)

Check for
updates

Intact Connectional Morphometricity
Learning Using Multi-view Morphological
Brain Networks with Application
to Autism Spectrum Disorder

Alaa Bessadok!? and Islem Rekik!(®)

1 BASIRA Lab, CVIP Group, School of Science and Engineering, Computing,
University of Dundee, Dundee, UK
irekik@dundee.ac.uk
2 National Engineering School of Gabes, Gabes, Tunisia
http://wuw.basira-lab.com/

Abstract. The morphology of anatomical brain regions can be affected
by neurological disorders, including dementia and schizophrenia, to var-
ious degrees. Hence, identifying the morphological signature of a spe-
cific brain disorder can improve diagnosis and better explain how neu-
roanatomical changes associate with function and cognition. To capture
this signature, a landmark study introduced, brain morphometricity, a
global metric defined as the proportion of phenotypic variation that can
be explained by brain morphology derived from structural brain MRI
scans. However, this metric is limited to investigating morphological
changes using low-order measurements (e.g., regional volumes) and over-
looks how these changes can be related to each other (i.e., how morpho-
logical changes in region A are influenced by changes in region B). Fur-
thermore, it is derived from a pre-defined anatomical similarity matrix
using a Gaussian function, which might not be robust to outliers and
constrains the locality of data to a fixed bandwidth. To address these
limitations, we propose the intact connectional brain morphometricity
(ICBM), a metric that captures the variation of connectional changes in
brain morphology. In particular, we use multi-view morphological brain
networks estimated from multiple cortical attributes (e.g., cortical thick-
ness) to learn an intact space that first integrates the morphological
network views into a unified space. Next, we learn a multi-view mor-
phological similarity matrix in the intact space by adaptively assigning
neighbors for each data sample based on local connectivity. The learned
similarity capturing the shared traits across morphological brain network
views is then used to derive our ICBM via a linear mixed effect model.
Our framework shows the potential of the proposed ICBM in capturing
the connectional neuroanatomical signature of brain disorders such as
Autism Spectrum Disorder.
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1 Introduction

Brain disorders affect the brain construct on multiple levels including neural
activity quantified using functional magnetic resonance imaging (MRI) and brain
tissue morphology measured using structural T1-weighted MRI. While several
studies focused on identifying the functional signature (or fingerprint) of brain
disorders [1-3], a few works investigated the morphological fingerprint of a spe-
cific brain disorder (Alzheimer’s disease, Autism Spectrum Disorder, Parkinson’s
disease). To fill this gap, [4] proposed a statistical metric called brain ‘morpho-
metricity’ (BM) that describes the associations between brain morphology and
multiple risk factors such as age and gender. Using structural MRI, volumetric
measurements of noncortical structures and thickness measurements of cortical
regions were generated. To capture the similarity between brain morphologies
of brains drawn from distinct groups (e.g., normal controls and ASD patients),
they computed a similarity matrix for each of these measurements separately,
and then averaged them to produce the global anatomical similarity matrix. Ulti-
mately, a Linear Mixed Effect model (LME) was applied to estimate the variance
captured by the similarity matrix to unravel the morphological signature of a
specific phenotypic trait (e.g., clinical diagnosis).

However, the proposed morphometricity metric is limited to investigating
morphological changes using low-order measurements (e.g., regional volumes)
and overlooks how these changes can be related to each other (i.e., how mor-
phological changes in region A are influenced by changes in region B). In other
words, it does not look at morphological connectivity of anatomical regions of
interest (ROIs), where a morphological connection quantifies the (dis)similarity
in shape between two brain ROIs —i.e., how their morphologies are related. This
can be modeled using multi-view morphological brain networks (MBN) as pro-
posed in [5-8]. These showed great potential for brain disorder diagnosis [5—
7] and morphological connectional biomarker identification [8] using supervised
[5,6] or unsupervised learning [7] techniques trained on structural T1-weighted
MRI data. More importantly, each view-specific MBN models the relationship in
morphology between brain regions using a specific measurement (e.g., curvature).

To fill this gap, we unprecedentedly propose to use multi-view MBNs for
‘connectional brain morphometricity’ (CBM) estimation. We note that in the
landmark work [4] of BM, the similarity matrix is computed using a pre-defined
similarity function such as Gaussian metric, which (i) may not be robust to out-
liers, (ii) may not handle well multi-view data drawn from multiple sources, and
(iii) may fail to capture data sample distributions with varying bandwidths. To
address these limitations, we propose to learn the data similarity matrix by lev-
ering the intact-awareness similarity learning model developed in [9]. More pre-
cisely, the proposed approach aims to recover an intact space [10] that captures
the complementarity between multiple data views. A practical example of this is
the medical diagnosis of neurological diseases, such as dementia. Each morpho-
logical feature (e.g., cortical thickness) alone captures insufficient information
and thus cannot comprehensively describe the brain atrophy, which can only be
fully recovered by integrating all the features. To leverage the complementary of
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multi-view MBNs, we propose a novel intact connectional brain morphometric-
ity (ICBM) learning framework to identify the connectional morphology-driven
fingerprint of specific traits. Specifically, we use the intactness-aware similarity
learning method [9] to estimate the similarity that has the maximum dependence
with its intact space, where shared traits across views are well captured. First,
we learn the complementarity between different MBNs by constructing an intact
connectomic space. Within a joint framework, we simultaneously learn a multi-
view morphological similarity matrix in the intact space by adaptively assigning
neighbors for each data sample based on local connectivity. The learned similar-
ity capturing the shared traits across morphological brain network views is then
used to derive our ICBM via a linear mixed effect model. The main contributions
of our work can be summarized as follows:

— We propose to learn a morphological intact space that models the complemen-
tarity between different morphological brain networks by integrating them in
one space, thereby catching partial information from each individual view.

— We learn the multi-view morphological similarity matrix that is in harmony
with the morphological intact space of multi-view MBNs.

— We introduce the intact connectional brain morphometricity, a metric that
could reveal novel insights into morphological connectivity fingerprinting
brain disorders.

2 Intact Connectional Brain Morphometricity Learning

In the following, we present the main steps of our intact connectional brain mor-
phometricity (ICBM) learning framework. To clarify the reading, we summarized
the major mathematical notation in Table1. Figure1 illustrates the proposed
pipeline for estimating the intact connectional morphometricity in three major
steps: (1) construction of multi-view morphological networks, (2) learning of the
intact multi-view similarity matrix, and (3) estimation of the ICBM using LME
model.

Multi-view Morphological Network. Inspired by the foundational works of
[7,8], we define a morphological brain network V as a graph comprising a set of
nodes, each node representing a brain ROI. The connection between two nodes
quantifies the dissimilarity in shape between two ROIs ¢ and j by computing
the absolute difference between ROI-based average morphological measurements
(e.g., mean curvature). By diversifying the morphological measurements, we gen-
erate a set of MBNs M, = {V!, V2 ... V¥l each capturing a specific view of
the morphological brain construct. Since each MBN can be defined as a symmet-
ric matrix, we only vectorize the off-diagonal upper triangular part to generate
a feature vector F¥ for each subject s and each view k (Fig. 1-A).

Intact Morphological Similarity Learning. This step is the core of our
framework as it describes the connectional similarity between the morphological
views. Basically, we first propose to learn an intact space that represents the



Intact Connectional Morphometricity Learning 41

A- Feature extraction for each hemisphere

Triangular part Feature
extraction for concatenation
.. each subject _—
V
—_—
‘ Multi-view Morphological
: Brain network Feature vector

B- Similarity Matrix Estimation using Intact Space Learning
— — X

e F* —

N : Intact
Iy ’ / Similarity

i \ \ i Learning
> NS —
: \ Xn
*/ 3
F 1{ ; i
Similarity Matrix S !
— Intact Space X —
L8 J \ J
Y Y
Intact Space Learning Intactness-Aware Similarity

C- Connectional Morphometricity Estimation

>
[
g
z
]

N subjects

Age Gender

LME 2
mp)
Connectional

Similarity matrix Phenotype vector Covariance matrix Morphometricity |
Estimated

N subjects
N subjects
N subjects

Fig. 1. Proposed framework for intact connectional brain morphometricity (ICBM)
learning. (A) Feature extraction from different multi-view morphological brain net-
works, each driven from a specific morphological brain measurement (e.g., curvature).
Multi-view feature vectors are concatenated to create a multi-view training matrix
including all subjects. (B) Intact similarity matrix construction. We learn an intact
connectomic space, which captures the complementarity between all views {Fk}, and
where the intact similarity matrix S is jointly learned. (C) ICBM estimation. Given
the learned similarity matrix along with the phenotype vector (e.g., subject label as
normal control or autistic) and the population covariance matrix, we compute ICBM
using linear mixed effect (LME) model.

complementary information of multiple views. As reported in [10], an individual
view is insufficient for learning, thus integrating multiple views is necessary to
learn a comprehensive representation of the data. Given specific views Vi and
VJ generated from the intact space X, the view insufficiency can be expressed by
I(X; V7| V%) that measures how much information is shared between the intact
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Table 1. Major mathematical notations used in this paper

Mathematical notation | Definition

n number of subjects

vk brain network of the k view of subject n in
RPr X7

My set of subject-specific multi-view morphological
networks

F* matrix including features vectors extracted from the

k" brain network view k of all subjects

F: feature vector extracted from the brain network of
the k-th view for subject s

X a sample in the intact space X represented by K
k
feature vectors F* in R%f

where d’; is the feature dimension of the k-th view

wk a mapping function of a specific feature view F*,
representing all subjects in X

S¢ connectional similarity matrix in R™*™

m? learned intact connectional brain morphometricity

y the phenotype vector that describes the clinical state
of samples (e.g., healthy or disordered)

3 the covariance matrix that contains data of covariate
variables such as age and gender

f. the LME fixed effect vector

re ~ N(0,v,S°) a random effect vector resulting from a

zero-mean multivariate Gaussian distribution
with a covariance matrix S¢

€ the noise vector with variance v,

space X and the newly generated view VJ given the known view Vi. Given,
multiple views M, generated from the complete intact space X, the information
obtained to learn X is measured by:

k
I[(X; VL V2 V) = 1(X Vsl vits v (1)
i=1
Thus, learning X can be formulated as a minimization problem based on Eq. 1
so that X = minx L(X; V!, V*) where L(.) is the loss function I(.) over the
samples on different views. Considering W* a mapping function of a specific
feature view F* representing all subjects in the intact space X, the intact space
X learning is formulated as follows:

K

1

min = > F [ (2)
’ k=1
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where \; ||% is a regularization term used to penalize the intact space X and A\
is a non-negative parameter.

Following the learning of the intact space X, one can learn an intact similarity
matrix S¢ between subjects across views by maximizing its dependence with
the intact space X. This results in connecting the data points based on their
locality —i.e., only the nearest neighbors observations of a specific point can be
connected to this point rather than all other observations. Hence, the multi-view
morphological similarity learning can be formulated as follow:

minde >3 185+ I (3)

i=1 j=1

where 7 ||% is used to prevent S¢ from converging to identity matrix. Ao and v
are non-negative parameters. Additionally, in order to handle noisy samples, we
adopted the [; distance instead of 5.

Since the connectional similarity matrix S¢ is derived from the intact connec-
tomic space X, we combine both models of Eqgs. 2 and 3 into a joint alternating
optimization framework where the learning of the intact space is influenced by
the learning of the similarity matrix and vice versa:

1 K n o n
Xlgvll{lsgz 1% +>\2ZZ||X1*XJ‘H1S§}+7 1% (4)
k=1 =1 j5=1

Intact Connectional Brain Morphometricity Estimation. Next, we pro-
pose to use the learned intact morphological similarity matrix S¢ to estimate the
intact connectional morphometricity. Specifically, we are using the Restricted
Maximum Likelihood (ReML) [11] to fit the Linear Mixed Effect (LME) model
described as follows:

y=Xxf, +r.+¢, (5)

where y denotes the phenotype vector that describes the clinical state of samples
(e.g., healthy or disordered subject), 33 is the covariance matrix that contains
data of covariate variables such as age and gender, f. is the fixed effect vector,
r. ~ N(0,v,5S°) is a random effect vector resulted from a zero-mean multivariate
Gaussian distribution with a covariance matrix S¢, and e denotes the noise vector
with variance v.. We then define the intact connectional brain morphometricity
me as:
Va Va

c = = — 6
" Vg + Ve Ve (6)

where v, is the variance captured by S¢ and v, is the phenotypic variance. The
proposed ICBM can thus described as the proportion of phenotypic variation
that can be explained by morphological brain connectivity.
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3 Results and Discussion

Data Parameters. We evaluate the proposed framework on 341 subjects (155
ASD and 186 NC) from Autism Brain Imaging Data Exchange (ABIDE)!, each
represented using four morphological brain networks constructed using the fol-
lowing cortical measurements in the right and left hemispheres: mean maximum
principal curvature, mean cortical thickness, mean sulcal depth, mean of aver-
age curvature. For more details about MBN construction strategy, we kindly
refer the reader to [6,8]. Three parameters were tuned using grid search: the
dimension of the intact space, Ay is a non-negative trade-off parameter and ny
is the number of nearest neighbor of a specific sample in X. Specifically, using
a grid search strategy we tuned one parameter by fixing the others using 5-fold
cross-validation for the left and the right hemispheres, independently.

Estimating ICBM Using Different Combinations of Brain Network
Views. Given our 4 brain network views, we first constructed all possible com-
binations using 2, 3, and 4 views, respectively. This allows to investigate the
ICBM using different combinations of views as mapped onto the intact space.
For instance, using two views, we generate C7 ICBMs, each for a specific pair
of views. Next, we report in Fig.2 the average ICBM across all pairings along
with the standard deviation. For comparing the estimated intact connectional
brain morphometricity across hemispheres, we report in Fig.2-A ICBM esti-
mates when tuning the parameters for the left hemisphere (LH) and then fixing
them for the right hemisphere (RH), whereas in Fig. 2-B, the ICBM parameters
are tuned using the RH.

(A) ‘ (8)

- -
RH RH

0.2

Two Views Three Views Four Views Two Views Three Views Four Views

Fig. 2. Intact connectional brain morphometricity (ICBM) estimates using three dif-
ferent combinations of brain four views: mean maximum principal curvature, mean
cortical thickness, mean sulcal depth, mean of average curvature. (A) ICBM estimated
while fixing the model parameters using the left hemisphere (LH). (B) ICBM estimated
while fixing the model parameters using the right hemisphere (RH). Blue bars display
ICBM for the LH and orange bars display ICBM for the RH.

! http://fcon_1000.projects.nitrc.org/indi/abide/ .
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Figure 2 shows the association between multi-view morphological networks
and ASD, assessed using the ICBM. Specifically, our preliminary analyses indi-
cate that this particular clinical condition is not significantly morphometric since
all intact connectional brain morphometricity estimates were smaller than 0.8
as explained in [4]. Figure 2 also shows that the right hemisphere (orange bars)
is more morphometric than the left hemisphere on a ‘connectional’ level. This is
in line with the findings of [7], where MBNs derived from the right hemisphere
produced the best classification accuracy in distinguishing between ASD and NC
subjects, which might indicate that right hemispheric connectional features have
more discriminative power than the left hemisphere when leveraging high-order
morphological information such as correlation between cortical measurements.
We also note that both Fig. 2-A and B exhibit similar trends where the estimated
of ICBM for RH is higher than LH for three- and four-view based combinations.
As for two-view based combination, we note that ICBN is somewhat invariant
across cortical hemispheres.

4 Conclusion

In this work, we introduced the intact connectional brain morphometricity, a
metric that is learned using multi-view morphological brain network data for
identified the connectional morphometric fingerprint of a specific trait (e.g.,
autism spectrum disorder). Our preliminary results revealed that autism is not
significantly morphometric on a connectional level. However, we found that the
right hemisphere is more morphometric than the left one. In our future work,
we will evaluate the proposed ICBM learning framework on other disordered
datasets (e.g., dementia). It would be also interesting to compare conventional
brain morphometricity [4] to the connectional one.
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