-notation.

Consider the algorithm after t steps. We denote by d(S, t) :=
d(S, x(t)) the density of zero bits in an index set S at time t.

Fix 1 < i ≤ eρn, and consider the algorithm at level ℓ = i−1

in the case that ε ≤ d(Ai, t), d(Ri, t) ≤ ε + δ for Ri := [n]\Ai.

Then, one can show that the drift � := E [d(Ai, t)−d(Ai, t+1)]

of the density of zero bits within Ai toward zero is

� =
εE

[

s(1 − α)s−1
]

± O
(

ε2 + δ
)

n
.

On the other hand, the same drift E [d(Ri, t)− d(Ri, t + 1)] =:

−�′ within Ri can be computed via

�′ =
ε α

1−α
E

[

s(s − 1)(1 − α)σ−1
]

− ε Pr[s = 1] + err

n

12That is, assume that for parent x, the next search point is drawn from
some distribution X , which is not necessarily unbiased. Then, we require that
there is an unbiased distribution X

′ such that Pr [y ∈ X |HT(y) > HT(x)] =
Pr [y ∈ X

′|HT(y) > HT(x)].
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with an error term err = ±O(ε2 + δ). Since the sizes

of Ai and Ri are αn and (1 − α)n, respectively, the total

drift is E [d([n], t) − d([n], t + 1)] = α� − (1 − α)�′. In

particular, the total drift points toward zero if and only if

�′ := ([(1 − α)�′]/α�) < 1. We note that �′ is identical

to � up to error terms, which we can make arbitrarily small

by choosing ε and δ appropriately.

Thus, for 2) the density of zero bits has a drift toward zero

for ε ≤ d(Ai, t), d(Ri, t) ≤ ε + δ. The drift for larger values

of d(Ai, t) and d(Ri, t) is also negative by a suitable coupling

argument, which implies that the density of zero bits falls sig-

nificantly below ε in linear time. At this point, the maximum

level will be reached, and the HOTTOPIC function degenerates

to the ONEMAX function. On the other hand, for 1) the density

of zero bits has a drift away from zero, and moreover we have

precise control over the drift in d(Ai, t) and d(Ri, t). From this

we can show inductively that the density of d([n], t) always

stays well above ε, and that the algorithm never reaches any

level ≥ i+2 directly from level i. In other words, the algorithm

never skips a level. Since there are exponentially many lev-

els, the algorithm needs an exponential time. The statement 3)

follows rather easily from 1) and 2), and we omit the details.

Finally, for the adversary it suffices to show that the adver-

sary does not significantly affect the drift, since all proofs are

based on drift analysis.

V. CONCRETE RESULTS FOR HOTTOPIC

It turns out that Theorem 5 suffices to classify the behav-

ior on HOTTOPIC for all algorithms that we study. On the

first glance, this may seem surprising, since some of them are

population-based, while Theorem 5 explicitly requires popu-

lation size one. Nevertheless, we will see that it implies the

following theorem.

Theorem 6 (HotTopic, Concrete Results): Let δ > 0. We

assume that µ, λ, c = �(1) and Pr [D = 1] = �(1), except for

the (1+(λ, λ))-GA, for which we replace the condition on c by

cγ = �(1). Let c0 = 2.13692 . . . be the smallest constant for

which the function c0x−e−c0(1−x) −(x/[1 − x]) has a solution

α ∈ [0, 1]. For all α ∈ (0, 1), with high probability each of the

following algorithms optimizes the function HOTTOPICα,β,ρ,ε

with parameters β, ρ, ε as in (1) in time O(n log n).

1) The (1 + λ)-EA with c ≤ c0 − δ.

2) The (µ + 1)-EA with c ≤ c0 − δ.

3) The (µ + 1)-GA with arbitrary c = �(1) if µ = µ(c)

is sufficiently large.

4) The (1 + (λ, λ))-GA with cγ ≤ c0 − δ.

5) The (1 + λ)-fEA with m2/m1 ≤ 1 − δ; more generally,

the (1 + λ)-fEA with any distribution that satisfies (19)

for s ∼ D, as well as Pr [D = 1] = �(1).13

6) The (µ + 1)-fEA with parameters as in the preceding

case, if additionally Pr [D = 0] = �(1).

7) The (µ + 1)-fGA with arbitrary D with Pr [D = 0] =
�(1), if µ = µ(D) is sufficiently large.

On the other hand, for each of the following algorithms

there exists α0 ∈ [0, 1] such that with high probability the

13Note that this is not a trivial consequence of Theorem 5, since (18) and
(19) are conditions on the distribution for the best of λ offspring, while the
condition here is on the distribution D for generating a single offspring.

algorithm needs exponential time to optimize the function

HOTTOPICα0,β,ρ,ε with parameters β, ρ, ε as in (1). In the

first four cases we may choose α0 = 0.237134 . . .

1) The (1 + λ)-EA with c ≥ c0 + δ.

2) The (µ + 1)-EA with c ≥ c0 + δ.

3) The (µ + 1)-GA with c ≥ c0 + δ if µ = µ(c) is

sufficiently small.14

4) The (1 + (λ, λ))-GA with cγ ≥ c0 + δ.

5) The (1+λ)-fEA with any distribution satisfying (18) for

s ∼ D.13 In particular, this includes the following cases.

a) The (1 + λ)-fEA with m2/m1 ≥ 1 + δ, if the prob-

ability to flip a single bit is sufficiently small com-

pared to s0 := min{σ ∈ N|m2,≤σ ≥ (1 + δ/2)m1},
where m2,≤σ :=

∑σ
i=1 Pr [D = i]i(i − 1) is the

truncated second falling moment.

b) The (1 + λ)-fEA with any power law distribution

with exponent κ ∈ (1, 2), i.e., Pr [D ≥ σ ] =
�(σ−κ ).

c) The (1+λ)-fEA with Pr [D = 1] ≤ (4/9) ·Pr [D ≥
3] − δ.

6) The (µ+1)-fEA in all preceding cases for (1+λ)-fEA,

if additionally Pr [D = 0] = �(1).

7) The (µ+1)-fGA in all preceding cases for (1+λ)-fEA,

if the population size µ = µ(D) is sufficiently small.14

Remark 1: The inequality f (c, x) := cx − e−c(1−x) − x/(1 −
x) ≥ 0 has a solution x ∈ [0, 1] if and only if c ≥ c0.

To see this, it suffices to observe that the derivative with

respect to c is ∂f /∂c(c, x) = x + (1 − x)e−c(1−x) > 0. Hence,

f (c, x) is strictly increasing in c. The value of c0, and the

unique α0 with f (c0, α0) = 0 can numerically be computed

as follows. Observe that f (c0, α0) = ∂f /∂x(c0, α0) = 0. In

particular, this implies 0 = c0f (c0, α0) − ∂f /∂x(c0, α0) =
(1 − c0(1 − α0) + c2

0(1 − α2
0)α0)/(1 − α0)

2 =: f̃ (c0, α0). This

is a quadratic equation in c0 and has the two solutions c0 =
g±(α0) := (1±

√
1 − 4α0)/(2α0(1−α0)) for α0 ∈ (0, 1/4], and

no solution otherwise. We can plug this term into the definition

of f (c, x), and obtain that α0 is a root of h±(x) := f (g±(x), x).

The function h− is strictly increasing in the interval [0, 1/4]

(the derivative can be checked to be positive in (0, 1/4]) from

h−(0) = −1/e < 0 to h−(1/4) = 1/3 − 1/e2 > 0, and thus

it has a single zero in [0, 1/4], which is α0 = 0.237134 . . .

The function h+ is strictly decreasing from h+(0) = 1 to

h+(1/4) = 1/3 − 1/e2 > 0, and thus has no zero. Finally, c0

can then be computed as the root of f̃ (c0, α0) = 0.

Remark 2: For the fEAs we remark that the interesting

power-law regime κ ∈ [2, 3) is not excluded by the nega-

tive results in Theorem 6 if Pr [D = 1] is sufficiently large.

In particular, a calculation with Mathematica shows that the

Zipf distribution15 with exponent κ ≥ 2 satisfies (19) for

all α ∈ (0, 1). However, note that this holds only if the

distribution is exactly the Zipf distribution; changing any

probability even by a constant factor may lead to exponen-

tial runtimes. Moreover, it is rather questionable whether the

Zipf distribution is efficient for all monotone functions, as

m2/m1 = ∞ in this regime.

14This statement follows trivially from the other results by setting µ = 1,
and it is listed only for completeness.

15That is, Pr [D = k] = k−κ/ζ(κ), where ζ is the Riemann ζ function.
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Proof of Theorem 6: All results will be applications of

Theorem 5. We first outline the general strategy, for concrete-

ness in the case of the (1 + λ)-EA and (1 + λ)-fEA. To apply

Theorem 5 directly, we would need to analyze the distribution

of the number of bit flips in the best offspring in each gener-

ation. Note crucially that this may be very different from the

distribution D that creates a single offspring. However, the key

feature of Theorem 5 is that it allows us to restrict our analysis

to the case when the parent has at most ζn zero bits. Still the

number of bit flips in the fittest offspring is not the same as

D, but we can use a neat trick. We “modify” the algorithm

by choosing the winner offspring in a slightly different way.

If none of the offspring flips a zero-bit, then we do not com-

pare the fittest offspring with the parent x, but rather a random

offspring. Otherwise, we proceed as usual with the fittest off-

spring. Note that this little thought experiment does not change

the behavior of the algorithm, since in the former case all off-

spring are either identical to x, or have strictly worse fitness

than x. So the algorithm just stays with the parent. However, if

we call our weirdly selected winner offspring y, then suddenly

the distribution D′ of y is very similar to the distribution D

of a random offspring, since most of the time we do not flip

any zero-bits. We will be able to use the same trick for all the

algorithms above, even for the population-based ones.

This construction would do the trick, except that it is not

unbiased. However, note that if there is exactly one offspring

y(k) which is fitter than x then the distribution of y(j) is

unbiased conditioned on f (y(j)) > f (x(j)), i.e., the distribu-

tion of y(j) is the same as the (unbiased) distribution D of

a single offspring, conditioned on this offspring being fit-

ter. Therefore, we do have an unbiased distribution in all

cases except for the case that there are at least two off-

spring which are fitter than x. We will attribute all these to

the adversary. Thus, we need to show that the probability

Pr [at least two fitter offspring|at least one fitter offspring] <

η = η(ζ ′, α), and that we have a tail bound on the number of

bit flips in this case. The tail bound follows as in the proof

of Theorem 5 by observing that the probability to flip at least

as many zero-bits as one-bits in Ai decreases exponentially

in the number s of bit flips, if d(Ai) ≤ 1/3. In particular, the

expected number of bit flips in a fitter offspring is O(1). Hence,

the probability to generate a better offspring is at most O(ζ ),

and so is the probability to generate a second fitter offspring.

We can make this probability smaller than η by choosing ζ

sufficiently small, since η = η(ζ ′, α) is independent of ζ . This

shows that the adversary is sufficiently limited.

Before we proceed to the individual algorithms, we first

show in general why it suffices if D′ → D weakly, which

means the following. Let s and s′ denote random variables

from D and D′, respectively, and let us denote pσ := Pr [s =
σ ] and p′

σ := Pr [s′ = σ ]. Then, we assume that for each

σ ∈ N there is ζ0 = ζ0(σ ) > 0 such that for all 0 < ζ ≤ ζ0 we

have pσ = p′
σ ± ξ . We will show that under this assumption

the value of � is approximately the same for s and s′. For

convenience, we repeat the definition of �

� = �(x) =
E

[

s(s − 1)(1 − α)s−1
]

E
[

s(1 − α)s−1
] −

1−α
α

Pr[s = 1]

E
[

s(1 − α)s−1
] .

We define �′ analogously with s′ instead of s. Consider

the expectations in �. We can approximate each of them

up to an error of ξ if we consider the contribution of the

case σ ≤ σ0 for the expectations. More precisely, for each

ξ > 0 there is some constant σ0 ∈ N such that E [s(1 −
α)s−1] =

∑σ0

σ=0 pσ σ(1 − α)σ−1 ± ξ and E [s′(1 − α)s′−1] =
∑σ0

σ=0 p′
σ σ(1 − α)σ−1 ± ξ . Now, we use our assumption that

for each σ ∈ {0, . . . , σ0} there is ζ0 = ζ0(σ ) > 0 such that

pσ = p′
σ ± ξ whenever 0 < ζ < ζ0. Since we only want

to achieve this for a constant number σ0 of values, we can

choose ζ0 := min{ζ0(σ )|σ ∈ {0, . . . , σ0}} > 0, and we obtain

that pσ = p′
σ ±ξ holds for all σ ∈ {0, . . . , σ0} simultaneously.

Therefore,

E

[

s(1 − α)s−1
]

=
σ0∑

σ=0

pσ σ(1 − α)σ−1 ± ξ

=
σ0∑

σ=0

(

p′
σ ± ξ

)

σ(1 − α)σ−1 ± ξ

=
σ0∑

σ=0

p′
σ σ(1 − α)σ−1 ± ξ ·

(

1 +
σ0∑

σ=0

σ(1 − α)σ−1

)

= E

[

s′(1 − α)s′−1
]

± ξ ·
(

2 +
∞
∑

σ=0

σ(1 − α)σ−1

)

.

Since the latter sum converges, we find that we can make

the error term arbitrarily small by making ξ > 0 sufficiently

small. The same argument applies to E [s(s − 1)(1 − α)s−1].

Since, we can approximate each of these terms with arbitrary

precision, and since all terms are finite and positive, we can

make the error � − �′ arbitrarily small by choosing ζ > 0

small enough. In particular, if �(x) < 1−δ then �′ < 1−δ/2

for ζ small enough, and we can apply Theorem 5.

Now, we turn more concretely to (1 + λ)-EA and (1 + λ)-

fEA. In fact, the (1 + λ)-EA is just a special case of the (1 +
λ)-fEA, where the number of bit flips is given by the binomial

distribution BIN(n, c/n), which converges to POI(c) for n →
∞. We first assume that m1 < ∞. Recall that we consider

the case that the parent x has at most ζn zero bits. Then, the

probability that at least one of the λ offspring hits at least

one zero-bit is at most Pr [hit zero-bit] ≤ E [zero-bit flips] =
ζλm1. Hence, for every σ ∈ N we have p′

σ = pσ ± ζλm1. As

outlined above, this implies that �′ comes arbitrarily close to

� if ζ is small enough. For the other case, m1 = ∞, fix ξ > 0,

and choose σ0 ∈ N so large that Pr [s > σ0] ≤ ξ/(2λ). Then

by a union bound, the probability that at least one offspring

flips more than σ0 bits is at most ξ/2. On the other hand,

if s ≤ σ0 for all offspring then as in the previous case the

probability to hit at least one zero-bit is at most ζλσ0 ≤ ξ/2,

where the latter inequality is true for all ζ ≤ 2λσ0ξ . With this

choice, for every σ ∈ N we have pσ = p′
σ ± ξ , as required.

Thus, we may evaluate � with respect to D instead of D′.
Before we evaluate �, we remark that for the (1 + (λ, λ))-

GA, we can use almost the same argument with a slightly

different construction of the winner offspring. For each of the

λ offspring, we do λ crossover with the parent. If none of the

λ2 crossover offspring has a flipped zero-bit compared to x,
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then we chose a random crossover offspring. Otherwise we

choose the offspring as in the algorithm, i.e., we first pick the

fittest mutation offspring z, and then pick the fittest crossover

offspring of z. Since each of the λ2 crossover offspring has in

expectation cγ flipped bits, the probability that there is some

crossover offspring with a flipped zero bit is at most ζλ2cγ .

Since this becomes arbitrarily small as ζ becomes small, the

same argument applies, and we may evaluate � with respect

to D instead of D′.
It thus remains to evaluate � for various D, and check

that � ≥ 1 − ζ or � ≤ 1 + ζ . For the (1 + λ)-EA and

the (1 + (λ, λ))-GA we have a Poisson distribution POI(c).

We use Mathematica to evaluate E [s(1 − α)s−1] = ce−αc,

E [s(s−1)(1−α)s−1] = (1−α)c2e−αc, and Pr [s = 1] = ce−c,

which leads to

� = �(α, c) =
1 − α

α

(

cα − e−(1−α)c
)

.

We want to study whether there is α ∈ [0, 1] with �(α, c) ≥ 1.

Rewriting this condition, this is the case if and only if there

is an α such that the function f (α, c) := cα − e−(1−x)α −
(α/[1 − α]) takes non-negative values. For constant c, the

function is negative for α = 0 and α → 1. Therefore, the func-

tion takes non-negative values for this c if and only if f (·, c)

has a zero, and c0 is defined as the smallest value of c for

which this happens. Moreover, the function is strictly increas-

ing in c (see Remark 1), so any larger value of c will admit

some value of α for which the function is strictly positive.

This proves the statements for the (1 + λ)-EA.

For the (1 + λ)-fEA, we first consider the case (m2/m1) ≤
1 − δ. In this case we may bound the second term of � by 0,

hence

� ≤
E

[

s(s − 1)(1 − α)s−1
]

E
[

s(1 − α)s−1
]

(∗)
≤

E[s(s − 1)]

E[s]
=

m2

m1
≤ 1 − δ

where (*) follows from Chebyshev’s sum inequality since the

factor (s − 1) is increasing and (1 − α)s−1 is decreasing in s.

This settles the cases in which the (1 + λ)-fEA is successful.

For the second part of the theorem, we have already shown

that a distribution satisfying (19) for some 0 < α < 1 needs

exponential time. It remains to show that (19) is satisfied in the

special cases listed in the theorem. Assume first that m2/m1 ≥
1 + δ, and that Pr [s = 1] ≤ 1/(Cs0), where C > 0 is a

sufficiently large constant that we choose later. Here, s0 is as

in the theorem, i.e., m2,≤s0
=

∑s0

σ=1 pσ σ(σ−1) ≥ (1+δ/2)m1.

Since the condition m2/m1 > 1 + δ stays true if we make δ

smaller, we may assume δ ≤ 1/10. Choose α := 1/(C′s0),

where C′ := 16/δ. Then, α ≤ 1/2, which implies 1 − α ≥
e−2α . Hence, for all σ ∈ [s0] we have (1 −α)σ ≥ (1 −α)s0 ≥
e−2αs0 = e−2/C′ ≥ 1 − 2/C′. Therefore,

E

[

s(s − 1)(1 − α)s−1
]

≥
s0∑

σ=1

pσ s(s − 1)

(

1 −
2

C′

)

≥
(

1 +
δ

2

)

m1

(

1 −
2

C′

)

≥
(

1 +
δ

4

)

m1.

Moreover, if we choose C ≥ 8C′/(δm1), then we may bound

1 − α

α
Pr[s = 1] ≤ C′s0 ·

1

Cs0
=

C′

C
≤

δ

8
m1.

Plugging this into �, we get that

� =
E

[

s(s − 1)(1 − α)s−1
]

− 1−α
α

Pr[s = 1]

E
[

s(1 − α)s−1
]

≥
(

1 + δ
8

)

m1

E[s]
= 1 +

δ

8

as required.

The second special case for the (1 + λ)-fEA is that D is

a power law distribution with exponent κ ∈ (1, 2), i.e., pσ =
�(σ−κ). This case is similar as the previous case, since we

have for all s0 ∈ N

m2,≤s0
=

s0∑

σ=1

pσ σ(σ − 1) =
s0∑

σ=1

�
(

σ 2−κ
)

= �
(

s3−κ
0

)

= ω(s0)

where the Landau notation in this case is with respect to s0 →
∞ instead of n → ∞. For α := 1/s0 we have 1 − α ≥ e−2α

and thus (1 − α)s0 ≥ e−2. Hence, if s0 is a sufficiently large

constant

E

[

s(s − 1)(1 − α)s−1
]

≥ e−2m2,≤s0
≥

2

δ
s0 =

2

δ
·

1

α

≥
2

δ
·

1 − α

α
Pr[s = 1].

Therefore,

� ≥
(

1 − δ
2

)

E
[

s(s − 1)(1 − α)s−1
]

E
[

s(1 − α)s−1
] ≥

(

1 − δ
2

)

m2

m1
≥ 1 +

δ

4

where the last step holds for all δ ≤ 1/2.

The third special case for the (1 + λ)-fEA is that p1 ≤
(4/9) · p3 − δ. In this case, choose α = 1/3 and observe that

3p3(1 − α)2 ≥ p1/α + 3δ. Using this

3
∑

σ=1

pσ σ(σ − 1)(1 − α)σ−1 −
1 − α

α
p1

≥ 2p2(1 − α) + 3p3(1 − α)2 +
p1

α
+ 3δ −

1 − α

α
p1

=
3

∑

σ=1

pσ σ(1 − α)σ−1 + 3δ.

Hence,

� ≥
∑3

σ=1 pσ σ(1 − α)σ−1 + 3δ +
∑∞

σ=4 pσ σ(σ − 1)(1 − α)σ−1

E
[

s(1 − α)s−1
]

≥
E

[

s(1 − α)s−1
]

+ 3δ

E
[

s(1 − α)s−1
] = 1 + �(1).

This settles the last case of the (1 + λ)-fEA.

So far we have analyzed all cases with µ = 1, so let us

turn to µ > 1. We first give a general argument for the case

that all individuals in the population have at most ζn zero bits,

for some sufficiently small constant ζ > 0 which may depend

on the constants in the theorem (e.g., on µ). In the following,

we will use the Landau notation only to hide factors that are
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independent of ζ . For example, A = O(B) means that B/A

is bounded by some constant which is independent of ζ (but

which may depend on the constants in the theorem).

Assume that x(1) is a search point of maximal fitness in the

current population, and let y be the offspring in the current

generation. We observe that Pr [y = x(1)] = �(1): for the GAs

there is a constant probability that y is generated by crossing

x(1) with itself, since µ = O(1). For the EAs there is a con-

stant probability to make a mutation without bit flips. (For the

fEAs and fGAs this is an explicit condition.) Moreover, since

x(1) has maximal fitness in the population, with constant prob-

ability both x(1) and y survive the selection step. (They may

be eliminated if the whole population has the same fitness.)

By the same argument, there is a small, but �(1) probability

that x(1) duplicates in µ successive rounds, and all its offspring

survive all µ−1 selection steps. Hence, with probability �(1)

the population degenerates to µ copies of the same individu-

als. We say in this case that the search point and the round

are consolidated. Since this happens in each batch of µ rounds

with constant probability, the expected time until some search

point is consolidated is O(1).

We first consider the (µ + 1)-EA and (µ + 1)-fEA. To

apply Theorem 5, we will reinterpret the (µ+1) algorithms as

follows. Assume that at some point in time t1 there is a con-

solidated search point with at most ζn/2 zero bits. We call

this search point x(1). Then, we define recursively ti to be the

minimal t > ti−1 such that there is a consolidated search point

at time t. We define x(i) to be the consolidated search point

at time ti. In this way, the sequence of x(i) fits the description

of an algorithm in Theorem 5, although the process of going

from x(i−1) to x(i) is rather complex. To complete the descrip-

tion, we still need to define the offspring x′ that appears in the

algorithm description in Theorem 5. We define it as the first

offspring that is created from x. If x′ or x are consolidated, then

this fits the definition of the algorithm.16 Otherwise we blame

it to the adversary. Thus we need to show that the adversary

is limited as required by Theorem 5. Note that the distribu-

tion of x′ is just the distribution D of the mutation operator.

Thus, the same results as for the (1 + λ)-EA and (1 + λ)-fEA

immediately carry over if we can show that the adversary is

sufficiently limited.

To estimate the effect of the adversary, assume that the cur-

rent consolidated search point x has at most ζn zero bits, and

consider the first mutant x′ with f (x′) > f (x). Afterwards,

the population consists of µ − 1 copies of x and one copy

of x′. In each subsequent round, there are four (nonexclusive)

possibilities.

1) Another copy of x is created. This happens with proba-

bility �(1).

2) Another copy of x′ is created. This happens with prob-

ability �(1).

3) A mutation �= x, x′ is created with no flipped zero bit.

16In fact, if f (x) = f (x′) then this does not quite fit the description of
the algorithm, since we might consolidate x while the elitist algorithm would
always choose x′. However, the function HT is symmetric with respect to any
search points which have the same fitness, i.e., for any two such search points

there is an automorphism of {0, 1}d which interchanges the search points, but
which leaves HT invariant. Thus it does not matter which of the two search
points we choose.

4) A mutation is created with at least one flipped zero bits.

This happens with probability O(ζ ).

Note that until 4) happens, all search points in the population

are either equal to x or x′, or are strictly dominated by x or

x′. In particular, all search points in the population are either

copies of x′, or have a strictly worse fitness than x′. Therefore,

x′ will be consolidated after an expected O(1) number of steps,

unless case 4) occurs before that. Thus, the probability that x′

is consolidated before case 4) occurs is 1 − O(ζ ). This means

that the adversary may only act with probability O(ζ ), which

is sufficiently small if ζ is small.

It remains to estimate the number τ of bits in which x

differs from the next consolidated search point y. Note that

in any sequence of µ = O(1) rounds, we have probability

�(1) that the population is consolidated, so the probability

that we see at least k rounds before consolidation drops expo-

nentially in k. This implies that E [τ ] = O(1). Note that it

would already imply exponentially falling tail bounds on τ

for the (µ + 1)-EA, but for the general case of the (µ + 1)-

fEA we need to use a similar argument as for the (1+λ)-fEA,

as follows.

The next consolidated search point y must satisfy HT(y) ≥
HT(x), since otherwise it could not supersede x in the pop-

ulation. Let i := ℓ(x) + 1 be the index of the current hot

topic, and let s be the number of bit flips to create x′. Then,

HT(x′) ≥ HT(x) can only happen if either the level increases,

or d(Ai) does not increase. Thus, Pr [HT(x′) ≥ HT(x)|s =
σ ] = e−�(σ), since the number of one-bits in Ai increases

in expectation by ασ(1 − 2ζ ) = �(σ), and likewise for the

number of one-bits in Bi+1. Hence, Pr [s ≥ σ ] = e−�(σ).

Similarly, if x′′ is the next offspring (either from x or from

x′), then the probability that x′′ survives selection in this round

decreases exponentially in the number s′′ of bit flips, since

Pr [HT(x′′) ≥ HT(x)] = e−�(s′′). Repeating this argument, for

any fixed number of rounds the total number of bit flips in

these rounds has an exponential tail bound. Since the num-

ber of rounds before consolidation has also an exponential

tail bound, this proves the exponential tail bound on τ . This

concludes the proof for the (µ + 1)-EA and (µ + 1)-fEA.

Note for later use that the same tail bound argument also

applies for the (µ + 1)-GA and (µ + 1)-fGA since crossover

can only change bits that have been touched since the last con-

solidated round. So the total number of bits that are touched

between two consolidated rounds does not increase.

For the (µ+1)-GA and (µ+1)-fGA, note that the exponen-

tial runtime statements for small µ follow trivially from the

(1+1)-EA and (1+1)-fEA, since they agree with (µ+1)-GA

and (µ + 1)-fGA if µ = 1. So let us consider the upper run-

time bounds for large µ. The situation is similar to the one for

(µ + 1)-EA and (µ + 1)-fEA, but with the crucial difference

that the errors made in the creation of x′ may be repaired by

crossovers between x and x′. Other than before, we will apply

part 3) of Theorem 5.

Assume as before that x is a consolidated search point. Note

that crossovers cannot create new search points, so assume that

an offspring x′ �= x with HT(x′) > HT(x) is created from x

by a mutation. Let S01 and S10 be the sets of bits that were

flipped from zero to one and from one to zero, respectively,
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and let s01 = |S01|, s10 = |S10|, and s = s01 + s10. Note that

s01 > 0. As before, we have Pr [s ≥ σ ] = e−�(σ). Let σ0 be a

constant such that Pr [s ≥ σ0] ≤ η/4, where η is the constant

from Theorem 5. Note that by making ζ small enough, we

can also bound the probability that an additional zero-bit is

flipped before the next consolidated round by η/4. So assume

that s ≤ σ0 and that no additional zero-bits are flipped until

consolidation.

Let k be the number of search points in the population that

are not copies of x. In rounds where the parents of mutation

or crossover are picked among the copies of x, the population

does not change. Otherwise, i.e., when at least one parent is

not x, there is a probability of at least 1/k that it is a copy of

y. With probability at least 1/2 the operation in this round is

a crossover (crossover has a larger probability than mutation

since two parents are picked). Moreover, if k ≤ µ/2, then with

probability at least 1/2 it is a crossover with x. Therefore, the

expected number of crossover children between x and x′ is

at least
∑µ/2

k=1 1/(4k) ≥ (1/4) ln(µ/2). Note that this becomes

arbitrarily large if µ is large. In particular, for sufficiently large

µ, with probability at least 1 − η/4 there will be at least C2

crossovers between x and x′ in expectation, for any desired

constant C2 > 0.

Now observe that since s ≤ σ0, every crossover copy

between x and x′ has probability at least 2−σ0 = �(1) to retain

the bits in S01 from x′ and to pick all bits in S10 from x. In

particular, if µ is large enough, then with probability 1 − η/4

this happens at least once. If it happens, then the offspring

y dominates x, x′, and any crossover of x, and x. Moreover,

since we assume that no zero-bits are flipped by mutations,

it also dominates any mutation offspring of any search point

in the population. Therefore, the population must consolidate

with y. In this case we say that x′ was fully repaired. Note

that whenever an offspring x′ of a consolidated search point

x with at most ζn zero bits is created with HT(x′) > HT(x),

then it has probability at least 1 − η to be fully repaired.

We are now ready to explain how we apply Theorem 5

(c). As before, let x(1) be the first consolidated search point.

Then, we define recursively ti to be the minimal t > ti−1 such

that there is a consolidated search point at time t, and such

that at least one mutation happens in rounds ti−1, . . . , t. The

latter condition simply means that we ignore rounds in which

a consolidated search point performs a crossover with itself.

We define x(i) to be the consolidated search point at time ti,

and we define x′(i) to be the first mutation offspring after time

ti. If x has more than ζn zero bits then we define the winner

offspring y(i) to be x′(i), which gives an unbiased distribution.

If x has at most ζn zero-bits, then we define y(i) := x(i) if

HT(x′(i)) ≤ HT(x(i)), and we define y(i) to be the fully repaired

x′(i) if HT(x′(i)) ≤ HT(x(i)). In the latter case, we have shown

that indeed x(i+1) = y(i) with probability at least 1 − η, so we

may blame any other outcome to the adversary. The power of

the adversary is limited in the same way as for the (µ+1)-EA

and (µ+1)-fEA, so we may indeed apply Theorem 5 (c). This

concludes the proof.

Remark 3: We remark that the constructions for (1+λ)-EA

and (µ+1)-EA can be combined, and that the same arguments

carry over and give the same runtimes as in Theorem 6 for the

(µ + λ)-EA, and likewise for the (µ + λ)-fEA. However, due

to the considerable complexity of the individual arguments,

we refrain from proving this statement.

VI. CONCLUSION

We have studied a large set of algorithms, and we have

shown that in all cases without crossover, there is a dichotomy

with respect to a parameter (c, cγ , or �, where the latter one is

related to m2/m1) for optimizing the monotone function fam-

ily HOTTOPIC. If the parameter is small, then the algorithms

need time O(n log n); if the parameter is large then they need

exponential time on some instances. In the cases (1 + λ)-EA,

(1 + 1)-fEA (1 + (λ, λ))-GA, and for good start points also

(1 + λ)-fEA, if the parameter is small, then we could show

that the algorithms are actually fast on all monotone functions.

However, there are many open problems left, and we conclude

this paper by a selection of those.

1) We have analyzed the algorithms theoretically for the

case n → ∞. Experiments would be interesting to

understand for what values of n the effects become

observable. For example, do larger values of λ and µ

delay the detrimental effect of HOTTOPIC, so that it is

only visible for larger n?17

2) In some cases our runtime bounds for small parameter

values hold only for HOTTOPIC, but the general status of

monotone functions remains unclear ((µ + 1)-EA, (µ +
1)-fEA). So does a small mutation parameter guarantee

a small runtime on all monotone functions?

3) We could show that genetic algorithms are superior to

EAs on the HOTTOPIC functions. However, is the same

true in general for monotone functions? Is it true that the

(µ + 1)-GA and (µ + 1)-fGA are fast for all monotone

functions if µ is large enough?

4) It seems important to understand more precisely how

large µ should be in GAs to cope with larger mutation

parameters. For example, for the (µ+1)-GA with muta-

tion parameter c, how large does µ need to be so that

it is still fast on all HOTTOPIC instances?

5) What are the smallest mutation parameters for which

there are hard monotone functions? E.g., for the (1 +
1)-EA, what is the smallest c̃ such that the runtime is

polynomial for all c < c̃? We know that c̃ ≤ c0, and it

was recently shown that c̃ > 1 [21], but neither upper

nor lower bound seem to be tight. Moreover, for c < c̃,

is the runtime always O(n log n)?

6) Our proofs for population sizes µ > 1 rely on the fact

that in all considered algorithms diversity is lost close

to the optimum. Do the results stay the same if diver-

sity is actively maintained, for example by duplication

avoidance [27], [31] or by genotypical or phenotypical

niching [30]?

7) How is the performance of algorithms that change the

mutation strength dynamically (parameter control), e.g.,

with the 1/5-th rule? In the introduction we have given

an intuition why this might be risky, so what rules can

optimize HOTTOPIC efficiently?

17The supplementary online material contains a few experimental results,
which show that the dichotomy can also be clearly observed in data. However,
the set of experiments is much too small to give a fine-grained picture.
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8) While HOTTOPIC is defined in a discrete set-

ting, the underlying intuition is related to contin-

uous optimization. Is there a continuous analogue

of HOTTOPIC, and what is the performance of

optimization algorithms like the CMA-ES or particle

swarm optimization?
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