ORIGINAL MANUSCRIPT

WILEY

Big Five personality traits and academic performance: A meta-analysis

Sakhavat Mammadov (D)

The Department of Leadership, Technology, & Workforce Development, Valdosta State University, Valdosta, GA, USA

Correspondence

Sakhavat Mammadov, The Department of Leadership, Technology, & Workforce Development, Valdosta State University, 1500 N. Patterson Street, Valdosta, GA 31698, USA.

Email: smammadov@valdosta.edu

Abstract

Objective and Method: This meta-analysis reports the most comprehensive assessment to date of the strength of the relationships between the Big Five personality traits and academic performance by synthesizing 267 independent samples (N = 413,074) in 228 unique studies. It also examined the incremental validity of personality traits above and beyond cognitive ability in predicting academic performance.

Results: The combined effect of cognitive ability and personality traits explained 27.8% of the variance in academic performance. Cognitive ability was the most important predictor with a relative importance of 64%. Conscientiousness emerged as a strong and robust predictor of performance, even when controlling for cognitive ability, and accounted for 28% of the explained variance in academic performance. A significant moderating effect of education level was observed. The relationship of academic performance with openness, extraversion, and agreeableness demonstrated significantly larger effect sizes at the elementary/middle school level compared to the subsequent levels. Openness, despite its weak overall relative importance, was found to be an important determinant of student performance in the early years of school.

Conclusion: These findings reaffirm the critical role of personality traits in explaining academic performance through the most comprehensive assessment yet of these relationships.

KEYWORDS

academic performance, achievement, Big Five, cognitive ability, intelligence, meta-analysis, personality

1 INTRODUCTION

Academic performance is deemed of critical importance for career paths, individual life trajectories, and lifelong success. It is also considered valuable as a societal outcome. Students who demonstrate positive academic outcomes tend to have better health and overall well-being and are remunerated significantly above their counterparts who fail to perform well at school (Organization for Economic Cooperation and Development [OECD], 2016).

A substantial body of research has investigated factors contributing to academic performance. It has been well documented that cognitive resources such as general cognitive ability are among the best predictors of academic performance (Laidra et al., 2007). There is also a strong and growing interest on the role of non-cognitive factors in accounting for individual differences in academic performance (MacCann et al., 2019). One of the non-cognitive factors that have been systematically related to academic performance is personality (Richardson et al., 2012). With the present study, the aim is to summarize the links between personality traits, as conceptualized by the Big Five model (John & Srivastava, 1999; McCrae & Costa, 1996), and academic performance.

Several meta-analyses have examined the extent to which personality traits correlate with academic performance (e.g., Gatzka & Hell, 2018; McAbee & Oswald, 2013; Poropat, 2009; Trapmann et al., 2007). These past metaanalyses have typically concentrated on only one personality trait (e.g., openness; Gatzka & Hell, 2018), a specific measure of performance (e.g., GPA; McAbee & Oswald, 2013), or a single educational level (e.g., postsecondary; Trapmann et al., 2007). Poropat's (2009) meta-analysis was comprehensive, aiming to retrieve the largest possible number of relevant studies. His study included 80 research reports published or presented prior to the end of 2007. Given that hundreds of new studies have been published since then, there is a strong need to undertake a new and larger-scale meta-analysis for comprehensive examination of the relations that the Big Five have with academic performance. The present meta-analysis is conducted to address this need. The first and major purpose is to summarize relationships between Big Five personality traits and academic performance from studies conducted over the last 30 years.

1.1 | The Big Five personality traits

Personality traits include relatively stable patterns of cognitions, beliefs, and behaviors. The Big Five model has functioned as the powerful theoretical framework to synthesize most of the variation in these patterns (McCrae & Costa, 1999). The roots of this model lie in two research traditions: the psycholexical approach and the questionnaire approach (De Raad & Perugini, 2002; John & Srivastava, 1999). The Big Five model was discovered and originally verified within psycholexical studies founded on the lexical hypothesis, which states that all personality traits are encoded in every natural language (Cattell, 1943; Goldberg, 1981, 1990). The words invented and used to describe individual differences are exactly the same with how the trait terms have been used in the lexical approach. Identification of personality traits in the lexical approach is guided by two criteria: synonym frequency (i.e., the more important is a personality attribute, the more synonyms are used to describe it within the language) and cross-cultural universality (i.e., the most phenotypic attributes are typically codified in terms in the languages of different cultures). Factor analysis has often been applied in efforts to reduce a large set of words referring to personality attributes to a smaller set of basic personality dimensions (Strus et al., 2014).

The questionnaire approach has made a significant contribution to the expansion of the Big Five, both conceptually

and empirically. In this line of research, the five personality dimensions were operationalized in the questionnaires and their associations with other theoretical concepts have been studied (Digman, 1990; John & Srivastava, 1999). Although the conceptualizations of the five personality traits within the psycholexical and questionnaire approaches are slightly different (Saucier & Goldberg, 1996), strong convergence exists between the various five-factor models (De Raad & Perugini, 2002; Goldberg, 1990; John & Srivastava, 1999).

The Big Five personality traits are traditionally labeled as *openness* (a degree of intellectual curiosity, creativity, and preference for novelty and variety), *conscientiousness* (a tendency to show self-discipline, planning, and organization), *extraversion* (positive emotions, activity, sociability, and the tendency to seek stimulation in the company of others), *agreeableness* (a tendency to be prosocial and cooperative toward others rather than antagonistic), and *neuroticism* (a vulnerability to unpleasant emotions such as anxiety, anger, and depression). These traits have been extensively studied in various research contexts including schools, universities, and other learning settings.

1.2 | The Big Five and academic performance

The effect of personality traits on academic performance is a well-documented empirical fact (Mammadov et al., 2018; Caprara et al., 2011; Gatzka & Hell, 2018). Of the Big Five, conscientiousness has emerged as a strong and consistent predictor, with correlation coefficients up to 0.57 (Mitrofan & Ion, 2013). Conscientious students tend to be self-disciplined, organized, and effective at carrying out tasks (McCrae & John, 1992). These characteristics are expected to enhance student performance in examinations, tests, and other types of evaluation measures. Openness has been reported to have from weak to moderate positive effects on performance in many studies (Caprara et al., 2011; Carretta & Ree, 2019; Gerbino et al., 2018). There are also some studies reporting negative associations between openness and performance (Furnham et al., 2006; Schmitt et al., 2011; Steinmayr & Kessels, 2017). Correlations reported in previous metaanalyses ranged from 0.06 to 0.13 with the confidence intervals not including zero, indicating a statistically significant positive mean effect of openness on academic performance (McAbee & Oswald, 2013; O'Connor & Paunonen, 2007; Poropat, 2009; Richardson et al., 2012; Trapmann et al., 2007; Vedel, 2014). The positive associations of openness with other performance-related outcomes such as approach to learning (Vermetten et al., 2001), autonomous motivation (Authors, in press), and critical thinking (Bidjerano & Dai, 2007) provide a strong rationale for its importance for student success.

The findings for the other personality traits are mixed and generally inconclusive. While many studies found negative associations between neuroticism and academic performance (Biderman & Reddock, 2012; Chamorro-Premuzic & Furnham, 2003a, 2003b; Gerbino et al., 2018), a large number of other studies reported positive significant correlations (Culjak & Mlacic, 2014; Lounsbury et al., 2005; Steele-Johnson & Leas, 2013). The negative effect of neuroticism seems theoretically more plausible as students with high scores on this trait tend to demonstrate higher levels of anxiety and stress that, in turn, can result in poor academic performance on exams or other assessments (Ackerman et al., 2011; O'Connor & Paunonen, 2007). Theoretically it is less clear how agreeableness and extraversion affect performance. Empirically there is weak evidence for their practical significance. One widely acknowledged argument is that their influence occurs indirectly through some mediating variables (Richardson et al., 2012; Woodfield et al., 2006). Given that agreeableness and extraversion are both interpersonal traits, their relationships with performance might be related to the way student performance is measured. For example, students who share, listen, and cooperate in a classroom setting may get high performance evaluations in group course projects. A human evaluator can be biased by student personalities.

1.3 | Moderators

The second purpose of the present meta-analysis is to examine the influence of moderators on the calculated mean effect sizes. Several features of the original studies are used to examine systematic differences in effect sizes across studies. Candidate moderators include education level, personality measurement type, gender composition, student age, and publication status.

1.3.1 | Education level

The strength of association between the Big Five traits and academic performance may change depending on the level of education (elementary/middle [K-8], secondary, or postsecondary). The increasing diversity of assessment practices in postsecondary education could be seen as a reason for possible changes. While student performance at elementary school is assessed based on a standard curriculum, it tends to widely vary at subsequent levels of education (Tatar, 1998). Results from previous studies suggest that the associations between performance and all personality traits, except conscientiousness, continue to decline from elementary to secondary and postsecondary education (Poropat, 2009). The present metanalysis revisits a moderating effect of education level with a much larger sample. While most of the patterns of changes

from Poropat's (2009) study are expected to be observed, specific differences are likely to occur along with the changes in the magnitude of effect sizes.

1.3.2 | Personality measurement types

Various personality instruments have been developed and used to study the Big Five in the context of academic performance. For the present meta-analysis, the criterion-related validity of the six most widely used measures was examined: the Big Five Inventory (BFI; John et al., 1991), the Big Five Questionnaire (BFQ; Caprara et al., 1993), the International Personality Item Pool (IPIP, Goldberg, 1999), Goldberg's (1992) unipolar Markers (and it's shortened versions, i.e., Mini-Markers), the NEO Five-Factor Inventory (NEO-FFI; Costa & McCrae, 1992), and the NEO Personality Inventory—Revised (NEO-PI-R; Costa & McCrae, 1992).

The BFI is a 44-item instrument, developed to measure the dimensions of the Big five identified by Costa and McCrae (1992). The BFQ is composed of 132 items, developed to distinguish between the Big Five traits, each of which consists of 24 items. The IPIP is an extensive public-domain collection of personality items that has been developed as a result of ongoing collaborative effort. There are many scales that have been constructed from the items. The most widely used ones are 50-item and 100-item measures (Goldberg, 1999). Goldberg's (1992) unipolar Markers and its brief version, Mini-Markers (Saucier, 1994) are set of adjectives developed for the Big Five structure found in phenotypic personality description. The NEO-PI-R is a 240-item instrument reflecting the dimensions of the Big Five (48 items for each) and 30 lower order facets (six facets per trait). Finally, the NEO Five-Factor Inventory (NEO-FFI; Costa & McCrae, 1992) is a shorter version of the NEO-PI-R, comprised of 60 items to measure the higher order factors only.

These instruments have subtle as well as some fairly obvious differences. Conceptualization of traits may differ across measures. For example, the IPIP and Goldberg's Markers label the openness trait as intellect, include items primarily associated with intellectual orientation (e.g., imagination, curiosity), and exclude several facets of the broader openness construct such as artistic interest and liberalism (McAbee & Oswald, 2013). Another important feature of the IPIP scales, different from the other popular measures, is that the agreeableness domain focuses on empathy and interest, and lacks items referring to quarrelsomeness (Thalmayer et al., 2011). The item contents and response formats vary too. Some instruments (e.g., BFI, NEO-PI-R, IPIP) provide information by, for example, including context to help the respondents interpret an item. Other instruments such as the Markers include adjectives only. The Markers also include more items reflecting organization and orderliness facets of conscientiousness

than the performance-striving facet (Noftle & Robins, 2007). One might expect to observe weaker correlations between conscientiousness and performance when these scales are used as a personality measure compared with those including more performance-striving-related items (McAbee & Oswald, 2013). These differences are considered as potential sources of variation in effect sizes across studies that use different personality measures.

1.3.3 | Geographical regions of studies

The sample of studies examining the personality-academic performance relationships is internationally diverse. One limitation of the body of the literature on this topic is that most of these studies have been carried out with WEIRD (Western, educated, industrialized, rich, and democratic) samples. To our knowledge, no study has yet explicitly theorized and examined cross-cultural variability on the relationship between personality and academic performance. It is possible that academic performance reflects personality differently across countries, cultures and/or geographical regions. Testing geographical regions as additional moderator was included as an exploratory purpose in the present meta-analysis. To that end, results from six regions were compared: North America (Canada, the United States), Australia, Western Europe, Eastern Europe and Russia, Middle East, and Asia. These regions were considered to best represent countries of origin of primary studies included in this investigation.

1.3.4 | Gender composition

The way gender composition could moderate the relationship between personality and academic performance is related to the gender effects at the individual level of analysis. There is some evidence to support gender differences in performancerelated student characteristics (Spinath et al., 2014). However, no consistent findings have been reported to specifically show that the Big Five predict performance differently for male and female students (Freudenthaler et al., 2008; Steinmayr & Spinath, 2008). Only few studies examined the association of gender differences in performance with personality (Hicks et al., 2008; Nguyen et al., 2005; Spinath et al., 2010). Spinath et al.'s (2010), in their study with Austrian eight graders, reported that female students' grades were positively associated with openness, conscientiousness, and extraversion, and negatively with neuroticism in three different subjects (math, German, and English). For male students, by contrast, the only significant association was observed between math grades and conscientiousness. Nguyen et al. (2005) investigated the moderating role of gender in the relationship between personality traits and performance among university students. Openness and emotional stability (the opposite of neuroticism) significantly and positively predicted performance among male students, but the same relationships were nonexistent among female students. Despite the limited number of studies, gender appears as an important potential moderator to be tested in the present meta-analysis.

1.3.5 | Age

A rationale for including age as a candidate moderator is similar to that for education level. Previous studies have suggested that the strength of associations between personality traits and academic performance change as students advance through the education system (Poropat, 2009). Therefore, the moderating effect of age is expected to be parallel to the changes associated with education level. There is, however, a notable difference that warrants the inclusion of age as a separate moderator. Education level defines the broader context in which the relationship between student personality and performance may change as a function of contextual effects. Education level serves as a categorical variable. Results will yield relative magnitude of the mean effects, which could be used for comparison purposes. Age, however, is continuous; and may have implications that reflect dynamic developmental processes.

1.3.6 | Publication status

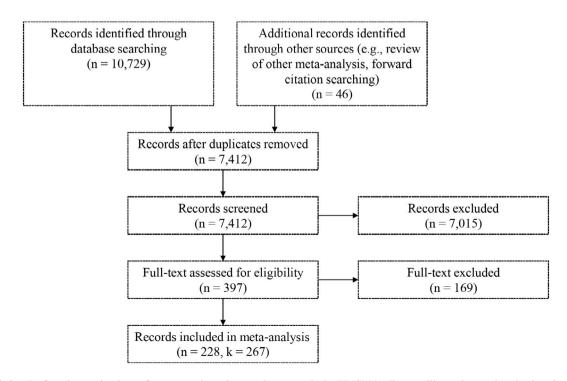
Publishing practices in scientific journals may result in a selection bias (Open Science Collaboration, 2015). Reported effect sizes could be systematically larger in published studies than those remained unpublished. In other words, studies that report relatively strong effects are more likely to find their way to peer-reviewed publications compared with those with weak or non-significant findings. In addition to performing a thorough search to include all relevant reports, the present meta-analysis assesses the likely impact of this bias by examining differences between published studies and unpublished data (dissertations, conference proceedings).

1.4 | Incremental validity of the Big Five for academic performance

The third purpose of this study was to examine incremental validity of the Big Five personality traits above and beyond cognitive ability in predicting performance. It is well established that cognitive ability is an essential ingredient for student success (Laidra et al., 2007; Tikhomirova et al., 2020). Both basic cognitive processes, such as number sense and information processing speed (Luo et al., 2006), and

higher-order cognitive processes, such as fluid intelligence (Deary et al., 2007; Geary, 2011), have been consistently found to be related to academic performance. Given that cognitive ability is the best predictor of performance (Rohde & Thompson, 2007), it is important to test incremental validity of the Big Five alongside the contribution of this traditional predictor. Of the Big Five, conscientiousness emerged as a significant predictor of academic performance independently of the effect of intelligence (Poropat, 2009). The present meta-analysis seeks to determine which Big Five personality traits provide incremental prediction above and beyond the effect of cognitive ability. In addition, the relative importance of each predictor is examined.

2 | METHOD


2.1 | Literature search

The literature search using a multimodal strategy sought to identify any study that reported a correlation between the Big Five and academic performance. First, the database search was performed using a combination of key terms in PsycINFO, Scopus, ERIC, and ProQuest Dissertations & Theses to identify articles that included (a) at least one personality-related keyword indicating that the Big Five was used, which included any personality trait (e.g., openness, conscientiousness) or a common measure name (e.g., NEO, Big Five, Big 5, FFM, BFI, etc.), (b) the word personality, and (c) academic

performance or a related term (academic performance, academic success, etc.). The search terms were applied to article titles, abstracts, and search headings. Second, references from key meta-analyses on personality and performance-related outcomes were used (e.g., Poropat, 2009; Vedel, 2014). Citations that were included in the previous meta-analyses as unpublished studies checked for later publication. Unpublished duplicates of published studies were removed (e.g., Hirsh, 2006; Hirsh & Peterson, 2008). Third, forward citation searching was employed by searching articles that cited included studies. Figure 1 presents an overview of the search process. Overall, the search yielded 10,775 articles. Obvious duplicates (n = 3363) were removed after merging these sources. An additional 7015 articles were excluded at the title and abstract levels due to their irrelevancy to the present study. This resulted in the retention of 397 articles for further examination for eligibility and inclusion. Searches were conducted in September, 2020 and included the years 1990 to 2020. A summary of the studies included in the metaanalysis is presented in Table 1.

2.2 Inclusion criteria

Studies were included if they measured personality traits and academic performance using scales that yielded quantitative values, measured Big Five personality traits, measured academic performance through grades, exam performance, GPA, or standardized performance tests, were in English, were a

FIGURE 1 Preferred reporting items for systematic reviews and meta-analysis (PRISMA) diagram illustrating study selection. *k*, total number of independent samples; *n*, number of record

(Continues)

TABLE 1 Summary of studies included in meta-analysis

	Study	×	Female %	Age	Education level	Country	Personality measure	Publication status
1	Aguilar (2013)	79	68.4	29	Postsecondary	ns	BFI	Not published
2	Al Qaisy and Thawabieh (2017)	304	54.9		Postsecondary	Jordan	BFI	Published
3	Alkis and Temizel (2018)	127	59.8	22.03	Postsecondary	Turkey	BFI	Published
4	Andersen et al. (2020) s1	45,135			Elementary/middle	Denmark	BFI	Published
5	Andersen et al. (2020) s2	47,305			Elementary/middle	Denmark	BFI	Published
9	Andersen et al. (2020) s3	42,949			Elementary/middle	Denmark	BFI	Published
7	Andrei et al. (2015) s1	376	51.86	9.39	Elementary/middle	Italy	BFQ	Published
8	Andrei et al. (2015) s2	202	52.97	12.05	Elementary/middle	Italy	BFQ	Published
6	Anglim et al. (2018) s1	530	55	24.9	Postsecondary	Australia	NEO-PI-R	Published
10	Anglim et al. (2018) s2	539	62	18.25	Postsecondary	Belgium	NEO-PI-R	Published
11	Anticevic et al. (2018)	250	78.8	22.3	Postsecondary	Croatia	BFQ	Published
12	Bahcekapili and Karaman (2020)	525	38.09	30.9	Postsecondary	Turkey	BFI	Published
13	Barbaranelli et al. (2003)	896	46.69	12.42	Secondary	Italy	BFQ	Published
14	Barchard (2003)	150	62.66	21.5	Postsecondary	SO	IPIP	Published
15	Barta et al. (2018)	154	65.58	12.25	Secondary	Romania	BFI	Published
16	Bartone et al. (2002)	855	12	18.61	Postsecondary	Sn	Other	Published
17	Bauer and Liang (2003)	265	58.5		Postsecondary	NS	NEO-FFI	Published
18	Bergold and Steinmayr (2018) s1	421	49.4	16.43	Secondary	Germany	NEO-FFI	Published
19	Bergold and Steinmayr (2018) s2	243	44.86	16.53	Secondary	Germany	NEO-PI-R	Published
20	Berings et al. (2013)	233	36		Postsecondary	Belgium	Other	Published
21	Biderman and Reddock (2012)	203	68.93	19.32	Postsecondary	NS	IPIP	Published
22	Bidjerano and Dai (2007)	219	72	22	Postsecondary	SN	Markers	Published
23	Brandt et al. (2020) s1	3373	49	15.2	Secondary	Germany	BFI	Published
24	Brandt et al. (2020) s2	4508	49	15.2	Secondary	Germany	BFI	Published
25	Brandt et al. (2020) s3	5034	49	15.2	Secondary	Germany	BFI	Published
26	Bratko et al. (2006)	255	65.49	16.2	Secondary	Croatia	Other	Published
27	Burgard (2000)	117	79	22	Postsecondary	SO	NEO-FFI	Not published
28	Burton and Nelson (2006)	76	73.19	28.12	Postsecondary	Australia	IPIP	Published
29	Busato et al. (2000)	409			Postsecondary	Netherlands	Other	Published
30	Camps and Morales-Vives (2013)	232	53.02	15.5	Secondary	Spain	Other	Published
31	Cao and Meng (2020)	555	33.9	19.5	Postsecondary	China	Other	Published

Continued	
7	2
ď	2
Ξ	
5	Ε
.±	3
2	
(٥
T)
=	_
_	
Ŧ	1
	_
_	
~	-
×	
4	۴
<	
TARI	

MMADO	V																									W	ΙL	EY-	7
Publication status	Published	Published	Published	Published	Published	Published	Published	Published	Published	Published	Published	Published	Published	Not published	Published	Published	Published	Not published	Published	Published	Published	Published	Published	Published	Published	Published	Published	Published	(Continues)
Personality measure	BFQ	BFQ	BFQ	NEO-FFI	Other	Other	Other	Other	NEO-PI-R	NEO-FFI	NEO-PI-R	NEO-FFI	NEO-FFI	NEO-FFI	NEO-FFI	BFI	Other	NEO-PI-R	NEO-FFI	NEO-FFI	NEO-FFI	IPIP	IPIP	IPIP	Markers	IPIP	Other	NEO-FFI	
Country	Italy	Italy	Italy	Chile	SO	SO	SO	Spain	UK	UK	UK	UK	UK	SO	SO	SO	NS	SO	NS	NS	Canada	SO	Bosnia	Bosnia	NS	UK	South Africa	Belgium	
Education level	Secondary	Secondary	Secondary	Postsecondary	Postsecondary	Postsecondary	Postsecondary	Postsecondary	Postsecondary	Postsecondary	Postsecondary	Postsecondary	Postsecondary	Postsecondary	Postsecondary	Postsecondary	Postsecondary	Postsecondary	Postsecondary	Postsecondary	Postsecondary	Postsecondary	Secondary	Secondary	Postsecondary	Postsecondary	Secondary	Postsecondary	
Age	11.39	11.39	13	19				18.78	20.1	19.8	19.21	19.98	19.76	23	19.68	18.72				19.48		19	16.5	16.5	18.91	18.56		18.59	
Female %	0	100	52.42					63.5	72.47	70	70	75.96	60.91	99	74.3	71.61	56	30		99'.	63.22	92	100	100	55	89.68	96.34	40	
×	240	249	412	235	16,109	29,383	62,592	509	247	70	158	104	307	198	292	377	130	80	103	300	223	262	41	59	384	129	82	375	
Study	Caprara et al. (2004) s1	Caprara et al. (2004) s2	Caprara et al. (2011)	Cárdenas Moren et al. (2020)	Caretta and Ree (2019) s1	Caretta and Ree (2019) s2	Carretta and Ree (2019) s3	Cela-Ranilla et al. (2011)	Chamorro-Premuzic and Furnham (2003a)	Chamorro-Premuzic and Furnham (2003b)	Chamorro-Premuzic and Furnham (2008)	Chamorro-Premuzic (2006)	Chamorro-Premuzic (2006)	Chapa (2016)	Chapman and Hayslip (2005)	Cheng and Ickes (2009)	Chowdhury (2006)	Clark (2007)	Colquitt and Simmering (1998)	Conard (2006)	Conrad and Patry (2012)	Cucina and Vasilopoulos (2005)	Culjak and Mlacic (2014) s1	Culjak and Mlacic (2014) s2	Day et al. (2003)	Day et al. (2010)	de Bruin et al. (2005)	De Feyter et al. (2012)	
	32	33	34	35	36	37	38	39	40	41	42	43	4	45	46	47	48	49	50	51	52	53	54	55	99	57	58	59	

(Continues)

(Continued)
ABLE 1

	Study	N	Female %	Age	Education level	Country	Personality measure	Publication status
09	De Fruyt and Mervielde (1996)	714	55.6	23.4	Postsecondary	Belgium	NEO-PI-R	Published
61	de Koning et al. (2012)	1753	74	20.04	Postsecondary	Netherlands	Other	Published
62	Debicki et al. (2016)	307	36.8	23	Postsecondary	SO	IPIP	Published
63	Di Fabio and Busoni (2007)	286	56.3	17.83	Secondary	Italy	BFQ	Published
64	Di Giunta et al. (2013) s1	206	0		Secondary	Italy	BFQ	Published
65	Di Giunta et al. (2013) s2	220	100		Secondary	Italy	BFQ	Published
99	Ding et al. (2017)	104	73.08	29.26	Postsecondary	NS	NEO-PI-R	Published
29	Diseth (2003) s1	151	76.82	21.4	Postsecondary	Norway	NEO-PI-R	Published
89	Diseth (2003) s2	164	64.02	20.2	Postsecondary	Norway	NEO-PI-R	Published
69	Diseth (2013)	70	55.71	21.2	Postsecondary	Norway	NEO-FFI	Published
70	Dollinger and Orf (1991)	06	73.33		Postsecondary	Sn	NEO-PI-R	Published
71	Dollinger et al. (2008)	338	61	21.9	Postsecondary	SO	Other	Published
72	Duff et al. (2004)	146	74.6	24.3	Postsecondary	Scotland	Other	Published
73	Dumfart and Neubauer (2016)	361	47.37	14.09	Secondary	Australia	Other	Published
74	Durso-Finley (2016)	305	44.91		Secondary	NS	Other	Not published
75	Dwight et al. (1998)	437	29	21.37	Postsecondary	NS	Markers	Published
92	Dzubur et al. (2020)	95	82.11	19	Postsecondary	Bosnia	BFI	Published
77	Edwards and Schleicher (2004)	70	61.42	26.9	Postsecondary	NS	Other	Published
78	Ehrler (2005)	87	39.08	13.26	Elementary/middle	ns	BFQ	Not published
62	Eilam et al. (2009)	52	48.07		Secondary	Israel	NEO-PI-R	Published
80	Engel (2013)	88	70.5	18	Postsecondary	ns	BFI	Not published
81	Fabris et al. (2019)	363	51.5	10.2	Elementary/middle	Italy	BFQ	Published
82	Farsides and Woodfield (2003)	432	52.31	21.3	Postsecondary	UK	NEO-FFI	Published
83	Ferguson et al. (2000)	176	58	19.7	Postsecondary	UK	Markers	Published
84	Fernandez (2019) s1	161	85.6	14.12	Secondary	NS	Other	Not published
85	Fernandez (2019) s2	50	89	18.6	Postsecondary	NS	Other	Not published
98	Freudenthaler et al. (2008) s1	552	0	13.74	Elementary/middle	Austria	BFI	Published
87	Freudenthaler et al. (2008) s2	801	100	13.74	Elementary/middle	Austria	BFI	Published
88	Fritzsche et al. (2002)	559	62	21.5	Postsecondary	NS	NEO-PI-R	Published
68	Furnham and Chamorro-Premuzic (2004)	91	81.31	19.7	Postsecondary	UK	NEO-FFI	Published

TABLE 1 (Continued)

																													— v	VII	LE	Υ –
Dublication	status	Published	Published	Published	Published	Published	Not published	Published	Published	Published	Published	Published	Published	Published	Published	Published	Published	Published	Not published	Published	Published	Published	Published	Published	Published	Published	Published	Published	Published	Published	Published	Published
Dougonoliter	measure	NEO-PI-R	NEO-FFI	NEO-FFI	NEO-FFI	NEO-PI-R	NEO-FFI	BFI	BFQ	BFQ	IPIP	Other	NEO-PI-R	NEO-PI-R	NEO-PI-R	Markers	BFI	NEO-FFI	IPIP	BFI	NEO-FFI	IPIP	BFI	BFQ	NEO-PI-R	NEO-PI-R	BFI	NEO-FFI	NEO-PI-R	NEO-FFI	BFI	BFI
	Country	UK	UK	UK	UK	UK	NS	Malaysia	Italy	Italy	SO	France	ns	Romania	SO	NS	UK	Iran	SO	Pakistan	Iran	Australia	Australia	Spain	NS	Canada	Canada	Iran	NS	Germany	NS	Taiwan
	Education level	Postsecondary	Secondary	Postsecondary	Postsecondary	Postsecondary	Postsecondary	Postsecondary	Elementary/middle	Elementary/middle	Postsecondary	Elementary/middle	Postsecondary	Postsecondary	Postsecondary	Elementary/middle	Postsecondary	Postsecondary	Elementary/middle	Postsecondary	Postsecondary	Secondary	Secondary	Elementary/middle	Postsecondary	Postsecondary	Postsecondary	Postsecondary	Postsecondary	Secondary	Elementary/middle	Postsecondary
	Age	19.3	15.8	19.41	18.9			26	12.93	14	20.3	12			19.2		20.3				23.03	15.41	12.3	10.74	20	20.7	21			19.57		18.8
Tomon	remaie %	75.27	58.02	80.9	80.65	71.88	77	22	51.5	52	4	42.55	52.38	70.43	63.77	59.63	100	67.02	51.61	62	45.16	45.67	50	52.8	55.37	68.3	71.22		21.2	55		51.82
	N	93	212	178	93	49	74	146	165	927	228	141	147	751	334	317	236	285	93	1376	217	786	999	407	121	142	205	110	151	4973	1116	164
	Study	Furnham et al. (2003)	Furnham et al. (2009)	Furnham (2012) s1	Furnham (2012) s2	Furnham et al. (2006)	Garcia-Ruffin (2003)	Geramian et al. (2012)	Gerbino et al. (2018) s1	Gerbino et al. (2018) s2	Gerhardt et al. (2007)	Gilles and Bailleux (2001)	Goff and Ackerman (1992)	Grama and Botone (2018)	Gray and Watson (2002)	Hair and Graziano (2003)	Hair and Hampson (2006)	Hakimi et al. (2011)	Hart (2016)	Hashmi and Naz (2020)	Hazrati-Viari et al. (2012)	Heaven and Ciarrochi (2012)	Heaven et al. (2007)	Herrera et al. (2020)	Higgins et al. (2007) s1	Higgins et al. (2007) s2	Hirsh and Peterson (2008)	Homayouni (2011)	Hourieh et al. (2019)	Jonkmann et al. (2012)	Kaiser and Diewald (2014)	Kao and Craigie (2014)
		06	91	92	93	94	95	96	26	86	66	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120

N	Female %	Age	Education level	Country	Personality measure	Publication status
Kappe and van der Flier (2010) 133	74	20	Postsecondary	Netherlands	NEO-FFI	Published
Katrimpouza et al. (2019) s1 19	100	20.03	Postsecondary	Greece	Markers	Published
Katrimpouza et al. (2019) s2 80	97.5	19	Postsecondary	Greece	Markers	Published
Katrimpouza et al. (2019) s3 46	97.82	20.6	Postsecondary	Greece	Markers	Published
Kaufman et al. (2008) 315 7	62	23.53	Postsecondary	NS	IPIP	Published
Kelsen and Liang (2019) 441 6	61.45	20.52	Postsecondary	Taiwan	BFI	Published
7 404	74.8	20.45	Postsecondary	France	BFI	Published
520 7	70	5.61	Postsecondary	NS	NEO-PI-R	Not published
Kim and MacCann (2016) s1 137 5	58.39	19.85	Postsecondary	UK	Markers	Published
Kim and MacCann (2016) s2 378	73.8	19.11	Postsecondary	UK	Markers	Published
2082 5	52.45	13.3	Elementary/middle	Australia	BFI	Published
Kirkagac and Oz (2017) 200	79.5		Postsecondary	Turkey	IPIP	Published
Komarraju et al. (2009) 308 5	52.3		Postsecondary	Sn	NEO-FFI	Published
Kornienko et al. (2018) 400 5	55	9.8	Elementary/middle	Russia	Other	Published
Koschmieder et al. (2018) 1120 6	60.26	20.89	Postsecondary	Germany	BFI	Published
202		19	Postsecondary	Turkey	NEO-FFI	Published
Laidra et al. (2007) s1 2746 5	53.38	14.9	Secondary	Estonia	NEO-FFI	Published
Laidra et al. (2007) s2 1435	47.52	9.4	Elementary/middle	Estonia	NEO-FFI	Published
105	67.62	24	Postsecondary	Sn	NEO-FFI	Not published
Lee and Sohn (2017) 235 5	53.4	20.9	Postsecondary	South Korea	IPIP	Published
393 4	45.55	22.4	Postsecondary	Sn	IPIP	Not published
Letourneau (2009) 73		17	Secondary	Sn	NEO-PI-R	Not published
Lievens and Coetsier (2002) 529 6	65.02	18.25	Postsecondary	Belgium	NEO-PI-R	Published
Lievens et al. (2002) 607 6	63.23	18.2	Postsecondary	Belgium	NEO-PI-R	Published
Lievens et al. (2008) s1 337 6	29	22	Postsecondary	Belgium	IPIP	Published
Lievens et al. (2008) s2 105	70	21	Postsecondary	Belgium	IPIP	Published
Lim and Melissa Ng Abdullah (2012) 360	50		Secondary	Malaysia	NEO-FFI	Published
Lipnevich et al. (2016) s1 179	71	22.6	Postsecondary	Germany	BFI	Published
Lipnevich et al. (2016) s2 202	77	19.3	Postsecondary	Belarus	BFI	Published
Lounsbury et al. (2003a) 290 4	47	12.6	Elementary/middle	Sn	Other	Published
Lounsbury et al. (2003b) 175 6	64	22.7	Postsecondary	NS	Other	Published

(Continues)

Continued)
TABLE 1 (

																												- V V	IL	E'	Y —
Publication status	Published	Published	Published	Published	Published	Published	Published	Published	Published	Published	Published	Published	Published	Published	Published	Published	Published	Published	Published	Not published	Published	Published	Published	Published	Published	Published	Published	Published	Published	Published	Published
Personality measure	Orher	NEO-FFI	Other	NEO-PI-R	BFI	NEO-FFI	NEO-FFI	NEO-FFI	NEO-FFI	NEO-FFI	Other	BFI	NEO-PI-R	BFQ	NEO-PI-R	Markers	Other	NEO-PI-R	NEO-PI-R	BFI	Other	BFI	Other	IPIP	BFI	NEO-FFI	Other	NEO-PI-R	NEO-FFI	BFI	Other
Country	SII	Portugal	US	Russia	NS	Slovakia	Germany	SO	Australia	SU	UK	Germany	Romania	Romania	Portugal	ns	Spain	Portugal	Sn	SN	Malaysia	Romania	Switzerland	NS	Sn	NS	NS	NS	Russia	NS	Turkey
Education level	Postsecondary	Postsecondary	Secondary	Secondary	Middle and high	Postsecondary	Secondary	Postsecondary	Postsecondary	Postsecondary	Elementary/middle	Secondary	Postsecondary	Postsecondary	Postsecondary	Postsecondary	Secondary	Secondary	Postsecondary	Postsecondary	Postsecondary	Secondary	Elementary/middle	Postsecondary	Postsecondary	Postsecondary	Postsecondary	Postsecondary	Postsecondary	Postsecondary	Postsecondary
Age			15.5	16		23.25	18	18.7	21.44	22.8	10.64	19.92	21.3	23.6	22.18	21.89	15.7	16.9	20.8	39.46		16.45	8.13		19	18	19	19	19	18	21.01
Female %	. % 	65.7	51	49.5	43.6	64.17	55	8.79	50.54	93.89	51.53		81.18	80.65	24.6	64	52.13	64.4	64	62.1		58.7	49	51.4	63	56	78	61	80.19	84	62.8
×	434	181	992	300	161	254	4475	143	1193	131	295	3171	85	31	113	303	305	198	161	103	1165	1151	446	368	10,497	508	470	425	207	240	1343
Study	Lounshurv et al. (2005)	Lourinho et al. (2017)	Loveland et al. (2007)	Malykh (2017)	Mammadov et al. (2018)	Marcela (2015)	Marsh et al. (2006)	McCredie and Kurtz (2020)	McKenzie et al. (2004)	McKenzie (2000)	Medford and McGeown (2012)	Meyer et al. (2019)	Mitrofan and Ion (2013) s1	Mitrofan and Ion (2013) s2	Monteiro et al. (2015)	Moon and Illingworth (2005)	Morales-Vives et al. (2020)	Moreira et al. (2012)	Musgrave-Marquart et al. (1997)	Myers (2019)	Naqshbandi et al. (2017)	Negru-Subtirica et al. (2020)	Neuenschwander et al. (2013)	Nguyen et al. (2005)	Noftle and Robins (2007) s1	Noftle and Robins (2007) s2	Noftle and Robins (2007) s3	Noftle and Robins (2007) s4	Novikova and Vorobyeva (2017)	Okun and Finch (1998)	Onder et al. (2014)
	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182

Published

NEO-PI-R

Postsecondary

19.03

69.94

Scepansky and Bjornsen (2003)

TABLE 1 (Continued)

Not published Publication Published Sublished Published status Personality NEO-PI-R NEO-PI-R NEO-PI-R NEO-FFI NEO-FFI NEO-FFI NEO-FFI measure NEO-FFI Markers Markers Other Other Other Other Other Other IPIP IPIP IPIP IPIP IPIP IPIP BFI IPIP BFI BFI BFI BFI BFI BFI Netherlands Australia Australia Romania Country Belgium Sweden Sweden Canada Canada Turkey Russia India India SO UK SO Sn UK UK Sn UK S SO C CO SN SO SO C Elementary/middle **Education level** Postsecondary Secondary Secondary Secondary Secondary Secondary 20.83 19.18 15.24 24.95 19.35 20.09 26.47 16.01 20.6 18.8 20.7 22.7 19.2 22.9 12.2 20.8 18.5 Age 20.3 21 16 24 21 Female 50.16 92.74 80.48 50.63 20.66 52.91 47.71 73.5 62.5 62.4 53.21 64.5 31.5 100 52 81 53 9 80 53 46 75 72 4642 2398 1191 305 293 498 250 165 322 173 374 329 472 142 140 378 197 315 162 125 274 200 124 450 163 621 9 96 Richardson and Abraham (2009) s2 Richardson and Abraham (2009) s1 Rosander and Backstrom (2014) Ridgell and Lounsbury (2004) Paunonen and Ashton (2001) Parkinson and Taggar (2006) Papageorgious et al. (2020) Saxena and Mishra (2014) Peeters and Lievens (2005) Poorthuis et al. (2014) Rosander et al. (2011) Rothstein et al. (1994) Reddock et al. (2011) Rascanu et al. (2017) Rimfeld et al. (2016) Phillips et al. (2003) Oswald et al. (2004) Ramalingam (2014) Perera et al. (2015) Rode et al. (2007) Palmisano (2017) Paunonen (1998) Parrigon (2013) Poropat (2011) Purcell (2012) Petska (2006) Perry (2003) Pang (2008) Oz (2015) Study 183 195 196 198 200 202 203 205 206 207 208 209 210 212 187 188 189 192 193 194 197 201 204 184 186 190 191

(Continues)

(T		
	1	7 7 7 7 7 7

Study	N	remaie %	Age	Education level	Country	measure	status
Schmit et al. (1995)	66			Postsecondary	ns	NEO-PI-R	Published
Schmitt et al. (2011) s1	315			Postsecondary	NS	IPIP	Published
Schmitt et al. (2011) s2	338			Postsecondary	SO	IPIP	Published
Shchebetenko (2016)	739	67.1	19.65	Postsecondary	Russia	BFI	Published
Siddiquei and Khalid (2018)	144	58.33		Postsecondary	Pakistan	BFI	Published
Smithers et al. (2004)	145	54	25.9	Postsecondary	Canada	NEO-PI-R	Published
Smith-Woolley et al. (2019)	8552		16.3	Secondary	UK	Other	Published
Saklofske et al. (2012)	238	77.73	20.03	Postsecondary	Scotland	Markers	Published
Song et al. (2020)	830	51.33	13.93	Middle and high	Germany	BFI	Published
Soric et al. (2017)	501	90.89	16.19	Secondary	Croatia	IPIP	Published
Spengler et al. (2016) s1	240		15.63	Secondary	Luxembourg	BFI	Published
Spengler et al. (2016) s2	276		15.97	Secondary	Luxembourg	BFI	Published
Spinath et al. (2010) s1	552	0	13.74	Secondary	Austria	BFI	Published
Spinath et al. (2010) s2	801	100	13.74	Secondary	Austria	BFI	Published
Steele-Johnson and Leas (2013)	719	69	19.75	Postsecondary	SO	IPIP	Published
Steinmayr and Kessels (2017) s1	236	60.17	16.77	Secondary	Germany	NEO-FFI	Published
Steinmayr and Kessels (2017) s2	124	51.61	33.65	Postsecondary	Germany	NEO-FFI	Published
Steinmayr and Spinath (2008) s1	138	0	16.94	Secondary	Germany	NEO-FFI	Published
Steinmayr and Spinath (2008) s2	204	100	16.94	Secondary	Germany	NEO-FFI	Published
Steinmayr et al. (2011)	520	58.27	16.94	Secondary	Germany	NEO-FFI	Published
Sunbul (2019)	406	73.64	20.33	Postsecondary	Turkey	BFI	Published
Swanberg and Martinsen (2010)	289	99	24.8	Postsecondary	Norway	NEO-FFI	Published
Taher et al. (2011)	208	35	30.91	Postsecondary	China	IPIP	Published
Tetzner et al. (2019) s1	3658	48.8	11.68	Elementary/middle	Germany	BFI	Published
Tetzner et al. (2019) s2	2129	47.6	15.13	Secondary	Germany	BFI	Published
Thiele et al. (2018)	47	85.1	21.72	Postsecondary	Germany	BFI	Published
Tok and Morali (2009)	295	37.63	23.2	Postsecondary	Turkey	Other	Published
Troncone et al., (2014)	439	48.75	12.36	Secondary	Italy	BFQ	Published
Tross et al. (2000)	844	29.5		Postsecondary	SO	Other	Published
Tucker-Drob et al. (2016)	811		10.91	Elementary/middle	COS	BFI	Published
Vedel et al. (2015)	1067	22.19	22.24	Postsecondary	Denmark	NEO-FEI	Dublished

(Continues)

	Study	N	Female %	Age	Education level	Country	Personality measure	Publication status
245	Ventura et al. (2012)	319	48.59	23	Postsecondary	nS	BFI	Published
246	Vitulic and Prosen (2012) s1	203	26	19.8	Postsecondary	Slovenia	BFQ	Published
247	Vitulic and Prosen (2012) s2	80	96	19.5	Postsecondary	Slovenia	BFQ	Published
248	Vitulic and Zupancic (2013)	174	61	14.7	Elementary/middle	Slovenia	Other	Published
249	Wagerman and Funder (2007)	131	54.2		Postsecondary	NS	BFI	Published
250	Waldman and Korbar (2004)	137			Postsecondary	NS	Markers	Published
251	Wang et al. (2019)	148	40.54	18.51	Secondary	China	NEO-FFI	Published
252	Westphal et al. (2020) s1	12,146	51.2	14.7	Secondary	Germany	BFI	Published
253	Westphal et al. (2020) s2	6002	49.4	12.5	Elementary/middle	Germany	BFI	Published
254	Wingate and Tomes (2017)	743	68.64	18.88	Postsecondary	NS	NEO-FFI	Published
255	Wintre and Sugar (2000)	419	71.36	19.2	Postsecondary	Canada	NEO-FFI	Published
256	Wolfe and Johnson (1995)	201	78.11		Postsecondary	NS	BFI	Published
257	Woo et al. (2015)	478	55	19.58	Postsecondary	NS	IPIP	Published
258	Woodfield et al. (2006) s1	308	0	21.11	Postsecondary	UK	NEO-FFI	Published
259	Woodfield et al. (2006) s2	323	100	21.11	Postsecondary	UK	NEO-FFI	Published
260	Xia et al. (2009)	42	46.9		Postsecondary	US	IPIP	Published
261	Zach and Inglis (2019)	173	49.9	23	Postsecondary	Israel	BFI	Published
262	Zee et al. (2013)	8545	49.3	11.6	Elementary/middle	Netherlands	Other	Published
263	Zhou (2015)	249	54	11.56	Elementary/middle	China	BFQ	Published
264	Ziegler et al. (2010)	145	82	21.9	Postsecondary	Germany	NEO-PI-R	Published
265	Zupancic et al. (2016) s1	481	55	14.2	Elementary/middle	Russia	Other	Published
266	Zupancic et al. (2016) s2	310	53	13.5	Elementary/middle	Slovenia	Other	Published
267	Zyphur et al. (2008)	207			Postsecondary	US	Markers	Published

Note: "s1," "s2" ... are used to denote multiple samples from the same citation.

Abbreviations: BFI, Big Five Inventory; BFQ, Big Five Questionnaire; IPIP, International Personality Item Pool; Markers, Goldberg's (1992) unipolar Markers and it's shortened versions (i.e., Mini-Markers); NEO-FFI, NEO Five-Factor Inventory; NEO-PI-R, NEO Personality Inventory – Revised.

Details omitted for double-blind review.

published journal article, unpublished dissertations/thesis, or conference paper. Nine articles did not have all or some relevant correlations reported. The corresponding authors were contacted to retrieve either the correlation table or the data from which correlations could be extracted. Three authors shared the correlation tables or their dataset (Kornienko et al., 2018; Shchebetenko, 2016; Zee et al., 2013). One author indicated that they do not have correlation results.

2.3 Data extraction

The features extracted from each study included authors, publication year, sample size, gender (proportion female), mean age, type of sample (e.g., secondary school students), country of sample, personality measure, cognitive ability measure, performance measure, Cronbach's alphas for personality subscales and other measures, correlation coefficients, publication status, and additional notes. Percentage of female participants in each of the original studies was used to code gender. This value ranged from 0% to 100%, with a median percentage of 60%. Mean age was coded as a continuous variable and ranged from 8.1 to 39.5, with a median age of 19.2. Type of sample was recoded into education level which was later used as a moderator with three levels: elementary/ middle (k = 25), secondary (k = 46), and postsecondary (k = 160). Personality measure was coded as a categorical variable with 7 levels: BFI, BFQ, IPIP, Markers, NEO-FFI, NEO-PI-R, and Others. Performance measure was coded as official GPA, self-reported GPA, course grade (e.g., exam score, school subject mark), and standardized test score (e.g., ACT). Both general mental ability (i.e., intelligence) and specific cognitive abilities were considered when extracting data from primary studies. Measures of cognitive ability included, but were not limited to, full-scale IQ tests, Raven's Progressive Matrices, and CogAT. Publication status was coded as a categorical moderator with two levels: published and unpublished. To identify data reporting and entry errors, z-scores for all correlations were obtained and examined for absolute z-scores larger than 2.5. Reporting errors were observed and corrected in two studies.

2.4 Meta-analytical procedure

Meta-analytic correlations were estimated using Comprehensive Meta-Analysis version 3.0 (Borenstein et al., 2014). Effect sizes and confidence intervals were calculated by random-effects model using restricted maximum-likelihood method. The analyses were based on Fisher's z scale. The scores were then converted back to correlation coefficients, r, to be reported in the manuscript. Several studies did not report correlation coefficients. Corresponding

beta coefficients were used to impute r-based effect sizes. Dependent effect sizes were handled according to Rosenthal and Rubin's (1986) approach, which uses the intercorrelations between multiple dependent outcomes to compute a more precise estimate of a pooled effect size. The contributions of individual effect sizes to mean effect sizes were weighted by the inverse sampling variance (Lipsey & Wilson, 2001). Effect sizes were interpreted based on Cohen's (1962, 1988) benchmarks for small (r = 0.10), medium (r = 0.30), and large (r = 0.50) effects. In addition, Bosco et al.'s (2015) recommendation of comparing effect sizes to typical relationships found within the literature was followed when interpreting effect sizes. Effect sizes were considered significant if their 95% confidence intervals did not include zero. Cohen's d values were calculated.

Given that reliabilities of measures were not perfect, and in some studies, they were reported to be moderate, the observed correlations were corrected for measurement errors. About one-fourth of the articles did not report alpha estimates for personality measures. Original validation studies were used to obtain estimates when available. For the few remaining studies, reliabilities were estimated as the average reliability for measures in the database with equivalent numbers of items per factor. Estimates of alpha for cognitive ability and academic performance measures were reported only in a few studies. Grade point average (GPA) was the most commonly reported measure of academic performance. The reliability estimate for official GPA (0.94) was obtained from Bacon and Bean (2006). The meta-analytic correlation between official GPA and self-reported GPA (0.90) from Kuncel et al.'s (2005) study was used to calculate a reliability estimate for self-reported GPA (0.86) through the attenuation correction formula. Some studies used performance measures (e.g. course grade, exam score). The same procedure was followed to derive reliability estimates for these remaining predictor-criterion-combinations. The meta-analytic correlation between official GPA and single performance measure (0.59, Richardson et al., 2012) was used to calculate the reliability estimate for single performance measure with a single component (0.37). This estimate was adjusted for studies where multiple single performance measures were aggregated by using the Spearman-Brown formula.

The variation in the true effect sizes was explored and quantified computing the total heterogeneity of the weighted mean effect sizes (Q). Heterogeneity was also assessed by calculating the proportion of the observed variance that reflects real differences in effect sizes (I^2) . Higgins et al. (2003) suggested that I^2 values on the order of 25%, 50%, and 75% might be indicative of low, medium, and high levels of heterogeneity, respectively. Where high levels of heterogeneity observed, subgroup analyses were performed. More specifically, the influence of two moderators (education levels and personality measurement types) was analyzed through

Main meta-analysis correlations TABLE 2

$\perp_{W_{I}}$	LE	ΞY				
Duval and Tweedie's trim and fill estimates (95% CI)	0.23 (0.20–0.25)	0.34 (0.30–0.37)	0.06 (0.04–0.08)	0.15 (0.12-0.18)		
k^{TF}	51	49	46	50	0	
Egger's intercept	-3.14***	-0.59	0.83**	-2.50^{*}	-1.48**	
Fail-safe N	257,533***	739,217***	551***	147,058***	852***	
I^2	98.40	98.26	92.62	70.86	97.24	
õ	14,744.82***	$46,148.00^{***}$	3131.32***	32,272.13***	$10,193.09^{***}$	
q	0.33	0.56	0.02	0.18	-0.04	
95% CRp	[0.13, 0.19]	[0.23, 0.31]	[-0.01, 0.03]	[0.05, 0.13]	[-0.04, 0.01]	
d	0.16	0.27	0.01	0.00	-0.02	
95% CI,	[0.11, 0.15]	[0.18, 0.22]	[-0.01, 0.02]	[0.05, 0.08]	[-0.03, 0.00]	
	0.13	0.20	0.01	0.07	-0.02	
×	267,611	411,450	265,012	397,710	401,003	
k	237	263	231	227	236	
	0	C	田	A	×	

only; 95% CI, 95% confidence intervals for estimated correlation coefficient; p, correlation coefficient corrected for sampling error and measurement error in the predictor and the criterion; 95% CRp, 95% confidence intervals for Notes: O, Openness; C, Conscientiousness; E, Extraversion; A, Agreeableness; N, Neuroticism. k, number of independent studies, N, total sample size; r, estimated correlation coefficient (Pearson's) corrected for sampling error number of imputed studies as a part of the trim and fill procedure corrected correlation coefficients; d, Cohen's d; Q, Cochran's measure of heterogeneity; P', Higgins' $^{***}p < 0.001; ^{**}p < 0.01; ^{*}p < 0.05$

subgroup analysis. In addition, meta-regressions were used for non-categorical moderators (gender distribution and age) to test if these variables were significant covariates within the meta-regression model. Egger's test for funnel plot asymmetry (Egger et al., 1997) and Rosenthal's (1979) Fail-safe N were used to explore publication bias.

The predictive validity of the Big Five personality traits for academic performance above and beyond cognitive ability is examined through a correlation matrix of present and previous meta-analytic correlations. This correlation matrix is used to perform a hierarchical regression model where cognitive ability is entered in Step 1 and the Big Five personality traits in Step 2. IBM SPSS 24.0 (2017) was used for the regression analysis. The harmonic mean of the meta-analytic samples is calculated and used in the analysis. Finally, relative importance indices were calculated by relative weight analysis as a supplement to the regression using the R code provided by Toninandel and LeBreton (2011).

3 RESULTS

3.1 **Study characteristics**

The current review included 228 unique studies, 206 of which were journal articles or published conference proceedings, and 22 unpublished doctoral dissertations or master's theses. One-hundred-twenty-three studies (55%) were published between 2011 and 2020. The number of studies per year has increased even further in the last 5 years. This may reflect the increasing popularity of the Big Five as well as the expanding interest in science, and a large rise in the number of available scientific journals. More studies (69%) were conducted with postsecondary students than elementary/middle and high school students. Study samples represent a variety of demographics, backgrounds, and academic contexts. Studies represented 39 different countries. The majority of them were from Europe (48%) and North America (40%). Analyses involved a total of 267 independent samples (N = 413,074). The majority of observed samples sizes (k = 169, 63%) were between 101 and 500. Twelve samples consisted of more than 5000 subjects.

3.2 **Meta-analytic correlations**

Table 2 presents detailed meta-analytic results for Big Five personality traits, cognitive ability, and academic performance. Overall, the average uncorrected correlation between personality traits and academic performance was 0.08. The mean meta-analytic correlations corrected for measurement error variance in predictor and criterion for the Big Five domains were 0.16 (openness), 0.27 (conscientiousness), 0.01

(extraversion), 0.09 (agreeableness), and -0.02 (neuroticism). Thus, conscientiousness was the strongest correlate of academic performance followed by openness. Correlations for agreeableness, extraversion, and neuroticism were weak. The 95% confidence intervals of extraversion and neuroticism included zero, suggesting that their correlations with performance were not statistically significant. Tests of the homogeneity of the effect sizes using Q statistic (Hedges & Olkin, 1985) were conducted. For each personality trait, the Q value was statistically significant, suggesting true differences in effect sizes across samples. In addition, the very large I^2 heterogeneity indexes of an average 97.63% indicated that an overwhelming amount of observed variation between samples was due to systematic between-samples variability. As such, subgroup analyses and meta-regression were conducted to analyze potential moderators and identify sources of heterogeneity.

3.3 **Moderating effects of education levels**

The moderating effect of education levels was examined using subgroup analysis for each personality trait. Two studies that included samples from multiple education levels were excluded from the analysis (Mammadov et al., 2018; Song et al., 2020). Table 3 gives moderation results for personalityperformance correlations by education level. Results suggested a significant moderating effect of education level for openness, extraversion, and agreeableness. A decline in the strength of corrected correlations of academic performance with each of these traits was observed. The relationship of academic performance with openness at the elementary/middle school level demonstrated a large effect size (d = 0.87). Correlations decreased progressively with education level, yielding moderate (d = 0.45) and small (d = 0.20) effect sizes at the secondary and postsecondary education levels, respectively. A decline in the magnitudes of correlations and corresponding effect sizes in extraversion and agreeableness was observed only from elementary/middle school level to secondary school level. Correlations of academic performance with conscientiousness and neuroticism were similar across education levels. No moderation by education level was observed. Corrected correlations of conscientiousness had moderate effect sizes. The effect of neuroticism was not significant at any education level.

Moderating effects of personality measurement types

A series of subgroup analysis was performed to examine the moderating effect of personality measurement types (see Table 4). There was a good degree of consistency among the measures. The average correlation each measure had with the other five measures were 0.88 (BFI), 0.61 (BFQ), 0.82 (IPIP), 0.78 (Mini-Markers), 0.87 (NEO-FFI), 0.89 (NEO-PI-R), and 0.86 (Others). The BFQ was remarkably less consistent. It had significantly stronger average correlations for openness ($\rho = 0.45$) and extraversion ($\rho = 0.13$) than all other measures. The 95% credibility interval for the Mini-Markers Openness/Intellect scale included zero. The most consistent meta-analytic correlations across scales were observed in conscientiousness. The effect sizes ranged from 0.37 to 0.65, with a median effect size of 0.58. Another notable measurespecific result was that the BFI exhibited wide associated heterogeneity across studies, especially for conscientiousness, agreeableness, and neuroticism.

Moderating effects of geographical 3.5 regions of primary studies

Another series of subgroup analysis was performed to compare results by country clusters or regions of primary studies included in the present meta-analysis. Studies with Asian samples tended to yield substantially larger correlation coefficients across all personality traits compared with studies from other regions. For conscientiousness, the average coefficient of studies with Asian samples was $\rho = 0.35$, the highest coefficient along with the Middle Eastern samples. Studies with Asian and Middle Eastern samples also had stronger average correlations for agreeableness ($\rho = 0.23$ and $\rho = 0.17$, respectively) compared with other regions. A similar pattern was observed for extraversion. Asian studies demonstrated moderate and Middle Eastern studies demonstrated small effect sizes (d = 0.32 and d = 0.14, respectively). The 95% credibility intervals of extraversion for all other regions included zero. Table 5 presents detailed results for each subgroup.

3.6 **Meta-regression for gender** composition and age

Table 6 presents the results of moderator analyses using meta-regression for gender composition and age. Percentage of females served as a continuous variable when testing moderating effects of gender distribution. Studies included in the meta-analysis tended to have more females than males. The median percentage of females was 60.1%. Only 24.1% of study samples had more males than females. The twotailed p values corresponding to Z for openness and extraversion were p < 0.001 and p < 0.05, respectively, suggesting that the slopes were probably not zero, and that openness (B = -0.003, CI [-0.004, 0.001], Z = -3.49, p < 0.001) and extraversion (B = -0.001, CI [-0.001, -0.000], Z = -2.36,

TABLE 3 Moderation of personality–academic performance correlations by education level

	-	-			-					
Educational level	k	N	ρ	95%	d	В	SE	R^2	Z-value	Q
Openness										
Elementary/ middle (reference)	24	29,342	0.40	0.32, 0.48	0.87	0.42	0.04	0.24	11.18***	
Secondary	54	73,229	0.22	0.17, 0.27	0.45	-0.20	0.05		-4.40***	68.37***
Postsecondary	158	164,162	0.10	0.06, 0.15	0.20	-0.32	0.04		-7.86***	
Conscientiousness										
Elementary/ middle (reference)	31	166,436	0.31	0.24, 0.38	0.65	0.32	0.04	0.00	8.88	
Secondary	55	73,895	0.27	0.21, 0.32	0.56	-0.05	0.05		-1.02	2.13
Postsecondary	175	169,411	0.26	0.23, 0.29	0.54	-0.05	0.04		-1.46	
Extraversion										
Elementary/ middle (reference)	23	29,080	0.15	0.11, 0.19	0.30	0.16	0.03	0.11	4.90***	
Secondary	51	72,391	0.01	-0.03, 0.04	0.02	-0.14	0.04		-3.91***	23.13***
Postsecondary	156	162,663	-0.01	-0.03, 0.01	-0.02	-0.16	0.03		-4.79***	
Agreeableness										
Elementary/ middle (reference)	26	163,733	0.18	0.11, 0.24	0.37	0.18	0.04	0.03	5.16***	
Secondary	48	70,070	0.08	0.03, 0.13	0.16	-0.10	0.04		-2.21*	7.39^{*}
Postsecondary	152	163,029	0.08	0.05, 0.11	0.16	-0.10	0.04		2.69**	
Neuroticism										
Elementary/ middle (reference)	27	164,610	-0.01	-0.06, 0.04	-0.02	-0.01	0.03	0.00	-0.33	
Secondary	50	71,423	-0.01	-0.04, 0.03	-0.02	0.01	0.04		0.18	0.59
Postsecondary	158	164,092	-0.02	-0.05, -0.00	-0.04	-0.01	0.03		-0.38	

p < 0.05) were less effective predictors of academic performance for samples with larger proportions of females. The higher the percentage of females, the lower the correlations. The effect of age, too, was significant for openness and extraversion. Consistent with the subgroup analyses findings, the relationships of performance with openness (B = -0.014, CI [-0.019, -0.009], Z = -5.29, p < 0.001) and extraversion (B = -0.004, CI [-0.008, -0.000], Z = -2.03, p < 0.05) became weaker as age increased. The associations with other personality traits did not appear to be affected by gender distribution and age.

3.7 | Publication bias

A publication bias analysis was conducted to examine whether studies with statistically significant correlations were more likely to be published than non-significant results. The analysis of weighted random effects model in which the publication status was included as a dichotomous moderator suggested a minimal concern. Publication status did not significantly moderate the effect of personality traits on academic performance. The effect sizes were larger for published than unpublished studies only for openness and

^{***}p < 0.001; **p < 0.01; *p < 0.05.

TABLE 4 Subgroup analysis of personality–academic performance relationships by personality measurement types

Measure type	k	N	0	95%	d	Q	I^2
	К		ρ	93%	a	<u>V</u>	I
Openness	46	67.702	0.10	0.04.0.16	0.20	555.02	01.00
BFI	46	67,792	0.10	0.04, 0.16	0.20	555.83	91.90
BFQ	20	6360	0.45	0.37, 0.52	1.01	576.67	96.71
IPIP	27	7612	0.10	0.02, 0.19	0.20	186.29	86.04
Markers	15	3326	0.06	-0.06, 0.17	0.12	81.43	82.81
NEO-FFI	52	27,273	0.13	0.07, 0.19	0.26	341.14	85.05
NEO-PI-R	35	8931	0.13	0.05, 0.20	0.26	158.78	78.59
Others	42	146,267	0.22	0.16, 0.28	0.45	8408.53	99.51
Conscientiousness	50	207.400	0.06	0.20 0.21	0.54	11.700.44	00.51
BFI	58	207,409	0.26	0.20, 0.31	0.54	11,729.44	99.51
BFQ	20	6360	0.30	0.20, 0.40	0.63	449.22	95.77
IPIP	32	8909	0.31	0.23, 0.39	0.65	271.12	88.56
Markers	16	3629	0.18	0.06, 0.29	0.37	43.65	65.64
NEO-FFI	56	27,954	0.28	0.22, 0.34	0.58	355.37	84.52
NEO-PI-R	38	9974	0.28	0.21, 0.35	0.58	296.33	87.51
Others	43	147,408	0.25	0.18, 0.31	0.52	6077.91	99.29
Extraversion							
BFI	46	66,564	0.00	-0.03, 0.04	0.01	628.45	92.84
BFQ	17	5522	0.13	0.07, 0.19	0.26	255.71	93.74
IPIP	26	7338	-0.03	-0.08, 0.02	-0.06	127.42	80.38
Markers	15	3326	-0.02	-0.09, 0.05	-0.04	34.65	59.60
NEO-FFI	53	27,411	-0.02	-0.05, 0.01	-0.04	337.89	84.61
NEO-PI-R	33	8220	-0.01	-0.05.0.04	-0.02	156.76	79.59
Others	41	146,824	-0.06	0.03, 0.10	-0.12	1303.31	96.85
Agreeableness							
BFI	46	200,525	0.05	-0.02, 0.12	0.10	14,720.88	99.69
BFQ	16	4554	0.15	0.03, 0.27	0.30	238.29	93.71
IPIP	26	7338	0.17	0.08, 0.27	0.35	335.15	92.54
Markers	15	3326	-0.03	-0.15, 0.10	-0.06	74.11	81.11
NEO-FFI	50	26,891	0.12	0.05, 0.18	0.24	434.79	88.73
NEO-PI-R	33	8220	0.09	0.00, 0.17	0.18	166.89	80.83
Others	41	147,049	0.06	-0.02, 0.13	0.12	2841.23	98.56
Neuroticism							
BFI	49	202,400	0.00	-0.04, 0.04	0.01	2509.86	98.09
BFQ	16	4554	-0.01	-0.08, 0.06	-0.02	52.51	71.44
IPIP	28	7959	-0.02	-0.07, 0.04	-0.04	495.94	94.56
Markers	16	3629	0.01	-0.06, 0.08	0.02	28.72	47.77
NEO-FFI	52	27,161	-0.07	-0.11, -0.03	-0.14	316.20	83.87
NEO-PI-R	34	8594	0.01	-0.04, 0.06	0.02	177.21	81.38
Others	41	146,895	-0.01	-0.05, 0.03	-0.02	1506.21	87.28

Note: BFI, Big Five Inventory; BFQ, Big Five Questionnaire; IPIP, International Personality Item Pool; Markers, Goldberg's (1992) unipolar Markers and it's shortened versions (i.e., Mini-Markers); NEO-FFI, NEO Five-Factor Inventory; NEO-PI-R, NEO Personality Inventory – Revised. k, number of independent studies; N, total sample size; ρ , correlation coefficient corrected for sampling error and measurement error in the predictor and the criterion; 95%, 95% confidence intervals; d, Cohen's d; Q, Cochran's measure of heterogeneity; f², Higgins' measure of heterogeneity.

TABLE 5 Subgroup analysis of personality-academic performance relationships by regions of studies

Measure type	\boldsymbol{k}	N	ρ	95%	d	Q	I^2
Openness							
Asia	16	5925	0.29	0.14, 0.43	0.61	500.57	97.00
Australia	7	5222	0.17	0.07, 0.26	0.35	57.27	89.52
E. Euro/Rus	24	11,921	0.18	0.10, 0.26	0.37	378.41	93.92
M. East	10	2386	0.15	0.02, 0.28	0.30	85.29	89.46
N. America	80	142,179	0.14	0.07, 0.20	0.28	8369.52	99.06
W. Euro	98	99,661	0.17	0.13, 0.21	0.35	3333.13	97.09
Conscientiousness							
Asia	16	5925	0.35	0.17, 0.50	0.75	786.53	98.09
Australia	9	6386	0.24	0.18, 0.29	0.50	34.18	76.59
E. Euro/Rus	26	12,469	0.30	0.24, 0.36	0.63	292.93	91.47
M. East	10	2386	0.35	0.25, 0.44	0.75	57.66	84.40
N. America	96	147,660	0.23	0.18, 0.27	0.47	5242.35	98.19
W. Euro	104	236,307	0.28	0.24, 0.33	0.58	13,913.74	99.26
Extraversion							
Asia	16	5872	0.16	0.01, 0.30	0.32	482.59	96.89
Australia	7	5222	0.06	-0.02, 0.13	0.12	33.99	82.35
E. Euro/Rus	25	12,095	-0.00	-0.06, 0.05	-0.01	170.53	85.93
M. East	11	3729	0.07	0.02, 0.11	0.14	14.81	32.45
N. America	77	140,177	-0.01	-0.03, 0.01	-0.02	608.50	87.51
W. Euro	93	88,624	-0.01	$-0.04.\ 0.02$	-0.02	1158.51	92.06
Agreeableness							
Asia	15	5459	0.23	0.09, 0.35	0.47	339.39	95.88
Australia	7	5222	0.12	0.08, 0.17	0.24	12.98	53.79
E. Euro/Rus	25	11,304	0.07	0.01, 0.13	0.14	242.92	90.12
M. East	11	3729	0.17	0.08, 0.26	0.35	65.67	84.77
N. America	74	139,752	0.09	0.05, 0.12	0.18	2046.17	96.43
W. Euro	93	221,911	0.07	0.01, 0.13	0.14	17,103.11	99.46
Neuroticism							
Asia	16	5623	-0.19	-0.35, -0.02	-0.39	619.80	97.58
Australia	8	5720	-0.02	-0.07, 0.03	-0.04	18.44	62.03
E. Euro/Rus	26	11,678	0.03	-0.04, 0.09	0.06	279.15	91.04
M. East	11	3729	-0.02	-0.09, 0.04	-0.04	31.61	68.37
N. America	78	140,781	0.00	-0.03, 0.03	0.01	1442.90	94.66
W. Euro	95	223,139	-0.01	-0.05, 0.02	-0.02	4479.28	97.90

Note: E. Euro/Rus, Eastern Europe and Russia; M. East, Middle East; N. America, North America; W. Euro, Western Europe; k, number of independent studies; N, total sample size; ρ , correlation coefficient corrected for sampling error and measurement error in the predictor and the criterion; 95%, 95% confidence intervals; d, Cohen's d; Q, Cochran's measure of heterogeneity; l^2 , Higgins' measure of heterogeneity.

conscientiousness, but the differences were small ($\Delta \rho = 0.03$ and 0.07, for openness and conscientiousness, respectively). The confidence intervals of unpublished and published studies overlapped, suggesting no statistically significant differences between the two categories.

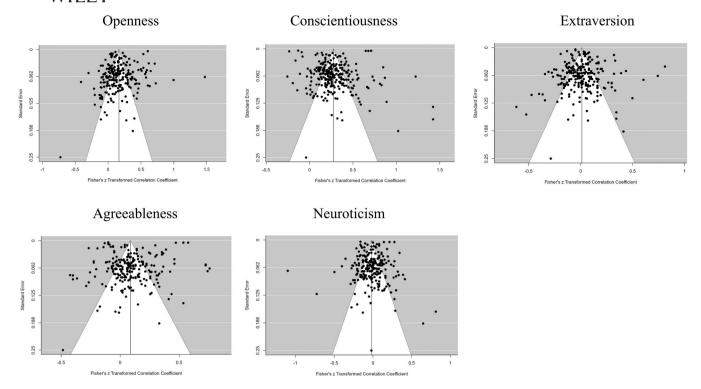
Another way used to assess publication bias was the Egger's regression intercept test. The Egger's regression method yielded intercepts (β_0) ranging from -0.59 for

conscientiousness to 0.83 for extraversion. The 95% confidence interval for conscientiousness included zero [-2.62-1.44], suggesting no publication bias for this personality trait, t(262) = 0.57, p > 0.05. For all other personality traits, the confidence intervals did not include zero and t values were significant, suggesting substantial asymmetry in the Funnel plots, which could have been caused by publication bias (see Figure 2). Duval and Tweedie's (2000) trim and fill procedure

TABLE 6 Meta-regressions testing moderating effects of gender distribution and age on personality traits/academic performance link

				95% CI		
Moderator	k	В	SE	Lower	Upper	Z
Moderating effect of	gender co	mposition				
Openness (intercept)	216	0.31	0.05	0.23	0.40	6.90***
Proportion female		-0.003	0.001	-0.004	0.001	-3.49***
Conscientiousness (intercept)	236	0.23	0.04	0.14	0.31	5.42***
Proportion female		0.001	0.001	-0.001	0.002	1.20
Extraversion (intercept)	210	0.09	0.04	0.02	0.17	2.60**
Proportion female		-0.001	0.001	-0.001	-0.000	-2.36^{*}
Agreeableness (intercept)	203	0.09	0.04	0.02	0.17	2.19*
Proportion female		-0.000	0.001	-0.002	0.001	-0.31
Neuroticism (intercept)	211	-0.07	0.04	-0.15	0.01	-1.82
Proportion female		0.001	0.001	-0.000	0.002	1.40
Moderating effect of	age					
Openness (intercept)	195	0.43	0.05	0.33	0.53	8.38***
Age		-0.014	0.003	-0.019	-0.009	-5.29***
Conscientiousness (intercept)	209	0.31	0.05	0.22	0.41	6.34***
Age		-0.002	0.003	-0.007	0.003	-0.70
Extraversion (intercept)	191	0.10	0.04	0.015	0.176	2.34*
Age		-0.004	0.002	-0.008	-0.000	-2.03^{*}
Agreeableness (intercept)	185	0.09	0.04	0.01	0.17	2.20*
Age		-0.001	0.002	-0.005	0.003	-0.35
Neuroticism (intercept)	192	-0.03	0.04	-0.10	0.04	-0.81
Age		0.001	0.002	-0.003	0.004	0.29

Note: k, number of independent studies; B, regression coefficient; SE, standard error; 95% CI, 95% confidence intervals; Z, z-test result computed to test the significance of the slope.


was carried out to calculate the best estimate of the unbiased effect size. Table 2 gives the number of imputed studies and adjusted estimates along with the 95% confidence intervals.

3.8 | Incremental prediction of the big five over and above cognitive ability

In addition to the moderation analyses, the relationship between cognitive ability and academic performance from the studies included in this meta-analysis based on the current search criteria was examined. A total of 67 studies with 112

effect sizes and 55,260 participants were included in the analysis. Cognitive ability showed a moderate-to-large association with academic performance ($\rho=0.42$, CI [0.37, 0.46], p<0.001, d=0.93, $I^2=97.75\%$). This value of $\rho=0.42$ was used in further analysis to assess incremental prediction of the Big Five personality traits over and above cognitive ability. The meta-analytic correlation matrix was created by deriving the estimates from the present and previous meta-analyses (Judge et al., 2007; van der Linden et al., 2010). The matrix then was used to perform a multiple regression analysis predicting academic performance from cognitive ability and personality traits. Table 7 presents meta-analytic correlation

^{***}p < 0.001; **p < 0.01; *p < 0.05.

FIGURE 2 Funnel plots of the standard error and Fisher's *z* transformed correlation coefficients between personality traits and academic performance

	1	2	3	4	5	6	7
1. Academic performance	1						
2. Cognitive ability	0.42 ^a	1					
3. Openness	0.16^{a}	0.22^{b}	1				
4. Conscieniousness	0.27 ^a	-0.04^{b}	0.24 ^c	1			
5. Extraversion	0.01^{a}	0.02^{b}	0.39^{c}	0.27 ^c	1		
6. Agreeableness	0.09^{a}	0_{p}	0.30^{c}	0.46 ^c	0.33 ^c	1	
7. Neuroticism	-0.02^{a}	-0.09^{b}	-0.18^{c}	-0.36^{c}	-0.37^{c}	-0.34^{c}	1

TABLE 7 Meta-analytic correlation matrix of the big five, cognitive ability, and academic performance

matrix and Table 8 gives regressions results. No collinearity was detected. Tolerance values were acceptable, all above 0.7 and greater than the threshold of 0.1. Cognitive ability and personality predicted 27.8% of the variance in academic performance. Cognitive ability was the most important predictor with a relative importance of 63.59%. Conscientiousness was the second most important predictor (RW% = 27.93%). Relative importance was small for openness (RW% = 3.94%) and negligible for other personality traits. Of the Big Five, only conscientiousness and neuroticism showed significant incremental validity in predicting performance. Partial correlations of personality traits with academic performance were

0.35 for conscientiousness, 0.13 for neuroticism, -0.05 for extraversion, 0.03 for openness, and -0.02 for agreeableness.

4 DISCUSSION

The present meta-analysis provides a comprehensive assessment of the links between self-reported personality traits and performance, using the Big Five framework of personality. The large body of research that has emerged in the last three decades is synthesized by incorporating all Big Five traits, a broad range of performance measures, and all stages of

^aThe present meta-analysis.

^bJudge et al. (2007).

^cvan der Linden et al. (2010).

TABLE 8 Multiple regression predicting academic performance from cognitive ability (Step 1) and big five personality traits (Step 2) based on the correlation matrix presented in Table 7

	В	95% CI	ΔR^2	RW	RW%
Step 1			0.176**		
Cognitive ability	0.42^{**}	0.41, 0.43		0.177	63.59%
Step 2			0.102**		
Openness	0.03**	0.02, 0.04		0.011	3.94%
Conscientiousness	0.35**	0.34, 0.36		0.078	27.93%
Extraversion	-0.05^{**}	-0.06, 0.04		0.002	0.81%
Agreeableness	-0.02^{**}	-0.03, -0.01		0.005	1.84%
Neuroticism	0.13**	0.11, 0.14		0.005	1.88%
Total R^2			0.278**		

Note: $N_{\rm harmonic} = 34,163$; B, regression coefficient; 95% CI, 95% confidence intervals; RW, relative weight. **p < 0.01.

education from elementary school through university. The present meta-analysis provides more reliable and valid estimates compared with previous similar meta-analyses, as it includes substantially more studies. In addition to summarizing relationships between the Big Five and academic performance from a total of 268 independent samples (N = 413,267), this study tested the contribution of several important moderators to heterogeneity. The present meta-analysis also provides the robust assessment of incremental validity of the Big Five for academic performance above and beyond cognitive ability.

Results demonstrate that three of the Big Five personality traits, conscientiousness, openness, and agreeableness, show significant associations with academic performance. As expected, conscientiousness was clearly the best personality predictor of performance ($\rho = 0.27$). This estimate was slightly larger than that the corrected mean effect sizes reported in recent meta-analyses, Poropat (2009; $\rho = 0.22$, N = 70,926), McAbee and Oswald (2013; $\rho = 0.26$, N = 26,382), and Vedel (2014; $\rho = 0.26$, N = 17,717). The magnitudes of the effect sizes of conscientiousness were statistically significant across education levels. No moderation by education level was observed. Conscientiousness was also the second most important variable after cognitive ability, accounting for 28% of the explained variance in academic performance. The relative importance of conscientiousness was about four times greater than the total of all other personality traits. Of the personality measures, the Markers yielded the lowest effect size for conscientiousness ($\rho = 0.18$), with a very large confidence interval [0.06, 0.29]. As noted earlier, the Markers conscientiousness focuses on organization and orderliness and has less items measuring the performance-striving facet compared with the other instruments. Observing a weaker correlation for the studies using this instrument was expected and is consistent with McAbee and Oswald's (2013) meta-analysis.

Personality traits are likely to be distal predictors of academic outcomes. Therefore, it is important to understand the mechanisms by which conscientiousness exerts its effect on performance. Conscientiousness is about the propensity to be organized, self-controlled, perseverant, and effective at carrying out tasks (De Feyter et al., 2012; McCrae & John, 1992). These characteristics and skills are important for students to be successful across all academic domains and educational stages. Previous studies have reported a number of proximal constructs, such as performance motivation (Richardson & Abraham, 2009), academic motivation (De Feyter et al., 2012; Mammadov et al., in press), academic self-efficacy (Conrad & Patry, 2012), self-efficacy for self-regulated learning (Mammadov et al., 2018), perceived academic ability and academic effort (Noftle & Robins, 2007), serving as mediators transmitting the effect of conscientiousness to performance. A detailed examination of these mediational processes could help better elucidate the predictive role of conscientiousness.

Openness demonstrated a weak and positive overall association with academic performance ($\rho = 0.16$). This mean effect size estimate was larger than those reported in the previous meta-analyses (Gatzka & Hell, 2018; Poropat, 2009; Trapmann et al., 2007). Age and education level were significant moderators of the meta-analytic effect of openness. The strength of the relationship of openness with academic performance weakens as student age increases. Subgroup analysis with education levels suggested that openness appeared to be a significantly stronger predictor of academic performance at the elementary/middle school level ($\rho = 0.40$), than secondary ($\rho = 0.22$) and postsecondary levels ($\rho = 0.10$). Poropat (2009) reported a similar pattern of decline by education level, but all estimates were smaller than the estimates found in the present meta-analysis. One explanation of the presence of the stronger relationship at elementary/middle school level compared with the subsequent levels is that openness in younger students is more narrowly defined and includes only the facets closely linked to performance (Shiner, 2006). Another explanation is the possible predominance of openness as a specific feature in young children (Neuenschwander et al., 2013). One notable finding for openness-performance relationship comes from the regression analysis. Openness accounted for only 4% of the explained variance in academic performance and had much weaker relative weight than conscientiousness. Other personality traits demonstrated little or no explanatory power over cognitive ability. Note that the regression model used a correlation matrix composed of the current and previous meta-analytic correlations. Therefore, the partial correlations found in the regression analysis should not be directly comparable with the mean effect size estimates.

Agreeableness, too, emerged as a significant but weak predictor of academic performance ($\rho = 0.09$). Education level moderated the relationship. A decline of the mean effect size was observed from elementary/middle school level to secondary school level. Perhaps friendly and sympathetic behaviors of young agreeable students facilitate their relationships with peers and teachers, and therefore support their overall learning experiences. Another reason why the association of agreeableness with performance was relatively high for younger students may be that collaborative group activities are an integral part of assessment in elementary educational contexts. This seems to be the plausible explanation because extraversion also yielded a significant effect at elementary/middle school level ($\rho = 0.15$), but the significance disappeared at subsequent levels. Like agreeableness, extraversion is an interpersonal personality trait and plays an important role in managing social relationships and possible interpersonal conflicts within group activities (Watson & Clark, 1997). These skills are likely to be closely reflected in young students' end-of-year grades.

Another explanation of the positive effect of extraversion at elementary/middle school level is related to a complex nature of extraversion. On the one hand, extraversion is characterized by high energy levels that may lead students to have positive attitudes toward learning (Authors, in press; De Raad & Schouwenburg, 1996). On the other hand, it may facilitate socializing behaviors instead of doing schoolwork and preparing for exams. Because social-emotional growth and development of younger students are more carefully supported at earlier school years, they are likely to be provided with enough time for social activities. In addition, curriculum, assessment, and other school-related activities are designed to be more interesting for all students at elementary/middle school level than secondary and postsecondary levels. To that end, the aspect of extraversion that may be negatively related to performance-related outcomes are less active in earlier educational contexts.

Neuroticism or emotional stability does not seem to be an important determinant of academic performance. The overall corrected mean effect size is -0.02, with the confidence interval including zero. Its relative importance as a predictor explaining variance in performance was negligible (2%). One notable finding from subgroup analyses was that the NEO-FFI neuroticism had a negative effect on academic performance

 $(\rho=-0.07)$. The 95% confidence interval [-0.11, -0.03] did not include zero, suggesting that it was statistically significant. All other personality measures yielded consistent nonsignificant effect sizes. Education level was not a significant moderator. Poropat (2009), in his meta-analysis, compared the mean effect for education levels and reported a significant association of neuroticism with performance at the primary level (i.e., elementary/middle; $\rho=-0.20$). This mean effect size estimation was calculated based on a limited number of available samples at that time (k=8). Given that the present meta-analytic sample is much larger and includes all relevant original studies from previous meta-analyses, our summary effect seems to be more accurate.

Asian samples consistently yielded stronger average correlations between personality traits and academic performance than studies from other regions. This was an interesting finding that needs further investigation. Because there were 16 Asian samples, which comprised only 1.5% of the overall meta-analytic sample, it was difficult to discern the real causes behind this observed pattern of differences. The vast majority of studies were carried out with North American and Western European samples. What we can say for sure is that there is the need for more research on personality-academic performance relationships with samples from non-WEIRD cultures. Cross-cultural studies with similar methodologies across countries could provide valuable insights on how cultural factors may play a role in the ways academic performance reflects personality.

5 | CONCLUSION

Student learning and performance not only depend on cognitive ability, but also on their personality (Neuenschwander et al., 2013). The present meta-analysis reaffirms the critical role of personality traits in explaining academic performance through the most comprehensive assessment yet of these relationships. Results suggest that conscientiousness is the robust predictor of student performance and should be at the forefront of intervention approaches. This personality trait accounts for performance above and beyond cognitive ability. Openness, despite its weak overall relative importance, is also an important determinant of student performance, especially at elementary/middle school level. Two broad applications might be considered. First, personality measures might be used as a supplemental screening tool, along with ability and aptitude scales, in identifying students at risk for underperformance and school failure. Possible distortion issues should be carefully discussed when making decisions about this application. Several meta-analyses have suggested that individuals taking personality measures may be motivated to score high on particular traits and distort responses on those scales to "fake

high" (Birkeland et al., 2006; Viswesvaran & Ones, 1999). Equally useful and impartial alternatives to self-report measures should be considered to address this potential problem. Second, educators and counselors should work hand in hand to nurture the positive qualities of personality traits through widely recommended educational best practices. For example, students could become more open to new experiences of learning by being strategically encouraged to think beyond the confines of curricular topics, make connections between classroom curriculum and real life experiences, and integrate focuses and creative ideas on a broad exposure. Students should also be taught selfregulatory skills, self-discipline, and performance-striving through modeling and other instructional approaches (Peeters et al., 2014). It should be noted that personality is more malleable in childhood and early adolescence than in adulthood (Roberts & DelVecchio, 2000). It may be more appropriate to think of reinforcing productive personality as an intervention that is more effective at earlier education years.

LIMITATIONS AND FUTURE RESEARCH

As with most other meta-analyses, this study is not without limitations. At least four of them, which may provide promising opportunities for further research, are worth mentioning. First, there is some evidence for publication bias as assessed by Egger's test. The computed effect sizes are likely to be overestimated. Trim and fill analysis was performed to calculate the best unbiased effect size estimates. These estimates, too, should be read cautiously, because the observed evidence for publication bias could partially be attributable to extreme heterogeneity. Second, multiple measures of academic performance were used in the original studies. Cronbach's alphas were only reported in a few of them. For the vast remaining majority, the reliability estimates were either obtained from other sources or calculated for use in the present meta-analysis. The calculated reliability estimates for single and multiple performance measures were as low as $\alpha = 0.37$ for several studies. This problem made it difficult to determine the true effect sizes. We also do not know whether exams and courses that performance measures were collected for promoted surface-level learning or a deeper understanding of the content. Results and their interpretations should be viewed with caution. Third, effect sizes reported in this meta-analysis remain uncorrected for range restrictions which may result in underestimation of the strength of correlations. Future studies should consider applying corrections for range restrictions. Fourth, calculating and summarizing effect sizes at the facet level of the Big Five

may help better understand the personality-performance relationships. Narrowly defined facets are likely to provide additional explanatory power in predicting performance (Soto & John, 2017). Although included studies for that purpose will be limited only to longer personality measures that make facet-level distinctions (e.g., the NEO PI-R), looking at specific construct components is valuable and future studies should consider it.

ACKNOWLEDGEMENTS

The author would like to thank Dr. Howard Tennen, the editor of the journal, Dr. Andrew Littlefield, the associate editor of the journal, and the reviewers who have given up their valuable time to review this paper.

CONFLICT OF INTEREST

The author declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

AUTHOR CONTRIBUTIONS

Sakhavat Mammadov is the sole author of this study and was responsible for study design, conception, statistical data analyses, and interpretation.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are openly available in Open Science Framework at https://osf.io/tkwdu/ [Identifier: DOI 10.17605/OSF.IO/TKWDU].

ETHICS

This study is a meta-analytic review of findings from previous studies and did not involve human subjects. No ethical approval was needed from an Institutional Review Board (IRB).

ORCID

Sakhavat Mammadov 🗓 https://orcid.org/0000-0001-5890-211X

REFERENCES

References included in the meta-analysis are marked with an asterisk.

- Ackerman, P. L., Chamorro-Premuzic, T., & Furnham, A. (2011). Trait complexes and academic performance: Old and new ways of examining personality in educational contexts. British Journal of Educational Psychology, 81, 27-40.
- *Aguilar, A. J. (2013). The Big Five personality factors as predictors of graduate school performance (Unpublished doctoral dissertation). The Chicago School of Professional Psychology.
- *Al Qaisy, L. M., & Thawabieh, A. M. (2017). Personal traits and their relationship with future anxiety and performance. i-Manager's Journal on Educational Psychology, 10, 11–19.

- *Alkis, N., & Temizel, T. T. (2018). The impact on motivation and personality on academic performance in online and blended learning environments. *Educational Technology & Society*, 21, 35–47.
- *Andersen, S. C., Gensowski, M., Ludeke, S. G., & John, O. P. (2020). A stable relationship between personality and academic performance from childhood through adolescence. An original study and replication in hundred-thousand-person samples. *Journal of Personality*, 88(5), 925–939. https://doi.org/10.1111/jopy.12538
- *Andrei, F., Mancini, G., Mazzoni, E., Russo, P. M., & Baldaro, B. (2015). Social status and its link with personality dimensions, trait emotional intelligence, and scholastic performance in children and early adolescents. *Learning and Individual Differences*, 42, 97–105.
- *Anglim, J., Bozic, S., Little, J., & Lievens, F. (2018). Response distortion on personality traits in applicants: Comparing high-stakes to low-stakes medical settings. *Advances in Healthy Science Education*, 23, 311–321.
- *Anticevic, V., Kardum, G., Klarin, M., Sindik, J., & Barac, I. (2018). Academic performance and study satisfaction: The contribution of high school success and personality. *Journal for General Social Issues*, 27, 243–260.
- Bacon, D. R., & Bean, B. (2006). GPA in research studies: An invaluable but neglected opportunity. *Journal of Marketing Education*, 28, 35–42. https://doi.org/10.1177/0273475305284638
- *Bahcekapili, E., & Karaman, S. (2020). A path analysis of five-factor personality traits, self-efficacy, academic locus of control and academic performance among online students. *Knowledge Management & E-Learning*, 12, 191–208.
- *Barbaranelli, C., Caprara, G. V., Rabasca, A., & Pastorelli, C. (2003). A questionnaire for measuring the Big Five in late childhood. *Personality and Individual Differences*, 34, 645–664. https://doi.org/10.1016/S0191-8869(02)00051-X
- *Barchard, K. A. (2003). Does emotional intelligence assist in the prediction of academic success? *Educational and Psychological Measurement*, 63, 840–858. https://doi.org/10.1177/0013164403 251333
- *Barta, A., Tamas, B., & Szamoskozi, I. (2018). Big Five personality traits and learning approaches as predictors of performances in humanities and science subjects. *Transylvanian Journal of Psychology*, 2, 31–55.
- *Bartone, P. T., Snook, S. A., & Tremble, T. R., Jr. (2002). Cognitive and personality predictors of leader performance in West Point cadets. *Military Psychology*, *14*, 321–338. https://doi.org/10.1207/S15327876MP1404_6
- *Bauer, K. W., & Liang, Q. (2003). The effect of personality and precollege characteristics on first-year activities and academic performance. *Journal of College Student Development*, 44, 277–290.
- *Bergold, S., & Steinmayr, R. (2018). Personality and intelligence interact in the prediction of academic performance. *Journal of Intelligence*, 6, 1–18.
- *Berings, D., De Feyter, T., Van den Broeck, A., Brebels, L., & Proost, K. (2013). A threefold differentiation in academic motivation to disentangle the complex relationship between gender, personality, and academic performance. *Journal of Education Research*, 7, 111–134.
- *Biderman, M. D., & Reddock, C. M. (2012). The relationship of scale reliability and validity to respondent inconsistency. *Personality and Individual Differences*, 52, 647–651. https://doi.org/10.1016/j.paid.2011.12.012
- *Bidjerano, T., & Dai, D. Y. (2007). The relationship between the Big-Five model of personality and self-regulated learning

- strategies. Learning and Individual Differences, 17, 69–81. https://doi.org/10.1016/j.lindif.2007.02.001
- Birkeland, S. A., Manson, T. M., Kisamore, J. L., Brannick, M. T., & Smith, M. A. (2006). A meta-analytic investigation of job applicant faking on personality measures. *International Journal of Selection and Assessment*, 14, 317–335. https://doi.org/10.1111/j.1468-2389.2006.00354.x
- Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2014). *Comprehensive meta-analysis 3.0* [Computer software]. Biostat.
- Bosco, F. A., Aguinis, H., Singh, K., Field, J. G., & Pierce, C. A. (2015). Correlational effect size benchmarks. *Journal of Applied Psychology*, 100, 431–449. https://doi.org/10.1037/a0038047
- *Brandt, N. D., Lechner, C. M., Tetzner, J., & Rammstedt, B. (2020). Personality, cognitive ability, and academic performance: Differential associations across school subjects and school tracks. *Journal of Personality*, 88, 249–265. https://doi.org/10.1111/jopy.12482
- *Bratko, D., Chamorro-Premuzic, T., & Saks, Z. (2006). Personality and school performance: Incremental validity of self- and peerratings over intelligence. *Personality and Individual Differences*, 41, 131–142. https://doi.org/10.1016/j.paid.2005.12.015
- *Burgard, M. E. (2000). *The five-factor model of personality and academic performance among college students* (Unpublished master's thesis). Southern Connecticut State University.
- *Burton, L. J., & Nelson, L. J. (2006). The relationship between personality, approaches to learning, and academic success in first-year psychology distance education students. *Proceedings of the 29th HERDSA Annual Conference* (pp. 64–72).
- *Busato, V., Prins, F. J., Elshout, J. J., & Hamaker, C. (2000). Intellectual ability, learning style, personality, performance motivation and academic success of psychology students in higher education. *Personality and Individual Differences*, 29, 1057–1068.
- *Camps, E., & Morales-Vives, F. (2013). The contributions of psychological maturity and personality in the prediction of adolescent academic performance. *International Journal of Educational Psychology*, 2, 246–271.
- *Cao, C., & Meng, Q. (2020). Exploring personality traits as predictors of English performance and global competence among Chinese university students: English learning motivation as the moderator. Learning and Individual Differences, 77, 1–10.
- Caprara, G. V., Barbaranelli, C., Borgogni, L., & Perugini, M. (1993).
 The Big Five Questionnaire: A new questionnaire for the measurement of the five-factor model. *Personality and Individual Differences*, 15, 281–288.
- *Caprara, G. V., Barbaranelli, C., Pastorelli, C., & Cervone, D. (2004). The contribution of self-efficacy beliefs to psychosocial outcomes in adolescence: Predicting beyond global dispositional tendencies. *Personality and Individual Differences*, *37*, 751–763. https://doi.org/10.1016/j.paid.2003.11.003
- *Caprara, G. V., Vecchione, M., Alessandri, G., Gerbino, M., & Barbaranelli, C. (2011). The contribution of personality traits and self-efficacy beliefs to academic performance: A longitudinal study. *British Journal of Educational Psychology*, 81, 78–96.
- *Cárdenas Moren, C., Augant, K. C., Labrin, B. C., deGiorgis, R. C., de la Fuente-Mella, H., Fritz, A. P., Valenzuela Saavedra, M., Monckton, P. H., & Álvarez Castelli, L. (2020). A quantitative analysis of the identification of personality traits in engineering students and their relation to academic performance. *Studies in Higher Education*, 45, 1323–1334. https://doi.org/10.1080/03075079.2019.1572089

- *Caretta, T. R., & Ree, M. J. (2019). The relations between cognitive ability and personality: Convergent results across measures. *International Journal of Selection and Assessment*, 26, 133–144.
- Cattell, R. B. (1943). The description of personality. I. Foundations of trait measurement. *Psychological Review*, 50, 559–594. https://doi. org/10.1037/h0057276
- *Cela-Ranilla, J. M., Gisbert, M., & deOliveira, J. M. (2011). Exploring the relationship among learning patterns, personality traits, and academic performance in freshmen. *Educational Research and Evaluation*, 17, 175–192. https://doi.org/10.1080/13803611.2011.599564
- *Chamorro-Premuzic, T. (2006). Creativity versus conscientiousness: Which is a better predictor of student performance? *Applied Cognitive Psychology*, 20, 521–531.
- *Chamorro-Premuzic, T., & Furnham, A. (2003a). Personality predicts academic performance: Evidence from two longitudinal university samples. *Journal of Research in Psychology*, 37, 319–338. https:// doi.org/10.1016/S0092-6566(02)00578-0
- *Chamorro-Premuzic, T., & Furnham, A. (2003b). Personality traits and academic examination performance. *European Journal of Personality*, 17, 237–250.
- Chamorro-Premuzic, T., & Furnham, A. (2008). Personality, intelligence, and approaches to learning as predictors of academic performance. *Personality and Individual Differences*, 44, 1596–1603.
- Chapa, F. (2016). *Examination of the mediating role of student engagement on the relationship between personality and academic success for Hispanic college students (Unpublished doctoral dissertation). Walden University.
- *Chapman, B. P., & Hayslip, B., Jr. (2005). Incremental validity of a measure of emotional intelligence. *Journal of Personality Assessment*, 85, 154–169. https://doi.org/10.1207/s15327752jpa8502_08
- *Cheng, W., & Ickes, W. (2009). Conscientiousness and self-motivation as mutually compensatory predictors of university-level GPA. Personality and Individual Differences, 47, 817–822. https://doi. org/10.1016/j.paid.2009.06.029
- *Chowdhury, M. (2006). Students' personality traits and academic performance: A five-factor model perspective. *College Quarterly*, 9, 1–9.
- *Clark, J. K. (2007). Relationship of personality and sleep to academic success in the United States Military Academy: A perspective utilizing the five-factor model of personality (Unpublished doctoral dissertation). Fielding Graduate University.
- Cohen, J. (1962). The statistical power of abnormal-social psychological research: A review. *The Journal of Abnormal and Social Psychology*, 65, 145–153. https://doi.org/10.1037/h0045186
- Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Erlbaum.
- *Colquitt, J. A., & Simmering, M. J. (1998). Conscientiousness, goal orientation, and motivation to learn during the learning process: A longitudinal study. *Journal of Applied Psychology*, 83, 654–665. https://doi.org/10.1037/0021-9010.83.4.654
- *Conard, M. A. (2006). Aptitude is not enough: How personality and behavior predict academic performance. *Journal of Research in Personality*, 40, 339–346. https://doi.org/10.1016/j.jrp.2004.10.003
- *Conrad, N., & Patry, M. W. (2012). Conscientiousness and academic performance: A mediational analysis. *International Journal for* the Scholarship of Teaching and Learning, 6, 1–14. https://doi. org/10.20429/ijsotl.2012.060108

- Costa, P. T., Jr., & McCrae, R. R. (1992). Revised NEO personality inventory (NEO-PI-R) and NEO five-factor inventory (NEO-FFI): Professional manual. Psychological Assessment Resources.
- *Cucina, J. M., & Vasilopoulos, N. L. (2005). Nonlinear personality—performance relationships and the spurious moderating effects of traitedness. *Journal of Personality*, 73, 227–259. https://doi.org/10.1111/j.1467-6494.2004.00309.x
- *Culjak, Z., & Mlacic, B. (2014). The Big-Five model of personality and the success of high school students in physical education. *Croatian Journal of Education*, *16*, 471–490.
- *Day, E. A., Radosevich, D. J., & Chasteen, C. S. (2003). Construct- and criterion-related validity of four commonly used goal orientation instruments. *Contemporary Educational Psychology*, 28, 434–464. https://doi.org/10.1016/S0361-476X(02)00043-7
- *Day, L., Hanson, K., Maltby, J., Proctor, C., & Wood, A. (2010). Hope uniquely predicts objective academic performance above intelligence, personality, and previous academic performance. *Journal of Research in Personality*, 44, 550–553.
- *deBruin, K., de Bruin, G., Dercksen, S., & Cilliers-Hartslief, M. (2005). Predictive validity of general intelligence and Big Five measures for adult basic education and training outcomes. *South African Journal of Psychology*, 35, 46–57. https://doi.org/10.1177/00812 4630503500103
- *De Feyter, T., Caers, R., Vigna, C., & Berings, D. (2012). Unraveling the impact of the Big Five personality traits on academic performance: The moderating and mediating effects of self-efficacy and academic motivation. *Learning and Individual Differences*, 22, 439–448. https://doi.org/10.1016/j.lindif.2012.03.013
- *De Fruyt, F., & Mervielde, I. (1996). Personality and interests as predictors of educational streaming and performance. *European Journal of Personality*, 10, 405–425.
- *deKoning, B. B., Loyens, S. M. M., Rikers, R. M. J. P., Smeets, G., & van der Molen, H. T. (2012). Generation Psy: Student characteristics and academic performance in a three-year problem-based learning Bachelor program. *Learning and Individual Differences*, 22, 313–323.
- De Raad, B., & Perugini, M. (2002). *Big Five assessment*. Hogrefe and Huber Publishers.
- *De Raad, B., & Schouwenburg, H. C. (1996). Personality in learning and education: A review. *European Journal of Personality*, 10, 303–336. https://doi.org/10.1002/(SICI)1099-0984(19961 2)10:5<303:AID-PER262>3.0.CO;2-2
- Deary, I. J., Strand, S., Smith, P., & Fernandes, C. (2007). Intelligence and educational performance. *Intelligence*, 35, 13–21.
- *Debicki, B. J., Kellermanns, F. W., Barnett, T., Pearson, A. W., & Pearson, R. A. (2016). Beyond the Big Five: The mediating role of goal orientation in the relationship between core self-evaluations and academic performance. *The International Journal of Management Education*, 14, 273–285. https://doi.org/10.1016/j.ijme.2016.05.002
- *Di Fabio, A., & Busoni, L. (2007). Fluid intelligence, personality traits and scholastic success: Empirical evidence in a sample of Italian high school students. *Personality and Individual Differences*, 43, 2095–2104. https://doi.org/10.1016/j.paid.2007.06.025
- *Di Giunta, L., Alessandri, G., Gerbino, M., Kanacri, P. L., Zuffiano, A., & Caprara, G. V. (2013). The determinants of scholastic performance: The contribution of personality traits, self-esteem, and academic self-efficacy. *Learning and Individual Differences*, 27, 102–108.

- Digman, J. M. (1990). Personality structure: Emergence of the five-factor model. *Annual Review of Psychology*, 41, 417–440. https://doi.org/10.1146/annurev.ps.41.020190.002221
- *Ding, Y., Laux, J., Salyers, K., & Kozelka, S. (2017). Personality and graduate academic performance among counselor education and school psychology students. *School Psychology Forum: Research in Practice*, 11, 105–122.
- *Diseth, A. (2003). Personality and approaches to learning as predictors of academic performance. *European Journal of Personality*, 17, 143–155.
- *Diseth, A. (2013). Personality as an indirect predictor of academic performance via student course experience and approach to learning. *Social Behavior and Personality*, 41, 1297–1308.
- *Dollinger, S. J., Matyja, A. M., & Huber, J. L. (2008). Which factors best account for academic success: Those which college students can control or those they cannot? *Journal of Research in Personality*, 42, 872–885. https://doi.org/10.1016/j.jrp.2007.11.007
- *Dollinger, S. J., & Orf, L. A. (1991). Personality and performance in "personality": Conscientiousness and openness. *Journal of Research in Personality*, 25, 276–284. https://doi.org/10.1016/0092-6566(91)90020-Q
- *Duff, A., Boyle, E., Dunleavy, K., & Ferguson, J. (2004). The relationship between personality, approach to learning and academic performance. *Personality and Individual Differences*, 36, 1907–1920.
- *Dumfart, B., & Neubauer, A. C. (2016). Conscientiousness is the most powerful noncognitive predictor of school performance in adolescents. *Journal of Individual Differences*, *37*, 8–15.
- *Durso-Finley, J. (2016). Predicting high school GPA using HEXACO personality domains and the secondary school admission test (Unpublished doctoral dissertation). Liberty University.
- Duval, S., & Tweedie, R. (2000). Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. *Biometrics*, 56, 455–463.
- *Dwight, S. A., Cummings, K. M., & Glenar, J. L. (1998). Comparison of criterion-related validity coefficients for the Mini-Markers and Goldberg's Markers of the Big Five personality factors. *Journal of Personality Assessment*, 70, 541–550.
- *Dzubur, A., Lisica, D., Abdulahovic, D., & Ejubovic, M. (2020). Impact of social and psychological factors on academic performance of university students. *Medicinski Glasnik*, 17, 234–238.
- *Edwards, W. R., & Schleicher, D. J. (2004). On selecting psychology graduate students: Validity evidence for a test of tacit knowledge. *Journal of Educational Psychology*, 96, 592–602. https://doi.org/10.1037/0022-0663.96.3.592
- Egger, M., Smith, G. D., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. *British Medical Journal*, *315*, 629–634. https://doi.org/10.1136/bmj.315.7109.629
- *Ehrler, D. J. (2005). An investigation into the relation between the fivefactor model of personality and educational performance in children (Unpublished doctoral dissertation). Georgia State University.
- *Eilam, B., Zeidner, M., & Aharon, I. (2009). Student conscientiousness, self-regulated learning, and science performance: An exploratory field study. *Psychology in the Schools*, 46, 420–432.
- *Engel, L. I. (2013). What predicts first semester college performance? Cognitive ability, SAT, conscientiousness, and grit (Unpublished doctoral dissertation). Hoftsra University.
- *Fabris, M. A., Longobardi, C., Giovanna, F., & Gastaldi, M. (2019).

 Preference for videogames and its correlations with moral disengagement, personality traits and academic performance in

- Italian pre-adolescents. *Journal of Psychological and Educational Research*, 27, 7–23.
- *Farsides, T., & Woodfield, R. (2003). Individual differences and undergraduate academic success: The roles of personality, intelligence, and application. *Personality and Individual Differences*, 33, 1225–1243. https://doi.org/10.1016/S0191-8869(02)00111-3
- *Ferguson, E., Sanders, A., O'Hehir, F., & James, D. (2000). Predictive validity of personal statements and the role of the five-factor model of personality in relation to medical training. *Journal of Occupational and Organizational Psychology*, 73, 321–344. https://doi.org/10.1348/096317900167056
- *Fernandez, N. G. (2019). Social-emotional learning: The role of personality characteristics and non-cognitive attributes in adolescent academic performance and well-being (Unpublished doctoral dissertation). Long Island University.
- *Freudenthaler, H., Spinath, B., & Neubauer, A. (2008). Predicting school performance in boys and girls. *European Journal of Personality*, 22, 231–245.
- *Fritzche, B. A., McIntire, S. A., & Yost, A. P. (2002). Holland type as a moderator of personality-performance predictions. *Journal of Vocational Behavior*, 60, 422–436. https://doi.org/10.1006/jvbe.2001.1841
- *Furnham, A. (2012). Learning style, personality traits, and intelligence as predictors of college academic performance. *Individual Differences Research*, 10, 117–128.
- *Furnham, A., & Chamorro-Premuzic, T. (2004). Personality and intelligence as predictors of statistics examinations grades. *Personality and Individual Differences*, 37, 943–955.
- *Furnham, A., Chamorro-Premuzic, T., & McDougall, F. (2003). Personality, cognitive ability, and beliefs about intelligence as predictors of academic performance. *Learning and Individual Differences*, 14, 49–66. https://doi.org/10.1016/j.lindif.2003.08.002
- *Furnham, A., Monsen, J., & Ahmetoglu, G. (2009). Typical intellectual engagement, Big Five personality traits, approaches to learning and cognitive ability predictors of academic performance. *British Journal of Educational Psychology*, 79, 769–782. https://doi.org/10.1348/978185409X412147
- *Furnham, A., Zhang, J., & Chamorro-Premuzic, T. (2006). The relationship between psychometric and self-estimated intelligence, creativity, personality, and academic performance. *Imagination, Cognition and Personality*, 25, 119–145.
- *Garcia-Ruffin, N. (2003). The measurement of fear of success and its relationship to personality, perceived parenting, study habits, and academic performance (Unpublished doctoral dissertation). Fordham University.
- Gatzka, T., & Hell, B. (2018). Openness and postsecondary academic performance: A meta-analysis of facet-, aspect-, and dimensionlevel correlations. *Journal of Educational Psychology*, 110, 355– 377. https://doi.org/10.1037/edu0000194
- Geary, D. C. (2011). Cognitive predictors of performance growth in mathematics: A 5-year longitudinal study. *Developmental Psychology*, 47, 1539–1552.
- *Geramian, S. M., Mashayekhi, S., & Ninggal, M. T. B. H. (2012). The relationship between personality traits of international students and academic performance. *Procedia: Social and Behavioral Sciences*, 46, 4374–4379.
- *Gerbino, M., Zuffiano, A., Eisenberg, N., Castellani, V., Kanacri, B. P. L., Pastorelli, C., & Caprara, G. V. (2018). Adolescents' prosocial behavior predicts good grades beyond intelligence and personality traits. *Journal of Personality*, 86, 247–260.

- *Gerhardt, M. W., Rode, J. C., & Peterson, S. J. (2007). Exploring mechanisms in the personality–performance relationship: Mediating roles of self-management and situational constraints. *Personality and Individual Differences*, 43, 1344–1355.
- *Gilles, P.-Y., & Bailleux, C. (2001). Personality traits and abilities as predictors of academic performance. *European Journal of Psychology of Education*, *16*, 3–15.
- *Goff, M., & Ackerman, P. L. (1992). Personality-intelligence relations: Assessment of typical intellectual engagement. *Journal of Educational Psychology*, 84, 537–552.
- Goldberg, L. R. (1981). Language and individual differences: The search for universals in personality lexicons. Review of Personality and Social Psychology, 2, 141–165.
- Goldberg, L. R. (1990). An alternative "description of personality": The big-five factor structure. *Journal of Personality and Social Psychology*, 59, 1216–1229.
- *Goldberg, L. R. (1992). The development of markers for the Big-Five factor structure. *Psychological Assessment*, 4, 26–42.
- Goldberg, L. R. (1999). A broad-bandwidth, public-domain, personality inventory measuring the lower-level facets of several five-factor models. In I. Mervielde, I. Deary, F. De Fruyt, & F. Ostendorf (Eds.), Personality psychology in Europe (pp. 7–28). Tilburg University Press.
- *Grama, B. G., & Botone, D. N. (2018). The five-factor model in explaining the academic performance of Romanian students. *Agora Psycho-Pragmatica*, 12, 92–106.
- *Gray, E. K., & Watson, D. (2002). General and specific traits of personality and their relation to sleep and academic performance. *Journal of Personality*, 70, 177–206.
- *Hair, E. C., & Graziano, W. (2003). Self-esteem, personality and performance in high school: A prospective longitudinal study in Texas. *Journal of Personality*, 71, 971–994.
- *Hair, P., & Hampson, S. E. (2006). The role of impulsivity in predicting maladaptive behaviour among female students. *Personality and Individual Differences*, 40, 943–952.
- *Hakimi, S., Hejazi, E., & Lavasani, M. G. (2011). The relationships between personality traits and students' academic performance. *Procedia- Social and Behavioral Sciences*, 29, 836–845.
- *Hart, B. (2016). The predictive value of subjective well-being and conscientiousness on academic performance (Unpublished doctoral dissertation). Indiana State University.
- *Hashmi, A., & Naz, Q. (2020). Impact of Big Five personality traits on academic performance of prospective teachers. *Journal of Arts and Social Sciences*, 7, 40–52.
- *Hazrati-Viari, A., Rad, A. T., & Torabi, S. S. (2012). The effect of personality traits on academic performance: The mediating role of academic motivation. *Procedia: Social and Behavioral Sciences*, 32, 367–371. https://doi.org/10.1016/j.sbspro.2012.01.055
- *Heaven, P. C. L., & Ciarrochi, J. (2012). When IQ is not everything: Intelligence, personality, and academic performance at school. *Personality and Individual Differences*, 53, 518–522. https://doi.org/10.1016/j.paid.2012.04.024
- *Heaven, P. C. L., Ciarrochi, J., & Vialle, W. (2007). Conscientiousness and Eysenckian psychoticism as predictors of school grades: A oneyear longitudinal study. *Personality and Individual Differences*, 42, 535–546. https://doi.org/10.1016/j.paid.2006.07.028
- Hedges, L. V., & Olkin, I. (1985). Statistical methods for meta-analysis. Academic Press.
- *Herrera, L., Al-Lal, M., & Mohamed, L. (2020). Academic performance, self-concept, personality, and emotional intelligence in

- primary education. Analysis by gender and cultural group. *Frontiers in Psychology*, 10, 1–13.
- Hicks, B. M., Johnson, W., Iacono, W., & Mcgue, M. (2008). Moderating effects of personality on the genetic and environmental influences of school grades helps to explain sex differences in scholastic performance. *European Journal of Personality*, 22, 247–268.
- *Higgins, D. M., Peterson, J. B., Pihl, R. O., & Lee, A. G. M. (2007). Prefrontal cognitive ability, intelligence, Big Five personality, and the prediction of advanced academic and workplace performance. *Journal of Personality and Social Psychology*, 93, 298–319. https://doi.org/10.1037/0022-3514.93.2.298
- Higgins, J., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. *BMJ*, 327, 557–560. https://doi.org/10.1136/bmj.327.7414.557
- Hirsh, J. B. (2006). *Predicting creativity and academic success with a "fake-proof" measure of the Big Five*. [Unpublished master's thesis]. University of Toronto.
- *Hirsh, J. B., & Peterson, J. B. (2008). Predicting creativity and academic success with a "fake-proof" measure of the Big Five. *Journal of Research in Personality*, 42, 1323–1333. https://doi.org/10.1016/j.jrp.2008.04.006
- *Homayouni, A. (2011). Personality traits and emotional intelligence as predictors of learning English and math. *Procedia- Social and Behavioral Science*, *30*, 839–843. https://doi.org/10.1016/j.sbspro.2011.10.163
- *Hourieh, N., Ding, Y., Wang, Q., Craven, J., & Chen, E. (2019). General personality traits of engineering students and their relationship with academic performance. *International Journal of Engineering Education*, 35, 76–87.
- IBM SPSS. (2017). IBM SPSS statistics for Windows, Version 24.0. Author.
- John, O. P., Donahue, E. M., & Kentle, R. L. (1991). The Big Five Inventory—Versions 4a and 54. Institute of Personality and Social Research, University of California.
- John, O. P., & Srivastava, S. (1999). The Big-Five trait taxonomy: History, measurement, and theoretical perspectives. In L. A. Pervin & O. P. John (Eds.), *Handbook of personality: Theory and research* (2nd ed., pp. 102–138). Guilford Press.
- *Jonkmann, K., Becker, M., Marsh, H. W., Lüdtke, O., & Trautwein, U. (2012). Personality traits moderate the Big-Fish-Little-Pond effect of academic self-concept. *Learning and Individual Differences*, 22, 736–746.
- Judge, T. A., Jackson, C. L., Shaw, J. C., Scott, B. A., & Rich, B. L. (2007). Self-efficacy and work-related performance: The integral role of individual differences. *Journal of Applied Psychology*, 92, 107–127. https://doi.org/10.1037/0021-9010.92.1.107
- *Kaiser, T., & Diewald, M. (2014). Social origin, conscientiousness, and school grades: Does early socialization of the characteristics orderliness and focus contribute to the reproduction of social inequality. *Research in Social Stratification and Mobility*, *38*, 93–105. https://doi.org/10.1016/j.rssm.2014.07.001
- *Kao, P.-C., & Craigie, P. (2014). Effects of English usage on Facebook and personality traits on performance of students learning English as a foreign language. *Social Behavior and Personality*, 42, 17–24.
- *Kappe, R., & van derFlier, H. (2010). Using multiple and specific criteria to assess the predictive validity of the Big Five personality factors on academic performance. *Journal of Research in Personality*, 44, 142–145. https://doi.org/10.1016/j.jrp.2009.11.002
- *Katrimpouza, A., Tseilos, N., & Kasimati, M.-C. (2019). Twitter adoption, students' perceptions, Big Five personality traits and

- learning outcome: Lessons learned from 3 case studies. *Innovations in Education and Teaching International*, 56, 25–35. https://doi.org/10.1080/14703297.2017.1392890
- *Kaufman, J. C., Agars, M. D., & Lopez-Wagner, M. C. (2008). The role of personality and motivation in predicting early college academic success in non-traditional students at a Hispanic-serving institution. *Learning and Individual Differences*, 18, 492–496. https://doi.org/10.1016/j.lindif.2007.11.004
- **Kelsen, B. A., & Liang, H.-Y. (2019). Role of the Big Five personality traits and motivation in predicting performance in collaborative presentations. *Psychological Reports*, 122, 1907–1924. https://doi.org/10.1177/0033294118795139
- *Kertechian, S. K. (2018). Conscientiousness as a key to success for academic performance among French university students enrolled in management studies. *The International Journal of Management Education*, 16, 154–165.
- *Kessler, M. (2002). Conscientiousness, mastery, conflictual independence, and self-efficacy in relationship to student adaptation and academic success during the first semester of college: A comparative and predictive study of first- and second-generation college students (Unpublished doctoral dissertation). Kent State University.
- *Kim, L. E., Dar-Nimrod, I., & MacCann, C. (2018). Teacher personality and teacher effectiveness in secondary school: Personality predicts teacher support and student self-efficacy but not academic performance. *Journal of Educational Psychology*, 110, 309–323.
- *Kim, L. E., & MacCann, C. (2016). What is students' ideal university instructor personality? An investigation of absolute and relative personality preferences. *Personality and Individual Differences*, 102, 190–203.
- *Kirkagac, S., & Oz, H. (2017). The role of Big Five personality traits in predicting prospective EFL teachers' academic performance. *International Online Journal of Education and Teaching*, 4, 317–328.
- *Komarraju, M., Karau, S. J., & Schmeck, R. R. (2009). Role of the Big Five personality traits in predicting college students' academic motivation and performance. *Learning and Individual Differences*, 19, 47–52.
- *Kornienko, O. S., Petrenko, E. N., Leto, I. V., Fedorova, N. A., & Slobodskaya, H. R. (2018). Effortful control in primary schoolchildren: Links with personality, problem behavior, academic performance, and subjective well-being. *Psychology in Russia: State of the Art*, 11, 2–18.
- *Koschmieder, C., Weissenbacher, B., Pretsch, J., & Neubauer, A. C. (2018). The impact of personality in the selection of teacher students: Is there more to it than the Big Five? *Europe's Journal of Psychology*, *14*, 680–694.
- *Koseoglu, Y. (2016). To what extent can the Big Five and learning styles predict academic performance. *Journal of Education and Practice*, 7, 43–51.
- Kuncel, N. R., Crede, M., & Thomas, L. L. (2005). The validity of self-reported grade point averages, class ranks, and test scores: A meta-analysis and review of the literature. *Review of Educational Research*, 75, 63–82.
- *Laidra, K., Pullmann, H., & Allik, J. (2007). Personality and intelligence as predictors of academic performance: A cross-sectional study from elementary to secondary school. *Personality and Individual Differences*, 42, 441–451.
- *Laskey, M. L. (2004). Assessing the influence of self-efficacy, metacognition, and personality traits on at-risk college students' academic

- performance and persistence (Unpublished doctoral dissertation). Cardinal Stritch University.
- *Lee, F. K. (2004). Conscientiousness, neuroticism, and selfmanagement strategies: A process model of personality and performance outcomes (Unpublished doctoral dissertation). University of Missouri-Columbia.
- *Lee, S., & Sohn, Y. W. (2017). Effects of grit on academic performance and career-related attitudes of college students in Korea. *Social Behavior and Personality*, 45, 1629–1642.
- *Letourneau, R. M. (2009). *Predicting college success: The Big Five* (Unpublished doctoral dissertation). California State University.
- *Lievens, F., & Coetsier, P. (2002). Situational tests in student selection: An examination of predictive validity, adverse impact, and construct validity. *International Journal of Selection and Assessment*, 10, 245–257. https://doi.org/10.1111/1468-2389.00215
- *Lievens, F., Coetsier, P., De Fruyt, F., & De Maeseneer, J. (2002). Medical students' personality characteristics and academic performance: A five-factor model perspective. *Medical Education*, *36*, 1050–1056. https://doi.org/10.1046/j.1365-2923.2002.01328.x
- *Lievens, F., De Corte, W., & Schollaert, E. (2008). A closer look at the frame-of-reference effect in personality scale scores and validity. *Journal of Applied Psychology*, 93, 268–279. https://doi.org/10.1037/0021-9010.93.2.268
- *Lim, P. S., & Melissa Ng Abdullah, L. Y. (2012). Relationship between Big-Five personality domains and students' academic performance. Social Sciences & Humanities, 20, 973–988.
- *Lipnevich, A. A., Preckel, F., & Krumm, S. (2016). Mathematics attitudes and their unique contribution to performance: Going over and above cognitive ability and personality. *Learning and Individual Differences*, 47, 70–79.
- Lipsey, M. W., & Wilson, D. B. (2001). *Practical meta-analysis*. Sage. *Lounsbury, J. W., Huffstetler, B. C., Leong, F. T., & Gibson, L. W. (2005). Sense of identity and collegiate academic performance.
- (2005). Sense of identity and collegiate academic performance. *Journal of College Student Development*, 46, 501–514.
- *Lounsbury, J. W., Sundstrom, E., Loveland, J. M., & Gibson, L. W. (2003a). Broad versus narrow personality traits in predicting academic performance of adolescents. *Learning and Individual Differences*, 14, 67–77.
- *Lounsbury, J. W., Sundstrom, E., Loveland, J. M., & Gibson, L. W. (2003b). Intelligence, "Big Five" personality traits, and work drive as predictors of course grade. *Personality and Individual Differences*, 35, 1231–1239.
- *Lourinho, I., Ferreira, M. A., & Severo, M. (2017). Personality and performance along medical training: Evidence from a cross-lagged analysis. *PLoS ONE*, *12*, 1–13.
- *Loveland, J. M., Lounsbury, J. W., Welsh, D., & Buboltz, W. C. (2007). The validity of physical aggression in predicting adolescent academic performance. *British Journal of Educational Psychology*, 77, 167–176. https://doi.org/10.1348/000709905X79563
- Luo, D., Thompson, L. A., & Detterman, D. K. (2006). The criterion validity of tasks of basic cognitive processes. *Intelligence*, 34, 79– 120. https://doi.org/10.1016/j.intell.2004.12.003
- MacCann, C., Jiang, Y., Brown, L. E. R., Double, K. S., Bucich, M., & Minbashian, A. (2019). Emotional intelligence predicts academic performance: A meta-analysis. *Psychological Bulletin*, 146, 150– 186. https://doi.org/10.1037/bul0000219
- *Malykh, S. (2017). The role of personality traits and intelligence in academic performance of Russian high school students. *Procedia-Social and Behavioral Sciences*, 237, 1304–1309.

- Mammadov, S., Cross, T. L., & Olszewski-Kubilius, P. (in press). A look beyond aptitude: The relationship between personality traits, autonomous motivation, and academic achievement in gifted students. Roeper Review.
- Mammadov, S., Cross, T. L., & Ward, T. J. (2018). The Big Five personality predictors of academic achievement in gifted students: Mediation by self-regulatory efficacy and academic motivation. *High Ability Studies*, 29, 111–133.
- *Marcela, V. (2015). Learning strategy, personality traits, and academic performance of university students. *Procedia- Social and Behavioral Sciences*, 174, 3473–3478.
- *Marsh, H. W., Trautwein, U., Lüdtke, O., Köller, O., & Baumert, J. (2006). Integration of multidimensional self-concept and core personality constructs: Construct validation and relations to well-being and performance. *Journal of Personality*, 74, 403–456.
- McAbee, S. T., & Oswald, F. L. (2013). The criterion-related validity of personality measures for predicting GPA: A meta-analytic validity competition. *Psychological Assessment*, 25, 532–544.
- McCrae, R. R., & Costa, P. T., Jr. (1996). Toward a new generation of personality theories: Theoretical contexts for the Five-Factor Model. In J. S. Wiggins (Ed.), *The Five-Factor Model of personal*ity: Theoretical perspectives (pp. 51–87). Guilford Press.
- McCrae, R. R., & Costa, P. T., Jr. (1999). A five-factor theory of personality. In L. A. Pervin & O. P. John (Eds.), *Handbook of personality* (pp. 139–153). Guilford.
- McCrae, R., & John, O. (1992). An introduction to the five-factor model and its applications. *Journal of Personality*, 60, 175–215. https://doi.org/10.1111/j.1467-6494.1992.tb00970.x
- *McCredie, M. N., & Kurtz, J. E. (2020). Prospective prediction of academic performance in college using self- and informant-rated personality traits. *Journal of Research in Personality*, 85, 1–9. https://doi.org/10.1016/j.jrp.2019.103911
- *McKenzie, K., Gow, K., & Schweitzer, R. (2004). Exploring the first-year academic performance of school leavers and matureage students through structural equation modeling. *Learning and Individual Differences*, 14, 107–123.
- *McKenzie, R. (2000). Psychological characteristics of pre-service elementary teachers: Five factor model, vocational personality characteristics, and efficacy (Unpublished doctoral dissertation). Northern Arizona University.
- *Medford, E., & McGeown, S. P. (2012). The influence of personality characteristics on children's intrinsic reading motivation. *Learning and Individual Differences*, 22, 786–791. https://doi.org/10.1016/j. lindif.2012.06.002
- *Meyer, J., Fleckenstein, J., Retelsdorf, J., & Köller, O. (2019). The relationship of personality traits and different measures of domain-specific performance in upper secondary education. *Learning and Individual Differences*, 69, 45–59.
- *Mitrofan, N., & Ion, A. (2013). Predictors of academic performance: The relation between the Big Five factors and academic performance. *Procedia Social and Behavioral Sciences*, 78, 125–129. https://doi.org/10.1016/j.sbspro.2013.04.264
- *Monteiro, S., deAlmeida, L., Cruz, J., & Franco, A. (2015). The relationship of personality, study practice and learning environments on excellent engineering students. *Analise Psicologica*, 1, 97–111.
- *Moon, S. M., & Illingworth, A. J. (2005). Exploring the dynamic nature of procrastination: A latent growth curve analysis of academic procrastination. *Personality and Individual Differences*, 38, 297–309.

- *Morales-Vives, F., Camps, E., & Duenas, J. M. (2020). Predicting academic performance in adolescents: The role of maturity, intelligence, and personality. *Psicothema*, *32*, 84–91.
- *Moreira, P. A., Oliviera, J. T., Cloninger, K. M., Azevedo, C., Sousa, A., Castro, J., & Cloninger, C. R. (2012). The psychometrics and validity of the junior temperament and character inventory in Portuguese adolescents. *Comprehensive Psychiatry*, *53*, 1227–1236.
- *Musgrave-Marquart, D., Bromley, S. P., & Dalley, M. B. (1997). Personality academic attribution, and substance use as predictors of academic performance in college students. *Journal of Social Behavior and Personality*, 12, 501–511.
- *Myers, C. D. (2019). The Big Five inventory, substance abuse history, and academic success among students majoring in substance abuse counseling (Unpublished doctoral dissertation). St. Mary's University.
- *Naqshbandi, M. M., Ainin, S., Jaafar, N. I., & Shuib, N. L. M. (2017). To Facebook or to Face Book? An investigation of how academic performance of different personalities is affected through the intervention of Facebook usage. *Computers in Human Behavior*, 75, 167–176.
- *Negru-Subtirica, O., Pop, E. I., Crocetti, E., & Meeus, W. (2020). Social comparison at school: Can GPA and personality mutually influence each other across time? *Journal of Personality*, 88, 555–567. https://doi.org/10.1111/jopy.12510
- *Neuenschwander, R., Cimeli, P., Röthlisberger, M., & Roebers, C. M. (2013). Personality factors in elementary school children: Contributions to academic performance over and above executive functions? *Learning and Individual Differences*, 25, 118–125.
- *Nguyen, N. T., Allen, L. C., & Fraccastoro, K. (2005). Personality predicts academic performance: Exploring the moderating role of gender. *Journal of Higher Education Policy and Management*, 27, 105–116.
- *Noftle, E. E., & Robins, R. W. (2007). Personality predictors of academic outcomes: Big Five correlates of GPA and SAT scores. *Journal of Personality and Social Psychology*, 93, 116–130.
- *Novikova, I. A., & Vorobyeva, A. A. (2017). Big Five factors and academic performance in Russian students. *Psychology in Russia: State of the Art*, 10, 93–106.
- O'Connor, M. C., & Paunonen, S. V. (2007). Big Five personality predictors of post-secondary academic performance. *Personality and Individual Differences*, 43, 971–990. https://doi.org/10.1016/j.paid.2007.03.017
- Organization for Economic Cooperation and Development. (2016). Education at glance 2016: OECD indicators. Author.
- *Okun, M. A., & Finch, J. F. (1998). The Big Five personality dimensions and the process of institutional departure. *Contemporary Educational Psychology*, 23, 233–256. https://doi.org/10.1006/ceps.1996.0974
- *Onder, I., Besoluk, S., Iskender, M., Masal, E., & Demirhan, E. (2014). Circadian preferences, sleep quality and sleep patterns, personality, academic motivation and academic performance of university students. *Learning and Individual Differences*, 32, 184–192.
- Open Science Collaboration. (2015). Estimating the reproducibility of psychological science. *Science*, *349*, aac4716. https://doi.org/10.1126/science.aac4716
- *Oswald, F. L., Schmitt, N., Kim, B. H., Ramsay, L. J., & Gillespie, M. A. (2004). Developing a biodata measure and situational judgment inventory as predictors of college student performance. *Journal of Applied Psychology*, 89, 187–207. https://doi.org/10.1037/002 1-9010.89.2.187

- *Oz, H. (2015). Personality traits and ideal L2 self as predictors of academic performance among prospective English teachers. *Proceedings of ICERI*, 2015, 5833–5841.
- *Palmisano, A. C. (2017). The predictive relationship between personality, GPA, and membership in nontraditional student populations (Unpublished doctoral dissertation). Capella University.
- *Pang, H. H. P. (2008). Big Five personality traits and parental involvement: Contributing as predictors of academic performance in high school and college (Unpublished doctoral dissertation). California School of Professional Psychology.
- *Papageorgious, K. A., Likhanov, M., Costantini, G., Tsigeman, E., Zaleshin, M., Budakova, A., & Kovas, Y. (2020). Personality, behavioral strength and difficulties and performance of adolescents with high performances in science, literature, art and sports. *Personality* and *Individual Differences*, 160, 109917.
- *Parkinson, J., & Taggar, S. (2006). Intelligence, personality, and performance on case studies. *Journal of Business and Psychology*, 20, 395–408.
- *Parrigon, S. (2013). Do some people not need their needs satisfied?

 An exploration of personality as a moderator of need satisfaction and academic performance (Unpublished master's thesis). Southern Illinois University).
- *Paunonen, S. V. (1998). Hierarchical organization of personality and prediction of behavior. *Journal of Personality and Social Psychology*, 74, 538–556.
- *Paunonen, S. V., & Ashton, M. C. (2001). Big Five predictors of academic performance. *Journal of Research in Personality*, 35, 78–90.
- *Peeters, H., & Lievens, F. (2005). Situational judgment tests and their predictiveness of college students' success: The influence of faking. Educational and Psychological Measurement, 65, 70–89.
- Peeters, J., De Backer, F., Reina, V. R., Kindekens, A., Buffel, T., & Lombaerts, K. (2014). The role of teachers' self-regulatory capacities in the implementation of self-regulated learning practices. *Procedia - Social and Behavioral Sciences*, 116, 1963–1970. https://doi.org/10.1016/j.sbspro.2014.01.504
- *Perera, H. N., McIlveen, P., & Oliver, M. E. (2015). The mediating roles of coping and adjustment in the relationship between personality and academic performance. *British Journal of Educational Psychology*, 85, 440–457.
- *Perry, S. R. (2003). *Big Five personality traits and work drive as pre-dictors of adolescent academic performance* (Unpublished doctoral dissertation). University of Tennessee.
- *Petska, K. S. (2006). Using personality variables to predict academic success in personalized system of instruction (Unpublished doctoral dissertation). University of Nebraska-Lincoln.
- *Phillips, P., Abraham, C., & Bond, R. (2003). Personality, cognition, and university students' examination performance. *European Journal of Personality*, 17, 435–448. https://doi.org/10.1002/per.488
- *Poorthuis, A. M. G., Thomaes, S., Denissen, J. J. A., vanAken, M. A. G., & de Castro, B. O. (2014). Can brief behavioral personality tests predict children's academic and social adjustment across the transition to secondary school? *European Journal of Psychological Assessment*, 30, 169–177.
- Poropat, A. E. (2009). A meta-analysis of the five-factor model of personality and academic performance. *Psychological Bulletin*, 135, 322–338.
- *Poropat, A. E. (2011). The role of citizenship performance in academic performance and graduate employability. *Education + Training*, *53*, 499–514.

- *Purcell, J. M. (2012). *Does conscientiousness predict college GPA better for high ability groups?* (Unpublished master's thesis). The University of Texas at San Antonio.
- *Ramalingam, A. T. (2014). Emotional intelligence, personality traits as predictor of self-efficacy and academic performance. *Multi-Disciplinary Education Global Quest*, *3*, 163–173.
- *Rascanu, R., Grama, B. G., & Botone, D. N. (2017). Influence of personality factors in the context of higher education academic performance. *Romanian Journal of Experimental Applied Psychology*, 8, 69–76.
- *Reddock, C. M., Biderman, M. D., & Nguyen, N. T. (2011). The relationship of reliability and validity of personality tests to frame-of-reference instructions and within-person inconsistency. *International Journal of Selection and Assessment*, 19, 119–131. https://doi.org/10.1111/j.1468-2389.2011.00540.x
- *Richardson, M., & Abraham, C. (2009). Conscientiousness and performance motivation predict performance. *European Journal of Personality*, 23, 589–605.
- Richardson, M., Abraham, C., & Bond, R. (2012). Psychological correlates of university students' academic performance: A systematic review and meta-analysis. *Psychological Bulletin*, 138, 353–387. https://doi.org/10.1037/a0026838
- *Ridgell, S. D., & Lounsbury, J. W. (2004). Predicting academic success: General intelligence, "Big Five" personality traits, and work drive. College Student Journal, 38, 607–618.
- *Rimfeld, K., Kovas, Y., Dale, P. S., & Plomin, R. (2016). True grit and genetics: Predicting academic performance from personality. *Journal of Personality and Social Psychology*, 111, 780–789.
- Roberts, B. W., & DelVecchio, W. F. (2000). The rank-order consistency of personality traits from childhood to old age: A quantitative review of longitudinal studies. *Psychological Bulletin*, 126, 3–25
- *Rode, J. C., Mooney, C. H., Arthaud-Day, M. L., Near, J. P., Baldwin, T. T., Rubin, R. S., & Bommer, W. H. (2007). Emotional intelligence and individual performance: Evidence of direct and moderated effects. *Journal of Organizational Behavior*, 28, 399–421. https://doi.org/10.1002/job.429
- Rohde, T. E., & Thompson, L. A. (2007). Predicting academic performance with cognitive ability. *Intelligence*, *35*, 83–92.
- *Rosander, P., & Backstrom, M. (2014). Personality traits measured at baseline can predict academic performance in upper secondary school three years late. *Scandinavian Journal of Psychology*, *55*, 611–618. https://doi.org/10.1111/sjop.12165
- *Rosander, P., Backstrom, M., & Stenberg, G. (2011). Personality traits and general intelligence as predictors of academic performance: A structural equation modeling approach. *Learning and Individual Differences*, 21, 590–596.
- Rosenthal, R. (1979). The 'File drawer problem' and tolerance for null results. *Psychological Bulletin*, 86, 638–641.
- Rosenthal, R., & Rubin, D. B. (1986). Meta-analytic procedures for combining studies with multiple effect sizes. *Psychological Bulletin*, *99*, 400–406.
- *Rothstein, M. G., Paunonen, S. V., Rush, J. C., & King, G. A. (1994). Personality and cognitive ability predictors of performance in graduate business school. *Journal of Educational Psychology*, 86, 516–530.
- *Saklofske, D. H., Austin, E. J., Mastoras, S. M., Beaton, L., & Osborne, S. E. (2012). Relationships of personality, affect, emotional intelligence and coping with student stress and academic success: Different patterns of association for stress and success. *Learning*

- and Individual Differences, 22, 251–257. https://doi.org/10.1016/j.lindif.2011.02.010
- *Santo, S. A. (2001). *Virtual learning, personality, and learning styles* (Unpublished doctoral dissertation). University of Virginia.
- Saucier, G. (1994). Mini-markers: A brief version of Goldberg's unipolar big-five markers. *Journal of Personality Assessment*, 63, 506–516.
- Saucier, G., & Goldberg, L. R. (1996). The language of personality: Lexical perspectives on the five-factor model. In J. S. Wiggins (Ed.), The five-factor model of personality: Theoretical perspectives (pp. 21–50). Guilford.
- *Saxena, M., & Mishra, D. K. (2014). A study of the relation between personality type and academic success. *Drishtikon: A Management Journal*, *5*, 23–40.
- *Scepansky, J. A., & Bjornsen, C. A. (2003). Educational, orientation, Neo PI-R personality traits, and plans for graduate school. *College Student Journal*, 37, 574–581.
- *Schmit, M. J., Ryan, A. M., Stierwalt, S. L., & Powell, A. B. (1995). Frame-of-reference effects on personality scale scores and criterion-related validity. *Journal of Applied Psychology*, 80, 607–620. https://doi.org/10.1037/0021-9010.80.5.607
- *Schmitt, N., Golubovich, J., & Leong, F. T. L. (2011). Impact of measurement invariance of construct correlations, mean differences, and relations with external correlates: An illustrative example using Big Five and RIASEC measures. *Assessment*, 18, 412–427.
- *Shchebetenko, S. (2016). Reflexive characteristic adaptations within the five-factor theory: Between basic tendencies and external outcomes. *Personality and Individual Differences*, 101, 35–41. https://doi.org/10.1016/j.paid.2016.05.055
- Shiner, R. L. (2006). Temperament and personality in childhood. In D. K. Mroczek & T. D. Little (Eds.), *Handbook of personality development* (pp. 213–230). Lawrence Erlbaum Associates Publishers.
- *Siddiquei, N. L., & Khalid, R. (2018). The relationship between personality traits, learning styles and academic performance of elearners. *Open Praxis*, 10, 249–263. https://doi.org/10.5944/openpraxis.10.3.870
- *Smithers, S., Catano, V. M., & Cunningham, D. P. (2004). What predicts performance in Canadian dental schools? *Journal of Dental Education*, 68, 598–613.
- *Smith-Woolley, E., Selzam, S., & Plomin, R. (2019). Polygenic score for educational attainment captures DNA variants shared between personality traits and educational performance. *Journal of Personality and Social Psychology*, 117, 1145–1163.
- *Song, J., Gaspard, H., Nagengast, B., & Trautwein, U. (2020). The conscientiousness x interest (CONIC) model: Generalizability across domains, outcomes, and predictors. *Journal of Educational Psychology*, 112, 271–287.
- *Soric, I., Penezic, Z., & Buric, I. (2017). The Big Five personality traits, goal orientations, and academic performance. *Learning and Individual Differences*, 54, 126–134.
- Soto, C. J., & John, O. P. (2017). The next Big Five Inventory (BFI-2): Developing and assessing a hierarchical model with 15 facets to enhance bandwidth, fidelity, and predictive power. *Journal of Personality and Social Psychology*, 113, 117–143. https://doi.org/10.1037/pspp0000096
- *Spengler, M., Brunner, M., Martin, R., & Lüdtke, O. (2016). The role of personality in predicting (change in) students' academic success across four years of secondary school. *European Journal of Psychological Assessment*, 32, 95–103.

- *Spinath, B., Eckert, C., & Steinmayr, R. (2014). Gender differences in school success: What are the role of students' intelligence, personality and motivation? *Educational Research*, *56*, 230–243.
- *Spinath, B., Freudenthaler, H. H., & Neubauer, A. C. (2010). Domain-specific school performance in boys and girls as predicted by intelligence, personality, and motivation. *Personality and Individual Differences*, 48, 481–486.
- *Steele-Johnson, D., & Leas, K. (2013). Importance of race, gender, and personality in predicting academic performance. *Journal of Applied Social Psychology*, 43, 1736–1744.
- *Steinmayr, R., Bipp, T., & Spinath, B. (2011). Goal orientations predict academic performance beyond intelligence and personality. *Learning and Individual Differences*, 21, 196–200. https://doi.org/10.1016/j.lindif.2010.11.026
- *Steinmayr, R., & Kessels, U. (2017). Good at school = successful on the job? Explaining gender differences in scholastic and vocational success. *Personality and Individual Differences*, 105, 107–115.
- *Steinmayr, R., & Spinath, B. (2008). Sex differences in school performance: What are the roles of personality and performance motivation. *European Journal of Personality*, 22, 185–209.
- Strus, W., Cieciuch, J., & Rowinski, T. (2014). The circumplex of personality metatraits: A synthesizing model of personality based on the Big Five. *Review of General Psychology*, 18, 273–286. https://doi.org/10.1037/gpr0000017
- *Sunbul, Z. A. (2019). How grit mediates the relations between personality and GPA in university students? *Cypriot Journal of Educational Sciences*, 14, 257–265. https://doi.org/10.18844/cjes.v14i2.4131
- *Swanberg, A. B., & Martinsen, Ø. L. (2010). Personality, approaches to learning and performance. *Educational Psychology*, 30, 75–88.
- *Taher, A. M. M., Chen, J., & Yao, W. (2011). Key predictors of creative MBA students' performance: Personality type and learning approaches. *Journal of Technology Management in China*, 6, 43–68.
- Tatar, M. (1998). Primary and secondary school teachers' perceptions and actions regarding their pupils' emotional lives. School Psychology International, 19, 151–168.
- *Tetzner, J., Becker, M., & Brandt, N. D. (2019). Personality-performance associations in adolescence-examining associations across grade levels and learning environments. *Journal of Personality*, 88, 356–372.
- Thalmayer, A. G., Saucier, G., & Eigenhaus, A. (2011). Comparative validity of brief to medium-length Big Five and Big Six personality questionnaires. *Psychological Assessment*, 23, 995–1009.
- *Thiele, L., Sauer, N. C., & Kauffeld, S. (2018). Why extraversion is not enough: The mediating role of initial peer network centrality linking personality to long-term academic performance. *Higher Education*, 76, 789–805. https://doi.org/10.1007/s10734-018-0242-5
- Tikhomirova, T., Malykh, A., & Malykh, S. (2020). Predicting academic performance with cognitive abilities: Cross-sectional study across school education. *Behavioral Sciences*, 10, 1–13.
- *Tok, S., & Morali, S. L. (2009). Trait emotional intelligence, the Big Five personality dimensions and academic success in physical education teacher candidates. *Social Behavior and Personality*, *37*, 921–931. https://doi.org/10.2224/sbp.2009.37.7.921
- Tonidandel, S., & LeBreton, J. M. (2011). Relative importance analysis: A useful supplement to regression analysis. *Journal of Business and Psychology*, 26, 1–9. https://doi.org/10.1007/s10869-010-9204-3
- Trapmann, S., Hell, B., Hirn, J. O. W., & Schuler, H. (2007). Metaanalysis of the relationship between the Big Five and academic success at university. *Zeitschrift fur Psychologie*, 215, 132–151. https:// doi.org/10.1027/0044-3409.215.2.132

- *Troncone, A., Drammis, M. L., & Labella, A. (2014). Personality traits, self-esteem and academic performance in secondary school students in Campania, Italy. *University Journal of Educational Research*, 2, 512–520.
- *Tross, S. A., Harper, J. P., Osher, L. W., & Kneidinger, L. M. (2000). Not just the usual cast of characteristics: Using personality to predict college performance and retention. *Journal of College Student Development*, 41, 323–334.
- *Tucker-Drob, E. M., Briley, D. A., Engelhardt, L., Mann, F. D., & Harden, K. P. (2016). Genetically-mediated associations between measures of childhood character and academic performance. *Journal of Personality and Social Psychology*, 111, 790–815.
- van der Linden, D., te Nijenhuis, J., & Bakker, A. B. (2010). The general factor of personality: A meta-analysis of Big Five intercorrelations and a criterion-related validity study. *Journal of Research in Personality*, 44, 315–327. https://doi.org/10.1016/j.jrp.2010.03.003
- Vedel, A. (2014). The Big Five and tertiary academic performance: A systematic review and meta-analysis. *Personality and Individual Differences*, 71, 66–76. https://doi.org/10.1016/j.paid.2014.07.011
- *Vedel, A., Thomsen, D. K., & Larsen, L. (2015). Personality, academic majors, and performance: Revealing complex patterns. *Personality and Individual Differences*, 85, 69–76.
- *Ventura, M., Shute, V., & Kim, Y. J. (2012). Video gameplay, personality and academic performance. *Computers & Education*, 58, 1260–1266. https://doi.org/10.1016/j.compedu.2011.11.022
- Vermetten, Y. J., Lodewijks, H. G., & Vermunt, J. D. (2001). The role of personality traits and goal orientations in strategy use. *Contemporary Educational Psychology*, 26, 149–170. https://doi. org/10.1006/ceps.1999.1042
- Viswesvaran, C., & Ones, D. S. (1999). Meta-analyses of fakability estimates: Implications for personality measurement. *Educational* and *Psychological Measurement*, 59, 197–210. https://doi. org/10.1177/00131649921969802
- *Vitulic, H. S., & Prosen, S. (2012). Personality and cognitive abilities as predictor of university students' academic performance. *Journal for General Social Issues*, *3*, 715–732.
- *Vitulic, H. S., & Zupancic, M. (2013). Robust and specific personality traits as predictors of adolescents' final grades and GPA at the end of compulsory schooling. *European Journal of Psychology of Education*, 28(4), 1181–1199.
- *Wagerman, S. A., & Funder, D. C. (2007). Acquaintance reports of personality and academic performance: A case for conscientiousness. *Journal of Research in Personality*, 41, 221–229.
- *Waldman, D. A., & Korbar, T. (2004). Student assessment center performance in the prediction of early career success. *Academy of Management Learning & Education*, 3, 151–167. https://doi.org/10.5465/amle.2004.13500529
- *Wang, S., Zhao, Y., Li, J., Wang, X., Luo, K., & Gong, Q. (2019). Brain structure links trait conscientiousness to academic performance. *Scientific Reports*, *9*, 12168.
- Watson, D., & Clark, L. A. (1997). Extraversion and its positive emotional core. In R. Hogan, J. Johnson, & S. Briggs (Eds.), *Handbook of personality psychology* (pp. 767–793). Academic Press.
- *Westphal, A., Vock, M., & Lazarides, R. (2020). Are more conscientious seventh- and ninth-graders less likely to be retained? Effects of Big Five personality traits on grade retention in two different age cohorts. *Journal of Applied Developmental Psychology*, 66, 101088. https://doi.org/10.1016/j.appdev.2019.101088

- *Wingate, T. G., & Tomes, J. L. (2017). Who's getting the grades and who's keeping them? A person-centered approach to academic performance and performance variability. *Learning and Individual Differences*, 56, 175–182. https://doi.org/10.1016/j.lindif.2017.02.007
- *Wintre, M. G., & Sugar, L. A. (2000). Relationships with parents, personality, and the university transition. *Journal of College Student Development*, 41, 202–214.
- *Wolfe, R. N., & Johnson, S. D. (1995). Personality as a predictor of college performance. *Educational and Psychological Measurement*, 55, 177–185.
- *Woo, S. E., Jin, J., & LeBreton, J. M. (2015). Specificity matters: Criterion-related validity of contextualized and facet measures of conscientiousness in predicting college student performance. *Journal of Personality Assessment*, 97, 301–309.
- *Woodfield, R., Jessop, D., & McMillan, L. (2006). Gender differences in undergraduate attendance rates. *Studies in Higher Education*, *31*, 1–22.
- *Xia, L., Yuan, Y. C., & Gay, G. (2009). Exploring negative group dynamics: Adversarial network, personality, and performance in project groups. *Management Communication Quarterly*, 23, 32–62.
- *Zach, S., & Inglis, V. (2019). The relationships between personality traits, subjective well-being, and academic performance among physical education teacher education students. *Journal of Cognitive Education and Psychology*, 18, 52–66.
- *Zee, M., Koomen, H. M. Y., & Van der Veen, I. (2013). Student-teacher relationship quality and academic adjustment in upper elementary school: The role of student personality. *Journal of School Psychology*, *51*, 517–533.
- *Zhou, M. (2015). Moderating effect of self-determination in the relationship between Big Five personality and academic performance. *Personality and Individual Differences*, 86, 385–389.
- *Ziegler, M., Danay, E., Schölmerich, F., & Bühner, M. (2010). Predicting academic success with the Big 5 rated from different points of view: Self-rated, Other rated and Faked. *European Journal of Personality*, 24, 341–355.
- *Zupancic, M., Kavcic, T., Slobodskaya, H. R., & Akhmetova, O. A. (2016). Broad and narrow personality traits predicting academic performance over compulsory schooling: A cross-sectional study in two countries. *Journal on Early Adolescence*, 36, 783–806.
- *Zyphur, M. J., Bradley, J. C., Landis, R. S., & Thoresen, C. J. (2008). The effects of cognitive ability and conscientiousness on performance over time: A censored latent growth model. *Human Performance*, 21, 1–27.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the Supporting Information section.

How to cite this article: Mammadov, S. (2021). Big Five personality traits and academic performance: A meta-analysis. *Journal of Personality*, 00, 1–34. https://doi.org/10.1111/jopy.12663