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Continuing Commentary

Commentary on Camilla Persson Benbow (1988) Sex differences in mathematical reasoning ability in
intellectually talented preadolescents: Their nature, effects and possible causes. BBS 11:169-232.

Abstract of the original article: Several hundred thousand intellectually talented 12- to 13-year-olds have been tested
nationwide over the past 16 years with the mathematics and verbal sections of the Scholastic Aptitude Test (SAT). Although no
sex differences in verbal ability have been found, there have been consistent sex differences favoring males in mathematical
reasoning ability, as measured by the mathematics section of the SAT (SAT-M). These differences are most pronounced at the
highest levels of mathematical reasoning, they are stable over time, and they are observed in other countries as well. The sex
difference in mathematical reasoning ability can predict subsequent sex differences in achievement in mathematics and
science and is therefore of practical importance. To date a primarily environmental explanation for the difference in ability has
not received support from the numerous studies conducted over many years by the staff of Study of Mathematically Precocious
Youth (SMPY) and others. We have studied some of the classical environmental hypotheses: attitudes toward mathematics,
perceived usefulness of mathematics, confidence, expectations/encouragement from parents and others, sex-typing, and
differential course-taking. In addition, several physiological correlates of extremely high mathematical reasoning ability have
been identified (left-handedness, allergies, myopia, and perhaps bilateral representation of cognitive functions and prenatal
hormonal exposure). It is therefore proposed that the sex difference in SAT-M scores among intellectually talented students,

which may be related to greater male variability, results from both environmental and biological factors.
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Although sex differences in high mathematical ability in the
SMPY (Study of Mathematically Precocious Youth) data have
been known at least since the early 1970s (e.g., Keating &
Stanley 1972), the articles that thrust the issue to the forefront of
interest were the pair of Science papers by Benbow and Stanley
(1980; 1983). There, based on roughly 65,000 youth, were the
key empirical findings that sometimes seemed to become ob-
scured in the 1988 target article of Benbow: (i) The SAT-M
means of boys have always been larger than the means for girls
by about 30 and more points in each yearly talent search. (ii) The
SAT-M variances for boys have always exceeded the variances
for girls. That the corresponding verbal SAT-V scores for the
same subjects show no such pattern is critical: There is some-
thing special about the math scores, as Benbow’s (1988) Table 1
shows. (iii) For a fixed SAT-M score, s, the ratio of the propor-
tion of boys with scores exceeding s, relative to the proportion of
girls, has always exceeded one. As s increases, the ratio in-
creases. For example, if s = 420, the ratio is 1.5:1, whereas for s
= 720, the ratio is about 13:1.

These are the main facts that need to be explained. It is clearly
aproper role of science to seek an explanation. Yet after Benbow
and the commentators reviewed a large body of empirical and
theoretical work, no theory was mentioned that could explain
any one of the above facts in a rigorous way, let alone all of them.

An adequate theory must account for all the facts, in a
coherent way; furthermore, any such theory needs to be test-
able and falsifiable. There is a rigorous formal theory that
satisfies these criteria and was specifically constructed for the
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SMPY sex differences data. Benbow has known about it at least
since 1984, following my exchange of several letters and notes
with either her or J. C. Stanley during the interval 1983 to 1985,
In 1984 she wrote to me indicating she had read a prepublication
draft of the theory that I had sent to her. She offered no
criticisms of it. She was sent a reprint of the paper following its
publication in 1985 (Thomas 1985). Yet, even though a concep-
tual interpretation of the varied sex differences in SAT-M is key
to the entire target article, there is no acknowledgment of this
work in the article, commentary, or response.

The putative theoretical mechanism is an X-linked gene, in
two alleles; only the recessive in frequency g is assumed to be
facilitative of superior performance. Under a simple genetical
model it follows easily that the proportion of facilitated males
and females is, respectively, g and ¢2. The elementary but
important fact that drives the theoretical machinery is that ¢ >
g2forall0 < g < 1.

The idea that a genetical X-linked model might provide an
explanation for certain sex differences is an old one, and has
sometimes been relegated to the scientific scrap heap (e.g.,
Boles 1980). Vandenberg’s (1988) comments suggest that that is
where he puts the hypothesis. But this judgment is precipitous
and a poorly reasoned one, because there had not been a
properly developed model. After all, in its simplest setting the
theory says individuals take on but one of two discrete gene
values: a performance facilitative one (with probabilities g or ¢2,
for males and females) or a nonfacilitative one (with probabilities
1 - gand1 — ¢2). This idea s a start, but does not go far enough.
Clearly it is no model for observed test scores, which are
essentially observations from continuous score distributions.
When a properly constructed model is developed that considers
this fact, some interesting consequences result (Thomas 1982;
1983; 1985; 1987; 1988). For example, simple correlational tests
such as those Zohar and Guttman (1988) proposed are not, as
they suggest, easily interpreted as providing evidence for
X-linkage (Thomas 1983).

With respect to the SMPY data, one critical consideration is
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the sampling scheme, which must be modeled from a bivariate
perspective. There are two tests, an achievement selection test
and the SAT-M test. To be selected to take the SAT requires a
score in the top 3% to 5% on the achievement test. Under the
proposed model, a two-component bivariate normal mixture
density with truncation from below on the achievement vari-
able, the (marginal) distribution of SAT-M scores is neither
normal, nor a truncated normal (as Becker & Hedges, 1988,
proposed). It is interesting to compare the SAT-M empirical
distributions given by Benbow (1988, Fig. 1, p. 219) with a
theoretical distribution under the model (Thomas 1985, Fig. 1).
They are similar.

Most important, however, the simple model generates pre-
dictions that are precisely in order-correspondence with the
SMPY facts (i) to (iii) listed above. It is assumed that there is only
one parameter that distinguishes between the sexes: g for males
and q2 for females. (Under a gene inactivation model, the
situation for females becomes more complicated; cf. Thomas
1988). Thus, the theory predicts that males will always have
larger mean scores. As Humphreys (1988) suggests (but not for
his reasons), variances are more important: The variance of the
males will be larger than the variance of the females when g <
.618. Should g be larger, the ordering of the variances is
reversed. Note that if the variance for the boys turned out to be
smaller than for the girls the model is dead. That is because for
the theory to be plausible, ¢ must be small. After all, how many
mathematically talented individuals are there? I've suggested
(Thomas 1985) that g is much less than .2.

There are other tasks that also quite consistently reveal sex
differences in task performance. Witkin’s rod-and-frame task is
an example. In this task although the male average performance
typically exceeds female average performance, the variance for
females is typically larger than the variance for males (e.g.,
Witkin et al. 1985, pp. 137-38). Unlike superior mathematical
ability, superior performance on this task is not rare, and thus q
may be expected to be large: It has been estimated to be .9
(Thomas 1982). Thus the theory and subsequent applications of
it suggest why mathematical ability and certain “spatial” tasks, of
which the rod-and-frame is often considered an example, are not
consistently related. Quite possibly different genes may be
involved.

There are other never-understood empirical facts that are
easily predicted from the model. Benbow (1988) notes that
similar ordinal data relations emerge in studies done abroad, but
the magnitudes of the between-sex differences may be culture-
specific. Such a finding is exactly as expected. That gene
frequencies vary from population to population is fundamental.
And the magnitudes of the sex differences in both mean and
variance depend on the value of g. For example, the mean sex
difference is largest when ¢ = .5. The relative frequency for
color blindness, a sex-linked recessive trait well known to be
more prevalent in males than females, is known to vary from
culture to culture, showing that gene frequency varies as well
(Post 1962).

Another SMPY fact is that boys were selected more fre-
quently than girls, about 57% to 43% in studies prior to 1980.
The model also predicts this bias. This does not mean of course
that social factors are not operating, only that under the model
such a result is expected. Indeed, the only data-specific fact 1
worried about that seemed to be at odds with the model was that
in the early talent searches the best performers were always
boys (Benbow & Stanley 1980). Under the model, it is more
probable for boys to be top performers, but it should not always
be the case. Happily, the all-time highest scorer was a girl who,
at age 13, scored 790! (J. C. Stanley, personal communication,
1985).

The model has not been formally tested, although the perfect
correspondence between model derivations and empirical data
can hardly be regarded as no test of the model. Already it
appears to have received more support than any other explana-
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tion. The theory requires achievement and SAT-M test score
pairs to estimate model parameters and fit the mode! to data.
When I contacted Benbow in 1983, she wrote that the SMPY
data were not suitably coded; subsequent contact with gate
keepers to other talent search data sets, at least in the United
States, indicated there was little interest in testing the model.
Typically, letters of inquiry were ignored. Qutside of talent
search settings, given suitable sampling considerations, one
model prediction is that the distribution of mathematics scores
should be modeled by a mixture distribution. The data should
reject normality and be compatible with a normal mixture, with
the -appropriate component weights between the sexes quad-
ratically related as ¢ and ¢2 are related.

There is no doubt that if tested and fitted to data, the model
will be falsified. Given the potential power of thousands of data
points, is there any model, particularly one this simple, in any
area of science that could be expected to survive? Because all
models are wrong models, the only relevant question is whether
the model is importantly wrong. One must remember that
almost 50 years ago McNemar (1942) statistically rejected nor-
mality of IQ distributions. Yet normality is still considered a
useful model for 1Q.

There are several levels at which model construction and
testing can be directed, and the proposed model is only one
level. It is certainly wrong, however, to conclude that testing
models at this level has no implications for models at other
levels. For example, under the model there is no reason to
suspect there would be sex differences in qualitative thinking or
reasoning among samples of high SAT-M scorers. Moreover,
the model does not disregard the role of social-environmental
variables; it does regard them as negligibly covarying with SAT-
M scores, and there appears no reason to reject that assumption
given Benbow’s (1988) review.

It is interesting to note that the number of traits identified by
geneticists as X-linked has been growing linearly with the years,
at the rate of about 3 per year from about 1958 to 1982, so that by
1982 there were from 115 to 250 X-linked traits identified,
depending on the criterion (McKusick 1983). It would be naive
to suppose that behavioral processes were somehow immune to
such gene influences. Just why there are virtually no behavioral
traits that researchers have agreed are X-linked is itself an
interesting question. My answer (Thomas 1987} is that neither
model construction nor methodology has been adequate for the
task.

The only theory in the literature that can explain all the major
findings of the SMPY sex differences data, and does so in a
coherent way, requiring only one between sex difference pa-
rameter, was never mentioned in 57 pages of text and hundreds
of references in Behavioral and Brain Sciences 11(2) 1988. The
omission is important. It raises serious questions about scholar-
ship and objectivity, and whether outside of “socially acceptable
variables” there is any desire to understand high math sex
differences.

Editorial Note

The author of the target article has been given the opportunity to
see this commentary and has elected not to respond.
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Commentary on John R. Searle (1990) Consciousness, explanatory inversion and cognitive science. BBS
13:585-642.

Abstract of the original article: Cognitive science typically postulates unconscious mental phenomena, computational or otherwise,
to explain cognitive capacities. The mental phenomena in question are supposed to be inaccessible in principle to consciousness. 1
try to show that this is a mistake, because all unconscious intentionality must be accessible in principle to consciousness; we have no
notion of intrinsic intentionality except in terms of its accessibility to consciousness. I call this claim the “Connection Principle.”
The argument for it proceeds in six steps. The essential point is that intrinsic intentionality has aspectual shape: Our mental
representations represent the world under specific aspects, and these aspectual features are essential to a mental state’s being the
state that it is.

Once we recognize the Connection Principle, we see that it is necessary to perform an inversion on the explanatory models of
cognitive science, an inversion analogous to the one evolutionary biology imposes on pre-Darwinian animistic modes of
explanation. In place of the original intentionalistic explanations we have a combination of hardware and functional explanations.
This radically alters the structure of explanation, because instead of a mental representation (such as a rule) causing the pattern of
behavior it represents (such as rule-governed behavior), there is a neurophysiological cause of a pattern (such as a pattern of be-
havior), and the pattern plays a functional role in the life of the organism. What we mistakenly thought were descriptions of under-

lying mental principles in, for example, theories of vision and language were in fact descriptions of functional aspects
of systems, which will have to be explained by underlying neurophysiological mechanisms. In such cases, what looks like

mentalistic psychology is sometimes better construed as speculative neurophysiology. The moral is that the big mistake in
cognitive science is not the overestimation of the computer metaphor (though that is indeed a mistake) but the neglect of

consciousness.

Comments on the Connection Principle
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Searle’s (1990a) argument is directed against the cognitive
science view of the world that populates the mind with a host of
unconscious mental rules (e.g., universal grammar) whose sta-
tus and operations are to be understood on the model of
conscious rule-following operations, except that they are uncon-
scious. The thrust of the argument is that there is a logical
connection between our concept of intentionality and our con-
cept of consciousness, and that if this is indeed the case, then it is
incoherent to talk about unconscious intentional phenomena.

The argument for the Connection Principle is made in the
following six steps (Searle 1990a, pp. 586-88):

Step 1. There is a distinction between intrinsic and as-if
intentionality.

Step 2. Intrinsic intentional states, whether conscious or
unconscious, always have aspectual shapes.

Step 3. The aspectual feature cannot be exhaustively or
completely characterized solely in terms of third-person, behav-
joral, or even neurophysiological predicates. None of these is
sufficient to give an exhaustive account of aspectual shape.

Step 4. But the ontology of unconscious mental states, at the

time they are unconscious, consists entirely in the existence of
purely neurophysiological phenomena.

Step 5. The notion of an unconscious intentional state is the
notion of a state that is a possible conscious thought or
experience.

Step 6. The ontology of the unconscious consists in objective
features of the brain capable of causing subjective conscious
thoughts.

Insofar as the distinction in the first step refers to the distinc-
tion between genuine intentionality and as-if intentionality, 1
take it to be unproblematic and obvious.! Certain parts of the
world can refer to entities beyond themselves (e.g., my mental
states) while other parts of the world cannot (e.g., tables and
chairs); although for certain purposes, they may be treated as if
they can. I suspect that'a number of conceptual confusions in
cognitive science result from ambiguity about this issue.

The second step introduces the notion of “aspectual shape”
and is more problematic. The term does have some clear-cut
applications, but the full extent of what is intended by Searle’s
usage is not clear. Some clear and rather literal examples are
provided by visual perception, where the notion of aspect
corresponds to the notion of perspective. If I view my car from
point A, it appears as having a certain shape or information
content. If I viewed the same car from point B, it would appear
as having a different shape and information content. For exam-
ple, from point A, I may be looking at the front of the car and

BEHAVIORAL AND BRAIN SCIENCES (1993) 16:1 189



