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Abstract
Parallel analysis (PA) is recommended as one of the best procedures to determine the number of
factors but its theoretical justification has long been questioned. The current study discussed
theoretical issues on the use of eigenvalues for dimensionality assessment and reviewed the
development of PA and its recent variants proposed to address the issues. The performances of 13
different PAs including PA with minimum rank factor analysis, revised PA, and comparison data
method were investigated through a Monte Carlo simulation under a wide range of factor structures
that produce small factor-representing and nonrepresenting eigenvalues for different types of
measurement scales. Results showed that the traditional PA using full correlation matrices per-
formed best in most of the conditions, especially when population error was involved. However, the
overall accuracy of PA was not satisfactory when factor-representing eigenvalues were small, that
is, when factor loadings were low and factor correlations were high. From these results, we suggest
that the original PA be used to determine the number of factors but the estimated number should not
be taken as a fixed estimate. The number of factors within �1 range of the estimate can be
considered as viable candidates and interpretational validity of the competing models should be
consulted for the decision.

Translational Abstract
Determining the number of factors is one of the most important decisions in exploratory factor analysis
in psychological studies. Parallel analysis (PA) which compares eigenvalues of the sample data with
those of random data is one of the most recommended procedures for the decision by many experts.
However, there are unsolved theoretical issues in PA and alternative procedures to address the issues
have been proposed in the literature. The current study discussed several issues on the use of eigenvalues
for determining the number of factors and reviewed the development of PA and its alternatives. We also
examined the performances of 13 PA variants using a comprehensive simulation study. We found that
the original PA was the most accurate in most conditions but its overall accuracy was not satisfactory
when factors are highly correlated or factor-variable relations are not strong enough. In summary, we
suggest that PA and its alternatives should be used with caution and the interpretability of competing
factor models should be consulted to determine the number of factors.

Keywords: parallel analysis, revised parallel analysis, comparison data method, minimum rank factor
analysis, number of factors

One of the biggest challenges in exploratory factor analysis
(EFA) is determining the number of common factors underlying a
set of variables (Fabrigar, Wegener, MacCallum, & Strahan, 1999;

Fava & Velicer, 1992). Researchers proposed several procedures
estimating the number of factors to retain (e.g., the Kaiser rule,
chi-square test for residual correlations, and parallel analysis) and
evaluated the accuracy of the procedures using simulation studies
(e.g., Humphreys & Montanelli, 1975; Preacher, Zhang, Kim, &
Mels, 2013; Velicer, Eaton, & Fava, 2000; Zwick & Velicer,
1986). Among the various procedures, parallel analysis (Horn,
1965) has been recommended as one of the best methods by many
experts (e.g., Fabrigar et al., 1999; Floyd & Widaman, 1995;
Hayton, Allen, & Scarpello, 2004; Preacher & MacCallum, 2003).

Parallel analysis (PA) compares the eigenvalues of the sample
correlation matrix with the eigenvalues obtained from a random
correlation matrix for which no factors are assumed. The original
PA procedure (Horn, 1965) is known to be relatively accurate, but
its theoretical justification has long been questioned. First, the
eigenvalues of the reduced correlation matrix with communalities
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of the variables in the main diagonal have a direct relation to the
number of factors, but those of the full correlation matrix with ones
in the diagonal do not (Guttman, 1954; Mulaik, 2010; Timmerman
& Lorenzo-Seva, 2011). Second, the comparison of the sample
eigenvalues with the random eigenvalues from the zero-factor
population is justified for the first eigenvalue but not for the rest
(Braeken & van Assen, 2017; Green, Levy, Thompson, Lu, & Lo,
2012; Ruscio & Roche, 2012; Turner, 1998).

To address the first limitation, Humphreys and Ilgen (1969)
introduced a modified PA procedure that uses a reduced correla-
tion matrix where the squared multiple correlation (SMC) of each
variable is used as a communality estimate. Recently, Timmerman
and Lorenzo-Seva (2011) proposed using minimum rank factor
analysis (MRFA; ten Berge & Kiers, 1991) in PA to obtain better
communality estimates. For the second problem, Green, Levy,
Thompson, Lu, and Lo (2012) proposed the revised parallel anal-
ysis (RPA) that updates the population model to a series of
structures with nonzero factors from which random eigenvalues
are generated. Ruscio and Roche (2012) also developed a similar
procedure called comparison data method (CD) that updates the
population model to a series of bootstrapped structures with non-
zero factors. Several studies evaluated the performance of the
alternative PA procedures and recommended the use of the alter-
natives rather than the original PA in many conditions (Crawford
et al., 2010; Green et al., 2012; Ruscio & Roche, 2012; Timmer-
man & Lorenzo-Seva, 2011).

In the previous studies, the theoretical problems of the original
PA were discussed and addressed in part, but a more general
discussion in a broader context was limited. In addition, the factor
structures and other conditions used to evaluate the performance of
the procedures are either incomprehensive in each study or incon-
sistent across the studies, making it difficult to fully understand the
nature of the procedures and to identify the source of the difference
in performance. In this study, we reviewed the theoretical issues in
PA and the development of PA and its variants that address those
issues, in the context of using eigenvalues for dimensionality
assessment. We also evaluated the performance of the PA and its
variants and compared their accuracy across a wide range of factor
structures and data conditions to better understand how the sug-
gested procedures work.

Dimensionality Assessment Using Eigenvalues and
Parallel Analysis

The most commonly used information when determining the
number of factors is the eigenvalues of the sample correlation
matrix. Let � be a p � p population correlation matrix. A k-factor
model for � can be written as

� � ���T � �, (1)

where � is a p � k pattern matrix, �T is the transpose of �, � is
a k � k factor correlation matrix, and � is a p � p diagonal
uniqueness matrix. The fundamental theoretical basis for using
eigenvalues to determine the number of factors k is that k is equal
to the rank of ���T (Mulaik, 2010). The p � p matrix ���T has
p eigenvalues, of which k eigenvalues are positive and the remain-
ing p � k eigenvalues are equal to zero. Such a matrix that has only

non-negative eigenvalues is called a Gramian matrix. Guttman
(1954) showed that the number of eigenvalues of � equal to or
greater than 1.0 is one lower bound for the minimum rank of
� � � � ���T. However, this does not hold in the sample
correlation matrix S because S � � � ���T, and ���T and �
are unknown in the sample. For this reason, the use of sample
eigenvalues in determining the number of factors lacks mathemat-
ical justification and must be regarded as a heuristic (Guttman,
1954; Mulaik, 2010).

Moreover, it is difficult to develop an accurate dimensionality
assessment procedure based on eigenvalues because the eigenval-
ues of the sample correlation matrix are influenced not only by the
true factor structure but also by at least three other sources: (a) the
least-squares bias in the sample (Horn, 1965); (b) the use of
communality estimates (Humphreys & Ilgen, 1969); and (c) the
constraint between eigenvalues (Turner, 1998). The development
and modification of the parallel analysis have been facilitated by
taking each source into account in the eigenvalue-based dimen-
sionality assessment.

Least-Squares Bias in Sample

Dimensionality assessment procedures based on eigenvalues
often involve sequential classifications, where each eigenvalue is
classified into a signal or noise, with a signal indicating a true
factor. Kaiser (1960) suggested that 1.0 could be used as a clas-
sification threshold when developing a heuristic procedure based
on sample eigenvalues. In the Kaiser rule, if a sample eigenvalue
is larger than 1.0 then it is classified as a signal, otherwise it is
classified as noise. The number of signals is used as an estimate of
k, the number of common factors. However, the Kaiser rule over-
estimates k because of the least-squares bias in the sample (Horn,
1965): The sample eigenvalues are determined by the sampling
variation of the correlations as well as the underlying factor
structure. The random variation causes biased estimates of the
population eigenvalues, creating a positive bias for the first several
sample eigenvalues and a negative bias for the rest. One result of
the bias is that the first half of the eigenvalues of the sample
correlation matrix are expected to be greater than 1.0, even if the
variables are completely uncorrelated in the population.

Horn (1965) proposed a Monte Carlo method to obtain a set of
distributions of the reference eigenvalues, conditional to n � p, the
size of the sample data. Parallel analysis (Horn, 1965) generates
multiple data sets from the zero-factor p-variate normal population
to construct a sampling distribution of random eigenvalues for
each of the p sample eigenvalues. The original PA used the
average of each sampling distribution as a classification threshold
for the corresponding sample eigenvalue (PA-PCA-m; see Table 1
for the list of acronyms), but later studies suggested that using the
95th percentile of each distribution as a threshold generally in-
crease the accuracy (PA-PCA-95; Buja & Eyuboglu, 1992; Glor-
feld, 1995). The detailed steps of PA are shown in Table 2.

Use of Communality Estimates

Another issue in determining the number of factors based on
eigenvalues is related to whether to use and how to estimate the
reduced correlation matrix. Factor analysis assumes that the sam-
ple data is generated from a common factor model, where the
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variance of each variable is composed of two components: vari-
ance inherited from common factors (communality) and variance
unique to the variable (uniqueness). As described in Equation 1,
the eigenvalues of the reduced correlation matrix (� � �) with

communalities in the diagonal indicate the number of factors but
Horn’s PA uses the eigenvalues from the full correlation matrix �.
This is the same as assuming that all variables are devoid of their
unique aspects, that is, � � 0.

Table 1
List of the Evaluated Procedures

Acronym Procedure
Type of

correlation matrix
Elements of
distribution Threshold

PA-PCA-m Parallel analysis Full Eigenvalues Mean
PA-PCA-95 Parallel analysis Full Eigenvalues 95th percentile
PA-PAF-m Parallel analysis Reduced (SMC) Eigenvalues Mean
PA-PAF-95 Parallel analysis Reduced (SMC) Eigenvalues 95th percentile
PA-MRFA-eg-m Parallel analysis Reduced (MRFA) Eigenvalues Mean
PA-MRFA-eg-95 Parallel analysis Reduced (MRFA) Eigenvalues 95th percentile
PA-MRFA-m Parallel analysis Reduced (MRFA) ECV values Mean
PA-MRFA-95 Parallel analysis Reduced (MRFA) ECV values 95th percentile
RPA-PCA-m Revised parallel analysis Full Eigenvalues Mean
RPA-PCA-95 Revised parallel analysis Full Eigenvalues 95th percentile
RPA-PAF-m Revised parallel analysis Reduced (SMC) Eigenvalues Mean
RPA-PAF-95 Revised parallel analysis Reduced (SMC) Eigenvalues 95th percentile
CD Comparison data method Full RMSR values � � .30a

Note. SMC � squared multiple correlation; PAF � principal axis factoring; MRFA � minimum rank factor analysis; ECV � explained common
variance; RMSR � root mean squared residuals between sample and random eigenvalues.
a Significance level for Mann-Whitney U test of two RMSR distributions.

Table 2
Detailed Steps of the Estimation Procedures

Steps PA RPA CD

Step 1 Calculate S from X. Obtain �S from
[reduced] S. Store � if X is
ordinal.

Calculate S from X. Obtain �S from
[reduced] S. Store � if X is
ordinal.

Calculate S from X. Obtain �S from S.
Obtaining sample values

Step 2 Set j � 0. Set j � 0. Set j � 1.
Initializing
Step 3 If j � 0, set �j � Ip. Generate a j-factor bootstrapped

dataset Xj
� with GenData module.Modeling population If j � 0, fit a j-factor EFA model

on S and obtain �j. Calculate
�j

� � �j�j
T and replace the

diagonals with 1.0 to obtain �j.
Step 4 Sample X0 from Np(0, Ip). Convert

to an ordinal dataset with � if X
is ordinal. Calculate R0 from X0.

Sample Xj from Np(0, �j). Convert
to an ordinal dataset with � if X
is ordinal. Calculate Rj from Xj.

Sample Xj from Xj
�. Calculate Rj from

Xj.Constructing reference
distributions

Obtain and store �0 from [reduced]
R0.

Obtain �j and store its 	j(j 
 1) from
[reduced] Rj.

Obtain �j from Rj. Calculate and store
the RMSR between �S and �j.

Repeat Step 4 sufficiently to
construct a distribution for each i
of 	0(i).

Repeat Step 4 sufficiently to construct
a distribution of 	j(j 
 1).

Repeat Step 4 sufficiently to construct
a j-factor distribution of RMSR
values.

Step 5 From the (j 
 1)-th distribution,
take the mean [or 95th percentile]
as threshold. If 	S(j 
 1) exceeds
the threshold, increment j by 1
and repeat Step 5.

From the (j 
 1)-th distribution,
take the mean [or 95th percentile]
as threshold. If 	S(j 
 1) exceeds
the threshold [and 	S(j 
 1) � 0 if
S is reduced], increment j by 1
and repeat from Step 3.

Compare a j-factor distribution with a
(j 
 1)-factor distribution using
Mann-Whitney U test (� � .30). If
the difference is significant,
increment j by 1 and repeat from
Step 3.

Deciding sufficiency

Step 6 Return j as the estimated number of
factors k.

Return j as the estimated number of
factors k.

Return j as the estimated number of
factors k.Finalizing

Note. PA � parallel analysis; RPA � revised parallel analysis; CD � comparison data method; [text] � steps for the variants of the estimation procedures;
X � sample data (n � p); n � the number of observations; p � the number of variables; S � sample correlation matrix (p � p); Pearson or polychoric;
� � thresholds for categorical scales in X, if S is polychoric; Xj � j-factor random dataset (n � p), j � 0, . . . , p � 1; k � estimated number of factors;
Np � p-variate normal distribution; Ip � identity matrix of order p; Rj � random correlation matrix with j factors (p � p), Pearson or polychoric; �S �
a set of p sample eigenvalues or ECVs {	S(i); i � 1, . . . , p}; ECV � explained common variance; �j � unrotated j-factor loading matrix (p � j); �j �
j-factor population structure (j � j); Xj

� � bootstrapped population (10,000 � p) with a j-factor structure; �j � a set of p random eigenvalues or ECVs
from a j-factor structure {	j(i); i � 1, . . . , p}; RMSR � root-mean-square residuals between two eigenvalue sets �S and �j, obtained by RMSRj � [�(	S(i) �
	j(i))

2/p]1/2. Reduced S or R is a matrix where each diagonal element is replaced with a communality estimated with SMC or MRFA.
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Humphreys and Ilgen (1969) argued that PA should assume the
unique variance and suggested using the reduced correlation ma-
trix when estimating the number of common factors. Guttman
(1954) showed that the number of positive eigenvalues of (� � �)
in Equation 1 is a lower bound for the minimum rank of (� � �),
where the SMC of each variable is placed on the diagonal of (� �
�). Because communalities are unknown in the sample, Hum-
phreys and Ilgen (1969) suggested using the sample SMC of each
variable as an estimate of communality in parallel analysis. In this
modified PA procedure, the sample eigenvalues and the random
eigenvalues are obtained from the reduced correlation matrix in-
stead of the full correlation matrix. Crawford et al. (2010) refers to
this variant as PA with principal axis factoring (PA-PAF), and the
original as PA with principal component analysis (PA-PCA; see
Table 1).

Timmerman and Lorenzo-Seva (2011) highlighted that a re-
duced correlation matrix with SMCs as communality estimates
often has negative eigenvalues, and hence cannot be reliably
interpreted as related to the explained variance of a factor and thus
the number of factors. They proposed using minimum rank factor
analysis in PA (PA-MRFA). MRFA provides communality es-
timates under the constraint that the reduced correlation matrix
has only non-negative eigenvalues. PA-MRFA compares the
explained common variance (ECV) of the MRFA solution
(MRFA-ECV) obtained from the sample data with the sampling
distribution of MRFA-ECV obtained from random data sets.
The MRFA-ECV is calculated by dividing each eigenvalue by
the sum of all eigenvalues, which are obtained from the MRFA
reduced correlation matrix. However, the distribution of eigen-
values can be used instead of the distribution of ECV in
PA-MRFA (Garrido, Abad, & Ponsoda, 2013).

Constraint Between Eigenvalues

For a p � p correlation matrix, the sum of p eigenvalues is
always p. Because of this constraint, the size of the first eigenvalue

limits the size of the remaining eigenvalues. Thus, because the first
eigenvalue of a p � p correlation matrix of a one-factor structure
is larger than the first eigenvalue of a p � p correlation matrix of
a zero-factor structure, the second eigenvalue of the one-factor
structure is smaller than the second eigenvalue of the zero-factor
structure. In general, the (j 
 1)th eigenvalue of a j-factor corre-
lation matrix is smaller than the (j 
 1)th eigenvalue of a zero-
factor correlation matrix, for j � 1, 2, . . . , p � 1. Thus, the
sampling distribution (and the threshold) of the second and sub-
sequent eigenvalues obtained in PA is positively biased for a
k-factor model where k � 1. This leads to an increased false
negative error in PA by incorrectly classifying a small signal as
noise, underestimating the number of factors. For the second and
subsequent factors, the existence of the (j 
 1)th factor must be
evaluated by comparing the (j 
 1)th sample eigenvalue against
the (j 
 1)th eigenvalues generated from the j-factor structure
(Harshman & Reddon, 1983; Saccenti & Timmerman, 2017;
Turner, 1998).

Recent studies proposed alternative stepwise procedures that
make sequential adjustments by incrementing j in each step. One
such procedure is the revised parallel analysis (Green et al., 2012).
In RPA, the sampling distribution of the (j 
 1)th eigenvalue is
constructed from multiple sets of random data generated from a
j-factor structure. The j-factor structure is estimated from the
sample data for j � 0. When evaluating the first eigenvalue, that is,
for j � 0, RPA is performed in the same way as the original PA.
For the second and subsequent eigenvalues, that is, j � 0, if the
(j 
 1)th sample eigenvalue is greater than the mean or 95th
percentile of the (j 
 1)th eigenvalues generated from the j-factor
structure, the hypothesis that the number of factors k is equal to j
is rejected. Otherwise, the hypothesis is retained. Panel (a) in
Figure 1 illustrates an example of RPA using a sample data set
generated from a k � 2 structure. In Panel (a) where the second
sample eigenvalue is tested, PA-PCA-95 fails to detect the second
eigenvalue as a signal but RPA-PCA-95 correctly classifies it.

Second Eigenvalue
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(a)

RPA w/ 95th percentile
PA w/ 95th percentile
Sample (k  = 2)
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RMSR between Sample and Bootstrapped Eigenvalues

D
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si
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(b)

RMSR w/ k  = 1 bootstrap
RMSR w/ k  = 2 bootstrap
RMSR w/ k  = 3 bootstrap

Figure 1. Graphical illustrations of the revised parallel analysis (a) and the comparison data method (b). The
sample data set with 100 observations was generated from a two-factor structure with each factor loaded onto
eight and four items at .8 and .5, respectively and factor correlation of .5. The second sample eigenvalue in Panel
(a) (solid vertical line) is smaller than the 95th percentile of the second PA eigenvalues (dotted vertical line on
right), but larger than that of the second RPA eigenvalues (dotted vertical line on left). In Panel (b), the
distribution of RMSR for the two-factor model is significantly different from the one-factor model but not from
the three-factor model.
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Another alternative is the comparison data method (Ruscio &
Roche, 2012). Using a fit comparison approach, CD examines
whether the sample eigenvalues are better fitted by multiple sets of
random data from a j-factor structure or a (j 
 1)-factor structure.
The evaluation of the fit is achieved by constructing the distribu-
tion of root mean squared residuals (RMSR) between the sample
eigenvalues and random eigenvalues generated from a boot-
strapped population with a specified number of factors. The boot-
strapped population for a factor structure can be obtained from the
sample data using a specialized procedure, called GenData (Ruscio
& Kaczetow, 2008). If the RMSR distribution for the (j 
 1)-factor
structure is significantly different from that for the j-factor struc-
ture, the hypothesis of k � j is rejected. The significance test can
be conducted using Mann–Whitney U test with 500 RMSR values
and � � .30, for example. Panel (b) in Figure 1 shows an example
of CD using the same data set used in Panel (a) in Figure 1. The
two-factor model has a better RMSR distribution than the one-
factor model but the fit does not improve significantly with the
three-factor model. The detailed steps of the two decision proce-
dures are presented in Table 2.

Sources of Small Signal Eigenvalues

Given that the original PA tends to underestimate the number of
factors, the very concern that the PA variants have in common is
to detect a small jth eigenvalue that indicates the presence of the
jth factor, j � 1, . . . , p. We describe two key features of the factor
model that produce a small signal eigenvalue that must be de-
tected.

The variance explained by each factor is essentially related to
the sum of the squared loadings for the factor. Therefore, if the
number of variables related to a factor is small and the factor
loadings are low in magnitude, the eigenvalue corresponding to the
factor becomes small. Panel (a) in Figure 2 shows the average of
the second eigenvalues of 1,000 samples, which depends on the
number of variables for the second factor and their factor loadings.
Each sample was generated from an orthogonal two-factor struc-
ture with 100 observations. The first factor has four variables with
the same factor loadings of .4. The average of the second sample
eigenvalues decreases as the loadings for the second factor de-

creases. When the second factor is measured with four variables,
the average is less than the PA threshold when the loadings are
equal to or lower than .34. With only three variables for the second
factor, the average is less than the PA threshold even when the
loadings are .40.

The second source of the small signal eigenvalue is related to
factor correlation. In principal component analysis or principal
axis factoring, each eigenvalue is extracted such that the variance
explained by the corresponding component (or axis) does not
overlap with that explained by the preceding component (i.e.,
orthogonal). This property makes the correlation matrix produce a
larger first eigenvalue and smaller successive eigenvalues when
the underlying factors are strongly correlated. Panel (b) in Figure
2 shows an example of a two-factor structure with varying factor
correlations, where each factor has four variables with the same
loading of .4. With a nonzero factor correlation, the variance
captured by the first axis is not solely due to the first factor. This
is because the first axis captures not only the common variance of
the variables directly explained by the first factor but also the
common variance indirectly explained by the same factor through
the second factor correlated with the first factor. Accordingly, the
magnitude of the first eigenvalue, as an index of the presence of a
factor, is inflated by the factor correlation, leaving a smaller
variance that can be captured by the second axis, that is, a smaller
second eigenvalue.

These examples illustrate that low factor loadings, a small
number of variables, and/or strong factor correlations will pro-
duce small signal eigenvalues, which potentially leads to mis-
classification of signal eigenvalues as noise. Failing to detect a
small signal eigenvalue may occur more frequently for the
second and following factors than the first factor in PA with the
inflated thresholds.

Considerations When Evaluating the Performance of
PA Variants

Some of the simulation studies on PA have compared the
performance of different PA procedures (Achim, 2017; Crawford
et al., 2010; Garrido et al., 2013; Green et al., 2012; Green, Redell,
Thompson, & Levy, 2016; Green, Thompson, Levy, & Lo, 2015;
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Figure 2. Effects of the number of items and factor loadings (a) and factor correlation (b) on the eigenvalues
of a sample correlation matrix of the two-factor model. The lines represent PA-PCA-95 thresholds.
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Ruscio & Roche, 2012; Timmerman et al., 2011). However, be-
cause the procedures and conditions examined vary from study to
study, it is difficult to draw general conclusions about the perfor-
mance of the procedures. Furthermore, in order to reach conclu-
sions that can be applied to empirical studies using real data, the
performance of PA procedures must be investigated under a wide
range of factor structures with small signal and noise eigenvalues.
The two key features that produce small signal eigenvalues are the
high factor correlation and the small sum of squared loadings. A
promising PA procedure would perform accurately in the presence
of the two features, each or combined. Therefore, it is very
important to manipulate both factor correlation and the sum of
squared loadings when evaluating the PA variants. As for the sum
of the squared loadings, it is useful to investigate the performance
by manipulating the magnitude of loadings for the factors mea-
sured by four or more variables because it is generally suggested
that a factor should be measured by four or more variables (Fab-
rigar et al., 1999; Floyd & Widaman, 1995).

Demonstrating the capability to detect small signals would be
better accompanied by demonstrating the capability to dismiss
weak noise. The practical utility of the PA procedures would be
better gauged by evaluating their performance when there is a
small noise eigenvalue, which can be manipulated by introducing
noise factors or population error in the factor structure. The idea
behind population error is that a common factor model will never
fit exactly at the population level and provide an approximation at
best (MacCallum & Tucker, 1991; Preacher et al., 2013). Popula-
tion error in the common factor model is sometimes referred to as
model error (MacCallum & Tucker, 1991), minor factors (Tim-
merman & Lorenzo-Seva, 2011), or trivial factors (Zwick & Ve-
licer, 1986). Small noise eigenvalues can also be introduced in a
factor model if variables are skewed in opposite directions, likely
producing spurious factors known as difficulty factors. Difficulty
factors derived from skewed variables are not considered as true
factors (Gorsuch, 1983; Olsson, 1979; McDonald & Ahlawat,
1974).

Generalizability of the findings is another important consider-
ation. Results from factor structures with a small number of fixed
parameter values (e.g., a fixed set of factor loadings and factor
correlations) may be less generalizable than results from factor
structures with random parameter values. Only a few PA proce-
dures have been assessed for their performance in factor structures
with random parameters (e.g., Ruscio & Roche, 2012). Evaluation
of the proposed PA procedures with such realistic factor structures
would be of practical importance. The PA procedures can also be
better assessed by examining their performance on variables with
different types of measurement scales. For continuous variables,
PA is applied to the Pearson correlation matrix. For ordered
categorical variables, it is generally suggested that PA should be
applied to the polychoric correlation matrix, especially when the
variables are not symmetrical (Garrido et al., 2013; Timmerman et
al., 2011). Although non-Gramian or nonpositive definite matrices
can occur in the estimation of polychoric correlation matrices,
smoothing the non-Gramian matrices with a procedure that always
produces a Gramian matrix may resolve this problem (Garrido et
al., 2013). Most studies on PA variants examined either continuous
data or categorical data but not both together. A comprehensive
evaluation of the PA procedures with such factor structures and
data sets would have both theoretical and practical merits.

Simulation Study

The present study aims to evaluate the performance of PA
procedures in determining the number of factors in a realistic or
challenging data set where small eigenvalues are commonly pres-
ent. We investigated the effect of small signal and noise eigenval-
ues on the accuracy of the PA procedures through a Monte Carlo
simulation. Small signal eigenvalues were induced by manipulat-
ing (a) factor loading and (b) factor correlation. Small noise
eigenvalues were induced by (a) adding minor error structure to a
population correlation matrix and (b) imposing skewness or non-
symmetry that can produce difficulty factors. To accommodate a
wide range of population structures in our study, we adopted a
partially randomized parameter design to construct the population
correlation matrices. We also examined the accuracy of the pro-
cedures in three different types of measurement scale.

Method

Design and Data Generation

The sample data set was generated in a different way depending
on the measurement scale of the variable. The measurement scale
was continuous, four-category ordinal, or binary. For each mea-
surement scale, six design factors were manipulated as follows.

y Number of factors (K). The number of factors was one,
two, four, or six.

y Factor correlation (R). For the multiple-factor model,
that is, K � 2, factor correlation was manipulated as either
weak or strong. The weak factor correlation was defined as
a value within .0 and .3 while the strong factor correlation
was defined as a value within .3 and .6.

y Factor loading (L). The factor loading was manipulated
as either low or high. The low factor loading was defined
as a value within .3 and .5 while the high factor loading
was defined as a value within .5 and .7.

y Population error (E). Population error was either present
or not present, as defined later.

y Nonsymmetry (S). Nonsymmetry or skewness was zero,
one, or two.

y Sample size (N). The sample size was 100, 300, 500, 700,
or 900.

The number of conditions for the one-factor model was 2 (L) �
2 (E) � 3 (S) � 5 (N) � 60 and the number of conditions for the
multiple-factor model was 3(K) � 2(R) � 2(L) � 2(E) � 3(S) �
5 (N) � 360. As a result, a total of 420 conditions were generated
for each measurement scale. The levels for the design factors were
chosen so that they were representative of the range of values that
are encountered in applied settings.

The first step of generating a sample data set began with the
sampling of three types of random elements for the population
model with a specified number of factors. The sampling of the
random elements was done for each data set, so that the data sets
within the same condition reflect less structured and more realistic
population structures with some variations. First, the number of
variables measuring a factor was sampled from the set {4, 6, 8}
with equal probability so that the factors in the model can have
different numbers of variables. Second, the loading values for each
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measurement path were independently sampled from U(.3, .5) for
the low condition and U(.5, .7) for the high condition and allowed
to vary within a factor. Third, in case of the multiple-factor model,
the correlation values for each pair of factors were independently
sampled from U(.0, .3) for the weak condition and U(.3, .6) for the
strong condition.

Once a population factor structure was set as above, the popu-
lation correlation matrix � was constructed as follows (see Tim-
merman & Lorenzo-Seva, 2011). First, a reduced population cor-
relation matrix �� was computed as:

�� � ���T � (0.1)�e
�, (2)

where � is a p � k factor loading matrix, �T is the transpose of
�, � is a k � k factor correlation matrix, and �e

� is a noise
structure matrix. For models without population error, �e

� was a
null matrix with 0 in every cell. For models with population error,
the noise matrix was obtained by

�e
� � �e�e ⁄ k,

where �e is a noise loading matrix of size p � 3k with each value
sampled from U(�1, 1). The denominator k is a normalization
constant for the diagonal elements of �e�e

T, the expected values of
which are k. After computing the reduced population correlation
matrix ��, the diagonal entries of �� were replaced with unities to
obtain �, so that the communalities and unique variances summed
to 1.0 for each variable. None of the generated ���T had a
diagonal value equal to or larger than 0.9.

For each of the 420 conditions, 100 sample data sets were
simulated by drawing from a multivariate normal distribution with
zero means and a specified population correlation �. In the non-
symmetry condition, each data set was transformed to be skewed
to a specified degree. For the continuous scale, the sample data
was transformed by the Vale and Maurelli (1983) method. The
level of nonsymmetry was manipulated by specifying a pair of
skewness (�1) and excess kurtosis (�2) as (0, 0), (1, 1.5), or (2, 6).
The values of each pair were set equal to the values of the
chi-square distribution with df � , 8 or 2, satisfying the mathe-
matical bound �2 � �1

2 � 2 (Shohat, 1929). We used “mvrnon-
norm” function from the “semTools” package in R for this pur-
pose. For the categorical scales, each data set was first generated
from a multivariate normal population with a specified � to serve
as latent information. A set of prespecified thresholds was then
applied to convert the data set into ordinal data set with a desired
skewness level, that is, zero, one, or two. We used the thresholds
provided in Garrido, Abad, and Ponsoda (2013). For all measure-
ment scales, negative skewness values or sign-flipped thresholds
were imposed on a half of the variables for each factor to simulate
oppositely skewed variables, and thus induce difficulty factors.

Finally, a sample correlation matrix was obtained from each
sample data. Pearson correlation was used for the data with con-
tinuous scale, and polychoric correlation was used for the data with
categorical scale. Polychoric correlations were estimated with
“polychoric” function from the “psych” package in R. In case of a
nonpositive definite polychoric correlation matrix, smoothing was
performed with the eigenvalue method described in Knol and
Berger (1991), the default method in the function. A total of
13,345 (15.9%) matrices were smoothed out of 84,000 sample
polychoric correlation matrices.

Analyses of Simulated Data

A total of 13 PA procedures listed in Table 1 were evaluated.
For each sample data set, all procedures were performed as follows
(see Table 2). First, PCA, PAF, and MRFA sample eigenvalues
were obtained by performing respective communality estimation
methods on the sample correlation matrix. For PCA eigenvalues,
the diagonal elements were left unchanged. For PAF eigenvalues,
the diagonal elements were replaced with SMC estimates. For
MRFA eigenvalues, the communalities were estimated by MRFA.
We used an archived Version 1.1.2 of the “DA.MRFA” package
from CRAN repository to perform MRFA, suppling p � 1 as the
rank to be used as in Timmerman and Lorenzo-Seva (2011). The
three types of sample eigenvalues were used for the 12 procedures
of “PA-” and “RPA-” families with matching types of communal-
ity estimators. PCA eigenvalues were used in CD. For the two
PA-MRFA-ecv procedures, ECV values (eigenvalues divided by
the sum of p eigenvalues) were used in place of eigenvalues for
both the sample and random data sets.

For the eight procedures of the “PA-” family, only one set of
100 random data sets was generated for each sample data to
construct the sampling distributions of eigenvalues or ECV values.
This one set was then shared across the eight PA procedures to
minimize unwanted random fluctuation from using different ran-
dom data sets across the procedures. In case of the ordinal sample
data set, the random data sets were also converted to ordinal scale
as described in Table 2. The steps for converting a random data set
into an ordinal scale and then again estimating the latent contin-
uum may be regarded as redundant, but the steps were necessary
to replicate the results of Green et al. (2016) in our preliminary
simulations. From the 84,000 ordered categorical sample data sets,
a total of 140 (0.17%) data sets did not converge when estimating
a MRFA-reduced correlation matrix, for either the sample or a
random data set. In these cases, a new sample data was generated
by retrying from the first step of sampling the structural features of
a population structure for all of the procedures.

For the four RPA procedures, the set of 100 random data sets
used in the “PA-” family for each sample were used in the first j �
0 iteration. Also, only one set of 100 random data sets was
generated and shared across the four RPA procedures in each
iteration of increasing j. The j-factor EFA model was estimated
with “factanal” function provided with R installation, using max-
imum likelihood (ML) estimation and performing iterative estima-
tion on the communalities. An upper bound jmax was imposed
because fitting a j-factor EFA model requires the model to be
identified.1 The CD procedure was performed with the sample data
set of size n � p. We used the code for R language obtained from
the author’s website. Default values were used for all arguments
except the maximum number of tested factors, where jmax was
imposed. The default value of 500 random data sets were gener-
ated in each increment of j.

1 Separate bounds were imposed for the RPA-PCA and RPA-PAF to
match their requirements as specified in Green et al. (2012). For a p � p
correlation matrix, the number of available information is a � p � (p 

1)/2 and the number of parameters in a j-factor EFA model is b � (p � j) 

(j � (j 
 1)/2) 
 p – j2 (Brown, 2015). Solving the inequality b � a for
j yields the upper bound jmax � p � (0.5)((8p 
 1)1/2) 
 0.5 for RPA-PCA.
The upper bound for RPA-PAF was specified as jmax

� � min(jmax, j	�0),
where j	�0 is the number of non-negative sample PAF eigenvalues.
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The performance of the 13 procedures was evaluated and com-
pared using three criteria. The percent correct (PC), the mean error
(ME), and the root mean squared error (RMSE) in estimating the
number of factors were calculated as in the following equations:

PC � �C
Ns

� 100, for C ��1 if �̂ � �

0 if �̂ 	 �
�,

ME � � (�̂
�)
Ns

,

RMSE ��� (�̂
�)2

Ns
,

where Ns is the number of sample data sets used in the calcula-
tions, �̂ is the estimated number of factors, and � is the population
number of factors (Garrido et al., 2013). The whole simulation was
carried on R 3.2.2 software (R Core Team, 2015).

Results

For the sake of clear interpretation, we present only the results
of seven out of the 13 procedures. Mostly, each procedure was
chosen by comparing the overall performance of each pair of the
methods which differ only in using the average or 95th percentile
as a classification threshold. For example, PA-PAF-95 was se-
lected because it performed better than PA-PAF-m. For the tradi-
tional PA procedures, both PA-PCA-m and PA-PCA-95 were
included because they performed best among all procedures in
most conditions. Among the four PA-MRFA procedures, only
PA-MRFA-m was chosen because it consistently performed best.
Table 3 shows the overall performance of the seven selected
procedures.

All seven procedures were more accurate in the one-factor
model than in the multiple-factor model, for example, PC(PA-
PCA-m)k�1 � 89.3 � PC(PA-PCA-m)k�2 � 65.1 for the contin-
uous scale. In the one-factor model, the four PA families (i.e.,
PA-PCA-m, PA-PCA-95, PA-PAF-95, and PA-MRFA-m) per-
formed better when the scale was continuous than when the scale
was four-category or binary, for example, PC(PA-PCA-95)k�1 �
94.2 versus 87.0 and 89.8, respectively. In contrast, the three
procedures which update the population structure performed better
when the scale was binary rather than continuous, for example,
PC(RPA-PCA-95)k�1 � 84.2 and 79.4, respectively. Regardless
of the type of measurement scale, PA-PCA-95 was the most
accurate procedure in the one-factor model, for example, PC(PA-
PCA-95)k�1 � 94.2 for the continuous scale. PA-MRFA-m and
PA-PCA-m also showed relatively good performances in the one-
factor model, for example, PC(PA-MRFA-m)k�1 � 82.8 and
PC(PA-PCA-m)k�1 � 81.9 for the four-category scale. In the
multiple-factor model, all procedures performed best when the
measurement scale was continuous, next best when the scale was
four-category, and worst when the scale was binary, for example,
PC(CD)k�2 � 51.5, 44.4, and 36.5, respectively. The two tradi-
tional PA procedures (i.e., PA-PCA-m and PA-PCA-95) were the
most accurate procedures in the multiple-factor model, for exam-
ple, PC(PA-PCA-95)k�2 � 63.2, 51.4, and 45.5 when the scale
was continuous, four-category, and binary, respectively. Overall,
the use of communality estimates in PA, whether based on SMC or
MRFA, did not increase the accuracy in estimating the number of

factors, for example, PC(PA-PAF-95)k�1 � 74.2 � PC(PA-PCA-
95)k�1 � 87.0 for the four-category scale. The three updating
procedures (i.e., RPA-PCA-95, RPA-PAF-95, and CD) also failed
to outperform the traditional PA procedures in most conditions, for
example, PC(RPA-PCA-95)k�2 � 42.9, PC(RPA-PAF-95)k�2 �
38.8, and PC(CD)k�2 � 36.5 versus PC(PA-PCA-m)k�2 � 49.6
and PC(PA-PCA-95)k�2 � 45.5 for the binary scale.

To better understand the results, we examined the effects of the
six design factors and their interactions on the proportion of
correct estimates (PC/100) for the multiple-factor model. The
analysis of variance (ANOVA) was conducted separately for each
procedure and each measurement scale, resulting in a total of 21
ANOVAs. For each of the 360 conditions, the proportion of
correct estimates was first calculated and then transformed by
arcsine-square-root to deal with inherent heteroscedasticity in the
bounded variables. Only up to three-way interactions were in-
cluded in the analyses. To evaluate the effect size of the design
factors in terms of the proportion of the variance accounted for by
each factor, we calculated semipartial eta-squared (�p

2), where
�p

2 � .01 is interpreted as a small effect, �p
2 � .06 as a medium

effect, and �p
2 � .14 as a large effect (see Garrido et al., 2013).

Table 4 presents the effect size of the six main effects and 3
two-way interactions that showed at least a medium effect in any
procedure. Table 5, Table 6, and Table 7 present the PC, ME, and
RMSE of the seven selected procedures across the levels of the six
factors for the continuous scale, the four-category ordinal scale,
and the binary scale, respectively. A detailed description of the
main effects and notable interaction effects follows.

Population error had a substantial effect on the accuracy of the
PA procedures, that is, �� p

2 � .26, .08, and .02 when the scale was
continuous, four-category, and binary, respectively. The effect size
was most noticeable when the scale was continuous. All selected
procedures were less accurate when population error was intro-
duced (see Tables 5–7). For the continuous variable, the proce-
dures most influenced were PA-PAF-95, RPA-PCA-95, and RPA-
PAF-95, that is, �p

2 � .52, .51, and .55, respectively. When
population error was absent, the three procedures showed the
highest accuracy, that is, PC(PA-PAF-95) � 78.1, PC(RPA-PCA-
95) � 76.7, and PC(RPA-PAF-95) � 74.8. But in the present
condition, their accuracy enormously dropped down to the lowest,
that is, PC(PA-PAF-95) � 22.8, PC(RPA-PCA-95) � 20.7, and
PC(RPA-PAF-95) � 15.9. A similar pattern of the effects was also
found in the categorical scales. For example, PA-PAF-95, RPA-
PCA-95, and RPA-PAF-95 were the most influenced by the pop-
ulation error when the scale was four-category, that is, �p

2 � .25,
.11, and .15, respectively. The accuracy of CD was also consid-
erably affected by the population error, especially when the scale
was continuous, that is, �p

2 � .18. On the contrary, the traditional
PA-PCA procedures were less affected by the population error
than the alternative procedures except for PA-MRFA-m. The ac-
curacy of PA-MRFA-m was similar between conditions with and
without the population error for all measurement scales.

Population error seems to have increased the estimated number
of factors. This can be inferred from the difference in ME between
the absent and present conditions (Tables 5–7). The noise eigen-
values induced by the population error may increase common
variance in the sample correlation matrix and thus increase the
number of factors in the PA procedures. It also seems that the
induced noise eigenvalues had an inflating effect on the com-
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munality estimates in the PA-PAF, but not in the PA-MRFA.
The noise eigenvalues also seem to have increased inaccuracy
in estimating the factor structures updated in the RPA and CD.
Such negative effects may cause more serious concern when the
procedures are applied to Pearson correlations of continuous

variables than to polychoric correlations of categorical vari-
ables.

Nonsymmetry had less-than-small effects for the continuous
variable but small-to-medium effects for the categorical variables,
that is, �� p

2 � .08 and .02 when the scale was four-category and

Table 3
Overall Performance of the Selected PA Variants

Procedure

Percent correct Mean error RMSE

K � 1 K � 2 K � 1 K � 2 K � 1 K � 2

Cont. 4-C 2-C Cont. 4-C 2-C Cont. 4-C 2-C Cont. 4-C 2-C Cont. 4-C 2-C Cont. 4-C 2-C

PA-PCA-m 89.3 81.9 84.0 65.1 54.1 49.6 .11 .13 .16 �.13 �.38 �.35 .37 .49 .49 .96 1.52 1.46
PA-PCA-95 94.2 87.0 89.8 63.2 51.4 45.5 .05 �.02 �.03 �.41 �.88 �1.05 .25 .36 .32 1.13 1.77 1.84
PA-PAF-95 78.8 74.2 76.1 50.4 38.1 30.1 .24 .14 .15 .56 .36 1.79 .58 .59 .72 1.72 3.61 7.39
PA-MRFA-m 92.6 82.8 83.2 52.9 46.8 44.8 .02 .00 .04 �.45 �.61 �.63 .29 .44 .45 1.10 1.57 1.50
RPA-PCA-95 79.4 78.6 84.2 48.7 44.2 42.9 .24 .08 .04 .53 �.62 �.95 .58 .52 .42 1.87 1.98 1.93
RPA-PAF-95 73.1 73.9 80.4 45.4 40.2 38.8 .35 .15 .06 .75 �.56 �1.03 .74 .62 .50 2.14 2.13 2.01
CD 75.6 83.6 89.0 51.5 44.4 36.5 .37 .23 .14 �.18 �1.09 �1.53 .82 .61 .47 1.59 2.12 2.45

Note. RMSE � root mean squared error; K � number of factors; Cont. � continuous scale; 4-C � four-category scale; 2-C � binary scale. PA � parallel
analysis; RPA � revised parallel analysis; CD � comparison data method; PCA � principal component analysis; PAF � principal axis factoring; MRFA �
minimum rank factor analysis; m � mean; 95 � 95th percentile.

Table 4
Effect Size of the Selected PA Variants in the Multiple-Factor Model by Measurement Scale

Procedure

Main and interaction effects

E S R L K N E � N R � L R � K

Continuous
PA-PCA-m .04 .14 .24 .19 .09 .02 .02 .07
PA-PCA-95 .20 .19 .24 .14 .06
PA-PAF-95 .52 .02 .11 .09 .15
PA-MRFA-m .37 .12 .27 .02 .11 .04
RPA-PCA-95 .51 .01 .05 .09 .01 .15
RPA-PAF-95 .55 .02 .05 .15
CD .18 .04 .16 .10 .09 .08 .01
Average .26 .11 .12 .15 .05 .08 .02 .03

Four-Category
PA-PCA-m .01 .05 .10 .19 .18 .20 .02 .04
PA-PCA-95 .05 .17 .14 .21 .26 .04
PA-PAF-95 .25 .06 .08 .15 .17 .11
PA-MRFA-m .04 .25 .09 .22 .12 .11 .02
RPA-PCA-95 .11 .02 .04 .11 .14 .22 .07
RPA-PAF-95 .15 .01 .02 .06 .11 .21 .09
CD .02 .06 .10 .21 .25 .16 .01
Average .08 .04 .10 .13 .18 .19 .04 .02 .02

Binary
PA-PCA-m .03 .12 .24 .24 .15 .05 .04
PA-PCA-95 .03 .18 .17 .27 .21 .02 .02
PA-PAF-95 .11 .07 .02 .07 .33 .10 .07
PA-MRFA-m .01 .26 .12 .30 .10 .10 .03
RPA-PCA-95 .02 .03 .05 .24 .23 .21 .02
RPA-PAF-95 .02 .03 .04 .22 .22 .19 .02
CD .06 .10 .22 .34 .15
Average .02 .04 .11 .18 .28 .16 .02 .03 .01

Note. Tabled values are semipartial eta squared (�p
2) obtained from the analysis of variance on the proportion of correct estimates transformed by

arcsine-square-root. Values greater than small effects (�p
2 � .01) are displayed. Large effects (�p

2 � .14) are shown in boldface. Medium effects (�p
2 � .06)

are shown in italics. E � population error; S � nonsymmetry (skewness); R � factor correlation; L � factor loading; K � number of factors; N � sample
size. PA � parallel analysis; RPA � revised parallel analysis; CD � comparison data method; PCA � principal component analysis; PAF � principal axis
factoring; MRFA � minimum rank factor analysis; m � mean; 95 � 95th percentile.
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binary, respectively. When the scale was categorical, the seven
procedures became less accurate as the nonsymmetry increased
(see Tables 6 and 7). The accuracy decreased more sharply, as the
skewness increased gradually, for example, for the four-category
scale, PC(PA-PAF-95) � 43.8, 43.5, and 26.9 when nonsymmetry
was 0, 1, and 2, respectively. PA-PAF-95 and CD were the
procedures most affected by the nonsymmetry, for example,
�p

2(PA-PAF-95) � .07 and �p
2 (CD) � .06 for the binary scale.

Nonsymmetry contributed to increase in positive bias for PA-
PAF-95 and negative bias for the rest of the procedures. For
example, as skewness increased from 0 to 2 in the binary scale, the
ME of PA-PAF-95 increased from 1.02 to 2.60 but the ME of CD
decreased from �1.29 to �1.86. The small noise eigenvalues
induced by nonsymmetry seem to have more effect on categorical
variables than continuous variables.

The factor correlation contributed a lot to lack of the accuracy
for all procedures in all measurement scales, that is, �� p

2 � .11, .10,
and .11 for the continuous, four-category, and binary variables,
respectively. For all scales, the seven procedures were less accu-
rate in the strong condition than in the weak condition (Tables
5–7). PA-MRFA-m was found to have the largest effect size of the
factor correlation among all procedures in all measurement scales,
that is, �p

2 � .37, .25, and .26 for the continuous, four-category,
and binary scale, respectively. The accuracy of PA-PCA-95 was
also largely affected by the factor correlation in all scales, that is,
�p

2 � .20, .17, and .18 for the continuous, four-category, and binary

scale, respectively. The two procedures showed the largest differ-
ence in PC between the weak and strong conditions, for example,
PC(PA-MRFA-m) � 72.4 versus 33.4 and PC(PA-PCA-95) �
78.0 versus 48.5 for the continuous variable. In all measurement
scales, PA-PCA-m was the most accurate in the strong condition
and PA-PCA-95 was the most accurate in the weak condition. The
ME was negatively oriented in the strong condition than in the
weak condition in all procedures. The strong factor correlation
seems to have contributed to a reduction in the estimated number
of factors because it possibly made the last few signal eigenvalues
too small to be detected.

Factor loading also had a substantial effect on the accuracy of all
procedures in all measurement scales. The average �p

2 was .12 for
the continuous scale, .13 for the four-category scale, and .18 for
the binary scale, indicating that the effect of the factor loading was
most evident when the scale was binary. In all scales, the accuracy
of all procedures was greater in the high condition than in the low
condition. The accuracy of the traditional PA procedures was
largely affected by the factor loadings in all scales, for example, in
PA-PCA-m, �p

2 � .24, .19, and .24 for the continuous, four-
category, and binary scale, respectively. CD also showed a large
effect size in all scales, that is, �p

2 � .16, .21, and .22 for the
continuous, four-category, and binary scale, respectively. The tra-
ditional PA procedures were the most accurate in the high condi-
tion for all scales. Both procedures were also the best in the low
condition with one exception, where PA-MRFA-m was the most

Table 5
Performance of the Selected PA Variants in the Multiple-Factor Model for the Continuous Variable

Procedure

Population
error Nonsymmetrya

Factor
correlation

Factor
loading Number of factors Sample size

No Yes 0 1 2 Weak Strong High Low 2 4 6 100 300 500 700 900

Percent correct
PA-PCA-m 71.7 58.4 64.9 65.6 64.7 76.5 53.6 81.4 48.7 83.0 66.5 45.7 47.2 64.5 69.4 71.5 72.6
PA-PCA-95 66.1 60.3 63.4 63.6 62.6 78.0 48.5 77.8 48.7 85.1 63.0 41.5 38.6 62.8 68.9 72.2 73.5
PA-PAF-95 78.1 22.8 50.7 50.3 50.4 55.1 45.8 61.6 39.2 63.9 49.4 38.0 46.4 54.9 50.9 49.7 50.2
PA-MRFA-m 53.7 52.1 53.1 53.8 51.9 72.4 33.4 64.2 41.6 76.1 48.9 33.8 43.1 54.1 55.7 56.0 55.8
RPA-PCA-95 76.7 20.7 48.7 48.6 48.8 53.3 44.1 56.8 40.6 61.8 47.3 37.0 43.9 53.9 49.7 48.1 47.9
RPA-PAF-95 74.8 15.9 45.4 46.0 44.7 49.6 41.1 51.5 39.2 55.6 44.8 35.7 42.2 48.6 45.6 45.2 45.2
CD 67.3 35.6 47.0 50.5 56.8 58.2 44.8 65.5 37.4 64.6 51.9 37.8 33.7 54.7 56.0 56.7 56.2

Mean error
PA-PCA-m �.37 .11 �.12 �.12 �.14 .18 �.44 �.23 �.02 .14 �.03 �.49 �.58 �.16 �.03 .04 .09
PA-PCA-95 �.58 �.25 �.41 �.40 �.43 �.06 �.77 �.31 �.52 .01 �.32 �.93 �1.23 �.46 �.23 �.11 �.04
PA-PAF-95 �.24 1.37 .58 .58 .54 .75 .38 .51 .62 .44 .65 .60 �.75 .42 .84 1.07 1.23
PA-MRFA-m �.50 �.41 �.43 �.43 �.50 .03 �.94 �.53 �.38 �.06 �.42 �.87 �.68 �.39 �.39 �.41 �.40
RPA-PCA-95 �.32 1.39 .55 .56 .49 .72 .34 .91 .16 .48 .62 .50 �.93 .21 .77 1.15 1.46
RPA-PAF-95 �.31 1.81 .77 .78 .70 .92 .58 1.29 .21 .69 .87 .70 �.87 .38 1.02 1.45 1.78
CD �.62 .26 �.02 �.05 �.46 .08 �.44 .23 �.58 .44 �.01 �.96 �1.48 �.40 .05 .36 .59

Root mean squared error
PA-PCA-m .90 1.02 .96 .95 .97 .74 1.14 .63 1.20 .51 .82 1.36 1.44 .91 .78 .74 .74
PA-PCA-95 1.16 1.09 1.12 1.11 1.15 .73 1.41 .76 1.40 .41 .92 1.67 1.88 1.07 .82 .73 .68
PA-PAF-95 .88 2.26 1.75 1.72 1.68 1.67 1.76 1.27 2.07 .96 1.64 2.29 1.62 1.27 1.61 1.88 2.08
PA-MRFA-m 1.11 1.09 1.07 1.08 1.15 .71 1.39 .97 1.22 .55 .96 1.55 1.45 1.02 .98 .98 .99
RPA-PCA-95 .97 2.46 1.90 1.91 1.80 1.86 1.89 1.86 1.88 1.04 1.80 2.49 1.80 1.22 1.60 2.04 2.45
RPA-PAF-95 .98 2.86 2.19 2.19 2.03 2.13 2.14 2.35 1.90 1.33 2.13 2.72 1.78 1.39 1.92 2.43 2.86
CD 1.39 1.76 1.66 1.54 1.55 1.36 1.79 1.22 1.89 1.05 1.36 2.15 2.30 1.38 1.24 1.30 1.47

Note. PA � parallel analysis; RPA � revised parallel analysis; CD � comparison data method; PCA � principal component analysis; PAF � principal
axis factoring; MRFA � minimum rank factor analysis; m � mean; 95 � 95th percentile.
a Skewness paired with a specified kurtosis.
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accurate for the binary scale. RPA-PCA-95, RPA-PAF-95, and CD
showed a substantial negative bias in the low condition for the
categorical scales.

Overall, the number of factors was found to be the most influ-
ential design factor, that is, �� p

2 � .15, .18, and .28 for the contin-
uous, four-category, and binary variable, respectively. The in-
crease in the number of factors remarkably reduced the accuracy of
the seven procedures in all scales. The accuracy of the traditional
PA procedures was largely influenced by the number of factors in
all measurement scales, for example, �p

2 (PA-PCA-95) � .24, .21,
and .27 for the continuous, four-category, and binary scale, respec-
tively. PA-MRFA-m also had a large effect size of the number of
factors on all scales, that is, �p

2 � .27, .22, and .30 for the
continuous, four-category, and binary scale, respectively. PA-
PCA-m was the most accurate regardless of the number of
factors for all scales. For the continuous scale, the negative bias
increased as the number of factors increased in PA-PCA-m,
PA-PCA-95, PA-MRFA-m, and CD. For the categorical scales,
as the number of factors increased, the negative bias increased
in all procedures except for PA-PAF-95, for which the increase
in the number of factors led to increase of the positive bias on
all scales.

Sample size had a substantial effect on the accuracy of all
procedures in all measurement scales. The average �p

2 was .05 for
the continuous variable, .19 for the four-category variable, and .16
for the binary variable. The effect of the sample size was more

evident when the scale was categorical and the accuracy in con-
ditions with the sample size of 100 was markedly low, for exam-
ple, PC(PA-PCA-95) � 16.1 and PC(PA-PAF-95) � 14.8 for the
binary scale. The accuracy of the traditional PA procedures was
largely influenced by the sample size in all measurement scales,
for example, �p

2 (PA-PCA-95) � .14, .26, and .21 for the contin-
uous, four-category, and binary scale, respectively. As the sample
size increased, the accuracy of both procedures consistently in-
creased in all measurement scales. PA-PCA-m was the most ac-
curate in all sample size conditions with a few exceptions where
PA-PCA-95 performed slightly better, for example, PC(PA-PCA-
m) � 72.6 and PC(PA-PCA-95) � 73.5 when the sample size is
900 for the continuous scale. For the categorical scales, PA-
MRFA-m had a smaller effect than the other procedures, that is,
�p

2 � .12 and .10 for the four-category and binary scale, respec-
tively. As the sample size increased, the accuracy of PA-MRFA-m
did not increase as much as the accuracy of the other procedures.
PA-PAF-95, RPA-PCA-95, RPA-PAF-95, and CD had a medium
to large effect of sample size for the categorical variables, for
example, for the four-category scale, �p

2 � .17, .22, .21, and .16,
respectively. The accuracy of the four procedures generally
increased as the sample size increased for the categorical vari-
ables.

For the continuous scale, however, the accuracy of the alterna-
tive PA procedures did not behave in a typical way as the sample
size increased. For example, the PC of RPA-PCA-95 was highest

Table 6
Performance of the Selected PA Procedures in the Multiple-Factor Model for the Four-Category Ordinal Variable

Procedure

Population
error Nonsymmetrya

Factor
correlation

Factor
loading Number of factors Sample size

No Yes 0 1 2 Weak Strong High Low 2 4 6 100 300 500 700 900

Percent correct
PA-PCA-m 58.2 49.9 60.9 58.4 42.9 64.5 43.6 69.0 39.1 73.0 54.0 35.2 26.3 49.4 60.8 65.5 68.2
PA-PCA-95 52.1 50.8 58.2 55.2 40.9 66.7 36.2 64.9 37.9 74.4 49.3 30.6 17.5 47.7 59.1 64.4 68.4
PA-PAF-95 56.1 20.0 43.8 43.5 26.9 39.9 36.2 47.5 28.6 55.3 34.8 24.1 14.6 40.5 44.9 44.7 45.6
PA-MRFA-m 47.0 46.7 51.9 50.0 38.5 63.0 30.6 56.9 36.7 67.3 43.2 30.0 25.4 46.4 51.8 55.4 55.1
RPA-PCA-95 57.1 31.2 47.7 47.0 37.9 50.9 37.5 55.4 32.9 61.3 41.8 29.4 15.4 43.8 53.1 54.3 54.2
RPA-PAF-95 55.4 25.1 41.7 43.6 35.4 45.4 35.0 48.9 31.5 55.2 38.0 27.4 12.2 42.0 48.4 49.1 49.4
CD 49.2 39.5 52.6 47.3 33.2 55.6 33.1 60.6 28.2 67.3 40.7 25.1 20.0 42.3 49.0 53.9 56.4

Mean error
PA-PCA-m �.59 �.18 �.21 �.25 �.69 �.01 �.76 �.45 �.32 .08 �.28 �.94 �1.62 �.10 �.13 �.06 �.01
PA-PCA-95 �1.02 �.75 �.61 �.70 �1.34 �.48 �1.29 �.66 �1.10 �.20 �.81 �1.63 �2.51 �.78 �.53 �.35 �.23
PA-PAF-95 �.40 1.13 .10 .40 .59 .67 .06 .64 .09 .20 .24 .65 �2.65 1.04 1.05 1.12 1.26
PA-MRFA-m �.67 �.56 �.35 �.51 �.98 �.17 �1.06 �.74 �.49 �.12 �.54 �1.18 �1.53 �.42 �.40 �.35 �.37
RPA-PCA-95 �.98 �.26 �.12 �.30 �1.43 �.37 �.86 �.18 �1.05 �.01 �.54 �1.31 �2.66 �.94 �.18 .20 .49
RPA-PAF-95 �1.03 �.09 �.12 �.22 �1.34 �.36 �.76 �.05 �1.06 .12 �.49 �1.30 �2.96 �.82 �.06 .37 .68
CD �1.26 �.91 �.62 �1.07 �1.58 �.67 �1.51 �.55 �1.63 .05 �.98 �2.34 �2.21 �1.28 �.93 �.61 �.41

Root mean squared error
PA-PCA-m 1.50 1.54 1.09 1.19 2.08 1.42 1.61 1.22 1.77 .73 1.35 2.14 2.71 1.29 1.02 .89 .84
PA-PCA-95 1.81 1.72 1.36 1.47 2.32 1.49 2.00 1.45 2.04 .71 1.55 2.54 3.18 1.56 1.18 .98 .86
PA-PAF-95 2.84 4.25 2.15 2.39 5.37 3.89 3.31 4.11 3.03 1.09 2.57 5.60 3.79 5.24 3.47 2.34 2.45
PA-MRFA-m 1.58 1.55 1.14 1.26 2.11 1.39 1.73 1.41 1.70 .80 1.39 2.19 2.72 1.29 1.10 1.00 1.00
RPA-PCA-95 1.86 2.10 1.68 1.68 2.49 1.84 2.12 1.70 2.23 .92 1.77 2.80 3.29 1.92 1.28 1.24 1.42
RPA-PAF-95 1.94 2.29 2.09 1.77 2.46 2.03 2.22 1.94 2.30 1.08 1.95 2.93 3.54 1.87 1.36 1.43 1.65
CD 2.13 2.10 1.65 2.10 2.51 1.64 2.50 1.61 2.52 .75 1.69 3.16 2.86 2.19 1.95 1.72 1.62

Note. PA � parallel analysis; RPA � revised parallel analysis; CD � comparison data method; PCA � principal component analysis; PAF � principal
axis factoring; MRFA � minimum rank factor analysis; m � mean; 95 � 95th percentile.
a Skewness defined from specified thresholds.
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when the sample size was 300 and thereafter decreased as the
sample size increased, that is, PC(RPA-PCA-95) � 43.9, 53.9,
49.7, 48.1, and 47.9 for N � 100, 300, 500, 700, and 900,
respectively. In fact, a medium to large effect of the interaction of
sample size by population error was found for PA-PAF-95, RPA-
PCA-95, RPA-PAF-95, and CD, that is, �p

2 � .15, .15, .15, and .08,
respectively. Figure 3 demonstrates the differences in PC of the
selected PA procedures across the different levels of sample size in
each combination of the factor correlation and factor loading
conditions when the population error was (a) absent or (b) present
for the continuous scale. In Figure 3, PA-PCA-95 and RPA-
PAF-95 are not displayed for brevity because each was less
accurate than and had a similar pattern to PA-PCA-m and
RPA-PCA-95, respectively. Without population error, all dis-
played procedures except for PA-MRFA-m showed increased
accuracy as the sample size increased. When the population
error was present, however, the alternative PA procedures
showed unexpected patterns of change in accuracy. For exam-
ple, the accuracy of PA-PAF-95 and RPA-PCA-95 decreased as
the sample size increased when the factor loading was high.
Both procedures behaved strangely also when the factor loading
was low. CD also exhibited nonsystematic changes with in-
creasing sample size in the present condition. In contrast,
PA-PCA-m showed a systematic increase in accuracy as the
sample size increased when the factor loading was high in the
present condition. Similar patterns of the interactions were also

found in the four-category and binary scale but the effect sizes
were much smaller than in the continuous scale, for example,
�p

2 (RPA-PCA-m) � .07, and .02 for the four-category and
binary scale, respectively. Figure 4 demonstrates the differ-
ences in PC of the five selected PA procedures across the
different levels of sample size in each combination of the factor
correlation and factor loading conditions for the (a) four-
category scale and (b) the binary scale.

A notable interaction effect of factor correlation by factor
loading was found for PA-MRFA-m, that is, �p

2 � .11, .11, and
.10 for the continuous, four-category, and binary scale, respec-
tively. PA-MRFA-m performed well when both the factor cor-
relation was weak and the factor loading was high in all scales.
However, the accuracy of the procedure dropped a lot when
either the factor correlation was strong or the factor loading was
low (see Figure 3 and Figure 4). The interaction indicates that
just one source of small signal eigenvalue, whether it is a strong
factor correlation or a low factor loading, is enough to decrease
the accuracy of PA-MRFA. A similar pattern of interaction was
also found in PA-PCA-m, but the effect size of the procedure
was much smaller than PA-MRFA-m, that is, �p

2 � .02, .02, and
.05 for the continuous, four-category, and binary scale, respec-
tively. PA-PCA-m and PA-MRFA-m also had a small to me-
dium interaction effect of the number of factors by factor
correlation, for example, �p

2 (PA-PCA-m) � .07, .04, and .04
for the continuous, four-category, and binary scale, respec-

Table 7
Performance of the Selected PA Variants in the Multiple-Factor Model for the Binary Variable

Procedure

Population
error Nonsymmetrya

Factor
correlation

Factor
loading Number of factors Sample size

No Yes 0 1 2 Weak Strong High Low 2 4 6 100 300 500 700 900

Percent correct
PA-PCA-m 52.3 46.9 55.3 51.2 42.5 60.7 38.6 66.7 32.5 71.2 48.1 29.6 26.9 45.7 54.3 59.2 62.0
PA-PCA-95 45.6 45.3 51.9 47.6 36.9 61.0 29.9 60.7 30.2 71.1 41.2 24.1 16.1 40.0 51.7 57.4 61.9
PA-PAF-95 40.4 19.9 38.1 31.3 21.0 34.1 26.2 38.1 22.2 51.7 24.7 14.0 14.8 30.7 34.9 35.1 35.2
PA-MRFA-m 45.2 44.4 48.7 46.1 39.7 60.5 29.1 56.7 32.9 67.7 41.1 25.6 26.6 42.0 49.5 51.8 54.1
RPA-PCA-95 48.8 37.0 47.6 45.5 35.5 50.4 35.3 59.7 26.1 63.8 39.4 25.6 15.5 40.3 50.4 53.6 54.7
RPA-PAF-95 44.7 33.0 43.2 41.7 31.6 45.8 31.9 54.0 23.7 59.0 35.0 22.6 13.8 35.0 46.2 49.7 49.5
CD 38.3 34.7 45.3 39.6 24.6 47.2 25.8 52.7 20.3 63.0 30.4 16.1 14.0 32.3 40.9 45.6 49.7

Mean error
PA-PCA-m �.53 �.17 �.27 �.33 �.45 .13 �.83 �.46 �.24 .15 �.24 �.96 �1.11 �.39 �.16 �.07 �.02
PA-PCA-95 �1.16 �.94 �.81 �.96 �1.38 �.60 �1.50 �.72 �1.38 �.23 �.96 �1.96 �2.32 �1.20 �.77 �.55 �.42
PA-PAF-95 .98 2.61 1.02 1.76 2.60 2.13 1.46 3.26 .33 .48 1.95 2.95 �2.21 1.54 2.34 3.25 4.05
PA-MRFA-m �.70 �.56 �.52 �.60 �.78 �.11 �1.15 �.68 �.58 �.04 �.53 �1.32 �1.19 �.65 �.48 �.44 �.39
RPA-PCA-95 �1.14 �.76 �.54 �.85 �1.47 �.69 �1.22 �.32 �1.59 �.12 �.86 �1.88 �2.40 �1.21 �.69 �.36 �.12
RPA-PAF-95 �1.25 �.81 �.54 �.93 �1.62 �.78 �1.28 �.36 �1.70 �.13 �.94 �2.02 �2.43 �1.35 �.78 �.42 �.16
CD �1.63 �1.44 �1.29 �1.45 �1.86 �1.06 �2.01 �.92 �2.15 �.14 �1.40 �3.06 �2.54 �1.77 �1.35 �1.10 �.91

Root mean squared error
PA-PCA-m 1.45 1.47 1.25 1.39 1.71 1.26 1.64 1.06 1.78 .75 1.27 2.06 2.14 1.53 1.25 1.08 1.02
PA-PCA-95 1.89 1.79 1.57 1.74 2.16 1.49 2.14 1.35 2.23 .66 1.58 2.70 2.91 1.91 1.47 1.24 1.09
PA-PAF-95 6.69 8.02 5.07 7.02 9.42 7.41 7.37 9.22 4.90 2.13 6.66 10.71 3.07 7.75 7.46 7.94 9.20
PA-MRFA-m 1.52 1.48 1.30 1.43 1.74 1.15 1.78 1.24 1.72 .71 1.28 2.15 2.13 1.55 1.30 1.19 1.09
RPA-PCA-95 1.94 1.92 1.64 1.81 2.28 1.74 2.10 1.30 2.40 .75 1.65 2.80 3.00 1.99 1.55 1.32 1.22
RPA-PAF-95 2.02 2.00 1.71 1.87 2.38 1.84 2.17 1.38 2.49 .83 1.73 2.90 3.01 2.09 1.63 1.46 1.39
CD 2.47 2.44 2.27 2.39 2.67 1.98 2.85 1.93 2.88 .68 1.99 3.69 3.12 2.59 2.29 2.11 1.97

Note. PA � parallel analysis; RPA � revised parallel analysis; CD � comparison data method; PCA � principal component analysis; PAF � principal
axis factoring; MRFA � minimum rank factor analysis; m � mean; 95 � 95th percentile.
a Skewness defined from specified thresholds.
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tively. The interaction indicates that the negative effect of the
number of factors on the accuracy of the two procedures is
greater when the factor correlation is stronger than when it is
weaker.

Conclusion

Previous studies have pointed out that parallel analysis lacks
theoretical justification because it does not use proper communal-
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ity estimates nor consider the constrained relation in eigenvalues.
Alternative PA procedures to address the problems have been
proposed in the literature, and the results in the respective studies
suggest that the alternatives provide a benefit over the traditional
parallel analysis in certain conditions. However, in order to reach
a general conclusion about the performance of PA procedures, they
must be investigated under a wide range of factor structures with
small signal and noise eigenvalues. The current study examined
performance of 13 PA variants across various forms of factor
structure, focusing on the capability of the procedures in correctly
detecting small factor-representing eigenvalues and correctly re-
jecting small noise eigenvalues. The procedures were investigated
in both continuous data sets and ordered categorical data sets,
using appropriate types of Pearson or polychoric correlations.

Our results show that Horn’s original PA generally outperforms
the alternative PA procedures, especially when the population
factor structure has model error or trivial factors. PA-PCA-95 was
the most accurate for the one-factor model, and PA-PCA-m was
the most accurate for the multiple-factor model, regardless of
whether the measurement scale was continuous or categorical.
However, the traditional PA procedures were still not sufficiently
accurate in the conditions with small signal eigenvalues, which
was induced by strong factor correlation and low factor loadings in
our design. The lack of a sufficient accuracy was especially more
prominent as the number of factors increased. The small signal
eigenvalue may contribute to decreasing the accuracy of parallel
analysis as the number of factors increases. In fact, regardless of
the number of factors, the accuracy of PA-PCA-m for the multiple
factor model was satisfactory in condition with high factor loading
and weak factor correlation, where the small signal eigenvalue is
minimally induced (see Figures 3–4).

The alternative PA procedures outperformed or had comparable
accuracy with the original PA in only a few conditions. Parallel
analysis using SMCs as communality estimates outperformed the
original PA in condition with strong factor correlation (Crawford
et al., 2010; Green et al., 2012) but this was no longer true once
model error was involved. Similarly, revised parallel analysis
outperformed Horn’s PA in condition with strong factor correla-
tion (Green et al., 2012, 2016) but it failed to detect a small
eigenvalue induced by model error as a noise. CD showed better
performance than the original PA when both factor correlation was
strong and factor loading was high but this was true only if
population error was not involved. Parallel analysis using MRFA
communality estimates showed a comparable accuracy with the
original PA in condition with weak factor correlation and high
factor loading (Timmerman & Lorenzo-Seva, 2011) but it per-
formed badly when factors are highly correlated (Garrido et al.,
2013).

In summary, our results show that the proposed PA alternatives
generally do not succeed to address theoretical limitations of
Horn’s parallel analysis. The results of the current study suggest
that the original PA procedure should be the method of choice to
determine the number of factors using eigenvalues. Unless the
factor model under study is expected to fit exactly in the popula-
tion, the variables used in PA must be reliable and valid, enough
in number, and have a single meaning to avoid a small signal
eigenvalue. In case of the categorical variable, PA must be per-
formed on a data set with a larger sample size and for the factor

model with a smaller number of factors, because PA is affected a
lot by the number of factors and sample size.

In a sample correlation matrix, a similar set of eigenvalues can
be obtained from different population factor structures. For exam-
ple, eigenvalues from a correlated-factor structure could yield a
similar pattern to those from an orthogonal-factor structure with
the same number of factors. The two factor structures in Figure 5a
have different factor correlations and factor loadings, but they
produce nearly identical sample eigenvalue distributions because
the two structures are essentially congruent after rotation. Further-
more, when factors are strongly correlated the representing signal
eigenvalues become so small that they become indistinguishable
with noise eigenvalues, and even become reproducible with a
smaller number of factors and weak factor correlations. In Figure
5b, the fourth sample eigenvalues of the four-correlated-factor
structure are indistinguishable with the fourth sample eigenvalues
of the three-orthogonal-factor structure.

Concerning this lack of decidability and the heuristic nature of
eigenvalue-based decision procedures in dimensionality assess-
ment, the estimate obtained from PA or any eigenvalue-based
procedure should not be interpreted as a fixed estimate. With the
lack of decidability in mind, researchers may first obtain an esti-
mate of the number of factors k from PA-PCA, and then consid-
ering (k 
 1), k, and (k � 1) as viable candidates for the optimal
number of factors. This is because the given set of sample eigen-
values may be produced from a k-factor structure as well as from
a (k 
 1)-factor or a (k � 1)-factor structure, as demonstrated in
Figure 5. As such, it is important that researchers should consult
with the interpretability of the factor structures and compare viable
models with different number of factors in terms of their interpre-
tational validity, typically after rotation (Fabrigar et al., 1999;
Floyd & Widaman, 1995; Reise, Waller, & Comrey, 2000).

The scope of the current study is limited in many ways. While
our study design covered a wide range of realistic conditions, these
conditions are not comprehensively representative of the vast
range of the factor structures in real data sets. For example, our
conditions produce data sets with limited degrees of nonsymmetry.
The current study did not investigate more analytic eigenvalue-
based approaches based on random matrix theory recently pro-
posed by Saccenti and Timmerman (2017) and Braeken and van
Assen (2017). Other approaches of dimensionality assessment not
based on the eigenvalues of correlation matrix, for example, like-
lihood ratio test, were not examined in the current study, either.
Comparisons with such approaches under comprehensive and re-
alistic conditions may enhance our understanding of the nature of
dimensionality assessment.

The conditions examined here only represents some portion of
possible configuration of common factor models. Therefore, read-
ers are advised to be cautious in generalizing the current results
into other models, such as factor models with correlated measure-
ment errors or cross loadings, or bifactor models. Applying par-
allel analysis procedures onto data sets where such modeling is
more appropriate may yield an inaccurate estimate. As such, while
having a well-functioning estimation procedure is certainly of
merit in psychological research, it would nonetheless still be
important to investigate that for a given data set, whether the
model structure in question is theoretically appropriate and con-
ceptually interpretable.
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Figure 5. Eigenvalue similarity between different factor structures. Panel (a) illustrates the structures with two
correlated factors [J � 4, L � .5, R � .3] and two orthogonal factors [J � 4, L � (.588, .409)]. Panel (b)
illustrates the structures with four correlated factors [J � 3, L � .4, R � .3] and three orthogonal factors [J �
4, L � (.496, .299, .250)]. J � the number of variables for each factor; L � factor loadings for each factor (no
cross-loadings were specified); R � factor correlation for each pair of the factors. The eigenvalue distributions
were constructed from 1,000 datasets with 100 observations each. The three lines respectively represent the 25th
percentile, the mean, and the 75th percentile of the distributions.
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