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PREFACE 

It has been ten years since the publication of John Holland's seminal book, Adaptation in Natural 

and Artificial Systems. One of the major contributions of this book was the formulation of a class of 

algorithms, now known as Genetic Algorithms (GA's). which incorporates metaphors from natural 
population genetics into artificial adaptive systems. Since the publication of Holland's book, interest 

in GA's has spread from the University of Michigan to research centers throughout the U.S., Canada, 
and Great Britain. GA's have been applied to a striking variety of areas, from machine learning to 
image processing to combinatorial optimization. The great range of application attests to the power 

and generality of the underlying approach. However, much of the GA research has been reported 

only in Ph. D. theses and informal workshops. This Conference was organized to provide a forum in 

which the diverse groups involved in GA research can share results and ideas concerning this 

exciting area. 
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PROPERTIES OF THE BUCKET BRIGADE ALGORITHM 

John H. Ho II and 

The University of Michigan 

The bucket brigade algorithm is designed to solve the apportionment 

of credit problem for massively parallel. message-passing, rule-based 

systems. The apportionment of credit problem was recognized and 

explored in one of the earl iest significant works in machine learning 

(Samuel [1959]). In the context of rule-based systems it is the problem of 

deciding which of a set of early acting rules should receive credit for 

"setting the stage" for later. overtly successful actions. In the systems of 

interest here. in which rules conform to the standard condition/action 

paradigm. a rule's overall usefulness to the system is indicated by a 

parameter called its strength. Each time a rule is active. the bucket 

brigade algorithm modifies the strength so that it provides a better 

estimate of the rule's usefulness in the contexts in which it is activated. 

The bucket brigade algorithm functions by introducing an element of 

competition into the process of deciding which rules are activated. 

Normally. for a parallel message-passing system. all rules having 

condition parts sat isfied by some of the messages posted at a given time 

are automatically activated at that time. However. under the bucket 

brigade algorithm only some of the satisfied rules are activated. Each 

satisfied rule makes a bia based in part on its strength. and only the 

highest bidders become active (thereby posting the messages speCified by 

their action parts). The size of the bid depends upon both the rule's 

strength and the specificity of the rule's conditions. (The rule's 

specificity is used on the broad assumption that. other things being equal. 

the more information required by a rule's conditions, the more likely it is 

to be "relevant" to the particular situation confronting it). In a specific 

version of the algorithm used for classifier systems, the bid of classifier 

C at time t is given by 

b(C. t) - cr(C)s(C. t). 

where r(C) is the specificity of rule C (equal, for classifier systems, to 

the difference between the total number of defining positions in the 

condition and the number of "don't cares" in the condition). s(C.t) is the 

strength of the rule at time t, and c is a constant considerably less than I 
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(e.g., 1 14 or 1/8). 

The essence of the bucket brigade algorithm is its treatment of each 

rule as a kind of mid-level entrepreneur (a "middleman") in a complex 

enconomy. When a rule C wins the competition at time t, it must decrease 

its strength by the amount of the bid. Thus its strength on time-step t+ I, 

after winning the competition, is given by 

S(C, t+ 1) = S(C, t) - b(C, t) .. (1 - cr(C»S(C, t). 

In effect C has paid for the privilege of posting its message. Moreover 

this amount is actually paid to the classifers that sent messages 

satisfying C's conditions -- in the simplest formulation the bid is split 

equally amongst them. These message senders are C's suppliers, and each 

receives its share of the payment from the consumer C. Thus, if C 1 has 

posted a message that satisfies one of C's conditions, C1 has its strength 

increased so that 

s(C 1, t+1) = S(C 1, t) + b(C, t)/n(C, t) = (1 - cr(C)/n(C,t»S(C,t), 

where n(C, t) is the number of classifiers sending messages that satisfy C 

at time t. 

In terms of the economic metaphor, the suppliers (C I} are paid for 

setting up a situation usable by consumer C. C, on the next time step, 

changes from consumer to supplier because it has posted its message. If 

other classifiers then bid because they are satisfied by C's message, and if 

they win the bidding competition, then C in turn will receive some. fraction 

of those bids. C's survival in the system depends upon its turning a profit 

as an intermediary in these local transactions. In other words, when C is 

activated, the bid it pays to its suppliers must be less (or, at least, no 

more) than the average of the sum of the payments it receives from its 

consumers. 

It is important that this process involves no complicated 

"bookkeeping" or memory over long sequences of action. When activated, C 

simply pays out its bid on one time-step, and is immediately paid by its 

consumers (if any) on the next time-step. The only variation on this 

transaction occurs on time-steps when there is payoff from the 

environment. Then, all classifiers active on that time-step receive equal 

fractions of the payoff in addition to any payments from classifiers active 

on the next time-step. In effect, the environment is the system's ultimate 

consumer. From a global point of view, a given classifier C is likely to be 
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profitable only if its usual consumers are profitable. The profitability of 

any chain of consumers thus depends upon their relevance to the ultimate 

consumer. Stated more directly, the profitability of a classifier depends 

upon its being coupled into sequences leading to payoff. 

As a way of illustrating the bucket brigade algorithm, consider a set 

of 2-condition classifiers where, for each classifier, condition 1 attends 

to messages from the environment and condition 2 attends to messages 

from other classifiers in the set. As above, let a given classifier C have a 

bid fraction b(C) and strength s(C,t) at time t. Note that condition 1 of C 

defines an equivalence class E in the environment consisting of those 

environmental states producing messages satisfying the condition. 

Consider now the special case where the activation of C produces a 

response r that transforms states in E to states in another equivalence 

class E' having an (expected) payoff u. Under the bucket brigade 

algorithm, when C wins the competition under these circumstances its 

strength will change from s(C,t) to 

s(C,t+ 1) • s(C,t) - b(C)s(C,t) + u 

+ (any bids C receives from classifiers active on 

the next time-step). 

Assuming the strength of C is small enough that its bid b(C)s(C,t) is 

considerably less than u, the usual case for a new rule or for a rule that 

has only been activated a few times, the effect of the payoff is a 

considerable strengthening of rule C. 

This strengthening of C has two effects. First, C becomes more likely 

to win future competitions when its conditions are satisfied. Second, 

rules that send messages satisfying one (or more) of C's conditions will 

receive higher bids under the bucket brigade, because b(C)s(C,t+ 1) > 
b(C)s(C,t). 

Both of these effects strongly influence the development of the 

system. The increased strength of C means that response r wi II be made 

more often to states in E when C competes with other classifiers that 

produce different responses. If states in E' are the only payoff states 

accessible from E, and r is the only response that will produce the 

required transformation from states in E to states in £', then the higher 

probability of a win for C translates into a higher payoff rate to the 

classifier system. 
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Of equal importance, C's higher bids mean that rules sending 

messages satisfying C's second condition wi 11 be additionally strengthened 

because of C's higher bids. Consider, for example, a classifier Co that 

transforms environmental states in some class 10 to states in class £ by 

evoking response r o. That Is, Co acts upon a causal relation in the 

environment to "set the stage- for C. If Co also sends a message that 

satisfies C's second condition, then Co will benefit from the "stage 

setting" because C's higher bid is passed to it via the bucket brigade. 

It is instructive to contrast the ·stage setting" case with the case 

where some classifier, say C l' sends a message that satisfies C but does 

not transform states in 9 (the environmental equivalence class defined 

by Its f1rst condition) to states In E. That Is, C 1 attempts to -parasitize

C, extracting bids from C via the bucket brigade without modifying the 

environment in ways suitable for C's action. Because C1 is not 

instrumental in transforming states in 9 to states in £, it will often 

happen that activation of C 1 Is not followed by act1vation of C on the 

subsequent time-step because C's first (environmental) condition is not 

satisfied. Every time C 1 is activated without a subsequent activation of C 

it suffers a loss because it has paid out its bid b(C 1 )s(C 1 ,t), without 

receiving any income from C. Eventually C l's strength will decrease to the 

point that it is no longer a competitor. (There is a more interesting case 

where Co and C 1 manage to become active simultaneously, but that goes 

beyond the confines of the present Illustratlon). 

One of the most Important consequences of the bidding process is the 

automatiC emergence of default hierarchies in response to complex 

environments. For rule-based systems a -default" rule has two basIc 

pro pert f es: 

1) It Is a general rule with relatIvely few specified properties and 

many -don't cares- In Its condition part, and 

2) when It wIns a competition It Is often In error, but It stilI 

manages to profit often enough to survive. 

I t is clear that a default rule is preferable to no rule at all. but, because it 

is often in error, it can be improved. One of the simplest improvements is 

the addition of an Nexceptlon- rule that responds to Situations that cause 
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the default rule to be in error. Note that, in attempting to identify the 

error-causing Situations, the condition of the exception rule specifies a 

subset of the set of messages that satisfy the default rule. That is, the 

condition part of the exception rule refines the condition part of the 

default rule by using additional identifying bits (properties). Because 

rule discovery algorithms readily generate and test refinements of 

existing strong rules, useful exception rules are soon added to the system. 

As a direct result of the bidding competition, an exception rule, once 

in place, actually aids the survival of its parent default rule. Consider the 

case where the default rule and the exception rule attempt to set a given 

effector to a different values. In the typical classifier system this 

conflict is resolved by letting the highest bidding rule set the effector. 

Because the exception rule is more specific than the default rule, and 

hence makes a higher bid, it usually wins this competition. In winning, the 

exception rule actually prevents the default rule from paying its bid. This 

outcome saves the the default rule from a loss, because the usual effect 

of an error, under the bucket brigade, is activation of consumers that do 

not bid enough to return a profit to the default rule. In effect the 

exception protects the default from some errors. Simllar arguments 

apply, under the bucket brigade algorithm, when the default and the 

exception only influence the setting of effectors indirectly through 

intervening, coupled classifiers. 

Of course the exception rules may be imperfect themselves, selecting 

some error-causing cases, but making errors in other cases. Under such 

Circumstances, the exception rules become default rules relative to more 

detailed exceptions. Iteration of the above process yields an ever more 

refined, and efficient, default hierarchy. The process improves both 

overall performance and the profitability of each of the rules in the 

hierarchy. It also uses fewer rules than would be required if all the rules 

were developed at the most detalled level of the hierarchy (see Holland, 

Ho lyoak, Nisbett, and Thagard [1986]). The bucket brigade a Igori thm 

strongly encourages the top-down discovery and development of such 

hierarchies (cf. Goldberg [1983] for a concrete example). 

At first sight, consideration of long sequences of coupled rules would 

seem to uncover an important limitation of the bucket brigade algorithm. 

Because of its local nature, the bucket brigade algorithm can only 

propagate strength back along a chain of suppliers through repeated 

activations of the whole sequence. That is, on the first repetition of a 
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sequence leading to payoff, the increment in strength is propagated to the 

immediate precursors of the payoff rule(s). On the second repetition it is 

propagated to the precursors of the precursors, etc. Accordingly, it takes 

on the order of n repetitions of the sequence to propagate the increments 

back to rules that "set the stage" n steps before the final payoff. However, 

this observation is misleading because certain kinds of rule can serve to 

"bridge" long sequences. 

The simplest "bridging action" occurs when a given rule remains 

active over, say, T successive time-steps. Such a rule passes increments 

back over an interval of T time-steps on the next repetition of the 

sequence. This Qualification takes on importance when we think of a rule 

that shows perSistent activity over an epoclJ -- an interval of time 

characterized by a broad plan or activity that the system is attempting to 

execute. For the activity to be perSistent, the condition of the 

epoch-marking rule must be general enough to be satisfied by just those 

properties or cues that characterize the epoch. Such a rule, if strong, 

marks the epoch by remaining active for its duration. 

To extract the consequences of this persistent activation, consider a 

concrete plan involving a sequence of activities, such as a "going home" 

plan. The sequence of coupled rules used to execute this plan on a given 

day will depend upon variable requirements such as "where the car is 

parked", "what errands have to be run", etc. These detailed variations will 

call upon various combinations of rules in the system's repertoire, but the 

epoch-marking "going home" rule 0 will be active throughout the execution 

of each variant. In particular, it will be active both at the beginning of the 

epoch and at the time of payoff at the end of the plan ("arrival home"). As 

such it "bridges" the whole epoch. 

Consider now a rule I that initiates the plan and is coupled to (sends a 

message satisfying) the general epoch-marking rule D. The first 

repetition of the sequence initiated by I will result in the strength of I 

being incremented. This comes about because 0 is strengthened by being 

active at the time of payoff and, because it is a consumer of I's message, 

it passes this increment on to I the very next time I is activated. 0 

"supports" I as an element of the "going home" plan. The result is a kind of 

one-shot learning in which the earl iest elements in a plan are rewarded on 

the very next use. This occurs despite the local nature of the bucket 

brigade algorithm. It requires only the presence of a general rule -- a kind 

of default -- that is activated when some general kind of activity or goal 
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is to be attained. An appropriate rule discovery algorithm, such as a 

genetic algorithm, will soon couple more detailed rules to the 

epoch-marking rule. And, much as in the generation of a default hierarchy, 

these detailed rules can give rise to further refined offspring. The result 

is an emergent plan hierarchy going from a high-level sketch through 

progressive refinements yielding ways of combining progressively more 

detailed components (rule clusters) to meet the particular constraints 

posed by the current state of the environment. In this way a llmited 

repertoire of rules can be combined in a variety of ways, and in parallel, to 

meet the perpetual novelty of the environment. 
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GENETIC ALGORITHMS AND RULE LEARNING 
IN 

DYNAMIC SYSTEM CONTROL 

David E. Goldberg 
Department of Engineering Mechanics 

The University of Alabama 

ABSTRACT 

In this paper, recent research resul ts 
[I] are presented which demonstrate the 
effectiveness of genetic algorithms in the 
control of dynamic systems. Genetic algo
rithms are search algorithms based upon the 
mechanics of natural genetics. They combine 
a survival-of-the-fittest among string 
structures with a structured, yet randomized, 
information exchange to form a search algo
rithm with some of the innovative flair of 
human search. While randomized, genetic 
algorithms are no simple random walk. They 
efficiently exploit historical information to 
speculate on new search points with improved 
performance. 

Two applications of genetic algorithms 
are considered. In the first, a tripartite 
genetic algorithm is applied to a parameter 
optimization problem, the optimization of a 
serial natural gas pipeline with 10 com
pressor stations. While solvable by other 
methods (dynamic programming, gradient 
search, etc.) the problem is interesting as a 
straightforward engineering application of 
genetic algorithms. Furthermore, a surpris
ingly small number of function evaluations 
are required (relative to the size of the 
discretized search space) to achieve near
optimal performance. 

In the second application, a genetic 
algorithm is used as the fundamental learning 
algorithm in a more complete rule learning 
system called a learning classifier system. 
The learning system combines a complete 
string rule and message system, an apportion
ment of credit algorithm modeled after a 
competitive service econOlllY, and a genetic 
algorithm to form a system which continually 
evaluates its present rules while forming 
new, possibly better, rules from the bits and 
pieces of the old. In an application to the 
control of a natural gas pipeline, the 
learning system is trained to control the 
pipeline under normal winter and summer 
conditions. It is also trained to detect the 
presence or absence of a leak with increasing 
accuracy. 

INTRODUCTION 

Many industrial tasks and machines that 
once required human intervention have been 
all but completely automated. Where once a 
person tooled a part, a machine tools, 
senses, and tools again. Where once a person 
controlled a machine, a computer controls, 
senses, and continues its task. Repetitive 
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tasks requiring a high degree of precision 
have been most susceptible to these extreme 
forms of automated control. Yet despite 
these successes, there are still many tasks 
and mechanisms that require the attention of 
a human operator. Piloting an airplane, 
con trolling a pipeline, driving a car, and 
fixing a machine are just a few examples of 
ordinary tasks which have resisted a high 
degree of automation. What is it about these 
tasks that has prevented more autonomous, 
automated control? Primarily, each of the 
example tasks requires, not just a single 
capability, but a broad range of skills for 
successful performance. Furthermore, each 
task requires performance under circumstances 
which have never been encountered before. 
For example, a pilot must take off, navigate, 
control speed and direction, operate auxilia
ry eqUipment, communicate with tower control, 
and land the aircraft. He may be called upon 
to do any or all of these tasks under extreme 
weather conditions or with equipment malfunc
tions he has never faced before. Clearly, 
the breadth and perpetual novelty of the 
piloting task (and similarly cOlllplex task 
environments) prevents the ordinary algo
rithmic solution used in more repetitive 
chores. In other words, di ff icul t environ
ments are difficult because not every possi
ble outcome can be anticipated in advance, 
nor can every possible response be pre
defined. This truth places a premium on 
adaptation. 

In this paper, we attack some of these 
issues by examining research resul ts in two 
distinct, but related problems. In the 
first, the steady state control of a serial 
gas pipeline is optimized using a genetic 
algorithm. While the optimization problem 
itself is unremarkable (a straightforward 
parameter optimization problem which has been 
sol ved by other methods), the genetic al go
rithm approach we adopt is noteworthy because 
it draws from the most successful and longest 
lived search algorithm known to man (natural 
genetics + survival-of-thefittest). Further
more, the GA approach is provably efficient 
in its exploitation of important similari
ties, and thus connects to our own notions of 
innovative or creative search. In the second 
problem, we use a genetic algorithm as a 
primary discovery mechanism in a larger rule 
learning system called a learning 
classifier system (LCS). In this particular 
application the LCS learns to control a 
simulated natural gas pipeline. Starting 
from a random rule set the LCS learns appro
priate rules for high performance control 
under normal sUllUller and winter conditions; 
additionally it learns to detect simulated 
leaks with increasing accuracy. 



A TRIPARTITE GENETIC ALGORITHM 

Genetic algorithms are different from 
the normal search methods encountered in 
engineering optimization in the following 
ways: 

1. GA's work with a coding of the parameter 
set not the parameters themselves. 

2. GA's search from a population of points. 

3. GA's use probabilistic not deterministic 
transition rules. 

Genetic algorithms require the natural 
parameter set of the optimization problem to 
be coded as a finite length string. A 
variety of coding schemes can and have been 
used successfully. Because GAs work directly 
wi th the underlying code they are difficul t 
to fool because they are not dependent upon 
continuity of the parameter space and deriva
tive existence. 

In many optimization methods, we move 
gingerly from a single point in the decision 
space to the next using some decision rule to 
tell us how to get to the next point. This 
point-by-point method is dangerous because it 
often locates false peaks in multimodal 
search spaces. GA's work from a database of 
points simultaneously (a population of 
strings) climbing many peaks in parallel, 
thus reducing the probability of finding a 
false peak. 

Unlike many methods, GAs use probabi
listie decision rules to guide their search. 
The use of probability does not suggest that 
the method is simply a random search, howev
er. Genetic algorithms are quite rapid in 
locating improved performance. 

For our work, we may consider the 
strings in our population of strings to be 
expressed i~ a binary alphabet containing the 
characters to,l}. Each string is of length 1 
and the population contains a total of n such 
strings. Of course, each string may be 
decoded to a set of physical parameters 
according to our design. Additionally, we 
assume that with each string (parameter set) 
we may evaluate a fitness value. Fitness is 
defined as the non-negative figure of merit 
we are maximizing. Thus, the fitness in 
genetic algorithm work corresponds to the 
objective function in normal optimization 
work. 

A simple genetic algorithm which gives 
good results is composed of three operators: 

1. Reproduction 

2. Crossover 

3. Mutation 

With our simple genetic algorithm we 
view reproduction as a process by which 
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individual strings are copied according to 
their fitness. Highly fit strings receive 
higher numbers of copies in the mating pool. 
There are many ways to do this; we simply 
give a proportionately higher probability of 
reproduction to those strings with higher 
fitness (objective function value). Repro
duction is thus the survival-of-the-fittest 
or emphasis step of the genetic algorithm. 
The best strings make more copies for mating 
than the worst. 

After reproduction, simple crossover may 
proceed in two steps. First, members of the 
newly reproduced strings in the mating pool 
are mated at random. Second, each pair of 
strings undergoes crossing over as follows: 
an integer position k along the string is 
selected uniformly at random on the interval 
(1,1-1). Two new strings are created by 
swapping all characters between positions 1 
and k inclusively. 

For example, consider two strings A and 
B of length 7 mated at random from the mating 
pool created by previous reproduction: 

A E a1 a2 a3 a4 as a6 a7 
B E b1 b2 b3 b4 b5 b6 b7 

Suppose the roll of a die turns up a four. 
The resulting crossover yields two new 
strings A' and B' following the partial 
exchange 

A' E b1 b2 b3 b4 as a6 a7 
B' = a1 a2 a3 a4 b5 b6 b7 

The mechanics of the reproduction and 
crossover operators are surprisingly simple, 
involving nothing more complex than string 
copies and partial string exchanges; however, 
together the emphasis step of reproduction 
and the structured, though randomized, 
information exchange of crossover give 
genetic algorithms much of their power. At 
first this seems surprising. How can such 
simple (computationally trivial) operators 
result in anything useful let along a rapid 
and relatively robust search mechanism? 
Furthermore, doesn't it seem a little strange 
that chance should play such a fundamental 
role in a directed search process? The 
answer to the second question was well 
recognized by the mathematician J. Hadamard 
{2J : 

We shall see a little later that 
the possibility of imputing discov
ery to pure chance is already 
excluded •••• On the contrary, that 
there is an intervention of chance 
but also a necessary work of 
unconsciousness, the latter imply
ing and not contradicting the 
former •••• Indeed, it is obvious 
that invention or discovery, be it 
in mathematics or anywhere else, 
takes place by combining ideas. 

The suggestion here is that while 
discovery is not a result of pure chance, it 



is almost certainly guided by directed 
serendipity. Furthermore, Hadamard hints 
that a proper role for chance is to cause the 
juxtaposition of different notions. It is 
interesting that genetic algorithms adopt 
Hadamard I s mix of direction and chance in a 
manner which efficiently builds new solutions 
from the best partial solutions of previous 
trials. 

To see this, consider a population of n 
strings over some appropriate alphabet coded 
so that each is a complete IDEA or prescrip
tion for performing a particular task (in our 
coming example, each string is a description 
of how to operate all 10 compressors on a 
natural gas pipeline.). Substrings within 
each string (IDEA) contain various NOTIONS of 
what I s important or relevant to the task. 
Viewed in this way, the population contains 
not just a sample of n IDEAS, rather it 
contains a multitude of NOTIONS and rankings 
of those NOTIONS for task performance. 
Genetic algorithms carefully exploit this 
wealth of information about important NOTIONS 
by 1) reproducing quality NOTIONS according 
to their performance and 2) crossing these 
NOTIONS with many other high performance 
NOTIONS from other strings. Thus, the act of 
crossover with previous reproduction specu
lates on new IDEAS constructed from the high 
performance building blocks (NOTIONS) of past 
trials. 

If reproduction according to fitness 
combined with crossover give genetic algo
rithms the bulk of their processing power, 
what then is the purpose of the mutation 
operator? Not surprisingly there is much 
confusion about the role of mutation in 
genetics (both natural and artificial). 
Perhaps it is the result of too many B movies 
detailing the exploits of mutant eggplants 
that devour portions of Chicago, but whatever 
the cause for the confusion, we find that 
mutation plays a decidedly secondary role in 
the operation of genetic algorithms. Muta
tion is needed because, even though reproduc· 
tion and crossover effectively search and 
recombine extant NOTIONS, occasionally they 
may become overzealous and lose some poten
tially useful genetic material (l's or O's at 
particular locations). The mutation operator 
protects against such an unrecoverable loss. 
In the simple tripartite GA, mutation is the 
occasional random alteration of a string 
position. In a binary code, this simply 
means changing a 1 to a 0 and vice versa. By 
itself, mutation is a random walk through the 
string space. When used sparingly with 
reproduction and crossover it is an insurance 
policy against premature loss of important 
NOTIONS. 

That the mutation operator plays a 
secondary role we simply note that the 
frequency of mutation to obtain good results 
in empirical genetic algorithm studies is on 
the order of 1 mutation per thousand bit 
(position) transfers. Mutation rates are 
similarly small in natural populations which 
leads us to conclude that mutation is 
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appropriately considered as a secondary 
mechanism. 

The underlying processing power of 
genetic algorithms is understood in more 
rigorous terms by considering the notion of a 
NOTION more carefully. If two or more 
strings (IDEAS) contain the same NOTION there 
are similarities between the strings at one 
or more positions. To consider the number 
and form of the possible relevant similari
ties we consider a schema [3] or similarity 
template; a similarity template is simply a 
string over our original alphabet {l,O} with 
the addition of a wild card or don't care 
character *. For example, with string length 
1 E 7 the schema 1*0**** represents all 
strings with a 1 in the first position and a 
o in the third position. A Simple counting 

argument shows that while there are only 21 

strings, there are 3£ well-defined schemata 
or possible templates of similarity. 
Furthermore, it is easy to show that a 
particular string is itself a representative 

of 21 different schemata. Why is this 
interesting? The interesting part comes from 
conSidering the effect of reproduction and 
crossover on the multitude of schemata 
contained in a population of n strings (at 

most n.21 schemata). Reproduction on average 
gives exponentially more samples to the 
observed best similarity patterns (a near
optimal sampling strategy if we consider a 
multi-armed bandit problem). Second, cross
over, combines schemata from different 
strings so that only very long defining 
length schemata (relative to the string 
length) are interrupted. Thus, short defin
ing length schemata are propagated generation 
to generation by giving exponentially in
creasing samples to the observed best, and 
all this goes on in parallel with little 
explicit book-keeping or special memory other 
than the population of n strings. How many 

of the n.2£ schemata are usefully processed 
per generation? Using a conservative esti
mate, Holland has shown that 0(n 3 ) schemata 
are usefully sampled per generation. This 
compares favorably with the number of func
tion evaluations (n), and because this 
processing leverage is so important (and 
apparently unique to genetic algorithms) 
Holland gives it a special name, implicit 
parallelism. In the next section we exploit 
this leverage in the optimization of a 
natural gas pipeline. 

THE TRIPARTITE GENETIC ALGORITHM IN NATURAL 
GAS PIPELINE OPTIMIZATION 

We apply tht' genetic algorithm to the 
steady state serial natural gas pipeline 
problem of Wong and Larson [4]. As mentioned 
previously, the problem is not remarkable. 
Wong and Larson successfully used a dynamic 
programming approach and gradient procedures 
have also been used. Our goal here is to 
connect with extant optimization and control 



literature. We also look at some of the 
issues we face in applying genetic algorithms 
to more difficult problems where standard 
techniques may be inappropriate. 

We envision a serial system with an 
alternating sequence of 10 compressors and 10 
pipelines. A fixed pressure source exists at 
the inlet; gas is delivered at line pressure 
to the delivery point. Along the way, 
compressors boost pressure using fuel taken 
from the line. Modeling relationships for 
the steady flow of an ideal gas are well 
studied. We adopt Wong and Larson's formula
tion for consistency. The reader interested 
in more modeling detail should refer to their 
original work. 

Along with the usual modeling rela
tionships, we must pose a reasonable objec
tive function and constraints. For this 
problem, we use Wong and Larson's objective 
function and constraint specification. 
Specifically, we minimize the swmned horse
power over the 10 compressor stations in the 
serial line subject to maximum and minimum 
pressure constraints as well as maximum and 
minimum pressure ratio constraints. Con
straints in these state variables are ad
joined to the problem using an exterior 
penalty method. Whenever a constraint is 
violated a penalty cost is added to the 
objective function in proportion to the 
square of the Violation. As we shall see in 
a moment, constraints in control variables 
may be handled with the choice of some 
appropriate finite coding. 

As discussed in the previous section, 
one of the necessary conditions for using a 
genetic algorithm is the ability to code the 
underlying parameter set as a finite length 
string. This is no real limitation as every 
user of a digital computer or calculator 
knows; however, there is motivation for 
constructing special, relatively crude 
codings. In this study, the full string is 
formed from the concatenation of 10, four bit 
substrings where each substring is a mapped 
fixed point binary integer (precision .. 1 
part in 16) representing the difference in 
squared pressure across each of the ten 
compressor stations. This rather crude 
discretization gives an average precision in 
pressure of 34 psi over the operating range 
500-1000 psia. 

The model, objective function, con
straints, and genetic algorithm have been 
programmed in Pascal. We examine results 
from a number of independent trials and 
compare to published results. To initiate 
simulation, a starting population of 50 
strings is selected at random. For each 
trial of the genetic algorithm we run to 
generation 60. This represents a total of 
50*61=3050 function evaluations per inde
pendent trial. The results from three 
trials are shown in Figure 1. This figure 
shows the cost of the best string of each 
generation as the solution proceeds. At 
first, performance is poor. After sufficient 
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genetic action, near-optimal results are 
obtained. In all three cases, near-optimal 
results are obtained by generation 20 (1050 
function evaluations). 

Figure 1. Best-of-Generation 
Results - Steady 
Serial Problem 

To better understand these resul ts, we 
compare the best solution obtained in the 
first trial (run SS.l) to the optimal results 
obtained by dynamic programming. A pressure 
profile is presented in Figure 2. The GA 
results are very close to the dynamic 
programming solution, with most of the 
difference explained by the large discretiza
tion errors associated with the GA solution. 

Figure 2. Pressure Profile -
Run SS.l Steady 
Serial Problem 

To gain a feel for the search rapidity 
of the genetic algorithm, we must compare the 
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number of points searched to the size of the 
search space. Recall that in this problem, 
near-optimal performance is obtained after 
only 1050 function evaluations. To put this 
in perspective, with a string of length 40, 

£ 
there are 2 different possible solutions in 

the search space (240 = 1.le12). Therefore, 
we obtain near-optimal results after search
ing only 1e-7\ of the possible alternatives. 
If we were, for example, to search for the 
best person among the worlds 4.5 billion 
people as rapidly as the genetic algorithm we 
would only need to talk to 4 or 5 people 
before making our near-optimal selection. 

A LEARNING CLASSIFIER SYSTEM FOR DYNAMIC 
SYSTEM CONTROL 

In the remainder of this paper, we show 
how the genetic algorithm's penchant for 
discovery in string spaces may be usefully 
applied to search for string rules in a 
learning classifier system (LCS). Learning 
classifier systems are the latest outgrowth 
of Holland's continuing work on adaptive 
systems [5J. Others have continued and 
extended this work in a variety of areas 
ranging from visual pattern recognition to 
draw poker (6-8J. 

A learning classifier system (LCS) is an 
artificial system that learns rules, called 
claSSifiers, to guide its interaction in an 
arbitrary environment. It consists of three 
main elements: 

1. Rule and Message System 

2. Apportionment of Credit System 

3. Genetic Algorithm 

A schematic of an LCS is shown in Figure 
3. In this schematic, we see that the rule 
and message system receives environmental 
information through its sensors, called 
detectors, which decode to some standard 
message format. This environmental message 
is placed on a message list along with a 
finite number of other -rnternal messages 
generated from the previous cycle. Messages 
on the message list may activate classifiers, 
rules in the classifier store If activated a 
classifier may then be--chOsen to send a 
message to the message list for the next 
cycle. Additionally, certain messages may 
call for external action through a number of 
action triggers called effectors. In this 
way, the rule and message system combines 
both external and internal data to guide 
behavior and the state of mind in the next 
state cycle. 

In an LCS, it is important to maintain 
simple syntax in the primary units of infor
mation, messages and classifiers. In the 
current study messages are i-bit (binary) 
strings and classifiers are 32.-position 
strings over the alphabet {O,l,nJ. In this 
alphabet the # is a wild card, matching a 0 
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or a 1 in a given message. Thus, we maintain 
powerful pattern recognition capability with 
simple structures. 

ENVIRONMENT 

I • 
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f t 
o I 
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n 

Figure 3. Schematic - Learning 
Classifier System 

In traditional rule-based expert sys· 
terns, the value or rating of a rule relative 
to other rules is fixed by the programmer in 
conjunction with the expert or group of 
experts being emulated. In a rule learning 
system, we don't have this luxury. The 
relative value of different rules is one of 
the key pieces of information which must be 
learned. To facilitate this type of learn
ing, Holland has suggested that rules coexist 
in a competitive service economy. A competi
tion is held among classifiers where the 
right to answer relevant messages goes to the 
highest bidders with this payment serving as 
a source of income to previously successful 
message senders. In this way, a chain of 
middlemen is formed from manufacturer (source 
message) to message consumer (environmental 
action and payoff). The competitive nature 
of the economy insures that the good rules 
survive and that bad rules die off. 

In addition to rating existing rules, we 
must also have a way of discovering new, 
possibly better, rules. This, of course, is 
the appropriate role for our genetic algo
rithm. In the learning classifier system 
application, we must be less cavalier about 
replacing entire string populations each 
generation, and we should pay more attention 
to the replacement of low performers by new 
strings; however, the genetic al gori thm 
adopted in the LCS is very similar to the 
simple tripartite algorithm described earli
er. 

Taken together, the learning classifier 
system with a computationally complete and 
convenient rule and message system, an 
apportionment of credit system modeled after 
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a competitive service economy, and the 
innovative search of a genetic algorithm, 
provides a unified framework for investiga
ting the learning control of dynamic systems. 
In the next section we examine the applica
tion of an LCS to natural gas pipeline 
operation and leak detection. 

A LEARNING CLASSIFIER SYSTEM CONTROLS A 
PIPELINE 

A pipeline model, load schedule, and 
upset conditions are programmed and inter
faced to the LCS. We briefly discuss this 
environmental model and present resul ts of 
normal operations and upset tests. 

A model of a pipeline has been developed 
which accounts for linepack accumulation and 
frictional resistance. User demand varies on 
a daily basis and depends upon the weather. 
Different patterns may be used for winter and 
summer operation. In addition to normal 
summer and winter conditions, the pipeline 
may be subjected to a leak upset. During any 
given time step, a leak may occur with a 
specified leak probability. If a leak 
occurs, the leak flow, a specified value, is 
extracted from the upstream junction and 
persists for a specified number of time 
steps. 

The LCS receives a message about the 
pipeline condition every time step. A 
template for that message is shown in Figure 
4. The system has complete, albeit imperfect 
and discrete, knowledge of its state includ
ing inflow, outflow, inlet pressure, outlet 
pressure, pressure rate change, season, time 
of day, time of year, and current temperature 
reading. 

Tll 
PI 01 PO QO DP TOD TT TP  TAG 

, of 
Variable lIe.crip~ion .in ... r:osit!ona 

PI inlet pre'll.!re a 2000 2 

01 inlet flov a 10 2 

PO out let pre •• ure a 2000 2 

QO outlet flov a 10 2 

DP u. I. pre.aure rate -200 200 2 

TOD ti .. of ciaJ 0 U 2 

TT ti_ of ,e .. 0 1 1 

TP ~per.tu~! __ 0 1 1 

Figure 4. Pipeline LCS Environmental 
Message Template 
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In the pipeline task, the LCS has a 
number of alternatives for actions it may 
take. It may send out a flow rate chosen 
from one of four values, and it may send a 
message indicating whether a leak is suspect
ed or not. 

The LCS receives reward from its trainer 
depending upon the quality of its action in 
relation to the current state of the pipe
line. To make the trainer evervigilant, a 
computer subroutine has been written which 
administers the reward consistently. Ihis is 
not a necessary step, and reward can come 
from a human trainer. 

Under normal operating conditions we 
examine the performance of the learning 
classifier system with and without the 
genetic algorithm enabled. Without the 
genetic algorithm, the system is forced to 
make do with its original set of rules. Ihe 
resul ts of a normal operating test are pre
sented in Figure 5. Both runs with 
the LCS outperform a random walk (through the 
operating alternatives). Furthermore, the 
run with genetic algorithm enabled is superi
or to the run without GA. In this figure, we 
show time-averaged total evaluation versus 
time of simulation (maximum reward per 
timestep .. 6). 

I 

vi'" GA lPOLCS.21 

I 

_ CIA l1'01oCS.11 

5 

t ..nd_ 
I 

!I 

!I 1- I I I I I ... ._ _aa aGO __ ... 

TIME !DRYS) 

Figure 5. Time-averaged IOIALEVAL 
vs. Time. Normal 
Operations. Runs 
POLCS.l & POLCS.2 

Hore dramatic performance differences 
are noted when we have the possibility of 
leaks on the system. Figure 6 shows the 
time-averaged total evaluation versus time 
for several runs with leak upsets. Once 
again the LCS is initialized with random 
rules and permitted to learn from external 
reward. Both LCS runs outperform the random 
walk and the run with GA clearly beats the 
run with no new rule learning. To understand 
this, we take a look at some auxiliary 
performance measures. In Figure 7 we see 



the percentage of leaks alarmed correctly 
versus time. Strangely, the run without GA 
alarms a higher percentage of leaks than the 
run with GA. This may seem counterintuitive 
until we examine the false alarm statistics 
in Figure 8. The run without GA is only 
able to alarm a high percentage of leaks 
correctly because it has so many false 
alarms. The run with GA decreases its false 
alarm percentage, while increasing its leaks 
correct percentage. 
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Figure 6. Time-averaged TO'rALEVAL 
vs. Time - Leak Runs -
POLCS.5 & POLCS.6 
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Figure 7. Percentage of Leaks 
Correct vs. Time Runs 
POLCS.5 & POLCS.6 

CONCLUSIONS 

In this paper, we examined the perfor
mance of a genetic algorithm in two appli
cations. In the first, a tripartite genetic 
algorithm consisting of reproduction, cross
over, and mutation was applied to the 
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optimization of a natural gas pipeline's 
operation. The control space was coded as 40 
bit binary strings. Three initial popu
lations of 50 strings were chosen at random. 
The genetic algorithm was started and in all 
three cases, very near-optimal performance 
was obtained after only 20 generations (1050 
function evaluations). 

In the second application, a genetic 
algorithm was the primary discovery mechanism 
in a larger rule-learning system called a 
learning classifier system. The LCS, con
ststing of a syntactically simply rule and 
message system, an apportionment of credit 
mechanism based on a competitive service 
economy, and a genetic algorithm, was taught 
to operate a gas pipeline under winter and 
summer conditions. It also was trained to 
alarm correctly for leaks while minimizing 
the number of false .alarms. 
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by 
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ABSTRACT 

Results are presented of experiments with a sim
ple artificial animal model acting in a simulated en
vironment containing food and other objects. Proce
dures within the model that lead to improved perfor
mance and perceptual generalization are discussed. 
The model is designed in the light of an explicit 
definition of intelligence which appears to apply to 
all animal life. It is suggested that study of artifi
cial animal models of increasing complexity would 
contribute to understanding of natural and artificial 
intelligence. 

INTRODUCTION 

The science of understanding and realizing in
telligence in artificial systems needs a definition of 
intelligence. Every science needs good definitions 
of the problems it addresses. But in the artificial 
intelligence field there has been a hesitancy about 
defining intelligence. For example, on the first page 
of a recent, widely used AI textbook we find: "A 
definition in the usual sense seems impossible be
cause intelligence appears to be an amalgam of so 
many information-representation and information
processing talen ts." 11] For many AI goals, this omis
sion is not important. But the lack of a good work
ing definition can lead to uncertainty in evaluating 
progress toward understanding intelligence per ,e, 
even though results are in other respects substan
tial. 

This paper reports work using an artificial, be
having, animal model to study intelligence at a 
primitive level. An explicit definition of intelligence 
is adopted, and guides construction of the model. 
The definition has intuitive appeal and apparent ap
plicability to the range of life from human beings to 
very primitive animals. Because of this range, some 
results with the primitive animal model should pro
vide insight into intelligence in general. 

A DEFINITION OF INTELLIGENCE 

A good definition should be relatively simple and 
yet cover most of the things we regard as belonging 
to. the concept and few we regard as not belong-
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ing. The psychological literature offers a number of 
useful similar efforts but the best definition of in
telligence we have found is the following, from the 
physicist van Heerden: 

Intelligent behavior is to be repeatedly successful 
in satisfying one's psychological needs in diverse, 
observably different, situations on the basis of 
past experience.12] 

This definition (vH) is suitable for the computer 
study of intelligence because it is comprehensive and 
its terms are not difficult to define computationally 
for experimental purposes. A high rate of receipt 
of certain reward quantities can correspond to "re
peatedly successful in satisfying one's psychological 
needs" (on the simplest level, somatic needs). To 
"diverse, observably different, situations" can corre
spond sets of distinct sensory input "vectors" with 
each set having a particular implication for optimal 
action. To "past experience" can correspond a suit
able internal record of earlier interactions with the 
environment, and their results. 

THE ANIMAT MODEL 

Computer modeling of human levels of intelli
gence is complex. VH's apparent applicability to 
both simple animals and human beings (assuming 
appropriate translations of its terms) suggests the 
usefulness of the easier course of considering basic 
problems that simple animals must solve, and con
structing behaving models aimed at solving them. 
Observation of the models should aid understand
ing of all intelligence, and the construction of more 
complex models. 

To define our model, we abstract four basic char
acteristics of simple animals: 

1) The animal exists in a sea of sensory signals. At 
any moment only some signals are significant; 
the rest are irrelevant. 

2) The animal is capable of actions (e.g. movement) 
which tend to change these signals. 

3) Certain signals (e.g. those attendant on con
sumption of food), or certain signals' absence 
(e.g. absence of pain) have special status for him. 



4) He acts, both externally and through internal 
operations, so as approximately to optimize the 

rate of occurrence of the special signals. 

An animal's sensory-motor sit.uation is described 
in very general terms by (1) and (2). Characteristics 

(3) and (4) are assumptions which provide a way 

of making definite the notion of "needs" and their 
satisfaction. Together, the four characteristics form 

the basis of our artificial animal model. For brevity, 
we call such a model an "animat". 

We take as the animat's basic problem the gen

eration of rules which associate sensory signals with 

appropriate actions so as to achieve the optimiza

tion of (4), above. For this, the major questions are 

adaptive, namely: 

1) How to discover and emphasize rules that work, 

2) Get rid of those that don't (since memory space 

is limited and noise is undesirable)' and 

3) Optimally generalize the rules that are kept (since 
space is limited). 

There is some previous work along these lines. 
Notable were Grey Walter's: maehina 'peeulatrix, 

which was a sort of sub-animat which chose actions 

based on needs and the sensory situation, but did 
not adapt its rules; and m. doeilis, which could be 

taught a conditioned responselSj. More recently, 

Holland and Reitmanl4] exhibited successful perfor
mance by a rule-adaptive animat-like system which 
optimized its rate of satisfaction of two distinct 

needs. Booker[5] experimented with an animat-like 
"hypothetical organism" which adapted its rules in 

a simple environment that contained both attrac

tive and aversive stimuli; he also provides a review 
of earlier systems. The present investigation is in

debted to the last two works. 

IMPLEMENTATION 

Within the above framework we make the model 
definite by defining the animat's: environment, sen

sory channels, repertoire of actions, its association 

rules, and then its performance and adaptation al
gorithms. 

Environment: 

A rectangle on the computer terminal screen 18 

rows by 58 columns and continued toroid ally at its 

edges defines the environmental space. Alphanu
meric characters at various positions represent ob

jects; the animat itself is denoted by *. Some, pos

sibly many, positions are just blank. 

Sensory Channels: 

In studies so far, * has been given the ability to 
pick up sensory signals from objects which happen 

to be one step (rowand/or column) away, in any of 
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the eight (including diagonal) directions; nothing is 
detected from more distant objects. Thus the "sense 
vector" has eight positions. With * located, for ex

ample, as shown below left, the sense vector would 

be as shown at the right: 

TT 
* F TTFbbbbb, 

where b stands for blank. To form the sense vec

tor, the circle of positions surrounding * is mapped, 

clockwise starting at 12 o'clock, into a left-to-right 

string. 

But this vector is not the final sensory input. We 

imagine that an object is ultimately sensed as the 

outcome of measurements upon it by one or more 

feature or attribute detectors. Without loss of gen
erality we assume each detector produces either a 0 

or 1 output. If there are d detector types, an ob

ject translates into a binary string d bits in length. 
The sense vector as a whole thus translates into a 

"detector vector" of 8d bits. Detector translations 

or encodings of objects are fixed in *'s "low-level" 
sensory hardware. They are assigned at the begin

ning of an experiment. For example, in experiments 

discussed here, "F" (food) is encoded as "11"; "T" 
(tree or obstacle) as "01"; and "b" (open space) as 

"00". IThe first bit might be thought of as the out

put of a "food smell?" detector; the second, of an 
"opacity" detector.] Thus the above sense vector 

translates into the detector vector: 

01 01 11 00 00 00 00 00 

The associative apparatus takes the detector vector 

as input. 

Repertoire of Actions: 

*'s actions are restricted to single-step moves 
in each of the eight directions. The directions are 

numbered 0-7 starting at 12 o'clock and proceeding 

clockwise; for example, a move in direction 3 would 

be south-easterly. 

The animat may move, or attempt to move, to a 

position occupied by an object. The environment's 

response for each kind of object is predefined. In 

present experiments, if the move is into a position 
whose encoding is 00 (the blank object), there is 
no response (though the new sense vector will in 

general be different). If * steps into a space occupied 
by an object whose encoding has the first bit equal 

to 1, * is regarded as having eaten the object and 

receives a reward signal. If * tries to step toward an 
adjacent object whose encoding is 01, the step is not 

permitted to occur (a collision-like banging may be 

displayed) . 

The foregoing establish a semi-realistic situation 

in which sensory signals carry partial, but uncertain, 
information about the location of food, and avail-



able actions permit exploration and approach. En
vironmental predictability can be varied through the 
choice and arrangement of the objects. The number 
of object types which may be experimented with is 
limited only by the number of bits in the detector 
encoding scheme. 

Association Rules: 

For its association rules, the animat uses a rudi
mentary form of Holland's[61 "classifier" rule. The 
animat's rules each consist of a "taxon" and an "ac
tion". The taxon is a sort of template capable of 
matching a certain set of detector vectors. The ac
tion is some one of the available actions. The ani
mat's classifier says, in effect, "if my taxon matches 

the current detector vector, then consider taking 
this action." It is a kind of hypothesis about what 
to do given a certain sensory situation (class of de
tector vectors). An example of a classifier would be: 

0# 011# 0# 00 000# 0# / 2 

The matching rule requires that for any taxon 
position having a 0 or 1, the same value must occur 

in the detector vector; taxon positions with # (don't 
care) match unconditionally. Because of the # 's, 
which confer a kind of generality on the classifier, 
the above taxon, for example, will match 32 possible 
detector vectors, including the one discussed earlier. 

It is worth making a few further observations 
about this classifier. First, it is a pretty good one 
because if food is present in direction 2 and the clas
sifier matches the detector vector, the action rec
ommended is to move in direction 2 and not some 
other direction! Second, in directions 0, 3, 6, and 7, 
the taxon only requires that the object be, in effect, 
non-food, it being irrelevant whether these direc
tions have obstacles or are blank. Directions 1, 4, 
and 5 have not been so generalized. Broadly speak
ing, a classifier is more useful to the animat to the 
extent it is general (matches many detector vectors) 
without being so general that it makes too many 
errors (i.e., that in certain matching situations its 
recommended action is inappropriate). 

Besides taxon and action, each classifier pos
sesses a "strength", a quantity serving as the prin

cipal measure of a classifier's value to the animat. 
There may be other associated quantities, as well. 

The animat keeps a classifier population [PI of 
fixed size. Usually, [P] is initialized by filling all 
the taxa with 0, 1, and # according to some ran
dom rule; actions are similarly filled in. As the an
imat's CRT "life" evolves, the classifier population 
changes, as will be described. 

PERFORMANCE ALGORITHM 

*'s basic cycle is one "step", within which events 
having purely to do with immediate behavior are 
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very simple. First, the current detector vector is cal
culated. Second, [PI is searched for classifiers which 
match it; these form the "match set" [M]. Third, a 
classifier is selected from [M] using a probability dis
tribution over the strengths of [M]'s classifier's; that 
is, the probability of selection of a particular clas
sifier is equal to its strength divided by the sum of 
strengths of classifiers in 1M]. Fourth. * moves ac
cording to the action of the selected classifier, or 
tries to. The environment's response to the move 
will be as described earlier. 

It can be seen that *'s move choice tends to be 

the one having the greatest total strength among the 
[M] classifiers advocating it. Thus, overall, * first 
asks which classifiers of [PI "recognize" the current 
sensory situation, then from these tends to pick the 
move with the greatest associated strength. The 

subset of [M] consisting of classifiers whose action is 
the same as the chosen action is called the "action 

set" [A]. 

ADAPTATION ALGORITHM 

The adaptation algorithm has three distinct as
pects: 1) reinforcement of classifier strengths; 2) 
"genetic" operations on classifiers yielding new clas

sifiers; and 3) direct creation of classifiers. 

Reinforcement: 

As discussed in the last section, a classifier's 
strength is a major determinant of its ability to influ
ence *'s action and therefore performance. We con
sequently want strength to reflect the performance 
which tends to result when this classifier is in [Aj. 
That would be straightforward if every step were 
rewarded: we could, for example, adjust the clas
sifier's strength by an amount proportional to the 
reward. Classifiers which got bigger rewards would 
be stronger, thus more likely to be an [A], etc. 

Realistically, however, it is usually the case that 
only some of an organism's actions receive a def
inite reward from the environment. Actions lead
ing up to, or setting the stage for, a rewarded ac
tion are themselves not directly rewarded, but they 
must somehow be encouraged or the final payoff 
will not occur. Holland[7] addressed this problem 
in proposing a "bucket-brigade" algorithm in which, 
very briefly, 1) classifiers make payments out of their 
strengths to classifiers which were active on the pre
ceding cycle, and 2) the same classifiers later corre
spondingly receive payments from the strengths of 
the next set of active classifiers. External reward 
goes to the final active set in the chain. In effect, a 
given amount of external reward will eventually flow 
all the way back through a reliable chain, reinforcing 

every precursor classifier. 

Our basic implementation of this idea is as fol

lows. On each step: 



1) all classifiers in I A] have a fraction e of their 
strengths removed; 

2) the total strength thus removed from IA] is dis
tributed to the strengths of any classifiers in IA-
1], defined as the action set in the previous step; 

3) .. then moves and if external reward is received 
it is distributed to the strengths of IA]; if exter
nal reward is not received, the classifiers of IA] 
replace those of lA-I]. 

Thus every [Aj participates in general in two trans
actions, one paying out, the other receiving. We can 
write 

S~ = SA - eSA + p 

where SA is [A]'s total strength on one step, S~ its 
total on the next, and p is the total payoff received 
(either external reward or from the next [AJ). If p is 
the same over time, SA approaches a constant value 
given by pie, so that under reasonably steady pay
off conditions, SA is an estimator of typical payoff. 
Similarly, the strength of any individual classifier is 
an estimator of its typical payoff. 

The total payoffs to [A] and lA-I] are in the sim
plest case shared equally by the recipient classifiers. 
This has the consequence that the more classifiers 
are in, say, [A], the less payoff each gets. 

Genetic Operations: 

Consider two classifiers which match similar sit
uations: 

0# 01 1# 0# 00000# 0# 
and 

0# 0# 11 01 00 0# 0# 0# 

I 

I 

2 

2 

Each is good, but each still lacks something in gener
ality since, for example, the matching requirements 
for 01 in bits 2-3 and 6-7, respectively, of each are 
perhaps unnecessarily restrictive. Suppose we make 
a new classifier by combining bits 5-9 of the first 
with bits 0-4 and 10-15 of the second. The result 
would be the slightly more general classifier: 

0# 0# 1# 0# 00 0# 0# 0# / 2 

The above operation on two classifiers resembles a 
kind of crossing-over or recombination of chromo
some parts in genetics. It is an operation in which 
two "parent" classifiers produce an offspring that is 
possibly an improvement over both of them. An
other "genetic" operation, this time using just one 
parent, would first clone the parent, then mutate one 
or more of the clone's taxon positions. Other types 
of operations on classifier structure can be imagined 
(one will be discussed later). In each case the at
tempt is to use existing classifiers as the starting 
points for improved classifiers. 

But the crossover points above were chosen quite 
carefully; otherwise the offspring might have been no 
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improvement, or even a retrogression (to a classifier 
more specific than either parent). We do not expect 
the animat to know where best to cut and mutate. 
How can we expect genetic operations to be of any 
use? 

Hollandl8] presents a mathematical theory show
ing that 8. population of individual sym bol strings, 
in which each string can be assigned a numerical 
worth, will progressively increase in average worth 
as its members undergo reproduction, genetic oper
ations on or among the offspring, and deletion of in
dividuals to maintain constant population size. The 
key requirement is that an individual's probability 
of reproduction be proportional to its worth. Hol
land extended the theory to include classifier sys
tems. In employing genetic operations, our animat 
constitutes an exploration and test of the theory. 

The specific algorithm employed is as follows: 

1) A first classifier el of [P] is selected with proba
bility proportional to its strength; 

2) If el is merely to be reproduced, a copy of it 
is made and added to IP]. To make room, some 
classifier is deleted; 

3) If el is to be crossed with another classifier, a 
second, e2, is selected, also with probability pro
portional to strength, but from the subset of IP] 
of classifiers having the same action as e1. Two 
cut points are chosen as above, but at random, 
and an offspring e3 constructed out of the parts. 
eS is added to [P] and some classifier is deleted. 

Note that the parents are kept (unless one happens 
to suffer the deletion, but this is unlikely). The 
offspring, in effect, go into competition for payoff 
with the parents. Better (higher strength) offspring 
should proliferate more rapidly than their parents, 
driving them out; for worse offspring, the reverse' 
should be the case. 

"Create" Operations: 

Occasionally, as .. executes the performance algo
rigthm, a detector vector may occur that no classi
fier of [P] matches, i.e., the situation is unrecognized. 
The animat's response is to create a new, match
ing, classifier. A taxon is made by adding some #'s 
at random to the detector vector; an action is cho
sen randomly. The created classifier is added to IP] 
and one is deleted. The new classifier immediately 
matches the previously unrecognized situation and 
action occurs by the normal mechanism. 

EXPERIMENTAL PROCEDURE 

The animat model was designed with the vH
intelligence definition as a guide. In experiments 
with the model we are interested in finding pro
cedures and parameter values that seem to give .. 
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greater rather than less vH-intelligence. For this 
two measures have been adopted. One is a perfor
mance measure: given an environment, how many 
steps does .. take, on average, to find food objects? 
The other is a generality measure: does .. evolve 

classifiers each tending to be useful in anum ber of 
distinct situations? Generality is important because 
it suggests that a high level of performance devel
oped in one environment will carryover to a some
what different environment. 

The experimental procedure is to fix *'s methods 
and parameters, then have him do a large number 
of "problems" in a particular environment E. The 
measures of performance and generality are tracked. 
A "problem" always consists of starting * at a ran
domly selected blank position in E; then * moves 
until he eats some food, at which point the problem 

ends. The number of steps between start and food is 
recorded; a moving average of this quantity over the 
previous 50 problems is the performance measure, 
STPSAV. 

To track generality, we calculate a histogram 
over the "periods" of all classifiers in JP]. The pe
riod of a classifier is a moving average of the number 
of steps by * between occurrences in ! A] of this clas
sifier. Thus a frequently used classifier will have a 

low period. IP] will then be general to the extent the 
histogram of periods is largest at low period. As !P] 
evolves we expect the histogram peak to move to
ward lower period, if !P]'s generality is increasing. 
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Figure 1. The Environment "WOODS7". 

An environment used for many of the exper
iments is "WOODS7", shown in Fig. 1. Although 
WOODS7 may look easy, it actually contains a to
tal of 92 distinct sense vectors, so * 's need to dis
cover and generalize is substantial. To obtain per
formance baselines, we can start" randomly, then 
let him also move completely randomly until food 
(F) is bumped into. For WOODS7, the long-term 
average of the num ber of steps this takes is about 41 
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steps. We may also ask 19]: what is the best possible 
performance (if, say, the animat had human capa
bilities)? For every starting position, the number of 
steps to the nearest F can be found and averaged 
over all starting positions. The result for WOODS7 
is 2.2 steps. 

RESULTS AND DISCUSSION 

Fig. 2 shows a performance curve for a combi
nation of proced ures and parameter settings that is 
among the best so far found. There is an initial rapid 
improvement within the first 1000 problems (un
typically good during the first 100 problems, where 
STPSAV usually stays above 15), followed by very 
gradual improvement thereafter. The performance 
at 8000 problems, between 4 and 5 steps, is quite 
respectable compared with "perfect" (2.2 steps), es
pecially since * has no information whatsoever until 
he is next to a non blank object. 
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Figure 2. STPSAV (ragged line) and Period Av
erage (broken line) for" to 8000 prob
lems. Period values as marked. 

For the same animat, Fig. S shows the histogram 
of periods of [P] at 8000 problems. There is a defi
nite bulge for low periods; the average period is 116. 
For comparison, the broken line in Fig. 2 shows the 
trend of the period averages at earlier epochs, indi
cating gradual generalization in the sense we have 
defined. 

Qualitatively, a .. such as this one gives the im
pression of "knowing" the Woods quite well. When 
next to F, * nearly always takes it directly; occa
sionally he will move one step sideways and take it 
from that direction. When next to one or more T's, 
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but with no F immediately in sight, * quite reliably 
steps around the obstacle(s} and finds the F. When 
* is "out in the open" , i.e., the sense vector consists 
of blanks, he has no information about the best way 
to go, as in a thick fog. One might expect *'s be
havior to resemble a random walk but this is not the 
case. Instead, the movements look more like a gen
eral "drift" in some direction, with some superim
posed randomness. After several problems the drift 
may shift to another direction. 
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Figure 3. Histogram of classifier periods for the 
* of Figure 2 at 8000 problems. 

Parameter Values: 

Parameter values for the animat of Fig. 2 were 
arrived at by experiment. Three basic parame
ters are discussed in this section, with observations 
about setting them reasonably. 

For Fig. 2, tP] contained 400 classifiers. A suit
able value for this number appears related to the 
number of distinct sense vectors or "scenes" (here, 
92) in the environment. Too small a ratio of clas
sifiers to scenes results in "forgetful" behavior in 
which * keeps losing good moves that appeared well 
learned. A small ratio means that for some scenes 
deletion has a high probability of eliminating all 
matching classifiers. For ratios above about four, 
the forgetting is much less noticeable. To the extent 
* generalizes, more and more classifiers match each 
sense vector, further reducing the problem. 

The "estimator fraction", e, was set at 0.2, i.e., 
a classifier lost 20 percent of its strength each time 
it entered tAl. In general, smaller values of e mean 
that a classifier's strength reflects a weighted av-
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erage of payoffs that reaches farther into the past. 
Conversely, a larger value makes the strength more 
sensitive to recent payoffs. It was found that e = 0.4 
produced a noticeably more erratic STPSAV curve, 
whereas changing from e = 0.2 to 0.1 did not affect 
the curve significantly. Strength should accurately 
estimate a classifier's typical payoff. In this problem, 
payoff fluctuations are apparently large enough so 
that e = 0.4 results in too short an averaging interval 
for good estimation. If e is too small, though, newly 
formed classifiers may get evaluated too slowly; we 
therefore kept e at 0.2. 

The rate at which genetic operations occurred 
was set proportional to the problem rate. Specif
ically, at the end of each problem, a single genetic 
event (as described earlier) took place with probabil
ity RGPROB. Given the event, crossover occurred 
with probability XPROB. Settings were typically 
0.25 and 0.50, respectively. These seemed to ensure 
that, on average, classifiers would be fully evaluated 
by the reinforcement process by the time they were 
selected for a genetic operation (or deleted). Typ
ically, a problem took five steps in which each set 
[A] had about 10 members, giving about 50 evalu
ations. The above value for RGPROB then implies 
200 evaluations per genetic event. This seems ex
cessive except that some classifiers are much more 
frequently used than others and we wanted to allow 
for the well-rewarded but inCrequently called-upon 
classifier. It is possible our results would have been 
speeded up, without adverse side effects, by a higher 
genetic rate. 

Distance Estimation: 

Performance in the earliest animat experiments 
was far below the level of Fig. 2. One defect was a 
kind of "dithering" in which while * would tend to
ward F's, the path would have unnecessary sidesteps 
and wanderings. It was then realized that the ba
sic reinCorcement algorithm does not care whether a 
path from point A to food is long or short; there is 
nothing which preferentially reinforces the most ex
peditious classifiers. Any path, even a looping one, 
will come to equilibrium at a high strength level in 
its constituent classifiers. 

The solution had to be more subtle than simply 
penalizing long paths. What is required is a tech
nique that, at every position, tends to prefer the 
most direct of several possible moves, but does not 
prevent the setting up oC a long path if that is ac
tually the shortest path available. Our solution was 
twoCold. First, each classifier was made to keep an 
estimate of its distance (in steps) to food. This did 
not require elaborate look-ahead. Instead each clas
sifier in [A-I] adjusted its distance estimate accord
ing to an average oC the distance estimates oC [AJ; 
when reward was received, the members oC [A] were 
similarly adjusted, using the quantity 1. This tech-



nique, with each estimate an average over the last 
few updates, is quite satisfactory. 

The distances are employed as follows. In the 
performance cycle, selection from 1M] is based on 
probability proportional to strength/distance inst.ead 
of just strength. Consequently, a move tends to be 
selected that is not only strong, but also "short". 
Now comes the second part of the solution. At the 
same time asiA] is formed, the set NOTIA] of the re
maining classifiers in 1M] is taxed by a small amount 
(typicalJy five percent): the "longer" classifiers thus 
tend to incur a loss by not being selected. This 
"lateral inhibition" induces a sort of catastrophe in 
which the shorter classifiers become even more likely 
to be picked and the longer become ever weaker, and 
can disappear entirely. Note that the competition is 
purely local and does not work against the setting 
up of minimal long paths. 

This technique is very effective against "dither
ing"; the progressive takeover of a match set by 
a discovered shorter move has been repeatedly ob
served. Our solution is not perfect, however, be
cause to suppress the special case of occasional loop
ing situations we had to impose a small tax (five 
percent) on IA]. Since IA] is the set which receives 
payoff, the tax has little effect except if a loop is 
taking place, and then the tax is soon very effective. 
Still, in principal, even a small tax on [A] reduces 
the strength flow in very long chains, putting them 
at a reproductive disadvantage. This residual prob
lem may be an indication that as paths grow, they 
should be "condensed" into units of behavior longer 
than one step. 

Extensions to "Create" 

A second area of changes which improved perfor
mance had to do with the "Create" operations. As 
discussed, Create at first only occured when 1M] was 
empty. It was found that'" sometimes also got stuck 
looping among situations with non empty IMj's. The 
tax on IA] enabled recognition of these loops because 
the total strengths in each [A] would tend to zero. 
We put in a threshold that triggered Create if the 
strength of any 1M] got too low. This suppressed 
looping dramatically and improved performance. 

It was also found important to trigger Create 
randomly, at a very low rate (typically, with prob
ability 0.02 per step). .. is engaged in path con
struction, using the best available current evidence. 
This can lead to good but nevertheless suboptimal 
paths which might be improved if '" would only try 
something different. Random Creates are one way 
to introduce a new move direction. Usually the new 
classifier is no improvement. But when it is, and it 
gets tried (gets in I A]), it will be (often heavily) rein
forced and therefore given a good chance at eventual 
reprod uctive success. 
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A different type of Create was also found useful. 
Instead of randomly picking the action in a Created 
classifier, * may make an educated guess, as fol
lows. From its current position, * steps tentatively 
into a randomly selected adjacent position. There, 
1M] is determined and the strength-weighted aver
age of the distances of its classifiers, MNDISTIMJ, 
is formed. The same is done for several adjacent 
posItIOns. These values are then compared with 
MJ\DIST!Mj for the starting position. Several de
cision schemes are possible, with the general idea 
of picking an action direction corresponding to the 
shortest apparent path. If, however, none of the ad
jacent MNDISTIMl's is better by more than 1 than 
the current position's value, it is preferable not to 
create a new classifier. This technique is important 
early in *'s existence, when very little is yet known; 
but, interestingly, it appears that * should not rely 
entirely upon it. Some suboptimal paths get set up 
which tend not to be improved. The problem goes 
away if random Creates are also available. 

Effect of Genetic Operations: 

Finally, we shall discuss what the experiments 
suggest about the role of the genetic operations. To 
begin, it is helpful to define a "concept" as a set of 
classifiers from [P] having exactly the same taxon 
and action, and for which there is no other classifier 
in IP] with that taxon and action. The basic effect 
of *'s genetic operations then appears to be to ex
ert a pressure tending to increase the generality of 
IPj's concepts. That is, with time, the periods of 
the concepts in IP] tend to decrease. The pressure 
is restrained by the requirement that the concepts 
be more or less correct (* must get the food expe
ditiously). The precise point of balance appears to 
depend on the parameter regime. 

An important experiment is to evolve an animat 
with reinforcement and Create going as usual, but 
with genetic operations turned off. The result is a 
performance almost as good as Fig. 2. But signifi
cant generalization does not occur; the curve of his
togram averages remains essentially flat at a value 
of about 270. There thus appears to be a division 
of effort: Create introduces the raw material, the 
specific examples to be evaluated; and the genetic 
operations produce more general concepts from the 
examples. 

It is clear that crossover is capable of making a 
more general classifier out of two less general par
ents; this was illustrated earlier. We are not sure, 
however, just why for * the more general concept 
has a selective advantage. Somehow, greater gener
ality must lead to greater concept strength; there is 
no other way to win out. Yet being active more fre
quently does not in itself result in greater strength: 
strength is an estimator typical payoff, not payoff 
rate. 



Our tentative hypothesis stems from noting that 
a more specific concept will always have to share 
payoff with any more general offspring that comes 
into existence. This initially weakens the specific 
concept so that the number of classifiers making it 
up tends to fall (at equilibrium, numbers are propor
tional to total strength). Consequently, the specific 
gets even less of the payoff, since payoff is shared. 
The result is a cascading sit uation in which the more 
general concept wins out. The odds favor the gen
eral because it has more than this one source of pay
off. 

While general classifiers appear to have a selec
tive advantage, this is of no use unless such classi
fiers can be formed and introduced in the first place. 

Crossover is adequate for some types of generaliza
tion. But a natural operation for the purpose is 

obviously intersection. We have implemented this 
operation as follows. Two parents are chosen and 
a new taxon is formed by intersecting copies of the 
parents' taxa over a randomly selected interval. In 
that interval, if the parents differ at a position, the 
new taxon gets a #; if not, the new taxon gets the 
common value. Outside the interval, the new taxon 
is filled in from parent 1. 

Intersection is a "hot" operation which should 
be used cautiously because it can introduce # 's 
at a high rate. Nevertheless, our results show in
creased generalization with little performance loss 
when crossover and intersection are both available 
to *. 

Space remains only discuss the deletion tech
nique. The simplest method, conceptually, is to 
delete at random. Then, to a first approximation, 

the equilibrium number of classifiers in a concept
or in any subset of IP] whatsoever-is proportional 
to its total strength. A drawback of random deletion 
is that a valuable concept that happens to consist 
of one classifier is at considerable risk until it re
produces. This is not a problem on average if IP] 

is large enough. Yet one wonders whether "deleting 
the weak" might not be better. 

Several methods have been tried, all but one 
clearly worse than random deletion. The possibly 
better method is to delete with probability propor
tional to the reciprocal of strength. This has the 
obvious effect of tending to protect the precious clas

sifier just mentioned. It can also be shown that the 
probability that a concept Ie] will lose a member 
under this type of deletion is proportional to the 
square of its number, which places a strong restraint 
on over-expansIOn. 

The .. of Fig. 2 employed both intersection 
(along with crossover) and inverse-strength deletion. 
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CONCLUSION 

In its simple way, .. meets the definition of intel
ligence stated at the beginning. .. becomes good 
at satisfying its need for food in a Woods of di
verse object configurations on the basis of experi
ence. Though not yet tested, .. 's rule generaliza
tion over time suggests that performance would be 
maintained in a somewhat different Woods, or if the 
Woods slowly changed. 

While the present animat has numerous limi

tations (sensory, motor, memory, etc.) there does 
not seem to be any essential barrier to removal of 
the limitations and to carryover of the present algo
rithms to a more sophisticated model in more com
plicated environments. 
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Introduction 

One common criticism of Classifier Systems is the low-level nature of their 

representations. In Classifier Systems information is stored as rules (classifiers) that have a 

very constrained format (binary bit strings). Low-level binary bit string representations 

support adaptive learning algorithms well (Holland, 75)(Holland, 80). However, it is difficult 

to interpret the behavior of these systems without a high-level interpreter that can code and 

de-code the ones and zeroes into more meaningful terms. In particular, although gross 

behaviors can be measured at various intervals using some fitness function it is difficult to 

chart how learning takes place or to determine what role is played by each component of the 

system. This feature of low-level representations makes it difficult to establish direct 

connections between the behavior of Classifier Systems and more common high-level 

symbolic representations used in artificial intelligence programs. 

The research described in this paper addresses this criticism by demonstrating that 

Classifier Systems are capable of representing sophisticated high-level structures. This has 

been accomplished by selecting one class of knowledge representation paradigms (semantic 

networks) and showing how they can be implemented as a collection of Classifier System 

rules. The described system takes high-level semantic network descriptions as input aT ._l 

automatically translates them into a Classifier System representation. It also provides '" 

"query processor" that takes high-level queries about the semantic network, translates them 

into a sequence of Classifier System operations, and translates the results of the queries back 
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into higher-level answers. 

In large scale parallel systems such as the Classifier System, the issue of control is 

central. Control issues arise in two ways for the Classifier System: in deciding which 

external classifiers are to be generated, and in deciding which external messages are to be 

placed on the message list and when. As the number of rules in the system increases, it 

quickly becomes impossible to do control the system manually. There are at least two 

possible ways to automate the process: "learning" and "compiling." Compilation can be 

viewed as mapping high-level structures onto lower-level operations ("top down"). Likewise, 

some kinds of learning {for example, genetic algorithms} can be viewed as the gradual 

emergence of higher-level structures from a random assortment of low-level processes; 

systems using these kinds of learning organize themselves from the "bottom up." The 

bottom-up approach is the one that has been studied previously for Classifier Systems 

{Holland, 80) (Booker, 82) (Goldberg, 83). The top-down approach is being explored in this 

paper. 

The implementation takes the form of a compiler, mapping "high-Ievelr semantic 

network definitions onto the Classifier System. In this context, the Classifier System is 

properly viewed either as a lower-level target language or as a specification for an abstract 

parallel machine. One particular semantic network formalism was selected for this research: 

KL-ONE (Brachman,78) {Schmolze and Brachman,82} (Brachman and Schmolze, 85). 

The KL-ONE family of languages is widely used; it contains most of the common semantic 

network constructs (the most notable exception being cancel links), has been precisely 

described, and includes sophisticated accessing functions as part of the design of the 

language. These characteristics make KL-ONE an excellent exemplar of the semantic 

network representation paradigm. 

The remainder of this paper is divided into five sections: (1) brief description of my 

version of the Classifier System, (2) short introduction to KL-ONE, (3) description of the 

Classifier System implementation of KL-ONE, (4) discussion, and (5) conclusions. 

25 



The Classifier Svstem 

Since there are several variants of Classifier Systems, I will describe below the one 

used for this project. This particular system does not include those features that are specific 

to the use of adaptive algorithms, such as bidding, support, etc. This is because I am 

interested in showing what sorts of representations are possible, not how they can evolve. 

The following view of the Classifier System emphasizes how it can be used to represent 

higher-level structures and does not rely on any particular hardware implementation. Thus, 

it is appropriate to describe the language of possible programs for the Classifier System as a 

formal grammar. The input to a Classifier program is the set of external messages (often 

called detector messages) that are added to the message list during the program's execution. 

The output is the set of messages (called effector messages) read from the message list by an 

external agent. Just as many traditional programs can be run interactively, a classifier 

program can be thought of as receiving intermittent input from the external environment 

and occasionally emitting output messages. The syntax for the Classifier System is as 

follows: 

* <classifier system> ::= <classifier> 

< classifier> ::= < condition> + => < action> 

<condition> ::= <alphabet>n I _<alphabet>n 

<action> ::= <alphabet>n 

<alphabet> ::= 1 I ° I # 

Each classifier, or production rule, consists of a condition part and an action part. 

The action part specifies exactly one action, while the condition part may contain many 

conditions (pre-conditions of activation). Rules with more than one condition are referred to 

as "multiple-condition classifiers." A multiple-condition classifier must have each of its pre

conditions fulfilled in a single time step for it to be activated. The conditions and actions 

are fixed length strings over the alphabet (1,0,#) where # denotes "don't care" and 1 and 0 

are literals. The determination of whether or not a specific message matches a condition is a 
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logical bit comparison on the defined (1 or 0) bits. If a "not" condition is used, the 

condition is fulfilled just in the case that no message on the message list matches it. The 

#'s in the condition part designate "don't care" positions in the sense that they match 

either 1 or o. The action part of the classifier determines the message to be posted. All 

defined bits appear directly in the output message. Any # symbols in the action part 

indicate that the corresponding bit value in the activating message should be substituted for 

the # symbol in the output message. l Actual messages are always completely defined in 

that they do not contain "don't care" symbols. Separate conditions are placed on separate 

lines, and the first condition (the distinguished condition) of a classifier is used to pass 

through messages to the action part. 

As a simple example, consider the following four bit (n = 4) classifier system: 

#00# => 1101 

#101 
###1 => ##1# 

- 1111 => 1111. 

This classifier system has three classifiers. The second classifier illustrates multiple-

conditions, and the third contains a negative condition. If an initial message, "0000" is 

placed on the message list at time TO, the pattern of activity shown below will be observed 

on the message list: 

Time Step 

TO: 

T1: 

T2: 

T3: 

T4: 

Message List 

0000 

1101 
1111 

1111 

1111 

Activating Classifier 

external 

first 
third 

second 

third. 

IFor multiple-condition classifiers, this operation is ambiguous since it is not clear 
what it means to simultaneously perform "pass through" on more than one condition. The 
ambiguity is resolved by selecting one condition to be used for pass through. By convention, 
this will always be the first condition. Another ambiguity arises if more than one message 
matches the distinguished condition in one time step. Again by convention, in my system I 
process all the messages that match this condition. The example illustrates this procedure. 
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The final two message lists (null and "1111") would continue alternating until the system 

was turned off. In T1, one message (1101) matches the first (distinguished) condition and 

both messages match the second condition. Pass through is performed on the first 

condition, producing one output message for time T2. H the conditions had been reversed 

(###1 distinguished), the message list at time T2 would have contained two identical 

messages (1111). 

KL-ONE 

KL-ONE organizes descriptive terms into a multi-level structure that allows 

properties of a general concept, such as "mammal," to be inherited by more specific 

concepts, such as "zebra." This allows the system to store properties that pertain to all 

mammals (such as "warm-blooded") in one place but to have the capability of associating 

those properties with all concepts that are more specific than mammal (such as zebra). A 

multi-level structure such as KL-ONE is easily represented as a graph where the nodes of 

the graph correspond to concepts and the links correspond to relations between concepts. 

Such graphs, with or without property inheritance, are often referred to as semantic 

networks. 

KL-ONE resembles NETL [Fahlman,79] and other systems with default hierarchies 

in its exploitation of the idea of structured inheritance of properties. It differs by taking the 

definitional component of the network much more seriously than these other systems. In 

KL-ONE, properties associated with a coricept in the network are what constitute its 

definition. This is a stronger notion than the one that views properties as predicates of a 

"typical" element, anyone of which may be cancelled for an "atypical" case. KL-ONE does 

not allow cancellation of properties. Rather, the space of definitions is seen as an infinite 

lattice of all possible definitions: there are concepts to cover each "atypical" case. All 

concepts in a KL-ONE network are partially ordered by the "SUBSUMES" relation. This 

relation, often referred to as "IS-A" in other systems, defines how properties are inherited 

through the network. That is, if a concept A is subsumed by another concept B, A inherits 
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all of B's properties. Included in the lattice of all possible definitions are contradictory 

concepts that can never have an extension (instance) in any useful domain, such as •·a 

person with two legs and four legs." Out of this potentially infinite lattice, any particular 

KL-ONE network will choose to name a finite number of points (because they are of interest 

in that application), always including the top element, often referred to as "THING." 

K ~ O  NE also provides a mechanism for using concepts whose definitions either 

cannot be completely articulated or for which it is inconvenient to elaborate a complete 

definition - the PRIMITIVE construct. For example, if one were representing abstract 

data types and the operations that can be performed on them, it might be necessary to 

mention the concept of "Addition." However, it would be extremely tedious and not very 

helpful in this context to be required to give the complete s e ~ t h e o r e t i c  definition of 

addition. In a case such as this, it would be useful to define addition as a primitive concept. 

The PRIMITIVE construct allows a concept to be defined as having something special 

about it beyond its explicit properties. Concepts defined using the PRIMITIVE construct 

are often indicated with "*"when a K ~ O N E  network is represented as a graph. 

While NETL stores assertional information (e.g., "Clyde is a particular elephant") in 

the same knowledge structure as that containing definitional information (for example, 

"typical elephant"), KL-ONE separates these two kinds of knowledge. A sharp distinction is 

drawn between the definitional component, where terms are represented, and the assertional 

component, where extensions (instances) described by these terms are represented. It is 

possible to make more than one assertion about the same object in any world. For example, 

it may be possible to assert that a certain object is both a "Building" and a "Fire Hazard." 

In KL-ONE, the definitional component (and its attendant reasoning processes) of the 

system is called the "terminological" space, and a collection of instances (and the reasoning 

processes that operate on it) is referred to as the "assertional'' space. The features of KL

ONE that are discussed here (structured inheritance, no cancellation of properties, primitive 

concepts, etc.) reside in the terminological component, while statements in the assertional 

component are represented as sentences in some defined logic. Reasoning in the assertional 

part of the system is generally viewed as theorem proving. 
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At the heart of knowledge acquisition and retrieval is the problem of classification. 

Given a new piece of information, classification is the process of deciding where to locate 

that information in an existing network and knowing how to retrieve it once it has been 

entered. This information may be a single node (concept) or, more likely, it may be a 

complex description built out of other concepts. Because KL-ONE maintains a strict notion 

of definition, it is possible to formulate precise rules about where any new description 

(terminological) should be located in an existing knowledge base. 

As an example of this classification process in KL-ONE, if one wants to elaborate a 

new concept XXXX that has the following characteristics: 

III xxxx is a kind of vacation, 
2 XXXX takes place in Africa, and 
3 XXXX involves hunting zebras, 

there exists a precise way to determine which point in the lattice of possible definitions 

should be elaborated as XXXX.2 Finding the proper location for XXXX would involve 

finding all subsumption relationships between XXXX and terms that share characteristics 

with it. 

H the terminological space is implemented as a multi-level network, this process can 

be described as that of finding those nodes that should be immediately above and 

immediately below XXXX in the network. The notions of "above" and "below" are 

expressed more precisely by the relation "SUBSUMES." Deciding whether one concept 

SUBSUMES another is the central issue of classification in KL-ONE. The subsumption 

rules for a particular language are a property of the language definition 

(Schmolze and Israel, 83). 

In summary, there are two aspects to the KL-ONE system: (1) data structures that 

store information and (2) a sophisticated set of operations that control interactions with 

those data structures. In the following sections, the first of these aspects is emphasized. A 

more detailed treatment of KL-ONE operations is contained in (Lipkis, 81). 

2More precisely, XXXX has a location role which is value restricted to the concept 
Africa, an activity role which is value restricted to concept HuntingZebras, and a SUPERC 
link connecting it to the concept Vacation. 
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Classifier SYstem Implementation of KL-ONE 

In this section, a small subset of the KL-ONE language is introduced and the 

corresponding representation in classifiers is presented. Then it is shown how simple queries 

can be made to the Classifier System representation to retrieve information about the 

semantic network representation. The simple queries that are discussed can be combined to 

form more complex interactions with the network structure (Forrest, 85). 

A KL-ONE semantic network can be viewed as a directed graph that contains a finite 

number of link and node types. Under this view, a Classifier System representation of the 

graph can be built up using one classifier to represent every directed link in the graph. The 

condition part of the classifier contains the encoded name of the node that the link comes 

from and the action part contains the encoded name of the node that the link goes to. 

Tagging controls which type of link is traversed. In the following, two node types (concepts 

and roles) and six link types (SUPERC, ROLE, VR, DIFF, MAX, and MIN) are discussed. 

These node and link types comprise the central core of most KL-ONE systems and are 

sufficiently rich for the purposes of this paper. 

For the purposes of encoding, the individual bits of the classifiers have been 

conceptually grouped into fields. The complete description of these fields appears below. 

The description of the encoding of KL-ONE is then presented in terms of fields and field 

values, rather than 'using bit values. It should be remembered that each field value has a 

corresponding bit pattern and that ultimately each condition and action is represented as a 

string of length thirty-two over the alphabet { 1,0,#}. The word nil denotes "don't care" for 

an entire field. There are several distinct ways in which the classifiers' bits have been 

interpreted. The use of tagging ensures that there is no ambiguity in the interpretations 

used. The type definition facilities of Pascal-like languages provide a natural way to express 

the the conceptual interpretations I have used. as shown below: 
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type 
tag = (NET.NUM,PRE): 
link = (SUPERC,ROLE,DIFF,VRLINK,MAX,MIK,); 
direction = (UP,DOWN); 
compare = (AFIELD,BFIELD,CFIELD); 
name = string; 
message = string; 
numeric = a .. 63; 

classifier pattern = record 
case tag: tagfield 

NET : /* Structural Variant * / 
(tagfield name link direction); 

NUM : /* Numeric Variant * / 
(tagfield name nil direction compare numeric); 

PRE : /* PreDefined Variant * / 
(tagfield message); 

end; 

This definition defines three patterns for constructing classifiers: structural, numeric, 

and predefined. The structural pattern is by far the most important. It is used to represent 

concepts and roles. The numeric pattern is used for processing number restrictions. The 

predefined pattern is used for control purposes; it has no don't cares in it, providing reserved 

words, or constants, to the system. 

The structural pattern has been broken into four fields: tag, name, link, and direction. 

The tag field is set to NET, the name field contains the coded name of a concept or role, the 

link field specifies which link type is being traversed (SUPERC, DIFF, etc.)' and the 

direction determines whether the traversal is up (specific to general) or down (general to 

specific). 

The Numeric pattern has six fields: tag, name, link, direction, compare, and number. 

In most cases the name, link, and direction fields are not relevant to the numeric processing 

and are filled with don't cares. The tag field is always set to NUM, and the compare field is 

one of AFIELD, BFIELD, or CFIELD. The compare field is used to distinguish operands in 

arithmetic operations. The number field contains the binary representation of the number 

being processed. 

The Predefined pattern has the value PRE in the tag field. The rest of the pattern is 

assigned to one field. These bits are always completely defined (even in conditions and 
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actions) as they refer to unique constant messages. These messages provide internal control 

information and they are they are used to initiate queries from the command processor. 

Concept Specialization 

All concepts in KI,.ONE are partially ordered by the "SUBSUMES" relation. One 

concept, for example Surfing, is said to specialize another concept, say WaterSport, if 

Surfing is SUBSUMEd by WaterSport. This means that Surfing inherits all of WaterSport's 

properties. The "SUBSUMES" relation can be inferred by inspecting the respective 

properties of the two concepts, or Surfing can be explicitly defined as a specialization of 

WaterSport. Graphically, the specialization is represented by a double arrow (called a 

SUPERC link) from the subsumed concept to the subsuming concept (see Figure 1). KL

ONE's SUPERC link is often called an ISA link in other semantic network formalisms. 

Since the SUBSUMES relation is transitive, SUPERC links could be drawn to all of 

WaterSport's subsumers as well. Traditionally, only the local links are represented 

explicitly. 

Figure 1 
Concept Specialization 

Two classifiers are are needed to represent every explicit specialization in the network. 

This allows traversals through the network in either the UP (specific to general) or DOW:r\ 

(general to specific) direction. The classifiers form the link between the concept that is 

being specialized and the specializing concept. The following two classifiers represent the 

33 

WaterSport 

Surfing 



network shown in Figure 1: 

Roles 

NORM-WaterSport-SUPERC-DOWI\ => NORM-Surfing-SUPERC-DOWI\ 

NORM-Surfing-SUPERC-UP => NORM-WaterSport-SUPERC-UP. 

A role defines an ordered relation between two concepts. Roles in KL-ONE are 

similar to slots in frame-based representations. The domain of a role is analogous to the 

frame that contains the slot; the range of a role is analogous to the class of allowable slot-

fillers. In KL-ONE, the domain and range of a role are always concepts. Just as there is a 

partial ordering of concepts in KL-ONE, so is there a partial ordering of roles. The relation 

that determines this ordering is "differentiation." Pictorially, the DIFFEREI\TlATES 

relation between two roles is drawn as a single arrow (called a DIFF link). Roles are 

indicated by a circle surrounding a square (see Figure 2). This allows roles to be defined in 

terms of other roles similarly to the way that concepts are defined from other concepts. The 

domain of a role is taken to be the most general concept at which it is defined, and, likewise, 

the range is taken to be the most general concept to which the role is restricted (called a 

value restriction). IT there is no explicit value restriction in the network for some role, its 

range is assumed to be the top element, THING. 

Roles are associated with a concept, and one classifier is needed to represent each 

association (link) between a concept and its role. For example, the role Arm might be 

associated with the concept Person (see Figure 2) and the following classifier would be 

generated: 

nil-Person-nil-nil-nil 
PRE-RoleMessage => nil-Arm-DIFF-nil-nil. 

Roles can be defined in terms of other roles using DIFF links. For example. the role 

Sibling can be defined as a differentiater of "Relatives" (see Figure 3). Building on this 

definition, the conjunction WealthySibling is defined by constructing DIFF links from 

WealthySibling both to Sibling and to Wealthy as shown in Figure 3. 
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Figure 2 

Concept and Role 

Figure 3 shows how these would be drawn. 

Wealthy 

WealthySibling 

Figure 3 
Role Differentiation 

Sibling 

There are two links specified by this definition. Two classifiers are needed to 

represent each link so that queries can be supported in both directions (UP or DOWN). 

They are shown below: 

NORM-Wealthy-DIFF-DOWN => NORM-WealthySibling-DIFF-DOWN 

NORM-WealthySibling-DIFF-UP => NORM-Wealthy-DIFF-UP 

NORM-Sibling-DIFF -DOWN => NORM-WealthySibling-DIFF -DOW!' 

NORM-WealtbySibling-DIFF-UP => NORM-Sibling-DIFF-UP. 

These classifiers control propagations along DIFF links. They could be used to query the 

system about relations between roles. 

Value Restrictions 

Value restrictions limit the range of a role in the context of a particular concept. In 
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frame/slot notation, this would correspond to constraining the class of allowable slot fillers 

for a particular slot. To return to the sibling example. we might wish to define the concept 

of a person all of whose siblings are sisters (Person WithOnlySisters). In this case the role, 

Sibling, is a defining property of Person WithOnlySisters. The association between a concept 

and a role is indicated in the graph by a line segment connecting the concept with the role. 

Value restrictions are indicated with a single arrow from the role to the value restriction (a 

concept). Figure 4 illustrates these conventions. 

Figure 4 
Value Restrictions 

One classifier is needed for each explicitly mentioned value restriction. This classifier 

associates the local concept and the relevant role with their value restriction. The control 

message, VR, ensures that the classifier is only activated when the syst,em is looking for 

value restrictions. The following classifier is produced for the value restriction: 

nil-Person With OnlySisters-nil-nil-nil 
nil-Sibling-nil-nil-nil 
PRE-VRMessage => nil-Female-SUPERC-nil-nil. 

It should be noted that the above definition does not require a Person WithOnlySisters 

to actually have any siblings. It just says that if there are any, they must be female. The 

definition can be completed to require this person to have at least one sister by placing a 

number restriction on the role. 
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Number Restrictions 

Pictorially, number restrictions are indicated at the role with (x,y), where x is the 

lower bound and y is the upper bound. Not surprisingly, these constructs place limitations 

on the minimum and ma.ximum number of role fillers that an instance of the defined concept 

can have. In K~ONE, number restrictions are limited to the natural numbers. The default 

MIN restriction for a concept is zero, and the default MAX restriction is infinity. Thus, in 

the above example, the concept Person WithOnlySisters has no upper bound on the number 

of siblings. 

Figure 5 
Number Restrictions 

Consider the definition of an only child, shown in Figure 5. This expresses the' 

definition of Only Child as any child with no siblings. The following two classifiers would be 

generated for the number restriction: 

nil-Sibling-nil-nil-nil 
nil-OnlyChild-nil-nil-nil 
PRE-MaxMessage => NUM-nil-MAX-nil-nil-O 

nil-Sibling-nil-nil-nil 
nil-0nly Child -nil-nil-nil 
PRE-Min Message => NUM-nil-MIN-nil-nil-O. 

Querving The SYstem 

Four important K~ONE constructs and their corresponding representations m 
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classifiers have been described. These are: concept specialization, role attachment and 

differentiation, value restriction, and number restriction. Once a Classifier System 

representation for such a system has been proposed, it is necessary to show how such a 

representation could perfonn useful computations. In particular, it will be shown how the 

collection of classifiers that represent some network (as described above) can be queried to 

retrieve information about the network. An example of such a retrieval would be 

discovering all the inherited roles for some concept. 

In the context of the Classifier System, the only 10 capability is through the global 

message list. The fonn of a query will therefore be a message(s) added to the message list 

from some external source (a query processor) and the reply will likewise be some collection 

of messages that can be read from the message list after the Classifier System has iterated 

for some number of time steps. 

~ an example, consider the network shown in Figure 6 and suppose that one wanted 

to find all the inherited roles for the concept HighRiskDriver. First, one new classifier must 

be added to the rule set: 

NET-nil 
- PRE-ClearMessage => NET-nil. 

This classifier allows network messages to stay on the message list until it is explicitly de

activated by a ClearMessage appearing on the message list. 

The query would be performed in two stages. First, a message would be added to the 

message list that would find all the concepts that HighRiskDriver specializes (to locate all 

the concepts from which HighRiskDriver can inherit roles). This query takes two time steps. 

After the second time step (when the three concepts that HighRiskDriver specializes are on 

the message list), the second stage is initiated by adding the "Role" message to the message 

list. It is necessary at this point to ensure that the three current messages will not be 

rewritten at the next time step so that the role messages will not be confused with the 

concept messages. This is accomplished by adding the ClearMessage, which "turns off" the 

one overhead classifier. Both stages of the query are shown belo",:3 

3The -> symbol indicates messages that are written to the message list from an 
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Figure 6 
Example KL-ONE Network. 

external source. 
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Time Step 

TO: -> 

Tl: 

T2: 

-> 
-> 

T3: 

T4: 

Message List 

NET -HighRiskDriver-SUPERC-UP 

NET -HighRiskDriver-SUPERC-UP 
NET-Person-SUPERC-UP 

NET -HighRiskDriver-SUPERC-UP 
NET-Person-SUPERC-UP 
NET-Thing-SUPERC-UP 
PRE-RoleMessage 
PRE-ClearMessage 

NET-Sex-DIFF-UP 
NET-Age-DIFF-UP 
NET-Sex-DIFF-UP 
NET-Limb-DIFF-UP 

NET-Sex-DIFF-UP 
NET-Age-DIFF -UP 
NET-Limb-DIFF-UP. 

The query could be continued by adding more messages after time T4. For example, the 

VRMessage could be added (with the ClearMessage) to generate the value restrictions for all 

the roles on the list. 

This style of parallel graph search is one example of the kinds of retrievals that can be 

performed on a set of classifiers that represent a an inheritance network. Other parallel 

operations include: boolean combinations of simple queries. limited numerical processing, 

and synchronization. An example of a query using boolean combinations would be to 

discover all the roles that two concepts have in common. This is accomplished by 

determining the inherited roles for each of the two concepts and then taking their 

intersection. Queries about number restrictions involve some numerical processing. Finally, 

it is also possible to synchronize the progression of independent queries. For these three 

types of queries, additional overhead classifiers are required. 

Discussion 

The techniques discussed in the previous section have been implemented and fully 

described (Forrest, 85). These techniques are presented in the context of more complex KL-
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ONE operations such as classification and determination of subsumption. 

The implemented system (excluding the Classifier System simulation) is divided into 

four major parts: parser, classifier generator, symbol table manager, and external command 

processor. The parser takes KL-ONE definitions as input, checks their syntax, and enters all 

new terms (concepts or roles) into a symbol table. The classifier generator takes 

syntactically correct KL-ONE definitions as input and (using the symbol table) constructs 

the corresponding classifier representation of the KL-ONE expression. The parser and 

classifier generator together may be thought of as a two pass compiler that takes as input 

KL-ONE network definitions and produces "code" (a set of classifiers) for the Classifier 

System. Additional classifiers that are independent of any given KL-ONE network (for 

example, the overhead classifier described in the previous section) are loaded into the list of 

network classifiers automatically. These include classifiers to perform boolean set operations, 

sorting, arithmetic operations, etc. The symbol table contains the specific bit patterns used 

to represent each term in a KL-ONE definition. One symbol table is needed for each KL

ONE network. Thus, if new concepts are to be added to a network without recompilation, 

the symbol table must be preserved after "compilation." The external command processor 

runs the Classifier System, providing input (and reading output) from the "classifier 

program." 

Several techniques for controlling the behavior of a Classifier System have been 

incorporated into the implementation. Tagging, in which one field of the classifier is used as 

a selector, is used to maintain groups of messages on the message list that are in distinct 

states. This allows the use of specific operators that are defined for particular states. This 

specificity also allows additional layers of parallelism to be added by processing more than 

one operation simultaneously. In these situations, the messages for each operation are kept 

distinct on the global message list by the unique values of their tags. 

Negative conditions activate and deactivate various subsystems of the Classifier 

System. Negative conditions are used to terminate computations and to explicitly change 

the state of a group of messages when a "trigger" message is added to the list. The trigger 

condition violates the negative condition and that classifier is effectively turned off. 
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Computations that proceed one bit at a time illustrate two techniques: (1) usmg 

control messages to sequence the processing of a computation. and (2) how to collect and 

combine information from independent messages into one message. Sequencing will always 

be useful when a computation is spread out over multiple time steps instead of being 

performed in one step. Collection is important because in the Classifier System it is easy to 

"parallelize" information from one message into many messages that can be operated on 

independently. This is most easily accomplished by having many classifiers that match the 

same message and operate on various fields within the message. The division of one message 

into its components takes one time step. However, the recombination of the new 

components back into one message (for example, an answer) is more difficult. The collection 

process must either be conducted in a pairwise fashion or a huge number of classifiers must 

be employed. The computational tradeoff for n bits is 2n c;:lassifiers (one for each 

combination of possible messages) in one time step versus n classifiers (one for each bit) that 

are sequenced for n time steps. Intermediate solutions are also possible. 

Synchronization techniques allow one operation to be delayed until another operation 

bas reached some specific stage. Then both operations can proceed independently until the 

next synchronization point. Synchronization can be achieved by combining tagging with 

negative conditions. 

Conclusions 

Classifier Systems are capable of representing complex high-level knowledge 

structures. This has been shown by choosing one example of a common knowledge 

representation paradigm (KlrONE) and showing how it can be translated into a Classifier 

System rule set. ln the translation process the Classifier System is viewed as a low-level 

target language into which KL-ONE constructs are mapped. The translation is described as 

compilation from high-level KlrONE constructs into low-level classifiers. 

Since this study has not incorporated the bucket brigade learning algorithm, one 

obvious direction for future study is exploration of how many of the structures described 
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here are learnable by the bucket brigade. This would test the efficacy of the learning 

algorithm and it would allow an investigation of whether the translations that 1 have 

developed are good ones or whether there are more natural ways to represent similar 

structures. While the particular algorithms that 1 have developed might not emerge with 

learning, the general techniques could be expected to manifest themselves. It is possible 

that some of these structures are not required to build real world models, but this seems 

unlikely b8.'!led on the evidence of KL-ONE and some initial investigations with the bucket 

brigade. These structures are for computations that are useful in many domains and could 

be expected to playa role in most sophisticated models that are as powerful as KL-ONE. 

Since they are useful in KL-ONE, this suggests that they might be useful in other real world 

models. 

A start has already been made in this direction. Goldberg IGoldberg, 83J and Holland 

[Holland,85J have shown that the bucket brigade is capable of building up default 

hierarchies, using tags, using negative conditions as triggers, and limited sequencmg 

(chaining). In addition, I would look for synchronization, more sophisticated uses of tags, 

more extensive sequencing, and in the context of knowledge representation, the formation of 

roles. Roles are more complex than "properties" for two reasons. First, they are two place 

relations rather than one place predicates, and second, relations between roles (DIFF links) 

are well defined. Of the other structures, it is possible that some are so central to every 

representation system that they should be "bootstrapped" into a learning system. That is, 

they should be provided from the beginning as a "macro" package and not required to be 

learned from the beginning every time. 

43 



References 

Booker, Laiton (1982) "Intelligent Behavior as an Adaptation to the Task Environment", 
Ph. D. Dissertation (Computer and Communication Sciences) The University of 
Michigan, Ann Arbor, Michigan. 

Brachman, Ronald J. (1978) "A Structural Paradigm for Representing Knowledge," 
Technical Report No. 3605, Bolt Beranek and Newman Inc., Cambridge, Ma. 

Brachman, Ronald J. and Schmolze, James G. (1985), "An Overview of the KL-ONE 
Knowledge Representation System," Vol. 9, No.2. 

Fahlman, Scott E. (1979), NETL: A System for Representing and Using Real·World 
Knowledge, The MIT Press, Cambridge, Ma. 

Forrest, Stephanie (1985), "A Study of Parallelism in The Classifier System and Its 
Application to Classification in KL-ONE Semantic Networks", Ph. D. Dissertation 
(Computer And Communication Sciences) The University of Michigan, Ann 
Arbor, Mi. 

Goldberg, David (1983), Ph. D. Dissertation, The University of Michigan, Ann Arbor, Mi. 

Holland, John H. (1975) Adaptation in Natural and Artificial S "stems , The University of 
Michigan Press, Ann Arbor, Mi. 

Holland, John H. (1980), "Adaptive Algorithms for Discovering and Using General Patterns 
in Growing Knowledge Bases", International Journal of Policy Analysis and 
Information Systems, VolA No.3. 

Holland, John H. (1985), Personal Communication. 

Lipkis, Thomas (1981), "A KL-ONE Classifier", Consul Note #5, USC/Information Sciences 
Institute, Marina del Rey, Ca. 

Schmolze, James G. and Brachman, Ronald J. (1982) (editors) "Proceedings of the 1981 KL
ONE Workshop," Technical Report No. 4842, Bolt Beranek and Newman Inc., 
Cambridge, Ma. 

Schmolze, James G. and Israel, David (1983), "KL-ONE: Semantics and Classification," in 
Sidner, C., et al., (editors) Technical Report No. 5421, Bolt Beranek and Newman 
Inc., Cambridge, Ma., pp. 27-39. 

44 



The Bucket Brigade is not Genetic 

T. H. WESTEROALE 

Abstract -- Unlike genetic reward schemes, bucket brigade 
schemes are subgoal reward schemes. Genetic schemes operat
ing in parallel are here compared with a sequentially 
operating bucket brigade scheme. Sequential genetic schemes 
and parallel bucket brigade schemes are also examined in 
order to highlight the non-genetic nature of the bucket bri
gade. 

I. INTRODUCTION 

The Bucket Brigade can be viewed as a class of appor
tionment of credit schemes for production systems. There is 

an essentially different class of schemes which we call 
genetic. Bucket Brigade schemes are subgoal reward schemes. 
Genetic schemes are not. 

For concreteness, let us suppose the environment of 
each production system is a finite automaton, whose outputs 
are non-negative real numbers called payoffs. (To simplify 
our discussion, we are excluding negative payoff, but most 
of our conclusions will hold for negative payoff as well. l 
Each production's left hand side is a subset of the environ
ment state set and each production's right hand side is a 
member of the environment's input alphabet. Associated with 
each production is a positive real number called that 
production·s a v a i ~ a b i ~ i t y .  

P r o b a b i ~ i s t i c  s e q u e n t i a ~  s e ~ e c t i o n  systems are systems 
in which the following four steps take place each time unit: 
(1) The state of the environment is examined and those pro
ductions whose left hand sides contain this state form the 
eligibility set. (2) A member of the eligibility set is 
selected, probabilistically, each production in the set 
being selected with probability proportional to its availa
bility. (3) This production then fires. which means merely 
that its right hand side is input into the environment caus-
ing an environment state transition and an output of payoff. 
(4) A reward scheme (or apportionment of credit scheme) 
examines the payoff and on its basis adjusts the availabili
ties of the various productions. Thus the availabilities 
are real numbers which are being continually changed by the 
reward scheme. Probabilistic sequential selection systems 
differ from one another in their differing reward schemes. 

We assume that for any ordered pair of environment 
states there is a sequence of productions which will take us 
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from the f~rst state to the second. 

The average payoff per unit time is a reasonable meas
ure of how well the system is doing. If the availabilities 
are held fixed, the system-environment complex becomes a 
finite state Markov Chain, and the average payoff per unit 
time (at equilibrium) is formally defined in the obvious 
way. As the availabilities change, the average payoff per 
unit time changes. Thus the average payoff per unit time 
can be thought of as a function of the availabilities. The 
object of the reward scheme is to change the availabilities 
so as to increase the average payoff per unit time. 

The systems above have been simplified so as to more 
easily illustrate the points we wish to make. In any useful 
system the environment would output other symbols in addi
tion to payoff, symbols which we could call ordinary output 
symbols. The left hand sides of the productions would then 
be sets of ordinary output symbols. A useful system would 
also contain some working memory (a "blackboard" or "message 
list") which could be examined and altered by the produc
tions. In the above systems the working memory is regarded 
as part of the environment and instead of sets of output 
symbols we have sets of (Moore type) automaton states which 
produce those symbols. For illustrative purposes we have 
simplified the system by removing various parts and leaving 
only those parts on which the reward scheme operates. 

In our systems the set of productions is fixed. We 
want to study the reward scheme, and allowing generation of 
new productions from old ones (E.g. [4]) will merely dis
tract us. 

II. GENETIC SYSTEMS WITH COMPLETE RECOMBINATION 

At any given time, the production system can be thought 
of as a population of productions, the availability of a 
production giving the number of copies of that production in 
the population, or some fixed multiple of the number of 
copies. Thus the process of probabilistic selection of the 
production to fire can be thought of as randomly drawing 
productions from the population, until one is drawn that is 
in the eligibility set. In some systems the population is 
held explicitly and the availabilities are implicit whereas 
in others the availabilities are held explicitly and the 
population is implicit. 

If the system is to be viewed as a population of pro
ductions, then of course after each production is success
fully selected from the population it is tested on the 
environment with the environment in the state in which the 
previously selected production left it. 
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It is easier to analyse systems in which the result of 
a test of a production is independent of which productions 
were tested previously. Such systems are usually unrealis
tic, but if the system is viewed as a population of produc
tion strings, rather than of individual productions, then it 
is often realistic to view the test of a string as being 
independent of which strings were tested previously. Let us 
look at a population system of this kind. The system will 
consist of a population of production strings. The popula
tion will change over time. Time is viewed as divided into 
large units called generations. During a generation, every 
string in the population is tested against the environment 
and, as a result of the tests, the reward scheme determines 
the composition of the population in the next generation. A 
system of this kind we call a string population system. 

Let's examine such a system and give its reward scheme in 
detail. We shall call the system, System A. System A is a 
genetic system with complete recombination. 

Begin with a set of productions, each with an availa
bility. Let n and N be large integers with n much larger 
than N. The set of availabilities define a population of 
length n strings of productions (possibly with repeats) as 
follows. Let v be the sum of all the availabilities. For 
any length n string, the number of copies of that string in 
the population is n-'v'-n times the product of the availabil
ities of its constituent productions. In each generation, 
the number of progeny of each string is given by testing the 
string and summing the payoff obtained during the test. To 
test a string one selects the first production in the string 
that is in the eligibility set, fires it, then moves on down 
the string until one finds the next production in the string 
that is now in the eligibility set, fires it etc. etc. until 
N productions have fired. We will not worry here about the 
few cases where one gets to the end of the string before N 
productions have fired. 

We are assuming that during a generation, every string 

is tested against the environment. We are also assuming 
that there is an "initial state" of the environment and that 
when each string is tested the test always begins with the 
environment in the initial state, so that the results of a 
string test are independent of which strings were previously 
tested. 

The formation of progeny is followed by complete recom
bination. In other words, each production's availability is 
incremented by the number of times that production occurs in 
the new progeny, and the next generation's population is 
formed from the availabilities just as the previous 
generation's population was. (In effect, the strings are 
broken into individual productions and these productions 
then re-combine at random to form a new population of 
length-n strings. l 
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We could have demanded that each string test begin with 
the environment in the state in which the last string left 
it, but if Nand n are large then this demand will make 
hardly any difference to the test results. This is because 
the environment "forgets" what state it started in during a 
long test. For example, suppose there is one production 
whose left hand side is the set of all environment states 
and whose right hand side is a symbol which resets the 
environment to one particular state. Let's call this pro
duction the resetting production. Then during any string 
test, once the resetting production is encountered, the pay
off for the rest of the test and the successive availability 
sets are independent of the state the environment was in 
when the test started. Thus each string has a value 
independent of which strings were tested previously, except 
for a usually small amount of payoff at the start of the 
test before the first occurrence of the resetting produc
tion. One can generalize these comments usefully to the 
case where there is no resetting production [6), but we will 
not do so formally here. The important thing to note is 
that except for a usually small initial segment, the 
sequence of successive eligibility sets would be independent 
of which strings were tested previously (provided nand N 
are large enough). Thus we do not lose anything important 
if we assume that each test begins with the environment in 
some initial state. So we can think of the tests in a gen
eration as taking place sequentially or in parallel, it 
makes no difference. 

Let the va~ue of a string be the sum of the payoffs 
when the string is tested with the environment begun in the 
initial state. If there are x copies of a string ~ in the 
population, and if the value of j? is y, then the number of 
progeny of;0 will be xy. If r is a production which occurs 
z times in the string j? then zxy will be the contribution of 
the progeny of ~ to the increase in the availability of r. 
This is obvious, and we have only re-stated matters in this 
way to make it clear that we need not insist that x, y, and 
the activations are integers. The formalism makes perfect 
sense provided they are non negative real numbers. If the 
value of /-J is 0.038 then every copy of j? will have 0.038 
progeny. (But remember, we insist that activations, and 
hence x, are actually positive.) 

Note that the behavior of System A can be thought of as 
a sequence of availability tuples. In any given generation, 
the population composition is given by the availabilities. 
Just as in the probabilistic sequential selection systems, 
the availabilities determine the average payoff per unit 
time (averaged over the tests of all the strings in the gen
eration). 

System A is deterministic. Given a tuple of availabil
ities it is completely determined what the next tuple of 
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availabilities (in the next generation) will be. We will 
call two string population systems equivalent if they pro
duce the same change in the availabilities, that is if given 
any tuple of availabilities, the next tuple of availabili
ties will be the same whichever system we are examining. 

Actually we need a weaker notion 
will also call two systems equivalent 
cumstances. We will describe these 
mally, but will not give here a 
equivalence. 

of equivalence. We 
in several other cir
circumstances infor-

rigorous definition of 

Let the set of all possible tuples of availabilities be 
regarded as a subset of Euclidean space in the usual way. 
To each point in the subset corresponds an average payoff 
per unit time. System A defines for each point in the sub
set a vector giving the change in availabilities which its 
scheme would produce. Two systems are equivalent if at 
every point the change vector is the same for the two sys
tems and the average payoff is also the same. We also call 
two systems equivalent if there is a positive scalar k such 
that at each point (1) the average payoff for the second 
system is k times that of the first, and (2) the change vec
tor of the two systems aims in the same direction. So a 
system which was like System A but whose reward scheme 
always gave just half as many progeny would be equivalent to 
System A. If we define normalizing a vector as dividing it 
by the sum of its components, then condition (2) becomes 
"the normalized change vector of the two systems is the 
same." 

For completeness I must mention a complication which 
will not be important in our discussion. We need to loosen 
condition (2) by normalizing the points in the space them
selves. Normalizing a point in the space projects it onto 
the normalized hyperplane. (Its components can then be 
thought of as probabilities and it is of course these proba
bilities that we are really interested in.) If we take a 
change vector at a point, and think of the change vector as 
an arrow with its tail at that point, then we can normalize 
the point where its tail is and also normalize the point 
where its head is. The arrow between the two normalized 
points is a projection of the change vector onto the normal
ized hyperplane. We want condition (2) to say "the pro
jected change vector of the two systems aims in the same 
direction", or "the normalized projected change vector of 
the two systems is the same". Sorry about this complica
tion. It does make sense, but the details will not be 
important in our discussion. 

Of course many schemes are probabilistic. Consider a 
system (System B) just like System A except that in each 
generation instead of its reward scheme giving progeny to 
all strings in the population, the reward scheme randomly 
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selects just one string and gives only that string progeny 
(the same number of progeny System A would give it). Now 
the change in availabilities is probabilistic. At each 
point there are many possible change vectors, depending on 
which string is selected. When a system produces many pos
sible change vectors at a point, we simply average them, 
weighting each possible change vector with the probability 
that it would represent the change. It is the average 
change vector that we then use in deciding system 
equivalence (or rather, the normalized projected average 
change vector). We call a scheme noisier the more the pos
sible change vectors at a point differ from each other. So 
System B is equivalent to System A, though System B is much 
noisier. 

Fisher's fundamental theorem of natural selection [1] 
[2] applies to Systems A and B so we know that for these 
systems the expectation of the change in the average payoff 
per unit time is non-negative. We call a system with this 
property safe. A safe system, then, is one in which at 
every point, the average change vector aims in a direction 
of non-decreasing average payoff. Clearly then, a system 
that is equivalent to a safe system is also safe. 

Consider a system like System A except that the initial 
state (the state in which all string tests begin) is dif
ferent from the initial state in System A. Technically, 
this new system would not be equivalent to System A, but if 
nand N are large enough it is nearly equivalent. In decid
ing system equivalence we will assume nand N are large 
enough. More precisely, we note that as nand N increase, a 
system's normalized projected average change vectors gradu
ally change. At any point, the normalized projected average 
change vector approaches a limit vector as nand N approach 
infinity. It is this limit vector that we use as our nor
malized projected average change vector in deciding system 
equivalence. Thus the change in initial state produces a 
new system that is equivalent to System A. In fact, a sys
tem like A or B which begins each string test with the 
environment in the state the last string test left it is a 
system equivalent to A and B. 

In all the systems discussed in this paper, a tuple of 
availabilities defines an average payoff per unit time, and 
the reward scheme defines, for each such tuple, an average 
change vector. This is true also in the probabilistic 
sequential selection systems. Thus we can compare any two 
of our systems and ask whether they are equivalent. 

We ask if there is a reward scheme for a probabilistic 
sequential selection system that makes the system equivalent 
to Systems A and B. The natural candidate is System C 
defined by the following reward scheme: Reward every N pro
ductions which fire by incrementing the availabilities of 
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these N productions by the sum of the payoffs over these N 
firings. But System C is not equivalent to System A. In 
the System A string tests, productions are skipped when they 
are not in the eligibility set. System A rewards these 
(increments their availabilities) whereas System C does not. 
To make C equivalent to A we must do something about reward
ing the productions that are not in the eligibility set. 

Equivalently we can instead penalize the various pro
ductions that are in the eligibility set. (See [5] for the 
formal details of the argument in the remainder of this sec
tion, including the effect of increasing string length.) The 
idea is that whenever production r is rewarded (has its 

availability incremented), the eligibility set R at the time 
r fired is penalized as follows. Let S be the sum of all 
availabilities and R the sum of the availabilities of pro
ductions in R. The absolute probability of r is the availa
bility of r divided by S. The problbility oT r relative to 
R is the availability of r divided by~. If the reward is 
x, the availability of r is first increased by x. Then the 
availabilities of all members of R are adjusted to bring R 
back down to what it was before the reward. The adjustment 
is done proportionally: i.e. the adjustments do not change 

the probabilities. relative to R, of the members of R. We 
call these adjustments penalties since they penalize a pro
duction for being eligible. 

Let System C· be System C with this penalty scheme 
added. Then System C' is equivalent to Systems A and B. 

In fact we can easily make this penalty scheme more 

sensible if we reward every time unit. The payoff in a time 
unit becomes the reward of the last N productions that fired 
(with corresponding penalties for the eligibility sets). 
This gives an equivalent. but more sensible scheme. 

More sensibly. we can use an exponential weighting 

function, so that the reward of the production that fired z 
time units ago is CZ times the payoff. (c is a constant and 

o < c < , Instead of assuming N large. we assume c is 

very close to 1.) This gives an equivalent scheme which is 
easy to implement because one only needs to keep for each 

production a count 

~ "'\(2). C Z 

Z-I 

where X(z) is if the production fired z time units ago and 
o otherwise. A second count, called the production's eligi
bility count is also kept. This has the formula 

where F ( z ) 

OC> 

~ Hz). Cz 
~ f(z) 
Z=I 

is the sum of the availa~ilities of the 
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productions that were in the eligibility set z time units 
ago and f(z) is the availability of the given production if 
it was in the availability set z time units ago. and 0 oth
erwise. The count and the eligibility count are particu
larly easy to update. Each time unit. all productions are 
rewarded by the product of the current payoff times the 
difference between the count and the eligibility count. 
Call the probabilistic sequential selection system using 
this scheme System D. 

System D is equivalent to System A. (Provided. as we 
said. we let nand N approach infinity and c approach 1.) 
Thus System D is safe (assymptotically safe as c -+ 1) since 
System A is. Unfortunately a system using a bucket brigade 
scheme will not in general be safe. and it will not be 
equivalent to System A. 

Since System D is equivalent to the genetic Systems A 
and B. we can call D also a genetic system. (Fisher's 
theorem says that a genetic system must be safe.) We can 
call the reward scheme of System D a genetic scheme for a 
probabilistic sequential selection system. 

I I I . THE BUCKET BRIGADE 

Genetic schemes like the scheme of System D form one 
class of reward schemes for probabilistic sequential selec
tion systems. Another class is the class of bucket brigade 
schemes. 

We shall examine the following bucket brigade scheme. 

Let C and K be constants, 0 < K ~ 1, 0 < C :e; 1 . For each pro
duction the system holds two quantities, the availability 
and the cash balance. Productions are chosen from the eli
gibility set probabilistically on the basis of the availa
bilities. Each time unit, the production that fires pays 
proportion C of its cash balance to the production that 
fired in the previous time unit. The production that fired 
then has the current payoff added to its cash balance, and 
then its availability is increased by K times its cash bal
ance. The members of the eligibility set are then penalized 
as in System C'. I know that Holland [4J employs a bidding 
system with the bucket brigade, but that system is much more 
difficult to analyze, so I shall use the probabilistic 
sequential selection system described above. 

Let System E be a probabilistic sequential selection 
system using the above bucket brigade scheme. System E 
looks rather like System D. The most fundamental difference 
however is the following. In the bucket brigade, a produc
tion r is rewarded if it is followed by a production which 
is usually successful. In the genetic schemes of the last 
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section, r is rewarded only if it is followed by 
tion which is successful this very time. 

a produc-

For this reason, a bucket brigade like the one in Sys
tem E is not safe. Suppose the environment is such that the 
productions must come in triples, each triple being either 
hbc, dbe, or dfg. Suppose payoff is 10 for e, and zero for 
the other productions. Suppose hbc and dbe are equiprob
able. The bucket brigade will pass b a cash payment of 5 on 
average, whereas f will get 0, so dfg will become less prob
able vis a vis dbe. Nevertheless, h gets passed 5 on aver
age, whereas d gets passed less than 5, since it is some
times followed by f, and g is broke. 

The bucket brigade gives reward for achieving a 

subgoal. In the production system context, the subgoal is 
to put the environment in a state which will make eligible 
some production t. t says (via its left hand side) under 
what conditions it thinks it can convert the situation into 
one which will yield payoff. The subgoal is to provide 
those conditions. If r achieves that subgoal then (provided 
t is the production actually selected) r is rewarded. The 
amount of reward quite properly depends on how good t is, on 
how useful achieving that subgoal has been found in the 
past. This is the essence of a subgoal reward scheme. 

Now of course it may happen that although t can usually 
achieve ultimate payoff, the particular state in which r 
happens to place the environment is one which (though 
included on the left hand side of t) t actually can never 
convert into ultimate payoff. That is, there is something 
slightly wrong with the left hand side of t. The subgoal 
(the left hand side of t) is badly formulated. In this case 
r will still be rewarded handsomely for achieving the 
subgoal since t usually does well. t of course will be 
mildly penalized for its indescriminateness since it will be 
in the eligibility set when it shouldn't be. Thus the 
effect of poor subgoal formulation can be to penalize the 

calling subroutine (t) for its poor formulation of the 
subgoal while rewarding the subroutine called (r) for the 
fact that it did what the calling routine asked. (I believe 
this is the correct analogy; the preceding production is the 
called subroutine and the following one is the calling sub
routine.) 

Now this is not what happens in the genetic schemes. 
In those schemes r would not get rewarded when followed b' 
t. The called subroutine would only be rewarded for a c h i e ~  
ing a subgoal in the case where the ultimate result achiev' 
payoff. Thus genetic schemes are not subgoal reward 
schemes. 

At first sight it looks as if some reinterpretation of 
the system could reconcile the two approaches. Perhaps the 
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bucket brigade will look genetic if an allele is something 
other than a single production. I can't prove that such a 
reconciling reinterpretation is impossible. but I'm rather 
convinced that the dichotomy between subgoal reward schemes 
and non subgoal reward schemes is too fundamental to permit 
of such a reinterpretation. What I shall do now is to try 
to highlight that dichotomy via one of the obvious ways of 
trying to make the bucket brigade look genetic. It will 
fail, and the way in which it fails will be illustrative. 

Systems 0 and E are both probabilistic sequential 
selection systems. System 0 is equivalent to System A, a 
string population system. We now construct a string popula
tion system (System F) that is equivalent to System E. The 
ways in which systems F and A differ will be informative. 

In System A, the composition of the population in a 
particular generation could be determined by examining a 
tuple of production availabilities. This will also be true 
in System F, though the way in which the availabilities 
determine the population composition will be different. 

The trick in constructing System F is to find a way of 
explicitly stringing together those productions to which a 
bit of cash would be successively passed by the bucket bri
gade. 

We form a population of length M strings of productions 
as follows by induction on M. If we have a population of 
length M strings, then the population of length M+1 strings 
is formed as follows. T ~ k e  each length M string in turn. 
For each of these s t r i n g s ~ ,  note the eligibility set R at 
the end of a test of it. (Each string test begins with the 
environment in the initial state.) For each r in R make 
10000y copies of the s t r i n g ~ r  , where y is the probability 
of r relative to R. Put these copies in the population of 
length M+1 strings. 

We are interested in the case where M=N. 
can be tested with no skipping. 

These strings 

In such a population of length N strings, any given 
production will occur many times, and may of course occur 
many times in the same string. For concreteness. let us 
call each production occurrence an aLLeLe, and let us say 
two alleles are of the same type if they are occurrences of 
the same production. 

We are interested in two kinds of recombination. One 
is ordinary compLete recombination. in which the strings are 
broken into individual alleles and these then recombine at 
random to form a new population of length N strings. The 
other is what we will call crazy recombination. In this the 
strings are broken into their individual alleles, but each 
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allele remembers the type of the allele that preceded it in 

its string. Then these alleles recombine at random, but an 
allele, in combining with others, must follow the same type 
of allele that it followed in its original string. The 
result of crazy recombination is a population of strings 
which represent the paths that cash may take in being passed 
by the bucket brigade. 

System F works as follows. As described above, we use 
the availabilities to make a population of length N strings 
which can be tested with no skipping. The payoff for each 
of these strings is then determined, but it is not summed. 
Instead the system tests each string, noting for each time 
unit the eligibility set, the allele that fired, and the 
payoff received. The system then physically attaches the 
eligibility sets and payoffs to the alleles in the string, 
like clothes attached to a clothesline. To each allele in 

the string is attached the eligibility set from which that 
allele was selected and the payoff that arrived when that 
allele fired. Now we have a population of strings of 
alleles with each allele in each string having a number and 
a set attached to it. We now do crazy recombination, but 
the alleles carry their numbers and sets with them so that 
after recombination the strings still have numbers and sets 
hung along them. Now and only now are the payoffs for each 
string summed. Each production that occurs in the string is 
rewarded with this sum. For each allele in the string, the 
production of which that allele is an occurrence has the sum 
added to its availability; then the eligibility set attached 
to the allele is penalized in the usual way. The next gen
eration population is formed from the new availabilities. 

It is the crazy recombination that implements the 
bucket brigade notion that a production's reward depends on 
the production which follows and on how much reward that 
production achieved during some entirely different test. 
Though System F is equivalent to System E, it is a bit 
noisier because it is like a bucket brigade in which the 
cash is passed forward as well as backwards. Cash passed 
forwards, however, doesn't affect the biases and so doesn't 
affect equivalence in the sense in which we mean it. 

System F doesn't look much like System A, but we can 
change System F slightly to improve matters. Carrying 
around the eligibility sets looks rather un-genetic. 

Instead of carrying around these sets and penalizing them we 
could carry around their complements and reward them. 
Equivalently (though with an increase in noise) we could 
carry around strings of productions selected from the com
plements and reward the productions in the strings much as 
we did in the original genetic scheme. 

The idea here is to build 
strings just as in System A. 
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string the first N alleles that will fire and attaches the 
appropriate payoffs to these alleles. Crazy recombination 
then proceeds as follows. (We can call this version insane 

recombination.) Each string is broken into segments, the 
breaks occurring at the N alleles. Each segment remembers 
the type of the allele that preceded it. The segments then 
recombine to form strings composed of N segments (the long 
tails which contain none of the N alleles are thrown away -
or, equivalently, they are attached to the ends of the new 
strings). In recombining, each segment must follow an 
allele of the same type as the one it followed before recom
bination. The new strings will now not all be of the same 
length. Each segment carries with it the payoff that was 
attached to its terminal production before the insane recom
bination. In each of the new strings the payoffs are summed 
and the sum gives the number of progeny of the new strings. 
Then the strings, including the new progeny are all broken 

apart into individual alleles and the total number of 
occurrences of a production (alleles) is its new availabil
ity. The population of the next generation is formed using 
the new availabilities. Thus this final breaking apart and 
formation of the next generation can be viewed as ordinary 
complete recombination. 

So, beginning with the population thus formed, a gen

eration consists of the following steps: (1) Mark on each 
string the N alleles which fire and attach to them the pay
offs. (2) 00 insane recombination, breaking at the N 
alleles, and having each segment carry its payoff with it. 
(3) Sum the payoffs on each of the new strings and produce 
the number of progeny given by the sum. (4) 00 ordinary 
complete recombination. 

Call the system using this scheme System G. 

is equivalent to System E. 

System G 

The scheme of System G looks a bit like alternation of 
generations, but it has a dissatisfying artificiality. It 
is possible to remove the almost Lamarkian oddity of carry
ing payoffs attached to segments, but not in any particu
larly convincing fashion. Note that in step (3) we need not 

sum all the payoffs on a string. Equivalently we could just 
reward using one of those payoffs, or just a few. The pay
offs we use need not be carried from before the insane 
recombination. They could be re-calculated afterwards. We 
need only take a re-combined string and run it, and then 
note one of the payoffs during the run. Actually it's not 
that trivial. The payoff we use must be one that arrives as 
the result of the firing of one of the N productions, not 
the other intervening productions. 

Still, the scheme contains insane recombination and it 
is this that makes it inherently different from the genetic 
schemes. 
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IV. FURTHER QUESTIONS 

This raises several further questions which I 
difficult to answer. 

find 

( 1 ) The bucket brigade now begins to look rather silly. 

it 

Is 
this just because of the bucket brigade version used here? 
Holland's bidding system bucket brigade is rather different. 
Perhaps it is the penalty scheme that is at fault. In 
genetic systems the penalty scheme preserves safety, but 
systems employing a bucket brigade aren't safe anyway. If 

the penalty scheme were removed we could go back to crazy 
recombination, but without the attached eligibility sets. 
This is less insane looking than insane recombination, but 
still not convincing. Nevertheless, we feel intuitively 
that subgoal reward is good. It certainly is a sensible way 
of combating scheme noise. So is it the genetic schemes 
that are the silly schemes? Or is there yet some way of 
viewing the bucket brigade so that it looks genetic? 

(2) If the genetic schemes and the bucket brigade are for
mally different, is there anyway a biological system analo
gue of the bucket brigade? One can imagine a crossing over 
rule that implements insane recombination. But there are 
two problems with this. One is that we have not merely 
insane recombination, but insane recombination alternating 
with ordinary recombination. Unfortunately the ordinary 
recombination is required in order to retain equivalence. 
It may be possible to remove the ordinary recombination and 
replace it with a phase which takes the strings and forgets 
which the special N productions are and then marks N new 
productions by determining which of the productions would be 
the first N to fire if that particular string were run. I 
don't think, though, that this change would retain 
equivalence. 

(3) In the more general context, do we see biological sys
tems with subgoal reward? If so, then perhaps the bucket 
brigade has a sound biological basis, but it is merely that 
our usual population genetics formalism fails to capture 
that basis. For example, one might claim that a gene that 
does its own job (achieves a subgoal) more efficiently 
incurs lower cost, even if that job is useless for the 
current organism. The trouble is that if the job is con
verting metabolite A into B then the efficiency would prob
ably give lower cost only if accumulation of B (or an 
equivalent) reduced gene expression. But then if B is not 
needed it will accumulate and reduce the cost of even an 
inefficient gene. Postulating leakage of B and other fid
dles doesn't seem to help. The gene really only ends up 
rewarded when B is useful, and fiddling with cost only 
adjusts how much it is rewarded, but doesn't change the 
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basic fact that reward is much more when B is 
when it isn't. So that doesn't seem to work. 

useful than 

A possibility not discussed in this paper is that in 

the bucket brigade the string of productions to which the 
cash is passed is the analog of a metabolic pathway in which 
each metabolite inhibits the expression of the gene respon
sible for the reaction that produces that metabolite [3]. 
Then each gene raises the expression rate (passes cash to) 
the gene preceding it in the pathway. In this view, the 
version of the bucket brigade described in this paper is 
wrong. In the correct version the cash is passed by a 
bucket brigade, the availabilities are adjusted by a genetic 

scheme that pays no attention to cash balances (unless you 
believe in Lamark). and the probabilities of the various 
productions firing are proportional to the products of the 
corresponding cash balances and availabilities. The biolog
ical analogue of these probabilities is then the prevalence 
of the various enzyme molecules rather than the prevalence 
of the various alleles. 

Of course one can look for ecological models which use 
subgoal reward. This leads us into the quagmire of 
altruism. where current formalisms seem to me unhelpful. 

It may be that e x a m i n ~ n g  some parasitic systems or sym
biotic systems might be helpful. Parasites and endosym
bionts must regulate their reproduction rate so as not to 
destroy a host. In effect they are passing cash to the 
host. But this is a situation where admittedly group selec
tion is operating. Is it possible to regard two genes on 
the same chromosome as symbionts. regulating their reproduc
tion rate to help each other? Perhaps we should explicitly 
implement group selection in our production systems (I don't 
believe this would be difficult) and let productions with 
various cash-passing schemes 
selection scheme. 

compete 

V. CONCLUSIONS 

under such a group 

It looks as if genetic systems are inherently different 
from systems employing the bucket brigade. We usually view 
genetic systems as population systems operating in parallel, 
whereas the bucket brigade operates essentially sequen
tially. This is a superficial difference. The essential 
difference appears to be that bucket brigade schemes are 
subgoal reward schemes, whereas genetic schemes are not. 
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ABSTRACT 

This paper describes new conceptual and experi

mental results using the probabilistic learning 

system PLS£. PLS2 is designed for any task in 

which overall performance can be measured, and 

in which choice of task objects or operators 

influences performance. The system can manage 

incremental learning and noisy domains. 

PLS2 learns in two ways. Its lower "percep

tual" layer clusters data into economical cells or 

regions in augmented feature space. The upper 

"genetic" level of PLS2 selects successful regions 

(compressed genes) from multiple, parallel cases. 

Intermediate between performance data and task 

control structures, regions promote efficient and 

effective learning. 

Novel aspects of PLS2 include compressed 

genotypes, credit localization and "population 

performance". Incipien t principles of efficiency 

and effectiveness are suggested. Analysis of the 

system is confirmed by experiments demonstrat

ing stability, efficiency, and effectiveness. 

Figure 1. Layered learning system PLSZ. The percep· 

tuaL learning system PLSI serves as the perrormance 
element (PE) or the genetic system PLSZ. The PE of 
PLSI is some task. PLSZ activates PLSI with different 
knowledge structures ("cumulative region sets") which 
PLS2 continually improves. The basis ror improve
ment is competition and credit localization. 
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1. INTRODUCTION 

The author's probabilistic learning system PLS is 

capable of efficient and effective generalization 

learning in many domains [Re83a, Re83d, 

Re 85a]. Unlike other systems [La 83, Mit 83, 

Mic 83a], PLS can manage noise, and learn incre

men tally. While it can be used for "single con

cept" learning, like the systems described in 

[Di82J, PLS has been developed and tested in the 

difficult domain of heuristic search, which 

requires not only noise management and incre

mental learning, but also removal of bias 

acquired during task performance [Re83a]. The 

system can discover optimal evaluation functions 

(see Fig. 2). PLS has introduced some novel 

approaches, such as new kinds of clustering.} 

Figure 2. One use or PLS. In heuristic search, an 
object is a state, and its utility might be the probabil
ity or contributing to success (appearing on a solution 
path). E.g., ror r3' this probability is 1/3. Here the 
pair (r3' P3) is one or three region3 which may be used 
to create a heuristic evaluation runction. Region 
characteristics are determined by clustering. 

1. See IRe 83a] ror details and [Re 85a, Re 85b] 
ror discussion or PLS's "conceptual clustering" 
lMic 83b] which began in IRe 76, Re 77]. PLS "utility" 
of domain objects provides "category cohesiveness" 
lMe 85]. [Re 85c] introduces "higher dimensional" clus
tering which permits creation or structure. Appendix 
A summarizes some or these terms, which will be ex
panded in later sections or this paper. 
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Another successful approach to adaptation 

is genetic algorithms (GA's). Aside from their 
ability to discover global optima, GA's have 

several other important characteristics, including 
stability, efficiency, flexibility, and extensibility 

[Ho75, Ho81]. While the full behavior of genetic 

algorithms is not yet known in detail, certain 

characteristics have been established, and this 
approach compares very favorably with other 

methods of optimization [Be 80, Br 81, De 80]. 

Because of their performance and potential, GA's 

have been applied to various AI learning tasks 

!Re83c, Sm80, Sm83J. 

In IRe 83c] a combination of the above two 
approaches was described: the doubly layered 

learning system PLS2 (see Fig.l).2 PLSI, the 

lower level of PLS2, could be considered "percep
tual"; it compresses goal-oriented information 

(task "utility") into a generalized, economical, 

and useful form ("regions"- see Figs. 2, 4 ). The 

upper layer is genetic, a competition of parallel 

knowledge structures. In !Re83cJ, each of these 

components was argued to improve efficacy and 

efficiency .3 

This paper extends and substantiates these 
claims, conceptually and empirically. The next 

section gives an example of a genetic algorithm 

which is oriented toward the current context. 

Section 3 describes the knowledge structure 

(regions) from two points of view: PLSI and PLS2. 

Section 4 examines the synthesis of these two 

systems and considers some reasons for their 
efficiency. Sections 5 and 6 present and analyze 

the experimental results, which show the system 
to be stable, accurate, and efficient. The paper 

closes with a brief summary and a glossary of 

terms used in machine learning and genetic sys

tems. 

2. For the reader unfamiliar with learning sys
tem and other terminology, Appendix B provides brief 
explanations. 

3. PLS2 is applicable to any domain for which 
features and "usefulness" or utility of objects can be 
defined [Re 83dj. An object can represent a physical 
entity or an operator over the set of entities. Domains 
can be simple (e.g. "single concept" learning), or com
plex (e.g. expert systems). State-space problems and 
games have been tested in [Re 83a, Re 83d]. The PLS 

approach is uniform and can be deterministic or pro
babilistic. The only real difficulty with a new domain 
is in constructing features which bear a smooth rela
tionship to the utility (the system can evaluate and 
screen features presented to it). 
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2. GENETIC SYSTEMS: AN EXAMPLE 

This section describes a simple GA, to introduce 

terminology and concepts, and to provide a basis 

for comparison with the more complex PLS2. 

The reader already familiar with GA's may wish 
to omit all but the last part of this section. 

2.1. Optimization 

Many problems can be regarded as function 

optimization. In an AI application, this may 

mean discovery of a good control structure for 

executing some task. The function to be optim

ized is then some measure of task success which 

we may call the performance ~ ·  In the terminol

ogy of optimization, ~  is the objective function. 

In the context of genetic systems, ~  is the 

fitness, payoff, or merit.• 

The merit ~  depends on some control 

structure, the simplest example of which is a vec

tor of weights b = (b1 , b2 , •.. , b
0 

). Frequently 

the analytic form of ~ ( b )  is not known, so exact 

methods cannot be used to optimize it (this is the 

case with most AI problems). But what often is 
available (at some cost) is the value of ~  for a 

given control structure. In our example, let us 

suppose that ~  can be obtained for any desired 
value of b, by testing system performance. If ~  
is a well behaved, smooth function of b, and if 

there is just one peak in the ~  surface, then this 

local optimum is also a global optimum, which 

can be efficiently discovered using hill climbing 

techniques. However, the behavior of ~  is often 

unknown, and ~  may have numerous optima; In 
these cases a genetic adaptive algorithm is 

appropriate. 

2.2. Genetic Algorithms 

In a GA, a structure of interest, such as a 
weight vector b, is called a phenotype. Fig. 3 

shows a simple example with just two weights, b1 

and b2 • The phenotype is normally coded as a 
string of digits (usually bits) called the genotype 

B. A single digit is a gene; gene values are 

alleles. The position of a gene within the geno

type is given by an index called the locus. 

Depending on the resolution desired, we might 

choose a greater or lesser number of sequential 

genes to code each bi. If we consider 5 bits to be 

4. 1.1. might also be called the "utility", but we 
reserve this term for another kind or quality measure 
used by PLSL 



sufficient, the length of the genotype B will be L 

= 5n bits (see Fig.3). 

Instead of searching weight space directly 

for an optimal vector b, a GA searches gene 

space, which has dimensionality L (gene space is 

Hamming space if alleles are binary). A GA con

ducts this search in parallel, using a set of indivi

dual genotypes called a population or gene pool. 

By comparing the relative merits .... of individuals 

in a population, and by mating only the better 

individuals, a GA performs an informed search of 

gene space. This search is conducted iteratively, 

over repeated generations. In each new genera

tion, there are three basic operations performed: 

(1) selection of parents, (2) generation of 

offspring, and (3) replacement of individuals. (1) 

and (2) have been given more attention. Parent 

selection is usually stochastic, weighted in ravor 

of individuals having higher .... values. Offspring 

generation relies on genetic operators which 

modify parent genotypes. Two natural examples 

are mutation (which alters one allele), and cross

over (which slices two genotypes at a common 

locus and exchanges segments-see Fig.3). 

Go.ot"pe B 

0001111110 

0011011011 

Paro.u B 

0010 111110 

~yer 

0001 011100 

POPULATION 

Pbo.ot"pe b 

(3,-2) 

(11,-&) 

(4,-4) 

OFFSPRING 

Cbildre. B 

0001011100 

0010111110 

Merit,. 

2.1 
0.4 

0.8 
1.7 
0.7 
0.11 
1.4 

Cbildre. b 

(2,-4) 

(5,-2) 

Figure 3. Simple genetic system. The upper part of 
this diagram shows a small population of just seven 
individuals. Here the set of characteristics (the pheno
type) is a simple two element vector b. This is coded 
by the genotype B. Each individual is associated with 
its measured men·t jI.. On the basis of their jI. values, 
pairs of individuals are stochastically chosen as 
parents for genetic recombination. Their genotypes 
are modified by crossover to produce two new 
offspring. 

Because the more successful parents are 

selected for mating, and because limited opera-
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tions are perrormed on them to produce 

offspring, the effect is a combination of 

knowledge retention and controlled search. Hol

land proved that, using binary alleles, the cross

over operator, and parent selection proportional 

to .... , a GA is K3 times more efficient than 

exhaustive search or gene space, where K is the 

population size IHo 75, Ho 811. Several empirical 

studies have verified the computational efficiency 

or GA's compared with alterative procedures for 

global optimization, and have discovered 

interesting properties or GA's, such as effects of 

varying K. For example, populations smaller 

than 50 can cause problems IBr8I, De801. 

2.3. Application In Heuristic Search 

One AI use is search ror solutions to prob

lems, or ror wins in games INi801.6 Here we wish 

to learn an evaluation runction H as a combina

tion of variables Xl' x2 ' •.. , xn called attributes or 

features (reatures are orten used to describe 

states in search). In the simplest case, H is 

expressed as the linear combination b i Xl + b2x2 

+ .... + bnxn = b.x, where the bi are weights to 

be learned. We want to optimize the weight vec

tor b according to some measure or the perfor

mance .... when H is used to control search. 

A rational way to define .... (which we shall 

use throughout this paper) is related to the aver

age number D or states or nodes developed in 

solving a set of problems. Suppose D is observed 

ror a population of K heuristic runctions Hi 

defined by weight vectors bi. Since the perfor

mance improves with lower values of D, a good 

definition of the merit of H j (i.e. or bi) is the rela-

tive perrormance measure .... i = i5 I D j , where i5 
is the average over the population, i.e. i5 = E 
Dj I K. This expression or merit could be used to 
assess genotypes B representing weight vectors 

bi' as depicted in Fig.3. 

Instead of this simple genetic approach, 

however, PLS2 employs unusual genotypes and 

operators, some or which relate to PLSI. In the 

remaining sections or this paper, we shall exam

ine the advantages or the GA resulting from the 

combination of PLSI with PLS2. 

5. Notice that search takes place both at the 
level of the task domain (for good problem solutions), 
and at the level of the learning element (for a good 
control structure H). 



3. PLS INFORMATION STRUCTURING: 
DUAL VIEWPOINT 

The connection between PLSI perceptual learning 

and PLS2 genetic adaptation is subtle and 
indirect. Basically PLSI deals with objects x 
(which can be just about anything), and their 

relationships to task performance. Let us call 

the usefulness of an object x in some task 
domain its utility u (x ). 

Since the number of objects is typically 

immense, even vast observation is incomplete, 

and generalization is required for prediction of u, 
given a previously unencountered x. A 

significant step in generalization is usually the 

expression of x as a vector of high-level, abstract 

features xl' X2 ' ... , Xn ' so that x really represents 

not just one object, but rather a large number of 

similar objects (e.g. in a board game, x might be 
a vector of features such as piece advantage, 

center control, etc.). A further step in generali
zation is to classify or categorize x's which are 

similar for current purposes.1I Since the purpose 

is to succeed well in a task, PLSI classifies x's 

having similar utilities u. 

Class formation can be accomplished in 

several ways, depending on the model assumed. 
If the task domain and features permit, objects 
having similar utilities may be clustered in 

feature space, as illustrated in Figs. 2 Nt 4, giving 

a "region set" R.7 Another model is the linear 

combination H = b.t of §2. 

It is at this point that a GA like PLS2 can 

aid the learning process. Well performing b's or 
R's may be selected according to their merit ..... 

Note that merit .... is an overall measure of the 
task performance, while utility u is a quality 

measure localized to individual objects. 

The question now is what information 
structures to choose for representing knowledge 

about task utility. For many reasons, PLS incor

porates the "region set" (Fig. 4), which represents 
domain knowledge by associating an object with 

its utility. We examine the region set from two 

6. Here to clIJeeify means to form classes, 
categories, or concepts. This is difficult to automate. 

7. PLSl initiated what has become known as 
conceptual clustering - where not just feature values 
are considered, but also predetermined forms of classes 
(e.g. rectangles), and the whole data environment (e.g. 
utility). See [Re76, Re77, Re83a, Re85a, Re85bJ, and 
also Appendix A. 
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points of view: as a PLSI knowledge structure, 
and as a PLS2 genetic structure. 

Figure 4. Dual interpretation of a region set R. A 
region set is a partition of feature space (here there 
are 6 regions). Points are clustered into regions 
according to their utility u in some task domain (e.g. u 
"'" probability of contributing to task success - see 
Fig. 2). Here the u values are shown inside the rectan
gles. A region R is the triple (r, u, el, where e is the 
error in u. The region set R = {R} serves both as the 
PLSI knowledge structure and as the PLS2 genotype. 
In PLS1, R is a discrete (step) function expressing vari
ation of utility u with features XI' In PLS2, R is a 
compressed version or the detailed genotype illustrated 
in Fig. 5. 

3.1. The Region .. PLSI Knowledge Struc
ture 

In a feature space representation, an object 

is a vector x = (Xl' X2 , ..• , Xn ).8 In a problem 

or game, the basic object is the state, frequently 

expressed as a vector of features such as piece 

advantage, center control, mobility, etc.v Obser

vations made during the course of even many 

problems or games normally cover just a fraction 

of feature space, and generalization is required 
for prediction. 

In generalization learning, objects are 
abstracted to form classes, categories, or con

cepts. This may take the form of a partition of 
feature space, i.e. a set of mutually exhaustive 
local neighborhoods called cluBterB or ce//s 

[An 73, Di 821. Since the goal of clustering in PLS 

is to aid task performance, the basis for generali

zation is some measure of the worth, quality, or 

8. Feature spaces are I!ometimes avoided because 
they cannot easily express structure. However, alter
native representations, as normally used, are also 
deficient ror realistic generalization learning. A new 
scheme mechanizes oC a very difficult inductive prob
lem: Ceature formlJtion IRe 83d, Re 85cJ. 

O. The object or event could just as well be an 
operator to be applied to a state, or a state-operator 
pair. See IRe 83d). 
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utility of a state or cell, relative to the task. One 

measure of utility is the probability of contribut

ing to a Bolu tion or win. In Figs. 2, 4, probability 

classes are rectangular cells (for economy). The 

leftmost rectangle r has probability u = 0.2.10 

The rectangle r is a category generalizing the 

conditions under which the utility u applies. 

In PLS, a rectangle is associated not just 

with its utility u, but also with the utility error 

e. This expression e of uncertainty in u allows 

quantification of the effect of noise and provides 

an informed and concise means for weighting 

various contributions to the value of u during 

learning. The triple R = (r,u,e), called a 

region, is the main knowledge structure for PLSI. 

A set R = {R} of regions defines a partition in 

augmented feature space. 

R may be used directly as a (discrete) 

evaluation or heuristic function H = u(r) to 

assess state x Erin search. For example, in 

Fig. 4, there are six regions, which differentiate 

states into six utility classes. Instead of forming 

a discrete heuristic, R may be used indirectly, as 

data for determining the weight vector b in a 

smooth evaluation function H = b.x (employing 

curve fitting techniques). We shall return to 

these algorithmic aspects of PLS in §4. 

II 

It 

Figure 5. Definition of maximally detailed genotype U. 
Ir the number of points in feature space is finite and a 
value or the utility is associated with each point, com
plete inrormation can be captured in a detailed geno
type U or concatenated utilities u l u2 ... uL" Coordi
nates could be linearly ordered as shown here ror the 
two dimensional case. U is an rully expanded genotype 
corresponding to the compressed version or Fig. 4. 

10. This could be expressed in other ways. The 
production rule rorm is r -u. Using logic, r is 
represented: (0 S Xl S 4) n (0 S x2 S 2). 
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3.2. The Region Set &8 Compressed and 
Unrestricted PLS2 Genotype 

Now let us examine these information 

structures from the genetic viewpoint. The 

weight vector b of evaluation function H could 

be considered a GA phenotype. What might the 

genotype be? One choice, a simple one, was 

described in § 2 and illustrated in Fig.3: here the 

genotype B is just a binary coding of b. A 

different possibility is one that captures exhaus

tive information about the relationship between 

utility u and feature vector x (see Fig. 5). In this 

case, the gene would be (x, u). If the number of 

genes is finite, they can be indexed and con

catenated, to give a very detailed genotype V, 

which becomes a string of values u l u2 ••. uL cod

ing the entire utility surface in augmented 

feature space. 

This genotype V is unusual in some impor

tant ways. Let us compare it with the earlier 

example B of §2 (Fig. 3). B is simply a binary 

form of weight vector b. One obvious difference 

between B and V is that V is more verbose than 

B. This redundancy aspect will be considered 

shortly. The other important difference between 

B and V is that alleles within B may well interact 

(to express feature nonlinearity), but alleles Uj 

within V cannot interact (since the Uj express an 

absolute property of feature vector x, i.e. its util

ity for some task). As explained in the next sec

tion, this freedom from gene interdependence 

permits localization of credit. ll 

The detailed genotype V codes the utility 

surface, which may be very irregular at worst, or 

very smooth at best. This surface may be locally 

well behaved (it may vary slowly in some 

volumes of feature space). In cases of local regu

larity, portions of V are redundant. As shown in 

Fig. 5, PLS2 compresses the genotype V, into the 

region set R (examined in §3.1 from the PLSI 

viewpoin t). In PLS2, a single region R = (r, u, e) 

is a set of genes, the whole having just one allele 

u (we disregard the genetic coding of e). Unlike 

standard genotypes, which have a stationary 

locus for each gene and a fixed number of genes, 

the region set has no explicit loci, but rather a 

11. While one or the strengths or a GA is its abil
ity to manage interaction or variables (by "co
adapting" alleles), PLS2 achieves efficient and concise 
knowledge representation and acquisition by flexible 
gene compression, and by certain other methods exam
ined later in this paper. 
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u2 u6 u7



variable number of elements (regions), each 

representing a variable number of genes. A 

region compresses gene sets having similar utility 

according to current knowledge. 

4. KNOWLEDGE ACQUISITION: 
SYNERGIC LEARNING ALGORITHMS 

In this section we examine how R is used to pro

vide barely adequate information about the util

ity surface. This compact representation results 

in economy of both space and time, and in 

effective learning. Some reasons for this power 

are con sid ered. 

The ultimate purpose of PLS is to discover 

utility classes in the form of a region set R. This 

knowledge structure con troIs the primary task: 

for example, in heuristic search, R = {R} = 
{( r, u, e)} defines a discrete evaluation function 

H(r) = u. 

The ideal R would be perfectly accurate 

and maximally compressed. Accuracy of utility 

u determines the quality of task performance. 

Appropriate compression of R characterizes the 

task domain concisely but adequately (see 

Figs. 3, 4), saving storage and time, both during 

task performance and during learning. 

These goals of accuracy and economy are 

approached by the doubly layered learning sys

tem PLS2 (Fig. 1). PLSI and PLS2 combine to 

become effective rules for generalization (induc

tion), specialization (differentiation), and reorgan

ization. The two layers support each other in 

various ways: for example PLS2 stabilizes the per

ceptual system PLSl, and PLSI maintains geno

type diversity of the genetic system PLS2. In the 

following we consider details, first from the 

standpoint of PLSl, then from the perspective of 

PLS2. 

4.1. PLSI Revision and Differentiation 

Even without a genetic component, PLSI is 

a flexible learning system which can be employed 

in noisy domains requiring incremental learning. 

It can be used for simple concept learning like 

the systems in [Di 82], but most experiments have 

involved state space problem solving and game 

playing. 12 Here we examine PLS in the context of 

12. These experiments have led to unique results 
such as discovery or locally optimal evaluation runc
tions (see (Re 83a, Re 83dlJ. 
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these difficult tasks. 

As described in §3.I, the main PLSI 

knowledge structure is the region set R = 

{(r,u,e)}. Intermediate between basic data 

obtained during search, and a general heuristic 

used to control search, R defines a feature space 

augmented and partitioned by u and e. Because 

R is improved incrementally, it is called the 

cumulative region set. PLSI repeatedly performs 

two basic operations on R. One operation is 

correction or revision (of utility u and error e), 

and the other is specialization, differentiation, or 

refinement (of feature space cells r). These 

operators are detailed in IRe 83a, Re 83dj; here 

we simply outline their effects and note their lim

itations. 

Revision of u and e. For an established 

region R = (r, u, e) E R, PLSI is able to modify u 

and to decrease e by using new data. This is 

accomplished in a rough fashion, by comparing 

established values within all rectangles r with 

fresh values within the same r. It is difficult or 

impossible to learn the "true" values of u, since 

data are acquired during performance of hard 

tasks, and these data are biased in unknown 

ways because of nontrivial search. 

Refinement of R. Alternately performing 

then learning, PLSI acquires more and more 

detail about the nature of variation of utility u 

with features. This information accumulates in 

the region set R = {R} = {( r, u, e)}, where the 

primary effect of clustering u is increasing resolu

tion of R. The number, sizes, and shapes of rec

tangles in R reflect current knowledge resolution. 

As this differentiation continues in successive 

iterations of PLSl, attention focuses on more use

ful parts of feature space, and heuristic power 

improves. 

Unfortunately, so does the likelihood of 

error. Further, errors are difficult to quantify 

and hard to localize to individual regions. 

In brief, while the incremental learning of 

PLSI is powerful enough to learn locally optimal 

heuristics under certain conditions, and while 

PLSI feedback is good enough to control and 

correct mild errors, the feedback can become 

unstable in unfavorable situations: instead of 

being corrected, errors can become more pro

nounced. Moreover, PLSI is sensitive to parame

ter settings (see Appendix B). The system needs 

support. 



4.2. PLS2 Genetic Operators 

Qualities missing in PLSI can be provided 

by PLS2. As §4.1 concluded, PLSI, with its single 

region set, cannot discover accurate values of 

utilities u. PLS2, however, maintains an entire 

population of region sets, which means that 

several regions in all cover any given feature 

space volume. The availability of comparable 

regions ultimately permits greater accuracy in u, 

and brings other benefits. 

As §3.2 explained, a PLS2 genotype is the 

region set R = {R}, and each region R = (r, u, e) 

E R is a compressed gene whose allele is the util

ity u. Details of an early version of PLS2 are 

given in IRe 83c]. Those algorithms have been 

improved; the time complexity of the operators 

in recent program implementations is linear with 

population size K. The following discussion out

lines the overall effects and properties of the 

various genetic operators (compare to the more 

usual GA of §2). 

K-sexual mating is the operator analo

gous to crossover. Consider a population {R} of 

K different region sets R. Each set is composed 

of a number of regions R which together cover 

feature space. A new region set R' is formed by 

selecting individual regions (one at a time) from 

parents R, with probability proportional to merit 

..... (merit is the performance of R defined at the 

end of §2). Selection of regions from the whole 

population of region sets continues until the 

feature space cover is approximately the average 

cover of the parents. This creates the offspring 

region set R' which is generally not a partition. 

Gene reorganization. For economy of 

storage and time, the offspring region set R' is 

repartitioned so that regions do not overlap in 

feature space. 

Controlled mutation. Standard muta

tion operators alter an allele randomly. In con

trast, the PLS2 operator analogous to mutation 

changes an allele according to evidence arising in 

the task domain. The controlled mutation 

operator for a region set R = {( r, u, e)} is the 

utility revision operator of PLSI. As described in 

§4.1, PLSI modifies the utility u for each feature 

space cell r. 

Genotype expansion. This operator is 

also provided by PLSI. Recall the discussion of 

§3.2 about the economy resulting from compress

ing genes (utility-feature vectors) into a region 
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set R. The refinement operator was described in 

§4.1. This feature space refinement amounts to 

an expansion of the genotype R, and is carried 

out when data warrant the discrimination. 

Both controlled mutation and genotype 

expansion promote genotype diversity. Thus 

PLSI helps PLSZ to avoid premature convergence, 

a typical GA problem IBr 81, Ma84]. 

4.3. Effectiveness and Efficiency 

The power of PLS2 may be traced to cer

tain aspects of the perceptual and genetic algo

rithms just outlined. Some existing and emerg

ing principles of effective and efficient learning 

are briefly discussed below (see also IRe 85a, 

Re 85b, Re 85cJ). 

Credit localization. The selection of 

regions for K-sexual mating may use a single 

merit value ..... for each region R within a given 

set R. However, the value of ..... can just as well 

be localized to single regions within R, by com

paring R with similar regions in other sets. Since 

regions estimate an absolute quantity (task

related utility) in their own volume of feature 

space, they are independent of each other. Thus 

credit and blame may be assigned to feature 

space cells (i.e. to gene sequences). 

Assignment of credit to individual regions 

within a cumulative set R is straightforward, but 

it would be difficult to do directly in the final 

evaluation function H, since the components of 

H, while appropriate for performance, omit infor

mation relevant to learning (compare 

Figs. 2, 4 ).is 

Knowledge mediation. Successful sys

tems tend to employ information structures 

which mediate data objects and the ultimate 

knowledge form. These mediating structures 

include means to record growing assurance of 

tentative hypotheses. 

When used in heuristic search, the PLS 

region set mediates large numbers of states and a 

13. There are various possibilities for the evalua
tion function H, but all contain less useful information 
than their determinant, the region set R. The sim
plest heuristic used in IRe 83a, Re 83dJ is H = b.C, 
where b is a vector of weights for the feature vector C. 
(This linear combination is used exclusively in experi
ments to be described in §5.) The value of b is found 
using regions as data in linear regression IRe 83a, 
Re83bJ. 



very concise evaluation function H. Retention 

and continual improvement of this mediating 

structure relieves the credit assignment problem. 

This view is unlike that of IDi81,p.14, Di82]: 

learning systems often attempt to improve the 

con trol structure itself, whereas PLS acquires 
knowledge efficiently in an appropriate structure, 

and utilizes this knowledge by compressing it 

only temporarily for performance. In other 
words, PLS does not directly search rule space for 

a good H, but rather searches for good cumula

tive regions from which H is constructed. 

Full but controlled use of every datum. 

Samuel's checker player permitted each state 

encountered to influence the heuristic H, and at 

the same time no one datum could overwhelm 

the system. The learning was stochastic: both 

conservative and economic. In this respect PLS2 

is similar (although more automated). 

Schemata In learning systems and 
genetic algorithms. A related efficiency in 

both Samuel's systems and PLS is like the sche

mata concept in a GA. In a GA, a single indivi
dual, coded as a genotype (a string of digits), 

supports not only itself, but also all its sub

strings. Similarly, a single state arising in heuris
tic search contains information about every 

feature used to describe it. Thus each state can 
be used to appraise and weight each feature. 

(The effect is more pronounced when a state is 

described in more elementary terms, and combi

nations of primitive descriptors are assessed-see 

IRe 85cl). 

5. EXPERIMENT AND ANALYSIS 

PLS2 is designed to work in a changing environ
ment of increasingly difficult problems. This sec

tion describes experimental evidence of effective 

and efficien t learning. 

5.1. Experimental Conditions 

Tame features. The features used for 

these experiments were the four of IRe 83a]. The 
relationship between utility and these features is 

fairly smooth, so the full capability of a GA is not 
tested, although the environment was dynamic. 

Definition of merit.... As §4 described, 

PLS2 choses regions from successful cumulative 

sets and recombines them into improved sets. 
For the experimen ts reported here, the selection 

criterion was the global merit .... , i.e. the perfor-
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mance of a whole region set, without localization 

of credit to individual regions. This measure .... 
was the average number of nodes developed D in 

a training sample of 8 fifteen puzzles, divided 

into the mean of all such averages in a popula-

tion of K sets, i.e ..... = 0/ D, where 0 is the 

average over the population (0 = L; Dj / K). 

Changing environment. For these exper
iments, successive rounds of training were 

repeated in incremental learning over several 

iterations or generations. The environment was 

altered in successive generations; it was specified 

as problem difficulty or depth d (defined as the 

number of moves rrom the goal in sample prob

lems). As a sequence or specifications of problem 

difficulty, this becomes a training difficulty vector 

d = (d 1 , d2 , ••. , dn)' 

Here d was static, one known to be a good 

progression, based on previous experience with 

user training IC084].14 In these experiments, d 

was always (8,14,22,50, II, II, ... ). An integer 

means random production of training problems 

subject to this difficulty constraint, while "II" 
demands production or rully random training 
instances. 

6.2. Discussion 

Before we examine the experiments them
selves let us consider potential differences 

between PLSI and PLS2 in terms or their 

effectiveness and efficiency. We also need a cri
terion ror assessing differences between the two 
systems. 

VulnerabU1ty of PLSI. With population 

size K = 1, PLS2 degenerates to the simpler PLSI. 

In this case, static training can result in utter 

railure, since the process is stochastic and various 

things can go wrong (see Appendix B). The 

worst is failure to solve any problems in some 

generation, and consequent absence of any new 

information. If the control structure H is this 
poor, it will not improve unless the fact is 

14. PLS and similar systems ror problems and 
games are sometimes neither fully supervised nor fully 
unsupervised. The original PLSI was intermediate in 
this respect. Training problems were selected by a hu
man, but from each training instance, a multitude or 
individual nodes ror learning are generated by the sys
tem. Each node can be considered a separate example 
ror concept learning IRe 83d). ICo 84) describes experi
ments with an automated trainer. 



detected and problem difficulty is reduced (i.e. 
dynamic training is needed). 

Even without this catastrophe, PLS} per
forms with varying degrees of success depending 

on the sophistication of its training and other 
factors (explained in Appendix B). With minimal 
human guidance, PLS! always achieves a good 

evaluation function H, although not always an 
optimal one. With static training, PLS! succeeds 
reasonably about half the time. 

Stabllity of PLS2. In contrast, one would 
expect PLS2 to have a much better success rate. 
Since PLS} is here being run in parallel (Fig. 1), 
and since PLS2 should reject hopeless cases (their 
... ·s are small), a complete catastrophe (all H's 

failing) should occur with probability p S qK, 
where q is the probability of PLS! failure and K 

is population size. If q is even as large as one 
half, but K is 7 or more, the probability p of 
catastrophe is less than 0.01. 

Cost versus benefit: a measure. Failure 
plays a part in costs, so PLS2 may have an 

advantage. The ultimate criterion for system 
quality 'is cost effectiveness: is PLS2 worth its 

extra complexity? Since the main cost is in task 
performance (here solving), the number of nodes 
developed D to attain some performance is a 
good measure of the expense. 

If training results in catastrophic failure, 
however, all effort is wasted, so a better measure 
is the expected cost D/p, where p is the probabil
ity of success. For example, if D = 500 for 
viable control structures, but the probability of 
finding solutions is only ~ then the average cost 
of useful information is 500/ 'iii = 1000. 

To extend this argument, probability p 
depends on what is considered a success. Is suc
cess the discovery of a perfect evaluation func
tion H, or is performance satisfactory if D 

departs from optimal by no more than 25%? 

6.3. Results 

Table I shows performances and costs with 
various values of K. Here p is estimated using 
roughly 36 trials of PLS! in a PLS2 context (if K 

= 1, 36 distinct runs; if K = 2, 18 runs; etc.). 
Since variances in D are high, performance tests 
were made over a random sample of 50 puzzles. 
This typically gives 95% confidence of D ± 40. 

Aeeuraey of learning. Let us first com
pare results of PLS} versus PLS2 for four different 
success criteria. We consider the learning to be 
successful if the resulting heuristic H approaches 
optimal quality within a given margin (of 100%, 
50%, 25%, and 10%). 

Columns two to five in the table (the 
second group) show the proportion of H's giving 

performance D within a specified percentage of 
the best known D (the best D is around 350 
nodes for the four features used). For example, 
the last row of the table shows that, of the 36 
individual control structures H tested in (two 
different) populations of size 19, all 36 were 
within 100% of optimal D (column two). This 
means that all developed no more than 700 nodes 

before a solution was found. Similarly, column 

five in the last row shows that 0.21 of the 36 H's, 
or 8 of them, were within 10%, i.e. required no 
more than 385 nodes developed. 

Cost of aeeuraey. Columns ten and 
eleven (the two rightmost columns of the fourth 
group) show the estimated costs of achieving per
formance within 100% and within 10% of 
optimum, respectively. The values are based on 
the expected total number of nodes required (i.e. 
D/p), with adjustments in favor of PLSl for extra 
PLS2 overhead. (The unit is one thousand nodes 
developed.) As K increases, the cost of a given 
accuracy first increases. Nevertheless, with just 
moderate K values, the genetic system becomes 
cheaper, particularly for an accuracy of 10%. 

'lAIU 1. CO..,I and PlarOIllAllCU at aUIIIA'lIOII 5. 

Proportion 'atiafyin9 lIun 1I04.a h.-loped 
Pop. SUC:c ••• Cr iter ion ("ndoa Saapl. of SO) COat .. r I.peeled Coat • Perfot •• nc • 
11 .. (prodaity to optia.l D) AV9 ... t Pop • 
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4 .69 .31 .19 .03 513 381 406 17.4 25.2 5BO 30' 
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The expected cost benefit is not the only 

advantage of PLS2. 

Average performance, best perfor

mance, and population performance. Con

sider now the third group of columns in Table I. 

The sixth column gives the average D for all H's 

in the sample (of 36). The seventh column gives 

Db for the best Hb in the sample. These two 

measures, average and best performance, are 

often used in assessing genetic systems IBr 811. 

The eighth column, however, is unusual; it indi

cates the population performance Dp resulting 

when all regions from every set in the population 

are used together in a regression to determine 

Hp. This is sensible because regions are indepen

dent and estimate the utility, an absolute quan

tity (IRe 83c], cf IBr 81, Ho 751). 

Several trends are apparent in Table I. 
First, whether the criterion is 100%, 50%, 25%, 

or 10% of optimum (columns 2-5), the proportion 

of good H's increases steadily as population size 

K rises. Similarly, average, best, and population 

performance measures 0, Db and Dp (columns 6-

8) also improve with K. Perhaps most important 

is that the population performance Dp is so reli

ably close to best, even with these low K values. 

This means that the whole population of regions 

can be used (for Hp) without independent 

verification of performance. In contrast, indivi

dual H's would require additional testing to dis

cover the best (column 7), and the other alterna

tive, any H, is likely not as good as Hp (columns 

6 and 8). Furthermore, the entire population of 

regions can become an accurate source of mas

sive data for determining an evaluation function 

capturing feature interaction IRe 83bl· 

This accuracy advantage of PLS2 is illus

trated in the final column of the table, where, for 

a constant cost, rough estimates are given, of the 

expected error in population performance Dp 

relative to the optimal value. 

It is interesting that such small populations 

improve performance markedly; usually popula

tion sizes are 50 or more. 

6. EFFICIENCY AND CAP ABILITY 

Based on these empirical observations for PLS2, 

on other comparisons for PLSl, and on various 

conceptual differences, general properties of three 

competing methods can be compared: PLSl, 
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PLS2, and traditional optimization. In IRe 81], 

PLSI was found considerably more efficient than 

standard optimization, and the suggestion was 

made that PLSI made better use of available 

information. By studying such behaviors and 

underlying reasons, we should eventually identify 

principles of efficient learning. Some aspects are 

considered below. 

Traditional optimization versus PLSI. 

First, let us consider efficiency of search for an 

optimal weight vector b in the evaluation func

tion H = b.f. One good optimization method is 

response surface jitting (RSF). It can discover a 

local optimum in weight space by measuring and 

regressing the response (here number of nodes 

developed D) for various values of b. RSF util

izes just a single quantity (i.e. D) for every prob

lem solved. This seems like a small amount of 

information to extract from an entire search, 

since a typical one may develop hundreds or 

thousands of nodes, each possibly containing 

relevant information. In contrast to this tradi

tional statistical approach, PLSl, like ISa63, 

Sa 671, uncovers knowledge about every feature 

from every node (see §4.3). PLSl, then, might be 

expected to be more efficient than RSF. Experi

ments verify this IRe81]. 

Traditional optimization versus PLS2. 

As shown in §5, PLS2 is more efficient still. We 

can compare it, too, with RSF. The accuracy of 

RSF is known to improve with yIN, where N is 

the number of data (here the number of of prob

lems solved). As a first approximation, a parallel 

method like PLS2 should also cause accuracy to 

increase with the square root of the number of 

data, although the data are now regions instead 

of D values. If roughly the same number of 

regions is present in each individual set R of a 

population of size K, accuracy must therefore 

improve as YK. Since each of these K structures 

requires N problems in training, the accuracy of 

PLS2 should increase as VN, like RSF. 

Obviously, though, PLS2 involves much 

more than blind parallelism: a genetic algorithm 

extracts accurate knowledge and dismisses 

incorrect (unfit) information. While it is impossi

ble for PLSI alone, PLS2 can refine merit by 

localizing credit to individual regions IRe 83c]. 

Planned experiments with this should show 

further increases in efficiency since the additional 

cost is small. Another inexpensive improvement 



will attempt to reward good regions by decreas

ing their estimated errors. Even without these 

refinements, PLS2 retains meritorious regions 
(§4), and should exhibit accuracy improvement 

better than VN. Table I suggests this. 

PLS2 versus PLS2. As discussed in §4.1 

and Appendix B, PLSI is limited, necessitating 

human tuning for optimum performance. In con

trast, the second layer learning system PLS2 
requires little human intervention. The main 

reason is that PLS2 stabilizes knowledge 

automatically, by comparing region sets and 
dismissing aberrant ones. Accurate cumulative 

sets have a longer lifetime. 

This ability to discriminate merit and 
retain successful data will likely be accentuated 

with the localization of credit to individual 

regions (see §4.2). Another improvement is to 

alter dynamically the error of a region (estimated 

by PLSI) as a function of its merit (found by 

PLS2). This will have the effect of protecting a 

good region from imperfect PLSI utility revision; 

once some parallel PLSI has succeeded in discov

ering an accurate value, it will be more immune 

to damage. A fit region will have a very long 

lifespan. 

Inherent differences In capabllity. RSF, 

PLSl, and PLS2 can be characterized differently. 
From the standpoint of time costs: given a chal

lenging requirement such as the location of a 

local optimum within 10%, the ordering of these 
methods in terms of efficiency is RSF S PLSI S 

PLS2. In terms of capability, the same relation
ship holds. RSF cannot handle feature interac

tions without a more complex model (which 

would increase its cost drastically). PLSl, on the 
other hand, can provide some performance 

improvement using piecewise linearity, with little 

additional cost IRe 83b]. PLS2 is more robust 
than PLSI. While the original system is some

what sensitive to training and parameters, PLS2 
provides stability using competition to overcome 

deficiencies, obviate tuning, and increase accu

racy, all at once. PLS2 buffers inadequacies 

inherent in PLSI. Moreover, PLS2, being geneti
cally based, may be able to handle highly 

in teracting features, and discover global optima 

IRe 83c]. This is very costly with RSF and seems 

infeasible with PLSI alone. 
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7. SUMMARY AND CONCLUSIONS 

PLS2 is a general learning system IRe 83a, 
Re 83d]. Given a set of user-defined features and 
some measure of the utility (e.g. probability of 

success in task performance), PLS2 forms and 
refines an appropriate knowledge structure, the 

cumulative region set R, relating utility to 

feature values, and permitting noise manage

ment. This economical and flexible structure 
mediates data objects and abstract heuristic 
knowledge. 

Since individual regions of the cumulative 
set R are independent of one another, both credit 

localization and feature interaction are possible 

simultaneously. Separating the task control 

structure H from the main store of knowledge R 

allows straightforward credit assignment to this 

determinant R of H, while H itself may incor

porate feature nonlinearities without being 

responsible for them. 

A concise and adequate embodiment of 

current heuristic knowledge, the cumulative 

region set R was originally used in the learning 

system PLSI [Re 83a]. PLSI is the only system 

shown to discover locally optimal evaluation 

functions in an AI context. Clearly superior to 

PLSl, its genetic successor PLS2 has been shown 

to be more stable, more accurate, more efficient, 
and more convenient. PLS2 employs an unusual 
genetic algorithm having the cumulative set R as 

a compressed genotype. PLS2 extends PLSl's lim

ited operations of revision (controlled mutation) 
and differentiation (genotype expansion), to 

include generalization and other rules (K-sexual 
mating and genotype reorganization). Credit 

may be localized to individual gene sequences. 

These improvements may be viewed as 

effecting greater efficiency or as allowing greater 

capability. Compared with a traditional method 

of optimization, PLSI is more efficien tiRe 8Sa], 

but PLS2 does even better. Given a required 
accuracy, PLS2 locates an optimum with lower 
expected cost. In terms of capability, PLS2 insu

lates the system from inherent inadequacies and 

sensitivities of PLSI. PLS2 is much more stable 
and can use the whole population of regions reli

ably to create a highly informed heuristic (this 
population performance is not meaningful in 

standard genetic systems). This availability of 

massive data has important implications for 

feature interaction IRe 83b]. 



Additional refinements of PLS2 may further 

increase efficiency and power. These include 

rewarding meritorious regions so they become 

immune to damage. Future experiments will 

investigate nonlinear capability, ability to dis

cover global optima, and efficiency and 

effectiveness of localized credit assignment. 

This paper has quantitatively affirmed some 

principles believed to improve efficiency and 

effectiveness of learning (e.g. credit localization). 

The paper has also considered some simple but 

little explored ideas for realizing these capabili

ties (e.g. full but controlled use of each datum). 
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APPENDIX A. GLOSSARY OF TERMS 

Clustering. Cluster analysis has long been 

used as a tool for induction in statistics and pat

tern recognition [An 731. (See "induction".) 

Improvements to basic clustering techniques gen

erally use more than just the features of a datum 

(IAn 73,p. 1941 suggests "external criteria"). 

External criteria in [Mi83, Re76, Re83a, Re85bj 
involve prior specification of the forms clusters 

may take (this has been called "conceptual clus

tering" [Mi 83/). Criteria in [Re 76, Re 83a, 

Re 85bl are based on the data environment (see 
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"utility") below)Y; This paper uses clustering to 

create economical, compressed genetic structures 
(genotypes). 

Feature. A feature is an attribute or pro
perty of an object. Features are usually quite 

abstract (e.g. "center control" or "mobility") in a 

board game. The utility (see below) varies 
smoothly with a feature. 

Genetic algorithm. In a GA, a the char
acter of an individual of a population is called a 
phenotype. The phenotype is coded as a string of 

digits called the genotype. A single digit is a 

gene. Instead of searching rule space directly 
(compare "learning system"), a GA searches gene 

space (Le. a GA searches for good genes in the 

population of genotypes). This search uses the 

merit ~ of individual genotypes, selecting the 

more successful individuals to undergo genetic 
operations for the production of offspring. See 

§2 and Fig.3. 

Induction. Induction or generalization 

learning is an important means for knowledge 

acquisition. Information is actually created, as 

data are compressed into classes or categories in 

order to predict future events efficiently and 

effectively. Ind uction may create feature space 
neighborhoods or clusters. See "clustering" and 
§4.1. 

Learning System. Buchanan et al. 
present a general model which distinguishes com

ponents of a learning system [Bu 78j. The perfor

mance element PE is guided by a control struc

ture H. Based on observation of the PE, the cri

tic assesses H, possibly localizing credit to parts 

of H IBu 78, Di 811. The learning element LE uses 
this information to improve H, for the next 

round of task performance. Layered systems 

have multiple PE's, critics, and LE's (e.g. PLS2 
uses PLSl as its PE - see Fig. 1). Just as a PE 

searches for its goal in problem space, the LE 

searches in rule space IDi82j for an optimal H to 
control the PE. 

To facilitate this higher goal, PLS2 uses an 

intermediate knowledge structure which divides 

feature space into regions relating feature values 

to object utility IRe 83dl and discovering a useful 
subset of features (cf ISa63/). In this paper, the 

control structure H is a linear evaluation func-

IS. A new learning system IRe 8Sc] introduces 
higher-dimensional clustering for creation of structure. 



tion [Ni 80]' and the "rules" are feature weights 

for H. Search for accurate regions replaces direct 

search of rule space; i.e. regions mediate data 

and H. As explained in §3, sets of regions 

become compressed GA "genotypes". See also 

"genetic algorithms", "PLS", "region", and Fig. I. 

Merit.... Also called payoff or fitness, this 

is the measure used by a genetic algorithm to 
select parent genotypes for preferential reproduc

tion of successful individuals. Compare "utility", 

also see "genetic algorithms". 

Object. Objects are any data to be gen

eralized into categories. Relationships usually 

depend on task domain. See "utility". 

PLS. The probabilistic learning system 

can learn what are sometimes called "single con

cepts" [Di 82), but PLS is capable of much more 

difficult tasks, involving noise management, 

incremental learning, and normalization of biased 

data. PLSI uniquely discovered locally optimal 

heuristics in search [Re 83a), and PLS2 is the 

effective and efficien t extension examined in this 

paper. PLS manipulates "regions" (see below), 

using various inductive operations described in 

§4. 

Region or Cell. Depending on one's 

viewpoint, the region is PLS's basic structure for 

clustering or for the genetic algorithm. The 

region is a compressed representation of a utility 

surface in augmented feature space; it is also a 

compressed genotype representing a utility func

tion to be optimized. As explained in [Re 83dJ, 

the region representation is fully expressive, pro

viding the features are. See §3 and Figs. 3 & 4. 

Utility u. This is any measure of the use
fulness of an object in the performance of some 

task. The utility provides a link between the 

task domain and PLS generalization algorithms. 

Utility can be a probability, as in Fig. 2. Com

pare merit. See §1,3. 

APPENDIX B. PLSI LIMITATIONS 

PLSI alone is inherently limited. The problems 

relate to modification of the main knowledge 

structure, the cumulative region set R = 
{(r,u,e)}. As mentioned in §4.1, R undergoes 

two basic alterations. PLSI gradually changes 

the meaning of an established feature space rec

tangle r by updating its associated utility u 

(along with u's error e). PLSI also incrementally 
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refines the feature space, as rectangles rare con
tin u ally split. 

Both of these modifications (utility revision 

and region refinement) are largely directed by 

search data, but the degree to which newer infor

mation affects R depends on various choices of 

system parameters [Re 83al. System parameters 

influence estimates of the error e, and determine 
the degree of region refinement. These, in turn, 

affect the relative importance of new versus esta

blished knowledge. 

Consequently, values of these parameters 

influence task performance. For example, there 

is a tradeoff between utility revision and region 

refinement. If regions are refined too quickly, 

accuracy suffers (this is theoretically predictable). 

If, instead, utility revision predominates, regions 

become inert (their estimated errors decline), but 

sometimes incorrectly .11' 

There are several other problems, including 

difficulties in training, limitation in the utility 

revision algorithm, and inaccurate estimation of 

various errors. As a result, utility estimations 

are imperfect, and biased in unknown ways. 

Together, the above uncertainties and sen

sitivities explain the failure of PLSI always to 

locate an optimum with static training (Table I). 
The net effect is that PLSI works fairly well with 

no parameter tuning and unsophisticated train

ing, and close to optimal with mild tuning and 

informed training ICo 84), as long as the features 

are well behaved. 

By nature, however, PLSI requires features 

exhibiting no worse than mild interactions. This 

is a serious restriction, since feature nonlinearity 
is prevalent. On its own, then, PLSI is inherently 

limited. There is simply no way to learn utility 

accurately unless the effects of differing heuristic 

functions H are compared, as in PLS2. 
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ABSTRACT 

Genetic algorithms (GA'a) are powerful, 
general purpose adaptive search techniques which 
have been use successfully in a variety of learning 
systems. Previous implementations have tended to 
use scalar feedback concerning the performance of 
alternate knowledge structures on the task to be 
learned. This approach was found to be inadequate 
when the task was multiclass pattern 
discrimination. By providing the GA with 
multidimensional feedback, a problem of this type 
was successfully learned. In addition, a careful 
balance of reward and punishment vas found to be 
necessary in order to guide the opportunistic GA to 
a correct solution of the problem. 

!· Introduction 

This paper presents some results of 
axperiments vith a software system designed to 
learn rules for multiclass pattern discrimination 
from examples of correctly classified patterns. 

The original motivation for this research 
arose from attempts to develop computer programs 
capable of intelligent signal analysis. One such 
application domain is computer analysis of 
bioelectric signals such as !KG's and REG's. 
Previous attempts to model the actions of an 
electroencephalographer using variations of 
traditional electrical engineering approaches had 
met with some success, but complete agreement with 
the human expert eluded us [2,4 ]. Attempts to 
elicit the knovledse from the expert for use by an 
expert system had similarly met with limited 
success [5]. Nevertheless, it was clear that the 
expert was able to reliably preform this complex 
pattern discrimination, even if he vas unable to 
completely articulate how he did it. Therefore, an 
algorithm capable of inferrins rules for 
discrimination from examples of correctly 
classified patterns, seemed to hold promise. 

A search of the literature for methods by 
which machines could learn rules from examples 
revealed a small number of currently active 
approaches [11,12]. Of these, the methods based on 
Holland's Genetic Adaptive Plans [9], or Genetic 
Alsorithms (GA's) seemed to hold the most promise 
for the followins reasons. They have been shown 
both theoretically [9] and empirically [6,7,8] to 
take near optimal advantage of the information 
gained during attempts to solve a problem. In 
addition, the preferred coding for the example 
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patterns is as bit strings. This offers the 
possibility that one may avoid the usual feature 
extraction processes, which, although capable of 
considerable data reduction, also carry with them 
the risk that the reduced feature set may no longer 
contain the information contained in the original 
signal which made the discrimination possible. A GA 
might be developed that operates on the raw 
digitized signals. 

For the remainder of this paper, an 
understanding of the basics of GS' s has been 
assumed. · They are well described elsewhere 
[3,6,7,8,9,10,13]. 

£. Background 

There are two learning systems based on 
GA's in the literature vhich might be considered 
immediately ancestral to the research described 
herein. The Cognitive System One (CS-1) of Holland 
and Rietman [10] was the first published account of 
a system which combined the computational power of 
a production system (PS)with a GA-based learning 
component. This system exhibited an ability to 
learn a dual-reward linear maze. The Learning 
System One (LS-1) of Smith [13] took this concept 
further and demonstrated learning behavior in two 
different problem domains, the maze problem and 
draw poker playing. 

LS-1 appeared to have an important 
advantage over CS-1. CS-1 maintained a population 
of knowledge structures which were individual PS 
rules, which save rise to the credit assignment 
problem. A heuristic method had to be devised to 
distribute credit for rewarded behavior among the 
rules vhich cooperated in producing that behavior. 
LS-1 avoided this problem by using complete rule 
sets, or PS programs, as the individuals in its 
populations. A difficulty with this approach 
involved the use of scalar evaluations for the 
individuals. When the task to be learned is 
multidimensional, then scalarization of the 
feedback to tha GA creates difficulties which will 
be described below. 

1· ! ~ E x t e n s i o n  of !2-! (!2-£) 

Several attempts to learn a multiclass 
pattern discrimination problem with LS-1 were 
unsuccessful. Examination of the populations of 
programs in both the early and late stages of the 
searches revealed a common pattern. Knowledge of 
how to recognize a particular class was frequently 
absent from the populations in the latter stages of 



the search even when such knowledge was pr.sent in 
earlier populations. The hypothesis for this was 
that the scalar feedback was forcing competition 
between programs whose knowledge was complementary. 

Consider this simple example. Suppose the 
feedback to the GA consists essentially of the 
number of training cases correctly classified. 
Suppose program PI contains rules which correctly 
classify classes A and B while program P2 
classifies only instances in class C. If all 
classes are equally represented in the training 
set, then PI will appear to be twice as "fit" as 
P2. In a survival-of-the-fittest selection process, 
specialized knowledge such as that possessed by P2 
may die out. 

The solution to this problem was to modify 
the critic so that a vector of performances could 
be reported back to the GA, one for each facet of 
the problem (class of pattern to be learned. in 
this case). The selection process of the GA was 
also modified in such a way that an independent 
survival-of-the-fittest selection is performed on 
each dimension of the performance vector, each time 
selecting only the appropriate fraction of the 
population. This selection is performed with 
replacement so that individuals with better that 
average performance on more than one dimension have 
the appropriate probability of multiple selection 
while simultaneously protecting individuals with 
specialized knowledge from unfair competition. 
This represents a simple leneralization of the 
traditional selection process which reverts to the 
traditional process when the number of dimensions 
of performance is one. 

~. I!!! ~-1 Production System 

4.1 Knowledge Representation 
The binary coding scheme for the Il-THEN 

rules was devised by Smith and called Knowledge 
Structure One (IS-1). On the Il side of each rule a 
number of clauses which are sensitive to external 
signals are allowed as well as a number of clauses 
sensitive to internal signals i.e. silnals from 
other rules. These clauses are simply strinls on 
the alphabet {O.l.'} where 0 and 1 require an exact 
match and * will match either 0 or 1. lor example. 
the clause 10n would match any 3-bitsignal whose 
first bit is a 1. On the THEN side. each rule has a 
sianal which it deposits in short term .emory if 
the rule fires. lrom there. it becomes accessible 
to other rules. Also on the THEN side is an action 
which is performed if the rule fires and also 
survives the conflict resolution at the end of the 
production system cycle. This general scheme as 
well as an example of the binary coding of these 
rules is shown in figure 1. 

An individual for the purposes of the GA is 
a set of rules in IS-I format concatenated 
together. For pattern discrimination problems. each 
rule would have one detector (external signal) 
clause and one message (internal signal) clause. 
The length of the detector clause is set to the 
length of the patterns to be learned and the length 
of the message clause would be set to the length of 
the messages. The message length need only be a 
function of the maximum number of rules an 
individual may contain, the only requirement being 
that there should be enough bits so that every rule 
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liaure 1. IS-1 Knowledge Representation Scheme 

might have a unique signal. The actions would 
include one for each class of pattern to be 
discriminated with one for no-operation (noop). The 
noop action is a simple device which allows for the 
evolution of sets of rules which perform a chain 
calculation leading to a final classification 
decision. 

It may be noticed that the binary coding 
.chama illustrated in figure 1 admits a certain 
redundancy. By having two binary codings for the 
donlt care symbol (0. 01 or 10). there are many 
binary codings possible for any given rule, with 
the problem Irowing worse as the number of 'IS 

increases. This observation gave rise to the 
conjecture that the knowledge structures might be 
coded directly in their natural ternary (0,1,0) 
alphabet. To counter this conjecture. is the known 
superiority of binary coding for the lathering of 
information from the hyperplanes of the search 
space (see Bolland [10,p71] or Smith [13,pS6]). 
Bowever, it was unclear how these two arluments. 
might be compared and the better coding selected. 
Therefore, several tests were conducted wherein the 
same problems were solved by LS-2 using first 
binary codinl and then ternary coding. 

4.2 Recognize-act Cycle 
The production system contained the usual 

recognize-act cycle with parallel firing of rules 
allowed in the following fashion. On each cycle, 
every rule is tested for a match of its IF-side 
clauses. Every rule which does match, "fires" in 
the sense that its message is posted in short term 
memory, but its action is merely tallied in an 
array called the suggested-action array. Only at 
the end of the cycle is an action selected and 
actually performed. If the number of "real" (non 
noop) actions suggested is zero, then another cycle 
is initiated. If one action is suggested, then it 
is performed. If more than one action is suggested, 
then a stochastic conflict resolution scheme is 
invoked which randomly selects one of the suggested 
actions with the probability of selection being 
proportional to the number of rules suggesting it. 



4.3 The Halting Problem 
The question of halting such a 

computational scheme is quite a real one. Since 
this system will be executing programs produced by 
genetic search, one must worry about the 
possibility of infinite loops. On the other hand, 
an arbitrary stopping threshold in terms of the 
number of cycles to allow must be carefully chosen 
so as not to render a problem unsolvable if it 
requires more lengthy computation that the 
threshold permits. The stopping procedure 
implemented for LS-2, which differs from LS-1, 
examines four criteria in the following order: (1) 
Stop if no rules fired this cycle. (2) Stop if the 
number of consecutive noop cycles equals the number 
of rules. This allows for a worst case chain 
calculation which utilizes every rule in the 
program. (3) Stop if the total number of cycles is 
N times the number of rules. The setting of N is 
the arbitrary threshold just mentioned and is 
currently set to 3, but at least the actual 
stopping threshold is also a function of the number 
of rules. (4) Stop if the task has been learned. 

~ • The f!.!.llE. 

Besides vector performance and the stopping 
criteria, the other major area of difference 
between LS-l and LS-2 was that of the critic. 
Smith anticipated a problem with a critic which 
only rewarded task successes. In the early stages 
of a lenetic search, especially one started with a 
random population, successes are likely to be rare 
and thus such a critic would be unable to give the 
GA any information about which population members 
were more promising than others. In the absence of 
such information the GA would revert to near random 
search. In addition, in the later stages of the 
search when successes were plentiful, some way of 
identifying the better (e.g. more parsimonious) 
individuals would lead more efficiently to lood 
solutions. Smith sought measures to provide this 
kind of information which were also task 
independent. He devised two classes, static 
.. asures which could be computed just by examininl 
the rule set, and dynamic measures which could be 
computed only by monitoring the action of the rule 
set on the task. The static measures included such 
items as the amount of interrule communication 
measured by how many rule messages would match the 
message clause of other rules, the lenerality of 
the clauses measured by the number of , symbols and 
so on. The dynamic measures included the amount of 
random behavior measured by the activity of the 
conflict resolution procedure and the percentale of 
inactive rules. While these measures have an 
intuitive appeal, it is not clear that they are 
always associated with superior performance 
regardless of the task. In addition, some 
preliminary experiments with LS-2 using these 
measures as an independent dimension of the 
performance vector revealed a poor correlation with 
task success. These measures, then, were dropped 
from LS-2 in favor of the critic described below. 
This critic did incorporate the amount of random 
activity which was called guessing behavior. 

The properties sought for a critic for 
pattern discrimination learning were similar to 
those identified by Smith. In the early stages of 
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Figure 2. The Reward Function for the First Critic 

the search, guessing should be encouraged so as to 
locate as quickly as possible, some knowledge which 
seems to work. However, the same critic must 
discourage guessing in the later stages when more 
reliable classification becomes the goal. The first 
critic reward function designed with these 
properties is illustrated in figure 2. The guessing 
factor is a measure of the uncertainty with which 
the production system reaches a conclusion as 
measured by the number of rules suggesting some 
other conclusion. This reward function would live 
some credit for a wrong conclusion if the right 
action were at least suggested and would also give 
less than maximum credit for the rilht action if it 
were only guessed. While this critic seemed 
reasonable, it had a subtle weakness which was 
revealed by experimentation. Better critics were 
later desilned, but they will be discussed with the 
results which lead to them. 

~. The !!!! Problems 

6.1 The Parity Problem 
As a direct test that the GA is capable of 

producinl more powerful programs than perceptrons, 
the parity problem was included. This problem 
involves the discrimination of two classes which 
are inextricably mixed in the feature space as 
shown in figure 3. Although a discriminator 
requiring linear separability in the feature space 
would be unable to solve this problem, a system 
able to compute the parity (a derived feature) of 
the given features would be able to solve this 
problem easily. 

6.2 A Hulticlass Pattern Problem 
As a test of a GA on a multiclass signal 

discrimination learning task a small problem was 
selected from the literature which used EHG 
signals. Bekey at al [lJ measured the neural firing 
patterns enervating six muscles in the lower leg 
and then reduced the signal from each muscle to a 
two-bit string indicating that the muscle was 
either on (1) or off (0) during two phases of the 
gait cycle. Thus, each subject tested yielded a 
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Figure 3. The Parity Problem 

l2-bit string which was classified by the clinician 
as belonging to one of five classes of gait as 
shown in figure 4. 

The 11 patterns shown in figure 4 were 
considered by Bakey and his colleagues to be 
typical of their classes and were used as a 
training set for a statistical discrimination 
experiment. This training set has several features 
to recommend it as a test bed for a GA learning 
experiment. The strings were short and binary 
coded. Also the training set is small implying a 
s .. ll computational burden. Although the problem 
is underconstrained (there are many possible 
solutions>, it is rich enough to frustrate a simple 
linear discriminator like a perceptron. 

1. Results 

7.1 The Parity Problem 
After trying 5040 different PS programs 

(evaluations)on the parity problem, LS-2 found the 
solution shown in figure 5. The training set for 
this problem consisted of all 16 patterns shown in 
figure 3 with xO and xl coded at two bits each. The 
"ignore" in figure 5 indicates that the message 
clauses in all of the rules were turned off. Thus, 
the solution did not require any interrule 
communication. Instead two rules were evolved for 
each combination of low order bits in the feature 
strings. The 2-bit strings to the right of the -) 
symbol in figure 5 are the signals placed in short 
term memory which are ignored by the other rules. 
The rightmost number in each rule is the action 
(classification asserted for the pattern if the 
rule fi res) • 

7.2 The EHG Problem 
The first trials with the EHG problem 

clearly indicated the superiority of the IS-I 
binary coding over the ternary coding. Comparison 
runs to discriminate different pairs of classes and 
one run to discriminate a 3-class subset of the 
Bakey training set all learned the discrimination 
faster with binary coding than with ternary coding. 
Besides this series, all other experiments reported 
in this paper utilized binary coding. 

A solution to a 2-class subproblem of the 
Bakey set was located in 2520 evaluations. However, 
a 3-class subproblem required almost 30000 
evaluations and the full 5-class problem remained 
unsolved after 100000 evaluations. This rapid 
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increase in computational effort soon drew 
attention to the critic as a possible cause. By 
examining some of the individuals in different 
populations, the survival strategy that LS-2 was 
adopting was discovered. It vas observed that very 
early in the searches, even in the initial 
populations, individuals appeared who received 
maximum credit for one class of patterns and zero 
for All other classes. These were named specialists 
since they seemed to have knowledge of how to 
identify one pattern class without guessing, but no 
others. However, close examination revealed their 
simple strategy. Each specialist contained a single 
over-general rule which fired for every pattern, 
calling class x. If the pattern was class x, the 
critic assigned maximum credit, if not then the 
critic assigned zero. However. under the vector 
survival-of-the-fittest. maximum fitness on one 
dimension was sufficient to assure survival. These 
specialists also tended to persist .ince their 
genes combined poorly, not prodUCing offspring able 
to perform well on more than one dimension. This 
strategy of wild guessing was encouraged by the 
critic; some form of punishment for wrong actions 
wa. clearly needed. 

The original critic was then replaced by 
one which simply assigned two pOints for each 
correct suggestion and minus one for each wrong 
suggestion. More credit for right than wrong seemed 
appropriate in light of the need to preserve 
individuals with some good knowledge. even if 
imperfect. This critic also embodied a shift of 
focus from the overt actions of the individual to 
the suggested actions. thus rewarding the 
"thinking" more directly. 

Under the new critic, LS-2 solved the 
2-class problem in only 1440 evaluations, a 43% 
reduction in search effort. However, this advantage 
did not hold for higher order problems. Again, an 
examination of the individuals persisting in the 
population revealed the new survival strategy. With 
a 2-class task. the expectation for wild guessing 
under this critic. is one half the maximum credit 
so long as each class in equally represented in the 
training set. However. as the number of classes 
increases. this expectation decreases and even 
becomes negative for fairly modest tasks. When 

cla.. 1 (noraal) 
(0,1,1,1,1,1,1,0,0,0,0,0) 

cla •• 2 (aquinu.) 
(0,1,1,1,1,1,0,0,0,0,0,0) 
(0,1,1,0,1,1,1,0,0,0,0,0) 
(0,1,1,1,0,1,1,1,0,0,0,0) 
(0,1,1,1,0,1,0,0,0,1,0,0) 

cla •• 3 (flat footed) 
(0,0,0,0,1,1,1,0,0,0,0,0) 
(0,1,0,0,0,1,1,1,0,0,0,1) 

class , (varu.) 
(1,0,1,1,0,0,1,0,0,1,0,0) 
(1,1,1,0,1,1,0,0,0,0,0,0) 

cla.. 5 (valgu.) 
(0,0,1,0,1,1,1,0,0,0,1,1) 
(0,1,1,0,0,1,1,0,0,0,0,1) 

Figure 4. The Bakey Training Cases 



Xl' -> '1'HEN 

rule 0: UU 1qnore -> 01 1 
rule 1: fOU 1qnore -> 01 2 
rule 2: fO'o 1qnore -> 10 1 
rule 3: UfO 1qnore -> 10 2 

Figure 5. The Solution to the Parity Problem 

this occurs, LS-2 quickly begins evolving 
individuals with no rules that fire at all. Doing 
nothing at least .core. zero which is better than 
being punished. A balance of r.ward and punishment 
which will be maintained a. tasks increase in 
complexity is needed .0 as to avoid the GA'. 
ability to quickly exploit this weakness in the 
critic function. 

The next critic employ.d a computational 
.cheme based on that used on the Scholastic 
Apptitude Test and so was called SAT .coring. The 
main idea in the scoring of multiple choice tests 
i. that indi.criminant guessing .hould have an 
exp.ctation of zero, but that if a student can 
• liminat •• ome of the choices on a question, then 
he .hould be encouraged to guess by having the 
expect.d acor. increase as the range of guessing 
d.cr...... lor the SAT, this is achieved by 
.ubtracting from the number of correct answers, the 
number of wrong answ.r. weight.d by the inverse of 
the number of choices minus one. This gives an 
.xpectation which varies from zero for wild 
guessing to the maximum .core for no guessing. For 
LS-2 a slightly different expectation was thought 
desirable. Wild guessing was deemed better than 
doing nothing because this at least would give the 
GA .ome active rules to deal with. So the designed 
expectation was that wild guessing (e.g. calling 
.very case the same clas.) should score half of the 
lllAXimum. 

At this point in the experimentation. an 
• ffort wa. also initiat.d to learn about the 
sensitivity of LS-2 to changes in four of it. main 
parameters, population size, crossover, mutation 
and inversion rates. All experiments reported so 
far used a population size of 30 per dimension of 
the performance vector, a crossover rate of .95. a 
mutation rate of .01 and an inver. ion rat. of .25. 
The.e first thr.e values were suggested by 
Greffenstette (8) and the inversion rate by Smith 
(13). Limited resources prevented the best approach 
which would have been the meta-GA approach of 
Greffenstette, so different settings were produced 
by increasing the population size in steps of 10 
per dimension and simultaneously reducing the rates 
more or less in unison. This process was continued 
until the mean evaluations-to-solution stopped 
improving. Means were computed for three runs at 
each setting with different random seeds. 

The SAT critic has the same expectation as 
the previous critic for 2-class problems with 
balanced training sets, so this task was not 
repeated. A 3-class subproblem was solved in 6921 
evaluations, a 77% improvement over the original 
critic. A 4-class subproblem was solved in 26591 
evaluations. Both of these results represented a 
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best parameter setting of 40, .90, .005 and .20 for 
population size per dimension, crossover, mutation 
and inversion rates respectively. 

One final improvement was made in LS-2, 
this time to the conflict resolution. In LS-l Smith 
had not permitted conflict resolution to consider 
the noop action so long ss a "real" action were 
suggested. In all the LS-2 experiments so far. noop 
competed equally with the "real" actions. The 
argument for this was that for some task 
environments. doing nothing. or continuing to think 
(cycle) was a decision and that if the environment 
were dynamic, then this might well affect 
performance. However, some counter arguments can 
also be made. The pattern discrimination tasks 
considered so far are not dynamic; the patterns 
don't change while LS-2 is trying to decide. Also. 
this strategy allows for some stochastic effect to 
remain in the critic-reported values. By deciding 
to cycle again when a "real" action had been 
suggested. LS-2 postponed the computation of the 
credit in a non-deterministic way. The critic was 
only permitted to evaluate the suggested action 
array on the final cycle. I would now argue that if 
the task environment is dynamic. and a do nothing 
action should be considered, then it should be 
explicitly included as one of the "real" actions. 
Hoop should not be considered a do nothing action • 

With this final improvement, LS-2 solved 
the 3-. 4- and full 5-class problems in 5647, 15938 
and 44509 evaluations respectively. The taming 
effect of these improvements in LS-2 are 
illustrated in figure 6. 
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Figure 6. Improvements in LS-2 with Changing Critic 
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!· Discussion 

The major finding of this research was that 
vector feedback is essential to multiclass 
discriminant learning. Vector selection provides 
the necessary protection against unfair competition 
while simultaneously providing the proper pressure 
for the evolution of the utopian individual capable 
of high performance on all facets of the task. 

Secondary to this major finding are a 
number of observations which may contribute to 
better understanding of GA's and how to effectively 
utilize them. 

The solution of the parity problem clearly 
demonstrates LS-2's ability to learn non-linear 
discrimination. 

Ternary coding of IS-1 was inferior to 
binary coding, even with the redundancy inherent in 
the binary coding scheme. A search for coding 
schemes which are binary and yet avoid this 
redundancy might pay handsome dividends. 

Grefenstette's finding [8) that senetic 
search may be very efficient with smaller 
populations and higher mixing rates than previous 
wisdom suggested, seems generally to have been 
confirmed. Populations of 40 per dimension of 
performance with crossover rates of .7 to .9, 
mutation rates of .001 to .01 and inversion rates 
of .1 to .2 provided the best performance on the 
problems studied here. It should be noted, however, 
that the search was limited and began with 
Grefenstette's solution. 

As Smith observed, the critic is critical. 
The GA is capable of exploiting the properties of 
its critic and so good performance was only 
achieved when reward and punishment were carefully 
balanced. The application of punishment to a 
performance vector has raised a question which did 
not occur with scalar performance systems. There 
are two places where this punishment may be 
applied. Suppose that a PS program incorrectly 
classifies a class 1 case as class 2. By applying 
the punishment to the class 1 slot of the 
performance vector one is punishing the failure to 
do the right thing. By applyins it to the claas 2 
slot, one is punishing the program for doing the 
wrong thing. It is unknown which strategy, or both 
leads to faster learning. The experiments reported 
here applied the punishment to the slot 
corresponding to the case to be classified, thus 
always punishing the failure to do the right thing. 
Other approaches might be profitably studied. 

The task independent measures proposed by 
Smith did not seem to be sufficiently closely 
associated with good performance to warrant their 
use. However, his strategy of disallowing noop 
actions to compete in conflict resolution was 
superior to allowing it. 

A final observation is in order on the 
original question of using a GA for intelligent 
signal classification. The strategy used in LS-2 
seems to be promising, but requires that a prior 
decision be made on the length and sampling rate 
for the signal. The patterns must be "frozen" so 
that the system can examine them. This feature 
seems to impose undesirable limitations. A more 
dynamic method of examining the signal, bit by bit, 
and only reporting a decision when enough 
information has been acquired to do so with 
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confidence, seems to offer a more robust approach. 
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ABSTRACT 

Classifier systems must continuously inrer userul categories and other generalizations - in the form 

of classifier taxa - from the steady stream of messages received and transmitted. This paper describes 

ways to use the genetic algorithm more effectively in discovering such patterns. Two issues are 

addressed. First, a flexible criterion is advocated for deciding when a message matches a classifier taxon. 

This is shown to improve performance over a wide range or categorization problems. Second, a restricted 

mating policy and crowding algorithm are introduced. These modifications lead to the growth and 

dynamic management or subpopulations correlated with the various pattern categories in the environ

ment. 

INTRODUCTION 

A cia,,;jier 'lIdem is a special kind of 

production system designed to permit non

trivial modifications and reorganizations of 

its rules as it performs a task [Holland,1976]. 

Classifier systems process binary messages. 

Each rule or cia,,;jier is a fixed length string 

whose activating condition, called a tazon, is 

a string in the alphabet {O,l,#}. The 

differences between classifier systems and 

more conventional production systems are 

discussed by Booker [1982] and Holland 

[1983]. 

One of the most important qualities of 

classifiers systems as a computational para

digm is their flexibility under changing 

environmental conditions [Holland, 1983]. 

This is the major reason why these systems 

are being applied to dynamic, real-world 

problems like the control of combat systems 

[Kuchinski,1985] and gas pipelines [Gold

berg,1983j. Conventional rule-based systems 

are brittle in the sense that they function 
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poorly, if at all, when the domain or under

lying model changes slightly. Several factors 

work together to enable classifier systems to 

avoid this kind of brittleness: paralle lism, 

categorization, active competition of alterna

tive hypotheses, system elements con

structed from "building blocks" , etc. 

Perhaps the most important factor is 

the direct and computationally efficient 

implementation of categorization. Holland 

[1983, p.92] points out that 

Categorization is the system's 8ine qua 

non for combating the environment's 

perceptual novelty. 

Classifier systems must continuously infer 

useful categories and other generalizations 

- in the form of taxa - from the steady 

stream of messages received and transmit

ted. This approach to pattern-directed 

inference poses several difficulties. For 

example, the number of categories needed to 

function in a task environment is usually not 

known in advance. The system must there

fore dynamically manage its limited classifier 



memory so that, as a whole, it accounts for 

all the important pattern classes. Moreover, 

since the categories created depend on 

which messages are compared, the system 

must also determine which messages should 

be clustered into a category. 

The fundamental inference procedure 

for addressing these issues is the genetic 

algorithm [Holland,1975]. While genetic 

algorithms have been analyzed and empJrl

cally tested for years 

[DeJong,1975;Bethke,1981], most of the 

knowledge about how to implement them 

has come from applications in function 

optimization. There has been little work 

done to determine the best implementation 

for the problems faced by a classifier system. 

This paper begins to formulate such an 

understanding with respect to categoriza

tion. In particular, two questions related to 

genetic algorithms and classifiers systems are 

examined: 

(1) What kinds of performance measures 

provide the most informative ranking 

or classifier taxa, allowing the genetic 

algorithm to efficiently discover useful 

patterns? 

(2) How can a population of classifier taxa 

be dynamically partitioned into distin

guishable, specialized subpopulations 

correlated with the set of categories in 

the message environment! 

Finding answers to these and related ques

tions is an important step toward improving 

the categorization abilities or classifier sys

tems; and, expanding the repertoire of prob

lems these systems can be used to solve. 

THE CATEGORIZATION PROBLEM 

In order to rormulate these issues more 

precisely, we begin by specifying a class of 

categorization problems. Subsequently, a 

criterion is given for evaluating various solu

tions to one of these problems. 
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Defining Message Categories 

Hayes-Roth [1973] defines a 

"schematic" approach to characterizing pat

tern categories that has proven useful in 

building test-bed environments for classifier 

systems [Booker,1982]. This approach 

assumes, in the simplest case, that each pat

tern category can be defined by a single 

structural prototype or character;d;c. Each 

such characteristic is a schema designating a 

set of features values requjred for category 

membership. Unspecified values are 

assumed to be irrelevant for determining 

membership. 

The obvious generalization of using just 

one characteristic to define a category is to 

permit several characteristics to define a 

category disjunctively. Pattern generators 

based on the schematic approach generate 

exemplars by assigning the mandatory com

binations given by one or more of the pat

tern characteristics and producing irrelevant 

feature values probabilistic ally. In this way, 

each exemplar of a category manifests at 

least one of the defining characteristics. 

The categorization problem can be very 

difficult under the schematic approach since 

any given item can instantiate the charac

teristics of several alternative categories. 

Classifiers receive, process, and 

transmit binary message strings. We define 

a category of binary strings by specifying a 

set of pattern characteristics. Each charac

teristic is a string in the alphabet {I ,O,"} 

where the .. is a place holder for irrelevant 

features. A characteristic is a template ror 

generating binary strings in the sense that 

the 1 and ° indicate mandatory values and 

the .. indicates values to be generated at 

random. Thus the characteristic 1"0" gen

erates the four strings 1000, 1001, 1100, and 

1101. When more than one characteristic is 

associated with a category, one is selected at 

random to generate an exemplar. The 

correspondence between the syntax of a 

taxon and the designation of pattern charac

teristics is obvious. The class of pattern 



categories defined in this manner therefore 
spans the full range of categorization prob

lems solvable with a set of taxa. 

An Evaluation Criterion 

A set of taxa is a solution to a categori
zation problem if it corresponds directly 
with the set of characteristics defining the 
category. In this sense, the set of taxa 

models the structure of the category. One 
way to evaluate how closely a set of taxa 
models a set of characteristics is to define 
what an "ideal" model would look like; then, 

measure the discrepancy between the model 
given by the set of taxa and that ideal. 

More specifically, the structure of a 
pattern category is given by its set of 
characteristics. We first consider the case 
involving only one characteristic. As the 
genetic algorithm searches the space of taxa, 

the collection of alleles and schemata in the 
population become increasingly less diverse. 
Eventually, the best schema and its associ
ated alleles will dominate the population in 
the sense that alternatives will be present 
only in proportions roughly determined by 
the mutation rate. A population with this 
property will be called a perfect model of 
the category. The taxon which corresponds 
exactly with the characteristic will be called 

the perfect taxon. 

One way to describe the perfect model 
quantitatively is in terms of the probability 

of occurrence for the perfect taxon. An 

exact value for this probability is difficult to 
compute, but for our purposes it can be 
approximated by the "steady state" proba.-

bility1 P({) - np({}) , where P({}) is the 
} 

proportion of the allele occurring at the jth 
position of the perfect taxon {. In the ideal 
case, if p is the mutation rate, what we want 
is P({})-l-P for the alleles of {. In order 

to measure the discrepancy between an 

I The probability of occurrence under repeated crOS8-

oYer with uniform random pairiDlo iD the abeeDce of other 

operaton. 
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arbitrary population and the perfect model, 
we can use the following metric: 

(lW..] ( (l-P({)) ) 
G - P({) In P'({} + (l-P({)) In (l-P'({)) 

where P({) is the ideal probability of 
occurrence for { and P'({) is e's probability 
of occurrence in the current population. 
This information-theoretic measure is called 
the directed divergence between the two 
probability distributions IKullback,1959]. It 
is a non-negative quantity that approaches 
zero as the "resemblance" between P and P' 

increases. The G metric has proven useful 

in evaluating other systems that generate 
stochastic models of their environment (eg. 
Hinton et 0/. 11984]). 

When a pattern category is defined by 
more than one characteristic, we can use the 

G metric to evaluate the population's model 
of each characteristic separately. This 

involves identifying the subset of the popula.
tion involved in modeling each characteris
tic; and, treating each subset as a separate 
entity for the purpose of making measure
ments. A method for identifying these sub
sets will be discussed shortly. 

MEASURES FOR RANKING TAXA 

Given a class of categorization prob
lems to be solved, and a criterion for 
evaluating solutions, we are now ready to 
examine the performance of the genetic 
algorithm. The starting point will be the 
measures used to rank taxa. Only if the 
taxa are usefully ranked can the genetic 

algorithm, or any learning heuristic, have 
hope of inferring the best taxon. In this sec
tion we first point out some deficiencies in 
the most often used measure; then, alterna
tive measures are considered and shown to 
provide significantly better performance. 

Brlttlene .. and Match Scorn 

The first step in the execution cycle of 

every classifier system is a determination of 



which classifiers are relevant to the current 
set of messages. Most implementations 

make this determination using the straight

forward matching criterion first proposed by 

Holland and Reitman [1978]. More 

specifically, if M-m 1m2 '" m i , m. E {O,I}iS 

a message and C-c 1c2 ••• Ci , C. E {O,l,#}iS 

a classifier taxon, then the message M 

satisfies or match" C if and only if m.-c. 

wherever c. is 0 or 1. W'hen c.-#, the value 

of m. does not matter. Every classifier 

matched by a message is deemed relevant. 

Relevant classifiers are ranked according to 

the specificity of their taxa, where specificity 

is proportional to the number of non-#'s in 
the taxon. Holland and Reitman used a sim

ple match ,core to measure relevance. The 

score is zero if the message does not match 

the taxon; otherwise it is equal to the 

number of non-# positions in the taxon. 

This simple match score - hereafter 
called M1 - effectively guides the genetic 

algorithm in its search of relevant taxa. 

Because all non-relevant taxa are assigned a 

score of zero, however, M1 is the source of a 

subtle kind of brittleness. W'henever a mes

sage matches no taxon in the population, the 

choice of which taxa are relevant must be 

made at random. This can clearly have 

undesirable consequences for the perfor

mance of the classifier system; and, also for 

the prospects of quickly categorizing that 

message using the genetic algorithm. 

In order to circumvent this difficulty, 
Holland and Reitman use an initial popula

tion of classifiers having a 90% proportion of 

#'s at each taxon position. This makes it 
very likely that relevant taxa will be avail

able for the genetic algorithm to work with. 

Unless the pattern categories in the environ

ment are very broad, though, the brittleness 

of this approach is still a concern. Suppose, 

for example, a classifier system must 
categorize the pattern characteristic 

11010··. A fairly well-adapted population of 
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classifiers will contain taxa such as 

11010##, 1#010##, 11#10#1, 11#10#0, 
etc. As the categorization process under the 

genetic algorithm continues, the variability 

in the population decreases. It therefore 
becomes unlikely that the population will 

contain many taxa having four or more #'s. 

Such taxa would have a match score too low 
to compete over the long run and survive. 

Now suppose the environment changes 

slightly so that the characteristic is ··010**; 

that is, the category has been expanded to 

allow either a 0 or 1 in the first two posi

tions. In order to consistently match the 

exemplars of the new category, the popula

tion needs a taxon with four #'s at exactly 

the right loci. There is no reason to expect 

such good fortune since the combination, of 

attribute values are no longer random. The 

population will most likely have no taxon to 

match new exemplars, and the genetic algo

rithm will blindly search for a solution. 

Another proposed resolution of this 

dilemma is to simply insert the troublesome 

message into the population as a taxon [Hol

land,1976], perhaps with a few #'s added to 

it. The problem with this is that the rest of 

the classifier must be chosen more or less at 

random. By abandoning the "building 

block" approach to generating classifiers, 

this method introduces the brittleness 

inherent in ad hoc constructions that cannot 

make use of previous experience. W'hat is 

needed is a way of determining partial 

relevance, so the genetic algorithm can dis

cover useful building blocks even in taxa 

that are not matched. In the example cited 
above, such a capability would allow the 

genetic algorithm to recognize #1010## 

and 1#010## as "near miss" categoriza
tions and work from there rapidly toward 

the solution ##010##. 

Alternatives to Ml 

The brittleness associated with the 

match score M1 has a noticeable impact on 

categorization in classifier systems. To 

demonstrate this effect, a basic genetic 



algorithm [Booker, 1982] was implemented to 
manipulate populations of classifier taxa. 
Taxa in this system are 16 positions long. 
The effectiveness of a match score in identi
fying useful building blocks is tested by 
presenting the genetic algorithm with a 

categorization problem. Each generation, a 
binary string belonging to the category is 
constructed and match scores are computed 
for every taxon. The genetic algorithm then 
generates a new population, using the match 
score to rate individual taxa. 

To test MI, three pattern categories 
were selected: 

CI - IIIIIIIIIIIIIIII 
C2 - 11111111········ 
C3 - I··············· 

These characteristics are representative of 

the kinds of structural properties that are 
used to define categories, from the very 

specific to the very broad. Three sets of 
tests were run, each set starting with an ini

tial population containing a different propor
tion of # 'so Each test involved a population 
of size 50 observed for 120 generations, giv
ing a total of 6000 match score computa..

tions.2 At the end of each run, a G value 
was computed for the final population to 
evaluate how well the characteristic had 

been modeled. The results of these experi
ments - averaged over 15 runs - are given 
in Table 1. For each pattern category, there 

are statistically significant! decreases in per

formance as the proportion of #'s is changed 
from 80% to 33% (Recall that the best G 

value is zero). Given this quantitative evi

dence of MI's brittleness, it is reasonable to 

ask if there are better performing alterna..

tives. 

The primary criterion for an alterna..
tive to MI is that it identify useful building 

2 6000 function enlu.tioa.s is the observation interval 

1Ised by DeJonr; [1075J that h&ll become a standard ill ualy.

illl r;netic a1r;orithme. 

a For all results presented in this paper, this meaD! a t 
&eli W&II performed comparilll the meaD! of two r;roup!. The 
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Table 1 
Final Average G Value Using MI 

Category 
Initial Percenta! e of #'s 

80% 50% 33% 

CI 7.83 10.28 12.25 
C2 4.95 16.72 25.13 I 

C3 5.98 13.67 36.57 I 

blocks in non-matching taxa; and, that it 
retain the strong selective pressure induced 

by MI among matching taxa. One way to 

achieve this is to design a score that is equal 
to MI for matching taxa, but assigns non
matching taxa values between 0 and 1. The 

question is, how should the non-matching 
taxa be ranked? 

If we are concerned with directly iden
tifying useful alleles, the following simple 

point system will suffice: award I point for 

each matched 0 or I, % point for each #, 
and nothing for each position not matched. 
The value for # is chosen to make sure it is 
more valuable for matching a random bit in 
a message than a 0 or I, whose expected 
value in that case would be ~ To convert 
this point total into a value between 0 and 
1, we divide by the square of the taxon 
length. This insures that there is an order 
of magnitude difference between the lowest 
score for a matching taxon and all scores for 

non-matching taxa. More formally, if I is 
the length of a taxon, "1 is the number of 

exactly matched O's and I's, and "2 is the 

number of #'s, we define a new match score 

Ml ir the meBBlJge mlJfcheB the faxo" 

M2- '" h' "1 + -""2 of erunBe 

12 

Another way to rank non-matching 
taxa is by counting the number of 

alpha level for each test W&II .05. 



mismatched O's and 1 'so This approach 
measures the Hamming distance between a 
message and a taxon for the non-# positions. 
A simple match score M3 can be defined to 
implement this idea. If n is the number of 

mismatched O's and 1 's, then 

Ml ir the meBBGge mGtcheB the tuon 
M3 - 1 L· -=..!!. ot,.erWlBt 

12 

Now it must be determined if M2 and 

M3 usefully rank non-matching taxa; and, if 
so, whether that gives them an advantage 
over M1. Accordingly, M2 and M3 were 
tested on the same three patterns and types 
of populations described above for M1. 
These experiments are summarized in 
Tables 2 and 3. As before, all values are 
averages from 15 runs. First consider the 
final G values shown in Table 2. When the 
population is initialized to 80% #'s there is 
little difference among the three match 
scores. The only statistically significant 
differences are with pattern C3, where both 

Table 2 
Comparison of Final G Values 

80% ,*'s 

Category 
Match Score 

Ml M2 M3 ! 

Cl 7.83 10.30 7.76 

C2 4.95 2.25 4.32 

C3 5.98 1.42 0.97 

50% ;~'s 

Cl 10.28 8.17 6.96 

C2 16.72 7.03 4.39 
C3 13.67 8.67 9.13 

33% , ~'s 

Cl 12.25 8.06 5.19 

C2 25.13 13.99 10.37 

C3 36.57 11.41 7.28 
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M2 and M3 do better than M1. This is 
interesting because C3 is a category that has 
no generalizations other than the set of all 
messages. Ml operates by seizing upon 
matching taxa quickly, then refining them to 
fit the situation. This strategy is frustrated 
when general taxa that consistently match 

are hard to find. Since M2 and M3 can both 
take advantage of other information, they do 

not have this problem with C3. When the 

population is initialized to 33% #'s the lia
bilities of Ml become very obvious. For 
each pattern category, the performance of 

M2 and M3 are both statistically significant 
improvements over M1. 

In order to further understand the 
behavior of the match scores, we also com

pare them using Dejong's [19751 on-line per

formance criterion. On-line performance 
takes into account every new structure gen
erated by the genetic algorithm, emphasiz
ing steady and consistent progress toward 
the optimum value. The structures of 
interest here are populations as models of 
the pattern characteristic. The appropriate 

Table 3 
Comparison of On-line Performance i 

80% #'s 

Category 
Match Score 

Ml M2 M3 

Cl 25.75 24.33 22.93 
C2 14.06 11.26 13.45 
C3 7.75 4.29 2.82 

50% #'s 

Cl 34.41 26.3 21.98 
C2 27.09 20.22 17.81 
C3 21.26 14.78 13.54 

33% #'s 

Cl 26.35 21.46 17.23 

C2 35.3 26.75 24.64 
C3 40.16 19.34 15.66 



on-line measure is therefore given by 
1 t=4t' 

J(T) - (T) E G(T), where T is the number 
t. 

of generations observed and G( t) is the G 

value for the tth generation. The on-line 
performance of the match scores is given in 
Table 3. When there are 80% #'s, the only 
statistically significant difference is the one 
between M3 and MI on category C3. In the 
case of 50% #'s, the statistically significant 
differences occur on CI, where both M2 and 
M3 outperform MI; and, on C2, where only 

M3 does better than Ml. Finally, in the 
difficult case of 33% # 's, the differences 
between M3 and MI are all statistically 
significant. M2 is significantly better than 
Ml only on category C3. 

Taken together, these results suggest 

that M3 is the best of the three match 
scores. It consistently gives the best perfor
mance over a broad range of circumstances. 

Figure I shows that, even in the case of 33% 
#'s, M3 reliably leads the genetic algorithm 
to the perfect model for all three categories. 
Using M3 should therefore enhance the abil
ity of classifier systems to categorize mes
sages. 

How should a classifier system use M3 
to identify relevant classifiers! The criterion 
for relevance using a score like M3 is cen

tered around the idea of a variable thres
hold. The threshold is simply the number of 
mismatched taxon positions to be tolerated. 
Initially the threshold is set to zero and 
relevance is determined as with Ml. If there 
are no matching classifiers, or not enough to 
fill the system's channel capacity, the thres

hold can be slowly relaxed until enough 

classifiers have been found. Note that this 
procedure is like the conventional one in 
that it clearly partitions the classifiers 
according to whether or not they are 
relevant to a message. This means that 
negated conditions in classifiers can be 
treated as usual; namely, a negated condi
tion is satisfied only when it is not relevant 
to any message. 
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DISCOVERING MULTIPLE CATEGORIES 

In developing the match score M3, we 
have enhanced the ability of the genetic 
algorithm to discover the defining charac
teristic for a given pattern category. What 

if there is more than one category to learn, 
or a single category with more than one 
defining characteristic? In this section we 
show how to modify the genetic algorithm to 
handle this more general case. First, two 
modifications are proposed for the way indi
viduals are selected to reproduce and to be 

deleted. Then, the modified algorithm is 
shown to perform as desired. 

An Ecological AnalOI)' 

The basic genetic algorithm is a reli
able way to discover the defining charac
teristic of a category. When there is more 
than one characteristic in the environment, 
however, straightforward optimization of 

match scores will not lead to the best set of 
taxa. Suppose, for example, there are two 
categories given by the characteristics 

UU ... U and 00·· ... ••. The ideal popula
tion for distinguishing these categories would 

contain the classifier taxa 11## ... ## and 
00## ... ##; that is, two specialized sub
populations , one for each category. The 
genetic algorithm as described so far will 
treat the two patterns as one category and 
produce a population of taxa having good 
performance in that larger category. In this 

case, that means the taxon #### ... ## will 
be selected as the best way to categorize the 
messages. The problem is obvious. Requir
ing each taxon to match each message 
results in an averaging of performance that 
is not always desirable. 

Various strategies have been proposed 
for avoiding this problem. When the 
number of categories is known in advance, 
the classifier system can be designed to have 
several populations of classifiers [Holland 
and Reitman,1978j; or, a single population 
with pre-determined partitions and operator 
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restrictions [Goldberg,}983]. Both of these 

approaches involve building domain depen

dencies into the system that lead to brittle

ness. It the category structure of the 

domain changes in any way, the system 

must be re-designed. 

It is preferable to have a non-brittle 

method that automatically manages several 

characteristics in one population. \\That is 

needed is a simple analog of the speciation 

and niche competition found in biological 

populations. The genetic algorithm should 

be implemented so that, for each charac

teristic or "niche" , a "species" of taxa is 
generated that has high performance in that 

niche. Moreover, the spread of each species 

should be limited to a proportion determined 

by the "carrying capacity" of its niche. 

\\That follows is a description of technical 

modifications to the genetic algorithm that 

implement this idea. 

A Restricted Matlng Strategy 

If the genetic algorithm is to be used to 

generate a population containing many spe

cialized sub-populations, it is no longer rea

sonable for the entire population to be 

modified at the same time. Only those indi

viduals directly relevant to the current 

category need to be involved in the repro

ductive process. Given that the overall 

population size is fixed and the various sub

populations are not physically separated, 

two questions immediately are raised: Does 

modifying only a fraction of the population 

at a time make a difference in overall perfor

mance? How is a sub-population identified? 

Dejong [1975] experimented with 

genetic algorithms in which only a fraction 

of the population is replaced by new indivi

duals each generation. His results indicate 

that such a change has adverse effects on 

overall plan performance. The problem is 

that the algorithm generates fewer samples 

of the search space at a time. This causes 

the sampling error due to finite stochastic 

effects to become more severe. An increase 
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in cumulative sampling error, in turn, makes 

it more likely that the algorithm will con

verge on some sub-optimal solution. 

The strategy adopted here to reduce 

the sampling error is to make sure that the 

"productive" regions of the search space 

consistently get most of the samples. In the 

standard implementations of the genetic 

algorithm, the search trajectory is uncon

strained in the sense that any two individu

als have some non-zero probability of mating 

and generating new offspring (sample points) 

via crossover. This means, in particular, 

that taxa representing distinct characteris

tics can be mated to produce taxa not likely 

to be useful for categorization. As a simple 

example, consider the two categories given 
by 1111 ** .. and 0000..... Combining taxa 

specific to each of these classes under cross

over will lead to taxa like 1100**** which 

categorize none of the messages in either 

category. There is no reason why such func

tional constraints should not be used to help 

improve the allocation of samples. It there

fore seems reasonable to restrict the ability 

of functionally distinct individuals to become 

parents and mate with each other. This will 

force the genetic algorithm to progressive ly 

cluster new sample points in the more pro

ductive regions of the search space. The 

clusters that emerge will be the desired spe

cialized subpopulations. 

As for identifying these functionally 

distinct individuals, any restrictive designa

tion of parent taxa must obviously be based 

on match scores. This is because taxa 

relevant to the same message have a similar 

categorization function. Taken together, 

these considerations provide the basis for a 

reltricted m/Jting policy. Only those taxa 

that are relevant to the same message will 

be allowed to mate with each other. This 

restriction is enforced by using the set of 

relevant classifiers as the parents for each 

invocation of the genetic algorithm. 



Crowding 

Under the restricted mating policy, 

each set of relevant taxa designates a 

species. Each category characteristic desig

nates a niche. Following this analogy, indi

viduals that perform well in a given niche 

will proliferate while those that do not do 

well in any niche will become extinct. This 

ecological perspective leads to an obvious 

mechanism for automatically controlling the 

size of each sub-population. Briefly, and 

very simply, any ecological niche has limited 

resources to support the individuals of a 

species. The number of individuals that can 

be supported in a niche is called the corr,,

;ng copocit" of the niche. If there are too 

many individuals there will not be enough 

resources to go around. The niche becomes 

"crowded," there is an overall decrease in 

fitness, and individuals die at a higher rate 

until the balance between niche resources 

and the demands on those resources is 

restored. Similarly, if there are too few indi

viduals the excess of resources results in a 

proliferation of individuals to fill the niche 
to capacity. 

The idea of introducing a crowding 

mechanism into the genetic algorithm is not 

new. Dejong [1975] experimented with such 

a mechanism in his function optimization 

studies. Instead of deleting individuals at 

random to make room for new samples, he 

advocates selecting a small subset of the 

population at random. The individual in 

that subset most similar to the new one is 

the one that gets replaced. Clearly, the 

more individuals there are of a given type, 

the more likely it is that one of them will 

turn up in the randomly chosen subset. 

After a certain point, new individuals begin 

to replace their own kind and the prolifera

tion of a species is inhibited. 

A similar algorithm can be imple

mented much more naturally here. Because 

a message selects via match scores those 

taxa that are similar, there is no need to 

choose a random subset. Crowding pressure 
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can be exerted directly on the set of 

relevant taxa. This can be done using the 

,'rength parameter normally associated with 

every classifier [Holland,1983]. The strength 

of a classifier summarizes its value to the 

system in generating behavior. Strength is 

continuously adjusted using the bucket bri

gode algorithm [Holland, 1983] that treats the 

system like a complex economy. Each 

classifier's strength reflects its ability to turn 

a "profit" from its interactions with other 

classifiers and the environment. One factor 

bearing on profitability is the prevailing "tax 

rate". Taxation is the easiest way to intro

duce crowding pressure. Assume that a 

classifier is taxed some fraction of its 

strength whenever it is deemed to be 

relevant to a message. Assume, further, 

that all relevant classifiers share in a fixed 

sized tax rebate. The size of the tax rebate 

represents the limited resource available to 

support a species in a niche. Men there 

are too many classifiers in a niche their 

average strength decreases in a tax transac

tion because they lose more strength than 

they gain. Conversely, when there are too 

few classifiers in a niche their average 

strength will increase. The crowding pres

sure is exerted by deleting classifiers in 

inverse proportion to their strength. The 

more individuals there are in a niche, the 

less their average strength. Members of this 

species are therefore more likely to be 

deleted. In a species with fewer members, 

on the other hand, the average strength will 

be relatively higher which means members 

are more likely to survive and reproduce. In 

this way, the total available space in the 

population is automatically and dynamically 

managed for every species. The number of 

individuals in a niche increases or decreases 

in relative proportion to the average 

strength in alternative niches. 

Testing the New Algorithm 

Having described the restricted mating 

policy and crowding algorithm, we now 

examine how well they perform in an actual 



implementation. The genetic algorithm used 

in previous experiments was modified as 

indicated above. The number of taxa in the 

population was increased to 200, and each 
taxon was given an initial strength of 320. A 

taxation rate of 0.1 was arbitrarily selected, 

and the tax rebate was fixed at 50·32; In 

other words, whenever there are 50 relevant 

taxa, the net tax transaction based on initial 

strengths is zero. Each generation the tax 

transaction is repeated 10 times to help 
make sure the strengths used for crowding 

are near their equilibrium values. 

Four categorization tasks involving 

multiple characteristics were chosen to test 

the performance of the algorithm: 

1) 11111111 .. • .... • 

00000000········ 

2) 11111111· ...... • 
········11111111 

3) 1111111111· .... • 
········11111111 

4) 11111111····· .. • 
00000000········ 

········11111111 

The first task involves two categories that 

are defined on the same feature dimensions. 

The second task contains categories defined 
on different dimensions. In the third task 

the categories share some relevant features 

Table 4 
Performance With Multiple Categories 

Task On-line 
Avg. G value 

for all categories 

1 12.12 8.3 

2 10.91 8.41 

3 12.77 7.89 

4 15.75 11.64 

i 
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in common. Finally, the fourth task involves 
three categories to be discriminated. 

Experiments were performed on each of 
these tasks, running the genetic algorithm 

enough generations to produce 6000 new 

individuals per characteristic. Each genera

tion, one of the characteristics was selected 

and a message belonging to that category 

was used to compute match scores. In the 

first three tasks, at least 50 relevant taxa 

were chosen per generation. Only 30 were 

chosen on task 4 to avoid exceeding the lim

ited capacity of the population. All popula

tions were initialized with 80% -# 'so The 

results are summarized in Table 4 and show 

that the algorithm behaves as expected. 

The performance values are comparable to 

those obtained with Ml working on a 

simpler problem with a dedicated popula

tion. More importantly, an inspection of the 

populations revealed that they were parti

tioned into specialized sub-populations as 

desired. 

CONCLUSIONS 

This research has shown how to 

improve the performance of genetic algo
rithms in classifier systems. A new match 

score was devised that makes use of all of 

the information available in a population of 
taxa. This improves the ability of the 

genetic algorithm to discover pattern 

characteristics under changing conditions in 



the environment. Modifications to the algo
rithm have been presented that transform it 
from a function optimizer into a sophisti
cated heuristic for categorization. The first 
modification, a restricted mating policy, 
results in the isolation and development of 
clusters of taxa, or sub-populations, corre
lated with the inferred structural charac
teristics of the pattern environment. The 
second modification, a crowding algorithm, is 
responsible for the dynamic and automatic 
allocation of space in the population among 
the various clusters. Together, these 
modifications produce a learning algorithm 
powerful enough for challenging applica
tions. As evidence of this claim, a full-scale 
classifier system has been built along these 
lines that solves difficult cognitive tasks 

IBooker,1982j. 
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ABSTRACT 

Genetic algorithms (GA'.) have been shown 
to be capable of searching for optima in function 
space. which cause difficulties for Iradient 
techniques. This paper presents a method by which 
the power of GA'. can be applied to the 
optimization of .ultiobjective function •• 

1. Introduction 

There is currently considerable interest in 
optimization techniques capable of handling 
multiple non-commensurable objectives. Many 
practical problems are of this type where, for 
example, such factors es cost, aafety and 
performance must be taken into account. 

A class of adaptive aearch procedures known 
as genetic algorithms (GA's) have already been 
ahown to possess desireable properties [3,10) end 
to out perform gradient techniques on some 
problems, particularly those of high order, with 
multiple peaks or with noise disturbance [4,5,6). 
Thia paper describes an extension of the 
traditional GA which allows the aearching of 
parameter apaces where multiple objectives are to 
be optimized. The software aystem implementing 
this procedure was called VEGA for Vector [valuated 
Genetic Algorithm. 

The next aection of this paper will 
describe the basic GA and the vector extension. 
Then some properties are described which might 
logically be expected of this .ethod. Some 
preliminary experiments on some aimple problems are> 
then presented to illuminate these properties and 
finally, VEGA is compared to an established 
multiobjective aearch technique on a aet of more 
formidable problems. 

g. !~ Genetic Algorithm 

Unlike many other aearch techniques which 
maintain a single "current best" solution and try 
to improve it, a GA maintains a set of possible 
solutions called a population. This population is 
improved by a cyclic two-step process conSisting of 
a selection step (survival of the fittest) and a 
recombination step (mating). Each cycle is usually 
called a generation. More detailed descriptions of 
these operations may be found in the literature 
[3,4,5,6,10). 
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The question addressed here is, how can 
this process be applied to problems where fitness 
is a vector and not a acalar? How might aurvival of 
the fittest be implemented when there is more than 
one way to be fit? We exclude scalarization 
processes such as weighted sums or root mean square 
by the assumption that the different dimensions of 
the vector are non-commensurable. 

When comparing vector quantities, the usual 
concepts employed are those proposed by Pareto 
[11,13). For two vectors of the aame size, the 
equality, less-than and Ireater-than relations 
require that these relations hold element by 
element. Another relation, partially-less-than, ia 
defined as follows: vector X • {xl, x2, ••• , xn} 
is said to be partially-Iess-than vector Y = {y1, 
y2, >... , yn} iff xi <= yi for all i and for at 
least one value of i, xi < yi. Assuming that minima 
are sought, if X is partially-less-than y, then Y 
is aaid to be inferior to or dominated by X. The 
objective of a aearch for minima in a vector-valued 
apace is, then, a aearch for the aet of non
inferior members, or the members not dominated by 
any others. At least one member of thia Pareto
minimal set will dominate each vector outside the 
aet, but among themselves, none is dominated. 

With these concepts in mind, a aimple 
vector aurvival of the fittest process was 
implemented. The aelection step in each generation 
became a loop, each time through the loop the 
appropriate fraction of the next generation was 
selected on the basis of another element of the 
fitness vector. Thia process, illustrated in figure 
1, protects the aurvival of the best individuals on 
each dimension of performance and, Simultaneously, 
provides the appropriate probabilities for multiple 
aelection of individuals who are better than 
average on more than one dimension. 

1. ~ Anticipated Properties £! ~ 

3.1 Multiple Solutions 
One potential advantage of VEGA over other 

optimization aearches ahould now be clear. Since 
the object of the aearch is a aet of solutions, a 
GA has a built-in advantage by working with a 
population of test solutions. By comparing each 
individual in a population to every other, those 
who are dominated by any other/a can be flagged as 
inferior. The set of non-inferior individuals in 
each generation is the current best guess at the 



figure 1. Schematic of VEGA Selection 

Pareto-optimal (po) set. By presenting a number of 
non-inferior solutions, VEGA provides the user with 
an idea of the tradeoffs required by his problem if 
a single solution must be selected. It should be 
noted that VEGA's view of non-inferiority is 
strictly local; it is limited to the current 
population. While a locally dominated individual is 
also globally dominated, the converse is not 
necessarily true. An individual who is non
dominated in one generation may become dominated by 
an individual who emerges in a later generation. 

3.2 Possible Speciation 
There is a potential problem with this 

vector selection process. SurVival pressure is 
applied favoring extreme performance on at least 
one dimension of performance. If a utopian 
individual (i.e. one who excels on all dimensions 
of performance) exists, then he _y be found by 
genetic combinations of extreme parents, but for 
~y problems this utopian solution does not exist. 
For these problems, the location of the Pareto
optimal set or front is sought. This front will 
contain some members with extreme performance on 
each dimension and some with "middling" performance 
on all dimensions. Frequently, these compromise 
solutions are of most interest, but there _y be 
danger of their not surviving VEGA's selection 
process. This might give rise to the evolution of 
"species" within the population which excel on 
different aspects of performance. This danger is 
expected to be more severe for problems with a 
concave po front than for those with a convex one. 
See figure 2. 

Two methods for combating this potential 
property of VEGA were conceived. One trick would be 
to provide a heuristic selection preference for 
non-dominated individuals in each generation. This 
would provide extra protection for the "middling" 
individuals. 

Another, not necessarily exclusive, 
approach would be to try to encourage crossbreeding 
among the "species" by adding some mate selection 
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heuristics. In a traditional GA, _tes are selected 
at random. On the assumption that utopian 
individuals are more likely to result from 
crossbreeding than inbreeding, such heuristics 
might speed the search. 

~. Pre1iminarv Experiments 

4~ 1 The Test Functions 
In order to test the properties of VEGA 

search. a set of three simple functions (fl. f2 & 
f3) was selected. 

Fl was a single-valued quadratic function 
of three variables. (i.e. fl(xl.x2,x3) - xl**2 + 
x2**2 + x3**2). This function was run to test 
whether VEGA reverts to a traditional GA when the 
performance vector has only one dimension. 

12 was a two-valuod function of one 
variable (i.e. f21(x) - x**2; f22(x) - (x-2)**2). 
The initial random population for the search on 
this function is illustrated in figure 3. In 
addition to the locations of x. f21 and f22, this 
figure also shows the dominated flag for each x (1 
if dominated. 0 if not). The po region is O<-x<-2. 

13 was another two-valued function of one 
variable. but with two disjoint po regions O<-x<-2 
and 4<-x<-S. 

4.2 Heuristics 
In order to mitigate the anticipated loss 

of "middling" individuals a heuristic was tested 
which gave an extra selection preference to locally 
non-dominated individuals. This preference took the 
form of numeric adjustments to the performance 
measures which were required by the selection 
algorithm to sum to zero across the population. 
Therefore, a small penalty was deducted from each 
inferior individual and the sum of these penalties 
was divided among the non-inferior individuals. 

Experiments were also conducted to see if 
the search for the po front could be improved by 
mate-selection heuristics which encouraged 
crossbreeding. Inbreeding, in this context, means a 
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Figure 2. 1 Concave and Convex Pareto-Opttmal Front 

mating between two individuals whose high 
performance is on the same dimension. Two such 
heuristics were tested. both attempting to improve 
upon the performance of VEGA with random mating. 
Random mating was implemented by shuffling the 
population and mating pairs from the top. shown 
as step three in figure 1. Each heuristic proceeded 
by selecting a individual at random and then 
selecting a mate whose distance in performance 
space was maximum. Two distance measures were 
tested. Euclidian distance and "improvement" 
distance which was computed ignoring those 
dimensions on which the proposed mate performed 
worse. 

4.3 Results 
All of these experiments were conducted 

with populations of 30 individuals per dimension of 
the performance vector. and crossover and mutation 
rates of .95 and .01 respectively. This represents 
a smaller population size and higher rates of 
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application of the genetic operators than has been 
traditional [3.5]. These setting were. however. 
suggested by the work of Grefenstette [81. 

On fl. VEGA replicated a search previously 
conducted on this function by a traditional GA [7] 
when started with the same random seeds. Thus. VEGA 
does appear to be a vector generalization of a 
scalar GA. 

On f2. VEGA evolved the population 
illustrated in figure 4 in just three geneLitions. 
While not all the individuals are in the PO region 
(O<-x<-2). those which are outside are known to be 
dominated. This result. combined with similar 
performance by VEGA on f3 yielded some confidence 
in the soundness of the VEGA approach. 

However. during these experiments. a 
dangerous property of the heuristic selection 
preference for non-dominated individuals was 
discovered. It had a tendency to produce sudden 
premature convergence of the population to a 
suboptimal solution. This occurred when. in an 
early generation. only one or two individuals 
managed to be non-dominated. Then. the sum of the 
dominated penalties was large and. when divided 
among very few. gave them an overwhelming selection 
advantage. This lead to subsequent generations 
consisting only of offspring of a few parents with 
too little genetic diversity. After this 
observation. this heuristic was removed. VEGA has. 
so far. not exhibited the anticipated loss of the 
"middling" individuals from the PO set. Perhaps 
concave PO fronts are not a characteristic of many 
practical problems. 

The mate-selection heuristics faired no 
better. Random mating proved superior to both of 
them. This was an encouraging finding for two-
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1.00 

valued problems. since the probability of 
inbreeding with random mating decreases as the 
number of dimensions of performance increases. All 
subsequent experiments utilized neither of these 
heuristics. 

~. Comparison 2! VEGA !llh ~ 

Once some confidence was acquired that VEGA 
was able to conduct a genetic search in spaces with 
multiple objectives. it was desired to compare the 
performance of VEGA with that of an established 
technique for multiple objective search. 

5.1 The ARSO Technique 
For comparison purposes. the Adaptive 

Random Search Optimization (ARSO) procedure. 
pioneered by Beale [1.2]. was selected. ARSO 
requests a starting point in the parameter space to 
be searched and proceeds to try to improve upon it 
by randomly perturbing the parameters. Statistics 
(mean & variance) are maintained for all 
perturbations which produce improvements (defined 
as a new solution which dominates the old one). and 
these statistics are used to guide the future 
perturbations. Random perturbation techniques have 
been shown to solve a large class of optimization 
problems faster than gradient techniques when the 
number of parameters exceeds four. and furthermore. 
the convergence time seems to increase only 
linearly with this number. ARSO had already 
exhibited high performance in problems of the sort 
tested here. 
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5.2 Some Hethodological Problems 
The comparison of two search procedures 

presents some methodological problems which are 
complicated when there are multiple objectives. 
One approach is to run each procedure until the 
solution is within some tolerance of a known 
solution and then compare the computational effort . 
This approach was rejected since the true solution 
was not known for the test problems. It was desired 
to compare the methods on problems whose solutions 
were not known so as to include in the comparison, 
the stopping criterion of each method. ARSO has a 
threshold on the number of perturbations tried 
without finding an improvement which forces a halt 
to the search. VEGA has no such preset stopping 
criterion and is stopped by the user when no 
further improvement is evident. 

Another approach is to run both procedures 
for the same amount of computational effort and 
then compare the quality of the solutions. 
Comparing vector solutions is probably best done by 
checking if any are dominated by those provided by 
the other procedure. If not. then a tie must be 
declared. This approach may be unfair since ARSO 
reports only a single solution while VEGA may 
report several. 

The approach adopted was to run each 
procedure to its natural stopping criterion. All 
proposed non-dominated solutions were then compared 
and. if any were found to be inferior. they were 
rejected. (Included in this set were solutions 
provided by Hartley [9] who used a variant of ARSO. 
but solved the scalar problem of the equally 
weighted sum of the errors on all dimensions.) 
Then. the number of "ultimately" non-dominated 
solutions found by each procedure was plotted 
against computational effort (number of function 
evaluations). 

5.3 The Test Punctions 
A set of three problems, drawn from the 

domain of control engineering was contributed by a 
colleague, Hartley [9]. All involved the 
simulation of a system with a different integration 
operator for each of the system state variables. 
The systems were of orders 2. 3 and 7 respectively. 
The object of the search vas an optimal set of 
integrators. each characterized by three 
parameters. making the dimensions of the parameter 
search spaces 6. 9 and 21. respectively. The 
performance ... sures were the rms error of the 
simulated solution from a known solution, one for 
each of the state variables making the dimensions 
of the performance spaces 2. 3 and 7. 

All searches were conducted using the same 
GA parameters as vere used for the preliminary 
problems. The integrator parameter sets were gray 
coded (see Schaffer[12] or Bethke[3J) to 12 bit 
precision. making the binary search spaces 
2**(12*6) • 4.7 * 10**21. 2**(12*9) • 3.5 * 10**32 
and 2**(12**21) • 7.2 * 10**75 for the three 
systems. respectively. 

5.4 Results 
While the true system behavior was assumed 

known, the object of the search was for optimal 
integrators for the Simulations, and these were not 
known. Thus the problem of when to stop searching 
had to be faced. To illustrate, a scatter plot of 
performance of the initial random generation for 



the second order system is shown in figure 5. 
Figure 6 shows that considerable improvement had 
been achieved in three generations. Figure 7 shows 
the leading edge of the population after 49 
generations. Note that the axes have been expanded 
three orders of magnitude. After running VEGA to 
generation 110 no substantial increase in 
performance was evident. See figure 8. There are 
however, several more points on what appears to be 
the PO front. Thus, a decision to stop such a 
search must be a judgement call based on a belief 
that the PO front has been located and that further 
search effort would be wasted. 

The experiences were similar for the third 
and seventh order systems, but scatter plots for 
these high order systems could not be drawn. 

Before proceding to the comparison of VEGA 
with ARSO, it may be instructive to illuatrate one 
of the ARSO searches in the second order system 
problem. Figure 9 traces the improvements in the 
solution found by ARSO and is presented on the same 
axes seales used for figures 5 to 8. ARSO found a 
solution which was judged "ultimately" non
dominated in 607 evaluations. ARSO's stopping 
criterion halts if no improvement is located after 
1000 consecutive evaluations and so this run 
continued until 1607 evaluations and halted. 

A second run of ARSO was initiated with one 
of the tvo non-dominated individuals from the 
initial population .enerated by VEGA. This run 
halted after about 1300 evaluations, but its 
solution vas inferior. VEGA, on the other hand, 
did not locate itl first "ultimately" .non-dominated 
solution until 2621 evaluation. and by 6000 it had 
found eight. These re.ult. are .hown in figure 10. 
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The tentative conclusion from these runs is that 
ARSO is fast, but may get trapped on local extrema. 
VEGA is slower, but more robust. 

Four searches were made on the 3rd order 
system, two with VEGA and two with ARSO. VEGA was 
initiated with a random population for one run and 
given a whole population of .clones of Hartley's 
solution for the other. ARSO was started with a 
reasonable starting point analogous to the starting 
point that lead to success on the 2nd order 
problem, and also the Hartley solution. The results 
of these tests are presented in figure 11. ARSO 
again found a good solution in under 2000 
evaluations on its first run. When given a PO 
solution, it could only try for 1000 evaluations to 
improve it and then halt. VEGA found a non
dominated solution quite early in its search (415 
evaluations>, but because it was not sufficiently 
extreme on anyone dimension of performance, it did 
not survive into future generations. Hore good 
solutions emerged later with VEGA having five after 
10000 evaluations. VEGA, unlike ARSO, when given a 
PO solution, quickly located many variants of it • 

The same four searches were run on the 7th 
order system. This time neither VEGA nor ARSO 
located any solutions which were not dominated by 
the Hartley solution. Hartley had used his 
knowledge of the problem to start his search at a 
close-to-PO point, but both VEGA and ARSO were 
started without this prior knowledge. The stopping 
criteria for ARSO had been relaxed to lengthen the 
search and a variance parameter had also been 
relaxed so as to broaden the search, but after 
almost 12000 evaluations no non-dominated solutions 
had been found. Its best solution at that time was 
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also known to be unstable. VEGA searched for almost 
36000 evaluations without locating any solutions 
not dominated by Hartley's, however many of them 
were stable. Again. when told where to look. VEGA 
generated many more PO solutions. 

The tentative conclusion, then, seems to 
have been supported by the higher order searches. 

~. Discussion 

The major finding of this research was that 
vectorization of performance feedback and the 
selection process of a GA can be successfully done. 
This opens the domain of multiobjective 
optimization problems to the already established 
power of genetic search. 

Heuristic modifications of the traditional 
method to give selection preference to non
dominated members of a population and to try to 
improve on random mating proved to be inferior to 
the traditional method. The possibility that VEGA 
may have a weakness in the central region of a 
concave PO front cannot be eliminated. but 
empirical evidence to date suggests that it may not 
be serious. 

The comparisons of VEGA with ARSO contain 
no II1II&11 amount of "apples versus oranges." The 
methods differ in the number of solutions presented 
and in the way their searches are normally halted. 
Bowever, both contain stochastic elements. both 
conduct multidimensional search and both are halted 
when no further improvement is apparent. Both may 
be started with random information. or may take 
advantage of prior knowledge the user possesses 
about his search space. In the comparison runs VEGA 
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was given several times more computational effort 
than was ARSO, due largely to differences in the 
methods for stopping each search. 

The general conclusion of the comparison 
was that ARSO is capable of very quickly locating 
solutions to complex multidimensional problems, but 
its preformance may be less robust than VEGA's. 
VEGA, on the other hand, takes longer to locate the 
good regions of complex search spaces, but seems to 
be able to do so more reliably. This conclusion is 
not dissimilar to previous results from comparison 
of scalar genetic search with gradient techniques 
[5,6]. 

Finally, a simple method has been conceived 
which may improve both VEGA and ARSO. By 
maintaining a data structure "off to the aida" 
containing all non-dominated solutions encountered 
in the search, VEGA would be protected against the 
loss of good but not extreme individuals, as 
occurred in the search on the 3rd order problem. 
Similarly, ARSO would then have the power to report 
a number of solutions instead of only one. 
Furthermore, by monitoring the adding and 
subtracting of members to this set, both techniques 
might be given a more rational stopping criterion. 
Work on this addition to both methods will commence 
in the near future. 
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Abstract 

Premature convergence is a common problem in 

Genetic Algorithms. This paper deals with 

inhibiting premature convergence by the use of 

adaptive selection methods. Two new measures 

for the prediction of convergence are presented 

and their accuracy tested. Various selection 

methods are described, experimentally tested and 

compared. 

1. Introduction 
In Genetic Algorithms, it is obviously desirable 

to achieve an optimal solution for the particular 

function being evaluated. However, it is not 

necessary or desirable for the entire population. to 

converge to a single genotype. Rather the 

population needs to be diverse, so that a 

continuation of the search is possible. The loss of 

an allele indicates a restriction on the explorable 

search space. Since the full nature of the 

function being evaluated is not known, such a 

restriction may prevent the optimal solution from 

ever being discovered. If convergence occurs too 

rapidly, then valuable information developed in 

part of the population is often lost. This paper 

deals with the control of rapid convergence. 

Three measures are typically used to compare 

genetic algorithms. They are: the Online 

Performance, the average of all individuals that 

have been generated; the 0 ffline Performance, 

the average of the Best Individuals from each 

generation; and the Best Individual, the best 

individual that has been generated. We attempt 

to optimize functions and therefore use the Best 

Individual measure for comparison. In order to 

improve this measure, we promote diversity 

within the population and control rapid 
convergence. Increased diversity detrimentally 

affects the Online Performance measure and 

inhibited convergence detrimentally affects the 

Offline Performance measure. Improving these 

two performance measures is not in the scope of 

this paper. 
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Methods for the prediction of a rapid 

convergence are the topics of section 2. Section 3 

will describe various algorithms with which to 

slow down convergence, and section 4 will present 

their results. A conclusion section will follow the 

results. 

2. Prediction of Rapid 
Convergence 

There are two different aspects to the control of 

rapid convergence. First, how can one tell that it 

has occurred and second, how can one predict 

when it will occur. 

Recognizing rapid convergence after it has 

occurred is rather straightforward. By its very 

meaning, a rapid convergence will result in a 

dramatic rise in the number of lost and converged 

alleles. A lost allele occurs whenever the entire 

population has the same value for a particular 

gene. Thus subsequent search with that gene is 

impossible. A converged allele, as defined by 

DeJong [1], is a gene for which at least 95% of 

the population has the same value. However, the 

effects of rapid convergence are not limited to 

only those alleles which are indicated by these 

measures. A rapid take over of the population 

will cause all geues Lu suddealy lose much of Lheir 

variance. We define bias as the average percent 

convergence of each gene. Thus for binary genes, 

this value will range between 50, for a completely 

uniform distribution (in which for each gene there 

are as many individuals with a one as a zero) and 

100, for a totally converged population (in which 

each gene has converged to a one or a zero). The 

bias measure provides an indication of the entire 

population's development without the 

disadvantage of a threshold, such as the one 

:mggested by DeJong to indicate a converged 

allele. A threshold does not indicate the amount 

by which individuals exceed it or the number of 

individuals which fall just short. We can 

therefore monitor the sudden jumps in the lost, 

converged or bias values to determine when a 

rapid convergence has occurred. 



The prediction of rapid convergence is necessary 

for selection algorithms to be able to adapt 

accordingly. Lost, converged or bias values 

cannot be used for this purpose since their 

measurement occurs after potentially vital 

information has been discarded. Two different 

prediction methods will be described. 

A common cause of rapid convergence is the 

existence of super individuals, that is individuals 

which will be rewarded with a large number of 

offspring in the next generation. Since the 

population size is typically kept constant, the 

number of offspring allocated to a super 

individual will prevent some other individuals 

from contributing any offspring to the next 

generation. In one or two generations, a super 

individual and its descendants may eliminate 

many desirable alleles which were developed in 

other individuals. The first method addresses the 

problem of super individuals by setting a 

threshold on an individual's expected number of 

offspring. If, after all individuals in a generation 

have been evaluated, an individual has an 

expected value above this threshold, then a rapid 

convergence is deemed imminent. 

A closer analysis of rapid convergence leads to 

the second measure. Rapid convergence is not 

caused solely by an individual receiving too many 

offspring, but also by the often related situation 

of many individuals being denied any offspring. 

Thus rapid convergence may also be predicted 

not by monitoring how many offspring the most 

fortunate individual receives, but rather by 

monitoring how many individuals receive no 

offspring. We define percent involvement as the 

percentage of the current population which 

contributes offspring for the next generation. 

The percent involvement measure has the 

advantage that it can predict a rapid convergence 

caused by several individuals even when none of 

them would exceed the threshold of the first 

method. If that threshold were lowered to catch 

this case, then it might predict a rapid 

convergence when it was not occurring. 

3. Modifications to Selection 
This section presents various methods designed 

to prevent or control rapid convergence. There 

are basically two choices: either develop a fixed 
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selection algorithm which avoids rapid 

convergence; or develop a hybrid system, which 

adapts its selection algorithm to handle rapid 

convergence when it occurs. 

3.1. Standard Selection 

The expected value model presented by Dejong 

is taken as the standard for comparison, since a 

number of properties about its behavior have 

been proven [1,3J. This model evaluates each 

individual and normalizes the value with respect 

to the population's average. The result for each 

individual is called his expected value and 

determines the number of offspring that he will 

receive. In our implementation [2]. the actual 

number of offspring will be either the floor or the 

ceiling of the expected value. Thus, the number 

of offspring attributed to a particular individual 

is approximately directly proportional to that 

individual's performance. This direct 

proportionality is necessary for Holland's 

theorems to hold, however it is also the core of 

this method's susceptibility to rapid convergence. 

Since there is no constraint on an individual's 

expected value, an individual can have as many 

offspring as the population size will allow. 

Therefore, the expected value model can exhibit 

rapid convergence leading to sharp increases in 

lost, converged and bias values as well as non

optimal final results. 

Because of the theoretical advantages associated 

with the expected value model, all of the hybrid 

systems listed below use this selection algorithm 

when rapid convergence is not indicated. 

3.2. Ranking 

One way to control rapid convergence is to 

control the range of trials allocated to any single 

individual, so that no individual receives many 

offspring. The ranking system is one such 

alternative selection algorithm. In this algorithm, 

each individual receives an expected number of 

offspring which is based on the rank of his 

performance and not on the magnitude. There 
are many ways to assign a number of offspring 

based on ranking, subject to the following two 

constrain ts: 

1. the allocation of trials should be 

monotonically increasing with respect 



to increasing performance values, to 

provide for desirable rewarding; 

2. the total of the individual allocation 

of trials should be such that the 

desired number of individuals will be 

in the next generation. 

Determining the values for our ranking 

experiments was done by taking a user defined 

value, MAX, as the upper bound for the expected 

values. A linear curve through MAX was taken 

such that the area under the curve equaled the 

population size. For this construction, several 

values are easily derivable: 

1. lower bound, 

MIN = 2.0 - MAX ; 

2. difference between • adjacent-

individuals, 

INC = 2.0 • (MAX - 1.0) / 
Population Size j 

3. lowest individual's expected value, 

LOW = INC / 2.0 . 

Hence for a population size of 50 and a MAX of 

2.0 : MIN = 0.0, INC = 0.04, LOW = 0.02. 

However, ranking with MAX = 2.0 causes the 

population to be driven to converge during every 

generation, including very stable searching 

periods, i.e., all individuals being within 10% of 

the mean. Ranking forces a particular percent 

involvement rather than preventing low percent 

involvement values from occurring. Our 

experiments show the desirable range for the 

percent involvement value is between 94% and 

100%. The above settings force a percent 

involvement value of approximately 75%, and 

hence cause undesirable convergence. To prevent 

this, one must choose a MAX value of 

approximately 1.1, which force the percentage 
involvement value into the desirable range. 

3.3. Hybrid Systems 

The following two systems use the expected 

value model as the default. When rapid 

convergence is predicted, the system will 

temporarily switch to a different selection 

method, designed to better handle the situation. 
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3.3.1. Hybrid with Ranking 

We have investigated two systems in which 

Ranking is used as the alternative selection 

method. The systems differ only in the way in 

which a rapid convergence is predicted. The first 

one uses a threshold on the maximum allowable 

expected value; the second system uses a 

threshold on the minimum allowable percent 

involvement. Ranking was chosen since, as 

described previously, it should work better during 

periods of rapid convergence and the expected 

value model should work better during the other 

periods. Thus, these two system's strengths and 

weaknesses complement each other and should 

create a good hybrid. 

3.3.2. Dynamic Population Size 

Recall that one cause of rapid convergence is 

that super individuals prevent other individuals 

from having offspring. This is due to the 

enforcement of a constant population size, and 

clearly results in a drop in the percent 

involvement. H the population size were allowed 

to grow, then a super individual would not force 

the elimination of many other individuals. 

The dynamic population size method is 

implemented by enforcing a lower bound on the 

percent involvement. This is done by adding 

individuals to the population until both the 

original population size and the acceptable value 

for the percentage involvement are reached. Due 

to the requirements of crossover, additions to the 

population are made in increments of two. 

Additional individuals are added to the system on 

the same basis as before, that is by their expected 

value. 

During periods of slow convergence, the size of 

the population will be constrained toward the 

original population size, since the lower bound on 
the percent involvement will be satisfied before 

the entire current population is chosen. Although 
the population size may grow as large as deemed 

necessary (within physical memory limitations), it 

will be guided back to the original population size 

during periods of slow convergence, as long as the 

lower bound value is set below 100%. 

Furthermore, on our system, the floor of the 

individual's expected value was taken as a 

minimum for his number of offspring. This 

periodically led to percent involvement values 



which were higher than the required lower bound 

even during a time of high population size. This 

is a characteristic of our implementation and has 

not yet been investigated for its desirability. 

This method has good intuitive appeal and has 

the advantage of using the expected value model 

throughout. The advantage of reacting 

differently to differing magnitudes of potential 

rapid convergence is also present. 

A possible disadvantage of this system is that a 

super individual can still obtain a large 

percentage of the population very quickly; while 

other individuals are not completely lost, their 

effect on the population is tremendously 

undermined. 

4. Results 
All experiments were performed using the 

Genesis System [2J at Vanderbilt University. The 

initial population size was set to 50, the crossover 

rate to 0.6, and the mutation rate to 0.001. Each 

curve in figures 1 through 10 were taken from 

single, representative executions of the 

appropriate functions. Each curve in figures 11 

and 12 represent the average of five executions. 

4.1. Detection 

In order to confirm the predicting capability of 

the percent involvement and greatest expected 

value, a function was designed on which a 

standard GA would experience a rapid 

convergence. This function had a gentle slope 

over more than 99.5% of the search space. A 

steep, highly valued spike existed in the 

remaining one half of one percent. To achieve 

the optimal result, the system needed to find the 

spike and then to optimize within it. The 

outlying, gentle slope discouraged those alleles 

necessary for the optimal result. Thus when a 

super individual occurred, that is one within the 

spike, vital information was likely to be lost. 

This function was used with the expected value 

model of selection. For each generation, the 

values of the percent involvement and greatest 

expected value were output. For these values to 

be useful as predictors, they must noticeably 

change prior to a rapid increase in the lost, 
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converged and bias values. Graphs comparing 

these predictors with the lost, converged and bias 

values can be seen in figures 1 - 6. 

Figure 1 shows that the percent involvement 

value drops sharply, prior to the dramatic rise in 

the lost value. A similar relationship exists for 

the converged value in Figure 2. Figure 3 shows 

the bias value climbing before the percent 

involvement value has reached its minimum. 

This occurs since the percent involvement values 

are already below their normal range prior to 

reaching its minimum. The normal range for the 

percent involvement has been found to be 

between about 94% and 100%. The drop in the 

percent involvement which occurs around the 

23rd generation Causes no appreciable effect, since 

(as the bias value indicates) the population is 

already over 90% converged. Note the first 

indication that a rapid convergence has occurred 

is given by the bias value, and the last indication 

by the lost value. This is seen by the primary 

increase occurring in the fourth generation for the 

bias value, in the fifth generation for the 

converged value and in the sixth generation for 

the lost value. 

The maximum expected value also experienced 

a sharp change prior to the rapid convergence. 

Figures 4, 5 and 6 show this clearly. Note that 

the spike in the maximum expected value 

occurred one generation before the minimum 

percent involvement value. This shows clearly 

the more global nature of the percent 

involvement discussed earlier. That is for 

generation number three, there was a single super 

individual, evident from the maximum expected 

value and percent involvement. However, the 

largest loss of other members of the population 

occurred during the following generation, when 

this super individual's offspring were reproducing. 

This is seen in the fourth generation's percent 

involvement value. 

Figures 1 - 6 show that both the percent 

involvement and the maximum expected value 

provide a good prediction of the occurrence of 

rapid convergence in this example. However, the 

percent involvement appears to be superior in 

general, since it can detect some rapid 

convergence not caused by a super individual. 



4.2. Comparison of Methods 

Recall that a superior method potentially 

produces better Best Individuals by retaining 

diversity in the population and controlling rapid 
convergence. Thus the lost, converged and bias 

values should remain low with increases occurring 

only gradually. 

The various selection methods discussed in 

section 3 were tested with a variety of functions. 

In all cases, Ranking uses a MAX of 1.1, as 

discussed in section 3.2. Figure 7 compares their 

lost alleles values for the same function used for 

Figures 1 - 6. These results were chosen because 

they are fairly representative of the various 

functions tested. The standard selection method 

consistently experienced rapid convergence sooner 

and more dramatically. This can also be seen in 

Figure 8, a comparison of the bias values for the 

same function. Just as consistently, the ranking 

system did not rapidly converge. 

Figures 9 and 10 show the loss of alleles and 

bias for Shekel's • foxhole problem· studied by 

Dejong 11,4J. These figures also show the same 

two characteristics: 1) standard selection 

performing worst; and 2) ranking performing 

best. However, note the vast superiority of the 

hybrid system which was based on the percent 

involvement over the other hybrid system. This 

is probably the result of the percent 

involvement's superior ability to predict rapid 

convergence. 

The population variance method performed no 

worse than the standard system, but for this 

function, it did not perform significantly better. 

The hybrid methods did experience convergence. 

However, it is delayed, it is extended over more 

generations, and its magnitude is lessened. 

Therefore one should expect these systems to be 

able to produce better final solution than the 

standard system, although it may take longer. 

Figures 11 and 12 show the average Best 

Individual versus trial number for the various 

methods. These values represent the average for 

five executions. Figure 11 is for the "foxhole 

problem" . Note that all of the methods 

performed at least as well as standard selection, 

given a sufficient number of trials. Furthermore, 
standard selection has lost nearly half of its 
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alleles by the 2000th trial. Ranking has 

outperformed all the others and after 2000 trials 

has not lost any alleles. Thus ranking has the 

best final result and the best potential for 
improvement. Note that ranking is the slowest of 

the methods, not producing a "competitive" 

result until about the 900th trial. This causes the 

Offline Performance to be very bad, and the high 

diversity causes the Online Performance to suffer. 

Figure 12 is from a function which has a sharp 

optimal region which the system must find. The 

function also has various local optima which may 

cause convergence before the discovery of this 

region. Figure 12 indicates the relative ability of 

the systems to find the optimal region. Each 

curve plotted represents the average over five 

executions. Ranking was able to find the region 

four out of five times, but again was the slowest 

in starting. 

5. Conclusions 
To varying degrees, all of the methods discussed 

in this paper were able to control rapid 

convergence. The ranking method shows the 

greatest promise. It results in better solutions for 

many functions experiencing rapid convergence 

and it maintains virtually all of its alleles. This 

gives it the potential for continued search and 

even further improvement on its solutions. The 

primary drawback to this system is that it 

requires a larger number of trials to obtain these 

results, especially for functions not exhibiting 

rapid convergence. We have observed that in the 

expected value model all of the individuals are 

typically within 20% of the mean during non

rapidly converging periods. Hence, the ranking 

system, with MAX = 1.1 , should be roughly 

equivalent to the expected value system during 

these periods, yet has the advantage of being able 

to control rapid convergence. Of course, it also 

has the disadvantage of avoiding rapid 

convergence, even when the convergence is 
desirable. Hence, ranking warrants further study 

both for its robustness and its particular handling 

of rapid convergence. 

At present there is insufficient justification to 

rank the other methods' performance. However, 

they all represent improvements over the 

standard selection algorithm. For some functions 



they were able to significantly slow down the 

rapid convergence and retain more diversity 

within their genes. This typically led to better 

final results than the standard selection algorithm 

would produce. Standard selection did not 

outperform any of the other methods on any of 

the functions tested, given a sufficient number of 

trials. 

Both the percent involvement and the expected 

value provide a prediction of rapid convergence 

and can be used to help control it. However, the 

prediction based on the expected value applies 

only for rapid convergence caused by super 

individuals. Therefore, the percent involvement 

value should be used as a more general predictor. 

Many other methods to control rapid 

convergence should be studied and compared. 

Among them are: 

1. providing a simple upper bound on 

the number of offspring allowable to 

an individual; 

2. limit super individuals to a very small 

number of offspring (lor 2) in 

combination with the elitist strategy; 

3. a ranking system based on non-linear 

curves or adaptively changing curves; 

4. providing multiple thresholds for the 

varying population size method, to 

use separate thresholds for growing 

and for shrinking the population, or 

separate values for the prediction and 

the processing phases. 

The methods presented in this paper should be 

tested further on a larger number of functions 

before definitive conclusions can be made. 
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Abstract 

Genetic search requires the evaluation of many 

candidate solutions to the given problem. The 

evaluation of candidate solutions to complex 

problems often depends on statistical sampling 

techniques. This work explores the relationship 

between the amount of effort spent on individual 

evaluations and the number of evaluations 

performed by genetic algorithms. It is shown 

that in some cases more efficient search results 

from less accurate individual evaluations. 

1. Introduction 

Genetic algorithms (GA's) are direct search 

algorithms which require the evaluation of many 

points in the search space. In some cases the 

computational effort required for each evaluation 

is large. In a subset of these cases it is possible to 

make an approximate evaluation quickly. In this 

paper we investigate how well GA's perform with 

approximate evaluations. This topic is motivated 

in part by the work of De Jong [5], who included 

a noisy function as part of his test environment 

for GNs, but did not specifically study the 

implications for using approximate evaluations on 

the efficiency of GA's. Our main question is: 

Given a fixed amount of computation time, is it 

better to devote substantial effort to getting 

highly accurate evaluations or to obtain quick, 

rough evaluations and run the GA for many more 

generations? We assume that the evaluation of 

each structure by the GA involves a Monte Carlo 

sampling, and the effort required for each 

evaluation is equal to the number of samples 

performed. 

Since the GA's we consider do not obtain 

accurate evaluations during the search, the 

traditional metrics, online performance and 

offline performance, are not appropriate (or at 

least not easily obtained). Instead, we assume 

that the GA runs for a fixed amount of time, 

after which it yields a single answer. The 

performance measurement we use is the absolute 

per formance, that is, the exact evaluation of the 

suggested answer after a fixed amount of time. 

In section 2 we describe the statistical 

evaluation technique. In section 3 we describe 

the result of testing on a simple example 

evaluation function. In section 4 we describe the 

result of testing on image comparison functions. 

In section 5 we present future directions of 

research on approximate evaluations. 

2. The Statistical Evaluation 
Technique 

In this work we investigate the optimization of 

a function f(x) whose value can be estimated by 

sampling. The variable x ranges over the space 

of structures representable to the GA. Weare 

interested in functions for which an exact 

evaluation requires a large investment in time but 

for which an approximate evaluation can be 

carried out quickly. Examples of such functions 

appear in the evaluation of integrals of 

complicated integrands over large spaces. Such 

integrals appear in many applications of physics 

and engineering and are commonly evaluated by 

Monte Carlo techniques [13,15]. An example 

from the field of image processing, examined in 

detail below, is the comparison of two digital 

images. Here the integrand is the absolute 

difference between image intensities in two 

images at a given point in the image and the 

space is the area of the image. 

lResearch supported in part by the National Science Foundation under Grant MCS·8305693. 
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Throughout our discussions it is convenient to 

treat the function, f(x), to be optimized as the 

mean of some random variable r(x). In terms of 

the evaluation of an integral by the Monte Carlo 

technique, f(x) would be the mean of of the 

integrand's value over the space and r(x) is 

simply the set of values of the integrand over the 

space. The approximation of f(x) by the Monte 

Carlo technique proceeds by selecting n random 

sample from r(x). The mean of the sample serves 

as the approximation and to the extent that the 

samples are random, the sample mean is 

guaranteed by the law of large numbers to 

converge to f(x) with increasing n. Once f(x) is 

approximated, the desired value of the integral 

can be approximated by multiplying the 

approximation of f(x) by the volume of the space. 

There are many approaches to improving the 

convergence of the sample mean and the 

confidence in the means for a fixed n [15]. We 

will not investigate these approaches. Here we 

will be concerned only with the sample mean' and 

an estimate of our confidence in that mean. 

The idea which we are exploring is to use as an 

evaluation function in the GA optimization of 

f(x), not f(x) itself, but an estimate, e(x), of f(x) 

obtained by taking n randomly chosen samples 

from r(x). It is intuitive that e(x) approaches 

J\x) for large n. From statistical sampling theory 

it is known that if r(x) has standard deviation 

O'(x) then the standard deviation of the sample 

mean, O'~(x), is given by 

(1) O',(x) = O'(x)/Vn 

In general O'(x) will be unknown. It is simple, 

however, to estimate cr(x) from the samples using 

the unbiased estimate, 

n 

(2) cr:(x) = L (si-e(x)f/(n-l) 

i=l 

It is clear from equation (1) that reducing the 

size of cr (x) can be expensive. Reducing 0' (x) by 
~ ~ 

a factor of two, for example, requires four times 

as many samples. It is intuitive that the GA will 

require more evaluations to reach a fixed level of 

optimization for f(x) when cr (x) is larger. , 
Concomitantly, it is intuitive that the GA will 

achieve a less satisfactory level of optimization 

for f(x) for a fixed number of evaluations when 

cr (x) is larger. What is is not obvious is which 
~ 

effect is more important here, the increase in the 

number of evaluations required or the increase in 

the time required per evaluation. The following 

experiments explore the relative importance of 

these two effects. 

3. A Simple Experiment 

As a simple example function we have chosen to 

minimiZe 

f(x,y,z) = :c+t}+z"2 

We imagine that f(x,y,z) is the mean of some 

distribution which is parameterized by x, y and z, 

but instead of actually sampling such a function 

to achieve the estimate e(x,y,z), we use 

e(x,y,z) = f(x,y,z) + noise 

where noise represents a pseudo-random 

function chosen to be normally distributed and to 

have zero mean. The standard deviation, 

0' (x,y,z), of e(x,y,z) is in this case equal to that of 
~ 

the noise function and it is chosen artificially. No 

actual sampling is done. The advantage of this 

experimental scheme is that we can investigate 

the effects of many different distributions and 

sample sizes for each cr (x,y,z) we choose without , 
performing all the experiments. 

In order to get some idea of the effect of the 

dependence of 0' (x'y,z) on x, y and z, we perform ., 
two different sets of experiments on f(x,y,z): (a) 

0' (x,y,z) independent of x, y and z; and (b) ., 
0' (x,y,z) = A f(x,y,z). The search space is 

•• 6 
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limited to x, y and z between -5.12 and +5.12 

digitized to increments of 0.01. The GA 

parameters are the standard ones suggested by 

De Jong [5]: population size 50, crossover rate 

0.6, mutation 0.001. For the experiments of type 

(a) we determine for several values of 0', the 

number of evaluations necessary to find x, y and 

z such that f(x,y,z) falls below a threshold of 

0.05. For the experiments of type (b) we 

determine for several values of A the number of 
~ 

Throughout our discussions it is convenient to 

treat the function, !(x), to be optimized as the 

mean of some random variable r(x). In terms of 

the evaluation of an integral by the Monte Carlo 

technique, !(x) would be the mean of of the 

integrand's value over the space and r(x) is 

simply the set of values of the integrand over the 

space. The approximation of !(x) by the Monte 

Carlo technique proceeds by selecting n random 

sample from r(x). The mean of the sample serves 

as the approximation and to the extent that the 

samples are random, the sample mean 15 

guaranteed by the law of large numbers to 

converge to !(x) with increasing n. Once !(x) is 

approximated, the desired value of the integral 

can be approximated by multiplying the 

approximation of !(x) by the volume of the space. 

There are many approaches to improving the 

convergence of the sample mean and the 

confidence in the means for a fixed n [15]. We 

will not investigate these approaches. Here we 

will be concerned only with the sample mean' and 

an estimate of our confidence in that mean. 

The idea which we are exploring is to use as an 

evaluation function in the GA optimization of 

!(x), not !(x) itself, but an estimate, e(x), of !(x) 

obtained by taking n randomly chosen samples 

from r(x). It is intuitive that e(x) approaches 

Jtx) for large n. From statistical sampling theory 

it is known that if r(x) has standard deviation 

O'(x) then the standard deviation of the sample 

mean, 0'..(:1:), is given by 

(1) O',(x) = O'(x)/Vn 

In general O'(x) will be unknown. It is simple, 

however, to estimate O'(x) from the samples using 

the unbiased estimate, 

n 

(2) o:(x) = L (si-e(x)f/{n-l) 

i=l 

It is clear from equation (1) that reducing the 

size of O',(x) can be expensive. Reducing 0' ,(x) by 

a factor of two, for example, requires four times 

as many samples. It is intuitive that the GA will 

require more evaluations to reach a fixed level of 

optimization for !(x) when 0' (x) is larger. , 
Concomitantly, it is intuitive that the GA will 

achieve a less satisfactory level of optimization 

for f(x) for a fixed number of evaluations when 

0' (x) is larger. What is is not obvious is which 
~ 

effect is more important here, the increase in the 

number of evaluations required or the increase in 

the time required per evaluation. The following 

experiments explore the relative importance of 

these two effects. 

3. A Simple Experiment 

As a simple example function we have chosen to 

minimize 

We imagine that f(x,y,z) is the mean of some 

distribution which is parameterized by x, y and z, 

but instead of actually sampling such a function 

to achieve the estimate e(x,y,z), we use 

e(x,y,z) = f(x,y,z) + noise 

where notse represents a pseudo-random 

function chosen to be normally distributed and to 

have zero mean. The standard deviation, 

0' (x,y,z), of e(x,y,z) is in this case equal to that of 
8 

the noise function and it is chosen artificially. No 

actual sampling is done. The advantage of this 

experimental scheme is that we can investigate 

the effects of many different distributions and 

sample sizes for each 0' (x,y,z) we choose without , 
performing all the experiments. 

In order to get some idea of the effect of the 

dependence of O'.,(x,y,z) on x, y and z, we perform 

two different sets of experiments on !(x,y,z): (a) 

O'.,(x,y,z) independent of x, y and z; and (b) 

0' (x,y,z) = )., f(x,y,z). The search space IS 
•• 8 
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limited to x, y and z between -5.12 and +5.12 

digitized to increments of 0.01. The GA 

parameters are the standard ones suggested by 

De Jong [5]: population size 50, crossover rate 

0.6, mutation 0.001. For the experiments of type 

(a) we determine for several values of 0' the , 
number of evaluations necessary to find x, y and 

z such that f(x,y,z) falls below a threshold of 

0.05. For the experiments of type (b) we 

determine for several values of)., the number of 
8 



evaluations necessary to achieve the 0.05 

threshold. 

The results of 50 runs at each setting are shown 

in Figure 2. It is immediately obvious that these 

graphs are approximately linear. In fact linear 

regression analysis produces a correlation 

coefficient of 0.99 in each case. The linearity of 

these graphs simplifies their analysis considerably. 

To see the relative importance of number of 

evaluations versus time per evaluation we can 

start with the equation for the straight lines: 

(3) E = 1244+22680" 
a 3 

(4) Eb = 18,020+9285\ 

where Eu. and Eb are the number of evaluations 

required for case a and b, respectively. We· 

imagine that the evaluations were obtained by 

sampling from a normal distribution whose 

standard deviation is 0" in case (a) and )..!(z,y,z) 

in case (b). In that case we can use Equation (1) 

for C13(X,y,z) in both Equations (3) and (4) to get 

(S) Ea = 1244+22680/';;; 

(6) Eb = 18,020+928S>"/Vn 

These equations give the number of evaluations 

required to achieve the threshold as a function of 

the number of samples taken per evaluation, but 

they do not indicate the total effort required to 

achieve the threshold. The total time required 

for the optimization procedure includes the time 

for the n samples taken at each evaluation and 

the overhead incurred by the GA for each 

evaluation. Taking these factors into 

consideration we arrive at two equations for the 

time necessary to achieve the threshold, 

(7) ta=(oa+/3 an)(1244+2268C1/v';;) 

(8) tb=(o b+{3 bn )(18,020+928S>"/Vn) 

where 0 is the GA overhead per evaluation and 

/3 is the time per sample. These equations allow 

us to determine the optimal value for n, i.e., the 

value which will minimize the time necessary to 

reach the desired threshold in this sample 

problem. It can be seen that for large n each 

expression for the time increases linearly with n. 

Thus, regardless of the relative size of the 

overhead, the optimal value of n IS, not 

surprisingly, finite. As n approaches zero each 

expression approaches infinity, but the smallest 

possible value for n is one. The optimal value of 

n for either case can be found by finding the 

minimum of the appropriate expression subject to 

the restriction that n be an integer greater than 

zero. Further analysis requires some idea of the 

size of 0//3. Since the results apply only to the 

particular example evaluation function !(x,y,z) a 

detailed analysis is not worthwhile. We simply 

note that in the case in which 0 is negligible, the 

optimal value of n is I, and as 0 increases the 

optimal value will increase. Thus, at least for 

small overhead the answer to the question 

concerning the relative importance of the number 

of evaluations versus the time required for a 

given evaluation is clear. The time required for a 

given evaluation is more important. The 

accuracy of the evaluation should be sacrificed in 

order to obtain more evaluations. Optimization 

proceeds more quickly with many rough 

evaluations than with few precise evaluations. 
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4. An Experiment on Image 

Registration 

The preceding simple example has the following 

special characteristics: (1) the function to be 

optimized is simple; (2) r{x) has a normal 

distribution; (3) the standard deviation of r(x) is 

a known function. These characteristics make it 

possible to do simple experiments which are easy 

to analyze. In more general problems these 

characteristics are not guaranteed, but they are 

not necessary to insure the efficacy of the 

statistical approach. To demonstra.te the method 

for practical problems, we describe here our 

approach to a problem which has none of these 

characteristics. The problem is found in the 

registration of digital images. The functions 

which are optimized in image registration are 

measures of the difference between two images of 

a scene, in our case X-ray images of an area of a 

human neck, which have been acquired at 

different times. The images differ because of 



motion which has taken place between the two 

acquisition times, because of the injection of dye 

into the arteries, and because of noise in the 

image acquisition process. The registration of 

such images is necessary for the success of the 

process known as digital subtraction angiography 

in which an image of the interior of an artery is 

produced by subtracting a pre-injection image 

from a post-injection image. The details of the 

process and the registration technique can be 

found in [7]. By performing a geometrical 

transformation which warps one image relative to 

the other it is possible to improve the registration 

of the images so that the difference which is due 

to motion is reduced. The function parameters 

specify the transformation, and it is the goal of 

the genetic algorithms to find the parameter 

values which minimize the image difference. 

The general problem of image registration Js 

important in such diverse fields as aerial 

photography [8,16,17] and medical imaging 

[1,7,12,14,18]. General introductions to the field 

of image registration and extensive bibliographies 

may be found in [3,9,11]. An image comparison 

technique based on random sampling, different 

from the method used here, is described in [2]. 

The class of transformations which we consider 

includes elastic motion as well as rotation and 

translation. 

The transformations which are employed here 

are illustrated in Figure 1. Two images are 

selected and a square subimage, the region of 

interest, is specified as image one -- iml. A 

geometrically transformed version of that image 

is to be compared to a second image-- im2. The 

transformation is specified by means of four 

vectors -- d1, d2, d3, and d4 -- which specify the 

motion of the four corners of iml. The 

transformed image is called im3. The motion of 

intermediate points is determined by means of 

bilinear interpolation from the corner points. 

The magnitudes of the horizontal and vertical 

components of the d vectors are limited to be less 

than one-fourth of the width of the subimage to 

avoid the possibility of folding [6]. (More 

complicated warpings will requ1re additional 
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vectors.) 

The images are represented digitally as square 

arrays of numbers representing an approximate 

map of image intensity. Each such intensity is 

called a pixel. The image difference is defined to 

be the mean absolute difference between the 

pixels at corresponding positions in im2 and im3. 

The exact mean can be determined by measuring 

the absolute difference at each pixel position; an 

estimate of the mean may be obtained by 

sampling randomly from the population of 

absolute pixel differences. The effort required to 

estimate the mean is approximately proportional 

to the number of samples taken; so, once again, 

the question arises as to the relative importance 

of number of evaluations used in the GA versus 

the time required per evaluation. 

In general, the distribution of pixel differences 

for a given image transformation is not normal. 

Its shape will, in fact, depend in an unknown way 

on the geometrical transformation parameters, 

and consequently the standard deviation will 

change in an unknown way. Thus, while the 

experiments on f(x,y,z) suggest that better results 

will be realized if less exact evaluations are made 

it is not clear how the level of accuracy should be 

set. We note that in the analysis of the 

experiments on f(x,y,z) fixing the number of 

samples, n, has the effect of fixing, either (j or 
8 

).. 
8 
= (j j f(x,y,z), given the assumed forms of (j_ 

In the image registration case and in the general 

case, however, fixing n fixes neither of these 

quantities, since the (7
1
S behavior cannot in 

general be expected to be so simple. We could, 

however, fix either of these quantities 

approximately by estimating (j using Equation (2) 

as samples are taken during an evaluation and 

continuing the sampling until n is large enough 

such that the estimate of (j obtained from 
8 

Equation (1) is reduced to the desired value. 

Thus, the results from the previous experiments 

suggest three experiments on image registration -

(1) try to determine an optimal fixed n; (2) try to 

determine an optimal fixed (j_,; (3) try to 

determine an optimal fixed ).. . We have ~  
implemented the first idea and a variation of the 



third idea. The variation is motivated by noting 

from statistical sampling theory that by fixing A 
3 

we are equivalently fixing our confidence in the 

accuracy of the sample mean as representative 

the actual mean. If, for example, we require that 

the sample mean be within (lOOp)% of the actual 

mean with 95% confidence, we should sample 

until we determine that \ is less than or equal to 

p/1.96 [19]. If we can fix only an estimate of A 
J' 

as in the general case, then the (lOOp)% accuracy 

at 95% confidence level requires that the estimate 

of A
3 

be less than or equal to pjt.
0
£n). Here t-In) 

is student's t at a confidence level of 100(1-1)% 

and a sample size of n[4]. This t-test is exact 

only if the distribution of the sample mean is 

normal. In order to assure that the sample mean 

is approximately normal the sample size, n, 

should be at least 10 [4]. Our variation on fixing 

\ is to pick a confidence level of 95% (an 

arbitrary choice) and then fix p, subject to 

n 2: 10 to determine an optimal p. 

The experiments to determine an optimal value 

of n and p for image registration and in the 

general case differ from those described for 

f(x,y,z) above in two ways. First, because so 

little is known about the distributions in the 

general case, actual sampling is necessary. 

Second, because so little is known about the mean 

which is to be optimized (rr;inimized) it is difficult 

to determine in the general case whether a 

threshold has been reached, and therefore the 

criterion for halting must be different. We have 

considered two alternative halting criteria: (1) 

determining an exact mean, or a highly accurate 

estimate of the mean, of the structure whose 

estimate is the best at each generation, halting 

when that value reaches a threshold, and using as 

a measure of performance the total number of 

samples taken; (2) halting after a fixed number of 

samples have been taken and using as the 

measure of performance the exact evaluation of 

the structure whose estimate is the best at the 

last generation. The first alternative suffers frvrn 

the disadvantage that the additional evaluation 

at each generation is expensive and tends to 

offset the savings gained through approximate 

evaluation. The severity of the disadvantage Is, 
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on the other hand, diminished as the size of the 

generation is increased. Therefore this method 

suggests a new consideration in setting the 

number of structures per generation. We choose 

in this work to avoid the question of the optimal 

number of structures by choosing the simpler 

alternative, (2). 

The results of our experiments on Image 

registration are shown in Figure 3. The Figure 

shows data resulting from 10 runs at each setting. 

The subimage im1 is 100 by 100 pixels, giving a 

sample space of size 10,000. The motion of the 

corners is limited to 8 pixels in the x and y 

directions. In each case the GA is halted after 

the generation during which the total number of 

samples taken exceed 200,000. The parameters 

for the t r a n s f o r m a t i ~ n  comprise the x and y 

components of the four d vectors. The range for 

each of these eight components is [-8.0, +8.0] 

digitized to eight bit accuracy. The GA 

parameters are set to optimize offline 

performance, as suggested by [10]: population size 

80, crossover rate 0.45, mutation rate 0.10. 

In Figure 3a each GA takes a fixed number of 

samples per evaluation. It can be seen from the 

Figure that the optimal sample s1ze Is 

approximately 10 samples per evaluation. 

Apparently, taking one sample per evaluation 

does not give the GA sufficient information to 

carry out an efficient search. The fact that 

performance deteriorates when we take fewer 

than 10 samples may indicate that the underlying 

distribution of pixel difference is not in general 

normal, and so this application does not 

correspond to the ideal experiments described in 

section 3. 

In Figure 3b the estimated accuracy interval, 

based on the t-test, is fixed subject to the 

restriction that the sample size be at least 10. 

(Note that in Figure 3b, a 10% accuracy interval 

means that we are 95% confident that the sample 

mean is within 10% of the true mean.) These 

e:J;Cperiments suggest that the optimal accuracy 

interval at 95% confidence is nearly 100%, which 

corresponds to taking on the average 10 samples 



per evaluation. Given that the performance level 

is nearly identical whether we take exactly 10 

samples per evaluation or we take on the average 

10 samples, the first approach is preferable, since 

it does not require the calculation of the t-test for 

each sample. 

It should be pointed out that, as in the 

experiment on f(x,y,z), the GA overhead is 

ignored here. If the overhead were included, the 

optimal sample size would be somewhat larger. 

In any case, it is clear that a substantial 

advantage is obtained in statistical evaluation by 

reducing sampling sizes and accuracies, at least 

for this case of image registration. 

6. Conclusions 

GA's search by allocating trials to hyperplanes 

based on an estimate of the relative performance 

of the hyperplanes. One result of this approach is 

that the individual structures representing the 

hyperplanes need not be evaluated exactly. This 

observation makes GA's applicable to problems in 

which evaluation of candidate solutions can only 

be performed through Monte Carlo techniques. 

The present work suggests that in some cases the 

overall efficiency of GA's may be improved by 

reducing the time spent on individual evaluations 

and increasing the number of generations 

performed. 

This works suggests some topics which deserve 

deeper study. First, the GA incurs some 

overhead in performing operations such as 

selection, crossover, and mutation. If the GA 

runs for many more generations as a result of 

performing quicker evaluations, this overhead 

may offset the time savings. Future studies 

should account for this overhead in identifying 

the optimal time to be spent on each evaluation. 

Second, it would be interesting to see how using 

approximate evaluations effects the usual kinds of 

performance metrics, such as online and offline 

performance. Finally, additional theoretical work 

in this area work be helpful, since experimental 

results concerning, say, the optimal sample size 

can be expected to be highly application 

dependent. 
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Figure 1a. 

Subimage iml is represented by the .maller 

inner .quare. The arrows represent the four d
yeeters. 

Figure lb. 

im2 is the larger image. im3. is the inner image 

formed by transforming iml according to the d

Teeters .hown in Fig. la. 
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Abstract 

An architecture for function maximization is proposed. The design is motivated 

by genetic principles, but connectionist considerations dominate the implementa

tion. The standard genetic operators do not appear explicitly in the model, and 

the description of the model in genetic terms is somewhat intricate, but the imple
mentation in a connectionist framework is quite compact. The learning algorithm 

manipulates the gene pool via a symmetric converge/diverge reinforcement opera
tor. Preliminary simulation studies on illustrative functions suggest the model is 

at least comparable in performance to a conventional genetic algorithm. 

1 Overview 

A new implementation of a genetic algorithm is presented. The possibility for it was noted 

during work on learning evaluation functions for simple games [1] using a variation on a 
recently developed connectionist architecture called a Boltzmann Machine [2]. The present 
work abstracts away from game-playing and focuses on relationships between genetic al
gorithms and massively parallel, neuron-like architectures. 

This work takes function maximization as the task. The system obtains information by 

supplying inputs to the function and receiving corresponding function values. By-assump
tion, no additional information about the function is available. Finding the maximum of 

a complex function possessing an exponential number of possible inputs is a formidable 
problem under these conditions. No strategy short of enumerating all possible inputs can 
always find the maximum value. Any unchecked point might be higher than those al
ready examined. Any practical algorithm can only make plausible guesses, based on small 
samples of the parameter space and assumptions about how to extrapolate them. 

However, the function maximization problem avoids two further complexities faced 

by more general formulations. First, performing "associative learning" or "categorization" 
can be viewed as finding maxima in specified subspaces of the possible input space. Second, 

in the most general case, the function may change over time, spontaneously or in response 
to the system's behavior. There the entire history of the search may affect the current 

location of the maximum value. 

Section 2 presents the model. For those familiar with genetic algorithms, highlights of 

Section 2 are 

• Real-valued vectors are used as genotypes instead of bit vectors. Reproduction and 

crossover are continuous arithmetic processes, rather than discrete boolean processes. 

1 This research is supported by the System Development Foundation. 
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• The entire population is potentially involved in each crossover operation, and crossover 

is not limited to contiguous portions of genes. 

• The reproductive potential of genotypes is not determined by comparison to the average 

fitness of the population, but by comparison to a threshold. Adjusting the threshold 

can induce rapid convergence or diverge an already converged population. 

Section 3 describes simulation studies that have been performed. The model is tested 

on functions that are constructed to explore its behavior when faced with various hazards. 

First a simple convex function space is considered, then larger spaces with local maxima 
are tried. 

Section 4 discusses the model with respect to the framework of reproductive plans and 

genetic operators developed in [10]. Possible implications for connectionist research are 

not extensively developed in this paper. 

Section 5 concludes the paper. 

2 Development 

The goal of this research was to satisfy both genetic and connectionist constraints as 

harmoniously as possible. As it turned out, the standard genetic operators appear only 

implicitly, as parts of a good description of how the model behaves. On the other hand, 

the implementation of the model in connectionist terms is not particularly intuitive. After 

sketching a genetic algorithm, this section presents the model via a loose analogy to the 

political process of a democratic society. The section concludes by detailing the implemen

tation of this "election" model and drawing links between the genetic, the political, and 

the connectionist descriptions. 

2.1 Genetic algorithms. Genetic evolution as a computational technique was proposed 

and analyzed by Holland [10]. It has been elaborated and refined by a number of re

searchers, e.g. [3, 4] and applied in various domains, e.g. [13, 6]. In its broadest formula

tions it is a very general theory; the following description in terms of function maximization 

is only one of many possible incarnations. 

Genetic search can be used to optimize a function over a discrete parameter space, 

typically the corners of an n dimensional hypercube, so that any point in the parameter 

space can be represented as an n bit vector. The technique manipulates a set of such 

vectors to record information gained about the function. The pool of bit vectors is called 

the population, an individual bit vector in the population is called a genotype, and the bit 

values at each position of a genotype are called alleles. The function value of a genotype 

is called the genotype's Etness or Egure of merit. 

There are two primary operations applied to the population by a genetic algorithm. 

Reproduction changes the contents of the population by adding copies of genotypes with 

above-average figures of merit. The population is held at a fixed size, so below-average 

genotypes are displaced in the process. No new genotypes are introduced, but changing 

the distribution this way causes the average fitness of the population to rise toward that 

of the most-fit existing genotype. 

In addition to this "reproduction according to fitness," it is necessary to generate 

new, untested genotypes and add them to the population, else the population will simply 
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converge on the best one it started with. Crossover is the primary means of generating 

plausible new genotypes for addition to the population. ln a simple implementation of 

crossover, two genotypes are selected at random from the population. Since the population 

is weighted towards higher-valued genotypes, a random selection will be biased in the same 

way. The crossover operator takes some of the alleles from one of the "parents" and some 

from the other, and combines them to produce a complete genotype. This "offspring" 

is added to the population, displacing some other genotype according to various criteria, 

where it has the o p p o r t u ~ i t y  to flourish or perish depending on its fitness. 

To perform a search for the maximum of a given function, the population is first ini

tialized to random genotypes, then reproduction and crossover operations are iterated. 

Eventually some {hopefully maximal valued) genotype will spread throughout the popula

tion, and the population is said to have "converged." Once the population has converged to 

a single genotype, the reproduction and crossover operators no longer change the makeup 

of the population. 

One technical issue is central to the development of the proposed model. ln addition to 

reproduction and the crossover operator, most genetic algorithms include a "background" 

mutation operator as well. In a typical implementation, the mutation operator provides a 

chance for any allele to be changed to another randomly chosen value. Since reproduction 

and crossover only redistribute existing alleles, the mutation operator guarantees that every 

value in every position of a genotype always has a chance of occuring. If the mutation 

rate is too low, possibly critical alleles missing from the initial random distribution (or lost 

through displacement) will have only a small chance of getting even one copy (back) into 

the population. However, if the probability of a mutation is not low enough, information 
that the population has stored about the parameter space will be steadily lost to random 

noise. In either of these situations, the performance of the algorithm will suffer. 

2.2 A democratic society metaphor. Envision the democratic political process as a 

gargantuan function maximization engine. The political leanings of the voting popula

tion constitute the system's store of information about maximizing the nebulous function 

of "good government." An election summarizes the contents of the store by computing 

simple sums across the entire population and using the totals to fill each position in the 

government. When the winners are known, voters informally express opinions about how 

well they think the elected government will fare. The bulk of the time between elections 

is spent estimating how well the· government actually performs. By the next election, this 

evaluation process has altered the contents of the store: better times favor incumbents; 

worse times, challengers. 

In society, the function being optimized is neither well-defined nor arbitrary, and the 

final evaluation of a government must be left to history, but in the abstract realm of 

function maximization the true value of a point supplied to any function can be determined 

in a single operation. The immediacy and accuracy of this feedback creates an opportunity 

for an explicit learning algorithm that would be difficult to formalize in a real democracy. 

Credit and blame can be assigned to the voters based on how well their opinions about 

the successive governments predict the results produced by the objective function. Voters 

that approved of a high-scoring government can be rewarded by giving them more votes, 

so their preferences become a bit more influential in the subsequent election. Voters in 

such circumstances tend to favor the status quo. Voters whose preferences cause them to 
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approve of a low-scoring government lose voting power, and become a bit more willing to 

take a chance on something new. The proposed model is built around such an approach 
to learning. 

An iteration of the algorithm consists of three phases which will be called "election," 

"reaction," and "outcome." The function maximization society is run by an n member 

"government" corresponding to the n dimensions of the function being maximized. In 

each election all n "government positions" are contested. There are two political parties, 

"Plus" and "Minus." A genotype represents a voter's current party preferences, recording 

a signed, real-valued number of votes for. each of the positions. Which party wins a position 

depends on the net vote total for that position. A government represents a point in the 

parameter space, with Plus signifying a 1 and Minus signifying a 0. 

After an election is concluded, each voter chooses a reaction to the new government: 

"satisfied," "dissatisfied," or "apathetic." The complete state of a voter includes the 

weights of its genotype plus its reaction. In general, voters whose genotypes match well 

with the government-i.e., most (or the most strongly weighted) of the positions have the 

same signs as the genotype weights-will be satisfied and therefore share in the credit or 

blame for the government's performance. Voters that got about half of their choices are 

likely to be apathetic, and therefore are unaffected by any consequent reward or punish

ment. Voters that got few of their choices are likely to be dissatisfied with the election 

results. Dissatisfied voters share in the fate of the government, but with credit and blame 

reversed in a particular way discussed below. Satisfied and dissatisfied voters are also 
referred to as active, and apathetic voters are also referred to as inactive. 

In the outcome phase, the performance of the government is tested by supplying the 
corresponding point to the objective function and obtaining a function value. This value is 

compared to the recent history of function values produced by previously elected govern
ments to obtain a reinforcement signal. A positive result indicates a point scoring better 

than usual and vice-versa. The reinforcement signal is used to adjust the preferences of the 
active voters. Positive reinforcement makes the reactions of the population more stable, 

and negative reinforcement makes them more likely to change. Finally, the newly ob

tained function value is incorporated into the history of function values, and an iteration 
is complete. 

Two points are worth making before considering the actual implementation. The first 

point is that there is noise incorporated into both the election and the reaction processes. 

IT the sum of the vote for a given position is a landslide, the result will essentially always be 

as expected, but as the vote total gets closer to zero the probability rises that the winner 

of the position will not actually be the party that got the most votes. There are no ties 

or runoff elections; if the sum of the vote for a position totals to exactly zero the winner 

is chosen completely at random. Voter reactions are also stochastic, based on the net 

degree of match over mismatch between each genotype and the elected point. Although 

real election systems try to ensure that the winner got the most votes, in the proposed 

model this nondeterminism serves the crucial function of introducing mutation. Moreover, 

unlike the constant-probability mutation operator mentioned in the previous section, it is 

data dependent. Mutation is very likely in those positions where no consensus arises from 

the population, but it will almost never upset a clear favorite. 

The second point is that only the currently active voters participate in the election. 
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glltlf'rllfnt'nt 

tl(Jtfr.~ 

popuilltion 

Point tl'sh'ti: I = 01 

Point valu!': V = 87.7 
EX]I(·ctatioll h'wl: () = 113.8 

R('iufor('(')J1('llt: r = - 0 .3462 

Figure 1. A very small instauce of the. model. There are two positions and three voters. TIl<' st.ate 
of the' system is shown in th(, middle of an out,com!' pha..'Ie, just he'fore apport.ionment of credit. 
The' ('l('('t ion rf'::Iult::l are shown in the top row of circles; t h(' (,lIsuillg voter r('action::l are shown in 

the bottom row. The first vot('r is apathetic. Th(' S('colld vot('r is satisfied. even though it didn't 

get its preference on the first position. The third voter is dissatisfied with the dectioll results. On 
the right are the other data maintaiIled by the model. The elccted government corresponds to the 
binary vector 01, which has been passed to the objective function which returned the value 87.7. 
This is less than expected so the reinforcement signal is negative. The symbols next to the link 
weights indicate whether the weights will increase (j), decrease 0), or remain the same (=) when 
the reinforcement signal is applied. Negative reinforcemeut rewards inconsistency; in this example, 
only the first weight of the second voter incre~es in magnitude. 

Satisfied voters vote in the manner described above. Dissatisfied voters vote in a sign
reversed manner: positive weights vote for Minus and negative weights vote for Plus. 

Apathetic voters do not vote at all, but they react to each election and may become 
active. Section 4 discusses a genetic interpretation of this strategy. 

2.3 A connectionist implementation. The ever-increasing demand for computational 

power and the continuing desire to understand the human brain has encouraged research 
into massively parallel computational architectures that resemble the physiological picture 

of the brain more closely than does the standard Von Neumann model. The basic as
sumption of the connectionist approach (see, e.g., [5] or [7]), is that computation can be 
accomplished collectively by large numbers of very simple processing units that contain 

very little storage. The bulk of the memory of the system is located in communication links 
between the units, usually in the form of one or a few scalar values per link that control 
the link's properties. In terms of individual units and links, the Perceptron [12] typifies 

the kinds of hardware considered: a unit is simple linear threshold device, adopting one of 
two numeric output states based on a comparison between the sum of its input links and 

its threshold; a link connects two units and contains a scalar variable that is multiplied by 
the link input to produce the link output. 

In terms of problem formulations, .network organizations, and learning algorithms, 
connectionist research has moved in many directions from the Perceptron; the proposed 

model uses assumptions most closely related to those employed in [1, 2, 9, 11]. There is not 

space to explicitly motivate all of the decision designs of the implementation, but analogies 

to the political and genetic descriptions are discussed as they arise. Figure 1 sketches an 

instance of the model and defines terminology. 

The basic processing element of the model is called a unit. Each unit i has a ternary 
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Figure 2. A pha.'w diagram of Si a.'" a flUldioJi of tlEi and e. TIJ(, houndary CUrvCll arc SPf'C

ifil·d by Eq. (2), plott('d at T = 200 1U1d a = IOn. (tlEi• e) point8 falling ahove th{' solid line 

generate Si = -1, points below the dotted line generate Si = 1, and points between the lines gen

erate Si = O. 

state variable Si E {+ 1,0, -I}. Units communicate their current states to other units via 

links. A link between two units i and j has a real-valued weight Wij' All links between 
units are bidirectional and have the same weight in both directions, i.e. Wij = Wji' 

In the political analogy, groups of units represent both the government positions and 

the voters. In the former case, sirepresents the winner of position i, with Si = 1 --+ Plus 

and Si = -1 --+ Minus. Parameters are set so that Si '- 0 cannot occur for the position 
units. In the latter case, Si represents the reaction of voter i, with Si = 1 --+ "satisfied," 

Si = 0 --+ "apathetic," and 8i = -1 --+ "dissatisfied." 

A unit simply retains its current state until it is probed, at which time it .checks 
the states of the units it is connected to and the weights on those links and applies a 
probabilistic decision rule to select a state. The quantity that sums up the current context 
of a unit i is called "Ll.E;" and is defined as 

Ll.E· - 2 ~ S ·w·· I - L- J IJ 

j 

(1) 

where j ranges over all the units in the network and Wi; = 0 if units i and j are not 

connected. Given Ll.Ei and a uniform random variable 0 ~ e < 1, the decision rule is 

1 
.+1 

if e ~ 1 + e-(tlEi+o)/T 

(2) 1 
8i = ~'-1 

if e < -(tlE.-a)/T 
1 + e ' 

0 otherwise. 

The boundaries between the unit states are plotted in Figure 2. The size of the model 

parameter T > o-the "temperature" -determines how sharply the boundaries slope as 

Ll.Ei moves away from zero; it controls how ''noisy" the system is. The model parameter 
Q ~ 0 controls the width of the "apathy window" when the voter units are probed. 

In the political analogy, the election and reaction processes are both implemented by 

the probe operation. An election is performed by probing each of the position units once. 

Since position units connect only to voter units the ordering of the probes is irrelevant, 
and the contests for each position can happen in parallel. When applied to a position 
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unit i, the sUlllmation in Eq. (1) totes up the effective vote count for the position. If a 

voter unit j is apathetic, then Sj = 0 and Wij docs not affect the total for the position, 

otherwise either Wij or -Wij is included in the total depending on whether the voter is 

satisfied or dissatisfied. The winner of the position is then determined by Eq. (2), applied 

with a = O. As !lEi becomes more positive, the likelihood of Plus winning the contest 

increases, and vice-versa. If one takes the limit as T -t 0, Eq. (2) approaches a step 

function corresponding to a deterministic election based only on the sign of !lEi' 

The voter reaction is assessed symmetrically, by probing each of the voter units once. 

When applied to a voter unit i, the summation in Eq. (1) produces a net match score 

between an elected government and the voter's preferences. The match score for the voter 

increases when the state of position j has the same sign as Wij and decreases when the signs 

differ. The voter's reaction is then determined by Eq. (2), with a set as a model parameter. 

A large positive !lEi indicates a particularly good match between a government and a 

voter, and generates a high probability that the voter will be satisfied and adopt Sj = 1; a 

large negative value indicates a particularly bad match and strongly suggests Si = -1; and 

a near-zero value indicates an ambiguous situation and generates the largest probability of 

adopting Si = O. The assumption of bidirectional links with symmetric weights guarantees 

that a voter's behavior during election.s and reactions will be consistent. If all of a voter's 
preferred candidates are elected, for example, then in the zero temperature limit the voter 

cannot be dissatisfied with the government. 

In genetic terms, an election can be viewed as part of a generalized crossover operation. 

If we imagine one satisfied voter in an otherwise apathetic population, the outcome of a 

(sufficiently low temperature) election will be a direct expression of that voter's genotype: 

wherever the weight from the voter to a position is positive Plus will win and vice-versa. If 

two voters are satisfied, some mixture of their genotypes will be expressed by the position 

units, depending on the relative magnitudes of the weights to the positions where the voters 

disagree. This situation bears a close resemblance to the standard crossover operator. 

The difference is that standard crossover determines the winners of disputed positions by 

a random choice of crossover point, whereas the proposed model exploits accumulated 

performance data to bias each decision.2 In the general case the crossover operation is 

hard to see explicitly, considering the effects of many satisfied voters, the dissatisfied vote, 

temperature, and the fact that the crossed-over genotype is not guaranteed admission to 

the population. 

The next steps in the algorithm are straightforward. The states of the position units 

are translated into a binary vector I; the vector is passed to the objective function; a scalar 

value tJ is returned. The function value has no meaning in itself since the possible range 

of function values is unknown. A judgment must be made whether the value is "good" or 

"bad," assuming that whatever is deemed good will be made more probable in the future. 

The expectation level e is used to produce the reinforcement signal 

r= 2 
1 + eJ(J-v)/T,. ~ 1. 

(3) 

2 This statement is too strong if the model using standard crossover also uses inversion, since in 
that case the grouping induced by the crossover point does depend on the past performance of the model, 
as recorded by the inversion operator. Section 4 discusses inversion and crossover further. 
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O. lIliti,tlization: Given unknown function {v = f(I)II E 2Tt ,v E !R}. Select 
model parameters. Create n position units and m voter units. Link each 
position unit to each voter unit. Set all nm link weights Wij = O. Set all 
n + m unit states Sj = O. Set e = O. 

1. Election: Probe each position unit (Eqs. 1 and 2). 
2. RcactioIl: Probe each voter unit. 
3. Outcome: 

3.1. Fitness test: Compute v = f(I). 
3.2. Discount expectations: Compute r (Eq. 3). 
3.3. Apportion credit: Update Wij (Eq. 4). 
3.4. Adjust expectations: Update e (Eq. 5). 

4. Iterate: Go to step 1. 

m > 0 Size of population; number of voters. 
T > 0 Temperature of unit decisions. 
a ~ 0 Apathy window for voter reactions. 
k > 0 Payoff rate. 

Tr > 0 "Temperature" of reinforcement scaling. 
o ::; p < 1 Time constant for function averaging. 

6 ~ 0 Excess expectation. 

Figure 3. Algorithm summary and list of model parameters. 

This employs the same basic sigmoid function used in the unit decision rule, but r is 
bounded by ±1 and is used as an analog value rather than a probability. The' model 
parameter Tr scales the sensitivity around e = v.3 r is used to update the weights 

Wij,Hl = Wij,t + krSiSj (4) 

where k > 0 is the payoff rate. The change to each link weight depends on the product SiSj' 

H the voter unit is apathetic the weight does not change, otherwise either kr or -kr is 
added to the weight, depending if the voter and position units are in the same or different 

states. 

H r is positive, the net effect of this is that the l:J.E of satisfied units becomes more pos
itive and the l:J.E of dissatisfied units becomes more negative, i.e., each active unit becomes 

somewhat less likely to change state when probed. Consistency is encouraged; the incum
bents are more likely to be reelected, the voters are less likely to change tbeir reactions. 

When r is negative the reverse happens. Inconsistency is encouraged; victory margins 

erode, voter reaction becomes more capricious. An updating of weights with positive r is 

called "converging on a genotype," with negative r, "diverging from a genotype." 

In genetic terms, the weight modification procedure both implements reproduction and 

completes the implementation of the crossover operator. Only the crossed-over genotype 
as expressed in the position units is eligible for reproduction, and then only if r > O. 
Otherwise the network diverges, and that genotype decreases its "degree of existence" 

in the population. It is displaced, by some amount, but it is not replaced with other 

3 The precise form of Eq. (3) does not appear essential to the model. Several.variations all searched 
effectively, though they displayed different detailed behaviors. 
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members of the population-the total "voting power" of the population declines a bit 

instead. Intuitively speaking, the space vacated by a diverged genotype is filled with noise. 

The final implementation issue is the computation of the expectation leveL A number 

of workable ways to manipulate 0 have been tried, but the simulations in the next section 

all use a simple backward-averaging procedure 

Bt+l =pOt+ (1- p)(v + 8) (5) 

where 0 ~  p < 1 is the "retention rate" governing how quickly 0 responds to changes in v. 

Just allowing 8 to track v is inadequate; however, for if the network completely converged 

there would be no pressure to continue searching for a better value. A positive value for 

the model parameter 8 avoids this complacency and ensures that a converged network will 

receive more divergence than convergence, and eventually destabilize. 

Figure 3 summarizes the algorithm and lists the seven model parameters. 

3 Behavior 

This section describes preliminary simulations of the election modeL Most of the objective 

functions considered here were explored during the design of the model, rather than being 

chosen as independent tests after the design stabilized. The functions were created to 

embody interesting characteristics Qf search spaces in general. 

All of the simulations described in this paper use the following settings for the model 

parameters 
m=50 

Tr = 1.0 

T= lOn 

p = 0.75 

et = 5n 

8 = 4.0 

k = 2.0 

Note that the temperature and the apathy are proportional to the dimensionality of the 

given parameter space. For convenience, these are called the "standard" settings, but 

significantly faster searching on a function of interest can be produced by fine-tuning the 

parameters. The standard settings were chosen because they produce moderately fast 

performances across the four selected functions, each tested at four dimensionalities. 

The simulations count the average number of function evaluations before the model 

evaluates the global maximum. Two other algorithms were implemented for comparison. 

The first was the following hillclimbing algorithm 

1. Select a point at random and evaluate it. 

2. Evaluate all adjacent points. If no points are higher than the selected point, 

go to step 1. Otherwise select the highest adjacent point, and repeat this step. 

Iterated hillclimbing is a simple-minded algorithm that requires very little memory. 

Its performance provides only a weak bound on the complexity of a parameter space. The 

second algorithm was a basic version of Holland's Rl reproductive plan [10], using only 

simple crossover and mutation. Considering the lack of sophisticated operators in the 

implementation, and the author's inexperience at tuning its parameters, the performance 

of the Rl implementation should be taken only as an upper bound on the achievable 

performance of a simple genetic algorithm.4 

4 The Rl model parameter values were selected after a short period of trial and error on the test 
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3.1 A convex space. Consider the following trivial function: Score 10 points for each 

1 bit. RetUrIl the SUIll. The global maximuJll equals IOn and occurs when all bits are 

turned on. This "one max" function was tested because it can be searched optimally by 

hillclimbing, and the generality of a genetic search is unnecessary. Figure 4 tabulates the 

simulation results for n = 8,12,16,20. As expected, the hillclimbing algorithm found the 

maximum more quickly than did the model, but it is encouraging that on all but the 

smallest case the election model comes within a factor of two of hill climbing's efficiency on 

this convex space. Observations made during the simulations suggest that the relatively 

poorer performance of R1 arose primarily from the occasional loss of one or more critical 

alleles, producing the occasional very long run. Although increasing the mutation rate 

reduced the probability of such anomalies, it produced a costly rise in the length of typical 

runs. 

One max 

n 8 12 16 20 

Method Evaluations performed* 

Hillclimb 31 82 128 198 

Election 73 117 187 302 
Holland Rl 195 674 1807 4161 

• Rounded averages over 25 l"UIllI. 

Figure 4. Comparative simulation results on the "one max" function. In all simulations, the 
performance measure is the number of objective function evaluations performed before the global 
maximum is evaluated. 

3.2 A local maximum. Convex function spaces are very easy to search, but spaces of 
interest most often have local maxima, or "false peaks." Consider this "two max" function: 

Score 10 points for each 1 bit, score ~8 points for each 0 bit, and return the absolute value 

of the sum. This function has the global maximum when the input is alII's, but it also has 
a local maximum when the input is all O's. Figure 5 summarizes the simulation results. 

With this function, a simple hillclimber may get stuck on the local maximum, so multiple 

starting points may be required. 

Two max 

n 8 12 16 20 

Method Evaluation, performed* 

Hillclimb 37 97 186 230 

Election 83 152 194 269 

Holland R1 H3 340 794 1622 

• Rounded averages over 25 runs. 

Figure 5. Comparative simulation results on the "two max" function. 

functions. Using the notation defined in [10J, the values were M = 50, Pc = 1, PI = 0, 1 PM = 0.5, and 
Ct = (1 It )O.25+2/n, where n is the dimensionality of the objective function. Constant offsets were added to 
the functions where necessary to ensure non-negative function values. 
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Nonetheless, on this function also the hillclimber outperforms the model, although only 
by a narrow margin on the larger cases. The mere existence of a local maximum does not 
imply that a space will be hard to search by iterated hillclimbing. The regions surrounding 

the two maxima of the function have a constant slope of 18 points per step toward the 

nearer maximum. The slopes have the same magnitude, so the higher peak must be wider 

at its base. With every random starting point, the hillclimber is odds on to start in the 
"collecting area" of the higher peak, so it continues to perform well. 

3.3 Fine-grained local maxima. Consider the following ''porcupine'' function: Score 
10 points [or each 1 bit and compute the total. If the number of 1 bits is odd, subtract 

15 points [rom the total. Return the total. Every point that has an even number of 1 bits 
is a porcupine "quill," surrounded on all sides by the porcupine's "back"-lower valued 

points with odd numbers of 1 bits. As the total number of 1 bits grows, the back slopes 
upward; the task is to single out the quill extending above the highest point on the back. 

Porcupine 

n 8 12 16 20 

Method Evaluations per/ormed" 

Hillclimb 145 2474 4-1973 -
Election 160 211 241 495 

Holland Rl 163_ ~39 1296 3771 

• Rounded averages over 25 runs. 

Figure 6. Comparative simulation results on the "porcupine" function. 

Unlike the first two functions, the porcupine function presents a tremendously rugged 
landscape when one is forced to navigate it by changing one bit at time. Not surprisingly, 

hillclimbing fails spectacularly here. Figure 6 displays the results. The landscape acts like 
flypaper, trapping the hillclimber after at most one move, and the resulting long simulation 

times reflect the exponential time needed to randomly guess a starting point within a bit 
of the global maximum. (The hillclimber was not run with n = 20 for that reason.) On 
the other hand, the election model gains less than a factor of two over its performance on 

the one max function. The strong global property of the space-the more l's the better, 
other things being equal-is detected and exploited by both genetic algorithms. 5 

Although the porcupine function reduced hillclimbing to random combinatoric search, 

in a sense it cheated to do so, by exploiting the hillclimber's extremely myopic view of 
possible places to move. A hillclimber that considered changing two bits at a time could 

proceed directly to the highest quill. But increasing the working range of a hillclimber 
exacts its price in added function evaluations per move, and can be foiled anyway by using 

fewer, wider quills (e.g., subtract 25 points unless the number of ones is a multiple of 

5 The concept of parity, which determines whether one lands on quill or back, is not detected or 
exploited. All three algorithms continue to try many odd parity points during the search. The general notion 
of parity, independent of any particular pattern of bits, cannot be represented in such simple models; the 
import of this demonstration is that the genetic models can make good progress even when there are aspects 
of the objective function that, from their point of view, are fundamentally unaccountable. 
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three.) Higher peaks may always be just "over the horizon" of an algorithm that searches 

fixed distances outward from a single point. 

3.4 Broad plateaus. The porcupine function was full of local maxima, but they were 

all very small and narrow. A rather different sort of problem occurs when there are large 

regions of the space in which all points have the same value, offering no uphill direction. 

Consider the following "plateaus" function: Divide the bits into four equal-sized groups. 

For each group, if all the bits are 1 score 50 points, if all the bits are 0 score -50 points, 

and otherwise score 0 points. Return the sum of the scores [or the four groups. In a group, 

any pattern that includes both zeros and ones is on a plateau. Between the groups the 

bits are completely independent of each other; within a group only the combined states of 

all the units has any predictive power. When n = 8 there are only two bits in a group and 

the function space is convex, because the sequence 00 -t {OI, 10} -t 11 is strictly uphill. 

However, since each group grows larger as n increases, this function rapidly becomes very 

non-linear and difficult to maximize. 

Plateaus 

n 8 12 16 20 

Method Evaluations per/ormed* 

Hill climb 34 414 2224 13404 

Election 146 392 758 2364 
Holland R1 228 697 2223 8197 

* Rounded averages over 25 runs. 

Figure 1. Comparative simulation results on the "plateaus" function. 

4 Discussion 

The proposed model was developed only recently, and has it has not yet been analyzed 

or tested extensively. Although it would be premature to interpret the model and simula

tions in a very broad scope, a few interesting consequences have been uncovered already. 

This section touches on a number of relationships between the election model and the 

analytic structure of schemata and generalized genetic operators developed by Holland in 

Adaptation in Natural and Artificial Systems (ANAS) [10]. 

Given a population, computational effects related to simple crossover can be achieved 

in many ways. For example, disputed positions could be resolved by random choices 

between the parents, or by appealing to a third genotype as a tie-breaker. Like simple 

crossover, both of these implementations perform the basic task of generating new points 

that instantiate many of the same schemata as the parents. An appropriate crossover 

mechanism interacts well with the other constraints of the model and the task domain. 

For example, the information represented by a DNA molecule is expressed linearly, so the 

sequential ordering of the alleles is critical. In these circumstances, the simple cut-and

swap crossover mechanism is an elegant solution, since it is cheap to implement and it 

preferentially promotes contiguous groups of co-adapted alleles. 

In an unconstrained function optimization task, as little as possible should be presumed 

a priori about how the external function will interpret the alleles. In these circumstances, 
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the sequential bias of the standard crossover mechanism is unwarranted. ANAS proposes 

an i11version operator to compensate for it. The inversion operator tags each allele with 

its position number in terms of the external function, so the ordering of the genotype can 

be permuted to bring co-adapted alleles closer together and therefore shelter them from 

simple crossover. However, if two chosen parents do not have their genotypes permuted in 

the same way, a simple crossover between them may not produce a complete set of alleles. 

ANAS offers two suggestions. If inversion is a rare event, sub-populations with matching 

permutations can develop, and crossover can be applied only within such groups. But then 

information about the linkages between alleles accumulates only slowly. Alternatively, one 

of the parents can be temporarily permuted to match the other parent in order to allow 

simple crossover to work, but then half of the accumulated linkage information is ignored 

at each crossover. 

The proposed model does not use the ordering of the alleles to carry information. 

Linkage information is carried in the magnitudes of the genotype weights, in non-obvious 

ways involving all three phases ~ d  the assumption of symmetric weights. For example, 

the defining loci of a discovered critical schema are likely to be represented by relatively 

large weights on a genotype, since those weights will receive systematically higher net 

reinforcement than the non-critical links. Conversely, relatively large weights to a few 

positions cause the designated alleles to behave in a relatively tightly coupled fashion. 

In the election phase, large weights increase the chance that the alleles will be expressed 

simultaneously and receive reproduction opportunities. In the reaction phase, the same 

large weights increase the chance that the voter will be apathetic when the implied schema 

is not expressed, since the genotype's large weights will tend to cancel. Strongly coupled 

alleles will be disrupted more slowly over successive outcome phases. 

Although it is not discussed in ANAS, subsequent research found it useful to include 

a "crowding factor" that affects how genotypes get selected for deletion to make room for 

a new offspring [4]. The idea is to prefer displacing genotypes that are sin1ilar to the new 

one, thus minimizing the loss of schemata. In the proposed model, note the interaction 

between the reaction phase and the outcome phase. Only active voters are affected by 

weight modification. Since voters tend to be satisfied or dissatisfied when they strongly 

match or mismatch the government, and dissatisfied voters invert the sign of the weight 

modifications, converging on a genotype preferentially displaces similar existing genotypes. 

The representation of genotypes by real-valued vectors instead of bit vectors has 

widespread consequences. One major difference concerns the displacement of genotypes as 

a result of reproduction or crossover. When a bit vector is displaced from a conventional 

population, the information it contained is permanently lost. In contrast, the proposed 

reinforcement operator is an invertible function. Between a constant government and a 

voter, any sequence of positive and negative reinforcements has the same effect as their 

sum. Observations revealed that the election model exploits this property in an unan

ticipated and useful way. The happenstance election of a surprisingly good government 

often leads to a run of reelections and positive .reinforcements, occasionally freezing the 

network solid for a few iterations, until the expectation level catches up. If one examines 

the signs of the genotype weights at such a point and interprets them as boolean vari

ables, the population often looks nearly converged. But the expectation level soon exceeds 

any fixed value, and weaker negative reinforcements begin to cancel out the changes and 
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to regenerate the pre-convergent .diversity. During such times, the government positions 

with the smallest victory margins are the first to begin changing, which causes a period 

of stochastic local search in an expanding neighborhood around the convergence point. If 

further improvement is discovered, the network will frequently converge on it, but often 

the destabilization spreads until the government collapses entirely and a period of wide

ranging global search ensues. It may be that much of the election model's edge over the 

Rl algorithm on the strict maximization-time performance metric used in this paper arises 

from this tendency to hillclimb for a while in promising regions of the parameter space, 

without irrevocably converging the population. 

5 Conclusion 

The architectural assumptions of the model-the unit and link definitions, the decision 

rule, and the weight update rule-were first explored for reasons unrelated to genetic algo

rithms. The assumption of symmetric links between binary (±1) threshold units was made 

by Hopfield [11] because he could prove such networks would spontaneously minimize a 

particular "energy" function that was easily modifiable by changing link weights. Hopfield 

used the modifiable "energy landscape" to implement an associative memory. 

Hopfield 's deterministic decision rule was recast into a stochastic form by Hinton & 
Sejnowski [8] because they could then employ math-ematics from statistical mechanics 

to prove such a system would satisfy an asymptotic log-linear relationship between the 

probability of a state and the energy of the state. 0/1 binary units were used. They found 

a distributed learning algorithm that would provably hillclimb in a global s t a t i s t i ~ a l  error 
measure. They used the system to learn probability distributions. 

The weight update rule was investigated by the author because it provided a sim

ple method of adjusting energies of states based on a reinforcement signal for a back
propagation credit assignment algorithm [1]. ±1 binary units were used. The connectionist 

network was used as a modifiable evaluation function for a game-playing program. The 

system learned to beat simple but non-trivial opponents at tic-tac-toe. Observations made 
during simulations raised the possibility that genetic learning was occurring as the system 

evolved. In that work, the government corresponds to the game board, and a voter, in 

effect, specifies a sequence of moves and countermoves for an entire game. The model fre

quently played out variations that looked like crossed-over "hybrid strategies." The rapid 

spread through the units of a discovered winning strategy was suggestive of a reproduction 

process. 

The research reported here focused on that possibility. The task was simplified to avoid 

problems caused by legal move constraints, opposing play, and delayed reinforcement. 

Given an appropriate problem statement, the basic election/reaction scheme seemed to 

be the simplest approach. Extending the unit state and decision rule to three values 

occurred to the author while developing the political analogy. In theory, apathy could 

be eliminated, because a unit with a near-zero AE would pick +1 or -1 randomly, so 

rewards and punishments irrelevant to that unit's genotype would cancel out in the long 

run. In practice, explicitly representing apathy improves the signal-to-noise ratio of the 

reinforcement signal with respect to the genotype. The unit is not forced to take a position 

and suffer the consequences when it looks like a "judgment call." The performance of the 

algorithm is generally faster and more consistent, but a percentage of the population is 

134 



ignored at each election. For the large populations implied by massively parallel models, 
it appears to be an attractive space/time trade-off. 

The connectionist model presented here has a much more sophisticated genetic de

scription than was anticipated at the outset. Only reproduction, crossover and mutation 
were intentionally "designed into" the model. It was a surprise to discover that the model 

performed functions reminiscent of other genetic operators such as inversion and crowding 

factors. As an emergent property, the model displays both local hillc1imbing and global 
genetic search, shifting between strategies at sensible times. More experience with the pro
posed model is needed, but a crossing-.over of genetic and connectionist concepts appears 

to have produced a viable offspring. 
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Job Shop Scheduling with Genetic Algorithms 

Dr. Lawrence Davis 

Bolt Beranek and Newman Inc. 

1. INTRODUCTION 

The job shop scheduling problem is hard to solve well, for reasons outlined by Mark 

Fox et all. Their chief point is that realistic examples involve constraints that cannot be 

represented in a mathematical theory like linear programming. In ISIS, the system that 

Fox et al have built, the problem is attacked with the use of multiple levels of abstraction 

and progressive constraint relaxation within a frame-based representation system. ISIS is a 

deterministic program, however, and faced with a single scheduling problem it will produce 

a single result. Given the vast search space where such unruly problems reside, the chances 

of being trapped on an inferior local minimum are good for a deterministic program. In 

this paper, techniques are proposed for treating the problem non-deterministically, with 

genetic algorithms. 

2. JOB SHOP SCHEDULING: THE PROBLEM 

A job shop is an organization composed of a number of work stations capable of 

performing operations on objects. Job shops accept contracts to produce objects by putting 

them through series of operations, for a fee. They prosper when the sequence of operations 

required to fill their contracts can be performed at their work centers for less cost than 

the contracted amount, and they languish when this is not done. Scheduling the day-to

day workings of a job shop (specifying which work station is to perform which operations 

on which objects from which contracts) is critical in order to maximize profit, for poor 

scheduling may cause such problems as work stations standing idle, contract due dates not 

being met, or work of unacceptable quality being produced. 

The scheduling problem is made more difficult by that fact that factors taken into 

account in one's schedule may change: machines break down, the work force may be 

unexpectedly diminished, supplies may be delayed, and so on. A job shop scheduling 

system must be able to generate schedules that fill the job shop's contracts, while keeping 

profit levels as high as practicable. The scheduler must also be able to react quickly to 

changes in the assumptions its schedules are based on. 

In what follows, we shall consider a simple job shop scheduling problem, intended to 

be instructive rather than realistic, and show how genetic algorithms can be used to solve 

it. 

3. SJS-A SIMPLIFIED JOB SHOP 

SJS Enterprises makes widgets and blodgets by contract. There are six work stations 

in SJS. Centers 1 and 2 perform the grilling operation on the raw materials that are 

delivered to the shop. Centers 3 and 4 perform the filling operation on grilled objects, 
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and centers 5 and 6 perform the final milling operation on filled objects. \Vidgets and 

blodgets go through these three stages when they are manufactured. Thus, the sequence 

of processes to turn raw materials into finished objects is this: 

RAW MATERIALS - GRILLING - FILLING - MILLING - CUSTOMER. 

SJS has collected a number of statistics about its operations. Due to differences in its 

machinery and personnel, the expected time for a work station to complete its operation 

on an object is as follows, in minutes: 

WORK STATION WIDGETS BLODGETS 

1 5 15 

2 8 20 

3 10 12 

4 8 15 

5 3 6 

6 4 8 

The cost of running each of the work stations at SJS is as follows, per hour: 

WORK STATION IDLE ACTIVE 
1 10 70 

2 20 60 

3 10 70 

4 10 70 

5 20 80 

6 20 100 

In addition, SJS has overhead costs of 100 units per hour. 

Finally, it requires some time for a work station to change from making widgets to 

making blodgets (or vice versa). The change time for each station is: 

WORK STATION 

1 

2 

3 

4 

5 

6 

4. A SCHEDULING PROBLEM 

CHANGE TIME 

30 

10 

20 

20 

9 

18 

Suppose SJS is beginning production with two orders, one for 10 widgets and one 

for 10 blodgets. How should it be scheduled so as to maximize profits from the point at 
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which operations begin, to the point at which both orders are filled? Let us consider three 

schedules that address this problem. 

In schedule 1, individual work stations are assigned their own contracts. We notice 

that the production of blodgets takes longer than the production of widgets, and so we 

make widgets with centers 2, 4, and 6, and make blodgets with centers 1,,3, and 5. IT the 

shop follows this schedule, the various work stations are occupied as follows: 

STATION CONTRACT WORKING WAITING HRS-WORKED COST 

1 blodgets 0-150 30 3 210 

2 widgets 0-80 40 2 140 

3 blodgets 15-162 60 3 210 

4 widgets 8-88 40 2 150 

5 blodgets 27-168 120 3 240 

6 widgets 16-92 80 2 220 

In simulating the operation of the job shop under this plan, we note that some work 

stations spend a good deal of time waiting for objects to work on. Work stations 5 and 6, 

for example, spend from one to two hours waiting because they are faster than the centers 

that feed objects to them. It is possible to let them stand idle for the first hour of the day 

without delaying the filling of the orders, yielding a second schedule with cost 970, a 17 

per cent reduction over the first schedule, achieved by giving these work stations an initial 

idle hour. A different way to cut down on the waiting time would be to leave work station 

6 idle throughout the day, performing all operations with work station 5 during the second 

and third hours of the day. Work station 5 must start work on blodgets when it begins, 

switch to widgets later on and finish them, then switch back to making blodgets at the 

end. The cost of this schedule is 950, an 18.8 per cent reduction over the direct cost of the 

first schedule. 

It is interesting to note that a deterministic system would be likely to try one or 

the other of the two optimizations on the first schedule, but not both. Each of these 

optimizations brings the situation to a local minimum in costl and advance predictions of 

which such optimization will be best appear difficult to make. 

5. AN AMENABLE REPRESENTATION OF THE PROBLEM 

If we consider a schedule to be a literal specification of the activity of each work sta

tion, perhaps of the form "Work station w performs operation 0 on object x from time 

t1 to time t2," then one will be caught in a dilemma if one applies genetic techniques to 

this problem. Either one will attempt to use CROSSOVER operations or not. If so, their 

use will frequently change a legal schedule into an illegal one, since exchanging such state

ments between chromosomes will cause operations to be ordered for which the necessary 

previous operations have not been performed. As a result, one would acquire the benefits 

of CROSSOVER operations at the cost of spending a good deal of one's time in a space 

of illegal solutions to the problem. If one foregoes CROSSOVER operations, however, one 
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loses the ability to accelerate the search process, the very feature of the genetic method 

that gives it its great power. 

There is a solution to this dilemma2 • It is to use an intermediary, encoded representa

tion of schedules that is amenable to crossover operations, while employing a decoder that 

always yields legal solutions to the problem. Let us consider the scheme of representations 

and decoders that generated the second and third schedules above. 

A complete schedule for the job shop was derived from a list of preferences for each 

work station, linked to times. A preference list had an initial member-a time at which 

the list went into effect. The rest of the list was made up of some permutation of the 

contracts available, plus the elements "wait" and "idle". The decoding routine for these 

representations was a simulation of the job shop's operations, assuming that at any choice 

point in the simulation, a work station would perform the first allowable operation from 

its preference list. Thus, if work station 5 had a preference list of the form (60 contract! 

contract2 wait idle), and it was minute 60 in the simulation, the simulator looked to see 

whether there was an object from contract 1 for the work station to work on. If so, that 

was the task the work station was given to perform. If not, the simulator looked to see 

whether there was an object from contract 2 to work on. If so, it set the work station to 

change status to work on contract 2, noting the elapsed time if contract 1 had been worked 

on last, and then set it to work on the new object. If not, the station waited until an object 

became available. By moving the "wait" element before contract2, one could cause the 

work station to process objects from contract 1 only, never changing over to contract 2. 

Representing the problem in this way guarantees that legal schedules will be produced, 

for at each decision point the simulator performs the first legal action contained on a work 

station's list of all available actions. The decoding routine is a projected simulation, and 

the evaluation of a schedule is the cost of the work stations, performing the tasks derived 

in the simulation. As we shall see, the simulation decoder also provides some information 

that will guide operations to perform useful alterations of a schedule. 

6. DETAILS OF OPERATION 

The program used a population sized 30, and ran for 20 generations. The problem 

was tried 20 times. It converged on variations of Schedule 2 14 times and a variation of 

Schedule 3 6 times3 • The operations used were derived from those optimizations made by 

us as we tried to solve the problem deterministically: 

RUN-IDLE: If a work station has been waiting for more than an hour, insert a preference 

list with IDLE as the second member at the beginning of the day, and move the previous 

initial list to time 60. The probability of applying this operation was the percentage of 

time the work station spent waiting, divided by the total time of the simulation. 

SCRAMBLE: Scramble the members of a preference list. Probability was 5 per cent 

for ea.ch list at the beginning of the run, tapered to 1 per cent at the last generation. 

CROSSOVER: Exchange preference lists for selected work stations. Probability was 40 

per cent at the beginning of the run, tapered to 5 per cent at the last generation. 

Each member of the initial population associated a list of five preference lists with 

each work station. The preference lists were spaced at one-hour intervals, and each was a 

random permutation of the legal actions. 
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The evaluation function summed the costs of simulating the run of the system for five 

hours with the schedule encoded by an individual. (Although SJS overhead costs are not 

included in the discussion of the three schedules earlier, the evaluation function included 

them.) If, at the end of five hours, the contracts were not filled, 1000 was added to the 

run costs. 

7. CONCLUDING OBSERVATIONS 

The example discussed above is much simpler than those one would encounter in 

real life, and the range of operations employed here would have to be widely expanded 

if a realistic example were approached. In addition, the system here would have to be 

extended to handle the sorts of phenomena that the ISIS team has handled: establishing 

connections between levels of abstraction, finding useful operations, and building special 

constraints into the system, for example. 

My belief is that these things could be done if they are successfully done by a deter

ministic program, for it has been our experience that a quick, powerful way to produce an 

genetic system for a large search problem is to examine the workings of a good deterministic 

program in that domain. Wherever the deterministic program produces an optimization 

of its solution, we include a corresponding operation. \Vherever it makes a choice based on 

some measurement, we make a random choice, using each option's measurement to weight 

its chances of being selected. The result is a process of mimicry that, if adroitly carried 

out, produces a system that will out-perform the deterministic predecessor in the same 

environmental niche. 

In the case of the schedules produced above, the genetic operators were just those 

optimizations of schedules that seemed most beneficial when we attempted to produce 

good schedules by hand. The crudeness of the approach stems from our lack of any 

fully specified deterministic solution to more realistic scheduling problems. When fuller 

descriptions of knowledge-based scheduling routines are available, it will be interesting to 

investigate their potential for conversion into genetic scheduling systems. 

FOOTNOTES 

1. "ISIS: A Constraint-Directed Reasoning Approach to Job Shop Scheduling," Mark 

S. Fox, Bradley P. Allen, Stephen F. Smith, Gary A. Strohm, Carnegie-Mellon University 

Research Report, 1983. 

2. The strategy of encoding solutions in an epistatic domain for operation purposes, 

while decoding them for evaluation purposes, was worked out and applied to a number of 

test cases by a group of researchers at Texas Instruments, Inc. The group included me, 

Nichael Cramer, Garr Lystad, Derek Smith, and Vibhu Kalyan. 

3. A number of variations in the scheduling that made no difference in the final 

evaluation have been omitted in this summary. 
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Design may be viewed abstractly as a problem of optimisation in the presence of 

constraints. Such problems become interesting once the space of putative 

solutions is too large to permit exhaustive search for an optimum, and the payoff 

function too complex to permit algor1thmic solutions. Evolutionary algorithms 

[Holland 1975] provide a means of gUiding the search for good solutions. These 

algor1thms may be viewed as embodying an informal heuristic for problem solving 

along the lines of 

·To find a better strategy try 

variat ions on what has worked 

well in the past: 

Here, a ·strategy- 1s an attempt at a solution. A strategy w1ll generally not 

address all the constraints imposed by the problem. The algor1thms we are 

considering guide the search by comparing strategies. We represent this 

comparison by the relation 

a beats b 

(which will usually be be a partial order, but need not be total). We call strategies 

which satisfy all the constraints of the problem ·solutions·. In general, solutions 

should beat other strategies and, of course, some solutions will beat others. 

Abstractly, the algorithms merely search for strategies which are well-placed in 

this ordering. 

Many problems in silicon design involve intractable optimisation problems, for 

example, partitioning, placement, PLA folding and layout compaction. We say a 
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problem Is intractable when the combinatorial complexity of the solution space 
for the problem makes exhaustive search impossible, and the varied nature of the 
constraints which must be satisfied makes ft unltkely that there Is a constructive 
algorithmic solution to the problem. Automatic solution of such problems reQuires 
efficient search of the solution space. Simulated annealing has been applied to the 
first three problems [Kirkpatrick et a/. 19831, branch and bound techniQues have 
been appJied to layout compaction (Schlag et a/. 1983]. In this paper we report on 
the application of a genetiC algorfthm to layout compaction. 

The first prototype solved a highly simplified version of the problem. It produced 
layouts of a given faml1y of rectangles under the constraint that no two shall 
overlap, with cost given by the area of a bounding box. A more real1sttc prototype 
deals with the layout of a family of rectangular modules with a single level of 
Interconnect. These prototypes allow the designer to add his ideas to the evolving 
population of layouts and thus supplement rather than replace hts experttse. 

Symbolic Layout. 

A circuit diagram conveys connectivity Information: 

ef1 efo 

ef1 efo 

To manufacture the circuit this must be tranformed to a representation in terms 
of layout elements, each layout element must be assigned an absolute mask 
position. A layout diagram conveys this mask-making information. The passage 

from a circuit diagram to a layout may be divided into three stages: firstly the 

topology (relative posit10ning of layout elements) of the layout 1s des1gned and 
represented by a symbolic layout, then a mask level is assigned to each wire 1n 
the circuit - the design is now represented by a stick diagram, finally the mask 
geometry (absolute size and positions) is created. Engineers commonly use these 
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intermediate notations to represent the intermediate stages in the design process. 
Here is a mask layout for our circuit: 

Here 1s a symbol1c vers10n of this JaY.0ut: 

~3 

<1>1 

The corresponding stick diagram is: 

143 

<1>1 

<1>1 



A symbolic layout is a representation of a circuit design which includes some 

layout information. The symbollc layout represents a number of design decisions 

on the relative placement of circuit elements. A stick diagram may be regarded as 

a symbolic layout with a greater variety of symbols. 

The procedure leading from a symbolic layout to a mask layout is a form of 

compaction. In general, there are many realisations of a given symbolic layout. 

The aim of compaction is to produce a layout respecting the constraints implicit 

in the symbolic layout whlle optimising performance and yield. Current compaction 

algorithms require the designer to provide a layout as input. Compaction usually 

consists of the modification of this layout by sliding elements closer together 

whlle retaining the topology. Clearly, the order in which elements are moved 

affects the result. Most algorithms simply compact in each coordinate direction in 

turn. 

Modem designs are modularised hierarchically. The process of symbolic layout and 

compaction may occur at any level of this hierarchy. The example we have used for 

illustration above is a leaf cell (a dynamic N'1OS shift register cell) from the 

bottom level of the hierarchy. Leaf cel1 layout provides great opportunities for 

area reduction and yield enhancement, as these cells are replicated many times 

and any small improvements at this level have a magnified effect on the chip. 

Optimising leaf cel1 layout reQutres awareness of many interacting constraints 

and complex cost functions (for example connectivity constraints given by the 

circuit design, geometriC constraints given by the process design rules, and the 

cost functions aristng from performance requirements and knowledge of yield 

hazards). Because of this, constructive algorithmic solutions to this problem have 

not proved efficient. TraditionaJ1y, this area of design has been left to human 

experts. 

We hope to apply genetiC algorithms to leaf-cell compaction, and have 

implemented two prototypes to explore the appJ1cablltty of these methods in this 

domain. 
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Genetjc Algorithms, 

Genetic algorithms are applicable to problems whose solution may be arrived at by 
a process of successive approximations. This means that we need to be able to 
modIfy strategIes In such a way that modificatIons of good strategies are likely to 
be better than randomly chosen strategIes. A sImple heuristIc In thIs setting 
would be to take a strategy, a, and randomly generate a modification, M(a), of It 
which may, or may not, be accepted on a probablJlstlc basis, An algorithm 
embodying this Idea Is Simulated anneaJ1ng [Kirkpatrick et al. 1983]. The 
algorithm procedes by starting with a strategy and repeatedly modifying It In this 
way, varying the acceptance procedure according to the value of a varIable called 
temperature, If M(a) beats a, the modificatIon Is accepted. If a beats M(a), the 
modification may be accepted (the probablJlty of this Increases with temperature 
and decreases If M(a) Is badly beaten)' The algorithm Is run, starting at a hIgh 
temperature which Is gently lowered, This simulates the mechanIsm whereby a 
physical system, gently cooled, tends to reach a low-energy eQul1brlum position, 
GenetiC algorithms apPly where the strategIes have more structure, (In fact, In 
most applicatIons of sImulated anneal1ng, thIs extra structure Is avaIJableJ 
Strategies are represented as conjunctions of elementary restrictIons on the 
search space, or decIsIons, The evolutIonary algorIthm produces a populatIon or 
strategies, rather than a Single strategy, The Idea Is that by combining some parts 
of one good strategy with some parts of another, we are likely to produce a good 
strategy. Thus In generating the progeny of a population, we allow not only 
modifications or mutation I but also reproduction which combines part of one 
strategy with part of another. The basic step Is to take a population and produce a 
number or progeny USing a combination of mutation and reproduction. The progeny 
compete with the older generation, and each other, for the right to reproduce. 

If reproduction Is to maintain gOOd performance, we need to be able to divide 
strategies In such a way that decisions which cooperate are likely to stay 
together, This Is accompl1shed In an Indirect and subtle manner, Strategies are 
represented as strings of decisions, The chIJd, R(a.b), or a and b Is generated by 
randomly splitting a and b and Joining part or one to part or the other. Thus, 
deCisions whIch are close together In the string are likely to stay together. To 
allow cooperat1ng decIsIons to become close together, we Include InversIons 
(which merely choose some substring and reverse It) among the possible 
mutations. These act together with reproduction and selection, to move decIsions 
which cooperate closer to each other. 
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Nothing analogous to the temperature used In simulated annealtng appears 
expl1cltly in the genetiC algorithm. The l1kelthood that a nascent Individual will 
survive to reproduce depends on the degree of competition it experiences from the 
rest of the population. As the population adapts, the competition hots up -which 
has the same effect as the cooHng In the simulation of anneaHng. 

Although genetic algorithms may be seen as a generalisation of simulated 
anneal1ng, mutation plays a subsiduary role to reproduction. The population at any 
generation should be viewed as a reposttory of information summarizing the 
results of previous evaluations. Individuals which perform well survive to 
reproduce. Reproduction acts to propagate combinations of decisions occuring in 
these individuals. The better an individual performs, the longer it will survive and 
the more chances it has to reproduce. The relative frequencies with which various 
groups of decisions occur In the population record the degree to which they have 
been found to wort< well together. Holland has shown that (under appropriate 
statistical assumptions) the effect of the genetiC algorithm is to use this 
Information to effect an optimal allocation of trials to the various combinations 
of genes. 

Agglyjng the genetic algorithm to corngactjon. 

The genetiC algorithm evolves populations of Individuals. In our Implementation, 
each Individual Is characterised by a chromosome which Is a string of genes. The 
length of chromosomes Is not fixed. New Individuals are produced by a stochastic· 
mix of the classic genetiC operators: crossover, mutation and Inversion. Crossover 
picks two Individuals at random from the population, randomly cuts their 
chromosomes and splices part of one with part of the other to form a new 
chromosome. Mutation picks an Individual from the population and, at a randomly 
chosen number of pOints In Its chromosome, may delete, create or replace a gene. 
Inversion reverses some substring of a randomly selected chromosome. 

A 51mp1e Layout problem 

The layout problem addressed by our first prototype may be thought of as a form of 
2-dlmenslonal blnpacklng: A col1ectlon of rectangles Is to be placed In the plane 
to satisfy certain design rules and minimise some cost function. 
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The simplest version of this problem (the one we address) has rectangles of flxed 

sizes, the design rule that distinct rectangles should not overlap, and cost given 

by area of a bounding box. This version of the problem Is already intractable: 

Suppose we satisfy the constraint that the distinct rectangles, P,Q, should not 

overlap, by stipulating that one of the four elementary constraints 

p above Q 

p below q 

p 1efLof q 

p righLof q 

Is satisfied. Then, for a problem with n rectangles, we have N = n2 - n pairs 

and, 3 priori, 4N elements In our search space. In fact, this estimate of the size 

of the problem Is unreasonably large, there are ways of reducing the search space 

significantly; for example, "branch and bound" procedures have been used [Schlag 

et 3/. 1983]. 

Layout Strategies. 

We consider layout strategies which consist of consistent lists of elementary 

constraints (as above). Given such a I1st, the rectangles are placed in the first 

Quadrant of the plane as close to the origin as is consistent with the I1st of 

elementary constraints. (The procedure which Interprets the constraints is very 

unintelligent. For example, it Interprets 'p above q' by ensuring that the 

y-coordinate of the bottom of p Is greater than that of the top of Q, even If p is 

actually placed far to the right of q (because of other constraints). Any 

Inconsistent l1sts of constraints produced by the genetiC operators are discarded. 

Select jon criterja 

Populat1ons of consistent lists of constraints are evolved using various orderings 

for selection. When defining a selection criterion, various conflicting factors must 

be addressed. For example, our Simplest criterion attempts f1rstly to remove 

deSign-rule violations and then to reduce the area of the layout. Strategies with 

fewer violations beat those with more and, for those with the same numberof 

violations, strategies with smaller bounding boxes win. This simple prioritising of 

concerns led to the generation of some rather unpromising strategies; while the 

selection criterion was busy removing design rule violations, for example, any 
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strategy with few such violations (compared to the current population norm) was 

accepted. Typically, these would have large areas and redundant constraints. The 

algorithm would later have to spend time refining these crude attempts. In an 

attempt to mitigate this effect, we added a further selection, favouring shorter 

chromosomes all other things being equal. Smith has pOinted out that 

implementations of the genetiC algorithm allowing variable length chromosomes 

tend to produce ever longer chromosomes (as chromosomes below a certain length 

are selected against). We did not find this an overwhelming problem as longer 

chromosomes were more l1kely to be rejected as inconsistent by the evaluation 

function. Nevertheless, we did find that the performance of the algorithm was 

improved by introducing a se lect ion favouring shorter chromosomes. 

We also experimented with trade-offs between the various criteria, established by 

computing a composite score for each strategy and letting the strategy with the 

better score win. We found that the genetiC algorithm was remarkably robust in 

optimising the various scoring functions we tried. However, the results were often 

unexpected; the algorithm would find ways of exploiting the trade-offs provided in 

unanticipated ways. We have not yet found a selection criterion of this type which 

works uniformly well, over a range of examples. However, by tuning the selection 

criterion to the example, good solutions have been obtained. 

A better way of combining our various concerns was found. Rather than address the 

concerns serially, or try to address all the concerns at once, we select a concern 

randomly each time we have a selection to make. A number of predicates for 

comparing two individuals were programmed. (For example, comparing areas of 

bounding boxes, comparing areas of design rule violations, comparing the areas of 

rectangles placed,) Each time we are asked to compare two individuals, we 

non-deterministically choose one of these criteria and apply it, ignoring the 

others. This works surprisingly well. It is easy to code in new criteria and to 

adjust the algorithm by changing the relative frequencies with which the criteria 

are chosen. The resulting populations show a greater variability than with 

deterministic selection, and alleles which perform weJJ in some respects, but 

would have been selected out with our earller deterministic approach, are 

retained. 

Results. 

Most of our experiments with this prototype have been based on problems with a 

large amount of symmetry, for which it is easy (for us) to enumerate the optimal 

solutions. If we actually wanted to solve these problems, other approaches 
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expl01t1ng the symmetr1es available would certainly be more efficient. However, 

for the purpose of evaluating the performance of the genetiC algorithm, we claim 

these examples are not too misleading. The algorithm is not provided with any 

knowledge of the symmetries of the problem nor of the ar1thmetical relationships 

between the sizes of the rectangles. For the purposes of evaluating the 

appl1cabil1ty of the genetiC algorithm to layout compaction, the prototype 1s 

probably pessim1stic. Real layout problems are far more constra1ned (by, for 

example, connectivity constraints). This not only reduces the size of the search 

space per se, but also appears to 10caJ1se the interdependence of var10us genes 

mak1ng the problem more su1table for the genetic algorithm. 

A na1ve analys1s of a very simple example is 1nstructive. The example consists of 

six rectangles, three 3 x 1 (horizontal) and three 1 x 3 (vertical). A minimal 

Solutlon of this problem was found (conslstently) ln under 50 generations with 20 

progeny per generation (1000 pOints of the search space evaluated). 

A solut10n to th1s problem must say how each of these rectangles Is constrained. 

both horizontally and vertically. Thus the search space has 612 (about 2 x 109) 

pOints. The problem has 8 basic solut10ns and a symmetry group of order 36. There 

are about 7.5 x 106 polnts/solutlon. Of these. we only examlne some 1 oJ. 

Representing Layout. 

Our first prototype deals with a problem which has l1ttle direct practical 

significance for VLSI layout. (However, Rob Holte has pOinted out that schedul1ng 

problems from operat10ns research might be represented by minor variations on 

our prototype problem.) As a next step towards a practical layout tool, we have 

Implemented a system which compacts a simple form of symbol1c layout. The 

problem is to formalise the constraints lmpl1c1t 1n the symbolic layout, and to 

flnd a representation, suitable for the genetiC algorithm, for layout strategies. 

We consider a symbolic layout of blocks connected by wires. The rectangles 

(blocks) are of fixed size and may be translated but not rotated. The 

Interconnecting lines (wires) are of flxed width but variable length. The 

interconnections shown must be maintained, and no others are al1owed. In addition, 

there are design rules which prohibit unconnected pairs of tiles (wires or blocks) 

from be1ng placed too close together. 
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This form of the symbolic layout problem was introduced by [Schlag et a/. 1983]. 

Here Is their example of a simple symbolic layout: 

I 

L, 

We represent the problem at two levels: 

A surface level deals wtth tiles of three kinds - blocks, horizontal 

wires and vertical wires. In addition to evolving layout constraints 

deaHng with the relative positions of tlles (above, right-of etc. as 

before), we use a fixed 11st of structural c o n s t r a i n t s ~  to represent 

the information In the symboJic layout, and fundamental 

constraints whtch represent the size Hmttat ions on t lles. 

Structural constraints have the following forms 

v crosses h ~  N b v, S b v, E b h ~  W b h 
where v, h are vertical and horizontal wires and b is a block. These 

constraints aJJow us to stipulate which wires cross (and hence are 

connected) and which wires connect to which edges (North, South, 

East or West) of which blocks. 

At a deeper level, unseen by the user, the problem Is represented in 

terms of the primitive layout elements, north b, south b, east b, 

west b, left h, right h, y_posn h, top v, btm v, x.._posn v, whose names 

are self-explanatory. For each tile, we generate a Jist of fundamental 
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constraints expressing the relationship between the primitive layout 
elements arising from it. This representation allows both blocks and 
wires to stretch. 

The example above is represented by declaring the widths of the wires and sizes 
of the blocks and then specifying the foJlowing list of constraints. (We use a LISP 
J1st syntax as it is more widely famiJ1ar, actuaJly, our implementation is written 
in MlJ: 

«E 81 H2) 
(crosses V3 H2) 
(crosses V3 H 3) 
(crosses V4 H3) 
(N 84 V4) 
(W 85 H3) 

(S 61 VO 

(crosses V 1 H 1 ) 
(crosses V2 H 1 ) 
(N 62 V2) 

(E 82 H5) 
(W 63 H5) 

(S 84 V6) 
(crosses V6 H4) 
(crosses V5 H4) 
(N 83 V5) 

(S 85 V7) 

(N 86 V7» 

Again, we evolve lists of layout constraints. These are compiled, together with the 
fixed structural and fundamental constraints representing the symbolic layout to 
give graphs of constraints on the primitive layout elements, whose positions are 
thus determined. The number of deSign-rule violations and the area of the 
resulting layout are again used to select between rival strategies. Solutions to 
this problem were found in around 200 generations of 20 progeny, and this was 
reduced to around 150 generations when the algorithm was given a few ·hints· in 
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the form of extra constraints. Watching the evolving populations showed that 

progress was rapid for around 50 generations. Thereafter, the algorithm appeared 

to get stuck for long periods on local minima (in the sense that one configuration 

would dominate the population). This lack of variation in the population reduced 

the usefulness of crossover. When mutation led to a promising new configuration, 

there would be a period of experimentation leading rapidly to a new local 

minimum. This might suggest that either the population size (100) or the 

probabllity of mutation being used as an operator (0.1) is too small. We have not 

yet experimented with variations on these parameters. We think that better 

solutions would be either to introduce a further element of competition into the 

genetiC algorithm by penal1slng configurations which become too numerous 

(implementing this is problemaicaJ), or to evolve a number of populations allowing 

a limited degree of -intermarriage- (We are currently implementing the latter 

approach. If it is successful it will be a good candidate for parallel 

implementation.) 

Conclusjons. 

The genetiC algorithm may be viewed as a (non-deterministic) machine which Is 

programmed by supplying It with a selection criterion - an algorithm for 

comparing two 11sts of constraints. We have experimented with various selection 

criteria based on combinations of the total Intersection area, I, of overlap

Involved In deSign-rule vIolations, and the area, A, of a bounding rectangle. 

ExperIments were made to compare various performance criteria based on 

combinations of the number of deSign-rule violations, and the area of a bounding 

rectangle. From our experience with the prototype, It appears that the choice of a 

selection criterion Is an essential difficulty In applying the genetic algorithm to 

layout. The problem Is that we must evolve populations of partial solutions 

(strategies), whl1e the optimisation task Is dertned In terms of a cost function 

defined on layouts (solutions). To extend a (technology Imposed) cost-function, 

defined on solutions, to the space of strategies, In such a way that the genetiC 

algorithm wt11 produce a solution (rather than Just a high-scoring strategy), Is a 

non-trivial task. 

We Intend to experiment with our second prototype In various ways before going on 

to Implement a -rear system deal1ng with deSign-rules for a practical multi-layer 

technology. We will continue to experiment with selection criteria and we are 
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Implementing the idea of having several weakly interacting populations running in 

parallel, described above. We also intend to integrate other, rule-based, methods 

with the genetic algorithm, automating the provision of ·hints·. Thus, a number of 

suggestions for strategies would be generated and passed to the genetic algorithm 

which would then explore combinations and variations of these. 
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INTRODUCTION 

We start this paper by making several 
seemingly not-too-related observations: 

1) Simple genetic algorithms work well in 
problems which can be coded so the 
underlying building blocks (highly fit, 
short defining length schemata) lead to 
improved performance. 

2) There are problems (more properly, 
codings for problems) that are GA-Hard 
--difficult for the normal reproduc
tion+crossover+mutation processes of the 
simple genetic algorithm. 

3) Inversion is the conventional answer 
when genetic algorithmists are asked how 
they intend to find good string order
ings, but inversion has never done much 
in empirical studies to date. 

4) Despite numerous rumored attempts, the 
traveling salesman problem has not 
succumbed to genetic algorithm-like 
solution. 

Our goal in this paper is to show that, 
in fact, these observations are closely 
related. Specifically, we show how our 
attempts to solve the traveling salesman 
problem (ISP) with genetic algorithms have 
led to a new type of crossover operator, 
partially-mapped crossover (PMX) , which 
permits genetic algorithms to search for 
better string orderings while still searching 
for better allele combinations. The 
partially-mapped crossover operator combines 
a mapping operation usually associated with 
inversion and subsequent crossover between 
non-homologous strings with a swapping 
operation that preserves a full gene comple
ment. Ibe resultant is an operator which 
enables both allele and ordering combinations 
to be searched with the implicit parallelism 
usually reserved for allele combinations in 
more conventional genetic algorithms. 

In the remainder, we first examine and 
question the conventional notions of gene and 
locus. Ibis leads us to consider the mechan
ics of the partially-mapped crossover opera
tor (PMX). Ibis discussion is augmented by 
the presentation of a sample implementation 
(for ordering-only problems) in Pascal. 
Next, we consider the effect of PMX by 
extending the normal notion of a schema by 
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introducing the o-schemata (ordering 
schemata) or locus templates. This leads to 
siJnple counting arguments and survival 
probability calculations for o-schemata under 
PMX. these results show that with high 
probability, low order o-schemata survive PMX 
thus giving us a desirable result: an 
operator which searches among both orderings 
and allele combinations that lead to good 
fitness. Finally, we demonstrate the effec
tiveness of this extended genetic algorithm 
consisting of reproduction+PMX, by applying 
it to an ordering-only problem, the traveling 
salesman problem (ISP). Coding the problem 
as an n-permutation with no allele values, we 
obtain optimal or very near-optimal results 
in a well-known 10 city problem. Our dis
cussion concludes by discussing extensions in 
problems with both ordering and value consi
dered. 

IHE CONVENtIONAL VIEW OF POSIIION AND VALUE 

In genetic algorithm work we usually 
take a decidely Mendelian view of our arti
ficial chromosomes and consider genes which 
may take on different values (alleles) and 
pOsitions (loci). Normally we assume that 
alleles decode to our problem parameter set 
(phenotype) in a manner independent of locus. 
Furthermore, we assume that our.parameter set 
may then be evaluated by a fitness function 
(a non-negative objective function to be 
maximized). Symbolically, the fitness f 
depends upon the parameter set x which in 
turn depends upon the allele values v or more 
compactly f - f(x(v». While this is cer
tainly conventional, we need to ask whether 
this is the most general (or even most 
biological) way to consider this mapping. 
More to the point, shouldn't we also consider 
the possible effect of a string's ordering 0 

on phenotype outcome and fitness. Mathemati
cally there seems to be no good reason to 
exclude this possibility which we may write 
as f-f(x(o,v». 

While this generalization of our coding 
techniques is attractive because it would 
permit us to code ordering problems more 
naturally, we must make sure we maintain the 
implicit parallelism of the reproductive 
plans and genetic operators we apply to the 
generalized structures. Furthermore, because 
GA's are drawn from biological examp Ie we 
should be careful to seek natural precedent 
before committing ourselves to this 



extension. To find biological precedent for 
the importance of ordering as well as value 
we need only consider the sub layer of struc
ture beneath the chromosome and consider the 
amino acid sequences that lead to particular 
proteins. At this level, the values (amino 
acids) are in no way tagged with meaning. 
Ihere are only amino acids and they must 
appear in just the right order to obtain a 
useful outcome (a particular protein). Thus, 
there is biological example of outcomes that 
depend upon both ordering and value, and we 
do not risk the loss of the right flavor by 
considering them both. 

!hen, wherein lies our problem? If it 
is ok to admit both ordering and value 
information into our fitness evaluation, what 
is misSing in our current thinking about 
genetic algorithms which prevents us from 
exploiting both ordering and value informa
tion concurrently? In previous work where 
ordering was considered at all (primarily for 
its effect on the creation of good, tightly 
linked, building blocks), the only ordering 
operator considered was inversion, a unary 
operator which picks two points along a 
single string at random and inverts the 
included substring (1). Subsequent crossover 
between non-homologous (differently ordered) 
strings occurred by mapping one string's 
order to the other, crossing via simple 
crossover, and unmapping the offspring. !his 
procedure is well and good for searching 
among different allele combinations, but it 
does little to search for better orderings. 
Clearly the only operator effecting string 
order here is inversion, but the beauty of 
genetic algorithms is contained in the 
structured, yet randomized information 
exchange of crossover--the combination of 
highly fit notions from different strings. 
With only a unary operator to search for 
better string orderings, we have little hope 
of finding the best ordering, or even very 
good orderings, in strings of any substantial 
length. Just as mutation cannot be expected 
to find very good allele schemata in reason
able time, inversion cannot be expected to 
find good orderings in substantial problems. 
What is needed is a binary, crossover-like 
operator which exchanges both ordering and 
value information among different strings. 
In the next section, we present a new opera
tor which does precisely this. Specifically, 
we outline an operator we call partially
mapped crossover (PMX) that exploits impor
tant similarities in value and ordering 
simultaneously when used with an appropriate 
reproductive plan. 

PAIcrIALLY-MAPPED CROSSOVER (PMX) -
MECHANICS 

To exchange ordering and value infor
mation among different strings we present a 
new genetic operator with the proper flavor. 
We call this operator partially-mapped 
crossover because a portion of one string 
ordering is mapped to a portion of another 
and the remaining information is exchanged 

155 

after appropriate swapping operations. To 
tie down these ideas we also present a piece 
of code used in the computational experiments 
to be presented later. 

To motivate the partially-mapped cross
over operator (PMX) we will consider differ
ent orderings only and neglect any value 
information carried with the ordering (this 
is not a limitation of the method because 
allele information can easily be tacked on to 
city name information). For example, consider 
two permutations of 10 objects: 

A ~ 9 8 4 5 6 7 1 3 2 10 
B ~ 8 7 1 2 3 10 9 5 4 6 

PMX proceeds as follows. First, two posi
tions are chosen along the string uniformly 
at random. !he substrings defined from the 
first number chosen to the second number 
chosen are called the MAPPING SECTIONS. 
Next, we consider each mapping section 
separately by mapping the other string to the 
mapping section through a sequence of swap
ping operations. For example, if we pick two 
random numbers say 4 and 6, this defines the 
two mapping sections, 5-6-7 in string A, and 
2-3-10 in string B. !he mapping operation, 
say B to A, is performed by swapping first 
the 5 and the 2, the 6 and the 3, and the 7 
and the 10, resulting in a well defined 
offspring. Similarly the mapping and swap
ping operation of A to B results in the swap 
of the 2 and the 5, the 3 and the 6, and the 
10 and the 7. !he resulting two new strings 
are as follows: 

A'· 9 8 4 2 3 10 1 6 5 7 
B'. 8 10 1 5 6 7 9 2 4 6 

!he mechanics of PMX is a bit more complex 
than simple crossover so to tie down the 
ideas completely we present a code excerpt 
which implements the operator for order
ing-only structures in Figure 1. In this 
code, the string is treated as a ring and 
attention is paid to the order of selection 
of the two mapping section endpoints. 

!he power of effect of this operator, as 
with simple crossover, is much more subtle 
than is suggested by the Simplicity of the 
string matching and swapping. Clearly, 
however, portions of the string ordering are 
being propagated untouched as we should 
expect. In the next section, we identify the 
type of information being exchanged by 
introducing the o-schemata (ordering schema
ta). We also consider the probability of 
survival of particular o-schemata under PMX. 

PAIcrIALLY-MAPPED CROSSOVER - POWER OF 
EFFEC! 

In the analysis of a simple genetic 
algorithm with reproduction+crossover+muta
tion, we consider allele schemata as the 
underlying building blocks of future solu
tions. We also consider the effect of the 
genetic operators on the survivability of 



Data Types and Constants 

conzt max_citY = 100; 

t ~ F e  cit'=' 1 •• m ~ . " -c i t '='; 
t o u r a . r · r : : a . · : : ~  a . r r a . < : ~ C l  •• m : a . . . _ : _ • : i t · : : ~ J  of cit.':'; 

Functions and Procedures (find_city, swap_city, cross_tour) 

f u n c t i o ~  f i n d _ c i t ~ < c i t ' : l _ n a m ~ - n - c i t v : c i t ' : l ;  v ~ r  t o u r : t o u r a r r a ~ J : c l t ~ ;  
Vil r- .J 1 : 1 n te'9e r·; 

be-;a1n 

j 1: =0: 

reF·eat 
j 1: =._i 1 + 1; 

until ( CJ1>n-citw) or < t o u r [ J 1 l = c i t w _ n ~ m e )  ); 
fi nd_ci t.":=J 1; 

end; 

Procedure s w a F _ c i t ~ < c i t v _ P o s l , c i t v _ P o s 2 : i n t @ ~ e r ;  var tour:tour·array); 
va.r temF: c i t · : ~ ;  
be9in 

te:rttF': = t.OIJf"" [ Ci t _ • : ~ _ F ' O S  1 J; 
tour[citv_Poz1J:=tour[citv_Pos2J; 
t o u r [ c i t ~ _ P o s 2 J : = t e m p ;  

end: 

Froced ure cross- tour( n_•:i t · : ~ ,  lo_,:ross, hi _cross: ci tv; 
var t o u r l _ o l d , t o u r ~ _ o l d p t o u r l _ n e w , t o u r ~ _ n e w : t o u r a r r a v ) ;  

Vilr J l , h i _ t e s t : i n t e ~ e r ;  
l:oe9ir. 

hi_t.est •= hi-cross + 1; if (hi_test>n_cit") then hi_test.•=1: 
tourl_new := tourl_old; 
tour2_ne•.·J : = t.our2_c,ld; 

if ( <lo_cross '> hl_cross) ~ n d  (lo_cross <> hi_t.est) ) then be3ln 
Jl := l o _ c r o s : : : ~  
while fJl<>hi_test) do be9in ( ~ m a P P e d  crossover on both tours*' 

s•.·.•aF"- citY' ( J 1, t i rtd _c 1 t . · : ~  ( t.•:t•Jr·l_o 1 d ( ._i 1 J ~  n_c i t\11,. tc•ur· . : : _ n e ~ . o . • ) ,  t c o ~ J t · 2 -n e ~ . o • ) ;  
s w a F - C l t ~ ( J l , f t n d _ c l t ~ ( t o u r 2 _ o l d ( J l J , . n _ c i t v , . t o u r l _ n e w ) , t o u t · l _ n e w > ~  
J 1 : = j 1 + 1 ; i f < J 1 > n_ c i t y ) t t,e n .) 1 : = 1 ; 

end; 

end; 
enoj; 

Figure 1. Pascal Implementation of PMX - Partially Mapped 
Crossover - procedure cross_tour. 

important schemata. In a similar way, in our 
current work we consider the o·schemata or 
ordering schemata, and calculate the survival 
probabilities of important o-schemata under 
the PMX operator just discussed. As in the 
previous section we will neglect any allele 
information which may be carried along to 
focus solely on the ordering information; 
however, we recognize that we can always tack 
on the allele information for problems where 
it is needed in the coding. 

To motivate an o-schema consider two of 
the 10-permutations: 

c = 1 2 
D 1 2 

3 4 5 
3 5 4 

6 
6 

7 
7 

8 
9 

9 10 
8 10 

As with allele schemata (a-schemata) where we 
appended a * (a meta-don't-care symbol) to 
our k-nary alphabet to motivate a notation 
for the schemata or similarity templates, so 
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do we here append a don't care symbol (the !) 
to mean that any of the remaining permuta
tions will do in the don't care slots. Thus, 
in our example we have, among others, the 
following o-schemata common among structures 
C and D: 

1 2 3 
2 

1 
6 7 
6 

I 
10 

To consider the number of o-schemata, we take 
them with no positions fixed, 1 position 
fixed, 2 positions fixed, etc., and recognize 
that the number of o-schemata with exactly j 
positions fixed is simply the product of the 
number of combinations of groups of j among l 

objects, ( ~ ) ,  times the number of permuta-
J 

tions of groups of j among l objects. 
Summing from 0 to l (the string length) we 



obtain the number of o-schemata: 

~  i! i! 
= 2. <t-j)!j! rr:m 

0 

While this expression has not been reduced to 
closed form, it may be shown for large i that 
the number of o-schemata is certainly greater 
than (i!) 2 • Furthermore, it is easily shown 
that each particular string (permutation) is 

i 
a representative of 2 o-schemata and that a 

population contains at most n•2i o-schemata. 

Next we consider the survival probabili
ty of a particular o-schema under the 
partially-mapped crossover operator. The 
easiest way to calculate this is to use 
conditional probabilities over three mutually 
exclusive events: the o-schema is entirely 
contained within the match section (Event 
W-within), the schema is entirely outside the 
match section (Event 0-outside), or the 
schema is cut by a cross point (Event C-cut). 
Thus, the probability of survival (Event 
S-survival) may be given: 

P(S) = P(S,W)P(W) + P(S,O)P(O) + P(S,C)P(C) 

Since the proba,bility of surviving a cut is 
very low (P(S!C):o) we ignore this pos
sibility and focus on the other two events. 
Assuming a cut length k, a defining length of 
the schema 0 ( s), and an o-schema of order 
(number of fixed positions) o(s), the overall 
probability of survival (for large string 
length i) may be estimated: 

P(S) = ~  + i-ki0+1 (1 - ~ )  

Closer examination of this equation reveals 
two modes of survival. When the cut length is 
large with respect to the defining length, 
relatively short defining length schemata 
survive with high probability. The second and 
more subtle mode of survival occurs when 
short, low order schemata survive, because a 
small cut length dictates a small probability 
of interruption due to swapping. Together 
the two modes combine to pass through short, 
low order o-schemata so normal reproductive 
plans can sample these building blocks at 
near-optimal rates. Hence, PMX permits the 
same type of implicit parallelism to occur in 
both orderings and alleles as we have already 
witnessed using simple crossover on allele 
information alone. 

A PURE ORDERING PROBLEM - THE TRAVELING 
SALESMAN PROBLEM (TSP) 

In some sense we've presented this paper 
in the reverse order of discovery. We did 
not 1) admit ordering information, 2) dis
cover PMX and o-schemata, and 3) apply 
reproduction+PMX to the traveling salesman 
problem. In fact, by trying to solve the TSP 
with genetic algorithms, we were led to 
PMX-like operators, then o-schemata, and 
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finally PMX. The traveling salesman problem 
is a pure ordering problem (2,3,4) where one 
attempts to find the optimal tour (minimum 
cost path which visits each of n cities 
exactly once). The TSP is possibly the most 
celebrated combinatorial optimization problem 
of the past three decades, and despite 
numerous exact (impractical) and heuristic 
(inexact) methods already discovered, the 
method remains an active research area in its 
own right, partially because the problem is 
part of a class of problems considered to be 
NP-complete for which no polynomial time 
solution is believed to exist. Our interest 
in the TSP sprung mainly from a concern over 
claims of genetic algorithm robustness. If 
GA's are robust, why have the rumored 
attempts at "solving" the TSP with GA's 
failed. This concern led us to consider many 
schemes for coding the ordering information, 
with strange codes, penalty functions, and 
the like, but none of these had the appropri
ate flavor--the building blocks didn 1 t seem 
right. This led us to consider the current 
scheme, which does have appropriate building 
blocks, and as we shall soon see, does (in 
one problem) lead to optimal or near-optimal 
results. 

The specific problem we consider is Karg 
and Thompson 1 s well-studied 10 city problem 
(4). While a 10 city problem is no final 
touchstone of success, it does contain 9! 
alternatives (the GA knows nothing of the 
problem's symmetry which reduces this number 
to (9!)/2). We code the problem as a normal
ized (city 1 in the first position) 10-perrnu
tation and apply reproduction and PMX to 
successive populations. We use roulette 
wheel reproduction with selection probabili
ties set in the normal way, and fitnesses are 
created from costs and scaled by subtracting 
string cost from population maximum cost, 
fi = cmax- ci. We choose initial popula-

tions, popsize=200, at random. This number 
was selected to obtain a rich spread of order 
2 o-schemata in the population. This re
quires a population size proportional to 
n(n-1) or roughly n2 • It might be useful to 
have order 3 schemata as well, but this may 
require larger populations than we are used 
to working with. 

We present the results of two runs on 
the 10 city problem in Figures 2 and 3. 
Figure 2 shows the population average cost 
with each successive generation. The cross
over probability was set at 0.6 so each 
generation represents roughly 120 new func
tion evaluations (0.6*200L Figure 3 shows 
the population best results with successive 
generations. As we can see, run 1 reaches 
the optimal (!!)result rather quickly, while 
run 2 converges on a very near-optimal tour 
(we only ran twenty generations--there was 
still enough diversity left so improvement 
was possible in run 2). The best of run 1 
was indeed the Karg and Thompson optimum, 
tour 1-2-3-4-5-10-9-8-6-7 with cost=378. The 
best of run 2 was a near-optimum, the tour 
1-2-3-10-9-5-4-6-8-7 with cost=381. We are 
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currently working on a 20 city problem and a 
33 city problem, although we need to do some 
reprogramming to fit the large population 
sizes into our IBM PC's. We also have built 
in an inversion operator, but have not had a 
chance to test its effect on average and best 
results. 

CONCLUSIONS 

In th is paper we have examined a new 
type of crossover operator, partially-mapped 
crossover (PMX) , for the exploration of 
codings where ordering and allele information 
may directly or indirectly effect fitness 
values. The mechanics of the operator have 
been described, and an ordering-only imple
mentation has been presented in Pascal. The 
power of effect of the new operator has been 
analyzed using an extension to the concept of 
schemata called the o-schemata (ordering 
schemata). Simple counting arguments have 
been put forward which show the vast amount 
of information contained in the o-schemata, 
and survival probabilities have been estima
ted for o-schemata under the PMX operator. 
The result is an operation which preserves 
ordering building blocks (and allele building 
blocks if they are attached) so orderings and 
allele combinations may be explored with 
implicit parallelism. 
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The new operator is tested in an 
ordering-only problem, the traveling salesman 
problem. Using reproduction+PMX in two runs, 
optimal or very near optimal resul ts are 
found in a well-known 10 city problem after 
exploring a small portion of the tour search 
space. We are continuing our work by testing 
the method in larger problems, but we are 
encouraged with the GA-l1ke performance 
obtained on our first test. 

This work has important implications for 
improving more general GA-search in problems 
where both allele combinations and ordering 
information are important. The binary 
operation of PMX does permit the randomized, 
yet structured, information exchange among 
both alleles and ordering building blocks 
which simple crossover promotes among allele 
schemata alone. This should assist us in our 
efforts to successfully apply genetic algori
thms to ~ver more complex problems. 
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Abstract 

This paper presents some approaches to the 

application of Genetic Algorithms to the 

Traveling Salesman Problem. A number of 

representation issues are discussed along with 

several recombination operators. Some 

preliminary analysis of the Adjacency List 

representation is presented, as well as some 

promising experimental results. 

1. Introduction 
Genetic Algorithms (GNs) have been applied to 

a variety of function optimization problems, and 

have been shown to be highly effective in 

searching large, complex response surfaces even in 

the presence of difficulties such as high

dimensionality, multimodality, discontinuity and 

noise 14]. However, GA's have not been applied 
extensively to combinatorial problems. The 

major obstacle is in finding an appropriate 

representation. This paper presents some 

approaches to the design of GA's for a well 

known combinatorial optimization problem - the 

Traveling Salesman Problem (TSP). The TSP is 

easily stated: Given a complete graph with N 

nodes, find the shortest Hamiltonian path 

through the graph. (In this paper, we will assume 

Euclidean distances between nodes.) The TSP is 

NP-Hard, which probably means that any 

algorithm which computes an exact solution of 

the TSP requires an amount of computation time 

which is exponential in N, the size of the problem 

15]. In addition to its many important 

applications, the TSP is often used to illustrate 

heuristic search methods 12,7,8]' so it is natural to 

investigate the use of GA's for this problem. 

Choosing an appropriate representation is the 

first step in applying GA's to any optimization 

problem. If the problem involves searching an N-

dimensional space, the representation problem is 

often solved by allocating a sufficient number of 

bits to each dimension to achieve the desired 

accuracy. For the TSP, the search space is a 

space of permutations and the representation 

problem is more complex. Consider a path 

representation in which a tour is represented by a 

list of cities: (a bed e f). The first problem is 

that the representation is not unique: each tour 

has N representations. This can be solved by 

fixing the initial city. Another problem is that 

the crossover operator does not generally yield 

offspring which are legal tours. For example, 

suppose we cross tours (a bed e) and (a dec b) 

between the third and fourth cities. We get as 

offspring (a bee b) and (a d e d e), neither of 

which are legal tours. Finally, there is a problem 

in applying the hyperplane analysis of GA's to 

this representation. The definition of a 

hyperplane is unclear in this representation. For 

example, (a # # # #) appears to be a first order 
hyperplane, but it contains the entire space. The 

problem is that in this representation, the 

semantics of an allele in a given position depends 

on the surrounding alleles. Intuitively, we hope 

that GA's will tend to construct good solutions 

by identifying good building blocks and 

eventually combining these to get larger building 

blocks. For the TSP, the basic building blocks 
are edges. Larger building blocks correspond to 

larger subtours. The path representation does 

not lend itself to the description of edges and 

longer subtours in ways which are useful to the 

GA. 

In section 2, we present two representations 

which offer some improvements over the path 

representation. Section 3 discusses the design of 

a heuristic recombination operator for what we 
consider to be the most promising representation. 

In section 4, some preliminary experimental 

lResearch supported in part by the National Science Foundation under Grant MCS-8305693. 
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on the surrounding alleles. Intuitively, we hope 

that GA's will tend to construct good solutions 

by identifying good building blocks and 
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results are described for the TSP. Section 5 

discusses some future directions. 

2. Representations for TSP 

2.1. Ordinal Representation 

In the ordinal representation, a tour is described 

by a list of N integers in which the ith element 

can range from 1 to (N-i+1). Given a path 

representation of a tour, we can construct the 

ordinal representation TourList as follows: Let 

FreeList be an ordered list of the cities. For each 

city in the tour, append the position of that city 

in the FreeList to the TourList and delete that 

city from the FreeList. For example, the path 

tour (a c e db) corresponds to an ordinal tour 

(1 2 3 2 1) as shown: 

TourList FreeList 

0 (a b c d e) 

(1) (b c d e) 

(1 2) (b d e) 

(1 23) (b d) 

(1 2 3 2) (b) 

(1 2 3 2 1) 0 

Note that it is necessary to fix the starting city 

to avoid multiple representation of tours. 

A similar procedure provides a mapping from 

the ordinal representation back to the path 

representation. In fact, the mapping between the 

two representations is one-t~one. 

The primary advantage of the ordinal 

representation is that the classical crossover 

operator may be freely applied to the ordinal 

representation and will always produce the 

ordinal representation of a legal tour. However, 

the results of crossover may not bear much 

relation to the parents when translated to the 

path representation. For example, consider the 

rollowing two tours: 

ordinal tours path~ 

(1 2 3 2 1) (a c e d b) 
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(2 4 1 1 1) (beacd) 

Suppose that we cross the ordinal tours between 

the second and third positions. We get the 

following tours as offspring: 

ordinal tours ------ path tours 

(1 2 1 1 1) (acbde) 

(2 4 3 2 1) (b e d c a) 

The sub tours corresponding to the genes in the 

ordinal tours to the left of the crossover point do 

not change. However, the subtours corresponding 

to genes to the right of the crossover points are 

disrupted in a fairly random way. Furthermore, 

the closer the crossover point is to the front of 

the tour, the greater the disruption of subtours in 

the offspring. 

As predicted by the above consideration of 

subtour disruptions, experimental results using 

the ordinal representation have been generally 

poor. In most cases, a GA using the ordinal 

representation does no better than random search 

on the TSP. 

2.2. Adjacency Representation 

In the adjacency representation, a tour is 

described by a list of cities. There is an edge in 

the tour from city i to city j iff the allele in 

position i is j. For example, the path tour 

(1 3 5 4 2) corresponds to the adjacency tour 

(3 1 5 2 4). Note that any tour has exactly one 

adjacency list representation. 

2.2.1. Crossover Operators 

Unlike the ordinal representation, the adjacency 

representation does not allow the classical 

crossover operator. Several modified crossover 

operators can be defined. 

Alternating Edges 

Using the alternating edges operator, an 

offspring is constructed from two parent tours as 

follows: First choose an edge at random from one 

parent. Then extend the partial tour by choosing 

the appropriate edge from the other parent. 



Continue extending the tour by choosing edges 

from alternating parents. If the parent's edge 

would introduce a cycle into a partial tour, then 

extend the partial tour by a random edge which 

does not introduce a cycle. Continue until a 

complete tour is constructed. 

For example, suppose we have 

mom = ( 2 3 4 5 6 1 ) 

dad = ( 2 5 1 6 4 3 ) 

Then we might get the following offspring: 

kid = ( 2 5 4 1 6 3 ) 

where the only random edge introduced into the 

offspring is the edge (4 1). All other edges were 

inherited by alternately choosing edges from 

parents, starting with the edge (1 2) from mom. 

Experimental results with the alternating edges 

operator have been uniformly discouraging. The 

obvious explanation seems to be that good 

subtours are often disrupted by the crossover 

operator. Ideally, an operator ought to promote 

the development of coadapted alleles, or in the 

TSP, longer and longer high performance 

subtours. The next operator was motivated by 

the desire to preserve longer parental subtours. 

Subtour Chunks 

Using the Bubtour chunking operator, an 

offspring is constructed from two parent tours as 

follows: First choose a subtour of random length 

from one parent. Then extend the partial tour 

by choosing a subtour of random length from the 

other parent. Continue extending the tour by 

choosing subtours from alternating parents. 

During the selection of a subtour from a parent, 

if the parent's edge would introduce a cycle into a 

partial tour, then extend the partial tour by a 

random edge which does not introduce a cycle. 

Continue until a complete tour is constructed. 

Subtour chunking performed better than 

alternating edges, as expected, but the absolute 

performance was still unimpressive. An analysis 

of the allocation of trials to hyperplanes provide a 

partial explanation for the poor performance of 
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this operator. 

2.2.2. Hyperplane Analysis 

The primary advantage of the adjacency 

representation is that it permits the kind of 

hyperplane analysis which has been applied to the 

N-dimensional function optimization GA 

paradigm [1,3,6]. Hyperplanes defined in terms of 

a single defining position correspond to the 

natural building blocks, i.e., edges, for the TSP 

problem. For example, the hyperplane 

(# # # 2 #) is the set of all permutations in 

which the edge (4 2) occurs. We briefly 

summarize the main points of the classical 

hyperplane analysis of GA's: In the absence of 

recombination operators, selection of structures 

for reproduction in proportion to the Btructure's 

observed relative performance allocates trials to 

all represented hyperplanes in the population 

(roughly) according to the following formula: 

M(H,H1) = M(H,t)*( u(H,t) / u(P,t) ) 

where 

M(H,t) = # of representatives of H at time t 

u(H,t) = observed performance of H at time t 

u(P ,t) = mean performance of population at 

time t. 

The elements of any hyperplane partition 

compete against the other elements of that 

partition, with the better performing elements 

eventually propagating through the population. 

This in turn leads to a reduction in the 

dimensionality of the search Bpace, and the 
construction of larger high performa.nce building 

blocks. 

In the adjacency representation, a first order 

hyperplane partition consists of all of the 

hyperplanes which are defined on the same 

position. For example: 

{ (# # # 1 #), (# # # 2 #), (# # # 3 #), 
(# # # 5 #)} 

is a first order hyperplane partition. Each 

element of the partition contains an equal 



number of tours. Selection is supposed to 

distinguish among the elements of this partition 

and to favor the high performance hyperplanes. 
However, the following theorem shows that 
selection has very little information on which to 

allocate trials to competing first order 
hyperplanes. 

Theorem 1. Suppose that H b and Hare 
a ac 

two first-order hyperplanes defined by the edges 

(a b) and (a c), respectively, in a Euclidean TSP. 

Then I u(Hab) - u(Hac) I ~ 4(ab + ac) where ab 

and ac represent the lengths of the edges (a b) 

and (a c), respectively. 

Proof. We show that there is a one-to-one 

mapping f between the tours in Hab and the tours 

Hac such that if x is a tour in Hab and y = f(x) is 

the corresponding tour in Hac' then 

I Length(y) - Length(x) I ~ 4(ab+ac). 

The theorem follows directly. 

The following illustrates the mapping f: 

z: .. b d 

1 c • 
y = 1(z) : .. b d 

f c e 

That is, y is obtained by exchanging the nodes 

band c in the tour x. Using the triangle 

inequality, it is easy to show that: 

-(4ab + 2ac) < Distance(y) - Distance(x) 

~ (4ac + 2ab). 
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So 

I Distance(y) - Distance(x) I < 4(ab+ac). 
QED. 

In practice, the observed difference between 
competing first order hyperplanes is usually an 

order of magnitude less than the bounds in the 

theorem. And since the overall tour length is 

generally very large compared to the bound in 

the theorem, there is generally no significant 

difference between the mean relative performance 

of any two competing first order hyperplanes. 
Our experimental studies have shown that the 

difference in the observed performance of 

competing first order hyperplanes in a TSP of 

sile 20 is generally less than 5% of the mean 

population tour length. In larger problems, this 

difference can be expected to rapidly approach 

lero. 

One might suspect that the TSP is not a 

suitable problem for GA's, that the TSP is in 

some sense GA-Hard. Bethke [1] characteriles 
some problems for which GA's are unsuitable. 

Informally, Bethke shows that there are functions 

and representations for which the low order 

hyperplanes can mislead the GA into allocating 
trials to suboptimal areas of the search space. 

However, Bethke's techniques, which involve the 

Walsh transform of the objective function, apply 

to one-dimensional functions of a real variable 

using a fixed-point representation. A similar·set 

of results may be derivable for combinatorial 

problems using the adjacency representation. But 

Theorem 1 does not indicate that the information 

in the first order hyperplanes of the adjacency 

representation is misleading, just that it is buried. 

In other words, measuring the fitness of a tour by 

the tour length may be too crude a measure for 

apportioning credit. We now describe a crossover 

operator which performs a secondary 

apportionment of credit at the level of individual 
alleles. 

3. Heuristic Crossover 
Theorem 1 shows that selection alone may not 

be able to properly allocate trials to first order 

hyperplanes, given our adjacency representation 
for the TSP. The heuristic crossover operator 

attempts to perform a secondary apportionment 



of credit at the allele level. This operator 

constructs an offspring from two parent tours as 

follows: Pick a random city as the starting point 

for the child's tour. Compare the two edges 

leaving the starting city in the parents and 

choose the shorter edge. Continue to extend the 

partial tour by choosing the shorter of the two 

edges in the parents which extend the tour. If 

the shorter parental edge would introduce a cycle 

into the partial tour, then extend the tour by a 

random edge. Continue until a complete tour is 

generated. 

In order to compare this operator with the 

previous two recombination operators, 1000 

random pairs of parents were chosen for a TSP of 

lise 20. For each pair of parents, an offspring 

was constructed according to each of the 

crossover operators. For all three operators, the 

offspring generally inherited about 30% of the 

edges from each parent. The remaining 40% 

were random edges introduced by the 

recombination operator to create a legal tour. 

For the first two operators, the offspring 

generally show no improvement in overall tour 

length when compared to the better parent. Not 

surprisingly, the heuristic crossover produces 

offspring which are, on average, about 10% 

better than the better parent. It seems 

reasonable that such an improvement should give 

selection a way to promote the propagation of 

good edges through the population. The next 

section shows lOme experimental results which 

confirm this expectation. 

It is important to note that, with the proper 
choice of data structures, the heuristic crossover 

operator can be implemented to run as a linear 

function of the length of the structures [9]. This 

implies that, if E is the number of trials and N is 

the number of cities, our GA's for the TSP run 

with asymptotic complexity O(EN), the same as 

pure random search. 

4. Experimental Results 
This section describes some experiments with 

the adjacency representation and the heuristic 

crossover operator. For each experiment, N cities 

were randomly placed in a square Euclidean 

space. The initial population consisted of 

randomly generated tours. The selection method 
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was based on the expected value model. The 

crossover rate was set at 50%, and there was no 

explicit mutation operator. 

Figure 1 shows the results of a 50 city problem, 

Figure 2 shows a 100 city problem and Figure 3 

shows a 200 city problem. Each Figure shows a 

representative tour from the initial population, 

the best tour obtained part way through the 

search, and the best tour obtained after the entire 

search, along with a randomly selected tour in the 

final population. It can be seen, especially in 

Figues 2 and 3, that good subtours tend to 

survive and to propagate. The figures also show 

that there is still a good deal of diversity in the 

final population. 

Statistical techniques [2] allow us to estimate 

that the expected length of an optimal tour for 

experiment 1 is approximately 37.45. The 

optimal tour obtained by the GA differs from this 

expected optimum by about 25%. After an equal 

number of trials, random search produces a best 

tour of length 148.6, nearly 300% longer than the 

optimal tour. The optimal tour obtained in 

experiment 2 differs from the expected optimum 

by 16%. The optimal tour obtained in 

experiment 3 differs from the expected optimum 

by about 27%. These results are encouraging and 

suggest that further investigation of this 

approach is warranted. 

Experiments show that GA's which use heuristic 

crossover but not selection perform better than 

random search but significantly worse than GA's 

which use both selection and heuristic crossover. 
That is, there appears to be a symbiotic 

relationship between the two levels of credit 

assignment performed by selection and heuristic 

crossover. We are currently working on 

clarifying the relationship between selection and 

the heuristic crossover operator. 

5. Future Directions 
This papers presents some preliminary 

observations and experiments. Many more 

questions about the TSP need to be investigated. 
Some interesting future projects include: 

Combining GA's with other heuristics. In 

may be useful to heuristically choose the initial 



population of tours. For example, the nearest 

neighbor algorithm can generate a set of 

relatively good tours when started from various 

initial cities. For very large problems, nearest 

neighbor can be approximated by choosing a 

random set of cities and taking the one closest to 

the current city. Heuristics could also be invoked 

at the end of the GA to do some local 

modifications to the tours in the final population. 

For example, the Figures shows many 

opportunities for improving the final tour by 

some local edge reversals. 

Oomparison with .imulated annealing. 

Simulated annealing is another randomized 

heuristic algorithm which has been applied to 

very large (N > 1000) TSP's. From the 

published literature on simulated annealing 12,7J, 
it appears that our results are at least 

competitive. A careful comparison of these two 

techniques would be very interesting. 

Effect. of GA parameter.. There are several 

control parameters involved in any GA 

implementation, such as population size, 

crossover rate, etc. which may have an effect on 

the performance of the system. The proposed 

GA's are sufficiently different from previous GA's 

that it might be useful to investigate the effects 
of these parameters for the TSP. 

Other combinatorial applications. How do the 

ideas developed thus far apply to combinatorial 

problems other than the TSP? 
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1. introduction 

In 1975 Holland's book, Adaptation in 
Natural and Artificial Systems, was pub

lished and provided a summary of the work 

which Holland and his students had been 

pursuing for some time. An important 

theme in this wide ranging study of the pro

perties of adaptive systems was that adapta

tion can be usefully modeled as a form of 

search through a space of structural changes 

which one might make to a complex system 

in an attempt to "improve" its behavioral 

characteristics. This gave rise to a metho

dology for studying existing (natural) adap

tive systems and designing (artificial) adap

tive systems which focused on answering key 

questions such as: What are the legal struc

tural changes one is allowed to make! How 

is that space searched in an attempt to iden

tify structural changes which improve 

behavior! How does one ascertain that 

resulting behavioral changes are, in fact, an 

improvement! 

As an example of the merit of this 

approach, Holland specified the architecture 

for and provided a theoretical analysis of a 

class of adaptive systems in which the struc

tural modification space is represented by 

strings of symbols chosen from some alpha

bet and the searching of this representation 

space is accomplished by an unusual pro

cedure called a genetic algorithm. I think it 

is fair to say, at this point in time, that the 

careful definition and theoretic analysis of 

these genetic algorithms (GAs) was and con

tinues to be one of the major contributions 

of this effort. In the intervening ten years, a 

good deal of interest and activity has 

resulted in important new insights into GAs 

and their potential applications, culminating 

in this conference. 

Unfortunately, as is the case in many 

novel areas of research, it has been difficult 

to find a forum in the existing 
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journal/ conference structure for reporting 

the wide ranging activities which have 

resulted from Holland's provocative ideas. 

With only a few exceptions, much of this 

work has been disseminated via unpublished 

Master's and Ph.D. theses, personal com

munications, and presentations at a series of 

informal summer workshops. 

I am pleased to report that this situa

tion is changing for the better. In addition 

to growing institutional support for research 

in this area, the renewed interest in machine 

learning in the AI community as well as the 

continued interest in robust, flexible problem 

solving strategies in many different contexts 

has led to a dramatic increase in interest in 

GAs during the last few years. There 

remains, however, a fairly serious gap in the 

coverage of GA research activities since 

1975. Those who are new to the area find it 

difficult to ascertain who has been doing 

what and frequently get involved unneces

sarily in rediscovering various aspects of 

undocumented "wisdom" regarding the 

implementation and application of GAs. 

This conference in general and this paper in 

particular represent attempts to remedy such 

perceived gaps, to suggest open research 

issues, and to identify potential application 

areas. The following sections summarize my 

own personal perspective on the current 

state of the art in this field. 

2. Conceptual and Perceptual Issues 

Most algorithms are developed with a 

purpose in mind such as sorting, memory 

management, tree tmversal, etc. Genetic 

algorithms, however, represent a highly 

idealized model of a natural process and as 

such can be legitimately viewed as a simula

tion at a very high level of abstraction. This 

tends to raise some conceptual and percep

tual difficulties when trying to understand 

exactly what GAs do and how they might be 



used. 

Much of the early GA research, in an 

attempt to simplify an already complicated 
situation, focused on understanding how 

GAs behaved when the structure space to be 

searched was an N-dimensional space of 

numerical parameters (corresponding to 

independently settable dials on a control 
panel) and the behavior of the system under 

the new control settings (the fitness measure) 
was ascertained by simply computing a 

memoryless function whose arguments were 
the new control settings. By carefully choos

ing functions which presented a variety of 
well understood payoff surfaces, a great deal 
of insight was obtained regarding how GAs 

distribute trials in such spaces in response to 

the feedback obtained from earlier trials. 
This gave rise to a very natural question: Do 

GAs provide a new and important technique 

for solving global function optimization 
problems? A good deal of research 

IDeJong75, Brindle80, Bethke81j has and 
continues to be done in this area with 

impressive results. 

However, because of this historical 

focus and emphasis on function optimization 

applications, it is easy to fall into the trap of 

perceiving GAs themselves as optimization 

algorithms and then being surprised and/or 

disappointed when they fail to find an "obvi
ous" optimum in a particular search space. 

My suggestion for avoiding this perceptual 

trap is to think of GAs as a (highly ideal

ized) simulation of a natural process and as 
such they embody the goals and purpose (if 

any) of that natural process. I'm not sure if 
anyone is up to the task of defining the goals 

and purpose of evolutionary systems; how

ever, I think it's fair to say' that such sys

tems are not generally perceived as function 

optimizers. 

The question that remains, then, is 

how can one characterize what GAs do in a 

way which is useful for understanding how 
they might be best applied to difficult areas 

such as global function optimization, 

machine learning, NP-hard problems, 

machine vision, etc. I believe we still have a 
long way to go in this area. I have 

attempted to summarize recent advances as 
well as identify some open issues in the next 

section. To my mind the best perspective 

currently available as to what GAs do is 
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Holland's characterization of them as simul
taneously solving a large number of K-armed 

bandit problems. (If you haven't read it or 

didn't understand it, you should make an 
effort to do so.) Although this characteriza

tion leaves many unanswered questions, 

armed with this viewpoint, one shouldn't be 
surprised that: 1) the best individual encoun

tered so far may not even survive into the 
next generation, 2) that the population itself 
seldom converges to a global (or even local) 

optima, or 3) that the ability of GAs to pro
duce a steady stream of offspring that are 
better than any seen so far can vary from 

quite impressive to dismal. 

At the risk of summarizing the obvi

ous, it is important to realize that GAs have 

properties of their own independent of the 
application area, and the key to a successful 

application (including global function optim

ization) is to understand and exploit these 
properties. 

3. Representation Issues 

The strongest hyperplane analysis 

results assume that GAs use a very specific 

form of selection, crossover, and mutation to 

search a space of fixed length binary strings. 

In order to take advantage of the power of 
GAs as analyzed, the space to be searched in 
a particular application must be mapped 

onto a representation space of this form. 
Depending on the application, selecting an 

appropriate mapping can range from a 

trivial activity to a highly creative one. 

There is now sufficient experience to begin 
to characterize search spaces with respect to 

choosing a representation mapping. The fol

lowing is an attempt to do so. 

3.1. Searching Parameter Spaces 

Typically, the simplest way to make a 
complex process more flexible (adaptive) is 

to identify a fixed set of parameters which 
can be altered to improve behavior. The 
obvious mapping is to think of each of the N 

parameters as a genes and assign each a gene 

(string) position. If we then choose for each 
parameter a set of unique symbols 

representing the legal values of that parame
ter, we have a very intuitive internal 

representation as strings of length N. Cross

over occurs between symbol boundaries and 
produces "legal" offspring, and mutation 



when applied to position i selects a new sym
bol from the legal symbol set for that posi

tion. There is both theoretical and experi
mental evidence to suggest that such direct 
intuitive mappings are appropriate when the 

number of legal values a parameter may 

take on is quite small (ideally, 2) and inap
propriate when they deviate much from the 

ideal IHolland75J. 

Although there are many interesting 

problems which permit such direct mappings 

(e.g., feature spaces, certain NP-hard prob
lems), most parameter modification problems 

do not. An obvious solution is to map each 

of the N symbol sets onto a set of fixed

length binary strings, concatenate the 

results, and apply GAs to this representation 

space. While it is easy to demonstrate a 

dramatic improvement in the behavior of 

GAs in switching from a short length, high 

cardinality representation of a problem to a 
longer, but lower cardinality representation, 

there are a several issues which arise for 
which we do not have good answers. Fre

quently the cardinality of a symbol set is not 

a power of 2, requiring rounding up to the 
next power of 2 and implying the symbol 
map is into but not onto the set of binary 

strings. In so doing, the size of the represen
tation space can be increased (in the worst 
case) by a factor of 2N over the original 

search space. Since crossover and mutation 

will invariably produce some of these unas
signed strings, there are any number of ways 

to handle this including discarding such 
strings as illegal, assigning such strings low 
payoff, or mapping such strings redundantly 

into the symbol set. Each of these 

approaches has been tried at various times 
with no clear indication (either experimen

tally or theoretically) of the overhead 

incurred by such rounding or whether one 

approach is consistently better than another. 

Frequently the application permits 

enough flexibility in defining the original 

search space so that the set of legal val ues 
each parameter can take on can easily and 

naturally be powers of 2 (e.g., most function 

optimization problems) so that rounding up 
issues are perceived as critical. There 

remains, however, the problem of selecting 

which of the M! ways M objects can be 
mapped onto another set of M objects in 

order to generate binary representations. 

This issue came up early in the function 
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optimization studies in that when presented 
with certain relatively simple continuous 

surfaces GAs appeared to "lack the killer 
instinct" in the sense that they would 

quickly find near-optimal points, but fail to 

press on to better points near by. Further 

analysis indicated that such behavior was 
generally caused by artificial "representation 

boundaries" introduced by mapping the ori
ginal space onto a binary representation 

space in such a way that "near-by-ness" had 

not been preserved. Hence, at a representa

tion boundary, a small change in the val ue 

of a parameter is achieved only by a radical 

change in the binary representation of that 

parameter value. Since crossover and muta

tion are operating at the bit level, only very 

low probability sequences of events could 

"bump" the search over such boundaries. 
Experiments with alternative encodings such 

as gray codes yielded clearly identifiable 

improvements in cases where representation 
boundaries appeared to be a problem, but 

gave mixed results in others IBrindle80, 
Bethke81, .. J. Another suggestion for which 
there are no definite results is to redefine 

mutation so that it works at the parameter 
level, guaranteeing that at any point in time 
each parameter value is equally likely to be 

generated. The argument against such an 
approach is the disruptive effect such an 

operator would have on the proper allocation 

of trials to hyperplanes at the bit level. 

As a consequence, an important open 

question is a better understanding of exactly 

what has to be preserved when choosing a 
mapping and how to find mappings with the 

desired properties. The only hints and 

suggestions along these lines that I am aware 
of are Bethke's use of Walsh transforms to 

characterize when representation spaces are 

"GA hard" IBethke81J. Any new results in 
this area would greatly improve our under

standing and use of GAs. 

3.Z. Adaptive Representations 

Since there may not be sufficient a 

priori insight to select an appropriate 

representation, an alternative approach 

which has been discussed but for which there 

is little theoretical or experimental insight is 

to allow GAs themselves to select the map

ping as part of the adaptive process. One 

strategy involves including extra "tag bits" 
with each individual which identifies the 



mapping to be used. An interesting issue 

here is whether GAs should be modified to 

be aware of such tags bits (for example, by 
only applying crossover to parents with 

identical mappings) or whether GAs should 

manipulate the tags bits in the usual way as 

undistinguished members of a longer binary 

string. In the former case, this introduces 

the idea of sUbpopulations (species) for 
which there is considerable support in 

natural systems but for which there are no 

analytic results. In the latter case, the 
presumed usefulness of binary strings inher
ited from one (and possibly both) parents 

can be lost because they are interpreted in a 

totally different way in an offspring unless 
the parents had identical tag bits and muta

tion left them unchanged. 

Holland raised similar issues while 

analyzing the disruptive effects of crossover 
on co-adapted sets of alleles which, because 
of the particular representation chosen, hap

pened to be far apart IHolland75j. His 
suggestion was to introduce the inversion 

operator as a mechanism for changing the 

physical location of genes without changing 

their functional interpretation. As above, 

left unresolved were issues such as whether 

there should only be a few inversion patterns 
(species) present in a population with mating 
(crossover) occurring only within species or 

whether crossover should be modified to 

allow offspring to inherit an inversion pat
tern from one parent but gene values from 

both. Early experimental work IFranz72, 

DeJong75j generated little evidence of any 
significant improvement due to introducing 

inversion in a function optimization context; 
however, inversion proved to be effective in 

later work using GAs to search spaces of 

production system programs ISmith80j. 

3.3. Context Sensitive Values 

A related but more fundamental prob

lem arises when the application area has the 
property that the legal val ues for one param

eter are contezt sensitive in that they 

depend on which values have been chosen at 

other positions. While it is frequently con

venient and natural to view such problems 

as defining parameter spaces to be searched, 
violating the assumption that values can be 

selected independently can have dramatic 

effects on the performance of GAs. A simple 
example of this occurs if we try to represent 
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the unit circle with Cartesian coordinates 
mapped onto fixed-length strings. GAs, by 

independently choosing symbols at each 

position, will distribute trials over the unit 
square. The usual "fix" is to define the 

payoff outside the unit circle to be excep

tionally low (a penalty function) and let the 

GAs "learn" to keep new trials inside the 

desired region. Suppose, however, we gen
eralize the problem to that of representing 

an N-dimensional hypersphere using Carte

sian coordinates. If GAs distribute their tri
als over the enclosing hypercube, as N gets 
large, the volume of the hypersphere 

becomes vanishingly small relative to the 
hypercube and the search process becomes 

hopelessly bogged down on a surface which 

appears to be uniformly bad almost every

where. In this case, of course, it doesn't 
take much insight to suggest a switch to 

polar coordinates. However, there are other 
cases in which alternate representations are 
not so easy to find. 

My favorite example of this is the 

Traveling Salesman Problem (TSP), and I 

am delighted to see that it is well 

represented at this conference. I continue to 

believe that it captures in a simple, elegant 

way many of the open GA issues. A good 

deal of thought and discussion has gone into 
the problem of representing TSPs in a form 

amenable to GAs with very little success to 
this point. Since the problem involves visit
ing each of N cities exactly once while 

minimizing the total distance of a tour, the 

most natural way to represent candidate 
solutions is to list in order the cities visited. 

Obviously, even though this representation 

can be viewed as N parameters specifying 
the Ith city to be visited, it is strongly con

text sensitive in that once a city symbol is 

used, it cannot be re-used in another posi

tion. Of course, one can always permit the 

GAs to construct illegal tours via crossover 

and mutation and assign them a very low 
payoff. Unfortunately, just as with hyper

spheres, the space of interest here (the set of 

all permutations of N symbols) becomes a 
vanishingly small fraction of the the set of 

all combinations as N increases. There have 
been many alternative representations 
invented and explored, but to my knowledge 

none represent the set of permutations in an 
efficient, context free way. 



The alternative to finding a representa
tion which fits with the standard versions of 

crossover and mutation is to change the 
definition of crossover and mutation to fit 
the representation. Inventing new mutation 

operators is not too difficult in this case, the 
most natural being low order permutation 
operators. Crossover requires a bit more 

creativity and usually involves taking a par
tial tours from one parent and splicing in 
whatever is legally possible from the second 

parent. The results to date from this 
approach have not been any more encourag
ing than the previous ones using the stan

dard versions of crossover and mutation on 
inadequate representations. The problem in 
this case is that, by altering the genetic 

operators, we have altered the way in which 
GAs distribute trials and the fundamental 
theorems regarding efficient parallel search 

need to be re-proved. 

So we find ourselves "caught between 
a rock and a hard place" with few places to 
turn. I don't claim to have the answer 
either, but there are several observations 

which would seem to provide some hints. 
TSP problems fall into an equivalence class 
of problems called NP-complete because 
there are no known polynomial-time solu
tions for any member of the class and if one 
were found there are polynomial-time 

transformations permitting all other 
members to be solved in polynomial time. 
The Boolean Satisfiability Problem (BSP) is 

a member of this class and involves finding 
truth value assignments to N boolean vari
ables in such a way as to make an arbitrary 

given boolean expression of these N variables 
true. The most natural representation for 
BSPs is precisely what is needed for use with 

GAs, namely a binary string of length N. 
Crossover and mutation work precisely as 
intended and problems of surprising size can 

be solved. (Unfortunately, there isn't much 
interest here in nearly correct assignments!) 
What we have then are two problems which 

are known to be equivalent in the NP-hard 
sense, but are quite different in a GA-hard 

sense. 

The difference seems to hinge on a sort 
of duality relationship between the two 
problems. Fitness for BSPs is defined purely 
in terms of the values of the symbols and 
not their relative positions in the string. 

This maps well onto our notion of 
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hyperplane and in these situations crossover 
and mutation are effective mechanisms for 
homing in on good value combinations. On 
the other hand, TSP fitness is defined purely 
in terms of the order of val ueless genes 

which represents being in city n. Here inver
sion seems most natural with crossover and 
mutation inappropriate in their usual form. 

What seems to be needed is a definition of a 
hyperplane in this dual space. Unfor
tunately, our notions of hyperplanes are so 

tightly bound to spaces represented by a 

fixed number of independent axes that it's 
hard to conceive of alternate definitions. 

With an appropriate definition there would 
be a much clearer view of the duals to cross

over and mutation, and hopefully a dual set 

of analytic results. 

3.4. Context Sensitive Interpretations 

Another form of context sensitivity can 
arise and cause difficulty when the same 
value of a particular parameter has different 

interpretations depending on the val ues of 
other parameters. We have already seen 
how this can occur when attempting to 
select representations adaptively. Another 
nice example arises in attempting to escape 
from the context sensitive value representa

tions of TSPs. One could imagine an N 
parameter representation in which the first 
parameter specified which of the N cities 
should be visited first. Having deleted that 
city from our list, the second parameter 
always takes on a value in the range L.N-I, 
specifying by position on our list which of 
the remaining cities is to be visited second, 
and so on. Values for each of the parame

ters can now be independentlY selected and 
crossover and mutation always produce legal 
tours. However, the performance of GAs on 

this representation is not significantly better 
than the previous ones. The difficulty 
appears to be that gene val ues to the right 

of a crossover point or a mutation are inter
preted quite differently (i.e., specify totally 
different subtours) in an offspring than in the 

parent, violating the concept of minimal 
disruption of "building block" formation. 
What seems to be needed is a representation 

which allows good subtours (co-adapted sets) 
to form and be passed on in combination 
with other subtours, forming better tours, 
and so on. With the traditional definition of 
a hyperplane, this seems to rule out context 



sensitive interpretations as bad representa
tions. I am unaware of any alternatives 

other than the hope that perhaps a more 
general perspective on hyperplanes will clar

ify these issues. 

3.5. Varying Length Representations 

So far we have been discussing issues 

which appear in the context of searching 
parameter spaces. There are, of course, 

many other (generally more complex) kinds 

of spaces which represent the set of permissi
ble structural changes to an adaptive prcr 
cess. In some cases strings are still a natural 

representation, but there may be no notion 
of a fixed length. A good example are 

strings which specify structural changes via 

"genes" which represent actions to be taken. 
One string may consist of only a few actions 

while others require many. If we wish to use 

standard GAs, the simplest (but somewhat 
inefficient) approach is to assume some rea

sonable upper bound on the length, throw in 

a "ncrop" action, and require all strings to 
be maximum length. Alternatively, cross

over can be easily generalized to produce 

offspring whose length is different (in gen

eral) from either parent by choosing 

independent crossover points in each parent. 

However, it is important to note that 
neither approach is sufficient to guarantee 

good GA performance on varying string 

length spaces. To understand why requires 
asking what the hyperplanes are in this con

text. Both Holland IHolland75j and Smith 
ISmith80j discuss the issues. I will not 
repeat the discussions here, but just note 

that there is considerable evidence that a 
sufficient condition for good GA performance 

is that the genes express their actions in a 

position independent way. 

3.&. Non-String Representatlona 

What should one do when elements in 

the space to be searched are most naturally 
represented by more complex data structures 

such as arrays, trees, digraphs, etc. Should 

one attempt to "linearize" them into a 
string representation or are there ways to 

creatively redefine crossover and mutation to 
work directly on such structures. I am 
unaware of any progress in this area. How

ever, the issues appear to be reasonably 
clear. Any linear representations will have 
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to satisfy the properties discussed in the 
preceding sections in order to achieve 

efficient GA search. Similarly, any attempts 

to modify crossover and mutation will 
require analogous hyperplane analysis results 

to guarantee reasonable performance. 

3.7. Production System Spaces 

One of the most intellectually pleasing 
ways to effect changes in the behavior of a 
complex process is to modify its knowledge 

base. There has been a good deal of 
research within the AI community regarding 
appropriate ways to represent knowledge. 

Production rules are frequently chosen when 
learning is involved IWaterman70, Newell77, 

Buchanan78]. The GA community has also 

maintained a long standing interest in prcr 
duction system architectures because of their 

amenability for use with GAs IHolland75, 

Holland78, SmithSO, Booker82J. From my 
perspective there are currently two main 

approaches to searching production system 

rule spaces with GAs. 

The first is typified by the classifier 

systems developed initially by Holland IHol

land78] and Booker IBooker82]. Here indivi
duals in the population represent single prcr 

duction rules (typically fixed length) and the 
current population represents the entire set 
of rules governing the behavior of the adap

tive process. GAs play a subservient role 

within a larger cognitive model and are 
invoked intermittently to produce new rules 

which replace existing rules in the popula

tion. 

The alternate approach is represented 
by the LS-l system developed by Smith 

ISmith80J. Individuals represent entire rule 

sets to be plugged into the knowledge base 

and evaluated. The next generation of rule 
sets is produced in the usual way by apply

ing genetic operators to existing rule sets. 

Both approaches have produced 

encouraging results in quite different con
texts. There is not enough experience, how

ever, to understand precisely the strengths, 

weaknesses, and tradeoffs involved in either 
of the approaches. My guess is that the 

classifier approach will prove to be most use

ful in an on-line, real-time environment in 
which radical changes in behavior cannot be 
tolerated whereas the LS-l approach will be 

best suited for off-line environments in which 



more leisurely exploration and more radical 

behavioral changes are acceptable. 

4. Fitness Functions 

In addition to choosing an appropriate 

representation on which to apply GAs, care
ful thought must be given to the characteris

tics of the payoff function used to provide 

feedback regarding an individual's fitness to 
produce offspring. The wealth of data from 

GA function optimization studies simultane

ously show a general robustness in perfor

mance over widely varying classes of func

tions and intermittent dismal results. This 

has lead to several informal characterizations 

of the kinds of surfaces which are GA-hard. 

Surfaces which are flat almost everywhere 

except for an occasional spike present 

difficult search problems for any approach 
including GAs. The intuitive explanation is 

that, since there is (essentially) no 
differential payoff among the competing 
hyperplanes, such peaks will be found only 

by chance. Unfortunately, it is not all that 

difficult to inadvertently construct one in 
applications like the hypersphere and BSP 

examples discussed earlier. 

This immediately suggests another way 

to fool GAs: put misleading information in 
the hyperplanes. Fortunately, this is much 

more difficult to do because of the simul

taneous sampling of many different hyper

plane partition elements. Bethke IBethke81j 

has a nice discussion of this using Walsh 

transforms to characterize GA-hard func

tions. However, much more work needs to 

be done in this area. 

It should be also noted that it is quite 
easy to incorrectly blame GAs for poor per

formance when the fault in fact lies else
where. One classic case of this arises when 

using GAs to improve the performance of a 

complex process for which no payoff function 

is given. Since one has to be constructed, 
care must be taken to verify that high payoff 

values as seen by GAs corresponds to good 

behavior as observed by watching the com
plex process itself. Another case arises when 

numeric parameter spaces are being 

searched. Since there is typically some free
dom in how finely to discretize a parameter 

range, choosing too coarse a discretization 
factor may inadvertently leave out optimal 
points in the representation space being 
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searched by GAs and then blame the GAs 

for not finding them! 

Until recently, most GA research and 

applications involved payoff functions which 

return a single (scalar) payoff value. There 

are situations in which it is more natural to 
have the payoff function return a vpctor of 

values representing, for example, scores on 

non-commensurate aspects of performance. 
Rather than insisting that an artificial func

tion be created which combines such scores 

into a single payoff value, it would be prefer

able to have GAs work directly with multi

valued payoffs. Schaffer iSchaffer85j has 
explored this possi bility recently and has 

obtained promising results. 

5. Genetic Operators 

There certainly is nothing sacred about 

the traditional operators defined and 

analyzed by Holland. What is important is 
that we have criteria from Holland's hyper

plane analysis which operators should meet. 

If changes are made to existing operators or 
new ones are introduced, it is important to 

verify that they aren't overly disruptive of 

the process of distribution of trials according 
to payoff and that they encourage the forma

tion of building blocks. There are still some 
interesting open questions along these lines 

with respect to rather modest variati"ns of 

the standard operators. 

It is pretty much standard procedure 

now to view crossover as applying to circular 

strings and selecting two crossover points, 
the beginning and the end of the segment 

provided by the second parent. This 

modification is well supported both theoreti

cally and experimentally. What happens if 

we continue along this vein and select two 

segments from the second parent (via four 

crossover points)? Is this helpful or too dis

ruptive? The answers are pretty clearly 

negative by the time we have increased the 
number of crossover points to the extent 

that an offspring's gene values are randomly 
selected from its parents values. Perhaps 

the number of crossover points should be a 

function of the length of the strings 
involved. Applying the traditional crossover 
to strings with thousands of genes (which is 

currently being done) seems to be intuitively 

more disruptive than one with four or six 
crossover points. If so, where does the law 



of diminishing returns set in? 

The role of mutation as a background 

operator which introduces new allele values 

is fairly well understood and accepted in the 

abstract. As discussed earlier, problems can 

arise from our choice of representation in 

which mutation (and crossover) are operat

ing at the bit level, but our interpretation of 

the search space is at a higher level. This 

can lead to a frequently tried but rarely suc

cessful strategy of increasing the mutation 

rate to improve GA performance. A better 

approach in such situations is to think in 

terms of both higher and lower level versions 

of the genetic operators. Both Holland [Hol

land75j and Smith [Smith80j discuss this, 

but much more work needs to be done. 

8. Selection 

The technique of selecting parents for 

reproduction with a frequency proportional 

to observed fitness has strong theoretical 

justification and considerable empirical sup

port. However, there are occasions when 

this process seems to break down when 

implementing GAs with finite populations. 

This has come to be known as "the scaling 

problem" and can occur in a number of 

ways. If a highly fit individual is encoun

tered early in the search process among 

mediocre peers, selection will give it such 

strong preference that it can dominate the 

population in a few generations and cause 

premature convergence. Similarly, late in 

the search process the population can be leg

itimately dominated by members with very 

high payoffs which differ on an absolute 

scale, but when normalized to produce 

expected number of offspring are equivalent 

out to the third or fourth decimal place. 

The effect is that essentially every parent 

contributes equally to subsequent popula

tions in spite of fitness differences. 

There have been a number of proposed 

solutions including the introduction of scal

ing factors and crowding factors [DeJong75j, 

and selection by rank [WetzeI83, Shaffer85j. 

However, I think it is fair to say that a gen

eral sol ution still el udes us. 

7. GA Parameter. 

One of the observations people are 

quick to make is that GAs are themselves 

complex processes which appear to have a 
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set of parameters (crossover rate, mutation 

rate, population size, etc.) which could be 

tuned to improve performance. There is 

considerable empirical support for the state

ment that within reasonable ranges the 

values of such parameters are not all that 

critical [DeJong75, Grefenstette85j. As a 

consequence most GA applications work 

with fixed "accepted" parameter values. 

However, there is also evidence to suggest 

that additional performance improvements 

could be obtained if such parameter val ues 

could be dynamically modified. The 

difficulty is in deciding when and how to 

effect such changes. Should we have a two

level GA complex with the top level GA 

actively searching the parameter space of 

the lower level GA and trying out new 

parameter combinations? Are there simpler 

signals such as allele loss which should 

trigger parameter changes? Unfortunately, 

the existing theory gives little guidance here. 

8. Conclusion 

In rereading the previous sections, I 

became a little concerned that the reader 

might infer a strong negative tone from this 

long list of problems and open issues in GA 

research. Nothing could be further from my 

intent. I am enthusiastic about the potential 

which GAs hold and am actively involved in 

GA research and applications. It is that 

enthusiasm which generated this paper and 

this conference. I hope the result is that the 

next time we get together my list will be 

considerably shorter (or at least different)! 
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Classifier System with Long-term Memory in Machine Learning 
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ABSTRACT 

This paper discuues the 

advantages 0/ claBBi/ier BIIsteTnS 

with 10ng-terTn TneTnorll and 

includes a description 0/ the basic 

structure 0/ such a sllBteTn. The 

learning strategll used here is 

tw%ld one. First, an analogical 

learning Btrategll is eTnplOlled to 

inject the appropriate knowledge 

into the population. Second, a 

production sllsteTn with a GA-based 

learning cOTnponent iB invoked to 

per /orTn Bubsequent learning. The 

proposed sllBteTn has one overall 

objective: It Beeks to increase the 

e//iciencII and power 0/ the 

learning sllBteTn over a long period 

0/ tiTne 0/ use. 

1. Introduction 

A genetic algorithm (GA) is a problem

solving and non-deterministic search algorithm 

first introduced by Holland in 1975[3J. It has been 

shown, theoretically and empirically, that GAs 

are robust and effective in various task domains, 

even in the presence of difficulties such as noise, 

high-dimensionality, multimodality and 

discontinuity [7J. 

The outgrowth of the continuing research 

in this area evolved into a message-passing, rule

based production system called classifier 

system[4]. A classifier system is a learning system 

in which many classifiers are active 

simultaneously. A classifier is a pattern sensitive 

element with condition/action form. Each 

condition specifies the set of messages satisfying 
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it, and each action specifies the message to be 

sent when its condition part is satisfied. In short, 

a classifier system manipulates knowledge 

structures (KSs) in response to performance via a 

genetic algorithm. It provides a framework for 

cognitive simulation [2]. 

Several published classifier systems which 

incorporate transfer of learning knowledge from 

one task to another have been developed: In 

1978, Holland and Reitman designed the first 

classifier system called CS-l tested on maze 

problems. An experiment was conducted to 

demonstrate transfer of learning from a small 

maze problem to a large but similar one[4J. The 

experimental result showed that CS-I was able to 

solve the large maze problem much faster when 

initially supplied with some learned knowledge 

structures. In 1982, Booker did in-depth 

simulation study of classifier systems as cognitive 

models[2J. He performed several experiments to 

demonstrate the effects of prior knowledge 

structures on learning in new situation. For 

-positive transfer" (transfer of knowledge for 

solving similar tasks), his results were very 

encouraging. 

Before proceeding any further, the 

-reversal learning task- needs to be described: 

Schrier[6] trained a monkey on a reversal learning 

task. Reward and punishment were reversed 

repeatedly while keeping the input information to 

the monkey unchanged. Performance of this 

monkey was inefficient at the outset, but, 

eventually, each new reversal could be learned 

with a single trial. 

In order to test the learning ability of 



claSsifier systems, Booker ran his system on the 

reversal learning task. Surprisingly, the resulting 

performance was inconclusive. The reasons, 

according to Booker, are that -the emphasis on 

recency and short-term memory in the system is 

too great - because - by the time the organism 

had reached criterion on a given reversal, the 

classifiers learned during the previous reversal 

were likely to have been deleted - that is, become 

• extinct· due to the drastic change in the 

environment- [2]. In 1984, Scharfer completed the 

L8-2 designed for the pattern discrimination task 

domain[5]. He also gave the reversal learning task 

to his system. The results obtained so far are not 

en couraging either{private communication). 

In sum, efforts to build powerful classifier 

systems have met with impressive success over 

the past. The attempts to transfer learned 

knowledge for solving similar tasks, though 

manaully, have been shown to be useful and 

effective. However, the failures in solving the 

reversal learning task pose a question: Is there 

any way that classifier systems can keep 

knowledge which is useful but irrelevant to the 

current situation intact in order to increase the 

efficiency and power of their learning ability? To 

answer this question, this paper proceeds from a 

general need for having a long-term memory to a 

proposed prototype in the following sections. 

2. Motivation for the design of eiassifier 

system with long-term memory(CSLM) 

We begin this section with several 

assumptions which have been associated with 

traditional classifier systems. 

• The domain of learning is concerned with a 
single task. 

• The changes in environments are slight, 
smooth and gradual. 

• The efficiency for solving similar tasks in a 
long run is not important. 
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If task domain satisfies these assumptions, it 

would be unnecessary to augment a. classifier 

system with long-term memory. However, an 

ideal learning system should be able to switch its 

attention as needed while still preserving the 

most useful knowledge gained in the past no 

matter how its environment has been changed. 

By doing so, the system would increase its 

efficiency and power over time and improve its 

learning ability as the number of learned tasks 

grows. 

In short, the main concern of this paper is 

to investigate how to accumulate and preserve 

knowledge not only within a task, but also among 

tasks. It has been shown empirically that the size 

of a population should be chosen around 

50(number of knowledge structures) in order to 

maximize computational efficiency[8]. In practice, 

most of classifier systems never use a population 

larger than 200. For such small knowledge pools, 

it is hard to imagine that a set of generalized 

knowledge structures could be constructed, for 

example, suitable for many pattern discrimination 

tasks. A short-term memory, i.e. the population 

in a classifier system, can not be expected to meet 

the challenges imposed by drastic environmental 

changes. Each knowledge structure in a 

population is evaluated by the Critic designed for 

the current task. It is very difficult, if not 

impossible, to preserve those knowledge 

Itructures which were perfect for lome previous 

tasks but not suitable for the current situation. 

We lee this as a serious weakness of the current 

model and as the major motivation for the design 

of a classifier Iystem with long-term memory 

(CSLM). 

3. Overall description of CSLM 

In this section, an overall organization of 

CSLM is outlined. The description is based on 

the following diagram and is intended to be 



instructive rather than specific. In figure 1, an 

understanding of the basics of classifier systems 

has been assumed. It is well described in [2,4,5]. 

FilJUA 1 'l'he par.dip of CSUC 

In simplest t.erms, we can yisualile the main 

components of CSLM as follows: 

e De8criptor8: Descriptors serve as indices 

to learned knowledge structures. The 

descriptors for various tasks could be very 

general. In fact, complete and precise 

descriptor for a task is neither necessary 

nor realistic. In practice, the descriptors 

might use a low level language(a string of 

bits) or a high level language(alphabet) to 

express main characteristics of tasks. They 

may be produced automatically from 

incoming tasks, or supplied by users. 

• Matcher: The Matcher(a procedure) 

performs two functions: matching 

descriptors and initializing a population. We 

discuss them together here. Matching the 

descriptor of a incoming task with that of 

solved tasks in a long-term memory might 
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have one of the following three outcomes: 

1. Exact matching. 

The next step is to bring the learned 

Knowledge structures into the 

population. Heuristic initialization of 

the population is done. 

2. Partial matching. 

One similar task can be found. The 

similarity between the incoming task 

and the stored ones indicates that 

there might exist some useful building 

blocks in the stored knowledge 

structures which, hopefully, can 

provide a promising direction to start 

with. Thus the search space would be 

pruned and the computational effort 

might be reduced . 

3. No matching. 

It tells us that no previous experience 

regarding the incoming task is known, 

or possibly has been forgotten. In this 

case the CSLM has to start from 

scratch, no worse than current 

classifier systems. 

Long-term memor,,: The long-term 

memory consists of two separated memories 

called Episodic Memory(EM) and 

Knowledge Base{KB) respectively. 

The EM stores all descriptors for previous 

tasks. Each descriptor has one pointer 

pointing to its corresponding KSs in the 

KB. The content of the EM may be 

considered as the indices for accumulated 

knowledge structures. 

The KB preserves learned KSs. 

Whenever a task has been solved, the set of 

solutions are stored in the long-term 

memory along with the associated pointer. 

One of the basic learning strategies 
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employed in CSLM is -learning by analogy

which appears to be a central inference method in 

human cognition and promises to be a powerful 

mechanism in machine learning . Learning by 

analogy consists of two phases. The first phase is 

called the -reminding phase- which identifies the 

similarity between an incoming task and the 

problems observed or solved before. The second 

phase involves the t.ransfer of appropriate 

knowledge obtained in the past into the new 

situation. Carbonell pointed out the importance 

of learning by analogy:- In general, transfer of 

experience among related problems appears to be 

t.heoretically significant phenomenon as well as a 

practical necessity in acquiring the task -

dependent expertise necessary to solve more 

complex real world problems-[I). 

The approach used in CSLM is to form 

descriptors derived Crom t.he detector array to 

categorile tasks. In the reminding process, 

similarity could be determined by matching these 

stored descriptors in a long-term memory with 

the descriptor derived from an incoming task. In 

t.he next phase of analogical problem solving, the 

related knowledge structures, if any, would be 

brought into the population. Notice t.hat to 

inject these learned KSs into a population is not 

t.he end of our story. Instead, it should be viewed 

as providing strong guidance Cor future search. 

The genetic algorithm will manipulate t.hese 

useful building blocks and transform them into a 

form that would be appropriate Cor the current 

task. In the next phase, the classifier system is 

invoked to perform the subsequent learning which 

will not been detailed here. 

4. Solving the reversal learning task in 

CSLM 

First of all, we need to emphasile that the 

interestingness of the reversal learning task is not 

only because it represents a new class of learning 
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tasks, but also, more importantly, it tests the 

learning ability of a system on how well it can 

preserve useful knowledge from radical changes in 

environments. 

Let us see what will happen if a reversal 

learning task is given to CSLM. 

Suppose that a CSLM has created a set of 

KSs for a given task and stored it along with its 

associated descriptor in a long-term memory, as 

shown in figure 2.a. When the second task with 

the same appearance but opposite 

meaning(reversal task) is given, the CSLM, as 

expected, is in the worst possible position to learn 

the new task since the Matcher procedure would 

have brought the learned KSs into the 

population. In this case, the learned KS would 

receive a low score and the classifier system 

would have to develop a new KS for the reversal 

task. However, after t.he CSLM has created two 

sets of KSs for each reversal, it can solve 

subsequent reversal learning tasks with a single 

trial. As noted earlier, the generality of a 

descriptor for a task would guarantee the CSLM 

to recognile the tasks with the same or similar 

characteristics. Thus the Matcher would be able 

to pull two sets of KSs out of the long-term 

memory based on the similarity measurement and 

inject them into t.he population. The initialiled 

population is shown in Cigure 2.b. Therefore, the 

Critic would be able to choose the appropriate 

KS Cor each reversal. 

r1vun I 

Another significance of this demonstration 
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IS to show what happens if a set of bad 

knowledge structures has been used to initialize 

the population. The full power of genetic 

algorithms comes from the parallel nature of the 

search and the immunity to false peaks. 

Therefore, these injected KSs are only tentative, 

and as such are subject to testing. If some of 

them prove useless or misleading, they will die 

out in subsequent generations. 

There is a further point worth noting: the 

portion of a population to be heuristically 

initialized should be judiciously decided so that 

the premature convergence could be avoided 

while still giving an opportunity for guiding 

future search. 

o. Summary and Future Research 

This paper has discussed the advantages of 

augmenting classifier systems with long-term 

memory and described a prototype of CSLM 

conceptually. The process of solving the reversal 

learning task was demonstrated as well. The 

driving force behind this paper is to extend the 

current model in order to deal with more complex 

task and make consistent progress even if 

environments have been drastically changed. 

Several difficulties which can be anticipated in 

the design of CSLM are mentioned here: 

• How to extract descriptors from tasks with 

reasonable accuracy and effort while 

maintaining the delicate balance between 

generality and specificity? 

• How to update the content of a long-term 

memory dynamically? 

• How to best initialize a population? 

In seeking the answer to these questions and to 

test the feasibility of the proposed ideas, a 

specific CSLM designed in the pattern 

discrimination domain is to be implemented. It is 

hoped that the experimental results will be 

available soon as an evidence of the improved 

learning ability of the proposed system. 
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ABSTRACT 

Nichael Lynn Cramer 

Texas Instruments Inc. 

PO Box 226015,MS 238 

Dallas, TX 75266 

An adaptive system for generating short sequential computer functions is described. 

The created functions are written in the simple "number-string" language JB, and in TB, a 

modified version of JB with a tree-like structure. These languages have the feature that they 

can be used to represent well-formed, useful computer programs while still being amenable 

to suitably defined genetic operators. The system is used to produce two-input, single

output multiplication functions that are concise and well-defined. Future work, dealing 

with extensions to more complicated functions and generalizations of the techniques, is 

also discussed. 

INTRODUCTION 

The techniques of adaptive Genetic Algorithms [GAsJl have been shown to be useful 

in many areas. Initially, these systems involved the adjusting of a fixed set of parame

ters in order to optimize the performance of a given algorithm2. Much work has been 

done toward the goal of evolving the algorithms themselves, particularly in Production 
System-like domains 1(chap8),3,4. This paper discusses work towards developing a sequen

tial programming language that is suitable for manipulation by GAs so as to permit the 

adaptive generation of simple computer functions from low-level computational primitives. 

FUNCTIONAL REPRESENTATION 

The scheme that we will follow is first to find a suitably powerful programming lan

guage, and then encode the programs in this language in such a way as to make them 

amenable to the standard Genetic Operators [GOs]. 

The basic language to be used is a variation of the algorithmic language PL having 

the following operators: 

(:INC VAR) ;;add 1 to the variable VAR 

(:ZERO VAR) ;;set the variable VAR to 0 

(:LOOP VAR STAT) ;;perform the statement STAT VAR times 

(:GOTO LAB) ;Jump to the statement with label LAB 

Programs in PL consist of an arbitrary number of globally-scoped (positive) integer 

variables and statements containing operators of the above forms. Two simple example PL 

Programs are: 

;;Set variable VO to have the value of VI 

(:ZERO VOl 

(:LOOP Vl (:INC VO)) 

;;~1 ultiply V3 to V 4 and store the result in V5 

(:ZERO V5) 
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(:LOOP V3 (:LOOP V4 (:INC V5))) 

While PL can be shown to be Turing Equivalent 5, we will be interested in the language 

subset PL-{: GOTO}. This language subset has two useful properties: first, while it is not 

fully Turing Equivalent, it still comprises a powerful set of functions (specifically, the 

set of primitive recursive functions)5 and second, programs written in Pl-{: GOTO} are 

guaranteed to halt. Finally, we make two small extensions to the language. First, a :SET 

operator, which accepts two variables and sets the value of the first variable equal to that of 

the second. (As can be seen in in the examples above, this operation is trivially definable 

in PL-{: GOTO}; if so desired, it can be considered a macro or subroutine operator.) 

Secondly, we define a :BLOCK operator that accepts two statements as arguments and 

evaluates the two statements sequentially. (This is essentially just a grouping operation 

that has no effect on the overall structure of the language.) 

Now, the encoded representation for our programs should have two characteristics: 

(Goal 1) It should be amenable to the standard GOs. 

(Goal 2) The representation should produce only well-formed programs, even when 

subjected to the GOs. While some representations) e.g. character-strings, might be well 

suited for the mechanisms of GOs, the random generation and/or altering of characters 

is not likely to produce, say, a useful FORTRAN program. Consequently, it is strongly 

desirable that the chosen representation be such that all such generated programs stay in 

the space of syntactically correct programs. Not all such generated programs would be 

useful (adapation would be expected to correct that); it is only important at this point 

that such programs be well formed. 

This paper will consider lists of integers as a representation for these programs where 

the object the integer represents (variable, operator, etc,) is determined by the integer's 

position in the list. Clearly such a representation satisfies Goal 1 above, the standard GOs 

(Crossover, Mutation, Inversion) would be well defined on such a list. To satisfy Goal 2, 

we need to define a decoding of an arbitrary list into a well-formed program. 

THE JB LANGUAGE 

A first attempt at such a decoding is the language JB. The list of integers is first divided 

into statements of some length large enough for the longest statement size, (three in the 

present case). Any integers left over at the end of this list are ignored. The first of these 

statements is defined to be the Main Statement [MS] and the remaining NaB statements are 

the Auxiliary Statements [AS]. Syntactically, these statements are interpreted as follows: 

(04 2) -> (:BLOCK AS4 AS2) 

(1 6 0) -> (:LOOP V6 ASo) 

(2 1 9) -> (:SET VI Vg ) 

(3 17 8) -> (:ZERO V17 ) ;;the 8 is ignored 

(4 0 5) -> (:INC Vol ;;the 5 is ignored 

Here the symbols of the forms Vn and ASn represent, respectively, example Variables 

and Auxiliary Statements. 

This body of statements is embedded in an environment containing Nbv body-variables 

(initialized to 0) and Niv input-variables. At the end of the execution of the program, any 

of the N vtot = (N,v + Nbv) available variables can be returned as ouput. 
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The function is entered by executing the MS, which, typically, will call on one or more 

of the AS's. An example JB program would be: 

(0 0 1 3 5 8 1 3 2 1 4 3 4 5 9 9 2) 
This would be grouped into the following Statements: 

(00 1) ;;main statement -> (:BLOCK ASo ASd 

(3 5 8) ;;auxiliary statement 0 -> (:ZERO Vs) 
(1 3 2) ;;auxiliary statement 1 -> (:LOOP Vs AS2) 

(1 4 3) ;;auxiliary statement 2 -> (:LOOP V4 ASs) 

(4 5 9) ;;auxiliary statement 3 -> (:INC Vs) 

This is the same as the PL multiplication program above. 

As can be seen, virtually (see below) any list (of sufficient length) of integers chosen 

from the range [O,Nrand-1] can be used to generate a well-formed JB program. Where Nrand 

= Nvtot*"Nc,*"Nop (Nop is the total number of operator types). A particular language object 

(variable, AS, operator-type) needed for the program can then be extracted from a given 

integer in the list by taking the modulus of that integer with respect to the respective 

number above. This ensures random selection over all syntactic types. Two problems 

arise from this straight forward use of the JB language. The first, a minor problem, is 

that a JB integer-list will not define a correct program when a loop is created among 

the Auxiliary Statements. In practice, with a moderate number of AS's this is a rare 

occurence. Moreover, it is easy to remove such programs during the expansion of the body 

of the program. (In any case, this problem will be removed in the TB language below.) 

A second, more serious problem is that while the mechanisms of the applications of 

the GOs are very simple in the JB language, the semantic implications of their use are 

quite complicated. Because of the structure of JB, semantic positioning of a integer-list 

element is extremely sensitive to change. As a specific example, consider a large compli

cated program beginning with a :BLOCK statement in the top-level Main Statement. A 

single, unfortunate, mutation converting this operator to a :SET would destroy any useful 

features of the program. Secondly, this strongly epistatic nature of JB seems incompatible 

with Crossover, given Crossover's useful-feature-passing nature. A useful JB substructure 

shifted one integer to the right will almost certainly contain none of its previously useful 

properties. 

THE TB LANGUAGE 

In an effort to alleviate these problems, we consider a modified version of JB. This 

language, called TB, takes advantage of the implicit tree-like nature of JB programs. 

TB is fundamentally the same as JB except that the Auxiliary Statements are no 

longer used. Instead, when a TB statement is generated, either at its initial creation or 

as a result of the application of a GO (defined below), any subsidiary statements that the 

generated statement contains are recursively expanded at that time. The TB programs 

no longer have the simple list structure of JB, but instead are tree-like. Because we are 

simply recursively expanding t:'le internal st.atements without altering the actual structure 

of the resulting program, the TB programs still satisfy Goal 2. Indeed, it can be seen that, 

because of its tree-like structure, TB does not suffer from the problem of internal loops 

described above. Thus, all possible program trees do indeed describe syntactically correct 

programs. 
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An example of a TB program is: 

(0 (3 5) (1 3 (1 4 (4 5) ) ) ) 

This expands to the same PL and JB multiplication programs given above. 

The standard GOs are defined in the following way: 

Random Mutation could be defined to be the random altering of integers in the pro

gram tree. This would be valid but would encounter the same "catastrophic minor change" 

problems as did JB. Instead, Random Mutation is restricted to the statements near the 

fringe of the program tree. Specifically: 1) to leaf statements, i.e., those that contain 

operators that do not themselves require statements as arguments (:INC, :SET, :ZERO). 

And 2) to non-leaf statements (with operators :BLOCK, :LOOP) whose sub-statement ar

guments are themselves leaf operators. Inside a statement, mutation of a variable simply 

means randomly changing the integer representing that variable. Mutating an operator 

involves randomly changing the integer representing the operator and making any nec

essary changes to its arguments, keeping any of the integers as arguments that are still 

appropriate, and recursively expanding the subsidiary statements as necessary. 

Similarly, following Smith6 , we restrict the points at which Crossover can occur. 

Specifically, Crossover on TB is defined to be the exchange of subtrees between two parent 

programs; this is well-defined and clearly embodies the intuitive notion of Crossover as the 

exchange of (possibly useful) substructures. This method is also without the problems that 

Crossover entails in JB. In a similar manner, we could define Inversion to be the exchange 

of one or more subtrees within a given program. 

EXAMPLE 

As a concrete example, an attempt was made to "evolve" concise, two-input, one

output multiplication functions from a population of randomly generated functions. As 
discussed by Smith3 (Chap5) a major problem here is one of "hand-crafting" the evaluation 

function to give partial credit to functions that, in some sense, exhibit multiplication-like 

behavior, without actually doing multiplication. 

After much experimentation, the following scheme for giving an evaluation score was 

used. For a given program body to be scored, several instantiations of the function were 

made, each having a different pair of input variables [IVs). Each of these test functions 

was given a number of pairs of input values and the values of all of the function's variables 

were collected as output variables [OVs). The resulting output values were examined and 

compared against the various combinations of input values and IVs. The following types of 

behavior were noted and each successive type given more credit: 1] OVs that had changed 

from their initial values. (Is there any activity in the function?) 2] Simple Functional 

dependence of an OV on an IV. (Is the function noticing the input?) 3] The value of 

an IV is a factor of the value of an OV. (Are useful loop-like structures developing?) 4] 

Multiplication. (Is an OV exactly the product of two IVs.) 

Furthermore, rather than accept input and/or output in arbitrary variables, score!' 

were given an extra weight if the input and/or output occurred in the specific target 

variables. To ensure that the functions remain reasonably short, functions beyond a certai: 

length are penalized harshly. Finally, a limit is placed on the length of time a function is 

permitted to run; any functim:: that has not halted within in this time is aborted. 
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A number of test runs were made for the system with a population size of fifty. These 

were compared against a set of control runs. The control runs were the same as the regular 

runs except that there was no partial credit given; all members of the population were given 

a low, nominal score until they actually started multiplying correctly. All runs were halted 

at the thirtieth generation. The system produced the desired multiplcation functions 72% 

more often than the control sample. 

FUTURE WORK 

Finally, a number of questions remain concerning the present system and its various 

extensions: 

Ext.ensions of the Present System: Generation of other types of simple arithmetic 

operations seem to be the next step in this direction. Given the looping nature of the 

underlying PL language it seems obvious that the system should be well suited for also 

generating addition functions. However, it is less clear that it would do equally well 

attempting to generate, e.g., subtraction or division functions, to say nothing of more 

complicated mathematical functions. Indeed, the results of the control case above show 

that it is difficult not to produce multiplication in this language; generation of other 

types of functions would prove an interesting result. On the other hand l are there other, 

comparably simple, languages that are better suited to other types of functions? 

Concerning Extensions of the Language: A useful feature of the original JB language 

is its suitability for the mechanisms of the GOs. Can some further modification be made 

to the current TB language to bring it back into line with a more traditional bit-string 

representation? Are these modifications, in fact, really desirable? Alternatively, would it 

be useful t.o modify the languages to make GOs less standard? For example, would it be 

productive 1.0 formalize the subroutine swapping nature of the present method of Crossover 

and define a program as a structure comprising a number of subroutines, where the appli

cation Crossover and Inversion was restricted to the swapping of entire subroutines, and 

Random Mutation restricted to occurring inside the body of a subroutine? 
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ABSTRACT 

It is shown that a certain model of the primate 
retino-cortical mapping "sees" all centered objects 
with the same "object-resolution", or number of dis
tinct signals, independent of apparent size. In an 
artificial system, this property would permit recog

nition of patterns using templates in a cortex-like 
space. It is suggested that with an adaptive produc
tion system such as Holland's classifier system, the 
recognition process could be made self-organizing. 

!:,\TRODUCTION 

Templates are generally felt to have limited use
fulness for visual pattern recognition. Though they 
provide a simple and compact description of shape, 
templates cannot directly deal with objects that, as 
is common, vary in real or apparent (i.e., imaged) 
size. However, the human visual system, in the step 
from retina to cortex, appears to perform an auto
matic size-normalizing transformation of the retinal 

Figure 1. "Retina" consisting of "data fields" 
each connected to an "MSU" in the "cortex" of 

Fig. 2. 
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image. This suggests that pattern recognition using 
templates may occur in the cortex, and that artifi
cial systems having a similar transformation should 
be investigated. Properties of the retino-cortical 
mapping which are relevant to pattern recognition 
are discussed in the first half of this paper. In the 
second half, we outline how an adaptive production 
system having template-like conditions might recog
nize patterns that had been transformed to a "cor
tical" space. 

THE RETINO-CORTICAL MAPPING 

Recent papers in image processing and display, 
and in theoretical neurophysiology, have drawn at
tention to a nonlinear visual field representation 
which resembles the primate retino-cortical system. 
Weiman and Chaikin [1] propose a computer archi
tecture for picture processing based on the complex 
logarithmic mapping, the formal properties of which 
they analyze extensively. They and also Schwartz [2] 

Figure 2. Each MSU receives signals from a data 
field in Fig. 1. Letters indicate connection pat

tern. 
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present physiological and perceptual evidence that 
the mapping from retina to (striate) cortex embod
ies the same function. Wilson iS' discusses the map

ping in the light of additionai ~ v i d e n c e  and exam
ines its potential for pattern recognition. Early re
lated ideas in the pattern recognition literature can 
be found in Harmon's [4] recognizer and in certain 
patents [5). 

A hypothetical structure (adapted from (s:J sche
matizing important aspects of the retino-cortical 
(R-C) mapping is shown in Figures 1 and 2. The 
"retina" of Figure 1 consists of "data fields" whose 
size and spacing increase linearly with distance from 
the center of vision. The "cortex" of Figure 2 is a 

matrix of identical "message-sending units" (MSus) 
each of which receives signals from its own retinal 
data field, processes the signals, and generates a rel
atively simple output message that summarizes the 
overall pattern of light stimulus falling on the data 
field. The MSU's output message is drawn from 
a small vocabulary, i.e., the MSU's input-output 
transform is highly information-reducing and prob
ably spatially nonlinear. 

Further, all MSUs are regarded as computing the 
same transform, except for scale. That is, if two 
data fields differ in size by a factor of d, and their 
luminance inputs have the same spatial pattern ex
cept for a scale factor of d, then the output messages 
from the associated MSUs will be identical. (Physi
ologically, the cortical hJ1percolumns [6] are hypoth
esized in [SJ to have the above MSU properties.) 

The pattern of connections from retina. to cortex 
is a.s suggested by the letters in Figures 1 and 2. 

Data fields along a ray from center to periphery map 
into a row of MSUs, and simultaneously, each ring 
of data fields maps into a column of MSUs. The 
leftmost column corresponds to the innermost ring, 
the 12 o'clock ray maps into the top row, and so 
forth. 

It is convenient to describe position in retinal 
space by the complex number z = r e ' < ~ > ,  where rand 

¢ are polar coordinates. We can denote cortical po
sition by w = u + iv, where u is the column index 
increasing from left to right and v is the row in
dex increasing downwards. For the mapping to have 
complex logarithmic form, it must be true that the 
position w of the MSU whose data field is at z satis

fies w = log z or, equivalently, u = log r and v = ¢. 

That the equations do hold ca.n be seen from Fig
ure 1. The distance .:lr from one data field center 
to the next is proportional to r itself, which implies 
that u is logarithmic in r. Similarly, the fact that 

all rings have equal numbers of data fields directly 
implies that v is linear in polar angle. Thus (with 
appropriate units) we have w = log z. (The sin
gularity a.t z = 0 can be handled by changing the 
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function within some small radius of the origin. For 
present purposes we are interested in the mapping's 
logarithmic property and will ignore this necessary 
"fix"). 

Figures 3-5 (at end of article) review three salient 
properties of the R-C mapping that have been noted 
by previous authors. The photos on the left in each 
figure are "retinal" (TV camera) images. On the 
right are crude "cortical" images obtained by the 
expedient of sampling the retinal data field centers. 
The mapping used has 64 MSUs per ring and per 
ray. 

Figure 3 shows a clown seen at two distances 

differing by a factor of three. The cortical im
ages, though "distorted", are of constant size and 
shape. Also shown is the result ofrot.ating the clown 

through 45 degrees: again. cortical size and shape re
main the same. The p i c t u r e ~  show how retinal scale 
change and rotation only alter the position of the 
cortical image. Figure 4 illustrates these effects for 
a texture. The cortical images are again the same 
except for a shift. The mapping thus brings about a 
kind of size and rotation in variance which one would 

expect to be useful for pattern recognition. 

Figure 5, in contrast, shows that the mapping 
lacks translation inva.riance. The same clown is seen 
at a constant distance but in three different posi
tions with respect to the center of vision. Transla
tion non-invariance would appear to be a. distinct 
disadvantage for pattern recognition. 

As the clown recedes from the center in Figure 
5, its cortical image gets smaller and less defined. 
The effect illustrates how in a sense the mapping 
optimizes processing resources through a. resolving 
power which is highest a.t the center and decreases 
toward the periphery. This variation is sometimes 
cited as a useful property of the eye, and was dis
cussed in connection with an artificial retina-like 
structure by Sandini and Tagliasco [7]. 

OBJECT-RESOLUTION 

The pattern recognition potential of the map
ping's size-normalizing property is best seen by defin
ing a somewhat unusual notion of resolution. Recall 
first that the resolving power p of a. sensor is the 
number of distinct signals per unit visual angle; in 
the case of a linear sensor (such a.s a TV camera), p 

is a constant. Suppose we a.sk of a system: when its 
sensor images a centered object of half-angle A, how 
many distinct signals, corresponding to the object, 

will the sensor produce? Let us na.me this quan
tity the system's object-reBolution, R 0 • Then, in the 
case of a linear system, it is clear tha.t Ro will be 
proportional to p2 A2

. That is, R0 will depend on 
the distance or "apparent size" of the object, or on 
the relationship between perceiver and object. 



The resulting amount of information may be in
sufficient for recognition, it may be just right, or 
it may overload and therefore confuse the recogni
tion process. This uncertaintv leads to the scale or 
"grain" problem noted by M ~ r r  18 and others and 
to Marr and Hildreth's !9j p r o p o s ~ d ·  solution of com
putations at several resolutions which are later to be 
combined. The grain problem is also a motivation 
for the application of relaxation techniques ]10] in 
pattern recognition. 

Let us now ask what is the object-resolution of an 
R-C system. For such a system the resolving power 
is p = c /r, with r the distance from the center of vi
sion. The constant c can be defined as the numb.er 
of MSU outputs per unit visual angle at an eccen
tricity of r = 1. Object-resolution R0 can be found 
by taking a centered object of half-angle A and in

tegrating over the object from a small inner radius 
£A (£ « 1) out to A. We have 

!
A 2 A c 2 2 1 

Ro = -21rrdr = 21rc ln- = 21rC ln-
<A r2 t:A t: 

independent of A. 

Thus the mapping's object-resolution or spatial 
quantization of the seen object is independent of the 
object's appa.rent size or distance, and independent 
of its actual size as well. It depends only on c (and 
t:). Given a fixed value of c, the system may be 
said to see every centered object, rega.rdless of size, 
equally well, independent of the perceiver-object re
la.tionship. (Strictly spea.king, the above integral in
cludes only a fraction 1-t:2 of the object, the "outer" 
fraction. But if£ is very small the omitted fraction 
t: 2 will contain an insignificant portion of the object's 
pattern.) 

The object-resolution of the R-C mapping can 

be thought of in terms of the number of data fields 
per retinal ring. By mentally superimposing and 

then expanding and contracting a centered object 
on Figure 1, one can see that it is examined in an 
equivalent way at any scale. In fact, it is convenient 
to use the number of fields per ring as a measure of 

Ro· 

The R-C mapping's constant object-resolution is 
the significant difference between it and a linea.r sys
tem. In the remainder of the paper we will develop 

implications of this difference. First, why in an im
portant sense the "grain" problem disappea.rs. Sec
ond, why Gestalt-like templates are, cortically, suit
able for pattern recognition. Third, in outline, how 
the cortical approach with templates allows a sepa
rate adaptive theory due to Holland ]11] to be ap
plied to pattern recognition-and in the process may 
solve the mapping's apparent problem of translation 
non-mvar1ance. 
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THE "GRAIN" PROBLEM 

Basically, a "grain" problem exists if there is no 
a priori way to tell whether the size of the elements 
with which the perceiver is looking is the same as 
that of the optimally informative element of the ob
ject or scene. In the linear case, we found that the 
information about an object may be insufficient, just 
right, or overloading depending on ( 1) the perceiver
object relationship and of course on (2) the amount 
of detail in the object itself. 

In the R-C mapping case, the information is 
constant, dependent only on the perceiver. Thus 
( 1) above-uncertainty due to the perceiver-object 
relationship-disappears. But the information may 
still, it seems, be insufficient, just right, or overload
ing-depending on object detail. 

We can develop a criterion for the latter as fol
lows. Let an object's "object frequency spectrum" 
be the two-dimensional Fourier spectrum of a geo

metrically similar object of unit size, and let fo be 
the highest significant (for discrimination) frequency 
in such a spectrum. Then, roughly, we may say that 
a mapping with resolution Ro (in units of fields per 
ring) provides sufficient information about an object 

if R o ~ f o ·  

But this bound is not ultimately limiting. It only 
says whether information from one fixation is suffi
cient for recognition. Peculiarly, by the mapping's 
constancy of information, any fixated local part of 
an object is seen in as much detail as is the whole ob
ject. Thus, if Ro < / 0 , the system can always gather 

enough information by scanning, i.e., by moving the 
center of fixation to any part not seen clearly. Ro is 
therefore always sufficient, though several fixations 
may be required. 

Can there be too much resolution? Only if ob
jects turn out to be simpler than expected. But 
often this can be known in advance. In contrast, 
in the linear case, superfluous resolution wi11 always 
occur whenever object images become la.rge. 

TEMPLATES 

In any digital computer implementation, a tem
plate for pattern matching consists of a finite (usu
ally rectangular) a.rray of cells in each of which the 

relative brightness to be matched is specified. The 
array has a fixed resolution since the number of cells 

is fixed. 

One major traditional problem with templates is 
a variation of the "grain" problem: Unless the tem
plate's resolution is the same as the system's object
resolution, there is virtually no chance of getting a 
correct match. The R-C mapping offers a solution 
since the system's object-resolution is fixed, and the 



resolution of all stored templates can be made ex
actly commensurate. For instance, the system can 
acquire its templates by copying its own cortical 
MSU output images of identified objects. The same 
objects when later presented in other sizes will be 
"seen" in the same way. 

Templates have other problems, e.g., orientation 
and brightness variations may lead to mismatch. 
These will be taken up later. Our analysis suggests, 
however, that templates may yet have an important 
role to play in general pattern recognition, provided 

the matching occurs in a cortex-like space. 

OUTLINE OF A!\ ADAPTIVE CORTICAL 
PATTERN RECOGNITION SYSTEM 

This section will outline a system concept com

bining the R-C mapping, a production system based 
on cortical templates, and the theory of adaptation 
due to Holland. 

A visual world mapped as in Figures 1 and 2 
suggests a natural polarity between center and pe
riphery. The same centered object, as it grows big
ger, expands toward the periphery, and its cortical 
image, as noted, shifts as a unit from the left side 
of the "cortex" toward the right side. The implica
tion is strong that processing, in the cortex, should 
consist of a column-by-column scan [121 from left to 
right. The pattern of an object, whatever its degree 
of shift from the left, will be encountered "sooner 
or later" and thus be available for matching against 
templates. 

Further reflection suggests that rather than work
ing with two-dimensional templates, it might be 
simpler to use one-dimensional column templates

the identification of a pattern consisting of succes
sive matching of the appropriate column templates. 
Storage would be saved because a given column tem
plate would often be a contributor in more than one 
two-dimensional match. 

An appropriate structure for performing the cor
relation of successively matching column templates 
is a form of prod uction system in which (1) the con
dition of each production includes a column tem
plate pattern and one or more internal message pat
terns, and (2) the action is an internal message to 
be placed on the common message list. (These in
ternal messages are distinct from the MSU output 
messages. To avoid confusion, the internal messages 
will be called i-messages.) 

In addition, a separate set of "effector" produc
tions, whose conditions consisted only of i-message 
patterns, would monitor the i-message list. When 

an appropriate i-message appeared on the list, the 
effector would fire. Its "action" would be (1) an ex
ternal action such as moving the center of vision, or 
(2) an "internal" action also modifying the system's 
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frame of reference but not directly observable from 
the outside (more on this later)' or (3) a signal to 
the outside world denoting a pattern name. 

Many details need to be filled in to make this an 
operating system. However, enough has been given 
to suggest a process in which starting at the left end 
of the cortex, columns would be scanned and pro
ductions would fire in dependent sequence (the de
pendency based on i-messages as well as the column 
information being matched), resulting ultimately in 
an effector firing whose signal named the object in 
VleW. 

Production systems have not usually been con
sidered in connection with pattern recognition be

cause production conditions typically deal with "nor
malized" or logical variables and, given the grain 

problem, patterns in linear vision are anything but 

normalized. In cortical space, however, patterns are 
normalized so that there the power of productions 
can potentially be exploited. 

But we can go farther. One part of the adaptive 
theory due to Holland is concerned with "cognitive 
systems" based on sets of productions called "clas
sifiers". The form of a classifier is, most generally, a 
string whose condition part consists of a fixed length 
"environmental detector pattern" together with one 
or more i-message patterns, and whose action part 
is an output i-message or effector action. The im
portant point for us is that the "environmental de
tector pattern" has exactly the form of the column 
templates we have been considering, so that clas
sifier systems and the adaptive theory may be di
rectly applicable to "cortical" pattern recognition. 
It has been demonstrated [13-16] that given an ap
propriate external reward regime a classifier system 
can evolve a set of classifiers that is adapted to, or 
"fit", in its environment. This means in particular 
that the conditions of the classifiers recognize what 
matters, and the i-messages and actions are appro
priate. Much further research must be done, but by 

combining classifiers with R-C vision, a new path 
would appear to be open to the objective of 8. self
organizing visual p8.ttern recognition system. 

If the adaptive properties of the Holland sys
tem be assumed, we can suggest how the produc
tion structure given earlier might deal with non
centered objects. They look different from their cen
tered forms: this is the mapping's translation non
invariance. The problem would be solved if classi
fiers existed which would react to the off-center form 
and lead to an effector which would move the center 

of vision so as to center the object (at which point 
"standard" classifiers could recognize it). 

At first sight, the evolution of this kind of se
quence seems implausible: you would need classifiers 
for every object in every peripheral position. How-



ever, the mapping helps by reducing the detail seen 
in an object as it recedes toward the periphery; in 
the limit, every object becomes just a "blob". This 
suggests that only a relatively small number of dis
tinct classifiers would be needed to "acquire" any 
object for standard (centered) inspection. 

There remains the problem, not of the isolated 
object, but of the more-or-less centered one-such as 
a fare-which is still not centered quite well enough 
to fire its standard classifiers. How can an appro
priate centering movement come about? For this 
question, and related ones, we need to consider the 
"internal effect.ors" mentioned earlier. 

Three are important in the present discussion: 
Object-Resolution (OBRES), Azimuth (AZIM), and 
Brightness Gain (BGAIN). OBRES is an effector (or 

set of them) which, given appropriate i-messages, 
will alter the system's object-resolution (in effect 
changing the number of data fields per ring in Fig
ure 1). This permits seeing an object (regardless, 
of course, of its apparent size) in detail, or more 
coarsely, depending on the i-message list circum
stances. The evolution of OBRES effectors ap
propriate to different circumstances would occur 
through the adaptive mechanisms. 

If we now recall the problem of the slightly off
center face, it seems plausible that, given some re
duced level of object-resolution, most different faces 
with that degree of decentering could be matched 
by a relatively small (and thus practical) set of clas
sifiers. These would lead to a movement command 
bringing the face to the center, where it would be 
recognized in detail (after, perhaps, restoration by 
OBRES of a higher Ro). 

The AZIM internal effectors set the direction 
the system regards as "up". In cortical space, this 
amounts to shifting the input column vector along 
its length by a definite amount before matching clas
sifier template patterns against it. The purpose of 
AZIM is, of course, to allow a given set of classi
fiers to be effective for recognition even if the object 
is not in standard orientation. But how will the 
right azimuth be set in such a case? We again have 
recourse to the evolution of relatively coarse classi
fiers which, given reduced object-resolution through 

OBRES, will recognize the presence of a nonspe
cific ("oblong", say) object at a certain orientation. 
These would lead to the right AZIM acting, and spe
cific recognition could then occur. 

Finally, BGAIN is a set of internal effectors to 
deal with the persistent problem of setting the right 
brightness level for template mat.ching. The intent 
is that the appropriate gain will be determined (via 
the i-message list) by what is seen, and that the 
evolution of an appropriate set of BGAIN effectors 
will again be under adaptive control in the Holland 
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sense. 

The various internal effectors, and the external 
one resulting in movement, are concerned with the 
system's "point of view" on its visual input, that 
is, with systematic transformations which will allow 
the system's form detector set-the classifiers-to 
function efficiently. 

SUMMARY 

We began this paper with the retino-cortical 
mapping and showed how it "saw" centered objects 
with a resolution independent of the object's size. 
Constant object-resolution led to a renewed prospect 
for template matching in general pattern recogni
tion. Fixed size templates permitted the power of 
production systems to be brought to bear. Finally, 
the applicability of Holland's adaptive theory to pro

duction systems allowed us to suggest that a recog
nition system based on the mapping might be made 
self-organizing, in the process overcoming the map
ping's "problem" of translation non-invariance. 
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MACHINE LEARNING OF VISUAL RECOGNITION USING GENETIC ALGORITHMS 

Arnold C. Englander 
Itran Corporation, Manchester, N.H. 

ABSTRACT 

This paper briefly describes 
preliminary work with an 
application of genetic algo
r i thms. Genetic algor i thms 
are used as the mechanism by 
which a vision recognition 
system learns to classify dis
torted examples of different 
but similar classes of image 
patterns. The system develops 
increasingly effective collec
tions of class specific 
feature detectors producing 
increasingly unambiguous, 
hence reliable, recognition 
performance. Algorithms and 
early simulation results are 
described. 

Genetic algorithms are applied 
to a special case of a diffi
cult optimization problem 
which is emerging in several 
forms in computational vision 
research. The general optimi
zation problem has a 
performance measure that is 
easily formulated as an algo
rithm involving the composi
tion of both functionals and 
logical operations. However, 
the performance measure is not 
itself a smooth, much less 
convex, functional. This pre
cludes the application of most 
conventional optimization 
techniques. 

I. INTRODUCTION 

A variety of techniques for 
the machine recognition of 
objects in images exist in the 

literature and in demonstrated 
machine vision technology 
[1,2,3]. There is an image 
recognition problem which is 
difficult for all of these 
techniques but which arises in 
practical applications. The 
problem combines two 
troublesome characteristics. 
First, pattern classes have 
prototypes which correlate 
highly with the prototypes of 
different pattern classes. 
Second, the pattern examples 
(to be classified) are randomly 
distorted and occluded. 
Practical cases of this prOblem 
arise in reading characters 
stamped in certain industrial 
materials such as rubber and 
cast metal. Other examples are 
found in robot vision "bin
picking" applications involving 
certain assortments of parts. 
This paper describes the use of 
genetic algorithms as the basis 
of a machine vision system 
which improves its own 
performance with such 
recognition problems by 
learning from labeled examples.1 

II. THE OPTIMIZATION PROBLEM 

Experience in applying 
conventional recognition 
techniques to difficult 
industrial vision problems has 
led to this view: Robust 
recogni tion performance relies 
on the identification and use 

1 For a general and thorough introduction to genetic 
algorithms, including general analytical results, see the 
pioneering book by Holland [4]. 
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of a large set of local image 
features having two 
properties. First, important 
local features are those 
which, either alone or in 
small groups, disambiguate the 
recognition process by being 
necessary and/or sufficient 
("essential") evidence for 
classification. Second, such 
features and groups of 
features must be likely 
survivors of the distortion 
and occlusion operations under 
which image pattern examples 
are generated from class 
prototypes. 

Obviously essential features 
are application dependent. 
They depend on the class 
prototypes and on the 
distorting and occluding 
processes. The problem's 
strong dependence on 
application particulars leads 
to the requirement that the 
recognition system improve its 
own performance by associative 
learning from labeled 
examples. 

It is desirable to identify 
many small features which are 
essential when detected alone 
or in a variety of groupings. 
This way the features which 
contr ibute to the recognition 
process are likely to survive 
the random distortions and 
occlusions. The detections of 
essential features should be 
not only graded and combined 
in weighted sums but combined 
in ways which allow pieces of 
evidence to "veto" the 
significance of other pieces 
of evidence. Intuitively, the 
behavior of algorithms based 
on such ideas will be 
complicated by implicit non-
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linear, "competitive" and 
"cooperative" interactions 
between the evidence derived 
from the detections of 
essential features. 

II. USE OF GENETIC ALGORITHMS 

Applying these views to machine 
learning of visual recognition 
leads to an optimization 
problem over a space of 
populations of 2-D detector 
arrays where each array is a 
composite of templates for the 
detection of essential image 
features. The overall 
population of detector arrays 
is divided into class specific 
sub-populations each of which 
is optimized to respond 
maximally to examples of a 
particular image pattern class. 
The recognition algorithm 
classifies unidentified images 
by assigning them to the 
detector array sub-population 
producing the highest sum of 
individual recognition 
responses. The recognition 
response of an individual 
detector is the product of a 
match between the detector and 
the input image, and a term 
called "strength". The 
strength of a detector array is 
indicative of the detector 
array's past performance in 
disambiguating recognition 
decisions. 

Optimization of a sub
population of class specific 
detector arrays means finding 
detectors which strongly match 
input image examples of the 
specified class, but which only 
weakly match input image 
examples of other classes. This 



is difficult because the 
d iff ere n tim a g e· pat t ern 
classes have prototypes which 
are alike in the sense of 
being highly cross-correlated. 
This optimization problem 
reflects the desired strategy 
and intui ti vely seems simple. 
However, it is not easy to 
solve. The problem's per
formance measure on individual 
detector arryas is composed of 
functionals and logical 
operations. It is not itself 
a smooth, much less convex, 
functional. Such optimization 
problems are unsolvable by 
most conventional methods. 
Because genetic algorithms 
impose unusually few con
straints on the formulation of 
optimization problems they are 2 
applicable to this problem. 

The match between detectors 
and input images involves a 
"matchscore" which is common 
to most genetic algor i thms. 
The strength of detectors 
develops iteratively. During 
the associative learning phase 
of the system, the strength of 
each detector is increased 
each time the detector's 
response is above' the average 
response of all detectors and 
the class origin of the input 
image and the class 
specificity assignment of the 
detector are the same. The 
strength of a detector is 
decreased each time it 
produces an above average 
response to an input image 

originating from a class other 
than the class to which the 
detector's sub-population is 
being optimized to recognize. 

Here, an image pattern is a 2-D 
array of binary valued picture 
elements, or "pixels·. (This 
cor responds to a 2-D map of the 
zero crossings in a digital 
image processed by convolution 
with a difference of gaussians 
(DOG) operator for the 
detection of edges. The 
resulting zero crossings are 
useful in portraying the 
boundaries of objects in the 
scene.) The image patterns are 
randomly distorted and occluded 
examples of prototypes from one 
of several distinct, but 
similar, image pattern classes. 

A detector array is a 2-D array 
of pixels of the same size as 
the image patterns. Here each 
pixel takes one of three 
symbols, {O,I,I} where {O,l} 
indicate values taken by pixels 
in image patterns and t 
indicates the "don't care" 
condition in the usual genetic 
algorithm matchscore. A 
standard matchscore is used in 
mating image patterns to 
detectors arrays by simply "un
winding" the image patterns and 
detector as taxa type character 
strings (over {O,l} for image 
patterns and over {O,l,l} for 
detectors). 

Genetic algorithms optimize the 
class specific sub-populations 
of detector arrays, indirectly, 

2 Other cases of such optimation problems are emerging in 
computational vision research [51. One case involves the 
goal of combining the information of various visual 

processes (stereopsis, motion, and "shape from-shading" for 
example) into a single interpretation (of 3-D or "2-1/2-0" for 
example), which is optimal under a performance measure which 
combines functionals and logic. Genetic algorithms may be 
applicable to such problems as well. 
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by operating on the individual 
detector arrays in each 
separate, class-specific sub
population. Restricting 
"mating ft and ftreplacementft 
operations to taxa within the 
same sub-population, two 
IIparentsft are selected (in 
each sub-population, at the 
completion of each recognition 
trial involving labeled 
examples, hence changes in 
strengths). The ftparent" taxa 
are selected according to the 
detectors returning the two 
highest recognition responses 
(the product of the match with 
the current input image 
example and the detector 
strength) or with 
probabilities proportional to 
the recognition responses. 
The two ftparents ft generate two 
"offspring ft under genetic 
operators and the "offspring" 
each replace an "individual" 
judged to be "weakft for having 
one of the two lowest 
strengths of the taxa in the 
sub-population. The 
ftoffspringft enter the sub
population with strengths 
which are a fraction of the 
average strength of the two 
"parents" and the strengths of 
the ftparents" are reduced to 
match that of their 
ftoffspring". 

These selection rules reflect 
heuristic arguments and 
exper imentation. "Parents" 
are selected as to recognition 
responses to ensure that they 
are ftstrong" for having con
tributed to disambiguation in 
the past, and that they are 
well matched to the current 
input example. IIWeak ft indivi
duals are "un-selectedft by low 
"strength" alone, rather than 
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by the current match-ftstrengthft 
product, to avoid losing 
detector arrays which tend to 
be useful but match poorly with 
the current input example 
(which is randomly distorted 
and occluded). 

Early simulations involved 
standard operators of genetic 
algorithms: ftcloning", -cross
over-, ftinversion-, and ftmuta
tion", chosen according to pro
babilities which are fixed for 
each experiment. As is 
commonly believed, it is most 
useful to assign ftcrossoverll 
the highest usage probability. 
Experiments were also performed 
using Wilson's "imprinting ft and 
-ternary intersectionft opera
tors, with low usage probabili
ties. Wilson's operators seem 
relevant and useful to this 
problem [61. 

III. EARLY SIMULATION RESULTS 

Early simulation results are 
promising in that self-optimi
zation by genetic algorithms is 
obvious. The recognition 
system, operating in training 
mode, clearly improves its 
cumulative average of correct 
recognitions from very low 
initial percentages to 
moderately high percentages 
over a few hundred tr ials. In 
simulations involving 4 pattern 
classes of 2 prototypes each, 4 
sub-populations of detector 
arrays having 32 detector 
arrays each, and image and 
detector arrays of 32 by 32 
pixels, the system averaged 
correct recognitions 25% of the 
time for the first 100 or so 
trials, rising exponentially to 
78% correct recognitions after 



1000 trials. In suth simula
tions the detectors were 
initialized with pixels con
taining O,l,t, with equal pro
bability and Wilson's genetic 
operators were used randomly 
with small probabilities. In 
some simulations the system 
improved its recognition per
formance over correlation 
based pattern recognition 
techniques in a few thousand 
training iterations. 

As expected, over time, the 
system evolves strong detector 
arrays which partly resemble 
the prototypes of the pattern 
classes to which the detectors 
are assigned. But the 
resemblance is never complete 
because detectors must match 
features present in examples 
of their assigned pattern 
class but ignore features 
which are also characteristic 

of other classes. The 
evolution of such detectors is 
apparent in the simulations. 

IV. CONCLUSION 

Preliminary w 0 r k wit han 
application of genetic 
algorithms has been described. 
Genetic algorithms are the 
mechanism by which a vision 
recognition system learns to 
classify distorted examples of 
different but similar classes 
of image patterns. This work 
addresses an unconventional 
optimization problem which 
arises naturally from an 
intuitive model of visual 
learning. Early simulation 
results indicate that the 
proposed model can lead to the 
design of an effective machine 
vision system. 
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1.0 INTRODUCTION 

Bin Packing With Adaptive Search 
Derek Smith 

Texas Instruments 

We have looked at the problem of bin packing arbitrari I ~  dimensioned 
rectangular boxes into a single orthogonal bin. Figure 1 shows a good bin 
packing, the sort we are aiming for. Figure 2 shows a poor bin packing. 

The p r o b l e ~  is NP-hard in the strong sense, so there is little hope 
of finding a polynomial time optimisation algorithm for it (1). 
Reasonable approxiMation algorithMs exist which can be guaranteed to be 
within 221. of optiMal (1). 

Our approach has been to use a wrinkle on genetic a l g o r i t h ~ s  (3), 
developed in the Texas Instruments Computer Science L a b o r a t o r ~  (2). 

2.0 ADAPTIVE SEARCH 

The epistatic d o ~ a i n  of bin packing has traditionally not been 
amenable to adaptive search techniques. This is because it is difficult 
to represent a bin packing on which we can do crossover and Mutation and 
retain either a reasonable packing or a legal packing. 

Consider a flip ~ u t a t i o n  (rotate through SO degrees) of box 18 in 
figure 1. The flip will either cause a illegal bin packing due to boxes 
overlapping each other, or if we fracture the packing by ~ o v i n g  the 
neighbouring boxes a w a ~  to •ake the flip legal, will produce a poor bin 
packing. 

Our solution is to represent the bin packing as a list of the boxes 
plus an a l g o r i t h ~  for decoding the list into a bin packing. The list is 
r e a d i l ~  mutatable (flipping boxes), and is aMenable to a ~ o d i f i e d  form of 
crossover. The decoding algorithm takes a n ~  list of boxes ana forms a 
legal packing. Hence we atteapt to produce good bin packings using 
Genetic Algorithms. 

2.1 The Representation 

As explained above our representation is a list with an associated 
algorithm to a p p l ~  to the list to produce a bin packing. For effective 
search the algorithm aust produce legal packings f r o ~  a n ~  operation on the 
I ist. Here we describe two such decoding algorithas. 

The first algoritha we call SLIDE PACK. We take each box, in order, 
from the list, place it in one corner of the bin, and let it fall to the 
farthest corner away, as if under a g r a v i t ~  that o n l ~  allowed it to aove 
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o r t h o g o n a l ! ~ .  The effect is that a box wi II zigzag into a stable position 
in the opposite c o r n e r . f r o ~  which it was placed. Box 2 in figure 3 shows 
the SLIDE PACK algorithm. 

SLIDE PACK is fast as there is no backtracking, and is simple to 
compute. Its ti•e c o m p l e x i t ~  is O(n112), where n is the number of boxes. 
There are nl possible orderings of our I ist of n boxes. If we associate 
a flipped state with each box, this gives us nl211n aembers in the set of 
all encoded representations. Although we can contrive packings that SLIDE 
PACK can never do, we believe that in general we can reach all of the 
search space b ~  operating on the list of boxes. 

The second algorithm we call SKYLINE PACK. For each box in the list, 
in order, we try the box in all stable positions, and in all its 
orientations on the p a r t i a l ! ~  packed bin. A stable position is where the 
box is tucked into a corner, or cave foraed b ~  other p r e v i o u s ! ~  packed 
boxes. The algorithm takes its name from the fact that it tours the 
s k ~ l  ine foraed b ~  the previously packed boxes to find the position it fits 
best. Figure 4 shows s o ~ e  of the places that box 2 is being considered 
for by the SKYLINE PACKer. 

Again we have nl possible orderings of the Jist. However each time 
a we pack a box we t r ~  that box in aany positions - we are covering ~ o r e  
of the search space than in the SLIDE PACKing of a box. It is clear that 
we can no longer generate all possible bin packings, as a poor p l a c e ~ e n t  
of a box wi II be ignored in favour of a better placement somewhere else on 
the s k ~ l i n e .  A more practical question is whether we can represent all 
good bin packings. We believe so (again i n f o r ~ a l l y )  but with less 
conviction than with the SLIDE PACK. SKYLINE PACK has time c o m p l e x i t ~  
O(nl14). 

With a randomly generated list SKYLINE PACK will tend to generate a 
significantly denser packing than SLIDE PACK, however, it takes longer to 
run. Figure 2 is a typical SLIDE PACKing of a r a n d o ~ l y  generated list, 
whilst figure 5 is a typical SKYLINE PACKing. SLIDE PACK can produce good 
packings as shown in figure 1 when we apply the adaptive search 
techniques. The trade off is whether to run the adaptive search with 
larger populations and for more generations using SLIDE PACK, or in the 
same a ~ o u n t  of time use SKYLINE PACK for fewer generations. Our 
experiments have shown that SKYLINE PACK is aore favorable, however with a 
better tuning of the adaptive search SLIDE PACK may produce better 
results. 

2.2 The Genetic Operators 

Our representation of a packing, as described, is the order of the 
boxes presented to the packing algorithm. Traditional crossover cannot 
operate on such a I ist. Consider a crossover of Jist (1 2 3 4 5) with (5 
4 3 2 1) the crossover point being after the second e l e ~ e n t  to produce (1 
2 3 2 1). The I ist now has boxes 1 and 2 duplicated and boxes 4 and 5 
missing. 
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Hence we use a MODifiED CROSSOVER which takes the order of the boxes 
before the splice f r o ~  the first list, and the order of the boxes which 
r e ~ a i n  to be packed f r o ~  the second list after the splice point. In the 
above e x a ~ p l e  we would generate the list (1 2 54 3). 

Hollands t h e o r e ~ s  (3) regarding the effectivness of crossover no 
longer hold. We have not ~ e t  investigated the theoretical aspect of the 
aodified crossover. However we have e x p e r i ~ e n t e d  with its use; we have 
run r a n d o ~  search versus our genetic operators, and have found the genetic 
operators to produce c o n s i s t e n t ! ~  better results. 

One of the Mutations we have e x p e r i ~ e n t e d  with is SCRAMBLE, that is 
r a n d o ~ l ~  reordering s o ~ e  portion of the list. At the beginning of the 
adaptive search process we can concentrate on SCRAMBLing the beginning 
portions of the list to evolve a good basis for the packing. As the 
evolution proceeds we can Move our area of interest father up the list. 

A fLIP Mutation to t r ~  different orientations of the boxes is 
n e c e s s a r ~  if the decoding algorithM does not t r ~  the box it is packing in 
all its orientations. fLIP is applied d i s c r e t e ! ~  to boxes in the list. 

2.3 The Evaluation 

Because we require our evaluation procedure to score dense packings 
h i g h l ~ ,  a straightforward evaluation criteria is the ratio of the area of 
the boxes packed to the area of the bin. This works well as an evaluation 
of a packing. 

It is less clear how to evaluate partial packings which are required 
in such decoding algorithMs as the SKYLINE PACKer where we need an 
evaluation of the packing for each position of the box along the s k ~ l i n e ,  
to choose where to settle it. We have tried n u ~ e r o u s  w a ~ s  to Measure 
partial bin packings. One of the ~ o s t  intriguing is to take the inverse 
square of the separation of the box being packed to all the other boxes. 
This favors boxes filling in caves, e s p e c i a l ! ~  if t h e ~  fit s n u g l ~  into the 
cave. There is soae a n a l o g ~  here to gravitational effects, and indeed 
such an evaluation allows us to pack in space (as opposed to in a 
containing bin) as the boxes are attracted to each other. 

Graph 1 shows how the d e n s i t ~  of a partial bin packing falls as the 
n u ~ b e r  of boxes packed increases. This is due to the f o r ~ i n g  of aore and 
larger caves b ~  the later boxes. As the evolution continues we for• less 
caves, and we can see froa the graph that b ~  generation 20 we have kept to 
about 851- d e n s i t ~ .  

3.0 RESULTS 

We have b e n c h ~ a r k e d  
d e t e r ~ i n i s t i c  bin packing 
s o ~ e  heuristics and d ~ n a ~ i c  

our results against a r e c e n t ! ~  developed 
p r o g r a ~  within our group. This p r o g r a ~  uses 

p r o g r a ~ ~ i n g  techniques. Our p r o g r a ~  can 
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produce the same packing d e n s i t ~  300 times faster. Also if a greater 
d e n s i t ~  is required then we can s i m p l ~  allow our program to run for 
longer, or run it again. Simi l a r l ~  if a less dense packing is required we 
run for o n l ~  a short time. Graph 2 shows how the d e n s i t ~  increases as the 
evolution proceeds. This is a tremendous practical advantage of this 
approach. A practical disadvantage is that each time we run the process 
we wi II end up with a different packing. 

4.0 FUTURE RESEARCH 

There is work to be done in the mating of the decoding algorithm and 
the genetic operators. In particular, finding w a ~ s  to operate a portion 
of a bin packing without having repercussions on the whole bin packing. 

Work is also in progress in making the genetic operators robust to 
q u a n t i t ~  of data, variation in dimensions of boxes, and variations in the 
aspect ratio of the bin. 

We are also considering a process which aonitors the adaptive search 
whilst it runs. Such a process could v a r ~  the importance of the autations 
as the search proceeds. It could bring in mutations to produce d i v e r s i t ~  
of the search if it were trapped at a local maxima. It could also alter 
the size of the population at various stages in the evolution. C u r r e n t ! ~  
such variations are set up at the start of a run, it would be more 
effective to have the process c o n t i n u a l ! ~  aonitoring and adapting itself. 

In order to learn how to implement the monitor process we need to 
s t u d ~  how the search space is being explored. Seeing our bin packing 
algorithms run b ~  the use of graphics has been v e r ~  useful in this work to 
date. Graph 3 shows the sort of d i s p l a ~  which we would like in order to 
watch the evolution, learn about the process, and write the self 
monitoring s ~ s t e m  we have aentioned. Numbers 1 through 4 are four of the 
aembers of the initial population. The trees sprouting from them 
represent the performance of their offspring. 1 was a poor initial 
packing and soon died a w a ~ .  4 was a good packing and we can see it 
spawned m a n ~  children in exploring its portion of the search space. Note 
also that 2 and 3 are allowed to evolve to maintain d i v e r s i t ~  in the 
search. 

Graph 4 is the same concept as graph 3 in a search space that we have 
c o m p l e t l e ~  mapped out and in which we can draw the local maxima, 
represented b ~  hit Is in the graph. We could then test new levels of 
operators, and different population sizes in a control led and visible 
search space. Graph four shows o n l ~  two dimensions of such a space, which 
for n boxes is n-dimensional. 
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Directed Trees Method for Fitting a Potential Function 

Craig G. Shaefer 

Rowland Institute for Science, Cambridge MA 02142 

Abstract 

The Directed Trees Method is employed to find interpolating functions for potential energy sur

faces. The mathematical algorithm underlying this fitting procedure is described along with example 

calculations performed using a genet.ic adaptive algorithm for fitting the Ak unfolding families to l

and 2-dimensional surfaces. The properties and advantages of the usage of genetic adaptive algorithms 

in conjunction with the Directed Trees method are illustrated in these examples. 

Section: 1. Introduction 

How doe6 one choose a mathematical model to describe a particular physical phenomenon f 

To help in answering this question, we have developed a method called the Directed Trees (DT) method l 

for describing the possible structures available to a particular special type of model: the gradient dynamical 

systems. The gradient dynamical systems are, however, quite general and flexible and hold a ubiquitous 

presence in the physical sciences. In the next section we illustrate where this special type of model 'fits' into a 

very broad class of mathematical models. The DT method employs a relatively young branch of mathematics 

called differential topology: "topological" in order to form categories of solutions for gradient dynamical 

systems to reduce the problem to the study of a finite number of different categories, and "differential" 

in order to allow for quantitative calculations within these models. For the purposes of this paper, it is 

sufficient to say that in the numerical applications of the Directed Trees method, systems of nonlinear 

equations arise for which we require solutions. Although classical numerical methods could be employed for 

the solution of these nonlinear systems, we find that genetic adaptive algorithms (GAs) are especially suited 

for this purpose and have certain advantages. In order to introduce our application of GAs to the solution of 

nonlinear systems of equations and be able to discuss the advantages which GAs offer over the more classical 

numerical methods, the third section of this paper provides a brief exposition on the topological concepts 

inherent to the Directed Trees method and describes the equations that arise in its quantitative applications. 

Section 4 contains examples of the usage of genetic adaptive algorithms for solution of these systems. 

Section: 2. General Mathematical Models 

In this paper, we are seeking not so much a procedure for calculating the specific solution to the 

mathematical model of a physical system, but rather the development of a model for which we may classify its 

solutions into behavioral categories so that one particular solution from each category serves as a paradigm 

for all solutions belonging to its category. Obviously, this will greatly simplify the study of the general 

solution of a model. In order to do this, however, we first need to restrict the type of mathematical model 

to which our classification scheme is applicable. To understand where our restricted class of models fits 

into the general class of mathematical models, below we will describe the simplifications inherent to our 

restricted class. The following table contains a list of possible variables whose interrelationships we seek. 

These variables include items such as the spatial and time coordinates, and parameters such as the masses 

of particles, the refractive indices of mediums, densities, temperatures, etc. In addition, our model might 
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General Mathematical Models 

Variable General Term Comments 

xE ~m m spatial coordinates 
I 

Xi (i:l-m) I 

t E ~ t time coordinate 

pE ~. p, (,:1-.) 6 parameters (mass, refractive index, ... ) 

e 8;{x;p;t) (1:1-00) SOLUTIONS (trajectories, ... ) 

Dje djei ("j:l-oc ) time derivatives t dO 

D~6 
akei 

(<>,+ '-cam::- k ) spatial derivatives 
:z 8x~1 ... 8:z;~m 

IT(6)dt JT(6,; ... )dt (T:functional)t time integrals of functionals 

J K(e)dx J K(6,; ... )dxj (K funrtionallt spatial integrals of functionals 

l !e(x; t; 8; p; ... )t (l:l-n) integrodifferential functionals 

t = functionals may depend on any of the variables located above them in this table 

Table 1 Table containing possible variables, parameters, and functional dependencies for a general mathe

matical model of a physical system. 

also depend on the derivatives with respect to the time and spatial coordinates as well as integrals whose 

integrands are functions of the other variables or solutions. 

Suppose we have a physical system for which we have a set of n arbitrary rules that specify the in

teractions of the variables from Table 1. This leads to the following system of n equations, called an 

Integrodifferential System, whose solutions describe the behaviors of the physical system: 

1=0 (1) 

Since we have n equations, let us suppose that there are n solutions, thus we take e = (e1 , ... , en) in 

what follows. Let us remark that this system forms a very general and flexible mathematical model for 

studying physical phenomena. It encompasses almost all mathematical models that are currently employed 

in the sciences. This system of integrodifferential equations is, however, much too difficult to solve in all 

of its generality - only in very specific cases are solutions even known. And virtually nothing is known 

about how these solutions vary as the parameters are changed. We must make a few simplifications in these 

equations before anything can be said about their general solutions. These simplifications are very typical 

though, for many models in the "hard" sciences have as their fundamental premises the assumptions that 

we describe below. 

To begin, we assume that l does not explicitly depend upon X, D{e for i > 1, D~e, J T(e)dt, 

nor J K(e)dx. Then the system has the form: l = /(e; p; t; Dte) = 0, for which more can be said 

concerning its solutions. Instead of studying this system: though, we continue with a further simplification 

concerning the dependency of lon the time derivatives, and, in particular, we consider those lof the form, 
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l = Dte - Pre; p; t) = O. Note that the function I' appears to be similar to a force vector. In effect, 

the above system of equations describes the situation in which the rates of change of the solutions are 

proportional to a vector that depend upon the solutions themselves. This type of system arises in classical 

mechanics and is usually called a Dynamical System. If the further restriction that the forces do not explicitly 

depend on the time, then we have the following system of equations, which form an A utonomou. Dynamical 

System: l = DtE) - I'(E); PJ = O. A few useful statements can be made about the solutions of this type of 

system of equations and their behaviors as the parameters p are varied. We, however, will again continue to 

make one further simplifying assumption on the form of the 1'. We noted above that the vector function, 

1', is of a form similar to the forces in kinematics and electrodynamics. If, in fact, I' is a true force, then it 

can be taken to be the negative gradient of some scalar potential fjJ: I' = -De¢>(8; PJ. Then we have the 

system 

l = D t 8 + De¢>(e; PJ = 0 (2) 

which is termed a Gradient Dynamical System. Many very powerful statements can be made about the e 
and their behaviors as functions of p for this system. Oftentimes, we are concerned with the "stationary" 

solutions of (2), j.e., solutions which are time-independent. These stationary solutions require the forces to 

vanish, in other words, we require De¢>(e; PJ = O. This equation determines what are called the equilibria, 

ec . of the gradient system. The most powerful and general statements can be made about equilibria and 

how they depend upon their parameters. 

The solutions, e, of the above systems are merely generalized coordinates for the physical systems, and 

thus, following the standard nomenclature, we replace e by x. For example, these solutions, X, might be 

the positions of equilibria as functions of time, the Fourier coefficients of a time series, or even laboratory 

measurements. 

We have thus shaved the general mathematical model, (1), of a physical process to the specific case of 

examining the behaviors of scalar potential functions, fjJ(x; PJ. It is for these special cases that differential 

topology yields the most useful results. 

In the next section we examine the primary results of singularity theory which allows any arbitrary 

potential to be classified into a finite number of different category types. It is this classification that greatly 

simplifies the study of gradient dynamical systems. 2 Since we are interested in the particular potential 

functions stemming from the solution of the Schroedinger equation, under the Born-Oppenheimer approxi

mation, for a chemical reaction, we apply the classification scheme specifically to potential energy surfaces 

(PESs). Keep in mind that the same classifications and calculations are applicable, however, to any gradient 

dynamical system. The classification scheme that we have developed for PESs, as we have mentioned, is 

called the Directed Trees method and contains both a qualitative diagramatic procedure for implementing 

the classification as well as a quantitative computational procedure for calculation of specific behaviors and 

characteristics of the model. 

Section: s. The Topo)ogy of Potentials 

\-Vhy should we concern ourselves with an alternate classification scheme based upon differential topology 

for potential energy surfaces? The reason for doing so is that this new Directed Trees classification has two 

special properties: struct ural stability and genericity. 3 The concept of struct ural stability plays an important 

role in the mathematical theory of singularities. There are several reasons for this importance. First of all, 

usually the problem of classifying objects is extremely difficult; it becomes much simpler if the objects one 

is classifying are stable. Secondly, in many cases, the class of all stable objects forms what is loosely called 

a generic set. This means that the set of all stable objects is both open and dense, in the mathematical 

sense, in the set of all objects. In other words, almost every object is a stable object and every object 

is "near" a stable object. Thus every object can be represented arbitrarily closely by a combination of 

stable objects. For instance, the Implicit Function Theorem of calculus and Sard's Theorem of differential 
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topology imply that almost all points are regular points (points whose gradients are nonzero) for stable 

functions and thus are not critical points. Stated differently, regular points are generic, i.e., they form an 

open and dense subset of the set of all points for stable functions. (Stable functions are functions which 

can be perturbed and still maintain their same topological properties.) Even though almost all points of 

a function are regular points, nondegenerate isolated critical points do occur and have a generic property: 

they are not removed by perturbations. The importance of nondegenerate critical points extends beyond 

their mere existence, for they "organize" the overall shape of the function. This can be seen in the following 

one-dimensional example. Consider a smooth function of a single dimension, f(x), which has three critical 

points between x = 0 and x = 1. If the curvature at the critical point with the smallest x coordinate in 

this interval is negative, then the curvatures for the middle and highest critical points must be positive and 

negative, respectively, for no other combination can lead to a smooth function connecting these three critical 

points. In addition, the functional values at the smallest critical point and the largest critical point must 

be greater than the value of the function a.t the middle critical point. A simple graph of f satisfying the 

above conditions will show that if these statements were not in fact true, then additional critical points 

would be required between these three rritical point' Juq a ~  nondegenerate critical points organize the 

shape of a one-dimensional function, degenerate critical p o i n t ~  " o r g a n i z e ~  families of functions having specific 

arrangements of nondegenerate critical points These degenerate critical points are nongeneric in the sense 

that small perturbations either split the degenPrat" critical point' into nondegenerate points or annihilate 

the degenerate point completely lea\'ing behind onl) regular points. lt might therefore seem that we should 

not concern ourselves with degenerate critical points since they are mathematically "rare" occurrences on 

a surface and can be removed by small perturbations. The manner in which degenerate points "organize" 

functions into classes, however, leads to a generic classification of families of functions that is stable to 

perturbations and hence will be very useful in our study of PESs. A third reason for the importance of 

stability stems from the applications of singularity theory to the experimental sciences. It is customary to 

insist on the repeatability of experiments. Thus similar results are expected under similar conditions, but 

since the conditions under which an experiment takes place can never be reproduced exactly, the results 

must be invariant under small perturbations and hence must be stable to those perturbations. Thus we see 

it is reasonable to require that the ma.thematical model of a physical process have the property of structural 

stability. In order to define this concept of stability, we first need a notion of the equivalence between objects. 

This is usually given by defining two objects to be equivalent if one can be transformed into the other by 

diffeomorphisms of the underlying space in which the objects are defined. For the specific case when the 

objects are PESs, these diffeomorphisms are coordinate transformations and will be required to be smooth, 

that is, differentiable to all orders, and invertible. This invertibility is a requirement of the Directed Trees 

method and forms an important reason for employing GAs in the numerical applications of the DT method.· 

The mathematical branch of differential topology called catastrophe theory forms the foundation for 

the DT method. In its usual form, catastrophe theory is merely a classification of degenerate singularities 

of mappings, the techniques of which use singularity theory and unfolding theory extensively along with a. 

very important simplifying observation made by Thorn which has come to be called the Splitting Theorem. 

In this paper, we wish only to emphasize the fundamental concepts behind the Classification Theorem thus 

providing a heuristic justification for its use in the study of PESs. In the process we describe the functional 

relationships between the PES and its canonical form, which we call the Directed Trees Surface (DTS). We 

do not provide rigorous statements nor proofs of any of the theorems of differential topology, but, more 

importantly, we hope to provide an intuitive description of the fundamental concepts behind these theorems. 

In order to describe these results, we employ the terminology of differential topology, and thus below we 

provide the basic definitions necessary for comprehension and discussion of the DT method. A glossary of 

topological terms and notation used. sometimes without comment, in this paper is provided in the Appendix. 

Since our main interest in this paper is the local properties of potential energy functions, we begin by recalling 

some preliminary definitions of local properties. If two functions agree on some neighborhood of a point, 

then all of their derivatives at that point are the same. Thus, if we are interested in trying to deduce the 

local behavior of a function from information about its derivatives at a point, we do not need to be concerned 

with the nature of the function away from that point but may only be concerned with the function on some 

neighborhood at this point. This leads to the concept of a germ of a function. Let L be the set of all 
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continuous functions from the Euclidean space !J?n to !J? defined in a neighborhood of the ongm. We say 

that two such functions, I, gEL determine the same germ if they agree in some neighborhood of the origin, 

so that a germ of a function is an equivalence class of functions. Since this theory is entirely local, we may 

speak of the values of a germ i and we write j(x) for x E !Rn , although it would be more correct to choose 

a representative I from the equivalence class j. A germ i at x is smooth if it has a representative which 

is smooth in the neighborhood of x. Because germs and functions behave similarly, we often use I and 

i interchangeably to represent a germ. Only where confusion may result will we distinguish a germ from 

one of its representatives. We may also talk of germs at points of !Rn different from the origin. A germ is 

thus defined by a local mapping from some point of origin. If two smooth functions have the same germ 

at a point, then their Taylor expansions at that point are identical. We may, without loss of generality, 

take the origin of a germ to be the origin of !R n . The set of all germs from !Rn to !J? forms an algebra.4 

This convenient fact allows us to study the germs of maps with powerful algebraic techniques that ultimately 

lead to algebraic algorithms for the topological study of arbitrary PESs.5 

Fundamental to lTIany applications of applied mathematics is the technique of representing a function by 

a finite number of terms in its Taylor expansion. For quantitative calculations, it is necessary to make some 

estimate for the size of the remainder term after truncation of the series. Sometimes we are not interested 

so much in the size of the remainder term as in whether, by a suitable change in coordinates near x, the 

remainder term can be removed completely. In this case, the function is, in a very precise sense, equal to 

its trunca.ted Taylor series in the new coordinates. The ability of transforming away the higher-order terms 

of a Taylor series expansion is formalized in the notion of determinacy. Before defining determinacy, we 

first introduce some additional nomenclature. The Taylor series of I at x which is truncated after terms 

of degree p is referred to as the p-jet of I at x, denoted by i P I(x). We now define what we mean by 

the local equivalence of germs. Two germs, I, 9 with I(x} = g(x}, are equivalent if there exists local Coo_ 

diffeomorphisms t/;:!J?n - !Rn and ¢:!R - !R such that 9 = ¢(f(t/;(x))). Thus, by suitable Coo changes of 

local coordinates, the germ I can be transformed into the germ g. We now note why the coordinate changes 

must be invertible. Neglecting a constant, the two functions are equal on some neighborhood of a point, 

and we have expressed I as a function of x, that is, I(t/;(x)). In addition, we would like to be able to 

express 9 as a function of the coordinates for I, that is, g(x(t/;)). This requires us to invert the t/J coordinate 

transformation: x = x(t/;). As we stated earlier, this invertibility criterion becomes an important reason for 

choosing GAs to solve the systems of nonlinear equations that arise from the DT method. With this, we 

may now formulate the definition of determinacy. The p-jet ~ at x is p-determined if any two germs at x 

having ~ as their p-jet are equivalent. 

If we are studying a COO-function I, we may understand its local behavior by expanding I in a truncated 

Taylor series, ignoring all of the higher-order terms of degree greater than p. We can be sure that nothing 

essential has been thrown away if we know that I is p-determined. Stated more precisely, we may study the 

topological behavior of a p-determined germ I by studying its p-jet i P f. One might think at first that no 

germs are p-determined for finite p. As an example of this, consider the germ of I at the origin of !J?2 given 

by I(x, y) = x 2 • This is not p-determined for any p, since the following function, which has the same p-jet as 

I, g( x, y) = x 2 + y2p , is 0 at the origin and positive elsewhere, whereas I is also 0 along the y-axis. However, 

if I were a function of x alone, I(x) = x2 , then I would be 2-determined. We thus see that the determinacy 

of I depends not only on its form but also on the domain over which it acts. Since we have noted that if 

a function is p-determined, its topological behavior may be understood by studying its p-jet, then we may 

now ask the following question: Are there methods for deciding whether or not a given p-jet is determined? 

We answer this question in the affirmative, and in a later paper we describe an algorithm based on work by 

Mather for calculating the determinacy of p-jets. 5 In Section 4 of this paper, which describes the fitting of 

DTSs to PESs, we provide examples for (i) the DTS behavior for cases in which the proper p-jet is chosen 

for I, (ii) the behavior for cases in which the chosen p-jet has p less than the determinacy of I, and (iii) the 

behavior of i P I in which p is greater than the determinacy of I· 

Below we summarize the four basic and interrelated concepts of singularity theory: (i) stability, (ii) 

genericity, (iii) reduction, and (iv) unfolding of singularities. To describe what is meant by stability, consider 

the map f:!J? - !J? given by I(x) = x2 . This map is stable, since we may perturb the graph of this map 
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slightly and the topological picture of its graph remains the same. That is, consider the perturbed map 

g: !R -. !R, g( x) = x2 + £x with ( =1= O. This perturbed function, g, still has a single critical point just as f 
does, and can be shown to be just a reparametrization of f. Thus we hope to characterize and classify stable 

maps since if we pert urb these, we can still predict their topological behavior. 

Since our goal is to provide a mathematical model for classifying and calculating PESs, one might ask 

whether there are enough stable maps to be worthwhile in this endeavor. That is, can any arbitrary PES 

be approximated by a stable map? This is the question of the genericity of stable maps, i.e., whether the 

set of all stable maps is open and dense in the set of all maps. If it is, then any map is arbitrarily ~close" 

to a stable map and may be represented by combinations of stable maps. It thus makes sense to study the 

properties of stable maps since these properties will then be pertinent to any arbitrary PES. 

Reduction refers to the often employed technique of splitting a problem into two components: one 

component whose behavior is simple and known, and a second component whose behavior is unknown 

and hence more interesting and whose behavior we would like to study. This is typical in most physical 

models in which there are many variables whose functional behavior is assumed to be simple, for example, 

harmonic. These variables are usually "factored out" of the overall model for the physical phenomenon since 

the behavior of the system over these variables is known. The Splitting Theorem provides a justification for 

this reductionism. 

Rene Thorn introduced the basic notion of the unfolding of an unstable map in order to provide stability 

for a family of maps. To see what this means, let us consider the following example to which we will often 

return for illustrating new topological concepts. Let f:!R -. !R be given by f(x) = x 3 . This map is unstable 

at zero, since if we perturb f by (X, where ( is small, the perturbed map g{x) = x3 + (X assumes different 

critical behaviors for £ < 0 and t: > O. There are two critical points, a minimum and a maximum, in a small 

neigh borhood of zero when £ < 0, but for £ > 0 there are no critical points. The family of maps F{x, £) = g(x) 

is, however, stable. Thus F includes not only f, but also all possible ways of perturbing f. The map F 

is said to be an universal unfolding of f. It is very important that the unfolding F includes all possible 

ways of perturbing f. To be more specific, consider perturbing f by the term 6x2 , where 6 is arbitrarily 

small but not zero. The map h(x) = x3 + 6x2 assumes the same critical behavior for all 6 =1= 0, that is, h{x) 
has one maximum and one minimum. Thus for £ < 0, g(x) has the same critical behavior as h(x), and it 

can be shown that 9 and h are "equivalent" for { < 0 and 6 =1= O. (The precise meaning of "equivalent" is 

described in the Glossary.) On the other hand, there is no 0 for which h(x) lacks critical points, thus h(x) 

is not equivalent to g( x) when f > O. Therefore h is not capable of describing all possible perturbations of 

f, since it is unable to provide 9 with f > O. The unfolding 9 is, however, capable of describing all possible 

perturbations of f. Our discussion so far does not indicate how we know this fact; it is a rather deep result 

of singularity theory stemming from results based on the early insights of Thorn. The crux of singularity 

theory is how to unfold the "interesting" component of a given model into a stable mapping with the least 

number of parameters, such as the ( from above. 

:.1. Theorems from Topology 

Several principal theorems of differential topology concern the effects that critical points have on the 

geometrical shape of manifolds. Since each has been carefully proven and thoroughly investigated in the 

literature, we only include here an informal stat.ement of these theorems and a few of the results derivable 

from them. We emphasize that these theorems are closely related to each other; their differences entail the 

stepwise removal of some of the assumptions upon which the first theorem is based. 

The first of these theorems is borrowed from elementary calculus: the Implicit Function Theorem.6 

This theorem controls the behavior of a surface at regular points, that is, at points which are not critical 

points. Excluding the overall translational and rotational coordinates of a molecule, the critical points of 

potential energy surfaces are isolated. 7 Thus almost all points of a PES are regular points and hence the 

implicit function theorem describes the local behavior of almost all of a PES. Qualitatively speaking, the 

Implicit Function Theorem states that at a noncritical point of a potential function, the coordinate axes may 

213 



be rotated so that one of the axes aligns with the gradient of the potential at that point. Then the function 

is represented as f(X'} = x; where X' are the new coordinates. This is intuitively obvious by considering the 

gradient to be a "force vector", then the coordinate axes may be rotated so that one axis is colin ear with 

the force, which may then be described as a linear function of this one coordinate. In analogy to our one

dimensional example of the control which critical points have on the possible shape of a function, we find that 

the overall shape of a PES depends upon the positioning and type of its critical points. The Morse Theorem, 

which is sometimes called the Morse Lemma in the literature,8 and its corollaries describe how nondegenerate 

critical points both control the shape of a surface and determine the relationship between an approximately 

measured function and the stable mathematical model which is used to descibe that physical process. In 

particular, through the elimination of the assumption that the gradient is nonzero at a point, we find around 

nondegenerate critical points, a new coordinate system so that a potential may be represented as the sum of 

squared terms of the coordinates with no higher-order terms, no linear terms, and no quadratic cross terms. 

Thus the function has the form f = L x'~ and is termed a Morse function. Corollaries of the Morse Theorem 

say that Morse functions are stable and this stability is a generic property. Lastly, we discuss degenerate 

critical points and their influence on the possible configurations of nondf'generate points. By eliminating the 

assumption of the nonsingular Hessian matrix at a critical point of the surface, the Gromell-Meyer Splitting 

Theorem says that the function may be split into two components, one is a Morse function, FM , and the 

other is non-Morse function, F NM. The non-Morse component cannot be represented as quadratic terms and 

does not involve any of the coordinates of the Morse component! The Arnol'd-Thom Classification Theorem9 

categorizes all of these non-Morse functions into families, provides canonical forms for them, and describes 

the interrelations among the various families. 

The ramifications of the Arnol'd-Thom theorem cannot be overestimated. If a function, F(x; Pi, having a 

non-Morse critical point at (xc; pc) is perturbed. The perturbed function, F'(x; Pi, through diffeomorphisms 

X and p, is obtained from F by perturbing the Morse part and the non-Morse part separately. Perturbation 

of the former does not change its qualitative critical behavior, while perturbation of the later does. Thus 

one can "forget" about the coordinates involved in the Morse function, while concentrating on the subspace 

spanned by the variables of FNM. The theorem classifies all possible types of perturbed functions in this 

subspace. Corollaries also establish the stability and genericity of the universal unfoldings of the Classification 

Theorem. 

3.2. Potential Functions and their Canonical Forms 

In this section we want not only to discuss the connection between arbitrary potential functions and their 

canonical forms provided in a separate paper,1 but also to demonstrate the quantitative relationships that 

exist between the critical points, gradients, and curvatures of the potential function with the corresponding 

expressions that exist for the canonical forms. In order to define the extent of the applications of these 

canonical forms we begin with a brief exposition of Thom's methodIO for modeling a physical system. 

First, suppose the physical system we wish to model has n distinct properties to which n definite real 

values may be assigned. We define an n-dimensional Euclidean space, !in, which parametrizes these various 

physical variables. Each point in lRn represents a particular state for the physical system. If X, x E !in, is such 

a point, then the coordinates of X. (Xl,"" x n ), are called the state variables. Let X c !Rn be the set of all 

possible states of the physical system. The particular state, x EX, which describes the system, is determined 

by a rule which usually depends on a multidimensional parameter represented by p, P = (PI, ... , Pk) E !Rk . 

For most physical systems this rule is often specified as a flow associated with a smooth vector field, say, y. 
This flow, or trajectory, on y usually determines the attractor set of y. Sometimes the rule is specified so 

the flow "chooses" a particular attractor on y with the "largest" basin. At other times the rule may only 

specify that the attractor be a stable one. Since very little is known mathematically about the attractors of 

arbitrary vector fields, catastrophe theory has little to say about this general model. If, however, the vector 

field is further restricted to be one generated by the gradient of a given smooth function, say V, then Thorn's 

theory becomes very useful in the study of the physical model. In other words, if Y = -DV (Xi Pi where V 

is considered a family of potential functions on !Rn ® !Rk , the att·radors of Y. are just the local minima of 
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V ( i'; P). In terms of a potential function, the rule S again may have several forms. For instance. S may 

choose the global minimum of V, or it may require only that the state of the system corresond to one of 

the local minima of V. The specific details of the method which S uses to move i to the at tractors of Y 
determines the dynamics of the trajectory of i' in X. Various choices for S may correspond to tunneling 

through barriers on F, to steepest descent paths on V. or to "bouncing" over small barriers by means of 

thermodynamic fluctuations. 

3.3. Relation6hip6 between Potential Function6 and their Unfolding6 

In order to examine a specific example, let us suppose that Y is a gradient vector field: Y = -DV (i'; P), 
where V (x; P): ~ n  0 ~ k  --+ ~  is a smooth potential function of the state variables, i', and depends upon 

a parameter p. The at tractor set of Y is then specified as a set of stable minima of V. The critical 

points of V, defined by DV = 0, form a manifold, Xv, where Xv c ~ n + k .  which includes the stable 

mmtrna. Choosing a point. (i'u: P"u) e 3?"-k, of X\·, Thorn's classification theorem tells us that in some 

neighborhood of (.i0 : p0 ), 1' is equal to the sum of a universal unfolding, U., of one of the germ functions, 

G;, and a quadratic form Q. Q = = ~ ' - ' ) ~ I T ~ ,  for k :'S 6 and j = 1 or 29 More formally, if)/,._ c ~ n  
is a neighborhood of £0 and N, < ~ l ? '  i:; a neighborhood of p0 , then \/: )/,, @ Np ---+ 3? is equivalent to 

F;(x;p) = G;(x1 .i) + P;(:i1 ,i;PJ ~  Q(i;-d.n) = C;(.il,j;p)..,. Q(x1 _ 1 ,n) for some finite i with i'l,j denoting 

the first j c o o r d i n a t e ~  of .i while :i1 _ 1 _,, denotes the last n- j coordinates. This means that there exist 

diffeomorphisms X:)/,, iS kp ~  N7 , and a: N'P ~  3? such that, for any (x;P) E Nx iS Np, we have 

V(x;P) = Fi(x(x;P);P(P)) + a(P) (3) 

This equation allows us to quantitatively relate the critical points, gradients, and curvatures of V and F;. 

Application of the chain rule for derivatives of vector fields to equation (3) provides an expression for the 

gradient of V: 

DF(x; P) = DF;(x; P)Dx(x; ji) (4) 

where D denotes the partial denvative operator with respect to the coordinates of the function or operator 

which follows it. In order to determine the Hessian of V, HV, we carefully reapply the chain rule to (4) to 

yield: 

n 

HV(x) = D1x(x) •HF.(x) •Dx(x) + L:nkFdx)Hxk(x) (5) 

lt=l 

where D 1 is the transpose of D. We now have expressions equating not only V and F,, (3), but also their 

gradients, (4), and Hessians, (5). Through these systems of nonlinear equations the unfolding parameters 

and diffeornorphisms may be calculated. 

As Connor11 has pointed out in a different context, the diffeomorphism and parameters of an unfolding 

may be calculated via the solution of the nonlinear system of equations which arises from the correspondence 

between the critical points of the unfolding and those of the experimental function. For PESs, however, the 

critical points are usually not known a priori, and thus this is not a viable procedure. Extensions of this 

method are reasonable though. For instance, the DTS and PES must correspond within a neighborhood of 

any point. Thus, a similar system of nonlinear equations may be derived, for points within some neighborhood 

of a particular point, whose solution yields the parameters and diffeomorphism. Alternatively, at a single 

point the function and all of its derivatives must coincide with those of the DTS. Therefore, since ab initio 

quantum calculations now provide analytic first and second derivatives, it is reasonable to employ this 

information to help calculate the DTS parameters and diffeomorphism. Thus, the calculation of a single 

point on the PES with its first and second derivatives may be employed to determine a first approximation to 
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the parameters and diffeomorphism. Thus, from a single point, we may be able to specify to which unfolding 

within a given family the particular PES belongs. Since there are canonical forms for the DTS, we also have 

canonical forms for its critical points, in particular, its saddle points. 12 Therefore, one might next move 

over to the DTS saddle point and perform another quantum mechanical calculation there. Of course, this 

point will not correspond to the PES saddle point, but since locally the diffeomorphism is approximately 

the identity function, it will be close to the PES saddle point. The additional information obtained at this 

new point may then be used to calculate a second approximation for the parameters and diffeomorphism. 

Thus, with each new point, better parameters are calculated so that the DTS better fits the PES. In the 

next section, we perform sample calculations on the one-dimensional unfolding families, the Ai families. 

SedioD: 4. DT Method Cor 6tting a PES via the GeDetic Algorithm 

As we discussed in the last section, the problem of fitting a DTS to a PES is one of finding a solution to 

a nonlinear system of equations. The DT method allows for a flexible choice for the form of the optimization 

function. We have considered both weighed least squares as well as absolute value evaluation functions. In 

particular, in the follwoing examples we have employed the experimental and evaluation functions provided 

below: 

Experimental function: 

A2 Unfolding: 

Diffeomorphism: 

Evaluation functions: 

where 

!(x) = ax6 + x3 + 3x2 , a = -0.05 

F(X) = XS + PIX + Po 

X(x) = Co + CIX + C2x2 

R = ~i Wi IF(X;) - !(Xi) I 
R =". w·18F(Xi) _ 8/(",.) I 

1 L...... 8", 8% 

R2 = ". w·18"'F(Xi) _ 8"'/(%i) I L...... 8%'" 8%'" 

Rs = rR + r1R1 + r2R2 

{r, rl, r2, W.} are weighting factors. 

(6) 

The standard numerical methods for solving nonlinear systems often involve algorithms of the Newton

Raphson type. 13 As we mentioned earlier, the coordinate transformation must he a diffeomorphism, and 

hence, invertible. Empirically, we found that when employing a Newton-Raphson algorithm for solving these 

nonlinear systems, the calculated coordinate transformations often did not satisfy the invertibility criterion. 

Therefore we resorted to constrained optimization techniques. Several methods, including the Box complex 

algorithm, 14 and standard least squares procedures,15 have been successfully used to solve these nonlinear 

equations. Typically, the constained methods were very slow to converge to a minimum and thus required a 

significant increase in computational time. Since the evaluation functions involved the differences between 

values for the experimental PES and its DTS, they were froth with shallow local minima. Thus, for some 

problems, these methods did not converge to the global minimum of the evaluation functions. In addition, 

the constrained optimizations often tended to remain close to their constraint boundaries, resulting in the 

optimizations becoming st.uck in local minima. These considerations led us to try other function optimizers. 

Besides these classical techniques, genetic adaptive algorithms (GAs) also may be employed to solve these 

systems. GAs are based on an observation originally made by Holland I6 that living organisms are very 

efficient at adapting to their environs. Implicit in a genetic adaptive search is an immense amount of parallel 

calculation, and empirical studies indicate that GAs will often outperform the usual numerical techniques.17 

We do not discuss the working of G As here, hut rather refer the reader to literature references. I8 

Several features illustrated in the following fitting examples are of importance and we mention them 

here: (i) We show that the coordinate transformation employed by the DT Method is required to be a 
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diffeomorphism. If the coordinate transformation calculated vja the DT method is not a diffeomorphism, 

then the chosen determinacy of the PES is too low and a higher-order unfolding family is needed in order to 

accurately fit the PES. (ii) Also illustrated is the fact that the diffeomorphism may include terms which have 

asymptotic behavior, for example, exponential terms. In this case, the asymptotic behavior of the surface 

may be reproduced by including comparable behavior in the diffeomorphism. (iii) "Bumps" or "shoulders" 

on surfaces that do not form critical points still reflect the fact that they stem from the annihilation of critical 

points of a germ function. Thus any bump or shoulder on a surface means that a higher order unfolding 

family will be required in order to accurately reproduce them. (iv) Also depicted in these examples is the DT 

Method for fitting a 2-dimensional potential energy surface. Our example 2-D surfaces have one "interesting" 

coordinate, that is, one coordinate which is not harmonic, and one coordinate which is harmonic .. 

Figure 1 A2 DTS fits employing Rand Rs to an As experimental function at 1, 2, and 3 data points. 

In Figure 1, we illustrate the Directed Trees fitting procedure by employing the genetic algorithm for 

fitting the A2 unfolding family to an experimental function belonging to the As family. We choose this 

experimental function to exemplify several features of the DT method. In particular, the value of the 

coefficient of the x6 term was chosen in order to generate a third critical point on the experimental surface 

within the coordinate interval -3 :5 x :5 3. We choose this interval so that the local nature of the fitting 

procedure for the A2 unfolding may be demonstrated. In conjunction with this local aspect of the A2 DTS 
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on the! - 3,3] interval, however, we would like to point out that all three critical points, and hence the 

experimental function itself, may be accurately represented with the As unfolding family. Even though the 

highest-order term of the As germ function is fourth-order, its unfoldings may have three critical points 

and thus the three critical points of this Ali PES may be accurately reproduced on the interval [-3, 3]. We 

have successfully fit an Ai DTS to all three singularities of this As PES (The At unfolding family does 

not have the proper local topology and consequently it cannot accurately reproduce this PES. When an At 
DTS fit is attempted, either the fitting is very poor or the calculated coordinate transformation is not a 

diffeomorphism.) This example also demonstrates the usage of the DTS to help choose new positions for 

further calculations and the employment of thE' first and second derivatives in addtion to the functional 

values at the data points. 

~ 

Figure 2 A2 DTS fit to noisy data points. 

In this figure, the experimental function is drawn as narrow solid lines. For clarity, the data points, 

which are represented as "solid" squares, are drawn at a constant 'y' coordinate and not at their proper 

functional values. Their proper functional values are located on the narrow solid curve. The dotted lines are 

the A2 DTS fits employing R as the fitting criterion. Thus, these R curves attempt only to fit the functional 

value of the experimental function at each of the data points. The thick dashed lines are the A2 DTS fits 

employing the Rs evaluation fiunction, thus these dashed curves fit not only the functional value but also the 

values of the first and second derivatives at each point. In Part A of Figure 2 we have attempted the DTS 

fit employing only a single experimental point. Note that in this case, the R fit does not have the proper 

local topology. There is not enough information available to determine the local shape of the experimental 

function, and it is only fortuitious that the R unfolding has about the same value of its first derivative as 

the experimental function. On the other hand, the Rs DTS fit does have the proper local t.opology but its 

critical points are far removed from the corresponding experimental minimum and maximum. In Parts B 

and C of this figure, we employ two experimental data points for fitting the DTSs. In Part B, the chosen 

data points includE' the single point from Part A plus an additional point at the minimum of the DTS surface 

calculated in Part A. We thus have used the approximate DTS surface of Part A to choose where the next 

calculation should be performed. The new information from the second datum point is then used to refine 

the DTS. In Part C, we use the same datum point as in Part A as well as the maximum point of the DTS in 

A. These refined DTS curves in Parts Band C now provide a more accurate estimates of the minimum and 

maximum of the experimental function. We use three data points for Part D, .the original point from A as 
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weJlas Part A's DTS's minimum and maximum points. Note that the R DTS fit to the three points does not 

have the proper topology of the experimental function. The Rs DTS, however, is a very accurate fit within 

the neighborhoods surrounding the maximum and minimum of the experimental function. Note, however, 

that the A2 DTS is unable to fit the second, rightmost, maximum of the experimental function. This is 

because this third critical point generated by the sixth-order term in the experimental function cannot be 

represented within the A2 unfolding family, which has, at most, two critical points. A higher-order family 

would have to be chosen in order to fit this maximum value. In particular, the As family would be capable 

of fitting both of the maxima and the minimum on this experimental function. One does not have to use an 

As unfolding for this experimental function even though it contains a sixth-order term. 

Figure 9 A2 DTS fit to the minimum and shoulder of an As experimental function. 

In the previous figure, thf experimental function was assumed to be known exactly. This is usually 

not the case. Typically, there are random errors in the potential energy at each datum point on a PES. 

These random fluctuations stem from round-off errors in calculations, approximate wave functions, numerical 

integration inaccuracies, or experimental random fluctuations. Also, as previously noted, the evaluation 

functions have many local minima which often appear to be similar to random fluctuations. To show that the 

DT method in conjunction with the GA optimizer does not require exact data, we return to the experimental 

function of Figure 2 in the next figure and add rather severe random fluctuations to the functional of values 
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as well as its first and second derivatives. The G A optimizer is very efficient at avoiding local minima and 

consequently works well for noisy PESs. Part A of this figure has six data points to which noise has been 

added. (The "open" squares representing the data points in this figure now reside at their proper functional 

values.) Note that the best A2 DTS fit employing Rs to these data does not accurately repeat the "exact" 

experimental function, that is, the function without the random fluctuations which is drawn as a dashed 

line. In fact, it might appear as if the DTS does not even accurately fit the two data points at x = -1. 

It must be realized that the functional value of the data points is all that is being plotted in this diagram. 

The Rs evaluation function, however, includes the first and second derivatives as criteria for a fit. Thus for 

a small number of data points, the random fluctuations in the first and second derivatives need not cancel 

and thus the DTS need not accurately fit the two functional values at x = -1. In Part B, we have added 

additional data points. Here, the DTS fairly accurately fits the "exact" experimental function. This figure 

illustrates that the Directed Trees method coupled with the genetic algorithm are easily applied to fitting 

DTSs to noisy PESs. 

Figure" As DTS fit to the As experimental function. 

One particular advantage of employing the genetic algorithm for fitting DTSs to PESs is that it is 

easy to require that the calculated coordinate change remain a diffeomorphism. In the next figure, we see 

not only a new experimental function as well as its DTS fits, but in addition, plots of the corresponding 

diffeomorphisms, X(x), for the DTSs. Note that in Part A, we have chosen data points surrounding the 

minimum of the experimental function at x = o. This experimental function has only a single minimum, but 

it does have a shoulder at around x = -3. Even though this shoulder is not a new critical point, it stems 

from the annihilation of a saddle and a minimum of the As family of functions. Hence our A2 DTS cannot 

fit this experimental function exactly. It is capable of fitting either the minimum as illustrated in Part A 

or the shoulder as illustrated in Part B. In addition, Part A also illustrates the possibility of asymptotic 

behavior being included in the diffeomorphism, then the DTS is capable of fitting the asymptotic behavior 

on a PES. In fact, instead of expanding the diffeomorphism as a Taylor series, as we have done here, it 

could easily be expanded as a sum of exponential terms whose asymptotic behaviors are then imparted to 

the DTS. Note that, as the diffeomorphism levels off for x < -5, the DTS also becomes asymptotically 

level. Part B of this diagram contains a warning, however. The function X(x) is not a diffeomorphism over 

the entire interval, -7 ~ x ~ 3, and hence, the assumptions necessary for application of the Arnol'd-Thom 
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Classification Theorem are not satified over this interval. In fact, the critical point of Xix) leads to an 

additional critical of the DTS at aboutO. This critical point of xix) was induced by att.empting to fit the 

A2 unfolding family to "three" critical points: the one actual minimum of the surface and the annihilated 

saddle and minimum which generates the shoulder region. If the datum point at x = 1 is removed, then 

X (x) remains a diffeomorphism and the DTS accurately fits the shoulder of the experimental function. This 

example reveals an advantage of the genetic algorithm over many of the nonlinear Newton-like optimization 

schemes. unlikE> the ]\'ewt.on methods which require an initial guess and can become "stuck" in local minima, 

the genetic algorithm only requires starting intervals for its parameter values. This, by the way, allows one 

to assure that the coordinate transformation X remains a 'diffeomorphism by means of controlling the ranges 

over which the parameter values may vary. In addition to the fact that parameter intervals are a much less 

restrictive initial condition than having to guess a starting parameter solution, one may also easily specify the 

resolution at which each individual parameter is calculated. Thus individual parameters may all be optimized 

at differing resolutions. If X is not a diffeomorphism after fitting a DTS to a PES, then this is a tipoff that 

the chosen fitting family is too small and does not contain enough critical points necessary for fitting the 

surface. Thus one should choosE' a higher-order family for fitting thi~ surface. In particular, the next figure, 

Figure 4, illustrates that if we choose the A3 unfolding family to fit this exp<'rimental function, then both 

the shoulder and thE' mmimum may be accurately fit. Since this experimental function is 3-determined and 

we are employing the .43 unfolrling family. the diff<'ornorphism i, a linear funnion with no critical points. 

We next consider the Directed Trees method applied to an experimental function which has more than 

one dimension. We choose an experiment.al function which has one nonharmoni, coordinate and one harmonic 

coordinate. This PES is representative of isomerization reactions. It is an important trial case because 

of the recent interest in quasi-periodic versus chaotic trajectories on similar two-dimensional surfaces. 19 

Also a similar surface was also chosen by Fukui20 to illustrate the intrinsic reaction coordinate method. 

Contour levels of this function are drawn in Parts A and C of the following figure. There are several things 

to note about the experimental function. First of all, there are two minima and one saddle point. Neither 

of the minima are located at special points, such as the origin. Also, a line drawn between the two minima 

is not parallel to either of the coordinate axes. The DT method, though, is capable of "rotating" the DTS 

coordinate axes so that it can accurately represent the experimental surface. In Part B of this figure, we 

have chosen the As family for fitting this function. Note that the corresponding contour levels in all Parts 

of this diagram are drawn employing the same type of line, whether that be solid, dashed, dash-dotted, or 

dotted. The "stars" (*) in Parts A and C locate the data points used in the calculations for Parts Band D, 

respectively. The As DTS of Part B very accurately fits the experimental function. 

You might ask what would happen if one were to choose a family which can display more critical points 

than the experimental function contains. This is illustrated in Part D of this Figure. In this case, the 

A. unfolding family was chosen to fit the same experimental function as provided in Part A. Note than in 

Part D, the DTS accurately fit both minima and the saddle point of the experimental function. In addition, 

however, there is II. new saddle point appearing around the point (2.1,0.2). This new saddle point stems from 

the fact that the A. family can display four critical points. It is worth noting, however, that in the region 

surrounding the data points, the A. DTS accurately fits the experimental function. The new, extraneous, 

saddle point of the DTS lies outside the local neighborhood of the data points employed to fit this PES. This 

example of employing the A. unfolding mightlead one to consider always employing a high-order unfolding 

family to fit all PESs. One finds, however, from the practical viewpoint of calculating the fitting parameters, 

that a properly chosen unfolding family (one whose determinacy and local topology is the same as the 

experimental PES) will greatly reduce the amount of calculation and hence provide an easily calculated fit 

to the PES. This is because the DTS has the proper number of critical points to reproduce the topology 

of the surface: data is not required to suppress extraneous critical points of the unfolding. Thus there is 

an optimum unfolding family, from a calculation standpoint, for each PES. It is true that the higher-order 

family, assuming it contains the lower-order family as II. subfamily, will provide an unfolding which repeats 

the topology of its lower-order subfamily. It is this subfamily, however, that should be chosen as the unfolding 

family for the original fitting procedure. 

As our last example of a 2-dimensional fitting to a 2-dimensional PES, we choose the same "exact" 
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Figure 5 As and A. 2-dimensional DTSs fit to an experimental function. Contour lines are drawn at energies 

of 15, 10, 8, 7, 4, and 1 in all parts of this figure. 

experimental function, but add in random fluctuations to the experimental values and its first and second 

derivatives. For this example, we also employ the Rs evaluation function in determining the unfolding 

and diffeomorphism parameters. Note that in Figure 6 the As DTS has the same critical behavior as the 

exerimental PES, however, it is not as accurate of a fit as that shown in Figure 5. This is because the noise 

included in our functional values is rather extensive. Since it is not possible to see these random fluctuations 

on a contour plot of the PES, we have drawn a 3-D stereo projection of the experimental PES along with 

the noisy data points chosen. In this view, the bold circles are the experimental points chosen on the surface 

while the light crosses are the "exact" experimental values corresponding to t.he noisy data points. 
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Figure 6 As DTS fit to a noisy As experimental 2-D function. 

Figure 7 Stereo view of the noisy data points of the As experimental 2-D function. The bold circles are the 

noisy data points while the thin "+" signs are the corresponding "exact" values. 
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Section: 6. Glossary 

The following furnishes brief definitions of a few of the t.erms from differential topology that we employ 

in the t.ext of this paper. 

(1) CDl-Diffl'omorphism: If 'I/; is a em-diffeomorphism, then it satisfies the following three criteria: 

(i) ¢ is m times differentiable, 

(ii) 'I/; has an inverse, '1/;-1: lRn -+ lRn, such that 'I/; 0 '1/;-1 = '1/;-1 0'1/; = 1, and 

(iii) t/J-1 is m times differentiable, 

where m is either finite, 00, or w. 

(2) Equivalence dass: If A is a set and if - is an equivalence relation on A, then the equivalence clau of 

a E A is the set {x E Ala - x}. 

(3) Equivalent: Two functions, I: lRn -+ !R and g: !Rn -+ !R, are equivalent at 0 if there exists a diffeomorphism 

X: !Rn -+ !Rn and a constant Q such that 

g(X) = I(x(x)) + Q (7) 

in a neigh borhood of O. Equivalence of t.wo functions implies that they have the same geometric "shape" 

and critical behavior. They have corresponding critical points which are of the same type. 

(4) Genericity: A generic property is a property possessed by an open dense subset of the system. This 

means that a generic property is "typical" for the system, and a complementary subset for which the 

property does not hold has measure O. Thus it is "mathematically rare" for a generic property not to 

hold. Since a generic property holds on a dense subset of the system, then any member of the system, 

including those not having the generic property, may be approximated arbitrarily closely by elements 

having the generic property. An example of this is that a function having a degenerate critical point 

may be approximated by functions having only Morse critical points. 

(5) Germ, Germ-equivalent: Let T be a topological space and S be any set. Let f: U -+ Sand g: V -+ S 

be maps with domains U, V open sets in T, and suppose x lies in U n V. Then I and g are said to be 

germ-equivalent at x if there exists some open neighborhood W of x lying inside Un V such that I = 9 

on W. This is an equivalence relation on the set of all maps defined on neighborhoods of x in T and 

with values in S, and the equivalence classes are called germs of maps at x. If S is a topological space 

also, then we can consider germs of continuous maps. If Sand T are normed linear spaces, we can 

consider germs at x of C' maps. If two Coo maps are germ-equivalent at x, then all their derivatives at 

x are the same. 

(6) k-determined: Let I E lRn and let k be a non- negative integer. Then I is right-determined (right-left 

determined) if, for every g E lRn such that jk(f) = jk(g), then 1-. 9 (f -.,1 g). 

(7) Jet, k-jet: The k-jet of a function I, denoted by jk (f), is the Taylor series expansion of I at x and 

truncated after the order k terms. 

(8) Neighborhood N: Given a topological space, (T,1'), a subset JI c T is a neighborhood of a point t E T 

is there is a member S of r with t ESC N. 

(9) Regular point: A point, x, is a regular point if x is in the domain of a function, I: lRn -+ Ii, and the 

gradient of the function at x is not zero. 

(10) Smooth or Coo: A function I, I: lin -+ lim, is called smooth at a point, x, if all of its derivitives exist 

and are continuous at x. 

(11) Stability: Properties of a mapping which are invariant to perturbations of the map are called stable 

properties, and the collection of maps which possess a part.icular stable property may be referred to as 

a stable clau of maps. In particular, a property is stable provided that whenever 10: X -+ Y possesses 

a property and It: X -+ Y is a homotopy of 10, then, for some £ > 0, each It with t < £ also possesses 

the property. 

(12) Structural Stability: For the single function case, let 1:!Rn -+ !R be a function and P: lRn ®!Rk -+ lR 

be an arbitrary small perturbation. Then I is stable at a point in Xo if there exists a diffeomorphism 

X = X(x) such that the perturbed function, 9 = 1+ p, in the new coordinate system is equivalent to the 

unperturbed function, I(x) = g(X) + Q. 
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(13) Topology, Topological Space, Open Sets: Let T be a setj 8. topology T on T is a collection T of subsets 

on T which satisfy the following criteria: a family T of subsets on T is a topolog!l on T if 

(i) if T C T, then uT E T, 

(ii) if T C T and T is finite, then nT E T, 

(iii) 0 E T and T E T. 

then (T, T) is a topologicalspacf, T is its underlying set, and the members T are called the open or T-open 

8fts of (T, T) of T. 

(14) Unfolding, Versal and Universal: An unfolding of a function, f(x), is a parametrized smooth family 

of functions, F(xj Pl, where p = (PI!"" p;), whose members are possible perturbations of f(x). The 

dimension of p, ;j, is called the codimension of the unfolding. Usually unfolding also refers to a particular 

member of the family, F(xj Pl. An unfolding, G, is a verBal unfolding if any other unfolding of f may 

be obtained from G via a diffeomorphism. An unfolding, H, is a universal unfolding if it is both versal 

and is of minimum codimension. 
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