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Occupational attainment, which represents middle-age cognitive activities, is a known proxy marker of cognitive

reserve for Alzheimer’s disease. Previous genome-wide association studies have identified numerous genetic var-

iants and revealed the genetic architecture of educational attainment, another marker of cognitive reserve.

However, the genetic architecture and heritability for occupational attainment remain elusive.

We performed a large-scale genome-wide association study of occupational attainment with 248847 European

individuals from the UK Biobank using the proportional odds logistic mixed model method. In this analysis, we

defined occupational attainment using the classified job levels formulated in the UK Standard Occupational

Classification system considering the individual professional skill and academic level.

We identified 30 significant loci (P55 � 10–8); 12 were novel variants, not associated with other traits. Among

them, four lead variants were associated with genes expressed in brain tissues by expression quantitative trait loci

mapping from 10 brain regions: rs13002946, rs3741368, rs11654986 and rs1627527. The single nucleotide poly-

morphism-based heritability was estimated to be 8.5% (standard error of the mean = 0.004) and partitioned herit-

ability was enriched in the CNS and brain tissues. Genetic correlation analysis showed shared genetic backgrounds

between occupational attainment and multiple traits, including education, intelligence, leisure activities, life satis-

faction and neuropsychiatric disorders. In two-sample Mendelian randomization analysis, we demonstrated that

high occupation levels were associated with reduced risk for Alzheimer’s disease [odds ratio (OR) = 0.78, 95% confi-

dence interval (CI) = 0.65–0.92 in inverse variance weighted method; OR = 0.73, 95% CI = 0.57–0.92 in the weighted

median method]. This causal relationship between occupational attainment and Alzheimer’s disease was robust

in additional sensitivity analysis that excluded potentially pleiotropic single nucleotide polymorphisms (OR = 0.72,

95% CI = 0.57–0.91 in the inverse variance weighted method; OR = 0.72, 95% CI = 0.53–0.97 in the weighted median

method). Multivariable Mendelian randomization confirmed that occupational attainment had an independent ef-

fect on the risk for Alzheimer’s disease even after taking educational attainment into account (OR = 0.72, 95%

CI = 0.54–0.95 in the inverse variance weighted method; OR = 0.68, 95% CI = 0.48–0.97 in the weighted median

method).

Overall, our analyses provide insights into the genetic architecture of occupational attainment and demonstrate

that occupational attainment is a potential causal protective factor for Alzheimer’s disease as a proxy marker of

cognitive reserve.
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Introduction

Occupational attainment has been found to be associated not only

with physical health, such as cardiovascular or digestive diseases,

but also with mental health. The hypothesis of cognitive reserve

has been suggested to account for the disjunction between the de-

gree of brain pathology and its clinical manifestations of

Alzheimer’s disease.1 According to the hypothesis, the brain ac-

tively attempts to cope with the pathology by pre-existing com-

pensatory mechanisms acquired by life experiences such as

educational and occupational exposures. As a proxy marker of cog-

nitive reserve, occupational attainment is associated with reduced

risk of developing dementia and with slower rates of memory de-

cline in the normal ageing process.1–3 The role of occupational at-

tainment as a cognitive proxy has been demonstrated in multiple

studies including a twin registry study,4 an imaging study5 and a

systemic review.6

Educational attainment is the most well studied proxy marker

for cognitive reserve. High educational attainment levels are

reportedly associated with a reduced risk of dementia incidence in

the general population7,8 Additionally, previous genetic studies

have not only found that the genetic architecture of dementia was

related to educational attainment,9,10 but have also suggested that

education had a causal effect on Alzheimer’s disease, via

Mendelian randomization (MR) analysis.11 Similarly, occupational

attainment was found to be associated with dementia risk and

progression.6,12 Moreover, the heritability of occupational attain-

ment was reportedly comparable to that of educational attainment

observed in a twin study (up to 0.43).13 In addition, occupational at-

tainment represents middle-age cognitive activities and has an in-

dependent role as a cognitive reserve that is in contrast with

educational attainment that reflects early-life cognitive enrich-

ment. However, our current knowledge of the genetic architecture

of occupational attainment is limited.

There have been very few studies regarding the discovery of

genetic loci associated with occupational attainment. Although

some genetic studies have investigated on the relationship be-

tween occupational characteristics and cognitive performance in
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older adults, they did not focus on the genetic architecture of occu-

pational attainment.4,14 A previous twin study demonstrated that

the heritability of the occupational status was moderately high

(43%),13 and such occupational characteristics might lower the de-

mentia risk.4 A recent genetic study in the Estonian population

estimated the single nucleotide polymorphism (SNP) heritability of

occupational status to be 15%.15 However, no previous study has

identified the genetic variants associated with occupational

attainment.

Therefore, we performed a genome-wide association study

(GWAS) to identify genetic variants that could clarify the genetic

architecture for occupational attainment, using the UK Biobank. In

addition, we conducted a two-sample Mendelian randomization

(TSMR) analysis to examine the causal association between occu-

pational attainment and Alzheimer’s disease risk. To the best of

our knowledge, this study is the first GWAS of occupational

attainment.

Materials and methods

UK Biobank

The UK Biobank is a nation-wide prospective study-based data-

base involving 4500 000 individuals between ages of 40–69 years

recruited in 2006–10 in multiple centres throughout the UK. The

UK Biobank has collected electronic medical records, computer-

assisted interview data, touchscreen-based self-reported question-

naire data, physical and functional measures, and biological sam-

ples, including genotype data. The UK Biobank was approved by

the National Research Ethics Committee (REC reference /NW/

0382). All UK Biobank participants provided informed consent. A

detailed description of the study can be found at https://www.

ukbiobank.ac.uk/about-biobank-uk (accessed 8 February 2022).

Occupational attainment measures

Occupational attainment was operationally defined as a job code

based on a hierarchy, starting from the highest level of managers

and senior officials to the lowest level of elementary occupations.

It was derived from the Standard Occupational Classification (SOC)

system, developed by the UK Office of National Statistics.16 The

SOC was developed to classify all occupations in the UK into stand-

ard codes, according to the following four hierarchical structures:

consideration. Thus, we can further infer that the greater the

major code digit, the greater the level of cognitive activity.

Genotyping and quality control

A total of 487 409 UK Biobank samples (v.3, March 2018) were geno-

typed using either the Affymetrix UK BiLEVE Axiom or Affymetrix

UK Biobank Axiom arrays (Santa Clara, CA, USA), which have over

95% coverage and include 4800 000 variants. Imputation was car-

ried out centrally by the UK Biobank from a combined 1000

Genomes Project and UK 10K panel; phasing was performed using

SHAPEIT317 and imputation was carried out using IMPUTE2.18 The

variant-level quality control (QC) exclusion metrics were applied

to imputed data for GWAS as the followings: call rate 595%,

Hardy–Weinberg equilibrium P5 1 � 10–6, and minor allele fre-

quency (MAF) 51 � 10–4. Additionally, we excluded the variants if

MAF values were 50.005 or imputation quality scores (INFO) were

50.4; we considered genotypes with a posterior call probability of

50.90 to be missing. A total of 9 575 249 SNPs met the QC criteria.

The sample-level QC exclusion metrics applied to the imputed

GWAS data were as follows: non-Europeans, samples with mis-

matched sex, putative sex chromosome aneuploidy or no sex in-

formation, and participants who withdrew from the UK Biobank.

Finally, out of 310 527 who had a measure of occupational attain-

ment, 248 847 participants of European ancestry were included in

the analysis.

Genome-wide association analysis

For ordinal categorical phenotypes, genome-wide association ana-

lysis was performed using a proportional odds logistic mixed

model (POLMM).19 POLMM uses a sparse genetic relationship ma-

trix to adjust for relatedness within samples as a random effect,

and uses a saddle point approximation to control inflated type I

error rates due to unbalanced distribution in ordinal categorical

data. The simulations and real data analyses in the original

paper19 have shown that POLMM could reduce type I error rates

and increase the power of GWAS when analysing ordinal traits,

compared to commonly used mixed models; SAIGE20, BOLT-LMM21

and fastGWA.22 Age, sex and 10 principal components of genetic

ancestry were adjusted for association analysis. A genome-wide

significance threshold of P55 � 10–8 was used to identify variants

associated with occupational attainment. Regional association

plots were generated using LocusZoom (http://locuszoom.sph.

umich.edu/locuszoom/, accessed 8 February 2022).23

Identification of significant loci by GWAS and
functional annotation

Independent significant SNPs with P55 � 10–8 and r25 0.2 were

identified from GWAS using FUMA.24 The most significant SNPs

per locus were selected as lead SNPs. The maximum distance for

linkage disequilibrium (LD) blocks to merge into a genomic locus

was 3000 kb. The genetic data of European population in the 1000

Genomes Project v.3 were considered as reference data for LD anal-

yses. ANNOVAR25 implemented in FUMA was used to annotate

SNPs.

Gene mapping and functional annotation

For the 30 independent genomic risk loci identified via LD clump-

ing, evidence of expression quantitative trait loci (eQTL) and func-

tional annotation was examined by using FUMA platform.26

Mapping SNPs to genes significantly associated with eQTL was

analysed by eQTL analysis using the Genotype-Tissue Expression

(GTEx) (https://www.gtexportal.org/home/datasets, accessed 8

1438 | BRAIN 2022: 145; 1436–1448 H. Ko et al.

(i) nine major groups (one-digit); (ii) 25 submajor groups (two-digit);

(iii) 81 minor groups (three-digit); and (iv) 353-unit groups (four-

digit). The SOC was originally designed for statistical purposes, in

which a higher number of digits would represent a greater level of

detail in the job definition. Participants in the UK Biobank cohort

were questioned about their current or most recent job during vis-

its. Of the four hierarchical structures, we defined the structure

composed of nine major groups as the occupational attainment

phenotype for our genome-wide association analysis. Although

the SOC code defined the levels ‘one’ and ‘nine’ as the highest and

lowest skill levels, respectively, occupational attainment was

recoded in our study as numeric ordinal variables ranging from

one to nine with higher values reflecting greater and more com-

plex occupational attainment. The nine major groups in the SOC

are not only a result of categorized job titles but are also a hier-

archical coding system considering skill level and specialization.

Here, the skill level is defined as in terms of the task complexity

and performed duties and skill specialization reflects knowledge

and expertise of specific field and required job competencies. In

this regard, the nine major groups reflect occupational complexity

as well as the required academic skills and training, which sug-

gests that the SOC code takes intellectual enrichment into
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February 2022) database v.8.27 From reported cis-eQTL SNP-gene

pairs in FUMA, we regarded as significant eQTL associations at a

false discovery rate (FDR) 50.05.

Pathway analysis

Biological pathway analysis was performed on results from gene-

based analysis using MAGMA implemented in FUMA. The enriched

gene set was examined based on the Gene Ontology (GO)

Consortium.28

GWAS catalogue lookup

We examined whether the genomic risk loci identified in our gen-

ome-wide association analysis were overlapped in loci reported

associations in published GWAS listed in the NHGRI-EBI catalog29

using FUMA.

SNP-based heritability and cell type-specific
analyses

LD score regression (LDSC) estimated the SNP-based heritability

for occupational attainment using GWAS summary statistics.30

We obtained the pre-computed European LD scores of the 1000

Genomes Project v.3 from GitHub (https://github.com/bulik/ldsc,

accessed 8 February 2022). We included common autosomal var-

iants with a MAF 41% in the EUR population and excluded var-

iants at the MHC region in this evaluation.

We conducted cell type-specific analyses to prioritize pheno-

type-associated tissues or cell types and detected significant tis-

sue-specific enrichment (FDR 5 5%) using gene expression data

with GWAS summary statistics.31 We used several gene sets previ-

ously described by Finucane et al.31 and Cahoy et al.,32 as well as

multi-tissue gene expression (includes both GTEx33 data and

Franke laboratory34,35 data), multi-tissue chromatin (includes both

Roadmap Epigenomics36 and ENCODE37 data) and ImmGen data.38

Genetic correlation

To examine the underlying shared genetic background and obtain

etiological insights, we estimated the level of cross-trait genetic

correlation (rg) between occupational attainment and 89 other phe-

notypes using LDSC.30 We downloaded the European GWAS sum-

mary-level data of 89 phenotypes from publicly available sources

(Supplementary Table 11). All data used in this analysis were con-

trolled for quality; their imputation quality score was 40.8 and

MAF was 40.5%. The FDR correction was used for multiple test

correction (89 traits).

Brain annotation

Brain regions were visualized using BrainNet Viewer v.1.739 and

default interpolations and perceptually uniform colour scales were

normalized to the MNI-ICBM-152 template40 in MATLAB R2020a

(Mathworks, Inc., Natick, MA, USA). We mapped volumes of the re-

gion of interest in the brain and performed diffusion tensor imag-

ing (DTI) using the brain region of interest atlas41 and brain DTI

atlas,42 respectively. Each brain region was coloured blue and red,

depending on the corresponding value of rg, which ranged from –1

to 1. A detailed description of the brain volume and DTI measure

can be found at UK Biobank Brain Imaging Documentation (https://

biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf, accessed

8 February 2022).

Mendelian randomization

We performed TSMR to investigate the credible association be-

tween occupational attainment and Alzheimer’s disease. We used

European summary statistics for Alzheimer’s disease, obtained

after performing the International Genomics of Alzheimer’s

Project (IGAP) meta-analyses.43 Variants in GWAS summary statis-

tics for the exposure and outcome were filtered if the imputation

scores were 50.8 or MAF values were 50.5%. With regard to

instrumental variables for the exposure of interest (occupational

attainment levels), we clumped SNPs exhibiting genome-wide sig-

nificance (5 � 10–8) with r2 values 4 0.001 using the European

population reference from the 1000 Genomes Project v.3. We

excluded instrumental variables that were non-existent in the

Alzheimer’s disease data or non-inferable palindromic SNPs and

harmonized the effects (beta coefficients) of genetic variants on

occupational attainment and Alzheimer’s disease for the same al-

lele. All analyses were conducted using the R package

‘TwoSampleMR’ v.0.4.25. The inverse variance weighted (IVW)

analysis results provide an estimate of causal effect under the as-

sumption that all genetic variants are valid as instrumental varia-

bles.44 The weighted median method provides a more reliable

estimate because the genetic variation contributing more signifi-

cantly to the causal effect has more weight.45 We used the inter-

cept test for MR-Egger regression to test for pleiotropic effects. The

null test hypothesis is that the intercept value indicating plei-

otropy is zero. We applied the MR-PRESSO global test to the pri-

mary MR result to identify pleiotropic outliers and obtain

estimates regarding the causal effect, after excluding any

outliers.46

Multivariable MR analyses were conducted using the multivari-

able MR functions47 built in the MendelianRandomization R pack-

age (v.0.5.0). GWAS summary statistics for educational attainment

as an additional exposure were obtained from Okbay et al.10.

Although there were partially overlapping samples due to the use

of the same UK Biobank data in both GWASs for occupational at-

tainment and educational attainment, the bias derived from sam-

ple overlap would be negligible as we included only strong

instruments (P55 � 10–8) in multivariable MR.48,49 The GWAS

summary statistics for occupational attainment and educational

attainment had no samples overlapping with that of Alzheimer’s

disease. To select instruments for a multivariable MR model, we

selected independent variants with r2 values 40.001 from each ex-

posure GWAS and harmonized the effects of each variant and cor-

responding effect allele across exposure and outcome GWASs.

After removing invalid SNPs, a total of 69 SNPs were used as

instruments (16 for occupational attainment and 53 for education-

al attainment).

Data availability

The data are available from the UK Biobank (https://www.ukbio

bank.ac.uk, accessed 8 February 2022) on application. The GWAS

summary statistics on occupational attainment can be obtained

from the GWAS catalogue (https://www.ebi.ac.uk/gwas/). The

GWAS summary statistics for Alzheimer’s disease are available

from the IGAP website (http://web.pasteur-lille.fr/en/recherche/

u744/igap/igap_download.php, accessed 1 January 2021).

Results

Distribution of occupational attainment status in the
UK Biobank

To create a harmonized measure of occupational attainment, we

used the SOC system, as defined by the UK Office for National

1439|BRAIN 2022: 145; 1436–1448Genetic loci and occupational attainment
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Statistics.16 Descriptions and frequencies of SOC-coded occupation

traits are presented in Supplementary Table 1. Because the nine

major groups in the SOC system have a hierarchical structure that

reflects the training or academic skill levels for specific occupa-

tions, we considered SOC-coded groups as a quantitative trait and

conducted association analysis. This quantitative definition of the

occupational attainment level is consistent with that used in pre-

vious studies using SOC or other job descriptive measures.50–52

Among the 487 409 individuals in the UK Biobank, GWAS was con-

ducted for 248 847 individuals after excluding those without an

SOC code and after applying sample QC for the genotype data.

Participant characteristics by SOC-coded groups are presented in

Supplementary Table 1.

Genome-wide significant association signals

The GWAS of occupational attainment was performed at the co-

hort level for individuals of European descent, using the POLMM

method with age, sex and principal components of genetic ances-

try as covariates. Using a clumping method, we identified 30 inde-

pendent genomic loci with a genome-wide significance threshold

(P55 � 10–8) and considered the most significant SNPs in each

locus as lead SNPs (Fig. 1 and Supplementary Fig. 1). The traits and

regional plots of lead SNPs are described in detail in the

Supplementary material. The quantile-quantile plot of the GWAS

results (Supplementary Fig. 2) demonstrates genomic inflation

(k = 1.29), which is attributable to their expected polygenicity

([LDSC intercept of 1.056, standard error of the mean

(SEM) = 0.009]. No GWAS for occupational attainment has been

reported; hence, we investigated the related genes or traits for the

30 loci. Of these loci, 18 contained lead SNPs previously associated

with cognition-related traits (i.e. educational attainment, cognitive

ability, math ability and intelligence), whereas 12 were not previ-

ously reported and thus represented novel variants without any

association with other cognitive traits (Table 1, Fig. 1 and

Supplementary Table 2).

Functional annotation of the identified loci and
biological pathways

To link the associated variants with relevant genes, we employed

the GTEx database implemented in the FUMA platform, to perform

the functional annotation of GWAS results. Using eQTL analysis,

we found the GWAS SNPs mapping to 63 cis-eQTL genes in 13

brain tissue types (Supplementary Tables 3 and 4). Four novel lead

SNPs were identified as eQTLs for 10 genes within 10 specific brain

tissues (Table 1 and Supplementary Table 4); rs13002946,

rs3741368, rs11654986 and rs1627527. AFF3 and RAD51C were

mapped for cortex, AFF3 for frontal cortex, AFF3 and ZDHHC24 for

anterior cingulate cortex, AFF3, C19orf71, FZR1, MFSD12, MTMR4,

RP11-867G23.8 and TEX14 for cerebellum and cerebellar hemi-

sphere, TEX14 and SKA2 for hippocampus, AFF3, C19orf71, TEX14

and ZDHHC24 for nucleus accumbens, caudate and putamen, and

TEX14 for hypothalamus, respectively.

To investigate potential biological pathways, we conducted

pathway analysis using MAGMA,53 which was implemented in

FUMA. The results highlighted 11 genes and a significant GO path-

way [nucleotide excision repair (NER) complex] (Bonferroni-cor-

rected P5 0.05, see Supplementary Table 5 for further details).

SNP heritability and partitioned heritability analysis

We applied partitioned LDSC54 to evaluate how the GWAS results

of occupational attainment were enriched in 53 genomic annota-

tions using the full baseline model. The SNP heritability of occupa-

tional attainment was estimated to be 8.5% in this study, which

was lower than the estimated heritability from a twin study for

post-war Norwegian cohorts (43%)13 and comparable to the educa-

tional attainment level (SNP heritability = 12%).55 The functional

enrichment test showed that only one of the 53 annotations,

known as the ‘Conserved Lindblad Toh’, passed the FDR

criterion of 0.05 for occupational attainment (Fig. 2A and

Supplementary Table 6).56 The proportion of SNPs for the con-

served region was 2.6% and the estimated enrichment value was

�18 (coefficient P = 1.97 � 10–13). The conserved region is

Figure 1 A Manhattan plot for a GWAS of occupational attainment. The x-axis shows genomic positions and y-axis shows statistical significance as
–log10 (P) values. The threshold for significance, which accounts for values obtained after multiple tests, is shown by the red horizontal line
(P = 5 � 10–8). The blue and yellow lines indicate the mapped genes from known and novel loci, respectively.

1440 | BRAIN 2022: 145; 1436–1448 H. Ko et al.
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Table 1 Summary of the lead SNPs in the 30 loci associated with occupational attainment

CHR BP A1/A2 EAF Beta SEM P Nearest genes eQTL genes

l loci

r 8 588 1 44012923 T/C 0.311 –0.043 0.008 4.31 � 10–8 PTPRF –

r 3 2946 2 100801959 A/T 0.276 0.044 0.008 3.07 � 10–8 LINC01104 AFF3

r 1 94958 2 145940794 T/C 0.01 –0.209 0.036 8.19 � 10–9 TEX41 –

r 4 351 2 199492201 G/A 0.431 –0.041 0.007 7.38 � 10–9 AC019330.1 –

r 4 81 3 107691697 G/A 0.149 0.054 0.010 3.08 � 10–8 LINC00636 –

r 2 857 7 8010634 G/T 0.139 –0.056 0.010 2.49 � 10–8 RPA3-AS1,

GLCCI1

–

r 8 9843 9 124604538 A/T 0.419 –0.039 0.007 3.98 � 10–8 TTLL11 –

r 7 368 11 66083782 A/G 0.446 0.040 0.007 1.1 � 10–8 RP11-

867G23.13,

CD248

RP11-

867G23.8,

ZDHHC24

r 5 530 13 76809010 G/C 0.150 –0.050 0.009 3.85 � 10–8 RN7SL571P –

r 1 4986 17 57206124 A/G 0.384 –0.042 0.007 7.68 � 10–9 SKA2 MTMR4,

RAD51C,

SKA2,

TEX14

r 5 4947 18 40940932 C/T 0.126 –0.056 0.010 3.23 � 10–8 SYT4 –

r 6 527 19 3555498 A/G 0.475 0.039 0.007 4.77 � 10–8 MFSD12,

AC005786.7

C19orf71,

FZR1,

MFSD12

Known loci associated with other cognitive traits

r 3 9832 2 60710571 A/G 0.425 0.043 0.007 1.09 � 10–9 BCL11A –

r 5 9536 2 212634084 T/A 0.261 –0.051 0.008 2.93 � 10–11 ERBB4 –

r 5 7393 2 236832758 T/C 0.364 –0.041 0.007 2.90 � 10–8 AGAP1 –

r 6 084 3 49949834 A/T 0.496 0.066 0.007 3.59 � 10–21 CTD-2330K9.3 FAM212A,

GMPPB,

MST1R,

RBM6,

RNF123

rs7719676 5 60736949 A/G 0.31 0.048 0.007 1.71 � 10–10 ZSWIM6 –

rs10515086 5 67781021 T/C 0.175 –0.059 0.009 1.11 � 10–10 CTC-537E7.1 –

rs448809 5 88005828 G/T 0.44 0.055 0.007 2.18 � 10–14 CTC-467M3.1 –

rs9375188 6 98555272 T/C 0.492 0.064 0.007 1.01 � 10–19 RP11-436D23.1 –

rs12210020 6 152220889 A/G 0.248 –0.049 0.008 1.06 � 10–9 ESR1 –

rs6944796 7 104505787 T/C 0.191 0.052 0.009 2.11 � 10–9 LHFPL3 –

rs12553324 9 23347865 G/C 0.430 0.049 0.007 2.82 � 10–12 SUMO2P2 –

rs1880692 11 80338069 G/A 0.455 –0.039 0.007 2.36 � 10–8 ARL6IP1P3 –

rs4886031 13 58372213 T/C 0.235 –0.044 0.008 1.34 � 10–8 PCDH17 –

rs2806047a 14 73532676 G/A 0.345 0.042 0.007 8.98 � 10–9 RBM25 –

rs2726036 16 28347140 C/A 0.334 –0.042 0.007 3.28 � 10–9 NPIPB6 EIF3C, LAT,

NPIPB6,

NPIPB7,

NPIPB9,

NUPR1,

SH2B1,

SULT1A2,

TUFM

rs77875796 17 44051612 G/A 0.241 –0.049 0.008 4.89 � 10–9 MAPT ARHGAP27,

ARL17A,

CRHR1,

FMNL1,

KANSL1,

LRRC37A,

LRRC37A2,

MAPT,

NMT1,

NSF,

PLEKHM1,

SPPL2C

rs9964724 18 35159124 C/T 0.332 –0.054 0.007 8.89 � 10–13 CELF4 –

rs619466 18 53198836 A/G 0.097 0.069 0.012 9.74 � 10–9 TCF4 –

A1 = effect allele; A2 = non-effect allele; Beta = regression coefficient; BP = genomic position in human genome assembly GRCh37 (hg19); CHR = chromosome; EAF = effect allele

frequency.
a The high LD (r2 4 0.8) of the variants within ±500kb from the variants related to cognition in previous studies.
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reportedly associated with cognitive function and intelligence.57,58

No other annotations were significantly enriched.

formed LDSC for specifically expressed genes (LDSC-SEG;

Methods) identified after the occupational attainment GWAS,

using gene sets obtained from the LDSC site (https://github.com/

bulik/ldsc, accessed 8 Feb 2022).31 The analysis of occupational at-

tainment across multiple tissues revealed that areas in the CNS,

such as the hippocampus, limbic system or frontal cortex, were

strongly enriched at an FDR of 55% (Supplementary Table 7). The

immune cells and neurons were also found to be enriched

(Supplementary Tables 7–9).

The hippocampus and limbic system showed the highest en-

richment in the subcortical structure with regard to multi-tissue

gene expression; the cortex area, including the frontal, middle and

temporal areas, also demonstrated high enrichment levels (Fig. 2B

and Supplementary Table 7). Multi-tissue chromatin results

showed that the highest enrichment was observed in the foetal

brain and germinal matrix regions (Fig. 2C and Supplementary

Table 10). These results were in accordance with those of a previ-

ous report, suggesting that genomic loci associated with educa-

tional attainment, another proxy of cognitive reserve, were

biologically linked to brain development-related phenotypes.59

Genetic correlation between occupational
attainment and other traits

LDSC was conducted to test whether genetic variants associated

with health-related traits shared genetic bases with genetic var-

iants for occupational attainment (Fig. 3 and Supplementary Table

11). A significant positive correlation was observed between occu-

pational attainment and miscarriage (rg = 0.33), satisfaction-

related traits [rg range = (0.34, 0.45)], bipolar disorder (rg = 0.34), aut-

ism spectrum disorder (rg = 0.09), leisure-related traits [rg
range = (0.49, 0.65)], high-density lipoprotein (HDL) cholesterol

(rg = 0.23), testosterone (rg = 0.09) and cognitive function-related

traits [rg range = (0.66, 0.90)]. A significant negative correlation was

Figure 2 Partitioned heritability analyses using LDSC. (A) Enrichment estimates for 53 functional annotations. Annotations are ordered by their
P-values. The dashed line indicates the significance at P 5 0.05. (B) Results of multiple-tissue analysis using gene expression data. Each circle repre-
sents a tissue or cell type from either the GTEx dataset or Franke laboratory dataset. The dashed line indicates the cut-off of FDR, which is 55% at –
log10 (P) = 2.25. (C) Results of multiple-tissue analysis using chromatin data. Each circle represents peaks for DNase I hypersensitivity (DHS) or histone
marks in a tissue or cell type. The dashed line indicates the cut-off of FDR, which is55% at –log10 (P) = 2.69.
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observed with overall physical/mental health [rg range = (–0.05, –

0.50)], morningness chronotype (rg = –0.12), walk duration (rg = –

0.73), overall laboratory/physical findings [rg range = (–0.07, –0.37)]

and mean time for correctly identifying matches in a cognitive test

(rg = –0.08). These genetic correlations suggest that there are com-

mon genetic associations between occupational attainment and

multiple mental/physical health-related traits, cognitive functions,

lifestyle factors and laboratory findings.

LDSC analysis was also conducted to estimate the

genetic correlation between occupational attainment and the

brain regional volume and connectivity traits, via structural brain

imaging or DTI (Fig. 4 and Supplementary Table 12). A positive cor-

relation was observed between occupational attainment and total

brain volume (rg = 0.24), and the left inferior temporal (rg = 0.21),

left inferior parietal (rg = 0.17)s and left and right insular regions

(rg = 0.14; rg = 0.13), with regard to the brain regional volume trait.

A negative correlation was observed with the left pericalcarine

(rg = –0.18). With respect to DTI traits, no significant results were

observed after adjusting for multiple comparisons.

Mendelian randomization analysis

We conducted a TSMR analysis to estimate the causal effect of oc-

cupational attainment as a proxy marker of cognitive reserve, on

the Alzheimer’s disease risk. The summary statistics for

Alzheimer’s disease was obtained from the IGAP meta-analyses.43

Among all the independent genome-wide significant SNPs associ-

ated with occupational attainment, 18 variants were used as in-

strumental variables after harmonizing the data for the two GWAS

results (see ‘Materials and methods’ section and Supplementary

Table 13). The TSMR analysis results revealed a negative associ-

ation between occupational attainment and Alzheimer’s disease

(OR = 0.78, 95% CI = 0.65–0.92, P = 4.26 � 10–3 with the IVW method;

OR = 0.73, 95% CI = 0.57–0.92, P = 9.10 � 10–3 in the weighted me-

dian method; Table 2). The intercept from MR-Egger regression

analysis showed the absence of horizontal pleiotropy (P for the

MR-Egger intercept test60 was 0.90), and MR-PRESSO46 analysis did

not detect any outliers from instrumental variables.

To ensure that the significant causal effect was not attributable

to pleiotropic bias, we performed sensitivity analysis after excluding

Figure 3 Genetic correlation estimates between occupational attainment and other phenotypes using LDSC. This figure only includes significant gen-
etic correlations, where FDR values are55% (see Supplementary Table 11 for all results). GERD = gastroesophageal reflux disease.
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seven potentially pleiotropic SNPs (Supplementary Table 13). Even

after excluding these SNPs, the estimate of the causal effect of occu-

pational attainment for Alzheimer’s disease patients remained sig-

nificant (OR = 0.72, 95% CI = 0.57–0.91, P = 5.54 � 10–3 in the IVW

method; OR = 0.72, 95% CI = 0.53–0.97, P = 0.03 in the weighted me-

dian method; Table 2). The results indicate that occupational attain-

mentmight have a protective effect on Alzheimer’s disease risk.

Subsequently, we sought to evaluate whether the observed

causal relationship between occupational attainment and

Alzheimer’s disease is derived from an independent effect of occu-

pational attainment or is partially driven by educational attain-

ment, which is a well-known protective factor for Alzheimer’s

disease.11,61,62 We performed multivariable MR with educational

attainment as an additional exposure. When we included both oc-

cupational attainment and educational attainment (years of

schooling10) in a multivariable MR model, we found strong evi-

dence of independent effects of occupational attainment on the

risk for Alzheimer’s disease (OR = 0.72, 95% CI = 0.54–0.95, P = 0.02

in the IVW method; OR = 0.68, 95% CI = 0.48–0.97, P = 0.04 in the

weighted median method; Table 2 and Supplementary Table 14).

However, we found no evidence of independent effects of educa-

tional attainment on the risk for Alzheimer’s disease (OR = 1.08,

95% CI = 0.62–1.91, P = 0.78 in the IVW method; OR = 1.10, 95%

CI = 0.53–2.30, P = 0.79 in the weighted median method).

Discussion

In this study, we identified 30 genetic variants that elucidate the

genetic architecture of occupational attainment. Although many

of these SNPs were associated with cognitive traits and mental/

physical health, we also discovered 12 novel signals, which were

not reported in any published GWAS for cognitive traits. The pro-

portion of variance attributable to the additive effects of all SNPs

was estimated to be 8.5% in SNP heritability analysis. In eQTL, gen-

etic correlation and LDSC-SEG analysis, we found that occupation-

al attainment was associated with the CNS. Moreover, our TSMR

analysis results indicated that occupational attainment could be a

protective factor for Alzheimer’s disease, as a proxy marker of cog-

nitive reserve.

We identified 10 genes expressed in brain tissues using the

eQTL mapping of 12 newly identified genetic loci: MTMR4, AFF3,

SKA2, TEX14, FZR1, RAD51C, C19orf71, MFSD12, ZDHHC24 and RP11-

867G23.8. Several genes have functions related to cognition and

neuropsychiatric diseases. MTMR4, which regulates macrophage

phagocytes,63 is related to general cognitive ability64 and cognitive

aspects of educational attainment.65 AFF3, an autosomal homolog

of X-linked AFF2, which encodes members of the ALF family (AFF1/

AF4FF2/FMR2 and AFF4, MCEF),66 is associated with verbal-numer-

ical reasoning, which was representative of general cognitive

Figure 4 Brain regions representing significant genetic correlations with occupational attainment in genetic correlation analysis using LDSC. Brain
image showing genetic correlations between occupational attainment and volumes of region of interest of the brain at FDR values 55%. The blue
and red colours indicate a negative and positive correlation, respectively. The darker the colour, the stronger the correlation.
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ability.67 AFF3 is also involved in the pathophysiology of intellec-

tual disability.59,66 SKA2, which is considered to be involved in the

cortisol stress system related to development of post-traumatic

stress disorder,68 is associated with general cognitive function.64 In

addition, TEX14, which is involved in midbody function, is not only

related to cognitive performance and educational attainment55 but

also biomarkers such as ferritin level,69 white blood cell count70

and neutrophil count.70 FZR1 and RAD51C are also related to blood

markers, red cell distribution width70–72 and blood protein levels

and eosinophil counts72,73, whereas C19orf71 and MFSD12 are asso-

ciated with skin status and disease, including skin pigmentation74

and cutaneous malignant melanoma.75 ZDHHC24, which is

expressed at high levels, mainly in the brain, pancreas, prostate

and stomach,76 is associated with mean corpuscular haemoglo-

bin,67 apolipoprotein B77 and low-density lipoprotein cholesterol

levels.78 The functions and associated traits of RP11-867G23.8 have

not been reported yet. Our findings from pathway analysis are

consistent with those of previous reports, demonstrating that the

NER complex pathway deficiencies are involved in accelerated cog-

nitive decline and neurodegeneration in a mouse model.79

Using TSMR analysis, we demonstrated evidence implicating

occupational attainment as one of the causal factors that might re-

duce Alzheimer’s disease risk, as it is a marker of cognitive reserve.

Although previous studies have shown that the measurement of

cognitive reserve using occupational attainment was associated

with reduced Alzheimer’s disease risk, most of these studies were

limited to observational evidence that was insufficient to establish

the causal relationship between occupational attainment and

Alzheimer’s disease risk due to the inherent limitations of an ob-

servational study, such as uncontrolled potential environmental

confounders.80,81 Because allele segregation occurs randomly and

is unaffected by environmental confounding factors, TSMR ana-

lysis has emerged as a promising approach for examining causal

associations.82 Therefore, our TSMR-related findings could act as

robust evidence illustrating the protective effects of occupational

attainment against Alzheimer’s disease. Moreover, in view of high

genetic correlations between cognition-related traits and occupa-

tional attainment (Fig. 3), we conducted sensitivity analysis to in-

vestigate the causal effects on Alzheimer’s disease after removing

pleiotropic SNPs associated with cognition-related traits and

confirmed that the results remained significant. In addition, the

results of the multivariable MR to estimate independent causal

effects of occupational and educational attainments on the risk for

Alzheimer’s disease suggest that occupational attainment indicat-

ing middle-age cognitive activities may be a more influential inde-

pendent protective factor for Alzheimer’s disease than educational

attainment showing early-life cognitive enrichment. This may

suggest that educational attainment improves occupational at-

tainment, and the effect of educational attainment on Alzheimer’s

disease is mediated through occupational attainment. Because

educational attainment and occupational attainment can be con-

founders, colliders or mediators with each other, caution is needed

when interpreting the multivariable MR results of occupational at-

tainment as having a significant mediating effect between educa-

tional attainment and Alzheimer’s disease.83 Therefore, to further

understand how individual factors for cognitive reserve such as

educational attainment and occupational attainment have an ef-

fect on Alzheimer’s disease, additional MR analyses with more in-

strumental variables and appropriate analytic methods for causal

pathways may be warranted.

Our findings showed that the CNS is involved with the majority

of the biological implications of occupational attainment. The en-

richment analysis results illustrated a broad involvement of brain

tissues, including the cortex and subcortical area, and highlighted

the significant enrichment of GWAS variants in CNS tissues, as

compared to that of other types of tissues (Fig. 2B and C and

Supplementary Table 7); we found that neurons were implicated

in our genetic findings, not microglia or astrocytes (Supplementary

Table 9). EQTL mapping prioritized brain tissue genes (Table 1). In

accordance with the findings of previous studies,82,84 our genetic

correlation analysis not only demonstrated the relationship be-

tween occupational attainment and various health-related traits,

but also identified the genetic link between educational attain-

ment and intelligence, cognitive function, and brain phenotypes

via neuroimaging (Figs 3 and 4). These genetic findings suggested

that our GWAS results were strongly associated with brain func-

tion and indicated that patterns were consistent with those of pre-

vious GWAS findings regarding intelligence and educational

attainment.10,58

Table 2. Univariable a multivariable MR estimates for occupational attainment on Alzheimer’s disease

Method n SNPs OR (95% CI) P

Primary MR for occupational attainment on risk of Alzheimer’s disease

Inverse variance weighted 18 0.78 (0.65 to 0.92) 4.26 � 10–3

Weighted median 0.73 (0.57 to 0.92) 9.10 � 10–3

MR-Egger (P for pleiotropy = 0.90) 0.73 (0.27 to 1.95) 0.54

Sensitivity analysis for occupational attainment on risk of Alzheimer’s disease after the exclusion of pleiotropic SNPs

Inverse variance weighted 11 0.72 (0.57 to 0.91) 5.54 � 10–3

Weighted median 0.72 (0.53 to 0.97) 0.03

MR-Egger (P for pleiotropy = 0.97) 0.70 (0.12 to 4.00) 0.70

Sensitivity analysis for independent effect of occupational attainment on risk of Alzheimer’s disease by multivariable MR controlling for educa-

tional attainment

Exposure: Occupational attainment

variance weighted 69 0.72 (0.54 to 0.95) 0.02

Median based 0.68 (0.48 to 0.97) 0.04

MR-Egger (P for pleiotropya = 0.21) 0.63 (0.45 to 0.89) 8.27 � 10–3

Exposure: Educational attainment

variance weighted 69 1.08 (0.62 to 1.91) 0.78

Median based 1.10 (0.53 to 2.30) 0.79

MR-Egger (P for pleiotropya = 0.21) 0.63 (0.23 to 1.74) 0.38

CI = confidence interval; IV = instrumental variable; OR = odds ratio.
aNote that there is only one P-value for the MR-Egger intercept in the multivariable MRmodel.

1445|BRAIN 2022: 145; 1436–1448Genetic loci and occupational attainment

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ra

in
/a

rtic
le

/1
4
5
/4

/1
4
3
6
/6

3
8
2
3
0
3
 b

y
 U

n
iv

e
rs

ity
 o

f N
o
rth

 C
a
ro

lin
a
 a

t C
h
a
p
e
l H

ill u
s
e
r o

n
 0

4
 F

e
b
ru

a
ry

 2
0
2
3



Several limitations were associated with this study. The cur-

rent GWAS data used for examining the effects of rare variants or

environment factors was limited; this should be taken into ac-

count during future studies, including whole-exome or whole-gen-

ome sequencing studies. Our findings provide insights into the

genetic architecture of occupational attainment, but there was no

single genetic determinant for occupational attainment. Because

human genetic architectures and behavioural phenotypes are

highly complex and are affected by environmental factors, our

results should not be used to predict an individual’s occupational

attainment level. Instead, our findings might be used as novel bio-

markers for cognitive reserve and neurodegenerative diseases. For

several SOC-coded groups, we observed an imbalanced sex ratio

that may reflect gender differences in occupational distributions

in the UK Biobank. Therefore, in our analysis, we adjusted for sex

as a covariate to reduce sex biases due to this imbalance.

Moreover, our study was conducted in the UK Biobank cohort

alone; thus, the replication of our findings in independent cohorts

is necessary. We applied a recently developed POLMM to analyse

occupational attainment as an ordinal categorical phenotype.

Although ordinal phenotypes are widely investigated in GWAS,

most studies on categorical phenotypes used conventional meth-

ods designed for binary or quantitative traits. The POLMM was

introduced as a scalable and accurate mixed model approach for

ordinal categorical data analysis in large-scale GWAS and tested in

multiple ordinal categorical phenotypes using the UK Biobank

data. Via this method, we avoided inflated type I error rates and

reduced statistical power that could result from treating the cat-

egorical phenotypes as a quantitative trait. Owing to the scarcity

of GWASs using POLMM, further studies for the validation and rep-

lication of this tool in diverse cohort datasets are warranted. An

additional GWAS and subsequent meta-analysis across diverse

populations are essential for identifying more novel genetic factors

that would further explain the genetic architecture of occupational

attainment.
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