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brain shape diversity in humans
P. K. Reardon1,2,3*, Jakob Seidlitz1,4*, Simon Vandekar5, Siyuan Liu1, Raihaan Patel6,7,
Min Tae M. Park6,8, Aaron Alexander-Bloch9, Liv S. Clasen1, Jonathan D. Blumenthal1,
Francois M. Lalonde1, Jay N. Giedd10, Ruben C. Gur11, Raquel E. Gur11,
Jason P. Lerch12, M. Mallar Chakravarty6,7, Theodore D. Satterthwaite11,
Russell T. Shinohara5, Armin Raznahan1†

Brain size variation over primate evolution and human development is associated with
shifts in the proportions of different brain regions. Individual brain size can vary almost
twofold among typically developing humans, but the consequences of this for brain
organization remain poorly understood. Using in vivo neuroimaging data from more
than 3000 individuals, we find that larger human brains show greater areal expansion in
distributed frontoparietal cortical networks and related subcortical regions than in limbic,
sensory, and motor systems. This areal redistribution recapitulates cortical remodeling
across evolution, manifests by early childhood in humans, and is linked to multiple markers
of heightened metabolic cost and neuronal connectivity. Thus, human brain shape is
systematically coupled to naturally occurring variations in brain size through a scaling map
that integrates spatiotemporally diverse aspects of neurobiology.

T
otal brain size can vary almost twofold
among typically developing humans of the
same age (1). Brain size variation has been
linked to coordinated changes in the pro-
portional size of different brain systems

across primate evolution and development (2),
but the relationship between interindividual
variation in human brain size and brain shape
remains less well understood (3).Wemapped this
relationship at high spatial resolution to identify
organizational shifts accompanying human brain
size variation and illuminate differential areal
patterning in larger versus smaller brains.
Our study included 2904 structural magnet-

ic resonance imaging brain scans from two in-
dependent primary cohorts: (i) a Philadelphia
Neurodevelopmental Cohort (PNC) sample of
1373 cross-sectional scans from a 3 Tesla machine
in youth aged 8 to 23 years (table S1A and fig. S1A)
(4) and (ii) a National Institutes of Health (NIH)
sample of 1531 longitudinally acquired brain scans

from a 1.5 Tesla machine in 792 youth aged 5 to
25 years (table S1B and fig. S1B) (1). To generate
a reference map of areal scaling in the cortex, we
measured the local surface area associated with
eachof~80,000cortical pointsper scan (henceforth
“vertex area”) using an automated image-processing
pipeline (5) and then used semiparametric gen-
eralized additive models (6) to estimate vertex-
specific scaling as the log-log regression coefficient
for total cortical area as a predictor of vertex area
(Methods). Within this regression framework
(7), a coefficient of 1 indicates linear scaling (e.g.,
doubling of vertex area with a doubling of cor-
tical area), whereas deviation from 1 indicates
nonlinear scaling: Coefficients >1 indicate that
proportional vertex area increases with greater
cortical size (“positive scaling”), and coefficients
<1 indicate that proportional vertex area de-
creases (“negative scaling”). The models used to
estimate scaling coefficients provided statistical
control for age and sex effects on vertex area, after
first ruling out statistically significant interactions
between either of these variables and total cortical
area (Methods). Thus, our results supported esti-
mation of a single scaling map for each of the
two developmental cohorts examined, which did
not vary as a function of age and sex.
In both cohorts, scaling relationships between

vertex area and total cortical area varied across
the cortical sheet (Fig. 1A) in a manner that was
broadly symmetric (but see fig. S2 for exceptions)
and reproducible in the adult subset of each cohort
(Methods, fig. S3A, and table S2). Intervertex dif-
ferences in scalingwere highly correlated between
PNC and NIH cohorts (Pearson r = 0.7), at levels
above chance in a spatial permutation procedure
that relies on random surface-based rotation of
cortical maps (henceforth “spins”; i.e., pSPIN <
0.001) (Methods, Fig. 1A, and table S2). Testing
for statistically significant deviation from 1 of

vertex scaling coefficients and correcting for
multiple comparisons across vertices (Methods)
defined two distributed domains of statistically
significant, nonlinear areal scaling in each cohort
(Fig. 1B). Across cohorts, we observed regions
of positive areal scaling in prefrontal, lateral
temporoparietal, and medial parietal cortex, and
negative areal scaling in limbic, primary visual,
and primary sensorimotor regions (Fig. 1C). The
reproducibility of areal scaling across cohorts was
unlikely to reflect intrinsic methodological arti-
facts from a shared cortical analysis pipeline (5)
because these scaling patterns were (i) lost after
permuting scans across individuals in the PNC
cohort (fig. S3B and table S2) and (ii) seen after
processing a third independent magnetic reso-
nance imaging (MRI) dataset from the Human
Connectome Project (HCP) (n = 1113) (Methods)
with adifferent computational pipeline (FreeSurfer,
Methods), at varying smoothing kernels (Fig. 1D,
fig. S4, and table S2). Thus, log-log regression anal-
ysis revealed regionally specific patterns of non-
linear areal scaling in the human cortex that were
broadly reproducible across three study cohorts,
three image-acquisition platforms, two image pro-
cessing pipelines, and a range of smoothing kernels.
To complement log-log regression analysis of

scaling, we also generated person-level measures
of cortical proportionality by expressing vertex
area estimates as proportions of the total cortical
surface area in each scan. Variability in propor-
tional vertex area differed across the cortical sheet
(fig. S5A), and maps for the relationship between
proportional vertex area and total cortical area
(fig. S5B) recapitulated the scaling gradients
detected by log-log regression (Fig. 1A). Across
individuals, raw surface area within regions of
positive and negative scaling (Fig. 1B) increased
with total cortical size, whereas the total propor-
tional areas of these regions were positively and
negatively (respectively) related to total cortical
area (Fig. 1E). The ratio between mean propor-
tional vertex area in regions of positive versus
negative scaling—a summary “scaling index” that
could be computed for each scan—showeda robust
positive linear relationship with total cortical area
in both cohorts (fig. S5C) and a positive relation-
ship with measures of intelligence quotient (IQ)
that were available for the NIH cohort (P = 0.004)
(Methods, Fig. 1F, and table S3).However, scaling
index variation predicted a small fraction of IQ
variance (~1%), and this association did not sur-
vive correction for total cortical size (Methods,
Fig. 1F, and table S3),whichwas itselfmore robustly
associated with IQ (see standardized coefficients
and model R2, table S3). Thus, mounting cortical
size was simultaneously associated with a greater
scaling index and IQ, but differences in scaling
above and beyond those predicted by cortical size
did not explain additional variance in IQ.
To assess whether regional differences in areal

scalingwere specific to the cortical sheet,wemapped
areal scalingacross fivenon-neocortical (henceforth
“subcortical”) structures (thalamus, pallidum, stri-
atum, hippocampus, and amygdala) using recently
developed algorithms for automated subcortical
shape analysis (MAGeT Brain, Methods). This
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approach provided a homogeneous surface-
based framework for quantification and visual-
ization of areal scaling gradients across the
cortex and subcortex (Methods, fig. S6, A and B).
Vertex-level areal scaling coefficients varied with-
in each subcortical structure examined (e.g., posi-
tive scaling in hippocampal head versus negative
scaling in tail) (fig. S6C), revealing that size-
related shifts in human brain shape are not re-
stricted to the neocortex.

To assess the biological importance of spatially
patterned areal scaling within the human brain,
we compared regional differences in cortical scal-
ing to several independent assays of cortical orga-
nization. We first investigated whether patterns
of cortical area redistribution as a function of nor-
mative brain size variation in humans (Fig. 1A)
aligned with those that accompany evolution-
ary and developmental changes in primate
brain size (Fig. 2, A to D) (2). Intervertex scaling

variations in PNC andNIH cohorts (Fig. 1A) were
positively correlated with those seen in evolution
and development (Fig. 2, A to C, and table S2).
All three sources of primate brain size disparity
(evolution, development, and naturally occurring
size variation) involved disproportionate areal ex-
pansion within anterior cingulate, angular gyrus,
superior parietal lobule, and lateral temporal
cortex (Fig. 2, B and D). Within these regions,
the magnitude of positive areal scaling between
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Fig. 1. Nonlinear areal
scaling of the cortex with
normative brain size varia-
tion in PNC, NIH, and HCP
cohorts. (A) Unthresholded
vertex maps showing local
surface area scaling with
naturally occurring
variations in total cortical
area. Red, relative expan-
sion in larger cortices
(“positive scaling”); blue,
relative contraction (“nega-
tive scaling”). The observed
cross-vertex correlation in
scaling between PNC/NIH
cohorts is greater than
that in 1000 surface-based
rotations of the NIH scaling
map (i.e., pSPIN < 0.001, den-
sity plot). (B) Categorical
scaling maps showing
regions of statistically sig-
nificant positive and
negative areal scaling (i.e.,
Ho: scaling coefficient =
1 rejected) after correction
for multiple comparisons
across vertices. (C) Con-
junction of PNC and
NIH maps from Fig. 1B.
(D) Regional scaling in a
third independent dataset
(Human Connectome
Project, n = 1113), across two
different FWHM (full width at
half maximum) smoothing
kernels (for maps for all five
kernels, see fig. S4). Density
plot shows that observed
alignment of HCP scaling
with PNC(solid)/NIH
(dashed) (r > 0.3) exceeds
chance (pSPIN < 0.002).
(E) Scatter plots of raw
(top row) and proportional
(bottom row) surface area in
regions of nonlinear scaling
from Fig. 1B versus total
cortical area (SA). (F) Inter-
relationships between age
and sex residualized scaling
index (SI, with and without
residualization for SA), SA,
and IQ in the NIH cohort.
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Fig. 2. Areal scaling aligns with patterns of cortical evolution,
development, functional network topography, and cytoarchitecture.
(A) Area expansion map in humans relative to macaques (2), with
PNC/NIH scaling maps for comparison. Density plot shows that
observed spatial correlation of scaling maps and evolutionary expansion
is greater than chance for PNC (solid) and NIH (dashed) cohorts.
(B) Conjunction between regions of positive areal scaling in PNC/NIH
cohorts (Fig. 1B) and vertices with evolutionary expansion values
above the 50th centile. (C and D) Identical analyses as Fig. 2, A and B,
except for areal expansion map in human adults relative to human

infants (2). (E) Parcellation of cortex into seven canonical resting state
functional connectivity networks (8), with bar plots and conjunction maps
showing differential representation of positive versus negative scaling
in each network (**pSPIN < 0.001, *pSPIN < 0.05). Regions of positive
scaling localize to the default mode network (DMN) and regions of
negative scaling to the limbic network (Lim). (F) Cortical parcellation into
seven different laminar types according to a classical cytoarchitectonic
atlas (12), with bar plots and conjunction maps showing that regions
of positive scaling localize to von Economo Type 3 cortex, and negative to
Type 6 (**pSPIN < 0.001, *pSPIN < 0.05).
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macaques and humans tended to exceed that
seen within humans (fig. S7A).
We next asked whether regional differences in

human cortical scaling were related to functional
and microstructural topography of the human
cortex. Using a previously published parcellation
of the cortical sheet into seven canonical resting-
state functional connectivity networks (8), we
found that (i) regions of positive scaling were
concentrated within association cortices, includ-
ing the default mode (DMN), dorsal attention,
and frontoparietal networks (pSPIN = 0.001 for

DMN), whereas (ii) regions of negative scaling
were overrepresented (pSPIN = 0.007) within the
limbic network (Fig. 2E and table S4). These as-
sociations were replicated using a finer-grained
functional parcellation of the human cortex (8)
(fig. S7B and table S4), and indicated that larger
human brains show preferential areal expansion
within regions of association cortex that sit at
the apex of a functional network hierarchy (9, 10)
and provide high-level integration across lower
systems (11). This theme was reinforced by com-
parison of scaling maps with a classical parcel-

lation of the cortex into seven cytoarchitectonic
“types”with differing laminar organizations (12):
Regions of positive areal scaling were overrepre-
sented within “von Economo Type 3” cortices
(Fig. 2F and table S4) that bear cytoarchitectonic
specializations for long-range cortico-cortical con-
nectivity (e.g., thickening of supragranular layers
II/III). Thus, regionsof preferential areal expansion
in larger versus smaller human brains appeared
to be both functionally andmicrostructurally suited
to operate as hubs of information integration.
To next probe potential molecular correlates

of regional differences in cortical scaling, we used
a shared stereotaxic coordinate system to assign
an areal scaling coefficient (Fig. 1A) to each of
1939 spatially distributed and transcriptomically
characterized cortical samples from an indepen-
dent cohort of six adult human donors provided
by the Allen Institute for Brain Science (AIBS) (13)
(Methods, Fig. 3A, and table S5). This data align-
ment allowed us to rank ~16,000 genes by the
spatial correspondence between their expression
and cortical scaling gradients in PNC and NIH
cohorts (Methods, table S6), with expression of
the high-ranking genes being most positively cor-
related with scaling (Fig. 3B). Rank-based gene
ontology (GO) analysis (Methods) (14) revealed
that high-ranking geneswere significantly enriched
for mitochondrial and synaptic GO annotations
(Fig. 3C) and related processes of oxidative phos-
phorylation and transmembrane K+ transport
(table S7). Observed gene ranks were robust to
randomly excluding up to 70% of samples per
donor, and the high rank of genes associated
withmitochondrial and synaptic GO terms was
lost after permutation of scaling values across
AIBS samples (Methods). The positive association
between areal scaling and postmortem expression
of mitochondria-related genes (Fig. 3C and table
S7) suggested that cortical regions that are prefer-
entially expanded in larger versus smaller human
brains may possess a distinct energy metabolism
profile. This hypothesis was supported by con-
vergent evidence for a statistically significant
positive association between regional differences
in cortical areal scaling and regional differences
in two different neuroimaging proxies for corti-
cal energy consumption at rest (15, 16) (Fig. 3D
and table S2).
Our findings illuminate several aspects of cortical

patterning. First, the spatial convergence of areal
scalingmaps across all threemajor axes of primate
brain size variation (Fig. 2)—evolution, develop-
ment, and standing interindividual variation—
implies shared mechanisms for size-dependent
patterning of the primate cortical sheet. These
mechanisms presumably link variation in early
progenitor cell proliferation to (i) the genesis of
regional differences in cellular composition dur-
ing prenatal corticogenesis (17, 18) or (ii) the sub-
sequent emergence of regional differences in
cellular morphology and neuropil composition
(19). Second, the anabolic costs of tissue growth
(20) and the overlap of positive areal scaling with
diverse markers of biological investment (Fig. 3)
suggest that preferential expansion of associa-
tion cortex (e.g., DMN) may serve to maintain

Reardon et al., Science 360, 1222–1227 (2018) 15 June 2018 4 of 5

PNC

NIH

A

Rank Gene Z-score

1 GPX3 18.88

2 PHLDA2 18.51

3 KCNS1 16.69

16904 LIPG -15.33

16905 SPHKAP -15.63

16906 BHLHE22 -18.62

…

Rank Gene Z-score

1 PHLDA2 14.93

2 KCNV1 14.10

3 OLFM3 14.06

16904 PPM1E -11.91

16905 CHRNA1 -12.32

16906 BHLHE22 -14.28

PNC NIH

…

B

C

AIBS Gene Expression

D

S
ca

lin
g

 C
o

ef
fi

ci
en

ts

PNC NIH

S
em

an
tic

 S
pa

ce
 Y

Transcriptomic Alignment

A
S

L 
z-

sc
o

re

-2

2

C
M

R
G

lu
 z

-s
co

re

-2

2

-log10 P

3 12

Null
1000 spins

mitochondrial partmitochondrial part
synapse part

synapse part
neuron part

neuron part

Semantic Space X

macromolecule
complex

macromolecule
complex

Observed
PNC

r=0.27, p<0.001
NIH

r=0.15, p=0.063

Observed
PNC

r=0.31, p=0.023
NIH

r=0.21, p=0.052

Fig. 3. Areal scaling aligns with cortical gene expression and metabolism. (A) Vertex
scaling coefficients from PNC and NIH maps (Fig. 1A) were uniquely assigned to each of ~2k
cortical samples from the Allen Institute for Brain Sciences (AIBS) (13) by spatial proximity,
allowing ranking of the ~16,000 genes measured across all AIBS samples by their spatial
correlation with areal scaling. (B) Extreme-ranking genes for the PNC and NIH scaling maps.
(C) Visualization of GO cellular component terms in semantic space showing statistically
significant enrichment of mitochondria- and synapse-related terms among top-ranking genes.
(D) Areal scaling is positively correlated with two neuroimaging-based proxies for cortical
energy consumption at rest: arterial spin labeling (ASL) measures of arterial blood flow (15) and
positron emission tomography measures of glucose uptake (CMRGlu) (16) (density plots, PNC
solid, NIH dashed, black null, red observed, mean pSPIN < 0.03).
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or enhance (21) brain function in larger versus
smaller human brains. Testing this hypothesis will
require new study designs that can probe diverse
assays of human brain function beyond IQ while
untangling the effects of brain size variation from
linked changes in cortical patterning (Fig. 1F).
Finally, the convergent evidence that cortical re-
gions of positive scaling are specialized for inte-
gration of information across lower-order systems
(Figs. 2 and 3) offers a potential mechanistic ac-
count for positive areal scaling in the primate brain.
Just as the computational load of an integrative
algorithm can increase supralinearly with the
size of its inputs (22), larger cortices may need to
disproportionately expand the anatomical sub-
strates for integrative computation in association
cortex. Based on our results (Figs. 2F and 3C) and
available comparative histology (23), we specu-
late that these substrates include dendritic branch-
ing and synaptic spine density in supragranular
neuropil.
In summary, naturally occurring variations in

human brain size are accompanied by systematic
changes in brain shape through scaling gradients
that tie together macroscopic, microscopic, and
evolutionary features of the human brain.
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