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IS THE SERIAL-POSITION CURVE INVARIANT? 

BY ARTHUR R. JENSEN 
University of California 

The evidence presented by McCrary & Hunter and later researchers, which suggests that 
the form of the serial-position curve is constant throughout variations in a large number of 
factors that affect rate of learning, has been found inadequate to answer the question of the 
curve’s invariance. Differences in percentage of total errors in serial learning data obtained 
under different experimental conditions would lead to the conclusion that the serial-position 
curve is not invariant under all the conditions for which invariance has been claimed. 

Serial learning data may be analysed into three components-dificulty (number of trials to 
criterion), eflciency (percentage of errors), and relative diflculty of learning each position, 
i.e. the so-called serial-position effect. The main methodological inadequacy in studies of the 
serial-position effect is that the serial-position curve has always been confounded with either 
one or two of the other components, making it impossible properly to compare various serial 
curves based on data which differ either in diffaulty or in eficiency. Plotting the serial curves 
simply in terms of the percentage of total errors at each position does not solve the problem; 
this method tends to eliminate the diflculty component but still leaves the curves confounded 
with the eflciency component. 

An index of Relative Difficulty was proposed aa a method of representing the serial-position 
effect. It has the advantages of not being confounded with the other components and of being 
the same shape whether it is based on errom or on correct responses. It results in what might 
be called a ‘pure’ serial-position curve and permits the direct comparison of serial-position 
curves obtained under various conditions. The Index is recommended as the only satis- 
factory method for comparing different serial-position curves. It is especially important in 
comparing serial-position effects in sets of data having different total error percentages. It is 
urged that future research on the serial-position effect adopt the proposed Index. 

I. INTRODUCTION 
In  scientific endeavour the discovery of a constant or an invariant function is 

always cause for joy. This must be especially true in psychology, where invariance 
is the rarest of findings. It is worthy of note, therefore, that in recent years the bow- 
shaped serial-position curve has seemed to be on its way to attaining the status of an 
invariant function. This interesting development deserves further looking into. 

Since at least as far back as 1875, when Ebbinghaus began memorizing lists of 
nonsense syllables, it  has been noted that the beginning and end of the serial list are 
learned most easily and the middle items are learned with greatest difficulty. If a 
list of items is learned to mastery and the number of errors made in the course of 
learning is plotted for each item in the series according to its position, the usual 
serial-position curve is obtained. It is almost always a skewed, bowed curve, with 
the maximum errors just past the middle of the list and with the last half of the list 
having more errors than the first half. This general phenomenon apparently emerges 
in serial rote-learning regardless of the nature of the items, which may be meaningful 
words, letters, nonsense syllables, proper names, objects, pictures, figures, etc. 

A number of theories have been proposed to account for this so-called ‘serial- 
positioneffect’ (see McGeoch & Irion, 1952, pp. 125-34). According to various theories, 
the shape of the serial-position curve, particularly the degree of bowing, should be 
a function of such variables as distribution of practice, rate of presentation of the 
items, inter-item interval, degree of familiarity with the items, degree of similarity 
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among the items, and individual differences in learning ability. And, indeed, 
experiments on serial learning have shown that when the serial-position curve is 
plotted for groups of subjects in terms of the mean number of errors made at each 
serial position in the course of learning, the serial-position curve does appear to be a 
function of the above-mentioned variables. 

Then McCrary & Hunter (1953) made an interesting discovery which seems to 
have become an important part of our general knowledge concerning serial learning 
(e.g. Woodworth & Schlosberg, 1954., p. 713). In  essence, McCrary & Hunter found 
that when the serial-position curve is plotted, not in terms of the mean number of 
errors made at each position, but in terms of the percentage of the total errors that 
occurs at each position, none of the variables mentioned above had any effect on the 
shape of the serial-position curve. The McCrary & Hunter method of plotting the 
serial curve in terms of the percentage of total errors at each position, which thereby 
equates the area under all curves, rieems reasonable if our interest is in the shape 
of the serial curve rather than in its a,bsolute position on the ordinate. And if theories 
of serial learning make predictions about the relative difficulty of learning the items 
at different positions, it would seem Ieasonable that the errors at each position should 
be presented relative to the total number of errors that occurred. The percentage 
method of McCrary & Hunter accomplished this, and therefore should be more 
suitable than the method of mean cmors for testing certain theoretical predictions 
concerning the s h p e  of the serial curve. For example, Hull’s theory of serial rote- 
learning (Hull et al. 1940) predicts that massed practice should produce a more 
bowed serial-position curve than clistributed practice, because of a presumably 
greater accumulation of inhibitory potential in the middle of the list under massed 
practice. Hovland (1938) plotted serial-position curves for nonsense syllable learning 
under massed and distributed practice and under 2 and 4 sec. rates of syllable pre- 
sentation. The curves, plotted as ml4an errors at each position, strikingly bear out 
Hull’s prediction. But when McCrary & Hunter (1953) plotted these same curves on a 
percentage basis, the curves becaine practically identical. McCrary & Hunter 
showed that the manipulation of other independent variables also produced curves 
which differ greatly in shape when plotted as mean errors a t  each position but which 
assume almost identical shapes when plotted as percentage of errors. Braun & 
Heymann (1958) went further into this matter by performing an experiment which 
showed that the error curves (plotted on a percentage basis) for high- and low- 
meaningful lists of nonsense syllablerr did not differ. Nor did variations in inter-item 
interval or inter-trial interval have any effect on the shape of the curve in their 
study. Thus it would appear from these findings that we have possibly come upon 
our first ‘constant’ or ‘invariant function’ in the psychology of learning. 

Indeed, such is the interpretation put upon this finding by some writers. On the 
basis of these data, for example, Murdock suggested that ‘ . . .it would almost seem 
that the shape of the serial-position curve has nothing whatsoever to do with learn- 
ing’ (1960, p. 24) since it seems to be unaffected by variables that are known to 
affect rate of learning. The invariance of the serial-position curve is essential to Mur- 
dock’s theory explaining the shape of the curve in terms of differences in the relative 
distinctiveness of the items in the serial list. 
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11. A FALLACY 

Actually, from the evidence in the literature, we are unable to determine whether 
or not the serial-position curve is invariant. The analyses of McCrary & Hunter 
(1953) and of Braun & Heymann (1958) are quite inadequate to answer this question. 
It is highly probable, however, from evidence in the Braun & Heymann study, 
that the serial-position curve is not invariant. That the idea of invariance even arose 
is mainly the result of a faulty analysis of what the serial-position curve is actually 
supposed to represent. It has apparently been assumed that there is just one serial- 
position curve for a given set of data, viz. the error curve, plotted either in terms of 
mean errors at each position or in terms of the percentage of total errors at each 
position. But the serial curve can also be expressed in terms of the number (or per- 
centage) of correct responses at  each position. It is sometimes plotted in this manner 
(e.g. McGeoch & Irion, 1952, p. 116). The important point, however, is that the error 
curve and the correct curve (whether in terms of absolute number or of percentage) 
for the same set of data are not always the same shape It is possible for one curve to 
be much more bowed than the other. We cannot determine from the data in the 
McCrary & Hunter study how ‘ constant ’ the serial-position curves would appear if 
they had been plotted in terms of correct responses rather than in terms of errors. 

Some contrived curves can illustrate the possible fallacy in the McCrary & Hunter 
analysis. Fig. 1 shows two fictitious but typical serial-position curves, A and B, 
plotted in terms of number of errors at each position. Curve B appears much more 
bowed than curve A .  When these two curves are each expressed as the percentage 
of total errors at each position, they become identical, as shown in Fig. 2. This is 
what happened to all the curves in the McCrary & Hunter and the Braun & Heymann 
studies. But now look at the curves for percentage correct in Fig. 2. Plotted on this 
basis the curves are quite different in shape, curve B being much more bowed than 
curve A .  The reason this happens is that curves A and B are each based on a different 
total error percentage. Curve A had 28.75 % errors. Curve B had 57.50 % errors. 

If two or more percentage error curves are of the same shape but are based on 
different percentages or proportions of total errors (i.e. total errors/total responses) 
it is certain that the percentage correct curves are not of the same relative shapes. 
The percentage error curves in the Braun & Heymann study are all practically 
identical, but since they are based on quite different total error percentages, varying 
from 39 to 59 %, it is impossible that their data, when plotted in terms of percentage 
correct at each position, could yield identical curves for the various experimental 
conditions they investigated. Unfortunately the percentage correct curves cannot be 
plotted with any exactitude from the data presented by Braun & Heymann. The 
point can be illustrated, however, by some of the writer’s data on serial learning. 
From a group of sixty college students who had learned a 9-item serial list consisting 
of coloured geometric forms (triangles, squares, and circles coloured red, blue and 
yellow) the average serial-position curve of the ten subjects (group A) with the highest 
error percentage (mean = 57 %) was compared with that of the ten subjects (group B) 
with the lowest error percentage (mean 33%). Fig. 3 shows the percentage error 
curves and the percentage correct curves for the two groups. In  this case it is evident 
that the degree of bowing of the two curves is actually reversed for the two methods 
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Fig. 1 Fig. 2 

Fig. 1. T w o  serial-position curves plotted in terms of number of errors at each position. 
Fig. 2. The same ‘data’ &B in Fig. 1, but here plotted in terms of the percentage of total errors 
at each position and the percentage of total correct at each position. 

Serial position 
Fig. 3. Serial-position curves plotted in terms of percentage of errors and percentage 
correct at each position. Group A has a mean total error of 57 yo, group B of 33 %. 
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of plotting curves. Curve A shows the least difference in shape for the two methods, 
because its total error percentage is closer to 50% than that of group B. Only if 
both groups had the same error percentage would it be proper to compare their serial- 
position curves by only one method, i.e. either in terms of percentage of total errors 
or in terms of percentage of total correct at each position. To be more exact, one must 
insist that all subjects in each group have the same total error percentage if their 
averaged curves are to be properly compared. Without knowledge of these conditions, 
which most likely are not even approximated in the McCrary & Hunter and the Braun 
& Heymann studies, along with the absence of percentage correct curves, there is 
unfortunately no conclusion of any general importance to our understanding of the 
serial-position effect that can be drawn from these studies, other than the general 
fact that the serial-position effect is manifested under a variety of conditions. 

111. A SOLUTION 

Serial rote-learning data may be analysed into three essential components : 
(1) The discul ty  of the learning task, represented by the number of trials or 

stimulus presentations required to learn to a particular criterion. 
(2) The eficiency of learning, represented by the percentage of correct responses 

(or the percentage of errors) during the course of learning to a particular criterion. 
(3) The relative discul ty  of learning the various positions. This actually is the 

serial-position curve. 
Four methods of plotting serial-position curves are to be found in the literature, 

and all are inadequate in that they confound a t  least two or more of the above- 
mentioned components. These methods are applied either to errors or to correct 
responses, but error curves have been the most frequently used. 

The methods are: 
( a )  Mean number of errors at each position. This curve confounds components 1, 

2,  and 3 above. It also has the disadvantage that subjects are weighted unequally in 
the means, so that the average curve for the group will tend more to reflect the shape 
of the curve for slow learners (i.e. those with many errors) than that of the fast 
learners. For testing theoretical predictions concerning the effects of different para- 
meters on the shape of the serial curve, this method is unsatisfactory. However, it  
has been the most often used, especially in early studies. 

(b )  Percentage of errors at each position. This is determined by dividing the number 
of errors for all subjects at each position by the total number of errors for all positions. 
It has the effect of equating all curves for difficulty, i.e. it makes the area under all 
curves the same. But the shape of the curve is still confounded by the eficiency 
component. Furthermore, like curve a, subjects are weighted unequally in the group 
curve, those with a large number of errors determining the shape of the curve more 
than those with few errors. Thus, this method of representing the serial-position 
effect is also unsatisfactory. This was the method used by McCrary & Hunter (1953) 
and by Braun & Heymann (1958). 

(c) Mean percentage of errors at each position. In  this method the percentage of 
errors at each position for each subject is determined (by dividing the subject’s total 
errors into the number of errors at each position) and these percentages are then 
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averaged to produce the group curve. This method is correct in weighting every 
subject equally in the average curve. And like curve B, it  equates all curves on the 
difficulty component, making the areas under all curves the same. But the eficiency 
component is still confounded in the curve, which means that the error curve and 
correct curve will not necessarily have the same shape. 

(d) Mean logarithm of errors at each position. This method has been used by 
Glanzer & Peters (1960). Since the work of McCrary & Hunter suggests that the total 
number of errors has a multiplicative effect on the shape of the serial-position curve, 
the transformation of the errors into log errors converts the multiplicative effect 
into an additive factor. This method has essentially the same effect as methods b and 
c. When it is applied to the McCrary & Hunter mean error curves, for example, it  
makes them all the same shape, as does the percentage method, but the curves still 
have different positions on the ordinate. This logarithmic method, however, is like 
the percentage method in that the efficiency component is still confounded in the 
serial curve and it is possible to obtain differently shaped curves for errors and for 
correct responses on the same set of data. In  other words, in using methods a,  b, c, 
or d a single curve cannot properly represent the serial-position effect. Comparing 
serial curves by analysis of variance, of course, does not overcome these shortcomings 
as long as errors, correct responses, or percentage errors are used in the analysis of 
variance. 

Ideally, each of the three components of serial learning data should be kept 
separate from the others. What we really wish to know when we speak of the serial- 
position effect or the shape of the serial-position curve is the relative digiculty of 
learning each position, unconfounded by the absolute difficulty of the task (as 
measured by total trials) or the eficiency of learning (as measured by the total 
percentage of errors). Method a confounds all three variables, and methods b, c and d 
confound the relative dificulty and the eficiency components. If these components 
covaried perfectly, there would be no problem. But they do not. For example, in a 
group of sixty college students who had learned a 9-item serial list (coloured geometric 
forms) by the anticipation method (3  sec. rate of presentation, 6 sec. inter-trial 
interval) the following intercorrelations were obtained. 

r = 0.92 (P < 0.01) between number of errors and number of trials to attain the 
criterion of one perfect trial. 

r = 0.45 (P < 0.01) between number of errors and percentage of errors. 
r = 0.15 (N.S.) between number of trials and percentage of errors. 
There not only appear to be reliable individual differences in each of the com- 

ponents, but examination of the literature reveals that independent variables which 
affect the difficulty of the task (e.g. distribution of practice, rate of presentation, 
degree of intralist similarity, familiarity and meaningfulness of the items) also affect 
the efficiency of learning, the more difficult tasks having a higher error percentage. 

The. Index of Relative Dificulty 
In  order that the serial-position curve shall represent what we actually mean by 

the serial-position effect, i.e. the relative dificulty of learning each position, uncon- 
founded by the difficulty of the task or the efficiency of learning, an Index of Relative 
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Difficulty is here proposed as the only entirely satisfactory method of representing 
the serial-position effect. It has the advantage that it shows the shape of the serial 
curve independently of difficulty and efficiency. Also, the curves based on errors 
and on correct responses are always exactly the same shape, one being simply the 
upside-down mirror image of the other. This method permits valid direct comparisons 
of serial curves obtained under any conditions. 

So that the serial curve of each subject is equally weighted in the average curve for 
the group, the Index is applied to the data for each subject. The points on the curve 
are then converted to percentages for each subject and are averaged over all sub- 
jects to produce the group curve. 
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Fig. 4. The data of Fig. 1 presented in the form of the Index of Relative Difficulty. 
Fig. 5. The data of Fig. 3 presented in the form of the Index of Relative Difficulty. 

The method of obtaining the Index for a single subject is as follows: 
(a)  Correction factor. This, in effect, equates all curves for efficiency, i.e. total 

error percentage. When the error percentage is 50%, the error curve and correct 
curve are of identical shape. Thus the method need only be applied to the errors. 

x number of responses -number of responses 1 50 
(% errors Correction factor" = 

Number of positions in series 
* The yo errors = 100 x total number of errors/total responses. 
The number of responses = number of trials to criterionxnumber of positions in aeries; in other 

In actual computation the following formula, which is algebraically equivalent to that above, should 
words, the number of opportunities to make a correct response. 

be used : 

where P = number of positions, R = total number of responses, and E = number of errors. 
Correction factor = 1/P(0.50 R- E ) ,  
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(Note that the Correction Factor may be either positive or negative.) 
( b )  Algebraically add the Correction Factor to the number of errors at each position. 

(c )  After performing b, obtain the sum total over all positions. 
(d )  Divide c into each position, b, to convert the quantities into percentages which 

( e )  The group curve is obtained by averaging d for each position over all subjects. 
The curve thus obtained is an Index of Relative Difficulty. Fig. 4 shows the same 

data as in Fig. 1 presented in the form of the Index. If the Index were computed from 
the correct responses rather than from the errors, the curves would simply be the 
upside-down mirror images of those in Fig. 4; in other words, they would contain 
identical information. We see that the two curves ( A  and B)  in Fig. 4 are actually 
of different shapes and are not identical, as fallaciously represented by the percentage 
error curves in Fig. 2. From Fig. 5 we are able to make a valid statement concerning 
the relative degrees of bowing of the two curves, whereas on the basis of the per- 
centage curves in Fig. 3 our statements about the relative degrees of bowing of 
curves A and B depend upon whether we are looking at the 'error ' curves or the 
'correct' curves. But for any one set of data there should be only one curve repre- 
senting the serial-position effect, i.e. the relative difficulty of learning each position. 
This curve is provided by the Index of Relative Difficulty. When serial curves are 
compared by analysis of variance, the analysis should be performed on the Index 
scores. 
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