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Abstract—Noise, defined as an unwanted sound, is one of the
most common factors people have to deal with when performing
their daily working tasks. Researchers have marginally investi-
gated the effect of noise on software engineers’ performance. In
this paper, we present the results of two replicated experiments
whose main goal was to increase the body of knowledge, by
confirming or not the results of the baseline experiments, on
the effect of noise while comprehending functional requirements
specifications and fixing faults in source code. The results of
the replicated experiments suggest that: (i) noise does not
significantly affect the comprehension of functional requirements
specifications and (ii) noise significantly and negatively affects
fixing faults if this task lasts 30 minutes, while it does not have
a significant impact if the task lasts 60 minutes. The results of
the replications confirm to a large extent those of the baseline
experiments and allow us to postulate, as done for the baseline
experiments, that fixing faults is more vulnerable to noise than
comprehending the specifications of functional requirements.

Index Terms—Noise, Comprehension of Functional Require-
ments Specifications, Fault Fixing, Experiment, Replication.

I. INTRODUCTION

Software Engineering (SE) requires the cycle of model

building, experimentation, and learning. Experimentation is

fundamental to any scientific research field, including SE [1],

where the researcher needs laboratories to study problems

(e.g., from the field faced by practitioners) and develop and

evolve solutions based on experimentation and empirical ev-

idence. To this end, a number of empirical approaches are

possible (e.g., experiments, case studies, and so on). Experi-

ments are important to test hypotheses and, in particular, the

predictive ability of hypotheses. If new experiments support

certain hypotheses, then we have more evidence in favor

of these hypotheses [2]. As evidence grows and becomes

stronger, the hypotheses can be accepted as a scientific theory

and transferred to other contexts [3]. A possible tool to pursue

this goal is to conduct replications of baseline experiments.

Replications of experiments involve repeating the investigation

under similar conditions while, for example, varying the

subject population [4].

When experimenting, both researcher and practitioner need

to understand the nature of SE discipline. In SE, the tech-

nologies are mostly human-intensive, rather than automated.

Like manufacturing, the major problem is understanding and

improving the relationship between the processes and the

products they create. But unlike manufacturing, the process

in SE is development, not production [1]. Development (de-

sign, implementation, and maintenance phases) takes place in

workspaces that, nowadays, tend to have less privacy, with less

dedicated space, which leads to noisy environments. Software

companies that provide a noisy workplace are comforted by

the belief that this factor does not matter [5], but noise

exerts its specific influences on various forms of cognitive

responses [6]. After all, software engineers are knowledge

workers—they need to have their brain in gear to do their

work—and thus their performance would be sensitive to a

noisy workplace.

The effect of noise on SE tasks has been marginally studied

in the past (e.g., [7]–[9]). Romano et al. [9] conducted two

controlled experiments,1 whose primary goal was, respec-

tively, to study whether noise affects software engineers’

performance in the following two kinds of tasks/processes:

(i) comprehending functional requirements specifications and

(ii) fixing faults (or bugs from here on) in source code. The

results suggest that software engineers have significantly worse

performance in fixing faults in source code when exposed to

noise, while no statistically significant difference is present

while comprehending functional requirements. The authors

conjectured that bug fixing is more vulnerable to noise than

comprehending functional requirements because bug fixing

seems to be a more resource-demanding task.

To increase our confidence in the results of the baseline

experiments by Romano et al. [9], we replicated these ex-

periments with more experienced participants (undergraduate

vs. graduate students) from the same university. Our goal,

when designing the replications, was to run them as exact as

possible to the baseline experiments. This was to be confident

that, in case of differences in the results of baseline and

replication experiments, such a difference is mostly due to

the participants’ experience.

Paper structure. In Section II, we discuss related work and

1One of these experiments was preliminary presented in a poster paper [8].
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present background information while, in Section III, we

summarize the baseline experiments by Romano et al. [9].

In Section IV, we present the replicated experiments as well

as the obtained results. In Section V, we discuss the results

and how they increased our body of knowledge by combining

outcomes from the baseline and replicated experiments. In

Section VI, we discuss potential threats to the validity of our

results. Final remarks conclude the paper.

II. RELATED WORK AND BACKGROUND

In this section, we review the literature related to our study

and then summarize the theories concerning the effect of noise

on individual performance.

A. Related Work

There is a series of empirical investigations aimed to under-

stand how a mental state of software developers impacts their

daily programming activities. Flow is a mental state of high

concentration that results in an absolute assimilation in the

activity at hand (e.g., software development) [10]. Disturbance

from the surrounding environment (e.g., due to noise) can

disrupt causing work fragmentation and negative impact on

productivity [11]. For example, Meyer et al. [12] found that

developers feel productive when they are not interrupted and

they do not need to switch between different tasks.

Researchers have long recognized the detrimental effects

of disturbance in the developers’ workplace. In this respect,

the SE and HCI (Human Computer Interaction) communities

have proposed different solutions to the problems related to

developers’ interruptibility while accomplishing a task [13]–

[15]. Gievska et al. [13] proposed an interruptibility model to

mediate human interruptions by a computer and a study with

24 knowledge workers (not software developers). The authors

observed, through the application of their model, that reducing

interruptions can increase the perceived quality of work while

decreasing frustration. In the context of software developers,

Iqbal and Bailey [14] proposed a system that would postpone

possible causes of disturbance to a more apt time based on

cognitive theory. These authors also conducted an empirical

study with six professionals, whose results indicated that

the proposed approach reduces frustrations while yielding to

faster reaction time. More recently, Züger et al. [15] devel-

oped a physical device that would signal to the surrounding

environment (e.g., co-workers) the best moment to disturb

(or not) a developer. The results of a field study showed

increased awareness about the disrupting effects of such kind

of disturbance.

DeMarco and Lister related noise and other environmental

factors (e.g., space) to software developers’ performance [7].

In a study with 166 professionals, they observed that a quiet

and commodious workplace could improve productivity (e.g.,
time to complete the task) by a factor of 2.6. The main

differences with respect to our study can be summarized

as follows: (i) we conducted two experiments in controlled

conditions on two kinds of SE tasks and (ii) we quantitatively

assessed the effect of noise on the comprehension of functional

requirements and the capability to fix faults in source code.

B. Background

A summary of the reference theories regarding the effect of

noise on individuals’ performances follows.

Arousal Theory. Broadbent [16], in his theory, invoked

an arousal induced attentional narrowing mechanism: noise

increases arousal of an individual, which decreases his/her

breadth of attention. At a lower level of arousal, an individual

tends to exclude task-irrelevant cues, and thus the attentional

narrowing facilitates performance. However, beyond a certain

arousal “optimal” level, performance is impaired because its

increase in arousal might cause increased narrowing so that

task-relevant cues are excluded. Broadbent postulates that

more demanding tasks should have lower levels of optimum

arousal. These tasks should yield the greatest performance

decrements in the presence of noise. This is to say that

cognitive tasks suffer greater magnitudes of performance im-

pairment with respect to less demanding tasks. In addition,

noise intensity and duration influence the arousal levels. In

other words, a higher intensity and longer duration of noise

cause greater negative effects on performance. As for sched-

ule, intermittent noise should impair performance more than

continuous one. To summarize, noise effect varies according to

the kind of task and the noise intensity, duration, and schedule.

Composite Theory. Poulton’s theory [17] predicts that noise

effects should degrade performance for those conditions in

which inner speech2 is masked. The gains in performance in

continuous noise, early in the task, occur because the increase

in arousal compensates for the detrimental effects of masking.

However, with time on task, the arousal decreases and the

masking effect dominates. To summarize, the noise effect, in

the composite theory, is considered similar across task and

kind of noise, but a moderating effect is expected for intensity,

duration, and schedule.

Maximal Adaptability Theory. This theory was proposed by

Hancock and Warm [19]. The authors postulate that stress,

and noise is a source of stress, can be accounted for in three

loci. Input represents objective environmental and task factors,

adaptation concerns the capability of an individual to cope

with demands intrinsic to an environment, and output refers

to the response about the task environment. The output of

a task depends on the characteristics of an individual and it

might be affected by noise. As for adaptation, noise can impair

the capacity through the masking or distortion of task-relevant

auditory information. According to the maximal adaptability

theory, there is a threshold of dynamic instability in which the

adaptation of the individual fails and followed by a decrease in

performance. Hancock and Warm assert that the performance

on more resource-demanding cognitive tasks, in case of noise,

is more impaired than performance on motor or perceptual

2Also referred to as verbal thinking, inner speaking, covert self-talk, internal
monologue, and internal dialog. Inner speech is thinking in words and also
refers to the semi-constant internal monologue some individuals have with
themselves at either conscious or semi-conscious level [18].
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tasks. In addition, for higher noise intensity and longer noise

duration, a greater performance impairment is present. In

cognitive tasks, speech noise is more disruptive than non-

speech. Also, noise schedule could affect performance. To

summarize, the maximal adaptability theory indicates that

noise effect varies as a function of the task and noise kind, as

well as schedule, duration, and intensity.

Summary. Arousal, composite, and maximal adaptability

theories predict similar results on noise effects for certain

variables (e.g., noise intensity, duration, and schedule), but

different results for others (e.g., kind of task and noise).

Szalma and Hancock [6] have recently conducted a meta-

analysis of noise effects on individual performance. Results

confirm the predictions of these three theories only partially.

In particular, Szalma and Hancock observed that noise effects

varied as a function of the kind of noise and task, and noise

intensity, duration, and schedule. Results also indicated that

shorter duration of noise has greater detrimental effects on

performance than longer duration.

III. BASELINE EXPERIMENTS

In this section, we report the baseline experiments by

Romano et al. [9] by taking into account guidelines [20] for

reporting replicated experiments.3

A. Research Questions

Romano et al. planned the baseline experiments to study

the following Research Questions (RQs):

• RQ1. Does noise worsen software engineers’ performance

in comprehending functional requirements specifications?

• RQ2. Does noise worsen software engineers’ performance

in fixing faults in source code?

B. Participants, Artifacts, and Tasks

The participants were recruited among the last-year under-

graduate students, who were taking a SE course, in the Com-

puter Science program, at the University of Basilicata (Italy).

The participants voluntarily took part in the experiments—

i.e., they were neither paid nor obliged to participate. Among

the students taking the SE course, 55 took part in the first

experiment on the comprehension of functional requirements

specifications (i.e., Exp1c from here on), while 42 also took

part in the second experiment on fixing bugs in source code

(i.e., Exp1f from here on).

The experiments represented two optional didactic activities

of the SE course. This course covered the following topics:

software development processes, requirements specification,

software design, maintenance, and testing. Throughout the

course, participants also practiced both modeling of functional

requirements and bug fixing. This is because they carried out

a number of homework and classwork assignments on these

kinds of SE tasks. The participants were also experienced with

Java programming.

3Despite our effort to report as much information as possible about the
baselines experiments, we could not report here some information for space
reasons—missing information can be found in the paper by Romano et al. [9].

In Exp1c, the participants were asked to perform tasks of

comprehension of functional requirements specifications on

the following two systems:

• M-Shop, a system for managing the sales of a music shop.

• Theater, a system for managing the ticket reservation of

a theater.

To comprehend functional requirements specifications, each

participant received the functional, object, and dynamic mod-

els associated with the requirements understand as well as

a comprehension questionnaire consisting of 11 closed-ended

questions—each question admitted one or more right an-

swer. Both systems, as well as the considered functional

requirements, were part of the experimental material Abrahão

et al. made available [21]—i.e., Romano et al. reused that

experimental material in Exp1c.

In Exp1f, the participants had to perform fault fixing tasks

on the following two systems:

• LaTazza, a Java desktop application for managing sales and

supplies of beverages for a coffee maker.

• AveCalc, a Java desktop application for managing the exams

of a university student.

To perform each fault fixing task, the participants received the

codebase (without test cases) and mission of the buggy system,

along with six bug reports—i.e., one bug report for each fault

the participants had to fix in that codebase. Similarly to Exp1c,

Romano et al. reused in Exp1f the experimental material that

past studies made available [22], [23].

The duration of each comprehension task was fixed at 30

minutes, while that of each fault fixing task was set at 60

minutes. Such duration for the experimental tasks was based

on results shown in past studies [21], [23].

C. Variables and Hypotheses

The main independent variable (manipulated in both Exp1c

and Exp1f) was Condition. This variable assumed two val-

ues, namely: NOISE—i.e., participants performing the exper-

imental tasks (either comprehending functional requirements

specifications or fixing faults) exposed to noise—and NOR-
MAL—i.e., participants performing the experimental tasks in

a normal condition.

In Exp1c, Romano et al. used two Dependent Variables

(DVs), namely Fc and Avg, to measure software engineers’

performance in comprehending functional requirements spec-

ifications. Fc is the (balanced) F-measure [24] of precision
(correctness) and recall (completeness) of the answers a

certain participant gave to the comprehension questionnaire.

Formally, Fc is defined as follows:

Fc =
2 ∗ Pc ∗Rc

Pc +Rc

Pc and Rc are precision and recall, respectively computed as:

Pc =

∑11
i=1 |answi ∩ oraclei|
|∑11

i=1 answi|
Rc =

∑11
i=1 |answi ∩ oraclei|
|∑11

i=1 oraclei|
where answi is the set of answers the participant provided for

the question i, oraclei is the set of correct expected answers
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Fig. 1: Overall design of the baseline experiments.

(i.e., the oracle) for the question i, and 11 is the number

of questions. Fc is a trade-off measure that equally weights

correctness and completeness.

As for Avg, it was computed as follows:

Avg =

∑11
i=1 counti

11

where counti is equal to: 1 if the set of answers provided by

the participant to the question i corresponded to the oracle for

the question; 0 otherwise. Fc and Avg range in [0, 1]—for both

DVs, the greater the value, the better the comprehension of the

specifications of functional requirements is. The use of Fc and

Avg to measure the comprehension of functional requirements

specifications was ground on past work [21], [25].

In Exp1f, Ff was used to measure software engineers’ per-

formance in fixing faults. Ff is the (balanced) F-measure [24]

of the precision (correctness) and recall (completeness) of the

faults a participant fixed. Ff is defined as follows:

Ff =
2 ∗ Pf ∗Rf

Pf +Rf

Pf and Rf are precision and recall, respectively computed as:

Pf =
#bugsCorrectlyF ixed

#bugsF ixed
Rf =

#bugsCorrectlyF ixed

6

where #bugsF ixed is the count of faults the partic-

ipant had fixed both correctly and incorrectly, while

#bugsCorrectlyF ixed is the count of faults the participant

had fixed correctly. To determine that count, Romano et al.
used the acceptance test suites provided by Scanniello et
al. [23]. Ff ranges in [0, 1]—the greater the value, the better

the performance in fixing faults is. The use of Ff to measure

the performance in fixing faults was ground on prior work [23].

Two null hypotheses, one for each RQ, were formulated:

• Hn1. Noise does not significantly affect software engi-

neers’ performance in comprehending functional require-

ments specifications.

• Hn2. Noise does not significantly affect software engineers’

performance in fixing faults.

In case a null hypothesis is rejected, it is possible to accept

the alternative one. For example, the alternative hypothesis

for Hn1 is: noise significantly affects software engineers’

performance in comprehending functional requirements.

D. Design and Execution

Figure 1 shows how the baseline experiments were arranged.

For both Exp1c and Exp1f, the experimental design was

AB/BA [26]. The participants were randomly split into two

experimental groups (i.e., Group1 and Group2) and received

both treatments (i.e., NOISE and NORMAL) once in each

experiment. Group1 received the NOISE treatment in the first

period4 and the NORMAL treatment in the second one, while

Group2 the opposite. In an AB/BA design, the experimental

group defines the sequence with which the treatments are

applied in the first and second periods. Regardless of the treat-

ment, the participants dealt with the same system in the same

period—e.g., any participant in Exp1c tackled M-Shop in the

first period and Theater in the second. Within each experiment,

there was a 30-minute wash-out period—i.e., a period to leave

enough time for the effect of a treatment to recede completely

before applying another treatment [26]—between the first and

second periods. Wash-out periods are used in AB/BA designs

to counteract the carryover effect [26], which is an internal

validity threat [1]. The two experiments were planned in two

different days (i.e.,Exp1c first and then Exp1f).

The participants working in a noise condition performed the

experimental tasks (in both Exp1c and Exp1f) with a noise

exposure level5 (LEX ) equal to 82dB. Such a LEX value

was established based on the Directive 2003/10/EC2 of the

European Parliament.6 Romano et al. chose a LEX value

equal to 82dB because: (i) it does not require the use of

individual hearing protectors; and (ii) it was close but inferior

to the limit of 85dB for which workers shall wear individual

hearing protectors because deemed harmful to health. The

kind of noise was speech as it is the major type of practical

distractive noise [6] and it is common in workplaces with

open offices [27]. For the participants working in normal

conditions, the LEX value (i.e., 42dB) was that of a quiet

office workplace [27].

The NOISE treatment was always administered to the

participants in Lab1, a research laboratory equipped with

ceiling speakers. As for the NORMAL treatment, it was always

administered in another research laboratory, Lab2, far from

sources of noise (e.g., road traffic).

E. Data Analysis and Results

As suggested by Wellek and Blettner [28], Romano et al.
ran the pre-test to check the assumption of negligible carryover

effect, for each DV, before testing the corresponding null

4A period is defined as the time at which a treatment is applied [26].
5It is defined as the time-weighted average of the noise exposure levels.
6https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:

02003L0010-20081211
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TABLE I: Results from statistical inference for the baseline experiments.

Experiment Variable Carryover Effect Condition Effect Hypotheses Testing Outcome

Exp1c Fc 0.518 (t-test) 0.731 (t-test) Failed to reject Hn1
Avg 0.431 (t-test) 0.312 (Mann-Whitney U test) Failed to reject Hn1

Exp1f Ff 0.036 (t-test) 0.024 (Mann-Whitney U test) Hn2 rejected in favor of NORMAL

hypothesis. The pre-test consists of an unpaired two-sided t-

test (or an unpaired two-sided Mann-Whitney U test if the

normality assumption7 of the t-test is not met) to compare the

within-participant sums of the DV values (in both periods) for

the two experimental groups [28]. As shown in Table I (see

Carryover Effect), the p-values returned by the two pre-tests

(one for Fc and one for Avg) for Exp1c were both not less

than the significance level (α) fixed at 0.05. This is to say that

the carryover effect was negligible for both Fc and Avg. Such

an outcome allowed Romano et al. to test, as suggested by

Wellek and Blettner [28], the corresponding null hypothesis

(i.e., Hn1) for both Fc and Avg through the unpaired two-

sided t-test (or an unpaired two-sided Mann-Whitney U test

if the normality assumption of the t-test was not met). This

test was used to compare the within-participant differences
of the DV values (in both periods) for the two experimental

groups [28]. The p-values for Hn1 (see Condition Effect in

Table I) were both not less than α, thus Hn1 could be rejected

for neither Fc nor Avg. Accordingly, Romano et al. concluded

that: noise does not significantly affect the comprehension of
the specifications of functional requirements.

As for Exp1f, the pre-test indicated that the carryover effect

was not negligible on Ff—the p-value was less than α (see

Carryover Effect in Table I). As suggested in the litera-

ture [26], Romano et al. discarded the second period for Ff

and tested the null hypothesis (i.e., Hn2) by taking into account

the first period only. To that end, Romano et al. planned to

run an unpaired two-sided t-test (or an unpaired two-sided

Mann-Whitney U test if the normality assumption of the t-

test was not met) comparing the Ff values of the NOISE

and NORMAL conditions. The p-value was less than α (see

Condition Effect in Table I) so allowing rejecting Hn2. The

difference between the NOISE and NORMAL conditions was

in favor of the NORMAL condition. Accordingly, Romano et
al. concluded that: noise significantly and negatively affect the
fixing of faults in source code.

Summing up, the results from Exp1c and Exp1f suggest that,

while noise does not significantly affect the comprehension

of the specifications of functional requirements, it has a

significant and negative impact on the fixing of faults in source

code. To determine whether the duration of noise exposure (30

minutes in Exp1c vs. 60 minutes in Exp1f) could explain the

above-mentioned outcomes, Romano et al. analyzed the first

30 minutes of Exp1f (first period). In particular, they ran an

unpaired two-sided Mann-Whitney U test (as the normality

assumption of the t-test was not met) comparing the Ff

values, computed on the first 30 minutes, of the NOISE and

NORMAL conditions. The returned p-value (0.028) indicated

7To test the normality assumption, the Shapiro-Wilk test was used.

a significant difference, which was in favor of the NORMAL

condition. Accordingly, Romano et al. excluded that the du-

ration of noise exposure was behind the lack of significant

difference in Exp1c. They then conjectured, in line with the

literature [6], [16], [19], that: bug fixing is more vulnerable
to noise than comprehending the specifications of functional
requirements. This is why the results did not indicate any

significant difference in Exp1c.

IV. REPLICATED EXPERIMENTS

The SE community has been embracing replications more

readily (e.g., [4], [29]–[31]). Despite this important trend,

there is no agreement yet on terminology, typology, purposes,

operation, and other replication issues [29], [30], [32]. In

general, we can define a replication as the repetition of an

experiment [33]. There are two primary motivations to perform

replications: (i) they are necessary to solve problems and to

collect evidence in order to bring credibility to a given study

and (ii) they are valuable because the obtained evidence can

be used in the daily activities of practitioners [30], [32].

In the rest of this section, we present our replications (from

here onwards referred to as Exp2c and Exp2f, respectively)

and the obtained results. For space reasons, the replications are

described in terms of differences with respect to the baseline

experiments. In particular, we did not describe RQs, artifacts,

tasks, variables, hypotheses, design, and data analysis of the

replications because these details are the same as the baseline

experiments and can be found in Section III.

A. Participants

The participants were last-year graduate students in Com-

puter Engineering at the University of Basilicata (Italy) who

were taking the Advanced SE course. The participation in

the study was voluntary—i.e., they were neither paid nor

obliged to participate. Among the 16 students taking the

course, 15 decided to take part in the replicated experiments.

Any participant took part in both Exp2c and Exp2f. The

participants were experienced with C, C++, and Java program-

ming. Based on their curricula, the participants had passed

the following exams about software design and programming:

SE, Procedural Programming, Object-Oriented Programming,

Advanced Object-Oriented Programming, and Mobile Pro-

gramming. They also had knowledge of UML-based software

modeling and were experienced with fixing bugs in source

code written by other developers [34].

B. Execution

We executed the replicated experiments as much close as

possible to the baseline ones. This is to say that we used

an AB/BA design for any experiment and randomly assigned
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TABLE II: Results from statistical inference for the replicated experiments.

Experiment Variable Carryover Effect Condition Effect Hypotheses Testing Outcome

Exp2c Fc 0.41 (t-test) 0.672 (t-test) Failed to reject Hn1
Avg 1 (Mann-Whitney test) 0.436 (t-test) Failed to reject Hn1

Exp2f Ff 0.256 (t-test) 0.163 (t-test) Failed to reject Hn2

TABLE III: Some descriptive statistics for the replicated

experiments and baseline ones.

Variable Statistic Replicated Experiments Baseline experiments

NORMAL NOISE NORMAL NOISE

Fc Median 0.8 0.75 0.692 0.714
Mean 0.78 0.764 0.678 0.683
SD 0.096 0.097 0.127 0.14

Avg Median 0.545 0.545 0.545 0.545
Mean 0.576 0.545 0.502 0.526
SD 0.089 0.103 0.13 0.155

Ff Median 0.667 0.545 0.5 0.286
Mean 0.67 0.518 0.481 0.315
SD 0.261 0.349 0.297 0.198

eight participants to Group1 and seven to Group2. In the

replications, we reproduced an environment to accomplish

the experimental tasks as similar as possible to that of the

baseline experiments. The laboratory used to accomplish the

experimental tasks in a noise condition was equipped with

ceiling speakers to reproduce the same speech noise as the

baseline experiments. We used a phonometer to be sure that the

participants were exposed to the same established noise level

(i.e., LEX = 82dB). To administer the NORMAL treatment,

we simulated a quite office workplace and used a phonometer

to regularly measure the noise level—the LEX value was

about 42dB.

C. Results

The raw data of our replications on available on the web.8

To analyze these data, we applied the same analysis procedure

as the baseline experiments. The results indicated that the

carryover effect was negligible in both the replications (p-

values are not less than α) whatever the DV was (see Carryover

Effect in Table II).

In Table III, we report median, mean, and SD (Standard

Deviation) of the values of the DVs for each replicated

experiment (and baseline one) and condition. As for Exp2c,

the distributions of the Fc values for the NORMAL and

NOISE conditions seem similar (see also the boxplots shown

in Figure 2a). Similar considerations can be done for Avg (see

Table III and Figure 2a). Results from hypotheses testing do

not allow us to reject Hn1 for both Fc and Avg as suggested

by the p-values reported in Table III. On the basis of the

observed results, we can answer RQ1 as follows: noise does
not significantly affect the comprehension of the specifications
of functional requirements.

As for Exp2f, we can observe some differences in the

descriptive statistics of the NORMAL and NOISE conditions

8https://doi.org/10.6084/m9.figshare.12504944.v1

in favor of NORMAL (see Table III and Figure 2b). However,

the p-value returned by the t-test does not allow rejecting

Hn2. Similarly to Exp1f, we also analyzed the Ff values by

taking into account the first 30 minutes only. In particular, we

ran the pre-test (i.e., an unpaired two-sided t-test comparing

the within-participant sums of the Ff values for the two

experimental groups), which indicated a negligible carryover

effect (p-value = 0.534). Then, we ran an unpaired two-sided

t-test comparing the within-participant differences of the Ff

values for the two experimental groups. The returned p-value

was equal to 0.041, thus Hn2 could be rejected in favor of

NORMAL. The results from Exp2f allow us to answer RQ2

as follows: noise negatively and significantly affects the fixing
of faults in source code when the duration of noise exposure is
30 minutes, while it does not have a significant impact when
the duration of noise exposure is 30 minutes.

Finally, the descriptive statistics for the replications as

compared to those of the baseline experiments (see Table III)

seem to indicate that the performance of the participants in

the replications was better or, in the worst case, similar to

that of the participants in the baseline experiments whatever

the DV and condition are. This confirms that the participants

in the replications were more experienced than those in the

baseline experiments.

V. DISCUSSION

Replications are successful when they help the research

community to build knowledge about which outcomes (or

observations) hold under which conditions. Therefore, repli-

cations that produce the same outcomes as the baseline

experiments are as useful, for the research community, as

replications that fail to produce the same outcomes as the

baseline experiments [30]. Exp2c falls in the former case.

In particular, Exp2c allows confirming that noise does not

significantly affect the comprehension of the specifications

of functional requirements. Such evidence has a practical

implication and seems to corroborate the choice, made by

some software companies, of providing noisy workspaces to

developers. This is because these software companies deem

that this factor does not matter and thus they can save money

on workspaces [35].

As far as Exp2f is concerned, we were not able to fully

support the results from Exp1f. In particular, the results from

Exp2f suggest that the effect of noise on fixing bugs is not

significant when the noise exposure is 60 minutes, while

the results from Exp1f suggest a significant effect. We can

speculate that the higher the experience of developers, the

less the negative impact of noise on fault fixing. In fact,

participants in Exp2f were last-year graduate students, while
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Fig. 2: Boxplots, by Condition, for (a) Fc and Avg in Exp2c, and (b) Ff in Exp2f.

those in Exp1f were last-year undergraduate students. This

outcome is clearly relevant for the researcher who could be

interested in further study the relation between developers’

experience and duration of noise exposure. This outcome is

also relevant for the practitioner because a software company

should prevent to expose developers with a low experience to

noise when accomplishing bug fixing.

Based on the results of Exp1c and Exp1f, Romano et
al. conjectured that bug fixing is more vulnerable to noise than

comprehending the specifications of functional requirements.

Our results seem to support the above-mentioned conjecture

since, under the same duration of 30-minute noise exposure,

noise affects the fixing of bugs while it does not affect the com-

prehension of the specifications of functional requirements.

This outcome is of interest for those researchers who want to

study which SE tasks are more vulnerable to noise.

Finally, the results of bug fixing on 30-minute and 60-

minutes noise exposure suggest that the more the experience

of developers, the better developers counteract the negative

effect of noise, which initially affects their performance in

fixing bugs. This outcome is important for both the researcher

who could be interested in investigating the detrimental effect

of noise duration on developers’ performance when accom-

plishing SE tasks and fault fixing, in particular.

VI. THREATS TO VALIDITY

In this section, we discuss the threats that could affect

the validity of our results. Since we replicated the baseline

experiments as closely as possible, our replications inherit

most threats of the baseline experiments, although we miti-

gated some threats with respect the baseline experiments (e.g.,
threats to external validity). We present these threats based on

the guidelines by Wohlin et al. [1].

Internal Validity. A maturation threat might exist because

the participants exposed to noise might be more motivated

to accomplish the experimental tasks (e.g., due to arousal

the effect) [16], [19]. We mitigated a threat of diffusion or
imitation of treatments in several way: (i) we monitored the

participants during the execution of each task to prevent that

they exchanged information on the tasks; (ii) we took back, at

the end of each experimental task, any experimental material

we gave the participants; and (iii) the participants in Group1

and Group2 performed the same task at the same time in each

replication. The selection threat of letting volunteers take part

in the experiments could influence the results.

Construct Validity. We exploited metrics well-known and

widely-adopted to measure the constructs (e.g., [21], [23]).

However, we considered only one metric to assess participants’

performances (i.e., mono-method bias) in Exp2f. The partic-

ipants were not informed about our research goal; however,

they could be aware of being part of an experiment on noise

effect. Thus, there could be the risk of hypotheses guessing.

Conclusion Validity. The use of an AB/BA design might

affect results due to carryover effect. To dealt with this kind

of threat, we introduce a wash-out period in each replication

and studied, similarly to past studies [9], [36], if this period

was long enough to neutralize the carryover effect. The imple-

mentation of a treatment (e.g., NOISE) might be not similar

between different participants and among the experiments (i.e.,
reliability of treatment implementation). We mitigate this kind

of threat in the replications by implementing NOISE and

NORMAL treatments as standard as possible over different

participants. Finally, there might be a threat to conclusion

validity due to the number of participants.

External Validity. Working with students poses a threat

of interaction of selection and treatment. However, working

with students also implies various advantages, such as their

homogeneous prior knowledge [37]. Since the participants in

the replications were more experienced than those in the base-

line experiments we mitigated this kind of threat to external

validity. Nevertheless, we foster replications with professional

developers (e.g., from industry). The use of UML as modeling

notation in Exp2f might affect results (i.e., interaction of set-
ting and treatment). However, UML is a de-facto standard for

software modeling and the participants were familiar with such

notation. Another threat of interaction of setting and treatment

is related to the used experimental tasks that could not be

representative of real-world tasks. However, the tasks we asked

the participants to accomplish in Exp2c and Exp2f were used

in past empirical studies [21], [23]. Also, the experimental

tasks should equally affect the results of the participants when

exposed or not to noise in both Exp2c and Exp2f.
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VII. CONCLUSION

In this paper, we present the results of two replicated exper-

iments on the effect of noise while comprehending functional

requirements specifications and fixing faults in source code.

The results suggest that noise: (i) does not significantly affect

the comprehension of functional requirements specifications

and (ii) significantly affects fault fixing if this task lasts less

than 30 minutes while it does not have a significant impact

if the task lasts 60 minutes. The results of the replications

confirm to a large extent those of the baseline experiments

so increasing our body of knowledge on the effect of noise

on some kinds of SE tasks. In particular, the results from our

replications and those form the baseline experiments suggest

that bug fixing is more vulnerable to noise than comprehending

the specifications of functional requirements. To confirm or not

these findings, further empirical investigations are needed.
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