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Abstract
It has been noted for quite some time that DNA methylation levels decline with age. The

significance of this change remained unknown until it became possible to measure meth-

ylation status of specific sites on the DNA. It was observed that while the methylation of

some sites does indeed decrease with age, that of others increase or remain unchanged.

The application of machine learning methods to these quantitative changes in multiple sites,

allowed the generation of a highly accurate estimator of age, called the epigenetic clock.

The application of this clock on large human epidemiological data sets revealed that dis-

cordance between the predicted (epigenetic age) and chronological age is associated with

many age-related pathologies, particularly when the former is greater than the latter. The

epigenetic clock clearly captures to some degree, biological features that accompany the

ageing process. Despite the ever-increasing scope of pathologies that are found to be

associated with accelerated epigenetic ageing, the basic principles that underlie the ticking

of the clock remain elusive. Here, we describe the knownmolecular and cellular attributes of

the clock and consider their properties, and proffer opinions as to how they may be con-

nected and what might be the underlying mechanism. Emerging from these considerations

is the inescapable view that epigenetic ageing begins from very early moments after the

embryonic stem cell stage and continues un-interrupted through the entire life-course. This

appears to be a consequence of processes that are necessary for the development of the

organism from conception and to maintain it thereafter through homeostasis. Hence, while the speed of ageing can, and is

affected by external factors, the essence of the ageing process itself is an integral part of, and the consequence of the devel-

opment of life.
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Introduction

The development of DNA methylation-based age estima-
tors, also called epigenetic clocks, allows for the first time,
the measurement of age in all tissues and nucleated cells.
Instead of using time, age can now be measured using pro-
files of biological molecules (methyl groups) that are
attached directly to cytosines on the DNA.1–5 A large

body of literature has previously revealed that age has a
strong effect on DNA methylation. However, it is only rel-

atively recent that the insight to combine methylation levels
of several DNA loci to develop an accurate age estimator
was conceived. The resulting “epigenetic clock” is a multi-
variate predictor of age (or alternatively mortality risk)
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based on a multivariate regression model that incorporates
methylation values of numerous cytosines. The first epige-
netic clock for estimating age based on saliva samples was
developed in 2011 by a team from the University of
California Los Angeles,5 which included Steve Horvath,
who went on two years later, to present the multi-tissue
epigenetic age estimator that applies to all sources of
human DNAwith the exception of sperm.1 Other notewor-
thy estimators include the Hannum clock2 that is based on
71 CpGs of blood DNA. To date, many other DNA methyl-
ation clocks have been developed for different purposes
and tissue targets.3,4,6–18 Since their inception, epigenetic
clocks have been used to analyze DNAmethylation profiles
of diverse human cohorts, uncovering previously unknown
associations between accelerated ageing and a great
number of health-related features.19,20 These associations
indicate that epigenetic clocks do not just track chronolog-
ical age, but also biological features that are relevant to the
ageing process. Pivotal as they are, epigenetic clocks’ asso-
ciation with congenital and non-congenital diseases, life-
style, and environment are not the focus of this short
review. The reader is directed to other reviews that fulfill
this purpose.19–22What is timely andwill be addressed here
instead, are the potential molecular and cellular features
that underpin epigenetic ageing. This has not been previ-
ously reviewed because of the scarcity of available
evidence. This shortage notwithstanding, it is time to re-
assess what is known and to harness clues that could help
to better focus attention on future research. We are acutely
aware that as we accrue greater depth in our understand-
ing, it is more than likely that modifications to what is
described below will become necessary and possibly even
an entirely different perspective may emerge. Since insights
into mechanisms are found largely through experimental
research, these will be the primary source of this article,
with occasional references to human epidemiological stud-
ies. As such, this opinion piece is not intended to be a cat-
alogue of everything that has been reported to affect
epigenetic ageing but a selection of observations with
potential connections. The description of the epigenetic
clock below will refer largely to the multi-tissue age esti-
mator,1 unless otherwise stated.

Five methylation features of the epigenetic

clock reveal the cellular characteristics of

epigenetic ageing

While results from experiments are the bed-rock upon
which mechanistic understanding is established in biology,
such results are scarce with regard to epigenetic ageing.
Despite this lack, much can nevertheless be gleaned
through careful deduction from the known physical fea-
tures of the epigenetic clock. First, methylation of cytosines
is undoubtedly a binary event. A cytosine is either methyl-
ated or not. As such, a value of 1 is ascribed to a methylated
cytosine and 0 to one that is not. Hence, a DNAmethylation
profile based on 0 s and 1 s can be easily obtained. This,
however, is an idealized notion, as almost all CpGs have
methylation values between zero and one, such as 0.632.
This seemingly unintuitive outcome is a result of DNA

samples that are used on Illumina arrays being derived
from cellular populations (tissues or cultured in vitro)
instead of a single cell. Hence, methylation value of 0.632
means that this particular CpG is methylated in 63.2% of
cells in the tested population, showing that cell popula-
tions, be they from tissues or in vitro cell cultures, are epi-
genetically heterogeneous. The second significant physical
feature comes to fore when a comparison is made between
methylation values of DNA of those below 35 and those
above 55 years of age. The multi-tissue age predictor
shows this difference to be on average, 0.032, which trans-
lates to 3.2% of the cell population.1 This suggests that
increase in epigenetic age is contributed by changes of
methylation profiles in a very small percent of cells in a
population.

The third physical feature concerns the rate of methyla-
tion change of clock CpGs through the life course. The
multi-tissue age predictor shows that this rate is approxi-
mately 24 times faster in the first few years of life compared
to that after puberty.1,20 Since changes of methylation con-
stitute the ticking of the epigenetic clock, it means that the
clock ticks extremely fast in early post-natal years and
much slower after puberty. This pattern is reminiscent of
the growth profile of the human body and hints at a con-
nection between epigenetic ageing and the process of
development.23 Indeed, human cohort studies showed
that the pace of ticking of the epigenetic clock is associated
with more rapid pubertal development in girls24,25 and
greater fat mass and height.25,26

The fourth methylation feature of the epigenetic clock is
the specific location of the clock CpGs in the genome. From
the identity of genes proximal to these CpGs, it was pre-
dicted that they would implicate processes involved in cell
fate (growth, proliferation, death, survival) and notably,
development of tissues and the body. Many of the clock
CpGs that become increasingly methylated with age are
over-represented near genes whose expression is regulated
by polycomb repressive complex (PRC).1,27–34 Importantly,
most PRC-binding sites are bivalent with regard to expres-
sion of genes that are proximal to them. This means that
these chromatin regions contain histones that promote tran-
scription as well as those that repress gene expression.
These bivalent chromatin domains provide the cell with
the choice to either activate or repress the genes down-
stream and hence the plasticity to assume a particular cel-
lular state or identity. If the CpGs of these sites become
methylated by Dnmt3a/b, the expression of the down-
stream genes would be committed to a single state and
the cell loses its potential or plasticity with regard to its
identity.35 Hence, PRCs compete with Dnmt3a/b for bind-
ing to the same target. With age, for reasons yet to be deter-
mined, these PRC targets become methylated in increasing
number of cells in a population. The link of PRCwith devel-
opment is especially clear since it is a repressor of HOX
genes, which specifies segmentation of the embryo along
the head to tail axis of the organism.36 It controls the expres-
sion of genes necessary for embryonic development, stem
cell differentiation, and tissue homeostasis. Proteins that
constitute the PRC are conserved across a large swathe of
plant and animal species, ranging from flies to vertebrates;
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signaling their primeval credentials. Significantly, the PRC
and its associated proteins regulate longevity of flies.37 It is
worth appreciating the fact that the epigenetic clock is con-
stituted in part by CpGs that are associated with a truly
ancient mechanism that regulates development. While the
underlying mechanisms remain to be fully understood, the
association between ageing and the process of develop-
ment and tissue homeostasis is very difficult to ignore.

The above association between clock CpGs, PRC targets,
and development provides a smooth lead into the fifth fea-
ture of the epigenetic clock, which is its applicability to
prenatal biological samples and embryonic stem cells.
The multi-tissue epigenetic clock is able to recognize and
correctly predict ages of fetal tissues38 and that of embry-
onic stem cells (negative age, approximately �0.5 years).1

This is profound as it demonstrates that the epigenetic
clock, which captures at least some degree of biological
ageing, begins ticking very early on before birth. The impli-
cations of this are two-fold. The first is that biological pro-
cesses that constitute the ticking of the epigenetic clock,
whatever they may be, are already in motion very soon
after conception. The second is that since the processes
associated with ageing already begin before birth, it intro-
duces the notion that the ageing process is an integral part
of, and the consequence of the development of life.

Collectively, these five features of DNA methylation
allow one to summarize with some degree of certainty
that epigenetic ageing is a measure of change of epigenetic
heterogeneity, contributed by a relatively small percentage
of cells, seemingly in line with developmental processes
that are conserved across species and begins very soon
after conception. This seemingly inescapable deduction
provides us with a reference point against which models
and hypotheses can be measured. While consistency with
all the five attributes does not guarantee veracity of a
model, inconsistency with any one, will signal the unlikely
validity of a hypothesis.

Cellular mechanisms

Cellular senescence

The above characterization of the cellular components of
epigenetic ageing ushers in the intuitive suspicion that
these cells may be senescent cells. After all, senescent
cells increase in number with age, are involved in develop-
mental processes39 and are undoubtedly mediators of
ageing characteristics through secretion of harmful and
pro-inflammatory molecules.40–44 Consistent with this,
removal of senescent cells reverse age-related decline of
tissue function.45 As such, it appears likely that DNAmeth-
ylation profile of senescent cells, could constitute the tick-
ing of the epigenetic clock. Indeed, one of the early
experiments appeared on the surface, to support this
notion. It was observed that cellular populations that
become senescent through exhaustive proliferation (repli-
cative senescence) exhibited increased epigenetic age.46

This, however, was not the case with radiation-induced
senescence and oncogene-induced senescence. This could
of course be due to the distinctiveness between different

types of senescent cells. Alternatively, the increased epige-
netic age that accompanied replicative senescence could be
owed to the extended period of time with which they had to
be in culture before becoming senescent, during which they
underwent epigenetic aging. This uncertainty was
addressed by preventing primary cells from replicative
senescence by transducing them with telomerase, which
maintains telomere length. This did indeed prevent repli-
cative senescence, but it did not prevent epigenetic ageing,
which continued unabated.3,47–49 These repeated observa-
tions clearly indicate that while telomere attrition and
senescent cells are undoubtedly important features of
ageing, they do not constitute the epigenetic clock.50,51

Consolidating this conclusion is the multiple independent
demonstrations that DNAmethylation changes that accom-
pany cellular senescence are distinct from those of epige-
netic ageing.52–54

Cellular proliferation and terminal differentiation

Thus far, neonatal keratinocytes, dermal fibroblast, adult
coronary endothelial cells, and fetal retina have all been
shown to undergo epigenetic ageing in culture.3,47,49,55,56

These different cell systems allowed the testing of another
intuitive assumption, which is that epigenetic ageing may
be related to cellular proliferation. This notion, however,
was swiftly discounted when it was demonstrated that ker-
atinocytes that underwent greater rate of proliferation and
exhibited extended proliferative capacity had similar rates
of epigenetic ageing as their isogenic control.55 Similar
absence of correlation between proliferation rate and epi-
genetic ageing rate was also seen with fibroblasts49 and gut
epithelial cells.57 These observations are entirely consistent
with the fact that tissues with very different turn-over rates
such as skin, blood, and bone, from the same body, exhibit
similar or comparable epigenetic age;1,3 negating the notion
that the pace of epigenetic ageing is either a measure of, or
determined by cellular proliferation. Furthermore, somatic
cell differentiation such as terminal differentiation of kera-
tinocytes55 or gut epithelium57 also does not alter the rate of
epigenetic ageing. Likewise, fetal retina which differenti-
ates and develops in culture continues to undergo epige-
netic ageing.38 Collectively, these reports show that
epigenetic ageing is neither a measure of cellular prolifer-
ation nor that of cellular differentiation.

The exception to the rule

As listed above, many different human primary cells
undergo epigenetic ageing in culture. This feature, howev-
er, does not extend to embryonic stem cells. Extensive pas-
saging of stem cells up to even a hundred times is not
accompanied by increase in epigenetic age.1 Interestingly,
the epigenetic age of embryonic stem cells is below zero, i.e.
pre-natal, which indeed it is. Although the epigenetic
clocks of embryonic stem cells do not tick regardless of
how many times they proliferate, epigenetic ageing clearly
occurs in utero; during gestation.14,58–60 Hence, the ticking
of the epigenetic clock must be initiated soon after differ-
entiation of the embryonic stem cells. Indeed, we posit that
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it may start as soon as the cells exit from the embryonic
stem cell state.

It is worth digressing a little at this point to consider an
important implication of this notion. An intuitive assump-
tion of ageing is that it is not an intrinsic property of life, but
an extrinsically induced feature, which is encapsulated in
the term “wear and tear”. The fact that epigenetic ageing
clock starts ticking very soon after the embryonic stem cell
stage, prompts a re-assessment of this perspective. The evi-
dence suggest that processes related to ageing are already
afoot at the start of life. The involvement of DNA methyl-
ation changes to specific CpGs indicates that this is a very
precise process that is inconsistent with entropy or random-
ness, which is the nature of damage. It is important to con-
sider, however, that these changes are meant to develop the
organism. Hence, the ageing process is a continuum which
begins after the embryonic stem cells state through to
death. Therefore, the essence of ageing might well lie
in understanding why developmental processes inadver-
tently contribute to ageing of the organism. It is important
to note that although wear and tear or damage-related
events appear not to be the “prime-mover” of epigenetic
ageing, they do nevertheless affect the rate of epigenetic
ageing.61,62

Another important point when considering the potential
involvement of stem cells in epigenetic ageing pertains to
reprogramming of adult cells into the pluripotent state—
induced pluripotent stem cells (iPS). While such reprog-
ramming by Yamanaka factors are well attested,63 the age
of the reprogrammed cells was less so, although it was
assumed that having reverted to the pluripotent state,
they would naturally be young. This, however, was not
necessarily a foregone conclusion as it is possible that
reprogrammed cells might retain the age they were at
when they were re-programmed. In such a case, they
would be “old stem cells” and this would uncouple the
process of development from epigenetic ageing. As it hap-
pens, re-programming does indeed reset the epigenetic
clock to prenatal age,1,64,65 signifying rejuvenation. This
strengthens the point that epigenetic ageing is a “read-
out” of cellular processes that initiate from the start of life
that are necessary for development of the body, and when
this developmental state is reversed, so does epigenetic age.

Ticking of the clock and organism development

Having ascertain when the epigenetic clock starts ticking,
we can now consider what constitutes its ticking. A cell
type that fulfills the five criteria described above is tissue
stem cells or progenitor cells—(a) being a part of the heter-
ogenous mix of cells within a tissue, (b) being a very small
proportion of cells within a tissue, (c) undergoing changes
that drive the process of development, (d) having PRC reg-
ulate their differentiation, and (e) are present and function-
ing from the very early stages of embryonic development.
For the sake of descriptive simplicity and the current scar-
city of information, when stem cells are mentioned in the
description below, it could as well potentially apply to pro-
genitor cells. To consider the potential means by which
tissue stem cells may be involved in the ticking of the

clock, it is worth re-assessing the known features of these
cells. Stem cells can undergo symmetric or asymmetric pro-
liferation. The former will result in two stem cells, while the
latter will also produce two cells, but one of which will
retain the stemness of the mother cell, while the other
will become a non-stem cell, which for the sake of simplic-
ity can be referred to as transit-amplifying cells. It is
thought that stem cells proliferate infrequently, and the
bulk of proliferation activity of tissues is performed by
transit-amplifying cells. One could posit that the ticking
of the clock is a measure of asymmetric stem cell division,
i.e. when one of the daughter cells become a transit-
amplifying cell, its DNA methylation profile changes and
this is manifested as alteration of the methylation profile of
the tissue—the ticking of the clock. As stem cells are in low
abundance and undergo infrequent division, the DNA
methylation changes of tissues that occur in time would
be very small, which is indeed observed for the ticking of
the epigenetic clock. This scenario would suggest that were
stem cells to be isolated from tissues (free of transit-
amplifying cells and fully differentiated cells) and ana-
lyzed, their DNA methylation profiles would indicate
much younger epigenetic age than the tissue. This was
indeed observed in a recent report showing that muscle
stem cells isolated from mice were epigenetically much
younger independently of the ages of the tissue/animal
from which they were derived.66 Likewise, small intestine
and colon crypts, in which stem cells reside have younger
epigenetic age than the upper portion of the tissue which
are devoid of stem cells.57 Although these do not by them-
selves constitute proof, it is nevertheless consistent with the
notion that ticking of the epigenetic clock is constituted by
methylation changes that accompany the differentiation of
stem cells into non-stem cells (such as transit-amplifying
cells). Importantly, this proposition is testable with further
experiments analyzing stem cells of different tissue and
organs, and there is little doubt that results from such
experiments will become available in the very near
future. It is however important to note that the hypothesis
proffered is based on our current understanding of cell
types and identities in tissues. We do not presume this
understanding to be comprehensive or highly accurate.
As such, it is necessary to entertain the possibility that
instead of stem or progenitor cells, a yet-to-be-identified
cell type within tissues is responsible. Also, instead of
changing their states (such as differentiation), the stem
cells or yet-to-be-identified population of cells may contrib-
ute to age-related methylation changes by either gradually
increasing or decreasing their number in tissues. There are
many more hypotheses that can be proposed, but they are
predicated on even more layers of assumptions, each of
which would confer increasing degree of uncertainty to
the hypotheses, and most of which cannot be easily
tested. Hence, what is described above is necessarily a con-
servative proposal that is in keeping with what is currently
known and adhering to the five attributes of the epigenetic
clock, with minimal assumptions and most importantly, is
readily testable.
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Ticking rate of the clock and organism maintenance

Having considered what might constitute the ticking of the
clock, we can proceed to address the rate of ticking. After
all, it is not the ticking of the clock that is associated with
increased risk of age-related pathologies but the increased
ticking rate that is thus so. To this end, it is important to
consider the biology beyond development and across the
entire life-course. From the blastocyst stage onwards, stem
cells undergo a very high rate of differentiation to generate
specialized cells to build and develop tissues. This rate
would eventually reduce as the required cell number and
maturity are attained and organs are fully formed. This is
indeed reflected in the different rates of methylation
changes to the clock CpGs in function of age.1 From the
state of maturity onwards, however, differentiation of
stem cells would serve to maintain the body by replenish-
ing tissues with fresh cells to replace dead ones, to establish
homeostasis. Evidently, tissues have different turn-over
rates with some such as the skin and the gut, having partic-
ularly high ones. It would stand to reason that turn-over
rates of tissues would reflect differentiation rates of their
stem cells into non-stem cells (or transit-amplifying cells)
and hence also their epigenetic ageing rates. As such, it is
perceivable that tissues with very different development
and maintenance dynamics may have epigenetic ages that
are significantly divergent from the other tissues. In this
regard, it would be informative to consider in the sections
below, the tissues such as the brain—the cerebellum in par-
ticular, the female breast, the muscle, and the retina; all of
which exhibit poor concordance with epigenetic age of
other tissues.38,67

It was previously thought that the human brain does not
undergo any cellular turn-over after full development and
maturation. Even now, adult neurogenesis is thought by
some to not occur at all. While direct human experimenta-
tion to address this is associated with unsurmountable
challenges, the extrapolation of observations from animal
experimentation to the human brain is not without limita-
tions and uncertainties. A solution to this impasse comes
from an unexpected source—the Bomb Pulse.68 This is a
pulse of carbon-14 (C14) that was released into the earth’s
atmosphere as result of nuclear bomb testing which started
in earnest from 1945 leading to a peak between 1950 and
1963, after which above-ground nuclear bomb test was
banned. The elevated levels of C-14 in the atmosphere
began to decline steadily, at about 4% a year and will
return to pre-bomb test level by 2033. During this period,
this pulse of C-14 was incorporated into all life-forms on
earth, including humans. In accordance with the combined
principles of carbon-dating and pulse-chase experiments,
the incorporated C-14 in biological materials allows the
determination of the age of cells, tissues, and organisms.
Spalding et al.69 employed this method to address the ques-
tion of adult neurogenesis and observed that it does indeed
occur but the turn-over of cerebellum is significantly lower
than that of the occipital cortex and possibly the lowest of
the body. This is consistent with the epigenetic age of cer-
ebellum, which is much lower than that of the other parts of
the brain and body.67 While this does not constitute proof,

it does bear serious consideration as two very different
technical measurement produced results that are consistent
with each other; namely tissue turn-over rate is reflective of
epigenetic ageing rate.

Another developmental feature linked with epigenetic
ageing is that of the female breast, which exhibits a very
significant augmentation of age compared to that of blood,
which is generally in good agreement with chronological
age.1,70,71 This disparity is consistent with and mirrors
female breast development. While most tissues cease devel-
opment and switch to maintenance soon after puberty,
female breast tissues continue to develop pass this stage,
underlining the parallel between developmental processes
and epigenetic ageing.

The opposite situation appears to occur in muscles. The
proliferation and differentiation of muscle stem cells cease
upon physical maturation. These activities are initiated in
adult muscles only in response to injury. Consistent with
the proposed model, the epigenetic age of muscle cells is
found to be younger than the rest of the body.3 Finally, a
further example concerns the retina. During retinal devel-
opment in the human fetus, the prenatal epigenetic age
closely mirrors the chronological age.38 This ceases soon
after the retina is fully developed, and there is almost no
turn-over of the tissue. Consistent with this, the rate of epi-
genetic ageing slows down very significantly, and chrono-
logical age, by its nature continues, leading to the loss of
concordance between the two types of ages.

While the indications are strong that stem cell differen-
tiation in the context of tissue development and homeosta-
sis underlie epigenetic ageing, direct empirical evidence is
still scarce. We would like to highlight a potential weakness
of this hypothesis, which is that it does not address the fact
that the number of hematopoietic stem cells increases with
age, albeit with vastly reduced function,72–75 while those of
other tissues, such as muscle stem cells appear to decrease
with age.76–79 Whether this discrepancy is of significance is
presently unclear. Hence, the above-mentioned involve-
ment of a yet-to-be-identified cell type as being responsible
for epigenetic ageing instead, must for now remain a viable
alternative hypothesis. Validation or rejection of this notion
requires in vivo experimentation with animal models,
for which gratifyingly epigenetic clocks are now avail-
able.22,64,65,80–84

Molecular mechanisms

The most intuitive approach to elucidate the molecular
mechanisms that underpin the epigenetic clock is to iden-
tify the genes whose expression is altered by the clock
CpGs. This seemingly straightforward approach runs into
several considerable challenges. First, only 10% of the
multi-tissue clock CpGs are located in promoter/
enhancers, while the rest are not.1 It is not a foregone con-
clusion that only the former will affect gene expression or
that the latter will not. It is equally uncertain that genes that
are most proximal to the clock CpGs are necessarily regu-
lated by them. Genes at a distance might instead be
the target of such regulation. Second, the average lifespan
change in DNA methylation is very small indeed.
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Hence, the transcriptional consequences of these methyla-
tion changes will most likely be manifested by a miniscule
number of cells and these are readily masked by the tran-
scripts of overwhelming majority of cells. It is evident that
single-cell RNA sequencing is required to identify these
changes in a very small percentage of cells. As of the time
of writing, there is no publication known to us, where this
approach has been applied to address this question. No
doubt these will be available in the very near future.

In the meantime, the availability of an in vitro epigenetic
ageing cell culture system has opened the way to the testing
of compounds, conditions, and modalities that can affect
the rate of epigenetic ageing and thus hint at its nature and
possibly the molecular pathways that are implicated.47,55

Already, the effects of telomere maintenance, cellular senes-
cence, DNA damage signaling, terminal differentiation and
cellular proliferation have all been tested and found to be
unrelated to epigenetic ageing.47,55 On the other hand, inhi-
bition of mTOR by rapamycin, caloric restriction, hypoxia,
and growth hormone appears to do so.49,55,64,80,81,85,86

mTOR and caloric restriction

The implication of mTOR is particularly interesting because
genome-wide search for genes that are associated with
accelerated ageing uncovered a SNP within the MLST8
gene as that with the highest hit.87 Interestingly, the expres-
sion of this gene increases with age and its protein product,
MLST8 stimulates the formation of the mTOR complex,88,89

indicating an age-related increase of mTOR activity.
Significantly, rapamycin, which inhibits mTOR activity
retards epigenetic ageing in vitro55 and in vivo.81,85 The con-
sistency of the conclusions drawn from genome-wide stud-
ies and two very different routes of investigations (in vivo
and in vitro) is very compelling and strengthens the notion
that an mTOR-mediated molecular pathway is at least one
of the mechanisms that underpins epigenetic ageing. While
this is an important step forward, it is merely the start as
mTOR is implicated in a great number of activities includ-
ing nutrient sensing, cell growth, cell cycle, cellular senes-
cence, cell survival, DNA repair, amino acid imbalance,
energy regulation, autophagy, and cell survival.90–92

While we await further detailed investigations to tease
out the activities relevant to epigenetic ageing, it is worth
noting that perturbation of the nutrient sensing pathway
through caloric restriction is currently the most effective
intervention with regard to increasing life-span with
reduced morbidity across multiple animal models.93,94

Indeed, caloric restriction slows epigenetic ageing of
mice.64,65,81,82,86 In line with this, there is some suggestive
evidence that glucose levels may increase the rate of epige-
netic ageing.56

Oxygen effect

Oxygen levels appear to affect the rate of epigenetic ageing,
with increasing rate accompanying the increased levels of
oxygen.49 Importantly, this oxygen effect occurs without
any alterations to cellular proliferation; once again demon-
strating that epigenetic ageing rate is not determined by
proliferation. The mechanism underpinning this remains

to be elucidated but hypoxia has been demonstrated to
inhibit mTOR activity.95–97 Hence, the slowing down of epi-

genetic ageing in hypoxic condition may function in a sim-

ilar way as rapamycin by inhibiting mTOR activity and
slowing epigenetic ageing. We acknowledge that this is

an overtly mTOR-centric view and that other explanations

are possible. For example, this effect could instead be medi-
ated by HIF1a, a protein whose level increases in hypoxic

state. HIF1a has been reported to repress the TET2 protein

which catalyzes demethylation of DNA,98 while paradoxi-
cally, TET1 protein is reportedly able to stabilize HIF1a99

instead. Compounding this complexity is the report that

HIF1a stimulates DNA methylase activity.100 It is readily
conceivable that in principle, such changes to enzymes

involved in DNA methylation can impact epigenetic

ageing, but it is far from clear whether this is indeed the
case as the potential involvement of HIF proteins in DNA

methylation is convoluted101 and at this stage there is no

immediately obvious mechanism that could be envisaged.

Circadian clock

The above-described age-accelerating effect of high oxygen

level may impose an hitherto unappreciated impact on epi-

genetic ageing rates of primary cells (human keratinocytes,
dermal fibroblasts and coronary artery endothelial cells) in

culture.47,55,56 It appears that while cells isolated from tis-

sues are still fully capable of undergoing epigenetic ageing,
their rates are significantly higher compared to when they

are in vivo. It would appear that when primary cells are

isolated from tissues and put in culture, they become
unshackled from the mechanism that regulates their

ageing rates in the body. This free-running in vitro state

may be compounded by the effects of unusually high
oxygen content of in vitro culture condition. The description

of a “free-running” state in context of epigenetic ageing

bears significant parallels with the circadian rhythm.102

Both the epigenetic and circadian clocks are present in all

cells of the body, but their ticking rates are regulated. The

circadian clocks of all cells are synchronized by the supra-
chiasmatic nucleus (SCN) through endocrine and nervous

cues. In turn, the SCN is regulated by light-induced retinal-

ganglion signals. While the underlying mechanism of
synchronicity of the epigenetic clocks between tissues has

yet to be fully elucidated, both these clocks lose synchro-

nicity when cells are isolated from tissues and grown
in vitro. These similarities compel one to ponder potential

links between them. In this regard, it may be of significance

that Bmal-1, a transcription factor that regulates expression
of circadian genes, represses mTOR signaling and retards

ageing.103 At the same time, mTOR regulates central and

peripheral circadian rhythms,104,105 which is also regulated
by caloric restriction.106 Whether these mutual interactions

feed into epigenetic ageing or vice versa is not a foregone

conclusion and is ripe for investigation. Once again, poten-
tial links to mTOR are evident but these should not exclude

consideration of other possible mechanisms.
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Rejuvenation

Recently, it was reported that administration of human
growth hormone, metformin and dehydroepiandrosterone
(DHEA), which were intended to regenerate the thymus,
reversed epigenetic ageing of nine men.107 This is undoubt-
edly an exciting development as it suggests that appropri-
ate interventions may not only retard or halt ageing but
even reverse it. It is not known at this stage whether the
rejuvenating effect is mediated through the regeneration of
the thymus or a direct effect of the treatment modality on
the body. Also, it is not known if the effect is mediated by all
three compounds or one or two of them. It is of interest to
note that metformin has previously been reported to retard
several ageing phenotypes and extend lifespan in various
animal model.108–111Hence, it may be a critical ingredient in
the mix, although its effect on epigenetic ageing was not
detected in observational studies.112 The role of growth
hormones is complex. On the one hand, a substantial liter-
ature reports pro-ageing and life-shortening effects of
growth hormones in mice.64,65,113,114 This would appear to
suggest that human growth hormone may not be the active
compound. On the other hand, short-term growth hormone
interventions (12months) are beneficial when administered
to older men (aged 50–65). The seemingly opposing prop-
erties of growth hormones bring to fore the saying of
Paracelsus, that dose and timing make the poison. It is
also worth noting that there may be significant differences
between mice and humans with regard to the effects of
hormones on ageing. On the other hand, it is notable that
there is similar inter-species response with regard to estro-
gen. Menopause in women is accompanied by increased
epigenetic age, which is also the outcome of removal of
ovaries of mice.80,115 Clearly, what we know at this stage
does not allow the formation of general principles regard-
ing the impact of hormones on epigenetic age, but their
involvement in development and maintenance of the
body argue that they do indeed have a very significant
impact on the epigenetic clock.

Conclusion

This short opinion piece is limited to salient features of
DNA methylation-based biomarkers of ageing that relate
to the inner workings of the epigenetic clock at the cellular
and molecular level. There is no doubt that in this relatively
early period since the development of the epigenetic clock,
solid evidence is scarce. This notwithstanding, the informa-
tion that could be harnessed from the methylation features
of the clock is substantial and they point to a link between
epigenetic ageing, stem cells, and processes of develop-
ment and maintenance. The molecular features of the
clock remain to be elucidated, but it is likely that nutrient
sensing pathways play an important role. How the molec-
ular features fit with the cellular features will be the focus of
future research. No doubt, the recent availability of epige-
netic clocks for animals will greatly help in this endeav-
our.64,65,80–84

Regardless of the underlying mechanisms, it is difficult
to ignore the fact that epigenetic ageing begins from very
early moments after the embryonic stem cell stage and

continues un-interrupted through the entire life-span. The
significance of this is profound as the question of why we

age has been attributed to many different things, most com-

monly to “wear-and-tear.” The ticking of the epigenetic
clock from the embryonic state challenges this perspective

and supports the notion that ageing is an unintended con-

sequence of processes that are necessary for the develop-
ment of the organism and tissue homeostasis thereafter. It is

important to note that this does not negate the important

contribution of other features of ageing such as telomere
attrition, DNA damage, and cellular senescence, which

affect the rate of biological ageing as a whole. Instead it

highlights the important point that the effectiveness of
age-mitigation measures such as those against senescent

cells or towards telomere maintenance may not be effective

against epigenetic ageing. Hence, it is important that the
molecular and cellular mechanisms underpinning epige-

netic ageing be elucidated to reveal potential points of

intervention.
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