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We illustrate the effects of range restriction and a form of criterion contamination (individual differences
in course-taking patterns) on the validity of SAT scores for predicting college academic performance.
College data facilitate exploration of differential validity’s determinants because they (a) permit the use
multivariate range-restriction corrections to more accurately account for differential range restriction
across subgroups and (b) allow for separate examinations of composite performance and specific
performance episodes, the latter of which controls for ecological contamination of composite perfor-
mance due to individuals’ choices of performance opportunities. Using data from 363,004 students at 107
U.S. institutions, we found that controlling for course-taking patterns resulted in validity coefficients that
were appreciably larger than predictors’ correlations with obtained grade point averages (GPAs). The
validities of SAT scores for predicting the first-year college performance of Black and Hispanic students
were not significantly different from the validity for White students after correcting for both course-
taking patterns and differential range restriction, but significant Black–White differences were detected
for predicting 4-year cumulative performance. Validity estimates for predicting both first-year and 4-year
cumulative performance were significantly smaller among Asian students than White students after
making these corrections. The SAT’s observed validity for predicting college GPAs was substantially
lower for males than females and, unexpectedly, controlling for course-taking patterns increased
male-female validity differences. Implications for personnel selection research are discussed.

Keywords: differential validity, range restriction, cognitive ability, standardized testing, criterion
contamination

A common concern in personnel and educational selection re-
search is that predictor variables (especially cognitive measures)
may be more valid indicators of performance for some groups than
for others, a phenomenon known as differential validity (Linn,
1978). The topic of differential validity has experienced renewed
interest among industrial-organizational (I-O) psychologists within
the past decade (e.g., Berry, Clark, & McClure, 2011), particularly
with regard to the extent that range restriction might account for
observed racial/ethnic differences in validity (e.g., Berry, Cullen,
& Meyer, 2014; Berry, Sackett, & Sund, 2013; Roth, Le, Oh, Van
Iddekinge, & Robbins, 2017). However, a difficulty in studying
the effects of subgroup-specific range-restriction corrections on
validity differences is the inability of conventional univariate

corrections for range restriction (i.e., those performed when the
unrestricted standard deviation can only be estimated for the
predictor under study) to accurately model the actual selection
mechanism(s) that produced restriction of range. We explore
whether multivariate range restriction and differences in course-
taking patterns (a form of criterion contamination) might account
for the differential validity of SAT scores among racial/ethnic
groups, between males and females, and among intersections of
ethnicity and sex. Thus, in this article we use “subgroup” to refer
to a group of people who are demographically differentiable on the
basis of self-reported race and/or sex. As differential validity
patterns tend to be fairly consistent across academic, military, and
employee samples (Berry et al., 2011), our ability to correct for
subgroup-specific multivariate range restriction and control for
certain sources of criterion contamination in this study’s academic
database suggest fruitful directions for future personnel-selection
research.

At the outset, we believe it is useful to delineate this article’s
focus on validity differences from other types of differences com-
monly studied with respect to racial/ethnic groups or sex. Our
focus here is on validity differences, which reflect differences in
the within-group predictive efficacy of test scores across groups
(e.g., Are the correlations between test scores and performance
similar or different across groups when computed separately
within two or more groups?). This is quite different from research
on subgroup mean differences, in which the focus is on the extent
to which two groups’ distributions of scores are different from
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each other in terms of central tendency. Research on mean differ-
ences is focused on univariate differences between groups,
whereas the differential validity phenomenon is not affected by
mean differences by virtue of examining within-group bivariate
correlations in which data are centered and standardized within
groups prior to analysis. Differential validity research is also
different from research on differential prediction (i.e., predictive
bias), which focuses on differences among subgroups’ unstandard-
ized subgroup regression lines, with the predictor and criterion
variables analyzed in their unstandardized metrics (including
whatever mean differences may exist on these variables). Although
differential validity, differential prediction, and subgroup mean
differences all have implications for the fairness and legal defen-
sibility of selection systems, each concept addresses fairness in a
different way. Beyond their common ties to the idea of fairness in
assessment and selection, one thing that the literatures on differ-
ential validity, differential prediction, and subgroup mean differ-
ences have in common is that most research on these phenomena
examines cognitive test scores, and the present study joins this
trend.

Standardized test scores are widely used as predictor variables
in postsecondary admissions processes and have a rather long
history of documented differential validity by sex and ethnicity.
With regard to sex differences, subgroup validity analyses of the
SAT have consistently revealed that SAT scores are more valid
indicators of college academic performance for females than
males. For example, Mattern, Patterson, Shaw, Kobrin, and Bar-
buti (2008) found that the SAT was a more valid predictor of
first-year grade point averages (GPAs) for females than males; this
has been found to generalize when sex comparisons are made
separately within ethnic groups (Bridgeman, McCamley-Jenkins,
& Ervin, 2000). Mattern et al.’s (2008) data were gathered from
students entering college in 2006, but similar trends have also been
found using 1980s SAT data (Ramist, Lewis, & McCamley, 1990;
Ramist, Lewis, & McCamley-Jenkins, 1994). These findings are
consistent with research on cognitive-ability tests in employment
settings, where validity estimates appear to be slightly larger for
females than for males (Rothstein & McDaniel, 1992). Addition-
ally, the validity of cognitive tests for predicting job performance
tends to be greater for the sex that is dominantly represented in an
occupation (Rothstein & McDaniel, 1992) and one could argue
that females are the dominant sex in higher education because they
attend college at a higher rate than males (Ma, Pender, & Welch,
2016).

While sex differences in SAT validity have been rather consis-
tent over time and across studies, the SAT’s ethnic-group validity
differences for predicting first-year GPA have fluctuated some-
what. Ramist, Lewis, and McCamley-Jenkins (1994) found that the
SAT’s validity for predicting first-year GPAs was greater for
White students than for Black or Hispanic students, but slightly
greater for Asian students than for White students. Berry, Sackett,
and Sund (2013) found that SAT scores were more valid for
predicting first-year GPAs among White students than among
Asian, Black, or Hispanic students, but the difference between
validities computed for White and Asian students was quite small.
Mattern et al. (2008) identified trends similar to Berry et al.’s
(2013) results, but Mattern et al. (2008) reported larger validity
differences between White and Asian students. These patterns of
validity differences, with larger validity coefficients generally

estimated for Whites, are not unique to the SAT. Berry, Clark, and
McClure’s (2011) meta-analysis examined the validity of cogni-
tive tests in educational, military, and employment settings, find-
ing that cognitive-ability tests tend to be slightly less valid predic-
tors of performance for Black, Hispanic, and Asian groups than for
White groups. Berry et al.’s (2011) meta-analysis included very
large samples over many decades, which provided a robust sum-
mary of observed validity difference, but they were unable to
account for an important statistical artifact: range restriction.

Statistical Artifacts Relevant to Differential Validity

Although differences in the validity of cognitive tests may
certainly be real, it is also possible that these differences are due to,
or exacerbated by, statistical artifacts. We attend to two artifacts
that can have biasing effects on predictors’ correlations with
college performance: range restriction and criterion contamination
in the form of differential course-taking patterns, which results in
noncomparable GPAs across students (and potentially across
groups).

Differences in Range Restriction Across Groups

Organizations’ preferences for selecting high-ability individuals
means that, on average, selectees have higher ability and are more
similar in ability than are applicants. This reduction in variability
caused by selection means that correlations among variables will
be attenuated in samples of selectees. Differences in range restric-
tion across subgroups could contribute to differences in observed
validity coefficients, as statistics computed for more severely
restricted groups (i.e., groups with lower mean scores on a pre-
dictor variable) will be more attenuated than statistics computed
for less-restricted groups. Simulations have shown that range re-
striction could account for Black–White validity differences if
selection decisions were based solely on the predictor of interest
(Roth, Le Van Iddekinge, Buster, Robbins, & Campion, 2014),
whereas research using real employee, student, and military data
has shown that Black–White validity differences can persist even
after separately accounting for univariate range restriction in Black
and White samples (Berry et al., 2014). While Roth, Le Van
Iddekinge, Buster, Robbins, and Campion’s (2014) single-
predictor selection scenario is unlikely to occur in practice, Berry
et al.’s (2014) research illustrates that differential validity may
truly exist and is worthy of further study.

Estimating differential range restriction’s contribution to differ-
ential validity is a complicated venture because the most common
corrections for range restriction can only account for the range
restriction observed with respect to a single variable. Such correc-
tions are only optimal when the predictor of interest was solely and
explicitly used in the actual selection process (i.e., when direct
range restriction occurs), but this is rarely the case; instead, most
range restriction occurs in an indirect fashion, with selection
occurring on one or more variables other than (or in addition to)
the predictor one seeks to validate. Despite advancements in indi-
rect range-restriction corrections that allow one to assume that the
range restriction affecting a criterion is fully mediated through the
predictor for which one has an applicant variance estimate (Hunter,
Schmidt, & Le, 2006), the availability of range-restriction infor-
mation for only one variable precludes a full account of range
restriction’s effects on validity estimates.
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If range restriction occurs indirectly (or some combination of
directly and indirectly), a univariate correction will be inadequate
to estimate unrestricted differences in validity. In such a case, the
ideal correction to use is the multivariate range-restriction correc-
tion (Aitken, 1934; Lawley, 1943), but researchers seldom have
enough information to employ this correction because it requires
knowledge of unrestricted covariances among predictors in addi-
tion to the unrestricted variances of these predictors. The multi-
variate correction is the general case of all other range-correction
formulas and has the distinct advantage of accounting for how
range restriction in multiple variables impacts the relationships
among any number of other variables. The closer one gets to
including all selection variables in a multivariate correction, the
more accurately one will be able to estimate unrestricted validity
coefficients. Thus, performing a multivariate correction on data
from each of several subgroups allows for researchers to obtain
more accurate differential validity estimates than are achievable by
other means.

Multivariate corrections are commonly applied in research on
standardized tests, as extensive information is available for both
applicants and selectees in testing contexts. Research using edu-
cational data has detected validity differences between males and
females and among ethnic groups even after applying multivariate
corrections (Berry et al., 2013; Mattern et al., 2008; Ramist et al.,
1994), which supports the ethnic-group validity differences re-
ported by Berry et al. (2011, 2014). Findings from previous studies
in which researchers applied corrections for range restriction to
subgroup data have been fairly consistent, so we do not anticipate
that range restriction alone will account for validity differences in
our database. We therefore consider range restriction in combina-
tion with problems of criteria.

Differential Validity and Criterion Contamination

Another potential explanation for differential validity is crite-
rion contamination, which means that a criterion variable is influ-
enced by systematic variance not relevant to the performance
construct of interest. In higher education, one salient source of
contamination is individual differences in course-taking patterns
(Berry & Sackett, 2009; Berry et al., 2013). Differential course-
taking means that different students’ GPAs are comprised of
grades from different sets of courses (e.g., due to choices of major,
elective courses, etc.), which, in turn, means that GPAs do not
convey comparable information across students and that these
GPA composites are not directly comparable across individuals
(and potentially also not comparable across groups). Whereas
range restriction is a purely statistical problem that can be cor-
rected using well-known equations (see Sackett & Yang, 2000 for
a review), differential course-taking and the noncomparability of
students’ GPAs can only be overcome by holding course-taking
constant across students.

One strategy to control for differential course-taking is to switch
the criterion of interest from GPAs to individual course grades
(ICGs) and estimate validity at the level of the individual course
(Berry & Sackett, 2009; Berry et al., 2013; Ramist et al., 1990,
1994). For example, Berry and Sackett (2009) and Berry et al.
(2013) computed validity estimates for SAT scores using both
college GPAs and ICGs as criteria. Then, to control for the effect
of course-taking choices on SAT–GPA correlations, Berry and

colleagues stepped-up the average SAT–ICG correlation into com-
posite correlations between SAT scores and hypothetical GPA-like
criteria representing what would happen if all students took the
same curriculum of courses. Berry and Sackett (2009) found
meaningful increases in validity estimates after controlling for
course-taking patterns. Berry et al. (2013) applied this same ap-
proach to estimate differential validity estimates using multivariate
range-restriction corrections and found that differences in course-
taking did not account for validity differences in GPA. In this
article, we revisit these findings using a newer SAT data set that is
substantially larger in terms of students, schools, and courses than
the data set analyzed by Berry et al. (2013) to conduct a more
powerful test of the noncomparability hypothesis. We describe the
logic underlying Berry et al.’s (2013) approach in greater detail in
the following section.

The Present Study

The present study expands on previous research in three key
ways. First, we estimate the validity of SAT scores for predicting
college performance using a newer and substantially larger data set
than has been analyzed in the past; this is important for estimating
differential validity, as differential validity estimates become more
stable as the number of minority group members increases and
considerable statistical power is necessary to detect these differ-
ences. Second, we explore the effects of artifacts on differential
validity separately by ethnicity and sex as well as among intersec-
tions of ethnicity and sex. Third, we study differential validity for
predicting both first-year performance and 4-year cumulative per-
formance. Previous studies of differential validity of the SAT have
focused on first-year college performance, but 4-year cumulative
GPA is also an important criterion that reflects longer-term aca-
demic performance (Berry & Sackett, 2009). In this study, we
account for both range restriction and differences in course-taking
patterns as we evaluate the influence of artifacts on validity dif-
ferences. Our approach to account for course-taking patterns is
admittedly complex, so we offer a conceptual introduction next.

To set the scene for the logic of the methods we use to control
for differences in course-taking patterns, consider a situation in
which one is tasked with validating a predictor of college faculty
performance, but there are differences in the composition of job
tasks across different subgroups in one’s sample. Specifically, one
subgroup performs a faculty job in a setting that is 90% teaching
and 10% research, while another subgroup performs in a setting
that is 10% teaching and 90% research. Given the extreme differ-
ence in the composition of performance demands between these
contexts, a finding that the predictor variable exhibits different
magnitudes of validity for predicting composite performance be-
tween the two subgroups should not be immediately attributed to
a flaw in the predictor. Perhaps the predictor is simply more
relevant for one dimension of performance than the other;
follow-up analyses would be necessary to explore that possibility.
What we do in this article is the conceptual equivalent of validat-
ing separately against the teaching criterion and the research
criterion and comparing the pooled common-criterion validity
across subgroups. Taking this approach allows us to determine
whether the predictor really functions differently across groups, or
whether aspects of the composite performance criterion may be
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causing the subgroup validities to appear discrepant because of
confounding factors.

The logic of the above example formed the basis of the methods
used by Berry and Sackett (2009) and Berry et al. (2013) and we
apply those same methods in the present study to examine whether
differential validity exists across demographic subgroups after
restricting analyses to settings in which all individuals are per-
forming in the same context. As noted earlier, our data come from
the postsecondary education domain and there is a long history of
observing differential validity in this setting. However, the bulk of
prior research has used GPAs as criteria without accounting for
factors that can contribute to the noncomparability of GPAs across
students and across subgroups. The specific factors that give rise to
this noncomparability are beyond the scope of this article (e.g., Do
these differences occur because students from certain groups tend
to take more courses from particular disciplines or with particular
levels of difficulty?). Instead, we are interested in exploring
whether validity differences observed with GPA as the criterion
are attenuated when validity is estimated only in courses in which
all subgroups being compared are actually represented and these
validities are then pooled across courses. Pooling validity esti-
mates across the courses that allow head-to-head subgroup com-
parisons cuts across all dimensions on which courses differ and, as
all courses provide data from all groups being considered, differ-
ences between groups on the pooled validity estimates cannot be
attributed to differences in course-taking patterns. This approach
offers a clearer indication of whether SAT scores are really less
potent predictors for members of certain subgroups than is possible
with GPA criteria. If the validity differences observed with GPA
criteria are not reflected in the pooled course-level validities, it
would signal that the noncomparability of students’ GPAs operates
as a confounding factor in analyses of differential validity.

As described above, pooling validity estimates across contexts
in which all subgroups of interest are represented helps to identify
whether validity differs across these subgroups after controlling
for extraneous factors. However, the course-level validity esti-
mates will not be directly comparable in magnitude to the validi-
ties estimated using observed composite criteria (e.g., GPAs). We
are interested in whether the magnitudes of validity differences are
smaller after accounting for artifacts compared with the differ-
ences observed in SAT–GPA correlations, but to make these types
of comparisons we need to also account for the differences in the
overall magnitudes of the validity estimates, as composite criteria
are more reliable than are their components and are therefore
generally more predictable. All else equal, predictor scores should
correlate more strongly with a composite variable than with the
composite’s individual components; the difference in magnitude
between predictor-component and predictor-composite correla-
tions affects how one interprets the magnitude of differences
between subgroup correlations. For example, a raw .05 difference
between two groups’ correlations means something very different
when the magnitude of the referent group’s correlation is .50 than
when it is .20. To facilitate comparisons between the magnitudes
of subgroup SAT–GPA and SAT–course grade correlations, we
use composite correlation formulas to step-up the magnitudes of
the pooled course-level correlations into a metric that is compara-
ble with the metric of SAT-GPA correlations (see Appendix A for
technical information on our compositing procedures and Appen-
dix B for a worked example).

We call the composites that result from this estimation process
“common-curriculum GPAs” because they represent what GPAs
would be if all students took a full load of courses that are typical
of the courses from our database that permitted head-to-head
subgroup comparisons. The common-curriculum GPA is an ab-
straction that can be used to test hypotheses that cannot be directly
addressed using students’ observed GPAs. The fundamental idea is
that although composite performance criteria may function differ-
ently in statistical analyses across groups because of factors that
make those composite criteria noncomparable across individuals
and groups, analyzing the components of those composites (e.g.,
individual course grades from college classes) instead of the com-
posite variables themselves (e.g., college GPAs) can allow re-
searchers to eliminate certain competing explanations for the dif-
ferential validity observed with composite criteria.

Method

Participants

Our data were collected by the College Board in cooperation
with colleges and universities that consider SAT scores in their
admissions decisions. Participants in our study were a total of
363,004 students who began enrollment at 107 U.S. colleges and
universities between 2006 and 2009. SAT scores, high school
GPAs, and complete 4-year records of college GPAs and course-
grade data were available for all students in our database. A
breakdown of our sample by ethnicity, sex, and sex-ethnicity
intersections is arrayed in Table 1. The 107 institutions in our data
set varied on a number of important characteristics, including
public versus private control, selectivity, size of student body, and
regional location. The database used in our study has been used in
other published research (e.g., Beatty, Walmsley, Sackett, Kuncel,
& Koch, 2015; Dahlke, Kostal, Sackett, & Kuncel, 2018; Higdem
et al., 2016; Kostal, Kuncel, & Sackett, 2015; Kostal, Sackett,
Kuncel, Walmsley, & Stemig, 2017; Shewach, Shen, Sackett, &
Kuncel, 2017; Yu, Sackett, & Kuncel, 2016), but the present study
is the first to use these data to examine differential validity.

Measures

SAT composite scores. The College Board provided SAT
scores for students at colleges participating in their data-collection

Table 1
Demographic Breakdown of Total Sample by Sex and Ethnicity

Ethnicity

Sex

TotalMale Female

White 113,402 (31.2%) 127,643 (35.2%) 248,171 (68.4%)
Black 7,496 (2.1%) 12,194 (3.4%) 20,100 (5.5%)
Hispanic 11,758 (3.2%) 16,155 (4.5%) 28,289 (7.8%)
Asian 17,474 (4.8%) 18,658 (5.1%) 36,613 (10.1%)
Total 165,542 (45.6%) 194,555 (53.6%) 363,004

Note. Total ethnicity and sex percentages do not sum to 100% because (a)
students had the option to not disclose demographic information on the
self-report demographic questionnaire that accompanied the SAT and (b)
very small minority groups (e.g., American Indian or Alaskan Native) are
not tabled because there were not enough students from these groups to
apply all of the analyses used in this study.
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program. The SAT composite variable used in our substantive
analyses is a simple sum of SAT Critical Reading and SAT
Mathematics subtest scores. Scores on this composite could range
from 400 to 1,600. College-applicant norms were available for a
Critical Reading � Mathematics � Writing composite on which
scores could range from 600 to 2,400, so we used this larger
composite to make range-restriction corrections, as described in
the Procedure section. We did not include writing scores in our
substantive analyses because the SAT writing test had been made
optional and was only required by a subset of schools at the time
we began examining these data.

High school GPAs (HSGPAs). The College Board provided
students’ self-reported HSGPAs, which were collected at the time
students took the SAT. College-applicant norms were available for
self-reported HSGPAs, so we used this variable to make range-
restriction corrections, as described in the Procedure section.

Individual course grades (ICGs). Each college reported
ICGs for all courses taken by students at the institution. These
ICGs were accompanied by course-identifying information, in-
cluding the year and term in which students took the course and the
college-assigned alpha-numeric course code (e.g., CHEM 100).

College GPAs. Colleges provided students’ noncumulative
and cumulative GPAs at the conclusion of each academic year. We
used first-year GPAs and 4-year cumulative GPAs as measures of
overall academic college performance.

Procedure

All procedures described below were performed using data from
complete samples of students (without conditioning on demo-
graphics) as well as samples of demographically similar students
grouped by ethnicity, sex, and intersections of ethnicity and sex.
Each aspect of our procedure was therefore performed for each of
our 15 sample types (i.e., for overall samples, for samples repre-
senting each of four ethnic groups, for males and females, and for
eight sex-ethnicity intersections).

College GPA analyses. For our college GPA analyses, we
computed correlations among first-year GPAs, 4-year cumulative
GPAs, SAT scores (both the two-test and three-test composites),
self-reported HSGPAs, and students’ unweighted mean grades
achieved during each year of college. The correlations between
GPAs and the two-test SAT composite were of substantive interest
and the other correlations were computed to allow the application
of multivariate range-restriction corrections.

Individual course grade analyses. For our analyses of ICGs,
we defined a course as a unique instance of a class with a given
course code that occurred during a given academic year and term.
To gauge trends in the predictability of ICGs as students pro-
gressed through college, we subdivided each course into cohorts of
students who were taking the course during their first, second,
third, or fourth year of college. We computed correlations among
ICGs, SAT scores (both the two-test and three-test composites),
and self-reported HSGPA for each student cohort within each
course. As with our GPA analyses, the correlations between ICGs
and the two-test SAT composite were of substantive interest, with
the other correlations computed to facilitate multivariate range-
restriction corrections.

In addition to computing validity coefficients within each
course, we used course-grade information to compute the intra-

class correlation coefficient for the ICGs earned in each year of
college. These intraclass correlation coefficients indicate the av-
erage correlation among ICGs earned by individual students and
were necessary for this study because we required an estimate of
the average intercorrelation among ICGs to use in estimating
common-curriculum GPAs, as described momentarily.

Corrections for range restriction. We used a multivariate
range-correction procedure (Aitken, 1934; Lawley, 1943) to esti-
mate how large all of our correlation coefficients would have been
if all applicants had enrolled in college. We used subgroup-specific
norms from schools’ applicant populations to correct for range
restriction in SAT scores and HSGPAs in our ICG and college
GPA analyses. When school-specific applicant norms were not
available for a particular subgroup, we used pooled norm infor-
mation from institutions with a similar level of selectivity to make
corrections. In executing these corrections, we used the range-
restricted and the unrestricted covariance information from
HSGPAs and the three-test SAT composite (Critical Reading,
Mathematics, and Writing) to correct the covariances among the
criterion variables (i.e., GPAs, ICGs) and the two-test SAT com-
posite (Critical Reading and Mathematics) for range restriction. By
including both the two-test and three-test SAT composites in our
covariance matrices and using the three-test SAT composite with
HSGPAs to make range-restriction corrections, we were able to
capitalize on the additional information contained within the three-
test composite while also obtaining corrected results for the two-
test composite that was of primary interest. Including the three-test
composite in our corrections was statistically equivalent to sepa-
rately including each of the three SAT subtests as correction
variables; this helped us to obtain more accurate corrected corre-
lations, as incorporating more information into a range-restriction
correction procedure leads to less biased corrected estimates.
Range-restriction corrections were computed separately for each
sample (i.e., individual corrections were made within each school
or course).

Common-curriculum GPAs. To control for differential
course-taking, we algebraically constructed composite variables
representing what college GPAs would have been if all students
had taken exactly the same set of courses throughout college,
which we termed “common-curriculum GPAs.” The process of
computing the SAT’s correlations with noncumulative common-
curriculum GPAs is similar to how one might use the Spearman-
Brown formula to estimate the reliability of a lengthened measure,
but with the lengthening procedure applied to a validity coefficient
instead of a reliability coefficient; in this case, ICGs are analogous
to test items and GPAs are like composite test scores. Details of
our computational procedure are outlined in Appendix A and a
worked example is provided in Appendix B. We computed corre-
lations between SAT scores and common-curriculum GPAs sep-
arately for each school and meta-analyzed those school-level es-
timates, as described in the following section.

Within each of our 15 demographic segments, we stepped-up
the mean SAT–ICG correlation from each year of college at each
school by the mean number of courses taken during the corre-
sponding year of college at that school to estimate the correlation
between SAT scores and a noncumulative common-curriculum
GPA composite. In computing these stepped-up correlations, we
used the intraclass correlation coefficients for ICGs to represent
the average intercorrelation among ICGs earned during a particular
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year of college. These noncumulative composite correlations rep-
resent how predictable noncumulative GPAs would be after con-
trolling for the differentiating features of all of the courses the
students took. Next, we aggregated these noncumulative common-
curriculum GPA composites into a 4-year cumulative composite
common-curriculum GPA using the formula for a weighted com-
posite correlation, as described in Appendices A and B. In forming
this cumulative composite criterion, we used the average correla-
tion among mean grades across years of college at each school to
account for year-to-year shared variance in the noncumulative
common-curriculum GPAs.1

For a typical composite correlation in which all components
come from the same sample and same level of analysis, the amount
of sampling error in the estimate is indexed by the sample size of
the components (see Schmidt & Hunter, 2015, p. 441). Our
common-curriculum GPA composites, however, do not abide by
this principle because the components came from different levels
of analysis and were associated with different numbers of total
observations. Some components were estimated at the school level
(e.g., intercorrelations among mean ICGs) and were based on as
many observations as there were students, whereas others were
computed at the course level (e.g., SAT–ICG correlations) and the
estimates of these components were based on more observations
than there were individual students because most students took
more than one course per year. Thus, we encountered a statistical
dilemma when computing sampling variances for our composite
correlations and, more importantly, the differences between sub-
group composite correlations. We chose to resolve this dilemma by
defining the sample size as the number of unique students who
contributed to the common-curriculum GPA composite. By using
the number of unique individuals as the basis for the sample size
rather than the number of individual course grades, we were able
to compute sampling variances for the common-curriculum GPA
effect sizes that best reflect the uncertainty in our estimates.

Meta-analyses. We used Schmidt and Hunter’s (2015)
random-effects meta-analytic method to average the observed sta-
tistics from all samples extracted from our data set with sample-
size weights. Specifically, we used the “ma_generic” function
from the psychmeta R package (Dahlke & Wiernik, 2018, 2017/
2018) to compute our meta-analyses, as that function allows re-
searchers to use precomputed sampling variances to meta-analyze
any effect size; this function was chosen because the sampling
variances of our multivariate range-restriction corrected correla-
tions had to be estimated in an ad hoc fashion. When meta-
analyzing corrected correlations, we used the standard artifact-
correction practice of scaling up the sampling variances by the
square of the correction factors applied to the effect sizes (Schmidt
& Hunter, 2015, pp. 143–145). We used random-effects meta-
analytic standard errors of the mean validity estimates to compute
the standard errors and statistical tests for all subgroup validity
differences.

Subgroup comparisons. To ensure that subgroups’ validity
estimates would be comparable with each other in terms of the
context in which the criterion data were obtained, we constrained
our analyses to data that allowed head-to-head comparisons, such
that all levels of a given demographic variable were represented in
all samples analyzed. In comparisons among ethnicities, we only
used data from samples in which all four ethnic groups of interest
were represented; in comparisons between males and females, we

only used data from sample in which both were represented; and in
comparisons among sex-ethnicity intersections, we only used data
from samples in which all eight sex-by-ethnicity groups were
represented.

Results

Table 2 shows subgroup correlations between SAT scores and
both first-year and 4-year cumulative performance criteria (includ-
ing observed GPAs and the synthetic common-curriculum GPAs).
The full sets of meta-analytic results corresponding to the data in
Table 1 are tabled in Appendix C. Minority–White validity differ-
ences are summarized in Table 3 and are also depicted in Figure 1
for ease of interpretation, where negative values indicate that the
validity estimates for students from minority groups are smaller
than the estimates for White students. Male–female validity dif-
ferences are summarized in Table 4, where negative values indi-
cate that males had smaller validity estimates.

Overall Effects of Artifacts on Validity Estimates

A general pattern that emerged from our analyses was the
tendency for the SAT composite to correlate more strongly with
common-curriculum GPAs than with observed GPAs (see Table
2). The magnitude of validity gains increased even further after
correcting for range restriction. This is consistent with previous
research using synthetic performance composites to evaluate va-
lidity (Berry & Sackett, 2009; Berry et al., 2013) and lends support
to the notion that differential course-taking can have a practically
meaningful impact on validity estimates.

Observed Correlations With GPAs

Table 3 shows that observed first-year GPA validity differences
were significant for Black–White contrasts in male, female, and
mixed-sex samples; for Hispanic–White contrasts in male, female,
and mixed-sex samples; and for Asian–White contrasts in male
and mixed-sex samples, but not in female samples. Observed
4-year cumulative GPA validity differences were only significant
for the Black–White contrast among females and the Asian–White
contrast among males.

In terms of validity differences by sex, Table 4 shows that
observed first-year GPA validity estimates were significantly
smaller for males across all four ethnic groups as well as in
samples that included all ethnicities. Observed 4-year cumulative
GPA validity differences were significant in combined-ethnicity
samples and in White, Hispanic, and Asian samples, but not in
Black samples.

Observed Correlations With Common-Curriculum
GPAs

One of the key questions of interest in this article is whether
stepped-up composite correlations exhibit less differential validity

1 Using the year-to-year correlations among mean grades is trivially
different from using year-to-year correlations among GPAs (i.e., weighted
mean grades), so we used the former because it is more consistent with the
formulation of our common-curriculum GPA composites.
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than SAT–GPA correlations. When compared with differential
validity estimates featuring observed GPA as the criterion, the
results for SAT’s correlations with common-curriculum GPAs
estimated from observed ICG data suggest that controlling for
course-taking patterns can explain many of the differences in
subgroup validities. In fact, none of the Black–White or Hispanic–
White validity differences were significant for common-curriculum
GPAs (see Table 3). However, we still observed significant Asian–
White validity differences for first-year performance and controlling
for course-taking patterns also produced a significant Asian–White
difference for first-year performance among females that was not
detected for observed GPAs.

The results for both first-year and 4-year cumulative validity
differences revealed significantly smaller validities among males
than females in White, Hispanic, and combined-ethnicity samples,
but not in Black samples (see Table 4).

Correlations With GPAs Corrected for Range
Restriction

Having discovered that controlling for course-taking patterns
can have a detectable impact on differential-validity trends, we
turn our attention to the effects of range-restriction corrections
applied to GPA criteria. Similar to the effect of controlling for

course-taking patterns, correcting for range restriction reduced the
magnitudes of most Black–White and Hispanic–White validity
differences: Of these, only the first-year GPA Black–White valid-
ity difference among males was significant after correcting for
range restriction (see Table 3). Asian–White validity differences
among males were significant for both first-year and 4-year cu-
mulative performance.

After correcting SAT–GPA relationships for range restriction,
all male–female validity differences were significant for both
first-year and 4-year cumulative performance (see Table 4).

Correlations With Common-Curriculum GPAs
Corrected for Range Restriction

Given that applying separate corrections for range restriction
and differences in course-taking patterns resulted in diminished
magnitudes of differential validity in many cases, our final ques-
tion is, how do these corrections affect validity differences when
applied simultaneously? The bottom portion of Table 3 shows that
none of the Black–White or Hispanic–White validity differences
for first-year performance were significant in male, female, and
mixed-sex samples after correcting for both course-taking and
range restriction. Hispanic–White validity differences were also
not significant for 4-year cumulative performance, but Black–

Table 2
Correlations Between SAT Composite Scores and Academic Performance Criteria

Ethnicity

First-year performance 4-year cumulative performance

Sex

Overall

Sex

OverallMale Female Male Female

Observed correlations with GPAs

White .34 (.0078) .39 (.0095) .34 (.0079) .31 (.0092) .36 (.0101) .29 (.0092)
Black .29 (.0138) .33 (.0130) .30 (.0103) .30 (.0189) .31 (.0134) .27 (.0125)
Hispanic .29 (.0152) .35 (.0119) .31 (.0106) .28 (.0158) .33 (.0117) .27 (.0114)
Asian .29 (.0125) .36 (.0149) .31 (.0124) .27 (.0130) .33 (.0133) .27 (.0114)
Overall .36 (.0060) .42 (.0060) .37 (.0059) .34 (.0062) .40 (.0060) .33 (.0059)

Observed correlations with common-curriculum GPAs

White .34 (.0113) .44 (.0124) .37 (.0112) .32 (.0101) .43 (.0119) .35 (.0102)
Black .37 (.0212) .42 (.0174) .38 (.0171) .36 (.0244) .39 (.0195) .36 (.0192)
Hispanic .36 (.0191) .44 (.0164) .39 (.0158) .34 (.0186) .42 (.0159) .36 (.0158)
Asian .30 (.0149) .39 (.0172) .33 (.0144) .29 (.0131) .40 (.0173) .33 (.0141)
Overall .38 (.0082) .48 (.0085) .41 (.0082) .36 (.0071) .48 (.0081) .40 (.0074)

Correlations with GPAs corrected for range restriction

White .43 (.0077) .48 (.0083) .43 (.0077) .40 (.0074) .45 (.0077) .38 (.0072)
Black .37 (.0121) .47 (.0160) .42 (.0112) .37 (.0164) .44 (.0143) .39 (.0123)
Hispanic .41 (.0152) .47 (.0112) .43 (.0095) .40 (.0149) .45 (.0106) .40 (.0098)
Asian .39 (.0146) .45 (.0159) .40 (.0136) .36 (.0139) .42 (.0133) .37 (.0117)
Overall .47 (.0067) .52 (.0054) .48 (.0061) .45 (.0061) .50 (.0047) .45 (.0054)

Correlations with common-curriculum GPAs corrected for range restriction

White .47 (.0114) .56 (.0115) .49 (.0108) .43 (.0099) .53 (.0107) .46 (.0093)
Black .46 (.0193) .54 (.0210) .48 (.0177) .40 (.0235) .47 (.0192) .41 (.0185)
Hispanic .47 (.0191) .55 (.0163) .49 (.0157) .41 (.0199) .50 (.0153) .43 (.0160)
Asian .41 (.0180) .49 (.0182) .43 (.0165) .37 (.0149) .47 (.0168) .40 (.0141)
Overall .51 (.0087) .59 (.0074) .54 (.0078) .47 (.0071) .57 (.0073) .52 (.0070)

Note. Values in parentheses are standard errors of the correlations between SAT scores and criteria. All results
for ethnic, sex, and intersectional subgroups were computed using only samples in which at least three members
of each group were present to allow head-to-head comparisons among groups at a common level of specificity.
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White validity differences in female and mixed-sex samples were
significant for this cumulative criterion. All Asian–White validity
differences were significant for first-year and 4-year cumulative
performance.

As reported above for the range-restriction corrected GPA anal-
yses, all male–female validity differences were significant for both
first-year and 4-year cumulative performance after correcting for
both range restriction and differential course-taking patterns (see
Table 4).

Discussion

We used data from students at 107 U.S. postsecondary institu-
tions to study the effects of differential course-taking and range
restriction on the differential validity of SAT scores by ethnicity,
by sex, and by intersections of ethnicity and sex. We adopted the
methods developed by Berry and Sackett (2009) and Berry et al.
(2013) and used them to examine differential validity in both
first-year and 4-year cumulative college performance with inter-
sectional minority–White contrasts. After correcting for range
restriction and controlling for criterion contamination due to indi-
vidual differences in course taking, we found that Black–White
and Hispanic–White validity differences were substantially miti-
gated when predicting first-year performance, but Asian–White
and male–female validity differences were not. When predicting
4-year cumulative performance with these corrections applied,
Asian–White and male–female validity differences persisted, and
Black–White validity differences emerged.

We found that Black–White and Hispanic–White validity dif-
ferences for first-year performance tended to be smaller after

controlling for differential course-taking and correcting for range
restriction using subgroup-specific norms and, after applying both
corrections simultaneously, all Black–White and Hispanic–White
validity differences were nonsignificant. These results are contrary
to Berry et al.’s (2013) finding that making such corrections
increased the magnitudes of validity differences among ethnic
groups. We did, however, find that making simultaneous range-
restriction and course-taking corrections to SAT scores’ correla-
tions with 4-year cumulative performance produced significant
Black–White validity differences that were not detected in the
observed GPA data or when the corrections were applied sepa-
rately. Our data differed from Berry et al.’s (2013) data in terms of
the time period, number of students, and number of schools rep-
resented. Thus, differences in results could be due to demographic
changes over time, differences between cohorts, and/or changes to
applicant populations that affected the norms used to make range-
restriction corrections; we do not have the information necessary
to determine which explanation is the most likely. Consistent with
previous research (e.g., Mattern et al., 2008; Ramist et al., 1990,
1994), we found that SAT scores were more valid predictors of
college performance for females than for males. Interestingly, we
found that these sex differences were made larger by controlling
for differential course-taking. It appears that, on average, females’
college grades are more predictable than males’ grades, even after
one accounts for range-restriction artifacts and differences in
course-taking patterns.

We were able to make more thorough corrections for artifacts in
our academic data than are typically possible in other contexts
(e.g., personnel selection) because of the College Board’s system-

Table 3
Minority–White Validity Differences for SAT Composite Scores’ Correlations With Academic Performance Criteria

Focal-group ethnicity

First-year performance 4-year cumulative performance

Sex

Overall

Sex

OverallMale Female Male Female

Observed correlations with GPAs

Black �.05�� (.0159) �.06�� (.0161) �.04�� (.0130) �.02 (.0210) �.05�� (.0168) �.01 (.0155)
Hispanic �.05�� (.0171) �.04�� (.0152) �.03� (.0132) �.03 (.0182) �.03 (.0155) �.01 (.0146)
Asian �.05�� (.0148) �.03 (.0176) �.03� (.0147) �.04�� (.0159) �.03 (.0167) �.02 (.0147)

Observed correlations with common-curriculum GPAs

Black .02 (.0240) �.02 (.0214) .01 (.0204) .04 (.0264) �.03 (.0228) .00 (.0217)
Hispanic .02 (.0221) �.00 (.0206) .02 (.0194) .02 (.0212) �.00 (.0199) .01 (.0188)
Asian �.04� (.0187) �.05� (.0212) �.04� (.0182) �.03 (.0165) �.03 (.0210) �.02 (.0174)

Correlations with GPAs corrected for range restriction

Black �.07�� (.0144) �.01 (.0180) �.01 (.0136) �.03 (.0180) �.00 (.0162) .01 (.0143)
Hispanic �.02 (.0170) �.01 (.0140) .00 (.0122) �.00 (.0167) .01 (.0131) .02 (.0122)
Asian �.05�� (.0165) �.03 (.0179) �.03 (.0156) �.04�� (.0157) �.03 (.0154) �.02 (.0137)

Correlations with common-curriculum GPAs corrected for range restriction

Black �.02 (.0224) �.02 (.0240) �.01 (.0207) �.03 (.0255) �.06�� (.0220) �.05� (.0207)
Hispanic �.00 (.0222) �.01 (.0199) �.00 (.0190) �.02 (.0222) �.03 (.0187) �.02 (.0185)
Asian �.06�� (.0213) �.07�� (.0215) �.07�� (.0197) �.06�� (.0179) �.06�� (.0199) �.06�� (.0168)

Note. Values in parentheses are standard errors of the validity differences. All results for ethnic, sex, and intersectional subgroups were computed using
only samples in which at least three members of each group were present to allow head-to-head comparisons among groups at a common level of specificity.
Negative values indicate smaller validities for the members of the focal ethnicity group than for White students.
� p � .05. �� p � .01.
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atic collection of applicant and enrolled-student predictor data and
the availability of specific course-level and composite GPA indi-
ces of performance. Our ability to make corrections for multivar-
iate range restriction meant that we could anchor our statistical
corrections to two important predictors of performance (i.e.,
HSGPA and an SAT composite of critical reading, mathematics,
and writing scores) rather than assuming that the entire effect of
selection on validities could be represented by the variability of a
composite of Critical Reading and Mathematics SAT scores alone.
By accounting for the effect of selection on multiple predictors,
our multivariate corrections are more likely to approximate the
actual magnitudes of validity differences than are the univariate
corrections typically applied in validation research.

Implications

Our corrections for range restriction and our controls for differ-
ential course-taking illustrate the importance of attending to arti-
facts and using data from specific performance events when a
composite performance criterion is contaminated or otherwise not
comparable across persons or groups. Although the academic

context certainly differs from other contexts in which validity is
closely monitored (e.g., personnel selection), academic data pro-
vide the opportunity to explore broadly relevant topics that would
be difficult to study in other settings. Thus, while we caution
against overgeneralizing from collegiate samples, we suspect that
our analyses of academic data reveal useful insights into the
broader phenomena of criterion contamination and differential
validity.

It is notable that our analyses showed diminished differential
validity after accounting for artifacts, whereas Berry et al.’s (2013)
usage of these corrections did not lead to reduced magnitudes of
differential validity estimates. As indicated earlier, the differences
between our findings and Berry et al.’s (2013) could be a simple
matter of statistical power from our use of a larger database or a
substantive shift in the college population from the 1990s to the
2000s. Regardless of the source(s) of the differences in results, our
findings signal the potential usefulness of analyzing validity esti-
mates computed for individual components of performance in
addition to those computed for composite performance metrics.
Based on our results, analyzing criteria at a more specific level of

Figure 1. Validity differences by ethnicity for predicting first-year and 4-year cumulative performance from
SAT composite scores (i.e., the sum of SAT Critical Reading and SAT Mathematics scores) with 95%
confidence intervals. CCGPA � common-curriculum GPA; W � White; B � Black; H � Hispanic; A � Asian.
A negative validity difference indicates that the validity for a minority group (i.e., Black, Hispanic, or Asian
students) is smaller than for White students. Columns of the plot grids organize results by correlation type
(observed correlations vs. correlations corrected for multivariate range restriction).
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analysis and pooling the results across those specific criteria may
be a useful approach when composite criteria are not comparable
across persons. This approach could easily be applied in any
setting wherein the components of composite performance vari-
ables are available.

Performance episodes are often treated as composites, but our
findings show that performance composites marked by noncom-
parability due to differences in course-taking choices function
differently from composites in which all individuals are con-
strained to take the same set of parallel courses. Future research in
employment contexts should attend to the possible effect of crite-
rion contamination on minority–White validity differences and
explore whether differential validity is smaller in work settings
where all individuals who hold similar roles also do similar tasks
than in settings where there is high variability in individuals’
actual job tasks. This research would be especially valuable for
understanding differential validity in settings where individuals
who nominally hold the same type of job can be assigned to
perform very different sets of tasks. To revisit the faculty example
we presented earlier, not all academic jobs have the same compo-
sition of research, teaching, and service responsibilities. If one

were to evaluate differential validity using some overall evaluation
of performance without accounting for the differences in the types
of tasks individuals perform, one could draw misinformed conclu-
sions about the real extent of validity differences because those
differences could very well exist purely because of noncompara-
bility of performance scores.

Job contexts with high variability in the tasks assigned to
workers are likely to be influenced by contamination that is similar
in nature to differential course-taking patterns, which may have
meaningful impacts on estimates of criterion-related validity and
validity differences. We view the exploration of this phenomenon
in work settings as a very exciting future direction for personnel
research. For example, when researchers suspect that overall mea-
sures of performance are contaminated by differences in perfor-
mance opportunities, we recommend that they attend to this
contamination by validating predictors against separate dimension-
level criterion measures. Those dimension-level validity estimates
can then be combined into a composite correlation using weights
that reflect the importance of each performance dimension to the
organization, which avoids the problem of the dimension-level
criteria receiving different weight in supervisors’ judgmental per-
formance composites for individual employees. Although the su-
pervisors’ composite judgments may still be the preferred data to
consider in decision making, standardizing the weights assigned to
different job activities across persons is preferable for validation
research.

Even in the most extreme differential validity scenarios in
Figure 1 and Tables 3 and 4, we still observed practically mean-
ingful levels of validity for all groups, whether segmented by sex,
ethnicity, or sex–ethnicity intersections. Given the rarity of orga-
nizations using strictly mechanical processes to select applicants,
the magnitudes of differences reported here are unlikely to make a
practically meaningful impact on the overall validity of holistic
appraisals of applicants unless other aspects of the system exac-
erbate the validity differences. Most selection systems use multiple
pieces of information and rely on human judgment to make offers
to applicants, which may dilute the impact of differential validity
for specific predictors on the validity of the system or may intro-
duce new sources of validity differences that are unrelated to the
differences attributable to test scores. Thus, while subgroup valid-
ities may differ for individual predictors, we do not have data to
indicate whether the subgroup validity differences commonly ob-
served for cognitive tests will meaningfully impact differential
validity of overall selection systems. We encourage future research
exploring how differential validity in one or more components of
a system influences the differential validity of the system as a
whole.

Limitations

Our data came from “SAT schools” and we are unable to relate
our results to the differential validity of other common admissions
tests (e.g., the ACT). Additionally, the extent to which the aca-
demic selection context corresponds to personnel selection or other
selection scenarios is unclear. While criterion contamination and
range restriction are relevant to many domains, it remains to be
seen whether these findings can be replicated in other settings.
Future research extending our findings could examine differences
between use of composite performance indices (e.g., supervisor

Table 4
Male–Female Validity Differences for SAT Composite Scores’
Correlations With Academic Performance Criteria

Ethnicity First-year performance 4-year cumulative performance

Observed correlations with GPAs

White �.05�� (.0123) �.04�� (.0137)
Black �.04� (.0190) �.01 (.0232)
Hispanic �.06�� (.0193) �.05�� (.0197)
Asian �.07�� (.0195) �.06�� (.0186)
Overall �.06�� (.0085) �.06�� (.0086)

Observed correlations with common-curriculum GPAs

White �.10�� (.0168) �.11�� (.0156)
Black �.05 (.0275) �.04 (.0312)
Hispanic �.07�� (.0252) �.09�� (.0245)
Asian �.08�� (.0227) �.11�� (.0217)
Overall �.10�� (.0118) �.11�� (.0107)

Correlations with GPAs corrected for range restriction

White �.05�� (.0114) �.04�� (.0107)
Black �.10�� (.0201) �.07�� (.0217)
Hispanic �.06�� (.0189) �.05�� (.0183)
Asian �.06�� (.0215) �.06�� (.0192)
Overall �.05�� (.0086) �.05�� (.0077)

Correlations with common-curriculum GPAs corrected for range
restriction

White �.09�� (.0162) �.10�� (.0146)
Black �.09�� (.0285) �.07� (.0303)
Hispanic �.08�� (.0251) �.08�� (.0251)
Asian �.08�� (.0256) �.10�� (.0224)
Overall �.08�� (.0114) �.10�� (.0102)

Note. Values in parentheses are standard errors of the validity differ-
ences. All results for ethnic, sex, and intersectional subgroups were com-
puted using only samples in which at least three members of each group
were present to allow head-to-head comparisons among groups at a com-
mon level of specificity. Negative values indicate smaller validities for
males than for females.
� p � .05. �� p � .01.
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evaluations, annual sales performance) and metrics of performance
from more specific performance episodes (e.g., customer/client rat-
ings, daily performance metrics) to conceptually replicate our analy-
ses.

Despite our large sample of schools and students, our results
are not based on random samples of schools or students. However,
the diversity of institutions represented in our data set and the large
numbers of students from different demographic groups provide
support for the generalizability of our findings in the academic
context.

This article was devoted to examining whether the noncompa-
rability of criteria across persons and groups could contribute to
differential validity as a form of criterion contamination. Our
findings show this noncomparability can matter and these findings
raises additional questions about which aspects of GPA noncom-
parability matter in analyses of differential validity. For example,
do members of different groups take different numbers of courses
from different disciplines or with different levels of difficulty?
These questions are potentially interesting areas for future research
and would require large-scale investigations that are beyond the
scope of what we can offer as follow-up analyses in the present
article. With our descriptive findings as a starting point, we en-
courage future research on when and why noncomparability of
composite performance scores impacts substantive conclusions
about subgroup validity differences in both school and work set-
tings.

Conclusion

We found that college performance is considerably more pre-
dictable than is suggested by college GPA’s correlations with SAT
scores after accounting for range restriction and differences in
course-taking patterns that contribute to the noncomparability of
GPAs. Whereas previous research found that SAT scores were less
valid predictors of college academic performance for Black and
Hispanic students than for White students, we found that validity
differences for predicting first-year college performance from SAT
scores were not significant after controlling for differential course-
taking and correcting for subgroup-specific range restriction.
When predicting 4-year cumulative performance after making
these corrections, however, we did detect significant White–Black
validity differences. Overall, our results indicate that the effects of
criterion contamination and differential range restriction are im-
portant for understanding differential validity. We emphasize the
importance of attending to sources of artifactual variation that
could be contributing to observed differences in validities among
subgroups in future research on differential validity in school and
work settings.
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Appendix A

Details of the Computations Used to Estimate Common-Curriculum GPA Composites

To estimate the correlation between SAT scores and a
stepped-up composite of course grades within a single year of
college, we applied the scalar formula for a unit-weighted com-
posite given by Ghiselli, Campbell, and Zedeck (1981, p. 163;
Equations 7–12). This formula requires three pieces of informa-
tion: (1) the average correlation between SAT scores and individ-
ual course grades (ICGs) during a particular year of college; (2) the
mean number of courses taken by students during that year of
college; and (3) the average intercorrelation among course grades
earned by an individual student during that year of college (esti-
mated as an intraclass correlation coefficient). To compute the
correlation between SAT scores and the common-curriculum GPA
(CCGPA) associated with the ith year of college, we used the
formula:

r̂SAT,CCGPAi
�

r�SAT, ICGi
k�Coursesi

�k�Coursesi
� k�Coursesi�k�Coursesi

� 1�ICC� ICGi

(A1)

where r�SAT, ICGi
is the mean validity of SAT scores for predicting

individual course grades in the ith year of college, k�Coursesi
is the

mean number of courses taken by individual students during the ith
year, and ICC� ICGi

is the intraclass correlation coefficient for indi-
vidual course grades in the ith year of college. We used this
process to estimate the association between SAT scores and non-
cumulative CCGPAs in the first, second, third, and fourth years of
college.

After computing each of the noncumulative SAT–CCGPA cor-
relations, we aggregated data across years to estimate the associ-
ation between SAT scores and 4-year cumulative CCGPAs. To
accomplish this, we used the matrix formula for a weighted com-
posite correlation to account for the shared variance in CCGPAs
across 4 years of college. The matrix used to composite the
noncumulative CCGPA correlations into cumulative CCGPA cor-
relations was structured in the following way:

R ��
1 r̂SAT, CCGPA1

r̂SAT, CCGPA2
r̂SAT, CCGPA3

r̂SAT, CCGPA4

r̂SAT, CCGPA1 1 r� ICG�1, ICG�2
r� ICG�1, ICG�3

r� ICG�1, ICG�4

r̂SAT, CCGPA2
r� ICG�1, ICG�2 1 r� ICG�2, ICG�3

r� ICG�2, ICG�4

r̂SAT, CCGPA3
r� ICG�1, ICG�3

r� ICG�2, ICG�3 1 r� ICG�3, ICG�4

r̂SAT, CCGPA4
r� ICG�1, ICG�4

r� ICG�2, ICG�4
r� ICG�3, ICG�4 1

�
(Appendices continue)
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where, in the lower triangle of the matrix, the first column
contains the noncumulative SAT–CCGPA correlations esti-
mated using Equation A1 and the second through fourth col-
umns contain the correlations among students’ mean grades in
each year of college. On average, the variance of grades earned
by a given student decreases from one year of college to the
next (Dahlke et al., 2018). Thus, we accounted for variation in
grade variance by constructing a diagonal scaling matrix D with
standard deviations of criteria on the diagonal to use in com-
puting our composite correlations.

D ��
1 0 0 0 0
0 s�ICG Year 1 0 0 0
0 0 s�ICG Year 2 0 0
0 0 0 s�ICG Year 3 0
0 0 0 0 s�ICG Year 4

�
We defined a vector wCCGPA to weight each year of criterion

information using the mean number of courses taken by students
during each of their first four years of college. A weight of zero
was assigned to the SAT composite variable in this vector because
this composite only aggregated criterion information.

wCCGPA � �0 k�Courses1
k�Courses2

k�Courses3
k�Courses4 �T

To facilitate use of the matrix equation for composite correla-
tions, we also constructed a vector for the predictor side of the
equation in which SAT scores were given unit weight and all
criterion variables were given weights of zero.

wSAT � �1 0 0 0 0 �T

With our correlation matrix, scaling matrix, and weight vectors
prepared, we used the equation for a composite correlation (Mu-
laik, 2010, pp. 88–89) to estimate the correlation between SAT
scores and 4-year cumulative CCGPAs:

r̂SAT,Cumulative CCGPA �
wCCGPA

T D R D wSAT

�wCCGPA
T D R D wCCGPA

(A2)

where the numerator gives the covariance between SAT scores and
cumulative CCGPAs and the denominator gives the standard de-
viation of the cumulative CCGPA composite. The variance of SAT
scores was standardized, so it was not necessary to represent its
standard deviation in the denominator. This method was applied to
observed and corrected correlations, alike, and was used to esti-
mate SAT–CCGPA correlations for each school so that the school-
level validity estimates could be meta-analyzed.

Appendix B

A Worked Example of Common-Curriculum GPA Computations

As an additional aid for understanding our methodology and as
an accompaniment to Appendix A, we have prepared a worked
example of our common-curriculum GPA computations using
mean statistics from our overall samples of students (i.e., students
of all ethnicities and sexes). The process illustrated here was
applied separately to all 15 of our demographic segments at each
school. The first step in our process of estimating SAT scores’
correlations with common-curriculum GPAs was to step-up the
average correlation between SAT scores and individual course
grades (ICGs) earned during a given year of college by the aver-
age number of classes taken in that year. In this example, the
average SAT–ICG correlation for first-year coursework was .2495
and students took an average of 10.22 courses during their first
year. To account for the dependency among the course grades
earned by a typical student in this scenario, we used the intraclass
correlation of .312 to represent the average intercorrelation among
course grades in our composite. The composite formula indicates
that, on average, SAT could be expected to correlate .405 with
first-year common-curriculum GPAs.

r̂SAT,CCGPA Year 1 � .2495 � 10.22
�10.22 � 10.22 � (10.22 � 1) � .312

� .405

Applying the procedure described above to all 4 years of non-
cumulative data indicated that SAT scores would correlate .405,
.371, .322, and .258 with first-, second-, third-, and fourth-year
noncumulative common-curriculum GPAs, respectively. We then
organized these correlations in a matrix along with the average
intercorrelations among the mean ICGs students earned in each
year. For example, the average correlation between mean first-year
ICGs and mean second-year ICGs is .675, as reflected in this
matrix:

R ��
1 .405 .371 .322 .258

.405 1 .675 .580 .522

.371 .675 1 .688 .599

.322 .580 .688 1 .719

.258 .522 .599 .719 1
�

As the above correlation matrix is standardized, we created a
scaling matrix in which the standard deviations of mean ICGs were
arrayed on the diagonal. The standard deviations of mean ICGs for
our overall sample in the first through fourth years were .785, .771,
.757, and .754, respectively. SAT scores were left in z-score form, as
only the criterion variances needed to be specified in our composite
equations because the SAT was not being combined with anything.

(Appendices continue)
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D ��
1 0 0 0 0
0 .775 0 0 0
0 0 .771 0 0
0 0 0 .757 0
0 0 0 0 .754

�
After defining our correlation matrix and the diagonal scaling

matrix, we created a vector of weights with which to combine
our criterion variables. The mean weights assigned to first-
through fourth-year noncumulative common-curriculum GPAs
were 10.22, 10.05, 9.63, and 8.83, respectively. These weights
represent the mean numbers of courses taken in each year.

wCCGPA � �0 10.22 10.05 9.63 8.83�T

The other vector of weights we defined specified the weights
give to predictors; as we only had one predictor, the SAT received
a weight of 1 and the other variables received weights of 0.

wSAT � �1 0 0 0 0 �T

Finally, by using matrix multiplication, we computed the cor-
relation between SAT scores and 4-year cumulative common-
curriculum GPAs. In this case, that correlation was .40261.

r̂SAT,Cumulative CCGPA �
wCCGPA

T D R D wSAT

�wCCGPA
T D R D wCCGPA

� 10.14472
�634.9084

� .40261

Appendix C

(Appendices continue)

Table C1
Meta-Analyses of Observed Correlations Between Composite SAT Scores and First-Year GPAs

Sex Ethnicity k N r� SEr� SDr SDres 95% CI 80% CV

All All 107 363,004 .37 .0059 .06 .06 [.35, .38] [.29, .44]
White 46 196,192 .34 .0079 .05 .05 [.32, .35] [.27, .40]
Black 46 16,153 .30 .0103 .07 .05 [.28, .32] [.23, .36]
Hispanic 46 23,948 .31 .0106 .07 .06 [.29, .33] [.23, .38]
Asian 46 30,635 .31 .0124 .08 .08 [.28, .33] [.21, .40]

Male All 103 165,527 .36 .0060 .06 .06 [.34, .37] [.28, .43]
White 38 90,563 .34 .0078 .05 .04 [.33, .36] [.29, .40]
Black 38 5,629 .29 .0138 .09 .04 [.27, .32] [.24, .35]
Hispanic 38 9,873 .29 .0152 .09 .07 [.26, .32] [.20, .39]
Asian 38 14,271 .29 .0125 .08 .06 [.27, .32] [.22, .37]

Female All 103 194,304 .42 .0060 .06 .06 [.41, .43] [.35, .49]
White 38 99,387 .39 .0095 .06 .06 [.37, .41] [.32, .46]
Black 38 9,031 .33 .0130 .08 .06 [.31, .36] [.26, .41]
Hispanic 38 13,221 .35 .0119 .07 .06 [.33, .38] [.28, .43]
Asian 38 14,736 .36 .0149 .09 .08 [.33, .39] [.26, .46]

Note. k � number of samples contributing to the meta-analysis; N � total sample size; r� � weighted mean correlation; SDr� � standard error of mean
correlation; SDr � weighted standard deviation of correlations; SDres � residual standard deviation of correlations; 95% CI � 95% confidence interval
around r�; 80% CV � 80% credibility interval around r�. All SD and SE estimates were computed using unbiased formulas.
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(Appendices continue)

Table C3
Meta-Analyses of Observed Correlations Between Composite SAT Scores and First-Year Common-Curriculum GPAs

Sex Ethnicity k N r� SEr� SDr SDres 95% CI 80% CV

All All 107 362,840 .41 .0082 .09 .08 [.39, .42] [.30, .52]
White 46 196,084 .37 .0112 .08 .07 [.35, .39] [.27, .46]
Black 46 16,148 .38 .0171 .12 .11 [.35, .41] [.24, .51]
Hispanic 46 23,932 .39 .0158 .11 .10 [.35, .42] [.26, .51]
Asian 46 30,612 .33 .0144 .10 .09 [.30, .35] [.21, .44]

Male All 103 165,420 .38 .0082 .08 .08 [.36, .39] [.27, .48]
White 38 90,485 .34 .0113 .07 .07 [.32, .37] [.26, .43]
Black 38 5,626 .37 .0212 .13 .11 [.33, .41] [.23, .51]
Hispanic 38 9,867 .36 .0191 .12 .10 [.32, .40] [.23, .49]
Asian 38 14,259 .30 .0149 .09 .08 [.27, .33] [.20, .40]

Female All 103 194,247 .48 .0085 .09 .08 [.46, .50] [.37, .59]
White 38 99,357 .44 .0124 .08 .07 [.42, .46] [.34, .54]
Black 38 9,029 .42 .0174 .11 .09 [.38, .45] [.30, .53]
Hispanic 38 13,211 .44 .0164 .10 .09 [.40, .47] [.32, .55]
Asian 38 14,725 .39 .0172 .11 .10 [.35, .42] [.26, .51]

Note. k � number of samples contributing to the meta-analysis; N � total sample size; r� � weighted mean correlation; SDr� � standard error of mean
correlation; SDr � weighted standard deviation of correlations; SDres � residual standard deviation of correlations; 95% CI � 95% confidence interval
around r�; 80% CV � 80% credibility interval around r�. All SD and SE estimates were computed using unbiased formulas.

Table C2
Meta-Analyses of Range-Restriction Corrected Correlations Between Composite SAT Scores and First-Year GPAs

Sex Ethnicity k N r� SEr� SDr SDres 95% CI 80% CV

All All 107 363,004 .48 .0061 .06 .06 [.46, .49] [.40, .55]
White 46 196,192 .43 .0077 .05 .05 [.42, .45] [.37, .49]
Black 46 16,153 .42 .0112 .08 .03 [.39, .44] [.38, .45]
Hispanic 46 23,948 .43 .0095 .06 .03 [.41, .45] [.39, .47]
Asian 46 30,635 .40 .0136 .09 .08 [.37, .43] [.30, .50]

Male All 103 165,527 .47 .0067 .07 .06 [.46, .48] [.39, .55]
White 38 90,563 .43 .0077 .05 .04 [.42, .45] [.38, .49]
Black 38 5,629 .37 .0121 .07 .00 [.34, .39] [.37, .37]
Hispanic 38 9,873 .41 .0152 .09 .04 [.38, .44] [.36, .46]
Asian 38 14,271 .39 .0146 .09 .05 [.36, .41] [.33, .44]

Female All 103 194,304 .52 .0054 .05 .05 [.51, .53] [.46, .59]
White 38 99,387 .48 .0083 .05 .05 [.47, .50] [.42, .54]
Black 38 9,031 .47 .0160 .10 .05 [.44, .50] [.40, .54]
Hispanic 38 13,221 .47 .0112 .07 .03 [.45, .50] [.44, .51]
Asian 38 14,736 .45 .0159 .10 .08 [.42, .48] [.35, .55]

Note. k � number of samples contributing to the meta-analysis; N � total sample size; r� � weighted mean correlation; SDr� � standard error of mean
correlation; SDr � weighted standard deviation of correlations; SDres � residual standard deviation of correlations; 95% CI � 95% confidence interval
around r�; 80% CV � 80% credibility interval around r�. All SD and SE estimates were computed using unbiased formulas.
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(Appendices continue)

Table C5
Meta-Analyses of Observed Correlations Between Composite SAT Scores and 4-Year Cumulative GPAs

Sex Ethnicity k N r� SEr� SDr SDres 95% CI 80% CV

All All 107 363,004 .33 .0059 .06 .06 [.32, .35] [.26, .41]
White 46 196,192 .29 .0092 .06 .06 [.27, .31] [.21, .37]
Black 46 16,153 .27 .0125 .08 .07 [.25, .30] [.18, .36]
Hispanic 46 23,948 .27 .0114 .08 .07 [.25, .30] [.19, .36]
Asian 46 30,635 .27 .0114 .08 .07 [.25, .30] [.18, .36]

Male All 103 165,527 .34 .0062 .06 .06 [.33, .35] [.26, .42]
White 38 90,563 .31 .0092 .06 .05 [.30, .33] [.24, .38]
Black 38 5,629 .30 .0189 .12 .09 [.26, .33] [.18, .41]
Hispanic 38 9,873 .28 .0158 .10 .08 [.25, .31] [.18, .38]
Asian 38 14,271 .27 .0130 .08 .06 [.24, .30] [.19, .35]

Female All 103 194,304 .40 .0060 .06 .06 [.39, .41] [.32, .47]
White 38 99,387 .36 .0101 .06 .06 [.34, .38] [.28, .43]
Black 38 9,031 .31 .0134 .08 .06 [.28, .33] [.23, .38]
Hispanic 38 13,221 .33 .0117 .07 .06 [.31, .35] [.26, .40]
Asian 38 14,736 .33 .0133 .08 .07 [.30, .36] [.24, .42]

Note. k � number of samples contributing to the meta-analysis; N � total sample size; r� � weighted mean correlation; SDr� � standard error of mean
correlation; SDr � weighted standard deviation of correlations; SDres � residual standard deviation of correlations; 95% CI � 95% confidence interval
around r�; 80% CV � 80% credibility interval around r�. All SD and SE estimates were computed using unbiased formulas.

Table C4
Meta-Analyses of Range-Restriction Corrected Correlations Between Composite SAT Scores and First-Year
Common-Curriculum GPAs

Sex Ethnicity k N r� SEr� SDr SDres 95% CI 80% CV

All All 107 362,840 .54 .0078 .08 .08 [.53, .56] [.44, .65]
White 46 196,084 .49 .0108 .07 .07 [.47, .51] [.40, .58]
Black 46 16,148 .48 .0177 .12 .10 [.45, .52] [.35, .62]
Hispanic 46 23,932 .49 .0157 .11 .09 [.46, .52] [.37, .61]
Asian 46 30,612 .43 .0165 .11 .10 [.39, .46] [.30, .56]

Male All 103 165,420 .51 .0087 .09 .08 [.50, .53] [.41, .62]
White 38 90,485 .47 .0114 .07 .07 [.45, .49] [.39, .56]
Black 38 5,626 .46 .0193 .12 .06 [.42, .49] [.38, .53]
Hispanic 38 9,867 .47 .0191 .12 .09 [.43, .51] [.35, .59]
Asian 38 14,259 .41 .0180 .11 .09 [.37, .44] [.30, .52]

Female All 103 194,247 .59 .0074 .07 .07 [.58, .61] [.50, .69]
White 38 99,357 .56 .0115 .07 .07 [.54, .58] [.47, .65]
Black 38 9,029 .54 .0210 .13 .11 [.50, .58] [.40, .68]
Hispanic 38 13,211 .55 .0163 .10 .08 [.51, .58] [.44, .65]
Asian 38 14,725 .49 .0182 .11 .10 [.46, .53] [.37, .61]

Note. k � number of samples contributing to the meta-analysis; N � total sample size; r� � weighted mean correlation; SDr� � standard error of mean
correlation; SDr � weighted standard deviation of correlations; SDres � residual standard deviation of correlations; 95% CI � 95% confidence interval
around r�; 80% CV � 80% credibility interval around r�. All SD and SE estimates were computed using unbiased formulas.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

829EFFECTS OF ARTIFACTS ON DIFFERENTIAL VALIDITY



(Appendices continue)

Table C7
Meta-Analyses of Observed Correlations Between Composite SAT Scores and 4-Year Cumulative Common-Curriculum GPAs

Sex Ethnicity k N r� SEr� SDr SDres 95% CI 80% CV

All All 107 362,853 .40 .0074 .08 .08 [.39, .42] [.30, .50]
White 46 196,113 .35 .0102 .07 .07 [.33, .37] [.27, .44]
Black 46 16,146 .36 .0192 .13 .12 [.32, .39] [.20, .51]
Hispanic 46 23,920 .36 .0158 .11 .10 [.33, .40] [.24, .49]
Asian 46 30,612 .33 .0141 .10 .09 [.30, .36] [.22, .44]

Male All 103 165,442 .36 .0071 .07 .07 [.35, .38] [.28, .45]
White 38 90,515 .32 .0101 .06 .06 [.30, .34] [.24, .40]
Black 38 5,625 .36 .0244 .15 .13 [.31, .41] [.19, .52]
Hispanic 38 9,860 .34 .0186 .11 .10 [.30, .38] [.21, .47]
Asian 38 14,258 .29 .0131 .08 .07 [.26, .31] [.20, .37]

Female All 103 194,239 .48 .0081 .08 .08 [.46, .49] [.38, .58]
White 38 99,357 .43 .0119 .07 .07 [.40, .45] [.34, .52]
Black 38 9,028 .39 .0195 .12 .11 [.36, .43] [.26, .53]
Hispanic 38 13,207 .42 .0159 .10 .09 [.39, .46] [.31, .54]
Asian 38 14,726 .40 .0173 .11 .10 [.36, .43] [.27, .52]

Note. k � number of samples contributing to the meta-analysis; N � total sample size; r� � weighted mean correlation; SDr� � standard error of mean
correlation; SDr � weighted standard deviation of correlations; SDres � residual standard deviation of correlations; 95% CI � 95% confidence interval
around r�; 80% CV � 80% credibility interval around r�. All SD and SE estimates were computed using unbiased formulas.

Table C6
Meta-Analyses of Range-Restriction Corrected Correlations Between Composite SAT Scores and 4-Year Cumulative GPAs

Sex Ethnicity k N r� SEr� SDr SDres 95% CI 80% CV

All All 107 363,004 .45 .0054 .06 .05 [.43, .46] [.38, .51]
White 46 196,192 .38 .0072 .05 .05 [.37, .40] [.32, .44]
Black 46 16,153 .39 .0123 .08 .03 [.37, .42] [.35, .43]
Hispanic 46 23,948 .40 .0098 .07 .03 [.38, .42] [.36, .43]
Asian 46 30,635 .37 .0117 .08 .06 [.34, .39] [.29, .44]

Male All 103 165,527 .45 .0061 .06 .05 [.44, .47] [.38, .53]
White 38 90,563 .40 .0074 .05 .04 [.39, .42] [.35, .45]
Black 38 5,629 .37 .0164 .10 .00 [.34, .40] [.37, .37]
Hispanic 38 9,873 .40 .0149 .09 .00 [.37, .43] [.40, .40]
Asian 38 14,271 .36 .0139 .09 .05 [.33, .39] [.29, .43]

Female All 103 194,304 .50 .0047 .05 .04 [.49, .51] [.45, .55]
White 38 99,387 .45 .0077 .05 .04 [.43, .46] [.39, .50]
Black 38 9,031 .44 .0143 .09 .01 [.42, .47] [.43, .46]
Hispanic 38 13,221 .45 .0106 .07 .01 [.43, .47] [.44, .47]
Asian 38 14,736 .42 .0133 .08 .06 [.39, .45] [.34, .49]

Note. k � number of samples contributing to the meta-analysis; N � total sample size; r� � weighted mean correlation; SDr� � standard error of mean
correlation; SDr � weighted standard deviation of correlations; SDres � residual standard deviation of correlations; 95% CI � 95% confidence interval
around r�; 80% CV � 80% credibility interval around r�. All SD and SE estimates were computed using unbiased formulas.
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Table C8
Meta-Analyses of Range-Restriction Corrected Correlations Between Composite SAT Scores and 4-Year Cumulative
Common-Curriculum GPAs

Sex Ethnicity k N r� SEr� SDr SDres 95% CI 80% CV

All All 107 362,853 .52 .0070 .07 .07 [.50, .53] [.43, .61]
White 46 196,113 .46 .0093 .06 .06 [.44, .47] [.38, .53]
Black 46 16,146 .41 .0185 .13 .11 [.37, .45] [.27, .55]
Hispanic 46 23,920 .43 .0160 .11 .09 [.40, .46] [.31, .55]
Asian 46 30,612 .40 .0141 .10 .08 [.37, .43] [.29, .51]

Male All 103 165,442 .47 .0071 .07 .07 [.46, .49] [.39, .56]
White 38 90,515 .43 .0099 .06 .06 [.41, .45] [.36, .50]
Black 38 5,625 .40 .0235 .14 .11 [.35, .44] [.26, .54]
Hispanic 38 9,860 .41 .0199 .12 .00 [.37, .45] [.41, .41]
Asian 38 14,258 .37 .0149 .09 .07 [.34, .40] [.28, .46]

Female All 103 194,239 .57 .0073 .07 .07 [.56, .58] [.48, .66]
White 38 99,357 .53 .0107 .07 .06 [.51, .55] [.45, .61]
Black 38 9,028 .47 .0192 .12 .08 [.43, .51] [.36, .58]
Hispanic 38 13,207 .50 .0153 .09 .08 [.47, .53] [.40, .60]
Asian 38 14,726 .47 .0168 .10 .00 [.44, .50] [.47, .47]

Note. k � number of samples contributing to the meta-analysis; N � total sample size; r� � weighted mean correlation; SDr� � standard error of mean
correlation; SDr � weighted standard deviation of correlations; SDres � residual standard deviation of correlations; 95% CI � 95% confidence interval
around r�; 80% CV � 80% credibility interval around r�. All SD and SE estimates were computed using unbiased formulas.
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