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The performance of mathematically talented 12- and 13-year-olds on various cognitive tasks was
compared with that of average-ability youth, verbally talented youth, and college students. In
Experiment 1, the hypothesis that mathematical talent includes enhanced problem-translation
skills was supported: The mathematically talented students were better than other groups at
writing equations expressing complex relationships. Although the mathematically talented group
outperformed their average-ability peers, they were no better than the verbally talented group or
the college students in rewriting and recalling the propositions in an algebra story problem. In
Experiment 2, the hypothesis that mathematical talent includes enhanced ability to represent
and manipulate information in short-term memory was strongly supported: the mathematically
talented youth outperformed the other youth and, in most cases, performed as well as or better

than the college students.

The Study of Mathematically Precocious Youth (SMPY)
implemented talent searches for early identification of math-
ematically talented children. In these searches, seventh-grade
students who have scored in the top 3% on standard, grade-
appropriate achievement tests take the verbal and mathemat-
ics portions of the Scholastic Aptitude Test (SAT-V and SAT-
M, respectively). Although designed as a test of the developed
mathematical reasoning skills of above-average high school
students (Donlon & Angoff, 1971), the SAT-M is an especially
good measure of mathematical reasoning ability of gifted
seventh graders (Benbow & Stanley, 1981, 1983; Stanley &
Benbow, 1986). About 15% of talent search participants score
500 or better on the SAT-M (the level of the average college-
bound male; Stanley & Benbow, 1986). We operationally
define as mathematically talented those seventh graders with
SAT-M scores of 500 or higher.

Little is known about the ability called mathematical talent
(Benbow, 1988; Rabinowitz & Glaser, 1985). Our research is,
therefore, exploratory. We believe, however, that identifica-
tion of how mathematically talented students are similar to
and different from others provides a basis for understanding
the concept. In our research, therefore, mathematically tal-
ented youth were compared with average-ability peers, ver-
bally talented peers, and undergraduate college students.

We chose to compare mathematically talented youth with
others on tasks derived from two very different frameworks:
the “cognitive components” and the “cognitive correlates”
approaches. The cognitive components approach is basically
a top-down analysis of individual problem statements; re-
searchers examine the relation between test performance and
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domain-specific knowledge and strategies. In Experiment 1,
we took this approach. The cognitive correlates approach, in
contrast, is basically bottom-up; researchers examine the re-
lation between performance on complex tasks and basic in-
formation-processing skills assumed to underlie the complex
performance. Experiment 2 exemplified this approach.

Experiment 1

We investigated the comprehension of linguistically pre-
sented mathematical information. By definition, mathemati-
cally talented youth are better able than other youth to solve
mathematics problems. But what is the basis of the ability?
Approaching the question from a cognitive components view,
we considered the four steps in algebra problem solving
delineated by Mayer {1985).

Problem translation, the first step in Mayer’s (1985) model,
is translating each proposition in the problem into an internal
representation. The next step, problem integration, is to put
the propositions together into a coherent whole. Problem
integration is enhanced by specific knowledge of problem
types (problem schemata) that students acquire as they learn
to solve algebra problems. Solution planning, the third step
in problem solving, is also enhanced by experience; it depends
on more general strategic knowledge about what types of
operations are likely to work in what situations (see Riley,
Greeno, & Heller, 1983). Problem execution, the final step, is
carrying out the computations.

The mathematically talented seventh graders had not had
formal training in algebra or geometry and therefore had not
had the opportunity to develop the schemata or strategic
knowledge necessary for Mayer’s (1985) problem-integration
and solution-planning steps. Neither did the mathematically
talented youth always have especially good computational
skills (Benbow, 1988). Yet they were successful on the prob-
lems of the SAT-M. We reasoned, therefore, that they may
be especially good at problem translation, the first step in
problem solving. In the first experiment, we tested this hy-
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pothesis with two comprehension tasks: equation production
and rewriting/recall.

A common difficulty in problem translation is moving from
a linguistic presentation of a problem to the numeric. For
example, students often have difficulty with mathematics
problems presented in story form despite being able to solve
the same problems presented numerically (e.g., Mayer,
1982a). Furthermore, even undergraduates with advanced
training have difficulty with relation statements, such as
“There are six times as many students as professors at this
university” (e.g., Clement, Lochhead, & Monk, 1980; Solo-
way, Lochhead, & Clement, 1982). Clement et al. (1980)
found that the inability to construct equations from verbal
input is a major source of error among engineering students
in calculus. Thus a major factor in mathematical talent may
be enhanced problem-translation skills, which may be mani-
fested as the ability to go from linguistic to mathematical
representations. In our first task, we tested this assumption
by examining the extent to which subjects were able to
generate the appropriate equations from single sentences.

Some classes of problems are especially difficult (e.g.,
Greeno, 1980; Lewis & Mayer, 1987; Loftus & Suppes, 1972;
Mayer, 1981, 1982b; Riley et al., 1983). Mayer (1982b) sug-
gested that part of the difficulty stems from the types of
propositions constituting the problem, especially assignment
versus relation propositions. Assignment propositions assign
a numeric value to a variable (e.g., “The car traveled 120
miles”); relation propositions express a numeric relation be-
tween two variables (e.g., “Car A was twice as fast as Car B”).
Studies of college students have shown that assignment prop-
ositions are easier to recall than relation propositions, which
suggests that assignment propositions are in some sense psy-
chologically more basic (Mayer, 1982b).

If one assumes, then, that recall depends on understanding
the material and that understanding of mathematical infor-
mation is a component of mathematical talent, then mathe-
matically talented youth should show better recall than others
of both types of propositions. In addition, relation proposi-
tions may be as psychologically basic as assignment proposi-
tions for such youth. Our second task, designed to investigate
these hypotheses, was modeled after Mayer’s (1982b) Experi-
ments 1 and 2. Subjects’ understanding of assignment and
relation information in complex story problems was measured
through rewriting and recalling the problems.

We emphasize that subjects were not asked to perform
computations or to actually solve problems in either the
equation or rewrite/recall task. The tasks were designed to
reflect the subjects’ understanding of the stimuli presented.
We assumed that the tasks tapped into the problem-transla-
tion stage of Mayer’s (1985) analysis.

Method

Subjects

Gified youth. Talent search students participating in a summer
program at Iowa State University served as the gifted subjects. They
were expected to participate in the project as part of their educational
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experience and in return for the financial subsidy given to the
program. Most students had just completed the seventh grade.

The mathematically talented group was composed of 20 students
(2 girls and 18 boys) with the highest SAT-M scores. They had mean
scores as seventh graders (some scores had been grade-adjusted) of
651 on SAT-M and 452 on SAT-V. Their mean age was 12.8 years.
The verbally talented group was composed of the 20 students scoring
highest on SAT-V (11 girls and 9 boys). The group had mean scores
of 499 on SAT-M and 553 on SAT-V. Their mean age was 13.5
years.

Average-ability peers. Twenty age-level peers of the gifted stu-
dents were recruited through a local newspaper ad for 12- to 13-year-
olds to participate in memory and attention research. The average-
ability youth (7 girls and 13 boys) were paid $10. Their mean age was
12.8 years.

College students. Twenty students (11 women and 9 men) were
recruited from an introductory psychology class. They received extra
credit toward their final course grade in exchange for participation.
Ninety percent either had completed or were currently enrolled in
college-level mathematics classes.

Design

Our research was intended to explore the ways in which the
mathematically talented group differed from the others. Therefore,
for each hypothesis tested, a set of three nonorthogonal, planned
comparisons was performed (see Hays, 1973, chap. 14). In the first
comparison, we determined whether the mathematically talented
youth performed better than their average-ability age-level peers. We
planned no further comparisons when we found that the more
talented youth were not superior. In the second comparison, we
determined whether the mathematically talented youth performed
better than the verbally talented youth. We assumed that this com-
parison would indicate whether the difference in the first comparison
was due to a general ability or to a specific mathematical ability. In
the final comparison, we determined whether there was a difference
between the mathematically talented youth and the college students;
this comparison was nondirectional. We assumed that it would indi-
cate the extent to which the performance reflected skilis that could
be acquired through maturation and/or a general educational expe-
rience.

Stimuli and Procedures

Two sets of written verbal stimuli were presented to subjects. The
gifted subjects were available only one afternoon and were therefore
tested in one large group. All other subjects were tested in smaller
groups of 4-12.

Equation stimuli. The first task for all subjects consisted of writ-
ing equations to represent the numeric relation expressed in sentences.
Each sentence was followed by a statement defining the two variables
necessary to write the equation. For example:

Randy has three times as many transformers as gobots.
Let T represent transformers and G represent gobots.

Instructions were printed on the front of the subjects’ booklets and
were read aloud. The instructions contained two completed examples,
one of which the subject attempted to write before reading the
solution.

Nine problems, each written on a separate sheet, were a mixture
of statements from previous studies (Clement et al., 1980; Soloway
etal., 1982) and statements that we generated (see Table 1). Subjects
were given 20 s to write each equation. The equations were presented
in the same order to all subjects.
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Table 1
Equation Stimuli

1. Danny has seventeen less baseball cards than Garbage Pail Kids
cards.

2. Eighty percent of the kids at the amusement park preferred the
Wild Goose ride to the Ferris Wheel.

3. There are six times as many students as professors at this univer-
sity.

4. In the dormitory cafeteria, for every four people who take cake,
five people take ice cream.

5. When Batman and his crew joined the parade, the number of
vehicles increased by one hundred and thirty percent.

6. Randy has three times as many transformers as gobots.

7. At the last dormitory party, for every six people who preferred
Coke, there were 13 people who preferred Pepsi.

8. Kathy has half as much money today as she had yesterday before
her trip to the races.

9. At the horse show the ratio of pintos to bays was seven to eleven.

Algebra story problems. The second set of stimuli (see Table 2)
consisted of seven complete algebra story problems selected from
Mayer’s (1982b) study. The problems were fairly complex, and each
contained at least one assignment and one relation statement.

Subjects were told that the study was designed to measure compre-
hension of story problems and that they would not be asked to solve
the problems. They were instructed to read each problem and then
to rewrite the information in simple propositions expressing just one
idea each. The written instructions, which contained two examples,
were read aloud. Subjects were asked to rewrite the second example
before an explanation was provided. They were given 2 min to
complete rewriting of each story problem. Seven orderings of the
problems were used.

After the rewriting booklets were collected, a second set of booklets
was passed out. Each page of this booklet was blank except for a title
identifying one of the seven problems from the previous booklet.
Subjects were instructed to recall the information presented in the
original story problems. They were given 2 min to recall as much of
each problem as possible. Seven orderings of the problems were used.

Results and Discussion

For all analyses reported in both experiments, the alpha
level for tests of significance was .05. In each case, planned
comparisons were evaluated with a pooled error term derived
from the overall analysis of variance (ANOVA). We computed
a conservative test of each comparison by restricting the
degrees of freedom to those associated with the group factor
(Kirk, 1968, pp. 265-268).

Equations

The nine equations were split into two sets for analysis: (a)
the simple equations (1, 3, 6, and 8), which expressed one
variable in terms of the second variable and a single whole
number, and (b) the complex equations (2, 4, 5, 7, and 9),
which required the use of fractions or percentages. We cal-
culated the proportions correct for each type of equation (see
Table 3). An ANOvA revealed a significant effect of group,
F(3, 76) = 18.03, MS. = 0.071; a significant effect of com-
plexity, F(1, 76) = 148.11, MS. = 0.065; and an interaction
between the two factors, F(3, 76) = 2.79, MS, = 0.065.
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The planned comparisons revealed that (a) the mathemat-
ically talented group performed better than average-ability
youth on both the simple equations, {76) = 5.75, and the
complex equations, /(76) = 4.24; (b) the mathematically
talented youth performed better than the verbally talented
youth on only the complex equations, #(76) = 2.29; and (c)
the mathematically talented youth performed better than the
college students on both the simple equations, #(76) = 2.42,
and the complex equations, #(76) = 2.90.

Although the mathematically talented youth showed a bet-
ter understanding than the average-ability youth of even
simple linguistically expressed relations, they were not better
than the verbally talented youth. Somewhat unexpected was
that the college group performed at a lower level. The pattern
with the simple equations therefore suggests that general
ability is the more important factor. With more complex
relations, each group exhibited diminished performance, but
the mathematically talented group performed at the highest
level. With complex stimuli, then, performance depends more
on a specific talent in mathematics. Thus the equation data
provide support for the hypothesis that mathematically tal-
ented youth show enhanced problem-translation skills.

Table 2
Algebra Story Problems

The River Problem

A river steamer travels 36 miles downstream in the same time that
it travels 24 miles upstream. The steamer’s engine drives in still
water at a rate of 12 miles per hour more than the rate of the
current. Find the rate of the current.

The Freeway Problem

A truck leaves LA en route to SF at 1 pm. A second truck leaves
SF at 2 pm en route to LA going along the same route. Assume
the two cities are 465 miles apart and that the trucks meet at 6 pm.
If the second truck travels at 15 mph faster than the first truck,
how fast does each truck go?

The Frame Problem

The area occupied by an unframed rectangular picture is 64 square
inches less than the area occupied by the picture mounted in a
frame 2 inches wide. What are the dimensions of the picture if it is
4 inches longer than it is wide?

The Work Problem

Mr. Russo takes 3 minutes less than Mr. Lloyd to pack a case when
each works alone. One day, after Mr. Russo spent 6 minutes in
packing a case, the boss called him away and Mr. Lloyd finished
packing in 4 more minutes. How many minutes would it take Mr.
Russo alone to pack a case?

The TV Problem

The entertainment portion of a 30 minute TV program lasted 4
minutes longer than 4 times the portion devoted to advertising.
How many minutes were devoted to advertising?

The Race Problem

In a sports car race, a Panther starts the course at 9 am and averages
75 mph. A Mallotti starts 4 min later and averages 85 mph. How
many miles will the first car have driven when it is passed?

The Fence Problem

Mr. Zecha has just fenced his rectangular lot using 350 feet of chain
fencing. If the length is 2'2 times the width, find the area of the
lot.
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Table 3
Proportions of Correct Equation Production for Each Group
on Simple and Complex Equations

Group
Type of Mathematically Verbally Average College
equation talented talented ability  students
Simple .81 .83 .34 61
Complex 35 .16 .00 11
Algebra Story Problems

Scoring of the rewrite and recall data was modeled on
Mayer’s (1982b) procedures. For each of the seven problems,
we developed a template listing each simple proposition and
the category of information that it specified. Each assignment
and relation proposition was then scored according to the
subjects’ rewrite and recall protocols. A proposition was
scored as correct if it satisfied a lax criterion that allowed the
numeric information to be incorrect as long as the gist of the
proposition remained the same (e.g., subjects were not re-
quired to remember that the river steamer traveled 36 miles
downstream). Although the lax criterion was more important
in scoring the recall protocols, it was used also with the rewrite
protocols for consistency.

Rewriting. We calculated the proportion correct for the
assignment and relation propositions in the rewrite protocols
(see Table 4) for each group. An ANOvA revealed significant
effects for group, F(3, 76) = 7.16, MS. = 0.039, and for type
of proposition, F(1, 76) = 92.26, MS. = 0.010, but no
interaction. The data indicate the importance of the problem-
translation stage in arriving at a correct solution. Even with
the information readily available to them, subjects had diffi-
culty in identifying the simple propositions in algebra story
problems. Especially difficult, for each group, were proposi-
tions expressing relation information.

The planned comparisons indicated that the mathemati-
cally talented groups performed at a higher level than their
average-ability peers for both the assignment propositions,
#(76) = 2.23, and the relation propositions, #(76) = 4.14, but
that they did not differ from the other groups. The compari-
sons suggest that whatever the skills that allow the mathemat-
ically talented group to perform better than their average-
ability peers, they are not specific and can be obtained through
formal education.

Recall. We calculated the proportion correct in the recall
protocols (see Table 4). Analysis of the recall data revealed
significant effects of group, F(3, 76) = 12.41, MS, = 0.092,
and type of proposition, F(1, 76) = 62.89, MS. = 0.010, but
no significant interaction. The planned comparisons showed
a pattern identical to that obtained with the rewrite data: The
mathematically talented group recalled more than the aver-
age-ability group for both the assignment propositions, 1(76)
= 5.01, and the relation propositions, #(76) = 4.87, but their
recall was no better than that of the other groups.

Better memory among gifted children is a well-documented
phenomenon (e.g., Borkowski & Peck, 1986; Keating & Bob-
bitt, 1978; McCauley, Kellas, Dugas, & DeVillis, 1976). Better
memory for schema-relevant information is also well docu-

423

mented (e.g., Bower, Black, & Turner, 1979; Thorndyke &
Hayes-Roth, 1979). To the extent that the college students
were able to use general schematic knowledge of algebra story
problems to enhance their recall, the performance of the gifted
children is especially impressive.

The data provide no support for the hypothesis that math-
ematically talented youth possess a special ability to under-
stand linguistically presented mathematical information when
understanding is tapped by rewriting and recall. The mathe-
matically talented group was not distinguishable from the
verbally talented and the college groups on either level of
performance or the ease with which relation propositions are
handled.

Forgetting. Mayer’s (1982b) conclusion that assignment
information is psychologically more basic than relation infor-
mation did not distinguish between processes operating during
encoding and recall. His subjects showed poorer recall of
relation information, but because there was no measure of
original encoding, the poorer recall could have resulted from
more forgetting, poorer encoding, or both. We were able to
obtain a measure of forgetting by subtracting the proportion
correct at recall from the proportion correct in the rewrite
(see Table 4).

An aNOVA revealed a significant effect of group, F(3, 76)
= 2.79, MS, = 0.114, but no effect of type of proposition and
no interaction. The forgetting data, in conjunction with the
rewrite data, clarify the meaning of “psychologically basic.”
Assignment information is psychologically more basic be-
cause of encoding processes rather than memory processes;
likewise, relation information is not recalled as well because
it is not encoded as well, not because it is more easily forgot-
ten.

As a whole, the results of Experiment 1 provide only partial
support for the hypothesis that enhanced problem-translation
skills are a component of mathematical talent. When the task
is simply to pick out and remember the underlying proposi-
tions in an algebra story, mathematically talented youth are
no better than their verbally talented peers or college students.
When the task requires deriving a more complex equation
from a linguistic statement, however, mathematically talented
youth are superior to the other groups. Thus mathematically
talented students may not have an enhanced understanding

Table 4
Proportions of Correct Rewriting, Recall, and Forgetting for
Each Group on Assignment and Relation Propositions

Group
Type of Mathematically Verbally Average College
proposition talented talented  ability students
Rewriting
Assignment 85 .89 .74 .90
Relation 75 75 .55 73
Recall
Assignment .66 .69 .30 .62
Relation .57 53 21 .48
Forgetting®
Assignment .19 .19 44 29
Relation .20 22 39 25

* Forgetting is the rewriting minus recall difference score.
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of the mathematical information as much as they have an
enhanced ability to represent the information in a usefu form.
When problems must be solved, as on the SAT-M, the ability
to translate the information into a useful form gives the
mathematically talented students an edge.

Experiment 2

As described earlier, our second experiment fell under the
cognitive correlates approach. The assumption was that dif-
ferences on complex tasks, like those used in Experiment 1,
can be understood in terms of basic perceptual and memory
processes tapped by simple tasks. Cognitive correlates studies,
for example, have shown that individual differences in verbal
ability (e.g., Hunt, 1978; Hunt, Lunneborg, & Lewis, 1975)
and general intelligence (e.g., Cohn, Carlson, & Jensen, 1985)
are correlated with differences in speeded-choice tasks. Be-
cause a number of researchers examining correlates of math-
ematical ability have reported a relation with measures of
spatial ability and/or imagery ability derived from paper-and-
pencil tests (e.g., Benbow, 1988; Burnett, Lane, & Dratt, 1979;
McGee, 1979), we were especially interested in whether the
mathematically talented group would show an increased abil-
ity to handle spatial information in very simple tasks.

Experiment 2 is conceptualized within Baddeley and
Hitch’s (1974) framework, in which short-term memory is
described as a central working memory that controls two
relatively independent buffers: an articulatory loop and a
visuospatial scratch pad. The articulatory loop holds verbal
information (regardless of its modality of presentation),
whereas the visuospatial scratch pad holds primarily spatial
information (Baddeley & Lieberman, 1980). Mathematically
talented youth were compared with the other groups on a
span task, which was assumed to tap the amount of infor-
mation represented in the buffers, and on a continuous paired-
associate task, which was assumed to tap the manipulation of
information in central working memory.

Span tasks require immediate reproduction of a set of
ordered stimulus items and appear to be measures of basic
perceptual processes rather than more complex, strategic proc-
esses (e.g., Bachelder & Denny, 1977a, 1977b; Dempster,
1981; Jensen, 1970; Lyon, 1977). Because digits in a digit-
span task function as verbal stimuli (i.e., they are treated as
stimuli to be named), we assumed that performance on a
standard digit-span task reflects the efficiency with which
information is represented in the articulatory loop. We also
assumed that a spatial analogue of the digit-span task would
reflect the efficiency with which information is represented in
the visuospatial scratch pad. Therefore, subjects performed a
span task with two sets of stimuli. In the digit version, the
subject saw a string of four to ten digits. In the spatial version,
subjects saw three to nine asterisks in a 10-cell matrix.

Mathematically talented students might not have an advan-
tage in the capacity to represent information, but they might
be better able to manipulate it. To assess this possibility, we
used a continuous paired-associate task (see Lansman &
Hunt, 1982). Subjects attempted to remember five continu-
ously changing letter-response pairs. The responses were
either digits or locations in a 10-cell matrix. Although the
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continuous paired-associate task makes use of information in
the buffers, it is primarily an associative task requiring mon-
itoring and updating by central working memory. As a result,
it could yield a different pattern of results than the span task.

Method

Subjects and Procedure

The four groups of subjects described in Experiment 1 also partic-
ipated in this experiment. The same set of planned comparisons
across groups was also used.

Each subject completed two tasks with two types of stimuli: digit
span, spatial span, letter~digit continuous paired associates, and let-
ter-location continuous paired associates. The combined tasks took
1~1% hr. Each task was presented on an Apple Ile computer with a
standard green phosphor screen. Digit stimuli were presented in the
top half of the screen. Taped across the bottom half of the screen was
a sheet of transparent plastic with an outline of a symmetric 10-cell
matrix drawn in thick black lines. The matrix was 5.9 cm high and
8.3 cm wide in the middle row. There were three cells in the first row,
four in the second row, and three in the third row. Each cell of the
matrix defined a possible spatial-location stimulus.

The gifted students were tested in two groups of 20 subjects each.
The computer facility used with the gifted subjects was not available
for use with the other subjects. As a result, they were tested in groups
of 1-4, Half of all subjects performed each task with the digit stimuli
first, whereas half performed the tasks with the spatial stimuli first.
In each case, the span task preceded the continuous paired-associate
task.

Span Task

Digit stimuli. Each trial began with a plus sign centered in the
top half of the screen for 1 s. This ready signal was followed by the
digits displayed one at a time for | s each in the same location as the
ready signal. After the last digit, the subject wrote the digits in order
on an answer sheet.

Spatial stimuli. The ready signal for spatial trials appeared cen-
tered on the line between cells in the middle of the matrix. The spatial
locations constituting the trial were indicated by a sequence of aster-
isks. Each asterisk appeared for 1 s centered in one of the 10 cells,
After the last asterisk, the subject recorded a response on an answer
sheet containing blank matrices. Subjects indicated the order of
asterisks by writing the digits 1 through 9 as needed in the appropriate
cells of the matrix.

Each digit/location was selected randomly with the restriction that
no digit/location occur twice in a row. Lists of digits varied in length
from 4 to 10. The set of spatial locations varied in length from 3 to
9. Gifted subjects were presented seven trials at each of the seven
lengths for a total of 49 digit trials and 49 spatial trials. Because of
time constraints, other subjects were presented six trials at each of
the lengths for a total of 42 digit trials and 42 spatial trials. The trials
were randomly ordered, and the same order was used for each subject.
Each trial was initiated by a keypress, and so there were no time
constraints on the responses. There were five practice trials with each
stimulus type.

Continuous Paired-Associate Task

Digit stimuli. A ready signal consisting of five plus signs preceded
the initial pairing of stimuli. The letters A, B, C, D, and E were
presented one at a time along with an equal sign and a digit response
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term (e.g., A = 4). Each pair was presented for 3 s, and there was a
1-s blank interval between pairs. All stimuli occurred in the same
location, centered in the top half of the screen.

The test trials began immediately after the initial presentation of
pairs. One of the five letters was randomly selected and presented
with a question mark (e.g., A = ?). The display remained on until the
subject pressed one of the digit keys at the top of the keyboard. After
the subject’s response, the new pair was presented for 3 s and testing
continued.

Spatial stimuli. In the spatial version of the task, each letter was
paired with one of the 10 cells of the matrix. The pair display consisted
of the letter’s appearing in the center of the cell with which it was
paired. The test prompt consisted of a letter followed by an equal
sign and question mark presented to the right of the matrix and
aligned with the center row. During a test, each cell of the matrix
contained a digit. Subjects indicated their choice of cell by typing the
digit located in that cell. There were five different random patterns
of the 10 digits over the 10 cells. The pattern used was randomly
chosen for each test.

The pairing of letters and digits/locations and the selection of
letters for testing was completely random and individually generated
for each subject. Gifted subjects responded to 60 test stimuli of each
type (digit and spatial location). Because of time constraints, other
subjects responded to 50 test stimuli of each type. There were eight
practice test trials with each stimulus type.

Results and Discussion

Span Task

We calculated proportion correct recall as a function of list
length for each type of stimulus (see Figure 1). A response
was scored correct only when each stimulus was recalled in
the appropriate order. The data from adjacent list lengths
(except for the shortest) were combined for analysis. The data
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of one of the mathematically talented subjects were discarded
because he did not follow instructions.

Digit stimuli. The expected decrease in performance with
longer lists was confirmed by an ANOva, F(3, 225) = 644.63,
MS. = 0.019. There were also significant group differences,
F(3,75)=4.14, MS, = 0.063, and a significant Group X List
Length interaction, F(9, 225) = 2.90, MS. = 0.019. The
planned comparisons showed that (a) the mathematically
talented group performed no better than the average-ability
group with the longest and shortest list lengths; (b) they did
perform at a higher level than the average-ability group with
lists of lengths 5 and 6, {75) = 3.00, but were no better than
the verbally talented group or the college students; and (c) the
mathematically talented group performed better than both
the average-ability group, #76) = 4.10, and the verbally tal-
ented group, #(76) = 3.38, with lists of lengths 7 and 8. The
comparisons show floor and ceiling effects but also suggest
that the mathematically talented group can handle moderately
long lists better than their verbally talented peers can and at
a level comparable with that of college students.

We expected that the gifted youth would show better per-
formance than the average-ability youth (e.g., Wechsler,
1974), but the difference between the two gifted groups was
not anticipated. Because the digits function simply as stimuli
to be named, there was no reason to expect that mathemati-
cally talented students would be better than verbally talented
students at representing the names in the articulatory loop.
We offer a post hoc explanation. It has been shown that span
task performance increases with familiarity of stimuli (Case,
Kurland, & Goldberg, 1982; Cavanaugh, 1972). Perhaps
mathematically talented youth are in some sense more famil-
iar with digit names than are their verbally talented peers.
Thus the difference might be attenuated with other alphanu-
meric stimuli.

3 4-5 6-7 8-9
List Length

Proportion correct in a span task with digit and spatial location stimuli as a function of list

length for each group. (Except for the shortest lists, each point is the average of two adjacent list lengths.)
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Although our procedure did not allow a precise determi-
nation of individual subjects’ digit spans, we estimated them
by using Dempster’s (1981) definition of span as the length at
which a series can be correctly produced 50% of the time. We
estimated this length for each subject by identifying the list
length at which performance first dropped below .50 and then
computing the 50% point by interpolation. The estimated
digit spans were 7.5 for the mathematically talented group,
6.7 for the verbally talented group, 6.3 for the average-ability
group, and 7.4 for the college group. On the basis of a review
of 15 studies, Dempster (1981) estimated that the digit span
of 12-year-olds is 6.7 and that of adults is 7.4. Our estimates
were identical to Dempster’s for the adults and very close for
the average-ability youth, The close correspondence suggests
that our digit span task is tapping processes similar to those
in other studies.

Spatial stimuli, The spatial span data also showed the
expected decrease in performance as a function of increasing
list length, F(3, 225) = 561.48, MS, = 0.020. There were also
significant differences between the groups, F(3, 75) = 7.25,
MS. = 0.074, and a Group X List Length interaction, F(9,
225) = 2.89, MS. = 0.020. The planned comparisons revealed
that (a) the mathematically talented youth performed no
better than the average-ability youth with either the longest
or shortest list lengths; (b) they performed better than both
their average-ability peers, {75) = 3.68, and their verbally
talented peers, #75) = 1.81, with lists of lengths 4 and 5, but
not as well as the college students, #(75) = 2.02; and (c) they
performed better than the average-ability group with lists of
lengths 6 and 7, (75) = 2.06, but not better than the verbally
talented group. The college students again performed better
than the mathematically talented students with lists of lengths
6and 7, ((75) = 2.14.

The spatial span task was more difficult than the digit span
task; floor effects become apparent with shorter list lengths,
Although the results are not as clear as with the digit stimuli,
the mathematically talented youth were better able to remem-
ber spatial information than were others their age; this sup-
ports the hypothesis that a component of mathematical talent
is an enhanced visuospatial buffer. The mathematically tal-
ented youth did not perform as well as the college students,
however, which suggests that the spatial span task is sensitive
to skills acquired with maturation or as the result of a formal
educational experience.

We estimated spatial span for each group by using the
procedure described earlier. The estimated spatial spans were
5.1 for the mathematically talented group, 4.8 for the verbally
talented group, 4.2 for the average-ability group, and 5.8 for
the college group.' The estimated spatial spans were smaller
than the estimated digit spans for all groups. Moreover, the
pattern of results differed somewhat for the spatial and digit
span tasks. These findings suggest that the tasks tap at least
partially different underlying functions and confirm our as-
sumptions that the tasks reflect the efficiency of two separate
and independent perceptual buffers (i.e., verbal and spatial).

Continuous Paired-Associate Task

We calculated the proportion of correct responses as a
function of lag for the continuous paired-associate data’ (see

VERONICA J. DARK AND CAMILLA PERSSON BENBOW

Figure 2), Lag refers to the number of pairs intervening
between the original presentation of the pair and when its
association is tested. Data were grouped into Lag 0, Lag 1,
Lag 2-3, and Lag 4 or greater to provide approximately equal
numbers of observations for each data point. The data were
analyzed separately for each type of stimulus.

Digit stimuli. The expected drop in performance as a
function of increasing lag was confirmed by an ANOVA, F(3,
210)=69.16, MS. = 0.027. In addition, there was a significant
group effect, F(3, 70) = 8.19, MS. = 0.173, and a Group X
Lag interaction, F(9, 210) = 2.28, MS. = 0.027. The planned
comparisons showed that (a) the mathematically talented
subjects performed better than their average-ability peers at
Lag 0, ((70) = 2.37; (b} they performed better than both their
average-ability peers, #(70) = 4.37, and their verbally talented
peers, #(70) = 3.51, at Lag I; (c) they performed better at Lag
2-3 than the average-ability group, #(70) = 4,06, the verbally
talented group, 1(70) = 3.05, and the college students, #(70) =
3.16; and (d) the same was true at Lag 4+, 15(70) = 5.04, 3.68,
and 3.43, respectively.

Spatial stimuli. An ANOVA confirmed the expected drop
in performance with increasing lag, F(3, 210) = 98.65,
MS. = 0.023. There was alse a significant effect of group,
F(@3, 70) = 5.78, MS. = 0.144, but there was no significant
Group X Lag interaction. The planned comparisons showed
that (a) the mathematically talented group performed better
than their average-ability peers at Lag 0, {70) = 2.52, and at
Lag 1, 70) = 2.56, but were not superior to their verbally
talented peers; (b) the mathematically talented group per-
formed better than both their average-ability and verbally
talented peers at Lag 2-3, ts(70) = 2.66 and 2.09, and at Lag
4+, ts(70) = 2.23 and 1.71; and (c) they did not differ from
the college students at any lag.

Performance in the continuous paired-associate task can
reflect how well stimuli are represented in the buffers, the use
in central working memory of information derived from the
buffers, or both. The span tasks, however, are assumed to
reflect primarily the buffer representations, Considered in the
context of the span data, the paired-associate data suggest that
the mathematically talented group has a superior ability to
manipulate information in central working memory. Al-

! Because only 2 girls were included in the mathematically talented
group, gender differences could not be reliably determined across
groups. When data were collapsed over groups, however, the only
gender difference that emerged was for the spatial span task. Although
girls overall had an estimated spatial span of 4.5 and boys had an
estimated span of 5.3, the 2 girls in the mathematically talented group
did not significantly differ from their {8 male peers (estimated spans
of 4.8 and 5.2, respectively).

2 The failure to include a data-protection code in our computer
programs allowed the data from several subjects to be lost when they
began experimenting with the keyboard in the middle of the contin-
uous paired-associate task, The digit data from 3 mathematically
talented subjects and 3 verbally talented subjects were lost. The spatial
data from 4 mathematically talented subjects and 1 verbally talented
subject were also lost in this manner. Unfortunately, the gifted
children were available on a one-time basis only, and we were not
able to obtain more data. In addition, the spatial data from 1 of the
average-ability peers were lost as a result of experimenter error.
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Figure 2. Proportion correct in a continuous paired-associate task with digit and spatial location
stimuli as a function of lag between presentation and test for each group. (Data from Lags 2 and 3 are

combined, as are data from all lags of 4 and above.)

though the college students could represent more spatial in-
formation than the mathematically talented students, the
latter were equally good at tasks requiring manipulation of
such information. Likewise, although the mathematically tal-
ented and college groups could represent equal amounts of
digit information, the mathematically talented were clearly
superior in manipulating the information.

The finding that mathematically talented youth are better
at manipulating information in working memory than are
verbally talented youth or college adults is somewhat surpris-
ing. Hunt et al. (1975) identified manipulation of information
in short-term memory as a characteristic that distinguished
college students with high and low verbal ability. Hunt et al.
(1975) did not examine groups with different levels of math-
ematical ability, however. Also, the mathematically talented
students in our study had reasonably high verbal ability. In
order to better understand both the tasks and the differences
between the two gifted groups on them, our future studies
will involve various combinations of letters, digits, and other
symbols in the span and paired-associate tasks.

General Discussion

In two experiments, we examined the construct of mathe-
matical talent, operationally defined as a high score on SAT-
M in seventh grade. In Experiment 1, we considered how
mathematically talented youth handled mathematical infor-
mation in linguistic form. We hypothesized that mathemati-
cally talented youth are better at problem translation, the first
step in problem solving as described by Mayer (1985). The
data provided partial support for the hypothesis. When the
problem-translation task was rewriting or recalling material
in propositional form, the mathematically talented youth

performed no better than the verbally talented youth or the
college students. They had the same difficulty as did the other
groups in encoding relation propositions. When the problem-
translation task was the generation of a simple equation, the
mathematically talented subjects exhibited better perform-
ance than did either their average-ability peers or the college
students, but they performed no better than their verbally
talented peers. When the task required generation of more
complex equations, however, the mathematically talented
youth were clearly superior. It appears, then, that a compo-
nent of mathematical talent is not so much a better under-
standing as it is the ability to transform linguistically presented
information into a mathematically useful format.

In Experiment 2, we examined information processing at a
more basic level. Short-term memory tasks with simple digit
and spatial stimuli were designed to ascertain whether math-
ematically talented youth have an increased ability to repre-
sent information in two perceptual buffers, to manipulate
information in central working memory system, or to do
both. We found support for both. The mathematically tal-
ented students performed at a higher level than did the other
youth in tasks involving both representation and manipula-
tion of spatial information. The college students performed
at least as well as the mathematically talented students with
the spatial stimuli, however, which suggests that experience is
important in representing matrix-defined spatial information.

Data derived with digit stimuli also clearly showed the
enhanced abilities of the mathematically talented youth. Not
only did the mathematically talented students outperform
both of their peer groups, but their performance was at the
level of college students for the digit span task and higher
than that of college students on the continuous paired-asso-
ciate task. Thus the pattern over both digit tasks indicates
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that in comparison with other talented or older students, the
mathematically talented students have enhanced short-term
memory capabilities.

In a review of the construct of mathematical talent, Benbow
(1988) listed characteristics that have been suggested as cor-
relates of high mathematical ability. The list included spatial
ability, field independence, use of images, logic, intuition,
flexibility, the ability to recognize unproductive strategies,
excellent memory, and high verbal and reasoning skills. Al-
though our investigations were exploratory in nature, the data
suggest in addition the following characteristics: (a) a superior
ability to represent and manipulate information in short-term
memory and (b) a superior ability to translate linguistically
presented mathematical information into an equation form
necessary for successful problem solution. Both of these abil-
ities appear to set mathematically talented youth apart from
other talented youth and, for the most part, from older college
students.
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