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Accurate empirical tests of theories and hypotheses are not possible unless the inevitable biases

induced into data by measurement error are controlled for. Yet despite 90 years of

recommendations from measurement theory and methodology, some still do not control for these

biases in their research. This paper presents simple and direct demonstrations showing why basic

measurement principles require that biases in data created by measurement error be removed and

refutes commonly heard objections to the corrections for these biases. One factor contributing to

resistance on the part of some researchers is the fact that most psychologists are not aware that

measurement error is produced by real psychological processes that can be studied and understood.

This paper describes those substantive psychological process and shows how each generates a

different type of measurement error. We also show how different types of reliability estimates

assess and calibrate different error processes and types of measurement error, leading directly to

conclusions about which types of reliability estimates are appropriate for measurement error

corrections in different research settings. Failure to control for biases induced by measurement

error has retarded the development of cumulative research knowledge. It is our hope that this paper

will contribute to removing these hobbles from psychological research.

In the physical sciences, measurement error has long been the focus of sustained attention
and examination (Fuller, 1987; Hedges, 1987). The reason for this is simple: It is not
possible to have accurate empirical tests of theories and hypotheses unless the biases
introduced into data by measurement error are controlled and corrected for. In particular, a
major goal in all areas of science is the calibration of construct level relations. These
relations are the building blocks of theory. All measures of constructsÐwhether in the
physical or social sciencesÐcontain measurement error. There is no such thing as
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errorless measurement. As a result, all observed relations are relations between specific
measures, not relations between constructs, and are therefore biased estimates of relations
between constructs. Hence, the need in research to address the ubiquitous problem of
measurement error and to correct for the biases created by measurement error.

The increasing use of structural equation modeling (SEM) in general differential
psychology (including behavior genetics) has helped to bring this point home to
researchers. In fact, the built-in correction for the distorting effects of measurement
error is often cited as one of the major advantages of SEM. But, in other research, there
is often still a lingering reluctance to eliminate biases in data created by measurement
error. Yet, if it is essential to control for biases induced by measurement error when
using SEM to test causal models (i.e., theories), how could it be unneeded or
inappropriate in the calibrating of bivariate relationships?

This journal is devoted to differential psychologyÐthe differential psychology of
human cognitive abilities. More so than in most other areas of psychology, the funda-
mental research tool in differential psychology is psychological measurement and
measurement theory. Indeed, without measurement theory and methods, differential
psychology as we know it would scarcely even be possible. This fact points up an
anomaly: There is a contradiction between the prescriptions of psychometric theory and
methods and the everyday practices of many differential psychology researchers. Since the
early 1900s, the psychometric methodological literature has consistently stated that
correction for measurement error is critical to accurate calibration of scientific quantities
and to the evaluation of scientific theories. Yet, many currently published studies still do
not address or discuss measurement error and its effects on the reported research results.
There have long existed major pockets of resistance within differential psychology to this
essential prescription. Hence, the need for the present editorial.

There are, of course, other artifacts in addition to measurement error that cause
biases and distortion in research data. Two of the most common ones are range
restriction or range enhancement and dichotomization of continuous measures. Range
restriction and dichotomization both cause downward biases in observed correlations,
while (artificial) range enhancement causes an upward bias. These problems have been
addressed in the literature (e.g., Linn, Harnisch, & Dunbar, 1981; Hunter & Schmidt,
1990a,b; Ree, Carretta, Earles, & Albert, 1994), but, nevertheless, it might be useful for
a future editorial to address the corrections needed for these biases. However, for reasons
that appear to be more emotional than rational, these corrections do not seem to be
resisted as much as corrections for biases induced by measurement errorÐthe subject of
the present paper.

Basic Principles

Later, we will examine some of the objections that have been advanced against eliminating
biases in data caused by measurement error. But, first, we want to illustrate the nature of
the problem created for theory testing by the biases produced by measurement error. In
classical measurement theory, the fundamental general formula for the observed correla-
tion between any two measures x and y is:

rxy � rxt yt
�rxxryy�1 2= �1�
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Where rxy is the observed correlation, rxt yt
is the correlation between the true scores

underlying the measures, rxx and ryy and are the reliabilities, respectively, of the x and
y measures. Eq. (1) is called the attenuation formula, because it shows how
measurement error in the x and y measures reduces the observed correlation (rxy)
below the true score correlation (rxt yt

).
Solving Eq. (1) for rxt yt

yields the disattenuation formula (Eq. [2]):

rxt yt
� rxy=�rxxryy�1 2= �2�

If the sample size is infinite (i.e., in the population), both these formulas are perfectly
accurate. In the smaller samples used in actual research, there are sampling errors in
the estimated values of rxy, rxx, and ryy, and therefore there is also sampling error in
the estimate of rxt yt

. Because of this, a circumflex is often used to indicate that all
value are estimates:

r̂xt yt
� r̂xy=�r̂xxr̂yy�1 2= �3�

The r̂xt yt
is the estimated correlation between the construct underlying the measure x and

the construct underlying the measure y. Alternatively, it is an estimate of the (uncorrected)
correlation that would be observed between the measures x and y if both measures could
be made free of measurement error.

These are fundamental equations in classical measurement theory, the measurement
model used in probably 95% of research in differential psychology. The more complex
alternative measurement model, item response theory (IRT), can be used to show that the
true scores for many scales based on classical measurement theory are monotonically but
not perfectly linearly related to the underlying trait (construct) in question (Lord &
Novick, 1968). However, the relation is usually close enough to linear that the effect on the
estimated construct level correlations of taking true scores as collinear with the construct is
negligible. This fact is very fortunate; if this were not the case, it would be necessary to use
the more complicated and difficult IRT measurement model in research. The two models
agree in stating that corrections for measurement error are essential for accurate research
results. However, the correction process is much more difficult to understand and apply in
the IRT model.

Consider a question that occurs in the study of intelligence: What is the correlation in
the general population between perceptual speed (PS) and general mental ability (GMA)?
Suppose two different researchers set out to answer this question, each using an N = 3000
representative sample from the general population. The first researcher reports r = 0.45,
while the second reports r = 0.30. The value reported by the first study is 50% larger than
that yielded by the second. Since both samples are large and representative, this huge
difference is not due to sampling error. Obviously, this sort of conflict in the research
literature is troubling. Yet, problems of this sort can be produced by simple failure to
consider and control for measurement error.

Consider the following explanation. The first researcher is careful to use only the most
reliable scales: both his scales have reliability of 0.90. The second researcher uses much
shorterÐand hence less reliableÐscales, in order to be able to measure more constructs
in the limited testing time available. His scales both have reliability of 0.60. This
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contradiction between these two findings disappears if we apply Eq. (3) in each case to
correct for the downward bias due to measurement error:

0:45=�0:90�0:90��1=2 � 0:50

0:30=�0:60�0:60��1=2 � 0:50

We now see that the construct level correlationÐwhich is the theoretically relevant
correlationÐis 0.50 in both studies. That is, the correlation between the two abilitiesÐas
opposed to measuresÐis 0.50 in both studies.

Suppose that instead of two studies we had a large number of such studies. Then,
each study could be characterized by a different combination of reliabilities. Hence,
every study could report a different observed correlationÐproducing even more
confusion and contradiction. Table 1 illustrates this situation. Table 1 shows that if
reliabilities for both scales vary from 0.90 down to 0.40, reported correlations in
individual studies will vary anywhere between 0.20 and 0.45. It is obviously unscientific
to say that the relation between PS and GMA depends on what specific scales happen to
be used in a particular study.

Table 1 is produced by applying Eq. (1)Ðthe attenuation formulaÐto a constant
value of rxt yt

, using different combinations of rx x and ry y. Applying Eq. (3)Ðthe
disattenuation formulaÐto Table 1 shows that all values of rxt yt

are 0.50.
Table 1 shows 21 different values assumed by rx y. Actually, if the reliability of each

measure varies between 0.40 and 0.90 in steps of 0.01, then there are 1275 different
expected values of rx y. Some of these values will be identical, but most will be different.
Thus, Table 1 actually understates the problem.

This example (and Table 1) illustrates the simple bivariate case. In the bivariate
case, the effect of measurement error is always in the same direction: it reduces the
size of the observed correlation; i.e., it produces a downward bias. But, in the
multivariate case, in which more than one independent variable is measured, the biases
created by measurement error can be in either direction. Path coefficients or regression
weights can be biased upward or downwardÐand there is no way to tell in advance
what the direction of bias will be. This means that it is even more important to correct
for these biases.

For example, Schmidt, Hunter, and Caplan (1981) found a positive bias in several
regression weights and a negative bias in another. These researchers asked the following
question: Do specific aptitudes, such as verbal ability, spatial ability, and quantitative

Table 1. Average Value of rx y as a Function of rx x and ry y When the Actual Correlation between
Constructs (rxt yt

) is 0.50

Reliability of
Reliability of Measure x

Measure y 0.40 0.50 0.60 0.70 0.80 0.90

0.40 0.20
0.50 0.22 0.25
0.60 0.25 0.27 0.30
0.70 0.27 0.30 0.32 0.35
0.80 0.28 0.32 0.35 0.37 0.40
0.90 0.30 0.34 0.37 0.40 0.42 0.45
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ability, add to the prediction of job performance over and above the prediction produced
by general mental ability (GMA)? If these specific aptitudes get positive standardized
regression weights in a multiple regression equation that includes GMA, then the answer is
yes. At the observed score level, this was in fact the case, and it appeared that specific
aptitudes made a contribution over and above that of GMA. However, they found that
these positive regression weights were produced solely by positive bias caused by
measurement error. When all zero order correlations were corrected for measurement
error [using Eq. (3)] before running the regression, the regression weights on the specific
aptitudes were all zero, indicating that at the construct (ability) level, these specific
abilities made no contribution over and above that of GMA. In this case, measurement
error created a downward bias in the regression weight on GMA and an upward bias in the
weights for the specific aptitudes. Failure to correct for measurement error would have led
to substantively erroneous conclusion about the causal operation of abilities in the real
world of work.

The effect of measurement error on heritabilities is especially large, and failure to
correct for measurement error can substantially distort conclusions (Schmidt & Hunter,
1996, Scenario 8). Suppose, for example, that a researcher, using a standard measure of
three-dimensional mental rotation (3DR), reports an observed heritability of 0.60 and
concludes that 60% of the variance of this ability is due to genetic effects and 40% to
environmental effects. This conclusion is erroneous. The 0.60 is not the heritability of the
trait or construct of 3DR, it is the heritability of scores on that particular measure of 3DR.
There are many other possible such measures of 3DR, each with its own reliability; each
such measure will produce a different heritability estimate. Obviously, this is a recipe for a

Figure 1. Causal impact of genes (G) and environment (E) on the ability 3DR when h2 = 0.86 and
e2 = 0.14.
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confused research literature. Because the 0.60 is the heritability of the measure, the 40% of
variance attributed to `̀ environmental effects'' includes measurement error varianceÐ
hardly what is meant theoretically by environmental effects on ability!

Suppose in our example the reliability of the 3DR scale is 0.70. Then, the unbiased
estimate of the heritability of this trait is 0.60/0.70 = 0.86. Hence, the heritability of the
trait is 43% larger than the heritability of the measure. Alternatively, failure to correct the
observed heritability for measurement error results in a 30% underestimation of herit-
ability. It also results in a 285% overestimation of the variance due to environmental
effects (0.40/0.14 = 2.85)! These are not minor errors.

Notice that in correcting the observed heritability for measurement error, we divided
by rx x, not by �rx x�1 2=

. This is because the heritability is an estimate of a squared

correlation: the squared correlation between genetic differences and the scores, in the case
of observed heritabilities, and the squared correlation between genetic differences and the
actual trait, in the case of corrected heritabilities. This is the reason that heritabilities are
represented by the symbol h2 and are given percent-variance accounted-for interpretations.
In this sense, the measurement error in the tests creates a larger downward bias in
heritability estimates than in correlations.

Actually, heritabilities are less informative than their square roots. The square root of
the corrected heritability is the correlation between genotype and the trait. In our example,
�0:86�1=2 � 0:92. Hence, genetic differences between individuals correlate 0.92 with true
scores (i.e., with the trait 3DR). If genetic and environmental effects are uncorrelated, this
0.92 is the standardized path coefficient from genotype (G) to the trait 3DR, as shown in
Fig. 1. In addition, the square root of the environmental variance proportion is the

Figure 2. Causal impact of genes (G) and environment (E) on general mental ability (GMA)
when h2 = 0.80 and e2 = 0.20.
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standardized path coefficient from environment (E) to 3DR. These path coefficients are
much more scientifically informative and the percent variance figures, because path
coefficients reveal the actual casual leverage of each independent variable. For example,
we can see that each 1 SD increase in G produces a 0.92 SD increase in 3DR, while each
SD increase in E produces a 0.37 SD increase in 3DR. Hence, it is apparent that the causal
impact of G is 2.59 times greater than that of E (0.92/0.37 = 2.59). By contrast, the
variance interpretation gives the false impression that G is over six times as important as E
(0.86/0.14 = 6.14).

Consider this same question with respect to GMA. Based on studies comparing
identical and fraternal twins, the trait level broad heritability of GMA (i.e., the broad
heritability corrected for measurement error) is approximately 0.80. Hence, 80% of the
variance in the actual trait of GMA is due to genetic differences between individuals and
20% is due to differences in environments. This presentation creates the strong and
definite impression that genes are five times as important in the determination of general
intelligence as environmental differences (0.80/0.20 = 5). But, the fact that genetic
differences account for five times as much variance as environmental differences does
not mean genes are five times as important in the determination of GMA. As shown in Fig.
2, the ratio of their path coefficients, which index the true causal leverage each has on
GMA, is 0.89/0.45 = 1.98 � 2. Hence, genes are only twice as important causally as
environmentsÐnot five times as important.

Objections to Correcting for Measurement Error

Objections to the corrections that eliminate the biases induced by measurement error are
difficult to address because no statement of them can be found in the scientific literature.
They can be found neither in the methodological literature (which in fact calls for such
corrections) nor the substantive research literature. In this sense, these objections are part
of the `̀ underground'' or informal culture of psychological research. They are the kind of
thing one hears orally and informally but never sees in written form. Hence, it is not
surprising that some of these objections seem to be emotional and unthinking rather than
rationally based. An example is the contention that disattenuation corrections produce
`̀ hydrolytic correlations''Ðcorrelations that have been artificially `̀ jacked up.'' This
statement is a rejection of the basic measurement model as explicated in Eqs. (1)±(3).
Another objection is that corrected correlations are `̀ hypothetical correlations,'' that they
are `̀ not real data.'' It would seem apparent that data with biases removed are at least as
real as biased data. Again, this objection reflects either rejection of basic measurement
principles, or ignorance of them. These objections also reflect an inability to think
theoretically; that is, to think in terms of scientific constructs, the underlying and
simplifying abstractions that are the essence of scientific theories. If one has no concept
of traits or constructs as theoretical dimensions that underlie data, then one can make no
distinction between observed scores and construct scores (true scores). The failure to make
this distinction leads to a sort of reification of initially observed data and a failure to
understand the ways in which data are deceptive when accepted naively at face value
(Schmidt, 1992, p. 1179).

However, certain other objections are not nearly so mindless. One such objection is
that measurement error corrections should not be used because they can result in
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correlations greater than 1.00. And in fact, r̂xtyt
> 1:00 do sometimes appear, for two

reasons: sampling error and use of an inappropriate reliability coefficient.
Consider sampling error. The discussion in this paper has focused on measurement

error; in our examples, we have minimized sampling errors by assuming large sample sizes
(e.g., N = 3000). But, in most real data, there is substantial sampling error as well as
measurement error. Researchers sometimes find it difficult to think about sampling error
and measurement error simultaneously, but it is necessary to do so. [One of the strengths of
meta-analysis is that it corrects simultaneously for sampling error and measurement error
(Hunter & Schmidt, 1990a; Schmidt, 1992). This is also one of the things that make it
challenging for students to learn.]

Suppose that two constructs correlate 1.00 at the true score level (i.e.,
r̂xtyt
� 1:00). That is, suppose they really are the same construct under two different

labels. For example, suppose that `̀ job involvement'' is really just job satisfaction
under a different name. Then the expected (i.e., average) corrected correlation will be
1.00. But, due to sampling error, about half the corrected values will be less than
1.00. By the same token, half will be larger than 1.00. This is not cause for upset
and alarm; it is simple sampling error, and is expected and predicted (Schmidt &
Hunter, 1996, Scenario 25). In the introduction to this paper, we made a distinction
between Eq. (2) and Eq. (3), the difference being that Eq. (3) allows for sampling
error. We noted that the correction for attenuation, properly applied, is perfectly
accurate in the population (i.e., when N = 1). When N is less than infinite, corrected
correlations, like uncorrected correlations, are estimates and contain sampling error.
Sampling error can cause computed estimates to be larger than 1.00. Hence, the basic
measurement model anticipates this objection.

When sample sizes are small (the usual case in most research), sampling errors are
much larger than most researchers realize. Observed correlations can even be negative
when their population values are positive (and vice versa). Examples illustrating this
point can be found in Hunter and Schmidt (1990a, Chaps. 1 and 2), Schmidt (1992), and
Schmidt, Ocasio, Hillery, and Hunter (1985). At every sample size, researchers under-
estimate the size of sampling errors.

If the actual true-score correlation is a large value but less than 1.00 (say, 0.85),
sampling error will cause some of the corrected values to be above 1.00, but the percentage
will be less than 50%. Since the correlation cannot by definition exceed 1.00 (in absolute
value), such estimates are simply set to 1.00. A similar thing occurs in estimating the size
of components of variance in analysis of variance (ANOVA) when variances are estimated
by subtraction. Sampling error sometimes causes these estimates to be negative, and a
variance cannot be negative. By accepted convention, such estimates are just set to zero
(Hunter & Schmidt, 1990a, pp. 412±414).

What would be an example of r̂xtyt
> 1:00 because of use of the wrong reliability

coefficient? Suppose split half reliabilities are computed. For example, for each scale the
odd±even split half correlation is computed. This correlation is the reliability of a test half
as long as the test in question, and so this correlation must be corrected upward using the
Spearman±Brown formula. But, suppose the researcher neglects to do this. The reliability
estimates are then too small, resulting in overcorrection when Eq. (3) is applied. If the
underlying rxtyt

is fairly large, this error can result in r̂xtyt
> 1:00. Another example of this

error is given in Schmidt and Hunter (1996, Scenario 11).
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The above is an example of an erroneous application of the correction for
measurement error. Errors of this sort are sometimes referred to as `̀ abuses'' of such
corrections. Some argue that corrections for measurement error should not be made
because they are `̀ subject to abuse'' or `̀ subject to misuse''; i.e., because errors can be
made in applying such corrections. (Typically, only errors of application that result in
overestimates of construct level correlations are referred to as `̀ abuses'' or `̀ misuses.''
Errors of application that result in underestimates of construct level correlations seem to
trigger no alarms.)

What about this objection? Over the years, this objection has been brought against
virtually every important methodology used in psychological research. It has been
argued that factor analysis has been `̀ misused'' and therefore should not be used in
research. Some have said that many users make errors in conducting meta-analyses, and
so meta-analysis should not be used. More recently, some have maintained that the
literature contains many defective applications of SEM, and that therefore the journals
should not publish SEM-based studies. In fact, there is no method that has not been
misused in some study. Thus, this line of reasoning leads to the conclusion that no
methods of data analysis and interpretation can be used in psychological research!
Obviously, any research tool can be misused. But, that is hardly a legitimate reason for
banning its use!

Another point is that this objection actually advocates a misuse (or abuse) of
measurement error corrections. Those who endorse this objection conclude that
measurement error corrections should not be made. But, this is in itself a misuse,
since omission of such corrections results in biased estimates of scientific parameters.
Surely any use or omission that results in major biases in data and conclusions is
a misuse.

Another objection holds that corrections for measurement error should not be made
because they reduce the precision of the correlation estimates. That is, the corrections
increase the amount of sampling error and increase the width of the confidence intervals.
Wider confidence intervals mean greater uncertainty and this is undesirable. What about
this objection?

It is certainly true that corrections for unreliability increase sampling error. There is
more sampling error in r̂xtyt

than in r̂x y. It is also true that the corrections increase the width
of the confidence intervals. The confidence interval around r̂xtyt

is wider than the
confidence interval around r̂x y. In fact, it is wider by precisely the factor of correction.
For example, if the correction increases the estimated correlation by 30%, the confidence
interval width will also be increased by 30%. So, is this objection correct? No, because it
ignores systematic error. When correction is made for measurement error, nonsystematic
errorÐsampling errorÐis increased; but it is also true that systematic error is eliminated.
The systematic error is the downward bias caused by measurement error. This systematic
error cannot be eliminated without corrections for measurement error. In science,
systematic error is more important than nonsystematic errorÐbecause nonsystematic
(random) error can be averaged out. In fact, this is precisely what meta-analysis does:
After correcting for systematic error, it averages across corrected rs (r̂xtyt

) to average out
random sampling error (Hunter & Schmidt, 1990a; Schmidt, 1992). Systematic error, on
the other hand, cannot be averaged out. It can be removed only through the appropriate
systematic correction.
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A final objection goes something like this: `̀ Instead of relying on corrections for
measurement error, we should be putting more effort into developing reliable measures.''
The assumption underlying this objection is that the use of reliable measures eliminates the
need for corrections. This assumption is a variation on the `̀ magic number belief''
(Schmidt & Hunter, 1996, Scenario 2). This belief holds that if reliability is above some
magic numberÐusually 0.70Ðthen it is `̀ adequate,'' and so there is no need to correct
for measurement error. However, the bias introduced into estimates of correlations
between constructs does not magically disappear when reliability reaches a particular
level. In fact, when reliability is 0.70, the bias factor is �0:70�1=2 � 0:84; that is, the
observed correlation will average 16% below its actual value. And that is the effect of
measurement error in only one of the two measures. If both measures have reliabilities of
0.70, the bias factor is �0:70�0:70��1=2 � 0:70. That is, the observed correlation is on
average 30% below its actual value, a large bias. (One example of this occurs in the
estimation of heritabilities, discussed earlier.)

It is true that larger reliabilities produce smaller downward biases than do smaller
reliabilities. But, some bias continues to exist unless and until reliability reaches 1.00,
which never happens. Thus, there is always a need to eliminate the downward biases
induced by measurement error.

Another response to this objection is this: What about all the studies in the literature
that fell below your magic acceptable reliability level? Should they just be discarded? If
we eliminate the bias in these correlations by correcting for measurement error, we can
include these studies in meta-analyses, making use of the information they contain. Hence
from this point of view also the corrections are critical to the development of cumulative
knowledge (Hunter & Schmidt, 1990a).

The Substantive Meaning of Measurement Error

In psychological research, all sorts of entirely different things are referred to by the
ambiguous term `̀ error variance''; things as different as individual differences variance,
sampling variance, coding errors, and many other things, with no substantive definition
provided of the type of `̀ error'' being referred to. The same thing often occurs in treatments
of measurement error: measurement error is not defined substantively. That is, the actual
psychological processes that produce measurement error are not described. As a result, one
is left with the impression that measurement error springs from hidden and unknown
sources and its nature is mysterious. It is our belief that this impression contributes to the
objections discussed above to making corrections for measurement error. That is, research-
ers who have no idea what measurement error substantively is have difficulty accepting that
they should correct for it. In fact, they may think of measurement error as hypothetical; that
is, they may feel that the existence of measurement error is not an incontrovertible fact but
merely an hypothesisÐan hypothesis that may or may not be correct.

The processes that produce measurement error are not mysterious. Measurement
error is produced by real psychological processes that can be studied and understood
(Feldt & Brennan, 1989). There are three major substantive error processes that must be
considered in all psychological measurement: random response error, transient error, and
specific factor error. In addition, for some kinds of measurement, error due to disagree-
ment between scorer must also be considered.
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Random Response Errors of Measurement

Random response error occurs within occasions; it is caused by variations in attention,
mental efficiency, momentary distractions, etc. Research in cognitive psychology and
human information processing has shown that the human central nervous system contains
considerable noise at any given moment. This `̀ neural noise'' can, for example, cause a
person to answer two semantically identical questions differentlyÐbecause of misreading
a single word, because of a stray worry that popped up, etc.

Random response error is controlled (reduced) by averaging (or summing) across
items within occasions. Other things equal, the larger the number of items, the greater the
extent to which random response error is averaged out in the final score (which, after all, is
essentially, the average across all the items).

Random response error has been found to be important in all areas of measurement
studied, and it is important in the measurement of human abilities.

Transient Errors of Measurement

While random response error occurs across moments on a single occasion, transient error
occurs across occasions. Transient error is produced by a cause that affects all
measurements taken at the same time but which varies randomly from one time to
the next. Transient errors are caused by variations in mood, feeling, mental efficiency, or
general mental state across occasions. For example, any given day is characterized for
each person by a certain mood, level of emotion, level of mental clarity, etc. These
psychological factors are transient. Someone having an anxious day or a mentally
sluggish day today will probably not be in that mental state tomorrow or the next day.
Again, these processes are not mysterious; they are real psychological processes that we
are all familiar with. Most everyone has experienced a mentally sluggish day, an irritable
day, a depressed day, an elated day, or a hangover. Transient error processes, unlike
random response error processes, do not vary across moments within occasions. They
vary across occasions.

The amount of transient error is assessed by correlating performance or responses
across occasions. It is not possible to estimate or control for transient error when a measure
is administered on only one occasion.

Research suggests that transient error may not be a major problem in the measure-
ment of human abilities (Schmidt & Hunter, 1996, Scenarios 14 and 17). However, this
research base is sketchy and more and better data are needed. We currently have such
research underway.

Specific Errors of Measurement

Specific error arises from the subject's idiosyncratic response to some aspect of the
measurement situation. For example, on a questionnaire item, different subjects may give
different meanings to the same word. In an assessment of fear reactions toward animals, a
subject may have had some odd experience that causes him to be less afraid of snakes than
would be expected on the basis of his general fear reactions toward animals. Or, when job
tasks are sampled to set up work stations in a work sample measure, a worker may by
chance get the tasks that he is particularly poor at performing. If different measurements
taken vary these irrelevant aspects of the situation, then the errors due to these random
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causal factors will be independent of one another. That is, the specific errors will then be
independently sampled across measurements and will tend to cancel each other out.
However, if the same measurement scale is administered at another time, the idiosyncratic
responses will not change and the specific error of measurement will be repeated. That is,
for specific error, the random elements of the response are independently sampled across
situations (e.g., items or problems) but not across time. Thus specific errors tend to cancel
each other out across different items, problems, or questions; but for any one item,
problem, or question, they replicate themselves across occasions.

These specific factors are not random response error because they can be stable across
time. But, they are not part of the trait or construct being measuredÐbecause they do not
correlate at all with any other item measuring that trait. So, they function as measurement
error, and must be so treated.

It may appear that specific factors are not psychological in the sense that random
response error and transient error are. That is, it may appear that specific factors are
properties of items (or scales) per se and are not based on psychological processes.
However, specific factor error is produced by the interaction of people with items (or
scales), and these interactions are psychological processes. Consider the vocabulary item
`̀ capon.'' A capon is a castrated rooster. The knowledge that capon refers to poultry may
be indicative of one's general vocabulary, while the knowledge that a capon is a castrated
rooster may represent a specific error reflecting the extent to which the respondent has an
agricultural background. This specific error is irrelevant to verbal ability but it does reflect
a real psychological or experiential process.

Within a test or measuring instrument, specific error is controlled by averaging (or
summing) across items; this process averages the influence of specific item errors out
of the total score. Specific factors can be averaged out because they correlate zero with
each other.

Just as an individual item within a measure may have a specific error factor, so
different scales may contain specific error factors. For example, most major verbal ability
tests to at least some extent measure specific factors unique to that scale. From a broader
theoretical perspective, we may consider the trait of verbal ability to be defined by what is
measured in common by different verbal ability tests. Therefore, the specific factor in each
test is specific measurement error. Across such verbal ability scales, then, specific error of
measurement is controlled by averaging (or summing) across scales. This point is
developed further below.

Specific factor error of measurement is important in the measurement of human abilities
and in the personality domain. However, additional research is needed to more accurately
calibrate the size of the specific error variance component in these and other domains.

Measurement Error Due to Scorer Disagreement

Scorer error is disagreement between scorers or scorings of the same instrument. For
example, two different trained evaluators scoring the same set of essay examinations might
correlate 0.50. Two judges scoring a projective test (for example, the Thematic Appercep-
tion Test; TAT) for achievement motivation may correlate 0.70 with each other. Two
different judges observing and rating people as they perform a hands-on work sample test
might correlate 0.85. Scorer error can be substantial when scoring involves subjective
judgment, as in the case of essay examinations or the TAT.
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Scorer errors of measurement in the above examples are generated by psychological
processes. In the case of essay examinations and the TAT, the task of the scorers is to apply
complex (and perhaps somewhat ambiguous) rules to examinee responses to arrive at final
scores. Research on human information processing indicates that tasks of this sort are
cognitively difficult for people, resulting in considerable disagreement between indivi-
duals. (In fact, there is considerable disagreement within the same individual when the
same person performs the same task on two different occasions.) So, once again,
measurement errors are produced by real psychological processesÐprocesses that can
be identified, studied, and understood.

A key point about scorer error is that controlling for it does not control for random
response error, transient error, or specific factor error in the responses of the examinees.
For example, consider the scorer agreement reliability of 0.70 for the TAT, above. Thirty
percent of the variance is due to scorer error alone. But, the remaining 70% of the variance
is not true score variance. SomeÐperhaps muchÐof the remaining 70% of the variance
is due to random response error on the part of the examinees, transient error on the part of
the examinees, and specific factor error (specific to that particular form of the TAT). To
control for these other kinds of measurement error, in addition to scorer error, one must
give parallel forms of the TAT to the same people on different days. The correlation
between different scorers of parallel forms administered on different days detects and
assesses all four types of measurement error (Schmidt & Hunter, 1996, Scenario 12). This
correlation might be very smallÐ0.30 or less, illustrating the fact that scorer agreement
reliability alone greatly overestimates actual reliability. Correcting for measurement error
using scorer agreement reliabilities almost always results in gross undercorrections and
therefore biased estimates of trait or construct level correlations.

Because objectively scored tests are usually used, scorer errors of measurement are
often not important in the measurement of human abilities. However, scorer measure-
ment error is important in the measurement of writing ability and other constructs using
essay tests.

Calibrating Error Processes in Reliability Coefficients

For purposes of the following discussion, we will assume objective and accurate scoring
procedures, and therefore will ignore scorer reliability. Different reliability coefficients
calibrate or assess the magnitude of different measurement error processes. The extent or
magnitude of an error process is assessed by a reliability estimate only when that error
process reduces the size of the reliability estimate; the amount of this reduction is the
measure of the size of the impact of the error process. Only one type of reliability
coefficient, the coefficient of equivalence and stability (CES; Cronbach, 1947), assesses
the extent of all three types of measurement error. The CES is estimated by correlating two
parallel forms of the measure administered on two different occasions. The use of two
parallel forms assesses scaleÐspecific measurement error factors, and the use of two
occasions assesses for transient error. The assessment of transient error automatically
assesses the extent of random response error (as does use of multiple items). Because of
this, the CES is the ideal reliability estimate. Its magnitude is appropriately reduced by all
three sources of measurement error. The quantity of one minus the CES is the proportion
of total variance that is due to all three measurement error sources together. The CES is the
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optimal estimate of reliability to use in making corrections for biases induced by
measurement error. Based on the logic of measurement theory, the other types of reliability
coefficients discussed below correct only partially for measurement error.

If the same form of a measure is correlated across two different occasions, the result is
an estimate of the coefficient of stability (CS; Cronbach, 1947). The CS assesses the extent
of random response error and transient error but does not assess specific factor error.
Hence, use of the CS in corrections for measurement error leads to undercorrection; that is,
some but not all of the downward bias induced by measurement error is eliminated.

There are many ways in which the reliability of a test can be estimated from
administration at one point in time. In the abilities domain, the most common method
used is the familiar Kuder±Richardson-20 formula (KR-20). If the items are scored on a
continuum rather than dichotomously, this becomes Cronbach's Alpha (Cronbach, 1951).
Another method is odd±even split half corrected using the Spearman±Brown formula.
Cronbach (1947) refers to all such estimates as coefficients of equivalence (CE), because
they estimate the correlation between that scale and a parallel form of that scale
administered at the same time.

The CE assesses random response error and specific factor error, but not transient
error. Since the scale is administered on only one occasion, there is no possibility of
assessing the extent of transient error. Hence, use of CE in correcting for measurement
error leads to incomplete corrections (undercorrection) if the measure in question is
affected by transient errors.

At this point, we need to add a note about specific factor errors of measurement. In the
above discussion, specific factor error refers to factors specific to parallel forms of the
measure, as parallel forms are defined in classical measurement theory. However, as we
noted earlier in discussing the construct of verbal ability, it is often scientifically desirable
in developing general explanatory theory to broaden the concept of specific factor error
beyond the limits of parallel forms as defined in classical measurement theory. For
example, the literature contains numerous measures of verbal ability that are not parallel
forms of each other as defined in classical measurement theory (Lord & Novick, 1968).
These measures were constructed by different researchers at different times, with no
attempt having been made to make them parallel in the classical sense. We may want to
define the theoretical construct of verbal ability as the factor that all such tests have in
common. Suppose we use five such scales simultaneously to measure verbal ability, with
the total or average score across these scales being the final observed score. (For
completeness, assume also each scale is administered on a different occasion, thus
capturing the effects of any transient error.)

What is the appropriate reliability of this scale? Each scale should be treated as an
item in a five item test, and reliability should be computed using Cronbach's Alpha. This
ensures that factors specific to each scale are assigned to measurement error. The resulting
reliability is the generalizability coefficient (Cronbach, Gleser, Nanda, & Rajaratnam,
1972). This coefficient will usually be slightly smaller than would have been the case if all
five scales have been constructed to be classical parallel forms, but the resulting research
findings will be widely generalizable. These findings will generalize to the population of
all such non-parallel measures of verbal ability. The theory constructed in this manner will
hence have more scientific generality and in that important sense will be a better theory. At
this point, we have stepped beyond the bounds of classical measurement theory into
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generalizability theory. In situations of this sortÐwhich arise with some frequencyÐ
generalizability theory makes contributions beyond what is strictly possible within
classical measurement theory.

The Role of Substantive Knowledge in Measurement
Error Corrections

In the discussion above, we made a point of the fact that the psychological processes
producing measurement errors are not mysterious and unknowable but can be examined
and understood. A related fact is that knowledge of how these processes function
differently in different research domains can be obtained through research, and this
knowledge can be applied in making the needed corrections. For example, in the domains
of ability and aptitudes, research on measurement error suggests that transient error, at
least for adults, is smallÐperhaps small enough to be ignored in many cases. This is
shown by the fact that CES is typically only slightly smaller than the coefficient of
equivalence (CE). This means that estimates of the CE, such as KR-20, can be used in lieu
of CES estimates to correct for measurement error with only marginal loss of accuracy.

Research on measurement error also suggests that specific factors are not large in the
abilities domain. This is seen in the fact that test±retest reliabilities (CS estimates) are often
similar to CES estimates computed over the same time interval (Schmidt & Hunter, 1996,
Scenario 13). Specific factors as defined by generalizability theory are somewhat larger,
however. Specific factor error in the abilities domain may be larger than transient error, and
it is advisable to assess and quantify specific factor measurement error whenever possible.

In ratings of job performance and other performances, factors specific to particular
raters account for approximately 30% of the variance of the ratings. This large idiosyn-
cratic specific factor can be removed only by averaging ratings across several raters
(Rothstein, 1990; Schmidt & Hunter, 1996, Scenario 10; Viswesvaran, Ones, & Schmidt,
1996). On the other hand, transient error appears to be quite small in this area.

Different substantive research domains, with their different kinds of measuring scales,
are plagued in differing degrees by the different error-generation processes. All of these
research areas should devote more effort to calibrating and understanding the size and
nature of these error processes in their respective domains. In any substantive research
area, understanding the error processes that operate in measurement is part of under-
standing the actual subject matter. Understanding error processes contributes to be
understanding of the substantive phenomenon being investigated.

In this paper, we have presented the basic principles and general procedures for
correcting the biases induced in data by measurement error. However, in specific research
situations, additional questions of a more detailed nature typically arise. In fact, each
study is unique, and it is often not clear to researchers how the general principles
presented in this paper should be applied in a particular case. To address this need, we
(Schmidt & Hunter, 1996) have examined in some detail a series of 26 representative,
concrete research scenarios that we have encountered in our work as researchers, advisors
to researchers, or reviewers of research. These real world `̀ case studies'' provide
additional specific and detailed guidance in making corrections for measurement error.
Among the 26 scenarios most researchers will be able to find at least one that is similar or
identical to their situation.
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Conclusion

The accurate and meaningful testing of hypotheses and theories is not possible without
corrections for the distortions induced into data by unavoidable measurement errors.
Failure to make such corrections retards the development of cumulative knowledge in
research. Although there are objections to such corrections, these objections are not found
in either the methodological or substantive research literatures and are more in the nature
of emotionally based folk beliefs about research that are part of the informal or under-
ground culture. All such objections can be shown to be unfounded. Although many
substantive researchers would apparently and understandably rather not be bothered by the
methodological complexities involved in removing biases created by measurement error,
there is no way around the need to address this problem. Failure to do so has far too often
in the past retarded the advance of cumulative research. It is time to remove these
unnecessary hobbles from psychological research.
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