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Search in patchy media: Exploitation-exploration tradeoff
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How to best exploit patchy resources? We introduce a minimal exploitation-migration model that incorporates
the coupling between a searcher’s trajectory, modeled by a random walk, and ensuing depletion of the environment
by the searcher’s consumption of resources. The searcher also migrates to a new patch when it takes S consecutive
steps without finding resources. We compute the distribution of consumed resources Ft at time t for this non-
Markovian searcher and show that consumption is maximized by exploring multiple patches. In one dimension,
we derive the optimal strategy to maximize Ft . This strategy is robust with respect to the distribution of resources
within patches and the criterion for leaving the current patch. We also show that Ft has an optimum in the
ecologically relevant case of two-dimensional patchy environments.
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I. INTRODUCTION

Optimizing the exploitation of patchy resources is a long-
standing dilemma in a variety of search problems, including
robotic exploration [1], human decision processes [2], and
especially in animal foraging [3–6]. In foraging, continuous
patch use [6,7] and random search [5,8] represent two paradig-
matic exploitation mechanisms. In the former [Fig. 1(a)], a
forager consumes resources within a patch until a specified
depletion level, and concomitant decrease in resource intake
rate, is reached before the forager moves to another virgin
patch. In his pioneering work [6], Charnov predicted the
optimal strategy to maximize resource consumption. This
approach specifies how fitness-maximizing foragers should
use environmental information to determine how completely a
food patch should be exploited before moving to new foraging
territory.

The nature of foraging in an environment with resources
that are distributed in patches has been the focus of consider-
able research in the ecology literature (see, e.g., Refs. [6,9–
20]); theoretical developments are relatively mature and many
empirical verifications of the theory have been found. How-
ever, continuous patch-use models typically do not account for
the motion of the searcher within a patch, and the food intake
rate within a patch is given a priori [9,20,21], so that depletion
is deterministic and spatially homogeneous.

Random search represents a complementary perspective in
which the searcher typically moves by a simple or a generalized
random walk. The search efficiency is quantified by the time to
reach targets [Fig. 1(b)]. Various algorithms, including Lévy
strategies [22], intermittent strategies [23–26], and persistent
random walks [27], have been shown to minimize this search
time under general conditions. However, these models do not
consider depletion of the targets.

Issues that have been addressed to some extent in the above
scenarios include the overall influence of resource patchiness
(but see Refs. [11,13,18,19,28,29] for relevant work), as well
as the coupling between searcher motion within patches and

resource depletion; the latter is discussed in a different context
than that given here in Ref. [30]. In this work, we introduce
a minimal exploitation-migration model that accounts for the
interplay between mobility and depletion from which we are
able to explicitly derive the amount of consumed food Ft up
to time t , determine the optimal search strategy, and test its
robustness.

II. EXPLOITATION-MIGRATION MODEL

Each patch is modeled as an infinite lattice, with each site
initially containing one unit of resource, or food. A searcher
undergoes a discrete-time random walk within a patch and
food at a site is completely consumed whenever the site is
first visited. The searcher thus sporadically but methodically
depletes the resource landscape.

Resources within a patch become scarcer and eventually
it becomes advantageous for the searcher to move to a new
virgin patch. We implement the scarcity criterion that the
searcher leaves its current patch upon wandering for a time S
without encountering food. Throughout this work, all times are
rescaled by the (fixed) duration of a random-walk step. Thus
S also represents the number of random-walk steps that the
walker can take without finding food. This notion of a specified
give-up time has been validated by many ecological observa-
tions [20,21,31,32]. The searcher therefore spends a random
time Ti and consumes fi food units in patch i, before leaving
[Fig. 1(d)]. We assume, for simplicity, a deterministic migra-
tion time Z to go from one patch to the next. We define ti as the
time when the searcher arrives at patch i + 1 and τi = ti − ti−1

as the time interval between successive patch visits. The dura-
tion of phase i, which starts at ti−1 and consists of exploitation
in patch i and migration to patch i + 1, is τi ≡ Ti + Z.

Our model belongs to a class of composite search strategies
that incorporate (i) intensive search (patch exploitation) and (ii)
fast displacement (migration) [33–35]; here we extend these
approaches to account for resource depletion. In addition to
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FIG. 1. (a) Continuous patch use: a searcher uniformly depletes
patch i at a fixed rate for a deterministic time T and moves to a
patch i + 1 when patch i is sufficiently depleted. (b) Random search:
a searcher seeks one or a few fixed targets (circles) via a random
walk. (c) Our model: a searcher depletes resources within a patch
for a random time Ti . (d) Model time history. Phase i, of duration
τi , is composed of patch exploitation (duration Ti , shadowed) and
migration (duration Z). The last phase is interrupted at time t , either
during exploitation (shown here) or migration, and lasts τ ∗.

its ecological relevance, this exploit-explore duality underlies
a wide range of phenomena, such as portfolio optimization
in finance [36], knowledge management and transfer [37],
research and development strategies [2], and also everyday
life decision making [38].

We quantify the exploitation efficiency by the amount of
consumed food Ft up to time t . Note that Ft is also the number
of distinct sites that the searcher visits by time t , which is
known for Markovian random walks [39,40]. In our model,
we need to track all previously visited sites in the current
patch to implement the scarcity criterion, which renders the
dynamics non-Markovian.

We will show that Ft admits a nontrivial optimization in
spatial dimensions d � 2. If a random-walk searcher remains
in a single patch forever (exploitation controlled; equivalently,
S → ∞), then Ft , which coincides with the number of distinct
sites visited in the patch, grows sublinearly in time, as

√
t in

d = 1 and as t/ ln t in d = 2 [39]. On the other hand, if the
searcher leaves a patch as soon as it fails to find food (migration
controlled, S = 1), Ft clearly grows linearly in time, albeit
with a small amplitude that scales as 1/Z. Thus Ft must be
optimized at some intermediate value of S, leading to substan-
tial exploitation of the current patch before migration occurs.

III. AMOUNT OF FOOD CONSUMED

A. Formalism

To compute the amount of food consumed, let m be the
(random) number of phases completed by time t , while the

(m + 1)th phase is interrupted at time t . Then Ft can be written
as

Ft = f1 + · · · + fm + f ∗, (1a)

where f ∗ denotes the food consumed in this last incomplete
phase. Similarly, the phase durations {τi} satisfy the sum rule
[Fig. 1(d)]

t = τ1 + · · · + τm + τ ∗, (1b)

where again τ ∗ denotes the duration of the last phase. Since
the food consumed and the duration of the ith phase, fi and τi

respectively, are correlated, the sum rule (1b) couples the fi’s
and the number m of patches visited. The distinct variables
fi and τi are correlated and pairwise identically distributed,
except for the last pair (f ∗,τ ∗) for the incomplete phase. We
will ignore this last pair in evaluating Ft , an approximation
that is increasingly accurate for large S.

We now express the distribution of Ft in terms of the joint
distribution of the food consumed in any phase and the duration
of any phase, which we compute in d = 1. For this purpose,
we extend the approach developed in Ref. [41] for standard
renewal processes to our situation where f and τ are coupled.
To obtain the distribution of Ft , it is convenient to work with
the generating function 〈e−pFt 〉, where the angle brackets
denote the average over all possible searcher trajectories.
This includes integrating over each phase duration, as well as
summing over the number of phases and the food consumed in
each patch. The generating function can therefore be written
as

〈e−pFt 〉 =
∞∑

m=0

∫
Rm

dy1 . . . dym

∑
n1,...,nm

e−p(n1+···+nm)

× Pr({ni},{yi},m), (2)

where we now treat the time as a continuous variable in the
long-time limit. The second line is the joint probability that the
food consumed in each patch is {ni}, that each phase duration
is {yi}, and that m phases have occurred; we also ignore the
last incomplete phase. From Fig. 1(d), the final time t occurs
sometime during the (m + 1)th phase, so that tm < t < tm+1.

We rewrite the joint probability as the ensemble average
of the following expression, which equals 1 when the process
contains exactly m complete phases of durations {yi}, with
ni units of food consumed in the ith phase, and equals 0
otherwise:

Pr({ni},{yi},m) =
〈

m∏
i=1

δfi ,ni
δ(τi − yi)I (tm < t < tm+1)

〉
,

(3)

with the indicator function I (z) = 1 if the logical variable z

is true, and I (z) = 0 otherwise. We can compute the Laplace
transform with respect to the time t of this joint probability
(see Appendix A) from which the temporal Laplace transform
of the generating function 〈e−pFt 〉 is∫ ∞

0
dt e−st 〈e−pFt 〉 = 1 − 〈e−sτ 〉1

s(1 − 〈e−pf −sτ 〉1)
. (4)
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Here 〈e−pf −sτ 〉1 is an ensemble average over the values (f,τ )
for the amount of food consumed in a single phase and the
duration of this phase; we use the subscript 1 to indicate
such an average over a single phase. Equation (4) applies for
any distribution of the pair (f,τ ); in particular for any spatial
dimension, search process, and distribution of food within
patches.

B. Detailed results

We now make Eq. (4) explicit in d = 1 by calculating
〈e−sτ−pf 〉1. For this purpose, we use the equivalence between
exploitation of a single patch and the survival of a starving
random walk [42,43]. In this latter model, a random walk
is endowed with a metabolic capacity S, defined as the
number of steps the walker can take without encountering
food before starving. The walker moves on an infinite d-
dimensional lattice, with one unit of food initially at each
site. Upon encountering a food-containing site, the walker
instantaneously and completely consumes the food and can
again travel S additional steps without eating before starving.
Upon encountering an empty site, the walker comes one time
unit closer to starvation.

In our exploitation-migration model, the statistics of (f,τ )
for a searcher that leaves its current patch after S steps without
finding food coincides with the known number of distinct sites
visited and lifetime of a starving random walk with metabolic
capacity S at the instant of starvation [42,43]. In Appendix B,
we determine the full distribution of the pair (f,τ ), from which
we finally extract the quantity 〈e−pf −sτ 〉1 in Eq. (4), where
τ = T + Z, with T the (random) time spent in a patch and Z

the fixed migration time. The final result is

〈e−pf −sτ 〉1 =
∫ ∞

0
dθ P (θ ) e [−pπθ

√
S/2−s(Z+S)+Q(θ)], (5a)

where

Q(θ ) = exp

⎡
⎣4

∫ θ

0

du

u

∞∑
j=0

qj

⎤
⎦,

qj = 1 − e−[sS+(2j+1)2/u2]

1 + su2S/(2j + 1)2
− (1 − e−(2j+1)2/u2

),

P (θ ) = 4

θ

∞∑
j=0

e−(2j+1)2/θ2
exp

[
−2

∞∑
k=0

E1((2k + 1)2/θ2)

]
,

(5b)

and E1(x) = ∫∞
1 dt e−xt /t is the exponential integral.

We now focus on the first two moments of Ft , whose
Laplace transforms are obtained from the small-p expansion
of Eq. (4). By analyzing this expansion in the small-s limit,
the long-time behavior of these moments are (with all details
given in Appendix C):

〈Ft 〉
t

∼ 〈f 〉
〈T 〉 + Z

,

Var(Ft )

t
∼ 〈f 〉2Var(T )

(〈T 〉 + Z)3
+ Var(f )

〈T 〉 + Z
− 2

〈f 〉Cov(f,T )

(〈T 〉 + Z)2
, (6)

FIG. 2. (a) Scaled mean and (b) variance of the food consumed
Ft at t = 5 × 105 steps. Points give numerical results and the curves
are the asymptotic predictions in (7). The migration time Z between
patches is 500 steps.

where Var(X) ≡ 〈X2〉 − 〈X〉2, Cov(X,Y ) ≡ 〈XY 〉 − 〈X〉〈Y 〉
and for simplicity, we now drop the subscript 1. From the
small-p and small-s limits of Eqs. (5a) and (5b), the limiting
behavior of the moments for S 
 1 are

〈Ft 〉
t

� K1

√
S

K2S + Z
,

Var(Ft )

t
�
[

K3S3

(K2S +Z)3
+ K4S

K2S + Z
− K5S2

(K2S + Z)2

]
, (7)

where the Ki are constants that are derived in Appendix D.
The dependences 〈f 〉 = K1

√
S and 〈T 〉 = K2S have simple

heuristic explanations (see also Ref. [43]): Suppose that the
length of the interval where resources have been consumed
reaches a length

√
S. When this critical level of consumption

is reached, the forager will typically migrate to a new patch
because the time to traverse the resource-free interval will be
of the order of S. Thus, the resources consumed in the current
patch will be of the order of the length of the resource-free
region, namely

√
S , while the time 〈T 〉 spent in this patch

will be of the order of the time S to traverse this region of
length

√
S.

The salient feature from Eq. (7) is that 〈Ft 〉 has a maximum,
which occurs when S = Z/K2, corresponding to 〈T 〉 = Z

(Fig. 2). That is, the optimal strategy to maximize food
consumption is to spend the same time exploiting each patch
and migrating between patches.

It is worth mentioning that we can reproduce the first
of Eqs. (6) by neglecting correlations between f and T . In
this case 〈Ft 〉 is simply the average amount of food 〈f 〉
consumed in a single patch multiplied by the mean number
t/(〈T 〉 + Z) of patches explored at large time t . However, this
simple calculational approach fails to account for the role of
fluctuations, specifically the covariance between f and T , in
the variance of Ft . In fact, the covariance term [last term in
Eq. (6)] reduces fluctuations in food consumption by a factor
three compared to the case where correlations are neglected.

IV. EXTENSIONS

The optimal strategy outlined above is robust and holds
under quite general conditions, including, for example, (i)
randomly distributed food within a patch, and (ii) searcher
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FIG. 3. Average food consumed in d = 1 when: (a) the distri-
bution of food is Poisson distributed with density ρ = 0.1 (×) and
ρ = 1 (•), as well as when the searcher has a constant probability
at each step to leave the patch (�); (b) average food consumed in
d = 2 for food density ρ = 1. The interpatch travel time Z = 50 for
all cases.

volatility. For (i), suppose that each lattice site initially contains
food with probability ρ. To show that the optimal search
strategy is independent of ρ, we again exploit the mapping
onto starving random walks in the limit S 
 1/ρ. A density
of food ρ corresponds to an effective lattice spacing that is
proportional to ρ−1/d , with d the spatial dimension. For large
S, this effective lattice spacing has a negligible effect on the
statistics of the starving random walk. Both the mean lifetime
and mean number of distinct sites visited are the same as in the
case where the density of food equals 1. However, because the
probability to find food at a given site is ρ, the amount of food
consumed differs from the number of distinct sites visited by
an overall factor ρ. Thus, the food consumed at time t [the first
of Eqs. (7)] is simply

〈Ft 〉
t

� ρ
K1

√
S

K2S + Z
. (8)

Consequently, the optimal search strategy occurs for the same
conditions as the case where each site initially contains food
[Fig. 3(a)].

For the second attribute, suppose that the searcher has a
fixed probability λ to leave the patch at each step, independent
of the current resource density, rather than migrating after
taking S steps without encountering food. The residence time
of the searcher on a single patch thus follows an exponential
distribution with mean λ−1. The exploitation of a single patch
can now be mapped onto the evanescent random walk model, in

which a random walk dies with probability λ at each step [44],
and for which the mean number of distinct sites visited has
recently been obtained in one dimension. Since Eq. (4), and
thus Eqs. (6), still hold for any distribution of times spent in
each patch, we can merely transcribe the results of Ref. [44] [in
particular their Eq. (7) and the following text] to immediately
find that the average food consumed at time t is

〈Ft 〉
t

∼
√

coth λ/2

Z + λ−1
. (9)

Now 〈Ft 〉 is maximized for 1/λ � Z in the Z 
 1 limit. Again,
the optimal strategy is to spend the same amount of time on
average in exploiting a patch and in migrating between patches
[Fig. 3(a)].

For the ecologically relevant case of two-dimensional
resource patches, the average amount of food consumed is
governed by a similar optimization as in d = 1 [Fig. 3(b)].
While the description of the two-dimensional case does not
appear to be analytically tractable, we numerically find that
the optimal strategy consists in spending somewhat more
time exploiting a single patch rather than migrating between
patches. This inclination arises because patch exploitation—
whose efficiency is quantified by the average number of
distinct sites visited by a given time—is relatively more
rewarding in two than in one dimension [39,40].

V. SUMMARY

To summarize, we introduced a minimal exploitation-
migration model that quantifies the couplings between
searcher motion within patches, resource depletion, and
migration to new patches. Our model may provide a first
step to understand more realistic ecological foraging, where
effects such as predation of the forager [45,46], heterogeneous
travel times between patches [47], and more complex motions
than pure random walks [48,49] are surely relevant. On the
theoretical side, our model can also be viewed as a resetting
process, in which a random walker stochastically resets to
a new position inside a virgin patch. In contrast to existing
studies [50–54], the times between resets are not given a priori
but determined by the walk itself. This modification may open
a new perspective in the burgeoning area of resetting processes.
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APPENDIX A: DERIVATION OF EQ. (4)

We first provide the details to relate the distribution of the amount of food Ft consumed by time t to the statistics of the amount
of food f consumed in a single patch and the associated phase duration τ and thereby obtain Eq. (4). Next, in Appendix B,
we determine the joint statistics of the time T spent in a patch and the quantity f of food consumed in this patch for the case
of one-dimensional patches [Eqs. (5a) and (5b)]. For this calculation, we use the scarcity criterion that the searcher migrates
to a new patch when it takes S steps without encountering food. This criterion maps the multipatch foraging problem onto the
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starving random walk model. In Appendix C, we extract the moments of Ft from Eq. (4) in the long-time limit to obtain Eq. (6).
Combining all these elements ultimately gives Eqs. (7), as shown in Appendix D.

We first need to compute the quantity 〈e−pf −sτ 〉1 that appears as Eq. (4), as well as the moments of τ = T + Z and f that
appear as Eqs. (6). Note that all the times in the problem—t , S, Z, Ti , τi and ti—are rescaled by the duration of a random-walk
step. We start with the amount of food Ft consumed by time t , which is the sum of the amounts of food consumed during each
of the m complete phases and the last incomplete phase

Ft = f1 + · · · + fm + f ∗. (A1)

Since t occurs anytime during the last phase (either during the exploitation of the (m + 1)th patch or during migration to the next
patch), the statistics of the food consumed during the last incomplete phase, f ∗, is different from those of all the other fi’s. In
the long-time limit, f ∗ is negligible compared to the total amount of food consumed Ft , so we ignore f ∗ in (A1) henceforth.

As defined in Eq. (2), the generating function of Ft is

〈e−pFt 〉 =
∞∑

m=0

∫
Rm

dy1 . . . dym

∑
n1,...,nm

e−p(n1+···+nm) Pr({ni},{yi},m). (A2)

Here, the joint probability for the amount of food {ni} consumed in the ith patch, the times {yi} for the phase durations, and the
number m of complete phases is

Pr({ni},{yi},m) =
〈

m∏
i=1

δfi ,ni
δ(τi − yi)I (tm < t < tm+1

〉
, (A3)

where the indicator function I (z) = 1 if the logical variable z is true, and I (z) = 0 otherwise. Following Ref. [41], we compute
the multiple Laplace transform of this joint probability with respect to the time t and the {yi}. This Laplace transform is

Lt,y1,...,ym
Pr({ni},{yi},m) ≡

∫
(R+)m+1

dt dy1...dym e−(st+u1y1+···+umym)Pr({ni},{yi},m), (A4a)

where s is the variable conjugate to t , and each ui is conjugate to the corresponding yi . Substituting in the definition (A3) for the
joint probability, we obtain

Lt,y1,...,ym
Pr({ni},{yi},m) =

〈∫ ∞

0
dt e−st I (tm < t < tm+1)

m∏
i=1

δfi ,ni
e−uiτi

〉

=
〈

e−stm − e−stm+1

s

m∏
i=1

δfi ,ni
e−uiτi

〉
. (A4b)

We now write tm and tm+1 (the latter defines the end of the phase m + 1, which happens after time t), as a function of the τi’s:

tm+1 = tm + τm+1 = τ1 + · · · + τm+1. (A5)

Here τm+1 is the duration of the (m + 1)th complete phase (which is longer than the duration of the interrupted phase τ ∗). Using
these relations in (A4b) yields

Lt,y1,...,ym
Pr({ni},{yi},m) =

〈
1 − e−sτm+1

s

m∏
i=1

δfi ,ni
e−(ui+s)τi

〉
,

= 1−〈e−sτ 〉1

s

m∏
i=1

〈
δfi ,ni

e−(ui+s)τi
〉
, (A6)

where we use the independence of the phase durations in the second line. We now denote by g(n,y) the joint probability that the
searcher consumes an amount of food n during this phase and that this phase lasts a time y. We also define the Laplace transform
of this joint probability with respect to y as ĝ(n,s). We then rewrite the ensemble average in Eq. (A6) as a sum over the amount
of food consumed in phase i and over all possible phase durations:

〈
δfi ,ni

e−(ui+s)τi
〉
1 =

∫ ∞

0
dy ′

i

∞∑
n′

i=0

g(n′
i ,y

′
i) e−(ui+s)y ′

i δn′
i ,ni

= ĝ(ni,s + ui). (A7)

Substituting Eq. (A7) into (A6) gives

Lt,y1,...,ym
Pr({ni},{yi},m) = 1 − 〈e−sτ 〉1

s

m∏
i=1

ĝ(ni,s + ui). (A8)
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We now use the feature that shifting the Laplace variable corresponds to multiplication by an exponential factor in the time
domain

Lt (e
−ath(t)) ≡

∫ ∞

0
dt e−st e−ath(t) = ĥ(s + a), (A9)

to obtain the inverse Laplace transform (with respect to the variables ui) of Eq. (A8):

Lt Pr({ni},{yi},m) = 1 − 〈e−sτ 〉1

s

m∏
i=1

e−syi g(ni,yi). (A10)

We can now express simply the Laplace transform of Ft with respect to t using Eqs. (A2) and (A10)

Lt 〈e−pFt 〉 = 1 − 〈e−sτ 〉1

s

∞∑
m=0

⎛
⎝ m∏

i=1

∫ ∞

0
dyi

∞∑
ni=0

e−pni−syi g(ni,yi)

⎞
⎠

= 1 − 〈e−sτ 〉1

s

∞∑
m=0

(∫ ∞

0
dy

∞∑
n=0

e−pn−syg(n,y)

)m

. (A11)

The expression inside the parentheses is exactly the single-patch ensemble average 〈e−pf −sτ 〉1. Thus after performing the
geometrical sum over m, we obtain Eq. (4):

Lt 〈e−pFt 〉 = 1 − 〈e−sτ 〉1

s(1 − 〈e−pf −sτ 〉1)
. (A12)

APPENDIX B: DERIVATION OF EQS. (5a) AND (5b)

Having derived the generating function of Ft in the Laplace domain [Eq. (4)], we now focus on the specific case of one
dimension, in which the searcher uses the give-up criterion that it migrates to another patch upon taking S steps without
encountering food. We first derive 〈e−pf −sT 〉1, in the limit of large S, that we trivially relate to 〈e−pf −sτ 〉1 using τ = T + Z.
Following [42], we treat the time T spent in a patch, which is normally an (integer) number of steps, as a continuous variable.
We write the ensemble average 〈e−pf −sT 〉1 as

〈e−pf −sT 〉1 =
∫ ∞

0
dy

∞∑
n=0

e−pn−sy h(y,n) =
∞∑

n=0

P (n)e−pn

∫ ∞

0
dy e−sy h(y|n), (B1)

where h(y,n) is the joint probability for the searcher to spend a time y in a patch and consume n units of food. Additionally, P (n)
is the marginal probability that n units of food are consumed in a single patch when the searcher leaves the patch, integrated over
all exploitation durations, and h(y|n) is the conditional probability to spend a time y in the patch, given that n units of food have
been consumed at the instant of starvation.

As discussed in Sec. III A, to evaluate 〈e−pf −sT 〉1, we need to characterize the trajectory of a one-dimensional starving
random walk that has visited n distinct sites at the instant of starvation (see Ref. [42]). This trajectory consists of n − 1 successful
returns to food at either end of a growing food-free interval and a final lethal excursion. A return to food is successful if it takes
less than S steps, so the duration Rk of the kth return satisfies Rk < S for k ∈ [2,n] and Rn+1 � S, corresponding to the walker
dying before reaching one end of the interval. Each time the walker returns to one end of the interval, it eats the food there, so
that the interval length grows by one lattice spacing to (k + 1)a after k returns (with a the lattice spacing). The lifetime of this
walk is therefore T = R2 + · · · + Rn + S. The integral in Eq. (B1) can thus be written as

〈e−sT |n〉1 ≡
∫ ∞

0
dy e−syh(y|n) =

∫ ∞

0
dy

∫ ∞

0
dr2 . . .

∫ ∞

0
drne

−syδ(y − r2 − · · · − rn − S)
n∏

k=2

Pr(rk)

= e−sS
n∏

k=2

〈e−sRk 〉1 ≡ e−sS Un, (B2)

where Pr(rk) denotes the probability that the kth return to food lasts rk steps. The average 〈e−sRk 〉1 is conditioned on the walker
surviving until the kth return and can be expressed as

〈e−sRk 〉1 =
∫ S

0 dt e−stFk(t)∫ S
0 dt Fk(t)

→
∫ S

0
dt e−stFk(t) S → ∞. (B3)

Here Fk(t) is the first-passage probability that the walker first exits an interval of length ka at time t when starting a distance
a from one end. The denominator is thus the probability that the walker survives until the kth return, i.e., it reaches either end
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of a food-free interval of length ka within S steps. For large S, this survival probability equals 1 up to an exponentially small
correction.

To complete the calculation of 〈e−pf −sT 〉1, we need to evaluate the terms 〈e−sRk 〉1 that comprise Un in Eq. (B2). In the
long-time limit, corresponding to s → 0 and specifically to sRk � 1, each such term in Un is close to 1. Thus, it is convenient
to first compute ln Un and then reexponentiate:

ln Un =
n∑

k=2

ln〈e−sRk 〉 =
n∑

k=2

ln(1 + 〈e−sRk − 1〉). (B4)

We now substitute the explicit expression for the first-passage probability [55]

Fk(t) = 4πD

((k − 1)a)2

∞∑
j=0

(2j + 1) sin
(2j + 1)π

k − 1
exp

{
−
[

(2j + 1)π

(k − 1)a

]2

Dt

}
(B5)

with the diffusion constant D = a2/2 for a one-dimensional lattice random walk, in Eq. (B3) to recast (B4) as

ln Un =
n∑

k=2

ln

⎡
⎣1 + 4

ku2S

∞∑
j=0

(2j + 1)2

(
1 − e−(sS+(2j+1)2/u2)

s + (2j + 1)2/(u2S)
− 1 − e−(2j+1)2/u2

(2j + 1)2/(u2S)

)⎤⎦, (B6)

where u ≡ √
2 k/(π

√
S). Since the argument of the logarithm is close to 1 for S → ∞, we expand to lowest order to give

ln Un �
n∑

k=2

4

ku2S

∞∑
j=0

(2j + 1)2

(
1 − e−[sS+(2j+1)2/u2]

s + (2j + 1)2/(u2S)
− 1 − e−(2j+1)2/u2

(2j + 1)2/(u2S)

)
. (B7)

We now introduce θ ≡ √
2 n/(π

√
S) and take the continuum limit of Eq. (B7), using again u = √

2 k/(π
√
S), to give

ln U (θ ) � 4
∫ θ

0

du

u

∞∑
j=0

{
1 − e−[sS+(2j+1)2/u2]

1 + su2S/(2j + 1)2
− [1 − e−(2j+1)2/u2

]

}
. (B8)

Furthermore, the distribution P (n) that appears in Eq. (B1) was determined in the continuum limit in Ref. [42] in terms of the
rescaled variable θ

P (θ ) = 4

θ

∞∑
j=0

e−(2j+1)2/θ2
exp

{
−2

∞∑
k=0

E1[(2k + 1)2/θ2]

}
, (B9)

where E1(x) ≡ ∫∞
1 dt e−xt /t is the exponential integral function. We finally obtain

〈e−sT −pf 〉1 =
∫ ∞

0
dθ P (θ ) e−pπθ

√
S/2−sS exp

⎧⎨
⎩4

∫ θ

0

du

u

∞∑
j=0

[
1 − e−[sS+(2j+1)2/u2]

1 + sSu2/(2j + 1)2
− (1 − e−(2j+1)2/u2

)

]⎫⎬
⎭, (B10)

and using the relation τ = T + Z, we obtain Eqs. (5a) and (5b).

APPENDIX C: DERIVATION OF EQS. (6)

We now extract the moments of Ft in the long-time limit starting from Eq. (A12) [which coincides with (4)]. These moments
are obtained by expanding the generating function for p → 0:

〈e−pFt 〉 = 1 − p〈Ft 〉 + p2

2

〈
F 2

t

〉+ · · · , (C1)

where . . . denotes higher-order terms that are negligible as p → 0. From (C1), the temporal Laplace transform is

Lt 〈e−pFt 〉 = 1

s
− pLt 〈Ft 〉 + p2

2
Lt

〈
F 2

t

〉+ · · · . (C2)

We now straightforwardly expand Eq. (4) in a series in p to give

Lt 〈e−pFt 〉 = 1

s

[
1 − p

〈f e−sτ 〉1

1 − 〈e−sτ 〉1
+ p2

2

( 〈f 2e−sτ 〉1

1 − 〈e−sτ 〉1
+ 2〈f e−sτ 〉2

1

(1 − 〈e−sτ 〉1)2

)]
+ · · · . (C3)
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We identify the first two moments of Ft by comparing Eqs. (C2) and (C3), yielding, in the Laplace domain

Lt 〈Ft 〉 = 〈f e−sτ 〉1

s(1 − 〈e−sτ 〉1)
(C4a)

Lt

〈
F 2

t

〉 = 1

s

( 〈f 2e−sτ 〉1

1 − 〈e−sτ 〉1
+ 2〈f e−sτ 〉2

1

(1 − 〈e−sτ 〉1)2

)
. (C4b)

The long-time behavior of the moments is given by the small-s expansion of the above Laplace transforms:

Lt 〈Ft 〉 = 〈f 〉1

s2〈τ 〉1
+ 1

s

( 〈τ 2〉1〈f 〉1

2〈τ 〉2
1

− 〈f τ 〉1

〈τ 〉1

)
+ · · · , (C5a)

Lt

〈
F 2

t

〉 = 2〈f 〉2
1

s3〈τ 〉2
1

+ 1

s2

[
2〈f 〉1

〈τ 〉1

( 〈τ 2〉1〈f 〉1

〈τ 〉2
1

− 2
〈f τ 〉1

〈τ 〉1

)
+ 〈f 2〉1

〈τ 〉1

]
+ · · · , (C5b)

where . . . indicates lower-order terms in s as s → 0. Note that two orders in s are necessary to calculate the variance of Ft , as
the leading-order terms in s for 〈F 2

t 〉 and 〈Ft 〉2 cancel. By performing the inverse Laplace transform, we finally obtain, in the
limit t → ∞,

〈Ft 〉 = 〈f 〉1

〈τ 〉1
t +

( 〈τ 2〉1〈f 〉1

2〈τ 〉2
1

− 〈f τ 〉1

〈τ 〉1

)
+ · · · , (C6a)

〈
F 2

t

〉 = 2〈f 〉2
1

〈τ 〉2
1

t2 +
[

2〈f 〉1

〈τ 〉1

( 〈τ 2〉1〈f 〉1

〈τ 〉2
1

− 2
〈f τ 〉1

〈τ 〉1

)
+ 〈f 2〉1

〈τ 〉1

]
t + · · · . (C6b)

This yields Eqs. (6), after using τ = T + Z:

〈Ft 〉 = 〈f 〉1

〈T 〉1 + Z
t + · · · (C7a)

Var(Ft ) =
[ 〈f 〉2

1Var(T )

(〈T 〉1 + Z)3
+ Var(f )

〈T 〉1 + Z
− 2〈f 〉1Cov(f,T )

(〈T 〉1 + Z)2

]
t + · · · , (C7b)

where the variance Var(f ) and covariance Cov(f,T ) of f and T were defined after Eq. (6).

APPENDIX D: DERIVATION OF EQS. (7)

Finally, we obtain 〈f 〉1, 〈T 〉1, Var(T ), and 〈f T 〉1 that appear in Eq. (6) by taking the small-p and small-s limits of the Laplace
transform:

〈e−sT −pf 〉1 = 1 − s〈T 〉1 − p〈f 〉1 + ps〈Tf 〉1 + s2

2
〈T 2〉1 + · · · , (D1)

where . . . denotes higher-order terms in p and s. Substituting Eq. (B10) in this expansion gives

〈e−sT −pf 〉1 =
(

1 − sS + s2

2
S2

)∫ ∞

0
dθ P (θ )

(
1 − pπθ

√
S
2

+ (pπθ )2S
4

)(
1 + sSA(θ ) + s2S2 2B(θ ) + A2(θ )

2

)
+ · · · ,

(D2)

with

A(θ ) ≡
∞∑

j=0

∫ θ

0
du

4

u

[(
1 + u2

(2j + 1)2

)
e−(2j+1)2/u2 − u2

(2j + 1)2

]
,

B(θ ) ≡
∞∑

j=0

∫ θ

0
du

4

u

[
u4

(2j + 1)4
−
(

1

2
+ u2

(2j + 1)2
+ u4

(2j + 1)4

)
e−(2j+1)2/u2

]
. (D3)

Here we have also used the small-s expansion of the expression in the last exponential in Eq. (B10):

1 − e−[sS+(2j+1)2/u2]

1 + u2sS/(2j + 1)2
− (1 − e−(2j+1)2/u2

) = sS
[(

1 + u2

(2j + 1)2

)
e−(2j+1)2/u2 − u2

(2j + 1)2

]

+ s2S2

[
u4

(2j + 1)4
−
(

1

2
+ u2

(2j + 1)2
+ u4

(2j + 1)4

)
e−(2j+1)2/u2

]
. . . ,
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From Eq. (D2), the moments of f are simply expressed in terms of the marginal distribution P (θ ):

〈f 〉1 = π

√
S
2

∫ ∞

0
dθ θ P (θ ) ≡ K1

√
S,

〈f 2〉1 = π2S
2

∫ ∞

0
dθ θ2 P (θ ),

Var(f ) = 〈f 2〉1 − 〈f 〉2
1 = π2S

2

[∫ ∞

0
dθ θ2 P (θ ) −

(∫ ∞

0
dθ θ P (θ )

)2
]

≡ K4S. (D4)

Similarly, identifying (D2) with (D1), we obtain

〈T 〉1 =
[

1 −
∫ ∞

0
dθP (θ )A(θ )

]
S ≡ K2S,

〈T 2〉1 =
[

1 + 2
∫ ∞

0
dθP (θ )

(
B(θ ) + 1

2
A2(θ ) − A(θ )

)]
S2,

Var(T ) =
[∫ ∞

0
dθ P (θ )

(
2B(θ ) + A2(θ )

)−
(∫ ∞

0
dθ P (θ )A(θ )

)2
]
S2. (D5)

Equation (D1) also yields

〈f T 〉1 = π

√
S3

2

∫ ∞

0
dθ P (θ ) θ [1 − A(θ )],

Cov(f,T ) ≡ 〈f T 〉1 − 〈f 〉1〈T 〉1 = π

√
S3

2

∫ ∞

0
dθ P (θ ) θ

[∫ ∞

0
dϕ P (ϕ)A(ϕ) − A(θ )

]
. (D6)

Finally, we substitute these asymptotic expressions for the moments of f and T into Eq. (6) and obtain the constants K1 to K5

that appear in Eq. (7):

K1 ≡ π√
2

∫ ∞

0
dθ θ P (θ ) � 2.90 . . . ,

K2 ≡ 1 −
∫ ∞

0
dθ P (θ )A(θ ) � 3.27 . . . ,

K3 ≡ π2

2

[∫ ∞

0
dψ ψP (ψ)

]2
[∫ ∞

0
dθ P (θ )(2B(θ ) + A2(θ )) −

(∫ ∞

0
dθ P (θ )A(θ )

)2
]

� 16.1 . . . ,

K4 ≡ π2

2

[∫ ∞

0
dθ θ2 P (θ ) −

(∫ ∞

0
dθ θP (θ )

)2
]

� 1.78 . . . ,

K5 ≡ π2
∫ ∞

0
dψ ψ P (ψ)

∫ ∞

0
dθ P (θ ) θ

[∫ ∞

0
dϕ P (ϕ)A(ϕ) − A(θ )

]
� 8.51 . . . , (D7)

where the results are quoted to three-digit accuracy.
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